
Peter LORENZ, BSc.

A Deep-Learning Approach for
Occlusion Detection

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Thomas Pock

Institute for Computer Graphics and Vision

Advisor

Dipl.-Ing. Patrick Knöbelreiter

Institute for Computer Graphics and Vision

Graz, Austria, March 2019

Dedicated to my Father.

All models are wrong, but some are useful.

George E. P. Box, Statistician

v

Abstract

We investigate the problem of occlusion detection in stereo images by evaluating three

different supervised and end-to-end Convolutional Neural Network (CNN) architectures.

Occlusions arise if a scene is capture by two cameras from different positions. Occluded

pixels do not have any corresponding pixel in the other image and are therefore erroneous

pixels. The detection of occlusions would improve other approaches relying on the corre-

sponding problem, such as computing disparity maps or excluding occluded pixels in the

loss of a neural network.

Each architecture takes rectified stereo image pairs as input. Unary CNNs for the left

and right input images compute the pixel-wise similarity of the image pairs. The three

models differ in how they combine the output of the unary CNNs to detect occlusions.

One model learns occlusions with dilated convolutional unary CNNs. The other three

learn occlusions with the stereo correlation, where the stereo correlation is refined with

either 2D dilation layers or 3D convolutional layer.

We have made experiments with pre-training the models with the synthetic Sceneflow

(Monkaa) dataset. We fine-tune our methods to the smaller Middlebury dataset and uses

the Adam optimizer to train it. Our proposed models achieve an accuracy score between

77.98% and 89.02% on the Middlebury validation set.

Keywords: Occlusion Detection, Binary Classification, Optimization, Stereo Correlation.

vii

Kurzfassung

Wir untersuchen das Problem der Verdeckungen in Stereobildpaaren indem wir drei ver-

schiedene faltende neuronale Netzwerke (CNN) Architekturen auswerten. Verdeckte Pixel

haben keinen korrespondierende Pixel im anderen Bild und sind somit ein fehlerhafte Pixel.

Das Wissen ub̈er Verdeckungen ist hilfreich um andere Ansätze zu verbessern, welche die

Berechnung der Punktkorrepondenzen als Basis haben. Beispielsweise die Berechnung von

Disparitäten oder die verdeckten Pixel könnten bei der Verlustfunktion eines neuronalen

Netzerkes exkludieren.

Jede unserer Architekturen bekommt rektifizierte Stereobildpaare als Input. Für das

linke und für das rechte Inputstereobild gibt es ein unäres CNN, das die Ähnlichkeit

pro Pixel berechnet. Die drei Ansätze unterscheiden sich darin, wie die Outputs der

beiden unären CNNs kombiniert werden: Ein Ansatz berechnet die Verdeckungen mit

sich erweiternden (dilated) unären CNNs. Die anderen drei Ansätze basieren auf der

Stereokorrelation, bei der die zusammengefügten unären CNNs mit erweiterten 2D CNNs

oder 3D Faltung verbessert werden.

Wir haben Experimente durchgeführt, in denen wir unsere Ansätze zuerst mit

dem synthetischen Datensatz “SceneFlow” (Monkaa) vortrainieren und dann erst mit

dem eigentlichen Datensatz “Middlebury” trainieren, wofür wir Adam verwenden.

Wir erreichen eine Genauigkeit zwischen 77.98% und 89.02% am “Middlebury”

Validierungsdatensatz.

Schlüsselwörter: Verdeckungsdetektierung, Binäre Klassifizierung, Optimierung,

Stereokorrelation.

ix

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis dissertation.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Date Signature

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Patrick Knöbelreiter

for the continuous support of my master’s thesis study, for his patience, motivation, en-

thusiasm, and immense knowledge. His guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having a better advisor. Independent of

any difficulty of any question, he was always able to give me a clear and logical answers,

which made my life a lot easier.

Additionally, I would like to thank Thomas Pock for giving me the opportunity to

carry out this thesis at this department. I appreciate his engagement for his lectures, that

initiated my interest about machine learning.

I want to thank my best friends: Enzo, Günter and Martin, who accompany me for a

long period through my life. Thank you fellows for distracting me from university stress

and also for your patience when I didn’t have time to spend with you. I am so glad that

you are part of my life.

Last but not least, I also would like to mention Christian Mentin who is acting as my

mentor. He is always ready to listen and give a good advice.

xiii

Contents

1 Introduction 1

1.1 Occlusion in Stereo Vision . 1

1.1.1 Epipolar Geometry and Rectification 2

1.1.2 Depth Map from Triangulation . 3

1.2 Contribution . 4

1.3 Notations . 4

1.4 Outline . 6

2 Related Work 7

2.1 Block Matching Approaches . 8

2.1.1 Census Transform . 8

2.1.2 Sum of Squared Differences . 9

2.2 Principle of a Feed-forward Neural Network 10

2.2.1 Neuron . 10

2.2.2 Activation Functions . 11

2.2.3 Layer . 13

2.2.3.1 Fully-Connected Multi-Layer Perceptron 13

2.2.3.2 2D Convolutional Layer . 14

2.2.3.3 2D Dilated Convolution Layer 16

2.2.3.4 3D Convolution Layer . 17

2.3 Training a Neural Network . 18

2.3.1 Loss Functions . 18

2.3.1.1 Cross-Entropy . 18

2.3.1.2 Hinge Loss . 19

2.3.2 Minimize a Loss Function . 19

2.3.2.1 (Stochastic) Gradient Descent 20

xv

xvi

2.3.2.2 Momentum . 20

2.3.2.3 Optimizer with Adaptive Learning Rate 21

2.3.3 Forward and Backward Propagation 23

2.3.3.1 Fully-Connected Neural Network 23

2.3.3.2 Convolutional Neural Network 24

2.3.4 Vanishing Gradient Problem . 27

2.3.5 Parameter Initialization . 28

2.3.6 Overfitting . 29

2.3.6.1 Bias-Variance-Tradeoff . 29

2.3.6.2 Early Stopping . 30

2.3.6.3 Weight Decay . 30

2.4 Computing Stereo Matching Costs with Convolutional Neural Networks . . 30

2.4.1 Unary Network . 31

2.4.2 Loss Functions . 32

2.4.3 Post-processing . 32

2.4.3.1 Cross-based Cost Aggregation 32

2.4.3.2 Semi Global Matching . 33

2.5 End-to-End Training of Hybrid CNN-CRF Models for Stereo 34

2.5.1 End-to-End Learning . 35

2.5.2 Unary Netnwork and Shared Weights 35

2.5.3 Stereo Correlation . 36

2.6 Occlusion Detection . 36

2.6.1 Left-Right-Consistency-Check . 36

2.6.2 Graph Cut Algorithm for Point Correspondences and Occlusions . . 37

2.6.3 SymmNet - First End-to-End Model to learn Occlusions 39

2.6.3.1 Architecture . 40

2.6.3.2 Loss Function and Training 41

2.7 Summary . 42

3 Methods 43

3.1 Direct Method - learn Occlusions without Stereo Correlation 44

3.2 Pretrained Stereo Correlation . 47

3.2.1 Three Methods based on the Stereo Correlation 50

3.2.1.1 Dilated 2D Convolution Aggregation 50

3.2.1.2 3D Convolution Aggregation 51

3.3 Global Thresholding . 52

3.3.1 Receiver Operating Characteristic Curve 53

3.3.2 Optimal Decision Threshold . 54

3.4 Summary . 54

xvii

4 Evaluation 57

4.1 Datasets . 57

4.1.1 The Middlebury 2014 Dataset . 57

4.1.2 SceneFlow Dataset (Monkaa) . 58

4.2 Data Pre-proccessing . 58

4.2.1 Standardization . 59

4.2.2 Cross Validation . 59

4.2.3 Data Augmentation - Random Crop 59

4.2.4 Image Resizing . 60

4.2.5 Disparity Map Resizing . 61

4.3 Performance Metrics . 63

4.3.1 Overall Accuracy . 63

4.3.2 Area Under Curve . 63

4.3.3 Correct predicted Pixels within occluded and non-occluded Areas . . 63

4.4 Detection Results . 64

5 Conclusion and Outlook 71

5.1 Conclusion . 71

5.2 Future Work . 72

A List of Acronyms 73

Bibliography 75

List of Figures

1.1 Stereo image pair. The left image is fixed and the corresponding pixel is

looked up in the right image [1]. 2

1.2 Epipolar geometry. P is a point in a scene and p its 2D image on the image

plane [2]. 3

1.3 Disparity maps [3] of stereo images. The jet color map [4] is used. The

color red indicates a high disparity, while black is the lowest disparity. . . . 4

2.1 Example of 3× 3 image pair where the Census Transform (CT) is applied

on the centering pixel in bold. 8

2.2 Neuron with 3 inputs (x1, x2, x3). 10

2.3 Different activation functions and their derivatives. 12

2.4 Comparison of the MLP with a 2D convolutional network with the kernel

H (see Section 2.2.3.2). 13

2.5 U - no padding. Uz - zero padding. Us - symmetric padding. 14

2.6 Receptive field (grey) over several layers (l is the current layer). 15

2.7 Dilated convolution with different rates and over several layers. 17

2.8 [5] illustrated the 2D and 3D convolution operations. 17

2.9 Different loss functions. 18

2.10 Gradient (black arrows) move at each epoch towards global minima θ∗. . . 21

2.11 Bias-variance-tradeoff of a model. 29

2.12 Overview of both architectures [6]. 31

2.13 A support region for a position p at i, j ∈ dom IL is the union of all vertical

and horizontal arms [7]. 33

2.14 A Unary-CNN is the CNN for each image. In the correlation layer the

features of are compared. The matching cost becomes a unary cost volume

becomes the unary cost of the CRF [8]. 35

xix

xx LIST OF FIGURES

2.15 A scene is captured by two cameras. The occluded area is enclosed by the

two lines of sight. 37

2.16 Different Graph G with each pixel has one node per disparity [9]. 38

2.17 Architecture overview of SymmNet [10]. 41

3.1 Overview of our methods. 44

3.2 Direct method network architecture with 2 stereo input images and predicts

an occlusion map. 44

3.3 Correlation of two matching pixels between φLi,j and φRi,j+d. 49

3.4 Entropy on the cost volume. On the left hand-side we marked the purple

area for correct occluded area and black for incorrect occluded areas. 52

3.5 3D convolution on Pi,j,d and a 3× 3× 3 kernel with 1/27 per entry value. . 52

3.6 Relation of cut-off points and ROC curve [11]. 53

4.1 First row: The left and and right stereo image and the labels, where white

means no occlusion, gray is occlusion and black are invalid pixels. Second

row: Different light intensities taken from the right camera. 58

4.2 Monkaa example. A stereo image pair of scene with its disparity maps. . . . 58

4.3 Gaussian filter examples. 60

4.4 The original image is compared to other scaling methods, while the Gaus-

sian pre-filtering achieves better results on homogeneous areas without pre-

filtering. 62

4.5 ROC plots from training and validation set with normal illumination and

different illumination. 65

4.6 MB training set: The soft prediction of selected images: Adirondack and

Sword2. 68

4.7 MB training set: The soft predictions are classified by the optimal threshold. 68

4.8 MB validation set: The soft prediction of selected images: Bicycle1 and

Cable. 68

4.9 MB validation set: The soft predictions are classified by the optimal threshold. 69

4.10 SF training set: The soft prediction of selected images. 69

4.11 SF training set: The soft predictions are classified by the optimal threshold. 69

4.12 SF validation set: The soft prediction of selected images. 70

4.13 SF validation set: The soft predictions are classified by the optimal threshold. 70

List of Tables

1.1 Common machine learning notations. 5

1.2 Hyper-parameters. 6

2.1 Detailed SymmNet architecture: The plus sign + is the addition operation,

⊕ is the concatenation operation in skip connection. 41

3.1 Direct method Siamese architecture with shared weights. The ⊕ sign is the

concatenation operation to concatenate the outcome of the left. The pre-

diction layer pred has the sigmoid activation function to generate probability. 46

3.2 Network configuration of the CNN with stereo correlation [8]. 48

3.3 Input is the soft stereo correlation from Table 3.2. 50

3.4 3D convolution aggregation. The input is the soft stereo correlation from

Table 3.2. 51

3.5 The categories can be calculated via the L1-norm, where | · | = |Ŷi,j−Yi,j |.
In each row, the where a 1 is written, indicates {TN,FN,TP,FP}. 54

4.1 Percentage of occlusions of every k-fold for the Middlebury dataset of 1/6

and quarter size. 66

4.2 Experiments of direct method and of stereo correlation with global thresh-

olding. 67

xxi

1
Introduction

Contents

1.1 Occlusion in Stereo Vision . 1

1.2 Contribution . 4

1.3 Notations . 4

1.4 Outline . 6

1.1 Occlusion in Stereo Vision

Stereo is a technique for obtaining depth of objects from images captured by two cameras

as shown in Figure 1.1a. Stereo vision imitates the ability of the human brain to derive

depth from a scene and therefore uses the same principle. The human visual system

gathers its stereo information delivered from both eyes. These two views are obtained

from two slightly different positions because of the horizontal displacement of our eyes.

As a result, a point in the scene of one view is horizontal displaced in the other view. The

amount of this displacement can be used to infer the depth.

The amount of the horizontal displacement is called disparity (Section 1.1.1). A pixel’s

disparity is inversely proportional to the pixel’s distance from the cameras. With this

principle, the human brain transforms the disparity information into a three-dimensional

mental image of the world.

Though inferring depth seems to be unproblematic and the stereo vision task is con-

stantly solved by the human visual system without us even noticing the effort, the same

task emerges very difficult when it is required to be solved by a computer.

One confronts the major challenge when estimating a disparity map approach is that

of solving the correspondence problem. The correspondence problem refers to the task of

finding the same pixel in the left and in the right image. This is one of the oldest, but

still most challenging problems in the history of low-level computer vision [12].

1

2 Chapter 1. Introduction

Some pixels which are not visible in the other view are occluded. When we close one

eye we can observe that we cannot see some parts of the scene anymore. Figure 1.1c

illustrates this problem. The left camera captures an orange and a green ball. The

right camera captures a green ball that occludes the orange ball. Hence, the front of the

orange ball is not visible in both cameras. The detection of the occluded pixels tells you

when you cannot find corresponding point. This would improve algorithms relying on the

correspondence problem. In this thesis we investigate machine learning based approaches

to detect occluded pixels.

(a) Stereo pair. (b) Rectified stereo pair. (c) Occlusion.

Figure 1.1: Stereo image pair. The left image is fixed and the corresponding pixel is looked up
in the right image [1].

1.1.1 Epipolar Geometry and Rectification

If we want to find occluded pixels in stereo images, we have to understand how corre-

spondences are found in order to exploit it for occlusion detection. To simplify the search

for correspondences, we can use the observation illustrated in Figure 1.2. Let us assume

that we want to find the matching point of a point in the left image p = [xl, yl]
T in the

right view p′ = [xr, yr]
T . Any scene point P = [x, y, z]T projected to the image point p

is constrained to lie on a line that is the projection ray. As a result, each of those scene

points must also lie on a line in the right view. This line is given by the projection of

the ray
−−→
CP into the second image and is referred as epipolar line. The epipoles lie on

the epipolar line. These are the points on the image planes which lies at the intersection

of the baseline, which is the line connecting the focal centers C and C ′ with the right

image plane. The epipolar line can be determined as l = e × p and is the result of the

cross-product of the epipole e and the point p. It is interesting to note that each epipolar

line in the right image must pass through the point e.

The stereo problem is a symmetric problem, the same observations can be made when

searching the matching point of p′ in the left view. Applying the knowledge about epipolar

lines, the correspondence problem can be reduced to a 1D search task. Let us consider

the special case if both image planes IL and IR lie on a common plane and their x-axes

are parallel to the baseline. In this setup, the epipoles move to infinity and the epipolar

lines coincide with horizontal scan-lines. The matching point of a pixel in one view can

1.1. Occlusion in Stereo Vision 3

then be found on the same scan-line in the other view (see Figure 1.1b), such that yl = yr,

where yl and yr are the y-coordinates of a point in the left and right images, respectively.

The horizontal offset between corresponding pixels xl − xr is referred to as disparity. To

take advantage of this simple geometry, the images of two cameras in general positions

can be projected onto a plane that is parallel to the baseline. This process is known as

rectification. It is more convenient to search for correspondences along horizontal scan-lines

rather than to trace general epipolar lines.

C C’

P

p

e e’

p’

b

l’

l

P?

(a) Stereo setup with epipolar geometry.

P

z

b

f

C C’

p’p

xl xr

(b) Triangulation.

Figure 1.2: Epipolar geometry. P is a point in a scene and p its 2D image on the image plane
[2].

1.1.2 Depth Map from Triangulation

Let us assume we know the corresponding points and we assume the cameras are epipolar

rectified as described in Section 1.1.1. The reconstruction of a point’s depth can then be

accomplished via triangulation as shown in Figure 1.2b. This means that the cameras are

parallel to each other and have identical focal lengths. The focal length f is the distance

between the camera’s focal point and its optical center, and the baseline length b. From

similar triangles we derive

z =
b · f

xl − xr
=
b · f
d
, (1.1)

where b and f are constant and d denotes the disparity. From Equation (1.1) we conclude

that disparity is inversely proportional to depth. A disparity map (Figure 1.3) that records

the disparity for each image point is therefore sufficient for a complete reconstruction of

the scene. This relationship is also the reason why disparity is commonly used as synonym

for inverse depth.

4 Chapter 1. Introduction

0 500 1000 1500 2000 2500

0

250

500

750

1000

1250

1500

1750 50

75

100

125

150

175

200

225

(a) Left-to-right disparity map.

0 500 1000 1500 2000 2500

0

250

500

750

1000

1250

1500

1750 50

75

100

125

150

175

200

225

(b) Right-to-left disparity map.

Figure 1.3: Disparity maps [3] of stereo images. The jet color map [4] is used. The color red
indicates a high disparity, while black is the lowest disparity.

1.2 Contribution

In this work, we investigate different supervised CNN architectures and compare them

to each other. The number of methods to obtain occlusions in stereo images is small.

Kolmogorov [13] adapted a graph cut algorithm to find correspondences in stereo images.

Left-Right-Cross-Checking [14] is the current standard method to handle occlusions. Re-

cently, the first machine learning approach has been published to learn occlusions, called

SymmNet [10]. The direct method is similar to SymmNet. Instead of using an hour-glass

architecture, we decide to use dilated convolutions. Moreover, we want to avoid using a

huge model with a lot of parameters. The remaining architectures are based on stereo

correlation [8]. Stereo correlation is a cost volume, where the similarity of potentially

corresponding pixels is saved. We design different models, such as dilated convolutions,

3D convolutions, and entropy to exploit the similarity information.

1.3 Notations

This section sums up the notations, which are used throughout this work. Images are

functions I : Ω→ Rc, where Ω is called the image domain. Ω has the dimension 2 for 2D

images. For gray-scale images c = 1 and for color images c = 3. Every pixel is assigned to

a region Ωi,

Ω =
K⋃
i=1

Ωi, Ωi ∩ Ωj = 0,∀i 6= j,

where different regions do not overlap. This work wants to distinguish between occlusions

and non-occlusions, so K = 2. A classification problem with two classes is called binary

classification.

1.3. Notations 5

We sum up the most common machine learning symbols in Table 1.1. Scalars (e.g. x)

are small letters and not bold. In contrast, vectors (e.g. x) are bold and column vectors.

The k-th element of a vector is accessed via a subscript (e.g. xk). Matrices are uppercase

letters with a bold face (e.g. M) and the elements are row-major ordered. To access an

element in row i and column j we denote it as Mi,j . Tensors are italic uppercase letters

with a bold face (e.g. T). It has one dimension more. To access an element in row i,

column j and depth k, we denote it as Ti,j,k.

Sets are denoted by uppercase calligraphic letters such as X or Y. The number of

elements within a set can be expressed as the cardinality of a set |X |.
Let (X , Y) be the data-set and its class labels, where X is a d-dimensional feature

space R. Samples of the data-set x ∈ X can be drawn. Each entry in xi represents

an attribute and is called feature. The samples are distinguished by using a superscript,

{x(1),x(2), ...,x(N)}. A subset of labels is denoted as x(1:m), where m < N . The class

labels are natural numbers Y = {1, ..., Y }. The cardinality of the class labels, |Y| = 2,

means that we only have 2 classes and hence a binary classification problem. To each

labelled data point x, a label y ∈ {0, 1} is assigned. The predicted values or the output

of the method is denoted as ŷ.

In Table 1.2, the hyper-parameters are listed. In machine learning, hyper-parameters

are the parameters whose values are set before starting the learning process. The most

prominent letter is the learning rate η and is responsible for the step size of a loss function.

Symbols Meaning

x Scalar
x Column vector
xk The k-th element of the vector x
M Matrix M ∈ Rm×n
Mi,j The element in the i-th row and j-th column of the Matrix, i < m, j < n

MT Matrix transposed
T Tensor T ∈ Rm×n×k
T i,j,k The element in the i-th row, j-th column and k-th depth
y ∈ Y Labels
(X,Y) ∈ X Training-set with tuples of input x and its label y
θ Parameters, that are learned weights and bias, e.g. θ = {W, b}
φ Feature
L Loss
σ(x) Logistic sigmoid, i.e.(1 + exp(−x))−1

σ2 Variance
σ Standard deviation
µ Mean
N (µ,Σ) The Gaussian distribution with mean µ and co-variance matrix Σ

Table 1.1: Common machine learning notations.

6 Chapter 1. Introduction

Symbols Meaning

η Learning rate, e.g. 1e−4

β1 Parameter of the first momentum, i.e. 0.9
β2 Parameter of the second momentum, i.e. 0.99
λ, γ Penalty

Table 1.2: Hyper-parameters.

1.4 Outline

In this section, we give a brief overview of the main points of each chapter. It should

clarify the structure of this thesis to quickly find the relevant chapters.

Chapter 2 In the Related Work we discuss basic concepts of stereo matching to

state-of-the-art methods for stereo matching and occlusions detection. Both topics stereo

matching and occlusions are closely related to each other as occluded pixels cannot be

matched.

Machine learning is the underlying method in this work and so we want to explain the

mathematical concept of a Convolutional Neural Network (CNN). Therefore, a detailed

explanation of CNN s is given. It is necessary to understand this concept for the stereo

correlation that is explained in Section 3.2.

Chapter 3 Chapter Methods represent different methods that we investigate through-

out this work. In general, we have two groups of methods: The first group learns occlusions

directly, without prior-knowledge. The second group calculates a disparity volume first

and based on it three methods calculate the occlusion map.

Chapter 4 The Evaluation contains the metric setup to measure the performance and

the experiments. As a metric, we use the Receiver Operating Characteristic curve to find

a threshold to distinguish between occluded and non-occluded pixels. Finally, we report

the quantitative and qualitative results of our work. We compare different models to each

other.

Chapter 5 The Conclusion concludes this work by discussing the outcome of the

methods. This includes weaknesses of the methods’ architectures, as well as giving an

outlook on future work.

2
Related Work

Contents

2.1 Block Matching Approaches . 8

2.2 Principle of a Feed-forward Neural Network 10

2.3 Training a Neural Network . 18

2.4 Computing Stereo Matching Costs with Convolutional Neural

Networks . 30

2.5 End-to-End Training of Hybrid CNN-CRF Models for Stereo 34

2.6 Occlusion Detection . 36

2.7 Summary . 42

Important publications related to this thesis are discussed in this chapter. The first

section focus on simple methods which have already been used in the early stage of stereo

matching. One of the more intuitive ways to compare pixel intensities is to use either the

L1 or the L2-norm to compare corresponding pixels. These pixels which gives the lowest

distance are most similar. One problem of these methods is if there are homogeneous

regions and the pixel intensities are very similar to each other. One improvement is to

take the neighboring pixels into account. In literature, these methods are summed up

as Block Matching methods [15], where small region around a certain point is compared

to another region from another point. We will explain roughly CT and Sum of Squared

Differences (SSD), but there are many other block matching approaches, such as Sum-of-

Absolute-Differences (SAD) or Normalized Cross-Correlation (NCC).

Then, the next section explains the concept of neural networks. Basic concepts like

neurons, different layers and common activation functions are explained. Especially those

layers of Convolutional Neural Network (CNN) are presented, which have shown their

importance in image processing in the recent years. We also discuss different loss functions

and optimizer to train a CNN . During training a CNN several problems can occur such

as over- or under-fitting. We will describe how to counteract such problems.

7

8 Chapter 2. Related Work

Furthermore, we provide an overview of machine learning methods to find point corre-

spondences in stereo image pairs. People tried to combine former methods with machine

learning. We discuss one approach that uses post-processing methods like Semi Global

Matching (SGM) to refine their results. We also treat another approach which learns a

disparity map without post-processing techniques. We will utilize this method to detect

occlusion, but this described in detail in the Chapter 3 “Methods”.

In the last section, we give an overview of three state-of-the-art occlusion detection

methods: Left-Right-Cross-Checking (LRC) method, graph cut method and a machine

learning method named “SymmNet”. The purpose to discuss various methods is to not

only deal with machine learning methods in this thesis. These methods are often used for

stereo matching purposes and are a good example for utilizing these methods to occlusion

detection.

2.1 Block Matching Approaches

Block matching approaches have together that they compare a pixel with a pixel at an

another position, if it is the same pixel. The comparison of the pure color intensities of one

pixel is not enough because .there could be a lot more pixels with the same color intensities.

If we take the neighboring pixels into account, it usually depicts more successful results.

The pixel to compare and it’s neighbors are lying under the block. The block on the

reference image moves on and the comparison results are saved. For occlusion detection

is the block that matches least a possible candidate.

2.1.1 Census Transform

Census Transform (CT) [16] is a stereo correspondences algorithm that relies on the pixels

gray-scale intensity values. A drawback of the CT algorithm is its incorrect matches [17]

in regions of repetitive structures. A pixel is compared to its local neighbors in a 3 × 3

window of the left PL and right PR stereo image pair respectively.

A census is the procedure of recording pixel values that are assigned to local neighbor-

hood. So a 8-bit mask records the local neighborhood relation. If the intensity value of

the neighboring pixel is smaller than the intensity of the center pixel, then 1 is appended

to the mask. Otherwise, 0 is appended to the mask. Finally, we have a bit-mask for both

images.

PL =

10 12 28
20 30 42
80 82 84

 CT (PL) =

0 0 0
0 C 1
1 1 1

 PR =

11 15 34
35 30 45
82 85 85

 CT (PR) =

0 0 1
1 C 1
0 1 1



Figure 2.1: Example of 3 × 3 image pair where the Census Transform (CT) is applied on the
centering pixel in bold.

2.1. Block Matching Approaches 9

In Figure 2.1, we have exemplary two regions from the left and right images. The

CT is calculated for both regions so that the 8-bit masks are CT (PL) = 000011111 and

CT (PR) = 00111011. Then, the Hamming distance can be calculated of both bit masks.

This distance counts the number of the bits which differ. In our case the Hamming

distance is 3. A high Hamming distance denotes that the image regions are not very

similar, whereas a low Hamming distance denotes that centering pixels are corresponding.

The pixel in the right image with lowest hamming distance is chosen as the corresponding

pixel in the left image.

Meister et al. [18] extended the CT to handle occlusions. They use the former 0 to

mark occlusions and add −1 for mismatching intensity values, i.e. the census of the left

image patch is CT (PL) =-1-1-111-11010. The occlusions needs to be calculated from a

pre-computed occlusion map.

2.1.2 Sum of Squared Differences

Sum of Squared Differences (SSD) compares the intensity values of the left and right

image. As we assume that the images are rectified, we only look for most similar pixel

in the right image in the same row. The mere intensity values are compared, where the

corresponding pixel with smallest distance is chosen as the most similar pixel. The SSD

for correspondences problems is defined as follows:

SSDi,j =
∑
d

(ILi,j − IRi,j−d)
2 =

∑
d

(ILi,j)
2 + (IRi,j−d)

2 − 2 ILi,jI
R
i,j−d︸ ︷︷ ︸

correlation

, (2.1)

where the disparity d changes the position in the row in the right image, so that the most

similar pixel corresponding to the pixel in the left image can be found. The term which is

under-braced with “correlation” computes the similarity pixel-wise. The correlation term

is subtracted from the other squared terms and the smaller the result are, the more similar

the corresponding pixels, where occluded pixels can also be considered.

If we expand the Equation (2.1) to block-matching, we need to introduce m and n.

The indices m and n define the window around a pixel. The pixel intensities within this

window in the left image are compared to the pixel intensities in the right image. A smaller

window size allows to compute more details. A larger window size counteracts few isolated

mistakes, where it will be damped that occluded are matched. The SSD with blocks is

defined as

SSDi,j =
∑
m,n

(ILi,j − IRi−m,j−n)2 =
∑
m,n

(ILi,j)
2 + (IRi−m,j−n)2 − 2 ILi,jI

R
i−m,j−n︸ ︷︷ ︸

correlation

, (2.2)

The Equation (2.2) yields the (cross-)correlation (compare to Equation (2.5)). The

correlation is explained in detail in Section 2.2.3.2, but for now, it is enough to know that

Convolutional Neural Networks also calculates the correlation.

10 Chapter 2. Related Work

2.2 Principle of a Feed-forward Neural Network

Neural networks are biologically inspired by Hubel and Wiesel’s early work [19] on the

functional instigation of a cat’s cortex. The visual cortex cells act as local kernels and use

spatially local correlation present in natural images. A neural network is a mathematical

model to emulate this natural behavior. It is a directed acyclic graph. This kind of

networks is called feed-forward neural networks. In other words, there are no loops in the

network as in recurrent neural networks.

This section introduces the neural network model. First, the basic concept is explained

from a neuron, convolutional kernels, to layers. The second step is how to train these

networks with optimization methods.

2.2.1 Neuron

Neural Networks consists of artificial neurons, where there are different kind of neurons

such as the perceptrons1 [20] (see Figure 2.2) for a binary classifier. A perceptron is a

simpler form of a neuron. It gets three inputs, e.g. x1, x2, x3 ∈ {0, 1}, that can be

expressed as binary encoding. The input x1 can be 1 and the others can be 0. Each input

is weighted by w1, w2, w3 ∈ R, that express the importance of the input.

x1

x2

x3

f(z) a

b

w2 z

w1

w3

Figure 2.2: Neuron with 3 inputs (x1, x2, x3).

The output of a perceptron is expressed by the weighted sum
∑

j xjwj = xT ·w which is

less or greater than a certain threshold value, the bias b, that is a real number.

z =

{
0 if xT ·w + b ≤ 0,

1 else.

The bias b is a parameter of the perceptron and helps to find a better decision boundary

to separate data. The perceptron is 0 if less than or equal to b, or 1 if greater than b.

A neuron differs from the perceptron by the activation function. There is usually a

non-linearity (f = {tanh, sigmoid,ReLU, leaky ReLU, . . . }) warped around a perceptron.

1The idea of a perceptron was inspired by a biological neuron as humans have in their nerve cells.

2.2. Principle of a Feed-forward Neural Network 11

The activation a of a neuron can be written as

a = f(xT ·w + b) (2.3)

with f being its activation function that decides when a neuron is activated. Only non-

linear activation functions allow a neural network to compute nontrivial problems by using

a small number of nodes.

2.2.2 Activation Functions

Activation functions f : R → R define the output of one neuron in Equation (2.3). This

output is used as input for the next neuron and so on. If there would not be any non-

linearity [21] the whole neural network would act as one linear neuron. A linear output can

only solve linear separable problems and thus mapping to non-linear space is necessary.

The Universal Approximator Theorem (UAT) [22] claims that a feed-forward network

with one layer that contains a finite number of neurons and an arbitrary activation function

are universal approximators. Suppose we have given a function f(x) which the neural

network would like to approximate within some accuracy ε > 0. If we use enough neurons

the neural network g(x) will satisfy

|g(x)− f(x)| < ε

for all inputs x. It is important to emphasize that the UAT guarantees that there is a

solution, but not how good a function can be approximated. The choice of an activation

function f has an impact on the quality of the solution. The importance of activation

functions in neural networks has been proposed for different applications because the right

activation function can lead to a performance increase. Activation functions can typically

be separated into two families according to the curve shape i.e. sigmoidal (sigmoid, tanh)

and non-sigmoidal (ReLU, lReLU).

Sigmoid It has the characteristic s-shape and squashes the input values in a finite bound-

ary [0, 1]. It is also continuous and differential for all real-valued inputs. The sigmoid

function is defined as follow:

σ(z) =
1

1 + e−z

and its derivative w.r.t. to z:

∂

∂z
σ(z) =

∂

∂z

1

1 + e−z
=

∂

∂z
(1 + e−z)−1 =

e−z

(1 + e−z)2

=
(1 + e−z)− 1

(1 + e−z)(1 + e−z)
=

1

1 + e−z

(
1− 1

1 + e−z

)
= σ(z)

(
1− σ(z)

)
.

12 Chapter 2. Related Work

6 4 2 0 2 4 6
z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(z
)

Different Activation Functions
(z)

tanh(z)
(z)'

tanh(z)'

(a) Sigmoid and tanh with their derivatives.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
z

0.0

0.2

0.4

0.6

0.8

1.0

f(z
)

Different Activation Functions
ReLU(z)
lReLU(z), = 0.1
ReLU(z)'
lReLU(z)'

(b) ReLU and leaky ReLU with their derivatives.

Figure 2.3: Different activation functions and their derivatives.

Hyperbolic Tangent - tanh It has a wider output range [−1, 1] compared to the

sigmoid function and the curve midpoint is at origin of the coordinate system. The tanh

is defined as:

tanh(z) =
ez − e−z

ez − e−z
.

The derivation of tanh(z) w.r.t. to z:

∂

∂z
tanh(z) =

∂

∂z

ez − e−z

ez − e−z
=

(ez + e−z)(ez + e−z)− (ez − e−z)(ez − e−z)
(ez + e−z)2

= 1− (ez − e−z)2

(ez + e−z)2
= 1− tanh(z)2.

Rectified Linear Unit - ReLU This activation function [23] is in general compute

efficient, since it needs a simple comparison of two values and does not use any expo-

nential function as the sigmoidal functions. For negative input values ReLU produces

zero-gradient, see Figure 2.3b:

ReLU(z) =

{
0 if z < 0

z if z ≥ 0,

∂

∂z
ReLU(z) =


0 if z < 0

[0, 1] if z = 0

1 if z > 0.

2.2. Principle of a Feed-forward Neural Network 13

Therefore, a small skew α ∈ (0, 1] (typically α = 0.1) is introduced and the lReLU [24]

does not have zero partial derivatives:

lReLU(z) =

{
αz if z < 0

z if z ≥ 0,

∂

∂z
lReLU(z) =


α if z < 0

[α, 1] if z = 0

1 if z > 0.

2.2.3 Layer

If we want to solve more complicated problems, we need to put more neurons together.

This forms a layer and has the property that whether the input nor the output the neurons

are exchanged within one layer. Only the output of the neurons in the previous layer is

taken as input in the current layer. The output of the current layer can only taken as in

put for the next layer. It depends on the architecture which neurons are connected from

following layers. In this section, we treat fully-connected and convolutional layers.

(a) Multilayer Perceptron (MLP) [25].

layer l-1 layer l

HH

(b) Sectional view of a CNN .

Figure 2.4: Comparison of the MLP with a 2D convolutional network with the kernel H (see
Section 2.2.3.2).

2.2.3.1 Fully-Connected Multi-Layer Perceptron

A Multilayer Perceptron (MLP) [25] is split into 3 parts: input, hidden and an output

layer. The input layer can be pixels of images or speech recordings. The hidden layer(s)

follow(s) after the input layer and does not count to the output layer. A perceptron in a

Multilayer Perceptron (MLP) is connected to all perceptrons in the following layer (fully-

connected, Figure 2.4a). If we want to classify numbers as in MNIST dataset [26], we have

as input 64 × 64 grey-scaled images from digits 0,...,9. We would need 4096 perceptrons

for this image size. The output layer, which is a single perceptron in our case, indicates if

14 Chapter 2. Related Work

the input image 9 by less than 0.5 and values greater than 0.5 indicating the input image

classified to the digit “9”.

2.2.3.2 2D Convolutional Layer

A Convolutional Neural Network (CNN), invented by LeCunn et al. [27], introduces

besides weights and bias additional a kernel for weight sharing. Several neurons use the

same weights under a kernel H. The weight sharing principle is shown in Figure 2.4b as

section view, where different dashed lines give a showcase of same weight occurrence. In

addition, not every neuron is connected to a neuron in the following layer. We have to

distinguish between parameters (weights and bias), which are learned during training and

hyper-parameters of the model whose values are set before the learning process starts [28].

Hyper-parameters We have the common hyper-parameters listed in the Table 1.2.

Each layer has specific hyper-parameters, which specify the number of connections and

the output size of the feature maps.

Kernel Size The kernel size that is usually smaller than the input. If the size of the

kernel is increased, it allows to process more spatial information. At the same time the

receptive field (see Figure 2.6) is increased as well.

Stride A convolution is a weighted summation by sliding a kernel over an input.

Striding specifies how much a kernel is moved between every feature computation. How-

ever, a stride of 1 moves the kernel once at a time and does not influence the feature

map output size. Larger strides have smaller output feature maps [28]. It is often used to

downsample images such as in hour-glass architectures [10].

U =

[
1 2 3
4 5 6

]
Uz =


0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 0 0 0 0

 Us =


2 1 1 2 3 3 2
2 1 1 2 3 3 2
5 4 4 5 6 6 5
5 4 4 5 6 6 5


Figure 2.5: U - no padding. Uz - zero padding. Us - symmetric padding.

Padding On the basis of the definition of the convolution operation in

Equation (2.4), the convolution shrinks the input, because the kernel is strictly inside

the image. Due to the summation to the centered pixel, the pixels closer to the margin

cannot be kept. It is convenient to keep the spatial dimensions of the input. At this

point padding can be applied, where the input U is extended with numerical values at

the borders. These values can have an impact on the quality of the output at the border

2.2. Principle of a Feed-forward Neural Network 15

(Figure 2.5). There are two types of padding For example, if we would apply a 3 × 3

kernel to input Uz with zero-padding (see Figure 2.5), after the 2D convolution the

result would have dimensions of U. Therefore, for several layers, we would need to pad

more zeros at the border. For the input Us with smmetric padding we could apply a

kernel with the size of 3× 5. This time U is extend with a symmetric padding [29], that

helps to not have veils at the borders on the final output. In addition it is convenient to

distinguish between same and valid padding. The machine learning framework tensorflow

[29] adds exactly as many of zeros around the input U so that the same size of U is kept.

Valid padding must not be zeros added around the input. There different paddings such

as “constant”, “mirror” or “symmetric”. After 2D convolution on a valid padded input,

the output dimension must not be necessarily same size as the input dimension.

Number of learnable Parameters The number of parameters directly corresponds

to the size of kernel and biases. Each kernel produces an output feature map, hence k

kernels produces an output feature map of depth k [28]. If we neglect striding, the total

number of learnable parameters is the sum of all weights and biases of all layers. Consider

a kernel size of n×m, input features nin plus a bias of each feature map, which maps to

the output features nout. The number of parameters np can be calculated as

np = (n ·m · nin + 1) · nout.

layer l-1

layer l

layer l-2

Figure 2.6: Receptive field (grey) over several layers (l is the current layer).

Receptive Field When we look at one input space, we can state where a feature is

looking at. Unlike for fully connected neural networks, where the value of a unit depends

on the entire input [30]. In contrast, a unit in a CNN depends on a region of input. This

region in the input is called the receptive field for that one unit. This input region can

also be the output from other units in the neural network. To increase the receptive field

different methods can be used such as sub-sampling (pooling, striding) of the network,

dilated convolutions [31] or simply add more layers to increase the depth, where the

receptive field is increased linearly in theory.

16 Chapter 2. Related Work

2D Convolution and Correlation In current popular deep learning libraries, such

as Tensorflow [29], the naming convention 2D convolution is often used, but actually a

correlation is performed. Basically, only the kernel is flipped (rotated by 180 degrees,

Equation (2.6)). The output at pixel position (i, j) of the convolution can be calculated

by dot products between the entries of the kernel H with the input U:

(U ∗H)i,j =
∑
m,n

Ui−m,j−n ·Hm,n. (2.4)

Analogous, the 2D correlation can be written as

(U⊗H)i,j =
∑
m,n

Ui+m,j+n ·Hm,n. (2.5)

As long as the kernel is symmetric, there is no difference between correlation and convo-

lution. Equation (2.5) is the fundamental equation for the 2D correlation layer, where U

is the image and each neuron corresponds to a pixel. The 180-degree rotation is applied

to the kernel H:

(U ∗ r180(H)) =


1 2 3

4 5 6

7 8 9

 ∗
h9 h8 h7

h6 h5 h4

h3 h2 h1


 . (2.6)

2.2.3.3 2D Dilated Convolution Layer

This dilated/atrous convolution [32] is a special case of the 2D convolution in

Section 2.2.3.2. A parameter rate r is introduced

(U ∗r H)i,j =
∑
i,j

U(i+r)−m,(j+r)−n ·Hm,n (2.7)

that produces “holes” (in French: atrous) between the pixels of the input image. Dilated

convolutions expand the receptive field exponentially without losing resolution. In simple

terms, dilated convolution is just a convolution applied to input with defined gaps. The

grey area is the current position of the kernel on the input. The Figure 2.7 shows dilated

convolution on 2D data. A 3 × 3 kernel H is altered by a dilated convolution. A rate of

1 (Figure 2.7a) does not change the kernel size. A rate of 2 (Figure 2.7b) does increase

the receptive field size to 5 × 5. With these definitions, given our input is a 2D image,

dilation rate r = 1 is a normal convolution and r = 2 means skipping one pixel per input

and r = 4 means skipping 3 pixels as in Figure 2.7c.

The grey area is also the receptive field and depends on the size of the kernel. The

receptive field of one neuron increases per layer (see Figure 2.7c). Systematic dilation

increase supports an exponential expansion of the receptive field without loss of resolution

2.2. Principle of a Feed-forward Neural Network 17

or coverage, while the number of parameters grows only linearly.

h1 h2

h4

h3

h6

h7 h8 h9

h5

j

i

Receptive FieldImage Pixeln

(a) Dilation rate 1.

h1 h2

h4 h5

h3

h6

h7 h8 h9

j

i

Receptive FieldImage Pixeln

(b) Dilation rate 2.

r 2

r 1

r 4

(c) Dilated convolutions with rate r =
{1, 2, 4}.

Figure 2.7: Dilated convolution with different rates and over several layers.

n

m D

outputD

W

H

(a) 2D convolution.

outputD

W

H n

m

l<D

(b) 3D convolution.

Figure 2.8: [5] illustrated the 2D and 3D convolution operations.

2.2.3.4 3D Convolution Layer

3D convolution give promising results for spatial learning problems [5, 33]. When we train

our network for a 2D convolution in Equation (2.4), it sums up over the whole volume.

When we use a 3D convolution in Equation (2.8), we can consider some different disparities

and the 2D convolution is extended with a 3rd dimension

(U ∗H)i,j,k =
∑
m,n,l

U i−m,j−n,k−l ·Hm,n,l, (2.8)

where k is the new index. Compared to the 2D convolution Equation (2.4) which produces

a new image, the 3D convolution Equation (2.8) produces a new output volume. When

we would choose D that is exactly the depth of the volume as in Figure 2.8, then the 3D

convolution works identically as the 2D convolution.

18 Chapter 2. Related Work

2.3 Training a Neural Network

At this point we know the basic building blocks of a neural network. We have to train it

according to a training set of size N . A neural network “learns” by solving an optimization

problem to choose a set of parameters that minimize a certain loss function L in order to

reduce costs. Weights will be initialized by random values (see Section 2.3.5). As in most

neural networks the error is calculated

L(y, ŷ) =
1

2
||y − ŷ||2 , x ∈ RN , y ∈ {0, 1}, ŷ ∈ [0, 1],

by the difference between the prediction ŷ (the activation of the last layer aL) and the

ground truth y ∈ Y, the actual output. The function that is used to measure this error is

called loss function L.

2.3.1 Loss Functions

Loss functions measure the error between prediction and ground truth. Different loss

functions measure a different error for the same prediction. Hence, loss functions have a

considerable impact on the performance of the model, but it also depends on the task for

what the model should be trained for, e.g. classification or regression. Both Cross-Entropy

(CE) and Hinge Loss (HL) can be used for binary classification and are therefore suitable

to classify pixel-wise whether it is occluded or not.

Predicted Probabilites

11

Cr
os

s-
En

tr
op

y
(y

=1
)

0 1

(a) Cross-Entropy Loss.

0 1-1

Lo
ss

Prediction

(b) Hinge Loss.

Figure 2.9: Different loss functions.

2.3.1.1 Cross-Entropy

For our learning problem with a training set size of |X | = N , we decided to take the

Cross-Entropy (CE) as loss function

CE(y, ŷ) = − 1

N

N∑
i

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

2.3. Training a Neural Network 19

to compare in general two probability distributions. For one class the adds log ŷ(i) to the

loss and for the other class the CE adds log(1 − ŷ(i)). When the neuron’s actual output

is close to actual output for all training input, the CE also goes to zero (see Figure 2.9).

The loss is high when the neuron’s actual output is far away to the actual output. When

we derivate the CE w.r.t. w

∂CE

∂w
= − 1

N

∑
x

(
t

σ(z)
− (1− y)

1− σ(x)

)
∂σ

∂w
= − 1

N

∑
x

(
t

σ(z)
− (1− y)

1− σ(z)

)
σ′(z)x

= − 1

N

∑
x

x(σ(z)− y),

it provides us the rate that a weight learns is controlled by σ(z)− y, it is the distance or

error in the output [25]. Intuitively, the larger the error the faster the neuron learns. The

σ(z)′ is canceled out and this avoids the learning slowdown.

2.3.1.2 Hinge Loss

Hinge Loss (HL) is usually used for “maximum-margin” classification, particularly for a

Support Vector Machine (SVM). A SVM is a supervised learning model to analyze data

for classification or regression. A hyper-plane is found which separates best the training

data. The HL function is not differentiable, but has sub-gradients w.r.t. w. It is defined

as

HL(y, ŷ) = max(0, 1− yŷ),

where y ∈ {−1, 1} and ŷ is the raw prediction of the classifier. The HL does not only

penalize incorrect predictions as in Figure 2.9a, it penalize correct predictions as well when

they are not confident enough. The gradient of the HL can be calculated via sub-gradients:

∂HL

∂w
=
∂HL

∂ŷ

∂ŷ

∂w

=


0 if yf(wlal−1 + bl) > 1,

[−yal−1, 0] f(wlal−1 + bl) = 0,

−yal−1 else,

where al−1 (Equation (2.3)) is the output of the previous layer. The incorrect predictions

are penalized linearly.

2.3.2 Minimize a Loss Function

The goal of optimizing CNN s is to find weights and biases such that the network approxi-

mates the desired output ŷ to a given input x. We need to define a measurement for how

well the CNN approximates the output. This measurement is referred to as cost function

20 Chapter 2. Related Work

J(θ), where θ stands for the network parameters (weights, bias). The initialization of

these network parameters θ gives a good start position. We will explain some initializa-

tion heuristics in Section 2.3.5. We have N training examples, so that a data set is given

X = {x(1),x(2), ...,x(N)} and the corresponding labels by Y = {y(1),y(2), ...,y(N)}. J(θ)

is computed as the average over every sample loss function L(y(i), ŷ(x(i); θ)) [28]:

J(θ) =
1

N

N∑
i=1

L(y(i), ŷ(x(i); θ)).

2.3.2.1 (Stochastic) Gradient Descent

The Gradient Descent (GD) algorithm requires a lot of computational resources when

the training set is very large because one update step requires the computation of

all gradients of all training examples as in Algorithm 1. In contrast, the Stochastic

Gradient Descent (SGD) accelerates the learning process by calculating the gradient

of the cost function ∇θJ(θ) by computing the gradients on a small subset of m

randomly chosen training examples Xm from the training set X = {x(1),x(2)....,x(N)}
and the corresponding label Ym from Y = {y(1),y(2), ...,y(N)}. The subsets Xm
and Ym are called mini-batch with the mini-batch size m [25]. If the mini-batch

size is very small, only a very rough approximation of the actual gradient can

be achieved, but in practice, SGD has been shown to converge well [28]. SGD

is probably one of the most used optimization algorithms for neural networks.

Algorithm 1: Gradient Descent.

Data: θ = {W, b}.
Result: Optimal θ.

repeat

θt+1 = θt − η∇tJ(θt;x
(i);y(i))

until convergence;

Algorithm 2: Gradient Descent with momentum.

Data: θ = {W, b}.
Result: Optimal θ.

repeat

v = µv − η∇θtJ(θt;x
(i);y(i))

θt+1 = θt + v

until convergence;

2.3.2.2 Momentum

A problem of the GD and SGD is that the convergence can be very slow since the gradient

steps become smaller when we approach a local minimum, reaching the bottom takes a

long time. It can happen that the GD stagnate in local minima or saddle points. The

2.3. Training a Neural Network 21

momentum helps to damp oscillations and to go through narrow valleys as well as local

minima [34]. The idea of the momentum comes from a physical model, the heavy ball

method [34]. A ball rolls down a slope and is accelerated by its own mass. Momentum

is often called acceleration in literature2. Thus, the momentum can accumulate velocity

across epochs in the direction where the gradient points towards. Mathematically, a zero-

initialized variable v is introduced that is added [35] to parameters θt (see Algorithm 2)

at each iteration. The hyper-parameter µ (typically µ = 0.9) reduces the velocity, so that

the GD can stop at the bottom of the slope.

(a) Gradient descent GD. (b) GD with momentum.

Figure 2.10: Gradient (black arrows) move at each epoch towards global minima θ∗.

The Figure 2.10 illustrates GD and GD with momentum. The dotted ellipses are the level

lines of the loss surface. The point θ∗ represents the global minimum, where the loss is

equal to zero. It can be observed that GD with momentum is closer to the global minima

as the GD without momentum.

2.3.2.3 Optimizer with Adaptive Learning Rate

The adaptive learning rate is a crucial instrument because the direction of the gradient is

very sensitive. The moment algorithm can soften this issue, but it introduces new hyper-

parameters. As we think that the directions of sensitivity are somewhat axis-related, it

does make sense to use separate learning rate for each parameter and adapt these learning

rates during training. The delta-bar-delta algorithm [36] is an early adaptive approach

based on a simple idea: If the partial derivative w.r.t. the given parameter, remains the

same sign, then the learning rate should be increased. If it changes the sign, the learning

rate should be decreased.

In this section, we want to summarize briefly different methods to adapt the learning

rate optimizer, where earlier optimizer establish a foundation for later optimizer. There-

fore, we list the adaptive optimizer in chronological order.

AdaGrad AdaGrad is the abbreviation for adaptive gradient [37] and is at the same time

the first of the introduced algorithms. The main idea of this optimizer is to keep track

2https://distill.pub/2017/momentum

https://distill.pub/2017/momentum

22 Chapter 2. Related Work

of the sum of squared gradients for each parameter. Basically, it is a modified stochastic

gradient descent

θt+1 = θt −
η√

Gt + ε
�mt,

where the normalization
√

G + ε contains the matrix G that has along its diagonal

the sum of squares of the past gradients w.r.t. all parameters θi. We vectorize mt =∑m
i=1∇θJ(θt,i) so that we can write ∇θJ(θt). The ε is usually a very small number that

avoids a division by zero [38]. One weakness is the sum of the squared gradients in the de-

nominator because the added terms are always positive and the summation keeps growing.

Most implementations use a default value of η = 1e−2.

RMSProp RMSProp algorithm modifies AdaGrad to perform better in a non-convex

setting by changing the matrix G from a sum of squared gradients of all parameters in

its diagonal to the average of squared gradients. As a result, the steep, monotonically

decreasing learning rate is mitigated. Section 2.3.2.3 is altered to

Gii = γGii + (1− γ)m2
t,i,

where Gii is the diagonal element of the matrix G and the mt,i is ith the element of the

vector at time t. A new hyper-parameter, the decay rate γ, is added. Hinton suggests

γ = 0.9 and a learning rate η = 1e−3.

Adam Adam [39] is another adaptive learning rate optimization algorithm. The name

derives from “adaptive moment estimation”. It extends RMSProp by using momentum

and apply it re-scaled weights. Adam does not only store the exponentially decaying

average of past squared gradients vt as RMSProp but also keeps an exponentially decaying

average of past gradient µt.

µt = β1µ+ (1− β1)mt

vt = β2v + (1− β2)m2
t ,

where µ and v are the zero-initialized estimations of the 1st (mean) and 2nd (uncentered

variance) moment of the gradients [38]. The authors of Adam observed that during the ini-

tial time they are biased close to zero, especially when β1 and β2 are close to 1. Therefore,

Adam includes bias corrections for both moments:

µ̂ =
µ

1− βt1
, v̂ =

v

1− βt2
,

2.3. Training a Neural Network 23

where t is the current training epoch. Then, the Adam update rule is applied:

θt+1 = θt −
η√
v̂t + ε

µ̂t.

The authors recommend default values ε = 1e−8, β1 = 0.9 and β2 = 0.99. There are al-

ready Adam variants, called AdaMax and Nadam (Nesterov-accelerated Adaptive Moment

Estimation).

2.3.3 Forward and Backward Propagation

In this section, we explain the forward and back propagation of a fully-connected and

convolutional neural network. The forward propagation process is that the input values,

along with the bias value, are multiplied by their weights and parsed to the output unit. It

is taken the sum of these values and applies an activation function. The back propagation

algorithm begins by comparing the actual output value by the forward propagation process

to the expected value. This is the error that moves backward through the network and

slightly adjusts each weights that reduces the size of the error. Both forward and back

propagation are re-run thousands of times on each input combination until the network can

accurately predict the expected output of the possible inputs using forward propagation.

2.3.3.1 Fully-Connected Neural Network

The fully-connected layer has as parameters weights and bias and a neuron is connected

with every neuron in the next layer. The idea is that the fully-connected neuron forwards

the weighted sum from the input connections

alj = f

(∑
k

Wl
j,ka

l−1
k + blj

)
= f(zlj), (2.9)

where the activation alj of the jth neuron in the lth layer depends on the kth neuron in

the previous layer (l − 1)th and the input weight Wl
j,k. The bias term blj is usually one

scalar that for the layer lth layer. We want to rewrite Equation (2.9) from vector form to

matrix form. We define a weight matrix Wl with the jth and kth column. Analogous to

the weights we define a bias vector bl and finally, we need to have the activation vector al

defined. With these notations, the Equation (2.9) can be rewritten more compact:

al = f
(
Wlal−1 + bl

)
= f(zl). (2.10)

24 Chapter 2. Related Work

The inner term zl can be written according to Figure 2.4a as

zl =

[
z1

z2

]
=

[
W11 W12 W13 b1

W21 W22 W23 b2

]
·


a1

a2

a3

1

 .

Then, the back-propagation [40] is applied, by changing weights and bias. For that, we

define a small error quantity δl that can occur or each neuron in each layer [25]. In other

words, it adds a little change ∆zlj to the neuron’s weight input so that the neuron outputs

σ(zlj + ∆zlj). This change propagates back through each layer in the networks:

δl =
∂L
∂zl

,

where L is the loss function that is explained in Section 2.3.1. The error given at each

layer is given by the gradients of the weights and bias:

∇lWL = al−1δl, (2.11)

∇lbL = δl. (2.12)

Assume we have a training set {(x(1),y(1)), ..., (x(N),y(N))} of N training examples, so

that we can train over network by using Gradient Descent. At each iteration the Gradient

Descent updates the parameters W, b:

Wl ←Wl − η∇WlL,
bl ← bl − η∇blL,

where η is the learning rate.

2.3.3.2 Convolutional Neural Network

We have explained fully-connected layers (see Figure 2.4a), where each input neuron is

connected with each output neuron. This thesis focuses on Convolutional Neural Network

(CNN), a specialization of neural networks. In CNN a convolution is calculated where a

kernel with the depth of the input layer is sliding over input. In literature, this is often

called sliding dot product. Different methods to calculate convolutions can be seen in

Section 2.2.3.2 (the special case: dilated convolutions Section 2.2.3.3) and Section 2.2.3.4.

2.3. Training a Neural Network 25

The forward pass through a layer each output activation is formed by

aljk = f

(∑
j′,k′

Wl
j′,k′ ∗ al−1

j−j′,k−k′ + b
l
j,k

)
al = f

(
(Wl ∗ al−1) + bl

)
= f(zl).

As in the fully-connected case, there is given an error δ(zl), that is propagated backwards

[40] according to

δl−1 =
∂L
∂zl−1

.

If we consider the section view as in Figure 2.4b the arrows show the forward propagation

from l− 1 to layer l. The calculation order is as follows, first the dashed, then the dotted

and finally the full line. When the error is back-propagated from layer l to layer l− 1 that

requires the reverse order (full - dotted - dashed arrows) in Figure 2.4b. We want to show

that the derivation of 2D convolution is the 2D correlation. We use the notation with

indices instead of vector/matrix-notation to compare with definitions of the convolution

in Equation (2.4) and of the correlation in Equation (2.5):

δl−1
j,k =

∂L
∂zlj,k

=
∑
j′,k′

∂L
∂zlj′,k′

∂zlj′,k′

∂zl−1
j,k

=
∑
j′,k′

∂zlj′,k′

∂zl−1
j,k

δlj′,k′ (2.13)

with

zlj′k′ =
∑
j′′,k′′

Wl
j′′,k′′a

l−1
j′−j′′,k′−k′′ + b

l
j′,k′

and the partial derivative becomes

∂zlj′,k′

∂zl−1
j,k

=
∂

∂zl−1
j,k

∑
j′′,k′′

Wl
j′′,k′′a

l−1
j′−j′′,k′−k′′ + b

l
j′,k′

= al−1
j′−j′′,k′−k′′ = f(zl−1

j′−j,k′−k),

since only the derivations where terms at the indexes j = j′′ and k = k′′ in Wl
j′′,k′′ are

non-zero. The non-zero derivations imply j′ − j′′ → j′ − j and k′ − k′′ → k′ − k. We

substitute back into Equation (2.13):

26 Chapter 2. Related Work

δl−1
j,k =

∑
j′,k′

Wl
j′,k′δ

l
j′,k′f(zl−1

j,k) (2.14)

= δlj,k ∗Wl
−j,−kf

′(zl−1
j,k) = δlj,k ∗ r180(Wl

j,k)f
′(zl−1

j,k). (2.15)

In Equation (2.14) the correlation is applied because of the change of traversing through

the kernel. We use the notation to calculate a convolution on the 180 degree rotated

kernel (compare Equation (2.6)), which is the correlation: Wl
−j,−k = r180(Wl

j,k). Given

an possible error δli,k at each neuron within a convolution layer, the weights and bias

gradients are

∂L
∂Wl

j,k

=
∑
j′,k′

∂L
∂zlj′,k′

∂zlj′,k′

∂Wl
j,k

=
∑
j′,k′

δlj′,k′
∂zlj′,k′

∂Wl
j,k

(2.16)

∂zlj′,k′

∂Wl
j,k

=
∂

∂Wl
j,k

∑
j′′,k′′

Wl
j′′,k′′a

l−1
j′−j′′,k′−k′′ + b

l
j′,k′ (2.17)

= f(zl−1
j′−j,k′−k). (2.18)

(2.19)

Now, we substitute back into Equation (2.16):

∂L
∂Wl

j,k

=
∑
j′,k′

f(zl−1
j′−j,k′−k)

= δlj,k ∗ f(zl−1
−j,−k) = δlj,k ∗ f(r180(bl−1

j,k)).

Finally, the derivation w.r.t. b:

∂L
∂blj,k

=
∂L
∂bl

=
∑
j′,k′

∂L
∂zlj′,k′

∂zlj′,k′

∂bl

since

∂zlj′k′

∂bl
= 1.

2.3. Training a Neural Network 27

2.3.4 Vanishing Gradient Problem

The vanishing gradient problem [41, 42] occurs in the back-propagation process, where the

error in the loss function, is back-propagated by each neuron. Certain activation functions

like sigmoid squishes the large input space into a small input space. A large change in the

input results in small change in the output. Let

∂L
∂bl

= δl =


∂L
∂bl1
∂L
∂bl2
...

 , ∂L
∂Wl

= δl(al−1)T =


∂L

∂Wl
1,1

∂L
∂Wl

1,1
. . .

∂L
∂Wl

2,1

∂L
∂Wl

2,2
. . .

...
...

. . .


be the gradient of the lth-layer as from our example in Section 2.2.3.2. The gradient

approaches zero the more we move back through the layers, e.g. if in our network
∣∣∣∣δ2

∣∣∣∣
2
�∣∣∣∣δ4

∣∣∣∣
2
�
∣∣∣∣δ6

∣∣∣∣
2
, then we have the vanishing gradient problem. The learning speed gets

lower and lower as more we move backward until to the last layer L. LeCun et al. [43]

suggest avoiding the sigmoid function in layers because the error surface is very flat at the

origin and can be fast saturated. Saturation means that the gradient can be blocked in

the back-propagation process, that means the error is not transferred to the next layer.

On the basis of the proof in [44], we can show how the sigmoid activation function has

a small gradient. For that, we estimate the upper bound of
∣∣∣∣ ∂L
∂bl

∣∣∣∣
2

and
∣∣∣∣∣∣ ∂L
∂Wl

∣∣∣∣∣∣
F

with

vector and matrix norms3. The vector norm is denoted as ||x||2 =
√
x2

1 + ...+ x2
n and the

matrix norm is denoted as the Frobenius ||A||F =
∑

i,j |Ai,j |2. An induced matrix norm

is denoted as ||Ax||a,b = maxx ||Ax||a s.t. ||x||b ≤ 1, where ||·||a is the vector norm ∈ Rm

and ||·||b is the vector norm ∈ Rn. We can apply the norms on the gradient of the bias

of each layer and we denote Σ′ as a diagonal matrix, whose diagonal is the element-wise

derivation f ′(zl):

∥∥∥∥ ∂L∂bl
∥∥∥∥

2

=
∥∥∥ Σ′(zl)(Wl+1)T . . .Σ′(zL−1)(WL)TΣ′(zL)(aL − y)

∥∥∥
2

(2.20)

≤
∥∥∥Σ′(zl)∥∥∥

F

∥∥∥(Wl+1)T
∥∥∥
F
. . .
∥∥Σ′(zL−1)

∥∥
F

∥∥(WL)T
∥∥
F

∥∥Σ′(zL)
∥∥
F

∥∥(aL − y)
∥∥

2

(2.21)

≤
L∏
r=l

∥∥Σ′(zr)∥∥
F
·

L∏
r=l+1

∥∥(Wr)T
∥∥
F
·
∥∥aL − y∥∥

2
(2.22)

and also on the gradient of the weights:

3The property of induced matrix norm: ||ABx||2 ≤ ||A||F ||B||F ||x||2 and ||AB||F ≤ ||A||F ||B||F
hold for any matrices A, B and vector x s.t. ABx is defined.

28 Chapter 2. Related Work

∥∥∥∥ ∂L
∂Wl

∥∥∥∥
F

≤
∥∥∥∥ ∂L∂bl

∥∥∥∥
2

∥∥∥(al−1)T
∥∥∥

2
↔
∥∥∥∥ ∂L
∂Wl

∥∥∥∥
F

≤
∥∥∥∥ ∂L∂bl

∥∥∥∥
2

∥∥∥al−1
∥∥∥

2
.

For any squared matrix as in Equation (2.22), ‖W‖F = ‖WT ‖F , thus

∥∥∥∥ ∂L∂bl
∥∥∥∥

2

≤
L∏
r=l

∥∥ Σ′(zr)
∥∥
F
·

L∏
r=l+1

‖Wr‖F ·
∥∥aL − y∥∥

2
.

Let ζ = sup{Σ′(υ) : υ ∈ R}. The norm of a diagonal matrix is the largest absolute value

of the elements in the matrix. The induced norm of a symmetric matrix is equal to the

spectral radius. So ‖ Σ′(z)‖F ≤ ζ for any z:

∥∥∥∥ ∂L∂bl
∥∥∥∥

2

≤ ζL−l+1 ·
L∏

r=l+1

‖Wr‖F ·
∥∥aL − y∥∥

2
. (2.23)

In Figure 2.3a you can see the derivation of the sigmoid function and we can read for the

sigma activation function ζ = 0.25 and for tanh ζ = 1.0. Hence, from Equation (2.22) and

Equation (2.23) we can assume that
∥∥ ∂L
∂bl

∥∥
2

and
∥∥∥ ∂L
∂Wl

∥∥∥
F

are very small when the network

has many layers and the gradient would be small as well.

2.3.5 Parameter Initialization

Network parameter initialization does not only have an impact on the convergence speed

but the wrong initialization can prone the network to the vanishing/exploding gradient

problem. Weights W0 are usually initialized close to zero.

Truncated Normal Initialization This initialization is similar to a normal distribu-

tion except these values which are more than 2 standard deviations away from them mean

are discarded. It is a standard deviation 1√
nin

, where W0 ∼ nin is the number of inputs

to the given layer. For example, the sigmoid function is saturated (compare Figure 2.3a)

and your neuron will not learn. So, the truncated normal distribution does not have this

issue at least for the initialization [43].

Xavier Initialization It [45] is named after Xavier Glorot and sometimes also called

Glorot. It was found after analyzing the back-propagated gradients

W0 ∼
√

2

nin + nout
N (0, 1),

where nout describes the number of output units.

2.3. Training a Neural Network 29

He Initialization [46] This is the preferred initialization compared to the Xavier ini-

tialization [45] when ReLU activation (see Figure 2.3b) functions are used throughout the

neural networks. He recommends initializing the weights by

W0 ∼
√

2

nin
N (0, 1).

Biases are usually initialized with zeros.

2.3.6 Overfitting

Overfitting refers to the problem that the training data shows up excellent results, while

the validation data becomes more worse in every iteration. The underlying reason is that

the network size is too big and less complexity of the model is required.

Model Complexity

Pr
ed

ic
ti

on
 E

rr
or

Trade-Off

OverfittingUnderfitting Low Bias
High Variance

High Bias
Low Variance

Training Sample

Figure 2.11: Bias-variance-tradeoff of a model.

2.3.6.1 Bias-Variance-Tradeoff

This tradeoff [47] tells us how well the model is fitting the training data and how well it

can generalize to new unseen data. It describes the problem of keeping bias and variance

in balance (Figure 2.11):

• High bias (underfitting) can cause that a neural network does not fit the relation

between features and label well.

• High variance (overfitting) can cause that a neural network does fit the features too

tight to the label so that the neural network does not generalize well. One possible

remedy is data augmentation, that is more detailed described in Section 4.2.3.

30 Chapter 2. Related Work

2.3.6.2 Early Stopping

When the error on the training set tends to be reduced by every epoch, the error on the

validation decreases usually as well. It can happen that the validation error rises at some

point, once the network starts to overfit the training set. To avoid overfitting, the training

can be stopped as soon as the validation error rises [48].

2.3.6.3 Weight Decay

Weight decay is another method to reduce overfitting when there is a fix amount of training

and a fixed network. There are two weight decay regularization methods [25] L1 [49] and

L24 [50]. The idea is to add an extra term to the cost function denoted as regularization

term:

J(θ) = L0 +
λ

N

∑
i,j

|Wl
i,j |,︸ ︷︷ ︸

L1 regularization term

J(θ) = L0 +
λ

2N

∑
i,j

∣∣∣∣∣∣Wl
i,j

∣∣∣∣∣∣2
F︸ ︷︷ ︸

L2 regularization term

where L0 can be any unregularized cost function and the L1/L2-norm of all weights in

the network is the regularization term that is scaled by a λ > 0 divided by the size of the

training set is N . If λ is small, the original cost function L0 is minimized, but when λ is

large, small weights are preferred to learn. This regularization can compromise minimizing

the original cost function and finding small weights.

Both regularization terms have several limitations and are investigated by Zou and

Hastie [51], but one does not dominate the other one. While the L1-norm has the sparsity

property that might shrink less important feature coefficient to zero, but it cannot group

similar features, the L2-norm does only minimize these coefficients instead of setting them

to zero and has always a unique solution.

2.4 Computing Stereo Matching Costs with Convolutional

Neural Networks

Zbontar and LeCun [6] introduced a machine learning approach to extract depth informa-

tion from a rectified image pair. Therefore, image patches of size of 5 × 5 are compared

from each image respectively with a CNN . The more similar these patches of the image

pair are, the lower the costs. Occluded pixels would yield very high costs.

In this section two methods are compared along the epipolar line to each other, which

calculate the stereo matching cost. One is faster, while the other is more accurate. The

output of both is not ready for the final result, so that further steps are necessary. For

4Frobenius Norm: ||A||2F =
∑
i,j |Ai,j |2

2.4. Computing Stereo Matching Costs with Convolutional Neural Networks 31

learning the CNN , two cost functions are used, the Cross-Entropy (CE) and the Hinge

Loss (HL).

The output of both networks are not satisfying, so they refined the output of the

CNN mainly with two post-processing methods: cross-based cost aggregation and Semi

Global Matching (SGM). The network is trained and tested on the datasets KITTI [52]

and Middlebury [3].

(a) Fast Architecture. (b) Accurate Architecture.

Figure 2.12: Overview of both architectures [6].

2.4.1 Unary Network

Siamese network [53, 54] is an architecture consists of 2 identical neural networks, the unary

CNN , each taking the left and right input image of a stereo pair. The parameters are

usually shared by each layer of both networks. This means that the weights are exactly

the same. The shared weights makes it possible to learn the similarity. After feature

extraction, both networks are joined at their outputs. The purpose of this architecture is

to learn the similarity of both inputs what is useful to find pixel correspondences as for

disparities. If no correspondences are found that can be interpreted as occlusions. Both

unary CNN s have several convolutional layers with ReLU as non-linearity.

There are two architectures “fast” and “accurate”, which distinguish of joining the

output of both unary CNN s. The fast architecture in Figure 2.12a compares the normal-

ized output vectors of both unary networks using the Euclidean dot product as similarity

measure. For the accurate architecture (Figure 2.12b) the dot product layer is replaced by

fully connected convolutional layers. These layers have as well ReLU as non-linearities and

the last layer has the non-linearity sigmoid to produce the output probabilities prediction.

The left input patch PL is fix and for every disparity d the right input patch PR is shifted:

CCNN
i,j,d = f(PL

i,j ,P
R
i,j−d),

so that the matching costs CCNN can be formed.

32 Chapter 2. Related Work

2.4.2 Loss Functions

Zbontar and LeCun claimed that the binary cross-entropy results better for accurate

architecture while it is not applicable for the fast architecture, so they took the hinge

loss. The basic concept of both loss function are explained in Section 2.3.1. Although,

they would prefer using the same loss for better comparison the final results. For the fast

architecture they use as loss the Hinge Loss (HL) and for the accurate architecture they

use the Cross-Entropy (CE):

Loss of the fast architecture: To minimize the error a HL is considered. Two image

patches are chosen, where one belongs to class ŷ+ and the other to the class ŷ−. The hinge

loss can be defined as max (0,m+ ŷ−ŷ+). If the output ŷ+ is greater than ŷ− by a margin

m = 0.2, then the loss is zero.

Loss of the accurate architecture: Let ŷ be the output of one training example and y

the class related to ŷ. The label is y = 1, if the training example belongs to the class.

Otherwise, the label will be 0. Now, the binary CE loss can be applied y log(ŷ) + (1 −
y) log(1− ŷ).

2.4.3 Post-processing

The output of fast and accurate CNN methods needs to be improved. Therefore, for

finding corresponding pixels cross-based aggregation [55] is used that uses flexible window

size to find similar pixels with the same disparity value. Then, the matching costs of the

cross-based-aggregation are refined with Semi Global Matching (SGM) [56] that enables

the smoothness constraint to ensure that there are no jumps in the disparity map on

homogeneous areas.

2.4.3.1 Cross-based Cost Aggregation

Cross-based cost aggregation [7] is another method that takes information about neigh-

boring pixels. Instead taking the average cost over a fixed window that assume a constant

depth withing this window, cross-based cost aggregation selects the neighboring pixels

for every pixel. The method begins to construct an upright cross at each pixel position.

The left arm pl extends as long as the two conditions must hold for selecting the correct

neighbors:

1. The intensities at pixel p = i, j ∈ dom IL and at pl = k, l ∈ dom IR should be

similar: |ILi,j − IRk,l| < τ .

2. Only pixels within a certain distance are compared.

The right, bottom and top arms are constructed in the same way. If the four arms are

known, we can define the support region U(p) of all positions lying on p’s vertical arm.

When the arms in horizontal and vertical direction are found the support region U(p) is

computed to close the area between the arms.

2.4. Computing Stereo Matching Costs with Convolutional Neural Networks 33

Zhang et al. [7] suggest that the aggregation on both images from a stereo pair should

be considered. Let UL and UR be the support regions (see Figure 2.13) in the left and

right image. The matching cost is averaged between the left and right support region

UL ∪ UR. For the accurate architecture in Figure 2.12b) this Let U be the combined

support region:

Ui,j = {q|q ∈ UL
i,j , q − d ∈ UR

i,j−d}
C0
i,j,d = CCNN

i,j,d

Ct
i,j,d =

1

|Ui,j |
∑

k,l∈Ui,j

Ct−1
k,l,d,

where t denotes the current iteration. Since the support regions can overlap the results

can change at every iteration. The iterations are skipped for the fast architecture, see

Figure 2.12a, because of the expensiveness to compute it.

Figure 2.13: A support region for a position p at i, j ∈ dom IL is the union of all vertical and
horizontal arms [7].

2.4.3.2 Semi Global Matching

The disparity map from Cross-Based Aggregation in Section 2.4.3.1 C can be refined by

using Semi Global Matching (SGM) [56]. An energy function E(D) needs to be defined

that relies on the disparities D:

E(D) =
∑
i,j

(
C4
i,j,Di,j

+
∑

l,k∈Ni,j

λ1 · 1{|Di,j −Dl,k| = 1}+
∑

l,k∈Ni,j

λ2 · 1{|Di,j −Dl,k| > 1}
)
,

where 1(·) is the indicator function. E(D) can be split into 3 terms. The first term of

the function sums all pixel-wise matching costs over the whole image. The second term

34 Chapter 2. Related Work

penalizes neighboring pixels that differs by 1. The third term adds a larger penalty for

all pixels with neighbors that have a different disparity. In that way, discontinuities are

allowed if pixel-wise matching is stronger than the penalty, e.g. if the texture signalize

a discontinuity. The third term indirectly connects all pixels within the image and hence

this makes the function global. In SGM the energy is minimized in several directions r:

Cr
i,j,d = C4

i,j,d −min
k
Cr
i−ri,j−rj ,k + min

{
Cr
i−ri,j−rj ,d,C

r
i−ri,j−rj ,d−1 + p1,

Cr
i−ri,j−rj ,d+1 + p1,min

k
Cr
i−ri,j−rj ,k + p2

}
.

The first pixel are defined as C4
i,j,d. The second term is subtracted to avoid too large

costs [57]. Then, the minimum is taken: The costs of the pixels in the direction r. The

costs with one higher and lower disparity is computed. The last values is the minimum

cost from the the pixels in direction r over all disparities. The penalty parameters p1 is

constant for the small change in the neighborhood and p2 is adaptive for the large changes

in the neighborhood are added. A lower penalty permits an adaption to slanted surfaces.

Hirschmüller [56] suggested 16 directions. Zbontar and LeCun [6] claimed only to minimize

into 4 directions, 2 horizontal and 2 vertical directions. Adding more directions does not

improve the accuracy. An average over all directions is calculated to obtain the final result.

The matching cost Cr
i,j,d in direction r is achieved through:

CSGM
i,j,d =

1

4

∑
r

Cr
i,j,d.

The disparity d that minimizes CSGM
i,j,d forms the disparity map Di,j :

Di,j = arg min
d

CSGM
i,j,d .

Since SGM cannot handle occlusions [58] the disparity map is post-processed with

Left-Right-Cross-Checking (LRC) explained in Section 2.6.1. The occlusion map for the

left or for right stereo image can be calculated from the disparity maps in the dataset as

in Equation (2.24).

2.5 End-to-End Training of Hybrid CNN-CRF Models for

Stereo

Hybrid CNN-CRF [8] learns the similarity of stereo images first as we have investigated in

Section 2.4.1 and then apply a Conditional Random Fields (CRF) for refining the disparity

map. This approach takes advantage of both CNN and CRF . In Figure 2.14, the model

is split into different blocks and is described in the following sections in detail. Basically,

it takes two input images and computes the similarity to construct a stereo correlation

2.5. End-to-End Training of Hybrid CNN-CRF Models for Stereo 35

volume. The stereo correlation is fed into the CRF . The CRF takes contrast sensitive

weights for the depth discontinuity and pairwise interactions in a local neighborhood are

for smoothness. The inference is approximated with a fixed number of iterations of a linear

programming relaxation based approach. The stereo correlation implementation use the

prior knowledge for occlusion detection.

Figure 2.14: A Unary-CNN is the CNN for each image. In the correlation layer the features
of are compared. The matching cost becomes a unary cost volume becomes the unary cost of the
CRF [8].

2.5.1 End-to-End Learning

End-to-end is a terminology in learning, where all parameters are trained jointly as com-

pared to step-by-step. The classical way was to give some input then extract features

and perhaps there some more intermediate steps necessary. In end-to-end all intermediate

steps are involved and the output is produced.

The advantage is that the hyper-parameters do not have to be determined for each

intermediate step as we have seen in Section 2.4, where Zbontar and LeCun [59] used

cross-based aggregation and Semi Global Matching (SGM). On the one hand, end-to-end

learning architectures save to set hyper-parameters of several post-processing methods. On

the other hand, not all methods cannot be integrated in the back-propagation algorithm.

2.5.2 Unary Netnwork and Shared Weights

Unary network with 3 or 7 layers with 100 kernels for each layers are used. The kernel

size of the first layers differs by 3× 3. For later layers 2× 2 sized kernels are chosen. As

activation function, the tanh (Section 2.2.1) is selected, because of the ease of training: it

keeps the output bounded and there is no (batch-)normalization layer required [60, 61].

The shared weights are used during training between both unary CNN s. This ensures

that network learns the similarity between both input images.

It is assumed that left IL and the right IR are rectified, where the epipolar lines

correspond to the image rows. The left image is the reference image and we search for cor-

responding pixels in the right image. The disparity of a pixel i, j ∈ dom IL is represented

36 Chapter 2. Related Work

by a discrete label d ∈ Y = {0, ..., Y − 1}. Then, dense image features are extracted,

denoted as φL = φ(IL;θ1) and φR = φ(IR;θ1) with the shared parameters θ1.

2.5.3 Stereo Correlation

To form a cost volume, for each pixel these extracted features are correlated at all possible

disparities. The confidence Pi,j,d, where Pi,j,d : Ω × Y → [0, 1] means that how well a

window around a pixel i, j in the first image matches the window around pixel i, j + d.

The cross-correlation offers to combine the extracted features φLi,j , φ
R
i,j of both unary-

CNN s

Pi,j,d =
e〈φ

L
i,j ,φ

R
i,j+d〉∑

d∈Y e
〈φLi,j ,φRi,j+d〉

∀i, j ∈ Ω, ∀d ∈ Y

that transfers the features to probability, because it outputs the softmax (see Section 2.2.1)

of the corresponding feature vectors. This improves to train the joint network, because

scales the unary-costs. The best matching disparity is determine according to the winner-

takes-all strategy, where

Pi,j ∈ arg max
d
Ci,j,d

is selected for the full model.

2.6 Occlusion Detection

In this section, we discuss methods that detects occlusions exclusively. Compared to stereo

matching, there is not a huge number of methods, but occlusions are very often detected

on the fly. We want to pay attention on the methods, which only focus on detecting

occlusions.

In computer vision, occlusions are areas hidden by other objects. We focus on stereo

images [62], where two images are taken from the same scene. Both cameras have the

same distance to the object but have a distance to each other. There are pixels in one

image that cannot be seen in the other image, so these pixels are occluded.

In Figure 2.15, the dotted lines are the lines of sight from both camera centers (C, C ′).

The line of sight from C is interrupted by an object and hence cannot capture the same

position on the scene as the line of sight from C ′. This position is occluded by an object.

In the stereo setup, occlusions occur at the border of objects.

2.6.1 Left-Right-Consistency-Check

Left-Right-Cross-Checking (LRC) [6, 63, 64] is one of the most accurate methods to com-

pute occlusions from pre-computed disparities. According to Egnal [14] LRC has the

highest hit and lowest false positive rate. A pixel i, j is occluded if the constraint is

2.6. Occlusion Detection 37

fulfilled

|DL
i,j −DR

i,j−DL
i,j
| > υ, υ ∈ R, (2.24)

where DL and DR are the disparities maps from the left and right image respectively.

Disparity maps are show in Figure 1.3 from left-to-right and right-to-left, where for left-

to-right the left image is chosen as reference frame and vice versa. For each pixel i, j of

the left-to-right disparity map the matching disparity on the right-to-left disparity map

is looked up. If the disparities in both disparity maps are bigger than a threshold υ [65],

this should be an occluded pixel.

IL IR

C C’

Scene

occluded

Obstacle

Figure 2.15: A scene is captured by two cameras. The occluded area is enclosed by the two lines
of sight.

2.6.2 Graph Cut Algorithm for Point Correspondences and Occlusions

Kolmogorov and Zabih [13] developed a graph cut algorithm, that adapt the correspon-

dence problem into a maximum flow/minimum cut problem. This is another method to

handle occlusions in stereo images. Let G = 〈V, E〉 a weighted graph with its vertices V
and edges E , while two terminal vertices named source and sink {s, t}. In Figure 2.16a is

a simple graph, where each pixel is a gray node and connected to each other. The weights

from the pixel nodes to the source or sink are infinity and are not considered in the min-

imum cut. It is required to find a minimum cut C = Vs,Vt, that partitions the vertices

either to the sink s ∈ Vs or to the source t ∈ Vt. We distinguish between the pixels of

the left and right stereo image, L and R respectively. The costs of a cut are determined

of the weights of the edges between a vertex in Vs and Vt. The minimum cut problem

can be efficiently solved by using the maximum flow theorem [66], which only needs low-

order polynomial time as worst-case. Computing the minimum cut problem is equivalent

to solving the maximum flow. The theorem of Ford and Fulkerson [66] states that the

maximum flow in G is equal to the costs of the minimum cut. In other words, a minimum

cut has the set of edges whose maximum capacities were reached in the maximum flow

solution.

38 Chapter 2. Related Work

(a) Simple Graph. (b) Graph (d=0..k). (c) Disparities.

Figure 2.16: Different Graph G with each pixel has one node per disparity [9].

To find corresponding pixels, the disparity have to be calculated and the graph can be

imagined as in Figure 2.16b, where on the vertical axis the different disparities of the

corresponding pixels are stored. Dark blue and red are the source/terminal nodes. The

lighter. The result of the graph cut is green as in Figure 2.16c what yields the final

disparity map. They assume that all disparities occur in a range of [0, k]:

A = {< p, q > |p = (px, py) ∈ L, q = (qx, qy) ∈ R, p = qy, 0 ≤ qx − px ≤ D, D ∈ N0}.
(2.25)

Instead of assigning disparities to each pixel, a configuration needs to be defined, where

a function ξ : A → {0, 1} maps the assignment A to 1 if the assignment is active and

0 otherwise. The set of all currently active assignments in the configuration of ξ as

A(ξ) = {a ∈ A|ξa = 1} and Np(ξ) the active assignments of the pixel p in the given

configuration. To be sure that a pixel from the left image has only one corresponding

pixel in the right image the constraint of uniqueness must hold

|Np(ξ)| ≤ 1, ∀p ∈ L ∪R,

whereas the criterion for an occluded pixel is if |Np(ξ)| = 0. Further, a set of all assign-

ments Aα is defined that contains pairs of resembled pixels having the disparity α. To

this, the disparity d : A → R as d(a) = d(< p, q >) = qx − px is defined. With these

notions, a configuration ξ′ is within one α-expansion of ξ, if A(ξ′) ⊂ A(ξ) ∪ Aα. This

means that some α-assignment might become inactive and any other α-assignment might

become activated. It is not possible to activate assignments with a different α. It might

happen that a deactivated α-assignment that no other assignment incorporate with this

pixel p, e.g. if |Np(ξ
′)| = 0, it can marked occluded. As a next step, we have to define

the energy for a configuration. For non-unique configurations the energy is infinity and

for unique configuration the energy is

2.6. Occlusion Detection 39

E(ξ) = Eocc(ξ) + Edata(ξ) + Esmooth(ξ),

where energy must be extended with Eocc(ξ) penalty term for making a pixel occluded.

The occlusion term is necessary to limit the occluded pixels:

Eocc(ξ) =
∑

p∈L∪R
Cp · 1(|Np(ξ)| = 0) (2.26)

where Cp > 0 is the penalty, the higher Cp the more penalty and 1(·) is 1 if the argument is

true otherwise false. The sum over all pixels shows the symmetry of this method, because

the occluded pixel in the left as well in the right image is penalized.

The data term compares the intensities between corresponding pixels. For an assign-

ment a is the pixel intensity compared as D(a) = (ILpy ,px − IRqy ,qx)2, where ILpy ,px is the

intensity value at pixel p of the left image. The data term is formulated over the sum of

all assignments by the difference of the pixel intensities:

Edata(ξ) =
∑

a∈A(ξ)

D(a). (2.27)

The smoothness term involves the local neighborhood and is the most complex part

of the energy function. The neighborhood N considers only pairs s.t. a1 and a2 have the

same disparity and i.e. p and p′ are neighbors for the assignment pairs {〈p, q〉, 〈p′, q′〉}
and d(〈p, q〉) = d(〈p′, q′〉). Thus, the smoothness term can be expressed as

Esmooth(ξ) =
∑

{a1,a2}∈N

V (a1, a2) · 1(ξ(a1) 6= ξ(a2)) (2.28)

and states if the disparities of two comparing pixels are equal, then the smoothness penalty

is zero, otherwise the energy keeps its positive value. The algorithm selects one α after

another finds a unique configuration withing an α-expansion move. If the energy is de-

creased, then we go there. Unless there is no α which decreases energy, the algorithm

terminates.

2.6.3 SymmNet - First End-to-End Model to learn Occlusions

SymmNet [10] is the first publication to learn occlusions by using exclusively a CNN .

There are many approaches to find information about occlusions via disparity maps of the

left and right image. They learned occlusions by using an hour-glass architecture with a

high number of parameters (approx. 5 Mio.). As can be seen in Figure 2.17 the hourglass

architectures consists of an contracting and afterwards an expanding part, where the im-

ages are downsampled and upsampled to the original size to keep the pixelwise prediction.

They decided to take data-sets with binocular images because monocular images bear to

much uncertainty in regard to scene geometry, camera settings and pictorial structure.

40 Chapter 2. Related Work

SymmNet predicts 2 occlusion maps, one for the left image and one for the right image.

Ang Li and Zeijan Yuan claim that they outperform other methods described in their

paperf (MonoNet, SiameseNet, AlterNet, HalfNet, LRCNet) on the datasets Middlebury,

Sintel and Sceneflow. Due to SymmNet is the first machine learning approach to learn

occlusions, they had to improvise several other approaches:

MonoNet is the more simple SymmNet that predict only one occlusion map either

left-to-right or right-to-left. It gives only a clue of the object edges, where usually are the

most occluded areas, but it is also a rise to fake occlusion.

SiameseNet has one unary CNN for each input image and uses shared weights. This

architecture is often used for stereo matching. The shared weights prevent to learn dis-

tinctive information what would be necessary for occlusion detection.

AlterNet is the idea to compute the occlusion for one view, while train the network

periodically swapping the input images. They complained about bad predictions on the

right view.

HalfNet describes an approach with 2 indepent networks, which only gets binocular

images as input, but the feature channel length of SymmNet. The results are almost as

good as the SymmNet hour-glass architecture for both views, but numerically it is slightly

worse.

LRCNet is an approach where the prediction layer in SymmNet is replaced by a re-

gression layer to compute a disparity map and then apply LRC on these disparities. This

is the only network which calculates the disparities and the performance is rather poor.

Occluded areas are not recognized and have many holes of non-occluded pixels.

2.6.3.1 Architecture

The architecture relies on the model FlowNet [67, 68], that is an end-to-end architecture

predicting optical flow. As input the stereo images are stacked (see Table 2.1), so 2

RGB images have an input depth of 6. Then, for the contracting part, the images are

downsampled about the half size, since the striding parameter is set to 2. They repeat the

downsampling procedure 6 times in order to progressively increase the receptive field and

sub-sample the spatial size of the feature maps. During downsampling the feature size is

doubled every time from 16 until to a maximum of 512 and during upsampling the feature

size is decreased incrementally. After each downsample layer follows a 2D convolution

layer to smoother the results. To keep the fine local information, skip connections from

the downsampling to the upsampling are introduced. The concatenations in the skip

connections is replaced by an addition to keep the feature size as in the corresponding

downsampling layer. The last upsampled output is concatenated with the input images.

For the prediction are 4 kernels, whereas 2 for each view is normalized with softmax.

2.6. Occlusion Detection 41

Figure 2.17: Architecture overview of SymmNet [10].

Name Kernel Str. Ch I/O OutRes Input

Input

input 6/6 H x W image pair

Contracting

dwnsp1 8x8 2 6/16 1/2H x 1/2W input

conv1 3x3 1 16/16 1/2H x 1/2W dwnsp1

dwnsp2 6x6 2 16/32 1/4H x 1/4W conv1

conv2 3x3 1 32/32 1/4H x 1/4W dwnsp2

dwnsp3 6x6 2 32/64 1/8H x 1/8W conv2

conv3 3x3 1 64/64 1/8H x 1/8W dwnsp3

dwnsp4 4x4 2 64/128 1/16H x 1/16W conv3

conv4 3x3 1 128/128 1/16H x 1/16W dwnsp4

dwnsp5 4x4 2 128/256 1/32H x 1/32W conv4

conv5 3x3 1 256/256 1/32H x 1/32W dwnsp5

dwnsp6 4x4 2 256/512 1/64H x 1/64W conv5

conv6 3x3 1 512/512 1/64H x 1/64W dwnsp6

Name Kernel Str. Ch I/O OutRes Input

Expanding

upsp5 4x4 2 512/256 1/32H x1/32W conv6

iconv5 3x3 1 256/256 1/32H x1/32W upsp5+conv5

upsp4 4x4 2 256/128 1/16H x1/16W iconv5

iconv4 3x3 1 128/64 1/16H x1/16W upsp4+conv4

upsp3 4x4 2 64/64 1/8H x1/8W iconv4

iconv3 3x3 1 64/32 1/8H x1/8W upsp3+conv3

upsp2 4x4 2 32/32 1/4H x1/4W iconv3

iconv2 3x3 1 32/16 1/2H x1/2W upsp2+conv2

upsp1 4x4 2 16/16 1/2H x1/2W iconv2

iconv1 3x3 1 16/14 H x W upsp1+conv1

upsp0 4x4 2 16/8 H x W iconv1

iconv0 3x3 1 14/8 H x W upsp0⊕input

Prediction

pr 3x3 1 8/4 HxW iconv0

Table 2.1: Detailed SymmNet architecture: The plus sign + is the addition operation, ⊕ is the
concatenation operation in skip connection.

2.6.3.2 Loss Function and Training

They jointly train the total binary cross-entropy loss for the left and right view:

L(Y, Ŷ) = −1
2

(
wLo
∑

i,j 1(YL
i,j = 1) log(Ŷ

L
i,j)) + wLō

∑
i,j 1(YL

i,j = 0) log(1− Ŷ
L
i,j)+

wRo
∑

i,j 1(YR
ij = 1) log(Ŷ

R
i,j) + wRō

∑
i,j 1(Y R

i,j = 0) log(1− Ŷ
R
i,j)

)
,

where Y = YL ∪YR is the ground-truth of the from left-to-right and right-to-left, 1(·) is

the indicator function,

wc =
1

log(qc)
(2.29)

is a weight to make the loss adapt to the unbalanced number of o and ō pixels with qc
is the proportion of class c ∈ {o, ō} and an ε = 1.2 is added to the log(ε + qc). They

trained their neural network with a synthetic SceneFlow [69]. It also delivers disparity

42 Chapter 2. Related Work

maps, so that the occlusions can be computed with the LRC Section 2.6.1 to use random

batch, in Section 4.2.3, as data augmentation to prevent over-fitting. They also fine-tuned

their training with the Middlebury dataset [3, 70], that is mainly used in this work, see

Section 4.1.1. They split it into training and validation set to conduct a 10-fold cross-

validation. They could achieve a f-score of 0.828, while 1.0 is the best score. Without

pre-training the network they only could a achieve an f-score of 0.66. The Kolmogorov

and Zabhit graph cut approach [71] only scores 0.6. The f-score is computed from the

Precision-Recall (PR) metric.

2.7 Summary

In this chapter, the related work according to occlusions and it’s state-of-the-art methods

have been presented. We started from standard algorithms, e.g. the census transform

and Sum of Squared Differences (SSD). We have established the relation of SSD and

correlation that is used in Convolutional Neural Network (CNN). If we rotate the kernel

by 180 degrees, we can transform a 2D convolution to a 2D correlation. Then, we have

presented basic elements of the CNN , such as the neuron itself. We also described different

kinds of convolutional layers and in particular the receptive field. Furthermore, we have

explained the activation functions and their derivations and in Section 2.3.4 we know that

the sigmoid function is sub-optimal to use in intermediate layers. We have pointed out

different loss functions and how to train a neural network.

We have treated several approaches to learn point correspondences or disparity and

the connection to occlusions. There are two types to solve this problem: One is to train

a neural network to find correspondences and put a lot of effort on post processing tech-

niques. Many hyper parameters needs to be set. The other is in end-to-end manner, where

the whole approach is trained jointly.

Finally, we have summed up three methods that handles occlusion. Apart from Left-

Right-Cross-Checking (LRC), that is also used to compute the ground-truth from disparity

maps. Disparity maps are often contained in known datasets and are usually very precise.

It is also very often used to post-process the final results. There is a graph cut approach

by Kolmogorov and Zabih that uses point correspondences to calculate the occluded pixels

and an end-to-end CNN method called SymmNet. SymmNet outperforms the graph cut

approach and is therefore the best approach to compute occlusions.

3
Methods

Contents

3.1 Direct Method - learn Occlusions without Stereo Correlation . 44

3.2 Pretrained Stereo Correlation . 47

3.3 Global Thresholding . 52

3.4 Summary . 54

In this chapter, we describe our four methods in detail. In Figure 3.1, we give a brief

overview, where we separate the direct method from the methods based on the stereo

correlation. For the stereo correlation, we utilized the implementation of the CNN -CRF

[8], that calculates a cost volume of how similar pixels are of a image stereo pair. In

Section 2.5 we have described the background to calculate the stereo correlation.

First, we start with explaining a method that we call direct method, which uses di-

lated convolutions in the unary CNN s. The naming convention points to learn occlusions

directly from the input images instead of from the stereo correlation. The direct method

can be better compared to the “Cor+2D” method of the stereo correlation because both

methods use 2D dilated convolutions.

Second, we treated another stereo correlation method “Cor+3D” based on the 3D con-

volutions (Section 2.2.3.4). Instead of 2D dilated convolutions we use one 3D convolution

layer as the aggregation. It also uses the Cross-Entropy (CE) as loss function.

Third, all those models predict the probability of each pixel whether it is occluded

or non-occluded. In order to classify these pixels, a global threshold must be found so

that every probability that is bigger than this threshold is assigned to occluded (o) or

non-occluded (ō).

At the end of this chapter you will find a summary of our methods. The differences of

each method will be highlighted and compared to each other.

43

44 Chapter 3. Methods

Methods

Stereo
Correlation

Direct Method Cor+2D Cor+3D

Figure 3.1: Overview of our methods.

3.1 Direct Method - learn Occlusions without Stereo Cor-

relation

The direct method is our first approach to define the problem of occlusion detection as a

learning problem. We consider this method as competitor of SymmNet (see Section 2.6.3),

that we have discussed thoroughly in the Section 2.6.3. They put on an hour-glass ar-

chitecture. We decided to use a unary network architecture (see Section 2.4.1 as well in

Figure 3.2) with dilated convolutions. The use of dilated convolution avoids to down-

sample and upsample again the images because no striding is applied. This saves some

layers, whereas SymmNet needs to add 2D convolution layer after downsampling to ob-

tain smoother results. The output of both unary CNN is concatenated and gives us the

derivation of both input images. After concatenation several layers are added to achieve

a final occlusion map.

Figure 3.2: Direct method network architecture with 2 stereo input images and predicts an
occlusion map.

3.1. Direct Method - learn Occlusions without Stereo Correlation 45

Unary CNN In Table 3.1 is a detailed view of the network architecture that starts

with the two input images (left, right) with the size of 304 × 380. The Siamese network

architecture demands to share the weights and bias for each layer to learn the similarity of

both images. Beside that, 2D convolutions (see Section 2.2.3.2) are taken with a kernel size

of 3×3 with the activation function ReLU (see Section 2.2.1). Every third layer the dilation

rate (see Section 2.2.3.3) is increased by one, whereas the dilation rate (see Section 2.2.3.3)

is specified to be the power of 2, i.e. 2r−1, r ∈ N. Fisher et al. [72] showed that they can

outperform 2D convolutional networks with dilated convolutions without increasing the

model’s depth. The key of dilated convolution is to keep the spatial information. In

Section 2.2.3.3, we have described the basic dilated convolution. In order to group the

dilated convolutions by their dilation rate r we have to modify Equation (2.7) to:

(Ug ∗r Hg)i,j =
∑
m,n

Ug
(i+r−1)−m,(j+r−1)−n ·H

g
m,n, (3.1)

where g denotes the ith layer in the group g. Within a group g the dilation rate r is the

same. We decided to have a maximum rate r = 4 since the image has only 304 × 380

pixels. The receptive field on the last dilated convolutional layer of each unary CNN has

a size of 15 pixels.

Aggregation The output of the unary CNN s is concatenated. Concatenating gives

better results than subtracting the right image from the left images. At this point we

have one concatenated output and the occlusions must be learned. In Table 3.1 we call

this procedure aggregation, where 5 layers with 2D convolutions with 3× 3 kernels and 64

output kernels are applied.

On the last layer pred, we decided to use sigmoid (see Section 2.2.1) as activation func-

tion, which squashes the predictions of each pixel between 0 and 1 and can be interpreted

as probabilities. This is important for the CE loss function which compares probability

distributions.

Binary Cross-Entropy The binary cross-entropy is a loss, that measures the perfor-

mance of our model. A perfect model would have a loss of 0. For example, if the prediction

Ỹi,j has a probability of 0.02 and the actual observation label Yi,j = 1, would give a high

loss value. The binary CE loss basically consists of two classes

CE(Y, Ỹ) = − 1

n

n∑
i,j

[
1{Yi,j = 1} log(Ỹi,j) + 1{Yi,j = 0} log(1−Yi,j)

]
,

where only the loss for the corresponding class is calculated. If the label Yi,j = 1

(occluded) only the first term of the summation is active and the other term is inactive

and does not count to the entropy. If Yi,j = 0 the first term is zero and the second

term is active for entropy calculation. The loss is normalized by n which is the total

46 Chapter 3. Methods

number of pixels of an input image. More details and deviation of the CE can be found

in Section 2.3.1.

Name Kernel Activation Dil. Ch I/O OutRes Input

Input

input 3/3 1/6H × 1/6W image pair

Siamese

dilate1 1 3x3 ReLU 1 3/32 input

dilate1 2 3x3 ReLU 1 32/32 dilate1 1

dilate1 3 3x3 ReLU 1 32/32 dilate1 2

dilate2 1 3x3 ReLU 2 32/32 dilate1 3

dilate2 2 3x3 ReLU 2 32/32 dilate2 1

dilate2 3 3x3 ReLU 2 32/32 dilate2 2

dilate4 1 3x3 ReLU 4 32/32 dilate2 3

dilate4 2 3x3 ReLU 4 32/32 dilate4 1

dilate4 3 3x3 ReLU 4 32/32 dilate4 2

Concatenation

concat 2×32/64 dilate4 3l ⊗ dilate4 3r

Aggregation

aggr 1 5x5 ReLU 1 64/64 concat

aggr 2 5x5 ReLU 1 64/64 aggr 1

aggr 3 3x3 ReLU 1 64/64 aggr 2

aggr 4 3x3 ReLU 1 64/64 aggr 3

aggr 5 3x3 ReLU 1 64/64 aggr 4

Prediction

pred 3x3 sigmoid 1 64/1 1/6H × 1/6W aggr 5

Table 3.1: Direct method Siamese architecture with shared weights. The ⊕ sign is the concate-
nation operation to concatenate the outcome of the left. The prediction layer pred has the sigmoid
activation function to generate probability.

Costs Weighting In our training set there are ten times less occluded than non-occluded

pixels. Thus, the loss takes ten times more often non-occluded into account. We have to

balance the data so that the loss takes both classes equally into account. We calculate the

ratio by taking the number of occluded/non-occluded divided by total number of pixels.

The ratio of occluded qo and non-occluded qō is calculated as:

qo =

∑
i,j |Yi,j − 1|∑

i |Yi,j − 1|+
∑

i,j Yi,j
, qō =

∑
i,j Yi,j∑

i,j |Yi,j − 1|+
∑

i,j Yi,j
,

where the number of labels are 1 for occluded pixels or are 0 for non-occluded. We

multiply the ratio of the other class (occluded (o) or non-occluded (ō)) to the loss (inverse

3.2. Pretrained Stereo Correlation 47

frequency). In the SymmNet loss [10] a logarithmic class weight wc is introduced:

wc =
1

log(qc)
,

where classes c ∈ {o, ō} and an ε is added to log(ε+qc). The binary CE has to be modified

towards

CE(Y, Ỹ) =
1

n

n∑
i,j

[
wo
(
1{Yi,j = 1} log(Ỹi,j)

)
+ wō

(
1{Yi,j = 0} log(1− Ỹi,j)

)]
,

where the logarithm yields negative values for input values in range of 0 < qc < 1 under

the assumption that there are always occluded pixels. Thus, the minus is removed in front

of the sum (compare Section 3.1).

Valid Mask A valid mask masks out invalid pixels in the loss. Invalid pixels have the

disparity value infinity in the depth map, what means that no valid disparity could be

found for this pixel. If we train the network with the images we take the valid pixels

from the ground-truth provided in the Middlebury dataset. More information about this

dataset can be found in Section 4.1.1. If we train the network with random batches, then

we have to compute the labels for this patch from the left-to-right and right-to-left depth-

maps and the invalid pixels are determined only from the left-to-right depth-map. So, the

valid mask Mi,j is defined as

Mi,j =

{
1 if Yi,j is valid,

0 else.
(3.2)

The CE must be modified to multiply Mi,j with the inner term of the CE :

CE(Y, Ỹ) =
1

n

n∑
i,j

Mi,j

[
wo
(
1{Yi,j = 1} log(Ỹi,j)

)
+ wō

(
1{Yi,j = 0} log(1− Ỹi,j)

)]
.

(3.3)

3.2 Pretrained Stereo Correlation

Stereo correlation method differs from the direct method from using less layers and di-

lations for the aggregation. The advantage of this stereo correlation function is that

disparities are taken into account. A detailed description can be found in the related

work Section 2.5. We extracted the forward and backward CUDA implementation1 from

Knöbelreiter et al. [8]. Therefore, we need to implement a tensorflow operation that is

1github.com/VLOGroup/cnn-crf-stereo

https://github.com/VLOGroup/cnn-crf-stereo

48 Chapter 3. Methods

callable in Python source code and can be used for learning. It follows the aggregation,

that can be 2D convolutional layers, 3D convolutional layers and entropy.

Name Kernel Activation Str. Ch I/O OutRes Input

Input

input 3/3 1/6H×1/6W image pair

Simaese Network

2dconv1 3× 3 tanh 1 100/100 input

2dconv2 2× 2 tanh 1 100/100 2dconv1

2dconv3 2× 2 tanh 1 100/100 2dconv2

2dconv4 2× 2 tanh 1 100/100 2dconv3

2dconv5 2× 2 tanh 1 100/100 2dconv4

2dconv6 2× 2 tanh 1 100/100 2dconv5

2dconv7 2× 2 tanh 1 100/100 2dconv6

Stereo Correlation

corr 3× 3 softmax 1 100/disp 1/6H×1/6W 2dconv7

Table 3.2: Network configuration of the CNN with stereo correlation [8].

Stereo Correlation (For-/Backward) The stereo correlation layer computes a dot

product with the output of the two unary CNN s. The left image is the fixed image and

the right image is adapted to the disparities. Disparity 0 does not shift the right image, so

a dot product is calculated. Disparity d = −1 shifts the right tensor to the right by one.

The most right column vanishes. If the disparity is d = −2, then the right tensor is shifted

by 2 to the right and the last 2 columns vanishes. After each shift, we have computed

a matrix with pixel-wise dot products. This matrix is appended over the depth of the

resulting matrix from the previous shift, that forms a cost volume. The output of left and

right unary CNN s the features {φLi,j,d, φRi,j,d ∈ R|i, j ∈ φL dom Ω, d ∈ D,D = {0, ..., 128}}
are the extracted features of the left and right image. The dot product is mathematically

expressed as cost volume Ci,j,d = 〈φLi,j ,φRi,j+d〉. We define a loss L(φ) = 1
2 ||C||

2 and

derive w.r.t. φ:

∇φL(φL,φR) =

(
∂L
∂φL

,
∂L
∂φR

)
∇φLL(φL,φR) =

∂L
∂Ci,j,d

·
∂Ci,j,d

∂φLi,j

= Ci,j,d · φRi,j+d

∇φRL(φL,φR) =
∂L

∂Ci,j,d
·
∂Ci,j,d

∂φRi,j+d

= Ci,j,d · φLi,j .

3.2. Pretrained Stereo Correlation 49

For normalization, we altered Equation (3.4) by using softmax over the disparity d

Pi,j,d =
e〈φ

L
i,j ,φ

R
i,j+d〉∑

d∈D e
〈φLi,j ,φRi,j+d〉

∀i, j ∈ Ω, ∀d ∈ D. (3.4)

0

5

10

15

C i
,j

without softmax

0 20 40 60 80 100 120
d

0.0

0.5

1.0

P i
,j

with softmax

(a) 2 matching pixels of φL
i,j and φR

i,j+d.

2

4

6

8

C i
,j

without softmax

0 20 40 60 80 100 120
d

0.000

0.025

0.050

0.075

P i
,j

with softmax

(b) 2 not matching pixels of φL
i,j and φR

i,j+d.

Figure 3.3: Correlation of two matching pixels between φL
i,j and φR

i,j+d.

Tensorflow needs to back propagate the stereo correlation. For the standard operations,

tensorflow uses automatic differentation [29, 73], that calculates the derivatives of the

symbolic graph of the model. We also needed to include the CUDA/C++ stereo correlation

back propagation so that tensorflow can compute the differentiation. We checked the back

propagation numerically by approximated the outcome with different disparities the 1st

derivation2. Hence, we could show an accuracy of ε = 1e−6 decimal digits, what is the

float point precision. The forward differences is calculated

L′(φ) =
L(φi,j,d + ε)− L(φi,j,d)

ε
+O,

which means we subtract the actual point from the actual point plus a small ε ∈ R and that

divided by the ε. For this reason it is an approximation, we would need to add an additional

term O, so that it is no approximation anymore. We tested the implementation on images

sizes from 3×4 to 100×100 with a Gaussian distribution (mean µ = 0, standard deviation

σ = 1, compare Figure 4.3) and compared the outcome from the CUDA implementation

with the numerical approximation. The numerical approximation on the 100 × 100 test

image with 32 disparities takes around 47.3 minutes on the CPU Intel i7 960 @ 3.20GHz.

In contrast, the CUDA implementation takes only 0.37 seconds.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.approx_fprime.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.approx_fprime.html

50 Chapter 3. Methods

3.2.1 Three Methods based on the Stereo Correlation

At this point, we have a cost volume of the stereo correlation. The depth of the cost

volume depends on the number of disparities. If we compute 128 disparities, the depth of

the volume is 128. If the pixels with a shift of disparity are matching the correlation at

this position is high in this volume. If the pixels do not match, the correlation is low.

In this section we have different post-correlation methods investigated to refine the cor-

relation and finally obtain the binary classification. We also have improvements opposed

to the direct method: For counteracting the possible vanishing gradient problem (see Sec-

tion 2.3.4) we use lReLU as activation function instead of ReLU. In order to give a better

initialization we used He instead of the Xavier/Glorot initialization (see Section 2.3.5).

We used the CE (see Equation (2.29)) from direct method for aggregations with the

CE as loss functions (as in Section 3.2.1.1 and Section 3.2.1.2).

3.2.1.1 Dilated 2D Convolution Aggregation

The idea of this aggregation is the same as of our direct method in Section 3.1. The

difference is that we apply these layers on the stereo correlation instead of directly on the

RGB channels of the input images.

This time we decided again against a hourglass architecture, to avoid the downsampling

and upsampling procedure (compare SymmNet in Section 2.6.3), that is not given in

dilated convolutions.

Similar to the architecture of the direct method (see Table 3.1) we use dilated convolu-

tions, but lReLU as activation function for each layer (see Table 3.3). The receptive field

has also a size of 15 pixels. The reason for the similar architecture is to have a comparison

from learning directly and from stereo correlation.

Name Kernel Act Dil. Ch I/O OutRes Input

Aggregation

2dconv1 3× 3 lReLU 1 disp/32 1/6H×1/6W corr

2dconv2 3× 3 lReLU 1 32/32 2dconv1

2dconv3 3× 3 lReLU 1 32/32 2dconv2

2dconv4 3× 3 lReLU 2 32/32 2dconv3

2dconv5 3× 3 lReLU 2 32/32 2dconv4

2dconv6 3× 3 lReLU 2 32/32 2dconv5

2dconv7 3× 3 lReLU 4 32/32 2dconv6

2dconv8 3× 3 lReLU 4 32/32 2dconv7

2dconv9 3× 3 lReLU 4 32/32 2dconv8

Prediction

pred 3x3 sigmoid 1 32/1 1/6H×1/6W 2dconv9

Table 3.3: Input is the soft stereo correlation from Table 3.2.

3.2. Pretrained Stereo Correlation 51

3.2.1.2 3D Convolution Aggregation

The stereo correlation produces a cost vector for every pixel. Hosni et al. [74] refined this

cost volume with a guided kernel. Based on the idea to refine the cost volume, we use 3D

convolutions (see Section 2.2.3.4). In Table 3.4, we have as input the cost volume with the

depth of the number of disparities. As kernel, we use a 3 × 3 × 3 kernel, initialized with

He (see Section 2.3.5). The third dimension is the depth of the kernel and influences the

number of output channels, that is usually #disparities minus (depth-1). A bigger kernel

size would increase the number of learnable parameters and would be sub-optimal for a

small training set.

Name Kernel Act Dil. Ch I/O OutRes Input

Aggregation

3dconv1 3× 3× 3 lReLU 1 disp/disp-2 1/6H×1/6W P

Prediction

pred 3× 3 sigmoid 1 disp-2/1 1/6H×1/6W 3dconv1

Table 3.4: 3D convolution aggregation. The input is the soft stereo correlation from Table 3.2.

Shannon’s entropy is the measure of information. If we want to measure the entropy

of 2 identical patches, the entropy will be high. Otherwise, if there are differences the

entropy will be low. The Shannon entropy H is defined as

H(Pi,j) = −
∑
d

Pi,j,d log(Pi,j,d),

where the uncertainty over the Pi,j,d confidence are calculated. For numerical reasons, a

little ε = 1e−6 is added within the logarithm log(max(Pi,j,d, ε)) since the logarithm is not

defined for ≤ 0.

The output of the forward propagation can have negative values because the layers used

the non-linearity tanh as activation function. We must transform the output to proba-

bilities, and thus we use the softmax function over the disparities. The stereo correlation

CUDA implementation offers the possibility to take 3 and 7 layers. We focus on better

detection results rather than on inference speed and therefore we take into account more

layers which would slow down. In Figure 3.4, we can visually compare the cost volume

quality. For that, we calculated the entropy on the channels of each pixel. The higher the

entropy value (at most red) it is more likely an occluded pixel. The stereo correlation with

7 layers seems to have better entropy values on the correct pixel positions in Figure 3.4b.

We have an example of a 3D convolution in Figure 3.5a with a 3 × 3 × 3 kernel with

ones divided by 27, what calculates the 3D convolution in a 3× 3× 3 neighborhood. If we

would not use padding as in Figure 3.5b, we would not have some noise at the beginning

and end of the feature vector. The kernel values are smaller than one and multiplied with

the entries from the input tensor to finally sum all multiplications up. The 3D convolution

results in a smaller value per disparity than the original disparities.

52 Chapter 3. Methods

(a) Entropy on stereo correlation with 3 layers.

0 100 200 300 400

0

50

100

150

200

250

300

1

2

3

4

(b) Entropy on stereo correlation with 7 layers.

Figure 3.4: Entropy on the cost volume. On the left hand-side we marked the purple area for
correct occluded area and black for incorrect occluded areas.

0 20 40 60 80 100 120
d

0.00

0.02

0.04

0.06

0.08

P 2
00

,2
00

3 × 3 × 3 Kernel and symmetric Padding
Before 3D Convolution
After 3D Convolution

(a) With padding.

0 20 40 60 80 100 120
d

0.00

0.02

0.04

0.06

0.08

P 2
00

,2
00

3 × 3 × 3 without Padding
Before 3D Convolution
After 3D Convolution

(b) Without padding.

Figure 3.5: 3D convolution on Pi,j,d and a 3× 3× 3 kernel with 1/27 per entry value.

3.3 Global Thresholding

A global threshold needs to be calculated that is applied after the prediction. This thresh-

old classify the pixels into occluded (o) and non-occluded (ō). One of the simplest method

to do this is the Receiver Operating Characteristic (ROC) [75], that classify pixel-wise the

prediction by using many cut-off points ϑ (see Figure 3.6a). Since our predictions have

confidence between 0 (very unconfident to be occluded) and 1 (very confident) that a pixel

is occluded. A cut-off point can have a value between 0 and 1. For example if we have a

cut-off point of 0.5 then the confident value greater than 0.5 is occluded and non-occluded

otherwise. For every possible cut-off point different categories are determined:

• True Positive (TP) - The pixel is classified as o and is labeled as o.

• True Negative (TN) - The pixel is classified as ō and is labeled as ō.

• False Positive (FP) - The pixel is classified as o and is labeled as ō.

3.3. Global Thresholding 53

• False Negative (FN) - The pixel is classified as ō and is labeled as o.

If the cut-off point minimizes FP and FN which are the wrongly classified pixels, the

ROC curve should grow to the left upper corner in Figure 3.6b. This would indicate the

best classification results because the False Positive Rate (FPR) (wrong classified) is small

and the True Positive Rate (TPR) (correct classified) is large. The goal is to find a cut-off

that maximize the TP and TN classified pixels, which are the correct classified pixels.

TP

FP

TN

FN

Cut-off

(a) Ratio of different categories.

0% 100%FPR

100%

TPR

Cu
t-o

ff

(b) ROC curve.

Figure 3.6: Relation of cut-off points and ROC curve [11].

3.3.1 Receiver Operating Characteristic Curve

In order to determine the ROC curve (Figure 3.6), we need to define the True Positive

Rate (TPR) and the False Positive Rate (FPR). On the y-axis of the ROC plot is the

TPR defined:

TPR =
TP

TP + FN

for all positive predicted values. It describes the ratio of correctly classified pixels to be

occluded divided by all pixels which are classified to be occluded. On the x-axis is the

False Positive Rate (FPR) computed which is defined as

FPR =
FP

FP + TN
,

where it is the ratio between the number of wrongly classified occluded pixels divided by

the total number of wrongly classified pixels. For calculating the fractions, we need to

transfer the probabilities values Ỹi,j comparable to the labels Yi,j :

Ŷi,j =

{
1 if Ỹi,j > ϑ,

0 else.

From that point, predictions Ỹi,j and labels Yi,j can be compared with a L1-norm that

54 Chapter 3. Methods

is shown in the Table 3.5:

Ŷi,j Yi,j |Ŷi,j −Yi,j | (1− | · |) (1− | · |)Yi,j (1− | · |)(1−Yi,j) | · |Yi,j | · |(1−Yi,j)

0 0 0 1 0 1 0 0 TN
0 1 1 0 0 0 1 0 FN
1 1 1 0 0 0 0 1 TP
1 0 0 1 1 0 0 0 FP

Table 3.5: The categories can be calculated via the L1-norm, where | · | = |Ŷi,j −Yi,j |. In each
row, the where a 1 is written, indicates {TN,FN,TP,FP}.

In order to obtain the correct comparison result, we have to invert the result of the L1-

norm. If the values of Ŷi,j and Yi,j are equal:

1− |Ŷi,j −Yi,j | =

{
1 if Ŷi,j = Yi,j ,

0 else.

3.3.2 Optimal Decision Threshold

The optimal decision threshold can be read in the ROC plot. The closer the ROC curve

is to the upper-left corner the more precise is the algorithm. Hence, we want to find the

minimum distance

l(ϑ) =
√

(1− TPR(ϑ))2 + FPR(ϑ)2 , ϑ ∈ {0.001k : k ∈ N0, 0 ≤ k ≤ 1e3},

by calculating the Pythagoras between x and the inverted y-axis. The the optimal thresh-

old is at

ϑ∗ = arg min
ϑ

l(ϑ).

Then, the classification of the pixels are given by Ỹ at ϑ∗:

Ŷi,j =

{
1 if Ỹ > ϑ∗,

0 if Ỹ ≤ ϑ∗.

3.4 Summary

In this chapter, we have introduced our 4 models. We can distinguish our models between

2 categories: One is not based on the computation of disparity (direct) and the others

are based on the computation of disparity. None of these methods use post-processing to

improve the results and are end-to-end architectures to train all intermediate steps jointly.

The receptive field of the unary CNN s of the direct method and the 3D convolution

with dilated convolutions for aggregation has the same size of 15 pixels. We have found out

that concatenation of the both unary CNN s of the direct method yields shorter training

3.4. Summary 55

time and at least the same results as if we would subtract/add the output of the unary

CNN s.

We have also checked the quality of the stereo correlation and found that the 7-layers

(see Figure 3.4) are better suited to predict occlusions on the base of the uncertainty of

the Shannon entropy.

The output of our models are probabilities about how confident our model is that a

pixel is occluded, but this is not the final detection. We propose to calculate the Receiver

Operating Characteristic (ROC) curve to determine an optimal threshold. This threshold

classify pixels to be occluded or non-occluded and hence this gives the final occlusion map.

4
Evaluation

Contents

4.1 Datasets . 57

4.2 Data Pre-proccessing . 58

4.3 Performance Metrics . 63

4.4 Detection Results . 64

In this chapter, we present the evaluation of models. We describe our dataset and how

we augment our data. The performance of our models is measured by Receiver Operating

Characteristic (ROC), Area Under Curve (AUC) and the pixel-wise comparison with the

ground-truth. To train our models, we used the following hardware/software components:

Ubuntu 16.04.06, Nvidia GTX 980 4 GB, CUDA 8, CuDNN 6, Tensorflow [29]. To train

the networks we used Adam [39] and used various learning rates from η = 1e−2 to η = 1e−5,

for the first momentum β1 = 0.9 and for the second momentum a value of β2 = 0.99.

4.1 Datasets

We used two datasets to train our models, whereas our focus is on the Middlebury 2014

dataset. The second dataset, SceneFlow (Monkaa), is needed to overcome the over-fitting

problem with the small Middlebury dataset. Both datasets have their properties (image

size, number of images, ground-truth) that we briefly describe in this section.

4.1.1 The Middlebury 2014 Dataset

The Middlebury 2014 dataset contains 33 indoor scenes and was published by Scharstein

and Hirschmueller [3]. It also provides as ground truth disparity maps and masks where

occlusions and invalid pixels are marked. Beside that, there exist two stereo image pairs

per scene with perfect and imperfect rectification. While the imperfect rectification shows

higher errors over rectification, especially in regions of high-frequency texture. The y-offset

57

58 Chapter 4. Evaluation

is larger and can vary over some rows, so that the corresponding pixel is not in the same

row in the other stereo image. The image size differs per image pair, but the full size has

around 1984 × 2872 pixels. The labels in Figure 4.1 are prepared, so that the grey areas

are occluded and the rest are non-occluded.

Figure 4.1: First row: The left and and right stereo image and the labels, where white means
no occlusion, gray is occlusion and black are invalid pixels. Second row: Different light intensities
taken from the right camera.

4.1.2 SceneFlow Dataset (Monkaa)

SceneFlow [69] is a synthetic datasets and provides 24 scenes containing 8688 stereo image

pairs with left-to-right and right-to-left disparity maps (Figure 4.2). A scene is captured

by two cameras which move around. The image size of all images is 540× 950.

Figure 4.2: Monkaa example. A stereo image pair of scene with its disparity maps.

4.2 Data Pre-proccessing

Data pre-processing is a technique that transforms raw image data from a camera into a

better understandable format for the models. The datasets needs to be split into training

set and validation set, so that cross validation can be used to ensure the quality of the

model on unseen data. Before that, we also have to resize the images and their disparity

4.2. Data Pre-proccessing 59

maps to overcome the small available GPU memory. We compare in Figure 4.4 the results

of resizing images with Gaussian pre-filtering.

4.2.1 Standardization

Standardization is a common used pre-processing technique compromised of mean sub-

traction and scaling by the standard deviation. If we subtract the mean on the input

images, the data is centered around the origin. To normalize the input data we determine

the unit variance, that is calculated by the mean µ divided by standard deviation σ per

image per color channel:

X(i)′ =
X(i) − µ(i)

σ(i)
, (4.1)

where µ = [µ1, µ2, µ3]T and σ = [σ1, σ2, σ3]T are 3× 1 column vectors. For examining the

zero mean, we can sum up the subtraction of the input data by the mean to 0:

X(i) − µ(i) !
= 0. (4.2)

For examining the unit variance, we can sum up the unit variance in Equation (4.1) to 1:

σ
(
X(i)′

) !
= 1. (4.3)

The mean subtraction reduces brightness variations and the division by the standard

deviation mitigates variations in the spread of the data about the mean so that the two

images have similar means and standard deviations. This is useful to compare similar

images. The normalization is applied after symmetrically padding (Figure 2.5) the input

images, otherwise the constraints Equation (4.2) and Equation (4.3) would not hold.

4.2.2 Cross Validation

Cross validation is a validation technique [76] to assess how the model generalize to inde-

pendent data. Due to the fact of the small number of training samples in the training set,

we decided to use 4-fold cross validation which splits the dataset in 4 equal sized sets. 3

sets are combined to use for the training set and 1 set is used for validation. The model

is trained 4 times with 4 times different training and validation sets.

4.2.3 Data Augmentation - Random Crop

Goodfellow et al. [28] formulated data augmentation as generating more training data

from existing ones. Beside geometric transformation, such as flipping, rotating, shearing,

there also exists random cropping that does not violate geometric constraints. Due to

the problem of a small dataset more data is needed to train the network, otherwise it

overfits very quickly. For random crop, a region at the original image is cropped out. For

60 Chapter 4. Evaluation

supervised learning, a new ground-truth must be created to the cropped out regions. In

our case, the ground-truth is the occlusion map, which can be calculated with the LRC

(Section 2.6.1) of the disparity maps provided in the Middlebury dataset.

0.0

0.2

0.4

0.6

0.8

=0, =1.0

=0, =0.5

=0, =0.2

Figure 4.3: Gaussian filter examples.

4.2.4 Image Resizing

Image resizing is necessary to not overcome the GPU memory constraint and hence the

data set images are downsampled. That is done by using a Gaussian filter, that promotes

the homogeneous areas and more natural edges. The Gaussian filter is applied before

interpolating the image with the nearest-neighbor method. First of all, the standard

deviations σ for 2 dimensions must be calculated, that is accomplished by taking the

scaling factors κi for the x and y-axis of the Gaussian filter

σi =
1
κi

3
, κi ∈ R : i ∈ {1, 2}, 0 < κi < 1,

where the scaling factor is additionally divided by 3 to ensure that the output is not too

blurry. Apply Gaussian filter separately for each channel of the image:

g(x)i =
1√

2π · σi
· e
− x2

2σ2
i ,

where x is the input sample. The Gaussian filter simulates the optical blur, that is more

natural for the human vision system. Another advantage of the produced blur by the

Gaussian filter (Figure 4.3) is shown in Figure 4.4, where the regions are more homoge-

neous, when we compute the stereo correlation followed by Section 2.5.3 to determine the

disparity. Then, the values are interpolated per channel by the first-degree spline function.

4.2. Data Pre-proccessing 61

4.2.5 Disparity Map Resizing

Disparity maps (e.g. Figure 1.3) are differently to normal images because disparities are not

color intensities. We only used the nearest neighbors interpolation to resize the disparity

map because it only copies the disparity values instead of interpolating them.

62 Chapter 4. Evaluation

(a) Estimated disparity map and original image patch.

(b) Estimated disparity map and resized image patch with the first-degree spline function and
Gaussian pre-filtering.

(c) Estimated disparity map and resized image patch without pre-filtering.

Figure 4.4: The original image is compared to other scaling methods, while the Gaussian pre-
filtering achieves better results on homogeneous areas without pre-filtering.

4.3. Performance Metrics 63

4.3 Performance Metrics

In order to evaluate results achieved with the proposed neural networks, we use metrics

to compare the similarity from the prediction with the ground truth. One is the Receiver

Operating Characteristic (ROC) curve to find a threshold to classify pixels, whether a pixel

occluded or not. The measurement Receiver Operating Characteristic (ROC) [75] that is

widely used. However, this metric might be poor for images with a lot of background and

only small areas are to detect. Therefore, we also investigate within the detected area the

correct prediction.

4.3.1 Overall Accuracy

We have as output occluded and non-occluded pixels that we can compare with ground-

truth labels. Finally, a valid mask Mi,j (Equation (3.2)) needs to be computed, that filters

out the invalid pixels, which are marked as black in Figure 4.1, where the valid mask Mi,j

is multiplied to the outcome of {TN, FN, TP, FP} element-wise, so that Mi,j = 0 sets the

pixels to zero and are not taken into account to the accuracy, divided the number of all

possible pixels. The accuracy after thresholding the image can be calculated by

acc =

∑
i,j Mi,j(1− |Ŷi,j −Yi,j |)∑

i,j Mi,j
, (4.4)

where the inner part of the numerator is listed in Table 3.5 and is 1 iff Ỹi,j and Yi,j is

equal. The valid mask Mi,j masks out the invalid pixels divided by all valid pixels.

4.3.2 Area Under Curve

Area Under Curve (AUC) tells us about the accuracy of the model. The accuracy depends

on how well the model separates the group of non-occluded and occluded pixels. An area

of 1 represents a perfect model and 0.5 represents a worthless model. The model can be

classified as a traditional point system [77] {.90-1 = excellent (A), .80-.90 = good (B),

.70-.80 = fair (C), .60-.70 = poor (D), .50-.60 = fail (F)}.

4.3.3 Correct predicted Pixels within occluded and non-occluded Areas

The accuracy over the whole segmented image is not sufficient. We want to distinguish

between occluded and non-occluded areas and introduce two metrics which are capable

to give the percentage of correct predicted pixels. The accuracy of occluded areas is

calculated by

occ =

∑
i,j Mi,j · Ŷi,j ·Yi,j∑

i,j Mi,j ·Yi,j
, (4.5)

64 Chapter 4. Evaluation

where only occluded pixels with the ground-truth Y is compared, divided by all available

occluded pixels. In reverse, the accuracy of non-occluded areas is calculated

noc =

∑
i,j Mi,j · |1− Ŷi,j | · |1−Yi,j |∑

i,j Mi,j · |1−Yi,j |
, (4.6)

where only occluded pixels of the ground-truth with the prediction is compared, divided

by all available non-occluded pixels.

4.4 Detection Results

In this section, we discuss the detection results of our 4 models (see Section 3.1): “Direct”,

“Cor+2D”, “Cor+3D”. Both direct method and stereo correlation based methods have

their characteristics. The stereo correlation has also limitations with not rectified input

data because the correlation is only calculated with values in the same row of the other

image. If the image is not (correctly) rectified we would not have the corresponding image

points in the same row and hence this method has its difficulty to find its corresponding

pixel. The direct method uses a 3× 3 instead of a 1× 3 kernel size that takes pixels in the

vertical into account.

We have trained our model on the image size of 1/6 of the original image size and

marked it as MB-6. We also evaluated our model with normal illumination and with

different illuminations (see Figure 4.1).

In Table 4.2 we have summed up our results of our four methods with different datasets,

where MB stands for the Middlebury dataset and SF stands for the Sceneflow dataset.

MB Normal Light refers that the methods are trained with only images with the same

illumination and restricts the MB dataset size to 34 training image and 12 validation

images. Due to the small training set size we have problems with overfitting except with

“Cor+2D” (Section 2.2.3.3), that has also achieved best results. MB Light Differ refers

to the additional images with different illuminations. The training set size expands to

102 images and the validation set size to 36 images. The validation results are remained

basically the same, although the different illuminations constitute a more difficult training

scenario.

We used cross-validation to assess how the results will generalize on independent data.

To measure the performance, we use a 4-fold to cross-validate our models. A 4-fold

compared to a 3-fold has the advantage that the training set is a little bit larger. We use

following performance measures: the accuracy Equation (4.4), the AUC , the percentage

of correct predicted occluded pixels occ Equation (4.5) and the percentage of correct

predicted non-occluded pixels noc Equation (4.6).

In order to improve the results, we pre-trained our methods with SF and fine-tuned

them with MB. We have used a batch size of 3 and fine-tuned it with a batch size of 1. SF

is a large dataset that provides 7153 stereo image pairs for training set and 1503 stereo

4.4. Detection Results 65

image pairs for validation. This helps to get rid of our overfitting problem because of the

small Middlebury dataset. This can be observed by the results of the direct method. The

last two rows in Table 4.2 show that the accuracy on the validation set is only about 85%.

In Table 4.2, we have evaluated every k-fold of MB-6 and MB-Q if the occlusion detection

is completely non-occluded. The accuracy is still about around 82%. The good is that we

do not have to use random crop anymore, which shows a little bit worse accuracy on the

validation set when we only train “Cor+3D” with MB. Hence, the results on the validation

have been improved.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Receiver Operator Characteristic Curve

Direct (auc=0.99)
Cor+2D (auc=0.92)
Cor+3D (auc=0.86)

(a) Training set. Normal illumination.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Receiver Operator Characteristic Curve

Direct (auc=0.76, * =0.008)
Cor+2D (auc=0.88, * =0.005)
Cor+3D (auc=0.82, * =0.047)

(b) Validation set. Normal illumination.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Receiver Operator Characteristic Curve

Direct (auc=0.98)
Cor+2D (auc=0.94)
Cor+3D (auc=0.70)

(c) Training set. Different illumination.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Receiver Operator Characteristic Curve

Direct (auc=0.74, * =0.238)
Cor+2D (auc=0.84, * =0.338)
Cor+3D (auc=0.75, * =0.430)

(d) Validation set. Different illumination.

Figure 4.5: ROC plots from training and validation set with normal illumination and different
illumination.

It is difficult to evaluate the detection results with only the ROC plot because of

the low percentage of occluded pixels within a stereo pair. Downsizing from the original

image size to only 1/6 or quarter can have little change of occluded pixels. So, we have

evaluated the number of percentage of every k-fold in Table 4.1. The percentage of the

66 Chapter 4. Evaluation

Occlusions

k-fold
MB-6 MB-Q

train val train val

fold 1 17.25 16.28 16.42 15.59
fold 2 15.54 21.11 14.82 20.14
fold 3 17.79 14.74 16.98 14.01
fold 4 17.11 16.49 16.40 15.65

avg 16.92 17.16 16.16 16.35

all 16.99 16.21

Table 4.1: Percentage of occlusions of every k-fold for the Middlebury dataset of 1/6 and quarter
size.

occlusions is between 14 and 21 percent per k-fold (Table 4.1). For illustration, we have

plotted the ROC curve in Figure 4.5 to illustrate additionally the performance of all 4

models. In Figure 4.5a, the direct method (blue curve) reaches almost the left-upper

corner, that indicates an AUC of almost 1.0 (highest score). Unfortunately, this is on

the training set and shows us a clear overfitting. On the validation set (Figure 4.5b), the

direct method achieves an AUC only of 0.758. The best method is “Cor+2D” (orange

curve) that generalizes best on both Normal Light and Light Differ. In the validation set

(see Figure 4.9) the method “Cor+2D” also shows good visual results and performs best

in overall compared to other methods. We have marked the optimal threshold ϑ∗ on the

ROC curve with a point.

In Figure 4.6, Figure 4.8, Figure 4.8 and Figure 4.9, we have some example occlusion

maps from the MB dataset of each method that are before and after applying the global

threshold. The direct method shows in Figure 4.6 the overfitting on the training set, what

would be perfect results. On the validation set it shows some correct predicted occluded

pixels while there are many wrong predicted ones. Pre-training the direct method helped

to perform better, but still there is a lack in the final results. In Figure 4.10, Figure 4.11,

Figure 4.12 and Figure 4.13, we have also some examples of the occlusion maps of the

SF dataset. As marked bold face in Table 4.2 (last three rows) the method “Cor+2D”

results best. The method “Cor+3D” does have performance issues. It is difficult to

train it because of the large number of learnable parameters. So we use random crop as

data augmentation technique and could achieve better prediction results. The results of

“Cor+3D” show a lot of wrong predicted in occluded pixels (see Figure 4.9) as well as in

homogeneous areas.

4.4. Detection Results 67

E
x
p

er
im

en
ts

tr
ai

n
in

g
se

t
(µ
±
σ

in
p
e
rc

e
n
t)

va
li
d
at

io
n

se
t

(µ
±
σ

in
p
e
rc

e
n
t)

M
et

h
o
d
s

ac
c

au
c

o
cc

n
o
c

ac
c

au
c

o
cc

n
o
c

BatchSize

Rand.Bat.

Loss

ImageSize

#Params

(inMio.)

M
B

-6
fo

ld
1

81
.9

5
50

0
1

83
.4

9
50

0
1

6
fo

ld
2

83
.8

0
50

0
1

78
.2

3
50

0
1

6
fo

ld
3

81
.6

8
50

0
1

84
.2

3
50

0
1

6
fo

ld
4

82
.2

3
50

0
1

82
.8

7
50

0
1

6
al

l
82

.3
5

50
0

1
6

M
B

-Q
fo

ld
1

82
.7

9
50

0
1

84
.1

6
50

0
1

Q
fo

ld
2

84
.5

4
50

0
1

79
.2

0
50

0
1

Q
fo

ld
3

82
.4

9
50

0
1

85
.0

1
50

0
1

Q
fo

ld
4

82
.9

5
50

0
1

83
.7

1
50

0
1

Q
al

l
83

.1
5

50
0

1
Q

M
B

D
ir

ec
t

86
.3
±

6
.3

97
.6
±

2
.5

97
.6
±

3
.4

83
.8
±

7.
3

74
.8
±

8.
1

72
.3
±

5
.4

60
.1
±

6
.0

73
.9
±

9
.4

1
C

E
6

0.
35

N
or

m
al

C
or

+
2D

78
.1
±

8
.1

91
.9
±

1
.4

88
.2
±

3
.9

75
.1
±

9.
9

8
1
.9
±

6.
2

85
.6
±

1
.9

74
.5
±

4
.6

83
.1
±

8
.7

1
C

E
6

0.
58

L
ig

h
t

C
or

+
3D

82
.7
±

4
.9

84
.7
±

1
.4

61
.2
±

9
.6

89
.5
±

4.
5

79
.3
±

5.
1

81
.1
±

2
.5

70
.7
±

4
.9

76
.0
±

3
.1

4
X

C
E

6
1.

1

M
B

D
ir

ec
t

85
.8
±

6
.3

96
.8
±

1
.1

95
.1
±

3
.4

83
.7
±

8.
4

69
.5
±

3.
3

72
.9
±

3
.2

62
.0
±

9
.2

71
.8
±

5
.0

1
C

E
6

0.
35

L
ig

h
t

C
or

+
2D

85
.1
±

3
.2

93
.6
±

0
.3

85
.0
±

4
.6

85
.1
±

4.
8

79
.5
±

2.
3

83
.8
±

1
.5

66
.8
±

6
.4

82
.5
±

4
.1

1
C

E
6

0.
58

D
iff

er
C

or
+

3D
84
.7
±

0
.7

75
.9
±

15
.3

19
.6
±

1
.6

98
.6
±

0.
1

8
0
.4
±

4.
7

81
.7
±

6
.2

55
.7
±

3
.8

85
.4
±

5
.0

4
X

C
E

6
1.

1

S
F

-M
B

D
ir

ec
t

83
.3
±

7
.4

96
.9
±

1
.3

85
.7
±

17
.2

77
.9
±

10
.1

77
.6
±

7.
2

82
.6
±

9
.5

84
.3
±

12
.8

81
.0
±

5
.7

1
C

E
6

0.
35

N
or

m
al

C
or

+
2D

83
.6
±

3
.5

92
.2
±

2
.7

83
.8
±

8
.8

83
.3
±

6.
3

81
.6
±

5.
2

89
.8
±

2
.1

82
.9
±

9
.8

82
.9
±

5
.4

1
C

E
6

0.
58

L
ig

h
t

C
or

+
3D

83
.0
±

1
.6

91
.1
±

0
.4

84
.6
±

8
.4

81
.1
±

10
.1

8
3
.7
±

3.
2

54
.4
±

3
.4

66
.5
±

2
.9

82
.9
±

1
.4

1
C

E
6

1.
1

S
F

-M
B

D
ir

ec
t

84
.9
±

2
.6

92
.3
±

4
.7

83
.2
±

10
.1

85
.1
±

1.
3

79
.8
±

6.
7

84
.5
±

1
.7

82
.1
±

7
.4

79
.3
±

6
.6

1
C

E
6

0.
35

L
ig

h
t

C
or

+
2D

84
.1
±

0
.9

90
.2
±

0
.9

75
.4
±

3
.9

86
.1
±

1.
9

8
2
.3
±

1.
5

86
.6
±

1
.1

69
.3
±

2
.1

69
.7
±

3
.8

1
C

E
6

0.
58

D
iff

er
C

or
+

3D
81
.9
±

1
.1

83
.6
±

3
.0

65
.6
±

15
.0

81
.4
±

8.
5

81
.4
±

1.
1

77
.9
±

1
.1

55
.7
±

7
.5

81
.1
±

6
.0

1
C

E
6

1.
1

S
F

D
ir

ec
t

91
.1
±

1
.8

98
.7
±

0
.9

97
.7
±

1
.8

89
.8
±

2.
1

80
.3
±

3.
8

84
.0
±

5
.1

67
.2
±

14
.3

84
.7
±

4
.3

1
C

E
6

0.
35

C
or

+
2D

93
.4
±

2
.7

99
.7
±

0
.4

97
.5
±

4
.3

92
.8
±

6.
1

8
5
.4
±

6.
3

84
.2
±

9
.5

72
.0
±

8
.6

87
.7
±

5
.7

1
C

E
6

0.
58

C
or

+
3D

85
.2
±

3
.2

89
.0
±

1
.9

84
.3
±

9
.6

84
.7
±

3.
7

82
.9
±

2.
8

90
.6
±

3
.7

56
.1
±

7
.9

85
.6
±

5
.0

1
C

E
6

1.
1

Table 4.2: Experiments of direct method and of stereo correlation with global thresholding.

68 Chapter 4. Evaluation

Image Ground-truth Direct Cor+2D Cor+3D

Figure 4.6: MB training set: The soft prediction of selected images: Adirondack and Sword2.

Ground-truth Direct Cor+2D Cor+3D

Figure 4.7: MB training set: The soft predictions are classified by the optimal threshold.

Image Ground-truth Direct Cor+2D Cor+3D

Figure 4.8: MB validation set: The soft prediction of selected images: Bicycle1 and Cable.

4.4. Detection Results 69

Ground-truth Direct Cor+2D Cor+3D

Figure 4.9: MB validation set: The soft predictions are classified by the optimal threshold.

Image Ground-truth Direct Cor+2D Cor+3D

Figure 4.10: SF training set: The soft prediction of selected images.

Ground-truth Direct Cor+2D Cor+3D

Figure 4.11: SF training set: The soft predictions are classified by the optimal threshold.

70 Chapter 4. Evaluation

Image Ground-truth Direct Cor+2D Cor+3D

Figure 4.12: SF validation set: The soft prediction of selected images.

Ground-truth Direct Cor+2D Cor+3D

Figure 4.13: SF validation set: The soft predictions are classified by the optimal threshold.

5
Conclusion and Outlook

Contents

5.1 Conclusion . 71

5.2 Future Work . 72

In this chapter, we discuss the limitations of the methods we have investigated and

discuss possible improvements. In addition, we will suggest state-of-the-art methods to

adapt their model to the occlusion problem.

5.1 Conclusion

In this thesis, we have discussed several supervised CNN methods to detect pixel-wise

occlusions. The “direct method” differs from the other methods as the occlusions are not

learned via stereo correlation computation of a stereo image pair. We concatenated the

output of both unary CNN s. The concatenation is used as input of a 2D convolutional

layer to calculate the deviation of both input features.

The other three methods are based on the stereo correlation. Therefore, we have

transferred a CUDA/C++ implementation to tensorflow. We checked the correctness by

numerically approximating the gradient of the stereo correlation with forward difference.

The CUDA implementation offers pre-trained unary CNN s with 3 and with 7 layers. The

computation with 7 layers is more accurate and we have decided to take it for our methods.

The method that refines the stereo correlation with dilated 2D convolutions gives the best

results. The last method refine the stereo correlation with a 3D convolution as aggregation.

It also uses the Cross-Entropy (CE) as loss function.

We trained and evaluated our methods with the Middlebury dataset. Since this dataset

is small, we pretrained our methods with the large synthetic dataset Sceneflow (Monkaa).

71

72 Chapter 5. Conclusion and Outlook

5.2 Future Work

As future work, we want to replace the aggregation for the direct method and the stereo

correlation method with a 3D convolution hour-glass architecture. Since the input consists

concatenated RGB-images in the SymmNet, we would have the concatenated output of

the unary CNN s of the direct method or the cost volume of the stereo correlation. There

have been already proposed 3D-hourglass architectures for stereo matching. We suggest

to adapt them to occlusion detection.

One approach is introduced by Chang and Chen [78] who proposed a Pyramid Stereo

Matching Network (PSMNet) to compute disparities from stereo images. 3D convolutions

are used in several hourglass architecture pipelines to refine the cost volume. Another

approach is introduced by Alex Kendall et al. [79] who proposed only one big hour-glass

architecture. The hour-glass architectures use downsampled input features from other

previous layers and add/concatenate them in the upsampling layers. The output of the

hour-glasses is combined via regression that we would be interesting to be changed to

classification.

For these experiments, we would suggest to alter the current Cross-Entropy (CE). The

current CE only treats the occlusions in the left image, but not in the right image. In

Section 2.4.1 we described the two-sided CE and stated that computing both occlusion

maps simultaneously would help for more accurate results.

Last but not least, our models are only designed for supervised learning. We have

labeled data and our models can only learn from this. An unsupervised approach or

a reinforcement approach would broaden the applicability of this problem. The model

should find patterns on its own instead of relying on labeled data.

A
List of Acronyms

ō non-occluded

o occluded

Adam Adaptive Moment Estimation

AUC Area Under Curve

CE Cross-Entropy

CNN Convolutional Neural Network

CRF Conditional Random Fields

CT Census Transform

FN False Negative

FP False Positive

FPR False Positive Rate

GPU Graphics Processing Unit

HL Hinge Loss

iff if-and-only-if

LRC Left-Right-Cross-Checking

MLP Multilayer Perceptron

PR Precision-Recall

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SGM Semi Global Matching

SSD Sum of Squared Differences

TN True Negative

TP True Positive

TPR True Positive Rate

UAT Universal Approximator Theorem

73

BIBLIOGRAPHY 75

Bibliography

[1] A. Ortiz, “Illustrates how Image Rectification simplifies the search space in Stereo

Correlation Matching,” 2008. (page xix, 2)

[2] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision”. Cam-

bridge University Press, second ed., 2004. (page xix, 3)

[3] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nesic, X. Wang,

and P. Westling, “High-Resolution Stereo Datasets with Subpixel-Accurate Ground

Truth,” in German Conference on Pattern Recognition (GCPR), 2014. (page xix, 4,

31, 42, 57)

[4] David Borland and Taylor, Russell M., “Rainbow Color Map (still) considered harm-

ful,” IEEE Computer Graphics and Applications, vol. 27, no. 2, pp. 14–17, 2007.

(page xix, 4)

[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning Spatiotem-

poral Features with 3D Convolutional Networks,” in Proceedings of International

Conference on Computer Vision (ICCV), pp. 4489–4497, 2015. (page xix, 17)

[6] J. Žbontar and Y. LeCun, “Stereo Matching by Training a Convolutional Neural Net-

work to Compare Image Patches,” Journal of Machine Learning Research (JMLR),

vol. 17, no. 1, pp. 2287–2318, 2016. (page xix, 30, 31, 34, 36)

[7] K. Zhang, J. Lu, and G. Lafruit, “Cross-Based Local Stereo Matching Using Orthog-

onal Integral Images,” Circuits and Systems for Video Technology (TCSVT), vol. 19,

no. 7, pp. 1073–1079, 2009. (page xix, 32, 33)

[8] P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock, “End-to-End Training

of hybrid CNN-CRF Models for Stereo,” in Proceedings of Computer Vision and

Pattern Recognition (CVPR), 2017. (page xix, xxi, 4, 34, 35, 43, 47, 48)

[9] Y. Boykov and O. Veksler, “Graph Cuts in Vision and Graphics: Theories and Appli-

cations,” in Handbook of Mathematical Models in Computer Vision, 2006. (page xx,

38)

[10] L. Ang and Y. Zejian, “SymmNet: A Symmetric Convolutional Neural Network for

Occlusion Detection,” in Proceedings of British Machine Vision Conference (BMVC),

2018. (page xx, 4, 14, 39, 41, 47)

[11] Sharpr, “This is a Recreation of the File Receiver Operating Characteristic.png as a

Vector Graphics Image in SVG Format.,” 2015. (page xx, 53)

[12] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Tech-

nical Journal, vol. 27, no. 3, pp. 379–423, 1948. (page 1)

76

[13] V. Kolmogorov and R. Zabih, “Computing visual Correspondences with Occlusions

using Graph Cuts,” Proceedings of International Conference on Computer Vision

(ICCV), pp. 1–33, 2001. (page 4, 37)

[14] G. Egnal and R. P. Wildes, “Detecting Binocular Half-Occlusions: Empirical Com-

parisons of Five Approaches,” Pattern Analysis and Machine Intelligence (PAMI),

vol. 24, no. 8, pp. 1127–1133, 2002. (page 4, 36)

[15] C. L. Zitnick and S. B. Kang, “Stereo for Image-Based Rendering using Image Over-

Segmentation,” International Journal of Computer Vision, vol. 75, pp. 49–65, Oct

2007. (page 7)

[16] R. Zabih and J. Woodfill, “Non-parametric local Transforms for computing Vi-

sual Correspondence,” in Proceedings of European Conference on Computer Vision

(ECCV), pp. 151–158, Springer-Verlag, 1994. (page 8)

[17] L. Ma, J. Li, J. Ma, and H. Zhang, “A Modified Census Transform Based on the Neigh-

borhood Information for Stereo Matching Algorithm.,” pp. 533–538, IEEE Computer

Society, 2013. (page 8)

[18] S. Meister, J. Hur, and S. Roth, “UnFlow: Unsupervised Learning of Optical Flow

with a Bidirectional Census Loss,” Proceedings of Computer Vision and Pattern

Recognition (CVPR), 2017. (page 9)

[19] D. H. Hubel and T. N. Wiesel, “Receptive Fields of Single Neurons in the Cat’s Striate

Cortex,” Journal of Physiology, vol. 148, pp. 574–591, 1959. (page 10)

[20] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain,” Psychological Review, pp. 65–386, 1958. (page 10)

[21] K. Hornik, “Approximation Capabilities of Multilayer Feedforward Networks,” Neural

Networks, vol. 4, no. 2, pp. 251 – 257, 1991. (page 11)

[22] B. C. Csáji, “Approximation with Artificial Neural Networks,” Master’s thesis, Eotvos

Lorand University (ELTE), 2001. (page 11)

[23] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann

Machines,” in International Conference on Machine Learning (ICML), International

Conference on Machine Learning (ICML), (USA), pp. 807–814, Omnipress, 2010.

(page 12)

[24] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities improve Neu-

ral Network Acoustic Models,” in International Conference on Machine Learning

(ICML), 2013. (page 13)

BIBLIOGRAPHY 77

[25] M. Nielsen, “Neural Networks and Deep Learning,” Determination Press, 2015.

(page 13, 19, 20, 24, 30)

[26] Y. LeCun and C. Cortes, “MNIST handwritten Digit Database,” 2010. (page 13)

[27] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object Recognition with Gradient-

Based Learning,” in Shape, Contour and Grouping in Computer Vision, (London,

UK), pp. 319–, Springer-Verlag, 1999. (page 14)

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org. (page 14, 15, 20, 59)

[29] A. Martin et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-

tributed Systems,” 2015. (page 15, 16, 49, 57)

[30] W. Luo, Y. Li, R. Urtasun, and R. S. Zemel, “Understanding the Effective Recep-

tive Field in Deep Convolutional Neural Networks,” Neural Information Processing

Systems (NIPS), vol. abs/1701.04128, 2017. (page 15)

[31] V. Dumoulin and F. Visin, “A Guide to Convolution Arithmetic for Deep Learning,”

arXiv, vol. abs/1603.07285, 2016. (page 15)

[32] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated Convolutions,”

International Conference for Learning Representations (ICLR), vol. abs/1511.07122,

2015. (page 16)

[33] R. Hou, C. Chen, and M. Shah, “An end-to-end 3D Convolutional Neural Network

for Action Detection and Segmentation in Videos,” arXiv, vol. abs/1712.01111, 2017.

(page 17)

[34] D. C. Plaut, S. J. Nowlan, and G. E. Hinton, “Experiments on learning Back Propa-

gation,” tech. rep., Carnegie–Mellon University, 1986. (page 21)

[35] B. Polyak, “Some Methods of Speeding Up the Convergence of Iteration Methods,”

USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1 –

17, 1964. (page 21)

[36] R. A. Jacobs, “Increased Rates of Convergence through Learning Rate Adaptation,”

Neural Networks, vol. 1, no. 4, pp. 295 – 307, 1988. (page 21)

[37] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for Online Learn-

ing and Stochastic Optimization,” Journal of Machine Learning Research (JMLR),

vol. 12, pp. 2121–2159, 2011. (page 21)

[38] S. Ruder, “An Overview of Gradient Descent Optimization Algorithms,” arXiv,

vol. abs/1609.04747, 2016. (page 22)

http://www.deeplearningbook.org
http://www.deeplearningbook.org

78

[39] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Inter-

national Conference for Learning Representations (ICLR), vol. abs/1412.6980, 2014.

(page 22, 57)

[40] A. Y. Ng, J. Ngiam, C. Y. Foo, Y. Mai, and C. Suen, “UFLDL Tutorial.” http:

//ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork,

2013. (page 24, 25)

[41] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient Flow in Recur-

rent Nets: The Difficulty of Learning Long-Term Dependencies,” in Field Guide to

Dynamical Recurrent Networks, IEEE Press, 2001. (page 27)

[42] “Untersuchungen zu dynamischen Neuronalen Netzen,” Master’s thesis, Institut für

Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. (page 27)

[43] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp,” in Neural

Information Processing Systems (NIPS), (London, UK), pp. 9–50, Springer-Verlag,

1998. (page 27, 28)

[44] R. Pascanu, T. Mikolov, and Y. Bengio, “On the Difficulty of training Recurrent

Neural Networks,” International Conference on Machine Learning (ICML). (page 27)

[45] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep Feedforward

Neural Networks,” in International Conference on Artificial Intelligence and Statistics

(AISTATS), pp. 249–256, 2010. (page 28, 29)

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” Proceedings of Computer Vision and Pattern Recognition (CVPR),

vol. abs/1512.03385, 2015. (page 29)

[47] P. Mehta, M. Bukov, C.-H. Wang, A. G. R. Day, C. Richardson, C. K. Fisher, and

D. J. Schwab, “A high-bias, low-variance Introduction to Machine Learning for Physi-

cists,” arXiv, p. arXiv:1803.08823, 2018. (page 29)

[48] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY, USA: Oxford

University Press, Inc., 1995. (page 30)

[49] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the

Royal Statistical Society (Series B), vol. 58, pp. 267–288, 1996. (page 30)

[50] A. E. Hörl and R. W. Kennard, “Ridge Regression: Biased Estimation for Nonorthog-

onal Problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970. (page 30)

[51] H. Zou and T. Hastie, “Regularization and variable Selection via the Elastic Net,”

Journal of the Royal Statistical Society, Series B, vol. 67, pp. 301–320, 2005. (page 30)

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork

BIBLIOGRAPHY 79

[52] M. Menze, C. Heipke, and A. Geiger, “Joint 3D Estimation of Vehicles and Scene

Flow,” in International Society for Photogrammetry and Remote Sensing (ISPRS),

2015. (page 31)

[53] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun, C. Moore, E. Sackinger, and

R. Shah, “Signature Verification using a ”Siamese” Time Delay Neural Network,”

International Journal of Pattern Recognition and Artificial Intelligence, vol. 7, p. 25,

1993. (page 31)

[54] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature Verification

using a Siamese Time Delay Neural Network,” in Neural Information Processing Sys-

tems (NIPS), (San Francisco, CA, USA), pp. 737–744, Morgan Kaufmann Publishers

Inc., 1993. (page 31)

[55] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang, “On Building an accu-

rate Stereo Matching System on Graphics Hardware,” in Proceedings of International

Conference on Computer Vision (ICCV), pp. 467–474, 2011. (page 32)

[56] H. Hirschmüller, “Accurate and efficient Stereo Processing by Semi-Global Matching

and Mutual Information,” in Proceedings of Computer Vision and Pattern Recognition

(CVPR), vol. 2, pp. 807–814 vol. 2, 2005. (page 32, 33, 34)

[57] H. Hirschmüller, M. Buder, and I. Ernst, “Memory Efficient Semi-Global Match-

ing,” in The Congress of the International Society for Photogrammetry and Remote

Sensing, 2012. (page 34)

[58] R. Spangenberg, T. Langner, and R. Rojas, “Weighted Semi-Global Matching and

Center-Symmetric Census Transform for Robust Driver Assistance,” in Computer

Analysis of Images and Patterns (R. Wilson, E. Hancock, A. Bors, and W. Smith,

eds.), pp. 34–41, Springer-Verlag, 2013. (page 34)

[59] J. Zbontar and Y. LeCun, “Stereo Matching by Training a Convolutional Neural

Network to compare Image Patches,” Journal of Machine Learning Research (JMLR),

vol. 17, pp. 1–32, 2016. (page 35)

[60] C. Bailer, K. Varanasi, and D. Stricker, “CNN based Patch Matching for Optical

Flow with thresholded Hinge Loss,” Proceedings of Computer Vision and Pattern

Recognition (CVPR), vol. abs/1607.08064, 2016. (page 35)

[61] M. Brown, G. Hua, and S. Winder, “Discriminative Learning of Local Image Descrip-

tors,” Pattern Analysis and Machine Intelligence (PAMI), vol. 33, no. 1, pp. 43–57,

2011. (page 35)

[62] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational Stereo,”

Pattern Analysis and Machine Intelligence (PAMI), vol. 25, no. 8, pp. 993–1008, 2003.

(page 36)

80

[63] H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-Time Correlation-Based

Stereo Vision with reduced Border Errors,” International Journal of Computer Vision

(IJCV), vol. 47, no. 1, pp. 229–246, 2002. (page 36)

[64] R. Trapp, S. Drüe, and G. Hartmann, “Stereo matching with implicit Detection of

Occlusions,” in Proceedings of European Conference on Computer Vision (ECCV)

(H. Burkhardt and B. Neumann, eds.), pp. 17–33, Springer-Verlag, 1998. (page 36)

[65] P. Knöbelreiter, C. Vogel, and T. Pock, “Self-Supervised Learning for Stereo Recon-

struction on Aerial Images,” International Society for Photogrammetry and Remote

Sensing (ISPRS), 2018. (page 37)

[66] L. R. Ford and D. R. Fulkerson, Flows in Networks. 1962. (page 37)

[67] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “FlowNet 2.0:

Evolution of Optical Flow Estimation with Deep Networks,” Proceedings of Computer

Vision and Pattern Recognition (CVPR), 2017. (page 40)

[68] P. Lorenz and P. Roth, “Deep Learning Architectures for Estimating Op-

tical Flow.” https://github.com/computeVision/optical_flow/blob/master/

optical_flow.pdf, 2018. (page 40)

[69] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox,

“A Large Dataset to train Convolutional Networks for Disparity, Optical Flow, and

Scene Flow Estimation,” in Proceedings of Computer Vision and Pattern Recognition

(CVPR), 2016. arXiv:1512.02134. (page 41, 58)

[70] H. Hirschmüller and D. Scharstein, “Evaluation of Cost Functions for Stereo Match-

ing,” Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1–8,

2007. (page 42)

[71] J. Kim, V. Kolmogorov, and R. Zabih, “Visual Correspondence Using Energy Min-

imization and Mutual Information,” in Proceedings of International Conference on

Computer Vision (ICCV), (Washington, DC, USA), pp. 1033–, IEEE Computer So-

ciety, 2003. (page 42)

[72] F. Yu, V. Koltun, and T. A. Funkhouser, “Dilated Residual Networks,” Proceedings

of Computer Vision and Pattern Recognition (CVPR), vol. abs/1705.09914, 2017.

(page 45)

[73] A. G. Baydin, B. A. Pearlmutter, and A. A. Radul, “Automatic Differentia-

tion in Machine Learning: a Survey,” Journal of Machine Learning Research,

vol. abs/1502.05767, 2015. (page 49)

https://github.com/computeVision/optical_flow/blob/master/optical_flow.pdf
https://github.com/computeVision/optical_flow/blob/master/optical_flow.pdf

BIBLIOGRAPHY 81

[74] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast Cost-Volume

Filtering for Visual Correspondence and Beyond,” Pattern Analysis and Machine

Intelligence (PAMI), vol. 35, no. 2, pp. 504–511, 2013. (page 51)

[75] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition Letters, vol. 27,

no. 8, pp. 861 – 874, 2006. ROC Analysis in Pattern Recognition. (page 52, 63)

[76] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical

Learning: With Applications in R. Springer-Verlag, 2014. (page 59)

[77] A. P. Bradley, “The Use of the Area Under the ROC Curve in the Evaluation of Ma-

chine Learning Algorithms,” Proceedings of Computer Vision and Pattern Recognition

(CVPR), vol. 30, no. 7, pp. 1145–1159, 1997. (page 63)

[78] J.-R. Chang and Y.-S. Chen, “Pyramid Stereo Matching Network,” in Proceedings of

Computer Vision and Pattern Recognition (CVPR), 2018. (page 72)

[79] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, and

A. Bry, “End-to-End Learning of Geometry and Context for Deep Stereo Regression,”

Proceedings of International Conference on Computer Vision (ICCV), pp. 66–75,

2017. (page 72)

	Introduction
	Occlusion in Stereo Vision
	Epipolar Geometry and Rectification
	Depth Map from Triangulation

	Contribution
	Notations
	Outline

	Related Work
	Block Matching Approaches
	Census Transform
	Sum of Squared Differences

	Principle of a Feed-forward Neural Network
	Neuron
	Activation Functions
	Layer
	Fully-Connected Multi-Layer Perceptron
	2D Convolutional Layer
	2D Dilated Convolution Layer
	3D Convolution Layer

	Training a Neural Network
	Loss Functions
	Cross-Entropy
	Hinge Loss

	Minimize a Loss Function
	(Stochastic) Gradient Descent
	Momentum
	Optimizer with Adaptive Learning Rate

	Forward and Backward Propagation
	Fully-Connected Neural Network
	Convolutional Neural Network

	Vanishing Gradient Problem
	Parameter Initialization
	Overfitting
	Bias-Variance-Tradeoff
	Early Stopping
	Weight Decay

	Computing Stereo Matching Costs with Convolutional Neural Networks
	Unary Network
	Loss Functions
	Post-processing
	Cross-based Cost Aggregation
	Semi Global Matching

	End-to-End Training of Hybrid CNN-CRF Models for Stereo
	End-to-End Learning
	Unary Netnwork and Shared Weights
	Stereo Correlation

	Occlusion Detection
	Left-Right-Consistency-Check
	Graph Cut Algorithm for Point Correspondences and Occlusions
	SymmNet - First End-to-End Model to learn Occlusions
	Architecture
	Loss Function and Training

	Summary

	Methods
	Direct Method - learn Occlusions without Stereo Correlation
	Pretrained Stereo Correlation
	Three Methods based on the Stereo Correlation
	Dilated 2D Convolution Aggregation
	3D Convolution Aggregation

	Global Thresholding
	Receiver Operating Characteristic Curve
	Optimal Decision Threshold

	Summary

	Evaluation
	Datasets
	The Middlebury 2014 Dataset
	SceneFlow Dataset (Monkaa)

	Data Pre-proccessing
	Standardization
	Cross Validation
	Data Augmentation - Random Crop
	Image Resizing
	Disparity Map Resizing

	Performance Metrics
	Overall Accuracy
	Area Under Curve
	Correct predicted Pixels within occluded and non-occluded Areas

	Detection Results

	Conclusion and Outlook
	Conclusion
	Future Work

	List of Acronyms
	Bibliography

