

TECHNISCHE UNIVERSITÄT GRAZ Institut für Thermische Turbomaschinen und Maschinendynamik Leiter: Univ.-Prof. Dr.-Ing. Franz Heitmeir

MASTERARBEIT

Untersuchung turbulenter Schwankungen stromab einer Hochdruckturbinenstufe mittels Hitzdrahtanemometrie

vorgelegt von Balthasar Maria Schönangerer, BSc

> Betreuer Dipl.-Ing. Patrick Zeno Sterzinger

Beurteiler Assoc.Prof. Dipl.-Ing. Dr.techn. Emil Göttlich

Graz im April 2019

«Wenn ich Gott treffe, dann werde ich ihm zwei Fragen stellen: warum Relativität? Und warum Turbulenz? Ich glaube schon, dass er auf die erste Frage eine Antwort parat hat.»

Werner Heisenberg

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum, Ort

Unterschrift

Kurzfassung

Die vorliegende Arbeit entstand am Institut für Thermische Turbomaschinen und Maschinendynamik an der Technischen Universität Graz und beschäftigt sich mit der experimentellen Untersuchung von turbulenten Schwankungsgrößen stromab einer Hochdruckturbinenstufe mittels Hitzdrahtanemometrie. Dabei kann über die konvektive Wärmeabgabe von einem Draht mit stark erhöhter Temperatur an die ihn umgebende Strömung auf die Geschwindigkeit des Fluids geschlossen werden. Durch sogenannte 3-Drahtsonden ist eine Strömungsuntersuchung zeitgleich in alle Raumrichtungen möglich und bietet daher neue Perspektiven im Vergleich mit bestehenden Messeinrichtungen. Der erste Schritt einer Hitzdrahtmessung besteht immer aus einer Kalibrierung, welche für die Qualität der Messergebnisse von höchster Bedeutung ist. Anschließend wurde am institutseigenen Turbinenprüfstand hinter dem Rotor einer Hochdruckturbinenstufe eine Messung durchgeführt. Nach der Auswertung durch Matlab-Routinen erfolgte eine Verifizierung durch Gegenüberstellung mit anderen Messverfahren, welche am Institut bereits etabliert sind. Der Schwerpunkt dieser Arbeit lag auf einer erstmalig mit dem neu angeschafften Hitzdrahtanemometer durchgeführten Messung im Turbinenprüfstand mit einer bestimmten Konfiguration und der Erstellung geeigneter Auswerteroutinen.

Abstract

This thesis was written at the Institute for Thermal Turbomachinery and Machine Dynamics at the Graz University of Technology and deals with the experimental investigation of turbulent fluctuations downstream of a high-pressure turbine stage by means of hotwire anemometry. The velocity of the fluid can be inferred from the convective heat dissipation from a wire with a strongly increased temperature to the surrounding flow. So called 3-wire probes allow a simultaneous flow investigation in all spatial directions and therefore offer new perspectives compared to existing measuring equipment. The first step of a hot-wire measurement always consists of a calibration, which is of utmost importance for the quality of the measurement results. Subsequently, a measurement was carried out on the institute's own turbine test bench behind the rotor of a highpressure turbine stage. After evaluation by Matlab routines, verification was performed by comparison with other measurement methods, which are already established at the institute. The focus of this work was on a measurement carried out for the first time with the newly purchased hot-wire anemometer in the turbine test bench with a specific configuration and the creation of suitable evaluation routines.

Danksagung

Großer Dank gebührt meinem Betreuer am Institut für Thermische Turbomaschinen und Maschinendynamik Dipl.-Ing. Patrick Zeno Sterzinger für die sehr gute und prompte Unterstützung in allen Belangen.

Ebenfalls vom Institut für Thermische Turbomaschinen und Maschinendynamik ergeht mein Dank an Assoc.Prof. Dipl.-Ing. Dr.techn. Emil Göttlich für das Bereitstellen und Ermöglichen dieser Masterarbeit und für die Unterstützung bei der schriftlichen Verfassung.

Für die Ermöglichung meines Studiums möchte ich mich bei meinen Eltern bedanken. Sie haben mich all die Jahre finanziell unterstützt und immer an mich geglaubt.

Meiner Freundin Joya möchte ich für ihre Geduld und mentale Unterstützung danken.

Ein großes Dankeschön möchte ich auch an die Österreichische Forschungsförderungsgesellschaft (FFG) ausrichten. Die FFG hat diese Arbeit durch das Beyond-Europe-Projekt "Turbulence and Optical Measurements for Duct Surface Optimization in Turbofans – Turandot" (Projektnummer 707779/855730) ermöglicht und mir eine Forschungsbeihilfe gewährt.

Inhaltsverzeichnis

1	Einl	eitung		1				
	1.1	Motiva	ation - Warum Turbulenzmessung?	1				
	1.2	TTTF	Graz	1				
	1.3	Aufgal	benstellung	3				
2	The	oretiscł	ne Grundlagen	4				
	2.1	Turbu	lente Strömungen	4				
		2.1.1	Beschreibung	4				
		2.1.2	Eigenschaften	6				
	2.2	2.2 Strömung durch ein Schaufelgitter						
	2.3	Ström	ungsmesstechnik	10				
		2.3.1	Fünflochsonde	10				
		2.3.2	FRAPP	10				
		2.3.3	Hitzdrahtanemometrie	11				
3	Pral	ktischer	[·] Teil	19				
	3.1	Messar	ufbau	19				
	3.2	Messm	10di	21				
	3.3	Kalibr	ierung	22				
		3.3.1	Geschwindigkeitskalibrierung	23				
		3.3.2	Winkelkalibrierung	24				
		3.3.3	Erkenntnisse aus durchgeführten Kalibrierungen	28				
	3.4	Messu	ng im TTTF	34				
		3.4.1	Sondeneinbau	34				
		3.4.2	Versuchsfahrt	37				
	3.5	Auswe	rtung	38				
		3.5.1	Allgemeines	38				
		3.5.2	Zeitgemittelte Ergebnisse	40				
		3.5.3	Phasengemittelte Ergebnisse	45				
		3.5.4	Time-Space-Plots	50				
	3.6	Verifiz	ierung	53				
		3.6.1	BPF	53				
		3.6.2	Vergleich mit Fünflochsonde	53				
		3.6.3	Vergleich mit FRAPP-Daten	58				
4	Fazi	t und A	Ausblick	62				
Lit	teratı	urverzei	chnis	63				
^ L			zoichnic	65				
ΑĹ	ומומנ	ingsverz		03				
Та	l abellenverzeichnis 67							

Anhang	6	8
A1	Grundgleichungen der Strömungslehre 6	8
A2	Matlab-Code Kalibrierung	9
	A2.1 Anmerkungen zum Code	7
A3	Matlab-Code Auswertung	9
	A3.1 Anmerkungen zum Code	8
A4	Abschließende Bemerkungen des Autors	9

1 Einleitung

Osborne Reynolds¹ hat im Jahr 1883 durch seinen berühmten Farbfadenversuch den Grundstein der Turbulenzforschung gelegt. Seit diesem Zeitpunkt ist die Erforschung von Strömungsphänomenen, die auf Turbulenz zurückzuführen sind, Gegenstand intensivster Forschungsaktivitäten. Im folgenden wird erklärt, weshalb Turbulenzmessungen auch heute noch notwendig sind und ein kurzer Überblick bezüglich des Prüfstandes gegeben. Abschließend wird auf die Aufgabenstellung der Arbeit näher eingegangen.

1.1 Motivation - Warum Turbulenzmessung?

Seit jeher ist es der Drang von Wissenschaftlern und Ingenieuren Naturphänomene zu erkennen, zu beschreiben und die so neu gewonnenen Erkenntnisse gewinnbringend einzusetzen. Besonders im Bereich der Turbomaschinen sind Optimierungen heutzutage nur noch durch eine exakte Kenntnis der Strömung und somit auch der Turbulenz möglich. Am Institut für Thermische Turbomaschinen und Maschinendynamik waren Turbulenzuntersuchungen bis vor kurzem nur mit sogenannten FRAPP-Messungen (Fast Response Aerodynamic Pressure Probe - mehr dazu in Kapitel 2.3.2) möglich. Durch Einführung eines neuen Hitzdrahtmesssystems soll es in Zukunft möglich sein, mehr Informationen aus der Strömung zu gewinnen. Da aufwendige Messungen immer mit hohen Kosten verbunden sind, ist eine möglichst geringe Anzahl an Versuchsfahrten erstrebenswert. Es stellt sich also die Frage, ob durch Messungen mit einem Hitzdrahtsystem Messungen mit anderen Verfahren, wie eben z.B. FRAPP und Fünflochsonde eingespart werden können.

An dieser Stelle sei kurz darauf hingewiesen, dass auch heute noch in modernen CFD-Programmen Turbulenzmodellierungen verwendet werden. Aus diesem Grund sind Turbulenzmessungen notwendig, da ansonsten keine sicheren Auskünfte über die tatsächliche Entwicklung dieser Strömungsparameter gemacht werden können.

Im experimentellen Bereich liegt es in der Natur der Sache selbst, dass es sehr schwierig ist, im Vorhinein über den Erfolg von Messsystemen Klarheit zu haben. Diese Arbeit soll auch dokumentieren, was bisher mit den FRAPP-Messungen und vor allem was in Zukunft mit dem neuen Hitzdrahtsystem möglich sein wird.

1.2 TTTF Graz

Das Herzstück des Labors am Institut für Thermische Turbomaschinen und Maschinendynamik ist die Transonic Test Turbine Facility (kurz TTTF). Dies ist ein Zwei-Wellen-Turbinenprüfstand, der aus einer Hochdruck- und einer (entgegengesetzt rotierenden) langsam laufenden Niederdruckturbinenstufe besteht, wie es in Abbildung 1.1 zu sehen ist .

Der Versuchsstand wird durch komprimierte Luft, welche von einer elektrischen drei Mega Watt Verdichteranlage zur Verfügung gestellt wird, betrieben. Die Verdichteranlage selbst besteht dabei aus zwei radialen Turboverdichtern und einem Schraubenverdichter

 $^{^1 \}text{Osborne}$ Reynolds (*23.08.1842; †21.02.1912) - britischer Physiker

Abbildung 1.1: Darstellung Turbinenprüfstand

und ist in den Untergeschossen der Versuchshalle verbaut. Durch eine unterschiedliche Schaltung der Verdichter ergeben sich mehrere Fahrweisen des Prüfstandes und erlauben einen sehr flexiblen Betrieb [Pirker und Jericha, 1995].

Die Luft strömt aus der Verdichteranlage in die Mischkammer. Durch Kühlen kann die Eintrittstemperatur zwischen 40°C und 185°C eingestellt werden. In der Mischkammer kann bei Bedarf Luft vom Bremsverdichter (GHH), der von der Hochdruckturbine angetrieben wird, zugeschalten werden. Nach der Hochdruckturbine strömt die Luft durch einen Turbinenübergangskanal. Beim Versuchssetup, welches geprüft wurde, war keine Niederdruckturbine vorhanden. Die Luft strömt anschließend über einen Schalldämpfer nach außen an die Umgebung ab.

Abschließend werden noch einige technische Angaben - siehe Tabelle 1.1 - zum Prüfstand gemacht:

Tabelle 1.1: Technische Angaben Prüfstand			
maximaler Eintrittsdruck	4,6 bar		
maximale Eintrittstemperatur	$185^{\circ}\mathrm{C}$		
minimaler Austrittsdruck	0,8 bar		
maximaler Massenstrom	20 kg/s		
maximale Drehzahl HD- Turbine	11550 U/min		

1.3 Aufgabenstellung

Im Jahr 2017 wurde am Institut ein komplettes Hitzdrahtsystem inklusive Kalibriereinheit der Firma Dantec Dynamics, ein weltweit führendes Unternehmen im Bereich der Messtechnik, angeschafft. Der erste Schritt bestand in der Adaptierung von Hard- und Software, sodass das System zum Einsatz in thermischen Turbomaschinen überhaupt geeignet ist. Dies geschah durch die Arbeit von Wachter [Wachter, 2018].

Das Ziel dieser Masterthesis war es, eine erste Messung im Prüfstand selbst durchzuführen, die Messdaten aufzubereiten und eine automatisierte Auswerteroutine für zeitund phasengemittelte Ergebnisse in Matlab zu erstellen. Ein weiterer wichtiger Punkt war der Vergleich mit Ergebnissen von bereits am Institut etablierten Messverfahren. Gerade im experimentellen Bereich sind Erfahrungen mit einem Messsystem ein wertvolles Gut. Daher soll diese Arbeit dem Autor nachfolgenden Personen, die in Zukunft das System weiter anwenden und verbessern werden, eine gute Grundlage sein und ihnen mit Ratschlägen das Arbeiten erleichtern.

Diese Arbeit entstand im Zuge des von der FFG initiierten Beyond-Europe-Programms "Turbulence and Optical Measurements for Duct Surface Optimization in Turbofans – Turandot" (Projektnummer 707779/855730).

2 Theoretische Grundlagen

In diesem Abschnitt werden in kurzer Form einige theoretische Grundlagen, die für das weitere Verständnis wichtig sind, wiedergegeben. Da diese von allgemeiner Bedeutung sind, erfolgt keine explizite Quellenangabe. Die Inhalte der folgenden Abschnitte sind, wenn nicht anders angegeben, aus [Bräunling, 2015], [Brenn und Meile, 2014], [Herwig und Schmandt, 2015], [Nitsche und Brunn, 2006] und [Oertel, 2016].

2.1 Turbulente Strömungen

Strömungen lassen sich nach ihrer Art prinzipiell in laminare und turbulente Strömungen einteilen. Bei der laminaren Strömung handelt es sich um eine sogenannte Schichtenströmung, d.h. Schichten unterschiedlicher Geschwindigkeit strömen ohne einen Austausch von Fluidteilchen nebeneinander. In Natur und Technik sind jedoch fast ausschließlich turbulente Strömungen von Interesse. Das wesentliche Merkmal einer turbulenten Strömung sind die unregelmäßig schwankenden Größen wie Geschwindigkeit, Druck und Temperatur und erfordern daher eine geeignete Beschreibungsweise. Die Beurteilung, ob eine Strömung als laminar oder turbulent behandelt werden muss, erfolgt anhand der dimensionslosen Reynoldszahl Re.

$$Re = \frac{\rho u d}{\mu} = \frac{u d}{\nu} \tag{1}$$

Dabei stehen u und d für eine charakteristische Geschwindigkeit bzw. für ein charakteristisches Längenmaß des betrachteten Systems. Mit der dynamischen Viskosität μ ergibt sich aus der Beziehung $\nu = \mu/\rho$ über die Dichte ρ die kinematische Viskosität. Für turbulente Strömungen gilt:

$$Re \ge Re_{krit}$$
 (2)

Die kritische Reynoldszahl muss dabei für unterschiedliche Strömungsfälle jeweils experimentell bestimmt werden.

2.1.1 Beschreibung

Die Grundidee bei der Beschreibung von turbulenten Strömungen ist eine Aufteilung der Bewegung in eine mittlere Größe $\overline{\Phi}$ und in eine Schwankungsgröße Φ' . In Abbildung 2.1 ist dies beispielsweise für die Geschwindigkeit dargestellt. Die aktuelle Strömungsgröße Φ wird also aus einer Summe gebildet (auch bekannt unter Reynolds Ansatz):

$$\Phi = \overline{\Phi} + \Phi' \tag{3}$$

Wobei für den Mittelwert

$$\overline{\Phi} = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0 + T} \Phi dt \tag{4}$$

und für die Schwankungsbewegungen im zeitlichen Mittel

$$\overline{\Phi'} = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0 + T} \Phi' dt = 0 \text{ gilt.}$$
(5)

Abbildung 2.1: Reynolds Ansatz für eine turbulente Strömung [Oertel, 2016]

Wird dieser Ansatz nun in die Navier Stokes Gleichungen (siehe Anhang A1) eingesetzt, ergeben sich daraus die sogenannten RANS- Gleichungen (Reynolds Averaged Navier Stokes Equations). Dabei wird ersichtlich, dass zusätzliche Trägheitsterme auf der rechten Seite der Gleichungen auftauchen. Turbulenz kann also durch zusätzliche Spannungen, den sogenannten Reynoldsspannungen, aufgefasst werden.

$$\tau_{Rey}' = \tau_{turb}' = -\rho \left[\begin{array}{ccc} \overline{u'u'} & \overline{u'v'} & \overline{u'w'} \\ \overline{u'v'} & \overline{v'v'} & \overline{v'w'} \\ \overline{u'w'} & \overline{v'w'} & \overline{w'w'} \end{array} \right]$$
(6)

Die Gleichung Nummer 6 gilt unter der Annahme eines inkompressiblen Fluids. Soll die Kompressibilität berücksichtigt werden ist die sogenannte Favre-Mittelung (auch Massenmittelung) anzuwenden.

$$\overline{\Phi} = \frac{\overline{\rho \Phi}}{\overline{\rho}} \tag{7}$$

Durch die Reynoldsspannungen ergeben sich sechs zusätzliche Unbekannte Größen im Gleichungssystem. Es werden also weitere Gleichungen zur Beschreibung dieser Spannungen benötigt. Dies ist das sogenannte Schließungsproblem der Turbulenz. Durch diverse Turbulenzmodelle ist eine Modellierung der turbulenten Spannungen möglich, worauf hier allerdings nicht näher eingegangen wird.

Geeignete Größen zur Charakterisierung von turbulenten Strömungen sind die turbulente kinetische Energie k und der Turbulenzgrad Tu, die sich beide aus den Geschwindigkeitsschwankungen zusammensetzen.

$$k = \frac{\overline{u'^2} + \overline{v'^2} + \overline{w'^2}}{2}$$
(8)

$$Tu = \frac{1}{U_{\infty}} \sqrt{\frac{1}{3} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right)}$$
(9)

2.1.2 Eigenschaften

Turbulente Strömungen weisen einige charakteristische Eigenschaften auf, die nachfolgend aufgelistet sind:

- Turbulente Strömungen liegen oberhalb der kritischen Reynoldszahl.
- Turbulenz ist im Strömungsfeld nicht überall gleich stark.
- Turbulenz verursacht einen erhöhten Impulsaustausch, was sich in erhöhten Reibungswiderständen äußert.
- Bei Ablösegefahr von Strömungen kann Turbulenz durch den erhöhten Impulsaustausch den Ablösepunkt stromabwärts verschieben.
- Turbulenz ist immer dreidimensional.

Der Turbinenübergangskanal zwischen Hochdruck- und Niederdruckturbinenstufe stellt einen Diffusor dar. Da bei verzögerten Strömungen die Ablösegefahr im Allgemeinen groß ist, kommt der Turbulenz in diesem Abschnitt eine ausgeprägte Bedeutung zu, da mit ihrer Hilfe eine Strömungsablösung vermieden bzw. weiter stromabwärts an einen günstigeren Punkt verschoben werden kann.

In Abbildung 2.2 sind die unterschiedlichen Längenskalen der turbulenten Schwankungen ersichtlich. Die Abmessungen der größtmöglichen Wirbel sind durch die geometrischen Grenzen gegeben. Anschließend zerfällt der Wirbel in einer Turbulenzkaskade, verursacht durch die Viskosität, in immer kleinere Dimensionen.

Abbildung 2.2: Typische Längen bei Gasströmungen unter Normbedingungen [Herwig und Schmandt, 2015]

Turbulente Strukturen weisen also ein breites Spektrum an geometrischen Dimensionen auf. Dies hat zur Folge, dass bei Turbulenzmessungen eine örtlich hohe Auflösung gegeben sein muss. Weiters bedeutet dies, dass vor allem bei der Untersuchung kleiner Strukturen, der Messsensor ebenfalls geometrisch kleine Abmessungen besitzen muss.

2.2 Strömung durch ein Schaufelgitter

Da die spätere Messung hinter dem Rotor einer Turbinenstufe stattfindet, wird an dieser Stelle kurz auf die Strömungsphänomene durch ein Schaufelgitter eingegangen. Eine Turbinenstufe, wie in Abbildung 2.3 ersichtlich ist, setzt sich aus einem stillstehenden Leitrad (Stator) und einem drehenden Laufrad (Rotor) zusammen. Die theoretisch umgesetzte Arbeit in einem Laufrad kann durch die Turbomaschinenhauptgleichung (auch Euler-Gleichung) beschrieben werden.

$$Y_{Sch} = u_2 \cdot c_{u2} - u_1 \cdot c_{u1} \tag{10}$$

 Y_{Sch} stellt die theoretische spezifische Schaufelarbeit dar. Dabei gilt für die Absolutgeschwindigkeit c, die Umfangsgeschwindigkeit u und die Relativgeschwindigkeit w folgender Zusammenhang:

$$\vec{c} = \vec{u} + \vec{w} \tag{11}$$

Aufgrund dieser Beziehung eignet sich eine Darstellung in Form von Geschwindigkeitsdreiecken, wie in Abbildung 2.4 schematisch dargestellt.

Abbildung 2.3: links: Darstellung einer verwundenen Turbinenschaufel, rechts: An- und Abströmung an einer Turbinenschaufel [Bräunling, 2015]

Aus den obig beschriebenen Umständen und vor allem aus Gleichung 10 ist ersichtlich, dass die umgesetzte Arbeit proportional zum Drallabbau innheralb der Turbine ist. Bei

Abbildung 2.4: Geschwindigkeitsplan einer Turbinenstufe [Rick, 2013]

diesen Betrachtungen wurden nur die Ein- und Austrittsbedingungen berücksichtigt, jedoch keine Strömungsphänomene im Schaufelinneren. Diese beeinflussen aber sehr wohl das gesamte Strömungsgeschehen und somit auch das Zu- und Abströmverhalten, weshalb obige Beziehungen nur die Mittelwerte darstellen.

«Die reale Strömung in Turbomaschinen ist instationär, bei stationärem Betrieb zumindest periodisch instationär durch vorauslaufende Schaufelreihen, weiterhin dreidimensional, kompressibel, reibungsbehaftet sowie mit turbulenten Grenzschicht-, Wirbel- und Mischungsbereichen durchsetzt. » [Rick, 2013]

An dieser Stelle sei ausdrücklich darauf hingewiesen, dass die Strömung in modernen Turbomaschinen generell sehr komplex ist. Durch verwundene Schaufeln (siehe auch Abbildung 2.3), welche heute fast ausschließlich verwendet werden, ändert sich mit dem Radius die Geometrie, Teilung und vor allem die Geschwindigkeitsverhältnisse. In Abbildung 2.5 sind Sekundärströmungsphänomene ersichtlich, deren Zustandekommen nachfolgend kurz erläutert wird.

Kanalwirbel

Im Schaufelkanal herrscht ein Druckgefälle von der Druck- zur Saugseite hin und verursacht somit den Kanalwirbel.

Hufeisenwirbel

Durch Reibungseffekte stellen sich im wandnahen Bereich, also an der Nabe und am Gehäuse, Geschwindigkeitsgrenzschichten ein. Direkt an der Wand ist die Geschwindigkeit durch die Haftbedingung mit Null vorgegeben. Der statische Druck entspricht an der Vorderkante (=Staupunkt) in etwa dem Totaldruck. Dies bedeutet, dass sich mit der Grenzschicht nicht nur die Geschwindigkeit zur Wand hin abnimmt, sondern auch der statische Druck. Da Strömungen sich in Richtung des Druckgefälles bewegen, ergibt sich eine Strömung nach unten [Heitmeir, 2015].

Abbildung 2.5: Entstehung von Sekundärströmungen in Turbomaschinenbeschaufelungen [Bräunling, 2015]

Spaltwirbel

Da der Rotor als bewegendes Teil nicht am Gehäuse streifen darf, ist ein Spalt notwendig. Hierbei kommt es zur Spitzenüberströmung wiederrum von der Druck- auf die Saugseite, siehe Abbildung 2.6, was in späterer Folge zur Ausbildung des Spaltwirbels zwischen Schaufelspitze und Gehäuse führt.

Abbildung 2.6: Entstehung von Spaltverlusten [Bräunling, 2015]

2.3 Strömungsmesstechnik

In diesem Abschnitt werden die am Institut vorhandenen Messeinrichtungen erläutert. Der Schwerpunkt liegt hierbei auf der Hitzdrahtanemometrie. Die anderen beiden Verfahren (Fünflochsonde und FRAPP) werden lediglich kurz vorgestellt, weil die Vergleichsmessungen zu einem früheren Zeitpunkt damit stattfanden.

2.3.1 Fünflochsonde

Fünflochsonden messen den Gesamtdruck, der sich nach Gleichung 12 aus den folgenden drei Anteilen zusammensetzt: statischer, dynamischer und hydrostatischer Druck, wobei letzter bei thermischen Turbomaschinen vernachlässigbar ist.

$$p + \frac{\rho}{2}u^2 + \rho gh = const.$$
⁽¹²⁾

Der Gesamtdruck ist derjenige Druck, der sich am Staupunkt bzw. in diesem Falle an der Messsonde aufbaut. Es gilt also für den Gesamtdruck bei inkompressibler Strömung

$$p_0 = p + \frac{\rho}{2}u^2\tag{13}$$

bzw. bei kompressibler Strömung $(Ma \ge 0, 3)$

$$p_0 = p \left(1 + \frac{\kappa - 1}{2} M a^2 \right)^{\frac{\kappa}{\kappa - 1}} \tag{14}$$

Mit Fünflochsonden, wie in Abbildung 2.7 ersichtlich, können im dreidimensionalen Strömungsfall alle Komponenten des Strömungsvektors und damit auch die räumlichen Strömungswinkel ermittelt werden. Für gute Messergebnisse ist eine sorgfältige Kalibrierung der einzelnen Druckbohrungen unabdingbar. Geschwindigkeitsschwankungen sind mit Fünflochsonden aber nicht ermittelbar, da die langen Druckleitungen eine stark dämpfende Wirkung besitzen.

2.3.2 FRAPP

FRAPP ist die Kurzform für Fast Response Aerodynamic Pressure Probe.

«Eine aerodynamische Sonde besteht aus einem geeignet geformten umströmten Körper (z. B. Zylinder, Keil, cobraförmiger Haken usw.), welcher eine oder mehrere Druckmessbohrungen an seiner Oberfläche aufweist. Diese Bohrungen sind so angeordnet, dass sich an ihnen durch Aufstau der Strömung jeweils ein Druck in Abhängigkeit der momentanen Anströmbedingungen einstellt. Da der Staudruck quadratisch mit der Strömungsgeschwindigkeit zunimmt, ist das Messverfahren vor allem für höhere Geschwindigkeiten geeignet. Rückwirkungen des Sondenkörpers auf die Strömung sind in Kauf zu nehmen, weil selbst eine sehr kleine Sonde die Strömung lokal abbremst und eine Versperrung des Kanals verursacht. Durch Erfassung dieser Drücke und Auswertung anhand von aerodynamischen Kalibrierungsdaten kann der momentan herrschende Strömungszustand berechnet werden. Pro Messbohrung kann mindestens eine unbekannte physikalische

Abbildung 2.7: Fünfloch Kugelsonde [Nitsche und Brunn, 2006]

Größe bestimmt werden. Bei schnell messenden Sonden wird der Druck durch unmittelbar hinter der Bohrung eingebaute Miniaturdrucksensoren praktisch verzögerungsfrei gemessen.» [Kupferschmied, 1998]

In Abbildung 2.8 ist eine Einloch-FRAPP-Sonde ersichtlich, wie sie am Institut für Messungen verwendet wird. Die Probe wird dabei im virtuellen Dreilochbetrieb eingesetzt, was bedeutet, dass die Sonde beispielsweise jeweils $\pm 20^{\circ}$ seitlich aus der Hauptsrömungsachse gedreht wird. Nähere Informationen zur Sonde und zur Kalibrierung finden sich in [Persico und Gaetani, 2005].

Abbildung 2.8: FRAPP-Sonde [Zerobin und Bauinger, 2017]

2.3.3 Hitzdrahtanemometrie

Die Hitzdrahtanemometrie (=HDA) ist ein etabliertes Geschwindigkeitsmessverfahren für Strömungen. Es eignet sich hervorragend zur Bestimmung von Geschwindigkeitsschwankungen und wird deswegen vor allem in der Turbulenzmessung eingesetzt.

Aufbau

Prinzipiell gibt es zwei unterschiedliche Varianten der HDA. Zum einen ist dies das Verfahren im CCA-Modus (Constant Current Anemometer) und zum anderen im CTA-Modus (Constant Temperature Anemometer). Das CCA wird vorrangig für Messungen von Temperaturschwankungen, nicht aber für Geschwindigkeitschwankungen, verwendet. Aus diesem Grund wird nachfolgend nur das Verfahren im CTA-Modus genauer erläutert.

Ein CTA-System besteht aus einer Messsonde, auf welcher die Hitzdrähte zwischen Zinken (Prongs) als Messsensoren aufgespannt sind und einer Brückenschaltung, wie sie in Abbildung 2.9 zu sehen ist. Der dünne Metalldraht wird auf eine deutlich höhere Temperatur als die Strömungstemperatur aufgeheizt und anschließend konstant gehalten. Der konvektive Wärmeübergang vom Draht auf die Strömung ist von der Geschwindigkeit abhängig und beeinflusst so die erforderliche elektrische Heizspannung. Die Übertemperatur des Drahtes (oft mit T_S für Sensortemperatur oder im englischen mit T_w für Wire Temperature bezeichnet) wird durch Einstellung des Operationswiderstandes R_0 (oft auch als R_{dec} für Dekadenwiderstand bezeichnet) festgesetzt.

Durch Vorgabe eines Überhitzungsverhältnisses a (auch overheat ratio) kann die benötigte Sensortemperatur berechnet werden (nach [Jørgensen, 2005]).

$$a := \frac{R_S(T_S) - R_S(T_{ref})}{R_S(T_{ref})}$$
(15)

$$T_S = T_{ref} + \frac{a}{\alpha_{ref}} \tag{16}$$

An dieser Stelle sei angemerkt, dass es bei der Definition des Überhitzungsverhältnisses in der Literatur mehrere Varianten gibt. Bei der obigen angeführten Definition nach Jørgensen [Jørgensen, 2005] ist a = 0,8 für Gasströmungen eine sehr gute Empfehlung. Der Sensorwiderstand R_S (bzw. R_w - Wire Resistance) besitzt eine ausgeprägte Temperaturabhängigkeit, d.h. es besteht ein Zusammenhang zwischen elektrischem Widerstand und Sensortemperatur.

$$R_S(T_S) = R_S(T_{ref}) \cdot [1 + \alpha_{ref} \cdot (T_S - T_{ref})]$$
(17)

Der Sensorwiderstand bei einer Sensortemperatur T_S kann also durch den Sensorwiderstand und dem Temperaturkoeffizienten α bei der Referenztemperatur berechnet werden. Die Referenzwerte bei $T_{ref} = 20^{\circ}C$ werden vom Sensorhersteller mitgeliefert und sind auf der Sensorverpackung ersichtlich. Der Gesamtwiderstand vom erhitzten Sensor bis zur Brücke setzt sich wie folgt zusammen:

$$R_{ges} = R_S(T_S) + R_{Zinken} + R_{Support} + R_{Kabel}$$
⁽¹⁸⁾

Mithilfe des Brückenverhältnisses (Bridge Ratio = BR) R_2/R_1 , siehe Abbildung 2.9, kann der Operationswiderstand R_0 berechnet werden. Das Bridge Ratio ist in den meisten Fällen 20 : 1, bei sehr langen Kabeln kann es auch das Verhältnis 1 : 1 annehmen.

$$R_0 = BR \cdot R_{ges} \tag{19}$$

Abbildung 2.9: Brückenschaltung eines CTA [Nitsche und Brunn, 2006] leicht abgewandelt

Funktionsweise

Anhand Abbildung 2.10 soll die grundlegende Funktionsweise der HDA näher erläutert werden. Wird in einer ersten Näherung die Wärmeabgabe durch Strahlung (bei Hitzdrähten meist kleiner als ein Prozent der Konvektion) und die Wärmeverluste durch die Haltezinken vernachlässigt, so ergibt sich für die Wärmebilanz, dass die innere elektrisch erzeugte Wärme gleich der durch Konvektion abgeführten Wärme sein muss.

$$\dot{Q_E} = \dot{Q_K} \tag{20}$$

$$\frac{U^2}{R_0} = F\alpha(T_S - T_F) \tag{21}$$

In Gleichung 21 steht α für den Wärmeübergangskoeffizienten und T_F für die Fluidtemperatur (häufig auch T_a für Ambient Temperature) und F für die Sensorfläche. Bei Annahme konstanter Fluidtemperatur sind nun nur noch die beiden Größen U und α variabel. Beim Wärmeübergang durch Konvektion spielt die dimensionslose Nusselt-Zahl eine wesentliche Rolle.

$$Nu = \frac{\alpha d}{\lambda} \approx \frac{W\ddot{a}remstrom\,bei\,Konvektion}{W\ddot{a}rmestrom\,bei\,reiner\,Leitung}$$
(22)

Für die erzwungene Konvektion an einem quer angeströmten Kreiszylinder kann folgende empirische Korrelation angesetzt werden:

$$Nu = A_0 + B_0 Re_d^n \tag{23}$$

Abbildung 2.10: Wärmebilanz eines Hitzdrahtes [Nitsche und Brunn, 2006]

wobei A_0 und B_0 Konstanten sind. Unter Annahme konstanter Stoffwerte, welche in der Nusselt-, sowie der Reynoldszahl auftauchen, kann ein trivialer Zusammenhang zwischen der Heizspannung U und der Strömungsgeschwindigkeit u angegeben werden.

$$U^2 = A + Bu^n \tag{24}$$

Gleichung 24 ist als das King'sche Gesetz bekannt, wobei A und B Kalibrierkonstanten entsprechen. Die Heizspannung U steht in einem festen Verhältnis zur Brückenspannung U_B , welche bei einem HDA eigentlich gemessen wird. Nach Abbildung 2.9 ergibt sich der Zusammenhang wie folgt:

$$U = \frac{U_B R_0}{R_0 + R_1}$$
(25)

In Abbildung 2.11 ist ein typischer Spannungsverlauf für einen Hitzdraht über der Geschwindigkeit dargestellt. Um die Funktion nach obiger Vorschrift bestimmen zu können, werden an zwei Punkten (hier A und B) Geschwindigkeitsmessungen mit einem Referenzverfahren (z.B. einem Pitot- oder Prandtlrohr) durchgeführt. Das King'sche Gesetz war die erste Kalibriervorschrift in der Geschichte der HDA. Heute werden zur Kalibrierung genauere Polynomapproximationen verwendet. Je nach Anwendungsfall kommen unterschiedliche Sensoren zum Einsatz. Wie in Abbildung 2.12 ersichtlich ist, gibt es Ein-, Zwei- und Dreidrahtsonden. Bei einer Dreidrahtsonde beispielsweise sind die Drähte so angeordnet, dass Geschwindigkeitsmessungen in alle drei Raumrichtungen gleichzeitig durchgeführt werden können. In diesem Fall besitzt jeder Draht eine eigene CTA-Brückenschaltung, welche voneinander unabhängig sind. Dies bedeutet jedoch auch, dass jeder Draht für sich einzeln kalibriert werden muss. Da die klassischen Hitzdrähte mit einer typischen Dicke von nur $5\mu m$ im Durchmesser sehr empfindlich sind, werden bei Anwendungsfällen mit hohen Geschwindigkeiten oder verunreinigter Luft robustere Sensoren verwendet. Für die Messungen im Prüfstand wurden sogenannte Fiber-Film-Probes verwendet. Diese bestehen aus einer Quarzfaser, auf welche als Sensor eine Nickelschicht aufgebracht wurde. Es ergibt sich so insgesamt ein Drahtdurchmesser von ca. $70\mu m$.

Abbildung 2.11: typischer Spannungsverlauf über der Geschwindigkeit [Nitsche und Brunn, 2006] leicht abgewandelt

Abbildung 2.12: Ein-, Zwei- und Dreidrahtsonde [Dantec Dynamics, 2018] leicht abgewandelt

Einflussgrößen

Da der Wärmeübergangskoeffizient stark von den Strömungsbedingungen abhängt, sind Hitzdrähte auf Änderung von Strömungsparametern sehr empfindlich.

• Temperatur

Nach Gleichung 21 trägt die Fluidtemperatur wesentlich zur treibenden Temperaturdifferenz und somit zum Wärmeübergang bei. Wird mit einem HDA im Experiment bei einer anderen Fluidtemperatur, als bei der Kalibrierung gemessen, so ist eine Korrektur der Brückenspannung wie folgt vorzunehmen:

$$U_B = U_{B,Kal} \left[\frac{T_S - T_F}{T_S - T_{F,Kal}} \right]^{\frac{1}{2}}$$
(26)

Dies bedeutet, dass bei $T_F > T_{F,Kal}$ die Spannung absinkt und bei $T_F < T_{F,Kal}$ die Spannung ansteigt - vergleiche dazu auch Abbildung 2.13. Am Verlauf der

Spannung über der Geschwindigkeit in Abbildung 2.11 lässt sich erkennen, dass der gleiche absolute Fehler in der Spannung bei höheren Geschwindigkeiten viel drastischere Auswirkungen hat und deshalb unbedingt zu vermeiden ist.

Abbildung 2.13: Spannungen bei unterschiedlichen Temperaturen [Nitsche und Brunn, 2006]

• Druck

Der Wärmeübergang entlang eines Hitzdrahtes ist auch wesentlich von der Dichte des Fluides abhängig. Bei hohen Geschwindigkeiten (Ma > 0,3) muss also die Kompressibilität bei gasförmigen Medien berücksichtigt werden. Dies geschieht dadurch, dass zur Kalibrierung nicht nur die Geschwindigkeit, sondern die Massenstromdichte (MSD) herangezogen wird [Poensgen, 1989].

$$MSD = \rho c \tag{27}$$

• Anströmrichtung

Weicht die Anströmrichtung von der Ebene, die Normal auf die Drahtachse steht, ab, so verringert sich die effektive Kühlgeschwindigkeit u_{eff} und führt somit zu kleineren Heizspannungen. Es gilt für Abbildung 2.14 der einfache Zusammenhang:

$$u_{eff} = u \cdot \cos(\alpha) \tag{28}$$

Die Haltezinken des Hitzdrahtes haben ebenfalls einen Einfluss und werden durch einen zusätzlichen Faktor k_T (für Korrekturfaktor tangential) berücksichtigt.

$$u_{eff} = u \sqrt{\cos^2(\alpha) + k_T^2 \sin^2(\alpha)}$$
⁽²⁹⁾

Sollte die Strömung noch eine Abweichung in z- Richtung besitzen, ist noch zusätzlich eine weitere Korrektur notwendig. Bei Eindrahtsonden ist dies nicht von Relevanz. Eine genauere Beschreibung erfolgt in Kapitel 3.3.2.

Abbildung 2.14: Schräganströmung eines Hitzdrahtes um den Winkel α [Nitsche und Brunn, 2006]

• Material

In Tabelle 2.1 sind die physikalischen Eigenschaften typischer Hitzdrahtmaterialien angeführt. Der temperaturabhängige Widerstandskoeffizient sollte möglichst groß sein, da dies zu einer hohen Empfindlichkeit führt. Weiters sollten hohe Drahttemperaturen möglich sein, was jedoch oftmals durch Oxidationsvorgänge begrenzt ist. Umso größer das Längen zu Durchmesserverhältnis (l/d) ist, desto weniger machen sich Endeffekte (an den Halterungen) bemerkbar. In der Praxis werden oftmals Drähte auf Wolframbasis verwendet, weil sie die besten Festigkeitswerte besitzt. Hitzdrähte sind meist zwischen $5 - 70\mu m$ im Durchmesser bei einer Länge von meist 1, 25mm.

	Einheit	Wolfram	reines Platin	PtRh 10% Rh	Ptlr 20% lr	Nickel
spezifischer Widerstand	$10^8 \ \Omega m$	7,0	10,2	18,9	32,0	6,6
Widerstandstempe- raturkoeffizient	%/K	0,36	0,38	0,16	0,07	0,64
Dichte	$10^3 \mathrm{kg}/\mathrm{m}^3$	19,3	21,45	19,95	21,61	8,9
spezifische Wärmekapazität	J/(kgK)	33,0	31,4	35,4	32,0	105,0
Wärmeleitfähigkeit	W/(mK)	178	69,0	50,1	25,5	90,5
Zugfestigkeit	$10^{10} { m N/m^2}$	2,50	0,30	0,60	1,32	0,65
max. Betriebs- temperatur	°C	300	1200	800	700	400
als Wollaston- Draht verfügbar	-	nein	ja	ja	ja	nein
schweißbar	-	ja (plattiert)	ja	ja	ja	-
lötbar	-	ja (plattiert)	ja	ja	ja	ja
Auswahlkriterium	10 ⁹ Ωm/W	4,1	5,7	4,4	3,6	4,5

Tabelle 2.1: Eigenschaften typischer Hitzdrahtmaterialien [Indiger, 2016]

3 Praktischer Teil

In diesem Abschnitt wird der gesamte Ablauf einer Hitzdrahtmessung von der Kalibrierung über die Messung bis hin zur Auswertung beschrieben. Dabei wird vor allem auf die Besonderheiten bezüglich der am Institut für Thermische Turbomaschinen und Maschinendynamik vorhandenen Möglichkeiten eingegangen.

Vorweg soll erwähnt werden, dass der Einsatz von kommerziell erhältlichen CTA- Systemen nicht direkt in thermischen Turbomaschinen möglich ist. Deshalb war es in vielen Bereichen notwendig, selbst eine auf das vorhandene System angepasste Lösung zu finden.

3.1 Messaufbau

Ein vollständiges CTA- System besteht aus den folgenden Komponenten:

• CTA-Frame

Hier sind die CTA-Module (je Draht ist ein Modul notwendig) untergebracht. Zusätzlich stehen noch drei weitere Anschlüsse (in Abbildung 3.1 links, z.B. für einen Umgebungstemperatursensor, zur Verfügung. Am Institut ist noch ein viertes Modul für die Messung von Temperaturschwankungen verbaut. Dieses Modul benötigt aber einen speziellen Sensor, welcher derzeit nicht vorhanden ist.

Abbildung 3.1: StreamLine Pro CTA-Frame von DantecDynamics [Dantec Dynamics, 2019]

• Mess-PC

Der Mess- PC fungiert als zentrale Schnittstelle und übernimmt die Kommunikation zum CTA-Frame, der Kalibriereinheit sowie zur Traversierung (ermöglicht eine automatische Verstellung der Sonde im TTTF).

• Hitzdrahtsensor

Die Messungen wurden mit dem Dreidraht Sensortyp 55R97 von Dantec Dynamics, wie er in Abbildung 3.2 ersichtlich ist, durchgeführt. Dabei wurde aber nicht die serienmäßige Bauform, sondern eine leicht adaptierte Variante (55R97Graz) verwendet. Diese unterscheidet sich durch eine andere Winkelanordnung der Drähte, sodass die Anstellung innerhalb der Strömung optimal erfolgen kann. Weiters steht noch ein Eindrahtsensor (Type 55R03, ebenfalls von Dantec Dynamics) zur Verfügung. Wie bereits erwähnt handelt es sich bei diesen Sensoren um sogenannte Fiber-film probes. Diese sind im Gegensatz zu den herkömmlichen Hitzdrähten robuster ausgeführt. Der Durchmesser des Drahtes beträgt bei den Fiber-film probes in etwa 70 Mikrometer und besteht aus Quarz mit einer überzogenen Nickelschicht als Sensor. Zum Schutz ist noch eine 0,5 Mikrometer dicke Quarzschicht aufgetragen.

Abbildung 3.2: Mikroskopaufnahme Sensor 55R97Graz von Dantec Dynamics

• Sonde

Die Sonde dient zur sicheren Aufnahme des Sensors und zur Positionierung innerhalb des Prüfstands.

Abbildung 3.3: In der Institutswerkstatt adaptierte Sondenschäfte

• BNC-Kabel

Mithilfe der sogenannten BNC (Bayonet Neill Concelman)-Kabel erfolgt die elektrische Verbindung von Sensor bzw. Sonde zum CTA-Frame und von dort weiter zu einem Anschlussblock.

• BNC-Anschlussblock

Dieser ist dem CTA-Frame und dem A/D- Wandler zwischengeschaltet.

Abbildung 3.4: links: BNC-Kabel [Farnell, 2019], rechts: BNC-Anschlussblock [National Instruments, 2019]

• A/D-Wandler

Der A/D-Wandler PCI-6133 von National Instruments ist direkt im Mess-PC verbaut. Es handelt sich dabei um einen 14 bit Wandler mit simultaner Abtastung der Kanäle.

• Kalibriereinheit Mithilfe der Kalibriereinheit, wie in Abbildung 3.5 ersichtlich, kann durch einen Freistrahl eine Geschwindigkeitskalibrierung durchgeführt werden.

In Abbildung 3.6 ist ein Übersichtsschema für eine Zweidrahtsonde dargestellt. Dabei ist gut ersichtlich, dass jegliche Kommunikation vom Mess-PC aus gesteuert wird.

3.2 Messmodi

Das Überhitzungsverhältnis a ist, wie in Abschnitt 2.3.3 gezeigt wurde, stark von der Temperatur abhängig. Die Sensor- bzw. Drahttemperatur T_S wird ebenfalls unter Zuhilfenahme von a ermittelt. Deshalb ist es wichtig, sich vor einem Experiment festzulegen, wie verfahren wird. Es gibt folgende Möglichkeiten (nach [Jørgensen, 2005]):

• Fluidtemperatur konstant - a konstant Bleibt die Temperatur zwischen Kalibrierung und Messung (Experiment) konstant $(\pm 0, 5^{\circ}C)$ so wird das Überhitzungsverhältnis einmal eingestellt und bleibt anschließend unverändert.

Abbildung 3.5: Kalibriereinheit von Dantec Dynamics mit Pitch-Yaw Manipulator und Sondenhalterung

- Fluidtemperatur variiert a konstant I Der Sensorwiderstand $R_S(T_{Fluid})$ wird vor jedem Messpunkt neu ermittelt. Durch Vorgabe des konstanten Überhitzungsverhältnisses wird also die Drahttemperatur angepasst. Diese Methode ist aber sehr zeitaufwändig, da das Ausmessen der Sensorwiderstände einige Sekunden dauert.
- Fluidtemperatur variiert a konstant II Das Überhitzungsverhältnis wird einmal eingestellt und dann bei Kalibrierung und Experiment nicht mehr verändert. Der Temperatureinfluss wird anschließend durch eine Korrekturformel, siehe Gleichung 26, minimiert. Diese Vorgangsweise wurde am Institut angewendet.

3.3 Kalibrierung

Der Kalibrierung kommt ein immens hoher Stellenwert zu. Ohne eine genaue und zuverlässige Referenzspannung kann nach einer Messung keine zuverlässige Auswertung erfolgen. Am Institut steht dafür eine Kalibriereinheit von Dantec Dynamics zur Verfügung. Diese wird an die hauseigene Druckluftversorgung angeschlossen und stellt einen turbulenzarmen Freistrahl mit bekannter Geschwindigkeit zur Verfügung. Für jeden Sensor muss eine eigene Kalibrierung durchgeführt werden. Dabei ist die Geschwindigkeitskalibrierung, im Gegensatz zur Winkelkalibrierung, immer durchzuführen. Bei Eindrahtsonden kann die Winkelkalibrierung unter Umständen entfallen. Im folgenden wird die Kalibrierung des Sensortyps 55R97Graz anschaulich erläutert.

Abbildung 3.6: Übersichtschema CTA-System [Dantec Dynamics A/S, 2016]

3.3.1 Geschwindigkeitskalibrierung

Ziel der Geschwindigkeitskalibrierung ist es, einen Zusammenhang zwischen der Brückenspannung und der Massenstromdichte herzustellen. Da die mitgelieferte Software nicht auf die Massenstromdichte, sondern nur auf die Geschwindigkeit kalibrieren kann, ist dazu eine eigene Software nötig. Die Datenaquisition erfolgt mit einer LabView- Software, siehe dazu auch [Wachter, 2018]. Die Auswertung der Kalibrierkurven erfolgt in Matlab (siehe Anhang A2).

Für eine Kalibrierung von Dreidrahtsonden empfiehlt es sich mindestens zehn Punkte bei unterschiedlicher Geschwindigkeit aufzuzeichnen. Als Richtwert für eine stabile Kalibrierung über den Anwendungsbereich gilt:

$$0,15 \cdot U_{Min,Exp} < U_{Kal} < 1,6 \cdot U_{Max,Exp} \tag{30}$$

 $U_{Min,Exp}$ bzw. $U_{Max,Exp}$ entsprechen der kleinsten bzw. größten im Experiment erwarteten Geschwindigkeit. Je nach Geschwindigkteitsbereich stehen unterschiedliche Düsen, siehe Abbildung 3.7 und Tabelle 3.1, zur Verfügung. Sind die Spannungen ermittelt, werden sie nach Gleichung 26 korrigiert. Anschließend wird durch ein sogenanntes Least-Square-Verfahren eine Polynomapproximation durchgeführt. In Abbildung 3.8 oben ist eine Kalibrierkurve, für einen Draht ersichtlich, wobei Düse III verwendet wurde. Die blauen Kreuze stellen dabei die exakt bekannten Messpunkte dar. Beim Polynomfitting empfiehlt es sich, mehrere Polynome mit unterschiedlichem Grad auszuprobieren. Durch

Abbildung 3.7: Düsen für die Kalibriereinheit von Dantec Dynamics

-		-	-		
Düse	$\emptyset[mm]$	$u_{min}[m/s]$	$u_{max} [m/s]$		
0	42	0,02	5		
Ι	12	0,5	60		
II	8,7	5	120		
III	5	5	300		

Tabelle 3.1: Angaben zu den Düsen [Dantec Dynamics A/S, 2016]

einen Fehlerplot, wie in Abbildung 3.8 unten, ist eine leichte Beurteilung und Reihung der unterschiedlichen Ergebnisse möglich. Üblicherweise wird ein gutes Fehlerverhalten mit einem Polynomgrad zwischen 4 und 6 erzielt.

3.3.2 Winkelkalibrierung

Bei der Winkelkalibrierung wird ein Zusammenhang zwischen der Geschwindigkeit, die effektiv den Draht kühlt, und der Anströmrichtung bestimmt. Bei Dreidrahtsonden erfolgt dies durch die Ermittlung von je zwei Koeffizienten, den sogenannten Pitch- und Yaw-Faktoren, für jeden Draht. Die Geschwindigkeit wird im Kalibrierkanal auf die mittlere zu erwartende Geschwindigkeit im Experiment eingestellt und anschließend nicht mehr verändert.

$$u_{Freistrahl} = \frac{1}{2} (U_{Min,Kal} + U_{Max,Kal}) \tag{31}$$

Bei Mehrdrahtsonden wird im allgemeinen zwischen zwei Koordinatensystemen unterschieden. Zum einen gibt es das Sondenkoordinatensystem (x,y,z) und zum anderen das Sensorkoordinatensystem (1,2,3). Es handelt sich dabei jeweils um kartesische, körperfeste Rechtssysteme. Zwischen diesen beiden Systemen besteht eine feste Beziehung. In Tabelle 3.2 ist angegeben, wie die Achsen zueinander verdreht sind. Diese Werte sind für jeden Sensortyp vom Hersteller zu entnehmen. Das Sondenkoordinatensystem bezieht sich auf die Kalibriereinheit. In Abbildung 3.9 ist das Sondenkoordinatensystem in rot eingezeichnet. In blauer Farbe ist das Sensorkoordinatensystem dargestellt (vergleiche hierzu mit Tabelle 3.2) oder besser gesagt, die Linien auf welchen die Koordinatenachesen liegen. Die Geschwindigkeit u des Freistrahls ist bei neutraler Sondenstellung entlang der x-Achse. Das heißt die Geschwindigkeiten v und w in y- und z-Richtung sind also Null. Bei einer reinen Drehung um einen bestimmten Yaw-Winkel (Drehung der Sonde um

Abbildung 3.8: oben: Kalibrierkurve, unten: Fehlerkurve für einen Draht bei der Geschwindigkeitskalibrierung des Sensors 55R97Graz

die x-Achse) ändern sich die Geschwindigkeitsverhältnisse nicht. Wird jedoch zuerst um einen bestimmten Pitch-Winkel (Drehung der Sonde um die z-Achse) verdreht, so ändern sich im Sondenkoordinatensystem alle Geschwindigkeiten. Die effektiven Kühlgeschwin-

Tabelle 3.2: Winkel zwischen Sensor- und Sondenkoordinatensystem für den Sensortyp $55 \mathrm{R97Graz}$

-	1	2	3
x	$54,73^{\circ}$	$54,\!73^{\circ}$	$54,73^{\circ}$
У	45°	135°	90°
\mathbf{Z}	$65,9^{\circ}$	$65,9^{\circ}$	$144,73^{\circ}$

Abbildung 3.9: Sonden- und Sensorkoordinatensystem bei der Kalibrierung [Dantec Dynamics A/S, 2016] abgewandelt

digkeiten $U_{i,eff}$ (für *i* gilt in weiterer Folge immer i = 1, 2, 3) für die Drähte setzen sich aus der normal auf den jeweiligen Draht auftreffenden Geschwindigkeit und aus Anteilen der jeweils tangential bzw. binormal auftreffenden Geschwindigkeit zusammen. Es gilt daher folgender Zusammenhang (aus [Dantec Dynamics A/S, 2016]):

$$U_{1,eff}^2 = k_1^2 \cdot U_1^2 + U_2^2 + h_1^2 \cdot U_3^2$$
(32)

$$U_{2,eff}^2 = h_2^2 \cdot U_1^2 + k_2^2 \cdot U_2^2 + U_3^2$$
(33)

$$U_{3,eff}^2 = U_1^2 + h_3^2 \cdot U_2^2 + k_3^2 \cdot U_3^2 \tag{34}$$

Mit k^2 als Yaw-Faktor (Korrektur für tangentialen Anteil) und h^2 als Pitch-Faktor (Korrektur für binormalen Anteil). $U_{i,eff}^2$ kann durch den Ausdruck $U_{i,Kal}^2 \cdot (1+k_i^2+h_i^2)$ ersetzt werden.

$$U_{1,Kal}^{2} \cdot \cos^{2}(54,736^{\circ})(1+k_{1}^{2}+h_{1}^{2}) = k_{1}^{2} \cdot U_{1}^{2} + U_{2}^{2} + h_{1}^{2} \cdot U_{3}^{2}$$
(35)

$$U_{2,Kal}^2 \cdot \cos^2(54,736^\circ)(1+k_2^2+h_2^2) = h_2^2 \cdot U_1^2 + k_2^2 \cdot U_2^2 + U_3^2$$
(36)

$$U_{3,Kal}^2 \cdot \cos^2(54,736^\circ)(1+k_3^2+h_3^2) = U_1^2 + h_3^2 \cdot U_2^2 + k_3^2 \cdot U_3^2$$
(37)

Die drei Geschwindigkeiten im Sensorkoordinatensystem U_1, U_2 und U_3 sind durch die bekannte Geschwindigkeit u des Freistrahls im Kalibrierkanal, sowie den bekannten Verdrehungen um Yaw (β) - und Pitch (γ) -Winkel und der Kenntnis der Winkel zwischen Sensor- und Sondenkoordinatensystem (siehe Tabelle 3.2) einfach zu berechnen. Die Definitionen der Drehmatrizen um die beiden Achsen lauten wie folgt:

$$R_x(\beta) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\beta) & -\sin(\beta)\\ 0 & \sin(\beta) & \cos(\beta) \end{bmatrix}$$
(38)

$$R_z(\gamma) = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0\\ \sin(\gamma) & \cos(\gamma) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(39)

$$R = R_z(\gamma) \cdot R_x(\beta) = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma)\cos(\beta) & \sin(\gamma)\sin(\beta) \\ \sin(\gamma) & \cos(\gamma)\cos(\beta) & -\sin(\beta)\cos(\gamma) \\ 0 & \sin(\beta) & \cos(\beta) \end{bmatrix}$$
(40)

Die Geschwindigkeiten im gedrehten körperfesten Koordinatensystem(x,y,z) ergeben sich durch Multiplikation mit dem Geschwindigkeitsvektor \vec{u} (dieser ist raumfest) des Freistrahls [Wikipedia, 2019].

$$\vec{U_{x,y,z}} = R^T \cdot \vec{u} \tag{41}$$

$$\begin{bmatrix} U_x \\ U_y \\ U_z \end{bmatrix} = \begin{bmatrix} \cos(\gamma) & \sin(\gamma) & 0 \\ -\sin(\gamma)\cos(\beta) & \cos(\gamma)\cos(\beta) & \sin(\beta) \\ \sin(\gamma)\sin(\beta) & -\sin(\beta)\cos(\gamma) & \cos(\beta) \end{bmatrix} \cdot \begin{bmatrix} u \\ 0 \\ 0 \end{bmatrix}$$
(42)

$$\begin{bmatrix} U_x \\ U_y \\ U_z \end{bmatrix} = u \cdot \begin{bmatrix} \cos(\gamma) \\ -\sin(\gamma)\cos(\beta) \\ \sin(\gamma)\sin(\beta) \end{bmatrix}$$
(43)

Durch Multiplikation mit den Cosinuswerten der Winkel erhält man nun die Geschwindigkeiten in Sensorkoordinatensystem [Dantec Dynamics A/S, 2016].

$$\vec{U_{123}} = A \cdot \vec{U_{xyz}} \tag{44}$$

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} \cos(54, 73^\circ) & \cos(45^\circ) & \cos(65, 9^\circ) \\ \cos(54, 73^\circ) & \cos(135^\circ) & \cos(65, 9^\circ) \\ \cos(54, 73^\circ) & \cos(90^\circ) & \cos(144, 73^\circ) \end{bmatrix} \cdot \begin{bmatrix} U_x \\ U_y \\ U_z \end{bmatrix}$$
(45)

Die Geschwindigkeiten im Sensorkoordinatensystem liegen nun auf zweierlei Arten vor. Durch die gemessene Spannung an den Hitzdrähten und der zuvor getätigten Geschwindigkeitskalibrierung sind in den Gleichungen 35 bis 37 die Kalibriergeschwindigkeiten $U_{i,Kal}$ bekannt. Weiters sind die exakt herrschenden Geschwindigkeiten U_i durch obige Berechnung im Sensorkoordinatensystem bekannt. Mithilfe eines nichtlinearen Regressionsmodelles kann für eine Punkteschar das Gleichungssystem 35 bis 37 gelöst und somit die Pitch- und Yawkoeffizienten h_i bzw. k_i bestimmt werden.

An dieser Stelle sei darauf hingewiesen, dass Pitch- und Yaw-Angle bei der Kalibrierung nicht mit jenen bei der späteren Auswertung (also im Turbinenprüfstand) verwandt sind. Es handelt sich dabei um vollkommen andere Winkel, lediglich die Namensgebung ist ident.

3.3.3 Erkenntnisse aus durchgeführten Kalibrierungen

In diesem Abschnitt werden die gemachten Erfahrungen bei der Kalibrierung mit dem am Institut zur Verfügung stehendem Equipement festgehalten. Die Kalibrierung ist für die Qualität der Messergebnisse von allergrößter Bedeutung. Aus diesem Grund muss dieser Vorgang sorgfältig und aufmerksam durchgeführt werden.

Sondeneinrichtung bzw. Sensorpositionierung

Die Originalsonden von Dantec Dynamics sind wesentlich kleiner als die am Institut benötigten. Aus diesem Grund wurden diese in größere Sondenschäfte (siehe auch Abbildung 3.3) verbaut. Dies führt insgesamt zu längeren, aber auch deutlich schwereren Sonden für welche die Kalibriereinheit mit Pitch-/Yaw Manipulator nicht ausgelegt ist. Um eine möglichst genaue Positionierung gewährleisten zu können, wurde eine neue Sondenhalterung (dargestellt in Abbildung 3.10 oben), welche im Vergleich zu der bereits vorhandenen wesentlich steifer ist, konstruiert und gefertigt.

Der Sensor wird von der Sonde aufgenommen. Dabei ist die Nut am Sensor respektive die Markierung auf der Sonde zu beachten (siehe auch Abbildung 3.10 mitte). Bei einer Messung im TTTF ist aufgrund von Vibrationen ein O-Ring bzw. ein Stück von einem O-Ring in die Verschlusskappe einzulegen, sodass der Sensor möglichst gut festgeklemmt wird. Die Positionierung der Sonde ist mithilfe der Sondenhalterung so vorzunehmen, dass der Sensor sich mittig über der Düsenöffnung befindet und die Sondenlängsachse mit der Drehachse des Pitch-Winkels deckungsgleich ist. Besonders bei der Düse III ist dies aufgrund der kleinen Öffnung von großer Bedeutung. Eine Lochblende und ein Sondendummy, in Abbildung 3.10 mitte ersichtlich, sollten bei der Einrichtung behilflich sein.

Bei CTA-Messsystemen handelt es sich generell um sehr empfindliche Messhardware. Nachdem das StreamLinePro Frame mit dem Sensor durch BNC-Kabel verbunden wurde, sollte umgehend auf eine geeignete Zugentlastung, siehe auch Abbildung 3.10 unten, der BNC-Verbindungen erfolgen, da ansonsten die Gefahr besteht, dass die sensiblen Krimpverbindungen in Mitleidenschaft gezogen werden.

In Abbildung 3.11 sind Kalibrierkurven der drei unterschiedlichen Düsen ersichtlich. Nach Tabelle 3.1 gibt es gewisse Überlappungsbereiche bei der Geschwindigkeit. Die Kalibrierkurven von Düse I und Düse II sind für jeden Draht (Sensor) des Typs 55R97Graz nahezu ident. Dies bedeutet, dass mit den unterschiedlichen Düsen I bzw. II bei gleicher Geschwindigkeit die gleiche Spannung gemessen wird. Auffallend ist, dass im Überlappungsbereich von Düse II und III eine Diskrepanz besteht. Die Spannung, welche mit Düse III gemssen wurde, ist über alle Sensoren jeweils niedriger. Dieser Sachverhalt ist nur dadurch zu erklären, dass bei Düse III die Annahme einer gleichmäßigen Geschwindigkeitsverteilung nicht mehr zutrifft. Gründe dafür sind die kleine Düsenöffnung und dadurch ein kleiner Durchmesser des Freistrahls kombiniert mit dem Fehler des nicht exakt positionierbaren Sensors. Bei der Winkelkalibrierung, bei welcher die Sonde um Pitch- und Yaw-Winkel verstellt wird, vergrößert sich dieser Fehler zusätzlich, da jede Abweichung von den Drehachsen zu einer zusätzleihen Verschiebung des Sensors aus dem Freistrahl führt. Diese Ursachen machen eine vernünftige Winkelkalibrierung mit Düse III, welche aufgrund der hohen Geschwindigkeiten im TTTF verwendet werden muss, nahezu unmöglich. Glücklicherweise ist die Winkelkalibrierung nur bei sehr hoher Genauigkeit erforderlich. In den meisten Fällen kann mit den Defaultwerten für die Pitch- und Yawkoeffizienten vom Sensorhersteller eine ausreichend hohe Qualität erzielt werden. Für das Gleichungssystem 35 bis 37 ergibt sich somit die Koeffizientenmatrix wie folgt: [Dantec Dynamics A/S, 2016]

$$\begin{bmatrix} k_1^2 & 1 & h_1^2 \\ h_2^2 & k_2^2 & 1 \\ 1 & h_3^2 & k_3^2 \end{bmatrix} = \begin{bmatrix} 0,0225 & 1 & 1,04 \\ 1,04 & 0,0225 & 1 \\ 1 & 1,04 & 0,0225 \end{bmatrix}$$
(46)

Temperatureinfluss

Wie bereits in Abschnitt 2.3.3 erwähnt, hat die Temperatur einen nicht zu vernachlässigenden Einfluss auf die Spannung. Um eine möglichst genaue Kalibrierung zu erhalten, ist es deshalb unbedingt notwendig, bei der gleichen Fluidtemperatur, wie sie im Experiment erwartet wird, zu kalibrieren. Die mittlere Temperatur im TTTF ist aus vorhergegangen Versuchsfahrten mit Temperaturrakes² bekannt und beträgt bei diesem Setup in etwa 58°C. Da die Kalibriereinheit über keine Möglichkeit zur Lufterwärmung verfügt, wird dieser ein Lufterhitzer (siehe Abbildung 3.12) vorgeschaltet (genauerere Informationen zur Funktionsweise dazu finden sich in [Wachter, 2018]). An dieser Stelle sei angemerkt, dass auf der heißen Seite nur mehr mit speziellen Thermodruckluftschläuchen (in Abbildung 3.12 in weiß ersichtlich) verfahren werden darf.

²Mit einem Temperaturrake ist die gleichzeitige Messung der Temperatur an einer Umfangsposition, aber an mehreren Radialpositionen im TTTF (also über die Kanalhöhe) möglich

Abbildung 3.10: oben: Sondenhalterung, mitte: Sensor, Verschlusskappe, Lochblende und Sondendummy, unten: Zugentlastung

Abbildung 3.11: Vergleich der Düsen

Abbildung 3.12: Lufterhitzer

Abbildung 3.13: Kalibrierkurve unter Temperatureinfluss

Um ein schnelles Aufwärmen bzw. Durchwärmen der Kalibriereinheit zu erreichen, empfiehlt es sich, die höchstmögliche Geschwindigkeit des Freistrahls bei maximaler Heizleistung einzustellen. In Abbildung 3.13 ist eine Kalibrierkurve unter dem Temperatureinfluss zu sehen. Zwischen den Kalibrierpunkten Nummer 13 und 14 ist ein großer Spannungsunterschied ersichtlich. Die Punkteschar scheint an dieser Stelle eine Unstetigkeit zu besitzen. Für eine genauere Betrachtung sind in Tabelle 3.3 die zu Abbildung 3.13 erfassten Parameter bei der Kalibrierung angefügt. Dabei wird ersichtlich, dass zwischen Punkt 13 und 14 ein Temperatursprung nach oben und somit ein Spannungssprung nach unten erfolgt. Wird die Kalibrierkurve von Abbildung 3.13 mit jener von Abbildung 3.8 (Kalibrierung bei Umgebungstemperatur) verglichen, so wird der Einfluss der Temperatur deutlich sichtbar und dies obwohl eine Temperaturkorrektur der Spannungen durchgeführt wurde. Weiters fällt auch auf, dass die Temperatur allgemein Schwankungen ausgesetzt ist und scheinbar nur schwer regelbar ist. Dieses Verhalten wird durch die folgenden Umstände verursacht:

• Drucklufterhitzer

Die Regelung des Drucklufterhitzers kann zum einen durch den Kühlmassenstrom, welcher an die Umgebung abgegeben wird und zum anderen durch ein Leistungspotentiometer geregelt werden. Diese Einstellungen sind per Hand durchzuführen und gegebenenfalls anzupassen.

• Kalibriereinheit

Die Kalibriereinheit besteht überwiegend aus metallischen und daher sehr wärme-

Messpunkt	Temperatur [°C]	Geschwindigkeit [m/s]	Spannung - Sensor 1 [V]
1	57,67	70,07	3,29
2	$57,\!80$	78,73	$3,\!38$
3	$57,\!79$	85,84	$3,\!45$
4	$57,\!67$	$95,\!30$	$3,\!53$
5	$56,\!81$	$101,\!27$	$3,\!60$
6	$56,\!34$	$103,\!35$	$3,\!67$
7	$55,\!61$	111,81	$3,\!74$
8	$54,\!85$	123,90	$3,\!84$
9	$54,\!07$	129,71	$3,\!89$
10	$53,\!30$	$135{,}50$	$3,\!94$
11	$52,\!60$	143,10	$3,\!99$
12	$51,\!95$	$147,\!59$	4,02
13	$51,\!43$	160,28	$4,\!10$
14	$58,\!62$	$162,\!62$	$3,\!93$
15	$58,\!64$	$171,\!45$	$3,\!99$
16	$58,\!50$	183,77	4,07
17	$58,\!34$	$187,\!25$	$4,\!10$
18	56,72	$205{,}58$	$4,\!21$
19	$56,\!43$	213,73	$4,\!25$
20	$56,\!29$	$221,\!15$	$4,\!28$
21	$55,\!97$	$222,\!19$	$4,\!29$
22	$55,\!60$	$233,\!58$	$4,\!35$
23	$55,\!25$	$237,\!26$	$4,\!38$
24	$54,\!86$	$242,\!59$	$4,\!41$
25	$54,\!37$	$249,\!86$	$4,\!44$
26	$54,\!10$	263,80	$4,\!50$

Tabelle 3.3: Wertetabelle der Kalibrierpunkte für den Sensor 1

leitfähigen Werkstoffen, was zu einer erheblichen Abgabe an die Umgebung führt. Die Wärme wird mit dem Luftmassenstrom eingebracht. Wird nun mit der Software Automatic Calibrator Tool von Dantec die Geschwindigkeit eines Messpunktes eingestellt, so wird die Luftzufuhr jedesmal kurz unterbrochen und danach startet ein iterativer Prozess bis die gewünschte Geschwindigkeit erreicht ist. Dieses Verfahren kann bis zu einer Minute dauern und währenddessen kann sich die Temperatur durch die Parametervariation schon wieder geändert haben. Es liegt auch in der Natur der Sache, dass sich bei der Geschwindigkeitskalibrierung die Geschwindigkeit und somit natürlich auch der Massenstrom ständig verändert. Es ist also immer ein händisches Nachregeln am Drucklufterhitzer notwendig.

Zusammenfassend kann gesagt werden, dass es durch die händische Regelung schier unmöglich ist, die Temperatur konstant zu halten. Als Abhilfe wurde die Kalibriereinheit mit einer Isolierung aus EPS Polystyrol Hartschaumplatten umhüllt. Dies führt zu einer größeren thermischen Trägheit und erleichtert somit das Temperaturmanagement. Der Anwender bekommt aber bei der Durchführung von Kalibrierungen schnell ein Gefühl für das Verhalten der Komponenten und ist schnell in der Lage, vernünftige Ergebnisse zu erzielen.

An dieser Stelle sei auch angemerkt, dass die Temperatur aus Tabelle 3.3 in einem Druckluftreservoir in der Kalibriereinheit gemessen wird. Für eine exakte Kalibrierung müsste die Temperatur des Freistrahls möglichst nahe am Sensor gemessen werden. Dies ist bei diesem Setup aber nicht möglich. Des Weiteren ist aufgrund der hohen Strömungsgeschwindigkeit und des kurzen Weges die Annahme einer isothermen Strömung im Freistrahl durchaus zulässig.

3.4 Messung im TTTF

Wie bereits erwähnt, fand die eigentliche Messung am Turbinenprüfstand des Instituts für Thermische Turbomaschinen und Maschinendynamik statt. Im nachfolgenden Abschnitt wird der Messablauf mit all seinen notwendigen Schritten näher beschrieben.

3.4.1 Sondeneinbau

Einbauprozess schrittweise beschrieben:

Der Einbau einer Sonde mit dem Hitzdrahtsensor ist ein kritischer Prozess und muss daher mit größter Sorgfalt durchgeführt werden. Bei unsachgemäßer Durchführung kann es zur Zerstörung des Sensors und damit bei Ersatz zu hohen Kosten kommen. Die Sonde wird von einer Traversierung, welche anschließend am Prüfstand befestigt werden kann, aufgenommen. In Abbildung 3.15 sind die Traversierung und eine schematische Skizze in eingebautem Zustand im TTTF zu sehen. An dieser Stelle wird der

- 1. Die Traversierung wird mittels der Linearachse auf den Nullpunkt eingestellt. Anschließend erfolgt der Einbau am Prüfstand.
- 2. Die Sonde wird ohne Sensor bis zum Anschlag (=Auftreffen auf der Nabe) eingeschoben. Hierbei gilt es, dies langsam und vorsichtig durchzuführen, sodass die

Abbildung 3.14: Kalibriereinheit mit Wärmedämmplatten isoliert

Sonde nicht beschädigt wird. An der Sonde befindet sich ein Mitnehmer, (vergleiche dazu auch in Abbildung 2.12 die Teile rechts auf der Sonde) wodurch eine feste Verbindung durch Klemmung mit der Traversiereinheit möglich ist. Es erfolgt eine Klemmung der Sonde im eingeschobenen Zustand. Alternativ kann auch nur eine Markierung an der Sonde beim Mitnehmer gemacht werden. Danach werden Traversierung und Sonde wieder ausgebaut.

3. Der Sensor wird in die Sonde eingesteckt und mit der Verschlusskappe festgeklemmt (Achtung: O- Ring nicht vergessen). Die Nullposition muss nach dem Sensoreinbau korrigiert werden. Dazu wird mit dem Messschieber die Distanz zwischen Sondenanfang und Sensormitte (Mittelpunkt der Drähte) gemessen. In Abbildung 3.16 stellt dies dann die Korrektur Sensorlänge dar. Die Größe x ergibt sich aus der halben Sensorgröße (vom Drahtmittelpunkt zum Ende) plus einem Sicherheitsabstand zur Nabe. Die Abmessungen der Drähte können vom Herstller entnommen werden. Für den Sensortyp 55R97Graz hat sich x wie folgt ergeben:

$$x = \frac{3,1}{2} + 1 = 2,55 \, mm \tag{47}$$

Der Sicherheitsabstand ist aufgrund etwaiger Messfehler notwendig. Anschließend kann der Mitnehmer um die Gesamtkorrektur Richtung Sensor verschoben und festgeklemmt werden.

4. Mithilfe der Rotationsmöglichkeit der Traversierung um die Sondenachse, einem digitalen Neigungsmessgerät und einer Postionsreferenz auf der Sonde (vergleiche

dazu in Abbildung 2.12 die quaderförmigen Teile auf der linken Seite der Sonde) kann der Sensor genau in Strömungsrichtung positioniert werden.

- 5. Zum sicheren Einbau am Prüfstand wird der Sensor in das Sondenloch eingefahren und ist somit gut geschützt.
- 6. Abschließend ist eine Verbindung mittels BNC-Kabel zum CTA-Frame vorzunehmen. Dabei ist zu beachten, dass der Prüfstand im Betrieb bis zu 140°C heiß wird und deshalb Berührungen mit den Kabeln vermieden werden müssen.

Abbildung 3.15: links: Traversiereinheit, mitte: Sonde mit Sensor in Traversierung, rechts: schematische Darstellung

Abbildung 3.16: Skizze zur Längenkorrektur beim Sondeneinbau

3.4.2 Versuchsfahrt

Die Versuchsfahrten am TTTF finden immer spät nachmittags bzw. in der Nacht statt. Grund dafür ist der hohe elektrische Leistungsbedarf der Verdichterstation, welcher tagsüber hohe Stromspitzen verursachen würde. Dies bedeutet aber auch, dass Versuchsfahrten am TTTF zeitlich begrenzt sind, was bei der Versuchsplanung berücksichtigt werden muss. Die Versuchsfahrt wird von der Turbinenwarte aus permanent beobachtet. Im folgenden wird der Ablauf einer typischen Versuchsfahrt beschrieben:

- 1. Start der Verdichterstation, welche sich im Kellergeschoss der Veruchshalle befindet.
- 2. Kontrolliertes Hochfahren des Prüfstandes. Die Turbine wird dabei auf ca. 10000 U/min beschleunigt. Dabei ist besondere Vorsicht in den Resonanzbereichen geboten.
- 3. Einstellen des Betriebspunktes und Warten auf thermisches Gleichgewicht. Dieser Vorgang kann mitunter sehr lange (bis zu 3 Stunden) dauern. Der Prüfstand muss sich vollständig erwärmen, da ein stabiler Betriebspunkt erst dann erreicht ist, wenn sich Temperatur, Druckverhältnisse und Massenstrom nicht mehr ändern. Um die diversen Parameter einzustellen stehen einige Möglichkeiten zur Verfügung, deren Handhabung einiges an Erfahrung benötigt.
- 4. Ist der gewünschte Betriebspunkt erreicht, kann die Messung starten. Zuallererst erfolgt eine Referenzfahrt in Umfangsrichtung, sodass die Traversiereinheit und damit der Hitzdrahtsensor sich an der richtigen Position befinden. Anschließend wird der Sensor aus dem Sondenloch zum ersten Messpunkt hin ausgefahren. In Abbildung 3.17 ist das Messgitter mit allen, insgesamt 480, Messpunkten dargestellt. Für Turbulenzuntersuchungen ist eine feine räumliche Auflösung notwendig. Diese wurde auf die Bereiche in Wandnähe beschränkt, da dort die Sekundärströmungen am stärksten wirken. In der Mitte des Kanals wurde eine große räumliche Schrittweite gewählt. Das abgebildete Messgitter für die Hitzdrahtanemometrie entspricht genau jenem Messgitter, mit welchem zuvor Fünflochsondenund FRAPP-Messungen durchgeführt wurden. Aus den Fünflochsondenmessungen konnten bereits Strömungswinkel ermittelt werden, sodass es möglich war, den Hitzdrahtsensor optimal in die Hauptströmungsrichtung anzustellen. Das Messgitter wird schlangenlinienförmig abgefahren. An jedem Messpunkt werden für eine Dauer von 4 Sekunden mit einer Frequenz von 250 kHz die Messsignale abgetastet. Es sind dies die drei Brückenspannungen des CTA-Frames und zusätzlich ein Triggersignal, welches pro Rotorumdrehung einen Impuls abgibt. In der Turbinenwarte kann durch eine Fourieranalyse der Spannungssignale festgestellt werden, ob jeder der drei Hitzdrähte noch einwandfrei funktioniert. Zu Kontrollzwecken der Periodizität, wird in Umfangsrichtung ca. 1,2-mal die Schaufelteilung des Leitrades abgefahren.

Abbildung 3.17: schematische Darstellung des Messgitters im TTTF

5. Nachdem alle Messungen erfolgt sind, wird der Prüfstand kontrolliert heruntergefahren und es kann anschließend die Sonde mit Sensor wieder ausgebaut werden.

Auf dem Messrechner liegen die gesammelten Rohdaten. Mithilfe der Kalibrierdateien steht einer Auswertung der Messergebnisse nichts mehr im Wege.

3.5 Auswertung

Die Auswertung erfolgte mittels Matlab (der Programmcode ist in A3 ersichtlich). An dieser Stelle wird lediglich auf einige Besonderheiten, die von allgemeinem Interesse sind, eingegangen. Anschließend erfolgt eine Darstellung der Ergebnisse.

3.5.1 Allgemeines

Da der Druck und die Temperatur während der Versuchsfahrt mit dem Hitzdrahtanemometer nicht gemessen werden konnte, wurden dafür Berechnungsvorschriften, wie folgt, herangezogen:

$$T_{stat} = \frac{T_{39,CTA}}{T_{39,FLS}} \cdot T_{stat,FLS} \tag{48}$$

$$p_{stat} = \frac{p_{39,CTA}}{p_{39,FLS}} p_{stat,FLS} \tag{49}$$

Dabei stehen die Indizes FLS für Fünflochsonde, CTA für Constant Temperature Anemometry und 39 für die Mischkammer. Eine wichtige dimensionslose Kennzahl ist die Machzahl Ma

$$Ma = \frac{c}{a} = \frac{\sqrt{c_x^2 + c_r^2 + c_t^2}}{\sqrt{\kappa RT}}$$
(50)

mit c_x, c_r und c_t für die Geschwindigkeiten in Axial-, Radial- und Tangentialrichtung und a für die örtliche Schallgeschwindigkeit von Luft in Abhängigkeit von der Temperatur. In Abbildung 3.18 sind die Definitionen der unterschiedlichen Winkel eingezeichnet. Dabei wird der radiale Strömungswinkel als Pitch-Angle(γ) und der tangentiale Strömungswinkel als Yaw-Angle (α) bezeichnet. Wie bereits erwähnt, sind diese Winkel nicht mit jenen von der Winkelkalibrierung zu verwechseln.

$$\gamma = \arctan\left(\frac{c_r}{c_x}\right) \tag{51}$$

$$\alpha = \arctan\left(\frac{c_t}{c_m}\right) \tag{52}$$

Abbildung 3.18: Darstellung der unterschiedlichen Winkel [Zerobin, 2018]

Wie in Abschnitt 2.1.1 bereits erwähnt wurde, sollte bei Berücksichtigung der Kompressibilität eine Massenmittelung der Strömungsgrößen stattfinden. Da die Dichte an den Messpunkten aber nicht exakt bekannt ist, wurden die Ergebnisse flächengemittelt (AAV - Area Averaged).

$$\overline{\Phi_{AAV}} = \frac{\sum \Phi_i \cdot A_i}{\sum A_i} \tag{53}$$

Da das Versuchssetup von einem namhaften Turbinenhersteller zur Verfügung gestellt wurde, werden die anschließenden Ergebnisse aus Datenschutzgründen normiert dargestellt. Des weiteren sind alle nachfolgenden Abbildungen in ihrer Größe verzerrt.

3.5.2 Zeitgemittelte Ergebnisse

In den Abbildungen 3.19 bis 3.24 sind Matlab Plots verschiedener Größen über die Zeit gemittelt dargestellt. Eine genaue Interpretation der Ergebnisse ist sehr schwierig und bedarf einiges an Erfahrung im Bereich der Strömungen in Turbomaschinen. Weiters wurde bisher nur eine CTA-Messung durchgeführt und somit ist eine Beobachtung der Veränderungen von Strömungsstrukturen bei Parametervariation nicht möglich. Aus diesen Gründen erfolgt lediglich eine grobe Beschreibung dieser Ergebnisse.

In Abbildung 3.19 sind mehrere Phänomene gut ersichtlich. An der Nabe ist die Geschwindigkeit relativ gering und steigt mit der Kanalhöhe bis zu den Blattspitzen hin an. Aufgrund der Spitzenüberströmung ist die absolute Geschwindigkeit im Spitzenbereich am höchsten. Alle Darstellungen zeigen einen Ausschnitt über ca. 1,2 Leitrad-Schaufelteilungen. Der Einfluss des Leitrades in Form von Nachlaufdellen in der Strömung ist ebenfalls klar sichtbar.

In den Abbildungen 3.20 und 3.21 sind die zeitgemittelten Strömungswinkel dargestellt. Durch den Yaw-Angle wird gut sichtbar, dass sich die Abströmverhältnisse über die Schaufelhöhe verändern, welche durch das Schaufeldesign vorgegeben sind. Der Pitch-Angle steigt mit zunehmender Radialgeschwindigkeit an, was so auch zu erwarten war. Durch die Abbildungen 3.22 und 3.23 lassen sich Erkenntnisse über die Turbulenzstrukturen ableiten. In der Mitte des Kanals sind kaum turbulente Erscheinungen auszumachen. Wie in 2.1.1 bereits erwähnt, sind turbulente Phänomene vor allem auf den Einfluss von Sekundärströmungen zurückzuführen.

In Abbildung 3.24 sind die zeitlich gemittelten Schwankungsgeschwindigkeiten in Axial-, Umfangs- und Radialrichtung dargestellt. Es sind deutliche Unterschiede in der Größenordnung der Schwankungen zu erkennen. Vor allem in Umfangsrichtung ist eine starke Schwankungsbewegung, verursacht durch den Rotor, erkennbar. Dies bedeutet, dass die Turbulenz ein ausgeprägtes anisotropes Verhalten aufweist.

Abbildung 3.19: Plot der zeitlich gemittelten Machzahlverteilung

Abbildung 3.20: Plot der zeitlich gemittelten Yaw-Angle Verteilung

Abbildung 3.21: Plot der zeitlich gemittelten Pitch-Angle Verteilung

Abbildung 3.22: Plot der zeitlich gemittelten Turbulenzgradverteilung

Abbildung 3.23: Plot der zeitlich gemittelten turbulenten kinetischen Energie

Abbildung 3.24: Darstellung der Turbulenz in a) Axial-, b) Umfangs- und c) Radialrichtung

3.5.3 Phasengemittelte Ergebnisse

Mithilfe eines Triggersignals, welches einmal pro Rotorumdrehung einen Impuls abgibt, ist eine phasengemittelte Auswertung möglich. Dies ist insbesondere bei periodischen Vorgängen sehr hilfreich. Dadurch ist es möglich, verschiedenen Strukturen ihre Ursachen zuzuordnen.

Im Abschnitt 2.1.1 wurde erwähnt, dass sich eine Strömungsgröße bei turbulenten Strömungen aus einem Mittelwert und einem stochastischen Anteil zusammensetzt. Beim Auftreten von Periodizitäten, wie das bei Turbomaschinen der Fall ist, müssen diese für eine exakte Beurteilung berücksichtigt werden. Es tritt also ein zusätzlicher Anteil $\tilde{\Phi}$, der auf das Vorhandensein eines Rotors zurückzuführen ist, auf. Dieser Anteil stellt keine Turbulenz dar.

$$\Phi = \overline{\Phi} + \widetilde{\Phi} + \Phi' \tag{54}$$

Die Auswertung wurde ebenfalls in Matlab durchgeführt. Da sich im Laufe der Messung die Drehzahl ändern kann, muss dieser Einfluss berücksichtigt werden. Eine gute Möglichkeit stellt in Matlab dabei die Funktion Resample dar. Dabei wird ein bestehendes Signal (Original) mit einer neuen Abtastrate (Resample) adaptiert. Dadurch ist sichergestellt, dass für jede Umdrehung gleich viele Werte zur Verfügung stehen. Um eine feine Auflösung garantieren zu können, ist ein entsprechender hoher Wert an Stützstellen (eine Rotorumdrehung wird dann durch diese Anzahl an Werten beschrieben - für die folgende Auswertung wurden 2048 Stützstellen verwendet) für das Resampling zu wählen. In Abbildung 3.25 ist dies für ein Signal beispielhaft dargestellt.

Abbildung 3.25: Resampling eines Signals [Mathworks, 2019]

Da im Prüfstand nicht die Hitzdrahtsonde sondern der Stator in seiner Umfangsposition verdreht wird, ist eine Korrektur des Triggersignals erforderlich. In Abbildung 3.26 ist die Statorschaufel vor (Position 1) und nach (Position 2) der Verdrehung um einen Winkel in Umfangsrichtung dargestellt. Eine phasengemittelte Auswertung ist nur dann möglich, wenn das Triggersignal bei der immer gleichen Stellung von Stator zu Rotor aufgenommen wird. In der Statorposition 1 ist diese Stellung gegeben bzw. stellt dies der Refernzzustand dar. Bei Position 2 würde das Triggersignal immer um die eingezeichnete Zeitdifferenz zu spät kommen, weshalb eine Triggerkorrektur vorzunehmen ist.

Abbildung 3.26: Schematische Darstellung zur Triggerkorrektur

Die bevorzugte Darstellungsform von phasengemittelten Ergebnissen ist das Videoformat bzw. das Weg-Zeit Diagramm (Time-Space-Plots). In den Abbildungen 3.27 bis 3.29 sind die Ergebnisse zu jeweils 8 Zeitpunkten dargestellt. Die schwarzen Linien bewegen sich mit der Rotorgeschwindigkeit mit und sind als Hilfe für eine bessere Lesbarkeit der Diagramme gedacht. In Richtung Gehäuse werden die Bewegungen der Strukturen immer ausgeprägter. Dies ist auf den Tip Leakage (Spitzenüberströmung), der bei diesem Setup durch die große Spaltweite sehr ausgeprägt ist, zurückzuführen.

Abbildung 3.28: Phasengemittelte Darstellung der turbulenten kinetischen Energie

3.5.4 Time-Space-Plots

Time-Space-Plots werden ebenfalls aus einer Phasenmittelung erhalten, werden hier aber separat behandelt. Dabei werden die Paramter einer Radiusposition (Span = Kanalhöhe) über der Zeit aufgetragen. In den Abbildungen 3.30 und 3.31 sind die Time-Space-Plots an ausgewählten Positionen im Kanal dargestellt. Aus solchen Weg-Zeit-Diagrammen können einige Erkenntnisse gewonnen werden.

Im Bereich der Nabe (geringer Span) verhalten sich die Strukturen nahezu statisch. Die Steigung der eingezeichneten, strichlierten schwarzen Linie entspricht der Geschwindigkeit des Rotors. Flachere Linien bedeuten also eine geringere und steilere Linien entsprechend eine höhere Geschwindigkeit als die des Rotors. Die Steigung der magentafarbenen Linie stellt die Fortbewegungsgeschwindigkeit von Stator-Rotor Interaktionen dar. Mit steigender Kanalhöhe wird das verhalten zusehends dynamischer. Weiters ist auffallend, dass zum gleichen Zeitpunkt bei den vermeintlich gleichen Statorstellungen nicht das gleiche passiert, es liegt also eine Phasendifferenz vor. Hätten Stator und Rotor die selbe Anzahl an Schaufeln, wäre die Phasendifferenz Null.

In Abbildung 3.30 bei Span 94 Prozent ist eine Abschwächung in Umfangsrichtung erkennbar. Dies kann durch einen Drift im Betriebspunkt (die Werte im oberen Diagrammbereich sind ca. 2 Stunden später gemessen worden) erklärt werden.

Abbildung 3.30: Time-Space-Plot Machzahl

Abbildung 3.31: Time-Space-Plot Turbulenzgrad

3.6 Verifizierung

Die Verifizierung der erhaltenen Ergebnisse wird durch einen Vergleich durchgeführt. Es stehen Daten aus Vergleichsmessungen zur Verfügung, die sich jedoch entweder im Setup oder im Messverfahren unterscheiden.

3.6.1 BPF

Eine erste Plausibilitätskontrolle kann mit einer Fourier- Anlasyse und dem daraus erhaltenem Amplitudenspektrum durchgeführt werden. Eine charakteristische Größe ist hierbei die sogenannte Blade Passing Frequency (BPF).

$$BPF_i = i \cdot n_{Rotor} \cdot z_{Rotor} \ mit \ i = 1, 2, 3, \dots$$
(55)

Wobei z_{Rotor} die Schaufelanzahl des Rotors darstellt. Die 1. BPF ist also jene Frequenz, mit der die Rotorschaufeln an der Hitzdrahtsonde vorbeifahren. In Abbildung 3.32 ist beispielhaft das Amplitudenspektrum der Geschwindigkeiten in Axial-, Umfangs- und Radialrichtung an drei unterschiedlichen Postionen bezüglich der Kanalhöhe, ersichtlich. Die hier erhaltenen BPF's stimmen mit jenen von der Versuchsfahrt, die durch Aufzeichnung der Drehzahl ermittelt wurden, überein. In Abbildung 3.32 sind noch zusätzliche Peaks zu sehen. Diese können eine ganzzahlige Linearkombination von Statorund Rotorschaufelzahl sein.

3.6.2 Vergleich mit Fünflochsonde

Da mit der Fünflochsonde keine Schwankungsgrößen untersucht werden können, erfolgt ein Vergleich der zeitgemittelten Ergebnisse. Es hat sich als zweckmäßig erwiesen, umfangsgemittelte Werte über radiale Linien aufzutragen und direkt gegenüberzustellen. Dies ist in den Abbildungen 3.33, 3.37 und 3.38 für die Machzahl, den Yaw- und den Pitch-Angle dargestellt. Die Fünflochsondenmessung fand mit einem Setup mit einer etwas geringeren Spaltweite zwischen Rotor und Gehäuse statt.

Bei der Machzahl kann festgestellt werden, dass der Verlauf von CTA- und Fünflochsonde in der Kanalmitte eine größere Abweichung aufweist. Ein Grund hierfür könnte sein, dass in Kanalmitte ungefähr jene Geschwindigkeiten herrschen, bei denen die Kalibrierung (vergleiche Abbildung 3.13) durch Temperatureinfluss nicht exakt war. Aus diesem Grund wurde noch eine Kalibrierung nach King, siehe Abbildung 3.34 bzw. Abschnitt 2.3.3, durchgeführt. Hierbei werden nur zwei Kalibrierpunkte benötigt. Die Form der radialen Linie der Machzahl nach King ist ident zu jener der Polynomapproximation, jedoch mit größeren Absolutwerten. Dies spricht gegen eine fehlerhafte Kalibrierung. Die Abweichung könnte auch durch einen großen Gradienten von statischer Temperatur bzw. statischem Druck in diesem Bereich verursacht werden (siehe Abbildungen 3.35 und 3.36). Der stärkere Anstieg der Machzahl gehäuseseitig ist durch den größeren Spalt erklärbar.

Beim Pitch-Angle sind vor allem nabenseitig teilweise größere Abweichungen feststellbar. Der Verlauf des Yaw-Angles von CTA und Fünflochsonde stimmt bis auf einen Offset

Abbildung 3.32: Fourier-Analysen der Geschwindigkeiten bei
a) 6%, b) 50% und c) 93% Span

Abbildung 3.33: Radiale Linien Machzahl

gut überein. Für die Abweichungen im Nabenbereich kann folgender Effekt eine Ursache haben: Da der Einbau der Messgeräte von Hand erfolgt und gerade bei den Hitzdrahtsensoren mit größter Sorgfalt vorgegangen werden muss, ist ein exakter Einbau nicht möglich. Die Messpunkte von CTA und Fünflochsonde sind also nicht deckungsgleich. Allgemein kann festgehalten werden, dass die größten Unterschiede zwischen CTA- und Fünflochsondenmessung in der Kanalmitte auftreten.

Abbildung 3.34: Kalibrierkurve für Sensor 1 nach King

Abbildung 3.35: statische Temperaturverteilung

Abbildung 3.36: statische Druckverteilung

Abbildung 3.37: Radiale Linien Yaw-Angle

Abbildung 3.38: Radiale Linien Pitch-Angle

3.6.3 Vergleich mit FRAPP-Daten

Aus früheren am Institut durchgeführten FRAPP-Messungen liegen ebenfalls Vergleichsdaten vor. In den Abbildungen 3.39 und 3.40 sind phasengemittelt die Machzahlverteilung sowie der eindimensionale Turbulenzgrad ersichtlich. Aufgrund des Aufbaus der FRAPP-Sonde (vergleiche auch Abbildung 2.8) ist eine Messung im wandnahen Bereich der Nabe nicht möglich. Dies ist der Grund, weshalb eine Auswertung erst bei einer Kanalhöhe von etwa 12 Prozent stattfindet. Weiters wurde die Einlochsonde im virtuellen Dreilochsondenbetrieb verwendet. Dies bedeutet, dass die Sonde jeweils um einen bestimmten Winkel seitlich aus der Strömung gedreht wird. Die Messdaten an einem Punkt werden somit nicht zeitgleich aufgenommen. Die FRAPP-Messungen wurden ebenfalls an einem Setup mit etwas geringerer Spaltweite zwischen Rotor und Gehäuse als bei der Hitzdrahtmessung durchgeführt. In den Abbildungen 3.41 und 3.42 sind die radialen Linien von Turbulenzgrad und kinetisch turbulenter Energie dargestellt. Die großen Abweichungen kommen dadurch zustande, dass bei der FRAPP-Methode Druckschwankungen gemessen und für die anschließende Berechnung von Geschwindigkeitsschwankungen einige Annahmen getroffen werden müssen (vergleiche dazu Gleichung 56, welche dies illustrieren soll - für eine genaue Erklärung sei auf [Persico und Gaetani, 2008] verwiesen).

$$\overline{Pt_R^2} = 0,49\rho_{det}^2(1-0,175M_{det}^4)^2 \cdot \overline{u_R^2}^2 + \rho_{det}^2 V_{det}^2(1+0,5M_{det}^2)^2 \cdot \overline{u_R^2}$$
(56)

Abbildung 3.41: Radiale Linien Turbulenzgrad

Abbildung 3.42: Radiale Linien turbulent kinetische Energie

4 Fazit und Ausblick

Durch eine CTA-Messung mit einer 3-Drahtsonde stehen sehr wertvolle und aussagekräftige Daten zur Verfügung. Der größte Vorteil ist wohl, dass mit einem Verfahren zeitgemittelte Größen und Schwankungsgrößen in alle drei Raumrichtungen ermittelt werden können. Da die Messung mit drei Drähten zeitgleich erfolgt, dauert der Messvorgang eines Punktes im Gegensatz zur FRAPP-Einlochsonde im virtuellen 3-Loch Betrieb wesentlich kürzer. Durch diese Zeitersparnis ist es möglich, das Messgitter feiner auszulegen und somit dichtere Ergebnisse zu erhalten. Weiters ist die Strömungsbeeinflussung der Messsonde der FRAPP größer als an den geometrisch sehr kleinen Hitzdrähten. Im Vergleich mit der Fünflochsonde können mit dem CTA-System zusätzlich Schwankungsgrößen untersucht werden.

Ein Nachteil bei der CTA-Messung besteht im Einfluss der Temperatur und des Druckes. Für exakte Ergebnisse müssten diese Größen in unmittelbarer Nähe des Hitzdrahtsensors mitgemessen werden, was derzeit allerdings nicht möglich ist. Dies beduetet, dass die absoluten Werte von Strömungsgrößen mit der Fünflochsonde genauer ermittelt werden können. Oftmals sind die absoluten Werte jedoch gar nicht so sehr von Bedeutung, da es mehr um eine genaue Kenntnis des Strömungsverhaltens geht. Für diesen Zweck eignen sich die CTA-Messungen hervorragend. Es ist durchaus denkbar, dass in naher Zukunft auf FRAPP-Messungen verzichtet werden kann, da mit nur einer Hitzdrahtmessung dieselbe bzw. eine größere Menge an Informationen gewonnen werden können. Vor allem bei der Turbulenzuntersuchung wurde ersichtlich, dass das CTA-System dem FRAPP-System überlegen ist und deutlich bessere Ergebnisse liefert. Fünflochsondenmessungen werden weiterhin notwendig sein, da der Druckverlust nicht über eine Hitzdrahtmessung ermittelt werden kann.

Diese Arbeit hat lediglich eine erste Messung mit dem neu angeschafften CTA-System in einer Turbomaschine und rudimentäre Auswertungen zum Ziel gehabt. Es gilt in Zukunft weitere Erfahrungen mit dem CTA-System zu machen um noch mehr Informationen aus den Daten lukrieren zu können. Dabei geht es vor allem darum, welche Parameter wie viel Einfluss auf die Ergebnisse haben und einer Optimierung der Kalibrierung. In Anbetracht der Umstände ist sich der Autor sicher, dass die Messgenauigkeit und somit die Qualität der Ergebnisse in Zukunft noch gesteigert werden können und CTA-Messungen einen großen Gewinn darstellen werden.

Literaturverzeichnis

- [Bräunling, 2015] Bräunling, W. J. G. (2015). Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, thermische Turbomaschinen, Komponenten, Emissionen und Systeme. VDI-Buch. Springer Vieweg, Berlin, 4. aufl.. Auflage.
- [Brenn und Meile, 2014] Brenn, G. und Meile, W. (2014). Strömungslehre und Wärmeübertragung I: Vorlesungsskriptum. TU-Graz.
- [Dantec Dynamics, 2018] Dantec Dynamics (2018). Probes for Hot-wire Anemometry.
- [Dantec Dynamics, 2019] Dantec Dynamics (2019). Dantec Dynamics: https://www.dantecdynamics.com/news-events-category/trade-in-trade-up-cta.
- [Dantec Dynamics A/S, 2016] Dantec Dynamics A/S (2016). StreamWare Pro Installation and User Guide.
- [Farnell, 2019] Farnell (2019). BNC- Kabel: https://de.farnell.com/pro-signal/bnc-plugplug-rg59/kabel-rg59-bnc-stecker-stecker/dp/4257340.
- [Heitmeir, 2015] Heitmeir, F. (2015). Thermische Turbomaschinen Grundlagen: Vorlesungsskriptum. TU-Graz.
- [Herwig und Schmandt, 2015] Herwig, H. und Schmandt, B. (2015). Strömungsmechanik: Physik - mathematische Modelle - thermodynamische Aspekte. Springer Vieweg, Berlin, 3., erg. aufl.. Auflage.
- [Indiger, 2016] Indiger, T. (2016). Grundlagen der experimentellen Strömungsmechanik: Vorlesungsunterlagen. TU-München.
- [Jørgensen, 2005] Jørgensen, F. E. (2005). How to measure turbulence with hot-wire anemometers: a practical guide.
- [Kupferschmied, 1998] Kupferschmied, P. (1998). Zur Methodik zeitaufgelöster Messungen mit Strömungssonden in Verdichtern und Turbinen: Dissertation. ETH-Zürich.
- [Mathworks, 2019] Mathworks (2019). Matlab- Hilfeseite: https://de.mathworks.com/help/signal/ref/resample.html.
- [National Instruments, 2019] National Instruments (2019). BNC-Anschlussboard: https://picclick.com/National-Instruments-BNC-2110-Shielded-Connector-Block-Breakout-301239280542.html.
- [Nitsche und Brunn, 2006] Nitsche, W. und Brunn, A. (2006). Strömungsmesstechnik. VDI-Buch. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2., aktualisierte und bearbeitete auflage. Auflage.

- [Oertel, 2016] Oertel, H. (2016). *Prandtl Führer durch die Strömungslehre*. Springer Fachmedien Wiesbaden, Wiesbaden.
- [Persico und Gaetani, 2005] Persico, G. und Gaetani, P. (2005). Design and analysis of new concept fast-response pressure probes. *Measurement Science and Technology*, 16(9):1741–1750.
- [Persico und Gaetani, 2008] Persico, G. und Gaetani, P. (2008). Estimation of turbulence by single-sensor pressure probes.
- [Pirker und Jericha, 1995] Pirker, H.-P. und Jericha, H. (1995). Thermische Strömungsmaschinen: Turbokompressoren im industriellen Einsatz: 3. Tagung Hannover, 28. und 29. September 1995, Band 1208 in VDI-Berichte. VDI-Verl., Düsseldorf.
- [Poensgen, 1989] Poensgen, C. A. (1989). Ein Verfahren zur Vermessung der instationären dreidimensionalen Geschwindigkeitsvektoren in Turbomaschinen: Internal Technical Report No. 89-01.
- [Rick, 2013] Rick, H. (2013). Gasturbinen und Flugantriebe: Grundlagen, Betriebsverhalten und Simulation. VDI-Buch. Springer Berlin Heidelberg, Berlin, Heidelberg.
- [Wachter, 2018] Wachter, P. (2018). Adaption von Hard- und Software eines Dreikomponenten-Hitzdrahtanemometers zum Gebrauch in thermischen Turbomaschninen: Masterarbeit. TU Graz.
- [Wikipedia, 2019] Wikipedia (2019). Euler Winkel: https://de.wikipedia.org/wiki/Eulersche_Winkel.
- [Zerobin, 2018] Zerobin, S. (2018). Aerodynamic Performance of Turbine Center Frames under the Presence of High-Pressure Turbine Rotor Purge Flows: Dissertation. TU-Graz.
- [Zerobin und Bauinger, 2017] Zerobin, S. und Bauinger, S. (2017). The Unsteady Flow Field of a Purged High Pressure Turbine based on Mode Detection. Proceedings of ASME Turbo Expo 2017.

Abbildungsverzeichnis

1.1	Darstellung Turbinenprüfstand	2
2.1	Reynolds Ansatz für eine turbulente Strömung [Oertel, 2016]	5
2.2	Typische Längen bei Gasströmungen unter Normbedingungen [Herwig	
	und Schmandt, 2015]	6
2.3	links: Darstellung einer verwundenen Turbinenschaufel, rechts: An- und	
	Abströmung an einer Turbinenschaufel [Bräunling, 2015]	$\overline{7}$
2.4	Geschwindigkeitsplan einer Turbinenstufe [Rick, 2013]	8
2.5	Entstehung von Sekundärströmungen in Turbomaschinenbe-schaufelungen	
	[Bräunling, 2015]	9
2.6	Entstehung von Spaltverlusten [Bräunling, 2015]	9
2.7	Fünfloch Kugelsonde [Nitsche und Brunn, 2006]	11
2.8	FRAPP-Sonde [Zerobin und Bauinger, 2017]	11
2.9	Brückenschaltung eines CTA [Nitsche und Brunn, 2006] leicht ab-gewandelt	13
2.10	Wärmebilanz eines Hitzdrahtes [Nitsche und Brunn, 2006]	14
2.11	typischer Spannungsverlauf über der Geschwindigkeit [Nitsche und Brunn,	
	2006] leicht abgewandelt	15
2.12	Ein-, Zwei- und Dreidrahtsonde [Dantec Dynamics, 2018] leicht abgewandelt	15
2.13	Spannungen bei unterschiedlichen Temperaturen [Nitsche und Brunn, 2006]	16
2.14	Schräganströmung eines Hitzdrahtes um den Winkel α [Nitsche und Brunn,	
	2006]	17
3.1	StreamLine Pro CTA-Frame von DantecDynamics [Dantec Dynamics, 2019]	19
3.2	Mikroskopaufnahme Sensor 55R97Graz von Dantec Dynamics	20
3.3	In der Institutswerkstatt adaptierte Sondenschäfte	20
3.4	links: BNC-Kabel [Farnell, 2019], rechts: BNC-Anschlussblock [National	
	Instruments, 2019]	21
3.5	Kalibriereinheit von Dantec Dynamics mit Pitch-Yaw Manipulator und	
	Sondenhalterung	22
3.6	Übersichtschema CTA-System [Dantec Dynamics A/S, 2016]	23
3.7	Düsen für die Kalibriereinheit von Dantec Dynamics	24
3.8	oben: Kalibrierkurve, unten: Fehlerkurve für einen Draht bei der Ge-	
	schwindigkeitskalibrierung des Sensors 55R97Graz	25
3.9	Sonden- und Sensorkoordinatensystem bei der Kalibrierung [Dantec Dy-	
	namics A/S , 2016] abgewandelt	26
3.10	oben: Sondenhalterung, mitte: Sensor, Verschlusskappe, Lochblende und	
	Sondendummy, unten: Zugentlastung	30
3.11	Vergleich der Düsen	31
3.12	Lufterhitzer	31
3.13	Kalibrierkurve unter Temperatureinfluss	32
3.14	Kalıbriereinheit mit Wärmedämmplatten isoliert	35
3.15	links: Traversiereinheit, mitte: Sonde mit Sensor in Traversierung, rechts:	
0.1.0	schematische Darstellung	36
3.16	Skizze zur Längenkorrektur beim Sondeneinbau	36
3.17	schematische Darstellung des Messgitters im TTTF	38
------	--	----
3.18	Darstellung der unterschiedlichen Winkel [Zerobin, 2018]	39
3.19	Plot der zeitlich gemittelten Machzahlverteilung	41
3.20	Plot der zeitlich gemittelten Yaw-Angle Verteilung	41
3.21	Plot der zeitlich gemittelten Pitch-Angle Verteilung	42
3.22	Plot der zeitlich gemittelten Turbulenzgradverteilung	42
3.23	Plot der zeitlich gemittelten turbulenten kinetischen Energie	43
3.24	Darstellung der Turbulenz in a) Axial-, b) Umfangs- und c) Radial-richtung	44
3.25	Resampling eines Signals [Mathworks, 2019]	45
3.26	Schematische Darstellung zur Triggerkorrektur	46
3.27	Phasengemittelte Darstellung der Machzahlverteilung	47
3.28	Phasengemittelte Darstellung der turbulenten kinetischen Energie	48
3.29	Phasengemittelte Darstellung des Turbulenzgrades	49
3.30	Time-Space-Plot Machzahl	51
3.31	Time-Space-Plot Turbulenzgrad	52
3.32	Fourier-Analysen der Geschwindigkeiten bei a) $6\%,$ b) 50% und c) 93%	
	Span	54
3.33	Radiale Linien Machzahl	55
3.34	Kalibrierkurve für Sensor 1 nach King	56
3.35	statische Temperaturverteilung	56
3.36	statische Druckverteilung	57
3.37	Radiale Linien Yaw-Angle	57
3.38	Radiale Linien Pitch-Angle	58
3.39	Phasengemittelte Darstellung der Machzahl aus FRAPP-Daten	59
3.40	Phasengemittelte Darstellung des Turbulenzgrades (1D) aus FRAPP-Daten	60
3.41	Radiale Linien Turbulenzgrad	61
3.42	Radiale Linien turbulent kinetische Energie	61

Tabellenverzeichnis

Technische Angaben Prüfstand	2
Eigenschaften typischer Hitzdrahtmaterialien [Indiger, 2016]	18
Angaben zu den Düsen [Dantec Dynamics A/S, 2016]	24
Winkel zwischen Sensor- und Sondenkoordinatensystem für den Sensortyp	
55R97Graz	26
Wertetabelle der Kalibrierpunkte für den Sensor 1 $\ \ldots \ \ldots \ \ldots \ \ldots$	33
	Technische Angaben PrüfstandEigenschaften typischer Hitzdrahtmaterialien [Indiger, 2016]Angaben zu den Düsen [Dantec Dynamics A/S, 2016]Winkel zwischen Sensor- und Sondenkoordinatensystem für den Sensortyp55R97GrazWertetabelle der Kalibrierpunkte für den Sensor 1

Anhang

A1 Grundgleichungen der Strömungslehre

Navier-Stokes Gleichungen

Kontinuitätsgleichung

$$\frac{\partial\rho}{\partial t} + \frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y} + \frac{\partial\rho w}{\partial z} = 0$$
(57)

x- Impulsgleichung

$$\frac{\partial \rho u}{\partial t} + (\nabla \cdot \rho u \vec{v}) = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_x^B$$
(58)

y- Impulsgleichung

$$\frac{\partial\rho v}{\partial t} + (\nabla \cdot \rho v \vec{v}) = -\frac{\partial p}{\partial y} + \frac{\partial\tau_{xy}}{\partial x} + \frac{\partial\tau_{yy}}{\partial y} + \frac{\partial\tau_{zy}}{\partial z} + \rho f_y^B$$
(59)

z- Impulsgleichung

$$\frac{\partial \rho w}{\partial t} + (\nabla \cdot \rho w \vec{v}) = -\frac{\partial p}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} + \rho f_z^B \tag{60}$$

Wobei sich die Spannungen nach dem Stokesschen Reibungsgesetz ergeben zu:

$$\tau_{xx} = \mu \left(2\frac{\partial u}{\partial x} - \frac{2}{3}div \,\vec{v} \right) \tag{61}$$

$$\tau_{yy} = \mu \left(2 \frac{\partial v}{\partial w} - \frac{2}{3} div \, \vec{v} \right) \tag{62}$$

$$\tau_{zz} = \mu \left(2 \frac{\partial w}{\partial z} - \frac{2}{3} div \, \vec{v} \right) \tag{63}$$

$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) \tag{64}$$

$$\tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \tag{65}$$

$$\tau_{xz} = \tau_{zx} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \tag{66}$$

A2 Matlab-Code Kalibrierung

```
%% CTA- Kalibrierung für 3-Draht Sonden
1
      %{
2
           Mit diesem Programm ist eine Geschwindigkeits- und
3
           Winkelkalibrierung für 3-Draht Sonden möglich. Dabei
4
              ist zu
           beachten, dass die Winkelkalibrierung ohne
\mathbf{5}
              Programmänderung
           (Winkelmatrizen) nur für den Sensortyp 55R97 von Dantec
6
               Dynamics
           funktioniert.
7
      %}
8
  clear all
9
10
  %% HÄNDISCH EINZUGEBENDE PARAMETER START
11
       Cal_data = 'C:\Users\Balthasar\Documents\Masterarbeit\
12
          Graphiken_FINAL\Kalibrierung_3D_16_11_18.txt'; % Name
          der Kalibrierdatei (wird mit LabView erstellt)
      a = 0.8;
                                                     % Festlegen des
13
           overheat adjustment
       T_ref = 58.3 + 273.15;
                                                   %
14
          Referenztemperatur: entspricht der mittleren zu
          erwartenden Temperatur während der Messung;
                                                     % Achtung:
15
                                                        Spannungen
                                                         werden auf
                                                         diese
                                                         Referenztemperatur
                                                          korrigiert

von großer

                                                          Bedeutung
      alpha_{20} = [0.46; 0.47; 0.45] ./ 100;
                                                     % Widerstands-
16
          Temperaturkoeffizient der drei Drähte(=Sensoren) bei 20°
           Celsius (Herstellerangabe)
                                                     %
      p atm = 96310;
17
          Atmosphärendruck in Pascal; bei Kalibrierung durch
          Screenshot festhalten (Programm - StreamLine Automatic
          Calibrator)
  %% HÄNDISCH EINZGEBENDEN PARAMETER ENDE
18
19
20
 % IMPORTIEREN UND AUFSPALTEN (GESCHWINDIGKEIT- BZW.
21
     WINKELKALIBR.) DER DATEN START
```

```
myData = importfile_CTA_Kalibrierung(Cal_data); %
22
                         importfile Kalibrierung: function, which handles the
                         import of data (e.g. coma point translation)
                                                                                 % Anzahl der Kalibrierpunkte
                 n = length(myData);
23
                 counter_vc = 0;
24
                 counter dc = 0;
25
26
                % Index ref -
                                                           als Referenz werden immer Daten von der
27
                         Kalibrierung
                %
                                                           verwendet
28
                \% Index cal - calibration = aus Kalibriervorgang
29
                \% Index vc - velocity calibration =
30
                         Geschwindigkeitskalibrierung
                % Index dc - directional calibration = Winkelkalibrierung
31
32
                            for i = 1:n
33
                                      if (myData(i, 1) = 0) & (myData(i, 2) = 0)
34
                                                 counter_vc = counter_vc + 1;
35
                                                 T_cal_vc(counter_vc, 1) = myData(i, 3) + 273.15;
36
                                                 U_calc_vc(counter_vc, 1) = myData(i, 5);
37
                                                 V_cal_vc(counter_vc, 1) = myData(i, 6);
38
                                                 V_cal_vc(counter_vc, 2) = myData(i, 7);
39
                                                 V cal vc(counter vc, 3) = myData(i, 8);
40
                                      else
41
                                                 counter_dc = counter_dc + 1;
42
                                                 T_cal_dc(counter_dc, 1) = myData(i, 3) + 273.15;
43
                                                 U_calc_dc(counter_dc, 1) = myData(i, 5);
44
                                                 V_cal_dc(counter_dc, 1) = myData(i, 6);
45
                                                 V_cal_dc(counter_dc, 2) =
                                                                                                                     myData(i,7);
46
                                                 V_cal_dc(counter_dc,3) =
                                                                                                                     myData(i, 8);
47
                                                 pitch_dc(counter_dc, 1) =
                                                                                                                     myData(i, 1);
48
                                                yaw_dc(counter_dc, 1) = myData(i, 2);
49
                                      end
50
                           end
51
      1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/
52
              WINKELKALIBR.) DER DATEN ENDE
53
54
      %% GESCHWINDIGKEITSKALIBRIERUNG START
55
                R = 287.058;
56
                                                                                                                                                    %
                         Gaskonstante Luft
                 cp_vc = ones(counter_vc, 1) .* 1005;
57
```

58	<pre>K_cp = [1.02251, -1.75903e-4, 4.02136e-7, -4.86946e-11]; % Koeffizienten spezifische Wärmekapazität(Quelle: https://www.unternehmensberatung-babel.de/industriegase- lexikon/industriegase-lexikon-n-bis-z/spezifische- waermekapazitaet-von-gasen/index_html</pre>
50	$M_{2} 03 = 0 3 * 343$
29	Ma_03 = 0.3 * 343, % wenn Geschw. > Ma 0.3 ist Kompressibilität der Luft zu berücksichtigen
60	for $i = 1:counter_vc$
61	% Inkompressible Berechnung
62	if U_calc_vc(i) <= Ma_03
63	$delta_cp = 1;$
64	
65	% iterative Bestimmung von statischer Temperatur
66	% (Abhängigkeit von Wärmakapazität)
67	while delta $cp > 0.001$
68	T stat $vc(i,1) = T$ cal $vc(i) - ($
	$\begin{array}{c} - & - \\ U & \text{calc} & \text{vc(i)} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} - \\ \end{array} \\$
69	cp new = (K cp(1) + K cp(2) * T stat vc)
	$(i) + K cp(3) * T stat vc(i)^2 +$
	$K cp(4) * T stat vc(i)^3) * 10^3;$
70	$delta_cp = abs(cp_vc(i) - cp_new);$
71	$cp_vc(i) = cp_new;$
72	end
73	
74	% Kompressible Berechnung
75	else
76	$delta_Ma = 1;$
77	$Ma = U_calc_vc(i) . / 343;$
78	kappa = 1.4;
79	
80	% iiterative Bestimmung von statischer
	Temperatur
81	% (Abhängigkeit von Machzahl bzw.
	Schallgeschwindigkeit)
82	while $delta_Ma > 0.001$
83	$T_stat_vc(i) = T_cal_vc(i) / (1 + (kappa - $
	$1) / 2 * Ma^2);$
84	$c_{new} = sqrt(R * kappa * T_stat_vc(i, 1));$
85	$Ma_new = U_calc_vc(i) / c_new;$
86	$delta_Ma = Ma - Ma_new;$
87	$Ma = Ma_new;$

88	end
89	end
90	end
91	
92	<pre>rho_vc = p_atm ./ (R * T_stat_vc); % Dichteberechnung mittels Gasgleichung</pre>
93	
94	% MFD – Mass Flow Density = Massenstromdichte
95	% Auf MFD wird kalibriert
96	$MFD_vc = rho_vc .* U_calc_vc;$
97 98	% Berechnung des Widerstandstemperaturkoeffizients bei
99	$alpha_Tab = alpha_20 . / (1 + alpha_20 * (T_ref - 293.15));$
100 101 102	% Berechnung der Drahttemperaturen (T_wire) $T_S = a$./ alpha_Tab + T_ref;
103	
104	$\begin{array}{c} \text{for } 1 = 1:3 \\ 0 \\ \end{array}$
105 106	$V_corr_vc(:,i) = V_cal_vc(:,i) .* ((T_S(i) - T_stat_vc) ./ (T_S(i) - T_ref)) .^{(0.5)};$
107	07 Delynemfit auf Massenstremdichte
108 109	% Forynomitt auf Massenströmdichte % Durch variieren des Polynomgrades kann beste Lösung gefunden
110	% werden
111	Cal_Const_vc(:,i) = transpose(polyfit(V_corr_vc(:,i)),MFD_vc,5));
112	
113	% Berechnen von Massenstromdichte und Geschwindigkeit mittels Polynom
114	% Index calc - calculated
115	$MFD_calc_vc(:,i) = polyval(Cal_Const_vc(:,i)), \\ V_corr_vc(:,i));$
116	$U_calc_vc(:, i) = MFD_calc_vc(:, i) ./ rho_vc;$
117	end
118	
119	$Error_vc_abs = MFD_calc_vc - [MFD_vc, MFD_vc, MFD_vc];$
120	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
121	$\operatorname{Error_vc_max} = \max(\operatorname{abs}(\operatorname{Error_vc_rel}));$
122	

```
for i = 1:3
123
             figure(i)
124
             plot (MFD_calc_vc(:,i),V_corr_vc(:,i),'r','LineWidth',2)
125
             hold on
126
             grid on
127
             plot(MFD_vc,V_corr_vc(:,i),'bx','LineWidth',2)
128
             legend ('Polynomfit', 'exakte Werte', 'location', '
129
                southeast')
             xlabel('Massenstromdichte [kg/m^2s]')
130
             ylabel ('Spannung [V]')
131
            x_{\min} = \min(MFD_vc) * 0.9;
132
            x_max = max(MFD_vc) * 1.1;
133
            y_{\min} = \min(V_{\text{corr}}vc(:,i)) * 0.95;
134
            y_{max} = max(V_{corr}vc(:, i)) * 1.05;
135
            xlim ([x_min x_max])
136
            ylim ([y_min y_max])
137
            name = ['Geschwindigkeitskalibrierung Sensor'];
138
            number = ['1'; '2'; '3'];
139
            name_diagramm = [name_number(i)];
140
             title (name_diagramm)
141
        end
142
   %% GESCHWINDIGKEITSKALIBRIERUNG ENDE
143
144
145
   % WINKELKALIBRIERUNG START
146
147
       % Winkelmatrix zwischen Sensor und Sondenkoordinatensystem
148
       % (Herstellerangabe)
149
            \mathbf{T} = \begin{bmatrix} 54.7356, 54.7356, 54.7356 \end{bmatrix}
150
                  45,
                           135,
                                         90;
151
                  65.9052, 65.9052, 144.7356];
152
            T_rad = cosd(T)';
153
       % zuerst Drehung um Pitch- Angle und dann Drehung um Yaw-
154
            Angle; D wird
       % durch Multiplikation zweier Drehmatrizen erhalten
155
            D = [cosd(pitch_dc), -sind(pitch_dc)] \cdot cosd(yaw_dc)
156
                sind(yaw_dc) .* sind(pitch_dc)];
157
            cp_dc = ones(counter_dc, 1)  .* 1005;
158
159
          for i=1:counter dc
160
161
                 % exakte Geschwindigkeiten im
162
                     Sondenkoordinatensystem (x, y, z)
```

163	% dieses KO-System ist auf dem Kalibriergerät rechts oben
164	% ersichtlich
165	%
166	$U_sonde_dc(i,:) = [D(i,1), D(i,2), D(i,3)] .* \\ (U_calc_dc(i) .* ones(1,3));$
167	
168	% exakte Geschwindigkeiten im Sensorkoordinatensystem (Drähte)
169	$U_sensor_dc(i,:) = transpose(T_rad * (U_sonde_dc(i,:))');$
170	
171	if $U_calc_dc(i) \ll Ma_03;$
172	$delta_cp = 1;$
173	
174	% Inkompressible Berechnung (wie oben bei Geschwindigkeitskalibrierung)
175	while $delta_cp > 0.001$
176	$T_stat_dc(i, 1) = T_cal_dc(i) - ($
177	$cp_{new} = (K_{cp}(1) + K_{cp}(2) + T_{stat_dc})$ $(i) + K_{cp}(3) + T_{stat_dc}$
	$K cp(4) * T stat dc(i)^3 * 10^3:$
178	delta cp = abs(cp dc(i) - cp new):
179	cp dc(i) = cp new;
180	end
181	
182	% kompressible Berechnung
183	else
184	$delta_Ma = 1;$
185	$Ma = U_calc_dc(i) ./ 343;$
186	kappa = 1.4;
187	while $delta_Ma > 0.001$
188	$T_stat_dc(i, 1) = T_cal_dc(i) / (1 + ($
189	$c_{new} = \operatorname{sqrt}(R * \operatorname{kappa} * T_{stat_dc(i, 1)})$
190	$Ma_new = U_calc_dc(1) / c_new;$
191	$denta_Ma = Ma - Ma_new;$
192	$Ma = Ma_{new};$
193	end
194	and
195	CIIU
190	

197	
198	$rho_dc = p_atm . / (R * T_stat_dc);$
199	$MFD_dc = rho_dc \cdot U_calc_dc;$
200	
201	for i =1:3
202	$V_corr_dc(:,i) = V_cal_dc(:,i) .* ((T_S(i) - T_stat_dc)) ./ (T_S(i) - T_ref)) .^0.5;$
203	$MFD_calc_dc(:,i) = polyval(Cal_Const_vc(:,i),V_corr_dc$
204	U calc dc(:,i) = MFD calc dc(:,i) ./ rho dc;
205	end
206	
207	%% NICHT-LINEARES REGRESSIONSMODELL START
208	Velocities = U_sensor_dc .^2;
209	$y_1 = U_calc_dc(:, 1) .^2;$
210	$y_2 = U_calc_dc(:, 2)$.^2;
211	$y_3 = U_calc_dc(:,3)$.^2;
212	
213	% Winkel zwischen der Geschwindigkeit und den
	Normalen auf die Drähte
214	$angle_vw = 54.7356;$
215	
216	% Startwerte für pitch- und yaw- Koeffizient
217	beta0 = [0.02, 1.4];
218	
219	% für die Modellfunktionen siehe Seite 298 im
	Streamware pro
220	$\%$ installation and user guide vo.00 modelfund $(h, w)(1 / (loggd(angle www))^2)$
221	$modellun_1 = \textcircled{(}(b,x)(1 / ((cosd(angle_vw))) 2 * (1 + b(1))) + (b(1))) + (b(1)) + ($
	$(1 + b(1) 2 + b(2) 2) * (b(1) 2 * x(1,1) + y(1,2)) + b(2)^2 + y(1,2))$
222	x(.,2) + b(2) - 2 + x(.,3))), mdl 1 - fitnlm (Valacities v 1 modelfun 1
222	heta():
002	beta0),
223	modelfun $2 - (0)(h x)(1 / ((cosd(angle vw))^2) *$
224	$\frac{(1 + b(1)^2 + b(2)^2)}{(1 + b(1)^2 + b(2)^2)} * (b(2)^2 * x(:,1) + b(1)^2 + (1 + b(2)^2) + ($
	D(1) 2 * X(.,2) + X(.,3))); mdl $2 - \text{fitnlm}(Value \text{sition} v 2 \text{modelfun} 2$
225	$mu_2 = mm(verocrities, y_2, modellum_2, beta0)$.
226	Deta0),
226	modelfun $3 = O(h x)(1 / ((cosd(angle xw))^2) *$
221	$\begin{array}{c} \text{modellul}_5 = \textcircled{(0,x)(1 / ((\cos ((\arg e_vw))) 2 * \\ (1 + b(1)^2 + b(2)^2)) * (x(:,1) + b(2)^2 * \\ x(:,2) + b(1)^2 * x(:,3))); \end{array}$

228	$mdl_3 = fitnlm(Velocities, y_3, modelfun_3, beta0);$
229	
230	$\begin{array}{llllllllllllllllllllllllllllllllllll$
231	
232	C = [Coeff(1,1), 1, Coeff(2,1);
233	Coeff(2,2), $Coeff(1,2)$, 1;
234	1, $Coeff(2,3)$, $Coeff(1,3)$];
235	C sq = $(C .^2);$
236	% NICHT-LINEARES REGRESSIONSMODELL ENDE
237	
238	
239	for $i=1:$ counter dc
240	$U = eff(i, :) = sum(C + sa') \cdot 0.5 \cdot * (U + calc + dc(i, :)) \cdot *$
	$\cos d(\operatorname{angle} vw)$:
241	U wire test(i.:) = transpose(sqrt(C sq \ (U eff(i.:))))
	.^2) ')):
242	%U eff fak(i.:) = sqrt(transpose(C sq * (
2-12	$U \text{ sensor } dc(i \cdot) (2))$
2/3	%U wire test(i :) = sart(transpose(inv(C : sa) * (
240	$U = eff(i \cdot i) (2i) (i)$
944	$\%$ U probe test(i :) = transpose(T rad \ (U wire test
211	$(\mathbf{i} \cdot \mathbf{i})$)).
945	end
245	ond
240	deviation = U sensor dc - U wire test:
241	Error rel = $(\text{deviation} / \text{II sensor } \text{dc}) * 100$:
240	Error dc max = max(abs(Error rel)):
249	% WINKELKALIBRIERING ENDE
251	
201	
252	% Daten in Textfile ausschreiben
200	heading $-$ ['Const Wire 1\t'''' Const Wire 2\t''''Const Wire 3\
204	t' 'Pitch Coeff t ' 'Yaw Coeff $r n$ '].
955	$r_{\rm rows} = length (Cal Const vc):$
255	$no_1ows = rength (cal_const_vc),$
250	$appendix = 2eros(no_rows-s, r),$ pitch coeff = [C sq(1,3): C sq(2,1): C sq(3,2)];
257	pitch_coeff = $[0_sq(1,3), 0_sq(2,1), 0_sq(3,2)],$
208	$v_{2}w = coeff - \begin{bmatrix} C & sa(1,1) \\ C & sa(2,2) \end{bmatrix} \cdot \begin{bmatrix} C & sa(2,2) \\ C & sa(2,2) \end{bmatrix} \cdot \begin{bmatrix} C & sa(2,$
209	$y_{aw} = [0 = y_{1}(1, 1), 0 = y_{1}(2, 2), 0 = y_{1}(0, 3)],$ $y_{aw} = coeff = [y_{aw} = coeff : appendix].$
200	y_{aw} _cooli = [y_{aw}_cooli, appendix], data angles = [pitch_coolf_yaw_coolf].
261	$data_angles = [pitch_coeff, yaw_coeff];$ filoID = for on ('Calibration results tyt', 'w').
262	inerD – iopen (Cambration_results.txt , w);

A2.1 Anmerkungen zum Code

Nachfolgend werden einige Anmerkungen zum Code angeführt.

- Zeile 12: Hier ist der Name der Kalibrierdatei bzw. der Dateipfad anzugeben.
- Zeile 14: Die erste Zahl stellt die Refernztemperatur in °C dar. Diese ist an dieser Stelle anzugeben und soll der Temperatur, welche bei der Messung erwartet wird, entsprechen.
- Zeile 16: Dies sind die Koeffizienten für die Temperaturabhängigkeit der drei Drahtwiderstände - sind auf der Sensoverpackung zu finden.
- Zeile 17: p-atm ist der Atmosphärendruck. Dieser wird beim Kalibriervorgang nicht ausgeschrieben. Bei der Ansteuerung der Kalibriereinheit mit dem Automatic Calibrator Tool von Dantec ist dieser aber ersichtlich. Es empfiehlt sich während der Kalibrierung einen Screenshot zu machen.
- Zeile 57: Zur Berechnung der statischen Temperatur ist die spezifische Wärmekapazität notwendig. Diese wird hier mit einem Startwert initialisiert.
- Zeile 58: Die Wärmekapazitäten in Abhängigkeit von der Temperatur können mithilfe dieses Polynomansatzes berechnet werden.
- Zeilen 60 90: Die Berechnung der statischen Temperatur erfolgt durch einen iterativen Prozess. Für den inkompressiblen Fall gilt für die Total- bzw. Gesamttemperatur T_0 folgenden Zusammenhang:

$$T_0 = T_{stat} + \frac{u^2}{2c_p} \tag{67}$$

Ab einer Geschwindigkeit von $Ma \ge 0,3$ muss zudem die Kompressibilität von Luft berücksichtigt werden.

$$T_0 = T_{stat} \left(1 + \frac{\kappa - 1}{2} M a^2 \right) \tag{68}$$

- Zeile 92: Die Dichte des Mediums im Kalibrierkanal kann mithilfe der idealen Gasgleichung, in welche die statischen Werte einzusetzen sind, berechnet werden.
- Zeile 99: alpha-Tab ist der korrigierte Temperaturkoeffizient der Widerstände bei der Referenztemperatur

- Zeile 150: Winkel zwischen Sensor- und Probenkoordinatensystem. Sind aus der StreamWare Pro Software ersichtlich.
- Zeile 156: Die Matrix D kommt wie in Abschnitt 3.3.2 erklärt wird, zustande.
- Zeilen 206 235: Hier werden mithilfe eines nichtlinearen Regressionsmodelles die Pitch- und Yaw- Koeffizienten ermittelt. Die Routine ermittelt nach dem Least-Square- Verfahren die am besten passenden Koeffizienten. Dabei sind in Velocities die exakten Geschwindigkeiten im Sensorkoordinatensystem und in den y- Vektoren die Geschwindigkeiten aus der Kalibriervorschrift.

A3 Matlab-Code Auswertung

$\frac{1}{2}$	%% CTA- Auswertung für 3-Draht Messungen
3	Mit diesem Programm ist eine zeit- und phasengemittelte Auswertung einer
4	3- Hitzdrahtmessung möglich. Wichtig ist, dass die Messdaten als Dezimaltrennzeichen
5	einen Punkt und kein Komma besitzen. Im ersten Teil sind einige
6	händische Eingaben zu erledigen. Es empfiehlt sich für die
7	Auswertung einen eigenen Ordner zu erstellen und alle Dateien darin
8	abzuspeichern.
9	% }
10	%
11	%% HÄNDISCH EINZUGEBENDE DATEN START
12	numFiles = 480 ; % Anzahl
	der Messpunkte
13	$T_w = \begin{bmatrix} 266.71, & 270.75, & 266.71 \end{bmatrix} + \begin{bmatrix} 273.15; & \% \end{bmatrix}$
	Drahttemperatur der 3 Drähte eingeben (aus Labview
	bekannt)
14	$T_ref = 58.3 + 273.15;$ %
	Referenztemperatur: aus Kalibrierung bekannt
15	$num_rad_line = 20;$ % Anzahl
	der Messpunkte einer Radiallinie
16	% Textdatei aus Kalibrierung mit Koeffizienten für
	Geschwindigkeit, Pitch und Yaw
17	$Cal_data = dlmread($ 'C:\Users\Balthasar\Documents\
	$Masterarbeit \CTA_PROGRAMME $
	$Calibration_results_default_T_c.txt', '\t',1,0);$
18	
19	% Durch rad und circ_pos wird Messgitter festgelegt;
20	$\%$ rot_probe: Verdrehwinkel der Sonde, damit sie optimal
	angeströmt wird
21	$rad_pos = dlmread($ 'C:\Users\Balthasar\Documents\
	Masterarbeit \CTA_PROGRAMME \RadialLinePlaneB_20points
	. txt ');
22	$circ_{pos} = dlmread($ 'C:\Users\Balthasar\Documents\
	Masterarbeit \CTA_PROGRAMME \CircLinePlaneB_24points. txt');
23	<pre>rot_probe = dlmread('C:\Users\Balthasar\Documents\ Masterarbeit\CTA_PROGRAMME\Rotation_B_20points.txt')</pre>

```
;
24
      \% 5HP = Fünflochsonde; Index 39 - in Mischkammer
25
      % Durch Daten aus Messung mit Fünflochsonde und aus CTA-
26
          Messung erfolgt Mittelung
           T stat 5HP = dload ('C:\Users\Balthasar\Documents\
27
               Masterarbeit \CTA_PROGRAMME\T_stat.mat');
           T_39_5HP = dload('C: | Users | Balthasar | Documents |
28
               Masterarbeit \CTA_PROGRAMME \TT39XX.mat');
           T_39_CTA = dload('C: \ Users \ Balthasar \ Documents \
29
               Masterarbeit CTA PROGRAMME (TT39XX C.mat');
30
           p_stat_5HP = dload('C: \ Users \ Balthasar \ Documents \
31
               Masterarbeit \CTA_PROGRAMME \ P_stat.mat');
           p_39_5HP = dload('C: | Users | Balthasar | Documents |
32
               Masterarbeit \CTA_PROGRAMME \PT39XX.mat');
           p_39_CTA = dload('C: \ Users \ Balthasar \ Documents \
33
               Masterarbeit \CTA_PROGRAMME \PT39XX_C.mat');
34
      FA = 0; % auf 1 setzen wenn Fourier- Analyse der
35
          Geschwindigkeiten gewünscht ist.
  %% HÄNDISCH EINZUGEBENDE DATEN ENDE
36
37
38
  %% MESSDATEN IMPORTIEREN START
39
       startRow = 25;
                             % Einlesen der Daten beginnt bei Zeile
40
          25
       endRow = inf;
                             % Zeile bis zu der eingelesen werden
41
          soll (inf = bis zur letzten Zeile)
       myData = cell(1, numFiles);
42
       Zeit = 0;
43
           for fileNum = 1:numFiles
44
                tic
45
                c = num2str(fileNum);
46
                fileName = cat(2, C: \cup Salthasar \cup Documents)
47
                   Masterarbeit \ MP_', c);
                myData{fileNum} = import_CTA_Data(fileName, startRow
48
                   , endRow);
                clc
49
                import time = toc;
50
                Zeit = (Zeit + import_time);
51
                calc_time = ceil((Zeit / fileNum) * (numFiles -
52
                   fileNum) / 60);
                message_1 = 'Die Zeit für den Datenimport beträgt
53
```

```
ca. noch ';
               message 2 = ' Minute(n)';
54
                message = cat(2, message_1, num2str(calc_time)),
55
                   message_2;
                disp(message);
56
           end
57
  %% MESSDATEN IMPORTIEREN ENDE
58
59
60
  % BERECHNUNG STOFFWERTE, ZUWEISUNGEN & DEFINITIONENEN START
61
      % Berechnung statsiche(r) Temperatur bzw. Druck
62
           T\_stat\_5HP = T\_stat\_5HP(:, 1:24);
63
           T_39_5HP = T_39_5HP(:, 1:24);
64
           T_stat = (T_stat_5HP . / T_39_5HP) .* T_39_CTA;
65
66
           p\_stat\_5HP = p\_stat\_5HP(:, 1:24);
67
           p_39_5HP = p_39_5HP(:, 1:24);
68
           p_stat = (p_stat_5HP ./ p_39_5HP) .* p_39_CTA;
69
70
      % Zuweisung Kalibrierkonstanten
71
           Cal\_Const = [Cal\_data(:,1), Cal\_data(:,2), Cal\_data
72
                            % Koeffizienten Geschwindigkeitspolynom
               (:,3)];
           C_sq = [Cal_data(1,5), 1, Cal_data(1,4);
73
                                       % Pitch und Yaw-
               Koeffizienten (zum Quadrat)
                    Cal_data(2,4), Cal_data(2,5), 1;
74
                    1, Cal_data(3,4), Cal_data(3,5)];
75
76
      % Definition Transformationsmatrix
77
           T = [54.7356, 54.7356, 54.7356;
                                                  % Winkel zwischen
78
               Sensor und Sondenkoordinatensystem in Grad (
               Herstellerangaben)
                45,
                        135,
                                    90;
79
                65.9052, 65.9052, 144.7356];
80
           T rad = cosd(T)';
81
           alpha cal = 54.7356;
                                                  % Herstellerangabe
82
              - zur anschließenden Berechnung notwendig
83
      % Variablendefinition zur Performancesteigerung
84
           U\_acr\_ta = zeros(numFiles, 3);
                                                  % a-axial, c-
85
               circumference, r-radial Geschwindigkeit
           U_abs_ta = zeros(numFiles, 1);
86
           Tu_ta = zeros(numFiles, 1);
87
  % BERECHNUNG STOFFWERTE, ZUWEISUNGEN & DEFINITIONENEN ENDE
88
```

```
89
90
   %% START AUSWERTUNG
91
                               % Sortiervariable
        sort_var_k = 0;
92
        Zeit = 0;
93
94
        for j = 1 : numFiles
95
             tic
96
             data = myData\{j\};
97
            Time = data(:,1);
98
             Voltage = [data(:,2), data(:,3), data(:,4)];
99
             Trigger = data (:, 5);
100
            number_points = length (Time);
101
102
            %% SORTIERUNG START
103
                 % Da einmal von der Nabe Richtung Spitze und
104
                     anschließend von
                 % der Sptize Richtung Nabe gemessen wird, ist
105
                     sicherzustellen,
                 % dass die jeweils richtigen Werte verwendet werden
106
                     . Dies ist
                 % mit den Hilfs- und Sortiervariablen möglich.
107
                     Achtung!
                 % Algorithmus ist auf 20 radiale Positionen
108
                     eingestellt.
                      help\_var\_up = 0;
                                                      % Hilfsvariable
109
                      help\_var\_down = 0;
                                                      % Hilfsvariable
110
                      sort_var_a = ceil(j/num_rad_line);
                                                                  \% 20
111
                         radiale Positionen --> ceil: rundet auf
                         nächstgrößeren Integer
112
                          if mod(sort_var_a, 2) = 1
113
                               sort_var_k = sort_var_k + 1;
114
                          else
115
                               sort_var_k = sort_var_k - 1;
116
                          end
117
118
                          if (mod(j,num\_rad\_line) = 0) \&\& (mod(j))
119
                              \operatorname{sort}_{\operatorname{var}}(a, 2) = 1
                               help\_var\_up = 1;
120
                          end
121
122
                           if mod(j, num\_rad\_line) == 0 \&\& mod(j)
123
                              sort_var_a, 2) = 0
```

124	$help_var_down = 1;$
125	end
126	
127	$T_measure = T_stat(sort_var_k, sort_var_a);$
128	$p_measure = p_stat(sort_var_k, sort_var_a);$
129	$rho = (p_measure * 10^{5}) / (287 * T_measure);$
130	
131	<pre>roll = rot_probe(sort_var_k); % an jeder radialen Position wird die Sonde anders angestellt</pre>
132	$D_roll = [cosd(roll), sind(roll), 0;$
133	$-\operatorname{sind}(\operatorname{roll}), \operatorname{cosd}(\operatorname{roll}), 0;$
134	0, 0, 1]; % entspricht der Drehmatrix der Sonde in Haupströmungsrichtung %% SORTIERUNG ENDE
135	
136	
137	% BERECHNUNG DER GESCHWINDIGKETTEN START
138	% Definiere von Matrizen (Performancesteigerung)
139	$Voltage_corr = zeros(size(Voltage));$
140	$MFD_cal = zeros(size(voltage));$
141	$U_cal = zeros(size(Voltage));$
142	$U_{eff} = zeros(size(Voltage));$
143	$U_{\text{whe}} = zeros(size(Voltage)),$
144	$U_{\text{probe}} = zeros(size(voltage)),$
145	$O_act = Zetos(SiZe(Voltage)),$
140	
147	for $i=1:3$
149	Voltage_corr(:,i) = Voltage(:,i) .* ((T_w(i) - T_measure) ./ (T_w(i) - T_ref)) $\hat{(0.5)}; \%$ Temperaturkorrektur der Spannungen
150	$MFD_cal(:,i) = polyval(Cal_Const(:,i), Voltage_corr(:,i));$
151	$U_cal(:, i) = MFD_cal(:, i) ./ rho;$
152	end
153	
154	for i=1:number_points
155	U_eff(i,:) = sum(C_sq').^0.5 .* U_cal(i,:) .* cosd(alpha_cal); % effektive Kühlgeschwindigkeit
156	$U_wire(i,:) = sqrt(abs(transpose(C_sq \setminus ($

157	<pre>U_eff(i,:).^2)'))); % Geschwindigkeit im Sensorkoordinatnsystem U_probe(i,:) = transpose(T_rad \ (U_wire(i ,:))'); % Geschwindigkeit im Probenkoordinatensystem</pre>
158	$U_acr(i,:) = (D_roll * U_probe(i,:)');$
	Berücksichtigung der Sondenverdrehung > wahre Geschwindigkeit
159	end
160	
161	% Indizess: ta = time averaged (zeitgemittelt);
162	% pa = phase averaged (
	phasengemittelt)
163	$U_acr_ta(j,:) = mean(U_acr);$
164	<pre>% zeitlich gemittelte Geschwindigkeiten in axial-, umfangs- und radial Richtung U_abs_ta(j) = sqrt(U_acr_ta(j,1).^2 + U_acr_ta(j,2).^2 + U_acr_ta(j,3).^2); % zeitglich gemittelte Absolutgeschwindigkeit</pre>
165	% Berechnung der Winkel
167	pitch_angle_ta(j,1) = atand($abs(U_acr_ta(j,3))$) / U acr_ta(j,1));
168	yaw_angle_ta(j,1) = atand((U_acr_ta(j,2).* (-1)) / sqrt(U_acr_ta(j,1)^2 + U_acr_ta(j,3)^2));
169	
170	% BERECHNUNG DER GESCHWINDIGKEITEN ENDE
171	
172	% Berechnung des Turbulenzgrades
173	for $k=1:3$
174	$U_rms_ta(j,k) = 1 / (number_points - 1)$ $* sum((U_acr(:,k) - U_acr_ta(j,k)))$ $.^2); \% rms - root mean square$
176	enu
177	Tu ta(i) -1 / II abs ta(i) * sort(1 / 3 *
111	$sum(U_rms_ta(j,:),2));$
178	

179	% Berechnung turbulent kinetische Energie
180	$E_kin_turb_ta(j,1) = sum(U_rms_ta(j,:),2) /$
	2;
181	
182	%% PHASENSGEMITTELTE AUSWERTUNG START
183	$Trigger_Level = 0.85;$ %
	willkürlich gewählt
184	Trigger_max = 2.85 ; % maximale
	Spannung des Triggersignals
185	Start_r = Trigger_Level * Trigger_max; % Startwert
	Triggersignal für eine Rotorumdrehung
186	l = 0;
187	clearvars lines % muss immer gelöscht werden, da
	Anzahl durch Drehzahlschwankungen
	unterschiedlich sein kann
188	
189	% Berechnung der Zeilen, an denen Triggersignal
	anliegt
190	for $i=1:length(Trigger)-1$
191	if $((Trigger(i) > Start_r) \&\& (Trigger(i+1))$
	< Start_r)) Trigger(i) == Start_r
192	l = l + 1;
193	lines(l) = i;
194	end
195	end
196	
197	% Adaption Korrektur Phasenauswertung Start
198	$Umf_pkte = 0:1:23;$
199	$delta_phi_rad = \dots * pi / 180;$
200	$rad_innen =;$
201	Bogenlaenge = rad_innen * (delta_phi_rad .*
	$Umf_pkte);$
202	% Adaption Korrektur Phasenauswertung Ende
203	
204	for $k=1:length(lines)-1$ % Schleife geht durch alle
	Umdrehungen
205	$Zahl_punkte = lines(k+1) - lines(k);$
206	
207	% Berechnung der Triggerkorrektur
208	$time_rot = Time(lines(k+1)) - Time(lines(k));$
	% Zeit für eine Rotorumdrehung
209	$n_{aktuell} = 1 / time_{rot};$
	% aktuelle
	Rotordrehzahl

210	<pre>v_akt_innen = rad_innen * 2 * pi * n_aktuell; % aktuelle Geschwindigkeit an der</pre>
	Nabe
211	<pre>delta_t_korr = Bogenlaenge(sort_var_a) / v_akt_innen; % Korrekturzeit Triggersignal</pre>
212	Korr_Schritte_min = floor(delta_t_korr / 0.000004); % korrektes Signal liegt zwischen den Schritten min und max
213	<pre>Korr_Schritte_max = ceil(delta_t_korr / 0.000004);</pre>
214	Korr_Schritte_exakt = delta_t_korr / 0.000004;
215	<pre>delta_interp = Korr_Schritte_max - Korr Schritte exakt; % Interpolationsweite</pre>
216	lines korr anf = lines (k) - Korr Schritte min;
217	<pre>lines_korr_end = lines(k+1) - 1; %-1 weil Signal an Stelle (k+1) gehört schon zur nächsten Umdrehung</pre>
218	Anzahl korr = lines korr end - lines korr anf:
219	
220	kor_var_lines = 0;
221	
222	if lines_korr_anf <= 0
223	<pre>kor_var_lines = 1; % falls Korrektur zu groß, muss auf die erste Umdrehung verzichtet werden</pre>
224	continue
225	end
226	
227	clearvars U_rms_pa && U_acr_korr;
228	
229	<pre>U_acr_korr(1,:) = U_acr((lines(k)- Korr_Schritte_max),:) + delta_interp .* (U_acr((lines(k)-Korr_Schritte_min),:)-U_acr ((lines(k)-Korr_Schritte_max),:));</pre>
230	<pre>if Korr_Schritte_max == 0 % bei der ersten radialen Linie ist keine Interpolation notwendig</pre>
231	$U_acr_korr(1:Anzahl_korr+1,:) = U_acr(lines_korr_anf:lines_korr_end,:);$
232	
233	else it Korr_Schritte_max ~= 0
234	U_acr_korr(2:Anzahl_korr+2,:) = U_acr(lines_korr_anf:lines_korr_end,:);
235	end

236	
237	end
238	
239	$U_acr_corr_res(:,1,k) = resample(U_acr_korr(:,1)), 2048, length(U_acr_korr(:,1)));$
240	$U_acr_corr_res(:,2,k) = resample(U_acr_korr(:,2)),2048, length(U_acr_korr(:,2)));$
241	$U_acr_corr_res(:,3,k) = resample(U_acr_korr(:,3)),2048, length(U acr korr(:,3)));$
242	end
243	
244	$U_{mean_3} = mean(U_{acr_corr_res}, 3);$
245	$U_{mean}_{acr} = mean(U_{mean}_3);$
246	for l=1:3
247	for $jj = 1: size(U_acr_corr_res, 3)$
248	$U_{rms}pa(:, l, jj) = (U_{acr_corr_res}(:, l, jj)) - U_{mean}3(:, l)).^2;$
249	end
250	end
251	$U_{\rm rms_pa} = {\rm mean}(U_{\rm rms_pa}, 3);$
252	$U_rms_pa_ca{j} = U_rms_pa;$
253	$Tu_rot {j} = 1 / sqrt(U_mean_acr(1)^2 + U_mean_acr$
	$(2)^{2} + U_{mean}(3)^{2} * sqrt(1 / 3 * sum($
	$U_{rms_pa,2}));$
254	$U_{pa}{j} = \operatorname{sqrt}(U_{mean_3}(:,1).^2 + U_{mean_3}(:,2).^2$
	$+ U_{mean_3(:,3),2)};$
255	$E_kin_turb_pa{j} = sum(U_rms_pa, 2) ./ 2;$
256	1/2% PHASENSGEMITTELTE AUSWERTUNG ENDE
257	
258	if $FA = 1$;
259	%% START FOURIER ANALYSE
260	% führt für jeden Messpunkt eine Fourieranalyse für die
261	% Geschwindigkeiten durch
262	for ll=1:3
263	$\mathrm{Fs}~=~250000;$ % $\mathrm{Samplefrequenz}$
264	T = 1 / Fs;
265	$L = length(U_acr(:, ll));$
266	t = (0:L-1) * T;
267	
268	$S = U_{acr}(:, 11); \% Signal$
269	<pre>plot(t(1:end),S(1:end)) % plot des Zeitsignals</pre>
270	
271	y = ttt(S);

```
p2 = abs(y / L);
272
             p1 = p2(1:L/2+1);
273
             p1(2:end-1) = 2 * p1(2:end-1);
274
             f = Fs * (0:(L/2))/L;
275
             plot (f, p1, 'LineWidth', 1.5);
276
             grid on
277
278
             xlabel('f / f_{ref}')
279
             ylabel('Amplitude [m/s]')
280
             xlim([0 45000])
281
             ylim([0 \ 2.5])
282
             name\_save\_1 = '\_Vel\_MP\_';
283
             name_save_2 = '.png';
284
             Nummer = num2str(j);
285
             name_save = cat(2, C: \backslash Users \backslash Balthasar \backslash Documents \backslash
286
                 Masterarbeit \CTA_PROGRAMME \ Auswertung \FA_S', num2str(
                 11), name_save_1, Nummer, name_save_2);
             saveas(gcf, name_save);
287
             close (gcf)
288
        end
289
290
     end
291
             % ENDE FOURIER ANALYSE
292
293
                  if help_var_up ==1
294
                  sort_var_k = sort_var_k+1;
295
                  end
296
                  if help_var_down == 1
297
                  sort_var_k = sort_var_k -1;
298
                  end
299
300
                  clc
301
                  Zeit\_Loop = toc;
302
                  Zeit = (Zeit + Zeit\_Loop);
303
                  Messpunkt Nummer = j
304
                  calc_time = ceil((Zeit / j) * (numFiles - j) / 60);
305
                  message_1 = 'Die Rechenzeit beträgt ca. noch ';
306
                  message_2 = ' Minute(n)';
307
                  message = cat(2, message_1, num2str(calc_time)),
308
                      \text{message}(2);
                  disp(message);
309
        end
310
        clc
311
        disp('Plotting...');
312
```

```
% AUSWERTUNG ENDE
313
314
   % SORTIEREN VON ERGEBNISSEN START
315
    %
           zeitgemittelten Ergebnisse müssen für graphische
316
        Darstellung noch
    %
           richtig sortiert werden
317
            k = [1:20]';
318
            for i=1:24
319
                U_ta(1:20, i) = U_abs_ta(k);
320
                 Tu\_sort\_ta(1:20, i) = Tu\_ta(k);
321
                 E_kin_turb_sort_ta(1:20, i) = E_kin_turb_ta(k);
322
                 pitch_angle_sort_ta(1:20, i) = pitch_angle_ta(k);
323
                 yaw_angle_sort_ta(1:20, i) = yaw_angle_ta(k);
324
325
                 if \mod(i, 2) = 0
326
                     Tu\_sort\_ta(1:20,i) = flipud(Tu\_sort\_ta(1:20,i))
327
                     U_ta(1:20, i) = flipud(U_ta(1:20, i));
328
                     E_kin_turb_sort_ta(1:20, i) = flipud(
329
                         E_kin_turb_sort_ta(1:20, i));
                     pitch_angle_sort_ta(1:20,i) = flipud(
330
                         pitch_angle_sort_ta(1:20,i));
                     yaw_angle_sort_ta(1:20, i) = flipud(
331
                        yaw_angle_sort_ta(1:20, i));
                 end
332
333
                k = k + 20;
334
            end
335
336
            a_lokal = sqrt(1.4 .* 287 .* T_stat);
                                                       % Berechnen der
337
                lokalen Schallgeschwindigkeit
            Tu_sort_ta = Tu_sort_ta * 100;
338
            Ma\_sort\_ta = U\_ta ./ a\_lokal;
339
   %% SORTIEREN VON ERGEBNISSEN ENDE
340
341
   %% GRAPHISCHE DARSTELLUNG START
342
       U phase mat = cell2mat(U pa);
343
       Tu_phase_mat = cell2mat(Tu_pa);
344
       Tu_phase_mat = Tu_phase_mat .* 100;
345
       E_kin_turb_mat = cell2mat(E_kin_turb_pa);
346
347
        clearvars y; % Löscht y- Variable von Fourier- Analyse
348
349
        vanes = ..; % Anzahl Leitschaufeln
350
```

```
\operatorname{arrow\_scale} = 10;
351
                    fpfad1 = 'C:\Users\Balthasar\Documents\Masterarbeit\
352
                           CTA_PROGRAMME\Auswertung';
                    veloplot = 0;
353
                    delta_cu = 20;
354
                    delta cr = 0;
355
                    circ spacing = 4;
356
                    Umfangspunkte = 24;
357
                    ri = ...; \% Nabenradius
358
                   h_ch = ...; \% Kanalhöhe
359
                    phi0 = ...; % Winkelstartwert für graphische Darstellung
360
                                                                % Winkeldifferenz in Umfangsrichtung
                    dphi = \ldots;
361
                    phi = (phi0:dphi:(phi0+(Umfangspunkte-1)*dphi));
362
                    Radialpunkte = 20;
363
                    radiale_Schrittweite = -1 * rad_{pos};
364
                    Neigung = \ldots;
365
                    offset_Nabe = ...;
366
                    xi0 = ...;
367
                   xa0 = xi0 - h_ch * sin(Neigung/180*pi);
368
                    ra = ri + h_ch;
369
370
                    for k=1:Radialpunkte
371
                               r = ri + (offset_Nabe + radiale_Schrittweite(k)) * cos(
372
                                        Neigung * pi / 180);
                               deltar = radiale_Schrittweite(k);
373
374
                               for h=1:Umfangspunkte
375
                                          x(k,h) = xi0 - deltar * sin(Neigung/180*pi);
376
                                          y(k,h) = r * sin(phi(h)*pi/180);
377
                                           z(k,h) = r * cos(phi(h)*pi/180);
378
                               end
379
380
                   end
381
382
                    for h=1:Umfangspunkte
383
                               xi(h) = xi0 / 1000;
384
                               xa(h) = xa0 / 1000;
385
                               yi(h) = ri * sin(phi(h)*pi/180);
386
                               ya(h) = ra * sin(phi(h)*pi/180);
387
                               zi(h) = ri * cos(phi(h)*pi/180);\%*cos(Neigung*pi/180);
388
                               za(h) = ra * cos(phi(h)*pi/180); \%*cos(Neigung*pi/180);
389
390
                               y_{label(h)=(ri - 0.002) * sin(phi(h) * pi/180);}
391
                               z_{label(h)} = (ri - 0.002) * cos(phi(h) * pi/180); \% * cos(Neigung * 
392
```

```
pi/180) ;
                                   y_text(h) = (ri - 0.009) * sin(phi(h) * pi/180);
393
                                    z_text(h) = (ri - 0.009) * cos(phi(h) * pi/180); \% * cos(Neigung * cos
394
                                              pi/180) ;
                      end
395
396
397
          for j=1:Radialpunkte % Berechnung der Fläche einer Radiallinie
398
                      Ages_U(j) = 0;
399
400
                                   r = ri + offset_Nabe + radiale_Schrittweite(j);
401
402
                                    if j~=1 & j~=Radialpunkte
403
                                                 ro=r+(radiale_Schrittweite(j+1)-
404
                                                           radiale_Schrittweite(j))/2;
                                                ru=r-(radiale_Schrittweite(j)-radiale_Schrittweite(
405
                                                          j - 1)) / 2;
                                                dr=ro-ru;
406
                                                dA=2*pi*(ro+ru)/2*dr*dphi/360;
407
408
                                                 else
409
410
                                                              if j == 1
411
                                                                       ro=r+(radiale\_Schrittweite(j+1)-
412
                                                                                 radiale_Schrittweite(j))/2;
                                                                       ru=r-(radiale_Schrittweite(j+1)-
413
                                                                                 radiale_Schrittweite(j))/2; %gleiche
                                                                                 Schrittweite nach unten wie nach oben
                                                                                 annehmen
                                                                       dr=ro-ru;
414
                                                                       dA=2*pi*(ro+ru)/2*dr*dphi/360;
415
                                                              end
416
417
                                                    if j==Radialpunkte
418
                                                              ro=r+(radiale Schrittweite(j)-
419
                                                                        radiale_Schrittweite(j-1))/2; %gleiche
                                                                        Schrittweite nach oben wie nach unten
                                                                       annehmen
                                                              ru=r-(radiale_Schrittweite(j)-
420
                                                                        radiale_Schrittweite(j-1))/2;
421
                                                              dr=ro-ru;
422
                                                             dA=2*pi*(ro+ru)/2*dr*dphi/360;
423
                                                    end
424
```

```
425
            end
426
             dA_rad(j) = dA;
427
       end
428
   A_rad = sum(dA_rad);
429
430
   %% Zeitlich gemittelte Ergebnisse
431
   kv = 0;
432
   LinePlot = 0;
433
434
   % Plot Machzahl zeitgemittelt
435
   label_str = 'Ma';
436
   Ma_min = min(min(Ma_sort_ta));
437
   Ma_max = max(max(Ma_sort_ta));
438
   plot_range = [Ma_min Ma_max]; % Druckbereich z.B. von Ma 0.3
439
       bis Ma 0.8
   fun_arcplot(Ma_sort_ta, label_str, plot_range, veloplot, delta_cu,
440
       delta_cr, circ_spacing, y, z, yi, zi, ya, za, y_label, z_label, y_text
       , z_text, ri, h_ch, phi, Umfangspunkte, vanes, arrow_scale, fpfad1,
      kv, LinePlot)
   title({ 'Machzahl - zeitlich gemittelt', ''})
441
   saveas (gcf, 'C:\Users\Balthasar\Documents\Masterarbeit\
442
      CTA PROGRAMME Auswertung Ma ta.png')
   close (gcf)
443
444
   % Plot Turbulenzgrad zeitgemittelt
445
   label_str = 'Tu [\%]';
446
   Tu_min = min(min(Tu_sort_ta));
447
   Tu_max = max(max(Tu_sort_ta));
448
   plot_range = [Tu_min Tu_max]; % Druckbereich z.B. von Ma 0.3
449
       bis Ma 0.8
   fun_arcplot(Tu_sort_ta, label_str, plot_range, veloplot, delta_cu,
450
       delta_cr, circ_spacing, y, z, yi, zi, ya, za, y_label, z_label, y_text
       , z_text, ri, h_ch, phi, Umfangspunkte, vanes, arrow_scale, fpfad1,
      kv, LinePlot)
   title({'Turbulenzgrad - zeitlich gemittelt'; ''})
451
   saveas (gcf, 'C:\Users\Balthasar\Documents\Masterarbeit\
452
      CTA_PROGRAMME\Auswertung\Tu_ta.png')
   close (gcf)
453
454
   % Plot turbulent kinetische Energie zeitgemittelt
455
   label_str = ' k \left[\frac{m^2}{s^2}\right]';
456
   E_kin_min = min(min(E_kin_turb_sort_ta));
457
   E_kin_max = max(max(E_kin_turb_sort_ta));
458
```

```
plot_range = [E_kin_min E_kin_max]; % Druckbereich z.B. von Ma
459
       0.3 bis Ma 0.8
   fun_arcplot(E_kin_turb_sort_ta, label_str, plot_range, veloplot,
460
      delta_cu, delta_cr, circ_spacing, y, z, yi, zi, ya, za, y_label,
      z_label, y_text, z_text, ri, h_ch, phi, Umfangspunkte, vanes,
       arrow scale, fpfad1, kv, LinePlot)
   title ({ 'turbulent kinetische Energie – zeitlich gemittelt '; ' '
461
       })
   saveas(gcf, 'C:\Users\Balthasar\Documents\Masterarbeit\
462
      CTA_PROGRAMME\Auswertung\Turb_kin_Ener_ta.png')
   close (gcf)
463
464
   % Plot Yaw- Angle zeitgemittelt
465
   label_str = 'Yaw-Angle [°]';
466
   Yaw_min = min(min(yaw_angle_sort_ta));
467
   Yaw_max = max(max(yaw_angle_sort_ta));
468
   plot_range = [Yaw_min Yaw_max]; % Druckbereich z.B. von Ma 0.3
469
       bis Ma 0.8
   fun_arcplot(yaw_angle_sort_ta, label_str, plot_range, veloplot,
470
      delta_cu, delta_cr, circ_spacing, y, z, yi, zi, ya, za, y_label,
      z_label, y_text, z_text, ri, h_ch, phi, Umfangspunkte, vanes,
       arrow_scale, fpfad1, kv, LinePlot)
   title({ 'Yaw-Angle - zeitlich gemittelt '; ' '})
471
   saveas (gcf, 'C:\Users\Balthasar\Documents\Masterarbeit\
472
      CTA_PROGRAMME\Auswertung\Yaw_Angle_ta.png')
   close (gcf)
473
474
   % Plot Pitch- Angle zeitgemittelt
475
   label_str = 'Pitch-Angle [°]';
476
   Pitch_min = min(min(pitch_angle_sort_ta));
477
   Pitch_max = max(max(pitch_angle_sort_ta));
478
   plot_range = [Pitch_min Pitch_max]; % Druckbereich z.B. von Ma
479
       0.3 bis Ma 0.8
   fun_arcplot(pitch_angle_sort_ta,label_str,plot_range,veloplot,
480
      delta_cu, delta_cr, circ_spacing, y, z, yi, zi, ya, za, y_label,
       {\tt z\_label}\;, {\tt y\_text}\;, {\tt z\_text}\;, {\tt ri}\;, {\tt h\_ch}\;, {\tt phi}\;, {\tt Umfangspunkte}\;, {\tt vanes}\;,
       arrow_scale, fpfad1, kv, LinePlot)
   title({ 'Pitch-Angle - zeitlich gemittelt '; ' '})
481
   saveas(gcf, 'C:\Users\Balthasar\Documents\Masterarbeit\
482
      CTA_PROGRAMME\Auswertung\Pitch_Angle_ta.png')
   close (gcf)
483
484
   % Videoplot Machzahl
485
   kv = 0;
486
```

```
Anhang
```

```
label\_str = 'Ma';
487
   LinePlot = 1;
488
   plot_range = [ .. ]; % muss eventuell adaptiert werden
489
   for i = 28:313
490
        Zeilenvektor = U_phase_mat(i,:);
491
        Mfeld = reshape(Zeilenvektor, [20, 24]);
492
        for j = 2:2:24
493
             Mfeld(:, j) = flipud(Mfeld(:, j));
494
        end
495
        Mfeld = Mfeld . / a_lokal;
496
        kv = kv + 1;
497
        close (gcf)
498
        fun_arcplot(Mfeld, label_str, plot_range, veloplot, delta_cu,
499
           delta_cr, circ_spacing, y, z, yi, zi, ya, za, y_label, z_label,
           y_text, z_text, ri, h_ch, phi, Umfangspunkte, vanes,
            arrow_scale, fpfad1, kv, LinePlot)
        title({ 'Ma phasengemittelt '; ' '})
500
        drawnow
501
        F(kv) = getframe(gcf);
502
        pause(0.01)
503
504
   end
505
   video = VideoWriter ('C:\Users\Balthasar\Documents\Masterarbeit\
506
      CTA_PROGRAMME \land uswertung \land Ma_pa.MP4', `MPEG-4');
   open(video)
507
   writeVideo (video,F)
508
   close (video)
509
510
511
   % Videoplot Turbulenzgrad
512
   kv = 0;
513
   label\_str = 'Tu [\%] ';
514
   plot_range = [..];
515
        for i = 28:..
516
             Zeilenvektor = Tu phase mat(i,:);
517
             Mfeld = reshape(Zeilenvektor, [20, 24]);
518
             for j = 2:2:24
519
                 Mfeld(:, j) = flipud(Mfeld(:, j));
520
             end
521
             kv = kv +1;
522
             close (gcf)
523
             fun_arcplot(Mfeld, label_str, plot_range, veloplot,
524
                delta_cu, delta_cr, circ_spacing, y, z, yi, zi, ya, za,
                y_label, z_label, y_text, z_text, ri, h_ch, phi,
```

```
Umfangspunkte, vanes, arrow_scale, fpfad1, kv, LinePlot)
              title({ 'Tu phasengemittelt '; ' })
525
              drawnow
526
              F(kv) = getframe(gcf);
527
              pause(0.01)
528
         end
529
    video = VideoWriter ('C:\Users\Balthasar\Documents\Masterarbeit\
530
       CTA_PROGRAMME \land uswertung \land Tu_pa.MP4', MPEG-4');
    open(video)
531
    writeVideo (video,F)
532
    close (video)
533
    close (gcf)
534
535
536
537
        %% TIME SPACE PLOT START Turbulenzgrad
538
     for Span = 1:20; % Radialer Punkt in Kanal (1-20 \text{ ist möglich})
539
540
         \text{Span}_{\text{pro}} = \text{round}((abs(rad_{\text{pos}}(\text{Span})) + ..);
541
         Time_Vektor = [0:..] ./ ..;
542
         \operatorname{Span}_{\operatorname{Vektor}} = \operatorname{linspace}(0, 1.27, 24)';
543
         for i_points = 1:..
544
              i points int = i points + 50; \% Die ersten Messwerte
545
                  sind durch Regelverhalten beeinträchtigt
              Plot_Vektor = zeros(24,1);
546
              Plot_Vektor(1,1) = Tu_phase_mat(i_points_int, Span);
547
              for kj = 2:24
548
                  if mod(kj,2) == 0
549
                       \operatorname{Span_pos} = 20 * \text{kj} - \operatorname{Span} + 1;
550
                  else
551
                       \operatorname{Span_pos} = \operatorname{Span} + (kj-1) * 20;
552
                  end
553
                  Plot_Vektor(kj,1) = Tu_phase_mat(i_points_int,
554
                      Span_pos);
              end
555
556
              Plot_Matrix(:, i_points) = Plot_Vektor(:, 1);
557
         end
558
         y\_rotor = 0.62 .* Time_Vektor -0.12;
559
         y\_stator\_rotor = 1.9 .* Time_Vektor -0.5;
560
         value_min = \min(\min(\text{Plot}_Matrix));
561
         value_max = \max(\max(\text{Plot}_Matrix));
562
         surf(Time_Vektor, Span_Vektor, Plot_Matrix);
563
         colormap jet
564
```

```
shading interp
565
         caxis ([value_min value_max])
566
         c = colorbar;
567
         c.Label.String = 'Tu';
568
         hold on
569
         gcf
570
         z_{lin} = ones(1,..)*12;
571
         line (Time_Vektor, y_rotor, z_lin, 'Color', 'k', 'LineWidth', 2, '
572
              LineStyle', '---');
         % line(Time_Vektor, y_stator_rotor, z_lin, 'Color', 'm', '
573
             LineWidth', 2, 'LineStyle', '--');
         \operatorname{xlim}(\begin{bmatrix} 0 & 2 \end{bmatrix})
574
         ylim ([0 1.27])
575
         titlename1 = cat(2, 'Span', num2str(Span_pro), '\%');
576
         savename1 = cat(2, 'C: \backslash Users \backslash Balthasar \backslash Documents \backslash
577
              Masterarbeit \CTA_PROGRAMME \ Auswertung \TS_Tu_', num2str (
             Span), '.png');
         title(titlename1)
578
         view(2)
579
         xlabel('Zeit t / \tau')
580
         ylabel('\Delta \Theta / \Theta_{HD-Leitrad}')
581
         saveas(gcf, savename1)
582
         close (gcf)
583
    end
584
585
         %% TIME SPACE PLOT ENDE
586
587
         %% TIME SPACE PLOT START Machzahl
588
     for Span = 1:20; % Radialer Punkt in Kanal (1-20 \text{ ist möglich})
589
590
         \text{Span}_{\text{pro}} = \text{round}((abs(rad_{\text{pos}}(\text{Span})) + ..);
591
         Time_Vektor = [0:..] ./ ..;
592
         \operatorname{Span}_{\operatorname{Vektor}} = \operatorname{linspace}(0, 1.27, 24)';
593
         for i_points = 1:..
594
              i_points_int = i_points + 50;
595
               Plot Vektor = zeros(24,1);
596
              Plot_Vektor(1,1) = U_phase_mat(i_points_int, Span);
597
               for kj = 2:24
598
                   if mod(kj,2) == 0
599
                        \operatorname{Span_pos} = 20 * \text{kj} - \operatorname{Span} + 1;
600
                   else
601
                        \operatorname{Span_pos} = \operatorname{Span} + (kj-1) * 20;
602
                   end
603
                   Plot_Vektor(kj,1) = U_phase_mat(i_points_int,
604
```

```
Span_pos);
             end
605
606
             Plot_Matrix(:,i_points) = Plot_Vector(:,1) ./ (a_local(
607
                 Span ,:))';
        end
608
        y\_rotor = 0.62 .* Time_Vektor -0.12;
609
        y\_stator\_rotor = 1.9 .* Time_Vektor -0.5;
610
        value_min = \min(\min(\text{Plot}_Matrix));
611
        value_max = \max(\max(\text{Plot}_Matrix));
612
        surf(Time_Vektor, Span_Vektor, Plot_Matrix);
613
        colormap jet
614
        shading interp
615
        caxis ([value_min_value_max])
616
        c = colorbar;
617
        c.Label.String = 'Ma';
618
        hold on
619
        gcf
620
        z_{lin} = ones(1,..) * 12;
621
        line (Time_Vektor, y_rotor, z_lin, 'Color', 'k', 'LineWidth', 2, '
622
            LineStyle ', '---');
        % line(Time_Vektor, y_stator_rotor, z_lin, 'Color', 'm', '
623
            LineWidth', 2, 'LineStyle', '--');
        \operatorname{xlim}(\begin{bmatrix} 0 & 2 \end{bmatrix})
624
        ylim ([0 1.27])
625
         titlename1 = cat(2, 'Span', num2str(Span_pro), '\%');
626
        savename1 = cat(2, C: \backslash Users \backslash Balthasar \backslash Documents \rangle
627
            Masterarbeit \CTA_PROGRAMME \ Auswertung \TS_Ma_', num2str (
            Span), '.png');
         title(titlename1)
628
         view(2)
629
         xlabel('Zeit t / \tau')
630
         ylabel('\Delta \Theta / \Theta_{HD-Leitrad}')
631
         saveas(gcf,savename1)
632
         close (gcf)
633
   end
634
635
        % TIME SPACE PLOT Machzahl
636
637
   clc
638
   disp('Finished')
639
   %% GRAPHISCHE DARSTELLUNG ENDE
640
```

A3.1 Anmerkungen zum Code

Aus Datenschutzgründen sind im oben angeführten Code teilweise Variablen nicht definiert sondern durch .. ersetzt worden.

- Zeile 12 und 13: Die Drahttemperaturen bei der Messung entsprechen jenen von der Kalibrierung. Die Referenztemperatur ist jene, bei der die Kalibrierung stattfand.
- Zeilen 17 33: Die nachfolgenden Daten müssen für eine Auswertung bekannt sein.
- Zeilen 39 57: Die Messdaten müssen als Koma das Punktzeichen besitzen. Die endRow stellt die Zeile, bis zu der die Daten eingelesen bzw. dann auch ausgewertet werde, dar. Gerade zu Testzwecken empfiehlt sich eine Zahl um die 50.000 Werte.
- Zeilen 109 125: Da die Messpunkte hintereinander abgefahren werden, ist eine Sortierung notwendig. Die Zeilen 295 bis 300 gehören hier ebenfalls dazu. Diese Sortierung dient lediglich dazu, dass die richtigen Werte von statischer Temperatur, statischem Druck und Verdrehwinkel für die Berechnung herangezogen werden.
- Zeile 132: Aus vorangegangenen Fünflochsondenmessungen sind die Strömungswinkel bereits bekannt. Um bessere Ergebnisse zu erhalten wird die Hitzdrahtsonde in die Haupströmungsrichtung gedreht. Diese Verdrehung muss bei der Auswertung berücksichtigt werden.
- Zeilen 155 160: Hier werden die zuvor temperaturkorrigierten Spannungen in Geschwindigkeiten umgerechnet. Dies erfolgt mit den Daten aus der Kalibrierung und erfolgt wiederrum vom Sensorkoordinatensystem ins Sondenkoordinatensystem.
- Zeilen 199 228: Für die phasengemittelte Auswertung muss das Triggersignal korrigiert werden. Um möglichst exakte Ergebnisse zu erhalten, ist eine Interpolation des Anfangswertes notwendig.
- Zeilen 351 396: Die grafische Darstellung der Ergebnisse erfolgt mit der Funktion fun_arcplot. Zuvor müssen jedoch einige Übergabeparameter angegeben bzw. berechnet werden.

A4 Abschließende Bemerkungen des Autors

Das Zuverlässige Testen eines Codes von Programmen ist leider kein einfaches Unterfangen. Obwohl die Auswerteroutinen ansehnliche und im Vergleich zu anderen Messverfahren und deren Auswertealgorithmen in etwa gleiche Ergebnisse liefern, sind Fehler im Code nicht auszuschließen. Dies bitte immer im Gedächtnis behalten.

Für Personen, die sich neu in das Themenfeld der Hitzdrahtanemometrie einarbeiten bzw. speziell für jene Personen, die auf der Masterbeit von Wachter [Wachter, 2018] und dieser hier vorliegenden Arbeit, ihre eigene Thesis schreiben ist aus Sicht des Autors folgende Reihenfolge bei der Einarbeitung sinnvoll und zielführend:

- 1. Kapitel Nummer 3 Geschwindigkeitsmessung in [Nitsche und Brunn, 2006]
- 2. Durchlesen von [Jørgensen, 2005]
- 3. Durchführen von ersten Kalibrierungen bzw. Messungen, wie im Anhang von [Wachter, 2018] angeführt
- 4. Kapitel 3.3 Geschwindigkeitsmessung in [Indiger, 2016]

Die gesamte verwendete Literatur ist digital (wenn verfügbar) in einem Ordner auf dem CTA-Rechner in der Versuchshalle abgelegt.