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Abstract

This thesis presents a model to describe anisotropic, rate-independent plasticity
in the logarithmic Lagrangian space for finite strains. The strain measure is
decomposed into an elastic and plastic part as proposed by Green & Naghdi. The
well known structures within the small strain theory can be applied by defining the
strains in logarithmic strain space. Constitutive equations for the defined internal
variables are derived in the logarithmic Lagrangian space. A return-mapping
scheme as the implicit integration method is used as the iteration algorithm for
local plasticity. A calculation specification transforms the internal variables from
the logarithmic Lagrangian strain space into the Lagrangian strain space. The
anisotropic material behavior in the plastic domain is modeled by material symmetry
groups with the help of a constant fourth-order Hill tensor. The solution algorithm is
implemented in an object oriented finite element program called ”soofeaM” (software
for object-oriented finite element analysis in Matlab) provided by the Institute of
Strength of Materials at Graz University of Technology. Representative benchmark
simulations are calculated, in order to demonstrate the performance of the proposed
model and computational implementation. 8-node trilinear hexahedral elements
are used in the examples to discretize the calculation domain. The simulation
results show quadratic convergence and plausible mechanical behavior. Further
investigations can be conducted with more appropriate element types for plasticity
as the set of constitutive equations is independent on the element type.
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Kurzfassung

Diese Arbeit präsentiert ein Model zur Beschreibung von anisotroper, dehnraten-
unabhängiger Plastizität im logarithmischen Verzerrungsraum in der Material-
konfiguration bei großen Verformungen. Das Verzerrungsmaß wird in einen
elastischen und plastischen Teil zerlegt, wie von Green & Naghdi vorgeschla-
gen. Die bekannten Strukturen aus der Verzerrungstheorie kleiner Verformungen
können dabei durch die Definition im logarithmischen Verzerrungsraum ange-
wandt werden. Beschreibungsgleichungen für die definierten internen Variablen
werden im logarithmischen Verzerrungsraum hergeleitet. Ein ”return-mapping”
Schema in Form einer impliziten Integration fungiert als Iterationsalgorithmus
für lokale Plastizität. Eine Rechenvorschrift transformiert die internen Variablen
vom logarithmischen Verzerrungsraum in den Verzerrungsraum der Materialkon-
figuration. Das anisotrope Materialverhalten im plastischen Bereich wird mit
Materialsymmetriegruppen mit Hilfe eines konstanten Hilltensors vierter Ordnung
modelliert. Der Lösungsalgorithmus ist in ein vom Institut für Festigkeitslehre der
Technischen Universität Graz bereitgestelltem objektorientiertem Finite Elemente
Programm implementiert, welches sich ”soofeaM” (software for object-oriented finite
element analysis in Matlab) nennt. Repräsentative Benchmark Simulationen wurden
berechnet, um die Leistung des vorgeschlagenen Modells bzw. der rechnerischen
Implementierung zu demonstrieren. Lineare 8-Knoten Hexaeder Elemente wurden
in diesen Beispielen benutzt, um das Berechnungsgebiet zu diskretisieren. Die
Simulationsergebnisse zeigen quadratische Konvergenz und plausibles mechanisches
Verhalten. Weitere Untersuchungen können mit für Plastizität besser geeigneten
Elementtypen durchgeführt werden, da die Beschreibungsgleichungen unabhängig
vom Elementtyp sind.
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1. Introduction

In state of the art finite element simulations elastic-plastic problems with large
deformations can be found frequently. Different approaches exist to describe
an appropriate material behavior. The locally multiplicative approach for finite
plasticity is widely spread. In this case the deformation gradient is decomposed
into an elastic and a plastic part. The elastic part describes rigid body motions.
The reversible, elastic response vanishes by unloading the body under consideration.
The plastic part depicts the irreversible deformation of the body under consideration
which corresponds to the movement of dislocations in terms of the crystallography
of materials. An intermediate state is introduced within this approach (see for
instance Eidel & Gruttmann [6] or Menzel & Steinmann [16]). Problems emerge
for a multiplicative decomposition in the case of anisotropic material behavior due
to the intermediate state and the formulation of constitutive equations within this
framework. This evidence is discussed for rate-independent plasticity for instance
in Eidel & Gruttmann [6], Menzel & Steinmann [16] and Sansour et al. [25].
In contrast to that Green & Naghdi [7] proposed an additive approach to finite
plasticity where the strain tensor is decomposed into an elastic and plastic part. This
concept is employed merely as a phenomenological framework and was investigated
for anisotropic rate-independent plasticity for instance by Miehe [17], Papadopoulos
& Lu [22], Miehe et al. [19], Löblein et al. [12], Schröder et al. [26] and Ulz [32, 33].
A comparison of the multiplicative and additive approach to finite plasticity was
conducted by Miehe & Apel [18].

1.1. Motivation

Different material machining processes cause anisotropic behavior of the processed
material. Rolling and deep drawing are prominent examples. Especially deep
drawing induces complex stress states due to the anisotropic material parameters
of thin rolled metal sheets (see for instance Dietrich [5], Singh et al. [28] and
Tikhovskiy et al. [30]). In deep drawing process a metal sheet is pressed into a
die by a punch and undergoes large plastic deformations (see Figure 1.1). Uneven
rims may arise during deep drawing due to the anisotropy of the metal sheets.
This is illustrated in Figure 1.2 and is usually referred to as earing. The process
induces inhomogeneous distribution of the mechanical properties and wall thickness.
The stress state of the deformed end product and the extent of earing are of great
interest for the manufacturer. The introduction of internal stresses through the
machining process can influence the product lifetime and should therefore be taken
into account. Knowledge about earing allows a prior modification of the process to
optimize production and reduce defects.

2



1. Introduction

Figure 1.1. Deep drawing process.
1 - punch, 2 - blank holder,
3 - die, 4 - die mounting,
5 - ground plate, 6 - ejector
(Cf. Dietrich [5])

Figure 1.2. Earing of a rolled metal
sheet after deep drawing.
Left: experiment, Right:
simulation (Cf. Singh et al.
[28])

1.2. Approach and Objectives

A material model capable of modeling anisotropic effects was derived for rate-
independent material behavior in terms of an additive approach of finite plasticity
as proposed by Green & Naghdi [7]. This approach was chosen to circumvent
the problems which occur within a multiplicative approach by introducing an
intermediate state. Firstly the necessary basics of continuum mechanics and finite
element method are outlined. Proceeding from an additive decomposition of the
strain tensor into an elastic and a plastic part, local constitutive equations were
deduced within the logarithmic Lagrangian strain space. By defining the strains
in a logarithmic strain space the well known relationships within the small strain
theory can be applied. Anisotropic effects were taken into account by implementing
orthotropic material symmetry groups in terms of a constant fourth-order Hill tensor.
The derived constitutive equations were implemented in an object oriented finite
element program called ”soofeaM” (software for object-oriented finite element
analysis in Matlab) provided by the Institute of Strength of Materials at Graz
University of Technology and was used to calculate simple numerical benchmark
examples.
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2. Continuum Mechanics

This chapter describes the basic principles of continuum mechanics. In continuum
mechanics materials are modeled as continuous bodies which conform to funda-
mental conservation laws like the conservation of mass or momentum. The basic
derivations below can be found in diverse literature and follow the quotations found
in Bonet & Wood [3] for instance.

2.1. Motion

In continuum mechanics a body is represented as an assemblage of material points
whose positions in the initial state t = 0 can be described with a vector X with
respect to a global coordinate system. The configuration of the undeformed body
is called Lagrangian or material configuration. By applying body and surface loads
on the body it deforms accordingly at time t 6= 0 and the material points move
to new positions. This can be described by the vector x with respect to a global
Cartesian basis. The configuration of the deformed body at time t is named Eulerian
or current configuration. The relationship between both configurations is illustrated
in Figure 2.1.

X x	= φ(X,  t)X3 x3,

X1 x1, X2 x2,

φ(X, t)

F = ∇X φ(X, t)

B0

 

Bt

Figure 2.1. Deformation gradient and nonlinear mapping ϕ between original and
current configuration

In Figure 2.1 B0 describes the Lagrangian configuration and is bounded by ∂B0.
The Eulerian configuration is noted as Bt which is bounded by ∂Bt. The nonlinear
mapping ϕ maps the material point X ∈ B0 at time t = 0 onto the position x ∈ Bt

at time t. This relation is shown in Equation 2.1.

x = ϕ(X, t) (2.1)

4



2. Continuum Mechanics

2.2. Deformation

2.2.1. Deformation Gradient

The local deformation gradient F is defined according to Equation 2.3 and describes
a mapping of the tangent vectors of the Lagrangian configuration onto the tangent
vectors of the Eulerian configuration. This context is described by Equation 2.2. The
deformation gradient F plays an important part in the definition of strain measures
as it reveals as the central description of kinematics. It can be used to describe the
relative position of two neighboring material points before and after deformation.
Furthermore the deformation gradient F is specified as a two-point tensor which
exposes the aforementioned behavior.

dx = FdX (2.2)

F = ∇Xϕ(X, t) (2.3)

2.2.2. Strain

Deformation can be measured by using a strain measure. In finite strain theory the
strain is defined as the change of the scalar product of two infinitesimal vectors dX1

and dX2. This context is shown in Equation 2.4

dx1 · dx2 = dX1 ·CdX2 (2.4)

where C denotes the right Cauchy-Green deformation tensor. The right Cauchy-
Green deformation tensor C operates on the material configuration and is defined
in terms of the deformation gradient F as noted in Equation 2.5.

C = FTF (2.5)

The change in the scalar product of two infinitesimal vectors can now be found in
terms of the Green Lagrange strain tensor E which by itself is defined by the right
Cauchy-Green tensor C (see Equation 2.6 and Equation 2.7). In Equation 2.7 the
tensor I denotes the unit tensor.

1

2
(dx1 · dx2 − dX1 · dX2) = dX1 · EdX2 (2.6)

E =
1

2
(C− I) (2.7)
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2. Continuum Mechanics

2.2.3. Polar Decomposition

The deformation gradient F can be split into stretch and rotation components
which is called decomposition. Two procedures can be applied to decompose the
deformation gradient F. In the first procedure the deformation gradient F is made
up of the rotation tensor R and the stretch tensor U:

F = RU (2.8)

This procedure can be interpreted as a stretch in the Lagrangian configuration and
a following rotation into the Eulerian configuration. The right Cauchy-Green tensor
C can be rewritten by applying Equation 2.8:

C = FTF = UTRTRU (2.9)

The rotational tensor R can be assembled as an orthogonal tensor, therefore RTR =
I. If U is chosen to be a symmetric tensor the right Cauchy-Green tensor C can be
rewritten as in Equation 2.10.

C = UU = U2 (2.10)

In order to determine the stretch tensor U, the principle directions of the right
Cauchy-Green tensor C have to be evaluated. Those are denoted by the eigenvectors
Nα with their corresponding eigenvalues λ2

α for α = {1, 2, 3}. The spectral
decomposition of C and the stretch tensor U can then be written as:

C =
3∑

α=1

λ2
αNα ⊗Nα (2.11)

U =
3∑

α=1

λαNα ⊗Nα (2.12)

In the second procedure the deformation gradient F is made up of the stretch tensor
V and rotation tensor R:

F = VR (2.13)

This procedure can be interpreted as a rotation into the Eulerian configuration and
then a stretch. The rotation tensor R can be calculated as R = FU−1. The stretch
tensor V can then be obtained by combining Equation 2.8 and Equation 2.13:

V = RURT (2.14)

The described methods and the interpretation of those are illustrated in Figure 2.2.
The deformation gradient defines the direct linkage between the non-deformed and
deformed state of the body under consideration.
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2. Continuum Mechanics

X1

X2

F = ∇X φ(X, t)

Deformation Gradient
X x

t = 0 t

N1

N2

 
n2 n1

n2 n1

N1

N2

x1,

x2,

X2 x2,

X1 x1,

X1 x1,

X1 x1,

X2 x2,

X2 x2,

U

UR

R

Figure 2.2. Polar decomposition of the deformation gradient

2.3. Stress

A deformation of a body generates internal forces which can be expressed in terms
of a stress measurement. Considering a general deformable body which is cut into
two halves the surface traction vector t can be introduced which acts on a cut area
da. This context is visualized in Figure 2.3.

x3

x1 x2

da

t
n

Figure 2.3. Traction vector t acting on the cut area da
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2. Continuum Mechanics

The surface traction vector t can be expressed in terms of a limiting value for a
material point x located in a cut area ∆a which is loaded by the force vector ∆f :

t(x, t) = lim
∆a→0

∆f

∆a
=
df

da
(2.15)

Consider an elemental tetrahedron shown in Figure 2.4 which is loaded by a body
force f and is kept in mechanical equilibrium by the surface traction vectors ti for
i = {1, 2, 3} and tn. These vectors can be expressed in their Cartesian parts by
introducing the stress components σij which are defined in the Cartesian planes dai:

ti = σ1ie1 + σ2ie2 + σ3ie3 (2.16)

e3

e1

e2

 
 n

tn

t1

σ22 σ12

σ32

da2

da

Figure 2.4. Elemental tetrahedron, exemplary only t1 is shown

The equilibrium on the tetrahedron leads to the following equation:

tn da+
3∑
i=1

ti dai + fdv = 0 (2.17)

Equation 2.17 can be simplified by dividing by da and taking into account that the
plane areas dai can be expressed as a projection of da as

dai = n · ei da. (2.18)

In the case of dv → 0 Equation 2.17 can be rewritten as:

tn =
3∑
i=1

ti(n · ei) (2.19)

tn =
3∑

i,j=1

σjiej(n · ei) (2.20)

8



2. Continuum Mechanics

tn =
3∑

i,j=1

σjiej ⊗ ein (2.21)

tn = σn (2.22)

The Cauchy stress tensor σ can be found in Equation 2.22. It is a symmetric tensor
due to the duality of shear stresses and shows an objective behavior which means
that the Cauchy stress tensor remains unaltered by rigid body motions.

2.4. Principle of Virtual Work

2.4.1. Equilibrium Equations

In Figure 2.5 a general deformable body is shown which is defined by its volume v
with the boundary ∂v and is loaded by a body force f per unit volume and a traction
force t per unit area. In the case of a static problem the sum of all forces acting on
the deformable body has to vanish. This yields Equation 2.23.∫

∂v

tda+

∫
v

fdv = 0 (2.23)

X3 x3,

X1 x1, X2 x2,

 
φ(X, t) 

V
v

∂v 

t	=	0 t

f

n

t

Figure 2.5. Equilibrium of forces for a general deformable body

Using the Cauchy theorem for the traction vector t from Equation 2.22 leads to an
expression in terms of the Cauchy stresses:∫

∂v

σnda+

∫
v

fdv = 0 (2.24)

The area integral in Equation 2.24 can be transformed into a volume integral by the
use of the Gauss theorem (see Equation 2.25):∫

v

divSdv =

∫
∂v

Snda (2.25)∫
v

(divσ + f)dv = 0 (2.26)

9



2. Continuum Mechanics

Equation 2.26 shows the integral formula of the local equilibrium equation in the
spatial configuration and has to be applicable for any enclosed region dv which leads
to

divσ + f = 0. (2.27)

By introducing a virtual velocity δv the virtual work δW can be derived as shown
in Equation 2.28.

δW =

∫
v

(divσ + f) · δvdv = 0 (2.28)

Equation 2.28 can be rewritten by the use of the divergence theorem (see
Equation 2.29) and Gauss theorem (see Equation 2.30). Equation 2.31 shows that
the virtual work δW can be divided into an internal part δWint which describes
the virtual work due to the internal forces and an external part δWext due to the
external loads.

div(σδv) = (divσ) · δv + σ : gradδv (2.29)∫
v

divσ · δvdv =

∫
∂v

σn · δvda =

∫
∂v

t · δvda (2.30)

−
∫
v

σ : gradδvdv︸ ︷︷ ︸
δWint

+

∫
v

f · δvdv +

∫
∂v

t · δvda︸ ︷︷ ︸
δWext

= 0 (2.31)

The gradient of the virtual velocity δv is defined as the virtual velocity gradient δl.
Introducing this relation into Equation 2.31 yields:

−
∫
v

σ : δldv︸ ︷︷ ︸
δWint

+

∫
v

f · δvdv +

∫
∂v

t · δvda︸ ︷︷ ︸
δWext

= 0 (2.32)

The virtual velocity gradient can be divided into the symmetric virtual rate of
deformation δd and the antisymmetric virtual spin tensor δw. Due to the symmetry
of σ Equation 2.32 can be rewritten in terms of the symmetric virtual rate of
deformation:

−
∫
v

σ : δddv︸ ︷︷ ︸
δWint

+

∫
v

f · δvdv +

∫
∂v

t · δvda︸ ︷︷ ︸
δWext

= 0 (2.33)

The stress can be expressed in other definitions than the Cauchy stress tensor
σ. In the Lagrangian configuration the second Piola Kirchhoff stress tensor S is
conveniently used and should therefore be derived.

10



2. Continuum Mechanics

The velocity gradient tensor l is defined in terms of the deformation gradient F as:

l = ḞF−1 (2.34)

Further the material strain rate tensor Ė is given as:

Ė =
1

2
Ċ =

1

2
(ḞTF + FT Ḟ) (2.35)

The time derivative of Equation 2.4 becomes with the above stated equations and
the relations dXi = F−1dxi:

d

dt
(dx1 · dx2) = dX1 · ĊdX2 = 2dX1 · ĖdX2 = dx1 · (F−T ĖF−1)dx2 (2.36)

In Equation 2.36 the rate of deformation tensor can be found as:

d = F−T ĖF−1 (2.37)

The virtual rate of deformation δd can now be expressed in the form of:

δd = F−T δĖF−1 (2.38)

Introducing Equation 2.38 into Equation 2.31 results in an alternative expression of
the internal virtual work δWint in terms of the second Piola Kirchhoff stress tensor
S as shown in Equation 2.42.

δWint =

∫
v

σ : δddv (2.39)

δWint =

∫
V

Jσ : F−T δĖF−1dV (2.40)

δWint =

∫
V

JF−1σF−T︸ ︷︷ ︸
S

: δĖdV (2.41)

δWint =

∫
V

S : δĖdV (2.42)

S = JF−1σF−T (2.43)

The different stress measurements can be interpreted in different ways. The Cauchy
stresses σ can be interpreted as the current force per unit of deformed area and
can therefore also be referred to as true stresses. The second Piola Kirchhoff stress
tensor S can be interpreted as a material force per unit of undeformed area. The
material force can be read as a push back of the spatial force. The aforementioned
relations are illustrated in Figure 2.6.
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T

X

t

x
F

N

X

S

n

xF	-T

τ = Jσ
P

Eulerian con�igurationLagrangian con�iguration

TX

TX
*

Tx

Tx
*

Figure 2.6. Different stress measurements in Lagrangian and Eulerian configuration

2.4.2. Linearisation of the Equilibrium Equations

The equilibrium of a deformable body is described with Equation 2.31 and has to
be discretized to perform a linearization. The discretization of the equilibrium is
denoted in Equation 2.44. The external load is predetermined which means that the
virtual work of external forces δWext is already known and no linearisation of this
term has to be performed. In Equation 2.45 DδWint[u] delineates the directional
derivative of δWint in the direction of the displacement vector u.

δW n+1
int = δW n+1

ext (2.44)

DδW n
int[u] = δW n+1

ext − δW n
int (2.45)

Taking Equation 2.42 into account and performing the directional derivative leads to
Equation 2.46 which can also be expressed in terms of the index notation as shown
in Equation 2.47.

DδW n
int[u] =

∫
V

(DS[u] : δĖ + S : DδĖ[u])dV (2.46)

DδW n
int[u] =

∫
V

(DSij[u]δĖij + SijDδĖij[u])dV (2.47)
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2. Continuum Mechanics

As shown in Equation 2.47 the derivative of the Green Lagrange Strain tensor Ė
must be rewritten in alternative expressions in terms of its directional derivative
D...[u] (see Equation 2.49) and its variation δ[...] (see Equation 2.48).

δĖij =
1

2
δĊij =

1

2
(δḞmiFmj + FniδḞnj) (2.48)

DĖkl[u] =
1

2
(DḞrk[u]Frl + FskDḞsl[u]) (2.49)

The directional derivative of the variation of the Green Lagrange Strain tensor Ė
can be evaluated by using the two equations above which leads to Equation 2.50.

DδĖij[u] =
1

2
(DδḞmi[u]Fmj + δḞmiDFmj[u] +DFni[u]δḞnj + FniDδḞnj[u]) (2.50)

This equation simplifies by implying that the virtual quantities δ[...] remain constant
in an incremental displacement u. Those terms vanish by applying a linearisation
which leads to Equation 2.51.

DδĖij[u] =
1

2
(δḞmiDFmj[u] +DFli[u]δḞlj) (2.51)

A linearisation of the second Piola Kirchhoff stress tensor S gives Equation 2.52 by
applying the chain rule. This causality can be explained by the fact that the second
Piola Kirchhoff stress tensor S can be expressed as a function of the Green Lagrange
Strain tensor E. In this equation C represents the material/Lagrangian tangent
moduli or Lagrangian elasticity tensor which can be calculated by the derivative of
S with respect to E.

DδSij[u] =
∂Sij
∂Ekl

DEkl[u] = CijklDEkl[u] (2.52)

Inserting Equation 2.52 into Equation 2.47 leads to:

DδW n
int[u] =

∫
V

CijklDEkl[u]δĖijdV︸ ︷︷ ︸
∗

+

∫
V

SijDδĖij[u]dV︸ ︷︷ ︸
∗∗

. (2.53)

The first term of Equation 2.53 (*) can be further simplified by using Equation 2.48
and Equation 2.49 and the fact that the Lagrangian elasticity tensor C has minor
symmetries which implies Cijkl = Cjikl = Cijlk. This leads to Equation 2.56.

(∗)
∫
V

Cijkl
1

2
(DFrk[u]Frl + FskDFsl[u])︸ ︷︷ ︸

DEkl[u]

1

2
(δḞmiFmj + FliδḞlj)︸ ︷︷ ︸

δĖij [u]

dV (2.54)

(∗)
∫
V

1

4
Cijkl(DFrk[u]FrlδḞmiFmj +DFrk[u]FrlFliδḞlj + FskDFsl[u]δḞmiFmj

+ FskDFsl[u]FliδḞlj)dV

(2.55)
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(∗)
∫
V

CijklDFrk[u]FrlδḞmiFmjdV (2.56)

The second term (**) of Equation 2.53 can be rewritten by using Equation 2.51
and the symmetry of the second Piola Kirchhoff stress tensor S which results in
Equation 2.59.

(∗∗)
∫
V

SijDδĖij[u]dV (2.57)

(∗∗)
∫
V

1

2
Sij(δḞmiDFmj[u] +DFli[u]δḞlj)dV (2.58)

(∗∗)
∫
V

SijδḞmiDFmj[u]dV (2.59)

Equation 2.47 can now be rewritten by using the relations from above:

∫
V

CijklDFrk[u]FrlδḞmiFmjdV︸ ︷︷ ︸
Lagrangian tangent

+

∫
V

SijδḞmiDFmj[u]dV︸ ︷︷ ︸
geometrical tangent

= δW n+1
ext − δW n

int (2.60)
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3. Basics of Finite Element Method

The finite element method is a widely used numerical calculation technique which is
particulary deployed in mechanical calculations. In the literature a wide variety of
contributions can be obtained. The basic descriptions below can be found in Bathe
[1] for instance.

3.1. Element Formulation

In the finite element analysis the body under consideration is discretized by a number
of finite elements. By doing this the problem will be idealized through an assemblage
of these finite elements which consist of a number of nodes connecting those elements
on the element boundaries. By solving the equilibrium equations from chapter 2 the
displacements of the according nodes can be calculated. This can then be used to
obtain the stresses within a finite element.
In an isoparametric approach the coordinates x, y and z and the displacements u, v
and w of the element can be described by interpolations in the natural coordinates
of the element by using interpolation functions. The natural coordinate system of
the element consists of the variables r, s and t which vary from -1 to +1. The
interpolation functions hi of the element node i must be unity at the node i and
vanish at all other nodes of the element. An illustration of the principle of natural
coordinates can be found in Figure 3.1.

X

Y

1(x1,y1) 2(x2,y2)

3(x3,y3)
4(x4,y4)

r

s

1(-1,-1) 2(1,-1)

3(1,1)4(-1,1)

Natural coordinatesCartesian coordinates
(a) (b)

Figure 3.1. Principle illustration of (a) Cartesian and (b) natural coordinates
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Interpolation functions can be found by using Lagrange polynomials (see Equa-
tion 3.2) for the different degrees of freedom. By introducing these polynomials the
shape functions can be rewritten as shown in Equation 3.1.

h(r, s, t) = lni (r)loj (s)l
p
k(t) (3.1)

lni (r) =
n∏
k=0
k 6=i

x− xk
xi − xk

(3.2)

By using the interpolation functions hi the element coordinates x, y and z and
element displacements u, v and w can be expressed in terms of the corresponding
nodal values which is stated in Equation 3.3 and Equation 3.4.

x =
n∑
i=1

hi(r, s, t)x̂i y =
n∑
i=1

hi(r, s, t)ŷi z =
n∑
i=1

hi(r, s, t)ẑi (3.3)

u =
n∑
i=1

hi(r, s, t)ûi v =
n∑
i=1

hi(r, s, t)v̂i w =
n∑
i=1

hi(r, s, t)ŵi (3.4)

By using the above stated relations the element displacement u can be expressed as
a function of the nodal displacements û. The relation between the nodal and the
element displacements itself is given by the displacement interpolation matrix H
which includes the interpolation functions of the different degrees of freedom from
Equation 3.3 and Equation 3.4 (see Equation 3.5).

u = H(r, s, t)û (3.5)

The strain-displacement matrix B can be derived with the definition of the
deformation gradient F:

F =
∂x

∂X
=
∂(X + u)

∂X
= 1 +

∂u

∂X
= 1 +

∂r

∂X

∂u

∂r
= 1 + J−1∂H(r, s, t)

∂r︸ ︷︷ ︸
B

û (3.6)

The deformation gradient F can be expressed by the use of the strain-displacement
matrix B. The virtual variation and the directional derivative of the deformation
gradient is shown in Equation 3.7 and Equation 3.8.

δFij = Bimδûmj δF = Bδû (3.7)

DFij[u] = Bimûmj DF[u] = Bû (3.8)

In Equation 3.7 the term δF = ∂δu
∂X

represents the virtual deformation gradient. The
virtual displacement δu is a test function which means that it has to be constant
within one increment. An illustration of this relation can be found in Figure 3.2.
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X xX3 x3,

X1 x1, X2 x2,

 
φ(X, t) 

∂V ∂v

V

v

t = 0 t

u

δu
δu

Figure 3.2. Virtual displacement

3.2. Newton Algorithm

The necessary steps of calculation are executed on element level and have to be
assembled to global values. On the element level integrations are performed on the
natural coordinates where new integration constants have to be taken into account.
Equation 3.9 illustrates this relation where J is the Jacobian matrix of the shape
functions, V the volume of the element in the Cartesian coordinates and V̄ the
volume of the element in natural coordinates.

dV = det(J)dV̄ (3.9)

The internal virtual energy δWint from Equation 2.42 can be rewritten by using the
aforementioned relations:

δWint =

∫
V̄

SijδEijdet(J)dV̄

=

∫
V̄

Sij
1

2
(δFmiFmj + FniδFnj)det(J)dV̄

=

∫
V̄

δFmiSijFmjdet(J)dV̄

=

∫
V̄

δûsiBmsSijFmjdet(J)dV̄

(3.10)

The external virtual energy is calculated by the product of the external load Fext
and the virtual displacement δu as stated in Equation 3.11.

δWext = δûmsF
ext
sm (3.11)

In subsection 2.4.2 the linearization of the equilibrium equations was derived.
Equation 2.60 can be rewritten by using Equation 3.7 and Equation 3.8 which
leads to Equation 3.13. This equation can be expressed in a compact manner as
Equation 3.14.
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∫
V̄

δûniBmnFmjCijklFrlBrqûqkdet(J)dV̄ +

∫
V̄

δûliBmlSijBmnûnjdet(J)dV̄

= δûmsF
ext
sm −

∫
V̄

δûsiBmsSijFmjdet(J)dV̄

(3.12)

δûni

∫
V̄

BmnFmjCijklFrlBrqûqk +BmlSijBmnûnjdet(J)dV̄︸ ︷︷ ︸
DFint[û]

= δûmsF
ext
sm − δûsi

∫
V̄

BmsSijFmjdet(J)dV̄︸ ︷︷ ︸
Fint

(3.13)

DFint[û] = Fext − Fint (3.14)

The Newton iteration algorithm can be derived by the discretization of the linearized
equilibrium equations. Therefore the notation from Equation 3.15 is used where
i stands for the i -th iteration of the Newton algorithm and n for the n-th load
prescription.

[?]in
n . . . n-th load prescription
i . . . i -th iteration of Newton algorithm

(3.15)

The discretized equation for the Newton algorithm is shown in Equation 3.16. In
a non-linear analysis the external load is often applied in n load prescriptions to
receive better convergence. In static analysis a so called pseudo time is introduced
and the external load is discretized in terms of this time and increases in general
linearly over the whole time step.

DFint[û
i+1
n+1] = (Fext)n+1 − (Fint)

i
n+1 (3.16)

The Newton algorithm is used until a converged state defined by a tolerance value
or an abort criterium is reached. Convergence can be assessed by calculating
the unbalanced energy Wunb (see Equation 3.17). The unbalanced energy is the
scalar product of the difference of the displacements between two Newton iteration
steps and the residual force vector Ψ. The residual force vector is defined as the
unbalanced force in a calculation step and is stated in Equation 3.18.

(Wunb)
i+1
n+1 = (ûi+1

n+1 − ûin+1) ·Ψi+1
n+1 < tolerance (3.17)

Ψi+1
n+1 = (Fext)n+1 − (Fint)

i+1
n+1 (3.18)

The principle of the Newton algorithm is illustrated in Figure 3.3.
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n
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Ψn+1
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int

Fn+1ext

F				(t)int

Figure 3.3. Newton Algorithm
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4. Anisotropic Plasticity Material
Model

4.1. Basics for the established Material Model

This section describes the necessary basics for the derivation of an anisotropic
plasticity material model in logarithmic Lagrangian space. Firstly the basics
of plasticity and the additive approach of plasticity is presented. Secondly the
transformation from the logarithmic Lagrangian space back to the Lagrangian space
is derived.

4.1.1. Basics of Isotropic Plasticity

In the following basics of plasticity is described. For further information see for
instance Hashiguchi & Yamakawa [8]. The deformation of a deformable body
is differentiated in a reversible part which can be described by elastic material
constitutive equations (for example a hyperelastic material law) and an irreversible
part which can be described by plastic material constitutive equations. The
irreversible part of the deformation remains after unloading the body whereas
the reversible part vanishes. An applied force typically causes an elastic material
response which transitions to an elastic-plastic material response by increasing the
applied load to a certain point which is called yielding. Due to hardening the yielding
stress increases for a plastic deformation when the load escalates. A yield criterion
has to be defined to distinguish between an elastic and a plastic deformation. In
a multiaxial stress state an equivalent stress model has to be set up. A well
known model is the von Mises yield criterion (see Mises [21]) which is shown in
Equation 4.1. The equivalent stress σv is calculated by the use of the principal
stresses. Comparing the equivalent stress with a yield stress leads to a yield criterion
stated in Equation 4.2, where σv describes the equivalent stress and σy the initial
yield stress. The von Mises yield criterion can be illustrated with a yield surface as
shown in Figure 4.1.

σv =

√
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] (4.1)

σ2
v − σ2

y = 0 (4.2)
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σ1

σ2

σ3

σ1 = σ2 = σ3

Figure 4.1. Von Mises yield surface (Cf. Rösler et al. [24])

The yield criterion determines whether a deformation is purely elastic or elastic-
plastic. Additionally to the yield criterion a set of constitutive equations is needed to
describe the plastic deformation. When a deformable body reaches plastic behavior
no distinct relation between strain and stress can be obtained. The increase of
the plastic strain can be formulated in an incremental formulation with the use
of Drucker’s postulate which states that the deformation energy must not obtain
negative values. Moreover the dissipated energy for a plastic deformation which can
be written as W pl = σijε

pl
ij gains a maximal value. This is attained by maximizing

the projection of the stress σij onto the plastic strain εplij which is illustrated in
Figure 4.2. In the figure σ1 has a smaller dissipation energy than σ2. The postulated
constraints lead to a basic formulation for plastic behavior as shown in Equation 4.3
where dλ describes the plastic consistency parameter and F the yield surface.

dεplij = dλ
∂F

∂σij
(4.3)

σ11, ε11

σ22, ε22

f (σij) = 0

grad f

pl

pl εpl

σ1

σ2

Figure 4.2. Maximal dissipation at plastic deformation (Cf. Rösler et al. [24])
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At last a hardening law has to be provided describing the change of the yield surface
for increasing plastic deformations. There are several types of hardening laws to
describe these changes. A simple model is described by the isotropic hardening
where the shape of the yield surface remains the same but the diameter increases.
In the case of a Von Mises yield criterion it follows σ2

v−f(σy, k) = 0 where k describes
the isotropic hardening parameter which can be a constant value or a function.

4.1.2. Logarithmic Strain and additive Lagrangian approach to
finite plasticity

The later described material model uses a logarithmic strain measure. This measure
shows advantages in finite deformation calculations. Heinrich Hencky introduced a
fully three-dimensional logarithmic elastic law in 1928 [9]. A historical overview
of the field of logarithmic strain measures in nonlinear elasticity can be found in
Martin et al. [15]. In Henckys article two conditions were postulated:

1) “First we require that the applied work is converted fully into elastic energy,
which is released without loss after the loading is removed.”
2) “Second [. . . ]: if we apply a second loading to an already deformed body, it
must not be possible to obtain the first loading from the deformations resulting
from the additional loading.”

This shows Henckys idea about an idealized material with an ideally elastic behavior.
This approach leads to a distinction between purely elastic and plastic deformations.
The second condition implies a law of superposition for the Cauchy stress tensor σ
which means that it can be expressed in the form of σ(V1 ·V2) = σ(V1) + σ(V2).
Hencky showed that these two postulated conditions can only be accomplished when
the Cauchy stress tensor is given by

σ = 2µdev(logV) + κ[tr(logV)] · 1 (4.4)

where V =
√

FFT denotes the left stretch tensor, µ and κ are material parameters
and with the deviatoric part of a matrix devX = X− tr(X)

3
· 1.

With Henckys idea an elastic strain measure Ee in the logarithmic Lagrangian space
can be defined which implies an additive decomposition:

Ee := E− Ep. (4.5)

In Equation 4.5 Ep describes the plastic logarithmic Lagrangian strain which must
be described in terms of a constitutive equation. The total logarithmic Lagrangian
strain E can be defined with the use of the right Cauchy-Green deformation tensor
C according to the class of Seth-Hill measures of strain as :

E :=
1

2
ln[C]. (4.6)
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4. Anisotropic Plasticity Material Model

Further annotations can be found in Seth [27] and Hill [10]. When the principle
directions of the deformation gradients are preserved an additive nature of strains
due to the deformation gradients can be achieved and the logarithmic strain tensor
can be interpreted as a sum of infinitesimal engineering strain tensors [11].
Remark : ln[A] of a symmetric, positive definite tensor A can be calculated by a
diagonilization of the tensor. This leads to ln[A] = Vln[D]VT where D denotes a
diagonal matrix with the eigenvalues of A with the corresponding eigenvectors in
form of a matrix V.

4.1.3. Calculation specification for transformations from
Logarithmic Lagrangian space to Lagrangian space

A calculation specification for a transformation from the logarithmic stress T and
modulus Eep to the Lagrangian stress S and modulus Cep can be obtained in
accordance to Miehe and Lambrecht [20]. The derivations of the transformation
tensors can be done according to Appendix C. The Lagrangian stress and the
corresponding elasticity modulus can be calculated with the internal energy U
defined in the logarithmic Lagrangian space as

S := 2∂CU(E) and Cep := 4∂CCU(E). (4.7)

A spectral decomposition of the tensor C and the total logarithmic Lagrangian
strain E yields for

C =
3∑
a

λaNa ⊗Na and E(C) =
3∑
a

eaNa ⊗Na (4.8)

with the eigenvalues λa and ea of the tensors C and E. Both tensors possess the
same eigenvectors Na as they are co-axial. The eigenvectors are combined to the
eigenvalue bases Ma with the corresponding eigenvalues λa:

Ma := Na ⊗Na and ea =
1

2
ln[λa] (4.9)

This leads to the symmetric fourth- and sixth-order Lagrangian transformation
tensors

P := 2∂CE =
3∑
a

daMa ⊗Ma +
3∑
a

3∑
b6=a

ϑabGab (4.10)

and

L : = 4∂2
CCE

=
3∑
a

faMa ⊗Ma ⊗Ma +
3∑
a

3∑
b6=a

ξab(Hbab + Hbba + Habb) +
3∑
a

3∑
b6=a

3∑
c 6=a,c6=b

ηHabc

(4.11)
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4. Anisotropic Plasticity Material Model

where the following coefficients are defined:

da := λ−1
a and fa := −2λ−2

a . (4.12)

Additionally, introduce:

(Gab)
ijkl := (Ma)

ik(Mb)
jl + (Ma)

il(Mb)
jk

(Habc)
ijklmn := (Ma)

ik(Mb)
jm(Mc)

ln + (Ma)
ik(Mb)

jn(Mc)
lm

+ (Ma)
il(Mb)

jm(Mc)
kn + (Ma)

il(Mb)
jn(Mc)

km

+ (Ma)
jl(Mb)

im(Mc)
kn + (Ma)

jl(Mb)
in(Mc)

km

+ (Ma)
jk(Mb)

im(Mc)
ln + (Ma)

jk(Mb)
in(Mc)

lm.

(4.13)

For three different eigenvalues λa 6= λb 6= λc set:

ϑab := (ea − eb)/(λa − λb)

ξab := (ϑab −
1

2
db)/(λa − λb)

η :=
3∑
a

3∑
b6=a

3∑
c 6=a,c6=b

ea/[2(λa − λb)(λa − λc)].

(4.14)

Use the rules of L’Hospital to define the coefficients for two different eigenvalues
λa = λb 6= λc:

lim
λb→λa

ϑab =
1

2
da lim

λb→λa
ξab =

1

8
fa lim

λb→λa
λc 6=λa

η = ξca (4.15)

For equal eigenvalues λa = λb = λc follows additionally to Equation 4.15:

lim
λb→λa
λc→λa

η =
1

8
fa. (4.16)

The Second Piola Kirchhoff stress tensor S is power conjugated to the rate of the
right Cauchy strain tensor in the form of S : 1

2
Ċ. The logarithmic stress T is power

conjugated to the rate of the total logarithmic strain tensor in the form T : Ė. This
yields the local stress power:

P = S :
1

2
Ċ = T : Ė. (4.17)

The sensitivity of the total logarithmic Lagrangian strain E in accordance to the
change of the deformation leads to:

Ė = P :
1

2
Ċ and Ṗ = L :

1

2
Ċ. (4.18)

Inserting Equation 4.18 into Equation 4.17 yields:

S := T : P and Cep = P : Eep : P + T : L. (4.19)
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4. Anisotropic Plasticity Material Model

4.2. Constitutive Equations for an Additive
Formulation of Plasticity

In this section the constitutive equations for an additive formulation of plasticity in
the logarithmic Lagrangian space are specified for the rate-independent case. Due
to the logarithmic strain measures the same structure as found in the geometrically
linear theory can be applied. Firstly a thermodynamic potential will be defined.
Moreover internal variables and conjugated forces are introduced.

4.2.1. Strain-energy Function

In elasticity the deformation energy can be described in terms of a strain-energy
function. The stored energy is therein a function of the deformation of the body.
A widely used approach is the St. Venant-Kirchhoff model which is illustrated
in Equation 4.20. Further discussion can be found for instance in Hashiguchi &
Yamakawa [8].

Ψ =
1

2
λ(IE)2 + µIIE (4.20)

The parameters λ and µ describe the Lamé constants and IE = tr[E] denotes the
first and IIE = E : E the second invariant of the Green Lagrange strain tensor E.
In case of the logarithmic Lagrangian space structures like in the small strain theory
can be used. This will be applied to the later deduced material model. Additional
remarks about logarithmic strain-energy functions can be found in Bruhns et al. [4]
and references therein.
Assume the stored free energy function Ψ per unit reference volume as a thermody-
namic potential as:

Ψ =
1

2
λ(IEe)2 + µIIEe +

1

2
hξ2. (4.21)

The internal scalar variable ξ models hardening where h is the isotropic hardening
parameter. The chosen thermodynamic potential is suitable to describe the plastic
behavior of metals. The plastic strains EP are typically large compared to the
elastic ones and therefore a potential function of the second-order elastic logarithmic
Lagrangian tensor Ee as a quadratic scalar-valued function can be used to model
the free energy Ψ at a certain material point.

4.2.2. Anisotropic Yield Criterion and Dissipation Inequality

A set of strain-like internal variables can be defined as I = {EP , ξ}. Similarly
stress-like internal forces F = {TP , ζ} can be declared as (see also Ulz [33]):

TP := −∂EPψ (4.22)

ζ := −∂ξψ. (4.23)
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4. Anisotropic Plasticity Material Model

The time derivative of ψ yields:

ψ̇ = ∂Eψ : Ė + ∂EPψ · ĖP + ∂ξψ · ξ̇ (4.24)

An elastic domain has to be defined to describe a yield criterion. For this purpose
a level set function φ(TP , ζ; EP , ξ) and the initial yield stress c > 0, which can be
defined as c =

√
2/3 y0, are used which yields:

E = {(TP , ζ; EP , ξ) ∈ Rn |φ (TP , ζ; EP , ξ) ≤ c}. (4.25)

The level set function φ defines the shape of the elastic domain and has to fulfill
certain boundary conditions. Firstly it has to be convex which results from Drucker’s
postulate. Secondly it has to be positively homogeneous of degree one which is
φ (tF1, tF2) = tφ (F1,F2) for t > 0. Thirdly it is zero at the origin φ (0) = 0 and is
always positive φ (TP , ζ; EP , ξ) ≥ 0.

The Clausius-Planck inequality is a frequently used formulation of the second law
of thermodynamics, which has to be satisfied:

D = T : Ė− ψ̇ ≥ 0 (4.26)

where the quantity D describes the internal dissipation, which is a non-decreasing
function in time [31]. With the help of Equation 4.24 it follows:

D = (T− ∂ψ

∂E
) : Ė− ∂ψ

∂EP
ĖP − ∂ψ

∂ξ
· ξ̇ ≥ 0. (4.27)

By invoking standard arguments, this equation is valid for all processes. An elastic
deformation (ĖP = 0 and ξ̇ = 0) gives:

T =
∂ψ

∂E
. (4.28)

Furthermore, with ψ = ψ(Ee) and Ee = E − EP we find ∂ψ
∂E

= ∂ψ
∂Ee

∂Ee

∂E
= ∂ψ

∂Ee and
∂ψ
∂EP = ∂ψ

∂Ee
∂Ee

∂EP = − ∂ψ
∂Ee . Therefore, we can write ∂ψ

∂E
= ∂ψ

∂Ee = − ∂ψ
∂EP .

Hence, the reduced Clausius-Planck inequality may be written as:

D = − ∂ψ

∂EP︸ ︷︷ ︸
TP

: ĖP−∂ψ
∂ξ︸ ︷︷ ︸
ζ

·ξ̇ (4.29)

The principle of maximum of plastic dissipation is used to define an optimization
problem:

D = max
TP ,ζ ∈E

{TP : ĖP + ζ · ξ̇} (4.30)

with the side condition φ ≤ c which leads to the following Lagrange functions:

L = TP : ĖP + ζ · ξ̇ − λ[φ− c]. (4.31)
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4. Anisotropic Plasticity Material Model

The parameter λ represents the Lagrange multiplier and is found as the plastic
consistency parameter. The solution of the equation system with Equation 4.31 and
the side condition φ− c = 0 yields the normality rules of plasticity in this case. This
solution defines the evolution of the plastic parameters and the hardening.
Correlating the level set function φ with the internal dissipation D by inserting
Equation 4.31 into Equation 4.29 and taking into account the positive homogeneity
of degree one of φ yields:

D = λφ ≥ 0. (4.32)

λ has to be positive and therefore the second law of thermodynamics is a priori met.
A level set function φ has to be defined to calculate the solution algorithm. In this
case an anisotropic plasticity should be modeled. The model of Mandel [14] with a
yield criterion φ(TP , ζ)− c = 0 leads to:

φ = ||TP ||H︸ ︷︷ ︸
φe

+

√
2

3
ζ︸ ︷︷ ︸

φh

(4.33)

with ||TP ||H =
√

TP : H : TP . The terms φe and φh denote the hyperelastic
contribution and the isotropic hardening, respectively. The constant fourth-order
Hill tensor H with major and minor symmetries HIJKL = HKLIJ = HJIKL = HIJLK

can be used to model different anisotropic behavior. A special case is defined by
H = I−1/3·I⊗I with the fourth-order identity tensor IIJKL = 1/2·(IIKIJL+IILIJK).
In that case Equation 4.33 defines a classical Huber-Von Mises yield function.
Additionally the constant limit c is set to c =

√
2/3 · y0.

Anisotropy can be modeled by defining material symmetry groups by extending an
isotropic tensor function with an invariant structural tensor. The structural tensor
has to be invariant to the according material symmetry group. In Boehler [2] and
Spencer [29] classic representation theorems can be found. Anisotropy and its type
are determined by the material symmetry group which is described by the structural
tensor M. Focusing on orthotropic tensor functions the structural tensor M can be
set according to Zheng [34] as a symmetric tensor M = a1⊗ a1− a2⊗ a2 where the
vectors ai with i = 1, 2, 3 and δij = ai · aj describe an orthonormal base.
With Miehe et al. [19] the basis can be rewritten and the fourth-order structural
tensor M can be derived by describing the anisotropic response in terms of its
invariants and calculating the second derivative of a constitutive function with
respect to its arguments:

M = α1M11 ⊗M11 + α2M22 ⊗M22 + α3M33 ⊗M33

+ 2α4sym[M11 ⊗M22] + 2α5sym[M22 ⊗M33] + 2α6sym[M11 ⊗M33]

+ 2α7M12 ⊗M21 + 2α8M23 ⊗M32 + 2α9M13 ⊗M31

(4.34)

with the abbreviation sym[Mii⊗Mjj] = 1/2(Mii⊗Mjj + Mjj ⊗Mii). The fourth-
order structural tensor M has minor and major symmetries. By setting H = M in
Equation 4.33 orthotropic anisotropy can be achieved.
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4. Anisotropic Plasticity Material Model

The material model has independent material parameters which can be calculated
with the three tension modes y11, y22 and y33 and the three shear modes y12, y23 and
y13:

α1 =
2

3

y2
0

y2
11

α2 =
2

3

y2
0

y2
22

α3 =
2

3

y2
0

y2
33

α7 =
1

3

y2
0

y2
12

α8 =
1

3

y2
0

y2
23

α9 =
1

3

y2
0

y2
13

(4.35)

The introduction of the deviatoric property of the fourth-order Hill tensor H : I = 0
can be achieved by arrogating incompressibility which yields:

α4 =
1

2
(α3 − α1 − α2) α5 =

1

2
(α1 − α2 − α3) α6 =

1

2
(α2 − α3 − α1) (4.36)

Isotropic behavior can be accomplished by setting y11 = y22 = y33 = y0 and y12 =
y23 = y13 = y0/

√
3.

4.3. Solution Algorithm for rate-independent
Plasticity

In this section a solution algorithm for anisotropic rate-independent plasticity in
the logarithmic Lagrangian strain space is established. A framework in the large-
strain scope of the Lagrangian strain space is defined which will be moved to the
small-strain scope in the logarithmic Lagrangian strain space where the constitutive
equations are formulated. The results within the logarithmic framework can finally
be transformed back to the Lagrangian strain space.
The right Cauchy-Green deformation tensor C can be computed with the defor-
mation gradient F in Lagrangian space. Move the resulting deformation tensor to
logarithmic Lagrangian space by calculating the total logarithmic strain E. Define
a set of internal variables constituted of the plastic logarithmic Lagrangian strain
tensor EP and a hardening parameter ξ. A set of constitutive equations is used to
calculate the logarithmic Lagrangian stress tensor TP and the appropriate elastic-
plastic logarithmic Lagrangian tangent modulus Eep. The additive structure of
strains in the logarithmic Lagrangian space allows the adaption of the standard
constitutive functions from the small strain theory. A calculation specification for
the transformation between both strain spaces is used to calculate the associated
Second Piola Kirchhoff stress S in the Lagrangian space and the elastic-plastic
Lagrangian tangent modulus Cep.

F C
Logarithmic	Lagrangian	Space

E, EP, ξ Constitutive Equations T, S,	

Figure 4.3. Approach for the solution algorithm for rate-independent plasticity in
logarithmic Lagrangian strain space (Cf. Ulz [33])
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4.3.1. Local Iteration Scheme

The solution of the optimization problem from Equation 4.30 and Equation 4.31
yields the evolution equations for the internal variables:

ĖP = λ∂TPφ

ξ̇ = λ∂ζφ.
(4.37)

This formulation can be rewritten in terms of on an integration in the time interval
[tn, tn+1]:

EP
n+1 = EP

n +

∫ tn+1

tn
λ∂TPφ

ξn+1 = ξn +

∫ tn+1

tn
λ∂ζφ

(4.38)

The obtained time integral formulations can be solved by introducing either an
implicit or explicit numerical integration. In an implicit integration scheme the
unknown quantities are computed with items at the time step tn+1 whereas an
explicit scheme uses the solution from the time step tn to calculate the unknown
quantities:

In+1 = In + λ∆t

{
∂Fφn+1 implicit

∂Fφn explicit
(4.39)

Introduce a dimensionless multiplier γP = λ∆t with ∆t = tn+1 − tn which is
called the plastic multiplier in the rate-independent formulation and use an implicit
integration scheme for Equation 4.38:

EP
n+1 = EP

n + γP∂TPφ

ξn+1 = ξn + γP∂ζφ

(4.40)

The Karush-Kuhn-Tucker loading conditions and the positively homogeneous level
set function φ limit the plastic multiplier γP in the rate-independent formulation:

Kn+1 := {γP ≥ 0, φn+1 ≤ c, γP [φn+1 − c] = 0} (4.41)

Introducing residuals that vanish in the solution point in terms of Equation 4.40
yields:

REP = −EP
n+1 + EP

n + γP∂TPφn+1

Rξ = −ξn+1 + ξn + γP∂ζφn+1

Rf = φn+1 − c.

(4.42)
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A linearization of the residuals from Equation 4.42 with respect to EP , ξ and γP

leads to:

0 = REP −∆EP + γP∂2
TPTPφn+1∂EP TP∆EP + ∂TPφn+1∆γP

0 = Rξ −∆ξ + γP∂2
ζζφn+1∂ξζ∆ξ + ∂ζφn+1∆γP

0 = Rf + ∂TPφn+1∂EP TP∆EP + ∂ζφn+1∂ξζ∆ξ.

(4.43)

The terms for ∆EP , ∆ξ and ∆γP have to be found with the help of Equation 4.43
to establish a local iteration scheme:

∆EP =
REP + ∂TPφn+1∆γP

I + γP∂2
TPTPφn+1∂2

EPEPUn+1

:=
A

B

∆ξ =
Rξ + ∂ζφn+1∆γP

1 + γP∂2
ζζφn+1∂2

ξξUn+1

:=
a

b
.

(4.44)

In Equation 4.44 ∆γP is to be found. Inserting ∆EP and ∆ξ from Equation 4.44
into Equation 4.43 yields:

∆γP =
c− φn+1 − ∂TPφn+1∂EP TPREPB−1 − ∂ζφn+1∂ξζRξb

−1

∂TPφn+1∂EP TP∂TPφn+1B−1 + ∂ζφn+1∂ξζ∂ζφn+1b−1
. (4.45)

By applying ∂EP TP = −∂2
EPEPψ and ∂ξζ = −∂2

ξξψ the constitutive equation for
∆γP follows as:

∆γP =
φn+1 − c+ ∂TPφn+1∂

2
EPEPψn+1REPB−1 + ∂ζφn+1∂

2
ξξψn+1Rξb

−1

∂TPφn+1∂2
EPEPψn+1∂TPφn+1B−1 + ∂ζφn+1∂2

ξξψn+1∂ζφn+1b−1
(4.46)

The constitutive equations for ∆EP and ∆ξ can be calculated by using the
formulation for ∆γP . The obtained system can the be solved with a numerical
iteration scheme like the Newton-Raphson scheme.
The derivatives of the internal variables with respect to the logarithmic Lagrangian
strain E and the plastic multiplier γP for the rate-independent case follows as:

∂γP EP = ∂TPφn+1 + γP∂2
TPTPφn+1 · ∂EP TP · ∂γP EP (4.47)

∂γP ξ = ∂ζφn+1 + γP∂2
ζζφn+1 · ∂ξζ · ∂γP ξ. (4.48)

Rewriting the equations with the help of Equation 4.22 and Equation 4.23 yields:

∂γP EP = (I + γP∂2
TPTPφn+1 · ∂2

EPEPψn+1)−1∂TPφn+1 (4.49)

∂γP ξ = (1 + γP∂2
ζζφn+1 · ∂2

ξξψn+1)−1∂ζφn+1. (4.50)
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4.3.2. Tangent Modulus

The logarithmic stress T and the logarithmic elastic-plastic tangent modulus Eep in
the logarithmic Lagrangian space are defined in terms of the Helmholtz free energy
ψ as:

Tn+1 := dEψ(En+1) and Eepn+1 := d2
EEψ(En+1) (4.51)

The minimum principle of the internal energy ψ with respect to the plastic multiplier
γP yields ∂γPψ = 0. Using the chain rule for the derivatives from Equation 4.51
leads to:

Tn+1 := ∂Eψ + ∂γPψ︸ ︷︷ ︸
=0

∂Eγ
P and Eepn+1 := ∂2

EEψ︸ ︷︷ ︸
elastic

+ ∂2
EγPψ∂Eγ

P︸ ︷︷ ︸
softening

(4.52)

By introducing a factor β which is used as a calculation switch Equation 4.52 can
be rewritten as:

Eep = Eepelastic + βEepsoftening with β =

{
1 for γP > 0

0 else
(4.53)

where β = 1 for γP > 0. This factor is solely introduced for numerical reasons
to switch off the softening part in case of no additional plastification. The single
terms from Equation 4.53 can be expressed in a different way by using the positive
homogeneity of the level set function • ·∂•φ = φ and • ·∂2

••φ = 0 with (•) = {TP , ζ}
and with the help of TP · ∂EEP = 0, ζ · ∂Eξ = 0 and Equation 4.22. The elastic
part of the elastic-plastic tangent modulus yields:

Eepelastic = ∂2
EEψ + ∂2

EEψ∂EEP + ∂2
Eξψ∂Eξ. (4.54)

This equation can be expanded:

Eepelastic = ∂2
EEψ −

γP∂2
EEPψ

I + γP∂2
TPTPφ∂

2
EPEPψ

∂2
TPTPφ∂

2
EPEψ + ∂ζζφ (4.55)

The softening part of the elastic-plastic tangent modulus yields:

Eepsoftening = ∂2
EEψ∂γE

P∂Eγ + ∂2
Eξψ∂γξ∂Eγ. (4.56)

By applying the known formulations Equation 4.56 can be rearranged as:

Eepsoftening = ∂Eφ⊗ ∂Eφ(∂γPφ)−1

=
∂Eφ⊗ ∂Eφ

−∂TPφ∂2
EPEPψB−1∂TPφ− ∂ζφ∂2

EPEPψb−1∂ζφ

=
(−∂2

EEPψB−1∂TPφ)⊗ (−∂2
EEPψB−1∂TPφ)

−∂TPφ∂2
EPEPψB−1∂TPφ− ∂ζφ∂2

EPEPψb−1∂ζφ
.

(4.57)
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4.3.3. Summary of the Solution Algorithm

This section summarizes the deployed solution algorithm for a rate-independent
elasto-plastic material in logarithmic Lagrangian strain space. In every calculation
step of the global iteration (**) the plastic multiplier is initialized with γP = 0 and
the initial values of the internal variables are set as (EP )i=0

n+1 = (EP )n and ξi=0
n+1 = ξn

where i denotes the iteration step of the local iteration (*) and n the iteration step
of the global iteration (**). If the Karush-Kuhn-Tucker conditions are not violated
an elastic response occurs and the local plasticity algorithm (*) has to be skipped
and the algorithm continues with step 7. The local iteration scheme (*) is running
till a maximum number of iterations is reached or the term |φn+1 − c| < tol falls
below a user-defined tolerance value tol. Similarly the global iteration scheme (**)
is running till a maximum number of iterations is reached or the unbalanced energy
falls below a user-defined tolerance value |unbalanced energy| < tolunb.

1. Calculate deformation gradient F:

F = ∂x
∂X

2. Calculate right Cauchy-Green deformation tensor C:

C = FTF

3. Calculate total logarithmic Lagrangean strain E:

E = 1
2
lnC

4. Calculate local internal variables for every integration point:

(EP )i+1
n+1 = (EP )in + (∆EP )i

ξi+1
n+1 = ξin + ∆ξi

(γP )i+1
n+1 = (γP )in + (∆γP )i

5. Calculate elastic logarithmic Lagrangean strain Ee:

Ee = E− (EP )i+1
n+1

6. Set β = 0 in Equation 4.53 if γP < 0

7. Calculate TP , Eep

8. Transform to S, Cep:

S = TP : P

Cep = P : Eep : P + TP : L

�

(*)

�

(**)
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5. Verification

Numerical simulations by means of the established constitutive equations are
presented in this chapter. The objective is to show a set of easy examples which
function as a benchmark. The material model is implemented in an already existing
framework programmed in Matlab which is called ”soofeaM” (software for object-
oriented finite element analysis in Matlab) and was provided by the Institute of
Strength of Materials at Graz University of Technology. The used framework
represents an object oriented finite element program with the possibility of an
implementation of new material models. The numerical calculations are performed
with 8-node trilinear hexahedral solid elements on a computer with Windows
10 (Intel(R) Core(TM) i7-8700K CPU @ 3.70 GHz, 64-bit) and the numerical
integration is implemented as Gauß-quadrature. An implicit time integration
scheme is used for the following examples. The calculation output results are
the nodal displacements u, the Von Mises Stress S and the equivalent plastic
strain PEEQ which can be derived with the help of a definition as found in

Lubliner [13] for instance, which is κ =
∫ √

2
3
ĖP : ĖP . This expression results

in PEEQ =
√

2
3
EP : EP within a considered time interval of [t0, tn] by defining

EP (t0) = 0.
The numerical simulation examples contain firstly a single element test to check the
quadratic convergence of the derived material model and the correct implementation
of the equations. Secondly the simulation results for a rectangular strip under
tension and compression are shown. Thirdly the drawing of a thin circular plate
is simulated which represents a simplification of a deep drawing process. For every
numerical example the material parameters are varied to gain the difference between
isotropic and anisotropic material behavior.
The simulation model has some limitations. For the element definition 8-node trilin-
ear hexahedral elements were used. It is well known that the near incompressibility
condition of plastic deformation in metals requires special care of the used element
type. Rice et al. [23] summarizes possible problems that can occur by choosing a
non feasible element formulation or mesh layout. This results in the fully plastic
range in much too stiff a response. A point-wise incompressible behavior of the mesh
leads to a limit-load at a certain deformation in the plastic regime. If this constraint
is not ensured an unlimited deformation without further load increase occurs. In
this work the focus solely lies on the numerical implementation of the plasticity
algorithm and it was therefore refrained from the implementation of a remedy to
this incompressibility constraint.
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5.1. Convergence Test

A convergence test with a single element was simulated to verify the functionality of
the implemented material model with its local and global Newton algorithm. A load
was applied to one face of a 8-node hexahedral trilinear solid element. Figure 5.1
yields the described situation. Therein t = 0 and t describe the initial and deformed
state, respectively. The load was applied within 10 iteration steps.

Figure 5.1. Convergence Test. Considered 8-node hexahedral trilinear solid element
in initial t = 0 and deformed state t.

The coordinates of the 8 nodes of the hexahedral trilinear solid element are denoted
in Table 5.1. The element was chosen to be not perfectly rectangular to check the
sensitivity of the implemented model.

Table 5.1. Convergence Test. x -, y- and z - coordinates of the considered 8-node
hexahedral trilinear solid element.

Node ID x - coordinate y - coordinate z - coordinate

1 1.06 0.98 0.00
2 0.00 1.02 0.00
3 0.00 0.00 0.00
4 0.97 0.00 0.00
5 0.98 1.01 1.05
6 0.00 1.03 0.99
7 0.00 0.00 0.98
8 1.03 0.00 1.01

Table 5.2 yields the properties used for the calculation of the convergence test.
Isotropic hardening was applied.
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Table 5.2. Convergence Test. Material properties for the considered 8-node hexahe-
dral trilinear solid element.

Parameter Symbol Value Unit

Young’s Modulus E 210 GPa
Poisson’s ratio ν 0.3 -
Initial yield stress y0 500 MPa
Linear isotropic hardening h 129.24 MPa

The Newton algorithm shows quadratic convergence for the unbalanced energy
when the solution algorithm is programmed correctly. Table 5.3 yields that the
implemented algorithm converges in a quadratic manner. This behavior implies the
correct implementation of code.

Table 5.3. Convergence Test. Convergence of the unbalanced energy for the
considered 8-node hexahedral trilinear solid element. Timestep t 1, 3,
5, 7 and 10. Global iteration counter i.

Unbalanced energy for timestep

i/t 1 3 5 7 10

1 1.5e+03 1.3e+03 1.2e+03 1.1e+03 9.6e+02
2 1.2e+02 9.9e+01 8.0e+01 6.5e+01 5.0e+01
3 4.5e-02 3.1e-02 2.0e-02 1.4e-02 8.0e-03
4 3.9e-03 1.5e-03 7.1e-04 4.5e-04 3.4e-04
5 3.6e-10 2.2e-11 5.8e-11 2.5e-10 9.2e-10
6 1.1e-22 5.0e-25 8.8e-24 3.6e-22 1.4e-20
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5.2. Rectangular Strip under Tension and
Compression

This section shows a thin rectangular strip under a tension and compression load.
The example represents a simple numerical benchmark and is based on calculations
in Ulz [33]. This model of computation is used to analyze the capability of the
derived material model. Different material configurations are examined. The
simulation is displacement driven. The investigations embraces three different
material configurations in the two load cases tension and compression.

5.2.1. Model of Computation

The rectangular strip has the dimension of 10 × 10 mm and a thickness of 1.0 mm.
A displacement of u = 3 mm with increments of ∆u = 0.01 mm is applied on the
right edge of the strip within 300 global iteration steps. The dimensions of the
model of computation can be taken from Figure 5.2. The orthotropic axis ai with
i = {1, 2, 3} are rotated by an angle of 30◦ to the global coordinate system (see
Figure 5.2). Buckling is prevented by supporting the bottom of the strip. Equal
loads are applied on the geometry and the simulation outputs displacement, Von
Mises stress and the equivalent plastic strain are compared for different material
configurations.

x

y

x

z

10.0

1.0

u

a1a2

a3

a1

10.0

30°

Figure 5.2. Rectangular strip under tension and compression. Geometry of the
considered calculation domain.
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The geometry is discretized by 7x7 8-node trilinear hexahedral solid elements with
a total number of 128 nodes. The thickness direction of the thin strip is modelled
by one element row. Figure 5.3 yields the mesh and the nodes under consideration.
The nodes A and B have the coordinates (10.0 | 10.0 | 0.0) and (10.0 | 0.0 | 0.0).

A

B

Figure 5.3. Rectangular strip under tension and compression. Mesh with the
considered nodes A and B.

Table 5.4 lists the basic material properties for the numerical example. Isotropic
material behavior is achieved by setting the parameters y11 = y22 = y33 = y0 and
y12 = y23 = y13 = y0/

√
3. A parameter % is introduced to distinguish between

different material behavior and is defined as the ratio of the normal and shear
stresses as % := yii/yji. The isotropic case is associated with %1 =

√
3. The other

two calculated sets are defined by %2 = 2
√

3 and %3 = 0.5
√

3 and represent the
orthotropic material response respectively.

Table 5.4. Rectangular strip under tension and compression. Material properties for
the model of computation.

Parameter Symbol Value Unit

Young’s Modulus E 206.9 GPa
Poisson’s ratio ν 0.29 -
Initial yield stress y0 450 MPa
Linear isotropic hardening h 129.24 MPa
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5.2.2. Results - Compression Load

Displacements
The deformed mesh and displacement of the nodes of the geometry can be taken
from Figure 5.4. The result of the isotropic material %1 shows an increased height
of the body under consideration. The mesh deforms without shear modes. The
maximum displacement can be seen at the top right node, which is denoted with A
(see Figure 5.3). The other two material configurations deform with shear modes in
different directions accordingly. For the case %2 the body stretches in y - direction
and shows a shear movement towards negative y - direction. In the case of %3 the
shear movement points to positive y - direction.

Figure 5.4. Rectangular strip under compression. Deformed meshes and displace-

ments as shown in color bar for a) isotropic %1 =
√

3, b) anisotropic
%2 = 2

√
3 and c) anisotropic %3 = 0.5

√
3 material behavior. First

column: top view for global iteration step i = 100. Second column:
top view for i = 200. Third column: top view for i = 300.
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The displacement v in y - direction of the two reference nodes A and B for the
different material configurations can be obtained from Figure 5.5. In the isotropic
case %1 node B remains in the same y - coordinate. In the other two cases the nodes
A and B move in y - direction according to their softer material orientation. In the
case of %2 the material is softer in the direction of the a2 axis. For %3 the softer
material axis is represented by a1.

Figure 5.5. Rectangular strip under compression. Displacements v in y-direction
over compression displacement. Nodes A and B are represented by curves
without marker and with cross. Solid line represents isotropic %1 =

√
3,

dashed-dotted anisotropic %2 = 2
√

3 and dashed anisotropic %3 = 0.5
√

3
material behavior.
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Von Mises Stress
The deformed mesh and Von Mises Stress can be obtained from Figure 5.6. In the
case of isotropy %1 the stresses are uniformly distributed. For %2 the stress shows a
symmetric distribution. The stress has its maximum at the bottom left and top right
node. This corresponds to the material orientation and direction of soft mechanical
properties. In the case of %3 a symmetric stress distribution in the opposite direction
can be found. Maximum Von Mises stresses can be found in the top left and bottom
right node. A detailed representation of the Von Mises stress for the nodes A and B
can be obtained from Figure 5.7. The case %2 shows higher magnitudes in the Von
Mises stress.

Figure 5.6. Rectangular strip under compression. Deformed meshes and Von Mises

stress as shown in color bar for a) isotropic %1 =
√

3, b) anisotropic %2 =
2
√

3 and c) anisotropic %3 = 0.5
√

3 material behavior. First column:
top view for global iteration step i = 100. Second column: top view for
i = 200. Third column: top view for i = 300.
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Figure 5.7. Rectangular strip under compression. Von Mises stress over compression
displacement. Nodes A and B are represented by curves without marker
and with cross. Solid line represents isotropic %1 =

√
3, dashed-dotted

anisotropic %2 = 2
√

3 and dashed anisotropic %3 = 0.5
√

3 material
behavior.
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Equivalent Plastic Strain - PEEQ
The deformed mesh and equivalent plastic strain can be obtained from Figure 5.8.
The results are similarly distributed as the Von Mises stress. The symmetry axis for
%2 and %3 equal those of the stress distribution. For the isotropic case %1 an uniformly
distributed equivalent plastic strain can be obtained. Detailed information about
the equivalent plastic strain for the nodes A and B yields Figure 5.9.

Figure 5.8. Rectangular strip under compression. Deformed meshes and equivalent

plastic strain as shown in color bar for a) isotropic %1 =
√

3, b)
anisotropic %2 = 2

√
3 and c) anisotropic %3 = 0.5

√
3 material behavior.

First column: top view for global iteration step i = 100. Second column:
top view for i = 200. Third column: top view for i = 300.
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5. Verification

Figure 5.9. Rectangular strip under compression. Equivalent plastic strain over
compression displacement. Nodes A and B are represented by curves
without marker and with cross. Solid line represents isotropic %1 =

√
3,

dashed-dotted anisotropic %2 = 2
√

3 and dashed anisotropic %3 = 0.5
√

3
material behavior.

Table 5.5 shows the convergence of the unbalanced energy for the calculations with
different material behavior. The table shows the unbalanced energy for timesteps
t = {200, 250, 300} over the iteration counter i.
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5.2.3. Results - Tension Load

Displacements
The deformed mesh and displacement for the different material configurations is
shown in Figure 5.10. For the isotropic case %1 the body under consideration reduces
its height without shear modes. The maximum displacement yields the point A. The
other two material configurations deform with shear modes. Those shear modes yield
the opposite behavior as obtained for the compression load. For %2 the body deforms
in y - direction and shows a shear movement in positive y - direction. In the case
%3 the shear movement changes orientation to the negative y - direction.

Figure 5.10. Rectangular strip under tension. Deformed meshes and displacements

as shown in color bar for a) isotropic %1 =
√

3, b) anisotropic %2 = 2
√

3
and c) anisotropic %3 = 0.5

√
3 material behavior. First column: top

view for global iteration step i = 100. Second column: top view for
i = 200. Third column: top view for i = 300.
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Figure 5.11 shows the displacement v in y - direction of the two reference nodes A
and B for the different material configurations.

Figure 5.11. Rectangular strip under tension. Displacements v in y-direction over
tension displacement. Nodes A and B are represented by curves without
marker and with cross. Solid line represents isotropic %1 =

√
3, dashed-

dotted anisotropic %2 = 2
√

3 and dashed anisotropic %3 = 0.5
√

3
material behavior.
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Von Mises Stress
The deformed mesh and Von Mises stress distribution are shown in Figure 5.12.
The stress is equally distributed in the case of isotropic material behavior %1. The
case %2 shows a symmetric distribution and maximal stresses in the top left and
bottom right (node B) corner. This corresponds to the soft material axis and shows
a different trend as for the compression load. This behavior was expected. For
the case %3 a symmetric distribution can be obtained. The maximum stress can be
obtained at the bottom left and top right (node A) corner. A detailed representation
of the Von Mises stress for the nodes A and B yields Figure 5.13.

Figure 5.12. Rectangular strip under tension. Deformed meshes and Von Mises

stress as shown in color bar for a) isotropic %1 =
√

3, b) anisotropic
%2 = 2

√
3 and c) anisotropic %3 = 0.5

√
3 material behavior. First

column: top view for global iteration step i = 100. Second column:
top view for i = 200. Third column: top view for i = 300.
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Figure 5.13. Rectangular strip under tension. Von Mises stress over tension
displacement. Nodes A and B are represented by curves without marker
and with cross. Solid line represents isotropic %1 =

√
3, dashed-dotted

anisotropic %2 = 2
√

3 and dashed anisotropic %3 = 0.5
√

3 material
behavior.
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Equivalent Plastic Strain - PEEQ
Figure 5.14 illustrates the deformed mesh and equivalent plastic strain. The obtained
distributions are similar to those of the Von Mises stress. The symmetry axis for %2

and %3 remain the same. For the isotropic case %1 an equally distributed equivalent
plastic strain results. Figure 5.15 yields detailed information about the equivalent
plastic strain for the nodes A and B.

Figure 5.14. Rectangular strip under tension. Deformed meshes and equivalent

plastic strain as shown in color bar for a) isotropic %1 =
√

3, b)
anisotropic %2 = 2

√
3 and c) anisotropic %3 = 0.5

√
3 material behavior.

First column: top view for global iteration step i = 100. Second
column: top view for i = 200. Third column: top view for i = 300.
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Figure 5.15. Rectangular strip under tension. Equivalent plastic strain over tension
displacement. Nodes A and B are represented by curves without marker
and with cross. Solid line represents isotropic %1 =

√
3, dashed-dotted

anisotropic %2 = 2
√

3 and dashed anisotropic %3 = 0.5
√

3 material
behavior.

Table 5.6 yields the convergence of the unbalanced energy of the calculation
algorithm. The table shows the unbalanced energy for the time steps t =
{200, 250, 300} with the global iteration counts i.
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5.3. Drawing of a Thin Circular Plate

This example shows the drawing of a thin circular plate which is a simple benchmark
example to examine isotropic elastic-anisotropic plastic responses. A variation of the
material parameters shows the capability of anisotropic material behavior for the
derived material model. Therefore equal loads are applied on the geometry and the
simulation outputs displacement, Von Mises stress and the equivalent plastic strain
are compared. Similar investigations were performed for instance by Papadopulus
& Lu [22], Miehe et al. [19], Löblein et al. [12] or Ulz [33].

5.3.1. Model of Computation

The circular plate measures a radius of 400 mm with a hole of 200 mm in diameter.
The thickness of the plate is 10 mm. The calculation domain is simplified by the
symmetry of the geometry. Therefore the quarter of the examined circular plate
is modeled by introducing boundary conditions on the cutting edges as shown in
Figure 5.16. A displacement u = 75 mm is applied in radial direction to simulate a
drawing process. The displacements is applied in displacement increments of ∆u =
0.1 mm within 750 global iteration steps. The orthotropic axis ai with i = {1, 2, 3}
equals the global coordinate system. Figure 5.16 summarizes the aforementioned
scope conditions. Buckling is prevented by supporting the bottom of the plate.

 

a1

a2

a1

a3

400

800

10

u

calculation 
geometry

Figure 5.16. Drawing of a thin circular plate. Geometry of the calculation domain.
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The mesh consists of 10x10 8-node trilinear hexahedral solid elements with a total
number of 242 nodes. The discretization of the thickness direction of the plate is
realized with one element row. The mesh can be obtained from Figure 5.17 where
the considered nodes for the evaluation of the simulation results are labeled with
the associated node ID. The x - and y - coordinates of the considered nodes can be
obtained from Table 5.7.

220

225

230 21

7

5

14

11

Figure 5.17. Drawing of a thin circular plate. Mesh with the considered nodes.

Table 5.7. Drawing of a thin circular plate. x - and y- coordinates of the considered
nodes.

Node ID x - coordinate y - coordinate

220 0 200

225 200/
√

2 200/
√

2
230 200 0
11 0 400
14 181.6 356.4

5 400/
√

2 400/
√

2
7 356.4 181.6
21 400 0
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In Table 5.8 the basic set of material properties is denoted. The first calculated set
is the isotropic case which is associated with %1 =

√
3. The orthotropic material

response for the other two simulation sets are defined by setting %2 = 2
√

3 and
%3 = 0.5

√
3.

Table 5.8. Drawing of a thin circular plate. Material properties for the model of
computation.

Parameter Symbol Value Unit

Young’s Modulus E 210 GPa
Poisson’s ratio ν 0.3 -
Initial yield stress y0 500 MPa
Linear isotropic hardening h 129.24 MPa

5.3.2. Results

Displacement
The deformed meshes and displacement field for the various material definitions
differ significantly from each other. Figure 5.18 shows the direction independence in
the isotropic case %1. In the case of %2 the result yields a minimal displacement in
the direction of maximum shear stress at 45 degree. The result for %3 shows minimal
displacement in the maximal normal stress direction associated with the vectors a1

and a2. Additionally the outer ring of the body deforms wavelike. This behavior is
also called earing.
Detailed results for the x -, y - and radial displacement of the nodes 11, 5 and
21 from Figure 5.17 can be obtained from Figure 5.19. The radial displacement
shows for the isotropic case %1 the same result for the 3 nodes. In the case of %2

the nodes 11 and 21 show the same radial displacement. Node 5 has the lowest
displacement. This correlates to the aforementioned symmetry to the 45 degree
shear stress maximum. The result for %3 yields the same radial displacement for
the nodes 11 and 21. Node 5 has the highest displacement. This correlates to the
results obtained in Figure 5.18.
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5. Verification

Figure 5.18. Drawing of a thin circular plate. Deformed meshes and displacement

as shown in color bar for a) isotropic %1 =
√

3, b) anisotropic %2 = 2
√

3
and c) anisotropic %3 = 0.5

√
3 material behavior. First column: top

view for global iteration step i = 250. Second column: top view for
i = 500. Third column: top view for i = 750.
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5. Verification
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Figure 5.19. Drawing of a thin circular plate. Displacement u in x-direction, v in y-
direction and radial displacement |r| over drawing displacement. Nodes
11, 5 and 21 are represented by curves without marker, with cross and
with rhombus. Solid line represents isotropic %1 =

√
3, dashed-dotted

anisotropic %2 = 2
√

3 and dashed anisotropic %3 = 0.5
√

3 material
behavior.
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5. Verification

Von Mises Stress
The deformed mesh and Von Mises stress can be obtained from Figure 5.21. In the
case of isotropy %1 no preferred directions can be obtained. The results of %2 and
%3 show symmetric behavior to the 45 degree axis of maximum shear stresses. The
Von Mises stress for %2 has its maximum on the inner ring under 45 degrees. The
case %3 yields maximal values on the inner ring for the direction a1 and a2. Detailed
results for the nodes 11, 5 and 21 can be obtained from Figure 5.20. The results
show that no symmetry can be achieved for the corresponding nodes.

Figure 5.20. Drawing of a thin circular plate. Von Mises stress over drawing
displacement. Nodes 11, 5 and 21 are represented by curves without
marker, with cross and with rhombus. Solid line represents isotropic
%1 =

√
3, dashed-dotted anisotropic %2 = 2

√
3 and dashed anisotropic

%3 = 0.5
√

3 material behavior.
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5. Verification

Figure 5.21. Drawing of a thin circular plate. Deformed mesh and Von Mises Stress

as shown in color bar for a) isotropic %1 =
√

3, b) anisotropic %2 = 2
√

3
and c) anisotropic %3 = 0.5

√
3 material behavior. First column: top

view for global iteration step i = 250. Second column: top view for
i = 500. Third column: top view for i = 750.
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5. Verification

Equivalent Plastic Strain - PEEQ
The deformed mesh and equivalent plastic strain can be obtained from Figure 5.23.
The same effects as for the Von Mises Stress can be found. The maximal values are
on the inner ring of the circle and correlate to the associated maxima for Von Mises
stress. Detailed results for the nodes 11, 5 and 21 can be obtained from Figure 5.22.
In the case of %2 the material is softer in the 45 degrees direction. Therefore the
maximal values can be obtained at node 225. For %3 the material is softer in the
direction of a1 and a2. Hence the maximal values can be found at the nodes 220
and 230.

Figure 5.22. Drawing of a thin circular plate. Equivalent plastic strain over drawing
displacement. Nodes 11, 5 and 21 are represented by curves without
marker, with cross and with rhombus. Solid line represents isotropic
%1 =

√
3, dashed-dotted anisotropic %2 = 2

√
3 and dashed anisotropic

%3 = 0.5
√

3 material behavior.

The convergence of the unbalanced energy for the calculations of the different
material behaviors can be taken from Table 5.9. The unbalanced energy for the
timesteps t = {650, 700, 750} are presented over the global iterations i. The
calculation procedure shows good convergence for all three cases.
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5. Verification

Figure 5.23. Drawing of a thin circular plate. Deformed mesh and equivalent plastic

strain shown in color bar for a) isotropic %1 =
√

3, b) anisotropic %2 =
2
√

3 and c) anisotropic %3 = 0.5
√

3 material behavior. First column:
top view for global iteration step i = 250. Second column: i = 500.
Third column: i = 750.
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5. Verification
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6. Conclusion

A local iteration scheme for finite, anisotropic plasticity in the logarithmic La-
grangian strain space was derived. The strain measure is decomposed into an
elastic and plastic part as proposed by Green & Naghdi. This approach allows
the usage of model structures identical to those of the small strain theory. A strain-
energy function is defined in terms of the elastic logarithmic Lagrangian strain and a
dissipation potential. Dissipation is introduced by plastic deformation with isotropic
hardening. Internal variables are defined in the logarithmic Lagrangian strain space.
A transformation of the internal variables from logarithmic Lagrangian back to
Lagrangian strain space is introduced to map back the internal variables to the
large-strain scope. Anisotropy is modeled by the introduction of material symmetry
groups. A constant fourth-order Hill tensor describes initial anisotropy.
An 8-node hexahedral trilinear element was used to calculate representative
numerical simulations. The convergence test in section 5.1 demonstrates the
convergence behavior of the computational implementation for a single element. The
implemented Newton algorithm converges in a quadratic manner. This result can be
interpreted as a correct implementation of the proposed model. A rectangular strip
under compression and tension load in section 5.2 shows the capability of anisotropic
behavior of the implemented model. Different yield stresses for the geometry
axis generate an anisotropic material configuration. The numerical simulation
results demonstrate a plausible tendency for the deformation behavior and show
the demanded anisotropy. Nevertheless the used element type is too stiff to describe
plastic deformations. This issue can be addressed by using another element type
or refinement of the finite element mesh. The focus within this work laid on the
correct implementation of the proposed model. A deep drawing process of a thin
rolled circular plate is simulated in section 5.3 by simplifying the problem and using
the symmetry of the calculation domain. Different yield stresses for the geometry
axis yield differing deformation behavior. Isotropic material leads to a consistent
radial deformation on the inner and outer ring of the body under consideration.
The numerical simulations for anisotropic material reveal a different deformation
behavior for the inner and outer ring. The ”earing” phenomena appears and
demonstrates the utility of the implemented model. In this case the aforementioned
issue of too stiff element definitions leads to non-prominent ”earing”.
In future the proposed model has to be tested with other element definitions that
are not as stiff as the herein demonstrated element type. This can be done for
instance by using 8-node assumed-additively enhanced hexahedral elements. In
further consequence the implemented model can be expanded by rate-dependent
material behavior by replacing the constant Lagrange multiplier with a constitutive
equation.
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6. Conclusion

Summarizing a material description in the logarithmic Lagrangian strain-space
is presented which yields a simpler structure compared to the multiplicative
approach. A drawback is the numerical computation-intensive transformation from
the logarithmic Lagrangian strain space back to Lagrangian strain-space which is
outweighed by the advantages of the demonstrated approach.

64





Appendix A.

Derivations

This appendix reveals different derivations which are used in the established
constitutive equations from chapter 4. The internal variables EP and ξ are
conjugated to the internal forces TP and ζ. The logarithmic Lagrangian strain
tensor Ee is defined as Ee = E−EP where E and EP describe the total and plastic
logarithmic Lagrangian strain.
The strain-energy function is defined as:

ψ =
λ

2
(IEe)2 + µIIEe +

1

2
hξ2

where IEe = tr(Ee) and IIEe = Ee : Ee describe the first and second invariant
of the elastic logarithmic Lagrangian strain tensor Ee and λ, µ denote the Lamé
parameters. Furthermore h describes the isotropic hardening parameter.
The level set function φ is defined as:

φ = ||TP ||H +

√
2

2
ζ

with || • ||H =
√

(•) : H : (•) where H describes a Hill function with the material
symmetry groups used to define the initial anisotropy axis. The constant fourth-
order Hill tensor H has minor and major symmetries yielding HIJKL = HKLIJ =
HJIKL = HIJLK .

1.) Derivation of ∂TPφ:

∂TPφ =
∂φ

∂TP
=
∂(||TP ||H +

√
2
3
ζ)

∂TP
=
∂(
√

TP : H : TP +
√

2
3
ζ)

∂TP

=
∂(
√
T PijHijklT Pkl +

√
2
3
ζ)

∂T Pmn
=
δimδjnHijklT

P
kl + T PijHijklδkmδln

2
√
T PijHijklT Pkl

=
2HijklT

P
kl

2
√
T PijHijklT Pkl

=
H : TP

||TP ||H
(A.1)
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Appendix A. Derivations

2.) Derivation of ∂2
TPTPφ:

∂2
TPTPφ =

∂2φ

∂TP∂TP
=

∂

∂TP

H : TP

||TP ||H
=

∂

∂T Pqr

HijklT
P
kl√

T PmnHmnstT Pst

=
Hijklδkqδlr

√
T PmnHmnstT Pst −

HmnstTP
st√

TP
mnHmnstTP

st

HijklT
P
kl

(
√
T PmnHmnstT Pst )

2

=
Hijqr

√
T PmnHmnstT Pst

(
√
T PmnHmnstT Pst )

2
− HmnstT

P
stHijklT

P
kl

(
√
T PmnHmnstT Pst )

3

=
Hijqr√

T PmnHmnstT Pst
− HmnstT

P
stHijklT

P
kl

(
√
T PmnHmnstT Pst )

3

=
H

||TP ||H
− [H : TP ]⊗ [H : TP ]

||TP ||3H
(A.2)

3.) Derivation of ∂ζφ:

∂ζφ =
∂φ

∂ζ
=
∂(||TP ||H +

√
2
3
ζ)

∂ζ
=

√
2

3
(A.3)

4.) Derivation of ∂2
ζζφ:

∂2
ζζφ =

∂2φ

∂ζ∂ζ
=
∂
√

2
3

∂ζ
= 0 (A.4)

5.) Derivation of ζ:

ζ = −∂ξψ = −∂ψ
∂ξ

= −hξ (A.5)

6.) Derivation of ∂2
ξξψ:

∂2
ξξψ =

∂2ψ

∂ξ∂ξ
= h (A.6)

7.) Derivation of TP :

TP = ∂Eψ =
∂ψ

∂E
=
∂(λ

2
(IEe)2 + µIIEe + 1

2
hξ2)

∂E

=
∂(λ

2
E2
ii + µ(EijEij) + 1

2
hξ2)

∂Ekl
= λEiiδikδil + µ(δikδjlEij + δikδjlEij)

= λtr(Ee)1 + 2µEe (A.7)
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Appendix A. Derivations

8.) Derivation of ∂2
EPEPψ:

∂2
EPEPψ = ∂2

EEψ =
∂2ψ

∂E∂E

=
∂(λtr(Ee)1 + 2µEe)

∂E
=
∂(λEiiδij + 2µEij)

∂Ekl

= λδikδilδij + µ(δikδjl + δilδjk)

= λGij ⊗Gkl + µ(Gik ⊗Gjl + Gil ⊗Gjk) (A.8)

For Cartesian coordinates: G = 1

9.) Derivation of ∂Eφ:

∂Eφ = ∂TPφ · ∂ETP + ∂TPφ · ∂EP TP · ∂EEP + ∂ζφ · ∂Eζ + ∂ζφ · ∂ξζ · ∂Eξ

= −∂2
EEPψ(I + γP∂2

TPTPφ · ∂2
EPEPψ)∂TPφ− ∂2

Eξψ(I + γP∂2
ζζφ · ∂2

ξξψ)∂ζφ

= −∂2
EEPψ(I + γP∂2

TPTPφ · ∂2
EPEPψ)∂TPφ = −∂2

EEPψB−1∂TPφ (A.9)

With ∂2
EξU = 0 and B = I + γP∂2

TPTPφ∂
2
EPEPU
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Appendix B.

Fourth-order tensor: Inversion

This appendix shows the inversion of a fourth-order tensor. Take a fourth-order
tensor B into account like it is defined in chapter 4 with its components Bijkl for
i, j, k, l = {1, 2, 3}. Additionally consider two second-order tensor a and c with the
components aij and ckl. Defining a linear algebra system aij = Bijklckl with the
matrix formulation a9 = B9x9 ∗ c9 yields:



a(11)

a(22)

a(33)

a(23)

a(13)

a(12)

a(32)

a(31)

a(21)


=



B(11)11 B(11)22 B(11)33 B(11)23 B(11)13 B(11)12 B(11)32B(11)31 B(11)21

B(22)11 B(22)22 B(22)33 B(22)23 B(22)13 B(22)12 B(22)32B(22)31 B(22)21

B(33)11 B(33)22 B(33)33 B(33)23 B(33)13 B(33)12 B(33)32B(33)31 B(33)21

B(23)11 B(23)22 B(23)33 B(23)23 B(23)13 B(23)12 B(23)32B(23)31 B(23)21

B(13)11 B(13)22 B(13)33 B(13)23 B(13)13 B(13)12 B(13)32B(13)31 B(13)21

B(12)11 B(12)22 B(12)33 B(12)23 B(12)13 B(12)12 B(12)32B(12)31 B(12)21

B(32)11 B(32)22 B(32)33 B(32)23 B(32)13 B(32)12 B(32)32B(32)31 B(32)21

B(31)11 B(31)22 B(31)33 B(31)23 B(31)13 B(31)12 B(31)32B(31)31 B(31)21

B(21)11 B(21)22 B(21)33 B(21)23 B(21)13 B(21)12 B(21)32B(21)31 B(21)21


∗



c11

c22

c33

c23

c13

c12

c32

c31

c21


(B.1)

For a symmetric tensor B the rows and columns show linear dependencies and the
tensor can be rewritten as an equivalent tensor in the form of B6x6. The linear
algebra system from Equation B.1 can be expressed as a6 = B6x6 ∗ c6


a11

a22

a33

a23

a13

a12

 =


B(11)11 B(11)22 B(11)33 2B(11)23 2B(11)13 2B(11)12

B(22)11 B(22)22 B(22)33 2B(22)23 2B(22)13 2B(22)12

B(33)11 B(33)22 B(33)33 2B(33)23 2B(33)13 2B(33)12

2B(23)11 2B(23)22 2B(23)33 4B(23)23 4B(23)13 4B(23)12

2B(13)11 2B(13)22 2B(13)33 4B(13)23 4B(13)13 4B(13)12

2B(12)11 2B(12)22 2B(12)33 4B(12)23 4B(12)13 4B(12)12

 ∗


c11

c22

c33

c23

c13

c12


(B.2)

B−1 can be calculated and the coefficients can be shifted back to a fourth-order
tensor to get B−1. This yields:

AijklA
−1
klmn = Iijmn =

1

2
(δimδjn + δinδjm). (B.3)
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Appendix C.

Second-order tensor: Spectral
decomposition

In this appendix the spectral decomposition of a second-order tensor is demon-
strated. Performing a spectral decomposition to a second-order tensor A yields:

A =
∑
a

λaNa ⊗Na. (C.1)

Na and λa denote the eigenvectors with the corresponding eigenvalues of the tensor
A. The derivation of the eigenvalues λa with respect to the tensor A follows as:

∂λa
∂A

=
∂λa

∂
(∑

b

λbNb ⊗Nb

) =
∑
b

∂λa
∂λb

Nb ⊗Nb = Na ⊗Na. (C.2)

Next the derivation of the eigenvectors Na with respect to its tensor A is observed.
For this take ANa = λaA and I =

∑
b Nb ⊗ Nb into account. Furthermore it is

δab = NT
aNb which yields:

(I−Na ⊗Na)⊗Na =
∑
b 6=a

(λa − λb)Nb ⊗Nb
∂Na

∂A
(C.3)

With the equivalence of (I−Na ⊗Na) =
∑

b 6=a Nb ⊗Nb a symmetric tensor A can
be found:

2
∂(Na)i
∂Akl

=
∂(Na)i
∂Akl

+
∂(Na)i
∂Alk

=
∑
b6=a

1

λa − λb
(Nb)i[(Na)k(Nb)l + (Na)l(Nb)k] (C.4)
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Appendix D.

Matlab Code

In this appendix the programmed Matlab code can be found. The code illustrates
the constitutive equations which were added to a object oriented finite element
software called ”soofeaM” (software for object-oriented finite element analysis in
Matlab) provided by the Institute of Strength of Materials at Graz University of
Technology. The program can handle two and three dimensional linear and non-
linear problems. Quad, triangle, hexaeder and tetra elements are implemented. The
meshes of the simple benchmark examples from chapter 5 were generated with the
help of the finite element program Abaqus. The mesh was exported and prepared for
the above-mentioned solver. The boundary conditions are modeled directly within
the Matlab program.
Firstly the deformation gradient F is calculated. This is used to calculate the right
Cauchy-Green deformation tensor C. Within the function ”calcInternalVariables”
the necessary derivations and the internal variables EP and ξ are calculated locally
for every integration point. With the transformation tensors defined in the function
”calcLagrangeTransformationTensors” the Second Piola Kirchhoff stress S and the
elastic-plastic logarithmic Lagrangian tangent modulus Eep are calculated. This
routine is performed within the global iteration scheme till a converged state is
achieved. A schematic illustration and pseudo-code of used functions can be taken
from Figure D.1.

calcInternalVariables (self, int_point)

self.calcDerivations (self, int_point)

Check	elastic	response
if phi - c < 0
   return;   #elastic
end

Local	iteration	scheme
while phi - c > tol
    self.calcDerivations (self, int_point)
    gamma = gamma  delta_gamma
    Ep_temp = Ep_temp + delta_Ep
    xi_temp = xi_temp + delta_xi
end

Output
gamma
Ep = Ep_temp
xi = xi_temp

calcLogLagrangeStress (self, int_point)

calcPlasticLogLagrangeTangentModulus (self, int_point)

T = delta * self.lambda * trace (Ee) + 2.0 * self.mu * Ee

Output
T

self.calcDerivations (self, int_point)
Eep = Eep_elastic + beta * Eep_softening

Output
Eep

calcStress (self, int_point)

self.calcLogLagrangeStress (self,int_point)
self.calcLagrangeTransformationTensors (self,int_point)
S = T : P

Output
S

getElasticityTensor (self, int_point)

Output
Ce

self.calcLogLagrangeStress (self,int_point)
self.calcLagrangeTransformationTensors (self,int_point)
Ce = P : Eep : P + T : L

Figure D.1. Matlab code. Schematic illustration and pseudo-code of used functions.
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  1 classdef PlasticLogLagrangeanStrain < nsModel.nsMaterial.Material & nsModel.nsMaterial.AnisotropicPlasticMaterial
  2     %Plastic material with additive logarithmic strain
  3     
  4     methods (Static)
  5         
  6         function self = PlasticLogLagrangeanStrain(number, E_mod, nu, a1, a2, y0, y11, y22, y33, y12, y23, y13, h, c)
  7             
  8             self@nsModel.nsMaterial.Material(number);                      
  9             self@nsModel.nsMaterial.AnisotropicPlasticMaterial(number, E_mod, nu, a1, a2, y0, y11, y22, y33, y12, y23, y13, h, c);
 10           
 11         end
 12         
 13         
 14         function FirstInvEe = calcFirstInvariantEe (int_point)
 15             % Calculate first invariant of elastic logarithmic strain Ee
 16             % ----------------------------------------------------------
 17             
 18             Ee = int_point.Ee;
 19             FirstInvEe = trace(Ee);
 20             
 21         end
 22         
 23         function SecondInvEe = calcSecondInvariantEe (int_point)
 24             % Calculate second invariant of elastic logarithmic strain Ee
 25             % -----------------------------------------------------------
 26             
 27             Ee = int_point.Ee;
 28             SecondInvEe = trace(transpose(Ee)*Ee);
 29             
 30         end
 31         
 32         function potential = calcPotential (self,int_point)
 33             % Calculate strain-energy
 34             % -----------------------
 35             
 36             FirstInvEe = self.calcFirstInvariantEe (int_point);
 37             SecondInvEe = self.calcSecondInvariantEe (int_point);
 38 
 39             potential = 0.5 * self.lambda * (FirstInvEe)^2 + self.mu * SecondInvEe; 
 40             
 41         end
 42         
 43         function T = calcLogLagrangeStress(self, int_point)
 44             % Calculate logarithmic stress T
 45             % ------------------------------
 46         
 47             dimension = length(int_point.material_coordinates);
 48 
 49             delta = eye(dimension);
 50             Ee = int_point.Ee;
 51 
 52             T = delta * self.lambda * trace(Ee) + 2.0 * self.mu * Ee;
 53             
 54         end
 55         
 56         function Eee = calcElasticLogLagrangeTangentModulus (self, int_point)
 57             % Calculation of the elastic logarithmic tangent modulus Eee
 58             % ----------------------------------------------------------
 59         
 60             dimension = length(int_point.material_coordinates);
 61             delta = eye(dimension);
 62             d_ijkl = zeros(dimension, dimension, dimension, dimension);
 63             
 64             for i = 1:dimension
 65                 for j = 1:dimension
 66                     for k = 1:dimension
 67                         for l = 1:dimension
 68                             d_ijkl(i,j,k,l) = delta(i,j)*delta(k,l);
 69                         end
 70                     end
 71                 end
 72             end
 73             
 74             d_ikjl = permute(d_ijkl,[1 3 2 4]);
 75             d_iljk = permute(d_ijkl,[1 3 4 2]);
 76             
 77             Eee = self.lambda * d_ijkl + self.mu * (d_ikjl + d_iljk);
 78             
 79         end
 80         
 81         function [P,L] = calcLagrangeTransformationTensors(self, int_point,case_sel)
 82             % Calculation of the transformation matrices P and L
 83             % ---------------------------------------------------
 84         
 85             % case_sel = 1 for calculation of Second Piola-Kirchhoff stress S
 86             % case_sel = 0 for calculation of elastic-plastic Lagrangean tangent modulus C
 87             % -> less calculation ressources
 88             
 89             dimension = length(int_point.material_coordinates);
 90             C = int_point.C;
 91             
 92             % Eigenvalues of C and Ee
 93             EigenValC = eig(C);                            
 94             EigenValEe = 0.5*log(EigenValC);                 
 95             
 96             % Introducing tensor with eigenvalues
 97             [EigenVec,temp] = eig(C);
 98             



 99             % Calculate parameters d and f
100             d = EigenValC.^(-1);                         
101             f = -2*EigenValC.^(-2);                        
102             
103             % Define eigenvalue bases M
104             M = zeros(dimension, dimension, dimension);
105             
106             for a = 1:dimension
107                 for i = 1:dimension
108                     for j = 1:dimension
109                         M(i,j,a) = EigenVec(i,a) * EigenVec(j,a);
110                     end
111                 end
112             end
113             
114             % Initiate parameters
115             theta = zeros(dimension, dimension);
116             xi = zeros(dimension, dimension);
117             eta = 0;
118             
119             % Check eigenvalues
120              if dimension == 3
121             
122                 tol = 1e-10;        % computional tolerance
123                 equals = [0 0 0];
124                 equals(1) = abs(EigenValC(1) - EigenValC(3)) <= tol;
125                 equals(2) = abs(EigenValC(2) - EigenValC(1)) <= tol;
126                 equals(3) = abs(EigenValC(3) - EigenValC(2)) <= tol;   
127              else
128                 tol = 1e-10;        % computional tolerance
129                 equals = [0 0];
130                 equals(1) = abs(EigenValC(1) - EigenValC(2)) <= tol;
131              end
132             
133             % Calculate parameters (3 cases)
134             % --------------------------------
135             switch sum(equals)
136                 case 0
137                     for a= 1:dimension
138                         for b= 1:dimension
139                             theta(a,b) = (EigenValEe(a)-EigenValEe(b))/(EigenValC(a)-EigenValC(b));
140                             xi(a,b) = (theta(a,b) - 0.5 * d(b))/(EigenValC(a)-EigenValC(b));
141                             for c= 1:dimension
142                                 if b~=a
143                                     if c~=a && c~=b
144                                          eta = eta + EigenValEe(a)/(2*(EigenValC(a)-EigenValC(b))*...
145                                             (EigenValC(a)-EigenValC(c)));  
146                                     end
147                                 end
148                             end
149                         end
150                     end
151                     
152                 case 1 % a = b
153                     for a= 1:dimension
154                         for b= 1:dimension
155                             theta(a,b) = 0.5*d(a);
156                             xi(a,b) = 1/8*f(a);
157                         end
158                     end 
159                     
160                     if dimension ==3
161                         idx = find(equals == 0);
162                         eta = xi(idx(1),idx(2));
163                     else
164                         eta = 1/8*f(1);
165                     end
166                     
167                 case 3 % a = b = c
168                     for a= 1:dimension
169                         for b= 1:dimension
170                             theta(a,b) = 0.5*d(a);
171                             xi(a,b) = 1/8*f(a);
172                         end
173                     end 
174                     eta = 1/8*f(1);
175             end
176             %--------------------------------
177             
178             % Calculation of help matrices G(a,b) and H(a,b,c)
179             G = zeros(dimension, dimension, dimension, dimension, dimension, dimension);
180             H = zeros(dimension, dimension, dimension, dimension, dimension, dimension, dimension, dimension, dimension);
181             
182             for a = 1:dimension                
183                 for b = 1:dimension
184                     for c = 1:dimension
185                         for i = 1:dimension                        
186                             for j = 1:dimension                            
187                                 for k = 1:dimension                                
188                                     for l = 1:dimension
189                                         for m = 1:dimension
190                                             for n = 1:dimension
191                                     
192                                                 if case_sel == 1
193                                                     G(i,j,k,l,a,b) = M(i,k,a)*M(j,l,b) + M(i,l,a)*M(j,k,b);
194                                                 else
195                                                     G(i,j,k,l,a,b) = M(i,k,a)*M(j,l,b) + M(i,l,a)*M(j,k,b);
196                                                     H(i,j,k,l,m,n,a,b,c) = M(i,k,a)*M(j,m,b)*M(l,n,c) + M(i,k,a)*M(j,n,b)*M(l,m,c)...



197                                                         + M(i,l,a)*M(j,m,b)*M(k,n,c) + M(i,l,a)*M(j,n,b)*M(k,m,c)...
198                                                         + M(j,l,a)*M(i,m,b)*M(k,n,c) + M(j,l,a)*M(i,n,b)*M(k,m,c)...
199                                                         + M(j,k,a)*M(i,m,b)*M(l,n,c) + M(j,k,a)*M(i,n,b)*M(l,m,c);
200                                                 end
201                                     
202                                             end
203                                         end
204                                     end                                
205                                 end                            
206                             end                        
207                         end 
208                     end
209                  end                
210             end
211             
212             
213             % Calculation of dyadic(M) and dyadic(dyadic(M,M),M)
214             dyadM = zeros(dimension, dimension, dimension, dimension, dimension); % dyadic(M,M)
215             ddyadM = zeros(dimension, dimension, dimension, dimension, dimension,...
216                 dimension, dimension, dimension, dimension); %dyadic(dyadic(M,M),M)
217             
218             for a = 1:dimension
219                 for i = 1:dimension
220                     for j = 1:dimension
221                         for k = 1:dimension
222                             for l = 1:dimension
223                                 dyadM(i,j,k,l,a) = M(i,j,a) * M(k,l,a);
224                             end
225                         end
226                     end
227                 end
228             end
229             
230             if case_sel ~=1
231                 for a = 1:dimension
232                     for i = 1:dimension
233                         for j = 1:dimension
234                             for k = 1:dimension
235                                 for l = 1:dimension
236                                     for m = 1:dimension
237                                         for n = 1:dimension
238                                             ddyadM(i,j,k,l,m,n,a) = M(i,j,a)*M(k,l,a)*M(m,n,a);
239                                         end
240                                     end
241                                 end
242                             end
243                         end
244                     end
245                 end
246             end
247 
248             % Calculation of fourth-order Lagrangean transformation tensor P
249             % Calculation of sixth-order Lagrangean transformation tensor L
250             
251             P = zeros(dimension, dimension, dimension, dimension);
252             L = zeros(dimension, dimension, dimension, dimension, dimension, dimension);
253             
254             for a = 1:dimension
255                 P = P + d(a) * dyadM(:,:,:,:,a);
256                 L = L + f(a) * ddyadM(:,:,:,:,:,:,a);
257                 
258                 for b = 1:dimension
259                     if a ~= b
260                         P = P + theta(a,b) * G(:,:,:,:,a,b);
261                         L = L + + xi(a,b)*(H(:,:,:,:,:,:,b,a,b)+H(:,:,:,:,:,:,b,b,a)+H(:,:,:,:,:,:,a,b,b));
262                         for c= 1:dimension
263                             if c ~= a && c ~= b
264                                 L = L + eta*H(:,:,:,:,:,:,a,b,c);
265                             end
266                         end
267                     end
268                 end
269                 
270             end  
271             
272         end
273         
274         function tensor4dinv = inverse4dsym( tensor4d, dim )
275             % Calculate the inverse of a symmetric fourth-order tensor
276             % --------------------------------------------------------
277             % works for inversion of 4d tensors with either major & minor symmetries or
278             % with just minor symmetries
279             % this does not work for 4d tensors with just major symmetries
280             
281             if (dim ~= 3)
282                 stopstop;
283             end
284             
285             tensor2d = zeros([dim*2 dim*2]);
286             tensor4dinv = zeros([dim dim dim dim]);
287 
288             tensor2d( 1, 1  ) = tensor4d( 1,1,1,1 );
289             tensor2d( 1, 2  ) = tensor4d( 1,1,2,2 );
290             tensor2d( 1, 3  ) = tensor4d( 1,1,3,3 );
291             tensor2d( 2, 1  ) = tensor4d( 2,2,1,1 );
292             tensor2d( 2, 2  ) = tensor4d( 2,2,2,2 );
293             tensor2d( 2, 3  ) = tensor4d( 2,2,3,3 );
294             tensor2d( 3, 1  ) = tensor4d( 3,3,1,1 );



295             tensor2d( 3, 2  ) = tensor4d( 3,3,2,2 );
296             tensor2d( 3, 3  ) = tensor4d( 3,3,3,3 );
297             tensor2d( 1, 4+0) = tensor4d( 1,1,2,3 ) * 2.0;
298             tensor2d( 1, 4+1) = tensor4d( 1,1,1,3 ) * 2.0;
299             tensor2d( 1, 4+2) = tensor4d( 1,1,1,2 ) * 2.0;
300             tensor2d( 2, 4+0) = tensor4d( 2,2,2,3 ) * 2.0;
301             tensor2d( 2, 4+1) = tensor4d( 2,2,1,3 ) * 2.0;
302             tensor2d( 2, 4+2) = tensor4d( 2,2,1,2 ) * 2.0;
303             tensor2d( 3, 4+0) = tensor4d( 3,3,2,3 ) * 2.0;
304             tensor2d( 3, 4+1) = tensor4d( 3,3,1,3 ) * 2.0;
305             tensor2d( 3, 4+2) = tensor4d( 3,3,1,2 ) * 2.0;
306             tensor2d( 4+0, 1  ) = tensor4d( 2,3,1,1 ) * 2.0;
307             tensor2d( 4+0, 2  ) = tensor4d( 2,3,2,2 ) * 2.0;
308             tensor2d( 4+0, 3  ) = tensor4d( 2,3,3,3 ) * 2.0;
309             tensor2d( 4+1, 1  ) = tensor4d( 1,3,1,1 ) * 2.0;
310             tensor2d( 4+1, 2  ) = tensor4d( 1,3,2,2 ) * 2.0;
311             tensor2d( 4+1, 3  ) = tensor4d( 1,3,3,3 ) * 2.0;
312             tensor2d( 4+2, 1  ) = tensor4d( 1,2,1,1 ) * 2.0;
313             tensor2d( 4+2, 2  ) = tensor4d( 1,2,2,2 ) * 2.0;
314             tensor2d( 4+2, 3  ) = tensor4d( 1,2,3,3 ) * 2.0;
315             tensor2d( 4+0, 4+0) = tensor4d( 2,3,2,3 ) * 4.0;
316             tensor2d( 4+0, 4+1) = tensor4d( 2,3,1,3 ) * 4.0;
317             tensor2d( 4+0, 4+2) = tensor4d( 2,3,1,2 ) * 4.0;
318             tensor2d( 4+1, 4+0) = tensor4d( 1,3,2,3 ) * 4.0;
319             tensor2d( 4+1, 4+1) = tensor4d( 1,3,1,3 ) * 4.0;
320             tensor2d( 4+1, 4+2) = tensor4d( 1,3,1,2 ) * 4.0;
321             tensor2d( 4+2, 4+0) = tensor4d( 1,2,2,3 ) * 4.0;
322             tensor2d( 4+2, 4+1) = tensor4d( 1,2,1,3 ) * 4.0;
323             tensor2d( 4+2, 4+2) = tensor4d( 1,2,1,2 ) * 4.0;
324 
325             tensor2dinv = inv(tensor2d);
326 
327             tensor4dinv(1,1,1,1) = tensor2dinv(1,1);
328             tensor4dinv(1,1,2,2) = tensor2dinv(1,2);
329             tensor4dinv(1,1,3,3) = tensor2dinv(1,3);
330             tensor4dinv(2,2,1,1) = tensor2dinv(2,1);
331             tensor4dinv(2,2,2,2) = tensor2dinv(2,2);
332             tensor4dinv(2,2,3,3) = tensor2dinv(2,3);
333             tensor4dinv(3,3,1,1) = tensor2dinv(3,1);
334             tensor4dinv(3,3,2,2) = tensor2dinv(3,2);
335             tensor4dinv(3,3,3,3) = tensor2dinv(3,3);
336             tensor4dinv(1,1,2,3) = tensor2dinv(1,4+0);
337             tensor4dinv(1,1,1,3) = tensor2dinv(1,4+1);
338             tensor4dinv(1,1,1,2) = tensor2dinv(1,4+2);
339             tensor4dinv(1,1,3,2) = tensor2dinv(1,4+0);
340             tensor4dinv(1,1,3,1) = tensor2dinv(1,4+1);
341             tensor4dinv(1,1,2,1) = tensor2dinv(1,4+2);
342             tensor4dinv(2,2,2,3) = tensor2dinv(2,4+0);
343             tensor4dinv(2,2,1,3) = tensor2dinv(2,4+1);
344             tensor4dinv(2,2,1,2) = tensor2dinv(2,4+2);
345             tensor4dinv(2,2,3,2) = tensor2dinv(2,4+0);
346             tensor4dinv(2,2,3,1) = tensor2dinv(2,4+1);
347             tensor4dinv(2,2,2,1) = tensor2dinv(2,4+2);
348             tensor4dinv(3,3,2,3) = tensor2dinv(3,4+0);
349             tensor4dinv(3,3,1,3) = tensor2dinv(3,4+1);
350             tensor4dinv(3,3,1,2) = tensor2dinv(3,4+2);
351             tensor4dinv(3,3,3,2) = tensor2dinv(3,4+0);
352             tensor4dinv(3,3,3,1) = tensor2dinv(3,4+1);
353             tensor4dinv(3,3,2,1) = tensor2dinv(3,4+2);
354             tensor4dinv(2,3,1,1) = tensor2dinv(4+0,1);
355             tensor4dinv(2,3,2,2) = tensor2dinv(4+0,2);
356             tensor4dinv(2,3,3,3) = tensor2dinv(4+0,3);
357             tensor4dinv(3,2,1,1) = tensor2dinv(4+0,1);
358             tensor4dinv(3,2,2,2) = tensor2dinv(4+0,2);
359             tensor4dinv(3,2,3,3) = tensor2dinv(4+0,3);
360             tensor4dinv(1,3,1,1) = tensor2dinv(4+1,1);
361             tensor4dinv(1,3,2,2) = tensor2dinv(4+1,2);
362             tensor4dinv(1,3,3,3) = tensor2dinv(4+1,3);
363             tensor4dinv(3,1,1,1) = tensor2dinv(4+1,1);
364             tensor4dinv(3,1,2,2) = tensor2dinv(4+1,2);
365             tensor4dinv(3,1,3,3) = tensor2dinv(4+1,3);
366             tensor4dinv(1,2,1,1) = tensor2dinv(4+2,1);
367             tensor4dinv(1,2,2,2) = tensor2dinv(4+2,2);
368             tensor4dinv(1,2,3,3) = tensor2dinv(4+2,3);
369             tensor4dinv(2,1,1,1) = tensor2dinv(4+2,1);
370             tensor4dinv(2,1,2,2) = tensor2dinv(4+2,2);
371             tensor4dinv(2,1,3,3) = tensor2dinv(4+2,3);
372             tensor4dinv(2,3,2,3) = tensor2dinv(4+0,4+0);
373             tensor4dinv(2,3,1,3) = tensor2dinv(4+0,4+1);
374             tensor4dinv(2,3,1,2) = tensor2dinv(4+0,4+2);
375             tensor4dinv(3,2,2,3) = tensor2dinv(4+0,4+0);
376             tensor4dinv(3,2,1,3) = tensor2dinv(4+0,4+1);
377             tensor4dinv(3,2,1,2) = tensor2dinv(4+0,4+2);
378             tensor4dinv(2,3,3,2) = tensor2dinv(4+0,4+0);
379             tensor4dinv(2,3,3,1) = tensor2dinv(4+0,4+1);
380             tensor4dinv(2,3,2,1) = tensor2dinv(4+0,4+2);
381             tensor4dinv(3,2,3,2) = tensor2dinv(4+0,4+0);
382             tensor4dinv(3,2,3,1) = tensor2dinv(4+0,4+1);
383             tensor4dinv(3,2,2,1) = tensor2dinv(4+0,4+2);
384             tensor4dinv(1,3,2,3) = tensor2dinv(4+1,4+0);
385             tensor4dinv(1,3,1,3) = tensor2dinv(4+1,4+1);
386             tensor4dinv(1,3,1,2) = tensor2dinv(4+1,4+2);
387             tensor4dinv(3,1,2,3) = tensor2dinv(4+1,4+0);
388             tensor4dinv(3,1,1,3) = tensor2dinv(4+1,4+1);
389             tensor4dinv(3,1,1,2) = tensor2dinv(4+1,4+2);
390             tensor4dinv(1,3,3,2) = tensor2dinv(4+1,4+0);
391             tensor4dinv(1,3,3,1) = tensor2dinv(4+1,4+1);
392             tensor4dinv(1,3,2,1) = tensor2dinv(4+1,4+2);



393             tensor4dinv(3,1,3,2) = tensor2dinv(4+1,4+0);
394             tensor4dinv(3,1,3,1) = tensor2dinv(4+1,4+1);
395             tensor4dinv(3,1,2,1) = tensor2dinv(4+1,4+2);
396             tensor4dinv(1,2,2,3) = tensor2dinv(4+2,4+0);
397             tensor4dinv(1,2,1,3) = tensor2dinv(4+2,4+1);
398             tensor4dinv(1,2,1,2) = tensor2dinv(4+2,4+2);
399             tensor4dinv(2,1,2,3) = tensor2dinv(4+2,4+0);
400             tensor4dinv(2,1,1,3) = tensor2dinv(4+2,4+1);
401             tensor4dinv(2,1,1,2) = tensor2dinv(4+2,4+2);
402             tensor4dinv(1,2,3,2) = tensor2dinv(4+2,4+0);
403             tensor4dinv(1,2,3,1) = tensor2dinv(4+2,4+1);
404             tensor4dinv(1,2,2,1) = tensor2dinv(4+2,4+2);
405             tensor4dinv(2,1,3,2) = tensor2dinv(4+2,4+0);
406             tensor4dinv(2,1,3,1) = tensor2dinv(4+2,4+1);
407             tensor4dinv(2,1,2,1) = tensor2dinv(4+2,4+2);
408         end
409         
410         function [H_norm,dtp_phi,dtptp_phi,dzeta_phi,dzetazeta_phi,depep_U,dxixi_U] = calcDerivations(self,int_point)
411             % Calculation of necessary derivations
412             % -------------------------------------
413             
414             dimension = length(int_point.material_coordinates);
415             h = self.h;         
416             
417             % Calculate logarithmic stress
418             T = self.calcLogLagrangeStress(self,int_point);
419             Tp = T;
420             
421             % Fourth-order Hill tensor
422             H = self.calcStructuralTensor(self,int_point);
423             
424 
425             % Calculate norm of logarithmic stress tensor with respect
426             % to constant fourth-order Hill tensor
427             norm = 0;
428             
429             for i = 1:dimension
430                 for j = 1:dimension
431                     for k = 1:dimension
432                         for l = 1:dimension
433                            norm = norm + Tp(i,j)*H(i,j,k,l)*Tp(k,l);
434                         end
435                     end
436                 end
437             end
438 
439             H_norm = sqrt(norm);
440 
441             % Calculate H : T^(p)
442             H_Tp = zeros(dimension,dimension);
443             H_Tp_H_Tp = zeros(dimension,dimension,dimension,dimension);
444 
445              for i = 1:dimension
446                 for j = 1:dimension
447                     for k = 1:dimension
448                         for l = 1:dimension
449                             H_Tp(i,j) = H_Tp(i,j) + H(i,j,k,l)*Tp(k,l);                    
450                         end
451                     end
452                 end
453              end
454 
455              % Calculate [H : T^(p)] dyad [H : T^(p)]
456              for i = 1:dimension
457                 for j = 1:dimension
458                     for k = 1:dimension
459                         for l = 1:dimension
460                             H_Tp_H_Tp(i,j,k,l) = H_Tp(i,j) * H_Tp(k,l);
461                         end
462                     end
463                 end
464              end
465 
466             % Function Output 
467             dtp_phi = H_Tp / H_norm;                                            
468             dtptp_phi = H / H_norm - H_Tp_H_Tp / H_norm^3;                       
469             dzeta_phi = sqrt(2/3);                                              
470             dzetazeta_phi = 0;                                                   
471             depep_U = self.calcElasticLogLagrangeTangentModulus (self, int_point);    % for cartesian G = 1
472             dxixi_U = h;                                                       
473             
474         end
475             
476         function Eep = calcPlasticLogLagrangeTangentModulus (self, int_point)
477             % Calculate elastic-plastic logarithmic Lagrangean tangent modulus Eep
478             % --------------------------------------------------------------------
479             
480             gamma = int_point.gamma;
481             dimension = length(int_point.material_coordinates);
482             
483             [H_norm,dtp_phi,dtptp_phi,dzeta_phi,dzetazeta_phi,depep_U,dxixi_U] = self.calcDerivations(self,int_point);
484             
485             % Check if already on yield surface
486             if H_norm < 10E-15
487                 dtptp_phi = zeros (dimension,dimension,dimension,dimension);
488             end
489             
490             % Initialize values



491             delta = eye(dimension);
492             d_mnkl = zeros(dimension, dimension, dimension, dimension);
493             B = zeros(dimension, dimension, dimension, dimension);
494             Eep_elastic = zeros(dimension, dimension, dimension, dimension);
495             Eep_softening = zeros(dimension, dimension, dimension, dimension);
496             de_phi = zeros(dimension, dimension);
497             
498             % Calculate help variable b and B
499             b = 1 + gamma * dzetazeta_phi * dxixi_U;
500             
501             for m = 1:dimension
502                 for n = 1:dimension
503                     for k = 1:dimension
504                         for l = 1:dimension
505                             d_mnkl(m,n,k,l) = 1/2*( delta(m,k)*delta(n,l) + delta(m,l)*delta(n,k));
506                             for i = 1:dimension
507                                 for j = 1:dimension
508                                   B(m,n,k,l) = B(m,n,k,l) + gamma * dtptp_phi(m,n,i,j) * depep_U(i,j,k,l);
509                                 end
510                             end
511                         end
512                     end
513                 end
514             end 
515 
516             B = B + d_mnkl;
517 
518             % Calculate inverse of B
519             B_inv = self.inverse4dsym(B,3);
520             
521             % Calculate elastic part of Eep
522             for i = 1:dimension
523                 for j = 1:dimension
524                     for s = 1:dimension
525                         for t = 1:dimension
526                             for m = 1:dimension
527                                 for n = 1:dimension
528                                     for k = 1:dimension
529                                         for l = 1:dimension
530                                             for q = 1:dimension
531                                                 for r = 1:dimension
532 
533                                                     Eep_elastic(i,j,s,t) = Eep_elastic(i,j,s,t) - ...
534                                                         gamma * depep_U(i,j,m,n)*B_inv(m,n,k,l)*dtptp_phi(k,l,q,r)*depep_U(q,r,s,t);
535                                                     
536                                                 end
537                                             end
538                                         end
539                                     end
540                                 end
541                             end
542                         end
543                     end
544                 end
545             end 
546             
547             Eep_elastic = Eep_elastic + depep_U;
548             
549             
550             % Calculate Eep
551             if gamma > 0
552                 
553                 beta = 1;           % Calculation switch
554                 skalar = 0;
555                 
556                 % Calculate softening part of Eep
557                 for i = 1:dimension
558                     for j = 1:dimension
559                         for m = 1:dimension
560                             for n = 1:dimension
561                                 for k = 1:dimension
562                                     for l = 1:dimension
563                                         de_phi(i,j) = de_phi(i,j) - depep_U(i,j,m,n)*B_inv(m,n,k,l)*dtp_phi(k,l);  
564                                         skalar = skalar - dtp_phi(i,j)*depep_U(i,j,m,n)*B_inv(m,n,k,l)*dtp_phi(k,l);
565                                     end
566                                 end
567                             end
568                         end
569                     end
570                 end 
571                 
572                 skalar = skalar - dzeta_phi*dxixi_U*1/b*dzeta_phi;
573                 
574                 for i = 1:dimension
575                     for j = 1:dimension
576                         for s = 1:dimension
577                             for t = 1:dimension
578                                 Eep_softening(i,j,s,t) = de_phi(i,j) * de_phi(s,t);
579                             end
580                         end
581                     end
582                 end 
583                 
584                 Eep_softening = Eep_softening/skalar;
585                 
586                 Eep = Eep_elastic + beta * Eep_softening;
587                 
588             else 



589                 
590                 Eep = Eep_elastic;
591                 
592             end
593              
594         end
595         
596         function H = calcStructuralTensor (self,int_point)
597             % Calculate constant fourth-order Hill tensor
598             %--------------------------------------------
599             
600             dimension = length(int_point.material_coordinates);
601             
602             % Initialize input
603             a1 = self.a1;       % base vector 1
604             a2 = self.a2;       % base vector 2
605             a3 = cross(a1,a2);  % base vector 3
606             A = [a1 a2 a3];     % matrix of base vectors
607             
608             y0 = self.y0;       % initial yield stress
609             y11 = self.y11;
610             y22 = self.y22;
611             y33 = self.y33;
612             y12 = self.y12;
613             y23 = self.y23;
614             y13 = self.y13;
615             
616             % Calculate structural tensors M
617             M = zeros(dimension,dimension,dimension,dimension);
618             
619             for i = 1:dimension
620                 for j = 1:dimension
621                     for k = 1:dimension
622                         for l = 1:dimension
623                              M(i,j,k,l) = 1/2 * (A(k,i)*A(l,j) + A(k,j)*A(l,i));
624                         end
625                     end
626                 end
627             end
628             
629             % Calculate independet material parameters alpha
630             alpha1 = 2/3 * (y0^2/y11^2);
631             alpha2 = 2/3 * (y0^2/y22^2);
632             alpha3 = 2/3 * (y0^2/y33^2);
633             alpha4 = 1/2 * (alpha3 - alpha1 - alpha2);
634             alpha5 = 1/2 * (alpha1 - alpha2 - alpha3);
635             alpha6 = 1/2 * (alpha2 - alpha3 - alpha1); 
636             alpha7 = 1/3 * (y0^2/y12^2);
637             alpha8 = 1/3 * (y0^2/y23^2);
638             alpha9 = 1/3 * (y0^2/y13^2);
639             
640             % Calculate fourth-order Hill tensor
641             MM = zeros(dimension, dimension, dimension, dimension);
642             
643             for i = 1:dimension
644                 for j = 1:dimension
645                     for k = 1:dimension
646                         for l = 1:dimension
647                             
648                             MM(i,j,k,l) = alpha1 * (M(1,1,i,j) * M(1,1,k,l)) + ...
649                                  alpha2 * (M(2,2,i,j) * M(2,2,k,l)) + ...
650                                  alpha3 * (M(3,3,i,j) * M(3,3,k,l)) + ...
651                                  2 * alpha4 * (1/2*(M(1,1,i,j)*M(2,2,k,l) + M(2,2,i,j)*M(1,1,k,l))) + ... 
652                                  2 * alpha5 * (1/2*(M(2,2,i,j)*M(3,3,k,l) + M(3,3,i,j)*M(2,2,k,l))) + ...
653                                  2 * alpha6 * (1/2*(M(1,1,i,j)*M(3,3,k,l) + M(3,3,i,j)*M(1,1,k,l))) + ...
654                                  2 * alpha7 * (M(1,2,i,j) * M(2,1,k,l)) + ...
655                                  2 * alpha8 * (M(2,3,i,j) * M(3,2,k,l)) + ...
656                                  2 * alpha9 * (M(1,3,i,j) * M(3,1,k,l));
657                         end
658                     end
659                 end
660             end
661             
662             H = MM;
663             
664         end
665         
666         function [Ep_temp,xi_temp,gamma,Ee] = calcInternalVariables(self,int_point)
667             % Calculate internal variables Ep and xi
668             % --------------------------------------
669             
670             % Initialize values
671             h = self.h;             % isotropic hardening
672             c = self.c;
673             dimension = length(int_point.material_coordinates);
674             
675             % Calculate elastic logarithmic Lagrangean strain
676             int_point.Ee = nsAnalyzer.KinematicTensors.calcElasticLogLagrangeStrain(int_point.Elog,int_point.Ep_temp);
677             Ee = int_point.Ee;
678             
679             % Load internal variables from previous/converged step
680             xi = int_point.xi;
681             xi_temp = int_point.xi_temp;
682             Ep = int_point.Ep;
683             Ep_temp = int_point.Ep_temp;
684             
685             gamma = 0;              % in first step always 0
686             deltagamma = 1e99;      % for convergence criteria



687             
688             % Calculate necessary derivations
689             [H_norm,dtp_phi,dtptp_phi,dzeta_phi,dzetazeta_phi,depep_U,dxixi_U] = self.calcDerivations(self,int_point);
690             
691             % Calculate zeta
692             zeta = -h*xi_temp; 
693             
694             % Calculate level set function phi
695             phi = H_norm + sqrt(2/3) * zeta;
696 
697             % Check if elastic or plastic response
698             if phi - c < 0  % elastic
699                 return;
700             end                
701             
702             % Initialize residuals
703             R_ep = zeros(dimension,dimension);
704             R_xi = 0;
705             
706             % Local iteration scheme
707             tol = 10E-23;
708             iter = 0;
709             
710             while abs( deltagamma*(phi - c) ) > tol
711         
712                 % Calculate necessary derivations
713                 [H_norm,dtp_phi,dtptp_phi,dzeta_phi,dzetazeta_phi,depep_U,dxixi_U] = self.calcDerivations(self,int_point);
714                 
715                 % Calculate zeta
716                 zeta = -h*xi_temp;
717                 
718                 % Calculate level set function phi
719                 phi = H_norm + sqrt(2/3) * zeta;
720                 
721                 % Calculate residuals
722                 for m = 1:dimension
723                     for n = 1:dimension
724                         R_ep(m,n) = -Ep_temp(m,n) + Ep(m,n) + gamma * dtp_phi(m,n);                 
725                     end
726                 end
727 
728                 R_xi = -xi_temp + xi + gamma * dzeta_phi;
729                 
730                 % Calculate help quantities b and B
731                 b = 1 + gamma * dzetazeta_phi * dxixi_U;
732                 
733                 d_mnkl = zeros(dimension, dimension, dimension, dimension);
734                 delta = eye(dimension);
735                 B = zeros(dimension, dimension, dimension, dimension);
736                 
737                 for m = 1:dimension
738                     for n = 1:dimension
739                         for k = 1:dimension
740                             for l = 1:dimension
741                                 
742                                 d_mnkl(m,n,k,l) = 1/2*( delta(m,k)*delta(n,l) + delta(m,l)*delta(n,k));
743                                 
744                                 for i = 1:dimension
745                                     for j = 1:dimension
746                                         
747                                       B(m,n,k,l) = B(m,n,k,l) + gamma * dtptp_phi(m,n,i,j) * depep_U(i,j,k,l);
748                                       
749                                     end
750                                 end
751                             end
752                         end
753                     end
754                 end 
755 
756                 B = B + d_mnkl;
757                 
758                 % Invert B
759                 B_inv = self.inverse4dsym(B,3);
760                 
761                 % Calculate delta gamma
762                 f = 0;
763                 g = 0;
764                 
765                 for i = 1:dimension
766                     for j = 1:dimension
767                         for k = 1:dimension
768                             for l = 1:dimension
769                                 for m = 1:dimension
770                                     for n = 1:dimension
771 
772                                         f = f + dtp_phi(i,j)*depep_U(i,j,k,l)*R_ep(m,n)*B_inv(m,n,k,l);
773                                         g = g + dtp_phi(i,j)*depep_U(i,j,k,l)*dtp_phi(m,n)*B_inv(m,n,k,l);
774                                         
775                                     end
776                                 end
777                             end
778                         end
779                     end
780                 end
781                 
782                 
783                 deltagamma = (phi - c - f - dzeta_phi*dxixi_U * R_xi/b)/(g + dzeta_phi*dxixi_U*dzeta_phi/b);
784                 



785                 gamma = gamma + deltagamma;             
786                 
787                 
788                 % Calculate delta Ep_temp
789                 A = zeros(dimension,dimension);
790                 
791                 for m = 1:dimension
792                     for n = 1:dimension
793                         
794                         A(m,n) = R_ep(m,n) + deltagamma * dtp_phi(m,n);
795 
796                     end
797                 end 
798                 
799                 deltaEp = zeros(dimension,dimension);  
800                 
801                 for m = 1:dimension
802                     for n = 1:dimension
803                         for k = 1:dimension
804                             for l = 1:dimension
805 
806                                 deltaEp(m,n) = deltaEp(m,n) + B_inv(k,l,m,n)*A(k,l);
807                                 
808                             end
809                         end
810                     end
811                 end 
812 
813                 % Calculate Ep_temp
814                 Ep_temp = Ep_temp + deltaEp;
815                 Ep_save = int_point.Ep_temp;
816                 
817                 % Calculate xi_temp
818                 a = R_xi + deltagamma * dzeta_phi;
819                 deltaxi = a/b;
820                 xi_temp = xi_temp + deltaxi;
821                 
822                 % Update internal variables
823                 int_point.Ep_temp = Ep_temp;
824                 int_point.xi_temp = xi_temp;
825                 int_point.gamma = gamma;
826                 
827                 % Replace Ee at integration point with new values
828                 int_point.Ee = nsAnalyzer.KinematicTensors.calcElasticLogLagrangeStrain(int_point.Elog,int_point.Ep_temp);
829                 Ee = int_point.Ee;
830                 
831                 % Iteration counter
832                 iter = iter + 1;
833 
834                 if (iter > 1000) % to avoid endless loop
835                   disp('Local iteration needed maximum iteration steps');
836                   disp([iter, deltagamma, phi - c, gamma, abs(deltagamma*(phi - c))]);
837                   break;              
838                 end
839                 
840             end
841 
842         end
843         
844         
845         function S = calcStress(self, int_point)
846             % Calculate Second Piola Kirchhoff stress
847             %----------------------------------------
848             
849             % Calculate logarithmic stress
850             T = self.calcLogLagrangeStress(self,int_point);
851             
852             % Calculate transformation tensor P (case_sel = 1)
853             [P,L] = self.calcLagrangeTransformationTensors(self,int_point,1);
854            
855             %Second Piola Kirchhoff stress S
856             % S = T : P
857             dimension = length(int_point.material_coordinates);
858             S = zeros(dimension, dimension);
859             
860             for i = 1:dimension
861                 for j = 1:dimension
862                     for k = 1:dimension
863                         for l = 1:dimension
864                             
865                             S(i,j) = S(i,j) + T(k,l) * P (k,l,i,j);
866                             
867                         end
868                     end
869                 end
870             end
871             
872         end
873         
874         function Ce = getElasticityTensor(self, int_point)
875             % Calculate elastic-plastic Lagrangean tangent modulus
876             % ----------------------------------------------------
877 
878             % Calculate logarithmic stress
879             T = self.calcLogLagrangeStress(self,int_point);
880             
881             % Calculate transformation tensors P and L (case_sel = 0)
882             [P,L] = self.calcLagrangeTransformationTensors(self,int_point,0);



883             
884             % Calculate elasruc-plastic logarithmic Lagrangean tangent modulus
885             Eep = self.calcPlasticLogLagrangeTangentModulus(self,int_point);
886             
887             % Elastic-plastic Lagrangean Tangent Modulus Ce
888             % Ce = P : Eep : P + T : L
889             dimension = length(int_point.material_coordinates);
890             Ce = zeros(dimension, dimension,dimension,dimension);
891 
892             for i = 1 : dimension
893                 for j = 1 : dimension
894                     for k = 1 : dimension
895                         for l = 1 : dimension
896                             for q = 1 : dimension
897                                 for r = 1 : dimension
898                                     
899                                     Ce(i,j,k,l) = Ce(i,j,k,l) + T(q,r)*L(q,r,i,j,k,l);
900                                     
901                                     for s = 1 : dimension
902                                         for t = 1 : dimension
903                                             
904                                             Ce(i,j,k,l) = Ce(i,j,k,l) + P(i,j,q,r)*Eep(q,r,s,t)*P(s,t,k,l) ;
905 
906                                         end
907                                     end
908                                 end
909                             end
910                         end
911                     end
912                 end
913             end
914 
915 
916         end
917              
918         
919     end
920 end
921 
922 
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