
Christoph Hubert Klug

Assistance for Measuring Human-Made
Structures with Robotic Total Stations

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

Institute for Computer Graphics and Vision

Advisor

Dipl.-Ing. Dr.techn. Clemens Arth

Institute for Computer Graphics and Vision

Graz, Austria, March 2019

To my beloved wife Karina.

I think the thing to do is enjoy the
ride while you’re on it.

Johnny Depp

v

Abstract

The history of total stations dates back to the 1970s, when manufacturers combined a

theodolite with a laser distance meter for measuring angles and distances with high accu-

racy. The integration of multiple sensors over the years turned the system into a smart

and powerful measurement device. Modern total stations consist of a variety of different

sensors and actuators, a tracking system for reflective prisms, an embedded processor and

a remote control unit to assist users with standard measuring tasks. Such systems allow

assisted targeting and tracking, and apply automatic measurement corrections when using

surveying prisms.

However, with all the sensors in place, traditional methods do not use the full potential

of totals stations, especially when using the reflectorless measurement mode. In particular,

the quality of measuring natural targets highly depends on the user experience.

In this work, we address measurement assistance systems for reflectorless robotic total

stations in the field of surveying and building construction. To target a wide range of

devices, we focus on systems that do not have explicit sensor data synchronization and

do not rely on photogrammetry. Our methods increase the productivity and allows non-

experts to perform accurate and reliable measurements.

In particular, we present an assistance system for accurate targeting of human-made

structures with a robotic total station in reflectorless mode. We reduce the uncertainty and

increase the reliability of corner and edge measurements by applying linear approximations

of the measured structure in real-time.

Furthermore, we present an assisted reflectorless registration of a robotic total station

and a CAD model. Here, we reduce the required user interaction, while retaining accurate

and reliable registration in real-time.

In this work, we use a generalized description of robotic total stations based on robotic

theory. We present all required steps for converting the system model into an efficient de-

sign and simulation ecosystem. This allows exploration of the problem and solution space

beyond the limitations of particular hardware configurations, and seamless exchange of

vii

viii

the simulator and physical devices for prototyping and concept verification. In particular,

we discuss how geometric models of robotic total stations can be extracted automatically

by using the Denavit-Hartenberg convention. We discuss modeling concepts for various

sensor and environment combinations and analyze the simulation uncertainty of an ex-

emplary setup. In addition, we qualify the simulator according to the JCGM 100:2008

Guide to the Expression of Uncertainty (GUM), which describes the evaluation and re-

port of physical measurements and their measurement uncertainties. This allows for a

standardized comparison of similar systems and interpretation of simulation results. We

also present an a-priori qualification method, which allows specifying crucial parameters

for simulation setups in advance to the actual implementation. The method is intended

to serve researchers, software and hardware developers as a guide for designing simulation

and verification systems with similar properties.

Kurzfassung

Totalstationen wurden schon in den 1970ern im Bereich der Geodäsie eingesetzt, um

Horizontalrichtungen, Vertikalrichtungen und Distanzen gleichzeitig zu bestimmen.

Diese Geräte basieren auf der Kombination von Theodoliten mit elektrooptischen

Entfernungsmessern und ermöglichen dadurch hochgenaue Messungen auf große

Entfernungen. Mittels Stellmotoren und zusätzlich verbauten Sensoren werden bei

modernen Geräten nicht nur Umwelteinflüsse kompensiert und Messfehler verringert,

sondern auch Arbeitsabläufe vereinfacht und automatisiert. Beispielsweise gehören

automatisches Messen und Tracking von retroreflektierenden Messprismen, reflektorloses

Messen von diffus reflektierenden Oberflächen, bildgestütztes Anzielen von Objekten,

Funkfernsteuereinheiten sowie die Speicherung und Verarbeitung von Messdaten durch

integrierte Prozessoreinheiten mittlerweile zur Standardausführung.

Trotz der Möglichkeiten, die diese Sensoren und Aktoren bieten, greifen viele

Arbeitsabläufe noch auf traditionelle und eher konservative Ansätze zurück. Speziell bei

der reflektorlosen Betriebsart sind Anwendererfahrung und entsprechende Schulungen

entscheidend für die Qualität und Wiederholbarkeit von Messungen. So sind zum

Beispiel Gebäudeecken wegen ihres hohen Wiedererkennungswertes beliebte Messziele,

verursachen aber durch Kantenabrundungen Messunsicherheiten. Zusätzlich können

Unterschiede zwischen verschiedenen Anwendern beim manuellen Anzielen solcher

Strukturen kaum vermieden werden.

In dieser Dissertation stellen wir zwei Assistenzsysteme für ausgewählte Arbeitsabläufe

für reflektorloses Messen mit Totalstationen vor. Unsere Methoden erhöhen die Produk-

tivität von Arbeitsabläufen und erleichtern speziell Laienanwendern die Durchführung der

ausgewählten Aufgaben. Dabei reduzieren wir die Geräteanforderungen auf wesentliche

Funktionalitäten, um die Portierbarkeit und praktische Umsetzbarkeit zu gewährleisten.

Deshalb vermeiden wir photogrammetrische Bildverarbeitung und arbeiten mit nicht syn-

chronisierten Messdaten.

ix

x

Zum einen betrachten wir ein Assistenzsystem für das reflektorlose Messen von Struk-

turen auf Baustellen. Mittels Labortests und einer Pilotstudie zeigen wir, dass lineare

und lokale Approximationen von Gebäudeecken in bekannte Messabläufe einfach integriert

und die Messunsicherheit und Messwiederholbarkeit dadurch deutlich verbessert werden

können.

Zum anderen beschreiben wir ein Assistenzsystem, um die reflektorlose Verortung einer

Totalstation mit Hilfe eines CAD-Modells im Innenbereich zu vereinfachen. Unser Sys-

tem reduziert die benötigte Benutzereingabe auf die Auswahl und das ungefähre Anzielen

einer Ecke, und entkoppelt damit die Messunsicherheit der Verortung von der manuellen

Zielgenauigkeit.

Des Weiteren leiten wir im Zuge dieser Arbeit eine allgemeine Beschreibung der Po-

sitionskinematik von Totalstationen mit Hilfe von bekannten Methoden aus der Robotik

her. Dazu stellen wir alle notwendigen Schritte vor, um das kinematische Modell in ein

Simulations- und Entwicklungssystem für interaktive Algorithmen überzuführen. Das bie-

tet die Möglichkeit, effizient und explorativ Arbeitsabläufe zu entwickeln und auch über

aktuelle Hardwarelimitierungen hinauszublicken.

Im Detail beschreiben wir, wie Denavit-Hartenberg-Parameter anhand von

Gerätetreiber und Standardfunktionen dieser Instrumente extrahiert werden

können, ohne dafür externe Messaufbauten zu benötigen. Hierbei untersuchen wir

Simulationsmodelle für verschiedene Sensoren und verschiedene Messszenarien hinsichtlich

der zu erwartenden Simulationsunsicherheiten. Neben analytischen Verfahren und

Monte-Carlo-Simulationen diskutieren wir hierzu auch A-Priori-Abschätzungsmethoden.

Zur Verbesserung der Vergleichsmöglichkeiten unserer Methoden und Ergebnisse

mit vergleichbaren Ansätzen stellen wir einen exemplarischen Simulator und dessen

Messunsicherheiten entsprechend des Leitfadens JCGM 100:2008 Guide to the Expression

of Uncertainty (GUM) vor, welcher die Abschätzung und Angabe der Unsicherheit beim

Messen standardisiert.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material, which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present doctoral

thesis.

Date Signature

Acknowledgments

First and foremost I would like to thank my wife Karina for her unbelievable support. She

has been and always will be my love and inspiration.

Special thanks to my team leader and mentor Dr. Clemens Arth, and to my supervisor

Prof. Schmalstieg, who always provided the right amount of guidance and are always

inspiring new ideas.

I am very thankful to my family for always supporting me in reaching my goals.

Especially my brother Ferdinand, my sister-in-law Carmen, and my niece Pia-Kristin

showed incredible patience and generosity in sharing their flat with me when my wife and

I moved to a different area in Austria at the end of my studies. Ferdinand also continuously

provided me with practical advice for my ideas and offered his expertise throughout the

complete project.

I would like to thank our industrial partner for the financial support, the successful

and effective cooperation, and the opportunity for regularly and continuous discussions.

In particular, Thomas Gloor, our team leader on the industrial side, was a source of

inspirations, ideas and feedback. The time, effort and constant support of Thomas made

it even possible at all to bridge the gap between research and industry.

In addition, I also would like to thank my colleagues at the VRVis and the ICG for

the opportunity to work in a dynamic and inventive team on leading-edge technologies

for the industry and my PhD. Our IT and office staff are simple wonderful, and the lively

and critical discussions with our research teams were always constructive and certainly

increased the quality of my work.

This goes out to my family, friends, colleagues and supporters: It was a joyful and wild

journey, and it was worth every second! Thank you so much!

xiii

Contents

1 Introduction 1

1.1 Contribution . 3

1.2 Collaboration Statement . 8

1.2.1 List of Publications . 8

2 Related Work and State of the Art 13

2.1 Traditional Surveying . 13

2.2 Modeling of Robots . 14

2.3 Simulation of Robots . 14

2.4 Visual Assistance for Manual Targeting . 16

2.5 Assistance for Reflectorless Registration . 17

2.6 Discussion . 17

3 A Robotic Theory for RTS Modeling and Simulation 19

3.1 Forward Kinematic Modeling . 20

3.1.1 Workflow . 22

3.1.2 Data Acquisition for DH Parameter Estimation 24

3.1.3 Estimating Circular Features . 26

3.1.4 Correcting the Sign of Circular Features 28

3.1.5 Link Constellation and Frame Alignment 28

3.1.6 First Link Frame . 30

3.1.7 Middle Link Frames . 31

3.1.8 Last Link Frame . 31

3.1.9 Base Transform . 32

3.1.10 Camera Tool Frame . 32

3.1.11 EDM Tool Frame . 35

xv

xvi

3.2 Model Error Estimation . 36

3.3 Inverse Kinematic Modeling . 38

3.4 Consistent Model for Kinematics and Point Transfer Functions 39

3.5 Discussion . 39

4 Kinematic Modeling and Simulation of the Exemplary RTS 43

4.1 Forward Kinematic Model . 43

4.2 Model Simplification . 44

4.3 Simplified Forward Kinematic Model . 45

4.4 Simplified Inverse Kinematic Model . 46

4.5 Model Error Estimation . 47

4.6 Model Optimization . 47

4.7 Interpretation of the Modeling Error . 50

4.8 Using Unity3D as RTS Simulation Engine 54

4.8.1 Modeling RT Sensors, Actuators and Targets in Unity3D 54

4.8.2 Converting Coordinate System Handedness 55

4.8.3 Modeling Sensor Uncertainties in Unity3D 55

4.9 Uncertainties in Simulations . 56

4.9.1 Identifying Sources of Uncertainty in Simulations 56

4.9.2 A-Priori Uncertainty Estimation . 57

4.10 A-Posteriori Uncertainty Estimation . 63

4.10.1 Interpretation of Uncertainty Estimation Results 65

4.11 Discussion . 66

5 Application: Measuring with Support Objects 69

5.1 Extending the Measurement Workflow . 70

5.1.1 Standard Methods: Direct and Nearby Method 71

5.1.1.1 Measurement Flow . 72

5.1.1.2 Calculating the Point . 72

5.1.2 Support Point Method . 72

5.1.2.1 Measurement Flow . 73

5.1.2.2 Calculating the Point . 73

5.1.2.3 Measurement Problem . 74

5.1.3 Support Line Method . 75

5.1.3.1 Measurement Flow . 75

5.1.3.2 Calculating the Support Line 75

5.1.3.3 Intersecting the View Ray with the Support Line 76

5.1.4 Support Plane Method . 76

5.1.4.1 Measurement Flow . 76

5.1.4.2 Calculating the Support Plane 77

5.1.4.3 Intersecting the View Ray with the Support Plane 78

xvii

5.2 Simulation and Experiments . 78

5.2.1 Monte-Carlo Simulations . 78

5.2.1.1 Measurement Targets Variants 78

5.2.1.2 RTS Sensor Uncertainty Simulation 79

5.2.1.3 Complex Collider Definition for Ray Casting 81

5.2.1.4 Additional MCS parameters 82

5.2.1.5 Results . 84

5.2.2 Experiments . 84

5.2.2.1 Measurement Strategy . 88

5.2.2.2 Laboratory Measurements 90

5.2.2.3 Indoor Measurements . 90

5.2.2.4 Outdoor Measurements . 90

5.2.2.5 Pilot Study . 91

5.2.2.6 Outdoor Measurements . 92

5.2.2.7 Results . 92

5.3 Discussion . 93

6 Application: RTS-CAD Registration 99

6.1 RTS Registration . 100

6.1.1 Manual RTS Registration . 101

6.1.2 Assisted RTS Registration . 102

6.1.3 Local Manhattan-Like Corner Estimation With Ordered Sparse

Point Clouds . 103

6.1.4 Automatic Pose Refinement Using Additional Samples 108

6.1.5 Robust Sampling . 109

6.1.6 Efficient Sample Measurement Order 109

6.1.7 ICP Pose Refinement . 111

6.2 Experiments . 111

6.2.1 Test Setup and Test Coverage . 112

6.2.2 Registration Results . 116

6.3 Discussion . 116

7 Conclusion 119

7.1 Particular Achievements . 119

7.2 Developments, Forecasts and Trends of RTS in the Construction Industry . 120

7.3 Final Statements . 121

A Math Primer 123

A.1 Scalar Operations . 123

A.2 Linear Algebra . 124

A.2.1 Matrix Operations . 124

xviii

A.2.2 3D Point Clouds . 125

A.2.3 3D Primitives . 125

A.3 SVD . 125

A.3.1 Fitting a Plane to a Point Cloud Using SVD 126

A.3.2 Fitting the Relative Euclidean Transformation between Two Or-

dered Point Sets Using SVD . 126

A.3.3 Fitting Relative Euclidean Transformation Between Two Coordinate

Frames Using SVD . 128

A.4 RTS Camera Projection Matrices . 128

A.4.1 Camera Projection Matrix . 128

A.4.2 Point Reprojection From Image to World 129

B Implementation Details of the RTS Software Development System 131

B.1 Motivation . 132

B.2 Software System Architecture . 133

B.2.1 Software Modules . 135

B.3 RPC Code Generation . 136

B.4 Unity3D as Simulator Frontend . 137

B.4.1 Memory Layout, Data Flow and Synchronization 139

B.4.2 Converting Coordinate System Handedness 140

B.5 Discussion . 144

C List of Acronyms 147

D About the Author 149

Bibliography 151

1
Introduction

Total stations are electronic measurement devices, which are used in surveying and con-

struction [106].

The history of total stations dates back to the 1970s when manufacturers combined a

theodolite with a laser distance meter for measuring angles and distances simultaneously

with high precision and accuracy.

A theodolite consists of a movable telescope, which is mounted on a fixed base. The

telescope can rotate horizontally and vertically and provides angular readouts. These

angles can be used to relate multiple measured targets. Electronic theodolites contain

rotary encoders or inclinometers for reading out angular values automatically. Traditional

devices provide an optical telescope and allow manual targeting of interest points (IP)

in high distances. A crosshair in the optical eyepiece indicates the sighting axis. For

convenience of operation, the instrument can be mounted on a tripod.

Appearance and operating principle of total stations are similar to modern theodolites,

except for the additional electronic distance meter (EDM), which is built into the telescope

housing. The laser ray is aligned with the sighting axis of the theodolite and is again

indicated by the crosshair in the optical eyepiece. Compared to theodolites, which are

designed to measure angles only, total stations can additionally measure distances and

3D points. Sensor data fusion, conversion between different measurement representations,

and estimation of control parameters for targeting a particular IP are done internally by

firmware or device drivers.

Recent devices do not have an optical eyepiece, but one or more cameras to allow

remote device controlling. Modern instruments include additional components, such as

temperature and gravity sensors, a compass, an automatic target tracking unit, a GPS

module, servos, an embedded computer and a graphical user interface (UI). These devices

are referred to as image-assisted robotic total station, or short RTS, in this work.

A simple geometric model for an RTS is a spherical coordinate system with no parallax

effects between the coordinate systems of sensors and actuators. Adjustment screws are

1

2 Chapter 1. Introduction

zinstrument (zenith)
spherical RTS model

xinstrument
yinstrument

camera view frustum

of current pose

critical region around θ = 𝜋

(EDM data invalid)

vertical angle 𝜃𝑖

zEDM, zcam

tripod

RTS

critical region at 𝜃 = 0

horizontal angle 𝜑𝑖
critical region at θ = 𝜋

Figure 1.1: Actuators, sensors and special regions of an exemplary RTS.

used to approximate the ideal model during hardware calibration. Detailed models can

be used to allow for better calibration between the individual components and to include

camera parameters, sensor nonlinearities, and temperature influences. High-end devices

additionally compensate various system effects automatically, such as inaccuracies in pro-

duction, sensor drifts and environmental influences [106]. Figure 1.1 shows a modern RTS

with one camera and the superimposed, parallax-free geometric model. Details about

RTS, device components, calibration and models can be found in the book written by

Uren and Price [106] and in the work of Amann et al. [3].

A comparison of modern RTS and selected properties is provided in Table 1.1. Virtually all

RTS nowadays support at least two targeting modes, namely measuring with and without

reflectors.

In the former case, the measurement object is a reflective target. Reflective targets

are retro-reflective prisms or tapes that are specially designed to lower the measurement

error. 3D measurements up to a few kilometers are possible, and automatic targeting and

target tracking can be used to simplify certain workflows [106].

The reflectorless mode allows measuring natural targets with diffuse surface reflection

directly and therefore does not require physical installations or additional equipment.

1.1. Contribution 3

However, the distance range in this situation is significantly lower, and higher measurement

uncertainties are to be expected. Typical update rates for 3D measurements in this mode

ranges from 0.5 to 50 Hz, not counting the required time to steer the device between

different directions [31].

Modern devices have a variety of applications. General use cases for RTS include mea-

suring and registering natural and artificial features in 2D and 3D maps. Examples for

applications are: topographic surveying, setting out features like pipes, land and house

boundaries, roads and tunnels, and as-built surveying. Other applications include record-

ings and reconstructions on archaeological sites, crime scenes and road traffic accidents,

and quality control on sites.

Despite the increasing technological progress in computer vision and robotics in recent

decades, many RTS tasks still require high user experience for robust, reliable and repeat-

able measurements. Figure 1.2 shows common measurement configurations and targeting

challenges. Ehrhart [31] provides a recent treatise on applications and calibration methods

for image-assisted RTS. The author emphasizes that many traditional workflows use the

RTS image data mainly for targeting and documentation, and highlights the potential

benefits of image-assisted algorithms for various scenarios.

1.1 Contribution

A common task in the building construction is the reflectorless measurement of natu-

ral targets. Corners and edges of human-made structures are preferred natural targets

in building construction because of their high recall value. While most modern devices

include assistance systems for measuring reflective targets, natural targets have a huge

variety and therefore are still measured manually [31]. Image-based targeting systems

are limited by camera resolution, environmental influences, model and calibration errors,

shadow effects and low-contrast targets. In addition, laser beam divergence, angular reso-

lution of the theodolite, and targeting uncertainty increase the measurement uncertainty

and reduce the reliability of non-planar targets. These effects render fully automated

approaches critical for surveying.

In this work, we present a vision-based assistance system for measuring Manhattan-like

structures. The system combines user input with linear approximations of the target, pro-

vides visual feedback and user-control in real-time. In particular, we test a variety of linear

3D approximations, which we call support objects. We explicitly avoid photogrammetric

approaches to cover a broad range of systems and to include parallax-free systems without

additional overview cameras. We show that our method can reduce the uncertainty of

such measurements, without compromising the task efficiency.

Another common task in building construction is the registration of RTS measurements

4 Chapter 1. Introduction
T

a
b

le
1.1:

C
om

m
on

p
rop

erties
o
f

m
o
d

ern
R

T
S

as
p

u
b

lish
ed

b
y

L
ach

at
et

al.
[70],

b
u

t
ex

ten
d

ed
b
y

recen
t

p
rice

valu
es

an
d

th
e

m
o
d

ern
d

ev
ice

T
rim

ble
R

P
T

6
0
0
.

(C
ou

rtesy
T

op
con

P
osition

in
g

S
y
stem

s
In

c.,
L

eica
G

eosy
stem

s
In

c.,
T

rim
b

le
In

c.)

p
rop

erty
T

op
con

IS
-3

L
eica

N
ova

M
S
60

T
rim

b
le

S
X

1
0

T
rim

b
le

R
P

T
6
00

d
ev

ice
im

ag
e

R
e
le

a
se

D
a
te

a
n

d
P

ric
e

relea
se

d
a
te

20
11

2015
201

6
2
01

8

a
p
p
rox

im
a
te

p
rice

(2
0
18)

15×
10

3
E

u
ro

45×
10

3
E

u
ro

35×
1
0

3−
6
5×

10
3

E
u
ro

2
0×

1
0

3
E

u
ro

A
n

g
le

a
n

d
D

ista
n

c
e

M
e
a
su

re
m

e
n
t

a
n
gu

lar
accu

racy
1
−

5
′′

1
′′

1
′′

1
′′

E
D

M
m

ax
im

u
m

ran
g
e

(p
rism

)
5×

10
3m

10×
10

3m
5.5×

10
3m

1
0
0
m

E
D

M
m

a
x
im

u
m

ra
n
ge

(refl
ectorless)

2×
10

3m
2×

10
3m

0.8×
10

3m

tra
ck

in
g

ra
n
ge

-
1×

10
3m

8
00m

1
0
0
m

E
D

M
d
ista

n
ce

accu
ra

cy
(p

rism
)

2m
m

+
2p

p
m

1m
m

+
1.5p

p
m

1m
m

+
1.5p

p
m

(IS
O

1
7
1
23

-4
)

3
m

m
@

5
0m

+
1
0
p
p
m

(IS
O

17
1
2
3
-5

)
E

D
M

d
istan

ce
a
ccu

racy
(refl

ecto
rless)

3m
m

M
S
E

(fi
n
e

m
o
d
e

u
p

to
250m

)
10m

m
+

10p
p
m

M
S
E

(lo
n
g

m
o
d
e

u
p

to
2

ex
p

3m
)

2m
m

+
1.5p

p
m

(IS
O

1712
3-3)

2m
m

+
1.5p

p
m

(IS
O

1
7
1
2
3-4)

m
ea

su
rem

en
t

tim
e

(p
rism

,
std

.)
-

1.5s
1.6s

2.5
s

m
ea

su
rem

en
t

tim
e

(refl
ecto

rless,
std

.)
-

1.5s
1.2s

3
−

15
s

m
ea

su
rem

en
t

tim
e

(p
rism

,
tra

ck
in

g
)

-
-

-
0.4

s

m
easu

rem
en

t
tim

e
(refl

ectorless
tra

ck
in

g)
-

-
-

0.4
s

Im
a
g
in

g

n
u
m

b
er

a
n
d

ty
p

e
of

cam
eras

w
id

e-a
n
gle

+
coax

ial
overv

iew
+

telescop
e

overv
iew

+
p
rim

a
ry

+
co

a
x
ia

l
telescop

e

reso
lu

tion
1.3×

10
6

p
ix

el
5×

10
6

p
ix

el
5×

10
6

p
ix

el
0
.3

6
ex

p
6

p
ix

el

fra
m

e
ra

te
u
p

to
1
0

H
z

u
p

to
20

H
z

u
p

to
15

H
z

-

S
c
a
n

n
in

g

m
ax

im
u
m

ra
te

2
0

p
ts/s

1
ex

p
3

p
ts/s

@
300m

26.6
ex

p
3

p
ts/

s
-

m
ax

im
u
m

ra
n
ge

2×
10

3m
2×

10
3m

@
1

H
z

0.6×
10

3m
-

scan
n
in

g
ran

g
e

n
oise

-
1m

m
@

50m
1
.5

m
m

@
50

m
-

1.1. Contribution 5

targeting

challenges

when using

reflectorless

mode

survey

point

pole-mounted

reflective target, used for

measuring a survey point

reflective

sticker

2D or 3D network of

survey and measurement

points

Figure 1.2: Typical RTS measurement setup for 2D and 3D mapping. Reflectors can be
mounted on a measurement pole or fixed to a surface (courtesy Leica Geosystems AG.).
Triangulation, trilateration, triangulateration and traversing are used to register
measurements by using previously measured points [106].

with respect to a CAD model. Here, fast RTS registration without dedicated control

points is desired. Such registration is used for planning and documenting installations, for

placing physical markers for assembly drills, and for planning reconstructions.

We present an assistance system for the registration of sparse RTS measurements

with respect to a polygonal CAD model. Similar to the workflow proposed by Bosché

[16, 17], we split the procedure into coarse and fine registration. The modular approach

allows adaption of the system to different measurement tasks, such as varying the coarse

registration method or skipping the fine registration step. With our workflow, coarse

registration remains mainly user-driven. However, compared to traditional approaches,

our method reduces the required user interaction and the accuracy demands on the manual

measurements from accurate targeting multiple points to defining the current visible area

in the CAD model. The coarse registration is used for selecting potential visible areas in

the CAD model and for automatic sampling additional points to refine the registration.

The system further supports visual overlay of the CAD model to allow for visual inspection

of the registration on the construction side and to increase the registration reliability. We

6 Chapter 1. Introduction

show that our method is in the same accuracy range as traditional methods, but has

significantly lower user-constrains for indoor-registration. In particular, we show that the

Iterative Closest Point (ICP) algorithm can be beneficial in certain scenarios even with

the sparsity of RTS measurement sets.

The workflows mentioned above are of user-centeric and interactive nature, which optional

overlay of visual content for verification reasons. While RTS are powerful devices with

a long history in surveying and construction, many problems arise when exploring user-

centric, interactive or tele-operated schemes.

To begin with, RTS were not designed for computer vision or augmented reality appli-

cations, and special research requirements on driver and firmware were not met by RTS,

as stated by Ehrhart [31].

Likewise, synchronized data, low latency, and hardware-in-the-loop (HIL) approaches

for algorithm design and verification are core requirements for such applications, as de-

scribed in the book by Schmalstieg and Höllerer [92]. However, as the traditional RTS

tasks for non-reflective targets built upon measuring individual targets manually, the focus

is on power efficiency, error-free operation and high accuracy rather than on low latency

of the data stream. Conversion of the raw data to 3D measurements is done internally by

the device, and therefore no synchronization data is required on the application layer.

Similar situations in robotic research arises when exploring prototypical hardware,

working on the frontier of the latest technological developments or experimenting with

leading-edge devices: Properties, drivers and documentations are often work-in-progress,

and details are company secrets during early design phases.

For example, accurate Augmented Reality (AR) systems rely on low discrepancies be-

tween hardware and model, but also require low latency to maintain visual coherency and

reasonable reactivity for user interactions; following the principle of locality, measurement

and model data conversion should be handled locally; continuous hardware access increases

the latency and therefore should be avoided if possible; dynamic movement predictions

require a proper geometric device model and at least time stamps for all sensor data.

However, with insufficient access to raw sensor data, no possibility to modify firmware

and drivers, wireless communication channels, and without detailed insight into the ge-

ometric models and the applied corrections, the possibilities for local motion prediction

and data conversion on the application layer are limited.

Finally, environmental effects can often not be controlled or modeled by individual

error sources; the installation of physical targets is time consuming, the exploration of

device variations not possible without adjustments of the physical device.

As a result, maintaining a suitable hardware and software ecosystem for RTS research

can involve a disproportionate effort, or, as worst-case scenario, is not possible at all.

In this work, we use hardware simulation with appropriate device and environmental

models to overcome many of the issues mentioned above.

We provide a complete workflow to extract the geometric model parameters using the

1.1. Contribution 7

Denavit-Hartenberg (DH) convention [28]. In particular, we extend the modeling methods

of Barker [10] and Rajeevlochana et al. [84] for RTS. We further present a system to analyze

the discrepancy between the extracted models and the models used by hardware drivers.

While extracted DH parameters can be used with existing robotic simulators, we present

the required steps for converting the extracted geometric model to a custom RTS prototyp-

ing and simulation framework. Here, the simulation uncertainty is a crucial information

for designing simulation setups and for interpreting simulation results for RTS measure-

ment setups. We provide methods to analyze the simulation uncertainty analytically and

with Monte Carlo experiments. While standard Monte Carlo experiments are limited to

a-posteriori qualification of a particular configuration, we present a generalized method

for a-priori qualification of RTS simulators and of systems with similar hardware configu-

rations.

To summarize, the main objective of this work is to enhance RTS jobs by means of novel

user-assistance systems for two selected scenarios.

A secondary objective is to provide a complete workflow for generating efficient ecosys-

tems for developing and testing interactive workflows, even beyond the actual hardware

capabilities of a particular instrument.

Figure 1.3 shows the taxonomy of the objectives, contributions and the related chapters

of this work.

RTS device

(prototype)
RTS model

RTS

simulator

App 1: assisted corner

measurement

App 2: assisted

RTS/CAD registration

field application

challenges

field application

challenges

workflow

requirements

workflow

requirements

(a) (b)

(c)

(d)

Chapter 1-2
Introduction

Related Work

Chapter 3
Modeling

Chapter 4
Simulation

Chapter 5
Corner Meas.

Chapter 6
Registration

Chapter 7
Conclusion

Figure 1.3: Taxonomy of objectives, contribution and document structure of this thesis.
The main goal of this work is to ease corner measurement and device registration by
novel assistance systems without specific image analysis. RTS modeling and simulation
increases the efficiency of designing and testing of interactive algorithms and when
working with RTS prototypes. Our contributions are in the field of: (a) device modeling
[66], (b) realtime simulation [63], (c) assisted corner measuring [67], and (d) RTS-CAD
registration [64].

8 Chapter 1. Introduction

1.2 Collaboration Statement

This work was enabled by Graz University of Technology and by the Competence Center

VRVis. VRVis is funded by a grant from the Competence Centers for Excellent Technolo-

gies (COMET) 843272.

1.2.1 List of Publications

My work in this project at the Institute for Computer Graphics and Vision (TU Graz)

and at the Competence Center for Virtual Reality and Visualization (VRVis Vienna) led

to the five peer-reviewed publications, which are listed below in chronological order1.

Title: Measuring Human-made Corner Structures with a Robotic Total
Station using Support Points, Lines and Planes [65]

Authors: Klug, Christoph and Schmalstieg, Dieter and Arth, Clemens

In: Proceedings of the International Conference on Computer Vision Theory
and Applications (VISAPP)

Published: February 2017

Contributions: Klug, Christoph first author, major contributor in terms of concept,
design, implementation, test and publication of the
work

Schmalstieg, Dieter supervisor; revising and final approval of the publica-
tion

Arth, Clemens advisor; managing academic aspects of the project,
revising and final approval of the publication

Gloor, Thomas contributor; managing industrial aspects of the
project

Abstract: Measuring non-planar targets with a total station in reflectorless mode is
a challenging and error-prone task. Any accurate 3D point measurement
requires a fully reflected laser beam of the electronic distance meter and
proper orientation of the pan-tilt unit. Prominent structures like corners
and edges often cannot fulfill these requirements and cannot be measured
reliably. We present three algorithms and user interfaces for simple and
efficient construction-side measurement corrections of the systematic error,
using additional measurements close to the non-measurable target. Post-
processing of single-point measurements is not required with our methods,
and our experiments prove that using a 3D point, a 3D line or a 3D plane
support can lower the systematic error by almost a order of magnitude.

1Some passages of these publications are included verbatim in this work.

1.2. Collaboration Statement 9

Title: A Complete Workflow for Automatic Forward Kinematic Model
Extraction of Robotic Total Stations Using the Denavit-
Hartenberg Convention [66]

Authors: Klug, Christoph and and Schmalstieg, Dieter and Gloor, Thomas and Arth,
Clemens

In: Journal of Intelligent and Robotic Systems (JIRS)

Published: September 2018

Contributions: Klug, Christoph first author, major contributor in terms of concept,
design, implementation, test and publication of the
work

Schmalstieg, Dieter supervisor; revising and final approval of the publica-
tion

Gloor, Thomas managing industrial aspects of the project, revising
and final approval of the publication

Arth, Clemens advisor; managing academic aspects of the project,
revising and final approval of the publication

Abstract: Development and verification of real-time algorithms for robotic total sta-
tions usually require hard- ware-in-the-loop approaches, which can be com-
plex and time-consuming. Simulator-in-the-loop can be used instead, but
the design of a simulation environment and sufficient detailed modeling of
the hardware are required. Typically, device specification and calibration
data are provided by the device manufacturers and are used by the device
drivers. However, geometric models of robotic total stations cannot be used
directly with existing robotic simulators. Model details are often treated
as company secrets, and no source code of device drivers is available to
the public. In this paper, we present a complete workflow for automatic
geometric model extraction of robotic total stations using the Denavit-
Hartenberg convention. We provide a complete set of Denavit-Hartenberg
parameters for an exemplary robotic total station. These parameters can
be used in existing robotic simulators without modifications. Furthermore,
we analyze the difference between the ex- tracted geometric model, the
calibrated model, which is used by the device drivers, and the standard
spherical representation for 3D point measurements of the device.

10 Chapter 1. Introduction

Title: Measurement Uncertainty Analysis of a Robotic Total Station
Simulation [63]

Authors: Klug, Christoph and Arth, Clemens and Schmalstieg, Dieter and Gloor,
Thomas

In: Proceedings of the IEEE International Conference on Industrial Electronics,
Control, and Instrumentation (IECON)

Published: October 2018

Contributions: Klug, Christoph first author, major contributor in terms of concept,
design, implementation, test and publication of the
work

Arth, Clemens advisor; managing academic aspects of the project,
revising and final approval of the publication

Schmalstieg, Dieter supervisor; revising and final approval of the publica-
tion

Gloor, Thomas managing industrial aspects of the project, revising
and final approval of the publication

Abstract: The design of interactive algorithms for robotic total stations often requires
hardware-in-the-loop setups during software development and verification.
The use of real-time simulation setups can reduce the development and test
effort significantly. However, the analysis of the simulation uncertainty
is crucial for proper design of simulation setups and for the interpreta-
tion of simulation results. In this paper, we present a real-time simulation
method for modern robotic total stations. We provide details for an ex-
emplary robotic total station including models of geometry, actuators and
sensors. The simulation uncertainty was estimated analytically and verified
by Monte Carlo experiments.

1.2. Collaboration Statement 11

Title: Semi-Automatic Registration of a Robotic Total Station and a
CAD Model Without Control Points [64]

Authors: Klug, Christoph and Arth, Clemens and Schmalstieg, Dieter and Gloor,
Thomas

In: Proceedings of the IEEE International Conference on Industrial Electronics,
Control, and Instrumentation (IECON)

Published: October 2018

Contributions: Klug, Christoph first author, major contributor in terms of concept,
design, implementation, test and publication of the
work

Arth, Clemens advisor; managing academic aspects of the project,
revising and final approval of the publication

Schmalstieg, Dieter supervisor; revising and final approval of the publica-
tion

Gloor, Thomas managing industrial aspects of the project, revising
and final approval of the publication

Abstract: The accurate registration of a robotic total station with respect to a given
CAD model is a crucial task in the construction industry. Common reg-
istration techniques rely on a reference network of control points in the
CAD model. One must establish correspondences between control points
in the CAD model and measured points in the field. Usually physical
markers or natural points of interest are selected as control points. We
present a user-guided algorithm for simple and efficient registration of a
robotic total station with a CAD model in indoor environments without
the need for control points. The user interaction is reduced to selecting
a local Manhattan-like corner structure for initial model alignment; accu-
rate registration of the device is carried out automatically. Our algorithm
relies on angle and distance measurements only and, therefore, is not lim-
ited to vision-based robotic total stations. In particular, we propose a new
algorithm for robust Manhattan corner extraction.

12 Chapter 1. Introduction

Title: On Using 3D Support Geometries for Measuring Human-made
Corner Structures With a Robotic Total Station [67]

Authors: Klug, Christoph and Schmalstieg, Dieter and Gloor, Thomas and Arth,
Clemens

In: Computer Vision, Imaging and Computer Graphics – Theory and Applica-
tions (Revised Selected Papers of VISIGRAPP 2017)

Published: January 2019

Contributions: Klug, Christoph first author, major contributor in terms of concept,
design, implementation, test and publication of the
work

Schmalstieg, Dieter supervisor; revising and final approval of the publica-
tion

Gloor, Thomas managing industrial aspects of the project, revising
and final approval of the publication

Arth, Clemens advisor; managing academic aspects of the project,
revising and final approval of the publication

Abstract: Performing accurate measurements on non-planar targets using a robotic
total station in reflectorless mode is prone to errors. Besides requiring a
fully reflected laser beam of the electronic distance meter, a proper orien-
tation of the pan-tilt unit is required for each individual accurate 3D point
measurement. Dominant physical 3D structures like corners and edges of-
ten do not fulfill these requirements and are not directly measurable. In
this work, three algorithms and user interfaces are evaluated through simu-
lation and physical measurements for simple and efficient construction-side
measurement correction of systematic errors. We incorporate additional
measurements close to the non-measurable target, and our approach does
not require any post-processing of single-point measurements. Our experi-
mental results prove that the systematic error can be lowered by almost an
order of magnitude by using support geometries, i.e. incorporating a 3D
point, a 3D line or a 3D plane as additional measurements.

2
Related Work and State of the Art

Without the claim of completeness, this section provides literature about RTS funda-

mentals. We review published work about RTS that is related to device modeling and

simulation, reflectorless measurements of natural targets and RTS assistance algorithms

for device registration. In particular, the focus is on Manhattan-like corner measurements

and device registration with respect to a CAD model.

2.1 Traditional Surveying

Traditional surveying methods are described in Uren and Price [106], Coaker [23] and

Zeiske [111]. The authors provide introductions to surveying devices and methods, includ-

ing standardized mathematical models, measurement methods, common workflows and

error estimations. They also provide extensive descriptions of the individual components

of total stations, such as GPS modules, laser range meters, and the electronic theodolite.

In addition, basic surveying and measurement methods, surveying hardware, software and

tools, and possible sources of errors are handled. A common RTS measurement setup is

shown in Figure 1.2.

Modern total stations support image-based measurement methods, such as steering

the RTS to selected pixels, selecting and visualizing 3D targets in the image or visual-

izing metadata. For instance, the Topcon device [25] includes image-assisted targeting

and measurement features for corners and edges, but without giving any scientific details

or uncertainty assessments of the features. Coaker [23] explores quality and reliability

properties of reflectorless RTS measurement methods, and also discusses problems with

measuring corners and edges directly.

The references mentioned above provide fundamentals of reflectorless measuring. However,

the authors do not address measurement assistance or simulation and verification systems

for interactive workflow.

In the following sections, we provide published work related to the individual topics.

13

14 Chapter 2. Related Work and State of the Art

2.2 Modeling of Robots

Kinematic modeling and model identification has been addressed extensively in the litera-

ture, using different models and notations [26, 28, 42, 43, 97, 101]. In 1876, Reuleaux [86]

introduced the concept of kinematic chains. Almost one century later, in 1955, Denavit

and Hartenberg [28] formalized a systematic notation for kinematic chains, which later

became known as DH convention. In 1988, Veitschegger and Wu [108] extended the nota-

tion to describe complete geometric systems by adding base and tool transforms. The DH

notation and it variants are still among the most used methods for identifying the kine-

matics of serial robots. A general introduction to the field of robotics, including a detailed

description of the DH convention and its variants, can be found in the book by Siciliano

and Khatib [98]; a comparison of different DH convention variants and an extensive study

of geometric linkages can be found in book by McCarthy and Soh [74].

Barker [10] describes a vector-algebra approach for extracting geometric properties of as-

sembled robotic arms. Rajeevlochana et al. [84] present a description for automatic model

parameter estimation using a modified version of the algorithm based on line geometry.

More details about their workflow, data acquisition, model extraction, and modeling error

evaluation are given in the work of Hayat et al. [45] and in the work of Chittawadigi et al.

[22].

The work mentioned above is not tailored to RTS, hence, device-specific algorithm steps

and numerical optimization of extracted RTS models are not addressed by the authors.

Furthermore, they do not mention downstream numerical optimization of the estimated

models.

2.3 Simulation of Robots

Nowadays simulation of robotic devices and the interaction with the surroundings are

widely used in research and engineering. This leads to a huge variety of programs and

libraries for robot design and simulation, such as USARSim [20], Gazebo [68], Robocad

[99], ABB RoboStudio [24], WorkcellSimulator [103], OpenSim [27], V-REP [87], Robo-

analyzer [83]. However, some of these programs are commercially available only. Others

are dedicated to specific robots and tasks that do not fit RTS well, or are even out-dated.

Furthermore, heterogeneous systems, mobile clients and seamless exchange of simulator

and hardware on top of an existing application programming interface (API) are not sup-

ported.

Mattingly et al. [73] describe the benefits of Unity3D for robot design and simulation,

using Unity3D as the primary authoring tool. The work covers basic concepts such as

design and implementation of the skeletal structure, geometry based on rigid bodies and

2.3. Simulation of Robots 15

animations that control object properties over time. While the work provides a good

overview of concepts for robotic simulations, it does not describe the extraction of device

models from existing hardware or a sufficient mathematical formulation.

Andaluz et al. [5] presented a Unity3D-based simulator for robotic teleoperation applica-

tions, which allows algorithm development in Matlab. Similar to Alexandrescu et al. [2],

the authors used shared memory for inter-process communication (IPC) to enable low la-

tency data communication between the components. In their work, the authors model and

simulate the robotic arm with kinematic and dynamic equations. Andaluz et al. provide a

more detailed mathematical formalism of related robotic devices [4, 6]. The authors focus

on simulating a robotic arm before physical construction and on developing low-level and

closed-loop control systems. Furthermore, no analysis of the simulation uncertainty which

is crucial for RTS applications is provided.

Meng et al. [77] introduced the real-time 3D simulation system ROSUnitySim, which

can simulate multiple unmanned aerial vehicle (UAV) using the Robot Operation System

(ROS) and Unity3D. This system allows experiments with ROS and multiple unmanned

aerial vehicles, image sensors and light detection and ranging (LIDAR) sensors. Image

and LIDAR sensors are modeled by Unity3D scripts, data packages between the individual

components are routed by a Linux based communication server using TCP/IP sockets.

The proposed simulator distributes computational expensive tasks, like ray casting based

LIDAR data generation to multiple processes or workstations by using the network based

client/server concept of Unity3D. The authors implementing an autonomous search task

for multiple UAV to demonstrate the benefits of their system. A more complete description

of the system is provided in later publication [49], but no details about geometric sensor

and device modeling are included; multi-language bindings for heterogeneous systems are

not directly supported. However, the aim of their work is algorithm development and

simulation on top of ROS only.

Mattingly et al. [73] use Unity3D as primary authoring tool for robot design and

simulation. Specifically, they talk about different topics related to rigid-body kinematics

for skeletal structures, including a collection of authoring scripts and assets for Unity3D.

A simulator for tele-operated robots is described by Andaluz et al. [5]. Their work

focuses on simulating closed-loop control systems with Unity3D and Matlab. They use

shared memory for exchanged data between the two programs to ensure low latency,

and present promising results for path following and bilateral tele-operation tasks. As

demonstration, the authors implemented an autonomous search task, with simultaneous

localization and mapping (SLAM) and path planning for multiple drones. A more complete

description of the system is provided in another publication [49], but no details about

sensor and device modeling are included.

In this work, we provide a complete workflow for the design, implementation and char-

16 Chapter 2. Related Work and State of the Art

acterization of RTS simulators. We also consider the simulation uncertainty of real-time

robotic systems, which we think is essential for RTS simulation. Our methods are aimed

to increase the efficiency, reliability and comparability of designing and testing interactive

RTS simulators and algorithms. To the best of our knowledge, these aspects are not con-

sidered as major success factors in the work mentioned above and therefore have not been

sufficiently addressed.

2.4 Visual Assistance for Manual Targeting

Many modern total stations are already equipped with one or more camera and image-

based measurement methods, like steering the total station to selected pixels, selecting

and visualizing 3D targets in the image or visualizing metadata. Scherer et al. [89, 91]

investigated possible benefits of image-based features for architectural surveying. Zeiske

[111] describes basic surveying methods and offline corrections for 2D corner measurements

using simple geometry. However, no online method or image-based geometric correction

are mentioned.

Ehrhart [31] provides a recent overview, concepts and applications for image-assisted to-

tal stations. He reviews related state-of-the-art approaches and selected patents, and

discusses assessment methods for device comparison, calibration, monitoring and target

tracking. In a previous work [32], the same author teamed up with colleagues to investigate

image-processing methods for deformation monitoring. The authors detect movements of

complete regions by comparing image patches acquired with the camera of a total station,

without explicitly performing any structural analysis of building corners or edges.

Another vision-based system described by Siu et al. in [100] uses close range pho-

togrammetric solution for 3D reconstruction and target tracking by combining several

total stations and cameras.

Selected image-based modeling workflows for as-built visualization on construction

sites are compared by Jadidi et al. in [56]. The authors reconstruct 3D point clouds and

register as-built data to as-planned data. In particular, a case study on the image capturing

approach should test the hypothesis whether or not an unordered photo collection, taken

by field staff for regular progress report, is sufficient for image-based modeling and for

visualization of as-built data. They compare the results to an guided recording approach,

and conclude that the unordered photo collection is insufficient for visualization, as the

capturing effort is not practicable, the registration success core of images is generally low,

and only sparse point clouds are generated.

Fathi et al. [36] generate 3D wire diagrams of a roof using video streams from a cali-

brated stereo camera set. Their algorithm combines feature point matching, line detection

and a-priori knowledge of roof structures to a structure-from-motion pipeline. Even if the

results of these approaches are quite impressive, none of them can be applied for measur-

ing corner and edge structures from a single position. Fathi et al. further note accuracy

2.5. Assistance for Reflectorless Registration 17

problems of the reconstructed models.

Closely related to our approach is the work by Juretzko [60], who provides conceptional

descriptions for not directly measurable targets using intersections of 3D rays, lines and

planes. However, no comparative study of the methods, no detailed mathematical descrip-

tion and no suitable user interface are provided. Furthermore, the author mentions only

minimal sets of measured points for each method without any model fitting approach.

2.5 Assistance for Reflectorless Registration

The ICP algorithm and it variants are widely used practical solutions to the object regis-

tration problem. The algorithm was first introduced by Chen and Medioni [21], and Besl

and McKay [14]. Mehdi [76] provides a comprehensive study of rigid body registration

and error evaluation using the ICP algorithm. However, to the best of our knowledge, no

complete system for the registration of an RTS with respect to a CAD model was pro-

posed so far. We describe robust initialization and ICP sample selection for the proposed

problem and an optimization for the measurement order.

In our work, local Manhattan-like structure detection and pose estimation is used for

initializing the registration flow. The low measurement rate of RTS requires a robust

algorithm for sparse point clouds. Hulik et al. [50] present a robust plane extraction al-

gorithm based on the Hough transform [48]; Schnabel et al. [93] use the Random Sample

Consesus (RANSAC) framework for robust shape extraction. However, both methods

do not perform well for the desired point cloud sparsity. Our algorithm is based on the

plane estimation algorithm proposed by Nguyen et al. [79]. The authors combine a mobile

EDM with a real-time SLAM system to extract 3D models from sparse 3D point measure-

ments. In particular, the authors apply graph-based point segmentation and Expectation

Maximization (EM) plane fitting. We modified the proposed method for RTS and real-

istic indoor scenarios, for which image-based segmentation is not applicable due to the

frequently occurring low contrast regions.

2.6 Discussion

The literature listed above shows a clear trend towards more intelligent RTS. We think

that the simulation and integration of the assistance systems proposed in the following

chapters is a valuable contribution in this field.

Compared to the work mentioned above, our methods are suitable for a wider range of

devices, as we explicitly avoid photogrammetry, high-resolution imaging, high frame rates,

and the use of an overview camera. This allows us to use parallax-free RTS systems with

a single camera only.

18 Chapter 2. Related Work and State of the Art

We assume that the reader is familiar with the literature listed in Figure 2.1. This is not

absolutely necessary as this work contains all required information and references to un-

derstand the proposed algorithms. However, knowing the fundamentals about surveying,

total stations and camera models would undoubtedly be beneficial for reading this work

and to apply the proposed workflows to practical issues with comparable properties.

In particular, camera and device calibration are handled extensively in literature and

are therefore not reviewed in this work. For general camera models and calibration, the

reader is referred to the book by Hartley and Zisserman [44]. Calibration and models of

camera-assisted RTS with state-of-the-art approaches are explicitly handled in the book

by Ehrhart [31].

Ehrhart

2017

Klug

2017-2019

Uren & Price

2010

Hartley & Zisserman

2003

no sync SW sync HW sync

2

1

0

camera

count

sensor data

synchronization

Simulation Apps RTS basics/calibration camera basics/calibration

timeline

Figure 2.1: Recommended RTS literature, related topics and hardware coverage. Both
the available camera count and the synchronization type between sensor data are crucial
for hardware and algorithm selection: Algorithms with lower hardware requirements can
be used for devices with higher camera count or better sensor data synchronization.
Adjusting methods for devices with less cameras or worse sensor data synchronization is
often expensive, complex, expensive or not possible at all. To address a wide range of
devices, we focus on devices with one camera and no explicit sensor data synchronization
in this work.

3
A Robotic Theory for RTS Modeling and Simulation

Data set generation for RTS algorithms is an expensive and time-consuming task, partic-

ularly, if special facilities or conditions are required. In this work, we use a novel virtual

device simulator to avoid hardware-in-the-loop configurations in early design phases. This

requires a kinematic model of the RTS to describe the geometry of motion for the me-

chanical system. In particular, a kinematic model describes the geometric transformations

between rigid parts and various end-effectors. Here, the relationship between robot control

parameters and geometric transformation matrices must be established. Figure 3.1 shows

the general relationship between the control parameter space and the Cartesian space in

the context of robot kinematics.

In surveying and measurement research, detailed kinematic device models are often

not available due to company secrets or missing documentations.

In the following, we present a complete workflow for extracting kinematic models for

real-time simulations of physical RTS setups and for verifying the simulation uncertainty.

Our concept allows designing and testing interactive RTS algorithms with a virtual de-

vice and verifying the algorithm integrity with physical setups without further software

modifications. In particular, the following sections describe

1. a method to extract forward kinematic models from RTS or devices with similar

sensor configurations,

2. the analysis of the model discrepancy with respect to an RTS device driver,

3. the simulation of RTS sensors, actuators and uncertainties with respect to manufac-

turer specifications, and

4. the uncertainty characterization of different simulation setups according to Guide to

the Expression of Uncertainty (GUM).

This chapter is based the work by Klug et al. [63, 66], but provides a more complete

description.

19

20 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

ሾx y zሿ𝑇

ሾα β γሿ𝑇

control

parameter space
3D Cartesian space

forward kinematics

inverse kinematics

robot control

parameters

desired 3D position

and rotation of an

end-effector

unique

ambiguous

kinematic

model

Figure 3.1: Relationship between control parameter space and Cartesian space of a
robotic system.

3.1 Forward Kinematic Modeling

In the following, we model an RTS as electrical theodolite with one EDM and one camera,

as shown in Figure 1.1. Hereby, the camera replaces the eyepiece of traditional devices

[31, 106]. The idealized model defines a spherical coordinate system, but does not consider

inevitable inaccuracies in manufacturing and physical device calibration.

Extended geometric models and software-side calibrations can reduce these errors, but

the required manufacturing details are usually trade secrets and not available to the public.

In general, the geometric model used internally by a device driver can be considered as

inaccessible.

RTS coordinate systems are not standardized and can vary between manufacturers and

device types. Therefore, we use commonly available low-level RTS functions to extract a

combined model for hardware and software. This leads to a generic RTS model estima-

tion approach, which allows modeling a variety of devices without the need for in-depth

knowledge about the particular physical device.

The linear geometric properties of the rigid parts of an RTS can be described as spatial

linkage. A general description is a series of Euclidean transformation matrices with six

degree of freedom (DOF) each, as shown in Fig. 3.2. The geometric representation of an

RTS can be converted to an open kinematic chain with fewer DOF for applying systematic

model estimation based on robotic theory [66]. In this work, we use the DH convention

[28] to describe an RTS with links and joints as shown in Fig. 3.3. The DH convention

was originally introduced to describe the geometric relationship of open kinematic chains

of M − 1 joints and M links by a series of homogeneous joint displacement matrices Zi
and link displacement matrices Xi [28].

In this work, we use the DH notation as proposed by Rajeevlochana and Saha [83, 88].

The convention defines that joints are rigidly connected by links and controllable at run-

time with joint control variables. Note that this model ignores the dynamics of actuators,

3.1. Forward Kinematic Modeling 21

base frame (instrument frame)

horizontal

telescope frame

CAM frame

(tool 1)

EDM frame

(tool 2)

vertical telescope

frame

φ

θ

(a)

C2

MB

M1,2

u
v

image

z2

x2

C0
z0

x0

y0

y2

CCAM zCAM

xCAM

yCAM

M2,3

P = [K | 0]





C1

z1

x1

y1

𝐌T
(EDM)

C3

𝐌T
(CAM)

EDM frame

CAM frame

x3
y3

z3
xEDM

yEDM

zEDM

base frame

(instrument frame)

CEDM

(b)

Figure 3.2: Extended geometric model for an exemplary RTS. For better visualization,
the position of the frames are drawn non-overlapping. (a) Identifying frames. (b)
Identifying transformations.

driving forces or moments. The geometric representation of the RTS shown in Fig. 3.3c

consists of two controllable revolute joints and thereby is called RR-chain [69].

By convention, joint i connects link i − 1 and link i. The displacement matrices Zi
and Xi define the local coordinate frame i by (oi,xi,yi, zi), where oi is the frame origin,

and xi, yi, and zi are the normalized x, y, and z axes, respectively. Frame i is rigidly

attached to the end of link i− 1 and must satisfy the following conditions:

1. The xi-axis is perpendicular to the zi−1-axis, and

2. the xi-axis intersects with the zi−1-axis.

The DH convention defines two types of joints:

1. revolute joint

2. prismatic joint

A revolute joint allows a rotation around the z-axis of frame i by the angle γi. A prismatic

joint allows the translation along the z-axis of frame i by the distance di.

Figure 3.3d shows the relative pose Mi,i+1 of frame j with respect to frame i using the

DH convention, which is given by

Mi,j =

j∏
n=i

Mn,n+1 Mi,i+1 = Zi ·Xi (3.1)

The joint matrix Zi describes a screw displacement along the z-axis of frame i. The

link matrix Xi describes a rigid screw displacement along the x-axis of frame i. The

22 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

(a)

(b)

C
1

 (link 0)

base

link 2

link 1

joint 1

joint 2

C
2

C
3

tool

𝐌T
(k)

𝐌23

𝐌12

𝐌B

θ

φ

(c)

xi
yi Ci

Ci+1
𝑻𝑧(𝑑𝑖)

𝑹𝑧(𝛼𝑖) 𝑹𝑥(𝛼𝑖)

𝑻𝑥(𝑎𝑖)

1.

2.

3.

4.

xi+1

y+1
zi+1 zi

common normal

of zi and zi+1

(d)

Figure 3.3: (a) Revolute joint. (b) Prismatic joint. (c) General kinematic chain of RTS.
(d) Relative frame transformations, defined by the DH. The convention used in this work
defines matrix Mi,i+1 as the relative pose of frame i+ 1 with respect to frame i.

displacement matrices are given by

Zi = Tz(di) ·Rz(γi) Xi = Tx(ai) ·Rx(αi) Qi = (di, γi, αi, ai) (3.2)

where the DH parameters are the elements of the parameter set Qi. Hereby, di and γi are

the dynamic control variables for joint i. The static properties of link i are defined by ai
and αi. The rigid twist of link i − 1 is given by the rotation matrix Rx, the rigid length

of link i − 1 is given by the translation matrix Tx. The rotation of link i around joint i

is given by the rotation matrix Rz, the translation of joint i along the zi-axis is given by

the translation matrix Tz. Rotation and translation matrices are defined in Eqn. A.4 and

Eqn. A.6, respectively.

Finally, the pose of frame i+ 1 with respect to frame i can be written as

Mi,i+1 =


cos γi − sin γi cosαi sin γi sinαi ai cos γi
sin γi cos γi cosαi − cos γi sinαi ai sin γi

0 sinαi cosαi di
0 0 0 1

 =

 Ri,i+1 ti,i+1

0 0 0 1

 (3.3)

where Ri,i+1 is a 3x3 rotation matrix, and ti,i+1 is a 3x1 translation vector.

3.1.1 Workflow

Estimating the forward kinematic model of an RTS can be reduced to the problem of

deriving the DH parameters for a robotic device.

Figure 3.2a shows the coordinate frames of an RTS with a single camera1. The pose

of the RTS with respect to the reference frame C0 is defined by the base transform MB

to allow arbitrary placement of the robot in the scene. The rigid attachment of different

1Coordinate frames for different RTS are not standardized and vary between individual devices.

3.1. Forward Kinematic Modeling 23

identify joint count

identify joint types

identify end effectors

vary joint parameters

record end effector pose

calculate DH parameters

i = 0 ... M-1

i = 1 ... M-1

(a)

record pointset i by moving

joint i

estimate plane i

estimate circle i

intersect(zi, zi+1)

i = 1 ... M-1

calculate oi+1, xi+1, yi+1

parallel skew intersect

calculate DH parameters

i = 0 ... M-1

i = 1 ... M-1

(b)

Figure 3.4: (a) General workflow for extracting DH parameters of a serial kinematics
chain [22, 45]. (b) Detailed workflow for extracting DH parameters of an RTS.

tools to the last link is described by individual tool transforms M
(k)
T . The transformation

of homogeneous points from tool space k to the reference space is given by

x̂i,0 = M
(k)
B,T x̂

(k)
i,T M

(k)
B,T = MB ·

M−1∏
n=1

Mn,n+1 ·M(k)
T (3.4)

where M
(k)
B,T is the pose of tool k with respect to the reference frame, Mn,n+1 is the pose

of frame n + 1 with respect to frame n as given in Eqn. 3.1, x̂
(k)
i,T defines a homogeneous

point in the tools space k, and x̂i,0 defines the same point in the reference space.

The RTS model shown in Fig. 3.3c can be fully described by a reference frame C0 = CB,

two revolute joints, and two end-effectors, C
(EDM)
T and C

(CAM)
T .

The first and second joint describe the horizontal rotation ϕ and the vertical rotation

θ, respectively. The EDM frame C
(EDM)
T and the camera frame C

(CAM)
T describe the rigidly

attached end-effectors. Note that only the end-to-end transformations between base frame

and tool frames matches the device manual, the inner frames of the model are defined

differently by the DH convention.

24 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

𝐧1

u

v

𝐱ത1

𝐏1 ∙ (𝐱 − 𝐱ത1)

𝐑1 ∙ ቂ
𝐜෤1

0
ቃ + 𝐱ത1

𝐎ref

𝐜𝟏

𝐜෤1

u

v

𝐏2 ∙ (𝐱 − 𝐱ത2)

𝐱ത2

𝐜2

𝐜෤2

𝐧2

𝐑2 ∙ ቂ
𝐜෤2

0
ቃ + 𝐱ത2

𝐩1

𝐩2

x
ref

y
ref

z

ref

z
2

y
2

x
2

x
1

 y1

z
1

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.








𝒙 (CAM)

𝒙 (EDM)

recording

endpoints

estimating DH

parameters

dataset

joint 2

dataset

joint 1

Figure 3.5: Workflow for extracting circular features of the RTS joints. The following
steps are required: 1,2: measure or read out sensor points; 3,7: fit plane to each point
cloud individually; 4,8: project points of each point cloud to 2D, using the extracted
plane as transformation; 5,9: fit 2D circle and transform result to circle in 3D; 6,10:
define frames and DH parameters.

To estimate the rotation and orientation of the joints, we record end-effector positions

with respect to the reference frame, while rotating only one joint at a time. Figure 3.4a

shows the general workflow for estimating the DH parameters of a serial kinematic chain

according to Chittawadigi et al. [22, 45]. Figure 3.4b shows the modified workflow for

measuring end-effector positions and extracting DH parameters of an RTS.

The recorded 3D points describe a planar circular trajectory. The center of the circles

and the plane of rotations define a circular feature for each joint, which are used to estimate

the DH parameters. Figure 3.5 shows the circular feature extraction workflow.

3.1.2 Data Acquisition for DH Parameter Estimation

The estimation of DH parameters usually requires an external measurement setup for

measuring the pose of the end-effectors. However, for forward kinematic model estimation

of an RTS, the required data can be fetched from the API of the device without any

3.1. Forward Kinematic Modeling 25

RTS

API

ℱ𝑐𝑡𝑟𝑙(φ, θ)

𝐱 = 𝐼𝑃𝐷𝐼𝑆𝑇,𝐵(φ, θ, d𝐸𝐷𝑀)

𝐱 = 𝐼𝑃𝐼𝑀𝐺,𝐵(φ, θ, 𝐮𝐼𝑀𝐺 , d𝐶𝐴𝑀)

joint control

EDM position

camera position

(a) (b) (c)

Figure 3.6: (a) Required API and control parameters for converting or recording 3D
point sets for each RTS joint and each end-effector. The exemplary device has two
end-effectors, namely an EDM and a camera. (b) A subset of the angle control parameter
space is sufficient to estimate the DH model. (c) Discrete samples of the full angle control
parameter space, which is used for model cross-validation. Critical regions are excluded
from both estimation and validation. Such regions include parameter ranges with
expected singularities, model ambiguities or non-measurable areas, as shown Fig. 1.1.

external devices2.

For each joint, a trajectory is defined by recording end-effector positions, while varying

the related joint control parameter and keeping other control parameters constant. A linear

trajectory of the recorded end-effector positions indicates a prismatic joint. A circular

trajectory of the recorded points indicates a revolute joint.

If the recorded data does neither describe a linear or circular movement, the affected

joint type is either not prismatic or revolute, or the end-effector coincides with the rota-

tion axis of a revolute joint. To avoid singularities during DH parameter extraction, the

recording for the affected joint has to be repeated using different fixed joint settings or

different API parameters3.

Figure 3.6a shows the required measurement API. Joint i = 1 is the horizontal rotation,

joint i = 2 is the vertical rotation, and F (ϕ, θ) is the control function for the corresponding

joints. Data recording for joint 1 can be done by varying ϕ in the range [0, 2π], while

keeping θ = π
2 constant. Data recording for joint 2 can be done by varying θ between

[0, π], while keeping ϕ = 0 constant. The device API function

xi = IPDIST,B(ϕi, θi, dEDM) (3.5)

applies the control variables (ϕi, θi) and converts a 1D distance dEDM from EDM space to

2For device calibration, external measurements would still be required.
3If all link lengths are close to zero, an artificial end-effector offset must be applied. This can be done

by recording 3D points that do not coincide with the end-effector origin.

26 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

𝑆𝑎(EDM,φ𝑖)|θ=𝑐𝑜𝑛𝑠𝑡

𝑆𝑎(EDM, θ𝑖)|φ=𝑐𝑜𝑛𝑠𝑡

𝐜𝑖 𝒛

𝒛

𝐜𝑖

(a) EDM positions

𝑆𝑎(CAM,φ𝑖)|θ=𝑐𝑜𝑛𝑠𝑡
𝑆𝑎(CAM, θ𝑖)|φ=𝑐𝑜𝑛𝑠𝑡

𝐜𝑖

𝐜𝑖

𝐱
𝐲

𝐲

𝐱

(b) camera positions

Figure 3.7: (a) Recorded end-effector positions ci of the EDM. The EDM direction is
determined by applying an artificial EDM distance measurement of one meter to each
recorded position. In general, the remaining rotation of the EDM frame around the ray
can be chosen freely. (b) Recorded end-effector positions ci of the camera. The camera
orientation is determined from pixel offsets.

to a 3D point xi in the reference frame. The device API function

xi = IP IMG,B(ϕi, θi,u, dCAM) (3.6)

applies the control variables (ϕi, θi) and converts a 2D image pixel u to a 3D point xi in

the reference frame. The two functions IPDIST,B and IP IMG,B are sufficient for forward

kinematic modeling. They must be provided by the API of the RTS. Figure 3.6b shows the

parameter space of the angle control variables (ϕi, θi); Figure 3.7a and Figure 3.7b show

the positions of the recorded EDM and camera end-effectors, respectively.

3.1.3 Estimating Circular Features

A plane p can be defined according to Eqn. A.8, where a point on the plane x̄ is calculated

from the center of mass according to Eqn. A.7.

The plane normal n can be fitted to the point cloud Sp using Singular Value Decom-

position (SVD) according to Appendix A.3.1.

It is convenient to define a right-handed orthogonal basis B for each plane such that the

plane normal is aligned with the z-axis, and the plane contains two additional orthogonal

vectors according to

3.1. Forward Kinematic Modeling 27

B =

1 0 0
0 1 0
0 0 det (U)

U B =
[
b1 b2 b3

]
n = b3 (3.7)

The determinant of U is either equal to 1 if no reflection happens, or, equal to −1 in case

of a reflection. Therefore, B can be interpreted as a reflection-free rotation of the plane

with respect to the reference frame.

All points must be transformed to the xy plane and projected to a 2D Euclidean space

before fitting a circle to the planar measurements. This can be formalized as projection

of the centered measurement matrix Ā given in Eqn. A.13:

Ac = Pc · Ā Pc =

[
bT1

bT2

]
(3.8)

where Ac is a [2 × N] matrix, and Pc is a [2 × 3] projection matrix, which applies the

inverse plane rotation BT and the projection of the stacked 3D points Ā to the 2D space4.

A circle in 2D is given by the implicit equation

(ui − c1)2 + (vi − c2)2 = r2 (3.9)

where r is the radius of the circle, c̃ =
[
c1 c2

]T
is the center of the circle, and

[
ui vi

]T
is a point on the circle in 2D. Rearranging Eqn. 3.9 leads to

2 · ui · c1 + 2 · vi · c2 + k3 = u2
i + v2

i k3 = r2 − c2
1 − c2

2 (3.10)

which is linear in the unknown parameters c1, c2 and k3. This can be written as an

inhomogeneous linear system

ÃT
c · xc = bc Ãc =

[
2 ·Ac

11×N

]
xc =


c1

c2

k3

 bc =


ξ1

ξ2

...

ξN

 ξi = u2
i + v2

i (3.11)

where Ãc is a 3×N matrix, and ξi is the sum of squared 2D coordinate values of point i.

SVD can be used to solve for the unknown circle parameters:

SVD(ÃT
c) = UcScV

T
c xc = VcS

+
c ·UT

c bc S+
c =

 1/Sc,11 0 0
0 1/Sc,22 0 03×(N−3)

0 0 1/Sc,33


(3.12)

4No homogeneous coordinates are required, since Pc does not include any 3D translation.

28 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

where Uc is a N ×N matrix, Sc is a N × 3 matrix and VT
c is a 3× 3 matrix.

The 3D circular feature Φc for a single joint is fully defined by Φc = (c, r), using

c = B ·


c1

c2

0

+ x̄ r =
√
k3 + c2

1 + c2
2 (3.13)

where B is the plane rotation according to Eqn. 3.7; c is the center of the circle with

respect to the reference frame, and r is the radius of the circle.

3.1.4 Correcting the Sign of Circular Features

A plane normal n as given in Eqn. A.8 is defined up to sign. This leads to sign ambiguities

in the DH control parameters. For revolute joints, this can lead to an inverse rotation; for

prismatic joints, this can lead to an inverse translation. The ambiguity can be resolved

using two consecutive measurement points x1 and x2 of the circular feature i

ñi = sign
(

((x1 − ci)× (x2 − ci))
T ni

)
ni (3.14)

where ci is the center of the circle, and sign(x) is the sign of the scalar value x according to

Eqn. A.1. The corrected plane normal ni ensures a positive rotation direction for increasing

control parameter values, if point x1 was recorded with a smaller control parameter than

point x2
5. Figure 3.8a shows the sign correction of circular features.

3.1.5 Link Constellation and Frame Alignment

The link constellation and frame alignment are based on the spatial relationship of the

zi−1 and the zi axes. An intersection is treated as special case of skewed lines.

Rajeevlochana et al. used Plücker coordinates and Dual Vector Algebra for estimating

the line constellation [84]. Plücker coordinates allow closed-form line intersection testing.

However, for kinematic chains with low link counts, we did not observe any computational

benefits when using Plücker coordinates instead of simple vector algebra as described in

the work by Barker [10]. Thus, for the sake of simplicity, we describe line constellations

using simple vector algebra.

Figure 3.8b shows the distance of two lines in the 3D space. Given two lines L0 and

L1 in their parametric form

L0(s) = q0 + sd0 L1(t) = q1 + td1 (3.15)

we wish to find the minimum distance between the two lines. Let qs and qt define points

5For revolute joints, it is advisable to use control angles between [0, π] for sign correction to avoid
errors caused by periodicity.

3.1. Forward Kinematic Modeling 29

+𝐧i

𝐜i
𝐱1

𝐱2

𝐥2 = 𝐱2 − 𝐜i 𝐥1 = 𝐱1 − 𝐜i
𝐯i = 𝐥1 × 𝐥2

sign(+𝐯iT ∙ 𝐧i) = +1 sign(−𝐯iT ∙ 𝐧i) = −1

�̃�i = sign(𝐯iT ∙ 𝐧i)𝐧i ∆∝> 0

−𝐧i

(a) sign correction

𝐪s

𝐪0

𝐪1

𝐝1

𝐝0 𝒒t
𝐯

(b) 3D line geometry

Figure 3.8: (a) Algorithm for automatic sign correction for the circular features of the
individual joints. The normal of the extracted planes ±ni is defined up to sign. The
difference of the angular control parameters ∆α of two consecutive measurement samples
(x1,x2) defines the positive direction of rotation and the sign of corresponding the plane
normal. (b) Minimal distance ||v|| between two 3D lines.

on line L0 and L1 that minimize the length of the vector

v = qs − qt qs = q0 + ssd0 qt = q1 + tsd1 (3.16)

The minimum Euclidean distance between the lines is given by ||v||, if v has the same

direction as the common normal, which can be written as

dT0 v = 0 dT1 v = 0 (3.17)

If we substitute Eqn. 3.16 in Eqn. 3.17 we can solve for the two unknown parameters ss
and ts

ss =
be− cd
ac− b2

ts =
ae− bd
ac− b2

(3.18)

where

a = ||d0||2 b = dT0 d1 c = ||d1||2 d = dT0 (q0 − q1) e = dT1 (q0 − q1) (3.19)

The parameters sc and tc for calculating the closest points qs and qt on line L0 and L1,

30 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

respectively, are given by

sc =

{
0, parallel

ss, skewed
tc =


d/b, parallel, b ≥ c
e/c, parallel, b < c

ts, skewed

cc =

{
parallel, (ac− b2) = 0

skewed, otherwise

(3.20)

where the spatial constellation type of two 3D lines cc ∈ {parallel, skewed} is given by

the divisor of Eqn. 3.18.

Finally, the points qs and qt can be calculated by substituting the parameters from

Eqn. 3.20 into the line equations given in Eqn. 3.15:

qs = L0(sc) qt = L1(tc) (3.21)

3.1.6 First Link Frame

The z direction of the first frame is aligned with the plane normal of the first circular

feature ñ1. The origin of the first frame o1 must lie on the first rotational axis Lz1(s) =

c1 + sñ1; the x-axis of the first frame must lie on the plane defined by o1 and z1. The

rotation of x1 around z1 can be arbitrary defined. Hence, the first frame is fully defined

by

z1 = ñ1 o1 = c1 B1 =
[
x1 y1 z1

]
(3.22)

where B1 is a right-handed orthogonal base according to Eqn. 3.7.

However, this approach will lead to different DH parameters for different point sets of

the first circular feature.

A more convenient approach is to further align the x direction of the reference frame

x0 with the x direction of the first frame x1 by projecting x0 onto plane p1:

x1 =
x0 − (xT0 z1)z1

||x0 − (xT0 z1)z1||
y1 = z1 × x1 (3.23)

If plane p1 is parallel to the yz plane of the reference frame, the alignment of the y

directions can be used instead. Figure 3.9 shows the alignment of the first frame.

3.1. Forward Kinematic Modeling 31

𝐨1 = 𝐜1

𝐳1 = 𝐧෥1

𝐳0

𝐱0

𝐲0

𝐲1 = 𝐳1 × 𝐱1

circular feature

of joint 1

z-axis aligned with

plane normal

x-axis of base frame

projected onto plane of rotation

𝐱1 =
𝐱0 − ൫𝐱0

T𝐳1൯

ฮ𝐱0 − ൫𝐱0
T𝐳1൯ฮ

Figure 3.9: Alignment of first link frame.

3.1.7 Middle Link Frames

The frames i = 2, . . . ,M − 1 can be defined iteratively using
zi

zi+1

oi+1

 =


ñi

ñi+1

q
(i)
t

 yi+1 =
zi+1 × xi+1

||zi+1 × xi+1||
xi+1 =


zi×zi+1

||zi×zi+1|| , Li and Li+1 intersect

q
(i)
t −q

(i)
s

||q(i)
t −q

(i)
s ||

, are skewed or parallel

xi, are identical

(3.24)

where q
(i)
s and q

(i)
t are the common normal intersections of Li and Li+1 according to

Eqn. 3.16, respectively. Based on the calculated coordinate frames, the DH parameters for

a revolute joint i can be derived by
bi

θi

ai

αi

 =


(oi+1 − oi)

T zi

arctan2
(
(xi × xi+1)T zi, xTi xi+1

)
(oi+1 − oi)

Txi

arctan2
(
(zi × zi+1)Txi+1, zTi zi+1

)

 (3.25)

3.1.8 Last Link Frame

The last frame can be used to define the tool pose. However, a general pose of the tool

would require six DOF whereas a single frame of the DH framework is limited to four DOF.

One solution to this problem is to use multiple DH frames to describe the tool pose. In

this work, we used a more general approach by extracting a six DOF tool matrix M
(k)
T for

each tool k separately.

By including individual tool matrices, the rotation of the last link frame around the

zN -axis is arbitrary. However, it is convenient to align the last frame with the previous

32 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

one: [
xM yM zM

]
=
[
xM−1 yM−1 zM−1

]
(3.26)

The DH parameters are then calculated according to Sec. 3.1.7.

3.1.9 Base Transform

The base transform defines the pose of the first coordinate frame, (o1,x1,y1, z1), with

respect to the reference frame, (o0,x0,y0, z0), using the six DOF Euclidean transformation

MB. This problem can be described as estimating 3D rigid transformations between two

ordered point sets as defined in Appendix A.3.3, using

Sa = (c0 + x0, c0 + y0, c0 + z0) Sb = (c1 + x1, c1 + y1, c1 + z1) (3.27)

(RB, tB) = F (Sa,Sb) MB =

 RB tB

0 0 0 1

 (3.28)

3.1.10 Camera Tool Frame

The pose of the end-effector k with respect to the last link frame (oM ,xM ,yM , zM) is

defined by a six DOF rigid transform. If two ordered point sets with N ≥ 3 correspondences

can be obtained, the alignment algorithm as described in Sec. 3.1.9 can be applied.

The pose of the camera end-effector can be defined by the end-effector position, two or-

thogonal vectors describing the x and y direction, and the right-handed coordinate system

constraint. The end-effector position was already used for the DH parameter extraction.

The x and y directions of the camera are aligned with the u and v direction of the image

space, respectively. By extending the ordered set of back-projected pixel coordinates dur-

ing the measurement flow for the DH parameters, the x and y direction of the end-effector

with respect to the reference frame can be extracted. Figure 3.7a and Figure 3.7b show

the end-effector recordings, including the observable frame axis of the end-effectors; Figure

3.10a shows the back-projection method and the alignment of camera and image frame.

Given the camera intrinsics, the camera projection matrix P can be written as

ûi = PCAMM−1
B,T x̂i PCAM = [K|0] K =

fu s cu
0 fv cv
0 0 1

 (3.29)

where ûi is a homogeneous pixel point, x̂i is a homogeneous world-space point, s is a skew

factor, (fu, fv) describe the focal lengths and c =
[
cu cv

]T
describe the principal point

offset in 2D6.

6For the sake of simplicity, we set s = 0 and fu = fv = f , and we do not include lens distortion
parameters.

3.1. Forward Kinematic Modeling 33

Matrix MB,T is the camera tool pose with respect to the reference frame, using M
(k)
T =

M
(CAM)
T in Eqn. 3.4. By defining the tool space as camera space, the relationship between

a homogeneous point x̂T in the camera space and a homogeneous point x̂0 in the reference

space is given by

x̂0 = MB,T x̂T = (MBM1,MMT) x̂T (3.30)

where M1,M is the relative pose of frame M with respect to frame 1 as defined in Eqn. 3.4.

Rearranging Eqn. 3.30 leads to

M−1
1,MM−1

B x̂0 = MT x̂T (3.31)

where M1,M and MB are already known. The substitution of x̃0 = M−1
1,MM−1

B x̂0 in

Eqn. 3.31 leads to

x̃0 = MT x̂T (3.32)

which can be solved for MT using N ≥ 3 point correspondences. Finding point cor-

respondences x̂T and x̃0 can be done using back-projection of pixels into the camera space.

Let Su = (u1,u2,u3) be a ordered set of 2D image points using

u1 = c u2 = c +

[
1

0

]
u3 = c +

[
0

1

]
(3.33)

where c is the principal point of the camera. The image coordinates given in Su are

back-projected by using the API function given in Eqn. 3.6

xi = IP IMG,B(ϕj , θj ,ui, dCAM) (3.34)

using dCAM = 1 and constant parameters (ϕj , θj) for the ordered set Su.

The measured points are then converted to a local coordinate frame using x1 as origin

[
x̂1 x̂2 x̂3

]
[4x3]

= M−1
1,MM−1

B

[
x1

1

x1 + x2−x1
||x2−x1||

1

x1 + x3−x1
||x3−x1||

1

]
[4x3]

(3.35)

The rigid transformation M
(CAM)
T can be extracted according to Sec. 3.1.6 using the two

34 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

back-projected

view rays

u

y

x

v

camera space

image space 𝐮1 = [ucvc] 𝐮2 = [uc + 1vc]
𝐮3 = [ucvc + 1]

z

(a) back-projected pixels

d1 f

||𝐮1−𝐮i||

bu,i d̃CAM,i

(b) view ray length

Figure 3.10: (a) Pixel back-projections used for estimating the orientation of the camera
frame. (b) Relation between principal ray and back projected pixel used for validating
the approximation effects on the camera frame orientation (simplified).

ordered point sets

Sa =

ct, ct +


1

0

0

 , ct +


0

1

0


 Sb = (x̃1, x̃2, x̃3) (3.36)

where x̃i is the Euclidean representation of the homogeneous coordinate x̂i given in

Eqn. 3.35, and ct is given by
[
0 0 1

]T
.

A constant distance dCAM = 1 for all back-projected points in Eqn. 3.34 will lead

to a systematic error, which is negligible for the tool transform estimation. This can be

shown by calculating the corrected length dCAM,i of the back projected ray for the image

coordinates ui with i ∈ {2, 3} in Eqn. 3.33. Assuming u1 is aligned with the principal ray

and the focal length f is known, the ray length d̃CAM,i is given by triangle similarity and

the Pythagorean theorem according to

d̃CAM,i =
√
d2

1 + b2u,i
bu,i
d1

=
||u1 − ui||

f
⇒ d̃CAM,i = d1

√
1 +

(
||u1 − ui||

f

)2

(3.37)

where ||u1 − ui|| describes the distance of two pixels (u1,ui) in the image space and

(bu,i, d1, d̃CAM,i) define a right-angled triangle. For f � ||u1−ui|| and d1 = dCAM = 1 we

can set d̃CAM,i ≈ di. Figure 3.10b shows the simplified relationship of back projected rays

with respect to the principal ray.

3.1. Forward Kinematic Modeling 35

3.1.11 EDM Tool Frame

Similar to the camera tool, the pose of the EDM end-effector can be described by a six

DOF Euclidean transformation. Distance measurements can be modeled by a 3D ray in

the Euclidean space. This leads to a tool pose defined up to an arbitrary rotation around

the measurement axis. However, it is convenient to align the EDM frame with the camera

frame.

The pose of the EDM end-effector can be defined by a ray that describes the distance

measurement in 3D, a related orthogonal vector, and the right-handed coordinate system

constraint. The end-effector position, which defines a point on the ray, was already used

for the DH parameter extraction.

We define the z-axis of the EDM as the distance measurement direction. By extend-

ing the ordered set of back-projected distances during the measurement flow for the DH

parameters, the z direction of the end-effector with respect to the reference frame can be

extracted.

A 1D distance measurement can be back-projected using

x̂i = M
(EDM)
B,T d̂i M

(EDM)
B,T = MBM1,MM

(EDM)
T (3.38)

where x̂i is a homogeneous point in the reference frame, and d̂i is a homogeneous point

in the EDM space. The homogeneous point d̂i for a distance measurement di along the

z-axis of the EDM frame is defined as

d̂i =
[
0 0 di 1

]T
(3.39)

Rearranging Eqn. 3.38 leads to

M−1
1,MM−1

B x̂i = M
(EDM)
T d̂i (3.40)

which is of the same form as Eqn. 3.31. We construct three correspondences for solving

Eqn. 3.38 for the rigid transform M
(EDM)
T . Let Sd = (d1, d2) be a tuple of two distances

where d1 = 1 and d2 = 2. The back-projection of the distances di to 3D points in the

reference frame can be done with the API function given in Eqn. 3.5

di = IPDIST,B(ϕj , θj , di) (3.41)

using constant parameters (ϕj , θj) for the tuple Sd. The x direction of the EDM frame

can be found by projecting the x direction7 of the camera frame onto the plane defined

7If the x direction of the camera frame and the z direction of the EDM frame are parallel, the y
direction of the camera frame can be used instead.

36 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

by point d1 and plane normal n = zEDM = d2−d1
||d2−d1||

xEDM =
xCAM − (zTCAMzEDM)zEDM

||xCAM − (zTCAMzEDM)zEDM||
(3.42)

The points are then converted to an intermediate coordinate frame with d1 as origin

[
d̂1 d̂2 d̂3

]
[4x3]

= M−1
1,MM−1

B

[
d1

1

d1 + xEDM

1

d1 + zEDM

1

]
[4x3]

(3.43)

with M = 3. The rigid transformation M
(EDM)
T can be extracted according to Sec. 3.1.6,

where we define the two ordered point sets as

Sa =

ct, ct +


1

0

0

 , ct +


0

0

1


 Sb =

(
d̃1, d̃2, d̃3

)
(3.44)

where d̃i is the Euclidean representation of the homogeneous coordinate d̂i, and ct is given

by
[
0 0 d1

]T
.

3.2 Model Error Estimation

The DH model error can be expressed using the average point distance d̄ and the unbiased

standard deviation σ̂ between recorded and calculated point sets according to

d̄ =

∑N
i=1 ||xi,meas − xi,calc||

N
σ̂ =

√∑N
i=1 (||xi,meas − xi,calc|| − d̄)2

N − 1
(3.45)

where xi,meas are points of the measurement set and xi,calc are points of the calculated

point set. The measurement sets for the EDM tool and for the camera tool can be recorded

using Eqn. 3.5 and Eqn. 3.6, respectively. The calculation set for the EDM tool is given

by Eqn. 3.38. Figure 3.11 shows the basic setup for the modeling error estimation used in

this work.

The calculation set for the camera tools can be derived from Eqn. 3.29. A back-

projected homogeneous image coordinate û defines a view ray XT (û, µ) in the reference

frame [44]. The projection of points from the reference frame to the camera image is given

by the 3× 4 projection matrix P according to

P = PCAMM−1
B,T = [M|p4] . (3.46)

The decomposition of the projection matrix P into the 3× 3 matrix M and the 3× 1

3.2. Model Error Estimation 37

RTS device

RTS driver

RTS model

Model
control parameter

sweep

statistical

evaluation

live HW access or

recorded datasets

modeling

error

𝐱calc

𝐱meas

unit under test Matlab

Figure 3.11: Modeling error estimation. In this work, we evaluate the discrepancy
between the estimated kinematic model and the geometric model used by the device
driver of the exemplary RTS. Note that this does not require any external measurement
target, but also does not provide any measurement uncertainty information of the
physical device.

column vector p4 is used for view ray calculation of finite cameras: A numerical robust

back-projection of a image coordinate û to the view ray XT (û, µ) with metric parametriza-

tion of the ray length µ is given by Klug et al. [66]:

XT (û, µ) =
µ

||M−1 · û||

[
M−1 · û

0

]
+

[
−M−1 · p4

1

]
(3.47)

Eqn. 3.47 can be used to calculate the evaluation point set for the camera tool frame, using

the ray length µ = dCAM. The reader may refer to the book by Hartley and Zisserman

[44] for details about camera and projection matrix properties and alternative projection

methods.

Different aspects of the modeling error and the influence of the individual end-effectors

can be analyzed. Traditionally, the camera of the RTS is used by the operator to measure

a certain 3D point, but the actual measurement does not use image-based measurement

(IBM) methods. Scanning applications may not use the camera at all. Ideally, the z axes

of the camera and the EDM are aligned, and the tool rotations around the principal ray and

the EDM ray do not influence the result. For such applications, the tool rotations around

their respective z-axis should be excluded in the error analysis (method A)8. Advanced

8Previous work in DH modeling does not address the complete tool pose, but only the position of the
end-effector [10, 22, 45, 84, 88].

38 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

Table 3.1: Model evaluation taxonomy, showing the most suitable choice for different
applications.

evaluation aspect variant usage

end-effector type

EDM only non-vision based measurements

camera only

both (EDM, camera)
vision-based measurements

end-effector error

position only (A) non-vision based measurements

position and rotation
around principal ray (B)

vision-based measurements

optimization

none

DH modeling workflow evaluation,
start values for optimization,
comparison with previous work

reduced angle
parameter space

complete angle
parameter space

evaluate influence of
parameter space coverage

applications use IBM methods; hence, errors of all tool poses have to be considered (method

B). The different aspects of the evaluation are shown in Table 3.1.

3.3 Inverse Kinematic Modeling

Given a 3D end-effector pose, the joint parameters can be calculated using the inverse

kinematic model. However, no general method for calculating a closed-form inverse kine-

matic model exists [7]. In general, estimating the inverse kinematic model of an open

chain requires solving a system with ambiguities, singularities and nonlinearities. Fig-

ure 3.12 shows the four different categories of inverse kinematic solvers as proposed by

El-Sherbiny et al. [33]. Aristidou et al. [7] provides a more complete survey of inverse

kinematic techniques, with a similar categorization.

For special geometric constellations, closed-form inverse kinematic models can be found

by means of geometrical or algebraic approaches. Closed-form solutions are preferred for

reasons of performance and ease-of-implementation, but usually require model restrictions

and simplifications. For instance, an RTS can be reduced to a generalized spherical chain as

shown in Fig. 3.13. Here, modeling errors are compensated with physical device calibration

and with special measurement methods [106]. A closed-form inverse kinematic model

can then be derived as described by González-Palacios et al. [40], where the authors

present closed-form solutions for different spherical architectures. Note that modeling and

calibration methods presented in literature for RTS, such as discussed in the book by

Uren and Price [106], or in the publication by Ehrhart [31], are based on such simplified

3.4. Consistent Model for Kinematics and Point Transfer Functions 39

closed form numeric

algebraic/
analytic

traditional IK methods

geometric numeric soft computing
IK solver

approaches

IK solutions

(model types)

Figure 3.12: Classification of inverse kinematic methods as proposed by El-Sherbiny et
al. [33].

spherical chain models.

Numerical inverse kinematic solvers are used when no analytical mapping can be

found. However, they do not result in a closed-form solution.

In addition to the traditional methods, El-Sherbiny et al. [33] further discuss inverse

kinematic solvers based on soft computing. Here, solutions for hard problems are approx-

imated using fuzzy logic, evolutionary computation or learning theory.

In this work, we use various model simplifications and derive the inverse kinematic

equations from a closed-form spherical model of the exemplary RTS as discussed in Sec. 4.1.

Other methods are beyond the scope of this work, but can be found in [7, 33, 34, 40, 58,

75, 110].

3.4 Consistent Model for Kinematics and Point Transfer

Functions

The transformation of 3D points between sensor data, base frame and end-effectors can

be defined with respect to the forward kinematic model. This provides a generalized

and consistent RTS system description and allows better device abstraction for algorithm

design, implementation and documentation.

Figure 3.14 shows the relationship between point transformations and coordinate

frames with respect to the forward kinematic model. Table 3.2 provides and overview of

the required transformations and functions.

3.5 Discussion

The modeling approach we proposed in this chapter leads to a generalized and consistent

description for RTS position kinematics and 3D point transformations. The concept proved

to be useful during our work for estimating a geometric model of an instrument with certain

unknown specifications as well as for validating device documentations and for generating

40 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

𝒙𝟏

𝒚𝟏

𝒛𝟏

𝒛𝟐

𝒙𝟐 𝒚𝟐

EDM

distanc

𝒚𝒃𝒂𝒔𝒆

𝒛𝒃𝒂𝒔𝒆

𝒙𝒃𝒂𝒔𝒆 𝒑

EDM tool transform and distance

measurement decomposed to

prismatic joint and support matrix





d

(a) RRP chain





𝒙 (CAM)

𝒙 (EDM) measured point

= end point of

prismatic joint

𝒑

d

(b) RTS distance measurement model

Figure 3.13: Generalized spherical architecture as described by González-Palacios et al .
[40]. (a) RTS distance measurements described by an RRP chain, where two revolute
joints at the base describe the pan-tilt unit, and a prismatic joint describes the EDM. (b)
RTS distance measurement.

various different simulation setups. Once implemented, the effort for using this concept

for different devices and measurement setups was minimal.

While the general forward position kinematic model that we estimate in this chapter is

sufficient for many applications, inverse kinematics has not been addressed to a great

extend. However, as no general solution for the inverse kinematic problem of spatial

linkages exists, we postpone this description to the following chapter, where we model an

exemplary RTS.

In the following chapter, we apply the model extraction method to an exemplary RTS and

discuss critical simulation properties when the extracted model is used together with 3D

rendering engines.

3.5. Discussion 41

C
2

M
B

image

frame

z2
x2

C
0
 = C

B

z0 = zB

x0 = xB

y0 = yB

y2

C
CAM

zCAM
xCAM

yCAM

M
2,3

𝑷𝐼𝑀𝐺 = [K | 0]





C
1

z1

x1 y1

C
3
 𝑴T

(CAM)
= M

CAM

CAM

frame

x3

y3
z3

instrument frame

(base frame)

M
1,2

C
EDM

𝑴T
(EDM)

=M
EDM

EDM

frame

xEDM yEDM

zEDM

distance

frame
dEDM

perpendicular

distance frame

(ray-point distance)

tool 1: camera

tool 2: EDM

u
v

u

v

xB

xCAM xEDM

uIMG

uPD

d

𝑷PERPD = [
1 0 0 0
0 1 0 0
0 0 0 1

]

𝑷𝐷𝐼𝑆𝑇 = [0 0 1 1]

M
B,CAM

 M
B,EDM

𝐹𝑇𝐵,𝐶𝐴𝑀(𝜑, 𝜃, 𝒙𝐵)

𝐹𝑇𝐶𝐴𝑀,𝐵(𝜑, 𝜃, 𝒙𝐶𝐴𝑀)

𝐹𝑃𝐵𝐴𝑆𝐸,𝐼𝑀𝐺(𝜑, 𝜃, 𝒙𝐵)

𝐼𝑃𝐼𝑀𝐺,𝐵(𝜑, 𝜃, 𝒖𝐼𝑀𝐺 , 𝑑𝐶𝐴𝑀)

𝐹𝑇𝐵,𝐸𝐷𝑀(𝜑, 𝜃, 𝒙𝐵)

𝐹𝑇𝐸𝐷𝑀,𝐵(𝜑, 𝜃, 𝒙𝐸𝐷𝑀)

𝐹𝑃𝐵,𝐷𝐼𝑆𝑇(𝜑, 𝜃, 𝒙𝐵)
(∗)

𝐼𝑃𝐷𝐼𝑆𝑇,𝐵(𝜑, 𝜃, 𝑑𝐸𝐷𝑀)
(∗)

DH model of

pan-tilt unit

𝐹𝑃𝐵,𝑃𝐸𝑅𝑃𝐷(𝜑, 𝜃, 𝒖𝑃𝐷)
(∗∗)

Legend:

(∗) EDM ray 𝐿(𝜑, 𝜃) must hit the 3D point 𝒙𝐵

(∗∗) for inverse kinematics estimation only

 frame pose matrices

 point transforms (change of base)

Figure 3.14: RTS point transformations according to forward kinematic model.

42 Chapter 3. A Robotic Theory for RTS Modeling and Simulation

Table 3.2: Generalized point transfer functions, forward and inverse kinematics of an
RTS with one camera and one EDM.

sensor function/matrix
space transform

(Cartesian representation)

fo
rw

a
rd

k
in

em
at

ic
s

forward sensor projection matrices (homogeneous coordinates)

CAM PIMG =

fx 0 dx 0

0 fy dy 0

0 0 1 0


Note that the projections might

give you a negative value
for the depth or distance (reflection).

3D 7→ 2D

EDM

PDIST =

[
0 0 1 0

0 0 0 1

]
3D 7→ 1D

PPERPD =

1 0 0 0

0 1 0 0

0 0 0 1

 2D 7→ 2D

forward kinematic frame pose matrices (homogeneous coordinates)

CAM M
(CAM)
B,T = MB,CAM 3D 7→ 3D

EDM M
(EDM)
B,T = MB,EDM 3D 7→ 3D

forward kinematic point transforms (homogeneous coordinates)

CAM
x̂B = FTB,CAM (ϕ, θ, x̂CAM) = MB,CAM (ϕ, θ) · x̂CAM 3D 7→ 3D

x̂CAM = FTB,CAM (ϕ, θ, x̂B)−1 = MB,CAM (ϕ, θ)−1 · x̂B 3D 7→ 3D

EDM
x̂B = FTB,EDM (ϕ, θ, x̂EDM) = MB,EDM (ϕ, θ) · x̂EDM 3D 7→ 3D

x̂EDM = FTB,EDM (ϕ, θ, x̂B)−1 = MB,EDM (ϕ, θ)−1 · x̂B 3D 7→ 3D

forward point projections (homogeneous coordinates)

CAM û = FPB,IMG(ϕ, θ, x̂B) = PIMG ·MB,CAM (ϕ, θ)−1 · x̂B 3D 7→ 2D

EDM

d̂ = FPB,DIST (ϕ, θ, x̂B) = PDIST ·MB,EDM (ϕ, θ)−1 · x̂B
3D 7→ 1D

if ray hits target

û = FPB,PERPD(ϕ, θ, x̂B) = PPERPD ·MB,EDM (ϕ, θ)−1 · x̂B
3D 7→ 2D

(this is NOT the image space)

inverse sensor projection matrices (homogeneous coordinates)

CAM
x̂B = IP IMG,B(ϕ, θ, û, d) = MB,CAM (ϕ, θ)−1 · IP IMG,CAM (û, d) (2D, depth) 7→ 3D

x̂CAM = IP IMG,CAM (û, d) = XT (û, d) (2D, depth) 7→ 3D

EDM
x̂B = IPDIST,B(ϕ, θ, d) = MB,EDM (ϕ, θ)−1 · IPDIST,EDM (d) 1D 7→ 3D

x̂EDM = IPDIST,EDM (d) =
[
0 0 d 1

]T
1D 7→ 3D

in
ve

rs
e

k
in

em
at

ic
s inverse kinematic point transforms (Cartesian coordinates)

CAM
(ϕ, θ) = IKCAM (xB,u) = min ||HC (FPB,IMG(ϕ, θ, x̂B))− u|| 2D 7→ DH control parameters

(ϕ, θ) = IKCAM (xB) = IKCAM (x̂B, ûc), with principal point offset uc 3D 7→ DH control parameters

EDM

(ϕ, θ) = IKEDM (xB) = min ||HC (IPDIST,B(ϕ, θ, d)) − xB||
with d = ||HC (FTB,EDM (ϕ, θ, 0̂))) − xB||

3D 7→ DH control parameters

(ϕ, θ) = IKEDM (xB) = min ||HC (FPB,PERPD(ϕ, θ,xB))− 0 || 3D 7→ DH control parameters

4
Kinematic Modeling and Simulation of the Exemplary RTS

In this chapter, we apply the modeling method of chapter 3 to the exemplary RTS. To

cover a wide spectrum of possible applications, we compare the DH results to the related

spherical model, which represents simplified and idealized relationships between actuators

and sensors, and the numerically optimized model of the exemplary RTS.

4.1 Forward Kinematic Model

The data set for the DH model extraction of the device contains 15 points for each joint,

recorded with the API functions given in Eqn. 3.5 and Eqn. 3.6. Endpoint positions for

the first joint were recorded by setting the control variable θ to the fixed value θ = π
2

while varying ϕ from 0 to 2π. Endpoint positions for the second joint were recorded by

setting the control variable ϕ to the fixed value ϕ = 0 while varying θ from 0 to π. The

angular parameter space coverage of the data set is shown in Fig. 3.6b. For each position,

the length of the back projected EDM ray and the length of the back-projected camera

view ray were set to one meter (d1 = 1). The pixel position for the back-projected camera

view ray was aligned with the principal point of the camera, which was also provided by

the API of the device. For EDM tool pose extraction, a second ray at each control position

was extracted using a constant ray length of two meter (d2 = 2). For camera tool pose

extraction, two additional rays at each position were used, for which the back-projected

image coordinates were shifted by one pixel in x and one pixel in y direction, respectively.

Table 4.1 shows the extracted DH parameters, Table 4.2 shows the base and tool

transforms for both, the EDM and camera end-effectors. The complete extracted geometric

model, including all coordinate frames and transformation matrices, is shown in Figure

3.2b.

43

44 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

Table 4.1: Estimated DH parameters for the exemplary RTS

joint αi ai γi di

1 1.5708 0.0 ϕi − 1.5708 0.0

2 0.0 0.0 θi 0.0

Table 4.2: Estimated base and end-effector transforms for the exemplary RTS

transform α β γ tx ty tz

MB 3.1416 0.0 0.0 0.0 0.0 0.0

M
(CAM)
T -1.5020 1.5646 3.2103 -0.0003 0.0 0.0003

M
(EDM)
T -1.5020 1.5646 3.2103 -0.0003 0.0 0.0003

4.2 Model Simplification

The extracted model parameters in Sec. 4.1 are sufficient for building a device simulator.

However, an idealized device simulation is often preferred. Idealized models can be used

for analytic system and algorithm design and verification, for calculating or simulating

desired system behaviors or for generating reference data sets.

The device used for this work shows similarities in the tool transforms, translation

parameters, which are close to zero, and rotation parameters, which can be approximated

by multiples of π
2 . In this section, we apply numerical approximations to relate the ex-

tracted geometric model with the simplified and idealized spherical model. By setting

the translation parameters to 0 and replacing the rotational components by the nearest

multiple of π
2 , we get following forward kinematic model of the exemplary RTS:

MB,T = MB

2∏
n=1

Mn,n+1MT MB = Rx(π) M1,2 = Rz(ϕi −
π

2
)Rx(

π

2
)

M2,3 = Rz(θi) MT = Rz(π)Ry(
π

2
)Rx(−π

2
)

 (4.1)

The rotation matrices Rx, Ry and Rz are defined in Eqn. A.4.

Multiplying and simplifying matrix MB,T leads to

MB,T =


cos(ϕi) cos(θi) sin(ϕi) sin(ϕi) sin(θi) 0
− sin(ϕi) cos(ϕi) cos(θi) cos(ϕi) sin(θi) 0

0 − sin(θi) cos(θi) 0
0 0 0 1

 (4.2)

which can be written as an Euler rotation according to Eqn. A.5:

MB,T = Rz(−ϕi)Ry(0)Rx(−θi) (4.3)

4.3. Simplified Forward Kinematic Model 45

y
B

= y
instrument

z
B

 = z
instrument

 = zenith x
img

 y
img

principal point

 (,)

𝐩 = ቈ
x
y
z
቉

𝐠 = ቈ





d
቉

Euclidean point

spherical point

EDM distance d from

other measurement

current EDM ray

current camera principal ray

current EDM distance

x
ref

y
ref

z
ref

y
EDM

x

B
= x

instrument

x
CAM

z
EDM

x
EDM

y

CAM

horizontal (azimuth)

angle 

𝑹zሺφሻ

𝑹xሺθሻ

z
CAM

𝑴B

vertical (zenith)

angle 

Figure 4.1: Simplified geometric model for a calibrated RTS [65] as used by the
exemplary RTS for this work. Azimuth angle, zenith angle and radial distance d are
denoted by ϕ, θ, and d, respectively. In this simplified version, the coordinate system of
the EDM is aligned with the camera coordinate system as well as the spherical coordinate
frame of the RTS. The 4x4 transformation matrix MB is a six DOF describes the RTS
pose with respect to a common reference frame.

4.3 Simplified Forward Kinematic Model

The model simplification given in Sec. 4.2 leads to a kinematic model for the exemplary

RTS with aligned camera tool frame and EDM tool frame M
(CAM)
T = M

(EDM)
T = MT .

Let g = [ϕ θ d]T be a spherical coordinate vector with vector length d. Then, the

vector g can be interpreted as tuple of angle control parameter (ϕ, θ) and the measured

EDM distance d. The vector g can also be interpreted as back-projected image pixel ray,

given as spherical coordinates. The conversion of image coordinates to spherical rays

allows for a common forward and inverse kinematic description for both, the EDM and

the camera tool. Furthermore, this allows rotation-invariant selection of targets in the

image as shown in Figure 4.1. For EDM measurements, d is the measured distance, for

image data, d is a depth information for the related pixel, determined by previous EDM

measurements of from external sources1.

The operator G : g → p that maps the spherical vector g to an Euclidean 3D point

1The exemplary device does not have a depth camera.

46 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

p =
[
px py pz

]T
is then given by:

G(ϕ, θ, d) := Q(ϕ, θ)


0

0

d

1

 p̂ =


d sin(ϕ) sin(θ)

d cos(ϕ) sin(θ)

d cos(θ)

1

 (4.4)

where p̂ is the homogeneous representation of the Euclidean 3D point p. The combined

rotation matrix Q(ϕ, θ) is defined by

Q(ϕ, θ) = Rz(−ϕ)Ry(0)Rx(−θ) = MB,T (4.5)

with the 4x4 transformation matrix MB,T given in Eqn. 4.2. The conversion of an Eu-

clidean 3D point in camera tool frame to an image pixel is given by Eqn. 3.29. This

means that the forward kinematic model as shown in Fig. 3.14 is fully defined by Eqn. 4.4,

Eqn. 4.5, and the projection matrices PIMG and PDIST .

4.4 Simplified Inverse Kinematic Model

Let the operator F : p → g define the inverse kinematic model that maps the Euclidean

3D point p to the spherical point g. Then, the inverse kinematic model can be derived

directly from Eqn. 4.4: The ray length d is given by the Euclidean vector length d =√
p2
x + p2

y + p2
z . The vertical angle θ can be calculated by

pz = d cos(θ)⇒ θ = arccos(
pz
d

) (4.6)

The horizontal angle ϕ can be calculated by

px
py

=
d sinϕ sin θ

d cosϕ sin θ
⇒ ϕ = arctan(

px
py

). (4.7)

However, we use an alternative formulation, which favors the trigonometric function atan2

over the trigonometric functions arccos and arctan for numerical stability reasons. Hence,

the complete inverse kinematic model can be written as

F (p) :=


arccos

(
pz√

p2x+p2y+p2z

)
= atan2(

√
p2
x + p2

y , pz)

arctan
(
px
py

)
= atan2(px, py)√

p2
x + p2

y + p2
z

 =


ϕ

θ

d

 (4.8)

4.5. Model Error Estimation 47

Table 4.3: Kinematic model error of the extracted DH model, eDH , and of the simplified
model, esimplified. The individual and compound errors for the end-effectors are
provided. (A) Tool rotations around principal ray and EDM ray ignored. (B) Tool
rotations around principal ray and EDM ray considered

method end-effector eDH [m] esimplified [m]

A

EDM 8.16×10−04 ± 1.86×10−16 3.98×10−17 ± 4.91×10−17

camera 2.97×10−06 ± 9.47×10−07 8.14×10−04 ± 1.02×10−06

compound 4.10×10−04 ± 4.07×10−04 4.07×10−04 ± 4.07×10−04

B

EDM 1.04×10−03 ± 2.20×10−04 7.40×10−17 ± 9.60×10−17

camera 1.66×10−04 ± 1.15×10−04 4.38×10−03 ± 2.52×10−03

compound 5.14×10−04 ± 4.57×10−04 2.63×10−03 ± 2.90×10−03

with

−π ≤ ϕ < π 0 ≤ θ < π d > 0 (4.9)

This means that the inverse kinematic operations of the simplified model given in Fig. 4.1

is fully defined by Eqn. 4.8, Eqn. 4.9 and the pseudo-inverse of the projection matrices,

P†IMG and P†DIST , which unproject measured sensor data to the 3D space. Note that the

ray equation given in Eqn. 3.47 provides numeric stable and scale-preserving alternative

to P†IMG for converting a image pixel u with known pixel depth to a 3D point.

4.5 Model Error Estimation

The modeling error of the exemplary RTS as given in Sec. 3.2 describes the discrepancy

between the kinematic model and the model used by the device driver. Table 4.3 shows the

result of the error analysis for the DH geometric model and the simplified geometric model.

The results show that the simplified, spherical model, compared to the geometrically

extracted DH model, is a good approximation for the EDM end-effector; the DH model

shows lower modeling error for the complete system.

4.6 Model Optimization

The modeling method proposed in Sec. 3.1 is a greedy algorithm, which only optimizes

local cost functions. While this is sufficient for many applications, the estimated model can

be refined using nonlinear optimization techniques to decrease the error of the model. In

this section, we briefly discuss model optimization using a global error function. However,

this is only a proof of concept, while a detailed optimization analysis is beyond the scope

of this work.

48 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

Table 4.4: Errors of the optimized model, with tool rotations around principal ray and
EDM ray considered (method B)

end-effector eoptimized [m] eoptimized,cross [m] eoptimized,full [m]

EDM 1.72×10−5 ± 5.19×10−6 2.12×10−05 ± 7.64×10−06 1.99×10−05 ± 6.88×10−06

camera 1.98×10−5 ± 8.20×10−6 2.16×10−05 ± 9.50×10−06 1.41×10−05 ± 7.79×10−06

compound 1.87×10−5 ± 7.26×10−6 2.15×10−05 ± 8.81×10−06 1.64×10−05 ± 7.95×10−06

Table 4.5: DH parameter results of the sequential quadratic programming (SQP)
optimization

i αi ai γi di

1 1.570808 0.0 ϕi − 1.5203 0.0

2 0.2055×10−3 −0.1117×10−3 θi−0.4432×10−3 0.0684×10−3

Table 4.6: Base and tool transformation results of the SQP optimization.

transform α β γ tx ty tz

MB 3.1416 0.0 0.0504 5.915×10−9 7.216×10−9 3.312×10−9

M
(CAM)
T −1.4632 1.5646 3.2103 −0.1451×10−3 −2.152×10−9 0.1505×10−3

M
(EDM)
T −1.4219 1.5693 3.2910 0.1421×10−3 1.415×10−6 −9.014×10−5

Finding an optimal model can be formalized as nonlinear optimization problem with

boundary conditions and linear scalarization

min
So

(ωdd̄d + ωσσ̂d) subject to tmin < ti < tmax and rmin < ri < rmax (4.10)

where ωd and ωσ are weighting factors and where the mean value d̄d and the unbiased

standard deviation σ̂d are given in Eqn. 3.45. The parameter set So contains the 26 model

parameters2:

So =
(
rB, tB,Q1,Q2, r

(CAM)
T , t

(CAM)
T , r

(EDM)
T , t

(EDM)
T

)
(4.11)

The two parameter sets Q1 and Q2 contain the eight DH parameters of the model. The rigid

base transform is described by the 3 × 1 vector rB, containing the Euler angles, and the

3×1 translation vector tB. Analogously,
(
r

(CAM)
T , t

(CAM)
T

)
and

(
r

(EDM)
T , t

(EDM)
T

)
describe

the rigid end-effector transforms. We used the lower boundary tmin = −1×10−2m and the

upper boundary tmax = 1×10−2m for all translational model parameters. Additionally, we

used the lower boundary rmin = −π and the upper boundary rmax = +π for all rotational

2We do not include the camera intrinsics, EDM calibration parameters or scale factors of the system
control parameters (ϕ, θ).

4.6. Model Optimization 49

0 20 40 60

iteration

0

0.2

0.4

0.6

0.8

1

re
s
id

u
a

l

#10
-3

Figure 4.2: Residual evolution of SQP optimization.

model parameters3.

SQP was used to refine the initial geometric model, which is a gradient-based iterative

numerical optimization method. Details about SQP can be found in the book by Nocedal

and Wright [80].

The optimization was implemented and executed with Matlab 2017 and the Matlab

Optimization Toolbox [72], using four parallel sub-processes, Microsoft Windows 10, an

Intel Core i7 processor with 64GB RAM. The run-time of the SQP based optimization was

1.326×103s (≈ 0.4h).

The error results of the optimized model eoptimized are shown in Table 4.4; the optimized

model parameters are shown in Table 4.5 and Table 4.6, respectively.

Usually the weights of the objectives are normalized to one, hence ωd+ωσ = 1 [30]. In

this work, however, we weighted the mean value with ωd = 1.0, and, the unbiased standard

deviation with ωσ = 1.0, for better comparison between the non-optimized result given

in Table 4.3 and the evolution of the residual over the optimization iterations shown in

Fig. 4.2.

Error distributions with respect the angle control parameter space are shown in Fig. 4.3

and Fig. 4.4, respectively. Note that the high dynamic range of the modeling errors does

not allow for a common heat map encoding.

3We mapped the result to the range [0, 2π] for better comparison between optimized and non-optimized
model.

50 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

Modeling Error (EDM-simple pose)

0.00e+00m

5.00e-17m

1.00e-16m

1.50e-16m

2.00e-16m

2.50e-16m

3.00e-16m
(*) excluded critical vertical angle region

(*)

Modeling Error (camera-simple pose)

4.376e-03m

4.377e-03m

4.378e-03m

4.379e-03m

4.380e-03m

4.381e-03m

4.382e-03m
(*) excluded critical vertical angle region

(*)

Modeling Error (compound-simple pose)

2.6255e-03m

2.6260e-03m

2.6265e-03m

2.6270e-03m

2.6275e-03m

2.6280e-03m

2.6285e-03m

2.6290e-03m

2.6295e-03m
(*) excluded critical vertical angle region

(*)

(a)

Modeling Error (EDM pose)

1.035729964136e-03m

1.035729964136e-03m

1.035729964136e-03m

1.035729964136e-03m

1.035729964137e-03m

(*) excluded critical vertical angle region

(*)

Modeling Error (camera pose)

1.650e-04m

1.655e-04m

1.660e-04m

1.665e-04m

1.670e-04m

1.675e-04m

1.680e-04m

(*) excluded critical vertical angle region

(*)

Modeling Error (compound pose)

5.134e-04m

5.136e-04m

5.138e-04m

5.140e-04m

5.142e-04m

5.144e-04m

5.146e-04m

5.148e-04m

5.150e-04m(*) excluded critical vertical angle region

(*)

(b)

Figure 4.3: Error distributions of estimated DH model with respect to the recorded data
set, shown as function of the horizontal and vertical control parameters (ϕi, θi), without
downstream global optimization scheme. In particular, the pose error of the end-effectors
are encoded as colors (method B.) From left to right column: (a) simplified model, (b)
geometrically extracted model. From top to bottom row: EDM, camera, compound.

4.7 Interpretation of the Modeling Error

The model error eoptimized of Table 4.4 was calculated with the reduced control parameter

range for ϕi and θi, as shown in Figure 3.6b, for both optimization and evaluation. For

simple cross-validation, the optimized model was applied to all samples of the full control

4.7. Interpretation of the Modeling Error 51

Modeling Error (EDM pose)

8.00e-06m

1.00e-05m

1.20e-05m

1.40e-05m

1.60e-05m

1.80e-05m
(*) excluded critical vertical angle region

(*)

Modeling Error (camera pose)

8.00e-06m

1.00e-05m

1.20e-05m

1.40e-05m

1.60e-05m

1.80e-05m(*) excluded critical vertical angle region

(*)

Modeling Error (compound pose)

8.00e-06m

9.00e-06m

1.00e-05m

1.10e-05m

1.20e-05m

1.30e-05m

(*) excluded critical vertical angle region

(*)

(a)

Modeling Error (EDM pose)

1.20e-05m

1.40e-05m

1.60e-05m

1.80e-05m

2.00e-05m

2.20e-05m

2.40e-05m

2.60e-05m

2.80e-05m(*) excluded critical vertical angle region

(*)

Modeling Error (camera pose)

4.00e-06m

6.00e-06m

8.00e-06m

1.00e-05m

1.20e-05m

1.40e-05m

1.60e-05m

1.80e-05m

2.00e-05m

2.20e-05m(*) excluded critical vertical angle region

(*)

Modeling Error (compound pose)

8.00e-06m

1.00e-05m

1.20e-05m

1.40e-05m

1.60e-05m

1.80e-05m

2.00e-05m

2.20e-05m

2.40e-05m

(*) excluded critical vertical angle region

(*)

(b)

Figure 4.4: Error distributions of estimated DH model with respect to the recorded data
set, shown as function of the horizontal and vertical control parameters (ϕi, θi), with
downstream global optimization scheme. In particular, the pose error of the end-effectors
are encoded as colors (method B.) From left to right column: (a) reduced parameter
space used for optimization, (b) full parameter space used for optimization. From top to
bottom row: EDM, camera, compound.

parameter space, as shown in Figure 3.6c, which corresponds to the error eoptimized,cross in

Table 4.4. Cross-validation is explained in the book by Witten and Frank [109]. In Table

4.4, eoptimized,full shows the error of the optimized model, where the full control parameter

space for model fitting and validation was used. The errors for all three methods, eoptimized,

52 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

eoptimized,cross and eoptimized,full, were calculated using Eqn. 3.45. The error values of all

three methods are in the same order of magnitude, which shows that the sub-set of the

recorded samples is sufficient for RTS model optimization. However, a slight decrease

in the modeling error can be observed when using samples from the full angle control

parameter space4.

The comparison of Table 4.3 with Table 4.4 shows a decrease in the modeling error

by one order of magnitude when applying numerical optimization subsequent to the DH

parameter estimation. Hence, numerical optimization is essential for kinmeatic modeling.

Figure 4.3 and Figure 4.4 show the distribution of the modeling error with respect to the

angle control parameter space for the non-optimized and the optimized model, respectively.

Sample points in the critical vertical angle regions were excluded throughout this work

for stability reasons. In Figure 4.4, samples of the full control parameter space were used

for optimization and validation. The critical regions exclude samples near the poles of the

spherical model from the calculations. The poles are defined by θi = {0, π}. In particular,

the critical region around θi = π also excludes the non-measurable area of a physical RTS,

as shown in Figure 1.1. In this work, we set critical regions to |θi| = {0, 3
4π . . . π}.

All calculations were carried out with 64-bit precision arithmetic [51]. The range of the

EDM error distribution of the simplified model, shown in the top left diagram of Figure

4.3, is in the magnitude of the round-off effects of the 64-bit floating-point arithmetic.

Hence, the error distribution can be considered as noise, introduced by round-off effects.

The error distribution of the geometrically estimated DH model of the EDM end-effector is

shown in the top right diagram of Figure 4.3; accuracy and precision are in the magnitude

of 1×10−3m and 1×10−16m, respectively. The distribution indicates an EDM pose error

of the model, which appears as increasing error between |ϕ| = {0 . . . π}, when applying

horizontal rotations. The approximately uniform distribution over the vertical parameter

space θ = {0 . . . π} indicates that the major offset is along the y-axis of the instrument

frame. A scale and offset error of the angle control parameter ϕ could also lead to a similar

error distribution, but is contradicted by the error analysis of the simplified EDM model.

For each model in Figure 4.3 and Figure 4.4, the error distributions of the camera

end-effector are given in the middle row; the compound error distributions are given in

the bottom row.

When comparing all analyzed models, the simplified model is the best match for the

device, if only the EDM end-effector is considered. In particular, the EDM modeling error

distribution, shown in the top left diagram of Figure 4.3, is in the magnitude of numerical

round-off effects. This indicates that the driver uses a spherical coordinate system to

convert angle and distance sensor data (ϕi, θi, di) to Euclidean points xi.

When only considering the camera end-effector, the accuracy of the geometrically

estimated model is by a order of magnitude lower, compared to the simplified model;

the error distribution is more uniform with respect to the angle parameter space. The

4The analysis of the effect of using a reduced distance parameter space is beyond the scope of this
work.

4.7. Interpretation of the Modeling Error 53

distribution of the simplified model indicates a translational component of the camera

pose, which cannot be modeled by a single spherical coordinate system.

The compound errors of the individual models are mainly influenced by sample points

of the camera frame. This indicates that the camera model used in this work is too

simplistic. To lower the modeling accuracy and precision, a more general camera model

can be applied.

The results presented in Sec. 4.1 show that a spherical representation of the RTS is

sufficient for idealized geometric simulation of the system. If a more detailed model is

required, the system can be described by DH parameters using the method we introduced

in Sec. 3.1. The results proposed in Sec. 4.6 show the significance of the downstream

numerical optimization.

𝑀𝑇(𝐶𝐴𝑀)
camera

EDM

𝑀𝐵,𝑇(𝐸𝐷𝑀)

𝑴𝐵 𝑴1,2

𝑴𝐵𝑴12𝑴𝑇

camera

EDM

𝑻𝑧(𝑑2) 𝑹𝑧(𝛾2) 𝑻𝑥(𝑎2) 𝑹𝑥(𝛼2)

𝑪1

𝑴2,3

CAD model of RTS

simple RTS scene graph

scene

environment

RTS

scene graph for RTS

measurement simulation

extended RTS scene graph

𝑪2
𝑪3 DH transforms

Figure 4.5: Disassembling an RTS to identify geometric frames, sensors and actuators for
simulation.

The estimated models can be used for RTS simulation, using custom or standard

robotic simulators. Figure 4.5 shows the scene graph of an exemplary RTS simulator,

Figure 4.6 shows a custom RTS simulator in Unity3D.

The following section provides a detailed analysis of the simulator shown in Fig. 4.6.

In particular, we use the simplified device model shown in Fig. 4.1, and the corresponding

simple RTS scene graph as shown in Fig. 4.5 for the following discussions.

54 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

RTS model EDM laser environment

live data stream

interactive

MATLAB UI

interactive

OpenCV UI

custom Unity3D

simulator for RTS

Figure 4.6: Exemplary RTS simulator, with Unity3D as simulation environment, the
gRPC library [41] as communication and control layer, and two simultaneously
connected clients for testing workflows and algorithms. While Unity3D uses mainly C#,
the clients implement workflow and UI prototypes in C++ and Matlab, respectively.

4.8 Using Unity3D as RTS Simulation Engine

3D rendering engines can be used for real-time simulation of various measurement se-

tups. In this work, we use the game engine Unity3D [105] for creating and simulating

measurement setups with scene graphs.

A Unity3D scene graph for RTS setups consists of nodes for sensors, actuators and mea-

surement targets with attached behavior scripts [105]. The simulation includes firmware

behavior, environmental influences and timing constraints. Figure 4.6 shows an exemplary

scene, and Figure 4.5 shows the corresponding scene graph.

4.8.1 Modeling RT Sensors, Actuators and Targets in Unity3D

The geometric environment of the scene graph shown in Figure 4.5 consists of multiple

triangle meshes. The instrument node represents the reference frame for RTS measure-

ments, which can be freely positioned within the scene. Telescope frame, camera sensor

and EDM are modeled as child nodes of the instrument node. The environment node is

a placeholder for different measurement targets. Environments may include CAD models

of reflective and non-reflective measurement targets, individual rooms, complete buildings

or urban areas. The EDM is modeled by ray casting and returns the smallest distance d

4.9. Uncertainties in Simulations 55

between the ray origin and the closest ray intersections with a scene object. The reader

is referred to the Unity3D User Manual [105] for implementation details.

4.8.2 Converting Coordinate System Handedness

Unity3D uses a left-handed coordinate system [105], while most RTS models use right-

handed coordinate systems [9, 106]. Accordingly, the kinematic models derived in the

previous section are based on right-handed coordinates systems to maintain consistency

and better comparability with previous published work in this field. Hence, geometric

models and simulation results of the Unity3D module must be converted accordingly.

Implementation details are given in Appendix B.4.

4.8.3 Modeling Sensor Uncertainties in Unity3D

RTS manufacturers specify sensor uncertainties for normal distributed random variables

in following general form:

p(|x′ − x| ≤ kuc(x′)) = CIk (4.12)

Here x, is the measured quantity, uc(x
′) is the combined standard uncertainty of the

measurement result x′, k is the coverage factor, and CIk is the corresponding confidence

interval.

For RTS sensors, one can estimate the combined standard uncertainty according to:

uc(x
′) ≈

√
u1(x′)2 + (xu2(x′))2 (4.13)

Here, u1(x′) is the bias and u2(x′) is the scale, both provided by the device manufacturers

or through sensor calibration. Usually, the true value x is not known, and the current

measurement x′ is used instead in Eqn. 4.13 to estimate the combined standard uncertainty

uc(x
′). In this work, the error model given in Eqn. 4.12 is applied to simulate EDM and

angular sensor uncertainties. The measurement uncertainty distribution is assumed to

have normal distribution and zero mean. In addition, the servo actuator and angular

sensor are split, thereby increasing the flexibility of simulation. Figure 4.7 shows the

sensor uncertainty model of the RTS simulator, Figure 4.8 shows the verification setup for

the simulation uncertainty. We use the Box-Muller transform [18] to generate the sensor

reading x′ from uniformly distributed random values a, b and the simulated true value x:

x′ = x+
√
−2ln(a) cos

(
2πbuc(x

′)
)

(4.14)

Here, the desired standard uncertainty uc(x
′) is taken from Eqn. 4.13.

56 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

RTS control

parameters ሺθ, φሻ
control register

data register

𝑢sensor

𝑢EDM noise models (random)

𝑢actor

simulated

sensor data

 noise parameters
ሺ𝑢actor, 𝑢sensor, 𝑢EDMሻ

θ, φ

Unity3D
scene graph

ሺd′′, θ′′, φ′′ሻ θ′′, φ′′

d′′

θ′, φ′

Figure 4.7: Simulating sensor uncertainties for RTS, where the uactuator and usensor are
the servo and angle uncertainties, and uEDM is the distance uncertainty of the EDM.
Different configurations of hardware and environmental conditions can be simulated by
altering the noise parameters.

4.9 Uncertainties in Simulations

The analysis and report of measurement uncertainties of physical sensors is crucial for

assessing simulation and measurement results. In Sec. 4.8.3, a simple model for sensor

uncertainty simulation was provided, used for simulating realistic hardware sensors. How-

ever, the limitations of the real-time simulation itself have not been considered yet.

The JCGM 100:2008 GUM [57] standardizes the evaluation and report of measured

physical quantities, using measurement uncertainties to guarantee reliable and repeat-

able experiments. In this section, we analyze the simulation uncertainties of virtual RTS

experiments as shown in Fig. 4.9. The applied methods for estimating the simulation

uncertainty are conform to GUM.

We will derive a simple a-priori estimate of the uncertainty of a particular simulation

setup. For this particular investigation, we assumed the ideal geometric model presented

in Sec. 4.3 and in Sec. 4.4, without any systematic modeling error and with ideal sensors.

Hence, all sensor uncertainties discussed in Sec. 4.8.3 were set to zero. As a result, only

the variability of the simulation in Unity3D itself is considered here. Unless otherwise

stated, arithmetic rules, naming convention and format specification conform to the IEEE

754-2008 standard for floating-point arithmetic [51] and follow GUM [57].

4.9.1 Identifying Sources of Uncertainty in Simulations

Unity3D allows the placement of scene objects anywhere in the coordinate system. Unlike

CAD tools, game engines rely on fast single-precision (32-bit) floating-point representa-

tions for handling geometric entities. In this work, we use 64-bit floating-point format

when working with the real device and as a data interchange format, but the 32-bit

floating-point format of Unity3D for scene graph simulation and rendering. Hence, we

must consider rounding errors of numerical operations on mesh vertices and scene objects

with large distances to the world frame origin.

4.9. Uncertainties in Simulations 57

EDM ray

0000

z
world,

z
instr

x
world,

y
instr

y

world

x
instr

intersection point

൥
𝑑
𝜃
𝜑
൩ = ൥

10
𝜋/2
𝜋/2

൩

world frame and RTS instrument frame* origin
* RTS rotated around z axis by 𝜋/2 for easier evaluation

x
object

z
object

 𝛼

(a) (b)

=7.791e-04
=1.000e+01

9.998 9.999 10 10.001 10.002 10.003
0

100

200

300

400

500

600

m
ea

su
re

m
en

t c
ou

nt
 p

er
 b

in

(c)

=7.260e-05
=1.571e+00

1.5706 1.5707 1.5708 1.5709 1.571
0

1000

2000

3000

4000

5000

6000
m

ea
su

re
m

en
t c

ou
nt

 p
er

 b
in

(d)

Figure 4.8: Unit test setup for verifying the simulated sensor noise. (a) Concept for
uncertainty verification. (b) Unity3D setup for verifying both, simulated sensor
uncertainty (desired) and round-off effects of the simulation (undesired). (c) Exemplary
values for distance measurement uncertainties: u1(x′) = 0.75×10−3, u2(x′) = 10×10−6.
(d) Exemplary values for angle sensor uncertainties: u1(x′) = 5′′ ≈ 2.4241×10−05rad,
u2(x′) = 0.

4.9.2 A-Priori Uncertainty Estimation

Figure 4.9 shows an example simulation setup with metric scale and realistic object posi-

tions. The simulator follows a graphics pipeline [95] as shown in Fig. 4.10. In this work,

we focus on geometric operations of triangles only, but do not analyze the simulation

uncertainty for rendering 2D images5.

The uncertainty of geometric operations on triangles are affected by three major blocks

(Figure 4.11): Block I transforms CAD vertices and normals (x,n) to the word frame;

5The image resolution is considered as the main pixel uncertainty source for both, the physical device
and the simulation. An extended analysis of the image uncertainty is provided in the work by Erhart [31].

58 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

Unity3D

RTS SIM

RTS model

Model
control, environment and

sensor parameter sweep

statistical

evaluation

live simulator access

or recorded datasets

simulation

uncertainty

𝐱calc

𝐱sim

Matlab

unit under test

Figure 4.9: Simple scene setup for the uncertainty analysis of floating-point effects.

Block II transforms the RTS object to the world frame; Block III calculates the EDM

distance using ray casting. The ray casting result was interpreted as spherical coordinate

vector with optional conversion to the Euclidean space. The latter was carried out with 64-

bit floating-point arithmetic, which we regarded as having negligible error for our purposes.

For better readability, the enumeration indices of vertices and normals were omitted in

the following.

Input vertices are originally stored at 64-bit precision, but loaded in block I with 32-bit

model

space

clip

space
camera

space
world

space

screen

space

view

transform

MV

projection

transform

MP

viewport

transform

MVP

display

vertex processing rasterization

simulation uncertainty

analysis

mesh RTS workflow

analysis

vertex parsing

model

transform

MM

Figure 4.10: Graphics pipeline for triangles [95]. In this work, geometric operations on
triangles that are relevant for the simulation uncertainty analysis are carried out in
world-space. Therefore, only the first transformation of the vertex transformation
pipeline needs to be considered.

4.9. Uncertainties in Simulations 59

convert

measurement

load mesh

transform RTS

CAD model transform model

𝑢(𝜉′)

 𝐌1 = 𝑓(𝐑1, 𝐭1)

 𝐌2 = 𝑓(𝐑2, 𝐭2)

vertices,

world frame

(mesh) vertices,

object frame

camera, EDM & telescope aligned

64 bit binary

precision format

convert control

parameters RTS control

parameters,

RTS pose

32 bit binary precision

format

ray cast

RTS, EDM and camera position 𝐪′′,
EDM ray direction 𝐯′′,
world frame

 distance

64 bit binary

precision arithmetic

measurement

(distance, point)

𝐫′′ = 𝐪′′ + t𝐯′′ (d′′)

(θ, φ, 𝒓, 𝒕) (θ′, φ′, 𝐫′, 𝐭′)

(𝐱′, 𝐧′) (𝐱, 𝐧)

(𝐪′′, 𝐯′′)

(𝐱′′, 𝐧′′)

(d′′, 𝐱′′′)

d =
(𝐱′′ − 𝐪′′)𝐧′′

𝐯′′T𝐧′′

block I

block II

block III

𝑢(𝜉′)

𝑢(𝜉′) 𝑢(𝜉′)

𝑢(𝜉′)

𝑢𝑐(d
′′), 𝑢𝑐(𝐱′′′)

Figure 4.11: Estimating the round-off effects for simulations with uncertainty
propagation. The critical aspect in this work is the EDM simulation, here modeled as ray
casting pipeline with three connected processing blocks.

floating-point precision. The expected rounding error is mainly influenced by the distance

between vertex and origin and the limits of the data format. Figure 4.12 shows the memory

layout of the 32-bit binary floating-point format, including 1-bit sign, an 8-bit exponent,

and a 23-bit mantissa plus one implicit leading bit. If the format precision p denotes

the maximum number of digits at radix (base) 10, which can be represented, vertices and

normals in Unity3D have a format precision of p = 7.

Let ξ be an input number at radix 10. The rounded floating-point format ξ′ and the

round-off error eξ are given as follows:

ξ′ = bξ · 10Nfrace · 10−Nfrac eξ = ξ − ξ′ (4.15)

Nfrac = p−Nint Nint =

{
blog10 |ξ|c+ 1, ξ 6= 0

0, otherwise
(4.16)

Here, Nint and Nfrac are the number of integer and fractional digits, respectively; bxe and

bxc round a real value x to the nearest integer and towards minus infinity, respectively. If

the true value ξ is not known, the uncertainty bounds a+−a− = 2a of the rounded vertex

ξ′ are given by a rectangular distribution:

ξ − a− ≤ ξ′ ≤ ξ + a+ a = 0.5 · 10−(Nfrac+1) (4.17)

Here, a− and a+ are the lower and upper limit, respectively. The standard uncertainty of

a simulated vertex without any applied transformation is then given as follows [57]:

u(ξ′) ≈ 0.5√
3
· 10−(Nfrac+1) (4.18)

60 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

MSB LSB

1-bit sign

0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0

8-bit exponent 23-bit significand

example: 813.12e-5 decimal

Figure 4.12: Memory layout and bit allocation of 32-bit floating-point numbers according
to IEEE 754-2008 standard for floating-point arithmetic [51].

Let x be an input vertex x with corresponding normal n, given in 64-bit. Let x′ and

n′ be the corresponding entities in 32-bit floating-point precision. Then, the uncertainties

for each element of the vertex and normal are given as follows:

u(x′) ≈ u(ξ′)|ξ=xb u(n′) ≈ u(ξ′)|Nfrac=7 (4.19)

Here, u(x′) defines the element-wise uncertainties of a vertex x′, and u(n′) defines the

element-wise uncertainties of the normal n′. A conservative approximation for all vertices

is given by ξ = xb, where xb is the maximum absolute value of all components of the

scene-bounding box. Assuming ||n|| = 1, the fractional digit count for the normals in

Eqn. 4.19 is given by Nfrac = 7.

To reduce the calculation complexity, we used following approximations: Scene trans-

formations were reduced to Euclidean transformations to avoid homogeneous matrix op-

erations. Where feasible, concatenated transformations as a single transformation only.

The quadratic variance propagation for a single output and multiple input variables was

used to combine the uncertainty sources, which can be written in the following form [11,

102]:

uc(χ) =
√

gTVg g = ∇χ =
[
δχ
β1
. . . δχβN

]
β = (β1, . . . , βN) (4.20)

Here, uc(χ) is the combined standard uncertainty of some function χ(β), and V is the

covariance matrix for N input variables βi with i ∈ {1 . . . N}.
The transformation of a model space vertex x′ to the corresponding world space vertex

x′′ is given as follows:

x′′ = R′x′ + t′ n′′ = Rn′ (4.21)

Here, R′ is the 32-bit floating-point representation of a 3× 3 rotation matrix R; t′ is the

32-bit floating-point representation of a 3×1 translation vector t, and (x′,n′) are the 32-bit

floating-point representations of the vertex and normal (x,n). To reduce the uncertainty

transfer function output for block I to a single variable, the same scalar uncertainty uc(x
′′)

was used for the x, y and z component of vertex x′′, and all components were treated

as independent. Analogously, the translational standard uncertainty u(t) ≈ u(x′) was

4.9. Uncertainties in Simulations 61

assumed to be equal for all axes. The fractional digit count Nfrac in Eqn. 4.18 can be

estimated using |x| = xb.

Let r′ij be the elements of the rotation matrix R′, u(rij) be the element-wise standard

uncertainty, and rij the elements of the true rotation matrix R. Rotation matrix rows are

normalized to one, which leads to |rij | ≤ 1. Consequently, the uncertainty value for each

matrix element r′ij can be approximated by u(r′ij) ≈ u(ξ) with Nfrac = 7, as defined in

Eqn. 4.18. Without known rotation parameters, a liberal approximation for the variance

propagation of the rotational part is given by substituting the identity matrix as rotation

matrix R. However, a conservative approximation is preferable, substituting |rij | = 1 for

all matrix elements6. Consequentially, the standard uncertainty for each element of x′′

can be estimated from the first component of x′′ only, which is given by the first row of

Eqn. 4.21 according to

x′′1 = r′11x
′
1 + r′12x

′
2 + r′13x

′
3 + t′1 x′ =


x′1

x′2

x′3

 t′ =


t′1

t′2

t′3

 (4.22)

where x′′1 is the first component of vertex x′′.

According to Eqn. 4.20, the partial derivatives of x′′1 with respect to β can be calculated

as follows:

g = ∇x′′1 β =
(
x′1 . . . x

′
3, r
′
11 . . . r

′
13, t

′
1

)
(4.23)

Here, β is the tuple of 7 scalar variables. The corresponding [7× 7] covariance matrix V

is given as follows:

V = diag(1T3 u(x′),1T3 u(r′ij),1
T
3 u(t′)) (4.24)

Here, 1T3 is a 1 × 3 vector with all elements equal one; all input variables are defined as

independent; hence, all covariance elements are zero. By substituting |xi| = xb, |rij | = 1,

the estimation of uc(x
′′) can be reduced to the following:

uc(x
′′) ≈ 1

k

√
3u(r′ij)

2x2
b + 3u(x′)2 + u(t′)2 (4.25)

Here, the regularization term k takes the conservative assumptions into account; hence, it

can be interpreted as coverage factor. Using k = 3 avoids overestimation of uncertainty

effects and turns the expanded uncertainty of Eqn. 4.25 into the standard uncertainty as

defined in GUM [57].

The element-wise combined standard uncertainty uc(n
′′) of a transformed vertex nor-

6This leads to an invalid rotation matrix, but the results are more trustworthy for conservative ap-
proximations without explicit knowledge of the rotation parameters.

62 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

mal n′′ can be directly derived from Eqn. 4.25. From ||n′|| ≈ 1 follows that the bounding

box for all normal elements in Eqn. 4.25 can be set to |xb| = 1. Normals are not affected

by translation; hence, u(t′) in Eqn. 4.25 is zero, and uc(n
′′) can be estimated as follows:

uc(n
′′) ≈ 1

k

√
3u(r′ij)

2 + 3u(n′)2 (4.26)

Block II models the EDM by transforming the RTS control parameters to a ray in world-

space. Let the instrument space ray be defined by the ray origin q and the ray direction v.

We approximated the chain of RTS transformations by a single Euclidean transformation

as done in block I 7. Assuming the same bounding box for all vertices, scene objects and

the RTS position, the combined uncertainty values for the transformed world-space ray

origin q′′ and the transformed world-space ray direction v′′ can be approximated by the

combined uncertainty values calculated for block I:

uc(q
′′) ≈ uc(x′′) uc(v

′′) ≈ uc(n′′) (4.27)

Here, uc(q
′′) and uc(v

′′) are the element-wise combined standard uncertainties for the

transformed ray origin and ray direction, respectively.

For the analysis of Block III, the EDM ray casting was simplified to plane-ray inter-

section. The simulated distance d′′ between the ray origin q′′ and the scene intersection

point can be calculated as follows:

d′′ =
(x′′ − q′′)T n′′

v′′Tn′′
=

(x′′ − q′′)T n′′

||v′′|| ||n′′|| cosα
(4.28)

Here, d′′ is the ray length, calculated with finite precision arithmetic, n′′ is the plane

normal, x′′ is a point on the plane, and α is the incident angle between the ray direction

and the plane normal. The propagated combined standard uncertainty uc(d
′′) can be

estimated by solving Eqn. 4.20 with χ = d′′, using the input parameters β:

β =
(
x′′,n′′,q′′,v′′

)
(4.29)

Here, β is interpreted as tuple of 12 scalar variables. The corresponding [12×12] covariance

matrix V is given as follows:

V = diag(1T3 uc(x
′′),1T3 uc(n

′′),1T3 uc(q
′′),1T3 uc(v

′′)) (4.30)

The denominator of Eqn. 4.28 shows a significant dependency between the combined

uncertainty of the distance measurement, uc(d
′′), and the incident ray angle α. A first

or second order Taylor approximation of the denominator could be used for angles close

to zero, but would be insufficient for larger angles. As an alternative, a rough estimation

7A more detailed, but also more complex approximation of the variance propagation would consider
all control parameters in block II as shown in Figure 4.11.

4.10. A-Posteriori Uncertainty Estimation 63

of uc(d
′′) can be derived by substituting an independent variable g with zero variance as

denominator. Hence, Eqn. 4.28 can be written in the following form:

d′′ =
(x′′ − q′′)T n′′

g
||v′′|| ≈ ||n′′|| ≈ 1⇒ g ≈ cos(α) (4.31)

Using the same considerations as for blocks I and II, uc(d
′′) can be approximated by solving

Eqn. 4.20 with χ = d′′, where β, V and d′′ are given in Eqns. 4.29 - 4.31, respectively. The

conservative substitutions of |n′′i | = 1 for all elements of n and x′′−q′′ =
[
2xb 2xb 2xb

]T
lead to the following form:

uc(d
′′) ≈ 1

| cos(α)|

√
12uc(n′′)2x2

b + 3uc(x′′)2 + 3uc(q′′)2 (4.32)

Here, xb denotes the maximum absolute element of the scene-bounding box.

Optionally, the simulated distance measurement d′′ and the angle control parameters

(θ, ϕ) can be converted to an Euclidean point x′′′ using Eqn. 4.4 with 64-bit floating-point

arithmetic. If the norm of all columns of an Euclidean rotation matrix equals one, the

combined uncertainty for each element of the measured point can be estimated as follows:

uc(x
′′′) ≈ muc(d

′′)√
3

1 ≤ m ≤
√

3 (4.33)

Here, m is a correction factor that avoids underestimation for special scene setups. For

example, when measuring far distances along a single axis, the combined standard uncer-

tainty uc(x
′′′) of the significant axis can be analyzed with m =

√
3 .

4.10 A-Posteriori Uncertainty Estimation

We evaluated our setup with Monte-Carlo Simulation (MCS) based on random placements

of the simulated RTS and associated targets.

The uncertainty propagation functions developed in Sec. 4.9.2 can be verified using

MCS. Let yi be the true intersection point of a laser distance measurement, and, qi, the

laser ray origin, both calculated with 64-bit arithmetic. The standard uncertainty u(d′′)

for the simulated distance measurement can be estimated by N repeated measurements,

using the following:

u(d′′) ≈

√
(d′′i − di)

2

N
di = ||yi − qi|| (4.34)

The simulator setup for the MCS is shown in Figure 4.13. For each experiment, the CAD

model, RTS pose and measurement target pose were randomly generated. The CAD model

of each experiment consists of a single triangle, the measurement target, with arbitrary

64 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

scene (world) frame

scene bounding box

൥

+x𝑏
+x𝑏
+x𝑏

൩

𝐌𝑖𝑛𝑠𝑡𝑟

൥

+x𝑏
−x𝑏
−x𝑏

൩

CAD bounding box

2x𝑏

2x𝑏

𝛼
targets placed near

bounding box surface

𝑥 𝑦
𝑧

random CAD model picking from

triangles near bounding box

RTS placed near bounding box surface, opposite to measurement target

𝐌𝑚𝑒𝑠ℎ

CAD frame

2x𝑏

(a)

0

0

0.5

1

1.5

y
[m

]

0

0

0.5

1

1.5

0

0

0.5

1

1.5

0

0

0.5

1

1.5

0

x [m]

0

0.5

1

1.5

0

0

0.5

1

1.5

0

0

0.5

1

1.5

0

0

0.5

1

1.5

0

0

0.5

1

1.5

(b)

Figure 4.13: Setup for analyzing the uncertainty of arithmetic floating-point effects using
MCS. (a) Relations, transformations and parameters of scene objects, object frames, and
ray intersections. (b) Experiments with different incident angles of the EDM ray at the
measurement target, here shown in 2D for simplicity reasons.

rotation, a circumradius of one, and the centroid placed randomly on the bounding box.

In the world-space frame, the RTS was placed on the negative and the measurement

target was placed on the positive y = 0 plane of the bounding box. Each experiment was

evaluated using the simulator and compared with results of a 64-bit precision arithmetic

model.

4.10. A-Posteriori Uncertainty Estimation 65

Table 4.7: Uncertainty results for the realistic RTS simulator setup, using analytical
method and MCS. For the analytical estimation, a scene-bounding box of xb ≈ 10m was
used. Intermediate variables of the uncertainties are not available because the simulator
API was directly generated from the original RTS driver API and the physical setup.
Therefore, u(n′), u(x′) and u(n′′) where not accessible (NA) in this experiment.

α method u(n′) [m] u(x′) [m] uc(n
′′) [m] uc(x

′′) [m] uc(d
′′) [m]

0.33π
analytical 2.89×10−8 5.00×10−7 2.36×10−8 3.44×10−7 1.87×10−6

MCS NA NA NA NA 2.41×10−6

0.45π
analytical 2.89×10−8 5.00×10−7 2.36×10−8 3.44×10−7 6.00×10−6

MCS NA NA NA NA 7.34×10−6

≈ 0.46π MCS realistic NA NA NA NA 5.82×10−6

4.10.1 Interpretation of Uncertainty Estimation Results

We estimated the element-wise combined standard uncertainties uc(x
′′′) of the intersection

point x′′′ for the distances d ∈ {0.5, 1, 101, 102, 103} meter. The world-space bounding box

was assumed to be xb ≈ ±d
2 in x, y and z direction, respectively. The RTS was placed

near the border of the bounding box as shown in Figure 4.13. The rays’ incident angles

were set to α ∈ {0, π12 ,
π
6 ,

π
4 ,

π
3 ,

2π
5 ,

9π
20 ,

9π
40 ,

9π
1000}. The Euclidean transformations Minstr and

Mmesh describe the world-space transformation for the RTS and the measurement target,

respectively. For each experiment, both matrices were randomly generated, placing the

RTS and the measurement target near the scene-bounding box. The CAD model for each

experiment consisted of single triangle, the measurement target, randomly placed within

the CAD bounding box. Each triangle was created by randomly picking three points

near the CAD bounding box. In addition, Minstr and Mmesh include jitter for the poses

of each experiment; the jitter was created using random translations with ±0.5m in x,y

and z direction and random rotations with ±0.05rad for each Euler rotation angle. In

addition, a local RTS rotation around the z-axis of the instrument frame was applied,

using randomized angles between 0 and 2π. Figure 4.14 shows the resulting uncertainty

characterization curves, estimated analytically and by using MCS. The run-time of the

analytical uncertainty evaluation was 4.2×10−3s, implemented and executed with Matlab

2017, under Microsoft Windows 10 on an Intel Core i7 processor with 64GB RAM. The

MCS took 2.5×103s (≈ 0.7h), using 100 samples for each configuration.

In addition, we estimated the simulation uncertainty for the realistic measurement

setup shown in Figure 4.9. We assumed a scene-bounding box with xb ≤ 10m and expected

incident ray angles of α ≈ (π3 , 0.45π) in Eqn. 4.32. The uncertainty results of the MCS

with the realistic setup showed an average incident angle of 0.46π and an average EDM

distance of 7.2m. Results are provided in Table 4.7.

The classification curves provided in Figure 4.14 allow uncertainty estimations prior

to the design of simulation setups and related CAD models. The analysis shows a linear

66 Chapter 4. Kinematic Modeling and Simulation of the Exemplary RTS

relationship between the logarithm of the simulation uncertainty and the logarithm of the

scene-bounding box; furthermore, a significant influence of the indecent angle is observ-

able. Figure 4.14e shows the overlay of the analytic approach and the MCS; Figure 4.14f

shows the difference between the two methods. Both diagrams indicate that the analyti-

cal uncertainty estimation is a reasonable prior approximation. With increasing incident

angle, the difference between the two methods increases.

4.11 Discussion

In this chapter, we presented a Unity3D based RTS simulator for graphical and non-

graphical algorithm development, test and verification, including a simple geometric mod-

els for the exemplary RTS, actuators, sensors and uncertainties. The provided analytical

a-priori method can be used for assessing simulation uncertainties before the actual im-

plementation of a particular measurement simulation.

We validated the results that are proposed in this chapter with MCS, which provide

more detailed uncertainty estimations for a particular setup, but at the cost of increased

execution time.

Furthermore, we verified the results of the analytical a-priori method using a realistic

simulation setup.

In the following chapters, we describe two assistance systems for reflectorless measurement

tasks. The simulation concept proposed in this chapter was an essential part for the design,

implementation and test of the proposed workflows.

4.11. Discussion 67

(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Simulation uncertainty estimations of EDM and target intersections in
Unity3D. (a) Analytically estimated uncertainty with respect to the scene-bounding box.
(b) Analytically estimated uncertainty with respect to the incident angle. (c)
Uncertainty from MCS, plotted with respect to the measured scene-bounding box. (d)
Uncertainty from MCS, plotted with respect the incident angle. (e) Analytical
uncertainty uc(d

′′) (continuous lines) overlaid by MCS (dashed lines) for better
comparison. (f) Difference between analytical uncertainty uc(d

′′) and MCS.

5
Application: Measuring with Support Objects

Modern RTS support reflectorless measurements using the diffuse reflection of natural

surfaces. This is often referred to as measuring natural targets. Common natural targets in

surveying and building construction should have a high recall value; thus, preferred targets

are corners and edges of human-made structures. However, measuring non-planar targets

with an RTS in reflectorless mode is a challenging and error-prone task, as any accurate

3D point measurement requires a fully reflected laser beam of the electronic distance meter

and proper orientation of the pan-tilt unit. Influences of the laser beam divergence of the

EDM, angular resolution of the theodolite, inaccurate targeting and optical limitations are

reasons why direct measurements of non-planar targets are critical. Surveyors often use

post-processing methods to increase the accuracy of such measurements. Figure 5.1 shows

the systematic error introduced by the aforementioned constraint. An extensive discussion

about measuring non-planar targets with RTS is provided by Juretzko [60].

In this chapter, we present three algorithms and UI for simple and efficient construction-

side measurement corrections of the systematic error, using additional measurements close

to the non-measurable target. Post-processing of single-point measurements is not required

with our methods, and our experiments prove that using a 3D point, a 3D line or a 3D

plane support can lower the systematic error by almost a order of magnitude. As a side

effect, the proposed approach simplifies the overall measurement procedure such that even

non-experts in the field can perform reliable and robust measurements. This is proven by

the results of our pilot study.

This chapter is based the work by Klug et al. [65, 67], but provides a more complete

description.

69

70 Chapter 5. Application: Measuring with Support Objects

rlb

d
s

EDM

r
lb

b)

projected laser dot

a)

too

c)

too long

too short

unreliable

additional gap for

reliability reasons

(non-visible laser)

measured distance D

Figure 5.1: For reliable measurements of distances and 3D positions, the laser should be
fully reflected by a planar surface of natural targets. In general, the measurement
uncertainty increases when using non-planar targets. Similarly, the measurement
reliability decreases when using partly-reflected laser beams as the EDM behavior is often
not full specified (Juretzko [60]). When enforcing a fully-reflected laser with image-based
targeting, the minimum vertical and horizontal measurement error e can be
approximated by e = d0 + rlb, where rlb is the radius of the projected laser beam, and d0

is the safety distance between the edges of the target and the laser pointer. Note that rlb
approximates the elliptical projection of the laser through by a circle. The safety
distance d0 is influenced by user experience, image resolution, focal length of the camera,
image blur due to out-of-focus problems, back light conditions and other effects. An
additional challenge is to correctly observe the projected laser dot on the surface, as the
laser is often barely visible or not visible at all.

5.1 Extending the Measurement Workflow

When measuring a corner directly in reflectorless mode, the laser dot must be fully reflected

by an attached surface. For corners and edges, this assumption is violated. Following

countermeasures can be applied:

(a) Violate the assumption and risk distance measurement errors.

(b) Modify the corner physically to create at temporary planar surface.

(c) Measure multiple points close to the corner and select the best candidate manually.

(d) Measure multiple points close to the corner and apply geometric corrections.

The effects of violating the EDM specification and out-of-spec operation are not con-

sidered in this work. We temporary add a planar surface to the measurement targets to

generate reference data for our tests. Such modifications can be used under laboratory

conditions, but they are often impractical on construction sites for reasons of limited tar-

get accessibility, measurement effort and personnel costs. A common approach is not to

measure the corner directly, but to measure a point close to the actual target. Hereby,

the planar area around the point nearby is bigger than the projected laser area. However,

this method adds and additional targeting error. Therefore, we define three alternative

5.1. Extending the Measurement Workflow 71

methods that integrate in-the-field corrections for corner and edge measurements to lower

the targeting error. In this work, we compare following five methods:

(r) direct measurement method with physical changes of the target (direct method),

used as reference in this work,

(a) nearby measurement method (nearby method),

(b) target measurement using a virtual support point (support point method),

(c) target measurement using a virtual support line (support line method), and

(d) target measurement using a virtual support plane (support plane method).

Figure 5.2 shows the direct and nearby measurement methods as well as the support

point, support line and support plane method. Details about the methods are provided

in following sections.

calculate IP

steer RTS to IP

(approx.)

define IP in image

measure points

define additional

points in image

steer RTS to IP

(approx.)

define IP in image

measure IP

use neighbor

distance with ray

fit 3D line &

intersect ray

fit plane &

intersect ray

define support point

in the image (N ≥ 1)

define support line

in the image (N ≥ 2)

define support plane

in the image (N ≥ 3)

b) c) d) a)

൤
𝜃1
𝜑1
൨

𝐷2

steer RTS to IP

define IP in image

measure IP

r)

add physical IP

modification

remove physical IP

modification

Figure 5.2: Five different measurement methods of a corner with a single visible adjacent
area as proposed in [65, 67]: (a) direct method, (b) nearby method, (c) support point
method, (d) support line method, and (e) support plane method. The view rays are
enumerated according the measurement order used for our experiments.

5.1.1 Standard Methods: Direct and Nearby Method

In reflectorless mode, the EDM laser should fully hit the planar measurement target. Non-

planar surfaces increase the measurement uncertainty; partly reflected laser beams addi-

72 Chapter 5. Application: Measuring with Support Objects

tionally lower the measurement reliability.

From a mathematical point of view, the direct and nearby method are almost identical.

When using the direct method, the user measures the IP directly, and the current angle

and distance measurements are used for the conversion to a 3D point. Adding physical

installations or using the nearby method are intuitive solutions if a fully reflected laser dot

cannot be guaranteed. When using the nearby method, the user does not aim for the IP

directly, but for a measurable point close to it. The benefit of using the nearby method is

that the measurement uncertainty is user-controlled. Repeated measurements with slowly

decreasing safety gap between the laser and the edge of the target allows an experienced

user to decrease the measurement uncertainty.

5.1.1.1 Measurement Flow

The simple measurement flow is defined by following steps:

1. Add physical target modification (optional)

2. Use the pan/tilt control interface, until the target-of-interest is visible in the image.

3. Define target-of-interest in the image.

4. Calculate the 3D position of the target-of-interest by measuring the angle and dis-

tance at the selected image point.

5. Remove physical target modification (optional)

5.1.1.2 Calculating the Point

The simplified model of an RTS defines a local spherical coordinate system as described in

Sec. 4.3 and Sec. 4.4. We use spherical coordinates for storing selected 2D image positions

to support rotation-invariant operations in the image space as described in Sec. 4.4. To

convert an image space coordinate to spherical coordinates, we first back-project the pixel

coordinate into the camera space as view ray as described in Eqn. A.24. Then, we apply

the inverse kinematic operator F : p→ g as defined in Eqn. 4.8, which maps the Euclidean

3D point p to the spherical point g. Here, the distance for each back-project pixel is set to

d = 1 meter1. Figure 5.3 shows the required steps for image-based selection and measuring

of IP and for rendering rotation-invariant image points.

5.1.2 Support Point Method

To get the 3D coordinates of a building corner, the image pixel of the corner and a support

point near the corner is defined, where the distance of the support point can be measured

safely. Afterwards, the corner itself can simply be defined in the 2D image. The 3D co-

ordinate of the target of interest is approximated by using the back-projected pixel of the

first point and the measured distance of the support point. The approximation error be-

comes reasonable small for certain applications when following conditions hold: reasonable

1This approximation is valid for the simple spherical model of the RTS.

5.1. Extending the Measurement Workflow 73

select IP in image
convert to spherical ray point/ray or to Euclidean

point in base frame for rotation-invariant selections
measure points

IP selection does not change

the RTS control parameters  no pose

change of the RTS camera or EDM

forward kinematics model used to project

previously selected point into the current image

inverse kinematics models used to calculate

the required RTS control parameters

top left pixel of rendered

image (backside view for

better visualization)

RTS movement

(control parameter)

base frame

camera

frame

target

principal/EDM

ray

3D point/spherical point

in base frame

Figure 5.3: Images-based selection and measurement of an IP. Rotation-invariant
selections require the conversion of image points to an intermediate format. Depending
on the underlying model, Spherical coordinates or DH control parameters can be used.

distance between the measurement device and the target, a perpendicular arrangement

of the view ray and the measured surface, a small distance between the corner and the

measured 3D point.

An offline version of this method is commonly used by surveying engineers [23, 60, 90].

With the support point method, the minimal measurement count for a 3D point is Nmin =

1. Figure 5.2 shows the support point concept.

5.1.2.1 Measurement Flow

The simple measurement flow is defined by following steps:

1. Use the pan/tilt control interface, until the target-of-interest is visible in the image

2. Define target-of-interest in the image

3. Define support point with a single distance measurement

4. Calculate the 3D position of the target-of-interest by using the angle of the image

point and the distance of the support point measurement

5.1.2.2 Calculating the Point

In the user interface, two 2D image points are defined: the pixel coordinates of the target-

of-interest u1 and the pixel coordinates of the support point u2.

First both image points, u1 and u2, are converted to spherical coordinates using Eqn. 3.47

74 Chapter 5. Application: Measuring with Support Objects

with distance µ = 1 and Eqn. 4.8 to get the control values for the EDM pose of the RTS,

r1 =


r1,x

r1,y

r1,z

 = X(u1, 1) r2 =


r2,x

r2,y

r2,z

 = X(u2, 1)


ϕ1

θ1

1

 = F (r1)


ϕ2

θ2

1

 = F (r2)

(5.1)

where r1 and r2 defines a back-projected point at distance µ = 1.

Then the distance d2 is measured with the EDM at the angles (θ2, ϕ2) using the API

of the RTS. Finally, we estimate the Euclidean 3D point x1 of the back-projected image

point u1 using Eqn. 4.4 and the measured distance d2:

x1 ≈ G(ϕ1, θ1, d2) (5.2)

e) minimum angle 𝛼 ≥ 𝛼𝑙 from laser

divergence angle

f) minimum perpendicular

distance h 2ℎ ≥ 𝑑𝑙

from laser divergence

 approximation

𝛼𝑙

d𝑙

∆d
α

∆d α

∆d α

laser distance

laser distance

laser distance

perpendicular constellation  small error

grazing incidence  huge error

distance error

increases with

EDM ray incident

angle

a)

b)

c)

ቚγ −
π

2
ቚ ≫

ቚγ −
π

2
ቚ ≪

IP RTS

RTS

IP

distance to measurable target nearby IP

∆d

h

α d1

d2
a

γ

β

glancing angle

distance to IP

geometric

distance error

d) approximate distance error ∆d

 using the law of sine

sin 𝛽

𝑑1
=

𝑠𝑖𝑛 𝛼

𝑎
=

sin 𝛾

𝑑2

𝑑1 = 𝑑2

𝑠𝑖𝑛 (𝛼 − 𝛾)

sin 𝛾

∆d = 𝑑2 − 𝑑1 = 𝑑2 ൬1 −
𝑠𝑖𝑛 (𝛼 − 𝛾)

sin 𝛾
൰

measured nearby

from e) – g)

glancing angle

 𝑤𝑑𝑖𝑠𝑝𝑙𝑎𝑦

 𝑑𝑚𝑖𝑛

𝐹𝑂𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

𝛼𝑓

𝐹𝑂𝑉𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

 ℎ𝑑𝑠𝑝𝑙𝑎𝑦

g) minimum angle 𝛼 ≥ 𝛼𝑓 from fat finger problem

approx.: 𝛼𝑓 = 𝑚𝑎𝑥 ൬𝑑𝑚𝑖𝑛
𝐹𝑂𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

𝑤𝑑𝑖𝑠𝑝𝑙𝑎𝑦
, 𝑑𝑚𝑖𝑛

𝐹𝑂𝑉𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

ℎ𝑑𝑠𝑝𝑙𝑎𝑦
൰

Figure 5.4: Systematic distance error approximation for measuring a horizontal wall
using the support point method, reduced to 2D for reasons of simplicity. (a-c) An
increasing incident angle leads to an increasing systematic distance error. (d)
Assessment of the distance error as function of nearby point distance and incident angle.
(e-f) Approximating the laser beam by a cylinder. (g) Considering the uncertainty of
touch-screen based RTS targeting as function of the image resolution and the finger size.

5.1.2.3 Measurement Problem

While this method is commonly used in practice, it is critical for non-perpendicular mea-

surement constellations as the systematic distance error increases with increasing incident

5.1. Extending the Measurement Workflow 75

angle between ray and target. Figure 5.4 shows an approximation of the systematic dis-

tance error for measuring a horizontal wall2.

5.1.3 Support Line Method

Several 3D points on the visible wall are measured by the user to estimate a 3D line,

which intersects the corner of interest. The corner itself can then simply be defined in

the 2D image. The related 3D target is calculated by finding the intersection point of the

back projected view ray with the previous estimated 3D line doing with a least square

approximation.

With support lines, the minimal measurement count for 3D points is Nmin = 2. When

using more than two points, a robust estimation like RANSAC based least square 3D line

fitting can be applied [37]. Figure 5.2 shows the support line concept.

5.1.3.1 Measurement Flow

The simple measurement flow is defined by following steps:

1. Use the pan/tilt control interface, until the target-of-interest is visible in the image

2. Define target-of-interest in the image

3. Define support line with N ≥ 2 measurements

4. Calculate the 3D position of the target-of-interest by intersecting the back-projected

view ray with the support line

5.1.3.2 Calculating the Support Line

For N = 2, the 3D support line can be written directly as Eqn. 5.7. Fitting the 3D line

for N > 2 can be separated into two steps: fitting the 3D line position and fitting the 3D

line direction. First, the center of mass of the 3D points is subtracted:

xi =
[
xi, yi, zi

]T
|i=0...N−1 x̄ =

1

N
·
N−1∑
i=0

xi x′i = xi − x̄|i=0...N−1 (5.3)

with x̄ as center of mass of the 3D point set. The translated 3D points x′i are now centered

around 0. Then, the 3D points are normalized:

k = max(|x′x,i|, |x′y,i|, |x′z,i|)|i=0...N−1 x′′i =
x′i
k
|i=0...N−1 (5.4)

2We reduced the estimation to 2D for sake of clarity and for ease of comprehension.

76 Chapter 5. Application: Measuring with Support Objects

and the 3D line orientation is calculated by stacking points and solving the maximization

problem:

A′′ =


x′′x,0 x′′y,0 x′′z,0

x′′x,1 x′′y,1 x′′z,2
...

x′′x,N−1 x′′y,N−1 x′′z,N−1

 max
||n||=1

(||A′′ · n||) (5.5)

The solution is the eigenvector that belongs to the largest eigenvalue and can be calculated

by using SVD [62]. The line orientation is normalized for reasons of convenience:

n′ =
n

||n||
=


n′x

n′y

n′z

 (5.6)

A 3D line is fully specified by an arbitrary point on the line and the orientation. For

consistent calculations, the 3D orientation can be interpreted as 3D direction vector. Using

the center of mass x̄ and the normalized line direction n′, the fitted 3D line L in leased

square sense is given by

L(t) = x̄ + t · n′ (5.7)

5.1.3.3 Intersecting the View Ray with the Support Line

First the 2D coordinate is back-projected to a 3D view ray using Eqn. 3.47. The best ap-

proximation for 3D line intersection can be found using Plücker coordinates [44]. However,

we implemented 3D line intersection for two lines based on simple vector math [94].

5.1.4 Support Plane Method

To get the 3D coordinates of a building corner, the user measures several 3D points on

the visible wall to estimate a planar approximation of this wall. The corner of interest can

simply be defined in the 2D image. The related 3D target is calculated by intersecting the

back-projected view ray with the previous estimated plane. The measurement concept is

shown in Figure 5.2. The target-of-interest can be moved freely on the plane.

5.1.4.1 Measurement Flow

The simple measurement flow is defined by following steps:

1. Use the pan/tilt control interface, until the target-of-interest is visible in the image

2. Define target-of-interest in the image

3. Define support plane with N ≥ 3 measurements

5.1. Extending the Measurement Workflow 77

4. Calculate the 3D position of the target-of-interest by intersecting the back-projected

view ray with the support plane

5.1.4.2 Calculating the Support Plane

In the easiest case the plane can be estimated by estimating the non-trivial solution of the

linear homogeneous equation system

A · p = 0 A =


xx,0 xy,0 xz,0 1

xx,1 xy,1 xz,2 1
...

xx,N−1 xy,N−1 xz,N−1 1

 (5.8)

where A is a matrix of stacked homogeneous 3D points with a 3D point count N = 4.

The plane parameters a, b, c and d of the implicit plane equation are given by the 4 × 1

vector

p =
[
a b c d

]T
pT ·

[
xx xy xz 1

]T
= 0 (5.9)

where xx, xy, xz are the coordinates of a 3D point on the plane.

Solving for p in Eqn. 5.8 for N ≥ 4 becomes a constrained least squares minimization

problem

min
||p||=1

(||A · p||) (5.10)

and can be solved with SVD [62].

A more robust plane estimation encounters some additional aspects:

� Minimal point set N ≥ 3 instead of N ≥ 4

� Normalization before computation for numerical stability

� RANSAC optimization for robustness against outliers in case of N > 3

For minimal point set, we must estimate the plane direction (rotation) and the plane

translation separately. This procedure is analogous to the one for the support line, follow-

ing Eqns. 5.3-5.6, but solving for the eigenvector that belongs to the smallest eigenvalue.

Finally, the implicit plane representation is given by p =
[
n′x n′y n′z −n′T · x̄

]T
. This

method requires at least Nmin = 3 measured 3D points.

78 Chapter 5. Application: Measuring with Support Objects

5.1.4.3 Intersecting the View Ray with the Support Plane

First, the 2D coordinate is back-projected to a 3D view ray using Eqn. 3.47. The target-

of-interest is given by the plane-ray intersection

t =
−(n′T ·C + d)

n′T · nray
(5.11)

xtarget = C + t · nray (5.12)

with nray as ray direction of the back projected image point, C = 0 as camera origin and

d = p(4) as distance between the origin and the intersection point [94]. If the denominator

of Eqn. 5.11 is zero, the ray is either parallel to the plane or lies directly on the plane.

5.2 Simulation and Experiments

In this section, we describe the simulations and experiments undertaken. First, we describe

the results of the MCS to analyze various aspects of the proposed measurement methods,

such as influences of the target surfaces and the incident angles. Then, we shortly outline

the experimental setup. Finally, we experimentally evaluate our methods in physical

environments. Table 5.1 shows the test taxonomy for our MCS and experiments.

5.2.1 Monte-Carlo Simulations

For proper testing the methods described above, we use the RTS simulator as described

in chapter 4. In particular, we defined a prototyping framework for MCS and for physical

experiments as shown in Fig. 5.5. The abstraction layer on top of the RTS API allows

for seamless exchange of simulator and physical device. For simulation, the prototyping

framework is set up to carry out the MCS with the real-time RTS simulator. The test

sets for the MCS are generated in Matlab, control values and simulation parameters are

uploaded to Unity3D; the measurements are simulated in Unity3D, results are streamed

back and are evaluated in Matlab.

The simulation setup inherently provides ground truth and a common coordinate frame

for all measurements, devices and targets. This allows for easier comparison of the different

methods.

Figure 5.6 shows the simulator and the MCS workflow.

5.2.1.1 Measurement Targets Variants

The basic target is a planar triangle mesh, placed at ten meter distance from the RTS.

Different target variants are generated using following steps: 1. Subdivide the surface of

the basic target into small triangles, 2. translate the mesh vertices, and 3. remove faces

and vertices outside of the region of interest (ROI) for performance reasons.

5.2. Simulation and Experiments 79

Table 5.1: Test taxonomy. (x) evaluated; (x*) evaluated, where the parameter
approximately fits the specification; (-) not evaluated or not applicable.

test configurations test environment

property value MCS laboratory indoor outdoor

surface type

planar x x* x* x*

uneven x - - -

fillet x - - -

incident
angle α

0.5π x x x x

0.25π x x x x

measurement
method

direct x x x x

nearby x x x x

support point x x x x

support line x x x x

support plane x x x x

noise

n1 (no noise) x - - -

n2 (EDM noise) x - - -

physical - x x x

evaluation
method

direct: xi,IP,ref − xi,IP,est x - - -

indirect: xi,IP,est − xi+1,IP,est - x x x

We simulate three different target variants with following surface properties: 1. planar

surface, 2. uneven surface, and 3. round edges (fillet). The planar surface variant is simply

the basic target. The uneven surface variant is generated using random translations of the

mesh vertices along the vertex normals. Similar, the fillet of the target with round edges

is generated by translating the vertices near the border as a function of the distance to

the border. Figure 5.7 shows the generation of the mesh variants.

5.2.1.2 RTS Sensor Uncertainty Simulation

We follow the JCGM 100:2008 GUM [57] for modeling the sensor uncertainty. In particu-

lar, GUM standardizes the analysis and report of measurement uncertainties of measured

physical quantities to allow repeatable experiments. The uncertainty of RTS sensors with

normal distributed random noise can be specified in following general form:

p(|y − x| ≤ kuc(y)) = CIk (5.13)

80 Chapter 5. Application: Measuring with Support Objects

z
instrument

(zenith)

spherical RTS

model

x
instrument

y
instrument

camera view

frustum of current

pose

vertical angle 𝜃𝑖

z
EDM

, z
cam

tripod

RTS device

horizontal angle 𝜑𝑖

𝑴𝑡𝑎𝑟𝑔𝑒𝑡

target

RTS CAD model

(optional)

camera

EDM

𝑴𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡

𝑹𝑧

𝑹𝑥

RTS simulator

scene graph

scene

RTS device

driver API

common RTS API (abstraction layer, based on gRPC, multi-language bindings)

spherical

RTS model

simulation API

direct (true values)

simulator API

support P nearby (ref values) support line support plane MC simulations

z
reference

x
reference

y

reference

Figure 5.5: RTS prototyping framework, here used for MCS and physical experiments.
The abstraction layer, which provides a common API for the RTS hardware and
simulator, was generated automatically with support of the gRPC library. Here, we used
the simplified geometric RTS model in Unity3D. Additional API methods allow
modifications of the scene graph and various simulation properties.

where x is the measured quantity, uc(y) is the combined standard uncertainty of the

measurement result y; k is the coverage factor, and CIk is the confidence interval3. Let

ua(y) be an additive and up(y) be a proportional component of the combined sensor

uncertainty, both provided by the device manufacturers. Then, uc(y) is given by

uc(y) ≈
√
ua(y)2 + (xup(y))2 (5.14)

Unity3D provides generators for uniform distributed random values. We use the Box-

Muller transform [18] to simulate normal distributed noise for sensor readings:

y = x+
√
−2ln(g) cos (2πhuc(y)) (5.15)

where uc(y) is the desired standard uncertainty, (g, h) are uniformly distributed random

values, and x is the simulated sensor reading without noise. The EDM uncertainty has

significant influence on the measurements and should be analyzed. The angle uncertainty

of actuators is negligibly small and therefore is not considered in the calculations. Table

5.2 provides the sensor uncertainty settings for the MCS, Fig. 5.8 shows the noise simulation

3Analogously to GUM, we use the same symbol is as the physical quantity and as the random variable
for economy of notation [57].

5.2. Simulation and Experiments 81

MC experiment flow

define measurement target as

MATLAB trimesh

calculate reference solution in

MATLAB

stream data from MATLAB to

Unity RTS SIM

measure in Unity

apply algorithm in MATLAB

evaluate result in MATLAB

define test-set in MATLAB

stream results from Unity to

MATLAB

Unity3D RTS Simulator, controlled by MC testbench (MATLAB)

measurement target

RTS
Uniy3D scene

world frame orientation

sensors: EDM and camera

ray casting

Unity3D controls in play mode

(for debugging)

MATLAB example application

live downstream:

(video & measurements)

interactive

live upstream

(control parameters)

mesh colliders

(green wireframe)

Figure 5.6: (left) MCS flow. (right) RTS Unity3D simulator.

architecture. More general error descriptions can include signal refraction, cyclic errors,

pointing errors and camera calibration effects, but are beyond the scope of this work [106].

Table 5.2: Sensor noise settings for MCS.

Description EDM Sensor Angle Sensor

Label Description ua(d) up(d) ua(α) up(α)

n1 without noise 0 0 0 0

n2 with noise 0.75e− 3m 10e− 6m 0 0

5.2.1.3 Complex Collider Definition for Ray Casting

Unity3D allows using triangle meshes as colliders for physical simulations [105]. The

close coupling with the GPU limits the numeric precision of scene operations to 32 bit

floating-point arithmetic4. In general, a higher precision is not required for the proposed

MCS. However, the non-convex measurement targets require non-convex colliders, which

cause ray casting problems due to numeric round-off effects. Figure 5.9 shows a ray casting

experiment where the ray simply passes through a surface when targeting a mesh vertex or

4Higher precision arithmetic require explicit implementation of the scene graph and related operations.

82 Chapter 5. Application: Measuring with Support Objects

RTS model

measurement target

EDM ray
target with planar surface

target with uneven surface target with edge fillet

basic target: simple triangle mesh

EDM (laser)

sub-divided target mesh, with rounded edges

front view side view

front view side view side view front view

translate vertices along
normal randomly

face
normal

sub-divided target mesh, with auto-generated surface ribble

edge fillet

measurement target mesh, using a single triangle basic meas. target for automatic mesh variant generation

MC simulator setup (Unity)

vertex of base target
defines IP

r

base target mesh variants

surface alterations

 reference and test data generation
triangle mesh

IP

ROI

support line data (red)

support plane data (blue)

support point data (green)
generate

mesh variants

upload to

RTS simulator

Figure 5.7: Generation of targets for MCS.

edge directly. This is critical for our experiments, thus explicit colliders must be generated.

We simply increase each triangle of the target surface by 0.5e − 4m. In particular, we

perform the following steps: 1. First, we remove the links between connected triangles

by duplicating shared vertices. 2. Then, we translate the vertices of a triangle along the

medians, the line between a vertex and the centroid, to enlarge the surface. While this

method decreases the simulation accuracy, it also increases the reliability of the ray casting.

The generated colliders consist of overlapping triangles, and they counteract intersection

issues caused by round-off errors.

5.2.1.4 Additional MCS parameters

The main parameters for the MCS are defined in Table 5.1, sensor noise parameters are

given in Table 5.2. Additional settings are required for defining the MCS, such as mea-

surement count for each method, distance between the IP point and the measured point

5.2. Simulation and Experiments 83

RTS control

parameters

 ሼθ, φሽ

𝑥

EDM noise

parameters

𝑢aሺ𝑦ሻ, 𝑢bሺ𝑦ሻ

Unity3D
scene graph

Verification setup for EDM noise model (Unity3D)

EDM ray

Example: EDM uncertainty simulation, nominal noise (desired): ሼ𝑢aሺ𝑦ሻ, 𝑢bሺ𝑦ሻሽ = ሼ0.75𝑒−03, 0ሽ 𝑚 → 𝜎 ≈ 0.75𝑚, 𝜇 ≈ 𝑥

target

RTS sim

distance 10m

1𝑒04 experiments

(EDM readings)

Simulated EDM noise parameters

𝑦

ray cast

result

simulated

sensor reading

EDM noise simulation concept

Figure 5.8: Uncertainty simulation for RTS sensors.

for the nearby method, and properties for surface variant generation. Table 5.3 lists the

additional MCS properties, which we used for this work.

explicit collider generation: Inflated triangles MC simulation: targeting IP point directly

using explicit defined collider

Unity ray casting problems with complex colliders

triangle enlarged by 0.5e-4m

as for the physical

setup, results are

unreliable, risk of

missing the edge

original triangle

center of mass

collider
triangle

cross section

caused by finite
precision arithmetic
(round-off errors)

EDM ray

target
target

EDM ray

this effect does NOT

show up in physical

setup, hence should

be avoided

target mesh collider

more reliable ray

casting simulations

mesh collider from

slightly overlapping

triangles

modified target mesh collider

IP (corner)

EDM ray

RTS

IP (corner)
EDM ray

RTS

RTS

RTS

MC Simulation: targeting IP point directly
using implicit generated collider

Result: less accurate,

but more reliable
collider

target
mesh

overlapping triangles reduce invalid ray-casting misses

ray (too short)

ray, targeting
vertex directly

mesh
vertex

Figure 5.9: Explicit collider generation for Unity3D to avoid ray casting issues of
complex colliders.

84 Chapter 5. Application: Measuring with Support Objects

Table 5.3: Additional parameters for the MCS used in this work.

property value

bounding box for basic target 2m

ROI radius 0.5m (region for picking additional points)

subdivision iterations fillet target: 50; other targets: 25

fillet surface jitter 10e-3m

fillet radius 30e-3m

test count per MCS 100

distance between RTS and target 10m

inflate vertex offset for colliders 0.5e-4m

RANSAC line/plane fitting no

minimum safety distance between
ray and target edges for non-direct

methods

2.5e− 3m (circular approximation of the
projected EDM ray at the intersection point,

assuming 5e-3m radius)

5.2.1.5 Results

Table 5.4 shows the results of the MCS for all 60 variants. The direct method is used to

estimate reference values; the nearby method is considered as standard method when no

additional corrections are applied. Figure 5.10 shows the box-and-whisker plots for the

simulations with applied EDM sensor noise. The plots visualize following robust summary

statistics5: 1. The central mark is the median, 2. the bottom and top box boundaries are

the 25th and 75th percentiles, respectively; 3. the + symbols show the outliers, and 4. the

whiskers show the most extreme inlier data points.

5.2.2 Experiments

We further performed several experiments in laboratory and outdoor environments. The

registration of different measurement sets and the measurement targets in a common co-

ordinate system relies on the measurement of control points. However, the point measure-

ment methods themselves are the subject of the current analysis. Alternative registration

methods use a fixed installation of reflective targets. In this work, we do not register the

measured point sets in a common frame to avoid the physical installation.

We applied an indirect analysis of the measurement error instead, which did not require

a common coordinate frame for the measurement sets. In particular, we measured the

distance between two corners of a flat surface, whereby only the front face of the surface

was fully visible.

This simple evaluation setup does not require any special measurement equipment and

5MATLAB standard settings for box plots, function boxplot, statistics toolbox.

5.2. Simulation and Experiments 85

T
ab

le
5
.4

:
M

C
S

re
su

lt
s.

T
h

e
d

ir
ec

t
m

et
h

o
d

is
u
su

al
ly

n
ot

ap
p

li
ca

b
le

fo
r

p
h
y
si

ca
l

co
rn

er
ta

rg
et

s
w

it
h

ou
t

ta
rg

et
m

o
d

ifi
ca

ti
o
n

s.
T

h
e

tr
a
d

it
io

n
a
l

a
p

p
ro

a
ch

th
at

w
e

u
se

fo
r

co
m

p
ar

is
on

is
th

e
n

ea
rb

y
m

et
h

o
d

,
w

h
ic

h
is

m
ar

ke
d

in
re

d
.

M
C

S
se

tt
in

gs
E

D
M

n
oi

se
:
u
a
(d

)
=

0m
,
u
p
(d

)
=

0m
E

D
M

n
o
is

e:
u
a
(d

)
=

0.
7
5e
−

3m
,
u
p
(d

)
=

1
0
e
−

6
m

α
m

es
h

va
ri

an
t

m
ea

s.
m

et
h
o
d

E
(x
ip
,r
ef
−

x
ip
,e
st

)
[m

]
d

[m
]

σ
(d

)
[m

]
E

(x
ip
,r
ef
−

x
ip
,e
st

)
[m

]
d

[m
]

σ
(d

)
[m

]

0.
5π

p
la

n
ar

d
ir

ec
t

1
.9

61
e
−

06
1
.9

61
e
−

06
4
.2

57
e
−

2
1

6
.0

76
e
−

04
6
.0

76
e
−

04
4.

11
4e
−

04

n
ea

rb
y

2
.5

00
e
−

03
2
.5

00
e
−

03
4
.3

59
e
−

1
8

2
.5

95
e
−

03
2
.5

95
e
−

03
1
.1

5
4
e
−

0
4

su
p
p

or
t

p
oi

n
t

2
.5

00
e
−

03
7
.0

52
e
−

05
9
.5

35
e
−

2
0

2
.5

93
e
−

03
5
.6

52
e
−

04
4.

20
1e
−

04

su
p
p

or
t

li
n
e

2
.5

25
e
−

01
1
.3

3
6
e
−

0
6

6
.3

8
5
e
−

2
2

2
.5

25
e
−

01
5
.1

3
7
e
−

0
4

3.
73

2e
−

04

su
p
p

or
t

p
la

n
e

3
.0

79
e
−

01
1
.5

27
e
−

06
1
.9

15
e
−

2
1

3
.0

71
e
−

01
1
.2

77
e
−

03
9.

64
2e
−

04

u
n
ev

en

d
ir

ec
t

7
.6

68
e
−

07
7
.6

6
8
e
−

0
7

1
.0

6
4
e
−

2
2

6
.2

60
e
−

04
6
.2

6
0
e
−

0
4

4.
68

9e
−

04

n
ea

rb
y

2
.5

12
e
−

03
2
.5

12
e
−

03
5
.6

66
e
−

1
8

2
.5

97
e
−

03
2
.5

97
e
−

03
1
.4

1
9
e
−

0
4

su
p
p

or
t

p
oi

n
t

2
.5

45
e
−

03
4
.7

70
e
−

04
9
.8

07
e
−

1
9

2
.6

29
e
−

03
6
.8

52
e
−

04
4.

68
7e
−

04

su
p
p

or
t

li
n
e

3
.2

68
e
−

01
5
.8

16
e
−

03
9
.5

89
e
−

1
8

2
.2

49
e
−

01
5
.9

71
e
−

03
5.

28
2e
−

04

su
p
p

or
t

p
la

n
e

3
.2

80
e
−

01
5
.0

11
e
−

03
5
.2

30
e
−

1
8

3
.7

13
e
−

01
8
.4

60
e
−

03
1.

15
8e
−

03

fi
ll
et

d
ir

ec
t

5
.3

38
e
−

08
5
.3

3
8
e
−

0
8

1
.1

9
7
e
−

2
2

6
.1

12
e
−

04
6
.1

1
2
e
−

0
4

4.
77

4e
−

04

n
ea

rb
y

2
.4

95
e
−

03
2
.4

95
e
−

03
3
.0

51
e
−

1
8

2
.6

08
e
−

03
2
.6

08
e
−

03
1
.8

9
5
e
−

0
4

su
p
p

or
t

p
oi

n
t

2
.4

95
e
−

03
7
.2

43
e
−

05
5
.4

48
e
−

2
0

2
.6

05
e
−

03
6
.1

48
e
−

04
4.

61
6e
−

04

su
p
p

or
t

li
n
e

2
.6

37
e
−

01
1
.5

99
e
−

02
1
.3

95
e
−

1
7

2
.8

15
e
−

01
1
.3

20
e
−

02
5.

92
3e
−

04

su
p
p

or
t

p
la

n
e

3
.0

44
e
−

01
3
.0

03
e
−

02
6
.9

74
e
−

1
7

3
.4

46
e
−

01
1
.0

55
e
−

02
1.

02
0e
−

03

0
.2

5π

p
la

n
ar

d
ir

ec
t

1
.5

27
e
−

07
1
.5

27
e
−

07
0

5
.4

53
e
−

04
5
.4

53
e
−

04
4.

29
0e
−

04

n
ea

rb
y

2
.5

00
e
−

03
2
.5

00
e
−

03
1
.7

43
e
−

1
8

2
.5

80
e
−

03
2
.5

80
e
−

03
3
.3

8
5
e
−

0
4

su
p
p

or
t

p
oi

n
t

2
.5

00
e
−

03
1
.2

50
e
−

03
0

2
.6

13
e
−

03
1
.3

37
e
−

03
7.

07
6e
−

04

su
p
p

or
t

li
n
e

2
.6

18
e
−

01
2
.7

70
e
−

07
0

2
.2

47
e
−

01
5
.3

0
6
e
−

0
4

4.
12

4e
−

04

su
p
p

or
t

p
la

n
e

3
.3

25
e
−

01
6
.4

4
3
e
−

0
9

4
.9

88
e
−

2
4

2
.9

93
e
−

01
7
.7

83
e
−

04
5.

98
3e
−

04

u
n
ev

en

d
ir

ec
t

1
.9

37
e
−

07
1
.9

3
7
e
−

0
7

1
.8

6
2
e
−

2
2

6
.2

23
e
−

04
6
.2

2
3
e
−

0
4

4
.5

8
8
e
−

0
4

n
ea

rb
y

2
.4

91
e
−

03
2
.4

91
e
−

03
5
.2

30
e
−

1
8

2
.7

28
e
−

03
2
.7

28
e
−

03
4.

73
1e
−

04

su
p
p

or
t

p
oi

n
t

2
.8

13
e
−

03
1
.7

99
e
−

03
2
.1

79
e
−

1
8

2
.7

73
e
−

03
1
.6

40
e
−

03
7.

98
0e
−

04

su
p
p

or
t

li
n
e

1
.5

84
e
−

01
1
.2

73
e
−

03
1
.3

08
e
−

1
8

2
.6

96
e
−

01
2
.9

50
e
−

03
5.

01
9e
−

04

su
p
p

or
t

p
la

n
e

3
.2

43
e
−

01
4
.6

74
e
−

04
4
.3

59
e
−

1
9

4
.2

19
e
−

01
2
.8

74
e
−

02
1.

93
3e
−

03

fi
ll
et

d
ir

ec
t

1
.5

27
e
−

07
1
.5

2
7
e
−

0
7

0
6
.0

47
e
−

04
6
.0

47
e
−

04
4.

76
9e
−

04

n
ea

rb
y

2
.5

75
e
−

03
2
.5

75
e
−

03
6
.9

74
e
−

1
8

2
.6

50
e
−

03
2
.6

50
e
−

03
4.

08
8e
−

04

su
p
p

or
t

p
oi

n
t

2
.5

75
e
−

03
1
.3

26
e
−

03
0

2
.6

69
e
−

03
1
.3

61
e
−

03
7.

44
6e
−

04

su
p
p

or
t

li
n
e

1
.7

77
e
−

01
1
.5

65
e
−

02
0

2
.4

10
e
−

01
4
.2

44
e
−

02
8.

44
0e
−

04

su
p
p

or
t

p
la

n
e

3
.2

17
e
−

01
2
.9

19
e
−

02
0

3
.0

55
e
−

01
1
.9

36
e
−

02
9.

77
0e
−

04

86 Chapter 5. Application: Measuring with Support Objects

mesh variant meas. method

direct
nearby

support point
support line

support plane

planar

uneven

fillet

planar

uneven

fillet

direct
nearby

support point
support line

support plane

direct
nearby

support point
support line

support plane

direct
nearby

support point
support line

support plane

direct
nearby

support point
support line

support plane

direct
nearby

support point
support line

support plane

summary statistics: distance [m] between reference 3D point and measured 3D point: ||xip,ref - xip,est||

Figure 5.10: Box-and-whisker plot of the MCS results, with applied EDM noise. The
direct method is usually not applicable for physical corner targets without target
modifications. The traditional approach that we use for comparison is the nearby
method, which is marked in red.

therefore can be easily be applied in controlled indoor and in selected outdoor environ-

ments. The results are also not influenced by the registration uncertainty of the RTS,

which increases the repeatability and reproducibility of the proposed experiments. While

this method is sufficient for comparative studies for non-direct measurable targets, it does

not follow the ISO 17123 standard [52].

For physical experiments and interactive tests, we designed a graphical user interface

(GUI) that allows seamlessly interfacing the RTS simulator or the physical RTS device.

The GUI provides intuitive interactions with the implemented workflows and allows even

novice and non-expert users to use the proposed measuring methods within a few minutes.

For each test, the user selects a particular measurement method. After selection of the

method, the operator is automatically guided through the process to fulfill the measuring

task, with a final result given at the end.

The RTS for our experiments had been fully calibrated by the manufacturer. The

driver provides access to sensors and actuators of the device and transforms sensor data

between the different coordinate systems; sensor data corrections are applied internally.

The GUI shown in Figure 5.11 is used for convenient access of the implementation

and for allowing even novice and non-expert users to use the methods in an intuitive

way. Training time to introduce the concepts of measuring and the individual methods

was thereby reduced to only around 10 minutes. After selection of the given method, the

5.2. Simulation and Experiments 87

operator is automatically guided through the process to fulfill the measuring task, with a

final result given at the end.

Get Image

Mouse Modes TS Direct Control

Measure & Save

Measurement

Point_0
Point_1
Point_2
Point_3

...

Focus

File Device View Settings Help

Calibrate

Load File ...

Load Predefined (Points/Angles/Views)

Run Stationing

Point_0
Point_1
Point_2
Point_3

...

EDM

crosshair

image coordinates

live view of TS

camera

TS pose control

image based zoom and optical zoom
face control: left/right

measurement method

image based

adjustments

3D based adjustment

3D measurements

and calculations

estimated 3D

points (red stars) predefined

TS poses

1b

2b

x

y
1a

4d

1d

2d
3d

1b

2b

1c

2c

3c

Prototype GUI: Direct/Nearby/Support Point/Support Line/Support Plane Method

r/a) Define 2D Points (direct/nearby)
 b) Define 2D Points (support point)
 c) Define 2D Points (support line)
 d) Define 2D Points (support plane)

Move 2D Point

 c) Move 2D Point & Adjust Line
 c) Move 2D Point on Line

 Move Estimated 3D Point

Turn To Pixel
Joystick

Digital Zoom Enable Laser

Optical Zoom 3

Face 1

Figure 5.11: Test GUI used in our system [65]. The interface guides the user through the
measurement tasks.

For ground truth measurement, the RTS and the target are positioning appropriately as

follows:

� Approximately same height of target center and camera center

� Approximately perpendicular laser beam direction for laboratory experiments and

outdoors for ground truth measurements

� Approximately perpendicular laser beam direction for ground truth measurements

and 0.25π direction for outdoor evaluation

The setup is shown in Figure 5.12. The distance between the measurement target and the

RTS is about 5m for all experiments. The distance between the two top corners of the

measurement indoor target is about 0.6m.

The discussion in the following refers to the physical measurement results, which are

given in Table 5.5.

88 Chapter 5. Application: Measuring with Support Objects

a)

planar surface (ref)

b)

planar

target

lref

l
corners

c)

laser dot

(ref)

d)

e)

f) h)

g)

i)

laboratory environment outdoor environment and pilot study

j)

Figure 5.12: Measurement setups for testing under laboratory conditions and for outdoor
scenarios [65]: a) measurement of the reference distance between the two top corners of
the portable target, b) portable target used to measure the distance between two corners
in laboratory conditions, c) detailed view of the projected laser dot during the reference
measurement, d) reference measurement of a window in indoor and outdoor conditions
using perpendicular viewing angle, e) the same windows measured with a viewing angle
of 0.25π, f) and h) the modeling clay for reference measurements, i), g) and j) the
outdoor window, the portable laboratory target and the RTS.

5.2.2.1 Measurement Strategy

For Euclidean distance evaluation, a single set measurement consists of the measured

3D position of the first and the second corner of the target6. All measurements where

converted to Euclidean coordinates using the API of the device driver. The result is

given in the confidence interval of ±2σ̂d, with σ̂d as unbiased standard deviation assuming

unbiased normal distribution of the measurements:

6Note that we use a half-set for our evaluations, since we do not use the second telescope face (face
right).

5.2. Simulation and Experiments 89

The Euclidean distance of measurement i between two points pi,0 and pi,1 is calculated by

di = ||pi,1 − pi,0|| = ||


xi,1

yi,1

zi,1

−

xi,0

yi,0

zi,0

 || (5.16)

and the average distance d̄ and the unbiased standard deviation σ̂is given by

d̄ =

∑N−1
i=0 di
N

σ̂ =

√∑N−1
i=0 (di − d̄)2

N − 1
(5.17)

For outlier removal, at least N = 3 sets must be measured. Outliers are removed using

median absolute deviation (MAD) with ±3σ̂ interval on distances [71]. The statistic

evaluation is repeated on the reduced data set.

We calculate the distance error between two points d using

∆d = |d̄ref − d̄| ± 2 ·
√

ˆσref
2 + σ̂1

2 (5.18)

with d̄ref ± 2σ̂dref as reference distance and d̄ ± 2σ̂ as measured distances between two

corners.

For measuring the ground truth, we employed two different approaches. For the laboratory

target, we aligned it with a planar surface and measured the distance using the RTS. Note

that this method is suitable for portable targets and outer corners only. For ground truth

estimation of immovable targets like windows, we filled the corners with modeling clay to

create a quasi-planar surface around the corners, which could be measured by the RTS.

This method is suitable for fixed and portable targets and is well suited for inner corners7.

Measurement Setup We measured the distance between two corners of a flat surface,

whereby only the front face of the surface is fully visible. This is achieved by appropriately

positioning the target and the RTS:

� Approx. same height of target center and camera center

� Approx. perpendicular laser beam direction for laboratory experiments and outdoors

for ground truth measurements

� Approx. perpendicular laser beam direction for ground truth measurements and 45◦

direction for outdoor evaluation

The measurement setup is shown in Figure 5.12. The distance between the RTS and the

measurement target is about 5m in all experiments. The distance between the two top

corners of the measurement indoor target is about 0.6m.

7Note that we performed the ground truth measurements immediately before the experiments, to
ensure that errors due to changes in environmental conditions are negligible.

90 Chapter 5. Application: Measuring with Support Objects

Test Hardware and Limitations The RTS we used for our experiments had been

fully calibrated by the manufacturer. It provides a closed source driver for controlling

the device, for retrieving the camera image and for translating between all coordinate

systems. As common for commercially available systems, there is no direct access to the

raw data of the sensors, the geometric model and the related parameters. The applied

correction algorithms are confidential and kept secret by manufacturers. While in our

case the available API does not provide a projection matrix, it offers a complete API for

coordinate system conversions. Therefore, we use the simplified geometric model, which

is shown in Figure 4.1, for a calibrated RTS to explain our methods.

Note that whether or not it is theoretically possible to perform full manual calibration

for a single instance of a device at hand, it is neither reasonable to assume that every

device is shipped with a calibration by the manufacturer that is perfect for each possible

measurement situation, nor is manual calibration easily possible given the level of access

provided by APIs. Thus our assumption to work with the stock calibrated device as is

and employing our simplified geometric model is plausible.

5.2.2.2 Laboratory Measurements

We conducted two experiments with the portable target in laboratory conditions. First,

we measured the ground truth distance between the two top corners, as shown in Fig. 5.12

a) and b). Then we used the four different methods to perform the measurement again,

where we used a laser incident angle of α ≈ 90◦. The support line and support plane

methods either outperform the others or perform on par, as shown in Table 5.5.

In a second experiment, we measured the same distance again with the total station,

but pointing at the target with a laser incident angle of α ≈ 45◦. Again, the results indicate

that the support line and support plane based methods achieve considerably better results

than the standard method and the support point method.

5.2.2.3 Indoor Measurements

We performed two experiments with the EDM laser incident angles α ≈ {90◦, 45◦}, re-

spectively, using a window as seen from the interior of a building. Here, we measured the

distance between two corners of the window as shown in Figure 5.12 d) and e). Overall,

the support line and support plane based methods achieve considerably better results than

the standard method and the support point method, or perform at least on par.

5.2.2.4 Outdoor Measurements

We conducted four outdoor experiments, where we measured the extents of a window from

a perpendicular and a 45◦ point of view. The particular hardware setup is shown in Figure

5.13. First, we measured the ground truth distance as shown in Figure 5.12 d), f) and h).

Then, we applied the four measurement methods again. The support line and the support

5.2. Simulation and Experiments 91

RTS

User position

measurement target

planar surface (approx.)

IP with high recall value

critical measurement: laser not fully reflected

RTS Control application

measure

zoom

save

…

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒙𝟒

RTS position

target position

Figure 5.13: Measurement setup for our experiments [65]. The RTS is placed on two
different positions for testing the influence of the laser incident angle. The user controls
the RTS remotely using a vision-based prototyping software on the mobile PC. The laser
is barely visible from close distance, but not from the user position or in the live camera
stream. RTS and mobile PC used in our experiments. The communication between the
devices is done over Wi-Fi.

plane methods are overall more suitable and give better results, or perform at least on

par, as shown in Table 5.5.

5.2.2.5 Pilot Study

In analogy to the experiment described above, we asked a group of eight novice users and

one expert user to measure the distance of the upper two corners of an outdoor window

with all different methods. All users were introduced to the system, and all measurements

with all methods were repeated three times.

Even for novice users with a short introduction to the system, the results for the support

line and support plane method clearly outperform the standard method and the support

point method, as indicated by the results listed at the bottom of Table 5.5.

The results in terms of the accuracy of the individual methods for the distance and mea-

surements are depicted in Fig. 5.14. The line and the support plane method consistently

and considerably outperform the standard and support point method, and, more impor-

tantly, all measurements have a considerably smaller variation.

The users were asked to complete a short questionnaire about the overall usability and the

92 Chapter 5. Application: Measuring with Support Objects

2.15 2.2 2.25 2.3

support plane

box plot of measured distances

direct

support line

support point

nearby

distance [m], indirect (between corner 1 and corner 2)

m
et

h
od

Figure 5.14: Accuracy results [65] for distance measurements between two window
corners. The reference distance (horizontal line) was estimated from repeated,
perpendicular measurements, using the direct method and modeling clay as temporary
planar surface.

intuitiveness of the GUI and the overall approaches. The questions and the answers given

by the users are summed in Table 5.6. At a glance, users mainly voted for the support line

and support plane method to be favorable over the standard and the support point method

in terms of ease of use. Being asked about the usefulness of the three methods introduced

in this work, users tended to favor the support line and the support plane method over

the support line method. Concerning the accuracy and rapidness of the measurements,

users preferred the plane support and the line support method, respectively.

5.2.2.6 Outdoor Measurements

We conducted four outdoor experiments, where we measured the extents of a window from

a perpendicular and a 0.25π point of view. We measured the ground truth distance shown

in Figure 5.12 d), f) and h). Then, we applied the four measurement methods again, as

discussed in the previous paragraph above.

5.2.2.7 Results

Table 5.5 shows the results of the physical experiments using the indirect evaluation

method as discussed in Sec. 5.2.2.1. The Box-and-Whisker plots for some repeated dis-

tance measurements are presented in Fig. 5.14. Overall, the support line and support

plane based methods achieve considerably better results than the standard method and

the support point method, or perform at least on par. The results for an angle of approx-

imately 0.25π indicate that the support line and support plane based methods achieve

5.3. Discussion 93

considerably better results than the standard method and the support point method for

non-orthogonal measurement setups.

5.3 Discussion

In this chapter, we described different methods for indirect measurements with an RTS.

The results of the simulations, the experiments and the pilot study show that our methods

consistently outperform the standard method, even when applied by novice users. One

reason for the huge gain in accuracy is due to the definition of the reference method, as

the requirement that the projected laser beam has to be fully on the visible surface causes

the big systematic error of the measurement method. This is also the main cause for the

big systematic error of the reference measurement method.

In the following, we briefly discuss the results for the individual experiments in more

detail and draw relationships between the results of the simulation and the physical mea-

surement results with respect to different aspects.

Planar Target Surface The MCS results shown in Table 5.4 and Fig. 5.10 indicate the

benefits of the proposed indirect measuring methods. For the perpendicular setup, the

accuracies of the point, line and plane support methods are comparable with the refer-

ence result. We use the direct measurement method with the proposed temporary target

modification. For the MCS, the proposed collider extension fulfills the same functionality

and allows for direct measurement of edges and corners. All support methods significantly

outperform the nearby method, for which we assumed a laser radius of 2.5e−3m near the

target. In case of an incident angle of 0.25π, the support point method shows a significant

systematic error, the support line and plane methods do not suffer from the same error

and outperform the other methods. The results from the physical measurements shown

in Table 5.5 and in Fig. 5.14 supports our findings.

Uneven Target Surface The limitations of the proposed methods are clearly visible

when measuring uneven and fillet targets. In this chapter, we used over-determined line

and plane fitting, but without outlier-robust estimation. We do not limit the support

measurements to the proximity of the IP, but allow the measurements within an ROI with

0.5m radius. If we assume no EDM measurement uncertainty, the accuracy of the support

methods and the nearby method are in the same range. However, the support line and

support plane method show stronger dependencies of the surface properties than the other

methods.

Fillet Target Surfaces Similar to uneven target surfaces, the support line and plane

method are significantly influenced by the surface properties, while the other methods are

less affected. Special care must be taken when choosing the best suitable method for a

94 Chapter 5. Application: Measuring with Support Objects

particular measurement. Different ROI radii would provide further insight, but are beyond

the scope of this work.

Nearby and Support Point Method By definition, both, the nearby and the support

point method use a measurement close to the IP. The support point method is designed

to reduce the systematic error by applying the angles of the IP while assuming reason-

able surface properties. The support point method outperforms the nearby method in all

experiments, as shown in Fig. 5.10. This method does not increase the distance measure-

ment count, hence has no significant influence on the measurement duration. Given the

low complexity of the algorithm and the user interface, we think the integration into new

and existing RTS is reasonable.

Prototyping and Simulation Environment The proposed prototyping and simula-

tion environment lowered the implementation effort significantly. Varying physical proper-

ties of a measurement setup was easy. The laboratory measurements and our own findings

during the physical measurements support this simulation setup for similar hardware con-

figurations. They encourage further work on integrating more realistic sensor models and

additional physical properties into the simulator.

Ray Casting in Simulation While we used ray casting with a single ray to model

the EDM in Unity3D in this chapter, a more realistic simulation would integrate multiple

rays, which are distributed within the laser beam. As a side effect, ray casting prob-

lems with complex mesh colliders due to round-off errors could be detected and corrected

automatically, without the need of the workaround proposed previously.

Targeting Uncertainty The proposed UI supports optical a digital zoom for all mea-

surement methods. By zooming in, the targeting uncertainty can be reduced, but it is

limited by physical properties of the camera and the measurement setup. An interesting

aspect to investigate in the future is the influence of the physical condition operators on

the results, such as concentration, distraction, exhaustion or eye strain. In particular,

these properties can be modeled as targeting uncertainty, and can be simulated by angle

sensor uncertainty.

Further Work We identified three major important avenues for future investigation:

(a) Outlier detection using of RANSAC schemes. (b) The use of multiple ray casting op-

erations in simulation. (c) The investigation of operator condition effects on measurement

errors. (d) Visual feedback and uncertainty indicators for measurements. The former two

are targeted more towards improvements of our methods in terms of mathematics and

engineering. However, the latter two clearly falls into the HCI domain and are relevant

for designing and implementing UI.

5.3. Discussion 95

We want to emphasize that, despite the basic algorithmic concepts are known for years,

practical applications are still largely missing due to the issues arising in real measurement

situations. As shown in this chapter, it is therefore highly relevant to study these concepts

in practice to identify and overcome shortcomings of the underlying algorithms.

96 Chapter 5. Application: Measuring with Support Objects

Table 5.5: Distance measurement results of the experiments [65]. For the indirect
evaluation method, the error of the average distance between two measured target points
is shown. The nearby method, marked in red, is the traditional approach to which we
compare.

α record method d [m] σ̂d [m] N dref [m] ∆d [m]

0.5π

lab.

direct 600.191e-3 82.942e-6 4.000 600.191e-3 0

nearby 586.664e-3 273.151e-6 4.000 600.191e-3 13.527e-3

support point 599.712e-3 39.655e-6 3.000 600.191e-3 478.897e-6

support line 599.803e-3 866.189e-6 5.000 600.191e-3 387.538e-6

support plane 604.457e-3 3.636e-3 5.000 600.191e-3 4.266e-3

indoor

direct 881.992e-3 362.719e-6 10.000 881.992e-3 0

nearby 893.240e-3 820.525e-6 8.000 881.992e-3 11.248e-3

support point 886.912e-3 1.921e-3 10.000 881.992e-3 4.920e-3

support line 887.088e-3 830.455e-6 10.000 881.992e-3 5.096e-3

support plane 885.561e-3 957.555e-6 9.000 881.992e-3 3.569e-3

outdoor
(short)

direct 883.245e-3 25.067e-6 4.000 883.245e-3 0

nearby 888.800e-3 14.479e-6 3.000 883.245e-3 5.555e-3

support point 882.519e-3 807.959e-6 4.000 883.245e-3 726.362e-6

support line 881.964e-3 813.967e-6 5.000 883.245e-3 1.282e-3

support plane 882.181e-3 249.838e-6 4.000 883.245e-3 1.065e-3

outdoor
(long)

direct 2.192 107.789e-6 10.000 2.192 0

nearby 2.196 1.182e-3 10.000 2.192 4.463e-3

support point 2.193 1.248e-3 10.000 2.192 1.761e-3

support line 2.189 819.832e-6 10.000 2.192 2.303e-3

support plane 2.190 1.212e-3 10.000 2.192 1.587e-3

0.25π

lab.

direct 600.191e-3 82.942e-6 4.000 600.191e-3 0

nearby 582.446e-3 1.192e-3 5.000 600.191e-3 17.745e-3

support point 584.189e-3 240.581e-6 4.000 600.191e-3 16.002e-3

support line 598.194e-3 229.861e-6 3.000 600.191e-3 1.997e-3

support plane 598.545e-3 654.487e-6 5.000 600.191e-3 1.646e-3

indoor

direct 881.702e-3 221.990e-6 5.000 881.702e-3 0

nearby 897.636e-3 3.285e-3 5.000 881.702e-3 15.934e-3

support point 894.017e-3 2.142e-3 5.000 881.702e-3 12.314e-3

support line 882.071e-3 607.033e-6 5.000 881.702e-3 369.144e-6

support plane 882.079e-3 1.165e-3 5.000 881.702e-3 377.119e-6

pilot
study

direct 2.192 107.789e-6 10.000 2.192 0

nearby 2.214 14.497e-3 53.000 2.192 22.456e-3

support point 2.218 21.181e-3 53.000 2.192 26.853e-3

support line 2.188 4.148e-3 54.000 2.192 3.529e-3

support plane 2.188 4.740e-3 54.000 2.192 3.406e-3

5.3. Discussion 97

Table 5.6: Survey results for eight novice and one expert user concerning the ease,
usefulness, accuracy and rapidness of the individual methods [65].

question
answer very easy

[%]
OK
[%]

difficult
[%]

How easy was it to use the NEARBY
method?

55.6 22.2 22.2

How easy was it to use the POINT
support method?

88.9 11.1 0

How easy was it to use the LINE
support method?

100 0 0

How easy was it to use the PLANE
support method?

100 0 0

question
answer yes

[%]
not sure

[%]
no
[%]

Do you think the POINT
support method is useful?

44.4 44.4 11.1

Do you think the LINE
support method is useful?

77.8 22.2 0

Do you think the PLANE
support method is useful?

88.9 11.1 0

question
answer NEARBY

[%]
POINT

[%]
LINE

[%]
PLANE

[%]

Which method do you prefer for
ACCURATE measurements?

0 0 44.4 55.6

Which method do you prefer for
FAST measurements?

11.1 22.2 44.4 22.2

6
Application: RTS-CAD Registration

The accurate registration of an RTS with respect to a given CAD model is a crucial task

in the construction industry. One must establish correspondences between control points

in the CAD model and measured points in the field. Common registration techniques rely

on a reference network of control points in the CAD model. Usually physical markers or

natural points of interest are selected as control points. Physical markers can be reflective

targets with known measurement properties or non-reflective targets like geodetic marks

or cast metal disks.

Especially when planning or documenting installations, planning reconstructions or

placing physical markers for assembly drills, fast RTS registration without dedicated con-

trol points is desired. Common natural measurement targets are building corners, edges

or steeples. They have a high recall value and avoid physical installation of targets. How-

ever, the accuracy and reliability of such natural targets are influenced by the distance

measurement problems of non-planar targets as described in the previous chapter.

In this chapter, we present a user-guided algorithm for simple and efficient registration of

an RTS with a polygonal CAD model in indoor environments without the need for control

points. The user interaction is reduced to selecting a local Manhattan-like corner structure

for initial model alignment; accurate registration of the device is carried out automatically.

Our algorithm relies on angle and distance measurements only and, therefore, is not limited

to vision-based RTS. The registration is performed with a sparse 3D point cloud scan to

keep the measurement duration to an acceptable level. Furthermore, the critical distance

measurement of non-planar targets can be avoided to decrease the registration uncertainty.

In particular, we propose a robust Manhattan corner extraction for ICP initialization, a

robust sample selection method for ICP refinement, and a sorting algorithm to optimize

the scan order of the measurements. With our algorithm, it is possible to reduce the user

interaction significantly, while retaining an accurate registration without the usage of re-

flective targets. The proposed approach simplifies the registration procedure and relaxes

99

100 Chapter 6. Application: RTS-CAD Registration

z
instr

(zenith)

൤

0

𝜃0
൨

projected scan

path

Manhattan-like corner

vertical angle 𝜃𝑖

y
instr

x
instr

spherical RTS model

center ray of

scan path

RTS instrument

frame

scan path of

proposed algorithm

input radius r

(optional)

RTS live camera view

image plane

horizontal angle 
𝑖

൥


0

𝜃0
d

൩ → ൥

x0
y0
z0

൩

𝑖𝑛𝑠𝑡𝑟

y
cam

y

EDM

x
EDM

z
EDM

z

cam

x
cam

𝑟

3D point measurement

x
img

y

img

y
img

x
img

Figure 6.1: Idealized geometric model of a calibrated RTS [64]. The spherical coordinate
frame of the RTS measurements, the EDM frame and the camera coordinate frame are
aligned in this particular model.

the accuracy constraints for initial measurements. This is crucial for non-experts to per-

form reliable and robust measurements. We avoid computationally expensive calculations

to enable a real-time implementation on embedded systems and mobile devices.

This chapter is based the work by Klug et al. [64], but provides a more complete descrip-

tion.

6.1 RTS Registration

The registration of the current position of the RTS with respect to a CAD model of

the environment can be reduced to a generic 3D registration problem. Traditional 3D

registration algorithms use three or more point correspondences to estimate the pose

between two models [47]. The ICP algorithm and it variants are widely used for the object

registration problem. However, carefully selected sample points and a good initialization

pose are required, especially when dealing with sparse point clouds.

Our algorithm can determine the registration without dedicated control points by using

local geometry for initial pose estimation and an ICP based sampling and refinement step.

6.1. RTS Registration 101

load model

place RTS

select/assign local

structure in model
roughly set initial

RTS pose in model

measure ICP samples

refine pose using ICP

load model

place RTS

measure control

points

select/assign control

points in model

calculate initial pose

get ICP samples in model

calculate pose

apply alternative RTS

pose initialization

measure local

structure

manual task

semi-automatic task

automatic task

traditional registration method (manual) proposed registration method (assisted)

modified user interaction

time-consuming

high demands on manual targeting

Figure 6.2: Manual registration workflow (left) compared to workflow of proposed CAD
based registration (right). The manual workflow requires visible and CAD-registered
control points, whereas control points are optional for the proposed method.

Alternatively, the initial pose can be roughly defined by the operator using the CAD

model.

Figure 6.2 compares the manual registration workflow with our assisted approach,

which uses local geometry instead of control points. Manual registration requires to create

and select control points in the model with a CAD software, to target and measure them

physically with an RTS, and to define point correspondences between the selection and

the measurement. In contrast, when using the assisted method, the user positions the

RTS, loads a CAD model and roughly specifies the initial pose. Then, by triggering

the registration algorithm, measurement samples are taken automatically to refine the

initial registration. Note that the initial registration is also referred as coarse registration

throughout this work.

6.1.1 Manual RTS Registration

When registering an RTS with respect to a CAD model manually, the user is responsible

for measuring and assigning the control points. The steps for this approach include: a)

102 Chapter 6. Application: RTS-CAD Registration

place the total station in the environment, b) load the model, c) create control points

in the model, d) measure the control points, e) assign the measured control points to

the reference measurements, and f) calculate the current pose of the total station with

respect to the model frame. In the simplest case, this problem can be mathematically

formalized as point cloud fitting problem with known point correspondences, using a six

DOF Euclidean transformation.

Let x′i be a CAD point, xi be the corresponding measured 3D point, and (R, t) be the

relative Euclidean transformation between the measurement frame and the CAD frame.

Then, the relative transformation between the two frames is given by

x′i = R · xi + t (R, t) = arg min
R,t

m∑
i=1

||R · xi + t− x′i||2 (6.1)

with the point correspondence count m ≥ 3. The problem is known as best rigid body

transformation in least square sense with a well-established closed-form solution proposed

by Horn [46]. In practice, outliers can be handled using the RANSAC framework proposed

by Fischer et al . [37].

6.1.2 Assisted RTS Registration

Assisted RTS registration with respect to a CAD model requires initial values for the

rotation R and the translation t. Our method supports the user in defining an approximate

initialization pose and then refines the result automatically. A good initial registration

pose is required for fast and robust registration. A simple, yet robust method for pose

initialization is defining the initial pose manually in the CAD model.

Another pose initialization method is measuring a local corner structure and matching

its pose with respect to a selected CAD region. An RTS provides accurate single point

measurements with low sampling rate. Therefore, we explicitly avoid dense point cloud

scans to keep the registration reasonable fast. While the ICP is an established solution for

the registration of point clouds and meshes, the sparsity of the measurements is critical

for ICP based pose estimation without providing further user input. The sparsity of the

point cloud is mainly driven by keeping the sampling time acceptable. In this work, we

experienced an EDM update rate of about 0.5...20 Hz for repeated measurement of the same

target, but lower update rates for different targets. This is consistent with the specified

distance sampling rates of common RTS shown in Table 1.1.

We experimentally determined an acceptable sample count for the course registration of

Ns ≤ 40 points in indoor environments. Multiple initial pose candidates would be required

for a robust pose estimation, which comes at the expense of additional computation time.

The method proposed by Nguyen et al. [79] uses sparse 3D point clouds, graph based

segmentation and EM for robust plane detection. Our algorithm is based on the work

of Nguyen et al. However, with our setup, certain modifications are required: 1. The

mobile EDM is replaced by an RTS. Hence, no SLAM system is required for connecting

6.1. RTS Registration 103

Π𝑦

Π𝑧

polygon p𝑧

p𝑦

𝐱3 𝐱1
𝐱2 𝐯1 𝐯2

𝛼1

measured sparse point cloud

(ordered)

plane Π𝑥

 mesh

point group (𝒙𝑖)𝑥

p𝑥

edge

point group (𝒙𝑖)𝑧

interior angle

point group (𝒙𝑖)𝑦

y

x

z

local coordinate system

(origin 𝐱𝑐) distance 𝑑𝑖

𝐱𝑐

Figure 6.3: Manhattan-like structure detection. Once detected, the initial RTS
registration with respect to the CAD model is done by aligning a local coordinate system
of the measured and selected structure. The local coordinate axes are automatically
extracted from both, the CAD model and the measured point cloud.

multiple measurements. 2. 3D points can be measured with higher accuracy and with a

predefined scan order. This reduces the optimization complexity and allows for a more

robust algorithm. 3. Realistic indoor scenarios and usage on construction sites demand

high stability with low contrast images. Hence, the point segmentation proposed by the

authors cannot be used. 4. Pose estimation of a mesh with respect to a point cloud was

not applied by the algorithm and must be addressed separately.

In the following, we provide modifications to the method proposed by Nguyen et al.,

which lead to a simple, yet robust method for Manhattan-like corner pose estimation for

RTS in low contrast scenarios. The RTS camera is only used to steer the RTS to the area

of interest, but not for segmentation. The camera can be removed completely for setups

with different hardware control interfaces.

6.1.3 Local Manhattan-Like Corner Estimation With Ordered Sparse

Point Clouds

First, the proposed algorithm defines a measurement path for the RTS for creating a

ordered set 3D point measurements. Using the measured point set, plane detection is

applied to classify the sparse scan of a local Manhattan-like structure into following three

categories: single wall, 3D edge with two visible planes, or 3D corner with three visible

104 Chapter 6. Application: RTS-CAD Registration

LIVE CTRL RTS

A1) place RTS A2) measure corner

B) load & select corner C) extract axes

+z

+z

+z

+z

+z

+z

+z

+z

 +z

CAD

up

up

(a)

(c)

(b)

Figure 6.4: Local coordinate axes extraction and assignment. The up-vector of the scene
and the up-vector of the RTS are used to resolve the ambiguity of the direction and label
of the z-axis. Selection methods: (a) select corner by vertex; (b) select corner area; (c)
select three surfaces. The task flow A1-A2-C can be executed parallel to the task flow
B-C to reduce the idle time of the user.

planes. In the current work, only the latter is accepted as valid measurement. The

complete plane extraction algorithm consists of following steps: 1. Automatically measure

the local area of a target using a circular movement, 2. create initial point set groups

3. refine groups using EM, and 4. extract planes using the RANSAC framework for each

point group. Figure 6.1 shows the circular scan path, the projected scan path at the

measured corner, and an exemplary RTS control UI for the algorithm.

Discrete sample points form a sparse point cloud around the current target. The points

are recorded by an RTS using a circular EDM motion. The RTS angle control parameters[
ϕi θi

]T
are defined by

[
ϕi

θi

]
=

[
ϕ0

θ0

]
+ r ·

[
cos(ωi)

−sin(ωi)

]
i = 1...Ns, ωi = i

2π

Ns + 1
(6.2)

where ϕ0 and θ0 are the horizontal and vertical angle of the center of the measurement,

ϕi and θi are the spherical coordinates of sample point xi, and Ns is the sample count.

6.1. RTS Registration 105

Algorithm 1: Peak detection algo-
rithm with non-maximum suppres-
sion of successive points. The non-
maximum suppression in this algo-
rithm is limited to a single subse-
quent edge. The angle threshold is
set to αthr = π

4 (experimentally de-
termined).

function peakfind
Input : angles := (α̃1, . . . , α̃Ns)
Output: peak indices
state s := NO PLATEAU
foreach i in (1, 2, . . . , Ns) do

if s = NO PLATEAU AND
α̃i > αthr then

APPEND i to peak indices
s := PLATEAU

else
s := NO PLATEAU

return peak indices

Algorithm 2: Simple greedy non-
maximum suppression algorithm
based on the size of the point groups.
List boundary handling is omitted
for reasons of readability.

function nonmaximumsup
Input : peak indices
Output: filtered peak indices
state s = NO PLATEAU
var idxprev = 0
foreach idx in peak indices do

if (idx - idxprev) > 3 then
APPEND idx to
filtered peak indices
idxprev = idx

return filtered peak indices

By steering the RTS approximately to the corner, the measurement center angles ϕ0 and

θ0 are implicitly defined by the current RTS pose. The radius r defines the swing of the

spherical RTS control parameters for the local measurement. When defined visually, the

angle between the center ray and the back-projected ray of a user defined image point is

used. However, r can also be derived from a predefined spherical bounding box at the

corner, using an initial measured EDM distance, which further reduces the required user

input.

The proposed classification accepts simple Manhattan-like structures with one, two or

three main planar areas.

The point cloud, consisting of Ns measured points xi, is interpreted as closed polygon

K = (x1,x2, . . . ,xNs,x1) for pre-processing and initial point grouping. Besides image-

based segmentation, Nguyen et al. use EDM distances for initial point grouping. In con-

trast, RTS provide not only distances, but 3D point measurements, which we use for

segmentation.

Let the interior angle αi be the angle between two successive measured points, inter-

preted as 3D polygon vertices. Then, αi is given by

αi = arccos(vi · vi−1) vi =
xi+1 − xi
||xi+1 − xi||

(6.3)

where vi is the direction from vertex xi to vertex xi+1. To identify initial coplanar point

106 Chapter 6. Application: RTS-CAD Registration

groups, we subtract a systematic angle αs according to

α̃i = max(|αi| − αs, 0) αs =
2 · π
Ns + 1

(6.4)

The systematic angle αs describes the angle between two consecutive edges for a perpen-

dicularly measured, planar target. We perform peak detection of the absolute values of the

remaining angles with downstream non-maximum suppression of the detected plateaus.

The peak detection algorithm is shown in Alg. 1. After detection, groups with less than

three points are joined using the greedy iterative algorithm shown in Alg. 2. EM opti-

mization is applied for robust plane detection. In the Expectation step, measurements are

assigned to coplanar point groups. However, the sorted input allows for k-means cluster-

ing in the Expectation step rather than using Gaussian Mixture Models as proposed by

Nguyen et al. [79]. Let the plane Πj be the estimated geometric model of point group j.

The initial likelihood p of a homogeneous measurement point x̃i to belong to the plane Πj

is obtained from Alg. 2. In the subsequent iterations, the likelihood is updated using

p(x̃i ∈ Πj |Πj) =

1, j = arg min
k

(ΠT
k · x̃i), |j −m| ≤ 1

0, otherwise
(6.5)

where Πk is a 4 × 1 vector, which contains the plane parameters for the co-planar point

group k. In the previous iteration, point xi was assigned to plane Πm. In the Maximization

step, plane fitting and merging of similar planes is applied. However, in all algorithm steps,

only connected groups are considered. This reduces the effects of invalid inter-class point

assignments and invalid plane merging. The benefits of the ordered point clouds can

be compared to the benefits of organized point clouds over unorganized point clouds, as

discussed by Trevor et al. [104]. Figure 6.3 shows an exemplary measurement. Different

representations of the Manhatten-like structure are used for the individual algorithm steps.

Hence, the local structure is represented as single mesh, or as connected planes, polygons,

or grouped points.

From the proposed plane detection, three planes are selected and classified as a corner

structure. First, the most prominent plane Πi is selected, using the inlier count N(i) of the

plane estimation. Then, the two remaining planes Πj and Πk are selected by maximizing

the span and inlier count of the three planes. Hence, the optimization problem is given

by:

6.1. RTS Registration 107

i = argmax
i

(N(i)), (j, k) = argmax
j,k

(Cc), subject to:

Cc = c1C1 + c2C2 0 ≤ (c1, c2) ≤ 1

C1 = (ni × nj) · nk C2 =
N(i) +N(j) +N(k)

Ns

i 6= j 6= k 3 ≤ (N(i), N(j), N(k)) ≤ Ns


(6.6)

where N(l) is the inlier count for some plane l; Cc is the fitness function, defined as

weighted sum of C1 and C2; C1 maximizes the span, and C2 maximizes the inlier count

of the planes Πi, Πj and Πk. The weights c1 and c2 were experimentally determined and

were set to c1 = c2 = 0.5.

For subsequent alignment, a right-handed local coordinate system as shown in Figure

6.4 is defined, which is called local corner frame in the following. The origin xc is given by

the intersection of the planes, the axes are given by orthonormalizing the plane normals ni,

nj and nk. For the economy of notation, the plane normals and the related orthonormal

vectors are denoted by the same variables1. The initial RTS pose can be estimated by

relating the local corner frame of the selected CAD model and the measured corner. At

this state, only the orientations of the axes are known, but not the labels and directions.

Hence, a pose ambiguity with 24 possibilities must be resolved. The correspondences

between axis labels and the extracted plane normals can either be selected manually or

assigned automatically. Automatic assignment requires additional constraints; the up-

vectors for both the CAD model and the RTS must approximately be known. As RTS

require upright operation, and surveying models usually contain the information about

the up-vector, no additional user input is required. Without loss of generality, we assume

that the up-directions of the CAD model and the RTS are both aligned with the z-axis

of the particular coordinate system. In the proposed setup, Manhattan-like corners with

three planes usually have a prominent z-plane. Thus, from the previous detected corner

planes, the z-plane can be estimated by:

iz = argmax
l
| arccos(z · nl)| l ∈ (i, j, k) (6.7)

where iz is the index of the z-plane, and nl is the plane normal of the extracted planes

Πi, Πj or Πk. Eqn. 6.7 can be applied to both the selected CAD corner and the measured

corner. This reduces the remaining alignment ambiguity to four possibilities as shown in

Figure 6.4.

The measured RTS samples are mainly distributed in one octant of the local corner

1While the interpretation of the plane intersection and normals as local coordinate system enforces
orthonormalization, the latter is not mandatory for the proposed algorithm.

108 Chapter 6. Application: RTS-CAD Registration

not well distributed in
respect to polygons

distribution highly depends on
initial position

outside view

unpredictable
measurement

inside view

Figure 6.5: Sampling problems. Sample distribution of standard uniform sampling
method distribution highly depends on initial registration position.

frame. The remaining ambiguity can be resolved for the measured corner by enforcing that

the majority of the measured samples have to be in the positive half-spaces of the local

corner frame. Similarly, the alignment of the local corner frame of the selected CAD area

can be fixed. Let each vertex of the selection vote for a half-space. In case of ambiguities

votes, additional user input is required. Otherwise, the same method as for the measured

corner is applied.

Finally, the measured and selected local corner frame can be aligned using Eqn. 6.1.

Optionally, ICP can be applied to the selected corner and the measured samples to refine

the initial RTS pose.

6.1.4 Automatic Pose Refinement Using Additional Samples

The estimated RTS pose of the proposed initialization method relies on local measurements

only. Hence, measurement uncertainties and discrepancies between the model and reality

may lead to an unacceptable registration error. In the following, iterative pose refinement

is discussed, using the previous results as initialization. In general, the pose refinement

step of the proposed registration algorithm automatically

1. selects robust and well distributed sampling points for further pose refinement,

2. calculates the minimum movement for the RTS to measure the sampling points,

3. measures the selected samples, and

6.1. RTS Registration 109

4. refines the registration pose.

The following sections describe the individual algorithm steps.

6.1.5 Robust Sampling

For pose refinement, additional sample points are required. The sample points have to

be visible from the current RTS position. At this state, only the RTS pose from the

initial registration can be used to pick sample candidates from potential visible regions

of the CAD model. Without prior knowledge about the scene, the following sampling

strategies could be applied: a) random or uniform sampling within the bounding box of

the CAD model, b) random or uniform sampling on a unit sphere around the initial RTS

pose, c) random or uniform sampling of points of the surface of the CAD model. Random

sampling without guidance would lead to an unacceptable measurement time, even with a

modern RTS. Furthermore, without incorporating the initial pose, the spatial distribution

of random or uniform distributed samples highly depends on the scene setup, as shown

in Figure 6.5. In this section, we provide a better sampling strategy by incorporating

the CAD model and the initial RTS pose. First, we create a potentially visibility set of

polygons. This step extracts polygons of the CAD model that are visible from the initial

RTS pose. Connected, co-planar polygons are joined together for further sampling.

Then, we define sample candidates as uniformly distributed point sets for each poly-

gon. Indoor environments usually have joints, skirting boards and similar details, which

are not present in CAD models. Juretzko [60] describes problems with edge and corner

measurements in reflectorless RTS mode. Klug et al. [65] substantiate the statements of

Juretzko by analyzing measurement errors of Manhattan-like corners. For these reasons,

the pose refinement step excludes sample candidates near polygon edges explicitly. Figure

6.6 shows sampling candidates, which are calculated, filtered and measured by the pose

refinement step.

Then, the proposed sampling method uses a greedy point-picking algorithm, which

iterates over polygons to select well distributed samples. The procedure terminates after

a predefined number of samples. Alg. 3 shows the pseudo-code for picking sample points.

Finally, the extracted sample coordinates are converted to spherical coordinate angles

for controlling the RTS.

6.1.6 Efficient Sample Measurement Order

Measuring random samples with the RTS without ordering would lead to undesired and

unnecessary RTS movements. Proper definition of the scan order decreases the power

consumption of the device, increases laser safety on construction side, and lowers the

overall measurement time. Furthermore, it increases the aesthetic aspect of the RTS

operation by using smooth movements rather than edgy jumps during the registration.

Finding the minimum distance between multiple stops is known as the traveling sales-

man problem (TSP) One common formalization is based on linear integer programming

110 Chapter 6. Application: RTS-CAD Registration

removed candidates in
non-measureable region
(defined by RTS spec)

safety distance from
corners and edges

ray casting to determine
major visible polygons

greedy near-uniform distribution
of sampling coordinates over
polygons

initial guess
of RTS pose

optional sample rejection
using sample support region

sampling candidates

Figure 6.6: Robust sample extraction using initial pose and visible CAD polygons that
are used to control the RTS.

(ILP)

xij =

{
1 connection between point i and j

0 otherwise
(6.8)

where xij describes the movement from point i to point j. The shortest distance between

two points on a sphere can be expressed in spherical coordinates by the great-circle distance

∆α = arccos(sin θi sin θj + cos θi cos θj cos (ϕi − ϕj)) dij = r ·∆α r = 1 (6.9)

where ∆α is the central angle between points i and j, dij is the shortest distance between

them, and r is the radius of the sphere.

The ILP for Ns measurement points can be written as [107]

minxij
∑Ns

1

∑Ns
1 dijxij , subject to:

xij ∈ {0, 1} 1 ≤ {i, j} ≤ Ns

Ns∑
i=1,i 6=j

xij = 1

Ns∑
j=1,j 6=i

xij = 1


(6.10)

which leads to a smooth sampling path and decreases the overall sampling time. Note

6.2. Experiments 111

scan path with sub tours scan path without sub tours

RTS measurement samples

and scan path on unit sphere

(𝜋
−

 𝜃
)

[r
ad

]

𝜑 [rad]

(𝜋
−

 𝜃
)

[r
ad

]

𝜑 [rad]

RTS

instrument

frame

samples,

laid out on

spherical map

Figure 6.7: Scan path optimization of an exemplary collection of samples, with and
without sub-routines.

that sub-tours are explicitly allowed for performance reasons. Figure 6.7 visualizes the op-

timization of an exemplary collection of points to measure with and without sub-routines.

6.1.7 ICP Pose Refinement

The problem of refining the initial RTS pose with respect to the CAD model is a pairwise

surface-based registration problem. A well-studied solution is the ICP algorithm. In this

work, we used the ICP algorithm with measured points, model surfaces, and the point-to-

plane distance metric as described by Mehdi [76].

6.2 Experiments

The proposed method is mainly designed for usage in indoor scenarios, where Manhattan-

like corners are present and measurable. Physical evaluation setups contain different error

sources, which contribute to the overall measurement uncertainty for both, the reference

results and the algorithms under test. In general, the uncertainty in the result of a mea-

surement or calculation, which consists of multiple components, is known as combined

standard uncertainty. The estimation, propagation and assessment of the measured phys-

ical quantities and the related uncertainties are described in the JCGM 100:2008 GUM

[57].

Without controlling the properties of the physical setup, the uncertainty of the result

of a measurement or calculation cannot be separated reliably into effects of different error

sources. This renders a physical evaluation approach critical for the in-depth analysis of

the proposed algorithm.

For this reason, we used a simulated RTS setup for the evaluation in this work. Hence,

effects of sensor noise and as-built discrepancies with respect to the registration results

112 Chapter 6. Application: RTS-CAD Registration

could be analyzed.

In the following, we provide the description of the used test data and the test coverage

for the proposed algorithm, the simulated RTS measurement setup and the variations of

the uncertainty sources for the RTS sensors and the CAD models.

6.2.1 Test Setup and Test Coverage

We altered several test parameters for better test coverage as shown in the test taxonomy

in Table 6.1. In particular, we compared different registration methods, different levels

of as-built discrepancies, and different sensor noise settings. We report all registration

results with and without subsequent ICP refinement for better comparison of intermediate

results.

The RTS control parameters and the reference result for the registration were auto-

matically generated for each test. The CAD models and their variants were generated

semi-automatically. The model variants were used to simulate as-built discrepancies. We

compared the reference RTS registration with the manual registration method and with

the assisted registration method. For manual registration, we used three point correspon-

dences for each test. We also applied the ICP approach to the manual registration for

better comparison. Here, we showed that the corner estimation of the workflow proposed

in Figure 6.2 could easily be replaced by any other initialization method, like using three

point correspondences.

The individual test sets analyze different as-built discrepancies. We analyzed 1. no

as-built discrepancies, 2. as-built discrepancies at corners with 15mm and 30mm curva-

Algorithm 3: Greedy point-picking algorithm. Points are selected from each
polygon group. Connected co-planar CAD areas are joined before point-picking
is applied.

function select sample points;
Input : sample count threshold sample cnt and sample candidates with reference to

polygons pcand
Output: selected sample points psel
list psel := () // start with empty list

foreach poly in polygons do
p := RANDOM SAMPLE(poly, pcand)
if p = () then

// no more candidates for poly
REMOVE poly from polygons

else
APPEND p to psel
REMOVE p from pcand
if COUNT(psel) = sample cnt then

BREAK

return psel

6.2. Experiments 113

Test set label format: P_D_N

Create CAD model

none

RTS poses

RTS targets

15mm 30mm

curvature,
cutouts

Create variants Generate test sets

Algorithm input

Reference models

Figure 6.8: Test data generation, using single-source for different CAD model variants.
As-built variants include fillets and curvature at edges and missing details like door and
window cutouts.

ture radius, 3. as-built discrepancies at faces with missing cutouts. In case of as-built

discrepancies, the CAD model did not have the same detail level as the reality. We simu-

lated the scenarios with detailed CAD models, but used the simplified CAD model in our

registration algorithm. Furthermore, we simulated measurement uncertainties for sensors

and targeting, using the settings given in Table 6.2. The EDM measurement uncertainty

uc(d) and the angle and targeting uncertainty uc(α) were simulated by

uc(x) ≈
√
u1(x)2 + (xu2(x))2 x ∈ {d, α} (6.11)

where uc(x) is the simulated standard uncertainty with normal distribution and zero mean;

u1(x) is the additive and u2(x) is the proportional uncertainty component. uc(α) is the

angle sensor and targeting uncertainty, which is assumed to be equal for horizontal and

vertical angle.

The steps required for test data generation are shown in Figure 6.8. During evaluation,

the registration algorithm and the reference simulation can use different variants of the

same CAD model for analyzing effects of as-built discrepancies. We used detailed models

for simulation and models with as-built discrepancies as input for the discussed algorithms.

The simulated as-built discrepancies include missing CAD model details, such as edge

curvature, windows and door cutouts.

The error metric used in this work is given as follows: Let the registration error of the

RTS with respect to the CAD model be the difference in angle and position between the

true and the calculated RTS frame. Then, the position error et and the rotation error er
for test set j are given by

et =

√√√√ N∑
i=1

||yi − y′i||2
N

er =

√√√√ N∑
i=1

(∆αi)
2

N
(6.12)

114 Chapter 6. Application: RTS-CAD Registration

where N is the test count of the test set j; i is the test index within the test set; yi and

y′i are the true and the estimated position of the RTS, respectively; ∆αi is the minimum

rotation between the true and the estimated RTS pose. The minimum rotation is given

by the relative rotation between the calculated and the true RTS frame, using the rota-

tional part of the corresponding axis-angle representation. In addition, we calculated the

standard uncertainties uc(et) and uc(et) according to GUM [57]. RTS sensor simulation

with Unity3D uses single-precision floating-point arithmetic and causes outliers in the test

results due to round-off effects and EDM ray-casting misses as discussed in Sec. 5.2.1.3.

Here, we used the median absolute deviation to reduce the influence of outliers [65, 71]

rather than modifying the model as described in Fig. 5.9. In particular, we applied the

Matlab function isoutlier with default parameters. Each test set contains 130 tests. On

average, we removed ≈ 11% outliers from each set. Test set labels are defined in Table

6.1. In addition, we defined combined test sets for the as-built discrepancies for better

comparison. In particular, we applied Eqn. 6.12 on the collected values for ||yi − y′i|| and

∆αi of the different as-built discrepancy test sets.

Table 6.1: Test set taxonomy and label encoding; test set label format: {P D N}.
Example: c d00 n0 denotes the test set, which uses the corner estimation method as
initialization, no as-built discrepancies and no sensor noise.

name variable value description

initialization method P
p 3 points

c corner

refinement method
none

ICP

as-built discrepancy D

d00 none

d15 15mm curvature

d30 30mm curvature

dcu cutouts

noise N
n0 None

n1 measurement uncertainty

Table 6.2: Sensor noise settings, modeled as measurement uncertainties, enumerated by
the test set label format variable N .

label description u1(d) u2(d) u1(α) u2(α)

n0 without noise 0 0 0 0

n1 with noise 0.75e− 3m 10e− 6m 5
3600 ·

2π
360 rad 0

6.2. Experiments 115

T
ab

le
6
.3

:
E

va
lu

a
ti

o
n

re
su

lt
s,

u
si

n
g

1
30

te
st

s
fo

r
ea

ch
te

st
se

t.
T

es
t

se
t

la
b

el
s

d
efi

n
ed

in
T

a
b

le
6.

1
.

te
st

se
t

in
it

ia
li

za
ti

on
IC

P

N
o.

la
b

el
e t

[m
]

e r
[r

ad
]

e t
[m

]
e r

[r
a
d

]

1
p

n
0

d
00

6
.5

5
e
−

0
6
±

6
.1

4
e
−

1
1

9
.5

1
e
−

0
7
±

1
.4

6
e
−

1
2

8
.1

0e
−

07
±

5.
67
e
−

1
3

3.
0
1e
−

0
7
±

5
.3

6e
−

1
4

2
c

n
0

d
0
0

2
.2

9e
−

0
5
±

7
.3

0e
−

1
0

3.
69
e
−

06
±

1.
26
e
−

11
1
.0

2
e
−

0
6
±

7
.6

2
e
−

1
3

3
.5

5
e
−

0
7
±

8
.0

5
e
−

1
4

3
p

n
0

d
15

1
.8

0
e
−

0
2
±

1
.1

9
e
−

0
4

8
.0

0
e
−

0
4
±

3
.5

2
e
−

0
7

1
.0

2e
−

06
±

9.
33
e
−

1
3

3.
00
e
−

0
7
±

4.
86
e
−

14

4
c

n
0

d
1
5

1
.0

9e
−

0
4
±

1
.6

7e
−

0
7

5.
66
e
−

05
±

1.
09
e
−

07
9
.5

2
e
−

0
7
±

8
.0

5
e
−

1
3

2
.9

8
e
−

0
7
±

8
.7

6
e
−

1
4

5
p

n
0

d
30

3
.4

2
e
−

0
2
±

6
.3

2
e
−

0
4

1
.5

5
e
−

0
3
±

2
.2

6
e
−

0
6

1
.0

0e
−

06
±

5.
42
e
−

1
3

3.
3
8e
−

0
7
±

3
.9

4e
−

1
4

6
c

n
0

d
3
0

4
.8

8e
−

0
5
±

6
.9

2e
−

0
9

7.
63
e
−

06
±

1.
64
e
−

10
1
.0

9
e
−

0
6
±

9
.0

7
e
−

1
3

4
.6

9
e
−

0
7
±

1
.2

6
e
−

1
3

7
p

n
0

d
co

5
.7

7
e
−

0
6
±

5
.9

6
e
−

1
1

8
.9

9
e
−

0
7
±

1
.5

8
e
−

1
2

9
.4

2e
−

07
±

4.
52
e
−

1
3

2.
57
e
−

0
7
±

2.
88
e
−

14

8
c

n
0

d
co

2
.3

8e
−

0
5
±

5
.4

7e
−

1
0

3.
78
e
−

06
±

1.
18
e
−

11
8
.2

9
e
−

0
7
±

4
.5

6
e
−

1
3

2
.3

4
e
−

0
7
±

2
.0

7
e
−

1
4

9
p

n
1

d
00

1
.1

3
e
−

0
3
±

9
.2

4
e
−

0
7

1
.5

0
e
−

0
4
±

2
.0

1
e
−

0
8

5
.6

8e
−

04
±

1.
03
e
−

0
7

1.
0
3e
−

0
4
±

8
.1

7e
−

0
9

10
c

n
1

d
0
0

1
.6

4e
−

0
2
±

2
.2

4e
−

0
4

2.
88
e
−

03
±

6.
01
e
−

06
5
.5

8
e
−

0
4
±

1
.6

5
e
−

0
7

1
.3

4
e
−

0
4
±

1
.3

0
e
−

0
8

1
1

p
n

1
d

15
1
.8

0
e
−

0
2
±

1
.2

9
e
−

0
4

8.
39
e
−

04
±

4.
10
e
−

07
6
.5

0e
−

04
±

1.
89
e
−

0
7

1.
02
e
−

0
4
±

4.
54
e
−

09

12
c

n
1

d
1
5

3
.7

8e
−

0
2
±

8
.7

4e
−

0
4

4.
50
e
−

03
±

2.
16
e
−

05
5
.9

1
e
−

0
4
±

1
.3

5
e
−

0
7

1
.2

0
e
−

0
4
±

1
.3

2
e
−

0
8

13
p

n
1

d
30

3
.6

1
e
−

0
2
±

6
.1

5
e
−

0
4

1
.4

5
e
−

0
3
±

2
.3

2
e
−

0
6

6
.1

8e
−

04
±

1.
21
e
−

0
7

1.
0
5e
−

0
4
±

4
.8

2e
−

0
9

14
c

n
1

d
3
0

2
.1

9e
−

0
2
±

6
.2

5e
−

0
4

3.
22
e
−

03
±

1.
12
e
−

05
6
.2

8
e
−

0
4
±

2
.9

7
e
−

0
7

1
.1

7
e
−

0
4
±

2
.0

4
e
−

0
8

1
5

p
n

1
d

co
1
.3

3
e
−

0
3
±

1
.3

1
e
−

0
6

2
.2

4
e
−

0
4
±

2
.7

5
e
−

0
8

5
.2

0e
−

04
±

1.
07
e
−

0
7

1.
07
e
−

0
4
±

4.
69
e
−

09

16
c

n
1

d
co

2
.2

1e
−

0
2
±

2
.5

0e
−

0
4

2.
87
e
−

03
±

5.
26
e
−

06
5
.8

3
e
−

0
4
±

1
.4

8
e
−

0
7

9
.1

8
e
−

0
5
±

7
.9

6
e
−

0
9

116 Chapter 6. Application: RTS-CAD Registration

6.2.2 Registration Results

The results presented in Table 6.3 show the benefits of using ICP as a downstream step for

RTS registration algorithms. In all cases, we observed a decrease in error and uncertainty

when using ICP. In addition, the proposed initialization method reduces the required user

interaction for registration. For special setups, camera-based targeting can be avoided at

all. However, the majority of the test sets result in a better initial registration when using

the manual method, which was to be expected. In particular, we assumed an idealized

setup, for which the targeting uncertainty was reduced to the sensor noise of the RTS. User

dependent variations have not been analyzed. As-built discrepancies of CAD models have

high influence on the initialization methods. Hence, expert knowledge and experience in

measuring natural targets cannot be replaced. However, currently, the traditional method

does not include ICP, while it is an integral step for our proposed method.

6.3 Discussion

In this chapter, we introduced a semi-automatic method for registration of RTS with

respect to a CAD model. By using different methods for initial registration, we show

the flexibility of the proposed algorithm. We explicitly avoided computationally complex

methods like 3D mesh template matching or learning algorithms for 3D corner detection

and pose estimation to limit the power consumption and run-time to an acceptable level.

We proposed a robust Manhattan-like corner estimation method for ICP initialization.

Alternative methods that differ in the amount of user interaction and reliability of the

initial registration, like single wall initialization or Manhattan-like structures with two

walls, could be developed. Shape-priors could be extracted from the CAD selection. While

this might be more robust in terms of detection, the added causal dependency would

increase overall duration of the registration workflow. In the current work, the ordered

point cloud of the initial measurements was interpreted as 3D polygon, and the interior

angles of the polygon edges were used for clustering. Alternatives methods could be

analyzed regarding the reliability of the initial clustering.

We used three point correspondences as reference registration method. One next step is

to generalize point correspondences to point-and-direction correspondences to which covers

a broader range of model registration methods. Furthermore, effects from systematic

measurement errors like scale differences between current measurements and the CAD

model can be analyzed or compensated.

The analysis of computer vision algorithms and user dependent variations are beyond

the scope of this work. User studies with a physical setup could be used in addition to

the proposed analysis. This additional insights and a more practical comparison of the

proposed algorithms.

The proposed candidate-picking algorithm for measurement samples highly relies on

the level of detail of the CAD model. Incorporating further information, such as saliency

6.3. Discussion 117

regions, could further decrease the uncertainty of the RTS registration. In particular,

different sampling strategies on a spherical saliency map could be applied.

118 Chapter 6. Application: RTS-CAD Registration

7
Conclusion

We think that the proposed assistance and simulation systems may have a significant

impact and are a step towards intelligent RTS instruments. Especially for non-experts,

small-size and mid-size companies, these methods can lower the entrance threshold for

working with RTS and performing accurate, reliable and repeatable tasks. Using semi-

automatic extraction of a simulator has proven to be a powerful tool to test applications,

hardware configurations and environment influences in early design phases.

We tried to ensure the portability of the proposed workflows for a larger variability of

devices by targeting commercially available RTS and reducing the hardware requirements

to core functions of these instruments. To further lower the costs and effort for the

transfer of knowledge to industry, we do not rely on multiple cameras or sensor data

synchronization.

In the following, the achievements of the proposed methods are summarized, and

personal opinions on trends and forecasts in this field are provided.

7.1 Particular Achievements

With the first workflow, we addressed targeting building corners manually. We showed that

local approximations of the measured structures can lower the uncertainty and increase the

reliability of measuring structures with at least one quasi-planar surface. The conducted

user-study further indicates that non-expert users would prefer the proposed targeting

methods, even though additional samples must be measured. The participants confirmed

that the proposed user interface was intuitive, but a visual quality indicator of the expected

targeting uncertainty would be beneficial.

With the second workflow we addressed the registration procedure of an RTS with respect

to a polygonal CAD model in indoor environments. We kept the approach flexible by

119

120 Chapter 7. Conclusion

using a modular workflow and by splitting the procedure into coarse and fine registration.

This allowed us to investigate different initialization methods and to analyze CAD-guided

sampling heuristics for the refinement step. Our simulation results indicate that the ICP

algorithm can be used for device registration as long as a sufficient initialization and careful

sample-picking is provided. The latter is supported by a-priori information, which mainly

consists of a potential visibility set of visible regions of the CAD model.

The proposed initialization method uses a corner with three quasi-perpendicular and

quasi-planar surfaces. We consider this not only as one of many possible initialization

methods, but also as first step toward scene understanding with sparse point sets of RTS

measurements.

Apart from developer tests and some conceptual demos, the registration flow was

only tested within the simulator. However, our research team currently is working on

evaluations with laboratory conditions and with realistic setups. We also hypothesize that

formalizing the coarse registration task as 21/2D problem rather than as 3D problem would

lead to better results as walls are usually approximately aligned with the gravity vector.

We believe that the developments mentioned above would not have been possible with-

out the RTS prototyping and simulation system that we developed in early states of the

project. The presented systematic model extracting approach for RTS kinematic simula-

tion has proven to be particularly useful for prototypical devices. This allowed us to deal

with incomplete drivers and documentations, to test concepts beyond device limitations,

and to verify implementations during the complete development cycle in an efficient way.

However, it also should be mentioned that a prototyping framework with a driver

abstraction layer can be a disadvantage in later design phases and will add additional

effort to the transfer of knowledge to industry. We experienced that a more economic

approach would be to use low-level communication protocols or generated mock interfaces

of drivers to ensure the same API, which would allow easier integration into the existing

infrastructure of companies.

7.2 Developments, Forecasts and Trends of RTS in the Con-

struction Industry

A booming field of applications for RTS is the construction industry, where an increasing

need for efficient information management, digital recordings and documentation can be

observed. In 2015, Oxford Economics1 and Global Construction Perspectives2 published

a study about prospects for the global construction industry [15]. The report predicts

a worldwide market grow by 85% ($8 trillion) between 2015 and 2030. This trend also

1Oxford Economics is a leading company for business, economic and public policy advice and provides
forecasts and analytical tools to international institutions, governments and blue-print companies [81].

2Global Construction Perspectives is an UK consulting company for forecasts and strategic issues about
the global construction and engineering industry [39].

7.3. Final Statements 121

leads to an increasing need for managing construction projects more efficiently. One such

trend is the concept of building information modeling (BIM). BIM defines standards and

methods for optimizing design, execution and maintenance of construction projects. In

particular, it centralizes design, coordination and documentation with the goal to reduce

project costs, efforts and risks. BIM is standardized by ISO 19650-1:2018 and ISO 19650-

2:2018 [53, 54] and built upon a centralized project database with continuous reports of

the construction progress. Here, RTS are used in various construction phases, from setting

out buildings, to regular recordings of the as-built state and documentations of as-built

discrepancies, up to capturing structural building modifications at later states [59].

We think that this trend will impact the development of RTS and especially will increase

the need for RTS in the mid-price range. We also expect standardized interfaces, simple-to-

use software for non-experts, and RGB-D image sensors will become standard equipment

for these instruments. The integration into CAD/BIM software will support measure-to-

CAD approaches and will decrease the workload for daily recording routines.

Some products in this field are already commercially available and allow a forecast of

upcoming feature set of these instruments. An example product in this field is the Auto-

CAD application TachyCAD from Faro Technologies [35], which supports CAD drawings

on site by providing AutoCAD control and measurement functions for a wide range of

different RTS.

We expect that a variety of comparable software will appear on the market and will gain

in importance on construction sites. Associated therewith will RTS become increasingly

autonomous in the near future.

7.3 Final Statements

The motivation of this work was to develop user-assistance systems for two typical RTS

workflows.

The results of this work substantiate the benefits of alternating traditional measurement

concepts by integrating ideas from other research fields, such as robotics, computer vision,

virtual reality and augmented reality.

We believe that the growing construction market and the transition towards centralized

management of building projects will increase the need for automation, efficiency and

usability of RTS tasks. This forecast is endorsed by the increasing popularity of BIM

concepts and by results of global market surveys [15].

We also understand that changes of established measurement methods in surveying

and construction are slow and can only be done in small steps, as each alternation must

be carefully tested, verified and often standardized. However, we believe that this field

122 Chapter 7. Conclusion

holds also great potential, and that the interest of users and companies in more automation

will inspire further developments on one hand and will increase construction productivity

and quality on the other hand.

A
Math Primer

In this chapter, we provide a selection of mathematical operations that are used frequently

throughout this work or that are ambiguously defined in related literature. Note that the

intention of this chapter is not to provide a comprehensive mathematical handbook, but

rather to collect supplementary materials for ease of understanding and of the proposed

workflows.

The interested reader is referred to following three books for a detailed collection of

related mathematical and geometrical operations: Bartsch [12] provides comprehensive

handbook of fundamental mathematical formulas, Hartley and Zisserman [44] excessively

handle projective geometry and camera models, and Schneider and Eberly [94] discuss

geometric solutions of common problems for the 2D and 3D space.

Unless otherwise stated, the operations discussed in this chapter can be found in the

books mentioned above.

A.1 Scalar Operations

Sign Function The sign function returns the sign of real value. Let x be a scalar

variable. In this work, the sign function sign(x) is defined as

sign(x) =


−1 x < 0

0 x = 0

1 otherwise

(A.1)

Two-Argument Arctangent The two-argument arctangent α = atan2(y, x) returns

the signed rotation angle α between the x-axis and a vector v = [x y]T in the Euclidean

plane.

Let v = [x y]T be a vector in the Euclidean plane, and r be the length of this vector,

123

124 Chapter A. Math Primer

according to

x = r cos(α) y = r sin(α) r = ||v|| (A.2)

Then, the inverse trigonometric function arctan(yx) returns the correct angle for x > 0,

but has a discontinuity at x = 0, and loses the quadrant information for x < 0 by dividing

the input parameters.

The unique arc tangent value and the correct quadrant for the interval α ∈ (−π, π]

can alternatively be calculated using α = atan2(y, x). One possible definition of the

two-argument arctangent is given by

α = atan2(y, x) =



arctan
(y
x

)
x > 0

arctan
(y
x

)
+ π x < 0 and y ≥ 0

arctan
(y
x

)
− π x < 0 and y < 0

+π
2 x = 0 and y > 0

−π
2 x = 0 and y < 0

undefined x = 0 and y = 0

(A.3)

A.2 Linear Algebra

A.2.1 Matrix Operations

Rotation In this work, the homogeneous rotation matrices are defined as following1:

Rx(α) =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

, Ry(β) =


cosβ 0 sinβ 0

0 1 0 0
− sinβ 0 cosβ 0

0 0 0 1

, Rz(γ) =


cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1


(A.4)

We represent an Euler rotation with a 3D rotation matrix according to

R = Rz(γ)Ry(β)Rx(α) (A.5)

where (α, β, γ) are the Euler angles as described by Schneider and Eberly [94].

Translation The translation matrices used in this work are given by:

Tx(x) =


1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1

 Ty(y) =


1 0 0 0
0 1 0 y
0 0 1 0
0 0 0 1

 Tz(z) =


1 0 0 0
0 1 0 0
0 0 1 z
0 0 0 1

 (A.6)

1For the economy of notation, Rx, Ry and Rz can represent homogeneous or Euclidean rotation
matrices for the 3D space throughout this work.

A.3. SVD 125

A.2.2 3D Point Clouds

Center of Mass Given a collection of 3D points Sp = (x1,x2, . . . ,xN), the center of

mass x̄ is given by

x̄ =
1

N

N∑
i=1

xi (A.7)

Further point cloud problems are discussed in Appendix A.3.

A.2.3 3D Primitives

Plane A plane p in 3D can be defined by a homogeneous vector according to

p =

[
n

−nT · x̄

]
||n|| = 1 (A.8)

where n = [nx ny nz]
T is the normalized plane normal, and x̄ is a point on the plane.

Given three or more points on the plane, x̄ the best estimate in the least square sense is

given by the center of mass according to A.7.

Ray The parametrized form of a n dimensional ray is given by

R(l) = r0 + ld0 (A.9)

where r0 is the ray start point, d0 is the normalized ray direction, and the parameter l is

the distance between the start point and the ray endpoint.

Line A line in n dimension can be defined by two points on the line (x1,x2). The

parameterized ray equation Eqn. A.9 can also be used to define a n dimensional line L(l)

according to

L(l) = x1 + l
x2 − x1

||x2 − x1||
(A.10)

where l is the distance between the two points. The normalization ensures that the

parameter l is true to scale.

A.3 SVD

Hartley and Zisserman [44] describe SVD as one of the most useful matrix decompositions

for numerical computations, with applications in fields like solving linear equations, prin-

126 Chapter A. Math Primer

cipal component analysis, least square minimization, rank estimation, point set alignment,

or nearest orthogonal matrix estimation.

SVD is a generalization of the spectral decomposition of a matrix. The operator factorizes

a matrix into three matrices that consists of terms of eigenvalues and eigenvectors.

The SVD of a M ×N matrix Ã is defined as

SVD(Ã) = U · S ·VT (A.11)

where U is a M ×M matrix, S is a M ×N matrix, V is a N ×N matrix. The matrix S is

a diagonal matrix with the singular values of Ã as its entries. A common convention is to

sort the entries of S in descending order, whereby the entries are non-negative, real-valued

numbers. Both, U and VT are unitary, where the columns of U and VT are orthogonal

bases, respectively.

A detailed description of the algorithm along with solutions to various practical fitting

problems can be found in the book by Hartley and Zisserman [44] and in related relevant

literature.

In the following, we briefly discuss selected SVD applications that are used in this work.

A.3.1 Fitting a Plane to a Point Cloud Using SVD

A plane normal n can be fitted to the point cloud Sp using SVD. Let Ã be the 3×N
matrix containing the normalized and centered measurement samples according to

A =
[
x1 x2 ... xN

]
(A.12)

Ā =
[
(x1 − x̄) (x2 − x̄) ... (xN − x̄)

]
(A.13)

Ã =
1

k
Ā k = max

aij∈Ā
|aij | (A.14)

In this case, the normalization k is the absolute maximum value of all elements in Ā. A

vector parallel to the plane normal n is given by the eigenvector of Ã, which corresponds

to the smallest eigenvalue, which is simply the last column u3 of U = [u1 u2 u3]. The

plane p is then fully defined by Eqn. A.8, where n = u3
||u3|| is the plane normal, and the

center of mass x of the point cloud is given in Eqn. A.7.

A.3.2 Fitting the Relative Euclidean Transformation between Two Or-

dered Point Sets Using SVD

Estimating 3D rigid transformation between two ordered point sets has been studied ex-

tensively in literature [8, 29, 46, 47]. In this work, we follow the SVD approach as proposed

A.3. SVD 127

by Arun et al. [8], which requires known point correspondences.

Let Sa = (a1,a2...aN) and Sb = (b1,b2...bN) be two ordered point sets, where the

point correspondences are given by the element indices. Then, at least three point corre-

spondences are needed for determining the Euclidean transformation.

In general, we want to find the best Euclidean transformation between the ordered

point sets in the least squares sense:

(R, t) = F (Sa,Sb) = arg min
R,t

N∑
i=1

||Rai + t− bi||2 (A.15)

The centroids ā and b̄ of of the point sets are given by

ā =
1

N

N∑
i=1

ai b̄ =
1

N

N∑
i=1

bi (A.16)

The cross-covariance matrix of the two point sets is given by

H = (Sa − ā)(Sb − b̄)T (A.17)

where the measurement matrices Sa and Sb contains the stacked points of the two ordered

point sets according to

Sa =
[
a1 a2 ... aN

]T
Sb =

[
b1 b2 ... bN

]T
(A.18)

Let the SVD of the cross-covariance matrix H be SVD(H) = U · S · VT according to

Eqn. A.11. Then, the rotation R can be calculated by

R = V

1 0 0
0 1 0
0 0 det(VUT)

UT (A.19)

Finding the optimal rotation R is also known as Kabsch algorithm [61].

The optimal translation t is given by

t = −Rā + b̄. (A.20)

Finally, the rigid transform M that defines the transformation of point cloud Sa to point

cloud Sb is given by

(R, t) = F (Sa,Sb) M =

 R t

0 0 0 1

 (A.21)

128 Chapter A. Math Primer

A.3.3 Fitting Relative Euclidean Transformation Between Two Coordi-

nate Frames Using SVD

Let (o0,x0,y0, z0) and (o1,x1,y1, z1) be two local coordinate frames in Euclidean space.

Then, the Euclidean pose of frame (o1,x1,y1, z1) with respect to frame (o0,x0,y0, z0) is

given by a six DOF Euclidean transformation M.

This problem can be reduced to finding the 3D rigid transformations between two

ordered point sets as described in Appendix A.3.2.

In particular, by converting the origin and the direction of the axis to corresponding

ordered sets of points, the problem can be written as:

Sa = (c0 + x0, c0 + y0, c0 + z0) Sb = (c1 + x1, c1 + y1, c1 + z1)

(R, t) = F (Sa,Sb) M =

 R t

0 0 0 1



 (A.22)

where the rigid transform M describes the pose of frame (o1,x1,y1, z1) with respect to

frame (o0,x0,y0, z0) and can be calculated according to Eqn. A.15.

A.4 RTS Camera Projection Matrices

Understanding camera properties and calibration methods is crucial for developing visual

RTS algorithms. The book by Hartley and Zisserman [44] provide a detailed discus-

sion about cameras, different camera models, projection matrices and matrix properties.

The authors also discuss camera calibration and explain photogrammetric reconstruction.

Ehrhart further describes camera calibration and related models in thecontext of RTS

instruments [32].

As the authors mentioned above cover cameras sufficiently for developing visual RTS

algorithms, this section provides only the basics for understanding the equations used in

this work.

A.4.1 Camera Projection Matrix

Given the camera intrinsics K, projection of 3D points to image space can be written as

[44]:

ûi = PCAMM−1
B,C x̂i PCAM = [K|0] K =

fu s cu
0 fv cv
0 0 1

 (A.23)

where ûi is a homogeneous point on the image plane, x̂i is a homogeneous point in space

B, s is a skew factor, (fu, fv) describes the focal lengths and c = [cu cv]
T describe the 2D

principal point offset; MB,C is the camera pose, hence M−1
B,C transforms a point from the

A.4. RTS Camera Projection Matrices 129

base frame B to the camera frame C. Note that this model does not consider distortion

parameters.

If the intrinsic camera parameters are not accessible by the API of an RTS instrument,

the parameters can be estimated using a standard camera calibration toolbox like OpenCV

[19]. Details about different camera calibration methods are provided in the book by

Hartley and Zisserman [44] and in related relevant literature.

A.4.2 Point Reprojection From Image to World

The decomposition of the projection matrix P = [M|p4] into the 3× 3 matrix M and the

3 × 1 column vector p4 is used for view ray calculation of finite cameras: A numerical

robust back-projection of a image coordinate û to the view ray XT (û, µ) with metric

parametrization of the ray length µ is given by Klug et al. [66]:

XT (û, µ) =
µ

||M−1 · û||

[
M−1 · û

0

]
+

[
−M−1 · p4

1

]
(A.24)

Compared to the reprojection methods proposed by Hartley and Zisserman [44], this

equation additionally allows calculating an Euclidean 3D point rather than the Euclidean

3D ray only, as long as depth information is stored along with the image data.

130 Chapter A. Math Primer

B
Implementation Details of the RTS Software Development

System

In the following, we provide supplementary material for the in chapter 4 proposed pro-

totyping and simulation system of the exemplary RTS. In particular, this chapter covers

the software architecture and implementation details of the simulator shown in Fig. 4.6,

Fig. 5.6 and Fig. B.1. Furthermore, we provide a description of the custom code generators

for interconnecting applications, physical devices and the simulator.

 (kinematic) RTS model

environment

measurement targets

RTS visualization

user avatars with reflective and trackable prism pole

scene graph

example setup B: prism pole tracking

different LOD RTS

visualizations

avatar

trackable prism

predefined or client-controlled avatar route

example setup A: reflectorless mode (natural targets with diffuse surfaces)

RTS locked on

prism

Figure B.1: Unity3D-based RTS simulator used in this work. Two different targeting
modes are shown, namely reflectorless mode (example setup A) and prism tracking mode
(example setup B). Software prototypes can communicate with either the simulator or
the physical instrument by means of a automatically generated remote procedure call
modules on top of the gRPC library [41].

131

132 Chapter B. Implementation Details of the RTS Software Development System

B.1 Motivation

The implementation of the proposed ecosystem for heterogeneous RTS software design

and simulation was motivated by following three observations:

Effort and Risk of Repeating Test Data Recordings Creating suitable datasets

for exploratory research can be expensive. Simulations during conceptual and preliminary

system design phases help identifying key factors for success and failure, measurement

properties and environmental influences. We experienced that a flexible ecosystem for sim-

ulation and prototyping can help to implement a ”first-time-right” strategy for database

creation and to lower the risk of repeating time-consuming database steps, such as data

recording, cleaning and labeling.

Benefits of Mockups and Early User Test Runs Mockups and stubs are useful

for collecting user feedback about interfaces and workflows during early design phases, for

detecting biased designer assumptions and for eliminating blind spots in system concepts.

Furthermore, simulations of interactive algorithms and measurement setups beyond actual

hardware limitations allow efficient and extensive testing and also identifying important

properties for successor instruments. We also experienced that simulations can help to

increase the competitiveness of research groups and companies: Novel methods, processes

and machines can be simulated efficiency and invention applications can be filed before

extensive physical experiments are conducted.

Driver and Software Limitations We experienced driver and firmware limitations

when working with hardware and software prototypes. This is a common scenario when

using leading-edge instruments, especially when the particular device is not officially re-

leased yet, and its hardware or software is still under development. A common release

strategy in industry is to first deliver robust core functionalities and to add additional fea-

tures that might allow device exploration beyond existing use cases later. Unfortunately,

this can delay experiments and reduce the otherwise impressive range of research possi-

bilities with such instruments, especially when the requested features are postponement

or dropped due to their low priority for actual products. Another observation was that

combining existing software building blocks, multiple platforms or different programming

languages can increase the efficiency for prototyping, but also does require an ecosystem

for heterogeneous RTS software development. For example, in this work, we experimented

with combinations of mobile devices, desktop computers, various operation systems and

different programming languages.

While existing solutions like the ROS library [82] handle some of the problems mentioned

above to a certain extend, we are interested in a communication middleware that has a

steeper learning curve, supports device servers for different operation systems, and pro-

B.2. Software System Architecture 133

vides a more transparent function call layer. Additionally, the proposed system provides

the possibility to completely remove the communication library during later development

states by porting all building blocks to the same runtime engine.

The following sections describe our software architecture, which allows combining ex-

isting building blocks to RTS workflows and software prototypes in an efficient way.

B.2 Software System Architecture

Device Drivers The prototype of the instrument we used in this work was shipped

with an pre-compiled driver and a software development kit (SDK). Both, driver and

SDK are managed code assemblies, written in C# and executed with the Windows .NET

Framework1.

The integration of pre-complied and managed code assemblies into existing software

becomes problematic and usually requires process interoperability if different runtime en-

gines are involved. In this work, we use gRPC [41] as IPC library to avoid restricting

software prototypes and related building blocks to the runtime engine and operation sys-

tem of the driver. This concept allows combining building blocks and processor platforms

with different operation systems, word sizes, and programming languages. We also expe-

rienced that the applied object-oriented design and software design patterns increase the

maintainability of the system. If not mentioned differently, the software design patterns

stated in this section refer to the book by Gamma et al. [38].

System Architecture The system architecture of our prototyping framework follows

a server-client software model, which Reese [85] describes as distributed application struc-

tural pattern. First, we collect and encapsulate a subset of the RTS SDK into a common

class and then convert this class to a device server. Method prototypes for external func-

tion calls are simplified using the facade pattern: Input and output parameters for server

function calls are limited to single instances or lists of standard datatypes and enumera-

tions by convention. Special language constructs like generic types, function overloading

or a variable argument count are not allowed.

Accordingly, a client provides access to server functions and contains the actual pro-

gram logic of an application.

Data Communication The communication between server and clients in our system is

based on the gRPC library, which implements remote procedure call (RPC) and follows the

request-response message-passing pattern. The library recommends a microservice archi-

tecture and provides tools for generating cross-platform subs and bindings for servers and

clients [41]. Figure B.2a and Figure B.2b show the similarities between the recommended

1The Windows .NET Framework is a Common Language Runtime (CLR) engine for the Windows
operation system [55, 78].

134 Chapter B. Implementation Details of the RTS Software Development System

server-client model of gRPC and the desired software architecture for the prototyping sys-

tem. We extend the library by tools for automatically generating the required API and

messages. For this purpose, we use type introspection and customized, template-based

code generators.

C# service

C++ client

Python client

gRPC stub

gRPC stub

gRPC server

(a) server-client model of gRPC

cross-platform API module (façade)

RTS
HW/SIM/MODEL

C# driver, 32 bit, Windows 8.1

data logger (DB)
C++, 64 bit, Linux

device debug GUI
Qt/C++, 32 bit, Windows

mobile client app
Android

test algorithm
MATLAB, 64 bit, Windows

(b) server-client model for RTS driver RPC

C# client

simulator

(Unity3D)

HW access

(driver, SDK)

geometric

model

 RPC server

multi-language bindings

(cross-platform, 32 or 64 bit)

network interface 2

network interface 1

HW

Matlab client

C++ client

Python client

...

synchronous

asynchronous

 synchronous with timeout

supports a variety of

call mechanisms

device server

C# .NET 32 bit

simulation server

(c) detailed server-client model for prototyping system

Figure B.2: gRPC and RPC server-client models. The gRPC server-client model for
microservices (a) is suitable for the desired RTS prototyping architecture (b). The
system block design for the RTS prototyping framework (c) shows the interconnections
between applications, simulator and the physical device. The instrument used for this
work has a built-in network interface and supports wireless communication between
driver and hardware. Both, driver and SDK are available for the Windows C# .NET
Framework, pre-compiled for 32 bit architectures.

B.2. Software System Architecture 135

B.2.1 Software Modules

Figure B.2c shows a detailed block diagram of the prototyping framework for the exemplary

RTS. The individual blocks are described below.

Hardware Access Module The hardware access module is built upon the C# SDK

of the exemplary RTS. It encapsulates the SDK functions into a single class, and defines

public methods with simple function prototypes. RPC functions are marked by attributes

and converted into an intermediate format for client and server code generation. This

module can be executed standalone for test purposes or embedded in the device server

for normal operation. We use template-based code-generators for automatic extraction of

communication models, multi-language bindings and simulator stubs. In particular, we

restrict the scope to basic function prototypes and data types and extend the tools of the

gRPC library to produce ready for use clients and servers.

Geometric Model and Simulation Module The geometric model and simulator mod-

ule implements the simple RTS position kinematics as presented in chapter 4. These two

functions can be separated into two blocks as shown in Figure B.2c. This allows a single

source implementation for simulation, data conversion and mockup tests, with the option

to disable the rendering engine if not needed. Compared to a single simulation module,

where everything is implemented in Unity3D, the separation into two modules is a more

accurate picture of the reality as many SDK functions are available offline. However, this

also leads to an increased software complexity.

RPC Server Module The RPC server provides a common access point for the simu-

lation server and the device server. More precisely, both servers implement the same API,

hence are interchangeable. The majority of the server functions are provided as unary

RPC, where a client sends a single request and waits for the response, much like when

using an ordinary function call [41]. Simultaneous requests of different clients are queued

on the server-side. In addition, we support server-side streaming RPC, where one client

sends a request and receives multiple responses in form of a stream2.

Client Modules A client implements the access to the device or simulation server and

the actual program logic of an RTS software prototype. The functions for client-server

communication are generated automatically, but the program logic must be added manu-

ally, usually by means of class inheritance or composition [38]. Figure B.3 shows the com-

munication stack for RPC and indicates generated and hand-crafted layers. Our system

2Currently, our system supports server-side streaming to C++, C# and Python clients, but not to
Matlab. An exception is the image stream, for which Motion JPEG over a separate HTTP port is one
of several streaming options. Streaming can also be emulated by running multiple polling clients, each
executed in a separate thread within the client application. However, this is considered as inefficient and
should be avoided.

136 Chapter B. Implementation Details of the RTS Software Development System

contains templates for generating ready to use clients for C++, C#, Matlab, Unity3D

and Python. Additionally, gRPC stubs and functions can be generated for all program-

ming languages that are supported by the library [41].

To handle incompatibilities between generated C# clients and an existing C# SDK, one

can generate unmanaged C++ clients with our system and add high-level C# bindings

with the Simplified Wrapper and Interface Generator (SWIG) [13]. For example, we

successfully applied this approach for accessing the exemplary RTS with Unity3D from

mobile clients and from within AutoCAD.

Unity3D

simulator

HW

C# server: simulator/HW clients: C#, MATLAB, C++ …

h
a
n
d

c
ra

ft
ed

ap
p

li
ca

ti
o

n

la
y
e
r

TCP/IP

socket stream

protobuf

packages

gRPC session

driver/SDK

TCP/IP

socket stream

protobuf

packages

gRPC session

RTS client

application

TCP/IP

HTTP 2.0, SSL

g
e
n
e
ra

te
d

 b
y

g
R

P
C

 t
o
o

ls

gRPC services gRPC services

RTS server

driver facade

g
e
n
e
ra

te
d

 b
y

co
d

e

te
m

p
la

te
s

RPC

network media

p
ro

to
ty

p
in

g
 f

r
a

m
e
w

o
r
k

g
R

P
C

user

Figure B.3: Generated and handcrafted layers of the communication stack for RPC.

B.3 RPC Code Generation

The code generation for ready to use clients and server subs can be broken down into

following three steps:

First, relevant SDK functions are encapsulated into the driver access module, RPC

methods are selected and marked by attributes as described in the previous section.

Then, the relevant information is stored as an intermediate representation for further

processing. In particular, we use code introspection3 and a top–down traversal of the driver

3Provided by C# code reflection.

B.4. Unity3D as Simulator Frontend 137

access module to transform the class into an abstract syntax tree. Note that the generated

intermediate structure does not contain a complete abstract syntax tree as described by

Aho et al. [1], but only the relevant tree nodes shown in Fig. B.4.

Finally, we convert an existing gRPC client code example into a code generation tem-

plate for the selected target language. Hereby, each nodes of the abstract syntax tree shown

in Fig. B.4 represents a code snippet in the existing gRPC client code example, which are

generalized for further processing. Each template contains a generator counterpart that

takes the abstract syntax tree as input, concatenates code snippets to a complete imple-

mentation, and repeats insertions like methods or parameters where needed. Note that

the first two steps of the workflow must be repeated for each client, while implementing

the code generator is done only once for each target generator.

Figure B.5 shows the workflow for generalizing a standard gRPC client example to a

code generator. The client source code shown in the figure is part of the gRPC library

[41].

namespace

RPC façade classes

RPC methods

name

RPC method

name

input parameters

output parameters

(inout parameters)

return value

input/output parameter

name

name

cast/serialization

type

unused (not supported yet) marked by attribute

type maps etc.

marked by qualifier

input parameter limitations in case of call-by-reference: values must not change inside RPC method

name parser input

Figure B.4: Abstract syntax tree for code generation. In this work, we want to publish a
C# driver as RPC service. By design rule, each service provider is encapsulated in a
separate class, and each driver or SDK function call is encapsulated in a class method.
The function prototype of these methods have certain limitations to reduce the RPC

complexity (Gang of Four (GoF) facade pattern). The C# attribute Rpc is used to mark
selected methods for publishing. Alternatively, the class itself can be marked to publish
all public methods. The parser uses code reflection to convert the RPC class into an
intermediate representation. Google Protocol Buffer (PROTOBUF) packages, clients
and additional server stubs are then generated by template-based code generation. Note
that each entry in the tree view has a separate template with placeholders in the root
template.

B.4 Unity3D as Simulator Frontend

Using a 3D rendering engine as frontend for real-time hardware simulation allows the

integration of hardware properties, firmware behavior, environmental influences and timing

constraints. Similar to Hu and Meng [49], Mattingly et al. [73] and Meng et al. [77], we use

138 Chapter B. Implementation Details of the RTS Software Development System

u
s
i
n
g

G
r
p
c
.
C
o
r
e
;

u
s
i
n
g

.
.
.

n
a
m
e
s
p
a
c
e

R
o
u
t
e
g
u
i
d
e
{

/
/
/

<
s
u
m
m
a
r
y
>

E
x
a
m
p
l
e

i
m
p
l
e
m
e
n
t
a
t
i
o
n

o
f

R
o
u
t
e
G
u
i
d
e

s
e
r
v
e
r
.

<
/
s
u
m
m
a
r
y
>

p
u
b
l
i
c

c
l
a
s
s

R
o
u
t
e
G
u
i
d
e
I
m
p
l

:

R
o
u
t
e
G
u
i
d
e
.
R
o
u
t
e
G
u
i
d
e
B
a
s
e
{

p
u
b
l
i
c

R
o
u
t
e
G
u
i
d
e
I
m
p
l
(
.
.
.
)
{
/
*

C
o
n
s
t
r
u
c
t
o
r

c
o
d
e

g
o
e
s

h
e
r
e

*
/
}

/
/
/

<
s
u
m
m
a
r
y
>

G
e
t
s

t
h
e

f
e
a
t
u
r
e

a
t

t
h
e

r
e
q
u
e
s
t
e
d

p
o
i
n
t
.
.
.

<
/
s
u
m
m
a
r
y
>

p
u
b
l
i
c

v
o
i
d

G
e
t
F
e
a
t
u
r
e
(
i
n
t

l
a
t
,

i
n
t

l
o
n
,

o
u
t

s
t
r
i
n
g

n
a
m
e
)
{

s
t
r
i
n
g

=

s
t
r
i
n
g
.
F
o
r
m
a
t
(
"
r
e
s
u
l
t

a
t

{
0
}
,

{
1
}
"
,

l
a
t
,

l
o
n
)
;

r
e
t
u
r
n
;

}

/
/
/

<
s
u
m
m
a
r
y
>
G
e
t
s

t
h
e

f
e
a
t
u
r
e

a
t

t
h
e

r
e
q
u
e
s
t
e
d

p
o
i
n
t
.
.
.
<
/
s
u
m
m
a
r
y
>

p
u
b
l
i
c

o
v
e
r
r
i
d
e

T
a
s
k
<
G
e
t
F
e
a
t
u
r
e
R
e
s
>

G
e
t
F
e
a
t
u
r
e
(
G
e
t
F
e
a
t
u
r
e
R
e
q

r
e
q
u
e
s
t
,

S
e
r
v
e
r
C
a
l
l
C
o
n
t
e
x
t

c
o
n
t
e
x
t
)
{

v
a
r

r
e
s
p
o
n
s
e

=

n
e
w

G
e
t
F
e
a
t
u
r
e
R
e
s
(
)
;

G
e
t
F
e
a
t
u
r
e
(
r
e
q
u
e
s
t
.
l
a
t
,

r
e
q
u
e
s
t
.
l
o
n
,

o
u
t

r
e
s
p
o
n
s
e
.
n
a
m
e
)
;

r
e
t
u
r
n

T
a
s
k
.
F
r
o
m
R
e
s
u
l
t
(
r
e
s
p
o
n
s
e
)
;

}

/
/
/

<
s
u
m
m
a
r
y
>
f
r
o
m

c
l
a
s
s

P
r
o
g
r
a
m

<
/
s
u
m
m
a
r
y
>

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)
{

c
o
n
s
t

i
n
t

P
o
r
t

=

5
0
0
5
2
;

S
e
r
v
e
r

s
e
r
v
e
r

=

n
e
w

S
e
r
v
e
r
{

S
e
r
v
i
c
e
s

=

{

R
o
u
t
e
G
u
i
d
e
.
B
i
n
d
S
e
r
v
i
c
e
(
n
e
w

R
o
u
t
e
G
u
i
d
e
I
m
p
l
(
.
.
.
)
)

}
,

P
o
r
t
s

=

{

n
e
w

S
e
r
v
e
r
P
o
r
t
(
"
l
o
c
a
l
h
o
s
t
"
,

P
o
r
t
,

S
e
r
v
e
r
C
r
e
d
e
n
t
i
a
l
s
.
I
n
s
e
c
u
r
e
)
}

}
;

s
e
r
v
e
r
.
S
t
a
r
t
(
)
;

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
;

s
e
r
v
e
r
.
S
h
u
t
d
o
w
n
A
s
y
n
c
(
)
.
W
a
i
t
(
)
;

}

}

}

u
s
i
n
g

G
r
p
c
.
C
o
r
e
;

u
s
i
n
g

.
.
.

n
a
m
e
s
p
a
c
e

R
o
u
t
e
g
u
i
d
e
{

/
/
/

<
s
u
m
m
a
r
y
>

S
a
m
p
l
e

c
l
i
e
n
t

c
o
d
e

t
h
a
t

m
a
k
e
s

g
R
P
C

c
a
l
l
s

t
o

s
e
r
v
e
r
.

<
/
s
u
m
m
a
r
y
>

p
u
b
l
i
c

c
l
a
s
s

R
o
u
t
e
G
u
i
d
e
C
l
i
e
n
t
{

r
e
a
d
o
n
l
y

R
o
u
t
e
G
u
i
d
e
.
R
o
u
t
e
G
u
i
d
e
C
l
i
e
n
t

c
l
i
e
n
t
;

p
u
b
l
i
c

R
o
u
t
e
G
u
i
d
e
C
l
i
e
n
t
(
.
.
.
)
{
/
*

C
o
n
s
t
r
u
c
t
o
r

c
o
d
e

g
o
e
s

h
e
r
e

*
/
}

/
/
/

<
s
u
m
m
a
r
y
>

B
l
o
c
k
i
n
g

u
n
a
r
y

c
a
l
l

.
.
.

c
a
l
l
s

G
e
t
F
e
a
t
u
r
e

.
.
.
<
/
s
u
m
m
a
r
y
>

p
u
b
l
i
c

v
o
i
d

G
e
t
F
e
a
t
u
r
e
(
i
n
t

l
a
t
,

i
n
t

l
o
n
,

o
u
t

s
t
r
i
n
g

n
a
m
e
)
{

G
e
t
F
e
a
t
u
r
e
R
e
q

r
e
q
u
e
s
t

=

n
e
w

G
e
t
F
e
a
t
u
r
e
R
e
q
{

l
a
t

=

l
a
t
,

l
o
n

=

l
o
n

}
;

F
e
a
t
u
r
e
R
e
s

r
e
s
p
o
n
s
e

=

c
l
i
e
n
t
.
G
e
t
F
e
a
t
u
r
e
(
G
e
t
F
e
a
t
u
r
e
R
e
q
)
;

n
a
m
e

=

r
e
s
p
o
n
s
e
.
N
a
m
e
;

}

/
/
/

<
s
u
m
m
a
r
y
>
f
r
o
m

c
l
a
s
s

P
r
o
g
r
a
m

<
/
s
u
m
m
a
r
y
>

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)
{

v
a
r

c
h
a
n
n
e
l

=

n
e
w

C
h
a
n
n
e
l
(
"
1
2
7
.
0
.
0
.
1
:
5
0
0
5
2
"
,

C
h
a
n
n
e
l
C
r
e
d
e
n
t
i
a
l
s
.
I
n
s
e
c
u
r
e
)
;

v
a
r

c
l
i
e
n
t

=

n
e
w

R
o
u
t
e
G
u
i
d
e
C
l
i
e
n
t
(
n
e
w

R
o
u
t
e
G
u
i
d
e
.
R
o
u
t
e
G
u
i
d
e
C
l
i
e
n
t
(
c
h
a
n
n
e
l
)
)
;

/
/

L
o
o
k
i
n
g

f
o
r

a

v
a
l
i
d

f
e
a
t
u
r
e

c
l
i
e
n
t
.
G
e
t
F
e
a
t
u
r
e
(
4
0
9
1
4
6
1
3
8
,

-
7
4
6
1
8
8
9
0
6
)
;

c
h
a
n
n
e
l
.
S
h
u
t
d
o
w
n
A
s
y
n
c
(
)
.
W
a
i
t
(
)
;

}

}

}

/
/

C
o
p
y
r
i
g
h
t

2
0
1
5

g
R
P
C

a
u
t
h
o
r
s
.

/
/

L
i
c
e
n
s
e
d

u
n
d
e
r

t
h
e

A
p
a
c
h
e

L
i
c
e
n
s
e
,

V
e
r
s
i
o
n

2
.
0

(
t
h
e

"
L
i
c
e
n
s
e
"
)
;

.
.
.

/
/

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
g
r
p
c
/
g
r
p
c

s
y
n
t
a
x

=

"
p
r
o
t
o
3
"
;

p
a
c
k
a
g
e

r
o
u
t
e
g
u
i
d
e
;

 /
/

I
n
t
e
r
f
a
c
e

e
x
p
o
r
t
e
d

b
y

t
h
e

s
e
r
v
e
r
.

s
e
r
v
i
c
e

R
o
u
t
e
G
u
i
d
e

{

/
/

A

s
i
m
p
l
e

R
P
C

.
.
.

r
p
c

G
e
t
F
e
a
t
u
r
e
(
G
e
t
F
e
a
t
u
r
e
R
e
q
)

r
e
t
u
r
n
s

(
G
e
t
F
e
a
t
u
r
e
R
e
s
)

{
}

}

 /
/

G
e
t
F
e
a
t
u
r
e

r
e
q
u
e
s
t
.
.
.

m
e
s
s
a
g
e

G
e
t
F
e
a
t
u
r
e
R
e
q

{

i
n
t
3
2

l
a
t

=

1
;

i
n
t
3
2

l
o
n

=

2
;

}

 /
/

G
e
t
F
e
a
t
u
r
e

r
e
s
p
o
n
s
e
.
.
.

m
e
s
s
a
g
e

G
e
t
F
e
a
t
u
r
e
R
e
s

{

s
t
r
i
n
g

n
a
m
e

=

1
;

}

C
clien

t exam
p

le
 file

C
serve

r exam
p

le file

p
ro

to
b

u
f p

ackage
 d

e
f. exam

p
le file

a
p

plica
tion

la
yer

d
efin

e in
terface u

sing

p
ro

to
b

u
f (R

P
C

 param
s.)

gen
erate server/clien

t

stu
b

s u
sin

g p
ro

toc

im
p

lem
en

t server/clien
t

stu
b

s

o
p

tio
n

al: exten
d

 server/clien
ts

(d
erive gen

erated
 class)

gen
erate in

terface, server an
d

clien
ts u

sing A
ST, pro

to
b

u
f,

co
d

e tem
p

lates

en
cap

su
late C

R
P

C
 m

eth
o

d
s

 an
d

 m
ark w

ith [R
p

c] attrib
u

te

(b
) start w

ith
 en

cap
su

-

latin
g C

R
PC

 m
eth

o
d

s

im
p

lem
en

t

gen
erate

(a) start w
ith

in
terface d

efin
itio

n

legen
d

:
 …

 co
n

vert co
d

e exam
p

le to
 co

d
e gen

eratio
n

 tem
p

late

get server/clien
t

exam
ples

co
n

vert to co
de

tem
p

lates fo
r gen

.

gen
eratio

n

im
plem

en
t co

de

gen
erato

rs

(a) gR
P

C
 stan

d
ard

 flo
w

(b

) altered
 flow

 u
sin

g façade

p
attern an

d
 co

d
e tem

p
lates

(c) co
d

e tem
plate

gen
eratio

n

gen
erate

 &
 im

p
lem

en
t

server an
d

 clien
ts stu

b
s

[R
p

c]

F
igu

re
B

.5:
W

o
rk

fl
ow

s
fo

r
im

p
lem

en
tin

g
clien

ts
an

d
servers

an
d

for
gen

eralizin
g

a
stan

d
ard

gR
P

C
clien

t
co

d
e

ex
am

p
les

to
co

d
e

gen
erato

rs.
(a

)
sta

n
d

ard
gR

P
C

w
o
rk

fl
ow

,
w

h
ere

m
essages

are
d

efi
n

es
fi

rst,
an

d
server

an
d

clien
t

are
m

an
u

ally
im

p
lem

en
ted

later.
(b

)
o
u

r
p

rop
o
sed

w
ork

fl
ow

,
w

h
ere

th
e

h
ard

w
are

access
m

o
d

u
le

is
im

p
lem

en
ted

fi
rst,

an
d

server
an

d
clien

ts
are

au
tom

a
tica

lly
gen

erated
later.

(c)
p

ro
p

osed
w

ork
fl

ow
for

gen
eralizin

g
ex

am
p

le
clien

t
co

d
e

to
co

d
e

gen
erator

tem
p

lates.
T

h
e

u
n

d
erly

in
g

clien
t

sou
rce

co
d

e
is

in
clu

d
ed

in
th

e
gR

P
C

lib
rary

[41].

B.4. Unity3D as Simulator Frontend 139

Unity3D [105] for simulating the behavior of RTS sensors and actuators and the interaction

with the environment.

In this section, we provide a description of the Unity3D frontend for the exemplary RTS

simulator. In particular, we focus on software and implementation details, as the mathe-

matical formalization of the modeled system have already been discussed in chapter 4.

B.4.1 Memory Layout, Data Flow and Synchronization

Processing Loops The architecture of a complete RTS system usually have multiple

decoupled processing loops.

On the application side, smooth user interaction is desired. Interactive applications are

event-driven programs that react on user interactions, such as mouse clicks, key presses or

touchpad sensors. An event handler is responsible for managing and processing messages

and events.

Streamed data can be handled synchronously in the main thread by using polling mech-

anisms, asynchronously by using function callbacks for received packages, or in background

threads by multiple client instances. For example, we split user-triggered measurements

and updates from video-streams to ensure smooth user interaction.

When using the device server, an significant latency must be expected between applica-

tion requests and response. With our simulation system, requests are written immediately

to the state request or control register.

Simulator Updates The main loop of the game engine constantly reads the control

register values, updates the scene simulation, and writes the scene state and simulation

results to the state or data register. The game engine continuously updates of the inter-

nal states of the simulator and streaming data, such as video images, angles, distances,

user avatars, and some kinematic and dynamic processes. Compared to the physical in-

strument, the simulator has significant lower communication and measurement latency.

However, correct system behavior requires data synchronization for both, instrument and

simulator.

The simulation server updates the state of the RTS model in each rendering pass and

supports variable and fixed frame rates. While the communication module ensures only

low-level synchronization of function calls, we manually applied concurrent computing

techniques on top of the generated code where necessary.

Client Updates and Data Streaming Similar to the original SDK, the system sup-

ports client-side RPC, polling of camera frames and simple frame streaming. Similarly,

continuous angle and distance measurements and prism pole tracking are supported. Be-

sides, unbuffered angle, distance and image frames are stored separately in the data reg-

ister; buffered and unbuffered data can be accessed simultaneously by different clients.

140 Chapter B. Implementation Details of the RTS Software Development System

Note that a single application can contain multiple communication clients, which run

asynchronous in different threads.

For example, an interactive RTS application requires a live video stream for user-based

targeting. Receiving frames and updating the GUI is commonly offloaded to a background

thread to ensure smooth user interaction. With our framework, separate communication

clients can be used for controlling the RTS and for receiving streaming data, such as

angles, distances and images.

Data Flow and Memory Layout Figure B.6 shows the memory layout of the imple-

mented RTS simulator. Control parameters, system states and measurements are stored

in separate register blocks. Access to individual blocks can be synchronized to ensure data

consistency. This leads to a well-structured system architecture, simplifies user-level data

synchronization and allows easier decoupling of the simulation loop, data registers and

client requests.

Unity3D

control register
(state request register)

data register
(state register)

sync
Client 1 Client 2 client i

set control parameters

or data request

get acknowledge

or data response

update model

update data

memory layout

update loop of
game engine

update loop
of video client

update loop/trigger
of GUI event handler

Figure B.6: Data flow diagram (black) and memory layout (gray) of the RTS simulator.
The system contains multiple processing loops (red).

B.4.2 Converting Coordinate System Handedness

Unity3D uses a left-handed coordinate system [105], while most RTS models use right-

handed coordinate systems [9, 106]. The kinematic models proposed in chapter 3 are

converted from right-handed to left-handed coordinates systems in chapter 4 for simulation

with Unity3D.

However, no implementation details are provided for the particular conversion.

Note that coordinate system handing of an arbitrary system can be converted by

inverting any axis, whereas this particular setup requires dedicated conversions.

B.4. Unity3D as Simulator Frontend 141

Mesh Vertices In this work, we converted left-handed and right-handed coordinate

systems by inverting the x-coordinate of 3D points, using

x̃r = Sxx̃l Sx =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 S−1
x = Sx x̃l = Sxx̃r (B.1)

where x̃r and x̃l are corresponding 3D points in the left-handed and right-handed co-

ordinate system, and Sx is a signature matrix, which inverts the x coordinate of a 3D

point.

Camera and Image Coordinate Systems The camera projection matrix given in

Eqn. 3.29 defines the perspective projection matrix of a right-handed coordinate system

according to the pinhole camera model as described in the book by Hartley and Zisserman

[44]. While the default camera parameters of Unity3D are not sufficient for this camera

model, Unity3D provides access to the transformation matrices used for rendering. By

defining the matrices manually, camera models like the pinhole model can be simulated.

In this work, we integrated all required vertex transformations into the default vertex

and object transformation pipeline of Unity3D and OpenGL. This has certain advantages,

such as not disturbing built-in Unity3D methods, reusing existing GPU Shader programs

without modifications, and an implementation which is less prone to errors, since the

default behavior of the 3D engine remain unaffected. This also ensures that the engine

documentation can be used without modifications, which we believe is particularly helpful

to reduce the risk of implementation errors.

The default transformation pipeline of OpenGL is shown in Fig. B.7. Model, world

and camera spaces are defined by Unity3D, the related OpenGL matrices for transforming

vertices are updated automatically during rendering. The reader is referred to the Unity3D

user manual [105] for details about Unity3D matrices and transformations.

Similarly, we adapted the handing of the projection matrix P given in Eqn. 3.29 to

match the Unity3D specifications. Note that a signature matrix is an involutory matrix,

hence it is its own inverse.

Vertex data must be converted between the camera space of Unity3D and OpenGL, if the

default OpenGL pipeline should be used. Once converted, OpenGL performs projection,

clipping and rasterization. The result is then rendered to the screen or read back to

Unity3D. Details about the rendering and transformation pipelines can be found in the

book by Seller et al. [96].

In Unity3D, the Texture2D class defines a 2D image container. The allocated memory

142 Chapter B. Implementation Details of the RTS Software Development System

in
teg

rated
 in

to
 U

n
ity

3
D

 scen
e g

rap
h

(left h
an

d
ed

) o
r calcu

lated
 b

y
 sep

arate

R
T

S
 m

o
d
el m

o
d
u

le (rig
h
t h

a
n

d
ed

)

x
y

z

p
r
o

je
c
tio

n

tran
sfo

rm

M
P

v
ie

w

tran
sfo

rm

M
V

m
o

d
e
l

tran
sfo

rm

M
M

v
ie

w
p

o
r
t

tran
sfo

rm

M
V

P

m
o
d

el

sp
ace

w
o
rld

sp
ace

ca
m

era

sp
ace

clip

sp
ace

screen

sp
ace

d
isp

la
y

v
e
rtex

 p
ro

c
e
ssin

g

rasterizatio
n

m
e
sh

R

T
S

 a
p

p
lic

a
tio

n

v
ertex

 p
arsin

g

x

y

z
൦ −

1
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1

൪

൦ 1
0

0
0

0
1

0
0

0
0

−
1

0
0

0
0

1

൪
ch

a
n

g
e o

f b
a
sis

p
o

in
t tra

n
sfo

rm
:

m
o
d

el sp
a
ce 

 cam
era

sp
ace

 ch
a
n

g
e
 o

f b
a
sis

𝒖
=

൥ 𝑓𝑥
∗

𝑥
+

𝑐
𝑢

𝑓𝑦
∗

𝑦
+

𝑐
𝑣

𝑧

൩
=

൥ 𝑓𝑥
0

𝑐
𝑢

0

0
𝑓𝑦

𝑐
𝑣

0

0
0

1
0

൩
∗

቎

𝑥𝑦𝑧𝑤
′ ቏

𝒗
=

቎ 𝑥𝑦10

቏
=

൦ 1
/𝑓𝑥

0
−

𝑐
𝑢

/
𝑓

𝑥
0

1
/

𝑓𝑦
−

𝑐
𝑣 /

𝑓
𝑦

0
0

1
0

0
0

൪
∗

ቈ 𝑢𝑣1
቉

𝒑
𝒊

=
𝒄

+
𝑘

∗
𝒗

𝒊

𝒑
0

=
቎

𝑥
𝑙

𝑦
𝑡

−
𝑧

𝑛

1

቏
=

൦ 0001

൪
+

𝑘
∗

𝒗
0

=
൦ −

𝑐
𝑢

∗
𝑧

𝑛
/𝑓𝑥

𝑐
𝑣

 ∗
𝑧

𝑛
/𝑓𝑦

−
𝑧

𝑛

0

൪

𝒑
1

=
቎

𝑥
𝑟

𝑦
𝑏

−
𝑧

𝑛

1

቏
=

൦ 0001

൪
+

𝑘
∗

𝒗
1

=
൦

(𝑤
−

𝑐
𝑢

)
∗

𝑧
𝑛

/
𝑓𝑥

−
(ℎ

−
𝑐

𝑣)
∗

𝑧
𝑛

/𝑓𝑦
−

𝑧
𝑛

0

൪

𝑥
𝑙

=
 −

𝑐
𝑢

∗
𝑧

𝑛
/

𝑓𝑥

𝑦
𝑡

=
 +

𝑐
𝑣

 ∗
𝑧

𝑛
/𝑓𝑥

𝑥
𝑟

=
+

(𝑤
−

𝑐
𝑢

)
∗

𝑧
𝑛

/𝑓𝑥

𝑦
𝑏

=
 −

(ℎ
−

𝑐
𝑣

)
∗

𝑧
𝑛

/𝑓𝑥

ch
a
n

g
e o

f h
a
n

d
ed

n
ess

ca
m

era
 sp

a
ce

U
n
ity

3
D

ca
m

era
 sp

a
ce

R

T
S

 m
o

d
el &

 O
p

en
C

V

𝒑
1

=
൥

𝑥
𝑟

𝑦
𝑏

−
𝑧

𝑛

൩

𝒑
0

=
൥

𝑥
𝑙

𝑦
𝑡

−
𝑧

𝑛

൩

𝒗
0

=
൦ −

𝑐
𝑢

/𝑓𝑥
𝑐

𝑣 /
𝑓𝑦

−
10

൪

𝒗
1

=
൦

(𝑤
−

𝑐
𝑢

)/𝑓𝑥
−

(ℎ
−

𝑐
𝑣)/𝑓𝑦

−
10

൪

𝒄
=

 ሾ0
 0

 0
 1

ሿ
𝑇

ቂ 𝑤ℎ
ቃ

ቂ 00
ቃ

𝒗
0

=
൦ −

𝑐
𝑢

/𝑓𝑥
−

𝑐
𝑣 /𝑓𝑦
10

൪

𝒗
1

=
൦ (𝑤

−
𝑐

𝑢
)/𝑓𝑥

(ℎ
−

𝑐
𝑣)/𝑓𝑦

10

൪

൦ 1
0

0
0

0
−

1
0

0
0

0
1

0
0

0
0

1

൪

fo
rw

a
rd

 p
ro

jectio
n

p
ix

el u
n

p
ro

jectio
n

൦ 1
0

0
0

0
−

1
0

0
0

0
−

1
0

0
0

0
1

൪

ch
a
n

g
e o

f b
a
sis

𝒗
0

=
൦ −

𝑐
𝑢

/
𝑓𝑥

𝑐
𝑣

 /𝑓𝑦
10

൪

𝒗
1

=
൦

(𝑤
−

𝑐
𝑢

)/𝑓𝑥
−

(ℎ
−

𝑐
𝑣)/𝑓𝑦

10

൪

ch
a
n

g
e o

f b
a
sis

su
b

stitu
te in

to
 ra

y eq
u

a
tio

n

fro
m

 O
p

en
G

L
 sp

ec

(also
 in

 U
n
ity

3
D

 d
o
cu

m
en

tatio
n

)

fro
m

 H
artley

 &
 Z

isserm
an

 2
0

0
3

O
p

en
G

L
 an

d
 O

p
en

cC
V

 sp
ec

left handed

(e.g. Unity3D)

right handed
(e.g. RTS model, OpenCV, OpenGL with default param.)

vertex processing pipeline

p
o

in
t tra

n
sfo

rm
:

m
o
d

el sp
a
ce 

 cam
era

sp
a
c
e

൥ 221

൩

clip

sp
ace

൥ −
1

−
10

൩

൥

𝑥
𝑚

𝑖𝑛

ℎ
+

𝑦
𝑚

𝑖𝑛

𝑧
𝑚

𝑖𝑛

൩

൥ 𝑤
+

 𝑥
𝑚

𝑖𝑛

𝑦
𝑚

𝑖𝑛

𝑧
𝑚

𝑎
𝑥

൩

ቂ 𝑤ℎ
ቃ

ቂ 00
ቃ target im

age

p
lan

e
z valu

e
 fo

r d
ep

th

p
ro

cessin
g

screen

sp
ace

M
V

P

ca
m

era
 sp

a
ce

O
p

en
G

L

M
P

co
o
rd

in
ates o

f O
p

en
G

L
 v

iew

fru
stu

m
 an

d
 fo

r ca
lcu

latin
g
 M

P

F
igu

re
B

.7:
V

ertex
tran

sfo
rm

ation
a
n

d
ren

d
erin

g
p

ip
elin

e
accord

in
g

to
th

e
O

p
en

G
L

sp
ecifi

cation
[95]

(top
).

C
on

vertin
g

th
e

R
T

S
cam

era
fra

m
e

b
etw

een
th

e
R

T
S

m
o
d

el
(righ

t-h
an

d
ed

),
U

n
ity

3D
(left-h

an
d

ed
)

an
d

O
p

en
G

L
(d

efau
lt

p
rop

erties).
T

h
e

R
T

S
ca

m
era

m
o
d

el
is

con
form

w
ith

th
e

b
o
o
k

of
H

artley
an

d
Z

isserm
an

[44]
an

d
th

e
O

p
en

C
V

lib
rary

[19].
W

e
con

vert
th

e
cam

era
sp

ace
o
f

th
e

R
T

S
m

o
d

el
to

th
e

cam
era

sp
a
ce

of
U

n
ity

3D
for

con
ven

ien
t

u
sage

of
d

efau
lt

scrip
ts

w
ith

ou
t

m
o
d

ifi
cation

s.

B.4. Unity3D as Simulator Frontend 143

block is located on the random-access memory (RAM) and directly accessible by the GPU.

The RenderTexture class defines a GPU buffer object, which can be used as rendering

target4. The Camera class defines a rendering node and represents both, a 3D node within

the scene graph and a rendering definition, which can include one or more rendering passes.

Figure B.7 shows the alignment between the derived model, Unity3D and OpenGL. The

kinematic model is converted back and forth between left and right-handed representation

when applying model control parameters or reading out the actual system state. The

conversion can be simply described as change of basis. While Figure B.7 contains all

required conversions for mesh vertex and RTS model transformations, the camera matrix

of the system must be incorporated into the rendering pipeline of the graphics engine. By

doing so, the default behavior of Unity3D, in particular of existing behavior scripts and

GPU Shaders can be preserved.

Let MP be the OpenGL projection matrix according to Figure B.7. Then, we can

modify the projection matrix MP so that it renders the same image as the OpenCV

pinhole camera model, except for rasterization and clipping effects.

The default OpenGL projective transform MP in column-major order is given by

MP =


2zn
xr−xl 0 xr+xl

xr−xl 0

0 2zn
yt−yb

yt+yb
yt−yb 0

0 0 − zf+zn
zf−zn − 2znzf

zf−zn

0 0 −1 0

 (B.2)

where the six parameters xr, xl, yt, yb, zn and zf defines the distances from the origin

of the camera space to the right, left, top, bottom, near and far plane of the view frus-

tum, respectively5. MP is used for transforming 3D points from the camera space into

the clipping space and also for converting the clipped 3D points into normalized device

coordinates (NDC).

The four parameters (xr, xl, yt, yb) can be derived by reprojecting pixels from the

OpenCV pinhole camera model into the camera space, changing the basis of the cam-

era frame to the OpenGL camera coordinate system, and then calculating the near and

far points of the view frustum. Then, the default OpenGL projective transform MP in

column-major order is fully defined by the camera intrinsics, by Eqn. B.2 and by following

four frustum points:

4A RenderTexture and which provides direct access to a frame buffer object. See [105] and [95] for
details.

5For perspective cameras, the distances for right, left, top and bottom plane are measured along the
near clipping plane.

144 Chapter B. Implementation Details of the RTS Software Development System

xr = −cx
zn
fx

xl = (w − cx)
zn
fx

yt = cy
zn
fy

yb = (cy − h)
zn
fy

 (B.3)

Video Streaming The final result should be rendered to a GPU texture buffer which

matches the image resolution (w, h). By using the texture buffer as render target of

a Camera node, Unity3D updates the viewport matrix MV P for the related rendering

passes to

MV P =


w
2 0 0 xmin + w

2

0 −h
2 0 ymin + h

2

0 0 zmax − zmin zmin

0 0 0 1

 (B.4)

where
[
xmin ymax

]T
is the pixel offset in the target texture, and zmin and zmax are used

for depth processing.

The rendered image can be transferred from the GPU texture buffer to the GPU texture

buffer using the API method ReadPixels for further processing and video streaming.

Image Effects Nonlinear image effects, such as lens distortions, vignetting and expo-

sure, can be simulated using GPU Shaders. If applied as post-processing step to the

standard rendering pipeline, the Unity3D API function Graphics.Blit can be used.

B.5 Discussion

In this chapter, we complemented the description of our prototyping and simulation frame-

work by software and implementation details. In particular, we completed the in chapter

3 and chapter 4 proposed framework for generating a efficient ecosystem for interactive

RTS algorithm development.

Integration of Existing Drivers We discussed how existing drivers can be integrated

into a software ecosystem for heterogeneous systems, how gRPC can be used for cross-

platform IPC, and how code generators for ready-to-use servers and clients can be extracted

from existing code examples.

Model Conversations Furthermore, we discussed the required matrix conversions for

combining and simulating models with different handedness. The proposed integration

of the OpenCV camera model into the existing Unity3D and OpenGL rendering pipeline

B.5. Discussion 145

proved to be particular useful for simulating calibrated cameras. By using our method,

the default functionality of the rendering pipeline is largely preserved, which allows using

most existing Unity3D and OpenGL scripts without modification. We think that this is

particular important to keep the effort for developing and maintaining RTS simulators

reasonable low.

Game and Rendering Engines for Device Simulation The proposed setup has

proven to be useful not only for simulations of geometric, kinematic and dynamic models,

but also for running user tests with mockups during early software design phases. Scene

graph models of game engines are flexible and efficient, yet well structured and easy to

understand. As rendering engines are an integral part of game engines, and they are

particularly optimized for high quality graphics and real-time rendering, the simulation of

image sensors with low latency and high update rates can easily be achieved. While not

discussed in great detail in this work, another benefit is the simulation of camera effects

by means of GPU Shaders, such as lens distortions or vignetting.

Simulator Accuracy The simulator accuracy is mainly limited by the geometric model

accuracy and the numerical precision of the graphics engine Unity3D. While the miss-

match between geometric model and real device can be reduced by numerical optimization

as proposed in Sec. 4.6, Unity3D is based on 32 bit floating point precision which can not

be altered [105]. Advanced techniques could be applied, such as scaling the nominal world

units, splitting and scaling object space or image space regions into multiple parts or

implementing methods like ray casting explicitly using higher precision arithmetic.

Latency and Complexity The server-client architecture of the framework increases

the latency and complexity by adding additional third party library dependencies as well

as an additional software layer to the communication stack. This might be acceptable for

research and prototyping, but not for production code. For industry-oriented research, we

suggest to avoid large deviations from the target ecosystem, like adding an additional com-

munication layer as proposed in this work. However, the discussed device simulation can

also be applied to the designated programming language of the instrument SDK. Hereby, a

mock of the instrument driver can be extracted instead of using gRPC on top of the SDK,

whereas the majority of the proposed implementation method can applied as-is.

To summarize, we experienced a great advantage in using game engines for device simu-

lation. Simulated mockups helped us with finding suitable user interfaces and discarding

impractical workflows in early design phases. We think that the benefits of custom simula-

tion systems outweighed the effort for creating and maintaining these systems, especially

for exploratory research, but also for software design, test and verification in industry.

146 Chapter B. Implementation Details of the RTS Software Development System

C
List of Acronyms

API application programming interface

AR Augmented Reality

BIM building information modeling

CAD comuter-aided design

CLR Common Language Runtime

DH Denavit-Hartenberg

DOF degree of freedom

EDM electronic distance meter

EM Expectation Maximization

GoF Gang of Four

GPU grapics processing unit

GUI graphical user interface

GUM Guide to the Expression of Uncer-

tainty

HIL hardware-in-the-loop

IBM image-based measurement

ICP Iterative Closest Point

ILP linear integer programming

IP interest point

IPC inter-process communication

LIDAR light detection and ranging

MAD median absolute deviation

MCS Monte-Carlo Simulation

NDC normalized device coordinates

PROTOBUF Google Protocol Buffer

RAM random-access memory

RANSAC Random Sample Consesus

ROI region of interest

ROS Robot Operation System

RPC remote procedure call

RTS robotic total station

SDK software development kit

SLAM simultaneous localization and

mapping

SQP sequential quadratic programming

SVD Singular Value Decomposition

SWIG Simplified Wrapper and Interface

Generator

TSP traveling salesman problem

UAV unmanned aerial vehicle

UI user interface

147

148 Chapter C. List of Acronyms

D
About the Author

Christoph Hubert Klug received the M.S. degree in

Telematics from the Technical University of Graz

(2012). After suspending his university career to work

in the Automotive industry as an embedded software

designer for several years, he is currently working as a

research assistant at the Virtual Reality and Visuali-

sation Research Centre GmbH (VRVis) in cooperation

with the Institute of Computer Graphics and Vision

at the Technical University of Graz (ICG TU Graz),

where he is finishing his Ph.D. degree in computer sci-

ences. He is currently putting all his energy in enhanc-

ing workflows and algorithms for robotic total stations

using Computer Vision methods with special regard

to usability and accuracy. When not tinkering with

robotic total stations, Christoph is totally absorbed

not only by everything about computer vision, computer graphics and augmented reality.

His recent research interests also covers geometric modeling, human-computer interaction

(HCI) and machine learning. In his free time he likes to travel the world with his beloved

wife Karina, to do all kind of sports and to teach his cat funny tricks.

149

150 Chapter D. About the Author

BIBLIOGRAPHY 151

Bibliography

[1] Aho, A., Lam, M., Sethi, R., and Ullman, J. (2007). Compilers: Principles, Techniques,

& Tools. Pearson/Addison-Wesley, Boston, USA. (page 137)

[2] Alexandrescu, A., Stan, A., Botezatu, N. A., and Caraiman, S. (2016). Real-time inter-

process communication in heterogeneous programming environments. In Proceedings of

the International Conference on System Theory, Control and Computing, pages 283–

288. (page 15)

[3] Amann, M.-C., Bosch, T. M., Lescure, M., Myllylae, R. A., and Rioux, M. (2001).

Laser ranging: A critical review of usual techniques for distance measurement. Optical

Engineering, 40(1):10–19. (page 2)

[4] Andaluz, V. H., Canseco, P. A., Rosales, A., Roberti, F., and Carelli, R. (2012). Mul-

tilayer scheme for the adaptive cooperative coordinated control of mobile manipulators.

In Proceedings of the IEEE International Conference on Industrial Electronics, Control,

and Instrumentation, pages 2737–2743. (page 15)

[5] Andaluz, V. H., Chicaiza, F. A., Gallardo, C., Quevedo, W. X., Varela, J., Sánchez,

J. S., and Arteaga, O. (2016). Unity3D-MATLAB simulator in real time for robotics

applications. In Proceedings of the International Conference on Augmented Reality,

Virtual Reality, and Computer Graphics, Lecture Notes in Computer Science Book

Series, pages 246–263, Cham, Switzerland. Springer International Publishing. (page 15)

[6] Andaluz, V. H., Ortiz, J. S., Pérez, M., Roberti, F., and Carelli, R. (2014). Adap-

tive cooperative control of multi-mobile manipulators. In Proceedings of the IEEE In-

ternational Conference on Industrial Electronics, Control, and Instrumentation, pages

2669–2675. (page 15)

[7] Aristidou, A., Lasenby, J., Chrysanthou, Y., and Shamir, A. (2018). Inverse kinemat-

ics techniques in computer graphics: A survey. Computer Graphics Forum, 37:35–58.

(page 38, 39)

[8] Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-squares fitting of two 3-D

point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5):698–

700. (page 126, 127)

[9] Awange, J. and Grafarend, E. W. (2005). Solving Algebraic Computational Problems

in Geodesy and Geoinformatics: The Answer to Modern Challenges. Springer Berlin

Heidelberg, Germany. (page 55, 140)

[10] Barker, L. K. (1983). Vector-algebra approach to extract Denavit-Hartenberg param-

eters of assembled robot arms. NASA Technical Paper 2191. (page 7, 14, 28, 37)

152

[11] Barlow, R. (1989). Statistics: A Guide to the use of Statistical Methods in the Physical

Sciences. Wiley, Chichester, England New York. (page 60)

[12] Bartsch, H.-J. (2015). Handbook of Mathematical Formulas. Elsevier Science.

(page 123)

[13] Beazley, D. M. and Others (1996). SWIG: An easy to use tool for integrating scripting

languages with c and c++. In Proceedings of the Tcl/Tk Workshop, volume 4. USENIX

Association. (page 136)

[14] Besl, P. J. and McKay, H. D. (1992). A method for registration of 3–D shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256. (page 17)

[15] Betts, M., Robinson, G., Burton, C., Leonard, J., Sharda, A., and Whittington, T.

(2015). Global construction 2030: A global forecast for the construction industry to

2030. (page 120, 121)

[16] Bosché, F. (2010). Automated recognition of 3D cad model objects in laser scans and

calculation of as-built dimensions for dimensional compliance control in construction.

Advanced Engineering Informatics, 24:107–118. (page 5)

[17] Bosché, F. (2012). Plane-based registration of construction laser scans with 3D/4D

building models. Advanced Engineering Informatics, 26:90–102. (page 5)

[18] Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal

deviates. The Annals of Mathematical Statistics, 29(2):610–611. (page 55, 80)

[19] Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

(page 129, 142)

[20] Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and Scrapper, C. (2007). USARSim:

A robot simulator for research and education. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1400–1405. IEEE. (page 14)

[21] Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple range

images. Image and Vision Computing, 10(3):145–155. (page 17)

[22] Chittawadigi, R. G., Hayat, A. A., and Saha, S. K. (2013). Geometric model identi-

fication of a serial robot. In Proceedings of the IFToMM International Symposium on

Robotics and Mechatronics, volume 3, Lorong Bakar Batu, Singapore. Research Pub-

lishing Services. (page 14, 23, 24, 37)

[23] Coaker, L. H. (2009). Reflectorless total station measurements and their accuracy,

precision and reliability. BSc. Thesis, University of Southern Queensland, Faculty of

Engineering and Surveying. (page 13, 73)

BIBLIOGRAPHY 153

[24] Connolly, C. (2009). Technology and aapplications of ABB RobotStudio. Industrial

Robot: The International Journal of Robotics Research and Applications, 36(6):540–545.

(page 14)

[25] Corporation, T. (2011). Imaging station is series, instruction manual. (page 13)

[26] Crossley, F. R. E. (1967). The permutations of kinematic chains of eight members

or less from the graph theoretic viewpoint. In Developments in Theoretical and Applied

Mechanics, volume 2, pages 467–486, Oxford, UK. Pergamon Press. (page 14)

[27] Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guen-

delman, E., and Thelen, D. G. (2007). OpenSim: Open-source software to create and

analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engi-

neering, 54(11):1940–1950. (page 14)

[28] Denavit, J. and Hartenberg, R. S. (1955). A kinematic notation for lower-pair mech-

anisms based on matrices. Journal of Applied Mechanics, 22:215–221. (page 7, 14,

20)

[29] Eggert, D., Lorusso, A., and Fisher, R. (1997). Estimating 3-D rigid body transfor-

mations: A comparison of four major algorithms. Machine Vision and Applications,

9(5-6):272–290. (page 126)

[30] Ehrgott, M. (2005). Multicriteria Optimization. Lecture Notes in Economics and

Mathematical Systems. Springer. (page 49)

[31] Ehrhart, M. (2017). Applications of Image-Assisted Total Stations: Concepts, Exper-

iments, Results and Calibration. PhD Thesis, Graz University of Technology, Institute

of Engineering Geodesy and Measurement Systems, Graz. (page 3, 6, 16, 18, 20, 38, 57)

[32] Ehrhart, M. and Lienhart, W. (2015). Image-based dynamic deformation monitoring

of civil engineering structures from long ranges. In Proceedings of the Conference of the

Society of Photo-Optical Instrumentation Engineers, volume 9405. SPIE. (page 16, 128)

[33] El-Sherbiny, A., Elhosseini, M. A., and Haikal, A. Y. (2018). A comparative study of

soft computing methods to solve inverse kinematics problem. Ain Shams Engineering

Journal, 9:2535 – 2548. (page 38, 39)

[34] Everett, L., Driels, M., and Mooring, B. (1987). Kinematic modelling for robot

calibration. In Proceedings of the IEEE International Conference on Robotics and Au-

tomation, volume 4, pages 183–189. IEEE. (page 39)

[35] Faro Technologies (2019). https://www.faro.com. [Online; Accessed 03 February

2019]. (page 121)

https://www.faro.com

154

[36] Fathi, H. and Brilakis, I. (2013). A videogrammetric as-built data collection method

for digital fabrication of sheet metal roof panels. Advanced Engineering Informatics,

27(4):466–476. (page 16)

[37] Fischler, M. a. and Bolles, R. C. (1981). Random sample consensus: A paradigm for

model fitting with applicatlons to image analysis and automated cartography. Commu-

nications of the ACM, 24(6):381 – 395. (page 75, 102)

[38] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley. (page 133, 135)

[39] Global Construction Perspectives Limited (2019). https://gcp.global. [Online;

Accessed 04 February 2019]. (page 120)

[40] González-Palacios, M. A., Ortega-Alvarez, C. J., Sandoval-Castillo, J. G., Cuevas-

Ledesma, S. M., and Mendoza-patiño, F. J. (2016). The generalized architecture of the

spherical serial manipulator. Advances in Robotics & Automation, 5(2). (page 38, 39,

40)

[41] Google Inc. (2017). gRPC open-source universal RPC framework. http://www.grpc.

io. [Online; Accessed 28 July 2017]. (page 54, 131, 133, 135, 136, 137, 138)

[42] Harrisberger, L. (1965). A number synthesis survey of three-dimensional mechanisms.

Journal of Engineering for Industry, 87(2):213–218. (page 14)

[43] Hartenberg, R. S. and Denavit, J. (1964). Kinematic Synthesis of Linkages. McGraw-

Hill Series in Mechanical Engineering. McGraw-Hill. (page 14)

[44] Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision.

Cambridge University Press, Cambridge, UK, second edition. (page 18, 36, 37, 76, 123,

125, 126, 128, 129, 141, 142)

[45] Hayat, A. A., Chittawadigi, R. G., Udai, A. D., and Saha, S. K. (2013). Identification

of Denavit-Hartenberg parameters of an industrial robot. In Proceedings of the Confer-

ence on Advances In Robotics, pages 55:1–55:6, New York, USA. ACM. (page 14, 23,

24, 37)

[46] Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quater-

nions. Journal of the Optical Society of America A, 4(4):629–642. (page 102, 126)

[47] Horn, B. K. P., Hilden, H. M., and Negahdaripour, S. (1988). Closed-form solutions

of absolute orientation using orthonormal matrices. Journal of the Optical Society of

America A, 5:1127–1135. (page 100, 126)

[48] Hough, P. V. C. (1962). Method and means for recognizing complex patterns. US

Patent 3069654. (page 17)

https://gcp.global
http://www.grpc.io
http://www.grpc.io

BIBLIOGRAPHY 155

[49] Hu, Y. and Meng, W. (2016). ROSUnitySim: Development and experimentation

of a real-time simulator for multi-unmanned aerial vehicle local planning. Simulation,

92(10):931–944. (page 15, 137)

[50] Hulik, R., Spanel, M., Smrz, P., and Materna, Z. (2014). Continuous plane detection

in point-cloud data based on 3d hough transform. Journal of Visual Communication

and Image Representation, 25(1):86–97. (page 17)

[51] IEEE Std 754-2008 (2008). IEEE standard for floating-point arithmetic (revision of

IEEE std 754-1985). Standard, IEEE Computer Society. (page 52, 56, 60)

[52] ISO 17123-3:2001 (2001). Optics and optical instruments – field procedures for testing

geodetic and surveying instruments. Standard, International Organization for Standard-

ization, Geneva, Switzerland. (page 86)

[53] ISO 19650-1:2018 (2018). Organization and digitization of information about build-

ings and civil engineering works, including building information modelling (BIM) –

information management using building information modelling – part 1: Concepts and

principles. Standard, International Organization for Standardization, Geneva, Switzer-

land. (page 121)

[54] ISO 19650-2:2018 (2018). Organization and digitization of information about build-

ings and civil engineering works, including building information modelling (BIM) – in-

formation management using building information modelling – part 2: Delivery phase of

the assets. Standard, International Organization for Standardization, Geneva, Switzer-

land. (page 121)

[55] ISO/IEC 23271:2012 (2012). Information technology – common language infrastruc-

ture (CLI). Standard, International Organization for Standardization, Geneva, Switzer-

land. (page 133)

[56] Jadidi, H., Ravanshadnia, M., Hosseinalipour, M., and Rahmani, F. (2015). A step-

by-step construction site photography procedure to enhance the efficiency of as-built

data visualization: A case study. Visualization in Engineering, 3(1):1–12. (page 16)

[57] JCGM 100:2008 (2008). Evaluation of measurement data – guide to the expression

of uncertainty in measurement (GUM). Standard, International Organization for Stan-

dardization, Geneva, Switzerland. (page 56, 59, 61, 79, 80, 111, 114)

[58] Joubair, A. and Bonev, I. A. (2015). Kinematic calibration of a six-axis serial robot

using distance and sphere constraints. International Journal of Advanced Manufacturing

Technology. (page 39)

[59] Julian, K., Ganapathi Subramanian, A., Lee, J., and Faghihi, V. (2012). Robotic

total station and BIM for quality control. In eWork and eBusiness in Architecture,

156

Engineering and Construction: Proceedings of the European Conference on Product and

Process Modeling in the Building and Construction Industry, volume 9, pages 717–722,

Reykjavik, Iceland. CRC Press. (page 121)

[60] Juretzko, M. (2004). Reflektorlose Video-Tachymetrie - Ein Integrales Verfahren zur

Erfassung Geometrischer und Visueller Informationen. PhD Thesis, Ruhr University

Bochum, Faculty of Civil Engineering. (page 17, 69, 70, 73, 109)

[61] Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors. Acta

Crystallographica Section A, 32(5):922–923. (page 127)

[62] Klasing, K., Althoff, D., Wollherr, D., and Buss, M. (2009). Comparison of surface

normal estimation methods for range sensing applications. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 3206–3211. (page 76, 77)

[63] Klug, C., Arth, C., Schmalstieg, D., and Gloor, T. (2018a). Measurement uncertainty

analysis of a robotic total station simulation. In Proceedings of the IEEE International

Conference on Industrial Electronics, Control, and Instrumentation, pages 2576–2582.

(page 7, 10, 19)

[64] Klug, C., Arth, C., Schmalstieg, D., and Gloor, T. (2018b). Semi-automatic registra-

tion of a robotic total station and a cad model without control points. In Proceedings of

the IEEE International Conference on Industrial Electronics, Control, and Instrumen-

tation, pages 2631–2638. (page 7, 11, 100)

[65] Klug, C., Schmalstieg, D., and Arth, C. (2017). Measuring human-made corner struc-

tures with a robotic total station using support points, lines and planes. In Proceedings

of the International Conference on Computer Vision Theory and Applications, volume 6,

pages 17–27. INSTICC, SciTePress. (page 8, 45, 69, 71, 87, 88, 91, 92, 96, 97, 109, 114)

[66] Klug, C., Schmalstieg, D., Gloor, T., and Arth, C. (2018c). A complete workflow

for automatic forward kinematics model extraction of robotic total stations using the

denavit-hartenberg convention. Journal of Intelligent and Robotic Systems. (page 7, 9,

19, 20, 37, 129)

[67] Klug, C., Schmalstieg, D., Gloor, T., and Arth, C. (2019). On using 3D support

geometries for measuring human-made corner structures with a robotic total station. In

Computer Vision, Imaging and Computer Graphics – Theory and Applications (Revised

Selected Papers of VISIGRAPP 2017), Communications in Computer and Information

Science, pages 352–374. Springer International Publishing. (page 7, 12, 69, 71)

[68] Koenig, N. and Howard, A. (2004). Design and use paradigms for Gazebo, an open-

source multi-robot simulator. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, volume 3, pages 2149–2154. IEEE. (page 14)

BIBLIOGRAPHY 157

[69] Kucuk, S. and Bingul, Z. (2006). Robot kinematics: Forward and inverse kinematics.

In Industrial Robotics: Theory, Modelling and Control. pro literatur Verlag (plV) Robert

Mayer-Scholz, Mammendorf, Germany. (page 21)

[70] Lachat, E., Landes, T., and Grussenmeyer, P. (2017). Investigation of a combined

surveying and scanning device: The trimble sx10 scanning total station. Sensors, 17(4).

(page 4)

[71] Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013). Detecting outliers:

Do not use standard deviation around the mean, use absolute deviation around the

median. Journal of Experimental Social Psychology, 49(4):764–766. (page 89, 114)

[72] MathWorks Inc. (2017). MATLAB Optimization Toolbox. https://mathworks.com/

products/optimization.html. [Online; Accessed 28 July 2017]. (page 49)

[73] Mattingly, W. A., j. Chang, D., Paris, R., Smith, N., Blevins, J., and Ouyang, M.

(2012). Robot design using Unity for computer games and robotic simulations. In

Proceedings of the IEEE International Conference on Computer Games, pages 56–59.

IEEE. (page 14, 15, 137)

[74] McCarthy, J. M. and Soh, G. S. (2011). Geometric Design of Linkages. Interdisci-

plinary Applied Mathematics. Springer New York, second edition. (page 14)

[75] Megahed, S. (2012). Inverse kinematics of spherical wrist robot arms: Analysis and

simulation. Journal of Intelligent and Robotic Systems, 5(3):211–227. (page 39)

[76] Mehdi, H. M. (2008). New Algorithms in Rigid-Body Registration and Estimation of

Registration Accuracy. PhD Thesis, Queen’s University, Department of Electrical and

Computer Engineering, Kingston, Canada. (page 17, 111)

[77] Meng, W., Hu, Y., Lin, J., Lin, F., and Teo, R. (2015). ROS+Unity: An efficient high-

fidelity 3D multi-UAV navigation and control simulator in GPS-denied environments.

In Proceedings of the IEEE International Conference on Industrial Electronics, Control,

and Instrumentation, pages 2562–2567. IEEE. (page 15, 137)

[78] Microsoft Corporation (2019). .NET Framework. https://dotnet.microsoft.com/.

[Online; Accessed 10 February 2019]. (page 133)

[79] Nguyen, T., Grasset, R., Schmalstieg, D., and Reitmayr, G. (2013). Interactive

syntactic modeling with a single-point laser range finder and camera. Proceedings of

the IEEE International Symposium on Mixed and Augmented Reality, pages 107–116.

(page 17, 102, 106)

[80] Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer Series in Oper-

ations Research and Financial Engineering. Springer New York. (page 49)

https://mathworks.com/products/optimization.html
https://mathworks.com/products/optimization.html
https://dotnet.microsoft.com/

158

[81] Oxford Economics Limited (2019). https://www.oxfordeconomics.com. [Online;

Accessed 04 February 2019]. (page 120)

[82] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and

Ng, A. Y. (2009). ROS: an open-source robot operating system. In Proceedings of the

IEEE International Conference on Robotics and Automation, volume 3. Kobe, Japan.

(page 132)

[83] Rajeevlochana, C. G. and Saha, S. K. (2011). RoboAnalyzer: 3D model based robotic

learning software. In Proceedings of the International Conference on Multibody Dynam-

ics, volume 6, pages 3–13, Vijayawada, India. (page 14, 20)

[84] Rajeevlochana, C. G., Saha, S. K., and Kumar, S. (2012). Automatic extraction

of DH parameters of serial manipulators using line geometry. In Proceedings of the

Joint International Conference on Multibody System Dynamics, volume 2, Stuttgart,

Germany. (page 7, 14, 28, 37)

[85] Reese, G. (2000). Database programming with JDBC and Java. O’Reilly, Sebastopol,

CA, USA, second edition. (page 133)

[86] Reuleaux, F. (1876). The Kinematics of Machinery: Outlines of a Theory of Ma-

chines. Macmillan and CO. (page 14)

[87] Rohmer, E., Singh, S. P. N., and Freese, M. (2013). V-REP: A versatile and scalable

robot simulation framework. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 1321–1326. IEEE. (page 14)

[88] Saha, S. K. (2014). Introduction to Robotics. McGraw Hill, second edition. (page 20,

37)

[89] Scherer, M. (2002). Advantages of the integration of image processing and direct

coordinate measurement for architectural surveying - development of the system TO-

TAL. In Proceedings of the International Congress of the International Federation of

Surveyors. (page 16)

[90] Scherer, M. (2004). Intelligent scanning with robot-tacheometer and image processing:

A low cost alternative to 3d laser scanning? In Proceedings of the Working Week of the

International Federation of Surveyors, pages 22–27. (page 73)

[91] Scherer, M. and Lerma, J. L. (2009). From the conventional total station to the

prospective image assisted photogrammetric scanning total station: Comprehensive re-

view. Journal of Surveying Engineering, 135(4):173–178. (page 16)

[92] Schmalstieg, D. and Höllerer, T. (2016). Augmented Reality: Principles and Practice.

Addison-Wesley Professional, Boston, USA. (page 6)

https://www.oxfordeconomics.com

BIBLIOGRAPHY 159

[93] Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient RANSAC for point-cloud

shape detection. Computer Graphics Forum, 26(2):214–226. (page 17)

[94] Schneider, P. and Eberly, D. (2003). Geometric Tools for Computer Graphics. Boston

Morgan Kaufmann Publishers, Amsterdam. (page 76, 78, 123, 124)

[95] Segal, M. and Akeley, K. (2017). The OpenGL graphics system: A specification.

version 4.5 (core profile). https://www.khronos.org/registry/OpenGL/specs/gl/

glspec45.core.pdf. [Online; Accessed 28 July 2017]. (page 57, 58, 142, 143)

[96] Sellers, G., Wright, R. S., and Haemel, N. (2015). OpenGL Superbible: Comprehensive

Tutorial and Reference. OpenGL Series. Addison-Wesley, seventh edition. (page 141)

[97] Sheth, P. N. and Uicker, J. J. (1971). A generalized symbolic notation for mechanisms.

Journal of Engineering for Industry, 93(1):102–112. (page 14)

[98] Siciliano, B. and Khatib, O. (2016). Springer Handbook of Robotics. Springer Hand-

books. Springer International Publishing. (page 14)

[99] Siemens PLM Software (2011). Robcad Tecnomatix. https://www.plm.automation.

siemens.com/en/products/tecnomatix/manufacturing-simulation/robotics/

robcad.shtmls. [Online; Accessed 28 July 2017]. (page 14)

[100] Siu, M.-F., Lu, M., and AbouRizk, S. (2013). Combining photogrammetry and

robotic total stations to obtain dimensional measurements of temporary facilities in

construction field. Visualization in Engineering, 1(1). (page 16)

[101] Stone, H. W. (2012). Kinematic Modeling, Identification, and Control of Robotic

Manipulators. The Springer International Series in Engineering and Computer Science.

Springer US. (page 14)

[102] Tellinghuisen, J. (2001). Statistical error propagation. The Journal of Physical

Chemistry A, 105(15):3917–3921. (page 60)

[103] Tonello, S., Zanetti, G. P., Finotto, M., Bortoletto, R., Tosello, E., and Menegatti, E.

(2012). WorkCellSimulator: A 3D simulator for intelligent manufacturing. In Proceed-

ings of the IEEE International Conference on Simulation, Modeling, and Programming

for Autonomous Robots, pages 311–322, Germany. Springer Berlin Heidelberg. (page 14)

[104] Trevor, A. J. B., Gedikli, S., Rusu, R. B., and Christensen, H. I. (2013). Efficient

organized point cloud segmentation with connected components. Proceedings of the

Workshop on Semantic Perception, Mapping and Exploration. (page 106)

[105] Unity Technologies (2017). Unity3D: Game engine. https://unity3d.com, https:

//docs.unity3d.com/Manual. [Online; Accessed 28 July 2017]. (page 54, 55, 81, 139,

140, 141, 143, 145)

https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/robotics/robcad.shtmls
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/robotics/robcad.shtmls
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/robotics/robcad.shtmls
https://unity3d.com
https://docs.unity3d.com/Manual
https://docs.unity3d.com/Manual

160

[106] Uren, J. and Price, B. (2010). Surveying for Engineers. Palgrave Macmillan. (page 1,

2, 5, 13, 20, 38, 55, 81, 140)

[107] Vanderbei, R. (2008). Linear Programming: Foundations and Extensions. Interna-

tional Series in Operations Research & Management Science. Springer New York, New

York, USA. (page 110)

[108] Veitschegger, W. K. and Wu, C. H. (1988). Robot calibration and compensation.

IEEE Journal on Robotics and Automation, 4(6):643–656. (page 14)

[109] Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools

and Techniques. The Morgan Kaufmann Series in Data Management Systems. Elsevier

Inc., second edition. (page 51)

[110] Wu, Y., Klimchik, A., Caro, S., Furet, B., and Pashkevich, A. (2015). Geometric

calibration of industrial robots using enhanced partial pose measurements and design

of experiments. Robotics and Computer-Integrated Manufacturing. (page 39)

[111] Zeiske, K. (2004). Surveying made easy. https://www.aps.anl.gov/files/

APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/

Surveying_en.pdf. [Online; Accessed 22 May 2018]. (page 13, 16)

https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/Surveying_en.pdf
https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/Surveying_en.pdf
https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/Surveying_en.pdf

	Introduction
	Contribution
	Collaboration Statement
	List of Publications

	Related Work and State of the Art
	Traditional Surveying
	Modeling of Robots
	Simulation of Robots
	Visual Assistance for Manual Targeting
	Assistance for Reflectorless Registration
	Discussion

	A Robotic Theory for RTS Modeling and Simulation
	Forward Kinematic Modeling
	Workflow
	Data Acquisition for DH Parameter Estimation
	Estimating Circular Features
	Correcting the Sign of Circular Features
	Link Constellation and Frame Alignment
	First Link Frame
	Middle Link Frames
	Last Link Frame
	Base Transform
	Camera Tool Frame
	EDM Tool Frame

	Model Error Estimation
	Inverse Kinematic Modeling
	Consistent Model for Kinematics and Point Transfer Functions
	Discussion

	Kinematic Modeling and Simulation of the Exemplary RTS
	Forward Kinematic Model
	Model Simplification
	Simplified Forward Kinematic Model
	Simplified Inverse Kinematic Model
	Model Error Estimation
	Model Optimization
	Interpretation of the Modeling Error
	Using Unity3D as RTS Simulation Engine
	Modeling RT Sensors, Actuators and Targets in Unity3D
	Converting Coordinate System Handedness
	Modeling Sensor Uncertainties in Unity3D

	Uncertainties in Simulations
	Identifying Sources of Uncertainty in Simulations
	A-Priori Uncertainty Estimation

	A-Posteriori Uncertainty Estimation
	Interpretation of Uncertainty Estimation Results

	Discussion

	Application: Measuring with Support Objects
	Extending the Measurement Workflow
	Standard Methods: Direct and Nearby Method
	Measurement Flow
	Calculating the Point

	Support Point Method
	Measurement Flow
	Calculating the Point
	Measurement Problem

	Support Line Method
	Measurement Flow
	Calculating the Support Line
	Intersecting the View Ray with the Support Line

	Support Plane Method
	Measurement Flow
	Calculating the Support Plane
	Intersecting the View Ray with the Support Plane

	Simulation and Experiments
	Monte-Carlo Simulations
	Measurement Targets Variants
	RTS Sensor Uncertainty Simulation
	Complex Collider Definition for Ray Casting
	Additional MCS parameters
	Results

	Experiments
	Measurement Strategy
	Laboratory Measurements
	Indoor Measurements
	Outdoor Measurements
	Pilot Study
	Outdoor Measurements
	Results

	Discussion

	Application: RTS-CAD Registration
	RTS Registration
	Manual RTS Registration
	Assisted RTS Registration
	Local Manhattan-Like Corner Estimation With Ordered Sparse Point Clouds
	Automatic Pose Refinement Using Additional Samples
	Robust Sampling
	Efficient Sample Measurement Order
	ICP Pose Refinement

	Experiments
	Test Setup and Test Coverage
	Registration Results

	Discussion

	Conclusion
	Particular Achievements
	Developments, Forecasts and Trends of RTS in the Construction Industry
	Final Statements

	Math Primer
	Scalar Operations
	Linear Algebra
	Matrix Operations
	3D Point Clouds
	3D Primitives

	SVD
	Fitting a Plane to a Point Cloud Using SVD
	Fitting the Relative Euclidean Transformation between Two Ordered Point Sets Using SVD
	Fitting Relative Euclidean Transformation Between Two Coordinate Frames Using SVD

	RTS Camera Projection Matrices
	Camera Projection Matrix
	Point Reprojection From Image to World

	Implementation Details of the RTS Software Development System
	Motivation
	Software System Architecture
	Software Modules

	RPC Code Generation
	Unity3D as Simulator Frontend
	Memory Layout, Data Flow and Synchronization
	Converting Coordinate System Handedness

	Discussion

	List of Acronyms
	About the Author
	Bibliography

