
Graz University of Technology
Faculty of Civil Engineering

Hydraulic Engineering and Water Resources Management

Large-eddy simulation (LES) of
turbulent channel flow over rough beds

Master Thesis

by

Matthias Steger

first Supervisor : Schneider, Josef, Assoc.Prof. Dipl.-Ing. Dr.nat.techn.

second Supervisor : Shahriari, Shervin, M.Sc.

Graz, March 2019

Abstract

The turbulent flow over a rough bed is one of the main concerns in modern Computational
Fluid Dynamics. In flows of hydraulic-engineering the walls of interest e.g. the river bank
or the bed are often rough. To account for the roughness the Large-eddy simulation is
used in this thesis. One of the challenges in Large-eddy simulation is the accurate inclu-
sion of wall roughness. Similar as the knowledge of the velocity profile of a smooth wall,
the velocity profile over a rough wall is needed. The specification itself is not an easy
task. Especially the law of the wall for a rough bed is still subject of ongoing research.
There are several techniques available to deal with this problem. In my Thesis a porous
medium and artificially generated rough elements are used to simulate wall roughness.

This Thesis "Large-eddy simulation (LES) of turbulent channel flow over rough beds"
is divided into five chapters whereas the first section gives a short introduction and liter-
ature review. The second chapter gives an overview of the theoretical background of the
governing equations, turbulence, DNS, LES and RANS modeling. In the third chapter the
generation of roughness elements by using the file boxex.C on a surface is shown in detail.
The additional source terms are accounted by the file fvOptions. Where the case itself is
based on the channel 395 in OpenFOAM. In the simulation cyclic boundary conditions
in streamwise and spanwise directions are accounted. The velocity profiles for a smooth
channel and for two different rough channels are compared. In the fourth chapter a trape-
zoidal channel with bed and bank roughness from a laboratory experiments are compared
with the simulation. Whereas the velocity in this simulation is decreased because of too
high computational power for an average computer at present. In the last chapter the
summary and conclusions are presented. Attached to this thesis the files for generating
the roughness elements, the domain, options, boundary and initial conditions are shown
in Appendix A for the third chapter and Appendix B for the fourth chapter.

III

Acknowledgement

This thesis was written during my time at the Institute of Hydraulic Engineering and
Water Resources Management - Graz University of Technology. Without the guidance
and encouragement of Josef Schneider and Shervin Shahriari this thesis wouldn’t exist:

I would like to thank M.Sc. Shervin Shahriari for his guidance and advice throughout
this research. Your support in many numerical problems and confidence in my abilities is
what made this possible. You are a excellent researcher and have the ability to get not
confused with the complex numerical problems in hydraulic engineering.

I would like to thank my family for their love support, and constant encouragement
during the whole study.

I would like to thank my colleges and friends for their camaraderie and collaboration
over the years. Specially Lukas Deutschmann who offered me a place to sleep in the last
semester.

I would like to extend my gratefulness to my girlfriend Magdalena Steiner for her love,
encouragement, counseling and emotional care.

V

Statutory declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Monday 25th March, 2019
· ·
Date Signature

VII

CONTENTS

Contents

1 Introduction 1
1.1 Objective of the work . 3
1.2 Methodology . 3

2 Theory 5
2.1 Governing equations . 5
2.2 Turbulence modeling . 7

2.2.1 DNS . 9
2.2.2 LES . 10

2.2.2.1 Subgrid-Scale (SGS) Models 13
2.2.3 RANS . 16

3 Large-eddy simulation of turbulent channel flow over rough beds 19
3.1 Introduction . 19
3.2 Pre-Processing . 19

3.2.1 Rough Bed generation . 19
3.2.2 Geometry of the Domain . 23
3.2.3 Boundary and Initial Conditions . 25

3.2.3.1 Velocity, U . 25
3.2.3.2 Kinematic Pressure, p . 25
3.2.3.3 turbulent kinetic energy, k 25
3.2.3.4 turbulence viscosity, nut 25
3.2.3.5 Adapting fields from channel395 26
3.2.3.6 changeDictionaryDict . 26

3.2.4 Options . 26
3.2.4.1 fvOptions . 26
3.2.4.2 transportProperties . 28
3.2.4.3 turbulenceProperties . 28
3.2.4.4 fvSchemes (Numerical Schemes) 28
3.2.4.5 fvSolution . 29
3.2.4.6 controlDict . 29

IX

CONTENTS

3.2.4.7 decomposeParDict . 29
3.2.5 Folder tree . 29

3.3 Solver . 31
3.4 Post-Processing and results . 32

3.4.1 postChannelDict . 33
3.4.2 Graphs for rough and smooth channel 33
3.4.3 Plots for the rough channel with an increased velocity 39

4 Trapezoidal Channel 41
4.1 Introduction . 41
4.2 Rough and Smooth Trapezoidal Channel 44

4.2.1 Computation requirement for trapezoidal channel 46
4.2.1.1 Experiment F16_45_30 46
4.2.1.2 Experiment F16_45_30 decreased velocity 47

4.3 Pre-Processing . 49
4.3.1 Geometry of the Domain . 49
4.3.2 Rough Bed generation . 51
4.3.3 Boundary and Initial Conditions . 55

4.3.3.1 Velocity, U . 55
4.3.3.2 Kinematic Pressure, p . 57
4.3.3.3 turbulent kinetic energy, k 57
4.3.3.4 turbulence viscosity, nut 57

4.3.4 Options . 57
4.3.4.1 fvOptions . 57
4.3.4.2 transportProperties . 58
4.3.4.3 turbulenceProperties . 58
4.3.4.4 fvSchemes (Numerical Schemes) 58
4.3.4.5 fvSolution . 58
4.3.4.6 controlDict . 58
4.3.4.7 decomposeParDict . 58

4.4 Solver . 58
4.5 Results . 59

5 Summary and Conclusions 73

6 Appendix A 77
6.1 Creation of the roughness elements, boxes.C 77
6.2 topoSetDict . 79
6.3 blockMeshDict . 80
6.4 Velocity, U . 83
6.5 Kinematic Pressure, p . 84

X

CONTENTS

6.6 Turbulent Kinetic Energy, k . 85
6.7 Turbulence viscosity, nut . 87
6.8 mapFieldsDict . 88
6.9 changeDictionaryDict . 89
6.10 fvOptions . 90
6.11 transportProperties . 91
6.12 turbulenceProperties . 92
6.13 fvSchemes . 93
6.14 fvSolution . 94
6.15 controlDict . 96
6.16 decomposeParDict . 98
6.17 postChannelDict . 100

7 Appendix B 103
7.1 blockMeshDict . 103
7.2 bank.C . 107
7.3 bed.C . 107
7.4 topoSetBank . 108
7.5 topoSetDelete . 109
7.6 topoSetBed . 110
7.7 Velocity, U . 111
7.8 setFieldsDict . 113
7.9 Pressure, P . 114
7.10 Turbulent Kinetic Energy, k . 115
7.11 Turbulence viscosity, nut . 116
7.12 fvOptions . 118
7.13 transportProperties . 120
7.14 fvSolution . 121
7.15 controlDict . 121

XI

CONTENTS

XII

CONTENTS

Notation

t time
ρ density
ρr reference density
u, ui velocity vector
x, xi spatial co-ordinate
u, v, w velocity x, y, z-component
U, V,W mean velocity x, y, z-component
u′, v′, w′ velocity fluctuation x, y, z-component
µ dynamic viscosity
ν kinematic viscosity
g gravitational acceleration
Smx, Smy, Smz source term x, y, z-component
Φ, φ physical property
Sφ source property
Re Reynolds number
E kinetic energy
k wave number
∆ filter width
τSGSij LES SGS-stresses
τRANSij RANS Reynolds stresses
qSGSi SGS turbulent flux
Sij strain rate
δij Kronecker delta
νt, nut artificial turbulent kinematic viscosity
νtotal total kinematic viscosity
l length scale
q velocity scale
k turbulent kinetic energy
d50 characteristic sediment size
σ standard deviation
e minimal elevation

XIII

L length
B width
H height
e1, e2, e3 unit vector x, y, z-component
d Darcy coefficient
f Forchheimer coefficient
Co Courant number
u∗, uτ friction velocity, shear velocity
Reτ Reynolds number based on friction/shear velocity
ubulk, um bulk/mean velocity in flow direction
Reh Reynolds number based on bulk velocity
k+
s dimensionless roughness height
τw, τ0 wall shear stress
∂p

∂x
pressure gradient x-component

h water depth
y+ dimensionless wall distance
u+ dimensionless velocity x-component
κ von Karman constant
Fr Froude number
λ spanwise spacing
Q flow discharge
U bulk velocity (in the Trapezoidal channel)
Es energy slope
Re∗ Reynolds particle number
dbank grain size at bank
dbed grain size at bed
θ bank inclination
∆x,∆y,∆z grid size in x, y and z direction
∆x+,∆y+,∆z+ dimensionless grid size in x, y and z direction

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Nowadays with the high computational power, numerical simulation methods can be used
for studying the physical phenomena of the flow, solving hydraulic and environmental en-
gineering problems with an average personal computer. Turbulence plays a very important
role in these problems and the effect of turbulence is essential. The analysis of fluid flow or
heat transfer is called computational fluid dynamics or CFD. The fundamental equations
for CFD had been well known in the 19th century. The numerical solution techniques
was developed over 50 years ago in the 1950s and 1960s. CFD is used in many applica-
tions such as: Hydraulic Engineering, Aeorospace Enginneering, Automotive Engineering,
Biomedical Engineering, Turbomachinery, Chemical reactions, Marine Engineering, Video
Games, Movies, Meteorology and Sports (Versteeg and Malalasekera [41]).

It has been realized that CFD is an alternative of physical modeling which have in
many fields their advantages seen as follows (Bates, Lane, and Ferguson [2]):

• Costs: Usually the costs of the simulation is lower than building a physical model.
Basically the costs depends on the CFD licenses which are used for the simulation
and of the size of the physical model.

• Time: The time for the simulation is much lower than measuring all flow parameters
of the physical model or building the model which is also size depended.

• Scale: The scale of the hydraulic structure can be arbitrary. In CFD the geometry
can be changed very fast and easy.

• Information: With CFD all flow parameters are solved in the entire domain and
this gives more insight of the flow behavior. The user can decide how deep the
simulation should be done.

• Repeatability: The simulation is repeatable. Some physical models are limited by
carrying out the data.

1

CHAPTER 1. INTRODUCTION

Hydraulic Engineering is concerned with the flow of water. The most common applications
for hydraulics are: hydro power plants, dealing with floodings, transport of sediments,
pipe flows, pumping, pipelines, open channel flows, dam constitutions, spillways, outlets,
drainages, sewerage, aqueducts, etc. All these topics underly the fluid mechanics. Hy-
draulic engineers uses CFD to accurately predict flow characteristics. There are different
numerical solution techniques in CFD available to compute the flow physic of a fluid and
they are discussed in Chapter 2 (Houghtalen, Akan, and Hwang [16]).

In an open channel turbulent flow is strongly influenced by the roughness on the
channel bed. In rivers, streams and estuaries the roughness conditions near the bed can
vary significantly. The flow is spatially inhomogeneous. I.e. time-averaged statistics are
dependent of the location in an open channel flow. A velocity profile can be spatially
averaged within a predefined area which is larger than the roughness elements. To define
this formulation the roughness geometry has to be known. Most simulations based on the
Reynolds-averaged Navier-Stokes equations (RANS) have not advanced the understanding
of flows over rough beds. Direct numerical simulations (DNSs) and large-eddy simulations
(LESs) are improved in revealing details of turbulent flows. The numerical effort in RANS
is essentialy lower than in LES and DNS. In many LES and DNS simulations an exact
defined "roughness element" were performed and in other simulations a virtual boundary
method has been used. All these predefined "roughness elements" provide statistical data
and gives insight into turbulence structures (Stoesser [38]). A broad knowledge of wall
turbulence in water flow has been obtained by using a hot-film anemometer or a hydrogen-
bubble method. Nakagawa, Nezu, and Ueda [26] used point measurements and flow
visualization to characterize the water shear flow. Nezu and Rodi [28] established that
an open channel flow consists of two regions. Where the inner region is controlled by
kinematic viscosity and friction velocity and the outer region near the free surface is
controlled by the flow depth and maximum velocity. Lyn [21] used a two-component laser-
Doppler velocimetry (LDV) to obtain a better understanding of the flow and transport
implications of dunes and ripples. Tominaga et al. [39] investigated secondary currents on
an open and closed channel with smooth and rough boundaries. Blanckaert, Duarte, and
Schleiss [4] investigated the influence of the bank roughness, bank inclination, shallowness
and boundary shear stress on the variability of flow patterns. Nikora et al. [29] used a
roughness geometry function to mimic the roughness of a natural channel bed. Nikora
et al. [29] found out that the roughness geometry functions from water-worked gravel beds
of New Zealand rivers behave similar to the unworked gravel beds created manually in a
flume. In LES a wavey surfaced bed was used by Calhoun and Street [6] to investigate
neutrally stratified flow. In DNS square bars consisted with a cavity width to roughness
height ratio was considered by Leonardi et al. [20] for a rough turbulent channel flow.
The study has shown that recirculation zones occur upstream and downstream of each
element with a width to height ratio of over seven. As an less expensive alternative
is the virtual boundary method, which does not resolve the roughness explicitly. The

2

CHAPTER 1. INTRODUCTION

rough wall is embedded in a Cartesian grid and the no-slip condition is imposed by
body forces. In the virtual boundary method Bhaganagar, Kim, and Coleman [3] used
a no-slip surface consists of a 3D "egg-carton"-shaped surface. The shape, height and
distribution of the "roughness elements" were a priori known in these studies. However in
an open channel the detailed bathymetry of the rough bed is hardly known. Nakayama
[27] suggested in the virtual boundary method to add additional dispersive stress terms
to the momentum equations to overcome these limitations. From DNS Nakayama [27]
determined that this method requires a priori knowledge of the magnitude of the dispersive
stresses. In LES a fixed two-dimensional dune in a turbulent open channel flow was
studied by Yue, Lin, and Patel [43]. Scotti [35] placed randomly ellipsoids of a certain
height on a smooth wall to mimic sandpaper roughness. This method is in LESs performed
and compared with laboratory statistical data of an natural channel-bed to validate the
method. Singh, Sandham, and Williams [37] presents in DNS the results of a turbulent
flow of an open channel over the rough bed, which consists of spheres in a hexagonal
arrangement. Stoesser [38] proposed to modify the virtual sandpaper method from Scotti
[35]. To mimic the roughness of a realistic natural channel bed a roughness geometry
function as presented by Nikora et al. [29] is employed.

1.1 Objective of the work
The aim of this study is to implement wall roughness with the porous medium approach
with the Large-eddy simulation on a surface in a turbulent channel flow by applying the
approach from Stoesser [38]. This study follows the report from Margalit [22]. With this
technique dimensionless velocity profiles are generated for a smooth and for two rough
cases. With these profiles the porous medium approach can be checked if this technique
works. Where the case set up of the rough elements is based on channel 395 tutorial in
OpenFOAM. The model has cyclic boundary conditions in the streamwise and spanwise
directions. Additionally the results in a trapezoidal channel from laboratory experiments
by Blanckaert, Duarte, and Schleiss [4] and Tominaga et al. [39] are compared with the
simulation. This experiment shows multi-cellular secondary currents in a straight trape-
zoidal channel. At present the features of secondary flow are quite unknown. OpenFOAM
and Paraview is able to visualize the multi-cellular secondary currents in a smooth and
rough trapezoidal channel.

1.2 Methodology
This thesis is divided into five chapters. Where the first chapter shows a short literature
review of many techniques which are concerned for simulating roughness. In the second
chapter the importance of the Large-eddy simulation is presented. In the third chapter

3

CHAPTER 1. INTRODUCTION

the roughness generation itself is discussed and computed by following the report from
Margalit [22]. Where in this Thesis the simulations of rough- and smooth channels are
carried out by the open-source code OpenFOAM. The "pimpleFoam" solver has been used
by solving the channel flow. To account for the roughness elements the fvOptions file in
OpenFOAM is used. To post process the results in OpenFOAM the program Paraview has
been used. Whereas the point data which are used for plots are generated with Matlab.
In the fourth chapter a trapezoidal channel with bed and bank roughness from laboratory
experiments from Tominaga et al. [39] and Blanckaert, Duarte, and Schleiss [4] are com-
pared with the simulation. Whereas the velocity in this simulation is decreased because
of too high computational power for an average computer at present. The simulation is
compared with the experiments and the differences between the smooth and rough walls
are shown. In the last chapter the summary and conclusions are presented.

4

CHAPTER 2. THEORY

Chapter 2

Theory

The fluid flow is completely described by the Navier-Stokes equations together with the
continuity equation. In the case of mass or heat transfer a scalar transport equation has to
be added. For simple geometries and flow conditions analytical solutions are available. At
a high Reynolds number the flow becomes turbulent and the analytical solution cannot be
obtained. Solving the Navier-Stokes equations at a high Reynolds number with all length
scales requires high computational power. Until 2080 optimistic predictions believe that
the Direct Numerical Solution (DNS) which solve all fluid quantities at all scales wont
be available for common engineering problems. Until 2045 Large Eddy Simulation (LES)
which models the small scales and resolve the large eddies wont be available for common
engineering problems. The most used approach at current generation is the Reynolds
Averaged Navier Stokes (RANS) simulation [42]. To solve the eddies at a certain scale,
the mesh must be smaller than the size of the eddy. Also the calculation has to be 3D and
therefore the number of grid points and the computing cost required increase with Re3.
Even for a medium Reynolds number of 87 000 based on channel depth and bulk velocity
a supercomputer of 2048 processors needs a half year to perform a DNS with 1.8 ∗ 1010

grid points [34].

2.1 Governing equations

The fundamental governing equations for modeling the fluid flow were derived from the
principles of conservation of mass, momentum, energy, Stoke’s hypothesis and an equation
of state. For an incompressible fluid the energy equation is not taken into account because
without density variations there is no linkage between the mass, momentum and energy
equations. The governing equations of an incompressible Newtonian fluid in a Cartesian
coordinate system are given in Eq. 2.1 to Eq. 2.4. (Versteeg and Malalasekera [41])

Continuity: div(u) = 0 (2.1)

5

CHAPTER 2. THEORY

x-Momentum : ∂u

∂t
+ div(uu) = −∂p

∂x

1
ρ

+ div(ν grad(u)) + Smx (2.2)

y-Momentum: ∂v

∂t
+ div(vu) = −∂p

∂y

1
ρ

+ div(ν grad(v)) + Smy (2.3)

z-Momentum: ∂w

∂t
+ div(wu) = −∂p

∂z

1
ρ

+ div(ν grad(w)) + Smz (2.4)

(I) (II) (III) (IV) (V)
The first term (I) is defined as the rate of change term, (II) is the convection term, (III)
is the pressure gradient over density term, (IV) the diffusion term and (V) is the source
term. Turbulence models uses extra stress terms in the Navier-Stoke equations. In tensor
notation the continuity equation is as follows [34]:

Continuity equation: ∂ui
∂xi

= 0 (2.5)

The momentum conservation in index notation is as follows [34]:

Momentum equation: ∂ui
∂t

+ ∂uiuj
∂xj

= − 1
ρr

∂p

xi
+ ν

∂2ui
∂xj∂xj

+ gi
ρ− ρr
ρr

(2.6)

In Eq. 2.6 the Boussinesq approximation has been made so that the influence of variable
density appears only on the last term gi

ρ−ρr

ρr
which is the buoyancy term. ρr is the

reference density and gi is the gravitational acceleration in direction xi. Scalar quantities
such as pollutant concentration and temperature etc. are indicated as a general variable
φ and can be written in the following form:

transport equation : ∂φ

∂t
+ div(φu) = div(Γ grad(φ)) + Sφ (2.7)

In tensor notation the transport equation is as follows [34]:

transport equation : ∂φ

∂t
+ ∂ui φ

∂xi
= Γ ∂2φ

∂xi∂xi
+ Sφ (2.8)

Γ is the diffusivity of φ in Eq. 2.7 and Eq. 2.8.

6

CHAPTER 2. THEORY

2.2 Turbulence modeling

Turbulence has important effects on the flow phenomena that plays a major role in hy-
draulic engineering. The fluctuating turbulent motion causes an increase in momentum
transfer and increases friction on solid boundaries. Turbulence causes losses around struc-
tures and flows through conduits. Another governing influence of turbulence is that the
pressure and velocity distribution varies along the flow domain. This creates unsteady
forces on the boundaries and for example in pipes the velocity distribution is much more
uniform than in laminar pipe flow. Also in an straight open channel turbulence causes
secondary motions. In the river turbulence keeps sediment particles in suspension and
erodes particles from the bed. Therefore the suspended and bed load transport is caused
by turbulence [34]. The term turbulence and laminar flow is important to distinguish.
At a certain Reynolds number the flow become unstable and changes from laminar to
turbulent flow. Reynolds [33] attempts to quantify turbulence. The Reynolds number
is defined in Eq. 2.9. |u| is the velocity in m

s
, L the length in m and ν the kinematic

viscosity in m2

s
.

Reynolds number: Re = |u|L
ν

= inertialforces

viscousforces
(2.9)

Many flows in Hydraulic Engineering are turbulent. At a high Reynolds number the flow
becomes turbulent and at a low Reynolds number the flow is laminar. Turbulence is the
chaotic change of field values like pressure or velocity in space and time. With low viscosity
and high velocity the Reynolds number is very high which causes turbulence. With no
changes in time of the field values the flow behave laminar. A typical velocity structure of
a turbulent flow are shown in Fig. 2.1. [41] In this figure the velocity is decomposed into
a steady mean value U and a fluctuating component u′(t) The decomposition is shown in
Eq. 2.10. The velocity u is defined in the x-direction. Where v and w are defined in y-,
and z-direction.

Fig. 2.1: velocity measurement in turbulent flow [41]

7

CHAPTER 2. THEORY

Reynolds decomposition: u(t) = U + u′(t) (2.10)

The velocity fluctuations u′(t), v′(t) and w′(t) give additional stresses which are called
Reynolds stresses. The main characteristics of turbulence are listed as follows: [41], [34]

• Occurrence: At a high Reynolds number the flow is turbulent. The interaction
occurs of when the inertia or convection is high and when the viscosity or diffusion
is low.

• Irregularity: The turbulent flow is a chaotic field change of pressure and velocity
in space and time, manifest by fluctuations. Turbulent motions are very complex,
unsteady and always three-dimensional.

• Diffusivity: Turbulence causes strong momentum, heat and mass transfer.

• Dissipative: At very small-scale eddy motions the turbulent kinetic energy gets
converted into heat due to viscous stresses.

• Rotational: Turbulence incorporate a wide range of very small to large vorticity
with rotational axes in all directions.

• Continuum: Turbulence is a continuum phenomena.

The visualization in Fig. 2.2 shows a fully turbulent flow inside the jet region where the
size of eddies range from small to large [41].

Fig. 2.2: Visualization of turbulence of a jet flow [41]

8

CHAPTER 2. THEORY

The small eddies corresponds to high frequency fluctuations. In the small scales viscous
forces are acting and dissipation takes place. In Fig. 2.3 a turbulent spectrum with wave
number k and kinetic energy E is shown. the most energetic eddies are the large ones
and extract energy from the mean motion. Where the big motions transfer their energy
to the smaller eddies with higher frequency fluctuations. This transfer is called energy
cascade. At very small scales viscous forces become active which causes the dissipation of
fluctuation energy. At very high Reynolds numbers the conversion into heat takes place
at smaller eddies. The indication T in the figure shows that at sufficiently high Reynolds
numbers the eddies are only transfered from larger to smaller ones which is called inertial
sub-range [34].

Fig. 2.3: Spectra of isotropic turbulence with increasing Reynolds number [34]

2.2.1 DNS

For an incompressible turbulent flow four unknowns u, v, w and p can be directly simu-
lated with the instantaneous continuity and Navier-Stokes equations Eq. 2.1 to Eq. 2.4.
Direct numerical simulation (DNS) has to solve the quantities at very small time steps
and at a very fine spatial mesh in which the Kolmogorov length scales are reached. In
this small scales the energy dissipation takes place. DNS resolve the smallest turbulent
eddies. Moin and Mahesh [24] support the DNS regarding of the precise details of turbu-
lent parameters. These are for example used by validation new turbulent models. High
Reynolds numbers require a very fine mesh in each direction and small time steps to
describe the processes at all length scales. The computation time for turbulent flows at
high Reynolds numbers in DNS at present is not practicable. Low Reynolds numbers in
DNS does not predict a realistic turbulence flow in engineering practice. An alternative
is the Large-eddy simulation (LES) which has not that high computational effort as in
DNS [41].

9

CHAPTER 2. THEORY

2.2.2 LES

Large-eddy simulation (LES) is used to simulate turbulent flows. The large non universal
turbulence motions are directly resolved whereas the small eddies which have a universal
character are modeled. DNS is highly computational expense and it increases as the cube
of Reynolds number whereas LES is motivated by the limitations of DNS. On the other
hand the Reynolds-stress models (RANS) are less reliable and accurate than the LES.
In DNS almost all computational effort is expected on the smallest dissipative motions.
The larger dynamic scale motions which are effected by the flow geometry are computed
directly by LES [32]. The behavior of the smaller eddies are nearly isotropic whereas
the large eddies which extract energy from the mean flow are more anisotropic and their
behavior depend on the geometry of the domain. The cutoff width determines the eddies
which are resolved. The information about the smaller eddies is destroyed beneath the
cutoff width. In Fig. 2.4 the concept of LES is illustrated. From the mean flow the large
eddies extract energy and transfers it into smaller scales. This process is called energy
cascade. For selecting the cut-off width at least 80−90% of the energy should be resolved.
In LES the motion is as much simulated as it is possible on a affordable grid [34].

Fig. 2.4: Concept of Large Eddy Simulation [34]

The small eddies are accounted by using a subgrid-scale model (SGS model). The
spatial filtering in LES can be represented by a filter function as seen in Eq. 2.11 [41].
This spatial averaging filter remove the small scale motions. Only the motions are resolved

10

CHAPTER 2. THEORY

which are larger than the mesh size.

filtering: φ̄(x, t) ≡
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(x,x’,∆)φ(x’, t)dx′1dx′2dx′3 (2.11)

Here x is the location where φ̄ is to be determined. In the spatial integration x′ is the
location where φ is considered. φ̄(x, t) is the filtered function, G(x,x’,∆) is the filter
function and φ(x’, t) is the original unfiltered function. The filter function G(x,x’,∆)
is normalized so that the integration of the filter function is 1. The most used three-
dimensional LES filtering functions are the box filter, Gaussian filter and spectral cutoff
filter shown in Fig. 2.5. The term φ̄(x, t) represents a three-dimensional and time depen-
dent filtered component. The decomposition of φ is defined in Eq. 2.12 which is similar
as the Eq. 2.21. The important difference is that the filtered residual φ̄′(x, t) is not zero
and applying the filter twice smoothes further the function φ(x’, t).

decompositon: φ(x, t) = φ̄(x, t) + φ′(x, t) (2.12)

Fig. 2.5: Filter functions used in LES [34]

Fig. 2.6: Filtered functions ū of different filter widths ∆ [34]

11

CHAPTER 2. THEORY

In Fig. 2.6 the effect of a top-hat (box-filter) filter differs with the widths ∆. The
cutoff width ∆ is often taken into account as follows:

cutoff: ∆ = 3
√

∆x∆y∆z (2.13)

Filtering of the continuity and Navier-Stokes equations of an incompressible fluid from
equation Eq. 2.1 to Eq. 2.4 yields as follows: [41]

LES Continuity equation: div(ρū) = 0 (2.14)

LES x-Momentum: ∂ρū

∂t
+ div(ρūū) = −∂p̄

∂x
+ div(µ grad(ū))− (div(ρuu)− (div(ρūū))

(2.15)

LES y-Momentum: ∂ρv̄

∂t
+ div(ρv̄ū) = −∂p̄

∂y
+ div(µ grad(v̄))− (div(ρvu)− (div(ρv̄ū))

(2.16)

LES z-Momentum: ∂ρw̄

∂t
+ div(ρw̄ū) = −∂p̄

∂z
+ div(µ grad(w̄))− (div(ρwu)− (div(ρw̄ū))

(2.17)

(I) (II) (III) (IV) (V)
The over bar in Eq. 2.14 to Eq. 2.17 indicates a spatially filtered flow variable. The terms
(V) are caused by filtering the convective terms of the Navier-Stokes equations thus:
div(ρ φu) = div(ρ φ̄ū) + (div(ρ φu)− div(ρ φ̄ū))
The terms (V) can be represented as a set of divergence stresses which are termed as the
sub-grid-scale stresses (SGS-stresses). In tensor notation the continuity equation is as
follows [34]:

Continuity equation: ∂ui
∂xi

= 0 (2.18)

The momentum conservation in index notation is as follows [34]:

Momentum equations: ∂ūi
∂t

+ ∂ūiūj
∂xj

= − 1
ρr

∂p̄

∂xi
+ ∂

∂xj

(
ν
∂ui
∂xj

)
−
∂τSGSij

∂xj
+ gi

ρ− ρr
ρr
(2.19)

12

CHAPTER 2. THEORY

The LES SGS-stresses are defined as follows: [41]

LES SGS-stresses: τSGSij = uiuj − ūiūj (2.20)

For dimensional reasons ρ(uiuj − ūiūj) are the stresses. The LES SGS-stresses can be
decomposed with the following equation:

Reynolds decomposition: φ(x, t) = φ̄(x, t) + φ′(x, t) (2.21)

The SGS stresses can be decomposed into the following form:

SGS stresses decomposed: τSGSij = ρūiūj − ρūiūj + ρūiu′j + ρu′iūj + ρu′iu
′
j (2.22)

There are three groups of the SGS stresses in Eq. 2.22. Where ρūiūj − ρūiūj are the
Leonard stresses (Lij), ρūiu′j + ρu′iūj are the cross stresses (Cij) and ρu′iu′j are the LES
Reynolds stresses (Rij). Similar as in the Reynolds stresses in the RANS equations the Rij

stresses which are caused by convective momentum transfer must be modeled. However
most of the SGS models uses the whole stress in Eq. 2.20 as a single entity and models
τSGSij by means of a single SGS turbulence model [41]. For a filtered scalar transport
equation as in Eq. 2.8 a term qSGSi appears.

SGS turbulent flux: qSGSi = uiφ− ūiφ̄ (2.23)

2.2.2.1 Subgrid-Scale (SGS) Models

In hydraulic-flow calculations τSGSij will be modeled of an explicit SGS model. There
is an other approach (Implicit Large-Eddy Simulation) available but not discussed. A
successful SGS model should dissipate from the large resolved scales the correct amount
of energy. The interactions between the largest unresolved and smallest resolved scales are
very important to be modeled. The boundary between the unresolved and resolved scales
are shown in Fig. 2.4, indicated by the dashed line. In LES the the energy dissipation is
much faster beyond the dashed line than in the DNS. For a Very-Large-Eddy simulation
(VLES) a more sophisticated SGS model is required. A physically correct dissipation is
important to remove the turbulent kinetic energy from the resolved scales which is shown
in Fig. 2.7. The tensor τSGSij is decomposed into an anisotropic and isotropic part as
follows: [34].

LES SGS-stresses decomposed: τSGSij = τij + 1
3τ

SGS
kk δij (2.24)

Where δij is the Kronecker Delta.

13

CHAPTER 2. THEORY

Fig. 2.7: Highly dissipative SGS model (left) and low dissipative SGS model (right) [34]

SMAGORINSKY MODEL:
Smagorinsky (1963) suggested that the Boussinesq hypothesis provide a good model for
describing the effects of the unresolved eddies, since the smallest turbulent eddies are
almost isotropic [41]. The anisotropic stress tensor τij in Eq. 2.24 is approximated by a
strain rate S̄ij and artificial turbulent viscosity νt.

Anisotropic stress tensor: τij = −2νtS̄ij (2.25)

The strain rate is defined as follows:

Strain rate: S̄ij = 1
2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
(2.26)

νt is not a fluid property and it depends on the resolved velocity field ūi. From dimen-
sionless analysis νt can be decomposed into a characteristic length scale l and velocity
scale (q) as follows:

turbulent viscosity: νt = l q (2.27)

Where the length scale is defined to be the size of the filter width ∆ times a Smagorinsky
constant Cs

lenth scale: l = Cs∆ (2.28)

The velocity scale q can be determinate similar to Prandtl’s mixing length theory:

velocity scale: q = l
√

2S̄ijS̄ij (2.29)

14

CHAPTER 2. THEORY

The turbulent viscosity yields as:

turbulent viscosity: νt = (Cs∆)2
√

2S̄ijS̄ij (2.30)

The adjustable parameter Cs is assumed to be constant and for a channel flow this value is
found to be 0.065− 0.1. For highly three dimensional complex problems the Smagorinsky
constant is impossible to determine a priori. For the implementation into a code the total
viscosity term is defined as follows:

total viscosity: νtotal = νt + ν (2.31)

There are three modified turbulent viscosity models available to alleviate the classical
Smagorinsky model. The WALE model does not need a wall damping, the dynamic
Smagorinsky model calculates the model coefficient and the one equation SGS model uses
a transport equation to solve the SGS kinetic energy kSGS which take care of the largest
unresolved scales. There are also SGS models available which are not based on the eddy
viscosity concept [34].

ONE EQUATION SGS MODEL: (Yoshizawa, 1986, Ghosal et al., 1994, Menon
and Kim, 1996)
For the Large-Eddy Simulation of turbulent channel flow over rough beds the k-Equation
in OpenFOAM is used which represents a one equation SGS model. To account for the
history effects on the SGS stresses the turbulent kinetic energy is used [34].

turbulent kinetic energy: k = 1
2τkk (2.32)

For the total amount of energy in the unresolved eddies the velocity scale is defined as
follows:

velocity scale: q = k1/2 (2.33)

The eddy viscosity is defined as follows:

turbulent viscosity: νt = Cv∆k1/2 (2.34)

Where τij is as follows:

Anisotropic stress tensor: τij = −2Cv∆k1/2S̄ij (2.35)

15

CHAPTER 2. THEORY

To determine the SGS kinetic energy k, a transport equation is used.

transport equation:∂k
∂t

+ ∂(ūjk)
∂xj

= ∂

∂xj

[
(ν + Ck∆k1/2) ∂k

∂xj

]
+ 2Cv∆k1/2S̄ijS̄ij − Ce

k3/2

∆
(2.36)

2.2.3 RANS

In the engineering practice it is mostly unnecessary to solve the turbulent fluctuations in
detail. With the mean pressure or mean stresses etc. the engineers are satisfied. The
majority of turbulent computations are based on the Raynolds Averaged Navier-Stoke
equations where the fluctuations are time filtered. The RANS turbulence models has
proved to be elusive to capture the large eddies. In Eq. 2.10 the flow variables like the
velocity u(t) can be represented in general as a property of ϕ(t). Therefore ϕ(t) is the
sum of the mean value Φ and the fluctuation term ϕ′(t) with the following equation:
ϕ(t) = Φ + ϕ′(t). The mean value Φ is defined as follows:

Mean flow variable: Φ = ϕ̄ = 1
∆t

∫ ∆t

0
ϕ(t)dt (2.37)

∆t is the averaging time which should be small than the time scale of the mean motion
but larger than the time scale of the turbulent fluctuations. The average of the fluctuating
part ϕ′(t) is defined as follows:

Average of the fluctuation: ϕ′ = 1
∆t

∫ ∆t

0
ϕ′(t)dt ≡ 0 (2.38)

The average of two multiplied flow variables becomes to:

ϕ(t)ψ(t) = ϕ′(t)ψ′(t) + ψ′(t)Φ + ϕ′(t)Ψ + ΨΦ = ΨΦ + ϕ′(t)ψ′(t) (2.39)

By time averaging the governing equations Eq. 2.1 to Eq. 2.4 becomes to: [41]

Continuity: div(U) = 0 (2.40)

x-Mom.: ∂ρU
∂t

+ div(ρUU) = −∂P
∂x

+ div(µ grad(U)) + Smx +
[
− ∂(ρu′u′)

∂x

− ∂(ρu′v′)
∂y

− ∂(ρu′w′)
∂z

]
(2.41)

16

CHAPTER 2. THEORY

y-Mom.: ∂ρV
∂t

+ div(ρVU) = −∂P
∂y

+ div(µ grad(V)) + Smy +
[
− ∂(ρu′v′)

∂x
(2.42)

− ∂(ρv′v′)
∂y

− ∂(ρv′w′)
∂z

]
(2.43)

z-Mom.: ∂ρW
∂t

+ div(ρWU) = −∂P
∂z

+ div(µ grad(W)) + Smz +
[
− ∂(ρu′w′)

∂x
(2.44)

− ∂(ρv′w′)
∂y

− ∂(ρw′w′)
∂z

]
(2.45)

(I) (II) (III) (IV) (V) (VI)
The capital letters P , U , V , W , U and the over bar indicates a time-averaged variable. In
(VI) the terms do not appear in Eq. 2.2 to Eq. 2.4 which are derived by time-averaging the
nonlinear convective term. These extra turbulent stress terms, namely Reynolds stresses
are decomposed into three normal stresses τxx = ρu′u′, τyy = ρv′v′ and τzz = ρw′w′ and
into three shear stresses τxy = τyx = ρu′v′, τxz = τzx = ρu′w′ and τyz = τzy = ρv′w′. The
continuity equation in tensor notation is as follows [34]:

Continuity equation: ∂Ui
∂xi

= 0 (2.46)

The momentum conservation in index notation is as follows [34]:

Momentum equations: ∂Ui
∂t

+ ∂UiUj
∂xj

= − 1
ρr

∂P

∂xi
+ ∂

∂xj

(
ν
∂Ui
∂xj

)
−
∂τRANSij

∂xj
+ gi

ρ− ρr
ρr
(2.47)

Where τRANSij = u′iuj
′ are the Reynolds stresses. For dimensional reasons ρ(u′iuj′) are the

stresses.

17

CHAPTER 2. THEORY

18

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

Chapter 3

Large-eddy simulation of turbulent
channel flow over rough beds

3.1 Introduction
In hydraulic engineering a rough surface is very important because in an open channel
all surfaces must be considered rough. Turbulent flow over a rough bed is an active
area of research which is less understood than a smooth surface. Through a numerical
grid the flow is explicitly resolved and is very useful providing detailed information [34].
In LES well defined roughness elements in Section 3.2.1 are chosen. In this Thesis the
simulations rough- and smooth channel are executed in "OpenFOAM-6" on a "Ubuntu
18.04" terminal. The simulation is based on the report of Margalit [22] and has been
modified. For creating a smooth channel the section in Section 3.2.1 and in Appendix A
6.10 fvOptions the porosity is omitted. In the following chapters the channel is generated.
The computational domain were carried out in a 2m wide flume with a 4m long straight
reach which is shown in Fig. 3.1. The case is adopted from the channel 395.

3.2 Pre-Processing
In this section the structure of the fluid flow problem is defined. Before executing the
solver at first the geometry of domain of interest, roughness elements, boundary and
initial conditions and some options have to defined which are discussed in Section 3.2.1
to Section 3.2.5.

3.2.1 Rough Bed generation

At first the geometry of the channel in Section 3.2.2 should be created before generating
the rough bed. The roughness elements of the channel is specified in the file boxes.C in

19

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

z

4.00

2.00

1.
00

Rectangular channel

bottomWall

leftWall

outlet

topWall

rightWall

inlet

d50

y

x
v = 0.1335 m/s

Fig. 3.1: Rectangular channel

Fig. 3.2: Correlation between standard deviation σ and characteristic diameter d50

Appendix A 6.1 Creation of the roughness elements, boxes.C. The C++ code is adopted
from Margalit [22] and it has been modified. At first the user can specify the characteristic
sediment size d50 which represents the roughness of the channel bed. Where 50% of a
samples mass is lower or higher than the d50. The constants x and z defines the streamwise
and spanwise domain of the channel which is drawn in Fig. 3.6. This picture has a length
of 4m and width of 2m. A user can specify with scaling factor c the streamwise and
spanwise spacing of the roughness elements. The standard deviation σ is defined as
0.5 ∗ d50 which is adopted from Stoesser [38] and shown in Fig. 3.2. Then the code
compute number of boxes in streamwise and spanwise directions. This channel consists
of 112 ∗ 56 = 6272 roughness elements with a length and width of 0.036m. At next the
elevation of each element is created considering a normal distribution with the standard

20

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

deviation of σ = 0.5 ∗ d50 and mean = 0. The height is restricted by 3 ∗ σ which takes
care that 99.7% of all values lie within the deviation. At first the code create positive
and negative values around the mean which is 0. In the next step the lowest value will
be added to the random values to create a shift that no element has a negative elevation.
The shift is graphically shown in Fig. 3.3 on the left hand side. The bright gray blocks are
shifted to the top with min. elevation e where dark gray block represents the additional
movement. This theoretically model should correspond to the physical model on the right
hand side. In this study the roughness height k = d50.

e

mi
n.

ele
va

tio
n (

e)

e av
era

ge
 el

ev
ati

on

y

y*

d50

Fig. 3.3: Shift of the random values with rough bed

The code create a boxes.txt file with all roughness elements after executing the fol-
lowing commands:

g++ -std=c++11 boxes.C -o boxes
./boxes > log.boxes

Each line represents a rough element. The first three values corresponds the left
bottom corner and the last three values corresponds the right top corner of a single box.
These corners represents the two extreme points of the box. In this channel 6272 boxes
are generated. The first and last three entries are shown as follows:

21

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

(0 0 0)(0.036 0.0345364 0.036)
(0 0 0.036)(0.036 0.0229582 0.072)
(0 0 0.072)(0.036 0.0442115 0.108)
...
(3.996 0 1.908)(4.032 0.0254329 1.944)
(3.996 0 1.944)(4.032 0.0214726 1.98)
(3.996 0 1.98)(4.032 0.0212569 2.016)

In the next step these boxes are created by the file topoSetDict which is shown in
Appendix A 6.2 topoSetDict. This file creates a cell set into the mesh where the source is
the boxes.txt file. The following commands are necessary to add the roughness elements
into the domain:

topoSet
setsToZones

The first command create a new set "bed" and the second one add this set into a zone.
In paraview the zone can be visualized by clicking the button "Read zones" to see the bed
roughness. The rough elements are shown in Fig. 3.4 The first few roughness elements

Fig. 3.4: Rough bed

which are located at the coordinate origin are shown in Fig. 3.5. The geometry of the
whole domain is shown in Fig. 3.6. In Appendix A 6.3 blockMeshDict the number of
cells are defined. The first block at the bottom with a length of 0.2m has 36 cells in

22

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

Fig. 3.5: Size of the rough elements

y-direction with an expansion ratio of 6. This grading consists of a cell-to-cell expansion
ratio of about 1.0525 where the first cell has a width of about 0.00198m and the last
one has a length of about 0.01186m which results by calculation the first cell by factor
of 6 or 1.052535. The first roughness element in Fig. 3.5 has a length of 0.0417m, width
of 0.0566m and height of 0.0356m. This geometry almost matches with the values in
boxes.txt with a length of 0.036m, width of 0.036m and height of 0.0345m. The reason
why they do not match perfectly together is that the whole geometry of the channel can
only be expressed by a finite number of cells.

3.2.2 Geometry of the Domain
All geometry in OpenFOAM are generated in a three dimensional Cartesian coordi-
nate system. The blockMeshDict entries for this case are shown in Appendix A 6.3
blockMeshDict. The file first specifies coordinates of the block vertices which are con-
verted into meters. The channel domain consists of a cuboid of side length L = 4.00m,
width B = 2.00m and height H = 1.00m. The cuboid is separated into two blocks of
height H1 = 0.20m and H2 = 0.80m. The block structure is shown in Fig. 3.6 Then the
file defines blocks and number of cells within it. This case consists of two blocks which
are defined by 8 vertices of each block. The first block at the bottom consists of 72 cells
in x-direction, 36 cells in y-direction and 48 cells in z-direction. The second block at the
top consists of 72 cells in x-direction, 38 cells in y-direction and 48 cells in z-direction.
Therefore the whole domain consists of 255 744 cells. A non uniform mesh is used for
both blocks where in y-direction the last cell is 6 times longer than the first one or rather
5 times longer than the first one. The grid structure is shown in Fig. 3.7. The domain

23

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

x
y

0.
20

0.
80

1.
00

4.00

z bottomWall

leftWall

topWall

002.

roughChannel

rightWall

inlet outlet

Fig. 3.6: Visualization of the Channel geometry

has 6 boundaries which are named as bottomWall, topWall, leftWall, rightWall, inlet and
outlet. the bottomWall is defined by type wall which represent a solid wall at the bot-
tom. The topWall is defined by type patch which contains no geometric or topological
information. The remaining boundaries are defined by type cyclic. This type enables
two boundaries to be treated as if they are physically connected. With executing the
blockMesh command the blocks and numbers of cells withing it are generated.

blockMesh

Fig. 3.7: Visualization of the mesh

24

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

3.2.3 Boundary and Initial Conditions

3.2.3.1 Velocity, U

Once the mesh generation is done the initial and boundary conditions are generated.
The velocity U is set up in Appendix A 6.4 Velocity, U. The internal field is specified
to be (0 0 0). In Section 3.2.3.5 the velocity values at time is 0 s will be mapped from
channel395. The bottom wall is set up as a noSlip boundary condition which restricts the
velocity as a fixed value of (0 0 0) at this patch. At the top wall the velocity is defined as
a slip boundary condition. The remaining patches have a cyclic boundary condition. The
velocity at the outlet is physically connected to the inlet whereas the left wall is physically
connected to the right wall.

3.2.3.2 Kinematic Pressure, p

The kinematic pressure p in m2

s2 is set up in Appendix A 6.5 Kinematic Pressure, p. The
internal field is specified to be 0. In Section 3.2.3.5 the pressure values at time is 0 s
will be mapped from channel395. The bottom and top wall consists of a zeroGradient
boundary condition. At this patch the normal gradient p is zero over time. The remaining
boundary fields have a cyclic boundary condition. The pressure at the outlet is physically
connected to the inlet whereas the the left wall is physically connected to the right wall.

3.2.3.3 turbulent kinetic energy, k

The turbulent kinetic energy k in m2

s2 is set up in Appendix A 6.6 Turbulent Kinetic
Energy, k. The internal field is specified to be 0. In Section 3.2.3.5 the turbulent kinetic
energy values at time is 0 s will be mapped from channel395. The values at the bottom
wall are defined to be zero. The top wall consists of a zeroGradient boundary condition.
At this patch the normal gradient p is zero over time. The remaining boundary fields
have a cyclic boundary condition. The turbulent kinetic energy at the outlet is physically
connected to the inlet whereas the the left wall is physically connected to the right wall.

3.2.3.4 turbulence viscosity, nut

The turbulence viscosity nut in m2

s
is set up in Appendix A 6.7 Turbulence viscosity, nut.

The internal field is specified to be 0 initially. In Section 3.2.3.5 the turbulence viscosity
values at time is 0 s will be mapped from channel395. The bottom and top wall has
a zeroGradient boundary condition which means that the normal gradient from nut is
zero over time. The remaining boundary fields have a cyclic boundary condition. The
turbulence viscosity at the outlet is connected to the inlet and the left wall is connected
to the right wall.

25

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

3.2.3.5 Adapting fields from channel395

The file mapFieldsDict is shown in Appendix A 6.8 mapFieldsDict. Inside the mapFields-
Dict the patches that coincide can be specified. The patch bottom wall has the same name
in channel395 and roughChannel. The fields at the patch sides1_half0 and inout1_half0
are mapped to the patch leftWall and outlet. Where the boundaries inout1_half1 and
sides1_half1 are not mapped because the left- and right wall in the rough channel are
physically connected. Then the path topWall that cuts the geometry is named. In the
picture Fig. 3.8 the domain of channel395 and the rough channel is shown. With the
following command the boundary and initial fields from channel395 to roughChannel are
mapped.

mapFields ../channel395

After executing this command the velocity field should look like in Fig. 3.9

Fig. 3.9: Velocity, U at time 0

3.2.3.6 changeDictionaryDict

With the changeDictionaryDict all fields in the 0 folder can be modified together which
is shown in Appendix A 6.9 changeDictionaryDict. To set all internal fields back to 0, a
vector is specified by (0 0 0) and a scalar by 0.

3.2.4 Options
3.2.4.1 fvOptions

With the file fvOptions any physics can be represented as sources or constraints on the
governing equations e.g. porous media MRF (multiple reference frame) and body forces
[31]. In this case the rough bed is given a porosity and the the flow is driven by a pressure
gradient which is shown in Appendix A 6.10 fvOptions. For this case the mean velocity
is defined as 0.1335 m

s
. The porous media is is given by very high values that the cells

become practically impermeable, where d is the Darcy coefficient in [1
m2] and f is the

26

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

x
y

0.
20

0.
80

1.
00

4.00

z bottomWall

leftWall

topWall

002.

roughChannel

rightWall

0.
20

0.
80

1.
00

1.
00

sides2_half0

sides1_half0

002.

4.00

sides1_half1

sides2_half1

channel395

topWall

bottomWall

inout2_half0

inout1_half0

inout2_half1
inlet outlet

x
y

z

inout1_half1

Fig. 3.8: Mapping channel395 to roughChannel

27

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

Forchheimer coefficient in 1
m

[30]. This components are specified by a coordinate system
where e1 and e2 sets the local orientation of the coefficients.

3.2.4.2 transportProperties

The kinematic viscosity is specified by 1.9 ∗ 10−5 m2

s
and the average velocity is defined

by 0.1335 m
s
which is shown in Appendix A 6.11 transportProperties.

3.2.4.3 turbulenceProperties

Obviously the LES model is used for the simulation which can be shown in Appendix A
6.12 turbulenceProperties. Alternatively the RASModel or laminar can be used for the
computation. In this case the k-Equation model is used, which uses one k equation to
model turbulence in the sub-grid scale. For the spatial filter delta the cube root of each
cell is used because the bed cells are not regarded as a wall.

3.2.4.4 fvSchemes (Numerical Schemes)

The discretization schemes which are used for this case are shown in Appendix A 6.13
fvSchemes. In the fvSchemes dictionary the numerical schemes can be specified. The
categories are subdivided as follows:

• ddtSchemes: Defines a time scheme. ∂
∂t
, ∂

2

∂2t

• gradSchemes: Defines a gradient scheme. ∇

• divSchemes: Defines a divergence scheme. ∇∗

• laplacianSchemes: Defines a laplacian scheme. ∇2

• interpolationSchemes: Defines the cell to face interpolations of values.

• snGradSchemes: Defines the component of gradient normal to a cell face.

• wallDist: Defines the distance to wall.

For the time derivatives, a steadyState (derivatives are 0), Euler (first order implicit,
transient, bounded), backward (second order implicit, transient, potentially bounded),
CrankNicolson (second order implicit, transient, bounded, requires ψ = 0.9) and lo-
calEuler (first order implicit, pseudo transient) scheme can be specified.

For the gradient the Gauss linear scheme is primarily used, which interpolate for the
finite volume discretization the values linearly from cell centers to face centres.

If the default is set to none in the divergence schemes then the Gauss linear scheme
is used. The Gauss integration uses a flux phi and by one of the schemes the advected

28

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

field which is interpolated to the cell faces can be selected. For the divergence, a lin-
ear (second order, unbounded), linearUpwind (second order, upwind-biased, unbounded),
LUST (blended 75% linear and 25% linearUpwind scheme), limitedLinear (linear scheme
that limits in direction of upwind in regions of rapidly changing gradient) and upwind
(first-order, bounded) scheme can be used. For more details of these numerical schemes
see in [13].

3.2.4.5 fvSolution

In the fvSolution dictionary the numerical solver and tolerances of each field can be
specified, where this file is adopted from channel395. It is shown in Appendix A 6.14
fvSolution. For the PIMPLE solver it is necessary to specify a reference point for the
pressure. The coordinates for this point is at (0 1 0) specified which is at the top of the
channel. For more details of the solution and algorithm control see in [14].

3.2.4.6 controlDict

In Appendix A 6.15 controlDict the configuration of the simulation can be specified. When
executing the solver pimpleFoam the computation starts at time 0, write interval at every
500 seconds of the simulation and ends at 20 000 s. The Courant number for this case is
set by 0.7 which is defined for one cell as follows:

Courant number: Co = |U| δt
δx

(3.1)

|U| is the magnitude of the velocity through the cell, δt is the time step and δx is the
cell size in direction of the velocity. (Christopher J. Greenshields [9]) Furthermore time-
averaged quantities like the velocity U and the pressure p are of interest. At the bottom
in controlDict the fields which have to be averaged during runtime are specified.

3.2.4.7 decomposeParDict

The dictionary for decomposing the mesh and fields of the domain to increase the compu-
tation power is shown in Appendix A 6.16 decomposeParDict. At first the number of sub
domains can be specified which is dependent on the numbers of cores on the computer.
This simulation is done on 4 cores of 2.80 GHz. In addition the simple method is used
which splits the geometry into pieces by direction.

3.2.5 Folder tree
Finally after specifying all files and executing some commands the folder tree should look
as follow:

29

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

.
0

U
k
nut
p

constant
fvOptions
polyMesh

boundary
cellZones
faceZones
faces
neighbour
owner
pointZones
points
sets

bed
postChannelDict
transportProperties
turbulenceProperties

system
blockMeshDict
boxes
boxes.C
boxes.txt
changeDictionaryDict
controlDict
decomposeParDict
fvSchemes
fvSolution
log.boxes
mapFieldsDict
topoSetDict

Before executing the solver, the geometry has to split into 4 sub domains with the following
command:

decomposePar

30

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

This will create 4 folders as follows:

.
processor0

0
U
k
nut
p

constant
polyMesh

boundary
boundaryProcAddressing
cellProcAddressing
cellZones
faceProcAddressing
faces
neighbour
owner
pointProcAddressing
points
sets

bed
processor1

0
U

. . .
processor2

0
U

. . .
processor3

0
U

. . .

3.3 Solver
To solve the momentum and continuity equations the pimpleFoam solver is used. It is a
incompressible transient solver for turbulent flow of Newtonian fluids, with optional mesh

31

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

motion and mesh topology changes [9]. This solver is a transient solver for incompress-
ible, turbulent flow of Newtonian fluids on a moving mesh. The solver uses the PIMPLE
(merged PISO-SIMPLE) algorithm to solve the continuity equation and momentum equa-
tion. For this solver the velocity- and kinematic pressure field and additional turbulence
fields are required[1]. Where the SIMPLE (Semi-Implicit Method for Pressure Linked
Equation method) guesses the pressure field and advance the velocity field at the first
place, then for a pressure correction variable the Poisson equation will be solved, then
with a pressure correction variable the pressure will be corrected and the velocity uses
the corrected pressure and in the last step the velocity will be checked for continuity [34].
The parallel simulation starts by the following command:

mpirun -np 4 pimpleFoam -parallel » log.run &

To follow the simulation the following command is used:

tail -f log.run

For instance for the rough channel the simulation stopped at 20 000 s. Where in the
log.run file every time step has been recorded. At a velocity of 0.1335 m

s
, channel length of

4m and time of 20 000 s the flow has been passed 667.50 times. The following command
is used to reconstruct the domain:

reconstructPar

For more details of the solver see in [8].

3.4 Post-Processing and results
The first example concerns a open channel with a smooth bed and the second and third
one concerns a rough bed. At a Reynolds number based on the friction velocity which
is shown in Eq. 3.2 and Reynolds number based on the bulk velocity which is shown in
Eq. 3.3 is listed in Tab. 3.1 [34]

Reynolds number based on friction velocity: Reτ = u∗h

ν
(3.2)

Reynolds number based on bulk velocity: Reh = ubulkh

ν
(3.3)

The water depth h is 1m and the kinematic viscosity ν is 1.9 ∗ 10−5 m2

s
. The flow is

developed by a periodic boundary conditions in streamwise and spanwise directions. The
dimensionless roughness height ks+is defined by Eq. 3.6.

32

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

Tab. 3.1: Dimensionless parameters obtained by simulations

ubulk
m
s

Reτ Reh ks+

Smooth wall 0.1335 425 700 0
Rough wall 0.1335 480 7000 11.53
Rough wall 0.2500 910 13000 21.35

3.4.1 postChannelDict

For post-processing the file postChannelDict is used which is shown in Appendix A 6.17
postChannelDict. This code can specify the direction of depth and whether if the domain
is symmetric or not. This case has a solid bottom and an open top which indicates that
the domain is not symmetric. To create spatial averaged quantities in streamwise and
spanwise directions the following command is used:

postChannel

This utility create the folder graphs with the following content:

.
Uf.xy
k.xy
pPrime2Mean.xy
u.xy
uv.xy
v.xy
w.xy

3.4.2 Graphs for rough and smooth channel

In the log.run file the pressure gradient in each time step is listed. With the following
command the pressure gradient over time will be scanned and write into the file gradP.txt:

cat log.run | grep ’pressure gradient’ | cut -d’ ’ -f11 | tr -d ’,’ > gradP.txt

With the following command each time step will be scanned and write into the file
time.txt.

cat log.run | grep -w ’Time’ | cut -d’ ’ -f3 | tr -d ’,’ > time.txt

33

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

In Fig. 3.10 the pressure gradient over time for the rough channel is shown. The first
1000 s are cut away which make sure that the values have reached a certain stability. The
average pressure gradient has a value of 8.6489 ∗ 10−5. The values vary from 7.119 ∗ 10−5

to 10.4356 ∗ 10−5

Fig. 3.10: Pressure gradient for rough channel ks+ = 11.53

In Fig. 3.11 the pressure gradient over time for the rough channel with an increased
velocity of 0.25 m

s
is shown. The first 1000 s are cut away which make sure that the values

have reached a certain stability. The average pressure gradient has a value of 29.633∗10−5.
The values vary from 36.339 ∗ 10−5 to 25.3425 ∗ 10−5

34

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

Fig. 3.11: Pressure gradient for rough channel with increased velocity ks+ = 21.35

In Fig. 3.12 the pressure gradient over time for the smooth channel is shown. The first
9500 s are cut away and the simulation ended at 28500 s. The average pressure gradient
has a value of 6.5005 ∗ 10−5. The values vary from 5.457 ∗ 10−5 to 7.649 ∗ 10−5

Fig. 3.12: Pressure gradient for smooth channel

35

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

For creating the velocity profiles, the smooth channel, rough channel and rough channel
velocity increased, the time step 28 500 s, 20 000 s and 12 000 s is used. In the file Uf.xy
the water depth at the left column and the velocity on the right column is shown. The
cells in the x-direction and z-direction are averaged. In y-direction at the first column
74 entries for the smooth and rough channel are shown. For the rough channel with an
increased velocity 111 entries are specified. This amount derives by the number of cells
in z-direction. It can be shown in the blockMeshDict in Appendix A 6.3 blockMeshDict.
The wall shear stress is obtained by the following equation [38]:

wall shear stress: τ0 = ∂p

∂x
∗ h (3.4)

Where ∂p
∂x

is the pressure gradient and h the water depth. For the rough channel velocity
plot the height h is subtracted by the min. elevation e which is shown in Section 3.2.1.
Therefore the y-coordinate is shifted to the y*-coordinate. The shear velocity is obtained
by the following equation [38]:

shear velocity: u∗ =
√
τ0

ρ
(3.5)

In OpenFOAM the pressure gradient is already divided by the density. For calculating
the shear velocity as shown in Eq. 3.5, ρ is omitted. The roughness height is obtained by
following equation [38].

dimensionless roughness heigth: ks+ = u∗ ∗ ks
ν

(3.6)

Where u∗ is the shear velocity as in Eq. 3.5, ks roughness height and ν the kinematic
viscosity. The roughness height is chosen to be the characteristic sediment size d50.
The kinematic viscosity is defined by 1.9 ∗ 10−5 m2

s
which is shown in Appendix A 6.11

transportProperties. The dimensionless wall distance is defined by following equation
[12]:

dimensionless wall distance: y+ = u∗ ∗ y
ν

(3.7)

Where y is the wall distance. The dimensionless velocity is defined by the following
equation [11]:

dimensionless velocity: u+ = u

u∗
(3.8)

Where u is the local velocity. To compare the results from the rough channel in Open-
FOAM in the log law region, a additional equation for the dimensionless velocity is used.

36

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

The logarithmic law of the wall for a rough bed can be written as follows [22]:

logarithmic law of the wall rough bed: u+ = 1
κ
∗ ln

(30 ∗ y
ks

)
(3.9)

Where κ is the von Karman constant which is approximately 0.41. To compare the results
from the smooth channel in OpenFOAM in the log law region the following equation is
used [41]:

logarithmic law of the wall smooth bed: u+ = 1
κ
∗ ln(y+) +B (3.10)

In equation Eq. 3.10 , the additive constant B is choosen by 5. The velocity profiles are
shown in Fig. 3.13 and Fig. 3.14, where the dimensionless velocity profile is plotted on
a semilogarithmic graph. The mean velocity is defined by 0.1335m/s. It is shown that
the dimensionless velocity profile of the rough channel has a parallel down shift in the
outer layer due to the roughness elements. Numerous experimental findings show that
the greater the dimensionless roughness height, the bigger the shift [22]. The log law
equations Eq. 3.9 and Eq. 3.10 also confirms the log regions.

Fig. 3.13: Dimensionless velocity profiles

37

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

Fig. 3.14: Velocity profiles compared to the bulk velocity

38

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

3.4.3 Plots for the rough channel with an increased velocity
In the Fig. 3.6, the velocity Ux,Uy,Uz, magnitude U, UMean and pressure p for the rough
channel with an increased velocity of 0.25 m

s
is shown.

Fig. 3.15: Plots for rough channel with increased velocity

39

CHAPTER 3. LARGE-EDDY SIMULATION OF TURBULENT CHANNEL FLOW OVER ROUGH
BEDS

40

CHAPTER 4. TRAPEZOIDAL CHANNEL

Chapter 4

Trapezoidal Channel

4.1 Introduction
At present the multi-cellular secondary currents in straight shallow rivers is quite un-
known. River engineers pointed out that in straight wide rivers the sediment concentration
varied periodically in the spanwise direction which is may caused by cellular secondary
currents [40]. Matthes [23] suggested that there may exist a strong upward current near
the river bed which was observed as a swollen water surface. This upward current devel-
oped as a so called boil. Kinoshita [18] found that in a spacing of twice the flow depth h
a low speed boil zones were formed. In this region he suggested that two counter rotating
streamwise vortices exist. Where the vortex has a diameter of about the water depth h
which is shown in Fig. 4.1.

Fig. 4.1: Multi-cellular secondary currents [5]

41

CHAPTER 4. TRAPEZOIDAL CHANNEL

Karcz [17] and Culbertson [10] found after the flood longitudinal ridges which indicates
an existence of cellular secondary currents in a straight river. In hydraulic engineering
an investigation of the secondary currents are very important because they form the river
beds and might cause three dimensional sediment transport [5]. In a straight open channel
the authors (1982 [19] [25]) measured secondary currents with the X-type hot-films (DISA
55R61) In Fig. 4.2 the channel width B = 30 cm, flow depth h = 4.0 cm, bulk velocity
Um = 32 cm

s
, Re = hUm

ν
= 13 000 and Fr = Um√

g h
= 0.51 is shown. Longitudinal ridge

elements in spanwise spacing of λ = 2h = 8 cm, 8m long, 5mm thick, 20mm wide and
with a 45◦ trapezoid cross section are attached to the smooth channel bed. They obtained
secondary currents experimentally which can be shown through the mean velocities V
and W. Two counter rotating streamwise vortices are seen clearly. The circular center is
roughly to y

h
and the diameter of the vortex motion is equal to h. The velocity of the

circular motion is within only 5% of the maximum mainstream velocity [5].

Fig. 4.2: Cellular secondary currents in a straight open channel [5]

Tominaga et al. [39] pointed out the importance of secondary currents in open channels.
The vortices affect the primary mean flow, three-dimensional bed formation such as sand
ribbons and three dimensional transport. The secondary currents are induced by the
anisotropy of turbulence and the velocity is about 2 to 3 % of the primary mean flow.
Tominaga et al. [39] conducted all experiments in a tilting flume with a cross section of
40 x 40 cm and length of 12.5m, see in Fig. 4.3.

42

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.3: Trapezoidal Channel [39]

The experiments are carried out with the use of a hot-film anemometer. They investi-
gated experimentally and numerically the effects of the channel shape, three-dimensional
turbulent structures, boundary roughness and the free surface. The main findings of the
turbulent structures are listed as follows:

• In an open channel flow the secondary current structure is quite different from
a closed channel flow (top left in Fig. 4.4). In an open channel the structure is
composed into a bottom and free surface vortex at about y/h = 0.6. Where the top
vortex decelerate the primary mean velocity near the surface.

• In a rectangular channel (top right in Fig. 4.4) the secondary current structure is
different from the trapezoidal channel (bottom in Fig. 4.10).

• The basic structure of the secondary currents does not change much while varying
the boundary roughness, but if the side-wall shear to bottom wall shear ratio in-
creases, the spanwise vortex scale becomes larger. It is possible that multi- cellular
secondary currents occur over the rough wall.

• The secondary currents affect the turbulence intensities, mean velocity and bound-
ary shear stress.

43

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.4: Closed Channel (top left), Open Channel (top right) and Trapezoidal Channel
(bottom) [39]

4.2 Rough and Smooth Trapezoidal Channel
For the rough and smooth trapezoidal channel the experimental case "Exp. F16_45_30"
by Blanckaert, Duarte, and Schleiss [4], with a decreased velocity is computed. The bulk
velocity is reduced from 0.44 m

s
to 0.1 m

s
because of computational effort which will be

discussed in Section 4.2.1.1. They analyzed experiments in straight open channel flows.
They investigated a wide range of shallowness, roughness of the bed, banks and bank

44

CHAPTER 4. TRAPEZOIDAL CHANNEL

inclination, as well as combinations of these three parameters. They found secondary
currents over the entire width that scale with the flow depth in all experiments. A
widespread theory in straight open channel flows is that these currents are generated by
the bank and die out at a distance of 2.5 times the flow depth from the bank. These
findings contradict to the widespread theory. The secondary currents reduce and the bed
shear stress in the vicinity of the bank and cause transverse variability for the streamwise
velocity and for the bed shear stress. The resistance of the flow, sediment transport and
the conveyance capacity is characterized by the boundary shear stress. For the design
of stable channels and mitigation of hazards a accurate prediction of the boundary shear
stress is very important. [4]. Detailed information of the geometric and flow conditions
of the Experiment is given in Tab. 4.1. Where the bulk velocity U is defined in Eq. 4.1
and the flow discharge is Q, the average width at the bed and water surface is B and H
is the water depth.

bulk velocity: U = Q

BH
(4.1)

The shear velocity is based on the following equation:

shear velocity: u∗ =
√
g RhEs (4.2)

Where Rh is the hydraulic radius defined in Eq. 4.3 and Es is the energy slope.

hydraulic radius: Rh = cross sectional area

wetted perimeter
(4.3)

The Reynolds particle number is based on the following equation:

Reynolds particle number: Re∗ = u∗ d

ν
(4.4)

45

CHAPTER 4. TRAPEZOIDAL CHANNEL

Tab. 4.1: Detailed information of the hydraulic and geometric conditions of the
Exp. F16_45_30 [4]

B B
H

H Re = U H
ν

Fr = U√
g H

1.22 [m] 7.6 [−] 0.16 [m] 70 [103] 0.35 [−]

ν dbank dbed U θbank

1 [10−6m2

s
] 30 [mm] 2 [mm] 0.44 [m

s
] 45 [◦]

Es
dbed

H
dbank

H
Re∗ = u∗dbed

ν
u∗ =

√
g RhEs

8.7 [10−4] 0.013 [−] 0.188 [−] 66 [−] 0.033 [m
s

]

Reτ = u∗H
ν

Rh Q perimeter cross section

5.3 [103] 0.128 [m] 8.6 [l
s
] 1.53 [m] 0.195 [m2]

τ0 = u2
∗ ρ

1.09 N
m2

4.2.1 Computation requirement for trapezoidal channel

4.2.1.1 Experiment F16_45_30

The Reynolds number in the experiment F16_45_30 is about 70 000 which is way too
high for simulating this case in LES with an average computer. Chapmen (1979) [7],
Georgiadis, Rizzetta, and Fureby [15] and other authors found out that ∆x+ ≈ 50− 150
(streamwise), ∆y+ ≈ 15 − 40 (spanwise) and ∆z+

1 ≈ 1 (wall-normal) is necessary as a
minimum resolution for flow over a flat plate [34]. The numerical mesh cells near the
wall is shown in Fig. 4.5. In Tab. 4.1 the friction velocity is 0.033 m

s
and the kinematic

viscosity is 10−6 m2

s
. In the following equations ∆x (∆x+ = 150), ∆y (∆y+ = 40) and

∆z1 (∆z+
1 = 1) are calculated.

minimum grid size required for ∆ x: ∆x+ = ∆xu∗
ν
→ ∆x ≈ 4.54 ∗ 10−3m (4.5)

minimum grid size required for ∆ y: ∆y+ = ∆y u∗
ν
→ ∆y ≈ 1.21 ∗ 10−3m (4.6)

46

CHAPTER 4. TRAPEZOIDAL CHANNEL

minimum grid size required for ∆z1: ∆z+
1 = ∆z1 u∗

ν
→ ∆z1 ≈ 3.03 ∗ 10−5m (4.7)

For a total expansion ratio of 8 and height of 0.16m the number of cells in z-direction is
416 which is shown in Fig. 4.6. For the streamwise direction at least 440 (2/4.54 ∗ 10−3)
cells and for spanwise at least 1072 (1.30/1.21 ∗ 10−3) cells are required. This give a
number of 196 ∗ 106 cells.

Fig. 4.5: grid size for wall resolving LES [34]Fig. 4.6: blockMesh grading calculation [36]

4.2.1.2 Experiment F16_45_30 decreased velocity

Where this thesis broaden the experimental case Exp. F16_45_30 with a decreased
velocity. The computational domain is carried out in a 1.3m wide flume with 0.16m flow
depth, a 2m long straight reach and bulk velocity of 0.1 m

s
which is shown in Fig. 4.7.

Detailed information of the geometric flow conditions of the reduced velocity is shown in
Tab. 4.2. The friction velocity for the decreased computational case is a priory not known.
Therefore the mesh size has to be assumed at first and then the friction velocity can be
calculated. Then the mesh size is obtained by Eq. 4.10 to Eq. 4.12. This is a iterative
process. However the final wall shear stress and friction velocity after the procedure is
shown in Tab. 4.2 which are defined by following equations:

wall shear stress: τ0 = µ

(
∂u

∂y

)
(4.8)

friction velocity: u∗ =
√
τ0

ρ
=

√√√√ν(∂u
∂y

)
(4.9)

47

CHAPTER 4. TRAPEZOIDAL CHANNEL

45
° 0.

16

2

0.16 1.14

Trapezodial channel: Exp. F16_45_30

0.08 1.22

1.30

y
x

d ba
nk =

 30
mm

z

righ
tWallleftW

all

outlet topWall

bottomWall

d bed = 2 mm inlet

U = 0.1
0 m

/s
2

Fig. 4.7: Trapezodial channel

Tab. 4.2: Detailed information of the Exp. F16_45_30 with a decreased velocity [4]

B B
H

H Re = U H
ν

Fr = U√
g H

1.22 [m] 7.6 [−] 0.16 [m] 16 [103] 0.08 [−]

ν dbank dbed U θbank

1 [10−6m2

s
] 30 [mm] 2 [mm] 0.1 [m

s
] 45 [◦]

Es = u2
∗

Rh g
dbed

H
dbank

H
Re∗ = u∗dbed

ν
u∗ =

√√√√ν(∂u
∂y

)
1.1 [10−5] 0.013 [−] 0.188 [−] 7 [−] 0.0037 [m

s
]

Reτ = u∗H
ν

Rh Q perimeter cross section

590 0.128 [m] 8.6 [l
s
] 1.53 [m] 0.195 [m2]

τ0 = u2
∗ ρ

0.0136 N
m2

48

CHAPTER 4. TRAPEZOIDAL CHANNEL

In Tab. 4.2 the friction velocity is 0.0037 m
s

and the kinematic viscosity is 10−6 m2

s
.

In the following equations ∆x (∆x+ = 70), ∆y (∆y+ = 30) and ∆z1 (∆z+
1 = 1) are

calculated.

minimum grid size required for ∆ x: ∆x+ = ∆xu∗
ν
→ ∆x ≈ 1.89 ∗ 10−2m (4.10)

minimum grid size required for ∆ y: ∆y+ = ∆y u∗
ν
→ ∆y ≈ 8.11 ∗ 10−3m (4.11)

minimum grid size required for ∆z1: ∆z+
1 = ∆z1 u∗

ν
→ ∆z1 ≈ 2.72 ∗ 10−4m (4.12)

For a simple grading of 5 and height of 0.16m the number of cells in z-direction is 118
which is shown in Fig. 4.8. For x-direction at least 105 (2/1.89 ∗ 10−2) cells and for y-
direction at least 160 (1.30/8.11 ∗ 10−3) cells are required. This give a number of 2 ∗ 106

cells.

Fig. 4.8: blockMesh grading calculation

4.3 Pre-Processing

4.3.1 Geometry of the Domain

The blockMeshDict entries for this case are shown in Appendix B 7.1 blockMeshDict.
The laboratory experiment by Blanckaert, Duarte, and Schleiss [4] is carried out on a 9m
long straight reach. Where the trapezoidal channel in OpenFOAM considered a length of
L = 2.00m to save computation power. The trapezoid is separated into seven hexahedral
blocks where the length and height is specified as a variable. The block structure is shown
in Fig. 4.9. The left wedge is separated into 3 smaller blocks for more accuracy and quality
of the mesh. If the skewness ratio is too large a further refinement is required. This case
has a skewness ratio of 2.49648. With the following command the mesh can be checked:

49

CHAPTER 4. TRAPEZOIDAL CHANNEL

checkMesh

0.
16

2

0.08 1.22

1.30

8
0

2
4 1

9

3
2

3

1 6
7

15

16
17

12 14
19

11

0.
10

5
0.

08
0.

08

0.08

0.055
3

20
21

24
25

23

Trapezodial channel: Exp. F16_45_30

0.16 1.04 0.10

y
x

z 0

4 5

13

18

10

4

2

22

5

6

Fig. 4.9: Visualization of the trapezoidal channel geometry

The whole domain consists of 3 039 525 points and 2 967 296 cells. A non uniform mesh
is used for the blocks near the bed and bank. The grid structure is shown in Fig. 4.10. The
domain has 6 boundaries which are named as bottomWall, topWall, leftWall, rightWall,
inlet and outlet. the bottomWall, leftWall and rightWall is defined by type wall which
represent a solid wall. The topWall is defined by type patch which contains no geometric
or topological information. The inlet and outlet are defined by type cyclic. This type
enables two boundaries to be treated as if they are physically connected. With executing
the blockMesh command the blocks and numbers of cells withing it are generated.

blockMesh

50

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.10: Visualization of the mesh

4.3.2 Rough Bed generation
For creating the roughness elements on the bank and on the bed the file boxes.C in
Appendix A 6.1 Creation of the roughness elements, boxes.C has been modified. The
modification for the bank and bed is shown in Appendix B 7.3 bed.C and Appendix B
7.2 bank.C. The characteristic sediment size d50 is changed to 30mm for the bank and
2mm for the bed. Additionally the streamwise and spanwise length is changed to 2m
and 1.14m for the bed and 2m and 0.227m for the bank respectively. In Fig. 4.11 on
the right hand side the model for creating the roughness elements for the bed and bank is
shown. The height for the blocks varies at max. 3 times sigma around the characteristic
sediment size. For the bank and bed sigma is estimated to 0.1 ∗ d50.

d5
0

m
ax

. 3
 s

ig
m

a

m
ax

. 3
 s

ig
m

a

grain size model

Fig. 4.11: d50 for bed and bank roughness

51

CHAPTER 4. TRAPEZOIDAL CHANNEL

For creating the file bank.txt and bank.txt the following commands should be executed:

g++ -std=c++11 bed.C -o bed
g++ -std=c++11 bank.C -o bank
./bed > log.bed
./bank > log.bank

This will create the coordinates for the roughness elements. Where the first coordinate
corresponds the left bottom corner and the second coordinate correspond to the right top
corner of a single box. For the file bed.txt the first three elements are shown as follows:

(0 0 0)(0.01 0.00192682 0.01)
(0 0 0.01)(0.01 0.00134791 0.02)
(0 0 0.02)(0.01 0.00241057 0.03)

For the file bank.txt the first three elements are shown as follows:

(0 0 0)(0.03 0.0289023 0.03)
(0 0 0.03)(0.03 0.0202186 0.06)
(0 0 0.06)(0.03 0.0361586 0.09)

To create the roughness elements in OpenFOAM, the topoSet utility is used. In Ap-
pendix B 7.4 topoSetBank, Appendix B 7.5 topoSetDelete and Appendix B 7.6 topoSetBed
the topoSet dictionaries are shown. It is important that these roughness blocks are defined
as cellZones for the fvOptions. For this case at first a bank_set and bed_set and then the
bank_zone and bed_zone are generated. To create the bank roughness, the domain has
to be rotated and translated at first. This procedure can be done through the following
command:

transformPoints -translate ’(0 -0.16 0.16)’
transformPoints -rotate ’((0 1 0) (0 1 -1))’

After executing these commands the domain should look like in Fig. 4.12 After the
rotation and translation the file topoSetBank is renamed to topoSet. Then the topoSet
utility can be executed for the bank as follows:

topoSet

This will create a bank_set and bank_zone as shown in Fig. 4.13 To get rid of the
blocks which are generated on the right hand side in Fig. 4.13, the topoSetDelete utility
is used which has to be renamed to topoSet to get use of it again. Then thee domain is
rotated and translated back to its origin as follows:

52

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.12: translated and rotated domain

transformPoints -rotate ’((0 1 0) (0 1 1))’
transformPoints -translate ’(0 0.16 -0.16)’
topoSet

The result is shown in Fig. 4.14. The last step is to generate the bed roughness blocks
with the topoSet utility again. The final result is shown in Fig. 4.15.

53

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.13: bank roughness elements

Fig. 4.15: bed and bank roughness

54

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.14: back- rotated and -translated domain

4.3.3 Boundary and Initial Conditions
4.3.3.1 Velocity, U

Once the mesh generation is done the initial and boundary conditions are generated. The
velocity U is set up in Appendix B 7.7 Velocity, U. The internal field is specified to
be (0.1 0 0). The velocity values at time 0 s for the rough trapezoidal channel will be
mapped from the smooth trapezoidal channel similar as in Section 3.2.3.5. Additionally
the velocity values at the bank and bed elements will be set to zero to get better initial
boundary conditions for the computation. Otherwise the simulation diverges. To set
the values at a certain position to zero, the setFields utility is used which is shown in
Appendix B 7.8 setFieldsDict. To set the bank roughness elements to zero the translation
and rotation utility is used again as follows:

transformPoints -translate ’(0 -0.16 0.16)’
transformPoints -rotate ’((0 1 0) (0 1 -1))’

55

CHAPTER 4. TRAPEZOIDAL CHANNEL

Then the setFields utility can be used as follows:

setFields

To set the bed roughness elements to zero the domain is rotated and translated back
to its origin and the setFields utility is used again.

transformPoints -rotate ’((0 1 0) (0 1 1))’
transformPoints -translate ’(0 0.16 -0.16)

The result is shown in Fig. 4.16.

Fig. 4.16: SetFieldsUtility for bank and bed elements

The bottom wall, left wall and right wall are set up as a noSlip boundary condition
which restricts the velocity as a fixed value of (0 0 0) at this patch. At the top wall the
velocity is defined as a slip boundary condition. The inlet and outlet patches have a cyclic
boundary condition. The velocity at the outlet is physically connected to the inlet.

56

CHAPTER 4. TRAPEZOIDAL CHANNEL

4.3.3.2 Kinematic Pressure, p

The kinematic pressure p in m2

s2 is set up in Appendix B 7.9 Pressure, P. The internal
field is specified to be 0. The pressure quantities for the rough trapezoidal channel will
be mapped similar as in Section 3.2.3.5.The bottom, top, left and right wall consists of
a zeroGradient boundary condition. At this patch the normal gradient p is zero over
time. The inlet and outlet have a cyclic boundary condition. The pressure at the outlet
is physically connected to the inlet.

4.3.3.3 turbulent kinetic energy, k

The turbulent kinetic energy k in m2

s2 is set up in Appendix B 7.10 Turbulent Kinetic
Energy, k. The internal field is specified to be 0. The turbulent kinetic energy quantities
for the rough trapezoidal channel will be mapped similar as in Section 3.2.3.5. The values
at the bottom, left and right wall are defined to be zero. The top wall consists of a
zeroGradient boundary condition. At this patch the normal gradient p is zero over time.
The inlet and outlet have a cyclic boundary condition. The turbulent kinetic energy at
the outlet is physically connected to the inlet.

4.3.3.4 turbulence viscosity, nut

The turbulence viscosity nut in m2

s
is set up in Appendix B 7.11 Turbulence viscosity,

nut. The internal field is specified to be 0 initially. The turbulent viscosity quantities for
the rough trapezoidal channel will be mapped similar as in Section 3.2.3.5. The bottom,
top, left and right wall has a zeroGradient boundary condition which means that the
normal gradient from nut is zero over time. The inlet and outlet have a cyclic boundary
condition. The turbulence viscosity at the outlet is connected to the inlet.

4.3.4 Options

4.3.4.1 fvOptions

With the file fvOptions any physics can be represented as sources or constraints on the
governing equations e.g. porous media MRF (multiple reference frame) and body forces
[31]. In this case the rough bed is given a porosity and the the flow is driven by a pressure
gradient which is shown in Appendix B 7.12 fvOptions. For this case the mean velocity is
defined as 0.1 m

s
. The porous media is is given by very high values that the cells become

practically impermeable, where d is the Darcy coefficient in [1
m2] and f is the Forchheimer

coefficient in 1
m

[30]. This components are specified by a coordinate system where e1 and
e2 sets the local orientation of the coefficients.

57

CHAPTER 4. TRAPEZOIDAL CHANNEL

4.3.4.2 transportProperties

The kinematic viscosity is specified by 1.0 ∗ 10−6 m2

s
and the average velocity is defined

by 0.1 m
s
which is shown in Appendix B 7.13 transportProperties.

4.3.4.3 turbulenceProperties

The smooth and rough trapezoidal channel uses the same turbulence properties as in
Section 3.2.4.3

4.3.4.4 fvSchemes (Numerical Schemes)

The smooth and rough trapezoidal channel uses the same numerical schemes as in Sec-
tion 3.2.4.4

4.3.4.5 fvSolution

In the fvSolution dictionary the numerical solver and tolerances of each field can be speci-
fied, where this file is uses almost the same settings as in Section 3.2.4.5. The difference is
shown in Appendix B 7.14 fvSolution. For the PIMPLE solver it is necessary to specify a
reference point for the pressure. The coordinates for this point is at (2 0.16 0.5) specified
which is at the top of the channel. For more details of the solution and algorithm control
see in [14].

4.3.4.6 controlDict

In the file controlDict the configuration of the simulation can be specified which is similar
to Section 3.2.4.6. the difference is shown in Appendix B 7.14 fvSolution.

4.3.4.7 decomposeParDict

The smooth and rough trapezoidal channel is decomposed as in Section 3.2.4.7. Only the
method is changed to scotch.

4.4 Solver

To solve the momentum and continuity equations the pimpleFoam solver is used. It is a
incompressible transient solver for turbulent flow of Newtonian fluids, with optional mesh
motion and mesh topology changes [9].

58

CHAPTER 4. TRAPEZOIDAL CHANNEL

4.5 Results
In this section the results in a trapezoidal channel from Blanckaert, Duarte, and Schleiss
[4] and Tominaga et al. [39] are compared. In hydraulic engineering it is very important to
investigate the multi-cellular currents in an open channel because the rotating vortices’s
affect the three dimensional sediment transport, the three dimensional bed configurations
such as sand ribbons and the primary mean flow [39]. With an Acoustic Doppler Velocity
Profiler (ADVP) Blanckaert, Duarte, and Schleiss [4] enabled accurately the patterns of
the weak secondary currents as shown in Fig. 4.17.

Fig. 4.17: Upstream looking view of a laboratory flume with the measurement of an
ADVP [4]

Due to the weakness of the cross- stream velocities the quantification of the patterns
of the secondary currents are difficult. Blanckaert, Duarte, and Schleiss [4] found the
secondary currents over the entire width of the cross section which is shown in Fig. 4.18.
Where the top picture in Fig. 4.18 is based on a smooth bank and the bottom picture is
based on a rough bank with a grain size of 30mm. Also in the simulation of the trapezoidal
channel the schematic pattern of secondary currents are over the entire width of the cross
section and they do not weaken considerably with distance of the bank, which is shown in
Fig. 4.20. In the experiment they found that the secondary currents scale with the flow
depth which is similar as in the simulation. The influence of the bank inclination is limited
to the half width of the cross section which suggests that the influence of the inclined

59

CHAPTER 4. TRAPEZOIDAL CHANNEL

boundary decreases with distance of the bank (shown in Fig. 4.20 and Fig. 4.18). On the
smooth bank in Fig. 4.18 Blanckaert, Duarte, and Schleiss [4] found one secondary current
where in the simulation in Fig. 4.20 three large and two small currents are shown which is
more similar as in Fig. 4.19 (right picture) from Tominaga et al. [39]. In the riprap bank in
Fig. 4.18 (bottom) three secondary currents are shown. Whereas in the rough simulation
in Fig. 4.21 two secondary currents are created due to the bank roughness. Additionally
these two vortices are shifted away from the bank. This is different compared the smooth
trapezoidal channel simulation. Whereas on the vertical wall in all four figures (Fig. 4.18,
Fig. 4.19, Fig. 4.20) and Fig. 4.21 two secondary currents are shown.

Fig. 4.18: Smooth and Rough Trapezoidal Channel: Patterns of the secondary currents
in a smooth (top) and rough (bottom) trapezoidal channel from Blanckaert, Duarte, and

Schleiss [4]

Fig. 4.19: Smooth Trapezoidal Channel: Patterns of the secondary currents in a
rectangular (left) and trapezoidal channel (right) from Tominaga et al. [39]

60

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.20: Smooth Trapezoidal Channel: Pattern of the secondary currents from the
simulation

61

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.21: Rough Trapezoidal Channel: Pattern of the secondary currents from the
simulation

62

CHAPTER 4. TRAPEZOIDAL CHANNEL

The turbulent intensities u’, v’ and w’ by Tominaga et al. [39] are shown in Fig. 4.22
and for the simulation the turbulence intensities are shown in Fig. 4.23 and Fig. 4.24. Both
cases shows the most noticeable feature on the vertical turbulent intensity v’, which is
rapidly damped near the surface. Whereas u’ and w’ show a similar distribution. Most of
the region in u’ shows a similar distribution as in U in Fig. 4.25. Whereas the isolines from
u’ near the side wall bulge further as compared of those in U. For the rough simulation
the turbulent intensities increased near the rough bank and bed as shown in Fig. 4.24.

Fig. 4.22: Smooth Trapezoidal Channel: Isolines of turbulent intensities u’, v’ and w’ in
a trapezoidal channel by Tominaga et al. [39]

63

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.23: Smooth Trapezoidal Channel: Isolines of turbulent intensities u’, v’ and w’ in
a trapezoidal channel by simulation

64

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.24: Rough Trapezoidal Channel: Isolines of turbulent intensities u’, v’ and w’ in a
trapezoidal channel by simulation

65

CHAPTER 4. TRAPEZOIDAL CHANNEL

In Fig. 4.26 the normalized streamwise velocity U/Ubulk from Blanckaert, Duarte, and
Schleiss [4], in Fig. 4.25 the normalized streamwise velocity U/Umax from Tominaga et al.
[39] is shown. In Fig. 4.28 the normalized streamwise velocity U/Ubulk and in Fig. 4.27 the
normalized streamwise velocity U/Umax for the smooth and rough simulation is shown.

• In Fig. 4.25 the maximum velocity appears in about 0.2H below the surface (aspect
ratio B/H = 8 and 99% of Umax) whereas in Fig. 4.27 the maximum velocity appears
about in 0.15H (aspect ratio B/H = 8 and 99% of Umax) below the surface.

• Furthermore the decelerated region is in about z/H = 2.5 near the surface in the
rectangular channel and z/H = −0.75 in the trapezoidal channel which is shown
in Fig. 4.25 (99% of Umax). Whereas the decelerated region is in about B/H = 6.2
near the surface on the left side and B/H = 2 on the right side in the smooth
trapezoidal channel (95% of Umax) which is shown in Fig. 4.27 on the left picture.
The decelerated region from the rough channel in Fig. 4.27 on the right picture is
in about B/H = 6.6 near the surface on the left side and is B/H = 3.3 on the right
side (95% of Umax). The roughness elements on the right wall shift the maximal
velocity distribution away from the bank.

• Moreover the bulk velocity from the simulation appears in about 0.8H below the
surface which is shown in Fig. 4.28. The bulk velocity by Blanckaert, Duarte, and
Schleiss [4] also appears in about 0.8H below the surface which is shown in Fig. 4.26.
The roughness on the bed and at the bank increases the normalized velocity near
the surface from 1.25 in Fig. 4.28 left picture to 1.4 in Fig. 4.28 right picture. The
roughness on the bed and at the bank increases the normalized velocity near the
surface from 1.3 to 1.4 in Fig. 4.26 (top and bottom). The normalized velocity
distribution compared with the bulk velocity form Blanckaert, Duarte, and Schleiss
[4] is similar as in the numerical simulations. Except on the left side at −0.5 in
Fig. 4.26 there is a bulge shown which is different from the numerical simulation.

Fig. 4.25: Smooth Trapezoidal Channel: Patterns of the normalized streamwise velocity
U/Umax in a rectangular (left) and trapezoidal channel (right) from Tominaga et al. [39]

66

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.26: Smooth and Rough Trapezoidal Channel: Patterns of the normalized
streamwise velocity U/Ubulk in a smooth (top) and rough (bottom) trapezoidal channel

from Blanckaert, Duarte, and Schleiss [4]

67

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.27: Rough (right picture) and Smooth (left picture) Trapezoidal Channel:
Patterns of the normalized streamwise velocity U/Umax in a trapezoidal channel from

the simulation

68

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.28: Rough (right picture) and Smooth (left picture) Trapezoidal Channel:
Patterns of the normalized streamwise velocity U/Ubulk in a trapezoidal channel from

the simulation

69

CHAPTER 4. TRAPEZOIDAL CHANNEL

The instantaneous velocity for the smooth and rough simulation is shown in a plan
view and in a cross section in Fig. 4.29 and Fig. 4.30. Three horizontal cuts are at H,
2H/3 and H/3. In the flow structure at the surface the eddies are much larger than
in 2H/3. Whereas in H/3 the eddies are getting even smaller. The whole turbulent
structure has been visualized. The roughness is not accounted in Fig. 4.29. Whereas the
simulation with roughness elements is shown in Fig. 4.30. The turbulent structure on the
bank for the rough and smooth channel are different. On the rough bank there is a larger
deceleration region (blue and cyan) than on the smooth bank which is shown in Fig. 4.29
and Fig. 4.30. Furthermore the effect of roughness at the bank shifts the instantaneous
high velocity region away from the bank. Moreover this shift increases the normalized
maximal velocity from 1.43 to 1.57. The deceleration region on the rough bed is similar
as on the smooth bed because of the small roughness height.

70

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.29: Smooth Trapezoidal Channel: Turbulent structure of the domain

71

CHAPTER 4. TRAPEZOIDAL CHANNEL

Fig. 4.30: Rough Trapezoidal Channel: Turbulent structure of the domain

72

CHAPTER 5. SUMMARY AND CONCLUSIONS

Chapter 5

Summary and Conclusions

The first section shows the importance of the computational fluid dynamics in general
and in hydraulic engineering. Additional a short literature review of different roughness
approaches are listed. Then the objective of the work and the methodology is described
briefly. The second chapter gives an overview of the theoretical background of the gov-
erning equations, turbulence, direct numerical simulation (DNS), Large-eddy simulation
(LES) and Reynolds averaged Navier-Stokes (RANS) simulation. The third chapter shows
the creation of roughness elements on a surface by using a the porous medium approach
in detail. Additional three cases for the simulation with boundary conditions, initial
conditions, options etc. are described. Whereas the first simulation does not consider
roughness at all. The second simulation considers roughness and the third one uses the
same rough elements but with an increased velocity. In conclusion a velocity profile of
the three cases are compared. In the fourth chapter a trapezoidal channel with bed and
bank roughness from laboratory experiments from Tominaga et al. [39] and Blanckaert,
Duarte, and Schleiss [4] are compared with the simulation. Whereas the velocity in this
simulation is decreased because of too high computational power for an average computer
at present. In the last chapter the summary and conclusions are presented. Attached to
this thesis the files for generating the roughness elements, the domain, options, boundary
and initial conditions are shown in Appendix A for chapter three and Appendix B for
chapter four. The conclusions from the cases in this thesis can be summarized as follows:

• The discretization of the roughness elements on a surface is shown in the third
chapter. Whereas the roughness is restricted on a rectangular horizontal surface.
For the simulation in chapter three the channel 395 from OpenFOAM is adopted.
In this case the roughness generation is relatively simple. For the trapezoidal case in
the fourth chapter the roughness generation on the bank is more difficult and time
intensive. The domain of the channel has to be translated and rotated at a horizontal
rectangular surface to implement the roughness. In conclusion it is possible to
generate the elements on an inclined surface but it is very time consuming. Whereas

73

CHAPTER 5. SUMMARY AND CONCLUSIONS

the roughness generation on a curved surface is impossible. Maybe in future a utility
in OpenFOAM would automatically generate the roughness elements on the required
patches.

• The classical turbulent channel flow is modeled for Reτ = 395 with smooth wall.
This is done to evaluate numerical settings and the grid resolution. The velocity
profile is compared with the theoretical values. It is found that the computed
values are in good agreement with the law of the wall. Furthermore, two additional
rough cases are carried out with a characteristic sediments size of 0.024m. Whereas
the second rough channel have an increased velocity of 0.25m/s. Also these two
simulations confirms the law of the wall. Additional the results shows that the
greater the dimensionless roughness height, the bigger the shift of the log law region.

• In the final chapter the affect of the bank roughness on the secondary flow in a trape-
zoidal channel is carried out. The simulation used the same method as in chapter
three for considering roughness. The numerical model represents the experiments
which are carried out by Blanckaert, Duarte, and Schleiss [4]. Due to the large com-
putational demand of the experimental model the velocity has been reduced from
0.44m/s to 0.1m/s. The simulation shows a pattern of the multicellular currents at
the domain. Additionally a difference between a smooth and rough surface on the
bank is clearly shown. Also it is shown that the presence of the roughness elements
at the bank breaks up the two secondary current cells which exist in the case with
the smooth bank. Finally, the rough wall at the bank generates a larger decelerated
region as the smooth wall. Moreover, the effect of roughness at the bank shifts
the high velocity region away from the bank and increases the normalized maximal
velocity because of the reduced cross section.

74

Outlook

In hydraulic engineering the river bank or bed is often very rough. This study shows
a technique of generating roughness elements on a rectangular horizontal surface. The
idea is adopted from Stoesser [38] and Margalit [22]. Maybe in near future the porous
artificially generated rough elements can be automatically computed with a few simple
steps in OpenFOAM or in other computational fluid dynamic codes. Furthermore, the
roughness could also be generated on a more complex geometry. This would model the
practical flow problem more realistically. Additionally with the roughness generation, the
secondary flow pattern in a channel flow could be investigated more in detail.

CHAPTER 6. APPENDIX A

Chapter 6

Appendix A

6.1 Creation of the roughness elements, boxes.C

%// C++ script that generates a file ’boxes.txt ’ that contains
%// the coordinates to 3D bars , of which heights
%// follow a normal distribution

include <iostream >
include <fstream >
include <random >
include <math.h>
using namespace std;

int main ()
{

const double d 50=0.024; %// mean grain diameter
const double x=4; %// streamwise domain size
const double z=2; %// spanwise domain size
const double c=3; %// scaling factor

const double sigma =0.5*d50; %// standard deviation
double dx=c*sigma; %// streamwise spacing
double dz=c*sigma; %// spanwise spacing
const int nx=ceil(x/dx); %// number of boxes streamwise
const int nz=ceil(z/dz); %// number of boxes spanwise

%// outputs to terminal
cout << "Mean grain diameter : " << d50 << endl;
cout << " Number of boxes in streamwise direction : " << nx

<< endl;

77

CHAPTER 6. APPENDIX A

cout << " Number of boxes in spanwise direction : " << nz <<
endl;

cout << " Streamwise bar size: " << dx << endl;
cout << " Spanwise bar size: " << dz << endl;

%// generate coordinates with the depthwise being random
default _ random _ engine generator ;
normal _ distribution <double > distribution (0, sigma); %//

distribution (mean ,sigma)

double X[nx +1];
double Z[nz +1];
double number [nx][nz];
double small = number [0][0];

for (int i=0; i<nx; i++)
{

for (int j=0; j<nz; j++)
{

%// generate random values
number [i][j] = distribution (generator);
%// max. 3* sigma of the random values
%// three -sigma rule of thumb
if (number [i][j]>3* sigma)

number [i][j] = 3* sigma;
if (number [i][j]<-3* sigma)

number [i][j] = -3* sigma;
}

}

%// find the min. coordinate and add this value to the
%// random values
for (int i=0; i<nx; i++)
{

for (int j=0; j<nz; j++)
{

if(small > number [i][j])
small = number [i][j];

}
}
cout << "Mean 0 bed located " << abs(small) << " above

bottomWall " << endl;

78

CHAPTER 6. APPENDIX A

for (int i=0; i<nx; i++)
{

for (int j=0; j<nz; j++)
{

number [i][j] += abs(small) ;
}

}
%// create output file boxes.txt
for (int i=0; i<nx +1; i++)
{

X[i] = i*dx;
}
for (int i=0; i<nz +1; i++)
{

Z[i] = i*dz;
}

ofstream myfile ;
myfile .open (" boxes.txt ");
for (int i=0; i<nx; i++)
{

for (int j=0; j<nz; j++)
{

myfile << "(" << X[i] << " 0 " << Z[j] << ")(" << X
[i+1] << " " <<

number [i][j] << " " << Z[j+1] << ")\n";
}

}
myfile .close ();
return 0;

}

Listing 6.1: boxes.C

6.2 topoSetDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |

79

CHAPTER 6. APPENDIX A

---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " system ";
object topoSetDict ;

}
// * //

actions
(

{
name bed;
type cellSet ;
action new;
source boxToCell ;
sourceInfo
{

boxes
(

include "boxes.txt"
);

}
}

);

// *** //

Listing 6.2: topoSetDict

6.3 blockMeshDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile

80

CHAPTER 6. APPENDIX A

{
version 2.0;
format ascii;
class dictionary ;
object blockMeshDict ;

}
// * //

convertToMeters 1;

vertices
(

(0 0 0)
(4 0 0)
(0 0.2 0)
(4 0.2 0)
(0 1 0)
(4 1 0)
(0 0 2)
(4 0 2)
(0 0.2 2)
(4 0.2 2)
(0 1 2)
(4 1 2)

);

blocks
(

hex (0 1 3 2 6 7 9 8) (72 36 48) simpleGrading (1 6 1)
hex (2 3 5 4 8 9 11 10) (72 38 48) simpleGrading (1 5 1)

);

edges
(
);

boundary
(

bottomWall
{

type wall;
faces (

81

CHAPTER 6. APPENDIX A

(0 1 7 6)
);

}
topWall
{

type patch;
faces (

(4 10 11 5)
);

}
leftWall
{

type cyclic ;
neighbourPatch rightWall ;
faces (

(0 2 3 1)
(2 4 5 3)

);
}
rightWall
{

type cyclic ;
neighbourPatch leftWall ;
faces (

(6 7 9 8)
(8 9 11 10)

);
}
inlet
{

type cyclic ;
neighbourPatch outlet ;
faces (

(0 6 8 2)
(2 8 10 4)

);
}
outlet
{

type cyclic ;
neighbourPatch inlet;
faces (

82

CHAPTER 6. APPENDIX A

(1 3 9 7)
(3 5 11 9)

);
}

);

mergePatchPairs
(
);

// *** //

Listing 6.3: blockMeshDict

6.4 Velocity, U

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class volVectorField ;
location "0";
object U;

}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

bottomWall
{

type noSlip ;

83

CHAPTER 6. APPENDIX A

}
topWall
{

type slip;
}
leftWall
{

type cyclic ;
}
rightWall
{

type cyclic ;
}
inlet
{

type cyclic ;
}
outlet
{

type cyclic ;
}

}

// *** //

Listing 6.4: U

6.5 Kinematic Pressure, p

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField ;
location "0";

84

CHAPTER 6. APPENDIX A

object p;
}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

bottomWall
{

type zeroGradient ;
}

topWall
{

type zeroGradient ;
}

leftWall
{

type cyclic ;
}

rightWall
{

type cyclic ;
}

inlet
{

type cyclic ;
}

outlet
{

type cyclic ;
}

}

// *** //

Listing 6.5: p

6.6 Turbulent Kinetic Energy, k

85

CHAPTER 6. APPENDIX A

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField ;
location "0";
object k;

}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

bottomWall
{

type fixedValue ;
value uniform 0;

}
topWall

{
type zeroGradient ;

}
leftWall

{
type cyclic ;

}
rightWall

{
type cyclic ;

}
inlet

{

86

CHAPTER 6. APPENDIX A

type cyclic ;
}

outlet
{

type cyclic ;
}

}

// *** //

Listing 6.6: k

6.7 Turbulence viscosity, nut

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField ;
location "0";
object nut;

}
// * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;

boundaryField
{

bottomWall
{

type zeroGradient ;
}

87

CHAPTER 6. APPENDIX A

topWall
{

type zeroGradient ;
}

leftWall
{

type cyclic ;
}

rightWall
{

type cyclic ;
}

inlet
{

type cyclic ;
}

outlet
{

type cyclic ;
}

}

// *** //

Listing 6.7: nut

6.8 mapFieldsDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;

88

CHAPTER 6. APPENDIX A

object mapFieldsDict ;
}
// * //

patchMap
(

bottomWall bottomWall
sides 1_ half0 leftWall
inout 1_ half0 outlet

);

cuttingPatches
(

topWall
);

// *** //

Listing 6.8: mapFieldsDict

6.9 changeDictionaryDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
object changeDictionaryDict ;

}
// * //

U
{

internalField uniform (0 0 0);

89

CHAPTER 6. APPENDIX A

}

p
{

internalField uniform 0;
}

nut
{

internalField uniform 0;
}

k
{

internalField uniform 0;
}

// *** //

Listing 6.9: changeDictionaryDict

6.10 fvOptions

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " constant ";
object fvOptions ;

}
// * //

momentumSource

90

CHAPTER 6. APPENDIX A

{
type meanVelocityForce ;
selectionMode all;
fields (U);
Ubar (0.1335 0 0);

}

porosity 1
{

type explicitPorositySource ;
explicitPorositySourceCoeffs
{

selectionMode cellZone ;
cellZone bed;
type DarcyForchheimer ;
d (1e12 1e12 1e12);
f (1e12 1e12 1e12);
coordinateSystem
{

type cartesian ;
origin (0 0 0);
coordinateRotation
{

type axesRotation ;
e1 (1 0 0);
e2 (0 1 0);

}
}

}
}

// *** //

Listing 6.10: fvOptions

6.11 transportProperties

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

91

CHAPTER 6. APPENDIX A

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " constant ";
object transportProperties ;

}
// * //

Ubar [0 1 -1 0 0 0 0] (0.1335 0 0);

transportModel Newtonian ;

nu [0 2 -1 0 0 0 0] 1.9e -05;

// *** //

Listing 6.11: transportProperties

6.12 turbulenceProperties

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " constant ";
object turbulenceProperties ;

}
// * //

simulationType LES;

92

CHAPTER 6. APPENDIX A

LES
{
turbulence on;

LESModel kEqn;
delta cubeRootVol ;
}

// *** //

Listing 6.12: turbulenceProperties

6.13 fvSchemes

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " system ";
object fvSchemes ;

}
// * //

ddtSchemes
{

default backward ;
}

gradSchemes
{

default Gauss linear ;
}

93

CHAPTER 6. APPENDIX A

divSchemes
{

default none;
div(phi ,U) Gauss linear ;
div(phi ,k) Gauss limitedLinear 0.1;
div(phi ,B) Gauss limitedLinear 1;
div(B) Gauss linear ;
div(phi , nuTilda) Gauss limitedLinear 1;
div ((nuEff*dev 2(T(grad(U))))) Gauss linear ;

}

laplacianSchemes
{

default Gauss linear corrected ;
}

interpolationSchemes
{

default linear ;
}

snGradSchemes
{

default corrected ;
}

wallDist
{

method meshWave ;
}

// *** //

Listing 6.13: fvSchemes

6.14 fvSolution

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

94

CHAPTER 6. APPENDIX A

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " system ";
object fvSolution ;

}
// * //

solvers
{

p
{

solver GAMG;
tolerance 0;
relTol 0.1;
smoother GaussSeidel ;

}

pFinal
{

$p;
smoother DICGaussSeidel ;
tolerance 1e -06;
relTol 0;

}

"(U|k| nuTilda)"
{

solver smoothSolver ;
smoother symGaussSeidel ;
tolerance 1e -05;
relTol 0.1;

}

"(U|k| nuTilda)Final"
{

$U;
tolerance 1e -05;

95

CHAPTER 6. APPENDIX A

relTol 0;
}

}

PIMPLE
{

nOuterCorrectors 1;
nCorrectors 2;
nNonOrthogonalCorrectors 0;
pRefPoint (0 1 0);
pRefValue 0;

}

// *** //

Listing 6.14: fvSolution

6.15 controlDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " system ";
object controlDict ;

}
// * //

application pimpleFoam _mod;

startFrom latestTime ;

startTime 0;

96

CHAPTER 6. APPENDIX A

stopAt endTime ;

endTime 20000;

deltaT 0.2;

writeControl adjustableRunTime ;

writeInterval 500;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general ;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.7;

functions
{

fieldAverage 1
{

type fieldAverage ;
libs (" libfieldFunctionObjects .so");
writeControl writeTime ;

fields
(

U
{

mean on;
prime2Mean on;

97

CHAPTER 6. APPENDIX A

base time;
window 125;

}

p
{

mean on;
prime2Mean on;
base time;
window 125;

}

nuGradU
{

mean on;
prime2Mean on;
base time;
window 125;

}
B
{

mean on;
prime2Mean on;
base time;
window 125;

}
);

}
}

// *** //

Listing 6.15: controlDict

6.16 decomposeParDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |

98

CHAPTER 6. APPENDIX A

---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
note "mesh decomposition control dictionary ";
object decomposeParDict ;

}
// * //

numberOfSubdomains 4;

method simple ;

multiLevelCoeffs
{

level0
{

numberOfSubdomains 64;
method scotch ;

}
level1
{

numberOfSubdomains 4;
method scotch ;

}
}

simpleCoeffs
{

n (1 2 2);
delta 0.001;

}

hierarchicalCoeffs
{

n (1 2 1);
delta 0.001;
order xyz;

}

99

CHAPTER 6. APPENDIX A

metisCoeffs
{
}

scotchCoeffs
{
}

manualCoeffs
{

dataFile " decompositionData ";
}

structuredCoeffs
{

patches (bottomPatch);
}

// *** //

Listing 6.16: decomposeParDict

6.17 postChannelDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " constant ";
object postChannelDict ;

}
// * //

100

CHAPTER 6. APPENDIX A

// Seed patches to start layering from
patches (bottomWall);

// Direction in which the layers are
component y;

symmetric false;

// *** //

Listing 6.17: postChannelDict

101

CHAPTER 6. APPENDIX A

102

CHAPTER 7. APPENDIX B

Chapter 7

Appendix B

7.1 blockMeshDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
object blockMeshDict ;

}
// * //

convertToMeters 1;

L #calc "2";
H #calc "0.16";

Sw #calc "134"; // streamwise x- direction
Sp #calc "44"; // bed and bank in y- direction
Sa #calc "26"; // block 1 and 3 and 5 y- direction
Sb #calc "228"; // block 0 and 1 in z- direction
Sc #calc "32"; // block 2 and 3 in z- direction

103

CHAPTER 7. APPENDIX B

vertices
(

(0 0 0) //0
(0 0.08 -0.08) //1
(0 $H -0.16) //2
(0 $H -0.08) //3
(0 $H 0) //4
(0 $H 1.14) //5
(0 0.08 1.14) //6
(0 0 1.14) //7
(0 0.08 0) //8
(0 0.105 -0.055) //9
($L 0 0) //10
($L 0.08 -0.08) //11
($L $H -0.16) //12
($L $H -0.08) //13
($L $H 0) //14
($L $H 1.14) //15
($L 0.08 1.14) //16
($L 0 1.14) //17
($L 0.08 0) //18
($L 0.105 -0.055) //19
(0 0 1.04) //20
(0 0.08 1.04) //21
(0 $H 1.04) //22
($L 0 1.04) //23
($L 0.08 1.04) //24
($L $H 1.04) //25

);

blocks
(

hex (0 20 23 10 8 21 24 18) ($Sb $Sw $Sp) simpleGrading (1
1 5) //0

hex (8 21 24 18 4 22 25 14) ($Sb $Sw $Sa) simpleGrading (1
1 1) //1

hex (1 0 10 11 9 8 18 19) ($Sc $Sw $Sp) simpleGrading (1
1 5) //2

hex (9 8 18 19 3 4 14 13) ($Sc $Sw $Sa) simpleGrading (1
1 1) //3

hex (2 1 11 12 3 9 19 13) ($Sa $Sw $Sp) simpleGrading (1
1 5) //4

104

CHAPTER 7. APPENDIX B

hex (20 7 17 23 21 6 16 24) (40 $Sw $Sp) simpleGrading
(0.2 1 5) //5

hex (21 6 16 24 22 5 15 25) (40 $Sw $Sa) simpleGrading
(0.2 1 1) //6

);

edges
(
);

boundary
(

bottomWall
{

type wall;
faces (

(0 10 23 20)
(20 23 17 7)

);
}
topWall
{

type patch;
faces (

(2 3 13 12)
(3 4 14 13)
(4 22 25 14)
(22 5 15 25)

);
}

leftWall
{

type wall;
faces (

(1 2 12 11)
(0 1 11 10)

);
}
rightWall
{

type wall;

105

CHAPTER 7. APPENDIX B

faces (
(5 6 16 15)
(6 7 17 16)

);
}

inlet
{

type cyclic ;
neighbourPatch outlet ;
faces (

(0 20 21 8)
(4 8 21 22)
(0 8 9 1)
(3 9 8 4)
(1 9 3 2)
(6 21 20 7)
(5 22 21 6)

);
}

outlet
{

type cyclic ;
neighbourPatch inlet;
faces (

(10 18 24 23)
(14 25 24 18)
(10 11 19 18)
(13 14 18 19)
(11 12 13 19)
(16 17 23 24)
(15 16 24 25)

);
}

);

mergePatchPairs
(
);

// *** //

106

CHAPTER 7. APPENDIX B

Listing 7.1: blockMeshDict

7.2 bank.C

const double d 50=0.03; %// mean grain diameter
const double c=3; %// scaling factor
const double x=2; %// streamwise domain size
const double z =0.227; %// spanwise domain size
const double mean=d50; %// mean
const double sigma =0.3*d50; %// standard deviation
double dx=d50; %// streamwise spacing
double dz=d50; %// spanwise spacing
...
for (int i=0; i<nx; i++)
{

for (int j=0; j<nz; j++)
{

number [i][j] += abs(small)-abs(small);
}

}
...
myfile .open (" bank.txt ");

Listing 7.2: bank.C

7.3 bed.C

const double d 50=0.002; %// mean grain diameter
const double c=5; %// scaling factor
const double x=2; %// streamwise domain size
const double z =1.14; %// spanwise domain size
const double mean=d50; %// mean
const double sigma =0.3*d50; %// standard deviation
double dx=d50*c; %// streamwise spacing
double dz=d50*c; %// spanwise spacing
...
for (int i=0; i<nx; i++)
{
for (int j=0; j<nz; j++)

107

CHAPTER 7. APPENDIX B

{
number [i][j] += abs(small)-abs(small);
}
}
...
myfile .open (" bed.txt ");

Listing 7.3: bed.C

7.4 topoSetBank

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " system ";
object topoSetDict ;

}
// * //

actions
(

{
name bank_set;
type cellSet ;
action new;
source boxToCell ;
sourceInfo
{

boxes
(

include "bank.txt"
);

}

108

CHAPTER 7. APPENDIX B

}

{
name bank_zone;
type cellZoneSet ;
action new;
source setToCellZone ;
sourceInfo
{

set bank_set;
}

}
);

// *** //

Listing 7.4: topoSetBank

7.5 topoSetDelete

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " system ";
object topoSetDict ;

}
// * //

actions
(

{
name bank_set;
type cellSet ;

109

CHAPTER 7. APPENDIX B

action delete ;
source boxToCell ;
sourceInfo
{

boxes
(

(0 0 0.22627) (2 1 2)
);

}
}

{
name bank_zone;
type cellZoneSet ;
action new;
source setToCellZone ;
sourceInfo
{

set bank_set;
}

}
);

// *** //

Listing 7.5: topoSetDelete

7.6 topoSetBed

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " system ";

110

CHAPTER 7. APPENDIX B

object topoSetDict ;
}
// * //

actions
(

{
name bed_set;
type cellSet ;
action new;
source boxToCell ;
sourceInfo
{

boxes
(

include "bed.txt"
);

}
}

{
name bed_zone;
type cellZoneSet ;
action new;
source setToCellZone ;
sourceInfo
{

set bed_set;
}

}
);

// *** //

Listing 7.6: topoSetBed

7.7 Velocity, U

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org

111

CHAPTER 7. APPENDIX B

\\ / A nd | Version : 6
\\/ M anipulation |

---/
FoamFile
{

version 2.0;
format ascii;
class volVectorField ;
location "0";
object U;

}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.1 0 0);

boundaryField
{

bottomWall
{

type noSlip ;
}

topWall
{

type slip;
}

leftWall
{

type noSlip ;
}

rightWall
{

type noSlip ;
}

inlet
{

type cyclic ;
}

outlet
{

type cyclic ;

112

CHAPTER 7. APPENDIX B

}
}

// *** //

Listing 7.7: U

7.8 setFieldsDict

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
object setFieldsDict ;

}
// * //

defaultFieldValues
(
);

regions
(

boxToCell
{

boxes
(

include "bank.txt" %// or # include "bed.txt"
);

fieldValues
(

volVectorFieldValue U (0 0 0)
);

113

CHAPTER 7. APPENDIX B

}
);

// *** //

Listing 7.8: setFieldsDict

7.9 Pressure, P

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField ;
location "0";
object p;

}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

bottomWall
{

type zeroGradient ;
}
topWall
{

type zeroGradient ;
}
leftWall
{

114

CHAPTER 7. APPENDIX B

type zeroGradient ;
}
rightWall
{

type zeroGradient ;
}
inlet
{

type cyclic ;
}
outlet
{

type cyclic ;
}

}

// *** //

Listing 7.9: P

7.10 Turbulent Kinetic Energy, k

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField ;
location "0";
object k;

}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

115

CHAPTER 7. APPENDIX B

boundaryField
{

bottomWall
{

type fixedValue ;
value uniform 0;

}
topWall
{

type zeroGradient ;
}
leftWall
{

type fixedValue ;
value uniform 0;

}
rightWall
{

type fixedValue ;
value uniform 0;

}
inlet
{

type cyclic ;
}
outlet
{

type cyclic ;
}

}

// *** //

Listing 7.10: k

7.11 Turbulence viscosity, nut

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org

116

CHAPTER 7. APPENDIX B

\\ / A nd | Version : 6
\\/ M anipulation |

---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField ;
location "0";
object nut;

}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

bottomWall
{

type zeroGradient ;
}
topWall
{

type zeroGradient ;
}
leftWall
{

type zeroGradient ;
}
rightWall
{

type zeroGradient ;
}
inlet
{

type cyclic ;
}

outlet
{

type cyclic ;

117

CHAPTER 7. APPENDIX B

}
}

// *** //

Listing 7.11: nut

7.12 fvOptions

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " constant ";
object fvOptions ;

}
// * //

momentumSource
{

type meanVelocityForce ;

meanVelocityForceCoeffs
{
selectionMode all;
fields (U);
Ubar (0.1 0 0);
relaxation 1.0;
}

}

porosity 1
{

type explicitPorositySource ;

118

CHAPTER 7. APPENDIX B

explicitPorositySourceCoeffs
{

selectionMode cellZone ;
cellZone bed_zone;

type DarcyForchheimer ;

DarcyForchheimerCoeffs
{

d (1e12 1e12 1e12);
f (1e12 1e12 1e12);

coordinateSystem
{

type cartesian ;
origin (0 0 0);
coordinateRotation
{

type axesRotation ;
e1 (1 0 0);
e2 (0 1 0);

}
}

}
}

}

porosity 2
{

type explicitPorositySource ;

explicitPorositySourceCoeffs
{

selectionMode cellZone ;
cellZone bank_zone;

type DarcyForchheimer ;

DarcyForchheimerCoeffs
{

d (1e12 1e12 1e12);

119

CHAPTER 7. APPENDIX B

f (1e12 1e12 1e12);

coordinateSystem
{

type cartesian ;
origin (0 0 0);
coordinateRotation
{

type axesRotation ;
e1 (1 0 0);
e2 (0 1 0);

}
}

}
}

}

// *** //

Listing 7.12: fvOptions

7.13 transportProperties

/*--------------------------*- C++ -*------------------------*\
========= |
\\ / F ield | OpenFOAM : The Open Source CFD Toolbox

\\ / O peration | Website : https :// openfoam .org
\\ / A nd | Version : 6

\\/ M anipulation |
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary ;
location " constant ";
object transportProperties ;

}
// * //

Ubar [0 1 -1 0 0 0 0] (0.1 0 0);

120

CHAPTER 7. APPENDIX B

transportModel Newtonian ;

nu [0 2 -1 0 0 0 0] 1e -06;

// *** //

Listing 7.13: transportProperties

7.14 fvSolution

PIMPLE
{

nOuterCorrectors 1;
nCorrectors 1;
nNonOrthogonalCorrectors 1;
pRefPoint (2 0.16 0.5);
pRefValue 0;

}

Listing 7.14: fvSolution

7.15 controlDict

functions
{

Q1
{

type Q;
libs (" libfieldFunctionObjects .so");
writeControl writeTime ;

}
vorticity 1
{

type vorticity ;
libs (" libfieldFunctionObjects .so");
writeControl writeTime ;

}
yPlus

121

{
type yPlus;
libs (" libfieldFunctionObjects .so");
writeControl writeTime ;

}
fieldAverage 1
{

type fieldAverage ;
libs (" libfieldFunctionObjects .so");
writeControl writeTime ;
timeStart 100;

fields
(

U
{

mean on;
prime2Mean on;
base time;

}

p
{

mean on;
prime2Mean on;
base time;

}
);

}
}

Listing 7.15: controlDict

BIBLIOGRAPHY

Bibliography

[1] Doxygen 1.8.14. pimpleFoam.C. https://www.openfoam.com/documentation/
cpp - guide / html / pimpleFoam _ 8C . html. [Online; accessed 12-December-2018].
2018.

[2] Paul D Bates, Stuart N Lane, and Robert I Ferguson. Computational fluid dynamics:
applications in environmental hydraulics. John Wiley & Sons, 2005.

[3] Kiran Bhaganagar, John Kim, and Gary Coleman. “Effect of roughness on wall-
bounded turbulence”. In: Flow, turbulence and combustion 72.2-4 (2004), pp. 463–
492.

[4] Koen Blanckaert, A Duarte, and Anton J Schleiss. “Influence of shallowness, bank
inclination and bank roughness on the variability of flow patterns and boundary
shear stress due to secondary currents in straight open-channels”. In: Advances in
Water Resources 33.9 (2010), pp. 1062–1074.

[5] Leslie JS Bradbury et al. Turbulent Shear Flows 4: Selected Papers from the Fourth
International Symposium on Turbulent Shear Flows, University of Karlsruhe, Karl-
sruhe, FRG, September 12–14, 1983. Springer Science & Business Media, 2012.

[6] Ronald J Calhoun and Robert L Street. “Turbulent flow over a wavy surface: Neutral
case”. In: Journal of Geophysical Research: Oceans 106.C5 (2001), pp. 9277–9293.

[7] Haecheon Choi and Parviz Moin. “Grid-point requirements for large eddy simula-
tion: Chapman’s estimates revisited”. In: Physics of fluids 24.1 (2012), p. 011702.

[8] CFD Direct Ltd. Christopher J. Greenshields. OpenFOAM Programmer’s Guide.
http : / / foam . sourceforge . net / docs / Guides - a4 / ProgrammersGuide . pdf.
[Online; accessed 05-January-2019]. 2019.

[9] CFD Direct Ltd. Christopher J. Greenshields. OpenFOAM User Guide version 6.
http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf.
[Online; accessed 04-January-2019]. 2019.

[10] JAMES K Culbertson. “Evidence of secondary circulation in an alluvial channel”.
In: US Geological Survey Professional Paper (1967), pp. D214–D216.

[11] Dimensionless velocity. https://www.cfd-online.com/Wiki/Dimensionless_
velocity. [Online; accessed 09-January-2019]. 2019.

123

https://www.openfoam.com/documentation/cpp-guide/html/pimpleFoam_8C.html
https://www.openfoam.com/documentation/cpp-guide/html/pimpleFoam_8C.html
http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf
http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf
https://www.cfd-online.com/Wiki/Dimensionless_velocity
https://www.cfd-online.com/Wiki/Dimensionless_velocity

BIBLIOGRAPHY

[12] Dimensionless wall distance (y plus). https : / / www . cfd - online . com / Wiki /
Dimensionless_wall_distance_(y_plus). [Online; accessed 09-January-2019].
2019.

[13] CFD Direct. OpenFOAM v6 User Guide: 4.4 Numerical schemes. https://cfd.
direct/openfoam/user- guide/v6- fvschemes/. [Online; accessed 04-January-
2019]. 2019.

[14] CFD Direct. OpenFOAM v6 User Guide: 4.5 Solution and algorithm control. https:
//cfd.direct/openfoam/user- guide/v6- fvsolution/. [Online; accessed 05-
January-2019]. 2019.

[15] Nicholas J Georgiadis, Donald P Rizzetta, and Christer Fureby. “Large-eddy simu-
lation: current capabilities, recommended practices, and future research”. In: AIAA
journal 48.8 (2010), pp. 1772–1784.

[16] Robert J Houghtalen, A Osman Akan, and Ned HC Hwang. Fundamentals of hy-
draulic engineering systems. Prentice Hall New York, 2016.

[17] I Karcz. “Reflections on the origin of source small-scale longitudinal streambed
scours”. In: Fluvial geomorphology (1973), pp. 149–173.

[18] Ryosaku Kinoshita. “An analysis of the movement of flood waters by aerial pho-
tography”. In: Journal of the Japan society of photogrammetry 6.1 (1967), pp. 1–
17.

[19] DW Knight et al. “Boundary shear stress distributions in open channel and closed
conduit flows”. In: Proc. Euromech 156–Mechanics of Sediment Transport, Istanbul,
Turkey (1982), pp. 33–40.

[20] S Leonardi et al. “Direct numerical simulations of turbulent channel flow with trans-
verse square bars on one wall”. In: Journal of Fluid Mechanics 491 (2003), pp. 229–
238.

[21] DA Lyn. “Turbulence measurements in open-channel flows over artificial bed forms”.
In: Journal of Hydraulic Engineering 119.3 (1993), pp. 306–326.

[22] Jonatan Margalit. Modeling of bed roughness using a geometry function and forcing
terms in the momentum equation. http://www.tfd.chalmers.se/~hani/kurser/
OS _ CFD _ 2014 / JonatanMargalit / report . pdf. [Online; accessed 12-December-
2018]. 2018.

[23] Gerard H Matthes. “Macroturbulence in natural stream flow”. In: Eos, Transactions
American Geophysical Union 28.2 (1947), pp. 255–265.

[24] Parviz Moin and Krishnan Mahesh. “Direct numerical simulation: a tool in turbu-
lence research”. In: Annual review of fluid mechanics 30.1 (1998), pp. 539–578.

124

https://www.cfd-online.com/Wiki/Dimensionless_wall_distance_(y_plus)
https://www.cfd-online.com/Wiki/Dimensionless_wall_distance_(y_plus)
https://cfd.direct/openfoam/user-guide/v6-fvschemes/
https://cfd.direct/openfoam/user-guide/v6-fvschemes/
https://cfd.direct/openfoam/user-guide/v6-fvsolution/
https://cfd.direct/openfoam/user-guide/v6-fvsolution/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2014/Jonatan Margalit/report.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2014/Jonatan Margalit/report.pdf

BIBLIOGRAPHY

[25] H Nakagawa, I Nezu, and Y Ooishi. “Experimental study on cellular secondary
currents in open-channel flow”. In: Annual Kansai-Branch Meeting of Japan Soc. of
Civil Engrs. 1982.

[26] Hiroji Nakagawa, Iehisa Nezu, and Hiroshi Ueda. “Turbulence of open channel flow
over smooth and rough beds”. In: Proceedings of the Japan Society of Civil Engi-
neers. Vol. 1975. 241. Japan Society of Civil Engineers. 1975, pp. 155–168.

[27] A Nakayama. “Filtering and LES of flow over irregular rough boundary, Center for
Turbulence Research”. In: Proceedings of the Summer Program 2004 (2004).

[28] Iehisa Nezu and Wolfgang Rodi. “Open-channel flow measurements with a laser
Doppler anemometer”. In: Journal of Hydraulic Engineering 112.5 (1986), pp. 335–
355.

[29] Vladimir Nikora et al. “Spatially averaged open-channel flow over rough bed”. In:
Journal of Hydraulic Engineering 127.2 (2001), pp. 123–133.

[30] OpenFoam. DarcyForchheimer Class Reference. https : / / www . openfoam . com /
documentation/cpp-guide/html/classFoam_1_1porosityModels_1_1DarcyForchheimer.
html. [Online; accessed 03-January-2019]. 2019.

[31] OpenFoam. OpenFOAM 2.2.0: fvOptions. https://openfoam.org/release/2-2-
0/fv-options/. [Online; accessed 03-January-2019]. 2019.

[32] Stephen B Pope and Stephen B Pope. Turbulent flows. Cambridge university press,
2000.

[33] Osborne Reynolds. “An experimental investigation of the circumstances which de-
termine whether the motion of water shall bo direct or sinuous”. In: Phil. Trans 24
(), p. 935.

[34] Wolfgang Rodi, George Constantinescu, and Thorsten Stoesser. Large-eddy simula-
tion in hydraulics. Crc Press, 2013.

[35] Alberto Scotti. “Direct numerical simulation of turbulent channel flows with bound-
ary roughened with virtual sandpaper”. In: Physics of Fluids 18.3 (2006), p. 031701.

[36] Scripts/blockMesh grading calculation. https://openfoamwiki.net/index.php/
Scripts/blockMesh_grading_calculation. [Online; accessed 22-February-2019].
2019.

[37] KM Singh, ND Sandham, and JJR Williams. “Numerical simulation of flow over a
rough bed”. In: Journal of Hydraulic Engineering 133.4 (2007), pp. 386–398.

[38] Thorsten Stoesser. “Physically realistic roughness closure scheme to simulate tur-
bulent channel flow over rough beds within the framework of LES”. In: Journal of
Hydraulic Engineering 136.10 (2010), pp. 812–819.

125

https://www.openfoam.com/documentation/cpp-guide/html/classFoam_1_1porosityModels_1_1DarcyForchheimer.html
https://www.openfoam.com/documentation/cpp-guide/html/classFoam_1_1porosityModels_1_1DarcyForchheimer.html
https://www.openfoam.com/documentation/cpp-guide/html/classFoam_1_1porosityModels_1_1DarcyForchheimer.html
https://openfoam.org/release/2-2-0/fv-options/
https://openfoam.org/release/2-2-0/fv-options/
https://openfoamwiki.net/index.php/Scripts/blockMesh_grading_calculation
https://openfoamwiki.net/index.php/Scripts/blockMesh_grading_calculation

BIBLIOGRAPHY

[39] Akihiro Tominaga et al. “Three-dimensional turbulent structure in straight open
channel flows”. In: Journal of hydraulic research 27.1 (1989), pp. 149–173.

[40] Vito A Vanoni. “Transportation of suspended sediment by water”. In: Trans. of
ASCE 111 (1946), pp. 67–102.

[41] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computa-
tional fluid dynamics: the finite volume method. Pearson Education, 2007.

[42] Timothy Wray. “Development of a One-Equation Eddy Viscosity Turbulence Model
for Application to Complex Turbulent Flows”. In: (2016).

[43] Wusi Yue, Ching-Long Lin, and Virendra C Patel. “Large-eddy simulation of turbu-
lent flow over a fixed two-dimensional dune”. In: Journal of Hydraulic Engineering
132.7 (2006), pp. 643–651.

126

LIST OF FIGURES

List of Figures

2.1 velocity measurement in turbulent flow [41] 7
2.2 Visualization of turbulence of a jet flow [41] 8
2.3 Spectra of isotropic turbulence with increasing Reynolds number [34] . . . 9
2.4 Concept of Large Eddy Simulation [34] . 10
2.5 Filter functions used in LES [34] . 11
2.6 Filtered functions ū of different filter widths ∆ [34] 11
2.7 Highly dissipative SGS model (left) and low dissipative SGS model (right)

[34] . 14

3.1 Rectangular channel . 20
3.2 Correlation between standard deviation σ and characteristic diameter d50 . 20
3.3 Shift of the random values with rough bed 21
3.4 Rough bed . 22
3.5 Size of the rough elements . 23
3.6 Visualization of the Channel geometry . 24
3.7 Visualization of the mesh . 24
3.9 Velocity, U at time 0 . 26
3.8 Mapping channel395 to roughChannel . 27
3.10 Pressure gradient for rough channel ks+ = 11.53 34
3.11 Pressure gradient for rough channel with increased velocity ks+ = 21.35 . . 35
3.12 Pressure gradient for smooth channel . 35
3.13 Dimensionless velocity profiles . 37
3.14 Velocity profiles compared to the bulk velocity 38
3.15 Plots for rough channel with increased velocity 39

4.1 Multi-cellular secondary currents [5] . 41
4.2 Cellular secondary currents in a straight open channel [5] 42
4.3 Trapezoidal Channel [39] . 43
4.4 Closed Channel (top left), Open Channel (top right) and Trapezoidal Chan-

nel (bottom) [39] . 44
4.5 grid size for wall resolving LES [34] . 47

127

LIST OF FIGURES

4.6 blockMesh grading calculation [36] . 47
4.7 Trapezodial channel . 48
4.8 blockMesh grading calculation . 49
4.9 Visualization of the trapezoidal channel geometry 50
4.10 Visualization of the mesh . 51
4.11 d50 for bed and bank roughness . 51
4.12 translated and rotated domain . 53
4.13 bank roughness elements . 54
4.15 bed and bank roughness . 54
4.14 back- rotated and -translated domain . 55
4.16 SetFieldsUtility for bank and bed elements 56
4.17 Upstream looking view of a laboratory flume with the measurement of an

ADVP [4] . 59
4.18 Smooth and Rough Trapezoidal Channel: Patterns of the secondary cur-

rents in a smooth (top) and rough (bottom) trapezoidal channel from
Blanckaert, Duarte, and Schleiss [4] . 60

4.19 Smooth Trapezoidal Channel: Patterns of the secondary currents in a rect-
angular (left) and trapezoidal channel (right) from Tominaga et al. [39] . . 60

4.20 Smooth Trapezoidal Channel: Pattern of the secondary currents from the
simulation . 61

4.21 Rough Trapezoidal Channel: Pattern of the secondary currents from the
simulation . 62

4.22 Smooth Trapezoidal Channel: Isolines of turbulent intensities u’, v’ and w’
in a trapezoidal channel by Tominaga et al. [39] 63

4.23 Smooth Trapezoidal Channel: Isolines of turbulent intensities u’, v’ and w’
in a trapezoidal channel by simulation . 64

4.24 Rough Trapezoidal Channel: Isolines of turbulent intensities u’, v’ and w’
in a trapezoidal channel by simulation . 65

4.25 Smooth Trapezoidal Channel: Patterns of the normalized streamwise ve-
locity U/Umax in a rectangular (left) and trapezoidal channel (right) from
Tominaga et al. [39] . 66

4.26 Smooth and Rough Trapezoidal Channel: Patterns of the normalized stream-
wise velocity U/Ubulk in a smooth (top) and rough (bottom) trapezoidal
channel from Blanckaert, Duarte, and Schleiss [4] 67

4.27 Rough (right picture) and Smooth (left picture) Trapezoidal Channel: Pat-
terns of the normalized streamwise velocity U/Umax in a trapezoidal channel
from the simulation . 68

4.28 Rough (right picture) and Smooth (left picture) Trapezoidal Channel: Pat-
terns of the normalized streamwise velocity U/Ubulk in a trapezoidal channel
from the simulation . 69

128

LIST OF FIGURES

4.29 Smooth Trapezoidal Channel: Turbulent structure of the domain 71
4.30 Rough Trapezoidal Channel: Turbulent structure of the domain 72

129

LIST OF FIGURES

130

LISTINGS

Listings

6.1 boxes.C . 77
6.2 topoSetDict . 79
6.3 blockMeshDict . 80
6.4 U . 83
6.5 p . 84
6.6 k . 86
6.7 nut . 87
6.8 mapFieldsDict . 88
6.9 changeDictionaryDict . 89
6.10 fvOptions . 90
6.11 transportProperties . 91
6.12 turbulenceProperties . 92
6.13 fvSchemes . 93
6.14 fvSolution . 94
6.15 controlDict . 96
6.16 decomposeParDict . 98
6.17 postChannelDict . 100
7.1 blockMeshDict . 103
7.2 bank.C . 107
7.3 bed.C . 107
7.4 topoSetBank . 108
7.5 topoSetDelete . 109
7.6 topoSetBed . 110
7.7 U . 111
7.8 setFieldsDict . 113
7.9 P . 114
7.10 k . 115
7.11 nut . 116
7.12 fvOptions . 118
7.13 transportProperties . 120
7.14 fvSolution . 121

131

LISTINGS

7.15 controlDict . 121

132

	1 Introduction
	1.1 Objective of the work
	1.2 Methodology

	2 Theory
	2.1 Governing equations
	2.2 Turbulence modeling
	2.2.1 DNS
	2.2.2 LES
	2.2.2.1 Subgrid-Scale (SGS) Models

	2.2.3 RANS

	3 Large-eddy simulation of turbulent channel flow over rough beds
	3.1 Introduction
	3.2 Pre-Processing
	3.2.1 Rough Bed generation
	3.2.2 Geometry of the Domain
	3.2.3 Boundary and Initial Conditions
	3.2.3.1 Velocity, U
	3.2.3.2 Kinematic Pressure, p
	3.2.3.3 turbulent kinetic energy, k
	3.2.3.4 turbulence viscosity, nut
	3.2.3.5 Adapting fields from channel395
	3.2.3.6 changeDictionaryDict

	3.2.4 Options
	3.2.4.1 fvOptions
	3.2.4.2 transportProperties
	3.2.4.3 turbulenceProperties
	3.2.4.4 fvSchemes (Numerical Schemes)
	3.2.4.5 fvSolution
	3.2.4.6 controlDict
	3.2.4.7 decomposeParDict

	3.2.5 Folder tree

	3.3 Solver
	3.4 Post-Processing and results
	3.4.1 postChannelDict
	3.4.2 Graphs for rough and smooth channel
	3.4.3 Plots for the rough channel with an increased velocity

	4 Trapezoidal Channel
	4.1 Introduction
	4.2 Rough and Smooth Trapezoidal Channel
	4.2.1 Computation requirement for trapezoidal channel
	4.2.1.1 Experiment F16_45_30
	4.2.1.2 Experiment F16_45_30 decreased velocity

	4.3 Pre-Processing
	4.3.1 Geometry of the Domain
	4.3.2 Rough Bed generation
	4.3.3 Boundary and Initial Conditions
	4.3.3.1 Velocity, U
	4.3.3.2 Kinematic Pressure, p
	4.3.3.3 turbulent kinetic energy, k
	4.3.3.4 turbulence viscosity, nut

	4.3.4 Options
	4.3.4.1 fvOptions
	4.3.4.2 transportProperties
	4.3.4.3 turbulenceProperties
	4.3.4.4 fvSchemes (Numerical Schemes)
	4.3.4.5 fvSolution
	4.3.4.6 controlDict
	4.3.4.7 decomposeParDict

	4.4 Solver
	4.5 Results

	5 Summary and Conclusions
	6 Appendix A
	6.1 Creation of the roughness elements, boxes.C
	6.2 topoSetDict
	6.3 blockMeshDict
	6.4 Velocity, U
	6.5 Kinematic Pressure, p
	6.6 Turbulent Kinetic Energy, k
	6.7 Turbulence viscosity, nut
	6.8 mapFieldsDict
	6.9 changeDictionaryDict
	6.10 fvOptions
	6.11 transportProperties
	6.12 turbulenceProperties
	6.13 fvSchemes
	6.14 fvSolution
	6.15 controlDict
	6.16 decomposeParDict
	6.17 postChannelDict

	7 Appendix B
	7.1 blockMeshDict
	7.2 bank.C
	7.3 bed.C
	7.4 topoSetBank
	7.5 topoSetDelete
	7.6 topoSetBed
	7.7 Velocity, U
	7.8 setFieldsDict
	7.9 Pressure, P
	7.10 Turbulent Kinetic Energy, k
	7.11 Turbulence viscosity, nut
	7.12 fvOptions
	7.13 transportProperties
	7.14 fvSolution
	7.15 controlDict

