
Graz University of Technology
Institute of Hydraulic Engineering and Water Resources Management

Florian LORA, BSc

Implementation of fractional step algorithm with
Runge-Kutta method in OpenFOAM for Large Eddy

Simulations in hydraulic engineering

Master’s Thesis

to achieve the university degree of
Diplom-Ingenieur

Master’s programme Civil Engineering – Geotechnical and Hydraulic Engineering

submitted to
Graz University of Technology

Supervisor:
Josef SCHNEIDER, Assoc.Prof. Dipl.-Ing. Dr.nat.techn.

Assisting adviser:
Shervin SHAHRIARI, M.Sc.

Graz, March 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used anything other than the declared sources/resources, and that I
have explicitly indicated all material which has been quoted either liter-
ally or contextually from the sources used. The text document uploaded
to TUGRAZonline is identical to the present master’s thesis.

Date Signature

Acknowledgement

Special gratitude belongs to my friend and former colleague Shervin
Shahriari for piquing my interest especially in numerical methods
and providing me with this interesting topic. He also provided
very valuable and excellent support for the work on this topic. Fur-
thermore I want to express my gratitude to all people I shared my
time at the institute and I was able to have very interesting discus-
sions, especially my supervisor Prof. Josef Schneider. Additionally I
want to thank everybodywho accompaniedme throughoutmy studies.

I am very grateful to my family for their support and patience during
my studies.

Abstract

Over the past few decades, numerical methods have become one of
the main tools for the study and design of hydraulic structures. In re-
cent years, due to the increase of computational power on the one hand
and demand for accurate and better understanding of complex engin-
eering flows on the other hand, Large Eddy Simulation (LES) has be-
come a valuable tool for the study of complex hydraulic engineering
flow situations. However, this method requires significantly large com-
putational power in comparison with more common techniques like
Reynolds-averaged Navier-Stokes (RANS) methods. Furthermore, the
numerical diffusion must be minimised in LES. Higher-order explicit
time integration like Runge-Kutta (RK) methods along with the frac-
tional step methods are shown to be low-dissipative and, dependent
on the method, computationally less demanding than the more com-
mon implicit second order time integration and the standard pressure
correction approach like PISO (Pressure Implicit with Splitting of Op-
erators). In this study, two solvers based on explicit third and fourth
order RKmethods with fractional step (projection) methods for incom-
pressible flows are described and implemented inOpenFOAM.The new
solvers are validated by the classical turbulent channel flow case and
then for turbulent flow over a backward-facing step. In conclusion, the
computational demand of the new solver with fourth order RKmethod
measures only 77 % in comparison with PISO algorithms and the de-
mand of the third order algorithm is even lower at only 60 % of the
demand of PISO. Extending OpenFOAM with new custom code is easy
and straightforward due to its high level syntax.

Kurzfassung

Numerische Methoden entwickelten sich im Laufe der letzten Jahr-
zehnte zu einem der wichtigsten Hilfsmittel zum Studium und Ent-
wurf von wasserbaulichen Anlagen. In den vergangenen Jahren wur-
de Large Eddy Simulation, einerseits durch die Zunahme der verfüg-
baren Rechenleistung und andererseits durch den Bedarf an einem
genaueren und besseren Verständnis von komplexen Strömungen, zu
einem wertvollen Werkzeug zur Untersuchung komplexer hydrauli-
scher Strömungssituationen. Diese Methode erfordert jedoch beträcht-
lich höheren Rechenaufwand im Vergleich zu gebräuchlichen Metho-
den wie RANS. Außerdem erfordert LES eine Minimierung der Nu-
merischen Diffusion. Explizite Zeitintegration höherer Ordnung, wie
Runge-Kutta-Methoden zusammen mit der Fractional-Step-Methode,
zeigt sich als gering dissipativ und, abhängig von der Methode, als
weniger Rechenleistung fordernd als die verbreitete implizite Zeitinte-
gration zweiter Ordnung in Verbindung mit dem Standardansatz der
Druckkorrektur wie zum Beispiel PISO oder SIMPLE. In dieser Arbeit
werden zwei Lösungsverfahren basierend auf expliziter Runge-Kutta-
Methode dritter und vierterOrdnungmit Fractional-Step (Projektions)-
Methode für inkompressible Strömungen beschrieben und in OpenFO-
AM implementiert. Die neuen Algorithmen werden anhand der klas-
sischen turbulenten Gerinneströmung und anhand des bekannten Fal-
les turbulenter Strömung über eine plötzliche Querschnittsweitung va-
lidiert. Zusammenfassend beträgt der Rechenaufwand des neuen Ver-
fahrens vierter Ordnung nur 77 % im Vergleich zu PISO und der Algo-
rithmus dritter Ordnung erfordert nur 60 % der Rechenleistung für PI-
SO. Die Erweiterung von OpenFOAM mit neuem benutzerspezifischen
Programmcode ist aufgrund der hochentwickelten Syntax leicht und
unkompliziert.

CONTENTS v

Contents

List of Figures vii

List of Tables vii

1 Introduction 1

2 Introduction to OpenFOAM 5
2.1 History . 5
2.2 Structure . 5

3 Theoretical background 7
3.1 The transport equations . 7
3.2 Finite volume discretisation . 7
3.3 Solving the equations of fluid transport . 8
3.4 Projection methods . 8

3.4.1 The PISO method . 9
3.4.2 Fractional step methods with Runge-Kutta time scheme 9

3.5 Large Eddy Simulation . 11
3.5.1 WALE turbulence model . 14

4 Implementation 16
4.1 rk4fracsFoam . 17
4.2 rk3fracsFoam . 18

5 Validation 19
5.1 Case one – turbulent channel flow . 19

5.1.1 Computational domain . 19
5.1.2 Boundary and initial conditions . 24
5.1.3 Results . 24

5.2 Case two – backward-facing step . 31
5.2.1 Computational domain . 31
5.2.2 Boundary and initial conditions . 32
5.2.3 Results . 33

6 Conclusion 43

References 45

A Appendix A – Case definitions 46
A.1 Turbulent channel flow . 46
A.2 Turbulent flow over a backward-facing step . 52

LIST OF FIGURES vi

List of Figures

2.1 Overview of OpenFOAM structure . 6
2.2 Case directory structure . 6
3.1 Flow diagram of solvers with Runge-Kutta algorithm (only the main solving

routine is shown) . 11
3.2 Concept of Large Eddy Simulation in context with energy content 12
5.1 Geometry and dimensions of the channel domain 19
5.2 Mean velocity profile in wall coordinates for channel flow atReτ = 395with grid

refinement . 20
5.3 Mean velocity profile in wall coordinates for channel flow atReτ = 590with grid

refinement . 20
5.4 Turbulence intensity profiles in three directions u′+, v′+, w′+ of fully developed

channel flow at Reτ = 395 for different mesh resolutions 21
5.5 Turbulence intensity profiles in three directions u′+, v′+, w′+ of fully developed

channel flow at Reτ = 590 for different mesh resolutions 21
5.6 Normalised turbulent shear stress profile ⟨u′v′⟩/u2τ of fully developed channel

flow at Reτ = 395 for different mesh resolutions 22
5.7 Normalised turbulent shear stress profile ⟨u′v′⟩/u2τ of fully developed channel

flow at Reτ = 590 for different mesh resolutions 22
5.8 Mean streamwise velocity profile for turbulent channel flow at Reτ = 590 25
5.9 Turbulence intensity profiles for turbulent channel flow at Reτ = 590 25
5.10 Turbulent shear stress profile for turbulent channel flow at Reτ = 590 26
5.11 Mean streamwise velocity profile for turbulent channel flow at Reτ = 395 26
5.12 Turbulence intensity profiles for turbulent channel flow at Reτ = 395 27
5.13 Turbulent shear stress profile for turbulent channel flow at Reτ = 395 27
5.14 Mean streamwise velocity profile for turbulent channel flow at Reτ = 180 28
5.15 Turbulence intensity profile for turbulent channel flow at Reτ = 180 28
5.16 Turbulent shear stress profile for turbulent channel flow at Reτ = 180 29
5.17 Contours of instantaneous velocity magnitude |u+| at Reτ = 180 29
5.18 Contours of instantaneous velocity magnitude |u+| at Reτ = 395 30
5.19 Contours of instantaneous velocity magnitude |u+| at Reτ = 590 30
5.20 Geometry and dimension of the backward-facing step flow domain 31
5.21 Mesh resolution ∆x+, y+ and ∆z+ in dimensionless wall coordinates in the ex-

panded section of the channel . 32
5.22 Mean streamwise inlet velocity profile at x/h = -3.0 33
5.23 Comparison of the skin friction coefficient Cf between LES and literature 34
5.24 Streamlines of the averaged flow, reattachment length Xr = 6.04h 34
5.25 Contour plot of the time-averaged streamwise velocity u/u0 34
5.26 Contours of the instantaneous streamwise velocity u/u0 at equally spaced instants 35
5.27 Contours of the instantaneous wall-normal velocity v/u0 at equally spaced instants 36
5.28 Contours of normalised mean pressure . 37
5.29 Contour plot of mean pressure fluctuations . 37

LIST OF TABLES vii

5.30 Contour plot of mean turbulent kinetic energy k/u20 38
5.31 Profile locations . 38
5.32 Spanwise autocorrelation coefficients at selected locations in the flow sampled

over about 300 h/u0 . 38
5.33 Profiles of mean streamwise velocity u/u0 at x/h = 4.0 (a); 6.0 (b); 10.0 (c); 19.0(d) 39
5.34 Profiles of turbulent intensity u′/u0 at x/h = 4.0 (a); 6.0 (b); 10.0 (c); 19.0 (d) . . 40
5.35 Profiles of turbulent intensity v′/u0 at x/h = 4.0 (a); 6.0 (b); 10.0 (c); 19.0 (d) . . 41
5.36 Profiles of turbulent shear stress −⟨u′v′⟩/u20 at x/h = 4.0 (a); 6.0 (b); 10.0 (c);

19.0 (d) . 42

List of Tables

3.1 Differences between large eddies and small scale turbulence 12
5.1 Model parameters for the LES of turbulent channel flow 20
5.2 Simulation parameters for all Large Eddy Simulations of turbulent channel flow 23
5.3 Dimensionless grid spacings . 32
6.1 Comparison of the computational speed of different solvers 44

1 INTRODUCTION 1

1 Introduction

Water is themost important resource on earth. Life on earth had its origin in the bodies of water
millions of years ago and the existence of liquid water is known as the fundamental condition
for the development of life. Current estimations Shiklomanov, 1998 quantify the total amount
of water that is stored in Earth’s hydrosphere with 1,386 million cubic kilometres. This is all
the free water existing in the atmosphere, on Earth’s surface and in the upper 2,000 metres of
Earth’s crust. Another large amount of water is bond in the crystalline structure of minerals.
The majority of the free water fills oceans and only 2.5 % are fresh water. A portion of 68.7 % of
the fresh water is frozen in the polar ice caps and glaciers and 30 % of the fresh water exists as
ground water. The importance of water is given across all disciplines around the world:

• Water is vital to all known forms of life on Earth. A human needs up to seven litres of
water a day in order not to suffer from dehydration.

• Water plays a major role in our climate (ice caps, ocean currents, rain seasons, ...) and
weather (evaporation, precipitation, run off, formation of clouds, ...).

• Geology is also strongly influenced by the presence of water. A large amount of water is
stored in fractures in rock and within pores in soil or even bond in the mineral structure.
Many geologic processes are dependent on water, so does water lower the melting point
of rock in subduction zones. Water is also one major actor in the process of erosion and
sediment transport.

• Water has a major role in today’s world economy. It is irreplaceable for the production
of food (agriculture, fishing, food processing, ...) and is an excellent solvent for many
chemicals used in pharmaceutical and chemical engineering. Industry and households
use water for their heating and cooling systems. The world wide transportation systems
strongly depends on water as shipping is by far the most used transportation system for
the transportation of goods between continents. Last, water is very central tomany leisure
activities, such a swimming, sailing and many others and it is the reason for spending
holidays by the sea.

The importance of water was already recognised by ancient civilisations. With the emergence of
early agricultural techniques about 7,500 BC in the Near East, soon the first irrigation structures
had been build. About 4,000 BC the first large scale irrigation systems have been developed.
As settlements started to grow in areas of arid to semi-arid climate, ancient civilisations in the
region of today’s Iraq, Iran and Saudi-Arabia started building more sophisticated irrigations
systems, the so-called Qanats. Qanats are gently sloped tunnels for the transportation of wa-
ter from a spring or a well in mountainous region to fertile areas and settlements in valleys
without any large river and the aquifer to deep for the construction of wells. Usually Qanats
are less than five kilometres in length but some are recorded to measure up to 70 km in length.
Typically Qanats are constructed about 20 to 200 metres deep in the ground. The inclination
of such a tunnel is usually 1 : 1,000 and even lower with increasing length. The precision and
sophisticated design indicate a very high level of engineering work. Also the ancient Greeks
used this techniques to transport water from the spring across a mountain into the settlement.

1 INTRODUCTION 2

Furthermore the flow of water was used to measure time. The earliest documented so-called
water clocks had been used about 1,500 BC in Egypt and the ancient Mesopotamia.
The science of construction and design of structures for the transportation of water, such as
Qanats, is called hydraulic engineering in modern times. Hydraulic engineering is the discip-
line of civil engineering that studies the flow of water utilising the principles of fluid mechan-
ics. Generally three different techniques are available for the study of water in motion: in-situ
measurements, model tests and numerical models. In-situ measurements are the measuring
and recording of the flow situation in nature at the existing structure or river. This is often used
to document the current state of the situation and prove afterwards the success of the imple-
mented measures. Because situations in nature can not be controlled or reproduced identically
and it is impossible or at least very expensive to investigate effects of future implementations the
problem is often scaled down and the investigated in laboratories a smaller copy – a model. In
laboratories the conditions can be controlled and repeated multiple times with and this allows
the investigation of different situations just one after another. In numerical models the situation
is described mathematically and the problem is simulated in any scale. In model tests and nu-
merical models different alternative solutions for a problem can be tested or the influence of
changing parameters can be determined.
The fields of application of this three methods are not only the study of the flow and the design
of structures, but they are also used for the investigation of river systems and sediment transport
as well as the study and design of sewer and water supply systems. The increase in computa-
tional power and the advances in modelling in recent years led to an increase in popularity of
numerical models.
However, in hydraulic engineering the flow is of turbulent nature most of the time. Consider-
ing turbulence in numerical models is a challenge next to the problem of solving the general
governing equations of fluid flow. As turbulence is essential to the flow in engineering a lot of
effort is spend on how to consider turbulence. Over the past decades three general techniques
have been established which deal with the phenomena of turbulence:

• Reynolds Averaged Navier Stokes (RANS) methods

• Large Eddy Simulations (LES)

• Direct Numerical Simulation (DNS)

RANSmethods do not compute turbulent motion at all but include the effect of turbulence with
the help of a model for large and small eddies. In contrast, DNS solves the governing equations
without introducing models and simulates all scales of turbulent motion. LES is located in
between RANSmethods and DNS. In LES large turbulent motion is simulated and small eddies
are modelled. All of this techniques have their advantages and disadvantages. Among the
advantages of LES are the following:

• Large Eddies, which contain most of the energy, are simulated. They are problem de-
pendent and control the dynamics of the flow. Modelling this large eddies causes most
difficulties in RANS methods and makes a general RANS turbulence model impossible
so far.

1 INTRODUCTION 3

• Small turbulent scales, which only contain little energy, are modelled in LES. This scales
are generally more universal and homogeneous than large eddies and therefore small ed-
dies are much easier to model.

• Large Eddy Simulations are able to resolve transient turbulent effects which are of import-
ance as these effects may induce vibrations and harmonic effects in structures. A tragic
but well-known example is the Takoma bridge accident in 19xx.

• LES results in a better picture of the turbulence than RANS, especially when the problem
includes recirculation zones, vortex structures and mixture of different phases.

However, there are some significant disadvantages of Large Eddy simulations:

• In comparison to DNS, LES require some modelling which can be difficult in vicinity to
boundaries.

• In comparison to RANS methods, LES requires three-dimensional and transient simula-
tions. Also a higher spatial and temporal resolution is required to capture all the energy-
containing eddies. This points increase the numerical difficulty of the problem signific-
antly and more accurate numerical methods are required to manage the computational
effort, although the computational effort of LES will still be demanding. Also practical
problems evolve in the storage and analysis of the large data sets retrieved from LES.

Exponentially increasing computational power in the past decade from one side and the success
of LES for studying hydro-environmental flows from the other side lead to an increasing usage
of this technique in hydraulic engineering problems. Recently, two papers have been published
to discuss the current status as well as the challenges and opportunities of the LES method in
hydraulic engineering. Stoesser (2014) summarised recent applications of LES in hydraulic and
hydro-environmental research. According to Stoesser (2014), in a period from 1st of January
2009 to 31st of December 2013, a total number of 50 LES papers had been published in hydraulic
journals. This demonstrates that not only LES is a well-established method for carrying out
hydraulic related studies, also, it is expected that the number of papers increases in future. In
another paper by Sotiropoulos (2015), the author highlighted the potential of simulation-based
engineering science and discussed major computational challenges that lie ahead.

Aim of the study

Large Eddy Simulations usually demand large computational power and therefore LES studies
are very costly. Simulations of high Reynolds number flows in complex geometries require a
large number of CPU cores and it is not unusual that this computations take days and months.
Therefore, if there is any method able to reduce the required computational time, it is desirable
as it can lower the cost of LES significantly. Commonly used algorithms are based on SIMPLE
or PISO. They are good, stable and robust solvers and well-established for many applications.
Whereas steady flowproblems can be solvedwith these implicit solvers at CFL numbers greater
than one, unsteady flow situations like in LES require the CFL number to be smaller than one
and the major advantage of the implicit solvers vanishes. This Courant-Friedrichs-Lewy condi-
tion states that the distance any flow information travels during a time stepmust be smaller than

1 INTRODUCTION 4

the cell size. So does a flow particle only move from one cell to another and not pass through
multiple cells at on time step. Any increase of the time steps will decrease the accuracy of the
solution. Existing PISO and SIMPLE algorithms are using first and second order implicit time
integration. Such low ordermethods are shown to have significant dissipative properties. How-
ever, LES require higher order methods to resolve unsteady vortices properly and to minimise
the influence of numerical diffusion and dispersion. Additionally the computational cost to
achieve the same level of accuracy is lower for higher order methods than for low order meth-
ods. Vuorinen et al. (2014) introduced Runge-Kutta projection methods for time-dependent
flows. They claim a lack of low-dissipative methods for the use in CFD and describe therefore a
new low-dissipative method and provide a guide for practical implementation. Vuorinen et al.
(2014) summarise the advantages of their methods over PISO as following: (1) a computational
speed-up up to 60% can be achieved, (2) themethod shows a low level of numerical dissipation
and (3) the implementation is easy and straightforward due to the absence of iteration loops.
The objectives of the thesis are to (1) present the theory of LES and fractional step algorithms
with Runge-Kutta method following the approach by Vuorinen et al. (2014), (2) to illustrate
the implementation of two new algorithms with third and fourth order RK-method in Open-
FOAM for LES in hydraulic engineering and to (3) validate the solvers for the classical turbulent
channel flow case as well as the turbulent flow over a backward-facing step case.

Methodology

This thesis starts with the basic theory, continues with more detailed theory preparing for the
implementation and validation of new solvers and finally summarises the achievements. At
first research is done on OpenFOAM itself and general information is summarised in Chapter 2.
This Chapter also contains a brief introduction to the functionality and structure of OpenFOAM
and a short explanation how to set up any simulation is given. In Chapter 3 the theory of fluid
mechanics is presented. Beginning with the governing equations and the finite volume dis-
cretisation it is then continued with methods for solving the transport equations of fluid flow.
The method of PISO is described shortly and followed by an comprehensive explanation on the
newly implemented fractional step algorithms with Runge-Kutta method. The theory of turbu-
lence modelling and Large Eddy Simulation is described before the explanation of the WALE
SGS-model closes Chapter 3. In Chapter 4 it is dealt with the implementation of the algorithms
presented in Chapter 3 and provides a guide for the implementation of custom solvers to Open-
FOAM. For Chapter 5, numerous Large Eddy Simulations are carried out to test the new solvers.
First the solvers are tested on the classical turbulent channel flow case and last for turbulent flow
over a backward-facing step. For each case a detailed description of the situation is given and
the simulation set-up is presented. This is followed by the presentation, comparison and dis-
cussion of the results. The case definitions to run the simulations in OpenFOAM can be found
in Appendix A. In Chapter 6 the most important achievements of this study are summarised
and an outlook on future research topics is given.

2 INTRODUCTION TO OPENFOAM 5

2 Introduction to OpenFOAM

OpenFOAM is the leading free open source software for computational fluid dynamics (CFD).
It is owned by the OpenFOAM Foundation and is distributed under General Public Licence
(GPL).
The software Open Source Field Operation and Manipulation (introduced as OpenFOAM) is
a collection of C++ libraries providing a framework for the development of application ex-
ecutables. OpenFOAM is delivered with approximate 250 pre-built applications which can
be divided into two categories: solvers, that are designed for a specific problem and cover a
wide range in fluid dynamics; and utilities, that perform data manipulation tasks. OpenFOAM
provides a variety of pre-built pre- and post-processing environments asmeshing and sampling
tools.
Users can extend the collection of libraries and applications to fit their needs. New applications
can be easily developed by using the packaged functionality within the C++ libraries.

2.1 History

• created by Henry Weller as ‘FOAM’ in 1989

• released open source as ‘OpenFOAM’ through OpenCFD Ltd., founded by Henry Weller,
Chris Greenshields and Mattijs Janssens in December 2004

• In 2011 the software was transferred to the OpenFOAM Foundation and the trademark
OpenFOAM® was licensed to the Foundation. Later OpenCFD was acquired by SGI
Group.

• SGI Group sold OpenCFD to ESI Group in 2012

• since 2014 the development line (OpenFOAM-dev) is available for the public on GitHub
(github.com/OpenFOAM)

• CFD Direct Ltd. was founded in March 2015 by Weller, Greenshields and Jenya Collings
to maintain and develop OpenFOAM on behalf of the OpenFOAM Foundation. In June
the Contribution Agreement was introduced to formalise the contributions by companies
or individuals. CFD Direct hosts and maintains the official user guide for OpenFOAM.

• since 2016 OpenCFD Ltd., owned by ESI Group, directly releases twice a year an own
version of OpenFOAM as OpenFOAM plus.

• OpenFOAM 5.0, the release by the OpenFOAM Foundation which is used for the imple-
mentation was published in July 2017. The latest version OpenFOAM 6.0 was released in
July 2018.

2.2 Structure

Figure 2.1 below shows the overall structure of OpenFOAM. The interface to pre- and post-
processing are themselves OpenFOAM utilities that ensures consistent data handling across
different environments.

2 INTRODUCTION TO OPENFOAM 6

Figure 2.1: Overview of OpenFOAM structure (adapted from cfd.direct/openfoam/
user-guide-v5/)

Each OpenFOAM case has its own directory in which all files and subdirectories are stored.
These files and subdirectories are organised in a prescribed manner. This basis directory struc-
ture, containing the minimum set of files required to run an application, is shown in Figure 2.2.
The user would assign a representative name to the case.

Figure 2.2: Case directory structure
(adapted from cfd.direct/openfoam/
user-guide-v5/)

The system directory contains parameters associ-
ated with the solution procedure itself. It contains
a least the files controlDict, fvSchemes and fvSolu-
tion. The controlDict file sets run control parameters
as start/end time, time step and parameters for data
output. It can be modified while the application is
running. fvSchemes specifies the used discretisation
schemes and fvSolution defines equation solvers, tol-
erances and other algorithm controls.
The constant directory holds the mesh in the subdir-
ectory polyMesh and files specifying physical prop-
erties for the problem e.g. transportProperties.
The time directories contain files of data for particu-
lar fields (e.g. pressure and velocity) at the corres-
ponding time. The data can be: either initial values
or boundary conditions that have to be specified; or
results written by OpenFOAM. As the OpenFOAM
fields must be initialised at least the time directory
and files associated with the start time specified in
the controlDictmust exist.

cfd.direct/openfoam/user-guide-v5/
cfd.direct/openfoam/user-guide-v5/
cfd.direct/openfoam/ user-guide-v5/
cfd.direct/openfoam/ user-guide-v5/

3 THEORETICAL BACKGROUND 7

3 Theoretical background

3.1 The transport equations

The governing equations of fluid flow are the starting point of all simulationmethods for turbu-
lent flow. For incompressible isothermal flow of Newtonian fluids these equations representing
the conservation laws of mass and momentum in tensor notation are:

• conservation of mass (continuity equation):

∂ui
∂xi

= 0 (3.1)

• conservation of momentum (Navier-Stokes equation):

∂ui
∂t︸︷︷︸

temporal derivative

+
∂uiuj
∂xj︸ ︷︷ ︸

convection term

= − 1

ρ

∂p

∂xi︸ ︷︷ ︸
pressure gradient

+ ν
∂

2
ui

∂xj ∂xj︸ ︷︷ ︸
diffusion term

(3.2)

where ui is the velocity component in xi direction, p is the static pressure and ν represents the
kinematic viscosity of the fluid. The equations 3.1 and 3.2 form a closed set and are describing
all details of turbulent motion. In CFD generally three general approaches are used for tur-
bulence modelling. First, DNS where the equations are solved without any turbulence model.
Thus increasing the computational effort into excessive extends and making DNS not feasible
for practical applications. Second, RANS methods introduce a model for all scales of turbulent
motion which results in time-averaged fields. Last, in LES only small-scale turbulence is cap-
tured by models and larger motion is simulated. More on turbulence modelling can be found
in Section 3.5.
TheNavier-Stokes equation can be extended to account for additional momentum sources. This
could be small but negligible contributions from the viscous stress term, external body forces,
custom momentum sources or gravitational acceleration. In practice these additional sources
can be neglected for many flow situations.

3.2 Finite volume discretisation

In order to reduce the required effort to solve flow problems it is aimed only to retrieve the
solution on prescribed locations within the domain instead of all points in the continuous field.
A discretisation is performed to transform partial differential equations (Equation 3.1 and 3.2)
into a linear system of equations. The solution of the system of equations corresponds to the ori-
ginal solution in pre-determined locations in space and time. Any discretisation can be divided
into two parts: discretisation of the domain and discretisation of the equations.
The discretisation of the domain can be understood as numerical description of the domain
prescribing the locations in which the solution is obtained and defining the boundaries. The
domain is divided into a finite number of discrete parts, named cells or control volumes. The
time interval for time-dependent problems is split into a finite number of time steps. There are
three approaches commonly used for the discretisation of equations:

• finite element method (FEM),

3 THEORETICAL BACKGROUND 8

• finite difference method (FDM) and

• finite volume method (FVM).

The finite volume method, which is the basic principle of OpenFOAM, is based on the integral
form of the governing equations, which implies the conservation of mass and momentum at
the discrete level. In contrast to the finite element method the equations are solved in a fixed
Cartesian coordinate system and the cells can be of any polyhedral shape. Systems of partial
differential equations are solved separately with explicit coupling of the equations.
Amore detailed explanation of the finite volume discretisation has been written by Jasak (1996,
p. 73ff).

3.3 Solving the equations of fluid transport

The Equations 3.1 and 3.2 form a coupled system of equations which is almost impossible to
solve analytically and still hard to solve numerically. These partial differential equations couple
the main variables such as velocity and pressure to each other requiring the equations to be
solved simultaneously. Additionally the non-linear convection term increases the difficulty in
solving. Hence, a strong dependence on boundary conditions creates a different problem for
each flow situation. Therefore some approximations and simplifications such as the linear vis-
cosity law, which is already included in Equation 3.2, must be applied to make the problem
solvable. This gives then four equations for four unknowns in the case of incompressible New-
tonian fluids.
For solving these coupled system of non-linear partial differential equations different methods
have been proposed in the past. A lot of frequently used methods belong to the group of pro-
jections methods which attempt to decouple the system of equations and solving the equations
sequentially.

3.4 Projection methods

Projectionmethods are a class of procedures to solve theNavier-Stokes equation. Theywere ori-
ginally introduced in the context of numerical simulations of fluids by Chorin (1967). The key
advantage of projection methods is the decoupling of velocity and pressure which increases the
efficiency of the computations. The algorithm of projectionmethods is based on the decomposi-
tion of the vector into a divergence-free and a curl-free vector field (Helmholtz decomposition).
The method can be divided into two basic algorithm steps: First,in the predictor step, an in-
termediate velocity field is computed based on the momentum equation ignoring the pressure
gradient. Second, in the projection step, the intermediate velocity is projected onto divergence-
free space by using the pressure. Today solving algorithms based on the projection method can
be split into two groups. First the group of SIMPLE-related solvers to which SIMPLE and PISO
belong to and second the group of fractional step methods based on Chorin (1967).
In the following section the PISO method is introduced and afterwards a detailed explanation
of fractional step methods is given.

3 THEORETICAL BACKGROUND 9

3.4.1 The PISO method

The PISO (Pressure-Implicitwith Splitting ofOperators)method is one approach of a projection
method. It was developed and published by Issa (1986). It is an extension of the SIMPLE
algorithmwhich can deal with larger time steps and works more efficiently. The method can be
divided into three steps: one predictor and two corrector steps. The PISO algorithm is organised
in three steps:

• Momentum predictor. The momentum equation is solved with the pressure field from
the previous time step. This gives an approximation of the newvelocity field u∗i . In general
u∗i will not satisfy the zero-divergence condition.

• First corrector step. The predicted velocity u∗i is used to obtain the pressure field p∗. The
updated pressure field is used to solve for the u∗∗i field, which satisfies the zero-divergence
condition.

• Second corrector step. A new velocity field u∗∗∗i together with its corresponding pressure
field p∗∗ are computed similar to the first corrector step. Obviously additional corrector
steps can be introduced but the accuracy with which u∗∗∗i and p∗∗ approximate the exact
solution is sufficient for the most practical applications.

3.4.2 Fractional step methods with Runge-Kutta time scheme

Fractional step methods are based on the solving procedure proposed by Chorin (1967). Be-
cause of the absence of iterating steps such a solving algorithm is much easier to implement
compared to SIMPLE methods. The solving procedure can be roughly organised in the follow-
ing steps:

• Predictor step. The velocity field is advanced to a mid time step position by solving the
momentum equation while neglecting the pressure term. This is followed by an interme-
diate projection step which enforces the divergence-free property of the velocity field.

• Corrector step. The velocity field advances to the full time step position using the mid
time step estimates. The final projection ensures the divergence-free velocity field and
thus giving us the pressure field. Finally all fields advanced to the new time.

The cornerstone of projection methods is the Helmholtz decomposition. The decomposition is
the mathematical basis for decoupling velocity and pressure in incompressible flow problems.
It states that any vector field can be expressed as the sum of a divergence-free and a curl-free
part. The decomposition requires a pressure p that fulfils

ui = u∗i −
∆t

ρ

∂p

∂xi
(3.3)

where ∂u∗i
∂xi

̸= 0, ∂ui
∂xi

= 0 (Equation 3.1) and ϵijk
∂

2

∂xi∂xj
p = 0. Calculating the divergence of

Equation 3.3 reveals that the pressure p must be a solution of the Poisson’s equation

∂
2
p

∂xj∂xj
=

ρ

∆t

∂u∗i
∂xi

(3.4)

3 THEORETICAL BACKGROUND 10

For the discretisation in time different methods can be chosen. Possible candidates are Crank
Nicolson Schemes, Euler methods or schemes that follow the Runge-Kutta method. Runge
Kutta methods are commonly used in simulations of fluid flow and are available in different
orders of accuracy. The simplest and of lowest order Runge-Kutta method is also known as
forward Euler method. Explicit Runge-Kutta methods are often applied to solve any ordinary
differential equations numerically. In general Runge-Kutta methods can be written in the form

yn+1 = yn +∆t
s∑

i=1

biki (3.5)

with

ki = f

tn + ci∆t, yn +∆t

s∑
i,j=1

aijkj

 (3.6)

where aij, bi and ci are the coefficients from the corresponding Butcher tableau of the method.

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

The Butcher tableau of explicit methods is lower triangular. The tableau for the fourth order
Runge-Kutta method is given by

0 0
1
2

1
2 0

1
2 0 1

2 0

1 0 0 1 0
1
6

1
3

1
3

1
6

and for the third order method the coefficients are given by

0 0
1
2

1
2 0

1 −1 2 0
1
6

2
3

1
6

The solution procedure of the newly implemented Runge-Kutta fractional step algorithms is
illustrated as flowchart in Figure 3.1. The code implementation of the fractional step solver
with Runge-Kutta methods is handled in Section 4.

3 THEORETICAL BACKGROUND 11

Figure 3.1: Flow diagram of solvers with Runge-Kutta algorithm (only the main solving routine
is shown)

3.5 Large Eddy Simulation

The main principles of Large Eddy Simulation will be described briefly in this section. Com-
prehensive explanations of LES in hydraulic engineering can be found in Rodi, Constantinescu
and Stoesser (2013).
All numerical methods dealing with the solution of fluid flow problems start from Equation
3.1 and 3.2. This equations form a closed set of equations describing incompressible fluid flow
with all its fluctuations and turbulent motion. Direct numerical simulation (DNS) solves these
equations directly without introducing models. Although we solve for discretised fields this
method is not feasible for practical applications. Resolving eddies of all scales would be excess-
ive especially at high Reynolds number. Hence, this methods field of application is restricted
to research topics and low Reynolds numbers.
The opposite of DNS are Reynolds Average Navier Stokes (RANS) methods. Turbulent fluc-
tuations and eddies are not resolved in this method and averaged out over time by filters. But
several studies have shown that RANS methods are not able to reproduce complex flow situ-
ations such as the interaction between turbulence-dominated primary and secondary flow in
curved channels or large anisotropic structures like recirculation zones. Therefore the general-
ity of RANS methods is limited.
Results of RANS methods are time-averaged flow fields (flow quantities). As all fluctuations
and eddies are filtered out but are still of importance for turbulent flows, a model has to be
put in place. Such a model has to account for eddies of all scales and should be applicable to
all practical situations. There has been effort to develop a general purpose RANS turbulence
model over centuries but without any reliable result so far. This is caused by the wide range of
different features of larger and smaller eddies listed in Table 3.1.
Small eddies at sufficient high Reynolds numbers are generally more isotropic and universal,
hence they are easier to model. Whereas large scale turbulence depends on the geometry,

3 THEORETICAL BACKGROUND 12

Table 3.1: Differences between large eddies and small scale turbulence (adapted from Rodi,
Constantinescu and Stoesser, 2013, p. 15, Table 2.1)

Large eddies Small scale turbulence
• produced by mean flow • produced by large eddies
• depend on geometry and boundaries • universal
• ordered • random
• require deterministic description • can be modelled statistically
• inhomogeneous • homogeneous
• anisotropic • isotropic
• long-living and energetic • short living and non-energetic
• diffusive • dissipative

▶ difficult to model ▶ easier to model
▶ general model impossible ▶ general model possible

boundary conditions and body forces. This makes general models for all scale turbulence in
RANS methods dependent on the problem.
The essential idea of Large Eddy Simulation (LES) is the explicit computation of large scale
motion for each flow situation. Small eddies are captured by models and practice has shown
that simple models can be sufficient. Further the restriction to low Reynolds number problems
inherited from DNS is removed and allows for investigating the dynamics of highly turbulent
flows.

Figure 3.2: Concept of Large Eddy Simulation in context with energy content

The first step of the main principle of LES is the separation of the turbulent motion into large

3 THEORETICAL BACKGROUND 13

and small eddies. The large scales interact with and extract energy from the mean flow and
transfer energy in the energy cascade to smaller scales. The small scaleswithdrawkinetic energy
through dissipation. The scale separation should ideally occur in the spectral region of energy
transfer, so that all problem-dependent eddies are resolved and only the dissipative motion
must be modelled. Figure 3.2 illustrates the idea of scale separation in relation to the energy
content. In practice the problem size does not always allow for sufficient fine grids, hence LES
resolves as much motion as one can afford but the resolved eddies should contain most of the
energy.
In contrast to the time-averaging of RANS methods LES utilises spatial averaging or filtering to
remove fluctuations. There are generally two approaches available: implicit filtering which is
closely related to the volume balance approach of Schumann (1975) and explicit filtering which
was first proposed by Leonard (1974). As the latter is the more general method it is used here
to describe the process of filtering.
The flow quantities f are split into the resolved quantities f̄ and unresolved fluctuations f ′. For
explicit filtering a normalisedfilter functionwith filterwidth∆ is needed. Commonly usedfilter
functions are top-hat, Gaussian and spectral cut-off filter. The spectral cut-off works with Four-
ier transformation and removes all fluctuations above a specified wave number kcut-off, whereas
the other two filter lead to an energy spectrum illustrated as LES in Figure 3.2. Increasing the
filter width increases the amount of the removed fluctuations and filtered function becomes
smoother. Filtering the governing equations 3.1 and 3.2 leads to the following filtered equa-
tions:

• continuity equation:
∂ūi
∂xi

= 0 (3.7)

• Navier-Stokes equation:

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂
2
ūi

∂xj ∂xj
−

∂τ SGS
ij

∂xj
(3.8)

The non-linear convective term uiuj in the Navier-Stokes Equation 3.2 originally results in the
filtered uiuj. But wewant to solve for the filtered velocity ūi sowewant to express the convective
term as ūiūi. The difference

τ SGS
ij = uiuj − ūiūi (3.9)

represents the unresolved fluctuations which act like stresses and τ SGS
ij is therefore called subfil-

ter scale (SFS) stresses or more common subgrid scale (SGS) stresses. Detailed examination of
Equation 3.9 in combination with f = f̄ + f ′ shows three different terms within τ SGS

ij : Leonard
stresses, cross stresses and LES Reynolds stresses. As the entire term of τ SGS

ij appears in the
filtered Navier-Stokes Equation 3.8 it needs to be modelled. Such a model is called SGS model
and the particular one used in the present study is presented in Section 3.5.1.
With explicit filtering as described above the process of discretisation andfiltering are separated.
This allows for any filterwidth∆ larger than themesh size and results in a continuous smoothed
function f̄ . Hence, the solution obtained following Leonard’s approach is independent of the
discretisation.

3 THEORETICAL BACKGROUND 14

However, fundamental studies are so far the only field of application for explicit filtering. In
practice the filter width equals the mesh size and LES code does not contain any filter func-
tion. Instead the filtered Equations 3.7 and 3.8 are solved numerically on a certain grid. The
main principles of FVM show a close relation to top-hat filtering with the same filter width.
The quantities f are represented by the average over the control volume. As a consequence the
filtered function f̄ is no longer continuous. The scale separation depends now on the discret-
isation and therefore the obtained solution is dependent on the mesh and time-stepping. This
approach is called implicit filtering and is implemented in most of the available LES code.
Implicit filtering is closely related to Schumann’s approach, which starts from a finite volume
mesh and the original Equations 3.1 and 3.2. As filtering and Schumann’s approach are only
symbolically different the latter is not described in this thesis and everyone interested is referred
to relevant LES literature.
It should be mentioned here that OpenFOAM uses implicit top-hat filtering in LES and any
filtering or filter width is implemented for the use with SGS-models.

3.5.1 WALE turbulence model

As already mentioned above subgrid scale stresses arise in the process of filtering. The SGS-
stresses τ SGS

ij represent the effect of unresolved turbulence on the large-scale motion. This effect
is mainly dissipative. Therefore two different ideas exist to model SGS-stresses. One introduces
an explicit model for τ SGS

ij , the other withdraws energy through numerical dissipation by the
solving algorithm. The latter is called Implicit Large Eddy Simulation (ILES) and is not further
dealt with. The most common method in hydraulic engineering is the usage of explicit SGS-
models.
Such a model should withdraw the right amount of energy from the flow and should give a
physically realistic representation of the energy exchange within the resolved turbulent motion.
However, the most important interaction a SGS-model has to account for happens between the
largest subgrid scales and the smallest resolved scales. Furthermore, awell resolved Large Eddy
Simulation achieves energy conservation with a proper SGS-model.
Generally the SGS-stresses consist of an anisotropic component τij and an isotropic component.

τ SGS
ij = τij +

1

3
τ SGS
kk δij (3.10)

The isotropic part contains normal stresses which act like pressure and is therefore added to the
filtered pressure. This separation is convenient when relating τij to the gradients of the velocity
field including an eddy viscosity νt. The relationship for any eddy viscosity model is given
through

τij = −2νtS̄ij (3.11)

with
S̄ij =

1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(3.12)

which is the second invariant of the symmetric part of the velocity gradient tensor ḡij which is
defined as

ḡij =
∂ūi
∂xj

(3.13)

3 THEORETICAL BACKGROUND 15

.In consequence the determination of the eddy viscosity νt has become the main part for mod-
elling. Such a eddy viscosity model can be generally written in the form

νt = Cm∆
2OP (u, t) (3.14)

where Cm is the model constant, ∆ the characteristic subgrid length scale and OP an operator
of space and time which represents a characteristic turbulent velocity.
Themost popular SGS-model based on the eddyviscosity assumptionwas proposed by Smagor-
insky (1963) and different modified versions are available today. Because of some disadvant-
ages for the application in hydraulic engineering the WALE SGS-model is preferred in this
study.
TheWall Adapting Local Eddy viscosity (WALE)model was introduced byNicoud andDucros
(1999). It is based on a velocity gradient tensor invariant and is sensitive to the strain rate and
rotational rate of small turbulent structures. Furthermore it shows correct scaling of νt close to
the wall. The WALE model is described by the following equation:

νt = (Cw∆)2

(
Sd
ijS

d
ij

) 3
2

(
S̄ijS̄ij

) 5
2
+
(
Sd
ijS

d
ij

) 5
4

(3.15)

with the traceless symmetric part of the square of the velocity gradient tensor Sd
ij defined as

Sd
ij =

1

2

(
ḡ2ij + ḡ2ij

)
− 1

3
δijḡ

2
kk (3.16)

The model constant Cw was found through numerous separate investigations to suit best as
Cw = 0.325. This turbulence model is well suitable for complex geometries with structured or
unstructured grid. A good choice for the characteristic length scale∆would be∆ = 3

√
V where

V is the cell volume.

4 IMPLEMENTATION 16

4 Implementation

OpenFOAM provides itself a high-level language which allows the implementation of custom
applications, boundary conditions and much more with little effort. In order to speed up the
implementation process an existing solver (pisoFoam or pimpleFoam is recommended) is se-
lected as starting point. It is recommended to create an application directory within your
personal project directory ($FOAM_RUN). First of all the entire directory of pisoFoam is copied
from $FOAM_SOLVERS/incompressible/ to your application directory and is renamed to the
desired name (rk3fracsFoam and rk4fracsFoam respectively). It is highly recommended to
name the directory in the same way as your source file.
In the next step the ./Make/ folder is updated to the new solver. As neither header files nor
libraries outside of the current application directory are added the optionsfile stays untouched.
The filesfile has to be updated in the followingway tomatch our new solverwhere <APP_NAME>

is the specified application name.
<APP_NAME>.C

EXE = $(FOAM_USER_APPBIN)/<APP_NAME>

As it can be seen in Figure 3.1 some additional fields are needed for the computation. This fields
have to be initialised therefore the following entry is added to the Header file createFields.H

for each of the fields Uold, Uc and dU.
volVectorField <FIELD_NAME>
(

IOobject
(

”<FIELD_NAME>”,
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE

),
U

);

The next step in the sequence of the algorithm is the Initialisation of the Poisson’s matrix which
is implemented as the constant Laplacian operator in the pEqn.H file. This file contains the
following routine and is executed once before starting the iteration over time.
fvScalarMatrix pEqn
(

fvm::laplacian(p)
);
pEqn.setReference(pRefCell, pRefValue);

The following code snippet is executed multiple times at each time step and is therefore extrac-
ted from themain source file and included as header file. The routine defined in pCorrection.H

ensures the boundary conditions of ui, solves the Poisson’s equation and carries out the projec-
tion of the velocity into divergence-free space.

4 IMPLEMENTATION 17

U.correctBoundaryConditions();
solve(pEqn == fvc::div(U)/runTime.deltaT());
#include ”continuityErrs.H”
U = U - fvc::grad(p)*runTime.deltaT();
U.correctBoundaryConditions();

The above described implementation steps are universal to both implemented fractional step
solvers. The two fractional step solvers with Runge-Kutta method differ only in themain source
file (*.C).

4.1 rk4fracsFoam

The fractional stepmethodwith fourth order Runge-Kutta algorithm is implemented according
to the flow diagram shown in Figure 3.1 and with the corresponding values from the Butcher
tableau mentioned in Section 3.4.2. The rk4fracsFoam.C file is then modified by replacing the
pisoFoam related code with the code for the new solver. At a first step the following line is
added prior to the while-loop.

#include ”pEqn.H”

It includes the code written in the pEqn.H file which is described above and executed once in
the solving procedure. As the last step the PISO-related code within the while-loop is deleted
and replaced by the following code which is the kernel of the rk4fracsFoam solver.

Uold=U; Uc=U;

phi = (fvc::interpolate(U) & mesh.Sf());
dU = runTime.deltaT()*(fvc::laplacian(turbulence->nuEff(),U) - fvc::div(phi,U));
Uc = Uc + (1.0/6.0)*dU; U = Uold + 0.5*dU;
#include ”pCorrection.H”

phi = (fvc::interpolate(U) & mesh.Sf());
dU = runTime.deltaT()*(fvc::laplacian(turbulence->nuEff(),U) - fvc::div(phi,U));
Uc = Uc + (1.0/3.0)*dU; U = Uold + 0.5*dU;
#include ”pCorrection.H”

phi = (fvc::interpolate(U) & mesh.Sf());
dU = runTime.deltaT()*(fvc::laplacian(turbulence->nuEff(),U) - fvc::div(phi,U));
Uc = Uc + (1.0/3.0)*dU; U = Uold + dU;
#include ”pCorrection.H”

phi = (fvc::interpolate(U) & mesh.Sf());
dU = runTime.deltaT()*(fvc::laplacian(turbulence->nuEff(),U) - fvc::div(phi,U));
Uc = Uc + (1.0/6.0)*dU; U = Uc;
#include ”pCorrection.H”

phi = (fvc::interpolate(U) & mesh.Sf());

turbulence->correct();

Finally the new solver is ready to be compiled using wmake. However, a detailed explanation
how to compile OpenFOAM source code can be found on cfd.direct/openfoam/user-guide/ in
Chapter 3.2 – Compiling applications & libraries.

cfd.direct/openfoam/user-guide/

4 IMPLEMENTATION 18

4.2 rk3fracsFoam

The fractional step solver with third order Runge-Kutta method is implemented in the same
way as the rk4fracsFoam solver. Therefore the rk4fracsFoam-related code is replaced by the
specific code for the third order method and the file is itself renamed to rk3fracsFoam.C.

Uold=U; Uc=U;

phi = (fvc::interpolate(U) & mesh.Sf());
dU = runTime.deltaT()*(fvc::laplacian(turbulence->nuEff(),U) - fvc::div(phi,U));
Uc = Uc + (1.0/6.0)*dU; U = Uold + 0.5*dU;
#include ”pCorrection.H”

phi = (fvc::interpolate(U) & mesh.Sf());
dU = runTime.deltaT()*(fvc::laplacian(turbulence->nuEff(),U) - fvc::div(phi,U));
Uc = Uc + (2.0/3.0)*dU; U = Uold + 2.0*(Uold - U) + 2.0*dU;
#include ”pCorrection.H”

phi = (fvc::interpolate(U) & mesh.Sf());
dU = runTime.deltaT()*(fvc::laplacian(turbulence->nuEff(),U) - fvc::div(phi,U));
Uc = Uc + (1.0/6.0)*dU; U = Uc;
#include ”pCorrection.H”

phi = (fvc::interpolate(U) & mesh.Sf());

turbulence->correct();

5 VALIDATION 19

5 Validation

For the validation of the fractional step solution algorithmswith Runge-Kuttamethod (Sections
3 and 4) two classical cases of large eddy simulations are set up and a series of numerical sim-
ulations is carried out. The first case investigates turbulent channel flow and is validated with
DNS data from the experiments of Moser, Kim and Mansour (1999). The second case deals
with turbulent flow over a backward facing step for which validation data was created in DNS
by Le, Moin and Kim (1997). The numerical simulations are performed with OpenFOAM-5.x.

5.1 Case one – turbulent channel flow

This case deals with turbulent flow in a straight channel. It follows the direct numerical simu-
lations performed by Moser, Kim and Mansour (1999). This flow situation has been simulated
by several others at different Reynolds numbers. The published data retrieved from the exper-
iments by Moser, Kim and Mansour (1999) is used to validate the fractional step solvers. The
flow simulations are carried out at Reynolds numberReτ = uτδ/ν = 180, 395 and 590, where uτ
is the friction velocity, δ is the channel half-width and ν is the kinematic viscosity. This case is
included as tutorial in OpenFOAM at Reτ = 395. This tutorial case channel395 is used as basis
for the simulations. The flow computation with PISO algorithm at Reτ = 395 is identical to this
tutorial case, however the channel length is altered and it uses a different grid resolution.

5.1.1 Computational domain

The domain is a simple rectangular channel with the size of 5δ × 2δ × 2δ, where δ represents
the channel half width. The length of the domain is altered in comparison to channel395 al-
lowing the mapped boundary inlet condition to be placed. The domain is illustrated in Figure
5.1 showing the reference coordinate system, dimensions and boundaries. The domain is dis-
cretised using the block grid method creating an unstructured mesh.

Figure 5.1: Geometry and dimensions of the channel domain

In a first step a grid refinement study is carried out for three different grid resolutions at Reτ =

395 and 590. Table 5.1 lists the different models and the used resolution. Therefore Li repres-
ents the size of the domain and Ni is the number of elements. The computational grid is kept
unchanged for all simulations, however it is possible to adapt the mesh according to the flow

5 VALIDATION 20

situation. Characteristic simulation parameters of all conducted simulations are listed in Table
5.2.

Table 5.1: Model parameters for the LES of turbulent channel flow

Model Lx Lz Nx ×Ny ×Nz

M0.10
5δ 2δ

50× 50× 30

M0.07 75× 76× 45

M0.05 100× 100× 60

Figures 5.2 and 5.3 show the mean streamwise velocity profile u+ = u/uτ retrieved from LES
with the different models. The LES profiles are compared to the profiles of direct numerical
simulation byMoser, Kim andMansour (1999). The depicted profiles show a good convergence
of the grid refinement. The LES velocity profile are at lower Reynolds number already close
to the DNS profile whereas at the higher Reynolds number a larger difference is seen. The
difference has different sources: Errors introduced by the numerical model as well as errors
introduced by the way of computation of the velocity profile as uτ is calculated numerically
within the first cell off the wall. Additionally it is mentioned that the bulk velocity for Reτ is
given within the OpenFOAM tutorial case but has to be found in an iterative procedure for the
other cases.

1 10 100
y+

0

5

10

15

20

25

u+

DNS
LES-RK3 - M0.10
LES-RK3 - M0.07
LES-RK3 - M0.05

Figure 5.2: Mean velocity profile in wall co-
ordinates for channel flow at Reτ = 395 with
grid refinement

1 10 100
y+

0

5

10

15

20

25

u+

DNS
LES-RK3 - M0.10
LES-RK3 - M0.07
LES-RK3 - M0.05

Figure 5.3: Mean velocity profile in wall co-
ordinates for channel flow at Reτ = 590 with
grid refinement

5 VALIDATION 21

0 25 50 75 100 125
y+

0

1

2

3

4
u′

+
,v
′+
,w

′+

0.0 0.2 0.4 0.6 0.8 1.0
y
δ

0

1

2

3

4
v′+′-′DNS
v′+′-′LES-RK3′-′M0.10
v′+′-′LES-RK3′-′M0.07
v′+′-′LES-RK3′-′M0.05
w′+′-′DNS
w′+′-′LES-RK3′-′M0.10
w′+′-′LES-RK3′-′M0.07
w′+′-′LES-RK3′-′M0.05

u′+′-′DNS
u′+′-′LES-RK3′-′M0.10
u′+′-′LES-RK3′-′M0.07
u′+′-′LES-RK3′-′M0.05

Figure 5.4: Turbulence intensity profiles in three directions u′+, v′+, w′+ of fully developed chan-
nel flow at Reτ = 395 for different mesh resolutions

Figures 5.4 and 5.5 illustrate the profiles of turbulence intensity inwall-normal coordinates. The
graphs show a small overestimation of the intensity u′+ close to the wall whereas the turbulence
intensity in flow direction tend to be underestimated in the region of the main flow. It can be
seen that for Reτ = 395 a good match is achieved where the model for Reτ = 590 shows higher
overestimation near the wall. The profiles for the turbulence intensity v′+ and w′+ in flow-
normal direction show a good overall match to DNS data.

0 25 50 75 100 125
y+

0

1

2

3

4

u′
+
,v
′+
,w

′+

0.0 0.2 0.4 0.6 0.8 1.0
y
δ

0

1

2

3

4
v′+′-′DNS
v′+′-′LES-RK3′-′M0.10
v′+′-′LES-RK3′-′M0.07
v′+′-′LES-RK3′-′M0.05
w′+′-′DNS
w′+′-′LES-RK3′-′M0.10
w′+′-′LES-RK3′-′M0.07
w′+′-′LES-RK3′-′M0.05

u′+′-′DNS
u′+′-′LES-RK3′-′M0.10
u′+′-′LES-RK3′-′M0.07
u′+′-′LES-RK3′-′M0.05

Figure 5.5: Turbulence intensity profiles in three directions u′+, v′+, w′+ of fully developed chan-
nel flow at Reτ = 590 for different mesh resolutions

5 VALIDATION 22

0 25 50 75 100 125
y+

0.0

0.2

0.4

0.6

0.8

1.0
−⟨

u′
v′
⟩⟩u

2 τ

0.0 0.2 0.4 0.6 0.8 1.0
y
τ

0.0

0.2

0.4

0.6

0.8

1.0
DNS
LES-RK3 - M0.10
LES-RK3 - M0.07
LES-RK3 - M0.05

Figure 5.6: Normalised turbulent shear stress profile ⟨u′v′⟩/u2τ of fully developed channel flow
at Reτ = 395 for different mesh resolutions

The turbulent shear stress profile ⟨u′v′⟩/u2τ are depicted in Figure 5.6 and 5.7. For both cases
the results show a good match with the DNS data although some little underestimation is
present near the wall. In this case the Reτ = 590 situation shows less difference than the flow
at Reτ = 395. In comparison to the turbulent intensity profiles above the Reynolds shear stress
profile show less deviation from the DNS data and the difference between the grid resolutions
is significant smaller.

0 25 50 75 100 125
y+

0.0

0.2

0.4

0.6

0.8

1.0

−⟨
u′
v′
⟩⟩u

2 τ

0.0 0.2 0.4 0.6 0.8 1.0
y
τ

0.0

0.2

0.4

0.6

0.8

1.0
DNS
LES-RK3 - M0.10
LES-RK3 - M0.07
LES-RK3 - M0.05

Figure 5.7: Normalised turbulent shear stress profile ⟨u′v′⟩/u2τ of fully developed channel flow
at Reτ = 590 for different mesh resolutions

In conclusion the mesh refinement study shows good model convergence of both investigated
cases. However, further refinement is not studied in the context of this study as computational
resources are limited and the required time for solving increases even more with further refine-
ment.

5 VALIDATION 23

The volume of simulations and their computational effort results in the selection ofmodelM0.07
to run all different simulations on. The introduced model error is found to be within acceptable
limits. Furthermore, model M0.07 fulfils the commonly agreed minimum requirement on the
near wall resolution of y+ ≈ 1 for LES. The simulation parameters listed in Table 5.2 show that
y+ results close to one for all three cases. Additionally Table 5.2 list more simulation parameters
of all committed simulations which are of interest.
Model M0.07 consists of 256 500 cells and six boundary faces. The directional number of ele-
ments is show in Table 5.1. To resolve the larger gradients near the wall boundary the cell sizes
increase from the wall to the channel mid. The expansion ratio, defined as the ratio between
the size of largest cell in the middle of the channel and the smallest wall-bounding cell, is set to
10 for the cases with Reynolds number Reτ = 180 and 395. Accounting for the higher turbulent
flow at Reτ = 590 this expansion ratio is increased to 20, thus reducing the distance between
the wall and the first cell center.

Table 5.2: Simulation parameters for all Large Eddy Simulations of turbulent channel flow

Reτ

nom.
Model Solver

∆x+ ∆z+ y+ Reτ

180

M0.10
RK3 17.89 11.93 0.90 178.90
RK4 17.95 11.97 0.90 179.49

M0.07
RK3 11.99 8.00 0.60 179.90
RK4 12.10 8.07 0.60 181.52
PISO 12.00 8.00 0.60 179.94

M0.05
RK3 8.99 6.00 0.46 179.89
RK4 9.04 6.03 0.46 180.86

395

M0.10
RK3 34.70 23.13 1.75 347.01
RK4 35.48 23.65 1.79 354.82

M0.07
RK3 24.59 16.40 1.23 368.89
RK4 24.76 16.50 1.24 371.33
PISO 24.34 16.23 1.22 365.09

M0.05
RK3 18.74 12.49 0.95 374.79
RK4 18.76 12.50 0.95 375.11

590

M0.10
RK3 52.27 34.84 1.60 522.66
RK4 52.34 34.90 1.61 523.43

M0.07
RK3 37.49 24.99 1.15 562.32
RK4 37.57 25.04 1.15 563.50
PISO 37.12 24.75 1.14 556.87

M0.05
RK3 28.92 19.28 0.90 578.30
RK4 29.02 19.35 0.90 580.40

5 VALIDATION 24

5.1.2 Boundary and initial conditions

The model boundaries are divided into top and bottom wall, the sides as periodic boundary,
inlet and outlet. The outlet is modelled as a zero-pressure outlet. The walls are represented
by a no-slip boundary condition setting the velocity magnitude to zero. The cyclic boundary
condition assigned to the sides of the model treats the faces as they are physically connected. It
allows for the elimination of the influence of any other boundary condition. The inlet boundary
condition maps the velocity field from a specified location inside the domain onto the face. The
velocity field is scaled automatically at each time step to match an average velocity. Hence, the
pressure gradient at the inlet and walls is fixed to zero.
Each simulation is initialised with the pressure and velocity field from a fully developed tur-
bulent channel flow at the specific Reynolds number which is obtained from a precursor sim-
ulation. This ensures identical initial conditions for all LES of the same flow characteristics
and that mean flow quantities are computed of fully developed turbulent flow. Furthermore,
this reduces the required overall time to commit the simulations and, more important, avoids
the case in which no turbulence develops from a uniform initial condition. This precursor LES
simulates about 230 to 2 500 flow throughs at constant time steps.
The main LES are conducted at a maximal Courant number of 0.5 to 0.6 with automatic time
step adjustment. The simulation covers about 110 to 400 flow throughs and the computation of
mean flow quantities starts after about 10 to 40 flow throughs.

5.1.3 Results

This section is dedicated to the presentation and discussion of the results obtained from the LES
of turbulent channel flow. The results are presented following from high to low friction Reyn-
olds number Reτ . The results of the custom-built solver rk3fracsFoam are labelled as ‘RK3’
and similarly results obtained with rk4fracsFoam are labelled as ‘RK4’. The newly implemen-
ted solvers are validated with DNS data published by Moser, Kim and Mansour (1999) which
is available online (turbulence.ices.texas.edu/MKM_1999.html). Additionally the data is com-
pared to results of the same model computed with the already implemented PISO algorithm of
OpenFOAM.
All values presented in this section are based on the resolved quantities f̄ . For simplification
the overbar notation is dropped in this section, i.e. u+ representing ū+. The results are shown
either as function of wall coordinates y+ or global coordinates y/δ.
The normalised mean streamwise velocity profile u+ is plotted in Figure 5.8 against logarithmic
wall coordinates. The few computational points close to the wall show good agreement with
DNS results up to y+ ≈ 10. With increasingwall distance the overestimation increases and stays
approximately constant from y+ ≈ 50 on.
The overestimation may have a number of different causes. At first, as Table 5.2 shows, the
friction Reynolds number is under-predicted by the simulations. AdditionallyReτ is calculated
linearly between the wall and the first cell center, thus creating a significant source of error
because y+ and u+ are strongly correlated to Reτ . Second, as mentioned in Section 5.1.1 the
bulk velocity has to be approximated because the value applied to the DNS is not available.
Numerical schemes used for the spatial approximation and interpolation are another important

turbulence.ices.texas.edu/MKM_1999.html

5 VALIDATION 25

1 5 10 50 100 500
y+

0

5

10

15

20

25

u+

DNS
LES-RK3
LES-RK4
LES-PISO

Figure 5.8: Mean streamwise velocity profile for turbulent channel flow at Reτ = 590

source of error. The Figures in the Section about the grid refinement study show that more
refinement is needed to obtain a better estimation of the values. In context of solver validation
the grid resolution is found sufficient enough. The comparison with the results obtained with
the well established PISO solver shows only little difference. It is discovered that the results
obtained by RK3 and RK4 can hardly be distinguished because they almost perfectly match
each other.
The normalised turbulence intensity profiles in Figure 5.9 show a good match in wall-normal
and flow-normal direction with regions of small over- and underestimation. u′+ is overestim-
ated in vicinity of the wall by about 20 % and underestimated in the other region of the flow.
The graphs reveal that the new solvers’s underestimation of turbulence intensity is less than the
existing PISO algorithm shows. However, all solvers show very good agreement up to y+ = 10.

0 25 50 75 100 125
y+

0

1

2

3

4

u′
+
,v
′+
,w

′+

0.0 0.2 0.4 0.6 0.8 1.0
y
δ

0

1

2

3

4
v′+′-′DNS
v′+′-′LES-RK3
v′+′-′LES-RK4
v′+′-′PISO
w′+′-′DNS
w′+′-′LES-RK3
w′+′-′LES-RK4
w′+′-′PISO

u′+′-′DNS
u′+′-′LES-RK3
u′+′-′LES-RK4
u′+′-′PISO

Figure 5.9: Turbulence intensity profiles for turbulent channel flow at Reτ = 590

The graph of normalised turbulent shear stress depicted in Figure 5.10 shows little difference
between the simulations. The results of LES obtained by PISO and the RK-solvers are in good

5 VALIDATION 26

agreement with the DNS data across the complete range of y+.

0 25 50 75 100 125
y+

0.0

0.2

0.4

0.6

0.8

1.0

−⟨
u′
v′
⟩′u

2 τ

0.0 0.2 0.4 0.6 0.8 1.0
y
τ

0.0

0.2

0.4

0.6

0.8

1.0
DNS
LES-RK3
LES-RK4
PISO

Figure 5.10: Turbulent shear stress profile for turbulent channel flow at Reτ = 590

As illustrated in Figures 5.8, 5.9 and 5.10 the results obtained by the rk3fracsFoam solver and
the rk4fracsFoam solver hardly differ. In consequence the results are stated to be equal and
the RK4 result is omitted in the following graphs as they provide no additional value.

1 5 10 50 100 500
y+

0

5

10

15

20

25

u+

DNS
LES-RK3
LES-PISO

Figure 5.11: Mean streamwise velocity profile for turbulent channel flow at Reτ = 395

Figure 5.11 illustrates the normalised streamwise velocity profile u+ for the case Reτ = 395. In
this case the velocity profile matches better the data from Moser, Kim and Mansour (1999). As
the bulk velocity is retrieved via the channel395 tutorial packagedwithinOpenFOAM the over-
estimation of the streamwise velocity is reduced und a goodmatch of the DNS data is achieved.
Amesh refinement towards DNS resolution will finally match the data. As in the previous case
the similarity of the results of PISO and RK-solvers is present also in this case.
The corresponding profiles of turbulence intensity are drawn in Figure 5.12. The over-prediction
of the streamwise turbulence intensity u′+ is reduced compared to the previous case. As it illus-
trated in the right graph of Figure 5.12 the region of overestimation, respective underestimation

5 VALIDATION 27

of u′+ remains the same as at Reτ = 590. However, the intensity in wall-normal and flow-
normal direction (v′+, w′+) tend to be under-predicted in LES. The simulations parameters in
Table 5.2 reveal that the friction Reynolds number is underestimated by a remarkable amount.

0 25 50 75 100 125
y+

0

1

2

3

4

u′
+
,v
′+
,w

′+

0.0 0.2 0.4 0.6 0.8 1.0
y
δ

0

1

2

3

4
u′+′-′DNS
u′+′-′LES-RK3
u′+′-′PISO
v′+′-′DNS
v′+′-′LES-RK3
v′+′-′PISO
w′+′-′DNS
w′+′-′LES-RK3
w′+′-′PISO

Figure 5.12: Turbulence intensity profiles for turbulent channel flow at Reτ = 395

The profile of turbulent shear stresses is slightly underestimated near thewall by the Large Eddy
Simulations. It can be discovered in Figure 5.13 that the under-prediction of PISO is reduced
compared to RK-solvers. Furthermore LES is capable of producing a good qualitative and also
a fair quantitative approximation of the turbulent shear stresses.

0 25 50 75 100 125
y+

0.0

0.2

0.4

0.6

0.8

1.0

−⟨
u′
v′
⟩′u

2 τ

0.0 0.2 0.4 0.6 0.8 1.0
y
τ

0.0

0.2

0.4

0.6

0.8

1.0
DNS
LES-RK3
PISO

Figure 5.13: Turbulent shear stress profile for turbulent channel flow at Reτ = 395

The case of turbulent channel flow atReτ = 180 shows amuch better prediction of the Reynolds
number. For all models and the three used solving algorithms the calculated value for Reτ

results very close to the nominal value. However, this case can not be fully taken into account
because this flow problem is situated close to the laminar-turbulent limit and turbulence has
less effect on the flow. The mean velocity profile illustrated in Figure 5.14 reveals a very good

5 VALIDATION 28

agreement of the LES with DNS and only minor differences between the solvers and DNS are
seen.

1 5 10 50 100 500
y+

0

5

10

15

20

25

u+

DNS
LES-RK3
LES-PISO

Figure 5.14: Mean streamwise velocity profile for turbulent channel flow at Reτ = 180

The resulting turbulence intensity profiles for Reτ = 180 depicted in Figure 5.15 show a very
good match of the LES to DNS. In this case u′+, v′+ and w′+ are qualitative and quantitative
quite good approximations. The results of PISO and the RK-solvers can hardly be visually dis-
tinguished proving the results to be identical, although some minor differences can be seen in
the right image of Figure 5.15.

0 25 50 75 100 125
y+

0

1

2

3

4

u′
+
,v
′+
,w

′+

0.0 0.2 0.4 0.6 0.8 1.0
y
δ

0

1

2

3

4
u′+′-′DNS
u′+′-′LES-RK3
u′+′-′PISO
v′+′-′DNS
v′+′-′LES-RK3
v′+′-′PISO
w′+′-′DNS
w′+′-′LES-RK3
w′+′-′PISO

Figure 5.15: Turbulence intensity profile for turbulent channel flow at Reτ = 180

The turbulent shear stress profile in Figure 5.16 shows that the difference between the Large
Eddy Simulations and theDirectNumerical Simulation is decreased further compared to higher
Reynolds numbers. Above y+ ≈ 75 the profiles perfectlymatch each other and closer to thewall
only minor differences are present.

5 VALIDATION 29

0 25 50 75 100 125
y+

0.0

0.2

0.4

0.6

0.8

1.0
−⟨

u′
v′
⟩′u

2 τ

0.0 0.2 0.4 0.6 0.8 1.0
y
τ

0.0

0.2

0.4

0.6

0.8

1.0
DNS
LES-RK3
PISO

Figure 5.16: Turbulent shear stress profile for turbulent channel flow at Reτ = 180

Figures 5.17 to 5.19 show contour plot of the instantaneous velocitymagnitude |u+| for different
friction Reynolds numberReτ . The left image shows the streamwise distribution of the velocity
field in the XY-plane in the centre of the channel. The flow direction is from left to right. The
right part of the figures illustrates the spanwise distribution of the velocities located as ZY-
plane in the middle of the channel. The view is therefore in flow direction. For better visual
comparison the colour scale and contours are kept the same for all three figures.

Figure 5.17: Contours of instantaneous velocity magnitude |u+| at Reτ = 180

The flow at Reτ = 180 depicted in Figure 5.17 shows little turbulent structures and a relatively
small velocity gradient at the wall. In Figure 5.18 which depicts the velocity field at Reτ = 395

more turbulent structures are visible and the gradient is significantly increased. The velocity
field in Figure 5.19 shows numerous eddies and a high velocity gradient at the wall.

5 VALIDATION 30

Figure 5.18: Contours of instantaneous velocity magnitude |u+| at Reτ = 395

Figure 5.19: Contours of instantaneous velocity magnitude |u+| at Reτ = 590

5 VALIDATION 31

5.2 Case two – backward-facing step

This second case investigates turbulent flow over a backward-facing step which is also seen as
sudden expansion of the channel. The problem definition is taken from the direct numerical
simulations by Le, Moin and Kim (1997). This flow situation has been simulated by several
others in different derivations and for different purposes. The published data from the sim-
ulations carried out by Le, Moin and Kim (1997) and experimental data created by Jovic and
Driver (1994) are used for the validation. The flow simulations are carried out at Reynolds
number Re h = u 0h/ν = 5100 with step height h and u0 as the mean inlet free stream velocity.
The study is based on an expansion ratio of 1.20.

5.2.1 Computational domain

Thedomain is describes as rectangular channel 4hwide and in total 30h in length. The schematic
view of the computational domain is illustrated in Figure 5.20 showing the dimensions, the
reference coordinate system and the boundary faces. The inlet section is 10h long andmeasures
5h in height. The expanded section measures 20h in length and the height is 6h. The geometric
discretisation of themodel was developedwithin the process of case set-up. Themodel consists
of 854 810 cells and seven faces forming the boundary of the domain.

Figure 5.20: Geometry and dimension of the backward-facing step flow domain

At the inlet section the mesh size is uniform in x and z-direction, in wall-normal direction the
cell size reduces closer to the wall. In the expanded section the streamwise cell size is lowered
at the step and increases over a part of the section and is uniform afterwards. The spanwise
uniform cell size in z-direction is continued from the inlet section. The wall-normal cell size
distribution is taken from the inlet section and projected to the end of the channel and another
block of vertical refinement is added in the expansion region. The dimensionless grid spacing is
shown in Table 5.3. The values are calculated based on the inlet friction velocity uτ0 in the inlet
section. ∆y+ is denoting the size of the first cell at the wall and the first value being calculated
in the inlet section and the second value calculated in the expanded section of the channel.

5 VALIDATION 32

Table 5.3: Dimensionless grid spacings

min∆x+ max∆x+ ∆y+1 ∆y+2 ∆z+

1.7 27.6 2.0 1.4 22.3

Figure 5.21 illustrates the mesh resolution and position of the first computational point off the
wall in dimensionless coordinates calculated based on the mean wall shear stress in the expan-
ded section. ∆x+ represents the distance between the centres of neighbouring cells. Values of
y+ result below 1.5, the maximum dimensionless grid spacing in z-direction ∆z+ is about 19
and the maximum in x-direction ∆x+ results about 23.

0 2 4 6 8 10 12 14 16 18
x/h

0

2

4

6

8

10

12

14

16

18

20

22

24

Δx
Δ
,y

Δ
,Δ

zΔ

LES-RK3
LES-RK4

Δx Δ

y Δ

Δz Δ

Figure 5.21: Mesh resolution∆x+, y+ and∆z+ in dimensionless wall coordinates in the expan-
ded section of the channel

5.2.2 Boundary and initial conditions

The model boundaries are divided into top and bottom wall, the sides, two inlet boundaries
and the outlet. The outlet is modelled as zero-pressure outlet. At the bottom wall the no-slip
condition is applied setting all velocity components to zero. The top wall is used as symmetry
plane. The cyclic boundary condition is applied to the sides of the domain virtually connecting
them. As the original study by Le, Moin and Kim (1997) uses a flat-plate turbulent boundary
layer velocity profile at the inlet this boundary is divided into two parts as shown in Figure 5.20.
This step allows the reproduction of the inlet velocity profile at x/h = −3.0with already imple-
mented boundary conditions ofOpenFOAM.The upper part of the inlet gives a uniformvelocity
field with u = u0. Furthermore the lower part is equipped with a mapped velocity boundary
condition. This maps the velocity field from x/h = −2.0 on the inlet and scales it according a
specified average. Figure 5.22 below shows the inlet velocity profile at x/h = −3.0 comparing
the profile of DNS, Experiment and LES which is carried out with the new solving algorithms.

5 VALIDATION 33

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
u/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

Figure 5.22: Mean streamwise inlet velo-
city profile at x/h = -3.0

It shows that a close match of the condition is
achieved without implementing the specified ve-
locity profile as boundary condition in Open-
FOAM. The Large Eddy Simulations with Runge-
Kutta fractional step solvers are initialised with
the resulting pressure and velocity field of a pre-
cursor simulation. Thus guaranteeing a fully de-
veloped turbulent flow for the calculation ofmean
quantities and identical initial conditions for all
simulations. Then the flow is simulated for a total
time of approximately 4 000 h/u0 at constant time
steps at ∆t ≈ 0.0039 h/u0. The time for simulat-
ing the initialisation and allowing the initial tran-
sients to pass is not included in this total time. The
averaged flow quantities are calculated based on
the resulting fields at each time step.

5.2.3 Results

In this section the results of the study of turbulent flow over a backward-facing step are presen-
ted and discussed. Similar to the previous case of channel flow the results computed with
rk3fracsFoam are labelled as ‘RK3’ and rk4fracsFoam as ‘RK4’ respectively. The results of
these two solving algorithms are validated with results of the direct numerical simulation by
Le,Moin andKim (1997) and additionally comparedwith experimental data published by Jovic
and Driver (1994).
All results of Large Eddy Simulations in this section are resolved quantities. Furthermore, as it
is dealt with averaged flow quantities the notation is simplified, i.e. ⟨ū⟩ being represented by u.
The results are shown as function of global coordinates. The graphs are plotted in a way that
the coordinates follow the instinctive direction, y/h being oriented vertically and x/h oriented
horizontally.
As a first measure for comparison the reattachment lengthXr is calculated based on the location
of zero wall shear stress τw. Based on the LES results the reattachment length is calculated with
x/h = 6.04 to 6.10. Le, Moin and Kim (1997) calculated a mean reattachment length of 6.28h
and the measurements of Jovic and Driver (1994) vary between 6.0h and 6.1h. Further the skin
friction coefficient is compared. The normalised friction coefficientCf is calculated as following:

Cf =
2τw
ρu20

As illustrated in Figure 5.23 the wall shear stress, respectively the friction coefficient computed
by LES is matching the experimental and DNS data quite well. The comparison with available
data and Figure 10 in Le, Moin and Kim (1997) confirms good agreement although there is
some quantitative underestimation by the LES.

5 VALIDATION 34

0 2 4 6 8 10 12 14 16 18
x/h

−4

−3

−2

−1

0

1

2

3

4
C

f
×10−3

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

Figure 5.23: Comparison of the skin friction coefficient Cf between LES and literature

Figure 5.24 shows the streamlines of the mean flow. The primary and secondary vortex are
clearly identifiable in the figure. Additionally a third small corner recirculation is present in the
corner which can hardly be seen in the image. The mean flow field retrieved by DNS shows
very similar vortex structures.

Figure 5.24: Streamlines of the averaged flow, reattachment length Xr = 6.04h

Figure 5.25: Contour plot of the time-averaged streamwise velocity u/u0

Figure 5.25 shows the contour plot of the mean streamwise velocity u/u0. The reduction of
velocity due to the channel expansion can be seen in the upper part of the domain. Close to

5 VALIDATION 35

the bottomwall the velocity gradient is increased and illustrating the turbulent boundary layer.
The blue coloured area after the step indicates the region of recirculation and low velocities.

Figure 5.26: Contours of the instantaneous streamwise velocity u/u0 at equally spaced instants

Figure 5.26 shows the normalised instantaneous velocity field in flow direction at different
points in time. The time is increased from top to bottom between the consecutive images by

5 VALIDATION 36

∆t = 2.363 h/u0. The turbulent boundary layer is clearly visible and reaches up to about y/h =
2 into the flow. Still some influence of the turbulent layer can be seen up to y/h = 4. The main
flow has only little turbulent motion and is mostly uniform. The consecutive images show the
propagation and the development of the different turbulent structures.

Figure 5.27: Contours of the instantaneous wall-normal velocity v/u0 at equally spaced instants

5 VALIDATION 37

In Figure 5.27 the normalised instantaneous wall-normal velocity is illustrated. The time differ-
ence between consecutive images is 2.363 h/u0. As themagnitude of the velocity in wall-normal
direction is much lower than in streamwise direction the turbulent structures can be identified
more clearly. As in Figure 5.26 the turbulent boundary layer can be distinguished well from the
uniform main flow. The turbulent boundary layer reaches up to about y/h = 2.
The contours of the mean pressure (p− p0) /

(
ρu20

)
are illustrated in Figure 5.28. The lowest

pressure in the field is located close to the center of the primary vortex caused by the expansion
of the channel. The agreement with Figure 13 in Le, Moin and Kim (1997) is confirmed by
visual comparison.

Figure 5.28: Contours of normalised mean pressure

The r.m.s. pressure fluctuations
√
p′2/

(
ρu20

)
are shown in Figure 5.29. The peak values are loc-

ated along the dividing streamline. Influences of the boundary conditions are visible at the inlet
and outlet of the domain. Compared to Le, Moin and Kim (1997) the magnitude of pressure
fluctuations is increased to DNS, however, the qualitative distribution is matching well.

Figure 5.29: Contour plot of mean pressure fluctuations

Figure 5.30 shows contours of the turbulent kinetic energy which is calculated by

k =
1

2

(
u′2 + v′2 +w′2)

The quantities are normalised by the square of the free stream inlet velocity u0. The highest
values are found along the diving stream line between the normal flow and the recirculation
area. Close to the outlet boundary some influence of the condition applied there can be found
in the contour plot.

5 VALIDATION 38

Figure 5.30: Contour plot of mean turbulent kinetic energy k/u20

The following figures illustrate selected flow quantities in specified locations. The locations at
which the results are extracted are shown in Figure 5.31. The profile at x/h = -3.0 is used for the
calibration and validation of the inlet condition and the velocity profile is shown in Figure 5.22.
The result of the other four profiles at x/h = 4.0, 6.0, 10.0 and 19.0 are shown on the next pages.

Figure 5.31: Profile locations

−2.0 −1.5 −1.0 −0.5 0.0
z /h

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R i
i

Ruu

Rvv

Rww

−2.0 −1.5 −1.0 −0.5 0.0
z /h

−2.0 −1.5 −1.0 −0.5 0.0
z /h

Figure 5.32: Spanwise autocorrelation coefficients at selected locations in the flow sampled over
about 300 h/u0

The graphs in Figure 5.32 show the autocorrelation for the three velocity components at three
selected locations in the flow. The data is sampled at the profiles at x/h= 4, 6 and 10 in a distance
of y/h = 1 and shown from left to right.

5 VALIDATION 39

Figure 5.33 illustrates the mean streamwise velocity profiles u/u0 at four locations. The first
profile (a) is located in the area of recirculation. It shows good agreement close to the wall and
at y/h = 2.0 and higher. However, the predicted velocity in between is higher as it is visible
in data from DNS or experiments. The profile close to the reattachment (b) is a good match
of DNS data. Furthermore, the profiles at x/h = 10 and 19 are in good agreement with the
validation data although some minor differences are visible. In conclusion Figure 5.33 reveals
that LES is capable of reproducing the results of DNS and experiments with a high accuracy.
However, no difference between the two newly implemented fractional step solver with Runge-
Kutta algorithm (RK3 and RK4) can be observed.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
u/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(a)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
u/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(b)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
u/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(c)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
u/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(d)

Figure 5.33: Profiles of mean streamwise velocity u/u0 at x/h = 4.0 (a); 6.0 (b); 10.0 (c); 19.0(d)

5 VALIDATION 40

The profiles of streamwise turbulence intensity u′/u0 are illustrated in Figure 5.34. The profiles
(a) to (c) are in good agreement of DNS data and in some regions LES reproduces the results
of the experiments better than DNS. The profile in (c) is in good agreement up to y/h = 1.5
then under-predicts the intensity in greater distance from the wall but it follows the DNS data.
At x/h = 19.0 (d) influence of the boundary condition is present and this leads to an increased
deviation in the turbulent boundary layer of the LES results to DNS and the experimental data.

0.00 0.05 0.10 0.15 0.20 0.25
u′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(a)

0.00 0.05 0.10 0.15 0.20 0.25
u′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(b)

0.00 0.05 0.10 0.15 0.20 0.25
u′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(c)

0.00 0.05 0.10 0.15 0.20 0.25
u′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(d)

Figure 5.34: Profiles of turbulent intensity u′/u0 at x/h = 4.0 (a); 6.0 (b); 10.0 (c); 19.0 (d)

5 VALIDATION 41

The wall-normal turbulence intensity v′/u0 is illustrated as profiles in Figure 5.35. The sections
within the reattachment length give a good approximation of the turbulence intensity. Thus,
the peak values are increased and shifted upwards relative to the data. The profiles at x/h =
10 and 19 in Figure 5.35 almost perfectly match the experimental data. It can also be seen that
DNS is deviating in this case from experiment and LES.

0.000 0.025 0.050 0.075 0.100 0.125
v′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(a)

0.000 0.025 0.050 0.075 0.100 0.125
v′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(b)

0.000 0.025 0.050 0.075 0.100 0.125
v′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(c)

0.000 0.025 0.050 0.075 0.100 0.125
v′/u0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic′&′Driver,′1994
Le′&′Moin,′1997
LES-RK3
LES-RK4

(d)

Figure 5.35: Profiles of turbulent intensity v′/u0 at x/h = 4.0 (a); 6.0 (b); 10.0 (c); 19.0 (d)

5 VALIDATION 42

Illustrating the profiles of turbulent shear stress Figure 5.36 presents the LESwellmatchingDNS
and experimental data. In some cases predictions made by the LES are closer to experimental
data than DNS does. The peak turbulent shear stress within the recirculation region is higher
than in DNS. Also the sharp gradient which can be interpreted from the experimental data can
not be predicted. The transition from the turbulent boundary layer to the free stream region is
better predicted by the LES.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−⟨u′v′⟩/u2

0 ×10−2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−⟨u′v′⟩/u2

0 ×10−2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−⟨u′v′⟩/u2

0 ×10−2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−⟨u′v′⟩/u2

0 ×10−2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y/h

Jovic & Driver, 1994
Le & Moin, 1997
LES-RK3
LES-RK4

(d)

Figure 5.36: Profiles of turbulent shear stress −⟨u′v′⟩/u20 at x/h = 4.0 (a); 6.0 (b); 10.0 (c); 19.0
(d)

6 CONCLUSION 43

6 Conclusion

For the Large Eddy Simulation of problems in hydraulic engineering the solving algorithm is
one of the key components. Depending on the problem size, required accuracy and resolu-
tion the simulations demand more computational effort. With limited time as main resource
nowadays a fast and accurate solver is very valuable. In consequence people steadily come up
with new ideas and keep on developing and improving methods for solving problems in fluid
flows.
In this thesis the implementation and validation of two new fractional step solving algorithms
in OpenFOAM is presented. These algorithms make use of different higher order Runge-Kutta
methods for the advancement in time. The solvers are designed for the flow of incompress-
ible Newtonian fluids. The achievements of the present work are summarised in the following
points:

• The high level language provided by OpenFOAM and some basic knowledge of program-
ming in C/C++ allow for the implementation of custom solvers with ease. It should be
mentioned here that the syntax provided by OpenFOAM also allows for the implement-
ation of other customised code like boundary conditions, turbulence models and much
more.

• The solvers rk3fracsFoam and rk4fracsFoam are first tested on the case of turbulent
channel flow at three different friction Reynolds numbersReτ . A grid refinement study is
carried out for the optimisation of the geometric discretisation. The results of the RK-
solvers are then compared to data retrieved from DNS published by Moser, Kim and
Mansour (1999). Additionally simulations of the same problem definition are commit-
ted with PISO solver and the results are added as second reference to the comparison.
The difference between RK and PISO solvers is less than 1 %. The results of LES using the
new solving algorithms are in good agreement with data from DNS. Furthermore there
is hardly any difference observed between RK3 and RK4 solver. The overall quality of the
results is well suitable for most engineering applications in daily business of hydraulic
engineers.

• As a second case for the validation of the solving algorithms the turbulent flow over a
backward-facing step is selected. In this case DNS data from Le, Moin and Kim (1997)
and experimental data from Jovic and Driver (1994) is used as reference. The inlet con-
dition of a flat-plate turbulent boundary layer flow is successfully modelled with basic
boundary conditions already implemented in OpenFOAM. The results of rk3fracsFoam

and rk4fracsFoam simulations show very good agreement with the references. Even in
some parts the results of LES are in better agreement with the experimental data than
DNS. The main flow features, such as reattachment length and profiles of the velocity
field and the fluctuations perfectly matched the references.

• To measure the speed of the new solving algorithms the execution time is logged during
the simulations of turbulent channel flow at each time step and averaged afterwards. For
comparison the same case is solved with the PISO solver of OpenFOAM. The time needed

6 CONCLUSION 44

for PISO algorithm to solve the equations is taken as reference. It takes the fractional step
solverwith fourth order Runge-Kutta algorithm (rk4fracsFoam) only 77% of the time for
solving. The rk3fracsFoam is 40 % faster than the PISO algorithm. The computed values
for the different turbulent channel cases are listed in Table 6.1. The increase in speed is
achieved without lowering the accuracy of the results.

Table 6.1: Comparison of the computational speed of different solvers

Reτ nom. PISO RK4 RK3
180 1.0 0.767 0.590
395 1.0 0.767 0.581
590 1.0 0.773 0.615

In conclusion the new RK-solvers are implemented and validated successfully. The results of
the committed Large Eddy Simulations using RK3 and RK4 solvers are in good agreement with
Direct Numerical Simulations and experimental results.

Future work

The importance of numerical simulations in hydraulic engineering will further increase in fu-
ture. Not only the demand on optimising large hydraulic structures will grow but also it will
be asked to find the best alternative for small projects in hydraulic engineering. Therefore the
following research topics are proposed on the basis of the presented work.

• Direct numerical simulations are generally limited to low Reynolds number flows and
simple geometries. However, Large Eddy Simulations are capable of simulating turbulent
flows in much more complex geometries. It is therefore proposed to further validate the
new solving algorithms for flows in complex geometries. For this cases the validation data
can be obtained from experiments.

• For further increase in speed of solution algorithms the implementation of accelerated
Runge-Kutta methods is suggested. Such methods store values from the previous time
step and therefore require less computation step each time step. Udwadia and Farahani
(2008) give some examples of accelerated Runge-Kuttamethods and estimate the increase
in speed by 20–30 % compared to classical Runge-Kutta methods.

• Problems in hydraulic engineering are basically gravity driven. Problems like the ap-
proach flow in a reservoir to an intake structure can bemodelled as single-phase. For flow
situations which appear in energy dissipation structures or at weirs single-phase models
are not longer suitable andmust bemodelledwithmulti-phasemodels. It is therefore sug-
gested to further develop the Runge-Kutta solver algorithms and making them capable of
simulatingmultiphase flow problems. Hence, validation of these multi-phase solvers and
a comparison with existing solution algorithms is part of this proposal.

REFERENCES 45

References

Chorin, Alexandre Joel (1967). ‘The numerical solution of the Navier-Stokes equations for an
incrompressible fluid’. In: Bulletin of the American Mathematicel Society 73.6, pp. 928–931.

Issa, Raad I. (1986). ‘Solution of the implicitly discretised fluid flow equations by operator-
splitting’. In: Journal of Computational Physics 62.1, pp. 40–65.

Jasak, Hrvoje (1996). ‘Error Analysis and Estimation for the Finite Volume Method with Ap-
plications to Fluid Flows’. PhD thesis. Imperial College of Science, Technology andMedicine,
London.

Jovic, Srba andDavidM.Driver (1994). Backward-facing step measurements at low Reynolds number,
Reh=5000. NASA, Ames Research Center. url: ntrs.nasa.gov/search.jsp?R=19940028784.

Le, Hung, Parviz Moin and John Kim (1997). ‘Direct numerical simulation of turbulent flow
over a backward-facing step’. In: Journal of Fluid Mechanics 330, pp. 349–374.

Leonard, A. (1974). ‘Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows’. In:
Advances in Geophysics 18, pp. 237–248.

Moser, Robert D., John Kim and Nagi N. Mansour (1999). ‘Direct numerical simulation of tur-
bulent channel flow up to Reτ = 590’. In: Physics of fluids 11.4, pp. 943–945.

Nicoud, Franck andFrédéricDucros (1999). ‘Subgrid-scale stressmodelling based on the square
of the velocity gradient tensor’. In: Flow, Turbulence and Combustion 62.3, pp. 183–200.

Rodi, Wolfgang, George Constantinescu and Thorsten Stoesser (2013). Large-Eddy Simulation in
Hydraulics. CRC Press/Balkema.

Schumann, U. (1975). ‘Subgrid ScaleModel for Finite Difference Simulations of Turbulent Flows
in Plane Channels and Annuli’. In: Journal of Computational Physics 18.4, pp. 376–404.

Shiklomanov, Igor A (1998). World water resources: a new appraisal and asssesment for the 21st cen-
tury. SC.1998/SANS CODE. UNESCO.

Smagorinsky, Joseph (1963). ‘General Circulation Experiments with the Primitive Equations’.
In: Monthly Weather Review 91.3, pp. 99–164.

Sotiropoulos, Fotis (2015). ‘Hydraulics in the era of exponentially growing computing power’.
In: Journal of Hydraulic Research 53.5, pp. 547–560.

Stoesser, Thorsten (2014). ‘Large-eddy simulation in hydraulics: Quo Vadis?’ In: Journal of Hy-
draulic Research 52.4, pp. 441–452.

Udwadia, Firdaus E. andArtin Farahani (2008). ‘Accelerated Runge-KuttaMethods’. In: Discrete
Dynamics in Nature and Society 2008.

Vuorinen, V. et al. (2014). ‘On the implementation of low-dissipative Runge–Kutta projection
methods for time dependent flows using OpenFOAM’. In: Computers & Fluids 93, pp. 153–
163.

ntrs.nasa.gov/search.jsp?R=19940028784

A APPENDIX A – CASE DEFINITIONS 46

A Appendix A – Case definitions

A.1 Turbulent channel flow

Geometry

File A.1: /system/blockMeshDict
convertToMeters 1;
vertices
(

(0 0 0) (5 0 0) (5 1 0) (0 1 0) (0 0 2) (5 0 2) (5 1 2)
(0 1 2) (5 2 0) (0 2 0) (5 2 2) (0 2 2)

);
blocks
(

hex (0 1 2 3 4 5 6 7) (75 38 45) simpleGrading (1 10 1)
hex (3 2 8 9 7 6 10 11) (75 38 45) simpleGrading (1 0.1 1)

);
boundary
(

frontWall
{

type wall;
faces ((0 1 5 4));

}
backWall
{

type wall;
faces ((8 9 11 10));

}
sides_half0
{

type cyclic;
neighbourPatch sides_half1;
faces ((4 5 6 7)(6 10 11 7));

}
sides_half1
{

type cyclic;
neighbourPatch sides_half0;
faces ((0 3 2 1)(2 3 9 8));

}
inlet
{

type mappedPatch;
offset (4.0 0 0);
sampleRegion region0;
sampleMode nearestCell;
samplePatch none;
faces ((0 3 7 4)(3 9 11 7));

}
outlet
{

type patch;
faces ((2 1 5 6)(2 6 10 8));

}
);

A APPENDIX A – CASE DEFINITIONS 47

Initial and boundary conditions

File A.2: /0/U
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0.1335 0 0); // Re_tau = 395
boundaryField
{

frontWall
{

type fixedValue;
value uniform (0 0 0);

}
backWall
{

type fixedValue;
value uniform (0 0 0);

}
sides_half0
{

type cyclic;
}
sides_half1
{

type cyclic;
}
inlet
{

type mapped;
value uniform (0.1335 0 0); // adjust to values from $internalField
interpolationScheme cell;
setAverage true;
average (0.1335 0 0); // adjust to values from $internalField

}
outlet
{

type inletOutlet;
inletValue uniform (0 0 0);
value uniform (0 0 0);

}
}

File A.3: /0/p
dimensions [0 2 -2 0 0 0 0];
internalField uniform 0;
boundaryField
{

frontWall
{

type zeroGradient;
}
backWall
{

type zeroGradient;
}
sides_half0
{

type cyclic;
}
sides_half1
{

type cyclic;
}
inlet
{

type zeroGradient;
}
outlet
{

type fixedValue;
value uniform 0;

}
}

A APPENDIX A – CASE DEFINITIONS 48

File A.4: /0/nut
dimensions [0 2 -1 0 0 0 0];
internalField uniform 0;
boundaryField
{

frontWall
{

type zeroGradient;
}
backWall
{

type zeroGradient;
}
sides_half0
{

type cyclic;
}
sides_half1
{

type cyclic;
}
inlet
{

type calculated;
value uniform 1e-8;

}
outlet
{

type calculated;
value uniform 1e-8;

}
}

Flow properties

File A.5: /constant/transportProperties
Ubar [0 1 -1 0 0 0 0] (0.1335 0 0);
transportModel Newtonian;
nu [0 2 -1 0 0 0 0] 2e-05;

File A.6: /constant/turbulenceProperties
simulationType LES;
LES
{

LESModel WALE;
turbulence on;
printCoeffs on;
delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
PrandtlCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
smoothCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
maxDeltaRatio 1.1;

}
Cdelta 0.158;

}
vanDriestCoeffs
{

delta cubeRootVol;

A APPENDIX A – CASE DEFINITIONS 49

cubeRootVolCoeffs
{

deltaCoeff 1;
}
smoothCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
maxDeltaRatio 1.1;

}
Aplus 26;
Cdelta 0.158;

}
smoothCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
maxDeltaRatio 1.1;

}
}

A APPENDIX A – CASE DEFINITIONS 50

Numerics

File A.7: /system/controlDict
application rk3fracsFoam;
startFrom latestTime;
startTime 0;
stopAt endTime;
endTime 10000;
deltaT 0.1;
adjustTimeStep yes;
writeControl adjustableRunTime;
writeInterval 1000;
purgeWrite 3;
writeFormat ascii;
writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;
maxCo 0.6;
maxDeltaT 0.2;
functions
{

Q
{

type Q;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;

}
vorticity
{

type vorticity;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;

}
yPlus
{

type yPlus;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;

}
fieldAverage1
{

type fieldAverage;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;
timeStart 1000;
fields
(

U
{

mean on;
prime2Mean on;
base time;

}
p
{

mean on;
prime2Mean on;
base time;

}
);

}
}

File A.8: /system/fvSchemes
ddtSchemes
{

default backward;
}
gradSchemes
{

default Gauss linear;
}
divSchemes
{

default none;

A APPENDIX A – CASE DEFINITIONS 51

div(phi,U) Gauss linear;
div(U) Gauss linear;
div(phi,k) Gauss limitedLinear 0.1;
div(phi,B) Gauss limitedLinear 0.1;
div(B) Gauss linear;
div(phi,nuTilda) Gauss limitedLinear 0.1;
div((nuEff*dev2(T(grad(U))))) Gauss linear;

}
laplacianSchemes
{

default Gauss linear uncorrected;
}
interpolationSchemes
{

default linear;
}
snGradSchemes
{

default uncorrected;
}

File A.9: /system/fvSolution
solvers
{

p
{

solver GAMG;
tolerance 0;
relTol 0.08;
smoother GaussSeidel;

}
pFinal
{

$p;
smoother DICGaussSeidel;
tolerance 1e-06;
relTol 0;

}
”(U|k|nuTilda)”
{

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-05;
relTol 0.08;

}
”(U|k|nuTilda)Final”
{

$U;
tolerance 1e-05;
relTol 0;

}
}
PISO
{

nOuterCorrectors 3;
nCorrectors 1;
nNonOrthogonalCorrectors 0;

}

A APPENDIX A – CASE DEFINITIONS 52

A.2 Turbulent flow over a backward-facing step

Geometry

File A.10: /system/blockMeshDict
convertToMeters 0.001;
vertices
(

(-98.0 9.8 19.6) (-98.0 9.8 -19.6) (-98.0 20.5 19.6) (-98.0 20.5 -19.6) (-98.0 58.8 19.6)
(-98.0 58.8 -19.6) (0 0 19.6) (0 0 -19.6) (0 9.8 19.6) (0 9.8 -19.6) (0 20.5 19.6)
(0 20.5 -19.6) (0 58.8 19.6) (0 58.8 -19.6) (24.5 0 19.6) (24.5 0 -19.6) (24.5 9.8 19.6)
(24.5 9.8 -19.6) (24.5 20.5 19.6) (24.5 20.5 -19.6) (24.5 58.8 19.6) (24.5 58.8 -19.6)
(196 0 19.6) (196 0 -19.6) (196 9.8 19.6) (196 9.8 -19.6) (196 20.5 19.6) (196 20.5 -19.6)
(196 58.8 19.6) (196 58.8 -19.6)

);
blocks
(

hex (0 8 9 1 2 10 11 3) (83 38 29) simpleGrading (1.0 1.0 10.0)
hex (2 10 11 3 4 12 13 5) (83 38 36) simpleGrading (1.0 1.0 1.0)
hex (6 14 15 7 8 16 17 9) (45 38 30) simpleGrading (8.0 1.0 5.0)
hex (8 16 17 9 10 18 19 11) (45 38 29) simpleGrading (8.0 1.0 10.0)
hex (10 18 19 11 12 20 21 13) (45 38 36) simpleGrading (8.0 1.0 1.0)
hex (14 22 23 15 16 24 25 17) (135 38 30) simpleGrading (1.0 1.0 5.0)
hex (16 24 25 17 18 26 27 19) (135 38 29) simpleGrading (1.0 1.0 10.0)
hex (18 26 27 19 20 28 29 21) (135 38 36) simpleGrading (1.0 1.0 1.0)

);
boundary
(

frontWall
{

type wall;
faces ((0 1 9 8) (8 9 7 6) (6 7 15 14) (14 15 23 22));

}
backWall
{

type symmetryPlane;
faces ((4 12 13 5) (12 20 21 13) (20 28 29 21));

}
sides_half0
{

type cyclic;
neighbourPatch sides_half1;
faces ((0 8 10 2) (2 10 12 4) (6 14 16 8) (8 16 18 10) (10 18 20 12)

(14 22 24 16) (16 24 26 18) (18 26 28 20));
}
sides_half1
{

type cyclic;
neighbourPatch sides_half0;
faces ((1 9 11 3) (3 11 13 5) (7 15 17 9) (9 17 19 11) (11 19 21 13)

(15 23 25 17) (17 25 27 19) (19 27 29 21));
}
inlet0
{

type mappedPatch;
offset (0.0784 0 0);
sampleRegion region0;
sampleMode nearestCell;
samplePatch none;
faces ((0 1 3 2));

}
inlet1
{

type mappedPatch;
offset (0.0784 0 0);
sampleRegion region0;
sampleMode nearestCell;
samplePatch none;
faces ((2 3 5 4));

}
outlet
{

type patch;
faces ((22 24 25 23) (24 26 27 25) (26 28 29 27));

}
);

A APPENDIX A – CASE DEFINITIONS 53

Initial and boundary conditions

File A.11: /0/U
dimensions [0 1 -1 0 0 0 0];
internalField uniform (7.5 0 0);
boundaryField
{

frontWall
{

type fixedValue;
value uniform (0 0 0);

}
backWall
{

type symmetryPlane;
}
sides_half0
{

type cyclic;
}
sides_half1
{

type cyclic;
}
inlet0 // lower inlet
{

type mapped;
value uniform (6.54 0 0);
interpolationScheme cell;
setAverage true;
average (6.54 0 0);

}
inlet1 // upper inlet
{

type fixedValue;
value uniform (7.70 0 0);

}
outlet
{

type inletOutlet;
inletValue uniform (0 0 0);
value uniform (0 0 0);

}
}

File A.12: /0/p
dimensions [0 2 -2 0 0 0 0];
internalField uniform 0;
boundaryField
{

frontWall
{

type zeroGradient;
}
backWall
{

type symmetryPlane;
}
sides_half0
{

type cyclic;
}
sides_half1
{

type cyclic;
}
inlet0
{

type zeroGradient;
}
inlet1
{

type zeroGradient;
}
outlet
{

type fixedValue;

A APPENDIX A – CASE DEFINITIONS 54

value uniform 0;
}

}

File A.13: /0/nut
dimensions [0 2 -1 0 0 0 0];
internalField uniform 0;
boundaryField
{

frontWall
{

type zeroGradient;
}
backWall
{

type symmetryPlane;
}
sides_half0
{

type cyclic;
}
sides_half1
{

type cyclic;
}
inlet0
{

type calculated;
value uniform 1e-8;

}
inlet1
{

type calculated;
value uniform 1e-8;

}
outlet
{

type calculated;
value uniform 1e-8;

}
}

Flow properties

File A.14: /constant/transportProperties
Ubar [0 1 -1 0 0 0 0] (7.72 0 0);
transportModel Newtonian;
nu [0 2 -1 0 0 0 0] 1.5e-05;

File A.15: /constant/turbulenceProperties
simulationType LES;
LES
{

LESModel WALE;
turbulence on;
printCoeffs on;
delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
PrandtlCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
smoothCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs

A APPENDIX A – CASE DEFINITIONS 55

{
deltaCoeff 1;

}
maxDeltaRatio 1.1;

}
Cdelta 0.158;

}
vanDriestCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
smoothCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
maxDeltaRatio 1.1;

}
Aplus 26;
Cdelta 0.158;

}
smoothCoeffs
{

delta cubeRootVol;
cubeRootVolCoeffs
{

deltaCoeff 1;
}
maxDeltaRatio 1.1;

}
}

A APPENDIX A – CASE DEFINITIONS 56

Numerics

File A.16: /system/controlDict
application rk3fracsFoam;
startFrom latestTime;
startTime 0;
stopAt endTime;
endTime 6.0;
deltaT 0.5e-5;
adjustTimeStep no;
writeControl runTime;
writeInterval 0.01;
purgeWrite 11;
writeFormat ascii;
writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;
functions
{

Q
{

type Q;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;

}
vorticity
{

type vorticity;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;

}
yPlus
{

type yPlus;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;

}
fieldAverage1
{

type fieldAverage;
libs (”libfieldFunctionObjects.so”);
writeControl writeTime;
fields
(

U
{

mean on;
prime2Mean on;
base time;

}
p
{

mean on;
prime2Mean on;
base time;

}
);

}
}

File A.17: /system/fvSchemes
ddtSchemes
{

default backward;
}
gradSchemes
{

default Gauss linear;
}
divSchemes
{

default none;
div(phi,U) Gauss linear;
div(U) Gauss linear;
div(phi,k) Gauss limitedLinear 0.1;

A APPENDIX A – CASE DEFINITIONS 57

div(phi,B) Gauss limitedLinear 0.1;
div(B) Gauss linear;
div(phi,nuTilda) Gauss limitedLinear 0.1;
div((nuEff*dev2(T(grad(U))))) Gauss linear;

}
laplacianSchemes
{

default Gauss linear uncorrected;
}
interpolationSchemes
{

default linear;
}
snGradSchemes
{

default uncorrected;
}

File A.18: /system/fvSolution
solvers
{

p
{

solver GAMG;
tolerance 0;
relTol 0.06;
smoother GaussSeidel;

}
pFinal
{

$p;
smoother DICGaussSeidel;
tolerance 1e-06;
relTol 0;

}
”(U|k|B|nuTilda)”
{

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-05;
relTol 0.06;

}
”(U|k|B|nuTilda)Final”
{

$U;
tolerance 1e-05;
relTol 0;

}
}
PISO
{

nOuterCorrectors 3;
nCorrectors 2;
nNonOrthogonalCorrectors 0;

}

	List of Figures
	List of Tables
	Introduction
	Introduction to OpenFOAM
	History
	Structure

	Theoretical background
	The transport equations
	Finite volume discretisation
	Solving the equations of fluid transport
	Projection methods
	The PISO method
	Fractional step methods with Runge-Kutta time scheme

	Large Eddy Simulation
	WALE turbulence model

	Implementation
	rk4fracsFoam
	rk3fracsFoam

	Validation
	Case one – turbulent channel flow
	Computational domain
	Boundary and initial conditions
	Results

	Case two – backward-facing step
	Computational domain
	Boundary and initial conditions
	Results

	Conclusion
	References
	Appendix A – Case definitions
	Turbulent channel flow
	Turbulent flow over a backward-facing step

