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Abstract

In January 2018, a CPU vulnerability called Spectre was presented, which exploits side-
channel information of speculative execution in CPUs to read arbitrary virtual memory
from programs. Speculative execution is needed to meet the currently high demands
on CPU performance. Instructions are executed speculatively to enable faster execution
times. During speculative execution, side e�ects occur, for example, in the CPU cache,
which can be measured and used to read any memory. Over one billion smartphones,
desktop and notebook CPUs are a�ected by this bug. Since the bug is located directly
in the CPU, the hardware would have to be replaced. But exchanging the hardware also
means a new design of the speculative execution.

In this master thesis, we show a novel attack which exploits Spectre variant 1 over the
network. This attack makes it possible to read sensitive data from the memory of target
systems without system access and thus possible code execution. Sensitive data is, for
instance, secret user credentials, credit card data or encryption keys. Two types of
code snippets, so-called gadgets, are required to carry out the attack. The �rst gadget
is needed to mistrain the speculative execution, so that a certain conditional branch is
always taken. The speculative execution then accesses data whose access is not permitted.
The second gadget allows an attacker to access the same data address. Since the data is
already in the CPU cache from the �rst access, the second access is faster than the �rst.
This timing di�erence can be measured and recognized over the network. Using this
information we have developed the �rst variant of NetSpectre, which is the cache-based
attack. Here, we adapt the well-known cache attack Evict+Reload and make it network-
compatible. This variant makes it possible to read up to 15 bits per hour. Furthermore,
we present the �rst Advanced Vector Instructions based remote covert channel. With
this approach, we are able to leak up to 60 bits per hour. In addition, we present a
technique with which we can break Address Space Layout Randomization (ASLR) via
NetSpectre gadgets. This allows memory randomization to be bypassed. We veri�ed
this attack in local networks, virtual machines and the Google Cloud Platform. We also
discuss current countermeasures for Spectre and NetSpectre. The content of this thesis
will be presented as a talk at Black Hat Asia 2019.

Keywords: operating systems, speculative execution, branch prediction
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Kurzfassung

Im Jänner 2018 wurde eine CPU-Schwachstelle namens Spectre präsentiert, welche Seit-
enkanalinformation der spekulativen Ausführung in CPUs ausnützt, um beliebigen virtuellen
Speicher von Programmen auszulesen. Spekulative Ausführung wird benötigt, um die
derzeit enorm hohen Anforderungen an CPU Performance zu gewährleisten. Instruktio-
nen werden hierbei im Vorhinein spekulativ ausgeführt, um schnellere Ausführungszeiten
zu ermöglichen. Während der spekulativen Ausführung entstehen Seitene�ekte zum
Beispiel im CPU-Cache welche gemessen werden können und genutzt um beliebigen Spe-
icher auszulesen. Über eine Milliarde Smartphones, Desktop und Notebook CPUs sind
von dieser Lücke betro�en. Da der Bug sich direkt in der CPU be�ndet, müsste die Hard-
ware getauscht werden. Tausch der Hardware bedeutet aber auch ein neues Design der
spekulativen Ausführung. In dieser Masterarbeit zeigen wir eine neue Variante, um Spec-
tre Variante 1 über das Netzwerk auszunützen. Diese Attacke ermöglicht es, ohne Sys-
temzugri� und damit möglicher Code Execution, sensitive Daten aus dem Speicher von
Zielsystemen auszulesen. Sensitive Daten sind beispielsweise geheime Nutzerdaten und
Verschlüsselungsschlüssel. Um die Attacke durchzuführen, werden zwei Arten von Code-
teilen, sogenannte Gadgets benötigt. Das erste Gadget wird benötigt um die spekulative
Ausführung zu trainieren, sodass diese einen gewissen bedingten Sprung im Programm
immer spekulativ ausführt. Durch die spekulative Ausführung wird dann auf Daten
zugegri�en, deren Zugri� nicht erlaubt ist. Mit dem zweiten Gadget wird nochmals auf
dieselbe Datenadresse zugegri�en. Da die Daten schon vom ersten Zugri� im CPU-Cache
liegen, ist der zweite Zugri� schneller als der Erste. Diesen Zeitunterschied kann man
messen und über das Netzwerk erkennen. Mit dieser Information haben wir die erste
Variante von NetSpectre entwickelt, die den CPU-Cache attackiert. Hierbei adaptieren
wir die bekannte Cache-Attacke Evict+Reload und machen sie netzwerkfähig. Diese Vari-
ante ermöglicht es, bis zu 15 Bits pro Stunde auszulesen. Des Weiteren präsentieren wir
den ersten Advanced Vector Instructions basierten remote Covert Channel. Mit diesem
sind wir in der Lage bis zu 60 bits in der Stunde auszulesen. Auÿerdem präsentieren wir
eine Technik, mit der wir Address-Space-Layout-Randomization brechen können über
NetSpectre Gadgets. Das erlaubt es Speicherrandomisierung zu umgehen und im Falle
einer weiteren Schwachstelle im Code diese auszunützen. Der Inhalt dieser Masterarbeit
wird bei der Black Hat Asia 2019 als Talk präsentiert. Die Ergebnisse dieser Attacke
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wurden in lokalen Netzwerken, virtuellen Maschinen und in der Google-Cloud Platform
veri�ziert. Des Weiteren diskutieren wir aktuelle Gegenmaÿnahmen für Spectre und
NetSpectre.

Stichwörter: Betriebssysteme, Spekulative Ausführung, Branch Prediction

iv



Acknowledgements

First of all I want to thank my advisor Michael Schwarz for his constant support. Espe-
cially for the helpful discussions, tips and the reviews of this thesis.

I also want to thank Daniel Gruss and Moritz Lipp for meaningful discussions and their
support.

Finally, I also want to especially thank my family for their way of keeping me motivated
during my studies.

Martin Schwarzl

v



Contents

1 Introduction 1

2 Background 5
2.1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Pipelining and Branch Prediction . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Transient execution attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 SIMD Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Covert Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Virtual Memory Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Address Space Layout Randomization . . . . . . . . . . . . . . . . . . . . 24

3 Attack Primitives 25
3.1 Attack setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Attack Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Channel and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Cache Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 AVX Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Attack Case Studies 38
4.1 Leaking Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Bypassing ASLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Evaluation 47
5.1 UDP Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Porting NetSpectre to other Spectre Variants . . . . . . . . . . . . . . . . 51
5.4 NetSpectre Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Future work 60
6.1 Detection of Spectre gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Summary 63

vi



A Black Hat Asia 2018 64

vii



Chapter 1

Introduction

Side-channel attacks received more and more popularity during the last couple of years.
These attacks use information like timings, power consumptions of a device, faulty im-
plementations or even electromagnetic radiations [85] to leak sensitive data. At �rst,
those attacks were quite theoretical and only got slow proof-of-concepts implementa-
tions. Nowadays, fast and stealthy attacks are practical and can be used to read arbitrary
system memory [8, 49, 54]. Side-channel attacks are hard to detect and even harder to
mitigate [26, 53,69].

Cache side-channel attacks exploit a timing di�erence of about 150 CPU cycles which
arises when accessing cached memory and uncached memory. Cache side-channel at-
tacks are in the meantime a powerful weapon to attack software. They have been
used to spy keystrokes on libraries [28] for instance keystrokes on SSH [81], attacking
cryptography [1, 37, 40, 50, 66, 67, 91], building of stealthy and cross-VM covert chan-
nels [27,38,46,69,89]. These cross VM side-channels, also work on most of the common
cloud providers [89]. There is a lot of research going on to detect and mitigate cache
side-channel attacks [22]. For instance, cryptographic primitives like AES already got
constant time implementations to mitigate cache attacks [37, 40,44,66].

Speculative execution is one of the essential components in modern CPUs to meet the
high-performance requirements. In combination with branch prediction, it enables faster
execution times. A branch predictor guesses whether a particular branch is taken or not
taken. The predictions are then speculatively executed and committed to the architecture
if the prediction was correct. If the prediction was incorrect, the results get reverted and
are not applied to the architecture. However, this speculative execution might perform
transient instructions, which change the microarchitectural state. The changes in the
microarchitectural can be observed in form of the timing for instance in the cache [49].

In 2018, four transient execution attacks, namely Meltdown, Spectre, Foreshadow and
Foreshadow NG [49, 54, 83, 88], got published. All attacks allow an attacker to leak
sensitive information, which is supposed to be non-accessible. A�ected are desktop PCs,
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notebooks, servers and smartphones CPUs from the common manufacturers Intel, AMD,
ARM [8]. We can assume that billions of devices are still a�ected by these issues since
the problem lies in the hardware [49, 54]. Spectre exploits the prediction components
from the branch prediction in combination with speculative execution. The �rst Spectre
variant known as Spectre V1 exploits the Pattern History Table [49]. The other versions
exploit the Branch Target Bu�er (Spectre V2), Store-To-Load-Forward and Return Stack
Bu�er [8]. Furthermore, the attack variants were validated on Intel SGX [10]. In contrast
to Spectre, Meltdown exploits transiently executed out-of-order instructions [54]. Those
instructions perform an illegal memory access and afterwards raise an exception [54].
The Foreshadow attacks exploit the L1 cache [83, 88] to bypass hypervisors and Intel's
SGX.

Multiple countermeasures for Spectre were already proposed in the form of microcode
updates from Intel [36]. These updates �x the possibility of leaking kernelspace memory
from userspace applications via Spectre. These patches weaken the attacking potential
of Spectre. However, it is still possible to exploit userspace applications [36]. To leak
kernelspace memory, for instance, a driver with vulnerable code is needed.

The recommended way from Intel, ARM and AMD to mitigate Spectre is to use memory
barriers, which disallow speculative execution for a speci�c code section [36,86]. However,
these memory barriers need to be applied for each critical code section where sensitive
data is accessed. Another possibility is to do a constant cache �ushing after each critical
sections [49]. However, this has an impact on the execution speed of a program [49].
SafeSpec [45] and InvisiSpec [90] were proposed as a hardware solution to migitate side-
channel attacks in general. The worst impact on performance is a total deactivation
of caches and out-of-order execution. Nevertheless, deactivation mitigates these types
of side-channel attacks. At the moment, there is no satisfying solution which �ts both
performance and also security requirements.

This thesis focuses on exploiting Spectre over a networking aspect, which is a new attack
vector. We call this new attack vector NetSpectre [77]. We de�ne code snippets
(gadgets) which need to exist and have to be used in the server program. In the attack,
we �rst evaluate the cache timing di�erence for a client-server connection. As data
encoding, we choose a binary format. Based on this, we build network histograms which
give us a threshold to distinguish between a zero and one bit. Then, we build a proof-
of-concept implementation where the client has access to a public resource from the
server. Using the NetSpectre attack, the client is capable of leaking private information
from the server. Furthermore, we discovered that Advanced Vector Instructions (AVX)
instructions also leak timing information. AVX instructions behave di�erently in timing
when the unit is warmed up or cold. Using this side channel, we can port the attack from
a cache-based approach to an AVX-based approach. We build the �rst AVX-based covert
channel which is more performant than the cache-based approach. With this approach,
we are capable of leaking 60 bits per hour in a local network environment. Then, we
demonstrate a third attack variant based on the cache-based approach to bypass ASLR.
We evaluate countermeasures on both the cache-based and the AVX-based approach. We
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investigate whether the attacks work on virtualised and cloud-hosted environments. At
last, we evaluate the performance and discuss the impact of these attacks.

We show under which setup NetSpectre is possible and de�ne its requirements. Addition-
ally, we discuss how AVX leak timing information. We demonstrate how an application
can be exploited via Spectre over the network on a cache-based attack variant and an
attack based on AVX. Furthermore, we demonstrate how we can bypass ASLR [78] using
NetSpectre.

Motivation

Securing hardware against side-channel attacks is one of the hottest topics in IT secu-
rity. At the moment, side-channel attacks are hard to mitigate and might be used more
frequently in malware. Furthermore, nearly every device, such as PCs, mobile phones
but also network devices, on the current market is vulnerable to Spectre. These vulner-
abilities in the speculative execution were found in nearly every CPU architecture like
ARM, AMD and Intel [49]. Attacking devices without system access over the network is
a quite powerful attack vector.

So far, Spectre was considered to be a local attack. The primary motivation of this thesis
is to investigate, whether it is possible to mount a side-channel attack like Spectre under
a networking aspect. Our primary requirement is to steal secret data from a remote
system without having access to the system or placing and executing malicious code
on it. NetSpectre is comparable to a web server leakage attack like Heartbleed [13],
where vulnerable code is used to leak sensitive data. The only attacking point is an
application programming interface (API), or a program which is publicly accessible and
the code of the running application is known. This attack makes it possible, without
direct access to the device, to leak sensitive data from the memory of target systems. The
attacker hereby mistrains the server application remotely and evaluates response times.
By distinguishing the response times the attacker is capable of identifying zero and one
bits. Another important requirement for this attack is a stable network connection to
the target. The consequences of this attack are serious, as this attack could be used for
industrial espionage. For this attack, one can imagine the following practical scenario.
An online shop stores user data such as usernames, passwords and credit cards. Like
almost every online shop, this o�ers customers a way to view their data. If other users
also access their data, this data is again in the cache of the processor. With NetSpectre
it is possible to leak bits of the customer data without permission by evaluating the
response times as explained above. The attacker thus manages without data theft to leak
sensitive data. Another scenario would be a wrongly implemented networking driver.
Since drivers usually run in a higher-privileged mode, exploiting them allows leaking
protected memory. The attacker would here try to utilize the driver and extract kernel
memory information.
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These three attack vectors give us new possibilities to use side-channel attacks and exploit
it under a networking aspect. Using the gathered �ndings, more sophisticated approaches
can be created.

Document structure

The main contributions of this thesis are:

• a proof of concept of Spectre attacks over networks

• creating a cache covert channel over the network without cl�ush

• breaking ASLR using weak Spectre gadgets

• porting the attack to also work with AVX instructions

The remainder of this thesis explains the necessary background explaining caches, branch
prediction, Spectre and side-channel attacks in Chapter 2. The basic attack primitives are
explicated in Chapter 3. The implementation and an evaluation of NetSpectre attack
is given in Chapter 4 and Chapter 5. An outlook for future work and a summary is
contained in the Chapters 6 and 7.

4



Chapter 2

Background

In this chapter, we explain the theoretical background of this thesis. We de�ne several
acronyms and terms which are used in the following chapters. Additionally, we demon-
strate how timing information is leaked from caches and how those could be used to
distinguish between cache hits and misses. We also explain some attack vectors and
attacks based on caches.

In the �rst section, we explain CPU caches and its properties. We present current
techniques used in cache-based side-channel attacks. Furthermore, we explain current
microarchitectural attacks.

In the second part, we explain the principles of branch prediction, out-of-order exeuction
and speculative execution. We discuss how a simple branch prediction unit is built and
how current CPUs use these techniques to improve the performance. We explain how
Spectre exploits transient execution, which allows an attacker to leak sensitive data.

At last, we explain how AVX, covert channels and Address-Space-Layout-Randomization
work.

2.1 Cache

A CPU cache is used for speeding up memory accesses on the CPU. The cache is a fast,
bu�ered memory which is located between the CPU and the main memory (RAM). A
cache stores copies of data and instructions which are used regularly in the main memory.
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Cache hierarchy

Typically, processors use multi-level caches, which are hierarchically ordered. The topo-
logically closer the cache to the CPU is, the smaller and faster it is. Modern CPUs
typically have 3 levels of caches [18]. A CPU typically consists of multiple cores. In most
modern CPUs, each core has a private L1 and L2 cache [18, 35]. The last level cache is
shared amongst the cores [18].

The �rst level (L1) is typically quite small. In most cases, the capacity lies between 16 and
64 KB [18]. An L1 cache is divided into a data and an instruction cache [18]. L2 caches
are larger than L1 caches and can also be used for instruction and data caching [18]. The
cache uses a coherence protocol to synchronise the caches of each core in order to provide
data consistency. This ensures that there is always the same value stored between the
di�erent cores. Using such a protocol, the L3 cache accelerates the data transfer between
cores.

Inclusiveness

An inclusive cache level holds all cache lines from the lower level [95]. Using inclusive
cache levels, the data consistency can be more easily guaranteed, since only highest-
level cache accesses need to be tracked. The disadvantage of inclusive cache levels is
that memory gets wasted, due to redundant data storage. There are also exclusive cache
levels [95]. These bring the advantage to have higher capacity within the same cache [95].
Here, a particular data is only found in one cache level and does not occur in another
cache level. However, since more data has to be kept consistent, the cache coherency is
more complex [95]. A non-inclusive cache is not explicitly inclusive or exclusive. This
means there is no guarantee that data located in the upper level is also located in the
lower level. If a data request occurs, the �rst lookup in the cache starts from the L1 cache
down the hierarchy to the last-level cache. Is the data found in the cache, we speak of
a cache hit. If the data is not found, this means that memory needs to be loaded, we
speak of a cache miss. It is obvious that cached data is therefore accessed faster than
memory that is uncached.

Replacement policies

If the cache is full, a heuristic decides what data stays in the cache and what gets replaced.
This heuristic is called replacement policy. A quite simple replacement policy which is
practical, is to choose the replaced entry randomly.

Another replacement policy would be for instance the least-recently-used policy. When
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the cache is full, the entry which was longest unused is replaced. This policy can be quite
expensive, since the �age� of the entries has to be kept and supervised.

Mapping types

The cache can be mapped in certain ways [30]. For a direct-mapped cache, each address
in the main memory is mapped to exactly one cache line [30]. With this approach, not
all the available data in a cache line is used [30]. Caches are therefore partitioned into
cache sets consisting of multiple lines. Each address is mapped to multiple lines which
are grouped together in a set. However, data can be stored in an arbitrary block within
the set. Setwise organised caches are called set associative. A cache line contains a tag,
an index, the copy of the data and an o�set [41]. A tag is used to distinguish di�erent
addresses in a set. The index block identi�es the set number. The o�set identi�es a
certain location within the line. If we can choose a single location out of N possible
places, we call the cache an N-way associative [41]. We call a cache fully associative if
the replacement policy can select an arbitrary line for the data to be stored.

Microarchitectural attacks

The Instruction Set Architecture(ISA) de�nes an interface between soft- and hardware.
The ISA de�nes all instructions supported by the CPU, the memory model, execeptions,
interrupts and register states in a high level. Di�erent machines have di�erent ISAs, for
instance, x86 or ARMv8-a. If a program is de�ned for a certain ISA, it can run on any
CPU using the same ISA. The microarchitecture refers to the underlying implementation
on a transistor level of an ISA on a processor [35]. In other words, the microarchitecture
details how the instructions de�ned by the ISA are correctly handled to achieve the
expected outcome. For instance, how the microarchitectural components like pipelining,
branch prediction, out-of-order execution and caches are implemented on the CPU [41].

Many microarchitectural attacks aim to expose sensitive information from hardware.
Typical attack targets are CPU caches, DRAM or small cryptographic devices [28,66,69,
91]. Side-channel information like timings, the usage of memory, can be observed by an
attacker and analysed. This information allows the attacker to detect certain memory
accesses. With this knowledge there were several attacks built, like spying the keystrokes
of libraries [28,89,91], building cross-VM covert channels [61] or attacking cryptographic
implementations [66].

This thesis has a strong focus on cache attacks.
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Cache attacks

Cache attacks have been improved and optimised over the last few years. The most
signi�cant advantage of caching but also the problem in terms of side-channel information
is the timing di�erence (delta) between a cache hit and a cache miss. This delta can be
exploited to identify which data was accessed and which not by an attacker.

Figure 2.1 shows the histograms of a cache hit (hatched) and a cache miss. It can be
seen from the �gure that there is a timing gap of 150 to 200 cycles between a hit and
miss. A single cycle is for instance for 1 GHz CPU one nanosecond.
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Figure 2.1: Cache timing di�erence between cache hits and misses on an
Intel CPU.

Flush+Reload

The scenario of Flush+Reload proposed by Gullasch et al [91] is as follows. There exists
a shared memory between a victim and an attacker process. If an address is accessed
by either the victim or the attacker, the accessed data is cached once. Respectively, if
the address is �ushed, it gets �ushed for both processes. The attacker is able to learn
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all the accesses of the victim by measuring the timing di�erences, when accessing a
certain address. Listing 2.1 shows how to measure the timing between a cache hit and
a cache miss. The necessary instructions for the Flush+Reload attack are also given in
Listing 2.1. Whereas rdtsc returns the current timestamp of the CPU, maccess access
a memory location at a particular address and �ush triggers the cl�ush instruction to
�ush every occurrence of a memory address in a certain cache line [35]. Gruss et al. [28]
automated these types of attacks and were capable of detecting keystrokes of shared
libraries. Flush+Reload is used in transient execution attacks like Spectre, Meltdown
and Foreshadow to identify memory accesses and therefore leak data [83].

Other cache attacks

If the cl�ush instruction is not available, for instance on ARMv7 [5], another attacking
strategy was developed. Gruss et al. [28] developed an attack called Evict+Reload. In or-
der to �ush (evict) a certain address out of the cache, many addresses that are congruent,
regarding to the replacement policy, need to be accessed. If enough such addresses are
accessed, the speci�c address is evicted from of the cache. After the eviction part, the vic-
tim's process is scheduled, which accesses certain cache line. The attacker then accesses
the cache lines and checks the access times for cache hits and misses. For simple cache
replacement policies like LRU, it is easy to �nd an appropriate eviction strategy [28].
However, for random replacement this can be a hard task since the implementation is
unknown. Cache eviction strategies are crucial, since for NetSpectre attack we later on
also need to evict certain addresses out of the cache [28].

Gruss et al. also showed a new attack only based on �ushing of cached and uncached
addresses [26]. This method was called Flush+Flush. Again, there is a timing di�erence
when �ushing cached and uncached memory. This attack has the same requirements
as Flush+Reload. There are also cache attacks which do not need shared memory.
A technique is called Prime+Probe [66]. For Prime+Probe, it is necessary to reverse
engineer the used cache replacement policy. Using this knowledge, the attacker tries to
�ll speci�c cache sets. Then the attacker waits until the target application runs. The
application �lls used cache sets. Afterwards, the attacker veri�es which of the cache
sets are still �lled by measuring the access time. This is done, by reaccessing all pages
again and distinguishing between access times. Slower access times imply an access of
the victim's process, since the attacker's address was evicted by the victim.
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1 uint64_t rdtsc()

2 {

3 uint64_t a, d;

4 asm volatile ("mfence");

5 asm volatile ("rdtsc" : "=a" (a), "=d" (d));

6 a = (d<<32) | a;

7 asm volatile ("mfence");

8 return a;

9 }

10 void maccess(void* p)

11 {

12 asm volatile ("movq (%0), %%rax\n"

13 :

14 : "c" (p)

15 : "rax");

16 }

17 void flush(void* p)

18 {

19 asm volatile ("clflush 0(%0)\n"

20 :

21 : "c" (p)

22 : "rax");

23 }

24

25 #define CACHE_MISS 185

26 int flush_reload(void* ptr)

27 {

28 uint64_t start = 0, end = 0;

29 start = rdtsc();

30 maccess(ptr);

31 end = rdtsc();

32 flush(ptr);

33 if(end - start < CACHE_MISS)

34 {

35 return 1;

36 }

37 return 0;

38 }

Listing 2.1: De�nition of rdtsc, memory access (maccess) and �ush.
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2.2 Pipelining and Branch Prediction

Instruction pipelining was introduced to increase the e�ciency of the processor. The
main tasks of a CPU are as follows. First the instruction gets fetched, afterwards the
instruction gets decoded, and at last, the instruction gets executed [18].

Since the instructions are executed in parallel, problems can occur which are called
hazards [12]. There exist three types of hazards which need to be resolved properly [41]:

• Data hazards occur if an instruction is fetched and the next instruction has a data
dependency on the previous instruction.

• Structural hazards occurs if a resource is needed by multiple instructions. I.e.,
an instruction that loads a certain memory address and another instruction that
writes to this address creates a con�ict.

• Control hazards occur from branch instructions that in�uence the program counter

Stalling is the delay in a pipeline which resolves a hazard [41]. In modern CPUs, the
stalling time should be kept low to guarantee the perfomance. Data hazards can be
resolved by pipeline gaps (bubbles), out-of-order execution or operand forwarding [41].
Structural hazards can be resolved by using a separate cache for instructions and data [41].

The solution to resolve control hazards is branch prediction. If instructions after a
branch get fetched and evaluated, but the branch is not taken, these instructions need
to get invalidated. Flushing is the time when clearing these unnecessarily executed
instructions from the pipeline and starting the pipeline from the new correct instruction.
These instructions are executed in-order. In order to reduce stalling and �ushing times,
branch prediction was introduced.

A branch predictor takes the current state of a program (program counter) as an input
and tries to predict the next instructions for a given branch [41]. The problem which
needs then to be solved for conditional branches is the direction of a branch. Direction
means, whether the branch is taken or not [41]. For indirect branches there often exist
more than one target or the target might be known at runtime [68]. In the following
subsections, we discuss static and dynamic branch prediction to resolve those problems.

Static prediction

In static prediction, the guesses are created at compile time [80]. A table is generated
beforehand and does not change at runtime. Static prediction is used in cases where the
outcome of a branch is highly predictable.
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Predict Single direction

The easiest strategy is to predict that all branches always have the same direction [43].
Only taken or not taken branches are considered. For taken branches, the target address
has to be computed early. If this not possible, the CPU stalls. If the prediction only
considers not taken branches, there occurs a delay if the prediction was wrong.

Backward Taken Forward Not Taken

This strategy can also be used to predict branches. As the name says, backward branches,
i.e. branches, where the address is lower than the address of the branch, are taken [43].
For instance, in loops, the prediction accuracy here is quite high, since the branch is
usually at the bottom of the code.

Pro�le-based approach

Based on pro�les taken from previous runs with sample input, the branch prediction is
fed and statically generates a table. For instance, compiler hints can be set to improve
the prediction results [43].

Static prediction is easy to implement in hardware. The biggest drawback is the static
decision, which means once predicted the prediction stays. However, the above mentioned
drawbacks are too costly, a more dynamic approach is required. Static branch prediction
can be used in combination with dynamic branch prediction. For instance, if the dynamic
branch prediction unit is overloaded, static branch prediction could be used as fallback.

Dynamic prediction

Dynamic prediction relies on di�erent and more sophisticated techniques to guess the
branch target [80]. When executing a program, the branch prediction learns at runtime
branch targets and the direction of branches for each execution. No preprocessing or
pro�ling is necessary for dynamic prediction. Dynamic branch prediction �rst tries to
predict whether a particular branch is taken or not taken. Then, based on this result,
the target address of the branch gets predicted.
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Branch History Table

A Branch History Table (BHT) is a table which contains at least a single bit for each
branch, which indicates whether the branch was previously taken or not taken. Depend-
ing on the value of the bit, the branch is predicted as taken(1) or not taken(0). This table
is ordered by the �rst k least signi�cant bits of the address from the branch. Figure 2.2
illustrates a BHT, where the �rst k bits are selected to identify a branch by its address
and not taken.

01010010010...1101
Branch-address Branch History Table

k-bit
2 entrieskTaken/Untaken

Figure 2.2: Illustration of Branch History Table.

Using a one-bit BHT, two mispredictions occur when using branches that are always
taken as static prediction for loops [41]. In the last iteration, the one bit BHT again
predicts the branch, however, it should exit the loop. The branch predictor switches its
state to not taken. In the next execution of the branch, the prediction is not taken. For
instance, for 10 iterations the accuracy is only 80 percent. To increase the accuracy, the
branch history table is extended to two or more bits. Figure 2.3 illustrates a one bit
predictor.
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Predict not taken Predict taken
0 1

not taken

taken

not taken
taken

Figure 2.3: State machine of a one-bit branch predictor. [41]

For a two-bit predictor, the BHT contains entries with two bits. Figure 2.4 illustrates
the state machine of a two-bit predictor. These two-bit predictors can also be seen as
counters [41]. In the �rst run the initial state is 00. If the branch is taken in the �rst
case the last bit �ips to 01. If not, the state 00 stays. If in the state 01 the condition
is once again correctly predicted, the state changes to 10. As can be seen, if the branch
is two times not taken, the prediction switches from taken two not taken. Conversely, if
the branch is two times taken from not taken state 00, it predicts taken on the next run.

In the loop example from before, the branch accuracy is improved since only one mispre-
diction occurs in the last iteration. That is because the two-bit branch predictor is in the
state 11 and switches to state 10. Thus, in the next execution of the loop, the branch is
again be taken. This two-bit predictor can be easily extended to an n-bit predictor. It is
like adding or subtracting a certain number by changing a single bit. As Yen et al. [92]
showed, the two-bit predictor is the most e�ective predictor.
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Predict not taken Predict not taken 
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Predict taken Predict taken
11 10
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Figure 2.4: State machine of a two-bit BHT state machine.

Yen et al. furthermore proposed to use a two-level branch prediction [92]. The �rst
level is a branch history register or directly the branch history table. The second level
is again a table called Pattern History Table (PHT) [43], which is a table consisting of
four two-bit predictors per branch. Depending on which value the branch in the BHT
has, one of those four counters is chosen.

From this base, di�erent techniques were developed which are not discussed further [43]:

• Index-Sharing Predictors

• Interference Reducing Predictors

• The Bi-Mode Predictor

• Variable Path Length Predictors

• Perceptron Predictors

15



Target prediction

For a conditional branch also the target address to jump after predicting whether this
branch is taken or not needs to be predicted. The Branch Target Bu�er (BTB) stores
the predicted results and their corresponding source addresses [68]. If an instruction is
fetched it is looked up in the BTB beforehand. Furthermore, it optionally stores whether
the predicted branch was taken or not [41]. Figure 2.5 illustrates this lookup via a
Branch Target Bu�er. The �rst column contains a set of all known branch addresses.
The second column contains the prediction for this branch. If the branch was not taken,
the prediction is the following instruction. Conversely, if the branch is predicted to be
taken, the predicted target is the last target, where the branch jumped. If the prediction
is wrong, the CPU stalls for the next instruction. The BTB can be combined with the
branch prediction from before to determine the target address [68].
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Branch instruction addresses Predicted target address
0x1234 0x5678 1

Fetched instruction
lookup Branch taken 

or untaken 

Figure 2.5: Illustration of Branch Target Bu�er [41]. The virtual address
of the instruction (i.e. value of the program counter) is looked up in the �rst
column. If there exists a predicted target, the predicted result is taken. If
not, the PC proceeds normally.

Return-stack bu�er

Additionally to the target address, the return address needs to be predicted. To solve
this problem return-stack bu�ers got introduced. A return instruction is comparable
to an indirect branch [43]. Thus, the target of the instruction can also be predicted
and speculatively executed. For this case, a special hardware bu�er called Return Stack
Bu�er (RSB) was invented. The RSB contains the most current return addresses [41].
If a call instruction gets executed, the predicted return address gets pushed on the RSB.
Conversely, if a return instruction is executed, the return address is popped o� the
stack. The BTB marks all return instructions with a special �ag [68]. When the return
instruction gets predicted, the top address of the RSB is taken, instead of the mapped
target address. The RSB is typically contains 16 entries which appear to be enough to
reduce misprediction to nearly zero [41].
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Out-Of-Order execution

Out-of-Order (OoO) execution was introduced to overcome CPU stalling problems and
to increase the overall performance of CPUs [41]. An OoO-CPU dynamically schedules
instructions [41]. Here, after the decoding phase of instruction checks, for structural
and data hazards are performed [41]. With this knowledge, instructions that are not
dependent can be executed in parallel to reduce the idle time. The instructions are
completed out-of-order. However, before the results are visible to in architectural state,
the instructions are reordered in-order. For the reordering, a special bu�er, namely
reorder bu�er (ROB), is used. The bu�er stores and updates the indermediate results
of the instructions in the bu�er. When the execution is commited, the registers are
updated [41]. However the microarchitectural state, i.e. changes in the cache, is not
reverted. Instructions that are not commited but change the microarchitectural state are
called transient instructions [54]. Listing 2.2 illustrates a simple example where out-of-
order execution can be used to increase the performance. Here, the add instruction cannot
be executed since it depends on the previous memory load. However, the mov instruction
can be executed in parallel since it does not depend on the previous instructions.

1 mov eax ,0x539

2 add eax ,9

3 mov ebx ,5

Listing 2.2: Example for out-of-order execution.

Speculative execution

Speculative execution is used to speed up the performance of pipelined processors.
This approach now combines the concept of branch prediction and out-of-order execu-
tion [41].

Speculative execution that relies on predictions is called predictive speculative execution.
According to Ge et al. [20], the BTB and RSB results are only shared within the same
core. In the decoding phase, a branch instruction can be identi�ed. It uses the predicted
results of branch predictors to pre execute the predicted branch. If a conditional branch
instruction is fetched by the CPU the current architectural state is stored. Possible
execution paths are predicted by the branch predictor and then executed speculatively.
Afterwards, when the branch instruction is executed, the result is validated. If the
prediction was correct, the execution resumes from the predicted path and discards the
stored state. Otherwise, the results of the execution are discarded and the stored state
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is restored. From this restored state, the other part of the branch is executed. However,
transient instructions were executed which changed the microarchitectural state.

2.3 Transient execution attacks

There were earlier attacks on the components of the branch prediction unit attacking
cryptographic primitives [63]. Speculatively accessed data is still accessible for instance
in the cache, which makes it vulnerable to perform transient execution attacks. In Jan-
uary 2018, Kocher et al. [49] showed a practical attack named Spectre on exploiting the
speculative execution unit. This attack is both possible using native code and also via
JavaScript. Spectre allows an attacker to leak sensitive information via a cache side-
channel attack (e.g. Flush+Reload).

Spectre V1

Spectre can be used to exploit conditional branches. We assume a simple example like in
Listing 2.3. The attacker has control over a variable vuln, which is an index of an array. If
the condition is true, the index is lower than the allowed maximum; memory is accessed
and therefore lands in the cache. If the condition is false, e.g., a too large index is given,
then the memory access should not be taken. In the previous section, we explained that
predicted branches are executed speculatively. Thus, in order to exploit this conditional
branch an attacker would �rst input valid indices to mistrain the branch prediction. On
average, 5-20 attempts are enough to mistrain the predictor [49]. The branch taken bit
of the PHT is set to true and afterwards the branch is executed speculatively [8]. The
branch prediction learns that the branch is probably taken and via speculative execution
the data is accessed at the o�set. After mistraining, the attacker sends an out-of-bounds
index, which causes that the valid branch is not executed and the data not accessed in
the architectural state. However, the mistrained branch predictor executes the branch
speculatively and changes the microarchitectural state, i.e., the data stays in the cache.
In Listing 2.3, the attacker would, for instance, send 10 times the index 1 to mistrain
the branch prediction. Afterwards, the attacker sends one out-of-bounds, e.g.,4. The
attacker performs Flush+Reload on the same address [91]. Since the attacker does not
know which byte was accessed, the address tries all values from 0 to 255 and measures the
access time. If the time is below the cache threshold, in this example for mem[data[4]],
the attacker leaked the value 'S'. The attacker could repeat this attack to leak arbitrary
memory accessible for this application. This type of attack is called Spectre V1(Bounds
check bypass on Loads) [49].

Spectre V1.1 (Bounds check bypass on stores) [47] is like Spectre V1, with the di�erence
that instead of loading data a store operation like "mem[data[vuln]] = value".
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1 unsigned char* data = "dataSECRET";

2 char* mem;

3 char access_array(int vuln)

4 {

5 flush(&vuln);

6 flush(data);

7

8 if(vuln < strlen(data) - strlen("SECRET"))

9 {

10 return mem[data[vuln] * 4096];

11 }

12 }

Listing 2.3: Conditional branch which is vulnerable to Spectre V1.

Spectre V2 and other variants

In indirect branches, the target location where to jump to depends on a value of a register,
e.g., RAX or the value of a memory location Before execution, the jump's target address
is not known. The usage of indirect branches is, for example, if a speci�c part of the
code needs to be executed depending on a certain input.

Attacking indirect branches can be compared to a well-known exploitation technique
called Return-Oriented-Programming [72] (ROP). In ROP, the attacker tries to use code
snippets to jump from one snippet to another by overwriting the return address. For
instance, in a bu�er-over�ow attack, ROP is used to leak information and bypass system
hardening mechanisms such as ASLR [78].These small snippets are called gadgets. Using
this possibility, code pieces could be again �sticked� together, and be misused for malicious
purposes. Inspired by Return-Oriented-Programming [72], the discoverer of Spectre call
parts of the code which are vulnerable to mistraining also gadgets. Those gadgets could
the be used to create side-channel information [49]. We also use this term for later
de�ning the necessary code snippets we need for performing NetSpectre.

In Spectre V2 (Spectre-BTB) attack, the attacker tries to inject any target address to
the BTB [8,49]. For Spectre V2, the following scenario can be considered. The attacker
has knowledge of the virtual address of a gadget in the victim's userspace which is, for
example, the address of a function which again accesses data relatively to an index. In
other words calling a Spectre V1 branch. The attacker runs a process which constantly
calls the address of the Spectre gadget. The victim process also contains an indirect
branch, which is mispredicted after mistraining. The gadget accesses a certain memory
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location which can be leaked via a cache-side channel [49].

Another example for exploiting Spectre V2 is by using polymorphism in C++ with
two classes. Both classes contain a function, where one is accessible for the attacker.
The other class contains a Spectre gadget. Here, the attacker would call the accessible
function multiple times to mistrain the branch prediction. Afterwards, the attacker
would inject into the branch predictor to a known virtual address of the Spectre gadget.
This function is speculatively executed and the execution has again side e�ects on the
microarchitectural state. Like the Spectre V1 on conditional branches, the results of the
mistraining can be exploited via Flush+Reload.

This attack can be used to leak host-memory from a virtualized guest [49]. Further
Spectre variants [36, 52] were released. The attack was ported to Intel's SGX by Chen
et. al. [10]. Intel SGX (Software Guard Extensions or SGX) is an extension set of secure
instructions [10]. Here an enclave is used that encrypts and protectss code and data from
being spied and tampered.

Store bu�ers are used to improve the performance of memory writes [8]. Spectre V4
(Speculative Store Bypass) exploits the store-to-forward logic in store bu�ers [8]. The
Speculative Store Bypass is an optimization technique which allows that a load instruc-
tion may be executed speculatively depending on an older store value [8]. The attack
can be compared to winning a race condition [8]. If the load is mispredicted to be non-
dependent on a previous performed store instruction, it will be executed speculatively.
However, this misprediction changes the microarchitectural state as the load instruction
accesses memory depending on an unsanitzed value [8]. This memory access can be again
evaluated using Flush+Reload.

Spectre V5 (ret2spec) exploits speculative execution via the usage of Return Stack
Bu�ers [58]. Furthermore, Evtyushkin et al. [17] introduced a new side channel attack
called Branchscope, which attacks the directional branch predictor.

Meltdown

Meltdown allows an attacker to read arbitrary memory without any necessary privi-
leges [54]. The only requirement to perform Meltdown is code execution on the victim's
machine. Meltdown does not rely on exploiting the branch predictor [54]. Here, the
attacker directly accesses memory that should be inaccessible. This access causes a fault
which throws an exception. However, if a certain trap is reached due to an instruction,
the following instructions are nevertheless executed out of order. This allows an attacker
to e�ciently leak the entire content of the RAM [54] via the cache accesses. Listing [54]
illustrates a proof-of-concept. First, a null pointer gets derefenced and then data which
should not be accessible is accessed. The program should crash immediately and if the
exception is handled, the memory access can be validated via Flush+Reload. Meltdown
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1 *( volatile char*)NULL;

2 mem[vul * 4096] = 0;

Listing 2.4: Meltdown example access that gets performed due to out-of-order execution

got patched on Linux via the KAISER patch, which unmaps the kernelspace whenever
userspace operations are performed [24]. Spectre V1.2 allows to speculatively overwrite
read-only memory [47]. The name is misleading, since Spectre V1.2 is a Meltdown vari-
ant [8].

Van Bulck et al. [83] presented a new attack called Foreshadow �rst performed on SGX.
This attack enables an attacker to steal sensitive data from secure enclaves and hyper-
visors. Since vanilla Meltdown cannot be used in SGX enclaves, Foreshadow clears the
present bit in the page-table entry of SGX to ensure that a pagefault happens [8]. If the
present bit is cleared, an L1 lookup with the virtual address happens directly without
permission checks [83]. Foreshadow NG [88] generalizes this approach to bypass isolation
from guest to host in virtualization.

2.4 SIMD Instructions

Single instruction multiple data (SIMD) is a concept that is designed to execute a certain
operation on numerous data points [33]. The big advantage of this concept is the perfor-
mance. For instance, for matrix operations like an addition with a scalar, the addition
is applied to the whole data block.

Advanced Vector Instructions (AVX) extend the standard instruction set of the Intel x86
architecture [33]. These instructions can be used to improve the performance of programs
which use vector operations. An application of AVX instructions is the accelerations of
cryptographic primitives. For instance, common block ciphers like AES can be imple-
mented using AVX instructions [33]. These operations are commonly used in computer
graphics. Similar behaviour to cache hits and misses got observed when measuring the
timing of AVX instructions [19]. This behaviour and how to exploit it, is explained in
Chapter 3.
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2.5 Covert Channels

In a covert channel, two processes want to communicate with each other, even though
they are not permitted to. In most cases, the two processes use a shared medium, which
they are both allowed to access [87]. This could be, for instance, Flush+Reload on a
shared memory [91]. A shared memory could be for instance a library or simply a mem-
ory region that is used by multiple processes. By sharing the memory to multiple parties,
memory is saved. Sender and the receiver use a speci�c amount of addresses from a shared
memory object [91]. In order to transmit bitwise, a fast memory access (e.g. cache hit)
represents a one and a slow access represents a zero (e.g. cache miss). To increase the
capacity of the channel, it is common to use addresses that map into di�erent cache sets.
The performance of covert channels is the crucial property. There have been covert chan-
nels developed for TCP/IP implementations [55]. For Android, also sensor-based covert
channels were built, which could be used for spying on the user [2]. It has been shown
that these covert channels also work on cloud-hosted environments [69,89]. Research also
showed covert channels via Interrupts [59], DRAM [69], branch predictors [15], memory
buses [74] or the dynamic frequency scaling of the CPU [3].

To measure the performance of covert channels, the true channel capacity is used for a
binary symmetric channel [11].

Cap = RC ∗ (1 + (perr ∗ log2(perr) + (1− perr) ∗ log2(1− perr)))

RC describes the raw channel capacity, meaning which amount of bits are noiseless
possible. perr describes the probability of an incorrect bit. The unit is measured in bits
per second. Current cache-based covert channels achieve a true channel capacity of a few
Megabits per second [26].

2.6 Virtual Memory Separation

Modern operating systems like Windows or Linux split up its virtual memory into
userspace and kernelspace. The kernelspace is basically the memory region where the
operating systems runs and provides its applications and services. All user programs run
in a separate memory location called userspace. Userspace applications are restricted in
such a way that they are not privileged to access the kernelspace. The userspace can
access the kernel only through system calls.
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2.7 Address Space Layout Randomization

The main aim of Address Space Layout Randomization (ASLR) is to randomize virtual
addresses in the memory [78]. This means on each program execution, data is located
at a di�erent location. Randomized memory regions could be the stack, the heap, data
sections and the BSS segments. Depending on which compile �ags are set, not all of the
above mentioned regions are randomized. ASLR complicates memory corruption attacks
like bu�er over�ows. This is because of the fact that an attacker has to leak speci�c
addresses to calculate the randomized o�set. If the attacker is capable of leaking one
address, he is able to calculate back the o�set and exploit the program. If there is no
possibility to leak addresses, the attacker has to guess the address. The lower 12 bits
of each address are �xed since the addresses have to be page-aligned. This leaves for
32-bit virtual addresses 20 bits to randomize. One additional bit is needed to distinguish
between the memory regions. Which leaves 19 bits entropy and 219 guesses have to
be performed [78]. On 64-bit architecture the e�ort is higher since the addresses are
larger and there is more space left for randomization. Under a 64-bit architecture, the
number of bits to guess is 28 and on the PAX implementation it is 40 [60]. Research
also showed di�erent side-channel attacks to bypass kernelspace ASLR [16, 25, 31, 39]
ASLR could be bypassed using more advanced attack techniques like Return-Oriented-
Programming [72].

24



Chapter 3

Attack Primitives

In this chapter, we explain the attacking primitives we need for NetSpectre. We show
how to use the primitives to create timing di�erences and how to measure them. We want
to detect a possibility to mistrain gadgets of server-side code. As a proof of concept for
networking, we consider a client-server scenario. The server part is like a Web API that
is publicly available. For instance, the API provides data which is publicly accessible for
speci�c users.

At �rst we explain the attack setup and give a simple attacking scenario. To create this
attack, we de�ne the necessary building blocks for [77] to perform NetSpectre.

Secondly, we discuss possible attack vectors in userspace and kernelspace. We describe
where NetSpectre gadgets could be possible exist.

Thirdly, we demonstrate how to measure the timing di�erence on Intel CPUs. Moreover,
we argue why it is necessary to repeat the measurements to increase the con�dence.

At fourth, we de�ne the necessary primitives for a cache-based attack. Additionally, we
show that a simple threshold-based approach is enough to distinguish between a zero and
one bit in a binary stream. We also demonstrate a possibility to �ush the cache without
having the ability to use a �ush instruction.

At last, we show how to derive a timing di�erence in the execution of AVX instructions.
We demonstrate how to use this di�erence to be able to create the �rst AVX-based covert
channel. Furthermore, we de�ne the necessary gadgets for an AVX-based attack.

3.1 Attack setup

Our focused Spectre variant is Spectre V1, since it is the most realistic and easiest vari-
ant to exploit [77]. Furthermore, it is very likely that a large code base contains Spectre

25



V1 gadgets [49]. In the classical Spectre V1 attack, the attacker mistrains a condi-
tional branch, for example an out-of-bounds check. We discuss other Spectre variants in
Chapter 4. After the mistraining phase, an out-of-bounds value will get accessed specu-
latively. This speculative execution causes a change in the microarchitectural state e.g.
in the cache, which leads to faster execution times. The process then leaks information
transmitted by a covert channel to the attacker.

In the case of NetSpectre, we modify this attack as follows. The attacking scenario is a
public API where the attacker has access to a public part of a data stream. The clients
are capable of receiving certain parts of the data via an index sent from the client to
the server via network packets. For simplicity of this attack we consider the data to be
in a binary format. For a bitwise representation, we only need to distinguish between
a zero or one, respectively whether data is accessed or not. However, the accessed data
can also be a byte or multiple bytes. The client (attacker) has control over an index
which is sent to the API. The index is checked in a conditional branch for out-of-bounds
values. The API always responds to the server after accessing or not accessing the data.
The conditional branch and the attacker-controlled index form the �rst necessary gadget
which is called leak gadget. Listing 3.1 illustrates a leak gadget.

1 if(index < len)

2 if(bitstream[x])

3 flag = true

Listing 3.1: Cache leak gadget: Conditional branch that performs out-of-bounds
accesses via mistraining. The out-of-bounds access of a single bit is encoded by accessing
the �ag variable. [77]

The attacker sends multiple valid indices to mistrain the branch predictor. The branch
predictor learns that the condition of the branch is with a high probability ful�lled. If the
conditional branch gets again executed, the branch predictor will speculatively execute
the part of the branch that accesses the �ag variable. Thus, after the mistraining, the
attacker sends one out-of-bounds index that will access the �ag variable. This mem-
ory access needs to be evaluated using a second gadget, the transmit gadget. The
API needs to provide another code snippet to validate the microarchitectural state, like
Flush+Reload for Spectre V1. In our scenario, the API contains another public function
that again accesses the �ag variable and responds to the client. The attacker measures
the response time of the received response packet. The response time of the packet should
be signi�cantly faster, if the �ag variable was loaded from the cache caused by the specu-
lation before. If this is this is the case, a 1-bit in the secret part was accessed. Conversely,
if the indexed bit is a 0-bit, the response time is signi�cantly slower. Figure 3.1 illustrates
a general NetSpectre attacking scenario explained above.

This gadget allows an attacker to evaluate the speculative execution part of the attack
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by reaccessing the certain bit or executing a single additional instruction. The attacker
uses the leak gadget and measures the response time. Beforehand, the attacker has to
measure the response times for a zero bit and one bit and the public part of the API.

Using these two gadgets we are now able to build a cache- and AVX-based covert channel.
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Figure 3.1: Illustration of NetSpectre attack via client-server scenario. The
attacker �rst uses the leak gadget. First, the client sends valid indices to
mistrain the branch prediction. Afterwards, the client sends at least an
invalid index. Using the transmit gadget the client validates whether the
accessed index was a zero or one by measuring the response times.
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3.2 Attack Vectors

As already mentioned in Chapter 2, the virtual memory is divided into userspace and
kernelspace. The kernelspace consists of all virtual memory necessary for the operating
system. Userspace applications are not permitted to read or write kernelspace memory.
The previously de�ned gadgets can occur in both locations.

In the userspace, we can think of a web API that receives data from an arbitrary client
and responds. For the indexing scenario, we can assume that the client has the possibility
to choose a particular element from a public resource via an index. In the userspace, the
impact is, that arbitrary memory from userspace applications can be leaked. Potential
attack targets could be HTTP servers, FTP servers, SSH servers. Leaking some informa-
tion on this memory location can be used for further attacks. API keys, user credentials
or sensitive user data could be leaked. Basically, any secret that is stored in the running
application can be leaked using NetSpectre.

In the kernelspace, we can think of a wrongly implemented networking driver. The
driver sends and receives a lot of di�erent data. Drivers are designed to support di�erent
protocols like the internet protocol. If the two gadgets are located in a network driver,
the attacker is capable of leaking arbitrary system memory.

3.3 Channel and Measurement

We want a bitwise leakage of the binary data. Thus, when using the transmit gadget
after mistraining, responding network packets of a zero-bit are signi�cantly slower than
packets with a one-bit. As de�ned in Listing 2.1, we use the rdtsc instruction to measure
the time of response packets.

A lot of network noise can occur, and we need to repeat the measurements multiple times
to get a particular con�dence for a zero- or one-bit. The distribution for the network
response timings is unknown. However, we assume the data to be normal or log-normal
distributed. As the Law Of Large Numbers states [75], on a long run, the average of
the results converges to its expected value. We use this fact and later compare the
maximum peaks (average values) to distinguish between zeros and ones. Thus, it should
be su�cient to build a histogram from the response times to distinguish between a zero-
and a one-bit.
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3.4 Cache Primitives

In Chapter 2, we discussed the Flush+Reload respectively the Evict+Reload attack. The
possibility to use the �ush instruction is not available in our attacking scenario via the
public API. Thus, we have to adapt Evict+Reload. The attacker tries to access a speci�c
address, in our case a certain bit. With Evict+Reload, the attacker tries to evict a certain
address out of the cache. Then the victim accesses memory and by again accessing the
same virtual addresses and measuring the access times, the attacker receives knowledge
about accessed memory.

For our attack, we consider data to be in its binary representation. For the proof-of-
concept, it is su�cient to distinguish between a zero and one. Regarding the cache-based
attack, we need to distinguish between a cache hit and a cache miss. In Evict+Reload
one process would access an address in a shared memory and in another process, the
same address is again accessed. In the second process, the response time is measured.

This kind of attack can be adapted to a networking side. The server creates an array
and encodes the data in binary. At �rst, the client sends valid indices, which will be
accessed by the leak gadget repeatedly. We discovered that ten to twenty valid indices
are su�cient to mistrain the branch predictor on our evaluated CPUs. If the sent index
relates to a one-bit, the server accesses the data. Conversely, if the sent index is a zero
bit, the server does not access the data. To verify if the bit was really a one-bit, the client
uses the transmit gadget and checks the response timing. If the address was accessed on
the �rst time the response should be faster (below a treshold = cache hit response), since
a cache hit occured, and therefore the index is a one-bit. Conversely, if the address was
not accessed, a cache miss occured and the data was loaded from the memory. Therefore
the response time should be slower (above a threshold = cache miss response) and the
index is encoded as zero-bit. With this client-server cache approach the bits can be
bitwise leaked.

Thus, in our attack, the attackers send twenty valid indices to mistrain the branch
predictor. Afterwards, the attacker sends four out-of-bounds indices of 1 byte, which
will be speculatively accessed. There could also be more than four indices be accessed
depending on the number of mistrained requests before. However, we observed the best
performance using this metric.

At last the client resets the testing conditions since the accessed bit needs to be evicted
out of the cache.
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Timing Measurement

To distinguish between a cache hit response and a cache miss response, we create two
histograms on the client side measuring the servers response times. The �rst histogram
measures the timing responses for a cache miss. After analysing the histogram we are
capable of de�ning a certain threshold to distinguish between a zero and one . Depending
on the hardware and the number of network devices between the server and client, the
response times will strongly di�er. Thus, it is not possible to choose a general threshold
to distinguish between a zero and one for all devices.

For our proof-of-concept implementation we chose plain UDP (User Datagram Protocol)
sockets [65] as protocol to communicate between client and server. This client-server
implementation was used to create the histograms.

We created a server-client based histogram tool, which measures the timing of an accessed
bit (cache hit) and a not accessed bit (cache miss). We created histograms for both a
notebook and a desktop CPU. It can bee seen from Figure 3.2 that there is a lot of noise
coming from network communication. For the notebook CPU it can be seen, that in
some cases, cache misses appear to be faster. These apparently faster timings come from
the UDP sockets. However, on the long run (with su�cient repetitions), the timings of
a cache hit are still at around 100 to 150 cycles faster on average than cache misses.
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Figure 3.2: Timing di�erence between a cache hit and a cache miss over
the network in a local environment for both desktop and notebook CPU.
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Resetting the microarchitectural state

The second access by the transmit gadget caused a change in the microarchitectural
state. In order to repeat the measurement, the architectural state has to be resetted.
Notably, the address has to be evicted from the cache. Since a direct possibility to
�ush the address is not possible, an alternative has to be found. We need to adapt the
Evict+Reload attack. Instead of Evict+Reload, we call this strategy to remotely evict
Thrash+Reload [77]. Thus, we have to �nd a speci�c eviction strategy in order to evict
the accessed bits out of the cache. We discovered that a constant �le download on the
server is enough to create a similar behaviour like evicting [77]. Depending on the cache
size of the CPU, the �le size varies. An Intel i5-6200U (3 MB cache) a �le download of
around 1 MB is enough to evict a single variable. For an Intel Core i7-8550U with 8 MB
large last-level cache a �le download of around 8 MB is necessary to completely evict the
variable.

Figure 3.3 illustrates the probability of a local variable being evicted from the cache.

Using the above mentioned gadgets, we should be capable of building a cache-based
attack.
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Figure 3.3: Probability of a variable being evicted from the cache simulated
via the memset instruction.
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3.5 AVX Primitives

We explored a timing di�erence in AVX instructions which was described by Agner [19].
If a 256-bit instruction gets executed with a value lower than 128-bit, the upper half of
the unit is powered down for energy e�ciency reasons [19]. If a 256-bit instruction is
executed it needs a few nanoseconds to warm up the upper half [19]. In this warm-up
phase the unit is capable to perform 256-bit instructions, however it uses 2 128-bit units
per 256-bit vector [19]. Using this information, we evaluated, that in a cooled down
(passive) state, a single instruction needs more CPU cycles to be performed. Due to
energy saving issues a cool down occurs [34].

In our proof of concept implementation, we used the _mm256_and_si256 (VPAND)
instruction. This instruction computes the bitwise logical AND operation between the
two variables. Figure 3.4 shows the timing di�erence between a warmed up unit and a
cooled down unit using the instruction. The di�erence lies on the evaluated CPUs on
average between 350 to 450 cycles depending on the CPU state.

This behaviour has an impact on the execution speed of the instructions. Figure 3.4
shows the timing di�erence between a warmed up unit and a cold unit of i7-8550U. The
plot on an i7-6700K desktop CPU looks similar. The instruction on a warmed up unit
needs about 600 cycles. A cold unit needs around 1000 cycles. This timing delta is
higher than between a cache hit and miss. Thus for a remote attack, it is more robust
to noisy channels. We can mount the cache-based attack to AVX. The leak gadget is
quite similar to the cache leak gadget. Instead of accessing a �ag variable which will
be cached, an arbitrary AVX2 instruction will be performed to encode a one-bit. This
conditional branch can be again mistrained to speculatively execute AVX2 instructions.
Listing 3.2 describes how an AVX leak gadget looks like. The transmit gadget is an
arbitrary AVX2 instruction that will be executed via a request. The mistraining will
warm-up the unit. With the transmit, the timing di�erence can be measured and with
su�cient requests, a one-bit and zero-bit can be distinguished.

1 if (index < len)

2 if(bitstream[len])

3 _mm256_instruction ();

Listing 3.2: AVX leak gadget: Conditional branch that performs out-of-bounds accesses
via mistraining. The out-of-bounds access of a single bit is encoded by calling an arbitrary
AVX2 instruction. [77]
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Figure 3.4: Timing di�erence between a �cold� AVX instruction and �warm�
instructions

Listing 3.3 contains the necessary code to measure the timing di�erence of a warmed up
and a cold instruction.

Time measurement

To measure the timing di�erence between a warmed up and cooled unit over the network,
we can again choose a histogram-based approach. We �rst measure the timing of a �cold�
AVX instruction and then again of a warmed up instruction. Figure 3.5 illustrates the
histogram of the timing di�erence between a single warmed up and cooled down AVX
instruction. It can be seen that a warmed up unit is clearly distinguishable from a cooled
down unit. Again, choosing an appropriate threshold is enough to distinguish between
a zero and one bit. For our covert channel, we encode a warmed up unit as one bit and
the cold unit as zero bit.
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1 #define AVX_DIFF 280

2 #include <immintrin.h>

3 #include <unistd.h>

4 ...

5 __m256i a,b;

6 size_t avx_measuring () {

7 size_t start = rdtsc();

8 b = _mm256_and_si256(a, b);

9 size_t end = rdtsc();

10

11 size_t start2 = rdtsc();

12 b = _mm256_and_si256(a, b);

13 size_t end2 = rdtsc();

14

15 size_t delta = (end2 -start2) - (end -start);

16 return delta;

17 }

Listing 3.3: Snippet of AVX timing measurement.

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

·104

0

0.5

1

1.5

·104

Response time [CPU cycles]

A
m
o
u
n
t

warmed up unit

cold unit

Figure 3.5: The timing di�erence between a warmed up and cooled down
AVX instruction over a network-based measuring.
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Resetting of the unit

In order to reset the testing conditions for a single bit, we need to be capable of cooling
down the unit. The fastest way to achieve this, is to simply wait a certain amount of
time. We observed that after 1 millisecond the unit is completely cooled down [77].
Figure 3.6 shows the cool down of the AVX unit after a certain amount of cycles. After
approximately 0.5 milliseconds the upper half of the instruction cools down [19,77]. The
execution time of the instruction increases after increasing the delay. We used NOP (No
operation) instructions to increase the delay. From the NOP instructions we can calculate
back the time in milliseconds. The reason, why we used NOP instructions was that the
usleep syscall was too inaccurate on our evaluated CPUs. The zig-zagging e�ect after
200 and 400 NOPs comes from the scheduling process within the CPU.
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Figure 3.6: Number of NOP instructions necessary to cool down AVX unit
after performing the _mm256_and_si256 instruction. After approximately
one millisecond the unit is completely cooled down. At approximately half a
millisecond the unit starts to cool down.
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Chapter 4

Attack Case Studies

In the previous chapter, we de�ned the necessary attacking primitives to perform a
NetSpectre attack. In this chapter, we discuss the implementation of the attack and its
performance. Additionally, we evaluate its impact on real networks and the practicality
of being attacked over the network.

In the �rst section, we describe the 2 attack variants which can be used to leak memory
from a server application. We demonstrate our attack on current Intel CPUs. The �rst
attack uses a cache covert channel which is based on the idea of Evict+Reload. Instead
of �ushing, we simulate a �le download to reset the cache state like explained in the
previous chapter.

In the second variant, we adapt the attack to work with AVX instructions instead of the
cache. We achieve a higher performance with this attack since we only have to wait one
millisecond to reset the state.

Then, we explain how we can use a NetSpectre gadget to bypass Address-Space-Layout-
Randomization (ASLR) on modern operating systems. We use binary search to hit a
particular address and accelerate some speci�c functions. With this approach, we are
capable of calculating an o�set and break ASLR.

4.1 Leaking Memory

Since the attack is network-based, the primary requirement is a publicly accessible service,
which is available via an IP address and a port. This service should be capable of
receiving a large number of network packets and have fast response times. We adapted
the UDP-socket-based implementations for creating the network histograms. In our
implementation, we consider data to be in binary format. This representation makes it
easier since we only need to distinguish between a zero and one. Distinguishing a whole

38



byte with 256 possibilities would require a lot more repetitions and a more sophisticated
approach to separate bytes. The server holds a binary stream which is divided into a
public and private (i.e. secret part). The client implementation can send indices to select
bits from the public part. The index reprensents the nth bit of the binary stream. In our
proof-of-concept implementation, the server provides the two gadgets:

1. Leak gadget : This gadget takes an index to select from the binary stream as input.
This input is sent to a conditional branch. The conditional branch checks whether
the index is allowed to access the public part or not. If the index is below the allowed
public part, the indexed bit is accessed if the bit's value is a one. The conditional
branch is vulnerable to Spectre V1 and therefore it is possible to mistrain this
branch. The speculated instruction is in our two attack cases as follows. For the
cache-based attack, memory is accessed speculatively. In our AVX-based attack,
an arbitrary AVX instruction is speculatively executed.

2. Transmit gadget : This gadget takes in the cache-based approach an arbitrary index
and performs another memory access on the speci�ed data. In the AVX case an
additional AVX2 instruction is performed. Depending on a cache hit or a warmed
up AVX unit, the response should be below a pre-de�ned threshold.

To leak a single bit, the attacker needs to use the two NetSpectre gadgets previously
de�ned in two phases.

In the �rst phase, the attacker continuously mistrains the server's branch predictor via the
leak gadget to perform a single instruction speculatively. This single instruction either
executes a memory access for the cache-based attack or an arbitrary AVX instruction.
The attacker sends valid indices to make the branch prediction believe that the next
indices are also valid and trick it to execute the following executions of this branch
speculatively. Afterwards, the attacker sends an invalid (out of bounds) index a few times,
which then speculatively executes a memory access instruction or an AVX instruction.

After mistraining and accessing the out-of-bounds value of the secret, the attacker triggers
the transmit gadget. Here, the memory access instruction or AVX instruction gets again
executed. The attacker then measures the response time of the server and compares it
to a particular threshold value. We choose as threshold for one-bits the mean value from
the 1-bit histograms and compare the response times. Since a single response is not
enough and might contain noise, we need to rerun the whole procedure above mentioned
multiple times. With this procedure, we are capable of leaking the secret data bitwise.

4.1.1 Cache-based Attack

In our implementation, we aligned the binary stream to a page size of 4096 KB. The server
runs three main threads representing the necessary gadgets. The �rst thread contains
a conditional branch containing an index check which is our leak gadget. Our transmit
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gadget is located in a second thread which always accesses the send index in the array.
In the third thread, the reset function is implemented which simulates a �le download
and �ushes the accessed bits. After requesting this thread, the state is completely reset
and the experiment can be repeated.

The gadgets look like given in Listing 4.1 beginning with line 11. A memory region is
allocated represented as the mem variable. If the leak gadget is mistrained, the memory
at the location of the indexed bit gets accessed.

A single bit leakage looks as follows. At �rst, the attacker has to �nd the threshold using
the histogram tool. In the mistraining phase, the client sends for example the number 2.
2, in this case means, the second bit of the bitstream (the array starts with the letter �d�
in binary 0110 0100), which is a 1. This index will cause that the branch prediction is
mistrained via the leak gadget. If the attacker now sends, for instance, the number 33,
the speculative execution will access the second bit of the letter �S�. Using the transmit
gadget, the attacker is now capable of testing whether the bit number 33 represents a
zero or a one. After the attacker has accessed this bit, he has to reset the cache state
using the �ushing thread. As stated in the comment on line 13 and 14, a �ushing of the
index variables x, bit and data will have a higher probability that the branch is predicted
and executed speculatively. We observed that with a too small data array, the attack
does not work as intended, as there was no speculative execution on the branch. In our
proof-of-concept implementation, we used a size of 2048 bytes for the data array, which
was large enough, so that the branch was executed speculatively based on the branch
prediction.
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The client repeats this procedure for each bit multiple times. After a certain number
of repetitions, the client compares the number of cache hits and misses. Figure 4.1
illustrates the leaked binary encoded letter `S' of the secret part. We choose a threshold
of 15500 CPU cycles to distinguish between a zero and one byte. The threshold is marked
using a red line. In our proof-of-concept implementation, the plots are not always that
distinguishable. Instead of just looking at the histograms and trying to detect zero and
one, we count the number of times below the threshold. When using this approach, we
observed a signi�cantly higher number of elements below the threshold for one bit than
for a zero bit.
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1 unsigned char* data = "dataSECRET ..."; // should be large

enough ~ 2048 bytes

2 char* mem;

3

4 void init_mem ()

5 {

6 char* _mem = malloc (4096*300);

7 mem = (char*)((( size_t)_mem & ~0xfff) + 0x1000*2 +

1024);

8 memset(mem , 0, 4096 * 290);

9 }

10

11 char leak_gadget(int x,int bit)

12 {

13 //if variable gets flushed beforehand speculation

14 //is more likely

15 flush(&x);

16 flush(&bit);

17 flush(data);

18

19 int index = x * 8 * 4096 + bit *4096;

20 if(x < (strlen(data)) - strlen("SECRET"))

21 {

22 return mem[index];

23 }

24 }

25

26 void transmit_gadget(int received_byte ,int received_bit)

27 {

28 maccess(mem + (received_byte *8*4096 + received_bit *

4096));

29 }

Listing 4.1: Leak gagdet and transmit gadget for cache-based attack.
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bit one = 0

(a) First bit leaked as zero.

bit two = 1

(b) Second bit leaked as one.

bit three = 0

(c) Third bit leaked as zero.

bit four = 1

(d) Fourth bit leaked as one.

bit �ve = 0

(e) Fifth bit leaked as zero.

bit six = 0

(f) Sixth bit leaked as zero.

bit seven = 1

(g) Seventh bit leaked as one.

bit eight = 1

(h) Eight bit leaked as one.

Figure 4.1: NetSpectre leakage of the letter `S' which is 01010011 in binary.
A threshold of 15500 cycles is used to distinguish zero and one bits. With
fewer iterations, the threshold is used as an indicator. Thus, counting the
number of values below the threshold is enough to distinguish the bits. The
number of response times below the threshold is signi�cantly higher for one
bits, than for zero bits.
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4.1.2 AVX-based Attack

To build an AVX-based attack, we need again a leak gadget which can be mistrained.
Instead of mistraining a memory access, an arbitrary AVX instruction needs to be spec-
ulatively executed. Listing 4.2 gives the two gadgets needed for the AVX-based attack.
As can be seen, the condition that gets mistrained is the same as for the cache-based
attack. The transmit gadget is a single 256-bit logical AND instruction.

1 unsigned char* data = "dataSECRET ...";

2 __m256i a,b;

3 char leak_gadget(int index)

4 {

5 received_byte = index / 8;

6 received_bit = index % 8;

7 volatile int bit = (data[received_byte] >> received_bit

) & 1;

8 flush(& received_byte);

9 flush(data);

10

11 if(received_byte < strlen(data) - strlen("SECRET")))

12 {

13 if(bit)

14 {

15 b = _mm256_and_si256(a, b);

16 }

17 }

18 }

19 ...

20 void evaluation_gadget ()

21 {

22 b = _mm256_and_si256(a, b);

23 }

Listing 4.2: Leak gagdet and transmit gadget for AVX-based attack.

The AVX-based attack works in the following way. The server application has two
threads. Like in the cache-based approach one thread for the Spectre part of the attack
and another one for the evaluation part. The third thread is not needed since we do not
need to �ush any memory.

The client mistrains the conditional branch, which now speculatively executes an arbi-
trary AVX instruction. After mistraining, the client sends one single request to the leak

44



gadget, which again executes an AVX instruction and measures the response time. For
a one bit the instruction should be again faster on average than for a zero bit.

To reset the attack per bit the client now only has to wait 1 millisecond to cool down
the AVX unit. Afterwards, the attack procedure can be repeated like before.

4.2 Bypassing ASLR

For remote attackers, ASLR is often one of the last hurdle which has to be beaten.

The idea of an ASLR bypass using NetSpectre is to speculatively access an arbitrary
address used in the process. Due to a cache hit the execution speed of this function
should be faster. In this case, we only need one gadget, where we are able to mistrain
the branch prediction to speculate over this function. An ASLR gadget leaks information
about a memory access [77]. With this gadget, the attacker is capable to speculatively
access any memory address. Listing 4.3 illustrates an ASLR gadget.

1 if (index < len)

2 access(array[index])

Listing 4.3: NetSpectre ASLR gadget [77]

There exists a page without randomisation called the vsyscall page [32]. For each
process, the vsyscall is located at the same memory address. This page is used to speed
up speci�c system calls. The three functions getcpu, time, gettimeofday are provided in
the vsyscall page. If the KAISER patch [24], which prevents Meltdown, is enabled, the
vsyscall is the only page mapped in a certain region.

The ASLR leakage with the leak gadget and the vsyscall page works as follows. In the
�rst phase, the attacker mistrains the branch prediction using the ASLR gadget. The
aim is to hit the vsyscall page which then accelerates one of the mentioned functions
above. The server needs to provide a public interface which accesses one the three above
mentioned functions. The attacker measures the response time of the interface. If the
response time is faster, a cache hit got detected.

The attacker can perform a binary search with all o�sets to reach a certain memory
region e.g. the vsyscall page. The number of o�sets gets bisected. First the attacker
mistrains the branch predictor and uses the ASLR gadget with the �rst half from the
o�sets to speculatively access all virtual addresses in the range. Afterwards, the public
interface is called and its response time is measured. If the response time appears to
be faster, we choose the �rst half and bisect this half again. If not, the other half of
memory is chosen and the check is repeated. This type of search brings a logarithmic
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search depth. Meaning for an ASLR entropy of around thirty bits, we only need thirty
checks to �nd the correct o�sets.

Figure 4.2 illustrates the binary search performed to �nd the correct o�set. The �rst
node is the �rst half of memory in which a single hit occurs. The vsyscall page is located
at �����600000.

The vsyscall page is actually in use at the latest versions of Linux systems like Debian,
though it is a legacy concept [77]. The three functions provided in vsyscall are seem-
ingly harmless, although they give at least a simple ROP gadget called syscall and return
gadget. Those gadgets can be used in advanced Return-Oriented-Programming tech-
niques like Sigreturn-Oriented Programming [7]. It was replaced by a new concept called
vDSO(virtual Dynamic Shared Object) [32]. VDSO is in contrast to vsyscall dynamic
and maps memory randomized for each process into a virtual shared object. Using this
concept, it is not possible to use this �xed page to bypass ASLR.
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Figure 4.2: Illustration of binary search used to �nd the correct o�set.
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Chapter 5

Evaluation

In this chapter, we discuss the results of the proof-of-concept implementation.

First, we discuss why we chose the UDP socket connection between the client and server.

Secondly, we evaluate the performance of all three attacks on current Intel CPUs in the
local network, the Google Cloud Platform and on an ARM CPU. We argue which other
Spectre variants could be used in a NetSpectre scenario. We discuss NetSpectre mitiga-
tions over the networking side. Additionally, we analyse current Spectre remediations.

Finally, we discuss the general impact and practicability of NetSpectre. We argue why
other attacks which had �rst a low performance, became later practical.

5.1 UDP Protocol

The UDP protocol has less communication overhead compared to TCP [42]. Therefore
using UDP, the performance is higher. However, it is also unreliable and it occurs that
packets get lost. Since the measurements are repeated a lot of times, the unreliability in
the form of corrupt packets does not matter signi�cantly. We observed that UDP socket
timings also vary depending on the CPU workload. Additionally, at the beginning of the
�rst few requests, the timings appear to be a little faster and can be ignored.

5.2 Test Results

We evaluated our implementation by leaking multiple bits on the localhost, a peer-to-peer
connection between two PCs and on a cloud environment. The performance is indicated
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by the true capacity of the channel. Our evaluation CPUs are several Intel notebook and
desktop CPUs. Additionally, to desktop and notebook CPUs, we evaluated NetSpectre
on the Google Cloud platform and also on an ARM mobile CPU. Table 5.1 lists all
evaluated CPUs. We used our proof-of-concept implementations described above in a
local environment. As already mentioned, these implementations all use Spectre variant
1.

Vendor CPU name Type
Intel i5-4200M Notebook CPU
Intel i5-6200U Notebook CPU
Intel i7-8550U Notebook CPU
Intel i7-6700K Desktop CPU
Intel i7-8700K Desktop CPU
Intel Xeon (unspeci�ed) Google Cloud CPU
ARM Cortex A75 Mobile CPU

Table 5.1: All evaluated test CPUs for the NetSpectre evaluation. The
CPUs evaluated are state-of-the-art CPus.

Intel notebook and desktop CPUs

The bottleneck of the cache-based attack is the cache eviction part, which we described
as a constant �le download from the server part. It slows down the server and needs
to be performed constantly, to �ush the accessed bits again out of the memory. In the
cache-based approach, we can test for multiple cache hits and misses in a shorter time
or parallelized. However, we attain only a transmission rate of 240 bits per hour in a
local network with an error rate of less than 0.1%. In a local network, around 100.000
repetitions are necessary to distinguish a zero from a one bit. The more repetitions, the
higher the probability to clearly distinguish the bits. To reliably leak a single bit on a
peer-to-peer 1 Gigabit link, we observed that at least 1 000 000 repetitions are necessary.
For 1 000 000 repetitions, we need around 4 minutes per bit. Thus, the cache covert
channel on a local network has a channel rate of 15 bits per hour.

In the AVX-based approach, it is not possible to test multiple bits at once, since we
can only warm up and cool down the unit. However, there is no need to evict/�ush
variables out of the cache. Instead, we only need to wait 1 ms to cool down the unit
on a desktop CPU. The throughput is still higher than on the cache-based approach.
We need about 1 minute to leak one bit. Using the AVX-based covert channel, we are
capable of transmiting 1000 bits per hour in a local network using 100 000 requests. The
corresponding error rate is at 0.58%. In a peer-to-peer network, we leak 60 bits per hour.

On Intel i7-8550U, a notebook CPU, a timing di�erence of up to 1000 cycles was observed,
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between a cooled down and a warmed up unit. This is a big advantage since the larger
timing di�erence allows more noise on the network. Therefore, it is easier to distinguish
between a warmed up and cold unit than between a cache hit or cache miss. On desktop
CPUs, the unit is immediately warmed up after a single instruction. On a notebook
CPU, for instance the Intel i7-8550U, around 20 AVX instructions are necessary to warm
up the unit.

The ASLR bypass is required to use the cache-based attack. Thus, to break ASLR on
average an attacker needs to leak 30 bits which takes approximately 2 hours.

5.2.1 ARM architecture

We evaluated our attack also on an ARM Cortex A75 CPU on a local network. A wireless
network would be more realistic for a mobile CPU. However, this would bring too much
noise to our attack [77]. On ARM, the timing gap between a cache hit and a cache miss
is up to 400 CPU cycles [53].

Figure 5.1 shows the histogram of a cache hit and a cache miss on an ARM Cortex A75.
As can be seen, we again have a clear and distinguishable timing di�erence. On the local
network again around 1 million repetitions are necessary to leak one single bit. Using a
proper threshold, a cache-based attack on ARM is also possible. However, the latency
on the CPU is a few times higher than on desktop CPUs. This fact slows down the local
attack and the number of leaked bits per hour.

We evaluated the pendant of AVX instructions on ARM. Those instructions are called
ARM Neon instructions [4]. However, we did not observe a warmup and cooldown
behaviour with these SIMD instructions.
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Figure 5.1: Histogram of a cache hit and cache miss on an ARM Cortex
A75.
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5.2.2 Google cloud

We evaluated NetSpectre on the Google Cloud Platform on two neighbored instances.
Those virtualized instances run Ubuntu 16.04.4 LTS [77]. In order to successfully leak a
single bit, we need in total 20 million repetitions [77]. The network used in the Google
cloud has a bandwidth of 4 Gbit/s. The results are quite noisy, however, using this large
number of repetitions a zero or one bit can be distinguished. Thus, in order to leak a single
bit, we need about 3 hours in the AVX case and 8 hours in the cache-based approach.
Furthermore, we evaluated NetSpectre on two virtualized Xubuntu 16.04 instances using
VirtualBox on a local setup. The response times are noisy but with 5 000 000 repetitions,
those are still distinguishable.

Test Improvements and Observations

We observed that stress -d 1 additionally increases the probability for a successful
speculation. Furthermore, interrupts, for instance, the movement of the mouse, increase
the probability of speculative execution. A possible reason for that can be that the
CPU has to speculate more to maintain its performance. However, too much stress
on the CPU reduces the success probability of the attack since it produces additional
noise. Furthermore, for notebook CPUs, a suspension of the operating system creates an
unexplainable behaviour for both cache and AVX-based attack, which we cannot explain
so far.

Additionally, we observed that bounding a process to a certain CPU achieved as better
performance, in the mistraining phase. To taskset the programs to a single core we used
the taskset -c <core-number> ./process command. For the AVX-based attack stress
command adds additional noise and we did not use it to test the attack. Our assumption
is that the stress command might have an in�uence on the AVX unit. As previously
mentioned, �ushing of the index variable before the conditional branch increases the
probability that the conditional branch is speculatively executed.

When testing the cache-based attack locally, the process should be scheduled after mis-
training to achieve better results. This can be done by using the sched_yield. Reason
for that is that the server will always have time to �ush the cache state again.

Due to the power scaling of modern laptops, the best results are achieved if the laptop is
connected to the power supply. In battery mode, we observed that the Spectre attack is
not reliably working anymore. This behaviour might occur due to power saving reasons
since the CPU gets throttled down. If experiments are performed in battery mode, the
threshold for all attacks has to be calculated dynamically . For notebook CPUs it might
occur that one AVX instruction is not enough to warm up the unit. Thus, there is no
need to warm it up a little stronger and using Spectre make it "hot" and then measure
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the timing. Also, it might occur that the timings of AVX shift in a certain way a little
around. Therefore it is meaningful to store all the response timings and analyse the data
for certain timing sections.

5.3 Porting NetSpectre to other Spectre Variants

In this section, we discuss the portability of NetSpectre to other versions than Spectre
V1. We �rst explain the usages with Spectre V2 up to Spectre V5. We discuss the
changes that have to be made, to successfully adapt the attack.

Spectre V1.1

Spectre V1.1 (Bounds check bypass on stores) is similar to V1 with the contrast that
the attacker is capable of writing an arbitrary value speculatively. Listing 5.1 shows a
conditional branch that can be exploited using Specter V1.1. Here, the two variables
idx and val are controlled by the attacker. With these values, the attacker can trigger
speculative bu�er over�ows. This branch can be directly used as NetSpectre gadget.
Here we can speculatively store arbitrary data on the array. For NetSpectre, we can use
this gadget to be mistrained and cause arbitrary writes with respect to the data array. By
speculatively overwriting the return address, we can trigger a speculative bu�er over�ow.
Combining this attack with the ASLR bypass, we are capable of building speculative ROP
chains.

1 if (idx < certain_length)

2 {

3 data[idx] = val;

4 }

Listing 5.1: Spectre V1.1 gadget [47]

Spectre V2

In Spectre V2, the attacker injects an arbitrary target address to the BTB [49]. This
overwritten target address will be fetched and the code speculatively executed. To adapt
NetSpectre to Spectre V2, we need to have adapted gadgets. Spectre V2 can be used to
exploit C++ vtables. The vtable is a pointer to an array of function pointers. Whereas,
each o�set in this array represents a di�erent virtual function. The Spectre gadget, in

51



this case, can be a virtual function. The NetSpectre V2 scenario could look as follows.
The server side contains a super class which has for instance two sub classes. Both classes
contain the same function. For one class this function is public and does nothing dan-
gerous. For the other class this function contains a secret that can be leaked via Spectre
V2. In the mistraining phase, the attacker needs to mistrain the harmless function to
inject the target address into the BTB. Afterwards, the attacker tries to access the secret
function which should be speculatively executed. Again, in this speculative execution, a
memory access on a bitstream or a SIMD instruction gets executed. The second gadget
we need is again the transmit gadget either for cache or AVX. To �ush the cache, we
again need the possibility of a constant �le download. We evaluated Spectre V2 locally
and observed, that 5 mistraining requests are enough to execute the secret function at
least once.

Spectre V4 (Speculative Store Bypass)

Spectre V4 exploits the fact that in modern processors speculative loads are processed
even if the address of an overlapping store operation is not known [8]. Thus, our Spectre
gadget has to contain a store instruction and directly afterwards a load instruction. It
is more or less a race condition here, and no mistraining can be performed. Mainly this
problem can be similarly exploited like variant 1 and 2. Listing 5.2 shows the code that
has to be executed on the server side. A binary mask is used to �lter out values for the
idx variable. Due to an error in the store-to-forward logic, the access on the data array
with the old value is performed speculatively [49]. However, the attacker has to perform
a lot of requests to trigger this race condition.

1 void v4gadget ()

2 {

3 int idx;

4 int* p_idx=&idx;

5 (*p_idx)&=mask;

6 data[ptr[idx ]*4096];

7 }

Listing 5.2: Spectre V4 gadget
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Spectre V5 (RSB)

Spectre V5 aims to exploit Return Stack Bu�ers via speculative execution [58]. Maisuradze
et. al. describes four scenarios to mistrain the RSB [58]. In those, the RSB gets manip-
ulated via call, ret and pop instructions.

There is no direct possibility to manipulate the stack like this using Spectre and it has to
be provided in the code section. However, if there is the possibility to control the stack
pointer, the attacker would use way more dangerous attacking techniques like Return-
Oriented-Programming to get control over the full system.

Meltdown

Meltdown allows an attacker to read arbitrary memory without any necessary privi-
leges [54]. During transient execution the user accessible bit is not checked and allows
it to access kernel memory from userspace [54]. Foreshadow was proposed by Van Bulck
et al. [83] on SGX. In this attack the present bit gets cleared to ensure that a pagefault
occurs. An L1 lookup with the virtual address is performed directly without checking
the permissions [83].

Spectre V1.2 allows an attacker to speculatively overwrite read-only memory [47]. Read-
only memory can be read-only data, code pointers, and code metadata, including vtables,
GOT/IAT, and control-�ow mitigation metadata [47].

So far, these attacks are considered to be local. We did not �nd a possibility porting
these attacks to the network. Since signals have to be handled which is quite uncommon
for server-side applications.

We consider this as an open research problem, which needs some further investigation.
Furthermore, the patches against Meltdown are e�ective and widespread.

5.4 NetSpectre Countermeasures

In this section, we explain how to mitigate NetSpectre via the network side. We explain
how current networking devices are capable of detecting networking anomalies and how
fast they get blocked. Furthermore, we discuss current approaches to remedy Spectre
and argue why these countermeasures do not fully prevent NetSpectre.
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Networking countermeasures

The �rst possibility to mitigate NetSpectre is via network tra�c monitoring. Next-
generation �rewalls, routers but also more sophisticated intrusion detection systems are
capable of inspecting, analysing and detecting networking anomalies [6,79,82,93]. If the
sent payloads look malicious, they might get blocked by networking devices quite fast. For
instance, in the cache-based attack, performing a constant �le download on the server is
de�nitely suspicious enough to get blocked. Furthermore, the number of packages which
are necessary to leak one bit is quite high and might be detected as Denial-Of-Service
attack attempt. A network �rewall or router can be easily con�gured to limit the tra�c
number per source IP address [6]. Thus, it is easy to detect such attempts and block
them [79]. Furthermore, random delays or load balancing respectively normal network
tra�c delay weaken the attack a lot. The number of devices between the victim and the
attacker also adds a lot of noise. A proper network segmentation or demilitarized zones
for sensitive services can also be considered to harden NetSpectre attacks. Additionally,
IP address whitelisting can be used in internal networks for remotely accessible services
like RDP, SSH or LDAP.

However, if the attacker has time to wait, the networking packets could be obfuscated and
sent in di�erent slow intervals. Furthermore, fragmenting payloads is an opportunity to
evade intrusion detection systems [70]. The detection system has to learn the signature
of certain payloads. Since the way of using NetSpectre can be di�erent for each case,
there is no guarantee that these requests are blocked.

Side-channel countermeasures

In order to overcome NetSpectre attacks, we need to patch Spectre in all its variants.
Since the vulnerability is located in the hardware the simplest but most expensive mit-
igation is to disable branch prediction and with that speculative execution [9, 49]. One
could also switch to processors that do not support speculative execution for instance
some ARM processors [49]. Alternatively, one can wait and change to CPUs that are not
a�ected by Spectre. This would also have a huge impact on the performance [49]. So far,
there is also no possibility to turn-o� speculative execution completely using oftware [49].

In the following subsections, we will discuss the possibilities to mitigate Spectre and
other side-channel attacks.
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Hardware-based defense

Khasawneh et al. [45] developed an approach which uses shadow hardware structures,
which are especially used for transient instructions. These structures check whether the
predictios were correct or not at runtime. If the predictions were not correct, the results
are discarded and no side-e�ects in the hardware occur.

Yan et al. [90] proposed a method which is called InvisiSpec. This method uses a spec-
ulative bu�er, which stores all speculative executed loads instead of using the cache. If
the speculation was correct the results are loaded into the cache. If the speculation was
wrong the results get invalidated [90]. This approach only protects the cache so far, and
not other covert channels like the AVX-based approach.

Another solution named DAWG was proposed to secure the cache by protection domains
which perform cache isolation [21]. However, this approach requires to redesign the cache
and requires a correct handling of these protection domains [8].

Add noise to times

One possibility to mitigate side-channel attacks is to add noise to the timers [8]. For
client-side attacks for instance performed on the browser this could be considered as
remediation. Since the accuracy has to be precise, noise on the timers makes it harder
to detect changes in the microarchitectural state. This idea was implemented in Chrome
and Edge browser to mitigate Javascript side-channel attacks [29].

However this solution is not ideally, since there are other possibilities to create timers
like Schwarz et al. [76], showed.

Memory barriers

As already mentioned, the microcode updates from Intel only mitigated the possibility to
leak kernel memory from a userspace application [36]. The �rst possibility recommended
by Intel was to use memory barriers. Intel proposed to use memory barriers in the form
of the lfence instruction to mitigate the �rst variant of Spectre exploiting conditional
branches [36]. This instruction prevents later instructions from being speculatively exe-
cuted. Listing 5.3 shows how the memory access in the Spectre gadget could be prevented
in the conditional branch.

We evaluated the impact of using a single lfence before a memory access for the cache-
based attack and the AVX-based attack. For the cache-based attack, a single lfence is
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1 if(x < (strlen(data)) - strlen("SECRET"))

2 {

3 asm volatile("lfence");

4 return mem[index];

5 }

Listing 5.3: lfence instruction used to �x Spectre

enough to mitigate the attack. However, for AVX we discovered that a single lfence
instruction does not prevent NetSpectre attack. Figure 5.2 illustrates the timing dif-
ference of a cold and warmed up unit with an additional speculatively executed AVX
instruction. In the leak case, without an AVX instruction, the timing di�erence is most
signi�cant. However, with a single lfence instruction, the timing di�erence between a
cold and warmed up unit is still distinguishable. It can be seen, that in the baseline case,
where only a single lfence gets executed without an additional AVX instruction, the unit
is not warmed up. For the ASLR attack, we recommend to turn o� the vsyscall page by
using the echo 0 > /proc/sys/kernel/vsyscall64 command.

Adding lfences for each critical section can be a hard task. For productive systems, it is
sometimes hard to post patch the system without losing uptime. For high-performance
applications, each lfence reduces the speed of the application. Furthermore, it is easy to
overlook or forget a critical section when applying lfences.
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Figure 5.2: Timing di�erence of a single AVX instruction sped up specu-
latively. It can be seen that adding a lfence does not completely prevent an
AVX instruction to get executed. The warmed up unit is still distinguishable
from a cold unit.

Compiler-supported gadget detection and patches

The detection of Spectre gadgets is important to prevent Spectre attacks. Thus, we rec-
ommend to automatically detect and patch potential NetSpectre gadgets using a proper
tool like Coccinelle used for patching bugs in the Linux kernel [73]. Red Hat Enter-
prise [71] developed a tool that emulates the execution of the binary and tries to follow
each path of conditional branches. The tool inspects register values and certain memory
regions like stack, heap and the data sections. If the tool detects a potentially vulnerable
branch, the address in the data section is reported. The number of false positives might
be relatively high using this approach. However, static analysis could fail therefore a
manual inspection of the code is always recommended.

Wang et al. [86] proposed a solution for Spectre V1 gadget detection and patching via
binary analysis. At �rst they extract the control �ow [86]. Then they use taint and
address analysis to detect potential vulnerable conditional branches and are capable of
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patching vulnerable code section.

The Microsoft Visual C compiler provides a compiler supported feature that is capable of
mitigating Spectre V1,V2 and V3. Their approach is to detect and patch vulnerable code
patterns using static code analysis [49]. Their V1 mitigation also uses lfence instruction,
which we showed are no �x for the AVX-based attack. As Kocher stated [48], the imple-
mentation is very likely to miss vulnerable code snippets. A feature to mark data secrets
as uncacheable can be also be considered to mitigate cache attacks [8]. For large secrets
in cryptographic operations, this might have a signi�cant performance impact.

Retpoline and other Spectre variant mitigations

In this thesis, we did not completely evaluate Spectre V2. However, we discussed ways
to exploit Spectre V2 using NetSpectre [77]. Google Project Zero proposed [94] to mit-
igate Spectre V2. This mitigation technique uses a �return trampoline�, which runs in
an in�nite loop. This loop causes the CPU to not speculate over the indirect branch.
Retpoline can be integrated to compilers like the Gnu C Compiler and LLVM [56,57].

Meltdown is mitigated using a technique called KAISER [24]. This technique separates
page tables for userspace and kernelspace.

5.5 Discussion

Although NetSpectre works well only on the local network, this attack could have serious
consequences. Considering targeted attacks, where we only need to leak a certain secret
with fewer bytes, the attack can be quite e�ective. Often a small piece of information
is enough to gain further access to a system. It is easy to create and plant NetSpectre
gadgets into the software. Besides, it is also quite simple to create malware that attacks
targets via NetSpectre. For instance a malware, placed in a large company could attack
using NetSpectre for months without getting detected, if the attack is not too conspicu-
ous [82]. Leaking bit by bit until keys or user credentials are leaked. Using this sensitive
data, further attacks in the network can be started. So far, we haven't found NetSpectre
gadgets in real-world applications. NetSpectre gadgets are not easy to detect but they
might still be located in web server implementations, network drivers or other network
related implementations.

Many similar attacks were �rst shown in theory or in a laboratory environment. For
instance, Rowhammer [46] which �ips bits in the RAM was at �rst also a more or less
theoretical attack. In 2018, van der Veen et.al [84] presented RAMpage and its mitigation
Guardion. With this attack, they are capable of rooting Android mobile phones via
bit�ipping. Another attack which �rst shown theoretically is Lucky Thirteen [1] which

58



then broke the TLS protocol. However, this also needs a large number of sessions, to
be capable to decrypt the content. Nevertheless, with enough resources, the attack is
feasible.

The potential of these types of attacks should not be underestimated. With faster link
connections and lower latency times, the speed of these attacks increases proportionally.
Furthermore, investing more time to optimize the attack could increase the performance
substantially. When the moment comes where these attacks achieve a good performance
and become attractive for malicious activities, the countermeasures should be strong
enough and already deployed.

5.5.1 Limitations

The results of this work seem to be quite slow, and in fact, this type of attack can be easily
mitigated as discussed in the countermeasures section. Furthermore, the measurements
were taken in a lab environment. The representation in binary is unusual for common
applications. However, we showed, that our experiments can also be reproduced in
productive environments like Google Cloud instances. Of course, the direct impact is as
far not as big, compared to other vulnerabilities like Heartbleed [13]. As we discussed in
the previous section, Spectre V1 will probably not be completely �xed and does not have
a performant �x at the moment. With approximately more than one billion vulnerable
devices, this remote attack has indeed an impact.
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Chapter 6

Future work

In this chapter, we outline future research tasks that can be performed and what prob-
lems remain. Since Spectre attacks are quite recent, there exists much space for more
sophisticated and more e�cient attacks.

The most di�cult challenge is to detect and mitigate Spectre gadgets. Since there proba-
bly will not be a complete �x, it is crucial to secure the state-of-the-art CPUs with proper
countermeasures. As we discussed in the previous chapters, this is a quite complicated
task. There exists a big gap between performance and security. In the past decades,
hardware vendors tried to make their chips as fast as possible. However, security was
not considered enough in the design. Their task is to redesign their chips without losing
the current performance. The currently proposed mitigations like memory barriers and
Retpoline should be evaluated for potential unwanted side e�ects [77]. It is also not
completely validated if these tools, do not coincide with other security mechanisms. We
at least de�ned the NetSpectre gadgets in a general form. However, there might be code
fragments which might lead to a similar behaviour like Spectre gadgets. Static analysis
is probably not enough to detect all Spectre gadgets. Maybe there are ways to e�ciently
detect the mistraining part of NetSpectre on the software side.

One research task could also be to evaluate NetSpectre attacks on current state-of-the-
art network security devices. Maybe there is a way to bypass those security devices
and improve their detection rate. We have not evaluated the results on AMD CPUs.
Thus, evaluating and testing NetSpectre on AMD CPUs could be done. Furthermore,
an evaluation of wireless networks would be interesting. Maybe there is a way to reduce
the noise. The AVX attack could be ported and evaluated on other attacks like AMD
with the use of AVX instructions. We described how to port the attacks to other Spectre
variants theoretically. Additionally to the Spectre variants, the way of attacking can
be adapted to other side-channel attacks. Those variants could be implemented and
evaluated. Furthermore, there is for sure more ongoing research on Spectre. Attacks
like Branchscope [17] and Foreshadow [83, 88] might also be adapted to work over the
network to attack virtual machines and their hosts.
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The current performance of NetSpectre can be improved by using more sophisticated
approaches. For instance, the thresholding approach could be replaced by a Machine
Learning approach. By learning the response times and clustering, it might be possible
to reduce the number of repetitions. The part of mistraining seems to be optimal locally,
whereas �ve valid indexes are enough to send at least one out-of-bounds index. Maybe
there is also a way to parallelise the AVX based approach to leak more than one bit.

Our proof-of-concept implementation only considers binary data. The attack can be
ported to distinguish between bytes. However, this would require a lot more repetitions
and a more sophisticated approach to recognise di�erent bytes.

6.1 Detection of Spectre gadgets

As already mentioned the automated detection of is a novel research topic. We created
two approaches to statically detect Spectre V1 gadgets and ASLR gadgets in binaries and
source code. Our �rst approach detects Spectre V1 gadgets on C code with the static code
analysis tool Coccinelle [73]. In the Coccinelle script, we de�ned how an ASLR gadget
looks like. Listing 6.1 contains the Coccinelle script used to detect potential Spectre V1
gadgets. We tested our script on several open-source projects for example on the Linux
kernel, Apache and NGINX web server and OpenSSH Server implementations. For huge
code bases, the e�ort to analyse all branches is quite high, since the false positive rate is
quite high.

Since the source code is not always present and NetSpectre gadgets can also be detected
in binary, we created a second static approach to detect gadgets for executables. We
used the Capstone engine to detect potential Spectre gadgets in binary statically [14].
In this approach, we parsed the binary, iterated over the symbols table and checked
for conditional branches with bounds checks, where the index of the branch is attacker-
controlled.

The better approach to detect Spectre gadgets is via dynamic analysis like shown in the
promising framework by Wang et al. [86]. In this approach, they used taint analysis to
detect Spectre gadgets. They de�ne constraints for a Spectre gadget. The constraints are
a branch with an out-of-bounds check of external input and a speculative read or write on
a data array which produces side-e�ects on the microarchitectural state. Branches which
ful�l those requirements are marked as tainted. The framework also patches tainted
branches with lfence instructions.

So far we have not found an existing NetSpectre gadget, but we still assume that there
are NetSpectre gadgets in the wild.
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1 virtual context

2

3 @r1 depends on context@

4 expression v,u ;

5 position p1, p2;

6 identifier I, e, X, f;

7 statement s;

8 @@

9

10 f < v@p1

11 <...

12 (

13 * I[e]@p2

14 |

15 * *(I + e)

16 )

17 ...>

Listing 6.1: Coccinelle script to detect Spectre V1.1 gadget
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Chapter 7

Summary

In this thesis, we showed the possibility to exploit Spectre variant 1 under a networking
aspect. This is a new way to remotely exploit a system using a hardware vulnerability. We
de�ned the necessary code gadgets for our two attacking variants. Via a histogram-based
approach we showed that local timing di�erences in the cache and SIMD instructions are
recognisable in response times.

We implemented a proof-of-concept server-client scenario in C. We created a network-
based cache attack variant, which allowed us to leak at least 15 bits per hour in the
local network. To overcome the problem of a constant �ushing, we observed a similar
behaviour of cache eviction via a constant �le download. We called this approach of
attacking Thrash+Reload.

We found a new timing side-channel using Intel AVX instructions, which we additionally
exploited in this thesis. This attacking type is even more performant in our proof-of-
concept implementation. Using the AVX-based approach, we are capable to leak at least
60 bits per hour in a local network. Using AVX, we created a new way to communicate
via a covert channel.

Our experiments got successfully evaluated on current Intel desktop and notebook CPUs,
an ARM CPU and an CPU of the Google cloud environment. Furthermore, we showed
a way to bypass ASLR using our cache-based attack with a necessary leakage of approx-
imately 30 bits. We discussed the other Spectre variants and how to port the relevant
attacks to NetSpectre.

We examined networking and Spectre countermeasures to mitigate NetSpectre. We ob-
served that a single lfence is not enough to remedy the AVX-based attack. Furthermore,
we discussed the practical impact of NetSpectre and named comparable examples.

We additionally outlined future work open for research. There exist a lot of new chal-
lenges for instance migrating side-channel attacks to network. This makes NetSpectre a
realistic threat to millions of devices.
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Appendix A

Black Hat Asia 2018

We submitted a paper with the title "NetSpectre: A Truly Remote Spectre Variant"" to
Black Hat Asia 2019 which got accepted for a 50-minute talk. Together with my advisor
Michael Schwarz, we will give a presentation about this thesis at Black Hat Asia 2019.

A.0.1 Abstract

Modern processors use branch prediction and speculative execution to increase their
performance. Since January 2018, with the publication of Spectre attacks, we have seen
that speculative execution can be abused to leak con�dential information. By inducing a
victim to speculatively perform operations that would not occur during correct program
execution, con�dential information can be leaked via a side channel to the adversary.
Many countermeasures and workarounds have been proposed, all assuming that Spectre
attacks are local attacks, requiring an adversary to execute code on the victim machine.

In this talk, we present NetSpectre attacks. We show that Spectre attacks are not limited
to local code execution but can even be mounted remotely over the network. NetSpectre
attacks can be mounted without any user interaction, just by exploiting Spectre-like
gadgets exposed to the network. We show that such an attack is not only theoretically
possible by presenting data leakage across virtual machines in the Google cloud.

We will then discuss why Spectre mitigations are incomplete and do not prevent Net-
Spectre. By demonstrating a novel variation of Spectre, which uses a previously unknown
side channel, we show that the assumptions of many countermeasures are wrong, making
these countermeasures ine�ective. Thus, we emphasize the need for more research on
such attacks to �nd better countermeasures.

We outline challenges for future research on Spectre attacks and mitigations. Finally, we
will discuss the short-term and long-term implications of Spectre as well as NetSpectre
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for hardware vendors, software vendors, and users.

A.0.2 Presentation outline

1. Introduction to Speculative Execution
We start with a simple example of branch prediction. We start with a code con-
struction that is commonly found in sandboxed and non-sandboxed code, a bounds
check. Passing legitimate values to the bounds check will train the branch predictor
to take the then-branch. Subsequent calls with out-of-bounds accesses, however,
also lead to speculative execution of the then-branch. We will see how microarchi-
tectural covert channels can leak information from the speculative execution to a
persistent state.

2. Basic principle of Spectre attacks
We show the basic principle behind the di�erent Spectre attacks. We discuss sce-
narios and assess how realistic they are.

3. Remote Attacks
We show how microarchitectural timing di�erences can be measured over the net-
work. This allows mounting timing attacks over the network.

4. NetSpectre
We show how Spectre attacks can be combined with remote attacks, resulting in
NetSpectre, a remote Spectre attack. We demonstrate that NetSpectre can be
mounted in local networks, as well as across virtual machines in the cloud.

5. Spectre Variants with di�erent Microarchitectural Attacks
NetSpectre relies on Spectre attacks, a new class of attacks. We discuss di�erent
instances based on di�erent microarchitectural attacks, besides the most trivial
case of the Flush+Reload covert channel, showing that countermeasures targeting
the cache are not complete.

6. Countermeasures
We go into more detail on the countermeasures, some of which we already have
seen ine�ective.

7. Challenges and Consequences
We discuss challenges in research and consequences on industry and academia which
are caused by Spectre and therefore also NetSpectre.

8. Closing remarks
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Takeaways

1. Speculative execution leaks internal secrets from software without bugs.

2. NetSpectre shows that Spectre attacks are not limited to local attackers but can
be mounted via the network.

3. NetSpectre and Spectre attacks have a larger impact than assumed until this talk
and they are di�cult to mitigate and won't be fully mitigated soon.

Why Blackhat

Spectre attacks won't be easily �xed by operating system or hardware patches. Black
Hat attendees need to learn what to consider about their own systems to stay safe.
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