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Abstract

In the present thesis a method for measuring the deformation retardation
time λ2 of viscoelastic liquids is developed. The method is based on the
oscillating drop technique. In this study small-amplitude damped shape
oscillations of viscoelastic drops in air are considered. The underlying linear
theory provides the characteristic equation of the drop from which λ2 can
be determined.
An acoustic levitation technique is used to levitate the individual drops.
The drop shape oscillation of the fundamental mode m = 2 is excited by
ultrasound modulation. Once the excitation is stopped, the drop exhibits
damped oscillations which are recorded by a high-speed camera. From the
acquired recordings the equilibrium drop radius and the complex angular
frequency are determined.
Next, the numerical method for determining a pair of liquid properties
- the unknown deformation retardation time λ2 and any other known
liquid property - from the complex characteristic equation is presented.
In the present work the pairs (λ2, η0) and (λ2, λ1) were chosen, where η0
is the zero-shear-rate viscosity and λ1 is the stress relaxation time. The
characteristic equation involves the spherical Bessel functions of the first
kind which produce a manifold of solutions. From the set of solutions the
correct pair is identified by comparison of the calculated values of η0 or λ1
with the results from measurements with a rotational viscometer (η∗0 ) or
the filament stretching elongational rheometer (λ∗1), respectively.
The uncertainty analysis shows that the deformation retardation time λ2
obtained by the proposed method depends weakly on uncertainties of the
experiment. The measured values of λ2 deviate strongly from the values
often used in viscoelastic liquid flow simulations. It was found that for the
liquids investigated the ratio λ2/λ1 assumes a fairly constant value.
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Zusammenfassung

In der vorliegenden Dissertation wurde eine Methode zur Messung der
Deformations-Retardationszeit λ2 viskoelastischer Flüssigkeiten entwickelt.
Die Methode basiert auf der Technik der schwingenden Tropfen. In dieser
Studie werden gedämpfte Schwingungen kleiner Amplitude von viskoe-
lastischen Tropfen betrachtet. Die zugrunde liegende lineare Theorie liefert
die charakteristische Gleichung des Tropfens, aus der λ2 bestimmt werden
kann.
Eine akustische Levitationstechnik wird zur Positionierung einzelner Tropfen
verwendet. Durch Ultraschall-Modulation wird die Tropfenschwingung des
Grundmodes m = 2 angeregt. Wird diese Anregung gestoppt, so führt der
Tropfen gedämpfte Schwingungen aus, die mit einer Hochgeschwindigkeits-
Kamera aufgezeichnet werden. Aus den Bildern werden der Gleichgewicht-
sradius des Tropfens und die komplexe Kreisfrequenz der Schwingung
bestimmt.
Dann wird die numerische Methode präsentiert, mit der aus der kom-
plexen charakteristischen Gleichung ein Paar von Flüssigkeitseigenschaften
bestimmt wird – die unbekannte Deformations-Retardationszeit λ2 und
eine andere bekannte Eigenschaft. In der vorliegenden Arbeit wurden die
Paare (λ2, η0) und (λ2, λ1) gewählt, wobei η0 die Viskosität bei sehr kleiner
Scherrate und λ1 die Spannungs-Relaxationszeit sind. Die charakteristische
Gleichung enthält sphärische Besselfunktionen erster Art, die eine Vielfalt
von Lösungen erzeugen. Aus der Menge der Lösungen wird das richtige
Paar durch Vergleich der berechneten Werte η0 oder λ1 mit den Ergebnissen
von Messungen mit einem Scherrheometer (η∗0 ) und mit einem Filament-
Dehnrheometer (λ∗1) identifiziert.
Die Unsicherheits-Analyse zeigt, dass die Deformations-Retardationszeiten
λ2, die mittels der entwickelten Methode bestimmt werden, nur schwach
von Unsicherheiten des Experiments abhängen. Die gemessenen Werte

v



λ2 weichen stark von Werten ab, die oft in Simulationen viskoelastis-
cher Strömungen benutzt werden. Es wurde gefunden, dass für die un-
tersuchten Flüssigkeiten das Verhältnis λ2/λ1 einen nahezu konstanten
Wert annimmt.
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1 Introduction

The main emphasis of this work is on viscoelastic liquids, their properties
and their behavior under small deformations. To describe the linear dynamic
behaviour of the polymeric liquids a linearized Oldroyd-B model [1, 2], also
known as the Jeffreys model [3, 4], was used:

τ + λ1τ̇ = η0

(
γ̇ + λ2

∂γ̇

∂t

)
, (1.1)

where τ and γ̇ are the deformation-induced stress and the rate of de-
formation tensors, respectively. This mathematical model contains three
independent parameters; the zero-shear-rate viscosity η0, i.e. the viscosity at
low shear rates, and two material time constants: the stress relaxation time
λ1 and the deformation retardation time λ2. This two polymeric time scales
are important parameters in mathematical models describing the rheological
behaviour of viscoelastic liquids upon small deformations. In the case of
small deformations of a liquid element, the polymeric time scales λ1 and
λ2 describe the stress relaxation after removal of strain and rate of strain
relaxation after removal of stresses, respectively. In other words, as stated
by Oldroyd [2, 5] when the rate of deformation is stopped, any small stress
decays as e−t/λ1 , and if the stress is removed, the rate of deformation decays
as e−t/λ2 .
Molecular mechanical properties of dissolved polymeric substances are
responsible for the time scales, and computational methods for quantify-
ing them from first principles are in general unavailable. While the stress
relaxation time of spinnable liquids can be measured by standard filament
stretching elongational rheometers [6–9], a standard method for measuring
the deformation retardation time is not established (e.g. [10]).

It is important to note, however, that in Oldroyd’s theoretical framework
the polymeric time scales are material constants, which are treated as

1



1 Introduction

independent of each other. In contrast to the Oldroyd derivation [1, 2], there
are alternative derivations of the Oldroyd-B model [3, 4, 11, 12], where the
retardation time is proportional to the relaxation time. This relationship
follows from the so-called stress-splitting approach. where the extra stress
tensor is written as the sum of solvent and polymer contributions. The
stress splitting approach also implies, that the total zero shear viscosity is
a sum of solvent and polymer viscosity. From this point of view can be
argued, why there is no necessity to develop a method for measuring the
deformation retardation time. Nevertheless, there is nowhere to be found a
demonstration of the validity of the stress splitting approach, neither the
limitations of the approach. In the literature studied the stress splitting
approach is usually postulated and used without further explanations.

In the present thesis a method for measuring the deformation retardation
time of polymeric liquids from damped drop shape oscillations [13, 14] was
developed. The measured λ2 is compared to the calculated deformation
retardation time λ∗2 given by the equation derived from the stress splitting
approach.

1.1 Complex fluids

Complex fluids, or more specially viscoelastic fluids, are a group of non-
Newtonian fluids, for which the classical Newtonian law does not hold.
Viscoelastic fluids show both viscous and elastic properties simultaneously.
Newton’s law describes the behaviour of an ideal viscous fluid - the Newto-
nian fluid, and Hooke’s law describes the behaviour of an ideal elastic body
- the Hookean body.

Hookean body
The ideal elastic body obeys Hooke’s law, which states that the stress τ
is proportional to the strain γ. The proportionality constant is the elastic
modulus G. Hooke’s law, formulated in a correct tensor form [15] is written
as

τ = C · γ, (1.2)

where τ is the stress tensor, γ is the strain tensor and C is a fourth order
tensorial material constant called the elasticity tensor. Once the strain (force)

2



1 Introduction

is removed the original shape of the Hookean body and the deformation
energy are restored.

Newtonian fluid
For ideal viscous fluid under shear stress, Newton derived a law analogous
to the Hookean where the deformation-induced stress is linearly related to
the strain rate γ̇ and the linearity constant is the fluid dynamic viscosity η.
The constitutive equation in tensor form for the incompressible Newtonian
fluid is written as

τ = ηγ̇, (1.3)

where τ is the stress tensor and γ̇ is the rate of deformation tensor.

If the relationship between the shear stress and the strain rate is not lin-
ear, then the fluid is called a non-Newtonian fluid. In that case the fluid
viscosity is a function of shear stress or strain rate. The non-Newtonian
behavior depends on the fluid microstructure and can be characterized as
shear-thinning or shear-thickening. The viscosity of shear-thinning fluids
decreases with increasing shear rate, while for sheer-thickening liquids the
fluid viscosity increases with increasing shear rate. The behaviour of the
shear-thinning, shear-thickening and Newtonian fluids is demonstrated in
figure 1.1.

Generalised Newtonian fluid
The most simple extension of the linear Newtonian model are the gen-
eralised Newtonian models ([3], pp. 169-174). These type of models are
non-linear in their nature because they incorporate the shear-rate dependent
viscosity η(γ̇). The generalized Newtonian fluid model is given by the
rheological equation

τ = η(γ̇)γ̇, (1.4)

where γ̇ =
√

γ̇ : γ̇/2 is the second invariant of the shear rate tensor. The
generalized Newtonian model describes the behaviour of inelastic fluids,
where the material stress response depends only on the instantaneous
deformations and not on the deformation history. Thus, the generalized
Newtonian model is not able to model the relaxation behaviour of viscoelas-
tic materials.
There are various empirical expressions for describing non-Newtonian vis-
cosity behaviour η(γ̇) [3, 15–17]. The most commonly used are the power-law

3



1 Introduction

(a) (b)

Figure 1.1: Behaviour of Newtonian and non-Newtonian fluids. (a) The fluid viscosity
against the shear rate and (b) the shear stress against the shear rate.

model and the Carreau-Yasuda model.
The power-law model is given as

η = kγ̇n0−1 (1.5)

where n0 is the power-law exponent and k is the consistency factor with units
of Pa · sn0 . Both n0 and k are temperature dependent [3]. In case of n0 = 1
and k = η the Newtonian model is recovered. For n0 < 1, equation (1.5)
describes shear-thinning fluid behaviour, and for n0 > 1, shear-thickening
behaviour is represented. The power-law model (1.5) describes the viscosity
in a narrow range of shear rates.
The Carreau-Yasuda model contains five parameters and is given as

η − η∞

η0 − η∞
= (1 + (K1γ̇)n1)

n0−1
n1 . (1.6)

Here η0 (zero-shear-rate viscosity) and η∞ (infinite-shear-rate viscosity) are
the asymptotic viscosity values in the limits of very small (γ̇→ 0) and very
large shear rates (γ̇→ ∞), respectively. The exponent n0 is the same as in
the power-law model (1.5). Further, K1 is the model parameter and n1 is the
Yasuda exponent. For n1 = 2, a so-called Carreau model is obtained ([3], p.
172, [15], p. 96).
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1 Introduction

Viscoelastic materials
The ideal elastic and the ideal viscous behaviors are considered as idealiza-
tions, which can be realized only partially. In reality, most of the materials
show combined features of both ideal models and are therefore called
viscoelastic materials. Typical representatives of viscoelastic materials are
viscoelastic fluids like polymer solutions.
The internal stresses of viscoelastic materials are functions of both the
instantaneous deformation and also the deformation history. If the defor-
mations or stresses are small enough, so that the rheological properties do
not depend on the deformation, then the term linear viscoelasticity is used
[3, 15, 17].
The typical characteristic features of viscoelastic materials are the stress
relaxation and creep deformations. The stress response of the viscoelastic
materials strongly depends on the time scale of deformations and the char-
acteristic time scale of the material. A typical illustrative example is silly
putty1, a silicone based material. Over a long time period silly putty behaves
as a viscous liquid, while at short time scales acts as an elastic solid. The
constitutive equations (1.5) and (1.6) are not able to describe such type of
viscoelastic behaviour. The proper constitutive equations for viscoelastic
liquids will be presented in section 3.

To characterize the nature of a specific material, two important dimension-
less numbers containing the characteristic time scales were constructed
[15, 18]. The non-dimensional Deborah number is introduced as

De =
λ

te
= λω (1.7)

where λ is the characteristic time scale, te is the time of observation and
ω = 1/te is the characteristic frequency. The time of observation te is a
time scale on which the experiments take place. The relaxation time λ is
a material-dependent characteristic time scale on which the stress relaxes
after removal of strain. For De� 1, the material shows elastic or solid-like
behavior, while for De � 1 the viscous behavior is dominant. In case of
De ∼= 1 the material behavior can be regarded as viscoelastic.
The Weissenberg number Wi represents the ratio between elastic and viscous

1Silly putty, URL: https://en.wikipedia.org/wiki/Silly_Putty
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1 Introduction

forces and is usually given as a product of the characteristic time scale (λ)
and characteristic shear rate (γ̇) (see [15], p. 71)

Wi = λγ̇. (1.8)

Poole [18] remarked that the Weissenberg number can be interpreted as
representing the recoverable strain in the fluid. As noted further in [18], in
steady simple shear flow the dominant elastic force will be due to the first
normal-stress difference N1, and the viscous force is due to the shear stress.
Figure 1.2 shows the so-called Pipkin’s diagram [15], which demonstrates
the material behaviour as a function of the Deborah and Weissenberg
numbers.

Figure 1.2: Pipkin diagram showing different material responses as a function of the
Deborah and Weissenbergs number. Adapted from [15].

6



1 Introduction

1.2 Polymeric time scale measurements

As already mentioned, methods for measuring the stress relaxation time are
well established, while a standard method for measuring the deformation
retardation time of polymer solutions is not yet established. In general,
polymer solutions may exhibit spectra of both the stress relaxation and
the deformation retardation times rather than single values [14]. For many
flows, however, the largest values in the spectra dominate the dynamic
fluid behaviour [19]. In filament stretching elongational rheometry, e.g.,
the longest stress relaxation time is measured, a quantity essential for the
characterization of fluids in uniaxial elongational flow. The same approach
is taken in the present work for the deformation retardation time.

The first attempt to measure the deformation retardation time (and the
stress relaxation time) was made in 1951 by Oldroyd et al. [5]. In their work,
they designed and tested a coaxial-cylinder elasto-viscometer, an instrument
for measuring the elastic and viscous properties of viscoelastic polymer
solutions. The narrow annular gap formed between two vertical coaxial
cylinders was filled with the test liquid.
The viscosity of the liquids was measured using steady rotation of the cylin-
ders, where the viscoelastic liquid behaves as purely viscous with a shear
rate dependent viscosity. The viscoealastic properties were measured in the
experiments involving oscillatory motion of the cylinders. The outer cylin-
der undergoes forced harmonic oscillations of known angular frequency
and amplitude about its axis, while the inner cylinder is constrained by a
torsion wire of known restoring constant. As a result from the oscillatory
measurements, the ratio of the observed amplitudes of the inner and outer
cylinders against the angular frequency is obtained. In order to deduce
the polymeric time scales λ1 and λ2, the linearized Oldroyd-B equation
must first be solved for this particular problem. The numerical solution,
presented in a separate paper by Oldroyd [20], is then fitted to the measured
frequency-amplitude-ratio curve with the polymeric time scales as fitting
parameters. As noted by Oldroyd et al. [5], the preliminary results show
that the linearized Oldroyd-B model was able to describe the measured
data. In contrast, as noted further in [5], the Maxwell viscoelastic model [3],
which contains only one polymeric time scale, was inadequate to describe
the measured data.

7



1 Introduction

The same instrument was later used by Toms et al. [21] to characterize dilute
solutions of highly polymerized methyl methacrylate in different solvents.
The measurements were conducted at different temperatures, ranging from
15 ◦C to 45 ◦C. It was found that both the zero shear rate viscosity and stress
relaxation time depend on the polymer concentration, the temperature and
the nature of the solvent. On the other hand, the deformation retardation
time has a nearly constant value with no large deviation.

Chapman et al. [22] proposed an experimental technique to measure the
deformation retardation time of large DNA molecules. The measured de-
formation retardation time was used to determine the molecular weight
of the DNA molecules. These authors used a rotating Cartesian-diver vis-
cometer for performing creep-recovery experiments. The solutions of DNA
molecules cause the reversal of the direction of rotation of the viscometer
rotor after the driving torque is suddenly removed. The motion of the rotor
decays as an exponential function of time, where the characteristic decay
time is identified as the deformation retardation time.
A method to obtain discrete retardation time spectra from creep and recov-
ery data was proposed by Kaschta et al. [23, 24]. The method was applied in
the glass-rubber transition region of polymer melts.

1.3 Oscillating drop method

The deformations of a drop surface due to shape oscillations may influence
transport processes across the liquid/gas interface, such as the evaporation
of the drop or the absorption of gases from the environment. For their
relevance for transport processes, and for scientific interest, oscillations of
liquid drops have been under investigation since the time of Lord Rayleigh,
who derived the angular frequency

αm,0 =
√

m(m− 1)(m + 2)
√

σ

ρa3 (1.9)

of linear oscillations of mode m for an inviscid drop with density ρ, surface
tension σ and radius a against the ambient vacuum [25]. As noted in
[26], the modes m = 0 and m = 1 describe the volumetric pulsation and
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1 Introduction

the translatory motion of the drop, respectively. Hence, the fundamental
oscillation mode is m = 2, which describes elongation and contraction of the
droplet. The first three oscillation modes for m ≥ 2 are shown in Figure 1.3.

Figure 1.3: The first three oscillation modes. The dashed line represents the undeformed
spherical drop shape in equilibrium.

Lamb extended the work of Rayleigh by considering the influence of the
drop liquid viscosity [27], and obtained the amplitude decay time tm of the
m-th mode oscillation as

tm =
ρa2

(m− 1)(2m + 1)η
(1.10)

and the oscillation frequency

α∗m = αm,0

√
1− (tm αm,0)

−2 (1.11)

where η is the fluid viscosity, which reduces the natural oscillation frequen-
cies.
Lamb also generalized Rayleigh’s result by including the influence from
a host medium with a non-negligible density ρ0 on the oscillations of an
inviscid drop [28]. He obtained a dependency of the angular frequency of
oscillation on a weighted sum of the two densities,

αL
m,0 =

√
m(m− 1)(m + 1)(m + 2)

mρ0 + (m + 1)ρ

√
σ

a3 . (1.12)
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1 Introduction

The general case of the small-amplitude oscillation of a viscous fluid drop
immersed in another viscous fluid with non-negligible density was studied
by Miller & Scriven [29]. They derived the characteristic equation of the
oscillating drop in the form of a determinant which must be equal to zero.
For the different special cases of fluid behaviour, the equation reduces to
the known results of previous studies.

The characteristic equation of the oscillating drop determines the dependen-
cies of the drop shape oscillation frequency and damping rate on physical
properties of the drop liquid [13]. These dependencies allow these physical
properties to be measured when the oscillation frequency and the damp-
ing rate are known. This “oscillating drop method” for measuring various
liquid physical properties has been in use for several decades. In order to
produce and investigate oscillating drops, the drops must be levitated by an
appropriate technique. There are different levitation techniques available
which allow a non-contact handling of the test sample: electrical, magnetic,
aerodynamic and acoustic levitation [30]. In the present work the acoustic
levitation technique was used [31], which will be explained in detail in
Section 6.1.1.

The oscillating drop method was used for measuring the interfacial tension
between two immiscible liquids [32] and the surface tension of the drop
liquid against the ambient air [33]. The former authors used quadropole
shape oscillations of an acoustically levitated drop in another liquid. They
related the resonance properties of the drop to the interfacial tension [32].
The latter authors determined the liquid surface tension by measuring the
frequency of an oscillating liquid droplet obtained by the break up of a
liquid jet [33].

Next to the interfacial tension, the dynamic viscosity of various Newto-
nian liquids was measured using the drop oscillation method. Egry et al.
measured the dynamic viscosity of the eutectic Pd78Cu6Si16 over a wide
temperature range, including the eutectic temperature of 1033 K [34]. The
authors performed the damped drop oscillation experiments under micro-
gravity conditions and related the dynamic viscosity to the damping rate.
They have found a very good agreement between the measured dynamic
viscosity and the values known from the literature. The resonance behaviour
of the oscillating drop was studied by Perez et al. [35]. The authors take into
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account the spheroidal shape of the drop and the velocity field inside the
drop. They obtained a correlation of the dynamic viscosity with the width
of the resonance peak. The method enables accurate measurements of the
dynamic liquid viscosity in the range between 2 mPa s and 150 mPa s. The
authors propose to apply the method to suspensions and to materials in the
semisolid state [35].

The oscillating drop method was used to investigate the surface rheology
of viscoelastic systems [36, 37]. The experiments with drops of surfactant
solutions were performed under microgravity conditions. In the work of
Tian et al., complementary effects of the surface and the bulk viscosities were
found. The damping rate of the oscillating drop is affected by the surface
viscosity, due to the coupling between the surface viscous and elastic effects
[36]. In the experiments of Apfel et al., free drop oscillations were excited
by loudspeakers. From the measured oscillation frequency of the drop,
both bulk and surface viscoelastic properties of surfactant solutions were
determined. The goal of the study was to develop rational models of the
surfactant behaviour [37]. A detailed review of oscillating drop and bubble
techniques can be found in the work by Kovalchuk et al. [38].

Most recent experiments using freely decaying oscillations of acoustically
levitated droplets were reported in [39]. They simultaneously measured the
surface tension and viscosity of different oils and alcohols by analyzing the
freely decaying drop oscillations. They compared their results to the data
from the literature and found an absolute deviation ranging from 2.63% to
15.4% in viscosity measurements and an absolute deviation ranging from
4.06% to 7.35% for the surface tension. The experimental method used was
identical to the method proposed in the present thesis. The difference is,
however, that they studied only Newtonian liquids, while the focus of the
present work is on viscoelastic liquids.

1.4 Aim and organisation of the work

The present thesis aims to provide an experimental method for measuring
the deformation retardation time of polymeric liquids and to carry out

11
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measurements for various aqueous polymer solutions. The method is based
on small amplitude damped drop oscillations using the acoustic levitation
technique [13, 14].

The remainder of the dissertation is organized as follows:
Chapter 2 presents a brief review of the continuum mechanics and the
governing equations of fluid kinematics and fluid dynamics. These equations
are the conservation of mass, the conservation of momentum, and the
expressions for the rate of deformation tensor and deformation gradient
tensor.

Chapter 3 deals with the polymer rheology and the constitutive modeling.
Two approaches leading to the differential constitutive equations are ex-
plained; the micro-structural approach and the continuum approach. As
an appropriate rheological model the Oldroyd-B model is selected which is
given in different formulations. The linearized Oldroyd-B has the simplest
form among the other models, it is easy to implement and requires no
additional assumptions about the fluid properties.

Chapter 4 presents a thorough mathematical analysis of linear damped
viscoelastic drop oscillations. As a result of the analysis, the characteristic
equation for the complex angular frequency of the drop is obtained. The
dimensional analysis of the characteristic equation is conducted, and the
ranges of the non-dimensional parameters (the Ohnesorge and the Debo-
rah numbers) for which shape oscillations exist are determined. Next, the
necessary steps for solving the characteristic equation for the unknown de-
formation retardation time are given. The characteristic equation is transcen-
dental in the complex argument of the spherical Bessel functions involved
and must be solved numerically. Due to the nature of the spherical Bessel
functions, the equation produces a manifold of solutions, from which the
correct one must be identified.

Chapter 5 presents a thorough characterization of the viscoelastic liquids
studied in the present thesis. The available experimental methods for mea-
suring the relevant rheological properties are described. These properties
are the zero shear viscosity, surface tension and the stress relaxation time.

Chapter 6 describes the experimental part of the oscillating drop method
for measuring the deformation retardation time. The fundamental part of
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the experimental set-up is the acoustic levitator which is explained in detail.
The outcome of the measurements are the equilibrium drop radius and the
complex angular frequency of the fundamental oscillation mode. These val-
ues enter the characteristic equation, which is then solved for the unknown
deformation retardation time. The measurement procedure is demonstrated
with viscoelastic test liquids, and the results of the measurements are pre-
sented.

Chapter 7 provides the uncertainty and sensitivity analysis of the experi-
mental method. The measured deformation retardation times are further
analyzed and discussed.

Finally, Chapter 8 provides the summary and conclusions of the thesis.
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2 Review of continuum mechanics

In this section a basic principles of continuum mechanics are presented. The
review is based on [3, 40–42], where the additional details can be found.
Continuum mechanics is formally divided into solid mechanics and fluid
mechanics. However, for many materials the classification into one of these
two subgroups is not always possible.

Continuum mechanics deals with the kinematics and dynamics of the mate-
rials described as a continuous medium. A continuous medium, sometimes
referred to as a body, is a mathematical model of the physical material
where it is assumed that the occupied space is fully (continuously) filled
with material particles.

2.1 Spatial and material coordinates

In the framework of continuum mechanics, the material behaviour can be
described by two different mathematical formulations. The first formulation
follows from the Lagrangian viewpoint, where the trajectories of specific
material particles are followed. The second formulation is the Eulerian
viewpoint, where the motion is described by spatio-temporal fields, either
scalar or vector, rather than the temporal position of a material particle.
Let the initial location of a material particle at time t = 0 be given as
ζ = (ζ1, ζ2, ζ3). After time t, the material particle ζ is located at a new
position x given as

x = x(ζ, t), xi = xi(ζ1, ζ2, ζ3, t). (2.1)
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2 Review of continuum mechanics

The equation (2.1) can also be inverted to give the initial position ζ at time
t = 0 of a particle that at time t is at position x:

ζ = ζ(x, t), ζi = ζi(x1, x2, x3, t). (2.2)

In principle the equations (2.1) or (2.2) are sufficient to completely describe
the motion of a deformable body. If the motion is expressed with the initial
coordinate configuration (2.1), then this is known as the Lagrangian or ma-
terial description, where the coordinates ζ = (ζ1, ζ2, ζ3) are the Lagrangian
or material coordinates. If the motion is expressed with current coordinate
configuration (2.2), then this is known as the Eulerian or spatial description
where the coordinates x = (x1, x2, x3) are called Eulerian or spatial coordi-
nates.
Any physical property P of a continuum can be described either in spatial
P(x, t) or material coordinates P(ζ, t). The property P can be either scalar
(density, pressure, temperature, ...), vector (position, velocity, acceleration,
pressure gradient,...) or tensor (stress tensor, rate of deformation tensor, ...).
The Eulerian description, which is usually used in fluid mechanics, gives a
material property in a fixed position in space. The Lagrangian description
gives the properties of the same material particle. This description is usually
used in solid mechanics.
Special care must be taken when calculating the time derivative of a physi-
cal property P of the material because the time derivative has a different
meaning in material and spatial coordinates. The time derivative in Eulerian
coordinates, also known as the local derivative, is defined as(

∂P(x, t)
∂t

)
x
=

∂P(x, t)
∂t

(2.3)

and represents the time variation of the property P at a given location.
The time derivative in Lagrangian coordinates, also known as the material
derivative or the substantial derivative, is written as(

∂P(ζ, t)
∂t

)
ζ

=
DP(ζ, t)

Dt
(2.4)

where the material derivative is an operator defined as

D
Dt

:=
∂

∂t
+ u · ∇, (2.5)
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2 Review of continuum mechanics

with the local velocity u and the convected derivative (u · ∇). The mate-
rial derivative describes the time variation of the property P of a specific
material particle that moves in a velocity field with velocity u. The mate-
rial derivative can also be viewed as a connection between the Lagrangian
description and the Eulerian description.

To understand fluid dynamics or kinetics, i.e., the relationship between
fluid motion and its causes, the basic principles of fluid kinematics must be
presented.

2.2 Kinematics

Kinematics describes the fluid motion, without considering the forces which
caused the motion. Thereby it does not matter what kind of material is in
question.

In the Eulerian approach, the fluid motion is described by the velocity field
u(x, t). At a given time t, the velocity at location x is related to the velocity
at the neighboring location x + dx as ([42], p. 105)

u(x + dx) = u(x) +∇uTdx. (2.6)

Equation (2.6) may be rewritten as

du = u(x + dx)− u(x) = ∇uTdx := L · dx (2.7)

where the velocity gradient tensor L is introduced as

L = (∇u)T, with the Cartesian components Lij =
∂uj

∂xi
. (2.8)

This gradient tensor may be decomposed into a symmetric part D and an
antisymmetric part W as

L = D + W (2.9)

where
D =

1
2

(
L + LT

)
=

1
2

(
(∇u)T +∇u

)
(2.10)
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is the rate of deformation tensor and

W =
1
2

(
L− LT

)
=

1
2

(
(∇u)T −∇u

)
(2.11)

is the vorticity tensor. The rate of deformation tensor D describes the rate of
stretching and shearing. The vorticity tensor W describes the rate of rotation
of a solid body at a given location. Its components can be alternatively
computed as

Wij = −
1
2

εijkωk (2.12)

where
ω = ∇× u (2.13)

is the vorticity vector and εijk is the Levi-Civita symbol defined as

εijk =


1, if (ijk) is an even permutation of numbers
−1, if (ijk) is an odd permutation of numbers

0, else.
(2.14)

For irrotational flow, both W and ω are zero.

For complex fluids, like viscoelastic liquids, the above derived tensors are
not sufficient for describing the deformations ([3], pp. 425-426). Additional
information about the deformation can be obtained considering the La-
grangian approach and describing the deformations in the vicinity of the
material particle [3].
A line element dζ at position ζ in the initial configuration becomes dx in
the new configuration at time t. The current line element dx is expressed
as

dx = x(ζ + dζ)− x(ζ) := Edζ (2.15)

where the deformation gradient tensor E is introduced as

E =

(
∂x
∂ζ

)T

, with the Cartesian components Eij =
∂xj

∂ζi
. (2.16)

The deformation gradient tensor relates the line element in the initial con-
figuration to the line element in the present configuration and contains the
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information about the deformation and rotation in the neighborhood of a
given material particle. Since a rotation of a material cannot induce stresses,
it is convenient to define strain tensors without influences of solid body
rotation [3, 17, 43, 44]. These rotation-independent strain tensors are the
right Cauchy-Green strain tensor

C = ETE (2.17)

and the left Cauchy-Green strain tensor or the Finger strain tensor

B = EET. (2.18)

The physical meaning of C and B is evident when considering the trans-
formation of the inner product of two line elements (see [43], p. 21, [44],
p. 26 or [42], pp. 112-113). Let dx(1) and dx(2) be the line elements in the
current configuration and dζ(1) and dζ(2) the line elements in the initial
configuration. The inner product of the current line elements is

dx(1) · dx(2) = Edζ(1) · Edζ(2) = dζ(1) · ETE · dζ(2) := dζ(1) ·C · dζ(2) (2.19)

and similarly for the initial line elements

dζ(1) · dζ(2) = dx(1) · E−TE−1 · dx(2) := dx(1) · B−1 · dx(2). (2.20)

Further details about strain tensors, can be found, for example, in [17] (pp.
29 - 37) and [42] (pp. 112-116).

2.3 Dynamics of fluids

The fluid dynamics or kinetics describes the relationship between fluid
motion and its causes. The basic equation of continuum mechanics are the
continuity equation and the Cauchy equation of motion, which are derived
from the following physical laws of conservation:

• conservation of mass,
• conservation of momentum.
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In the present thesis, only isothermal flows are considered, therefore the
conservation of energy is not considered.

Conservation of mass
The law of conservation of mass states that the mass of a closed system
must be constant over time. This can be expressed in differential form as

∂ρ

∂t
+∇ · (ρu) = 0 (2.21)

which is known as the continuity equation, where ρ is the material density
and u is the velocity field. For incompressible materials with constant
density, ρ = constant, the above continuity equation (2.21) simplifies to

∇ · u = 0. (2.22)

In the present work the emphasis is on incompressible fluids.

Conservation of momentum
The law of conservation of linear momentum is basically the application of
Newton‘s second law to the continuum. If the density is constant, the con-
servation of momentum equation leads to the Cauchy equation of motion

ρ
∂u
∂t

+ ρ(u ·∇)u = ∇ ·π + ρ f B (2.23)

where f B represents the volume forces and π is the Cauchy stress tensor
or the total stress tensor. Equation (2.23) is also known as the Cauchy first
law of motion. The volume force f B, also called body force, which acts
on the volume element of the material, is in most problems equal to the
gravitational acceleration or set to zero. Conservation of angular momentum,
together with the conservation of mass (2.22) and linear momentum (2.23),
results in

π = πT, (2.24)

i.e., the total stress tensor is symmetric [15, 45]. The equation (2.24) is also
known as the Cauchy second law of motion.

For an incompressible fluid the total stress tensor π is usually decomposed
as

π = τ − p · δ, (2.25)
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where p is the hydrodynamic pressure, δ is the unit tensor and τ is the
extra stress tensor or deviatoric stress tensor, which is determined by the
deformation history. As remarked in ([3], pp. 10-11), for an incompressible
fluid, only the gradient of p needs to be known for solving hydrodynamic
problems. Further, p can be determined by solving the equations of motion
with appropriate boundary conditions. On the other side, the extra stress
tensor τ must be determined from the appropriate rheological model, i.e.,
the constitutive equation, which relates the stresses to the material defor-
mations. The constitutive equations in general describe all the differences
between Newtonian and non-Newtonian fluid behaviour.
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3 Rheological constitutive
equations for viscoelastic liquid

In viscoelastic fluid mechanics we face the fundamental problem of relating
the stress tensor to the material deformation. This relation is given by the
constitutive equation of the material. Some of the well-known constitu-
tive equations, as for the Hookean body (1.2), the Newtonian fluid (1.3)
and the simple non-Newtonian fluid (1.4), were already presented in the
Introduction.

To construct appropriate constitutive equations, many approaches have been
developed [3, 4, 43–48]. These approaches can be formally divided into two
categories: the continuum (phenomenological) approach and the micro-structure
approach. The continuum approach can be divided further into differential
models and integral models, depending on the mathematical form of the
rheological model. The micro-structure approach constructs the constitutive
models from assumptions on the structure of polymer chains and their
behavior in the fluid flow. The micro-structure approach can be roughly
divided into dilute polymer solution theory, the network theories, the reptation
theories and suspension models.

3.1 Constitutive modelling: The continuum
approach

In the continuum approach, the constitutive equations must satisfy certain
fundamental principles, which were first introduced by Oldroyd [1] in 1950.
According to Phan-Thien [15], these fundamental principles on which the
constitutive equations must be based can be summarized as follows:
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• The principle of determinism of stress: The current stress in the material
is determined by the past history of motion of the material.
• The principle of local action: The stress at a given material point is

determined by the history of the deformation within an arbitrarily
small vicinity of the considered material point.
• The principle of coordinates-indifference: The constitutive equation must

appear independent of the frame of reference. This principle is also
known as the principle of material objectivity.

The first two principles are straightforward and easy to understand [15].

The third principle requires an objective time derivative of a tensor. Al-
though shear rate tensor and stress tensor, and also the left Cauchy-Green
strain tensor (2.17) and Finger strain tensor (2.18), are objective, their time
derivatives (material time derivative or partial time derivative) do not fulfill
the conditions of material objectivity.

A proper frame-indifferent rate tensor is obtained if the time derivative
(material time derivative or partial time derivative) is taken with respect to
the reference frame fixed to the body.

The Oldroyd convected derivative [1] is a time derivative in a local coordi-
nate system which is embedded in the fluid and moving along with it, as
stated in [3]. Two such Oldroyd derivatives can be formulated, the upper

convected derivative
O
T described in terms of contravariant components

O
T=̇T(1) =

DT
Dt
− L · T− T · LT (3.1)

and the lower convected derivative
M
T described in terms of covariant com-

ponents
M
T=̇T(1) =

DT
Dt

+ L · T + T · LT. (3.2)

As noted in Han ([48], p. 34), when compared to experimental data, the
material functions obtained from the upper convected time derivative of the
stress tensor predict a correct trend, while material functions obtained from
the lower convected time derivative of the stress tensor do not. Thus, the
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3 Rheological constitutive equations for viscoelastic liquid

upper convected time derivative is preferred over the lower convected time
derivative.

It must be noted, that equations (3.1) and (3.2) are not the only equations
which fulfill the conditions of frame-indifference [3, 43, 48]. The Jaumann
or corotational derivative

o
T =

DT
Dt
−W · T + T ·W (3.3)

is a time derivative with respect to a frame rotating with angular velocity
1
2 ω of the fluid element ([48], p.34 and [43], p. 69). Although the corotational
time derivative of the stress tensor provides some promising results [48–50],
it will not be considered further.

3.1.1 Maxwell models

The simplest constitutive equation used for viscoelastic fluids is the so-
called Maxwell model, where an objective derivative of the stress tensor is
included. Depending on the type of the objective time derivatives one can
define the lower convected Maxwell model

τ + λ1
M
τ = 2η0D, (3.4)

and the upper convected Maxwell model

τ + λ1
O
τ = 2η0D, (3.5)

where λ1 is the Maxwell stress relaxation time and η0 is the zero-shear-rate
viscosity.

The upper convected Maxwell (UCM) model gives better results regarding
the magnitude of the first and second normal stress differences, therefore
the UCM model is most preferred among the other Maxwell models ([43],
p. 68, [48], p. 53). The main limitation of the (upper convected) Maxwell
model is the shear-rate independent viscosity [3, 48].
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3.1.2 Oldroyd models

The next step is to include the objective time derivative of the rate of
deformation tensor in the constitutional equations. Oldroyd in his paper
from 1950 [1], where the objective time derivatives were first introduced,
writes the following two constitutive equations now known as the Oldroyd-
A model

τ + λ1
M
τ = 2η0

(
D + λ2

M
D
)

, (3.6)

and the Oldroyd-B model

τ + λ1
O
τ = 2η0

(
D + λ2

O
D
)

, (3.7)

where λ1 is the stress relaxation time, λ2 is the deformation retardation time
and λ1 ≥ λ2. It is important to note that the three parameters (η0, λ1, λ2)
occurring in equations (3.6)-(3.7) are independent of each other. In the case
of λ2 = 0 the Oldroyd-A and Oldroyd-B models are reduced to the lower
convected (3.4) and upper convected (3.5) Maxwell models, respectively. For
λ1 = λ2 = 0, a Newtonian liquid is obtained.

As stated in by ([43], p. 68), the Oldroyd-B model is preferred against the
Oldroyd-A model for the same reasons as given for the upper convected
Maxwell model (see Bird et al. [3], p. 498, Han [48], p. 53 and Larson [43],
p. 68). As noted in [45], the Oldroyd-B model qualitatively describes many
features of the so-called Boger fluids [51], i.e. elastic fluids with constant
viscosity.

In a simple steady shear flow, the Oldroyd-B model predicts a constant
viscosity, a non-zero first normal stress difference and zero second normal
stress difference (see [45], p. 187, [3], p. 354 and [48], p. 53). The shear-
rate independent viscosity is the main limitation of the Oldroyd-B model
[3, 48].

In his later work, Oldroyd [2] expanded the above convected three-parameter
models by systematic inclusion of all quadratic terms in the velocity gradient
and all allowable products of τ and γ̇ = γ(1) [3, 52]. The proposed equation
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is now known as the Oldroyd 8-constant model:

τ + λ1
O
τ +

1
2

λ3 {γ̇ · τ + τ · γ̇}+ 1
2

λ5 (tr τ) γ̇ +
1
2

λ6 (τ : γ̇) δ

= η0

[
γ̇ + λ2

O
γ̇ + λ4 {γ̇ · γ̇}+

1
2

λ7 (γ̇ : γ̇) δ

]
(3.8)

where η0 is again the zero-shear-rate viscosity and (λ1, ..., λ7) are time
constants. For different values of the time constants, equation (3.8) reduces
to the known special cases [3, 52]:

• the Newtonian model (1.3) for λ1 to λ7 all equal to zero,
• the upper convected Maxwell model (3.5) for λ2 to λ7 all equal to zero

and λ1 > 0,
• the Oldroyd-B model (3.7) for λ3 to λ7 all equal to zero and 0 < λ2 ≤

λ1.

3.1.3 Other models

As noted in [3] (p. 353), there is no apparent reason for constitutive equations
to be restricted to terms linear in stress.

Giesekus model
The Giesekus model [53] introduces the nonlinear term {τ · τ} which repre-
sents a hydrodynamic drag. The Giesekus model has the following form

τ + λ1
O
τ − α

λ1

η0
{τ · τ} − αλ2 {γ̇ · τ + τ · γ̇}

= η0

[
γ̇ + λ2

O
γ̇ + α

λ2
2

λ1
{γ̇ · γ̇}

]
(3.9)

where α is non-dimensional “mobility factor” and 0 ≤ α ≤ 1. If α = 0 and
λ2 > 0 the Oldroyd-B model (3.7) is recovered. The Giesekus model predicts
a finite value of the extensional viscosity for all extensional rates, shear
thinning viscosity and nonzero first and second normal stress differences.
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Phan-Thien-Tanner model
Another model containing a nonlinear stress term is the popular Phan-
Thien-Tanner model

Y(tr τ) · τ + λ1
O
τ +

ξ

2
{γ̇ · τ + τ · γ̇} = ηγ̇ (3.10)

where ξ is a parameter and Y(tr τ) is a function of the trace of the stress
tensor. The stress function Y has either the exponential form

Y(tr τ) = exp
(

ελ1

η
(tr τ)

)
, (3.11)

or the linearized form

Y(tr τ) = 1 +
ελ1

η
(tr τ), (3.12)

where ε is the elongation parameter, which regulates the extensional viscos-
ity. The parameters ε and ξ provide the correct shear thinning behaviour of
the model.

3.2 Constitutive modelling: The micro-structure
approach

In the micro-structure approach, the constitutive models are derived from
assumptions on the behaviour of polymer molecules and their interaction
with the solvent flow. The dilute solution theory with the dumbbell model
is illustrated in this section by derivation of the Oldroyd-B model. The
derivation follows the works of Bird et al. [3, 54], Larson [43], Phan-Thien
[15], Huiligol and Phan-Thien [45] and Han [48]. The same constitutive
equation as derived from the phenomenological approach is obtained.

Elastic dumbbell model

The simplest model of polymers is the so-called elastic dumbbell model, where
two identical spherical beads with mass mb are connected by a spring, as
shown in figure 3.1. The orientation vector of the dumbbell is given as

R = r2 − r1, (3.13)
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Figure 3.1: Elastic dumbbell model. Adapted from [15].

where r1 are r2 the position vectors of the beads.

The forces acting on each bead j are the spring force Fs
(j), the hydrodynamic

drag force Fh
(j) and the Brownian force Fb

(j) [3]. The external forces such
as gravity and electrical forces are neglected in the present derivation.
For each bead of the dumbbell, an equation of motion can be written. By
neglecting the inertial terms containing the bead masses, the equation of
motion reduces to the simple force balance equation

Fs
(j) + Fh

(j) + Fb
(j) = 0, with j = 1, 2. (3.14)

The forces in equation (3.14) are given as follows:

• Spring force
Assuming the linear Hookean law for the spring, then for each bead
the spring force is given as

Fs
(1) = −H(r1 − r2) = HR

Fs
(2) = −H(r2 − r1) = −HR

(3.15)

where H is the spring constant.
• Hydrodynamic drag force

This force represents the force of resistance experienced by the bead
as it flows through the liquid. The simplest expression for the drag
force is according to Stokes’ law:

Fh
(j) = −ζ

(
dr j

dt
− u(r j)

)
(3.16)
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where u(r j) is the velocity of the solution at bead r j and ζ is the drag
coefficient given as

ζ = 6πabηs (3.17)

with solvent viscosity ηs and radius of the spherical bead ab. Assuming
that the distance between the beads is small, then the following relation
is obtained

u(r2)− u(r1) = ∇uT · R. (3.18)

• Brownian force
Due to the thermal fluctuations in the surrounding liquid, the beads
experience a random fluctuating Brownian force, which is a stochastic
process. Hence, for the Brownian force only statistical properties can
be well defined. For the Brownian force Fb acting on the end-to-end
vector one can write〈

Fb(t)
〉
= 0 and

〈
Fb(t)Fb(t + t′)

〉
= 4kBTζδ(t′)δ (3.19)

where kB is the Boltzmann constant, T is the temperature and δ(t′)
is the Dirac delta function [15]. By introducing the configuration
probability density function Ψ(R, t) for the end-to-end vector R, the
Brownian force may be expressed as

Fb(t) = −kBT
∂Ψ(R, t)

∂R
(3.20)

which is known as the smoothed-out Brownian force ([15], p. 123).

Inserting the above expressions for the forces into the force balance equation
(3.14), then a stochastic differential equation is obtained. This equation can
only be solved if the probability function Ψ(R, t) is specified. The stochastic
differential equation can be converted in to the diffusion equation

∂Ψ
∂t

=
∂

∂R

[
2kBT

ζ

∂Ψ
∂R
−
(
∇uT · R− 2H

ζ
R
)

Ψ
]

(3.21)

which is known as the Fokker-Planck equation ([15], p. 129, [54], p. 62,). As
noted further in [15] on page 129, it is usually not necessary to find the full
probability distribution, since the quantity related to the stress is 〈RR〉. The
expression for the mean dyadic 〈RR〉 can be obtained without solving the
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diffusion equation (3.21) for the probability distribution Ψ, as explained
in detail in [15] and [54]. The following equation of change for the mean
dyadic 〈RR〉 is obtained

d
dt
〈RR〉 −∇uT 〈RR〉 − 〈RR〉∇u =

4kBT
ζ

δ− 4H
ζ
〈RR〉 . (3.22)

The left-hand side of equation (3.22) can be recognized as the upper con-
vected time derivative of 〈RR〉. Considering the system in equilibrium,
where d 〈RR〉 /dt = 0 and ∇u = 0, then from (3.22) follows.

〈RR〉eq =
kBT
H

δ. (3.23)

As stated in Bird et al. ([54], p. 64), the total stress tensor π in a polymer
solution can presumingly be written as the sum of the solvent contribution
πs and polymer contribution πp as

π = πs + πp

= (−psδ + τs) + (−ppδ + τp)

= −pδ + τ

(3.24)

where
τ = τs + τp = ηsγ̇ + τp

p = ps + pp.
(3.25)

Different expressions relating 〈RR〉 to the extra stress tensor τ can be found,
for example, in Bird et al. ([54], p. 69). For the present case of the Hookean
dumbbells, the relevant equations are the Kramers expression

τ = 2ηsD + ndH 〈RR〉 − ndkBTδ (3.26)

and the Giesekus expression

τ = 2ηsD−
ndζ

4

O
〈RR〉 (3.27)

with the number of dumbbells per unit volume nd and assuming the
Maxwellian velocity distribution of the beads ([54], pp. 69-71). Following
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the steps described in Bird et al. [54] on page 71, the term 〈RR〉 is elimi-
nated from the Kramers expression (3.26). First, equation (3.26) is multiplied
by ζ/4H and then the upper convected time derivative is applied to the
resulting expression, where the relation

O
δ = −2D (3.28)

is considered ([54], p. 71 and [15], p. 130). Next, by adding equation (3.27)
to the resulting expression, the final expression is obtained as

τ + λH
O
τ = 2 (ndkBTλH + ηs)D + 2ηsλH

O
D, (3.29)

where λH = ζ/4H is the time constant of the Hookean dumbbells.
Introducing the definitions for the zero-shear-rate viscosity η0, stress relax-
ation time λ1 and the deformation retardation time λ2 as per

η0 = ηs + ndkBTλH

λ1 = λH

λ2 =
ηs

ηs + ndkBT
λH =

ηs

η0
λ1

(3.30)

into equation (3.29), then the Oldroyd B model is obtained.
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3.3 Different formulations of the Oldroyd-B
model

In the previous sections, various forms of the Oldroyd-B model have been
presented. Since the Oldroyd-B model is the investigated model in the
present work, its different forms will be summarized here. All these forms
are often used in the literature [11, 12, 55, 56]. Some of them have concrete
physical meanings, while some of them are only designed for the purpose
of numerical simulation [12].

• Basic form
This form is formulated in terms of the total extra stress tensor τ as

τ + λ1
O
τ = 2η0

(
D + λ2

O
D
)

, (3.31)

where λ1 and λ2 are independent material constants.

• Solvent-polymer stress splitting (SPSS)
This is the most popular form in numerical simulations [11, 12]. The
method was introduced by Bird et al. [3]. It formulates the equation
in terms of the polymeric τp and solvent τs contributions to the extra
stress:

τ = τs + τp

τs = 2ηsD

τp + λ1
O
τp = 2ηpD

(3.32)

where ηp and ηs are the polymer and solvent viscosities interrelated
by ([3], p.360)

η0 := ηp + ηs and λ2 := λ1
ηs

ηp + ηs
= λ1

ηs

η0
. (3.33)

• Elasto-viscous stress splitting (EVSS)
This form is neither derived from the continuum nor from the micro-
structure approach. It was introduced by Perera and Walters [57]
for stable numerical simulation in order to solve the problem of the
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absence of an explicit diffusive term in the basic Oldroyd-B model.
The governing equations are formulated in terms of the Newtonian τn
and elastic τe contributions to the extra stress [12]:

τ = τn + τe

τn = 2η0D

τe + λ1
O
τe = −2λ1ηe

O
D

(3.34)

where

ηe =

(
1− λ2

λ1

)
η0. (3.35)

Both stress splitting approaches yield the same definition for the deforma-
tion retardation time as

λ2 := λ1
ηs

ηp + ηs
= λ1

ηs

η0
:= λ2,EVSS (3.36)
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3.4 Linear Viscoelasticity

The most general history-dependent linear viscoelastic model may be writ-
ten in the following form [3, 4, 58]

τ = −
∫ t

−∞
G(t− t′)γ̇(t′)dt′ (3.37)

and

τ = +
∫ t

−∞
M(t− t′)γ(t, t′)dt′ (3.38)

where G(t− t′) is the relaxation modulus, M(t− t′) is the memory function
and

γ(t, t′) :=
∫ t′

t
γ̇(t′′)dt′′. (3.39)

The memory function is defined as

M(t− t′) =
∂G(t− t′)

∂t′
. (3.40)

The integrands in equations (3.37) and (3.38) consist of two functions. As
explained in Bird et al. [3] (p.263), the first function, either G(t − t′) or
M(t− t′), depends on the nature of the fluid and the second, either γ̇(t, t′)
or γ(t′), depends on the nature of the flow. Further, the expression (3.37) is
essential for the linear oscillations experiments explained in section 5.2.2.

The next step is to find the expressions for the linear stress tensor and the
relaxation modulus or memory function. This is achieved by linearization
of the constitutive equations presented in the previous section (equations
(3.4) - (3.7) ), replacing the objective derivatives by partial time derivatives.
A popular method to describe the linear viscoelastic behaviour is the in-
troduction of one-dimensional mechanical models, which consist of springs
and dashpots in different arrangements [4, 48, 59]. A spring represents a
purely elastic (Hookean) behaviour, which is given by equation (1.2), while
a dashpot represents a purely viscous (Newtonian) behaviour, which is
described by equation (1.3). As noted in [59] on page 40, “the correspondence
between the behaviour of a model and a real material is achieved if the differential
equation relating force, extension and time for the model is the same as that relating
stress, strain and time for the material.”
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Figure 3.2: Maxwell element. Adapted from [59].

3.4.1 Linear Maxwell model

The UCM model (3.5) after linearization reduces to

τ + λ1
∂τ

∂t
= 2η0D. (3.41)

The mechanical analog of the linear Maxwell model is the Maxwell element
(figure 3.2), which consists of a elastic spring and a purely viscous dashpot
in series [4, 48, 59]. The stress in the spring is calculated by Hooke’s law

τ1 = kγ1 (3.42)

where k is the elastic modulus and γ1 is the strain of the spring. The stress
τ2 in the dashpot is

τ2 = η
∂γ2

∂t
(3.43)

where η is the viscosity and γ2 is the strain of the dashpot. The spring
and the dashpot are in series, therefore the stresses must be equal, that is
τ1 = τ2 = τ. The total strain γ, or equally the total strain-rate γ̇, is the sum
of the strains or the strain rates of the two elements, hence

γ = γ1 + γ2, γ̇ = γ̇1 + γ̇2 (3.44)

By combining equations (3.42)-(3.44), the Maxwell model is obtained as

τ +
η

k
τ̇ = ηγ̇. (3.45)

After replacing γ̇ with 2D and η with η0, and defining

λ1 =
η

k
(3.46)
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as the relaxation time, the formal Maxwell model is obtained as in equation
(3.41).
The integral form of the linear Maxwell equation may be written as

τ(t) = −
∫ t

−∞

{
η0

λ1
exp

(
− t− t′

λ1

)}
γ̇(t′)dt′ (3.47)

where the expression between the curled braces is identified as the relaxation
modulus of the Maxwell model ([3], pp. 259-260). Integrating equation (3.47)
by parts yields

τ(t) = +
∫ t

−∞

{
η0

λ2
1

exp
(
− t− t′

λ1

)}
γ(t, t′)dt′ (3.48)

where the expression between the curled braces is identified as the memory
function of the Maxwell model.

3.4.2 Linear Oldroyd-B (Jeffreys) model

The linearization of the Oldroyd-B model equation (3.7) leads to

τ + λ1
∂τ

∂t
= η0

(
γ̇ + λ2

∂γ̇

∂t

)
, (3.49)

which is known as the Jeffreys model.

The mechanical analog of the Jeffreys model is the Jeffreys element (see
figure 3.3), obtained by extending the Maxwell element. The Maxwell model
may be extended either by adding a second dashpot with viscosity η2
parallel to the spring (figure 3.3(a)), or by adding a second dashpot with
viscosity η2 parallel to the Maxwell model (see figure 3.3(b)) ([59], pp. 42-43).
The combination of the dashpot and spring in parallel is known as the Voigt
element [4].

For the case depicted in figure 3.3(a), the total strain γ in a Jeffreys element
is the sum of the strains in the Voigt element γ2 and the dashpot γ1, thus

γ = γ1 + γ2 and γ̇ = γ̇1 + γ̇2. (3.50)
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(a) (b)

Figure 3.3: Jeffreys element obtained as an extension of the Maxwell model (a) by adding a
second dashpot η2 parallel to the spring or (b) by adding a second dashpot η2
parallel to the Maxwell model. Adapted from [59].

The stresses in both elements are the same, hence

kγ2 + η2γ̇2 = ηγ̇1 = τ. (3.51)

Eliminating γ1 and γ2 leads to the Jeffreys model in the form

τ +
η + η2

k
τ̇ = η

(
γ̇ +

η2

k
γ̈
)

. (3.52)

With the new definitions for the relaxation time

λ1 :=
η + η2

k
(3.53)

and for the retardation time

λ2 :=
η2

k
=

η2

η + η2
λ1, (3.54)

the Jeffreys model is recovered as

τ + λ1
∂τ

∂t
= η

(
γ̇ + λ2

∂γ̇

∂t

)
. (3.55)

Similar calculation can be made for the case depicted in figure 3.3(b). The
displacement γ2 in the viscous dashpot with viscosity η2 is equal to the
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displacement in the Maxwell element γM. The total stress τ is the sum of
the stress in the Maxwell element τM and the stress in the viscous dashpot
τ2 = η2γ̇2

τ = τ2 + τM = η2γ̇2 + τM with τM + λ1τ̇M = η1γ̇M. (3.56)

After eliminating τM, the following form is derived

τ + λ1τ̇ = (η1 + η2)

(
γ̇ + λ1

η2

η1 + η2

∂γ̇

∂t

)
. (3.57)

By introducing the new definitions for the total viscosity η0 and for the
retardation time λ2 as

η0 := η1 + η2 and λ2 :=
η2

η1 + η2
λ1 =

η2

η0
λ1 (3.58)

the original Jeffreys model, given by equation (3.49), is recovered.

The integral form of the linear Jeffreys model may be written as

τ(t) = −
∫ t

−∞

{
η0

λ1

(
1− λ2

λ1

)
exp

(
− t− t′

λ1

)
+ 2

η0λ2

λ1
δ(t− t′)

}
γ̇(t′)dt′

(3.59)
where the expression between the curled braces is identified as the relaxation
modulus of the Jeffreys model. Integrating equation (3.59) by parts yields

τ(t) = −
∫ t

−∞

{
η0

λ2
1

(
1− λ2

λ1

)
exp

(
− t− t′

λ1

)
+ 2

η0λ2

λ1

∂

∂t′
δ(t− t′)

}
γ(t, t′)dt′

(3.60)
where the expression between the curled braces is identified as the memory
function of the Jeffreys model.

In the present case, studying the damped shape oscillations of a spherical
viscoelastic drop, the time dependency of motion is described by an expo-
nential function of time. Thus, the stress tensor and the strain rate tensor in
spherical coordinates may be formulated as ([60], p. 4)

τ = τ̂(r, θ, ϕ)e−αt (3.61)
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and
γ̇ = ˆ̇γ(r, θ, ϕ)e−αt, (3.62)

respectively. There α is the complex angular frequency and τ̂(r, θ, ϕ) and
ˆ̇γ(r, θ, ϕ) are the amplitude functions of the stress tensor and the strain
rate tensor, respectively. Inserting the expressions (3.61) and (3.62) into the
Jeffreys model (3.49) results in

τ = η0
1− αλ2

1− αλ1
γ̇ := η(α)γ̇, (3.63)

where η(α) is the frequency dependent dynamic viscosity. Drop shape
oscillations may be used for determining material parameters in these
equations [13, 14].
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4 Linear drop shape oscillations

Droplet dynamics is one of the classical problems in fluid mechanics. Until
recently [13, 60, 61], the only analytical solution found for this problem is
the linear theory of small amplitude oscillations of inviscid [25] and viscous
droplets [28, 29, 62, 63]. The results of the linear theory, that is the angular
frequency and decay rate of viscous liquid drop oscillations, were already
presented in the Introduction. In this chapter, a study of small-amplitude
shape oscillations of a viscoelastic liquid drop in air, based on the linear
theory, is presented.

In the first part, the mathematical formulation of the problem is given
and the characteristic equation of the drop is derived. The dimensional
analysis of the characteristic equation is conducted, and the ranges of the
non-dimensional parameters (the Ohnesorge and the Deborah numbers) for
which shape oscillations exist are determined. Next, the steps necessary for
solving the characteristic equation for the unknown deformation retardation
time are given.

4.1 Mathematical derivation

The mathematical description follows the works of Brenn and Teichtmeister
[13] and Brenn [60]. Let us consider a spherical drop with equilibrium
radius a which undergoes damped shape oscillations with frequency f
and damping rate αm,r. The shape of the oscillating drop rs(θ, t), shown in
Figure 4.1, formulated in spherical coordinates, assuming symmetry in the
azimuthal direction ϕ, is given by an infinite series of the surface spherical
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harmonics as

rs(θ, t) = a

(
1 +

∞

∑
m=2

amPm(cos θ)e−αmt

)
(4.1)

where am are the initial oscillation amplitudes, Pm are the Legendre polyno-
mials and αm = αm,r + i2π f is the complex angular frequency of mode m
and i =

√
−1 [26, 64]. The summation in (4.1) starts with the fundamental

mode m = 2 as m=0 describes a volumetric pulsation and m = 1 a trans-
latory motion of the drop. According to the equation for the decay time
(1.10), the damping increases with increasing mode number as O(m2), and,
consequently, the higher oscillation modes are damped faster. Therefore, the
droplet oscillations described by equation (4.1) may in practice be limited
to the first few oscillation modes. The first three modes of oscillations for
m ≥ 2 are shown in figure 1.3.

The linear theory is expected to hold if the initial oscillation amplitude is less
than 10% of the equilibrium drop radius [26]. In the linear approximation,
the different oscillation modes are uncoupled and can be treated separately
from each other [63]. Further, in the case of small initial amplitude, the
dominant mode of oscillation is the fundamental mode m = 2, as was
shown in [64]. Therefore, the general equation (4.1) can be simplified by
omitting the summation symbol and the following equation with just one
oscillation mode is obtained

rs(θ, t) = a + ε0Pm(cos θ)e−αmt. (4.2)

where ε0 is the initial oscillation amplitude [13, 14, 60–63]. The time depen-
dency of motion is therefore known and is given by the exponential function
exp(−αmt).

The equations governing the problem are the continuity equation (2.21)
and the momentum equation (2.23) formulated in spherical coordinates
assuming symmetry in the azimuthal direction ϕ. The continuity equation
for incompressible liquid

∇ · u = 0 (4.3)

is in spherical coordinates for the axisymmetric case given as

1
r2

∂

∂r

(
r2ur

)
+

1
r sin θ

∂

∂θ
(uθ sin θ) = 0 (4.4)
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Figure 4.1: Equilibrium (solid line) and deformed (dashed line) drop shape in spherical
coordinate system for m = 2 [13].

The momentum balance equation is given as

ρ

(
∂

∂t
+ u ·∇

)
u = ∇ ·π + ρ f B (4.5)

where π is the stress tensor and ρ f B are the body forces. The stress tensor
π can be written as

π = −pδ + τ (4.6)

where p is the pressure and τ is the extra stress tensor representing the
deformation induced stresses. The extra stress tensor τ is determined from
the linear Oldroyd-B constitutive equation (3.49) assuming the fluid motion
is known. Introducing the time dependency of shear stress and shear rate
tensor, which are, according to equations (3.61) and (3.62), given as

τ ∝ e−αmt and γ̇ ∝ e−αmt, (4.7)

into the linear Oldroyd-B equation (3.49) results in the deformation-induced
stress as

τ = η0
1− αmλ2

1− αmλ1
γ̇ := η(αm)γ̇, (4.8)
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where η(αm) is the complex frequency (of the oscillation mode m) dependent
dynamic viscosity. The expression (4.8) is therefore formally identical to that
of a Newtonian fluid (1.3) formulated with a complex viscosity.

After neglecting the body forces ρ f B and nonlinear inertial terms, the
momentum equation reads

ρ
∂u
∂t

= −∇ · (pδ− τ) . (4.9)

The linearized momentum equation (4.9) in spherical coordinates for the
axisymmetric case in the radial direction reads

ρ
∂ur

∂t
= −∂p

∂r
+ η (αm)

[
1
r2

∂2

∂r2

(
r2ur

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ur

∂θ

)]
(4.10)

and in the angular direction is given as

ρ
∂uθ

∂t
= −1

r
∂p
∂θ

+

+ η (αm)

[
1
r2

∂2

∂r2

(
r2 ∂uθ

∂r

)
+

1
r2

∂

∂θ

(
1

sin θ

∂

∂θ
(uθ sin θ)

)
+

2
r2

∂ur

∂θ

]
.

(4.11)

The velocity field is formulated by the Stokes stream function ψ as

ur = −
1

r2 sin θ

∂ψ

∂θ
(4.12)

and
uθ =

1
r sin θ

∂ψ

∂r
. (4.13)

Introducing definitions (4.12) and (4.13) into the momentum equations and
taking the curl of the resulting equation

∇×

 r−momentum
θ −momentum

0

 = 0 (4.14)
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which eliminates the pressure gradient, results in the partial differential
equation of the fourth-order

ρ

η (αm)

∂

∂t

(
E2ψ

)
= E2

(
E2ψ

)
(4.15)

with the differential operator

E2 =
∂2

∂r2 +
sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
. (4.16)

The operators ρ
η(αm)

∂
∂t , ρ

η(αm)
∂
∂t + E2 and E2 are commutative with each other,

that is, changing the order of operands does not change the result. Therefore,
equation (4.15) can be rewritten as(

− ρ

η (αm)

∂

∂t
+ E2

)(
E2ψ

)
= 0 (4.17)

or equivalently

E2
[(
− ρ

η (αm)

∂

∂t
+ E2

)
ψ

]
= 0 (4.18)

That allows that the solution ψ of equation (4.17) can be found with the
ansatz [65]

ψ = ψ1 + ψ2 (4.19)

where ψ1 solves the equation

E2ψ1 = 0 (4.20)

and ψ2 solves the equation(
− ρ

η (αm)

∂

∂t
+ E2

)
ψ2 = 0 (4.21)

The method of separation of variables is used to find the solutions of the
equations (4.20) and (4.21). The appropriate ansatz for ψ1 is

ψ1 = f1 (r) g1 (θ) e−αmt (4.22)
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and equation (4.20) now reads

g1 (θ)
∂2 f1 (r)

∂r2 + f1 (r)
sin θ

r2
∂

∂θ

(
1

sin θ

∂g1 (θ)

∂θ

)
= 0 (4.23)

or equivalently

r2 f ′′1
f1

= −sin θ

g1

∂

∂θ

(
1

sin θ
g′1

)
(4.24)

The left-hand side of equation (4.24) can only be a function of the radial
coordinate (r) and the right hand-side can only be a function of the angular
coordinate (θ); this leads to the conclusion that equation (4.24) is satisfied
if both sides of the equation are constant. Let this constant be equal to
m(m + 1). The left-hand side of equation (4.24) can now be written as

r2 f ′′1
f1

= m (m + 1) (4.25)

which has the form of the Euler differential equation with the solution

f1 (r) = A1r−m + A2rm+1 (4.26)

where A1 and A2 are unknown constants. The expression A1r−m for positive
m diverges for r → 0. Therefore the constant A1 must be set to zero

A1 = 0 (4.27)

The right-hand side of equation (4.24) is also equal to m(m + 1)

− sin θ

g1

∂

∂θ

(
1

sin θ
g′1

)
= m (m + 1) (4.28)

Introducing a new function g̃ defined through

g1 (θ) = g̃ (cos θ) , so that g′1 = −g̃′ sin θ, g′′1 = −g̃′′ sin2 θ − g̃′ cos θ
(4.29)

into equation (4.28) results in

g̃
′′
(

1− cos2θ
)
+ m (m + 1) g̃ = 0 (4.30)
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which is a special case of the Legendre differential equation. The solutions
to this kind of equation are combinations of Legendre functions of the first
Pm and the second kinds Qm (with the argument cos θ)

g1 = g̃ = A3P′m (cos θ) sin2θ + A4Q′m (cos θ) sin2θ (4.31)

The Legendre function of the second kind Qm(cos θ) and its derivative
Q′m(cos θ) diverge for cos θ → 1. Therefore the constant A4 must be set to
zero

A4 = 0. (4.32)

The function ψ1 can now be written as

ψ1 = A2rm+1 · A3sin2θ · P′m (cos θ) · e−αmt. (4.33)

Introducing the ansatz

ψ2 = f2 (r) g2 (θ) · e−αmt (4.34)

into equation (4.21) yields

ραm

η (αm)
f2 (r) g2 (θ) + g2 (θ)

∂2 f2 (r)
∂r2 + f2 (r)

sin θ

r2
∂

∂θ

(
1

sin θ

∂g2 (θ)

∂θ

)
= 0

(4.35)
and after rearrangement

ραm

η (αm)
r2 +

r2

f2 (r)
∂2 f2 (r)

∂r2 = − sin θ

g2 (θ)

∂

∂θ

(
1

sin θ

∂g2 (θ)

∂θ

)
. (4.36)

The left and right-hand sides of equation (4.36) must be a constant, for the
same reasons as mentioned above, and the constant is again set to m(m + 1).
From comparison of the right-hand side of equation (4.36) with equation
(4.28) it is clear that

g2 = g1 = A3P′m (cos θ) sin2θ. (4.37)

Setting the left-hand side of equation (4.36) equal to m(m+1), and after
rearrangement, the following equation is obtained

r2 f
′′
2 +

(
αm

ν (αm)
r2 −m (m + 1)

)
f2 = 0. (4.38)
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Introducing a function f̃ defined through

f2 (r) = f̃
(

r
√

αm

ν

)
, f ′2 (r) =

√
αm

ν
f̃ ′ and f ′′2 (r) =

αm

ν
f̃ ′′ (4.39)

into equation (4.38) yields the Riccati-Bessel equation

z2 f̃ ′′ (z) +
(

z2 −m (m + 1)
)

f̃ (z) = 0 (4.40)

where z = r
√

αm/ν. The solutions of the Riccati-Bessel equation (4.40) are
the spherical Bessel functions of the first jm(z) and the second kinds ym(z)
of the order m

f̃ (z) = A5 · zjm (z) + A6 · zym (z) . (4.41)

The solution of the (4.38) can be written as

f2 (r) = A5 · qrjm (qr) + A6 · qrym (qr) (4.42)

where the parameter q is defined as

q =

√
αm

ν(αm)
. (4.43)

The spherical Bessel function of the second kind ym(qr) diverges for r → 0,
more strongly that qr goes to zero. Therefore the constant A6 must be set to
zero

A6 = 0 (4.44)

The function ψ2 can now be written as

ψ2 = A5 · qrjm (qr) · A3sin2θ · P′m (cos θ) · e−αmt. (4.45)

Finally, the Stokes stream function ψ may be written as

ψ =
(

A2rm+1 + A5 · qrjm (qr)
)
· A3sin2θ · P′m (cos θ) · e−αmt (4.46)
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The constants A2 and A3 can be combined as C1 = A2 · A3 and the constants
A3 and A5 can be combined as C2 = A3 · A5. This yields the following
equation

ψ =
(

C1rm+1 + C2 · qrjm (qr)
)
· sin2θ · P′m (cos θ) · e−αmt (4.47)

The resulting radial and angular velocity components, given by the equa-
tions (4.12) and (4.13), now read

ur = −
(

C1rm−1 + C2q2 jm (qr)
qr

)
m (m + 1) Pm · e−αmt (4.48)

and

uθ =

[
C1 (m + 1) rm−1 + C2q2

(
(m + 1)

jm (qr)
qr

− jm+1 (qr)
)]
·

· sin θP′m · e−αmt
(4.49)

The constants C1 and C2 are determined by the kinematic and dynamic
boundary conditions.

The kinematic boundary condition states that the radial velocity compo-
nent at the equilibrium drop radius r = a equals the rate of the radial
displacement of the deformed surface of the oscillating drop, that is,

ur|r=a =
∂rS

∂t
(4.50)

The dynamic boundary condition for the drop in a gas states that the shear
stress at the drop surface, calculated at r = a, is zero(

1
r

∂ur

∂θ
+ r

∂ (uθ/r)
∂r

)∣∣∣∣
r=a

= 0 (4.51)

From the above mentioned boundary conditions the two integration con-
stants are obtained as

C1,m =
ε0αm

m (m + 1) am−1

1 +
2
(
m2 − 1

)
2qa jm+1(qa)

jm(qa) − q2a2

 (4.52)
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and

C2,m = − 2 (m− 1) ε0αma
mq (2qa jm+1 (qa)− q2a2 jm (qa))

(4.53)

The subscript m denotes the mode-dependency of the calculated constants.

The dynamic boundary condition for the normal stress reveals the character-
istic equation for the complex angular frequency αm of the drop. To obtain
this normal-stress boundary condition, the capillary pressure inside the
undeformed drop p0 and deformed drop pσ, and the pressure field p inside
the drop must be known. The normal-stress boundary condition states that
the (r, r) component of the total stress tensor πr,r must be zero at the drop
surface

πr,r = −p− (p0 − pσ) + τrr (4.54)

where τrr is the (r, r) component of the viscoelastic extra stress tensor
defined as

τrr = 2η (αm)
∂ur

∂r
. (4.55)

With the known velocity field inside the drop, the normal extra stress at
r = a is calculated as

τrr|r=a = 2η (αm)
∂ur

∂r

∣∣∣∣
r=a

=

− 2η

(
(m− 1)C1am−2 + C2q3 (m− 1) jm (qa)− qajm+1 (qa)

q2a2

)
·

·m (m + 1) Pm · e−αmt

(4.56)

The capillary pressure inside the undeformed drop is given as

p0 =
2σ

a
(4.57)

and the capillary pressure for the deformed drop is calculated as

pσ = σ∇ · n (4.58)

where

∇ · n = ∇ ·
(
∇F
|∇F|

)
(4.59)
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is the curvature of the drop and the function F describes the free surface of
the drop

F = r− a− rs (θ, t) = r− a− ε0Pm (cos θ) · e−αmt. (4.60)

For small oscillation amplitudes, the capillary pressure inside the deformed
drop is given as [28]

pσ =
σ

a

(
2 + (m− 1) (m + 2)

ε0

a
Pm (cos θ) · e−αmt

)
. (4.61)

Introducing the expression (4.12) into the radial momentum balance equa-
tion (4.10), and considering (4.20) and (4.21), yields the radial derivative of
the pressure as

∂p
∂r

= − ραm

r2 sin θ

∂ψ1

∂θ
. (4.62)

The pressure field is obtained by integration of equation (4.62) and reads

p = − (m + 1)C1,mραmrmPm (cos θ) · e−αmt, (4.63)

with the integration constant set to zero ([60], pp. 143-144). Using the θ
momentum balance equation (4.11) produces the same result [60].

Inserting the expressions for pσ, p0, p and τrr into the normal-stress bound-
ary condition, the characteristic equation for the complex angular frequency
αm of the drop is obtained

α2
m,0

α2
m

=
2
(
m2 − 1

)
q2a2 − 2qa jm+1(qa)

jm(qa)

− 1 +
2m (m− 1)

q2a2

1 +
2 (m + 1) jm+1(qa)

jm(qa)

2 jm+1(qa)
jm(qa) − qa


(4.64)

where αm,0 is given by (1.12). The derived characteristic equation is formally
identical to the results of Lamb [27] and Chandrasekhar ([62], p. 472) ob-
tained for Newtonian liquids. In the present case of viscoelastic liquids,
however, the dynamic viscosity η(αm) involved in the equation is a func-
tion of the complex oscillation frequency αm. From the definition of the
parameter q (4.43) follows that the complex argument of the spherical Bessel
functions qa can be written as

qa = a

√
ραm

η0

1− λ1αm

1− λ2αm
. (4.65)
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The characteristic equation (4.64), together with the definition of the ar-
gument qa (4.65), is the basis of the proposed method for measuring the
deformation retardation time λ2 of viscoelastic liquid described by the
Jeffreys model (3.49).

4.2 Dimensional analysis of the characteristic
equation

The present analysis of the characteristic equation of the viscoelastic drop
is primarily based on the work of Brenn and Teichtmeister [13] and of
Khismatullin and Nadim [61]. To analyze the characteristic equation (4.64),
some non-dimensional quantities are introduced as

Ωm =
αm

αm,0
, Oh =

η0√
σρa

, De1 = αm,0λ1; De2 = αm,0λ2 (4.66)

where Ωm is the non-dimensional complex frequency, Oh is identified as
the Ohnesorge number and De1 and De2 are the relaxation and retardation
Deborah numbers formulated with λ1 and λ2, respectively. The complex
argument of the spherical Bessel functions qa (4.65) involved in the charac-
teristic equation may now be written as

qa =

√√
m(m− 1)(m + 2)

Ωm

Oh
1−ΩmDe1

1−ΩmDe2
. (4.67)

The aim of this analysis is to determine the ranges of the non-dimensional
parameters, given by equations (4.66), for which shape oscillations exist.
The dimensional analysis was performed numerically for the first oscillation
mode m = 2. As the initial assumptions, a drop with radius between a = 0.8
and a = 1.2 mm, density ρ = 1000 kg m−3, surface tension σ = 0.073 N m−1,
maximum zero-shear rate viscosity η0 = 5 Pa s and the maximum stress
relaxation time λ1 = 0.5 s was considered. This results in a Rayleigh angu-
lar frequency of about α2,0 ≈ 764 rad s−1, a maximum Ohnesorge number
around Oh ≈ 20 and maximum Deborah number De1 ≈ 380.
The solutions of the characteristic equation are searched in the form of the
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non-dimensional complex frequency Ωm as a function of the Ohnesorge
number, with De1 and De2 as parameters.
In the first part of the present analysis De2 = De1/10 was set, similarly as in
[13]. The corresponding results, the non-dimensional oscillation frequency
Im(Ωm) and the non-dimensional damping rate Re(Ωm) as functions of
the Ohnesorge number, are presented in figures 4.2(a) and (b), respectively.
Figure 4.2(a) the non-dimensional frequency as a function of the Ohnesorge
number. For the purely inelastic case (De1 = 0), the non-dimensional fre-
quency Im(Ωm) decreases with increasing Ohnesorge number. A critical
Ohnesorge number Oh∗ can be identified for which Im(Ωm) = 0. The shape
oscillations exist only for the Ohnesorge numbers below Oh∗. Increasing the
Ohnesorge number above Oh∗, two aperiodic decaying modes appear. For
the Newtonian case (De1 = 0), the critical value Oh∗De1=0 := Oh∗0 ≈ 0.766.
For values De1 > 0, the value of Oh∗ becomes larger than for the inelastic
case Oh∗0 , and therefore a wider range of Ohnesorge numbers for drop shape
oscillations exist. This range, however, becomes narrower with increasing
liquid elasticity, keeping the ratio De2/De1 constant. In the limiting case,
where De1 goes to infinity, one can find that Oh∗ ≈ 7.66. which is 10 times
the value Oh∗0 , due to the constant ratio De2/De1 = 1/10 [13]. This can be
verified by rewriting Oh∗ as a function of De1. Therefore, the constant zero-
shear-rate viscosity η0, occurring in the definition of the Ohnesorge number
(4.66), is replaced with the expression for the frequency dependent viscosity
η(αm) given by equation (4.8). This leads to the following expression for the
critical Ohnesorge number at large De2

lim
De1→∞

Oh∗ = Oh∗0 ·
De2

De1
. (4.68)

Figure 4.2(b) depicts the non-dimensional damping rate as a function of
the Ohnesorge number. For the inviscid case (Oh = 0) the damping rate
is zero, as expected. At the critical Ohnesorge number Oh∗ the damping
rate bifurcates into two branches; the upper branch corresponds to the
fast decaying mode, while the lower branch corresponds to the creeping
mode [13]. The appearance of the two modes of decay was reported also by
Chandrasekhar [62] and Prosperetti [63] for the inelastic case.
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(a)

(b)

Figure 4.2: Non-dimensional (a) frequency Im(Ωm) and (b) damping rate Re(Ωm) as a
function of the Ohnesorge number for different Deborah numbers De1 for mode
m = 2. The second Deborah number was set as De2 = De1/10.
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Figure 4.3 demonstrates the validity of equation (4.68) for the critical Ohne-
sorge number for different values of De2/De1 as De1 → ∞. By decreasing
De2, the value of the critical Ohnesorge number increases according to
equation (4.68), as expected.
The non-dimensional frequency, depicted in figure 4.3(a), shows the overall
tendency to decrease monotonically with increasing Oh. The rate of de-
crease of the non-dimensional frequency with increasing Oh depends on the
ratio De2/De1 and is faster for larger ratios De2/De1. For the lowest ratio
De2/De1 in figure 4.3(a), the non-dimensional frequency slightly increases
with Oh, reaches a maximum, and then slowly decreases.
The non-dimensional damping rate, shown in figure 4.3(b), shows similar be-
haviour as in figure 4.2(b). The non-dimensional damping rate increases with
increasing Oh until the bifurcation point is reached, that is, for Oh < Oh∗.
At Oh = Oh∗ the curves converge to Re(Ω2) = 1 asymptotically with de-
creasing ratio De2/De1. For 0 < Oh < 20, which is the relevant range of
Ohnesorge numbers in the present work, the non-dimensional damping
rate decreases with decreasing values of De2/De1.

By further reducing De2 and keeping De1 constant at some reasonable value
(say De1 = 50), one interesting phenomenon is observed, which is not shown
in figure 4.3, namely the branching of the non-dimensional frequency and
damping rate for Oh < Oh∗. To exclude the possibility of a numerical error
in solving the characteristic equation for the non-dimensional frequency,
the following test was made. The calculated solutions of the characteristic
equation were inserted back into the characteristic equation and the differ-
ence between the values on the left and right-hand sides of the equation
were monitored. In the case that the calculated value is a correct solution of
the characteristic equation, the values of the left and the right-hand sides of
(4.64) should be equal. The calculated difference between values on the left
and right-hand side of the equation should be in the order of the machine
precision, which is the case in these calculations.
First the analysis for the limiting case De2 = 0 is performed. The case pre-
sented in figure 4.4 with De1 = 50 and De2 = 0 corresponds to the Maxwell
model, equation (3.41), with a single relaxation time. It must be mentioned
that, for Oh < 1, it was practically impossible to find the complete set of
solutions .

Figure 4.4(a) shows different branches of the non-dimensional frequency
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as a function of the Ohnesorge number. Different branches correspond to
different oscillation behaviour for the same set of parameters.
One of the solutions, the violet curve shown in figure 4.4(a), starts at
Im(Ω) = 1, as expected from the previous analysis (figures 4.2(a) and
4.3(a)). For low values of Oh, the considered curve increases slowly with
Oh, while for Oh > 2 the increase of the curve is more rapid.
The other two solutions, the blue and yellow curves shown in figure 4.4(a),
apparently start at Im(Ω) = 0, which is rather surprising. These two
branches slowly increase with Oh.
The non-dimensional damping rate, shown in figure 4.3(b), also exhibits
different branches. It will be interesting to compare the measured complex
angular frequency with the behaviour shown in figure 4.4.
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(a)

(b)

Figure 4.3: Non-dimensional (a) frequency Im(Ω2) and (b) damping rate Re(Ω2) as a
function of the Ohnesorge number for De1 → ∞ and different De2/De1.

55



4 Linear drop shape oscillations

(a)

(b)

Figure 4.4: Non-dimensional (a) frequency Ωi = Im(Ωm) and (b) damping rate Ωr =
Re(Ωm) as a function of the Ohnesorge number for De1 = 50, De2 = 0 and
m = 2.
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4.3 Solution of the characteristic equation

In Section 4.1 the characteristic equation (4.64) of the drop was derived.
In this section, the analysis of the characteristic equation and the method
for determining λ2 by solving the characteristic equation is presented. This
equation is transcendental in the argument of the spherical Bessel functions
involved and cannot be solved analytically. The numerical solutions were
obtained by using the computer software MATHEMATICA. In the last part
of this section, the uncertainty and sensitivity analysis of the method is
addressed.

4.3.1 Solving the characteristic equation

To analyze the characteristic equation (4.64), a complex function F(qa) is
introduced as per [14]

F(qa) =
2
(
m2 − 1

)
q2a2 − 2qa jm+1(qa)

jm(qa)

− 1 +
2m (m− 1)

q2a2

1 +
2 (m + 1) jm+1(qa)

jm(qa)

2 jm+1(qa)
jm(qa) − qa

 .

(4.69)

The function F(qa) represents the right-hand side of the characteristic equa-
tion (4.64). The behaviour of the function (4.69) is examined for different
values of its complex argument qa. The chosen values of qa cover the
range of values important for the experiments with drops of viscoelastic
liquids examined. The relevant values are taken from the preliminary exper-
iments conducted by Brenn and Teichtmeister [13]. A drop with a radius
of O(1 mm), density O(1000 kg m−3), surface tension O(0.075 N m−1), vis-
cosity O(0.5 Pa s) and stress relaxation time O(0.1 s) is considered. For
this drop, an oscillation frequency O(130 Hz) and damping rate O(10 s−1)
are expected. Figure 4.5a shows the real part of the function F(qa) as a
function of the real part of its argument qa, with the imaginary part of qa as
a parameter. For values of the imaginary part of qa larger than 1, the real
part of the function F(qa) is a smooth and piecewise monotonic function. In
contrast, for smaller values of the imaginary part of qa, the real part of the
function F(qa) is not a monotonic function, and for values of the imaginary
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part of qa smaller than 0.1 the real part of the function F(qa) displays sharp
peaks. The examination of the imaginary part of the function F(qa) gives
the same results, as can be seen in Figure 4.5b.

(a)

(b)

Figure 4.5: The function F(qa) for different values of its argument qa in the basic oscillation
mode m = 2. (a) The real and (b) the imaginary part of the function. The
horizontal lines at Re[F(qa)] = −0.95787 and Im[F(qa)] = −0.0855i represent
the left-hand side of equation (4.69) for the 1.94 mm 0.3 wt% Praestol 2500 drop
studied in [14].
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4.3.2 Determination of the deformation retardation time

To determine the deformation retardation time λ2 from the characteristic
equation the quantities involved in the equation must all be accurately
measured. These quantities are the complex frequency αm of the oscillation
mode m = 2, the equilibrium radius of the drop a, the density ρ and zero
shear viscosity η0, the surface tension σ of the liquid in contact with the
ambient air, and the stress relaxation time λ1.
With the calculated Rayleigh angular frequency α2,0 and the measured com-
plex frequency α2 of the fundamental oscillation mode m = 2, the left-hand
side of the characteristic equation is known. The complex equation (4.64)
is a system of two equations, and two quantities can be determined from
it; the unknown deformation retardation time λ2 and any other (known)
quantity involved. The purpose of the second quantity will be explained
later in the text.
With the argument qa for the fundamental mode m = 2 given as

qa = a

√
ρα2

η0

1− α2λ1

1− α2λ2
(4.70)

and inserted into equation (4.64), it could in principle be possible to calcu-
late the unknown deformation retardation time λ2 from the characteristic
equation directly. Unfortunately, the direct approach is not always possible,
because the mathematical system is numerically unstable.
For this reason, the proposed method consists of three steps [14]:

1. First the argument qa solving the characteristic equation is determined.
This is done by finding the roots of the equation

α2
2,0

α2
2

= F (qa) (4.71)

where F (qa) is defined in equation (4.69). Because of the influence
of the spherical Bessel functions with complex argument, equation
(4.71) displays a manifold of solutions. The roots are searched with the
algorithm of Oftadeh and co-workers for computing the complex roots
of systems of nonlinear equations [66, 67]. The algorithm begins with
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an initial estimate of the root. The initial estimates were determined
according to the analysis of the function F(qa) in figure 4.5. In these
diagrams, two horizontal lines are added representing the real and
imaginary parts of the left-hand side of equation (4.69). The crossing
points of the horizontal lines with the real and imaginary parts of the
function F(qa) in Figs. 4.5a and b are identified as appropriate values
for the initial estimates.
From analysing the data in figure 4.5 it was concluded that for values
of the imaginary part of the argument qa greater than 5 no roots exist
[14]. For values of the imaginary part of the argument qa less than 0.5,
the function F(qa) assumes a regular shape with nearly evenly spaced
intersections with the horizontal lines. These intersections, which are
straightforward to find, define the set of starting values of qa for the
algorithm.
Concerning the range of values of the real part of the argument
qa, the appropriate domain, which delivers the roots relevant to the
experiments, is covering the values from 0 to approximately 40.
The complex domain where the relevant roots are located, for the case
depicted in figure 4.5, is therefore between 0i and 5i for the imaginary,
and between 0 and 40 for the real part of the argument qa. The roots
found are the complex numbers qa = qra + iqia satisfying (4.71). The
numerical routine determines the roots to machine precision of the
computer. Figure 4.6 shows the pairs of real and imaginary parts of
the argument qa satisfying the characteristic equation (4.64) for the
1.94 mm 0.3 wt% Praestol 2500 drop studied in [14].

2. From the set of solutions qa = qra + iqia of the characteristic equation,
the deformation retardation time is determined by solving equation
(4.70). The rewritten equation (omitting the radius a) reads

q2 =
ρα2

η0

1− α2λ1

1− α2λ2
(4.72)

where q2 = (qr + iqi)
2 = q2

r − q2
i + 2iqrqi and α2 = α2,r + iα2,i =

α2,r + i2π f is the measured complex frequency of the mode m = 2.
The complex equation (4.72) is a system of two equations for two
liquid properties which can be determined from it; either the pair
(λ2, λ1), or the pair (λ2, η0). For the latter pair, analytical solutions are
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Figure 4.6: The pairs of real and imaginary parts of the argument qa satisfying the charac-
teristic equation (4.64) for the 1.94 mm 0.3 wt% Praestol 2500 drop studied in
[14].

found, and they are given as

λ2 =
α2,rβ2 + λ1α2

2,i − β1 [α2,iβ2 − λ1α2,rα2,i](
α2

2,r + α2
2,i

)
(λ1β1α2,i + β2)

(4.73)

and

η0 =
ρ

q2
r − q2

i

(
α2,rβ2 + λ1α2

2,i

)
(1− λ2α2,r)− (α2,iβ2 − λ1α2,rα2,i) λ2α2,i

(1− λ2α2,r)
2 + (λ2α2,i)

2

(4.74)
with β1 :=

(
q2

r − q2
i
)

/2qrqi and β2 := (1− λ1α2,r).
For each root of equation (4.71) a different pair of (λ2, λ1) or (λ2, η0)
satisfying equation (4.72) exists.

3. The identification of the right solution among the calculated pairs fol-
lows from the comparison of the calculated values of λ1 or η0 with the
results from the measurements with a filament stretching elongational
rheometer (λ∗1) or rotational viscosimeter (η∗0 ), respectively.
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liquids

This chapter presents a thorough characterization of viscoelastic liquids.
The available experimental methods for measuring the relevant rheologi-
cal properties are described. These properties are the zero-shear viscosity,
surface tension, density and stress relaxation time. The measured data are
presented in the table at the end of this chapter.

5.1 Polymeric liquids

5.1.1 Materials

The experiments were carried out with aqueous solutions of the two differ-
ent polyacrylamides Praestol 2500 and Praestol 2540 from Solenis Technolo-
gies (Germany). High molecular weight water-soluble polyacrylamides are
synthetic organic polymers, which are mainly used as flocculants. Polyacry-
lamides can be classified as non-ionic, anionic or cationic according to the
type of ionic charge present. The properties of the polymers, such as the
molecular mass, type of charge and the degree of hydrolysis, were provided
by the manufacturer. Praestol 2500 and Praestol 2540 were obtained in a
white granular powder form.
The linear polyacrylamide Praestol 2500 (P2500) is a non-ionic organic poly-
mer with a degree of hydrolysis of 3− 4 % and with a molecular mass
of M ≈ 15− 20× 106 kg kmol−1. The molecular structure of the repeating
unit of the Praestol 2500 polymer is shown in figure 5.1. The linear poly-
acrylamide Praestol 2540 (P2540) is middle anionic polymer with a degree
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Figure 5.1: The structure of the repeating unit of the polymer Praestol 2500 .

Figure 5.2: The structure of the repeating unit of the polymer Praestol 2540.

of hydrolysis of 40 % and with a molecular mass of M ≈ 15− 20× 106

kg kmol−1. The molecular structure of the repeating unit of the Praestol
2540 polymer is shown in figure 5.2.

5.1.2 Preparation

The aqueous polymer solutions were prepared in pure demineralised water,
producing a master solutions with a known polymer mass fraction. The first
master solution contained 10000 ppm of the polymer Praestol 2500 and the
second master solution contained 1000 ppm of the polymer Praestol 2540.
The solutions were stirred for about 12 hours and then rested for 24 hours
at room temperature in order to produce homogeneous solutions.
The master polymer solutions were prepared in an glass beaker, with an
inner diameter of about 160 mm, by slowly adding the polymer powder
to demineralised water, while slowly swirling the fluid in order to achieve
wetting of each granule. This way the formation of lumps is minimized and
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the incomplete dissolution of the polymer is avoided. The stirring was done
with an anchor stirrer, with a blade diameter of about ≈ 70 mm, at low
rotational speed (100 rpm) in order to avoid shear-induced degradation of
the polymer macromolecules [68].
In the solutions of P2500 and P2540, small portions of gel structures were
formed and the liquids had to be put trough a stainless-steel sieve with
a mesh width of 300 µm to remove theses lumps. The master solutions
were then diluted to obtain the various concentrations for the experiments.
The densities of the test liquids were all in the order of 103 kg m−3, as in
[13, 14]

5.2 Shear rheometry

The shear rheometric characterisation of the polymer solutions was carried
out with the rotational rheometer ANTON PAAR Physica UDS 200 at
the Institute of Chemistry of the University of Graz. The device enables
rotational experiments for measuring the shear viscosity as a function of
shear rate (flow curve) as well as oscillatory experiments for measuring the
loss and storage moduli of the test liquids. After each experiment, a fresh
liquid sample was used.

5.2.1 Rotational experiments

In a rotational viscosimeter, the test samples are loaded between a fixed and
a moving solid surface. A kinematic quantity in form of shear, shear rate or
angular frequency was applied to the sample and the material response in
terms of torque M and normal force F was measured. For measuring the
flow curves of the polymer solutions, two configurations/geometries were
used; the cylindrical double gap measuring system for polymer solutions
with viscosities lower than 0.02 N s m−2, and the cone-plate geometry for
viscosities above 0.02 N s m−2.

Cone-and-plate geometry
For the cone-and-plate geometry, the configuration MS-KP 25 (according to
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DIN 53018) was used (figure 5.3). This configuration enables shear rates in
the range 0− 2400 s−1 and viscosity measurements in the range from 0.02
N s m−2 to 120 N s m−2. An advantage of the cone-and-plate geometry is the
small required volume of the test sample. For the MS-KP 25 configuration,
the required volume of the test liquid is 5.2 ml. For accurate measurements
it is important that the volume between the plate and the rotating disc is
entirely filled with the test liquid [69].

From the imposed shear rate γ̇ and the measured shear stress τ, the station-
ary shear viscosity η is obtained as

η(γ̇) =
τ

γ̇
. (5.1)

Figure 5.3: Schematic diagram of the cone-and-plate measuring system.

Double gap geometry
For the cylindrical double gap geometry, the configuration Z1 (according to
DIN 54453) was used (figure 5.4).
The test liquid is loaded into the narrow gap formed between two fixed
concentric cylinders. The flow is driven by a thin inverted cup rotating
inside the gap. The distribution of the shear strain inside the very narrow
gap is the same as in the Couette flow between two parallel plates and can
be regarded constant over the width of the gap, that is, the curvature can be
neglected.
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Figure 5.4: Schematic diagram of the double gap measuring system.

Results

The results of the rotational experiments are obtained as flow curves as
shown in figure 5.5. At small shear rates, the viscosity reaches a constant
value, the so-called first Newtonian plateau viscosity or the zero-shear-rate
viscosity η0. For medium shear rates, shear thinning behaviour, which
enhances with increasing polymer mass fraction, can be observed. At high
shear rates, the second Newtonian plateau viscosity (η∞) is expected, but not
fully reached in the current experiments due to experimental limitations.
The described dependence of the measured shear viscosity on the shear rate
is best approximated by the so-called Carreau model [3]:

η(γ̇) =
η0 − η∞

[1 + (K1 · γ̇)2]
m1

+ η∞ (5.2)

where m1 and K1 are fit parameters. The fitting procedure of the experimen-
tal data with the equation (5.2) was done using the software from ANTON
PAAR. The obtained best fit parameters are listed in table 5.1.
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(a)

(b)

Figure 5.5: Flow curves for (a) aqueous P2500 and (b) P2540 solutions of various polymer
mass fractions. The polymer mass fraction increases from bottom to top.
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w η0 η∞ K1 m1
Polymer [wt.%] [Pa s] [Pa s] [s−1] [−]

0.04 0.0070086 3.7457·10
−4

0.47634 0.10962

0.06 0.0089914 2.8209·10
−10

0.57134 0.10689

0.08 0.013305 3.4939·10
−10

1.315 0.10776

0.1 0.016985 3.9979·10
−10

0.80043 0.1238

0.2 0.050574 6.6994·10
−10

2.5561 0.14102

0.3 0.088864 1.1639·10
−9

1.6762 0.16481

Praestol 2500 0.4 0.16847 1.611·10
−9

2.0674 0.1847

(P2500) 0.5 0.34594 2.1249·10
−9

3.4373 0.20074

0.6 0.55429 2.6582·10
−9

3.2542 0.22

0.7 0.94028 3.1607·10
−9

4.1787 0.23588

0.8 1.5258 3.8295·10
−9

5.2181 0.24703

0.9 2.2418 4.3453·10
−4

5.6319 0.25993

1.0 2.9742 5.1664·10
−9

5.1557 0.27102

0.005 0.10848 0.0013548 14.274 0.28371

0.01 0.27575 0.0019793 10.335 0.33203

0.03 0.91688 0.0030357 10.011 0.34653

Praestol 2540 0.05 2.0871 0.00416 11.911 0.36414

0.07 3.1119 0.0047122 12.587 0.36635

0.10 4.4462 0.005323 11.645 0.3691

Table 5.1: The fit parameters of the Carreau model (5.2) for aqueous polymer solutions at
22 ◦C.

The difference between aqueous solutions prepared with the flexible
(PRAESTOL 2500) and rigid rod-like (PRAESTOL 2540) polymers can be
seen in figure 5.6, where the dependence of the zero-shear-rate viscosity η0
on the polymer mass fraction w is shown.
The aqueous solutions of flexible polymers (P2500) (figure 5.6a) show an
approximately linear increase of the zero-shear-rate viscosity η0 with the
polymer mass fraction w for concentrations up to 0.1 wt.%. Increasing the
polymer mass fraction above 0.1% causes a steep increase of the viscosity,
indicating roughly the concentration at which the polymer molecules start to
overlap and become entangled [16]. This behaviour is typical for solutions
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of high molecular-weight polymers. Above the critical concentration, η0
increases with w following a power law.
Rigid rod-like polymers in aqueous solutions show a different behaviour
in the zero shear rate–concentration relationship, which does not allow
for a distinction between the concentration regimes in the range under
investigation (figure 5.6b).
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(a)

(b)

Figure 5.6: Zero shear viscosity vs. polymer mass fraction for (a) P2500 and (b) P2540 in
water. The equations yield η0 in Pa s for w in wt.%.

70



5 Characterization of the test liquids

5.2.2 Oscillation experiments

The oscillation experiments are used to study the linear viscoelastic be-
haviour by applying a sinusoidal shear strain

γ∗(t) = γ̂∗eiωt (5.3)

with the angular frequency ω and i =
√
−1 to the viscoelastic test liquid.

The corresponding induced shear stress is given as

τ∗(t) = τ̂∗ei(ωt+δ) =
∫ t

−∞
G(t− t′)

dγ∗(t′)
dt′

dt′ = iωγ̂∗
∫ t

−∞
G(t− t′)eiωt′ dt′

(5.4)

where δ is the phase shift and G(t) is the linear relaxation modulus. Vis-
coelastic behaviour can be described by the complex modulus G∗ defined
as

G∗ =
τ∗

γ∗
=

τ̂∗

γ̂∗
eiδ = G′ + iG′′, (5.5)

where G′ and G′′ are the storage and the loss modulus, respectively. The
storage modulus corresponds to the elastic portion of the viscoelastic be-
haviour and represents the stored deformation energy. The loss modulus
corresponds to the viscous portion of the viscoelastic behaviour and repre-
sents the dissipated or lost deformation energy.
For estimating whether the elastic or viscous behaviour is dominating, the
dissipation factor tan(δ) is used. The dissipation factor is defined as the
ratio between the storage and loss modulus

tan(δ) =
G′′

G′
. (5.6)

For tan(δ) < 1 elastic behaviour dominates and for tan(δ) > 1, the viscous
behaviour dominates. In terms of the phase shift that means that δ = 0 for
an elastic solid, and δ = π/2 for a purely viscous fluid.
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An important concept in studying the relaxation behaviour is the relaxation
spectrum H(λ) given by

G(t) =
∫ ∞

0
H(λ) e−t/λ dλ

λ
=
∫ ∞

−∞
H(λ) e−t/λ d(lnλ) (5.7)

for continuously distributed relaxation times using the generalized Maxwell
model (see [3], p. 285, [58], p. 60 and [15], p. 93). As noted in ([16], p. 161), in
an ideal case of polymer solutions with linear polymers of the same length
and the same molar mass, the relaxation behavior can be described using a
single Maxwell model (3.41).

Combining and rewriting equations (5.4) and (5.5) results in

G∗ = G′ + iG′′ =
∫ ∞

0
ω G(s) sin(ωs)ds + i

∫ ∞

0
ω G(s) cos(ωs)ds, (5.8)

where s = t− t′ was introduced.
Inserting (5.7) in (5.8) and integrating with respect to s, one obtains

G′(ω) =
∫ ∞

0

ω2 λ2 H(λ)

1 + ω2 λ2 d(lnλ) (5.9)

and

G′′(ω) =
∫ ∞

0

ω λ H(λ)

1 + ω2 λ2 d(lnλ). (5.10)

As noted further in ([15], p. 94), inversion of the measured data, that is,
inversion of G′ (5.9) and G′′ (5.10), to obtain H(λ) is an ill-conditioned
problem.
From measured G′ and G′′ vs. ω, the linear relaxation modulus G(t) and
the relaxation spectrum H(λ)were obtained using the software provided by
ANTON PAAR.

Results

In the oscillation experiments, G′ and G′′ vs. ω were measured. Because
the formulations of G′, G′′, G(t) and H(λ) were made within the field of
linear viscoelastic material behaviour, a test of linearity was conducted
for each test liquid. The test of linearity was performed by means of an
amplitude sweep by varying the amplitude γ̂ at constant frequency of 1 Hz.
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The measured loss and storage moduli are expected to remain constant in
the linear viscoelastic regime.
The results of the linearity test are shown in figure 5.7. Similar results were
obtained for all test liquids investigated. From the results of the amplitude
sweeps it was concluded that the validity of the linear viscoelastic theory is
limited to γ̂ < 40 %. Therefore, an amplitude of γ̂ = 10 % was set in order
to ensure the linear viscoelastic behaviour of the test liquids.

Figure 5.7: Results of the amplitude sweep test at the constant frequency of 1 Hz for the
aqueous 0.5 wt.% Praestol 2500 solution.

The results of the oscillatory experiments for aqueous PRAESTOL 2500 and
PRAESTOL 2540 solutions are shown in figures 5.8 and 5.9, where the plots
of G′ and G′′ against ω are presented.
For aqueous PRAESTOL 2500 solutions with polymer mass fraction be-
low 0.1 wt.% and aqueous PRAESTOL 2540 solutions with polymer mass
fraction below 0.03 wt.% no reliable results were obtained, due to the low
viscosity.
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For low angular frequencies, the loss modulus exceeds the storage modulus

Figure 5.8: Storage G′ (solid symbols) and loss moduli G′′ (open symbols) of aqueous poly-
mer solutions P2500 for different polymer concentrations against the angular
frequency ω.

for both polymer solutions studied. At high angular angular frequencies, the
storage modulus exceeds the loss modulus, which indicates that elasticity
dominates over viscosity.

A crossover angular frequency ωX exists where both moduli have the same
value G′(ωX) = G′′(ωX). The crossover point moves to higher angular
frequencies with decreasing polymer mass fraction. This trend is clearly
visible in case of Praestol 2500 polymer solutions (figure 5.8), while for the
Praestol 2540 polymer solutions (figure 5.9) this trend can be observed for
higher polymer mass fractions (above 0.03 wt.%).

When the fluid behaviour is described by the Maxwell model, that is by
equations (5.9) and (5.10), the crossover frequency is often used to determine
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Figure 5.9: Storage G′ (solid symbols) and loss moduli G′′ (open symbols) of aqueous poly-
mer solutions P2540 for different polymer concentrations against the angular
frequency ω.

the longest relaxation time as

λ1,X =
1

ωX
. (5.11)

In the present case, however, this relaxation time λ1,X does not match with
the relaxation time obtained by the elongational rheometer (see the next
Section 5.3). This may indicate that the Maxwell model with a single stress
relaxation time is not able to properly describe the measured data.

The relaxation time spectrum H(λ) (5.7), calculated from the loss and stor-
age moduli using the software from ANTON PAAR, is presented in figure
5.10.
As noted in Ferry ([58], p. 60), for liquids at long time scales, when steady-
state flow is reached, H(λ) should vanish. The relaxation time spectra of the
solutions studied in the present work exhibit low values of H(λ) for high
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values of the relaxation time λ. At short time scales, H(λ) should vanish,
due to the nearly pure elastic material response on short time scales ([58], p.
60). This trend is also visible in the presented relaxation time spectra.
As noted in ([16], pp. 165-168), there is a correlation between the complex
modulus G∗ and the polymer molar mass distribution (MMD). Ferry ([58],
pp. 198-200) discusses the effect of the polymer polydispersity on the com-
ponents of the complex modulus G∗. For dilute solutions of linear polymers,
at high frequencies, G′ and G′′ are independent of the molecular weight
distribution, while at low frequencies the behavoiur of G′ and G′′ may
be expressed in terms of molecular weight averages ([58], p. 198). When
polymers with different molecular weights are mixed, the relaxation time of
the lower molecular weight polymer tends to shift to longer times, while
those of the higher molecular weights tends to shift to shorter times [58, 70].
The combined effect of the shift results in narrowing the relaxation time
spectrum [70].
There are some methods for obtain the polymer molecular mass distribu-
tion (MMD) from measured relaxation time spectra [70, 71]. Regardless
of the method used to relate the rheological properties to the MMD, this
represents an ill-posed problem, because the molecular weight distribution
is very sensitive to small variations in the rheological measurements [70].
Therefore, the relaxation time spectra, shown in figures 5.10(a) and 5.10(b),
are not discussed any further.
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(a)

(b)

Figure 5.10: Relaxation time spectra of aqueous solutions (a) of Praestol 2500 and (b)
Praestol 2540 for different polymer mass fractions.
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5.3 Elongational rheometry

The stress relaxation time λ1 of the liquids was measured with a non-
commercial filament stretching elongational rheometer of the CaBER type
[8, 9]. The basic experimental setup of the elongational rheometer is shown
in Figure 5.11. The test liquid is loaded between two plates; the upper plate
is movable, and the bottom plate is fixed. The upper plate is pulled up
by an electromagnet in a short time. While the test liquid is stretched, it
takes a cylindrical form with circular cross-section. Due to the capillary
forces, self-thinning of the liquid filament occurs, that is, the diameter of
the cylindrical filament decreases in time, which is monitored by an optical
device. From the measured filament diameter as a function of time, the
relaxation time λ1 is calculated.

In the present work a non-commercial elongational rheometer was used.
Therefore, basic assumptions and theoretical background are first presented.

Figure 5.11: Experimental setup for elongational rheometry [72].
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5.3.1 Theoretical background

Observing the self-thinning process of a cylindrical liquid filament, the
following assumptions can be made. The filament in its main part, except
for the end regions at the plates, remains in its cylindrical shape with a
circular cross-section during the self-thinning process.Therefore, the filament
diameter d f is constant in the axial direction ∂d f /∂z = 0. And, because
of the axisymmetry, one can set ∂/∂ϕ = 0 and uϕ = 0. On the surface of
the liquid thread no shear stress exists. The filament can be considered as
long and thin, therefore the mass forces and inertia can be neglected in the
momentum balance. The homogeneous flow field in the filament is governed
only by capillary pressure, resulting in a uniaxial elongational flow towards
both end regions of the liquid thread [3]. Stelter et al. [8, 9] derived the
following linear momentum equation with boundary conditions

τzz =
4σ

d f
(5.12)

assuming τzz >> τrr. The closure of (5.12) requires the rheological model
for the tested viscoelastic liquid. Stelter et al. [9] implemented the upper
convected Maxwell model (3.5). They identified two regimes of the filament
self-thinning process of semi-dilute solutions. In the first part of the self
thinning process the polymer solutions shows viscoelastic behaviour, and
the filament diameter decreases exponentially with time as

d f = d f ,0 exp
(
− t

3λ1

)
. (5.13)

where λ1 is the relaxation time and d f ,0 is the initial filament diameter. After
the maximum possible polymer extension is reached, the polymer solu-
tion shows Newtonian-like behaviour. In this second regime, the filament
diameter decreases linearly with time as

d f = d′f ,0 −
σ

ηE,t
t, (5.14)

where ηE,t is the steady terminal elongational viscosity, σ is the surface
tension and d′f ,0 is the initial filament diameter at the onset of Newtonian
behaviour.
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5.3.2 Experiments and results

A small sample of the liquid with a volume of 10 µl is stretched between two
plates in a short time ≤ 1 ms and the diameter relaxation with time of the
filament formed by the stretching process is recorded by an optical shadow
technique. The diameter evolution is governed by the stress relaxation time
λ1 of the liquid.
The liquid filament is positioned in the laser beam and the filament diameter
as a function of time is measured by evaluating the power of light from
the laser diode received by the photo detector. The voltage-time relation-
ship at the photo detector during the filament thinning is recorded by an
oscilloscope (TEKTRONIX TDS 220) and transferred to a computer. The
relationship between the reduction of the light power, expressed in terms of
voltage decay at the photo detector, and the filament diameter is linear and
obtained by a calibration procedure. For determining the relaxation time,
only the first regime of the diameter decrease is used and approximated
by (5.13) using computer software MATHEMATICA. The exponent of the
function obtained by a data fit determines the relaxation time.

Figure 5.12 shows the non-dimensional filament diameter as a function of
time. Measurements repeated 10 times yielded mean values with standard
deviations of about 10%. Figure 5.13 shows the results of the measurements
with the elongational rheometer, where the stress relaxation time as a
function of the polymer mass fraction for aqueous P2500 and P2540 polymer
solutions is presented.
The dependency of the measured relaxation time on the polymer mass
fraction w is approximated by the scaling law

λ1 ∝ ws, (5.15)

where s = 0.86 for the aqueous P2500 polymer solutions and s = 0.79 for
the aqueous P2540 polymer solutions. Similar values for the exponent s
were reported by Stelter et al. [8], for solutions of the same polymers. The
aqueous solutions in [8] were prepared with the same polymer batches
(Praestol), provided by the same manufacturer.

80



5 Characterization of the test liquids

(a)

(b)

Figure 5.12: Elongational rheometry measurements. The non-dimensional filament diame-
ter as a function of time for aqueous (a) P2500 and (b) P2540 polymer solutions.
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From figure 5.13 is evident that the relaxation time of both aqueous polymer
solutions increases with the polymer mass fraction. As noted in [8], this
result is a clear indication that the aqueous polymer solutions studied cannot
be considered as dilute. Further in [8], the polymer solutions should be
treated as semidilute solutions, due to the manifestation of the effects of
interactions between polymer macromolecules.

Figure 5.13: Elongational rheometry measurements. The stress relaxation time as a function
of the polymer mass fraction for aqueous P2500 and P2540 polymer solutions.
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5.4 Surface tension measurement

Another measured quantity, important in studying viscoelastic fluid be-
haviour in free surface flow is the surface tension. There exist many meth-
ods to measure the surface tension (e.g. sessile drop method, drop weight
method, drop volume method, drop shape method [39, 73–75]).
In the present work, the surface tension σ was measured with the drop
shape technique using a pendant-drop setup.

5.4.1 Pendant-drop method

In the present work, a non-commercial pendant drop tensiometer was used.
The experimental setup for pendant-drop tensiometry, shown in figure 5.14,
requires a needle, a light source and a camera.

Figure 5.14: Experimental setup for pendant drop tensiometry [73].

The axisymmetric drop is formed at the end of a needle with known diame-
ter. The pendant drop shape at equilibrium is influenced only by surface
tension and gravity. Thus, any movement of the drop should be avoided
or minimized, and the needle must be accurately vertically aligned. The
restoring force of surface tension tends to minimize the surface area and
pulls the drop into a spherical shape. On the other hand, the distorting
gravitational force tends to stretch the drop. In equilibrium, both forces are
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balanced. A pendant drop at equilibrium is described by the Young-Laplace
equation

σ

(
1

R1
+

1
R2

)
= ∆P (5.16)

which relates the pressure difference across the interface ∆P (Laplace pres-
sure) with the principal radii of curvature R1 and R2 of the drop surface
and the surface tension σ [73, 76]. At the lowest point of the drop (drop
apex), the principal radii of curvature are equal R1 = R2 = R0. Therefore
the reference plane is placed at this point. And, because of the axisymmetry,
the cylindrical coordinates r,z, together with tangent angle ϕ were chosen,
as shown in figure 5.15.
The Laplace pressure can be written in terms of the hydrostatic pressure
ρgz inside the drop and the reference pressure ∆P0 at z = 0

∆P = ∆P0 − ∆ρgz (5.17)

where ∆ρ = ρd − ρm is the density difference between drop liquid density
ρd and surrounding medium density ρm. Inserting ( 5.17) in ( 5.16) and
evaluating the resulting equation for z = 0 results in

∆P0 =
2σ

R0
. (5.18)

Introducing the parametrization using the arc length s measured from the
lowest point of the drop z = 0, the radii of curvature can be written as

R1 =
ds
dϕ

and R2 =
r

sin ϕ
. (5.19)

The above derivation results in a coupled set of first-order differential
equations [73]:

dϕ
ds̃ = 2− Bo z̃− sin ϕ

r̃
dr̃
ds̃ = cos ϕ

dz̃
ds̃ = sin ϕ

(5.20)
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Figure 5.15: Schematic of a pendant drop with associated variables [73].

where s̃ = s/R0, r̃ = r/R0 and z̃ = z/R0 are the non-dimensional variables
and Bo is the Bond number, defined as

Bo =
∆ρ g R2

0
σ

. (5.21)

The above system of differential equations (5.20) is closed with boundary
conditions at the drop apex s = 0:

r(s = 0) = z(s = 0) = ϕ(s = 0) = 0. (5.22)

The pendant drop shape therefore depends only on one non-dimensional
parameter Bo, the Bond number.
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The pendant drop method for surface tension determination consists of the
following steps. First, the test liquid is loaded in the syringe, and a liquid
drop is slowly formed at the tip of the needle. An image of the pendant drop,
including the tip of the needle, was recorded. The optical magnification
is determined with known diameter of the needle. Then the drop surface
profile is extracted from the image. Next, the Young-Laplace equation is
solved numerically, iteratively adjusting parameters to find the best fit to
the extracted shape of the drop. From the resulting Bond number Bo, the
surface tension is calculated. The determination of the drop profile and
solving the Young-Laplace equation is done with the computer software
Matlab. The system of differential equations (5.20) was solved numerically
by implementing the fourth order Runge-Kutta method [75, 76].

5.4.2 Results

The measured surface tension as a function of the polymer mass fraction for
aqueous P2500 and P2540 polymer solutions is presented in figure 5.16.

Figure 5.16: Pendant drop measurements. The surface tension as a function of the polymer
mass fraction for aqueous P2500 and P2540 polymer solutions.
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The value of the surface tension tends to increase with increasing polymer
mass fraction for both polymer solutions, although the increase is small and
of the order of the measurement error. The values of the surface tension
for the aqueous solutions at the lowest and highest polymer mass fraction
differ by about 5 mN m−1 for the P2500 polymer solutions and by about
2 mN m−1 for the P2540 polymer solutions.

Comparison of the measured surface tension with the corresponding mea-
surements reported in Pilz and Brenn [72] and Brenn and Teichtmeister [13]
using solutions of the same polymer batches shows good agreement.

5.5 Summary

The measured fluid properties are listed in the table 5.2. The densities of
all aqueous polymer solutions were set equal to the solvent density of
1000 kg m−3, due to the small polymer mass fraction and hence a negligible
influence on the solvent density, as in [13, 14, 72].
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w η0 λ1 σ
Polymer [wt.%] [Pa s] [s] [N m−1]

0.04 0.007 0.015 0.0720

0.06 0.009 0.021 0.0720

0.08 0.013 0.027 0.0722

0.1 0.017 0.033 0.0720

0.2 0.051 0.066 0.0727

0.3 0.089 0.095 0.0730

Praestol 2500 0.4 0.17 0.11 0.0737

(P2500) 0.5 0.35 0.14 0.0740

0.6 0.55 0.16 0.0750

0.7 0.94 0.20 0.0750

0.8 1.53 0.21 0.0760

0.9 2.24 0.23 0.0761

1.0 2.97 0.25 0.0777

0.005 0.11 0.014 0.0756

0.01 0.28 0.02 0.0761

0.03 0.92 0.06 0.0760

Praestol 2540 0.05 2.09 0.08 0.0765

0.07 3.11 0.11 0.0770

0.10 4.45 0.15 0.0771

Table 5.2: The material properties of the investigated aqueous polymer solutions at 22 ◦C.
The density is 1000 kg m−3 for all the solutions to a good degree of accuracy.
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6 Deformation retardation time
measurements

In this chapter the experimental part of the proposed method for measuring
the deformation retardation time is presented.
First, the experimental setup is described. Second, the method for measuring
the complex angular drop frequency is explained. Next, the deformation
retardation time of the viscoelastic liquid is determined. Then the uncer-
tainty estimates are made. At the end, the results and the corresponding
uncertainties with sensitivity analysis are presented and discussed.

6.1 Experimental setup

For investigating experimentally damped oscillations of individual drops of
viscoelastic liquids, the technique of acoustic levitation was used [13, 14, 77].
The acoustic levitation of drops was achieved using an ultrasonic levitator.
This device is an essential part of the present work. Hence, a thorough
description of the acoustic levitator system is presented in the next section.

6.1.1 Ultrasonic levitator

An aoustic levitator is a device which uses an acoustic field for levitating
fluid and solid particles. The device suspends the sample in a fixed position
contactlessly and allows to investigate various physical processes (drying,
heat transfer, mass transfer,... ) without any influences from contacting me-
chanical parts [77, 78].
In the present work, an acoustic levitator system from tec5 AG with the
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standard frequency (νL) of 58 kHz was used. A detailed description of the
system can also be found on the homepage of tec5 AG [79]. The correspond-
ing wavelength in ambient air (λL) at 22 ◦C is about 5.9 mm. The maximum
sample diameter that can be levitated with the standard frequency is around
2.5 mm. The smallest drop diameter is about 15 µm. The device is designed
for solid and liquid samples with densities between 0.5 and 2 g cm−3.
The acoustic levitator system consists of a signal generator and the levitator.
The basic parts of the levitator are the transducer (horn) and the reflector, as
shown in figure 6.1(a). A piezoelectric crystal is attached to the transducer,
producing an ultrasonic sound wave which is reflected by the reflector. The
reflector has a concave curved surface to enhance the sound pressure level.
The distance between transducer and reflector is adjusted by a micrometer
screw. The generator operates at standard frequency and produces between
0.65 and 5 W power. An integrated potentiometer can be used for adjusting
the transducer amplitude. The ultrasonic carrier wave can be modulated by
an external signal generator connected to the ultrasonic generator.

(a) (b)

Figure 6.1: (a) Basic parts of an acoustic levitator [79] and (b) a photo of the acoustic
levitator used in the experiments.
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Figure 6.2: Levitated sample in a levitator [79].

The quasi-steady pressure field of the standing ultrasonic wave between
the transducer and the reflector is formed if the distance between them is
a multiple of the half wavelength of the ultrasound wave. At this distance,
the transmitted and reflected sound waves superpose, forming regions of
minimum pressure, called pressure nodes, and of maximum pressure, called
pressure antinodes.
The distance between transducer and reflector was set to 5 · λL/2, which
corresponds to around 15 mm. At this distance, 5 pressure nodes are formed,
as shown in Figure 6.2. The pressure nodes can be visualized using fine
water droplets, which will agglomerate at the pressure nodes. The optimal
position for stable sample levitation is the area at the central pressure node.
The outer nodes are not suitable for stable drop levitation because they are
disturbed by the influences from the reflector and the transducer.

91



6 Deformation retardation time measurements

Figure 6.3: Setup for levitating single drops in an ultrasonic resonator and measuring the
drop deformations in oscillations by means of image processing [13].

6.1.2 Acoustic levitation

Oscillations of the levitated object are excited by amplitude-modulating the
ultrasound. Modulation frequencies up to 2 kHz are achievable with the
equipment at hand. For further details, the reader is referred to [77].
A high-speed camera at a framing rate of 2 kHz under backlight illumination
was used to record the images of the levitated drop. The high-speed camera
was equipped with a macro lens and a tele-converter. The pixel length at
a given magnification was determined from photographs of a micrometer.
An uncertainty in the length measurement of ±2 Pxls with the resolution
of 300 Pxls/mm results in a sizing uncertainty of ±6 µm, for a 1.9 mm
drop, equivalent to ±0.3 %. The resolution of 300 Pxls/mm was set for all
oscillation measurements.

A syringe with a thin needle was used to produce the drops of the test
liquids for the oscillation measurements. The diameters of the drops were in
the range between 1 mm and 3 mm. The drop was injected into the sound
field close to a pressure node of the acoustic levitator. At this time, the
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amplitude modulation was switched off. Within at most 5 s after the drop
has been injected in the acoustic levitator, a series of about 100 pictures
of the levitated drop are recorded in order to have its initial shape. From
the initial shape a equilibrium radius was first estimated and the Rayleigh
frequency was calculated. The exact equilibrium radius a was calculated
later in the post-processing of the recorded images. From the initial drop
volume, where the evaporation of the solvent did not influence the solution
concentration yet, the polymer concentration in the drop liquid at all later
times can be determined.

The drop resonance frequency is then determined approximately by a
modulation frequency sweep around the calculated Rayleigh frequency,
revealing the drop deformations with the maximum amplitude. The drop
is then excited near that resonance frequency. Then, at some time during
the steady excitation, the modulation is switched off and the drop exhibited
damped oscillations. During the experiments the carrier signal driving the
acoustic transducer was always active.

The experiment yields both the angular frequency and the damping rate of
the damped drop oscillations in a linear regime of the motion. These two
values form the complex frequency αm of the drop for the basic oscillation
mode m = 2. Together with the calculated Rayleigh frequency αm,0 of the
drop, the left-hand side of the characteristic equation (4.64) is known. This
forms the basis for determining two material properties as solutions of the
equation.

6.2 Complex frequency measurements

Figure 6.4 shows the late stage of the damped oscillation of a levitated
1.94 mm 0.3 wt.% Praestol 2500 aqueous solution drop. The drop was
excited at 120 Hz before the modulation was switched off. From the recorded
images, the frequency and damping rate in the late stage of the motion,
starting at time t = t0, were extracted. There the drop deformations are
small, ensuring both the linear oscillation behaviour and that the influence
of the shear-thinning of the polymer solution did not have any effect on the
oscillation [13, 14].
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6.2.1 Image processing

The recorded drop shape oscillations were processed with an image ana-
lyzing software ImageJ. Figure 6.4 shows a original image sequence of the
recorded damped oscillations of a levitated 1.83 mm 0.3 wt.% Praestol 2500

aqueous solution drop. To evaluate the drop shape, the images were first
binarized, and then the contour of the drop was detected. Figure 6.5 shows
the processed images of the original image sequence shown in Figure 6.4.
From the binarized images, the height and width of the drops as functions
of time were determined.
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t = t0 t = t0+1 ms t = t0+2 ms

t = t0+3 ms t = t0+4 ms t = t0+5 ms

t = t0+6 ms t = t0+7 ms t = t0+8 ms

t= t0+9 ms t = t0+10 ms t = t0+11 ms

t = t0+12 ms t = t0+13 ms t = t0+14 ms

Figure 6.4: The late stage of the damped oscillations of a levitated 1.83 mm 0.3 wt.%
Praestol 2500 aqueous solution drop.
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t = t0  t = t0+1 ms t = t0+2 ms 

   

t = t0+3 ms t = t0+ 4 ms t = t0+5 ms 

   

t = t0+ 6 ms t = t0+7 ms t = t0+ 8 ms 

   

t= t0+ 9 ms t = t0+10 ms t = t0+11 ms 

   

t = t0+12 ms t = t0+13 ms t = t0+14 ms 

Figure 6.5: Binary images of the late stage of the damped oscillations of a levitated 1.83 mm
0.3 wt.% Praestol 2500 aqueous solution drop in Figure 6.4
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6.2.2 Measurement data processing

The frequency and damping rate of the oscillating drop were determined
from the last stage of the motion given by the data in figure 6.6. In the last

Figure 6.6: The height of a levitated 1.83 mm 0.3 wt% Praestol 2500 aqueous solution drop
as a function of time in a damped oscillation. The time between two data points
is 0.5 ms. The last part of the damped oscillation from t0 = 0.0435 s on is
represented by fitting the function (6.1) to the measured data.

part of motion, the linear oscillation behaviour was ensured and the shear-
thinning of the polymer solution did not have any effect on the oscillation
[13, 14]. The time-dependent distance y(t) between the north and south
poles of the drop, that is the height of the drop, and equivalently for the
width of the drop, is represented by the function

y(t) = y0 + A cos (2π f · t + ϕ0) · e−αm,r(t−t0) (6.1)

which is a general description of a damped oscillation [14, 39]. In this func-
tion, y0 is either the equilibrium height or the equilibrium width of the
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drop, f is the oscillation frequency, t is time, A the oscillation amplitude at
time t = t0 from which on the data is modeled, and ϕ0 is a reference phase
angle. The least-squares method was employed to minimize the quantity
χ2 = ∑i r2

i , where ri are residuals giving the difference between each mea-
sured data point and its fitted value [14]. The fitting curve for the last stage
of the motion of the oscillation is also shown in figure 6.6.

The fitting procedure was done on both oscillating directions, as shown
in figure 6.7(a). As the result of the measurements, the average values
for the frequency and the damping rate were taken. In the case of large
discrepancies between the values obtained in the equatorial and polar
directions, the measured results were rejected and not considered any
further.
The volume-equivalent spherical radius was calculated (figure 6.7(b)) and
compared to the initial radius in order to determine the correct polymer
concentration. Typical variation of the volume-equivalent spherical radius
during one oscillation measurement was less than 1% (figure 6.7(b)). In the
case that the variations of the volume-equivalent spherical radius was larger
than 1%, the measurement was rejected.
The oscillation frequency and the damping rate of the above specified
drop determined by this procedure are f = 134.2 Hz and α2,r = 36 s−1,
respectively. The real and imaginary parts of the complex angular frequency
α2 = α2,r + iα2,i = α2,r + i2π f are therefore known.
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(a)

(b)

Figure 6.7: Damped oscillations of a levitated 1.83 mm 0.3 wt.% aqueous Praestol 2500

solution drop as a function of time. (a) Normalized oscillation amplitude and
the fitting curve (solid line) in the last part of the motion. (b) Volume-equivalent
spherical radius of the drop as a function of time, varying by no more than
0.3%.
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The oscillation experiments with aqueous Praestol 2500 polymer solutions
were successfully conducted with solutions with polymer mass fractions
above 0.1 wt.%. For the aqueous solutions with Praestol 2500 polymer mass
fractions below 0.1 wt.%, the complex frequency could not be accurately
determined. Similar, for the aqueous solutions with Praestol 2540 polymer
mass fractions below 0.05 wt.%, the frequency measurements did not pro-
vide consistent results. In both cases, the difference between the complex
frequencies determined in the equatorial and polar directions was too large,
such that their average value could not be considered as reliable.
The results of the complex frequency measurements are presented in figure
6.8. The measured non-dimensional oscillation frequencies of the drops as a
function of the Ohnesorge number are shown in figure 6.8(a). For the drops
with (nearly) the same Ohnesorge number, different oscillation frequencies
are measured. This observation is in agreement with the results presented in
figure 4.4(a). Figure 6.8(b) presents the measured non-dimensional damping
rates as a function of the Ohnesorge number. Again, the measured damping
rates of the drops with (nearly) the same Ohnesorge number have different
values, which is in agreement with the results presented in figure 4.4(b).
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(a)

(b)

Figure 6.8: Measured non-dimensional (a) frequency and (b) damping rate as a function of
the Ohnesorge number.
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6.2.3 Effects on the complex frequency measurements

The presented experimental method for determining the deformation retar-
dation time of viscoelastic liquids is based on precise measurements of the
complex angular frequency of the oscillating drop. The frequency and damp-
ing rate may be potentially influenced by the acoustic levitation technique,
the non-spherical static drop shape, the non-linear drop shape oscillations
and the shear thinning behaviour of the liquid [13, 26, 39, 77, 80, 81].
In the levitated drop, an internal liquid circulation may be induced by the
acoustic streaming of the unsteady boundary layer flow of the surround-
ing air [77]. This acoustically induced velocity field inside the levitated
droplet may influence the measurements. As was shown in [13], the maxi-
mal acoustically induced angular velocity at the drop surface is two orders
of magnitude lower than the oscillation-induced liquid velocity uθ given by
(4.49). Thus, the effect of the acoustic streaming is neglected in the present
work.
The frequency and the damping rate of the oscillating drop may also be in-
fluenced by the non-spherical equilibrium drop shape and by the oscillation
amplitude [13, 26, 39, 81]. In the present work, a spherical equilibrium drop
shape is assumed. The sound pressure in the acoustic levitator may cause
a deviation from the spherical shape of the drop. The non-spherical drop
shape is characterized by the aspect-ratio, here defined as the ratio of the
equatorial and polar radii of the drop in equilibrium. For viscous drops,
Kremer et al. [39] investigated the effect of the aspect ratio on the shift of
the resonance frequency and damping rate from the calculated values for
the spherical drop. For aspect ratios up to 1.5, the shift in the resonance
frequency was about 3 %, and the shift in the damping rate was about 6%
[39]. Similar, though slightly higher values of about 8%, were reported by
Trinh et al. [81], for drops in a liquid-liquid system. In the present work the
static aspect ratios are between 1.1 and 1.2. Therefore, the influence of the
oblate equilibrium drop shape on the resonance frequency and damping
rate is negligible [13].
At sufficiently large amplitudes of oscillation, nonlinear effects influence the
oscillation frequency and the damping rate [13]. Becker et al. [26] experimen-
tally and theoretically investigated large-amplitude oscillations of liquid
drops. They concluded that, if the amplitude of drop oscillation exceeds
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approximately 10 % of the droplet radius, nonlinear effects are observed.
Similar conclusions were made by Kremer et al. [39], where they recommend
that the oscillation amplitude should be between 5% and 15%. Therefore, in
the presented experiments the oscillation amplitudes of drops were always
kept below 10 % in order to avoid nonlinear effects.
The theoretical framework of linear drop shape oscillations requires small
oscillation-induced shear rates to avoid shear thinning behaviour of the test
liquids. The onset of the shear thinning behaviour can be seen in figures
5.5 and ??, where the flow curves for aqueous P2500 and P2540 polymer
solutions are presented. In the case of aqueous P2540 solutions, the onset of
shear thinning is O(0.1 s−1) and for the aqueous P2500 solutions, the onset
of shear thinning lies between 0.1 s−1 and 1 s−1, depending on the polymer
mass fraction. Brenn and Teichtmeister [13] calculated the time and volume
averaged shear rate in the drop of aqueous solutions prepared with the same
polymer batches as used in the present work. They calculated the averaged
shear rate of O(15 s−1) which lies in the shear thinning region. However,
as remarked in [13], the averaged shear rate values do not correspond to
the experimental observations that the measurements may yield correct
results.

6.3 Determination of the polymeric time scales

The characteristic equation (4.64) is transcendental in the argument of the
spherical Bessel functions involved and must therefore be solved numerically
[13, 14]. The method for determining pairs (η0, λ2) or (λ1, λ2) was presented
in the previous section. As a prerequisite, the complex frequency α2 must be
accurately measured in the experiment, and the radius of the drop as well as
the density, stress relaxation time and surface tension of the liquid in contact
with the ambient air must be known [14]. The accuracy requirements to
these input parameters are addressed in the section below.

As explained in detail in section 4.3.2, the first step to determine the de-
formation retardation time is to solve the characteristic equation for the
complex argument qa. Next, from the set of solutions qa the corresponding
pairs (η0, λ2) and/or (λ1, λ2) are calculated. Finally, the identification of the
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Argument Zero-shear Retardation Relaxation Retardation
qa viscosity η0 time λ2 time λ1 time λ2

[Pa s] [10−4 s] [s] [10−4 s]
4.948 + 0.088i 2.360 1.29 0.0036 -2.448

5.824 + 7.846i 0.0006 2243 3969 281·10
4

8.757 + 0.055i 0.754 1.018 0.011 -0.073

12.113 + 0.0361i 0.394 0.94 0.022 0.440

15.363 + 0.0228i 0.245 0.904 0.035 0.650

18.57 + 0.0147i 0.168 0.888 0.051 0.760

21.755 + 0.0098i 0.122 0.880 0.07 0.827

24.928 + 0.0068i 0.093 0.876 0.092 0.871

28.094 + 0.0049i 0.073 0.873 0.117 0.901

31.254 + 0.0036i 0.059 0.872 0.144 0.923

34.411 + 0.0027i 0.049 0.871 0.175 0.939

37.565 + 0.0021i 0.041 0.870 0.208 0.951

Table 6.1: Positive roots qa of the characteristic equation (4.64) and corresponding calculated
pairs (η0, λ2) and (λ1, λ2) for a 0.3 wt.% aqueous Praestol 2500 solution drop
with equilibrium radius a = 0.917 mm. The highlighted row represents the
correct solutions.

correct solution follows from comparison of the calculated values η0 or λ1
with the values of η∗0 or λ∗1 , respectively.
For a 0.3 wt.% aqueous Praestol 2500 solution drop with equilibrium radius
a = 0.917 mm and measured complex frequency α2 = 36.24 s−1 + i2π ·
134.2 Hz, described in the previous section, the solutions qa of the character-
istic equation and the corresponding calculated pairs (η0, λ2) and (λ1, λ2)
are listed in Table 6.1.
The result for the zero-shear dynamic viscosity η0 obtained for this liquid is
0.093 Pa s, which deviates from the value of η∗0 of 0.089 Pa s measured by
rotational rheometer by no more than 5%. The corresponding deformation
retardation time is 0.88 · 10−4 s. Similar, the calculated stress relaxation time
λ1 is 0.092 s which deviates from the value of λ∗1 of 0.095 s revealed by elon-
gational rheometry by no more than 3%. The corresponding deformation
retardation time is 0.87 · 10−4 s.
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7.1 Uncertainty and sensitivity analysis

In this section the sensitivity of the calculated pairs (η0, λ2) and (λ1, λ2) to
uncertainties of the parameters entering the characteristic equation (4.64) is
analyzed.

The complex roots qa of the characteristic equation (4.64) are calculated to
machine accuracy with the computer software MATHEMATICA [14].
For the input parameters the normal (Gaussian) distribution is assumed,
and their estimated uncertainties are as follows. The measured zero-shear
viscosity η∗0 and the stress relaxation time λ∗1 have an uncertainty of ± 10%.
The Rayleigh frequency is calculated as αm,0 =

√
m(m− 1)(m + 2)

√
σ/ρa3,

where the uncertainty of the measured radius a is below ±1 %, the uncer-
tainty in the density is below ±0.05 %, and the uncertainty in the surface
tension is around ±10 %. This results in the uncertainty of about ±5 % for
the Rayleigh frequency α2,0 of the mode m = 2. The measured complex
frequency α2 = α2,r + iα2,i = α2,r + i2π f has an uncertainty of ± 10% in the
damping rate α2,r and an uncertainty of ±1% in the oscillation frequency
f . This follows from the analysis of the fitting results of the function in
equation (6.1) to the measured data.

The uncertainties of (η0, λ2) and (λ1, λ2) were determined by variation of
the input parameters. This was achieved with a MATHEMATICA routine which
solved the characteristic equation (4.64) 5000 times, randomly selecting
the normal distributed input parameters. The solutions were first searched
near the correct solution qa. For the case of the 0.3 wt.% Praestol 2500

solution drop detailed in the previous sections, the correct solution was
identified at qa = 24.928 + 0.0068i. However, it is reasonable to expect that
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the correct solution could correspond to a different qa, for example, in the
case of large uncertainties. For this reason the neighboring solutions of
qa = 24.928 + 0.0068i at qa = 21.755 + 0.0098i and qa = 28.094 + 0.0049i
(Table 6.1) were also analyzed. The results of the present sensitivity analysis
are the mean values and the corresponding probability density functions
of η0, λ1 and λ2 obtained from the pairs (η0, λ2) and (λ1, λ2) calculated
near the three different values of the complex argument qa, as shown in
figures 7.1 and 7.2. The real part of these three arguments, Re(qa) ≈ 21.7,
Re(qa) ≈ 24.9 and Re(qa) ≈ 28.0 are used as an identifier to distinguish
the results obtained for different solutions qa. The results of the sensitivity
analysis are also listed in table 7.1.

First we consider the results obtained by solving the characteristic equa-
tion (4.64) for the pair (η0, λ2). Figure 7.1(a) shows the probability den-
sity function of the normally distributed η0 calculated at Re(qa) ≈ 21.7,
Re(qa) ≈ 24.9 and Re(qa) ≈ 28.0. The corresponding values are η0 =
0.12(1± 11%) Pa s, η0 = 0.09(1± 10%) Pa s and η0 = 0.07(1± 10%) Pa s,
respectively. The zero-shear-rate viscosity η0 obtained near Re(qa) ≈ 24.9 is
in excellent agreement with the value η∗0 = 0.089 Pa s from shear rheometry.
On the other hand, the mean values of η0 calculated at Re(qa) ≈ 21.7 and
Re(qa) ≈ 28.0 are more than one standard deviation away from the value
η∗0 . The results show that η0 depends strongly on the solution qa of the
characteristic equation. This observation is in accordance with equation
(4.74).
Figure 7.1(b) shows the probability density function of the normally dis-
tributed λ2 calculated at Re(qa) ≈ 21.7, Re(qa) ≈ 24.9 and Re(qa) ≈ 28.0.
The corresponding values are λ2 = 0.91 · 10−4(1 ± 13%) s, λ2 = 0.90 ·
10−4(1± 13%) s and λ2 = 0.90 · 10−4(1± 14%) s, respectively. It is evident
that nearly the same result for λ2 is obtained at different values of the
solution qa. This weak dependence of λ2 on the solution qa is in accordance
with equation (4.73).
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(a)

(b)

Figure 7.1: The uncertainties of the calculated pair (η0, λ2). The probability density func-
tion of the normally distributed (a) zero-shear-rate viscosity η0 and (b) the
deformation retardation time λ2, calculated for three different values of qa.
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Next we consider the results obtained by solving the characteristic equation
(4.64) for the pair (λ1, λ2). Figure 7.2(a) shows the probability density func-
tion of the normally distributed λ1 calculated at Re(qa) ≈ 21.7, Re(qa) ≈
24.9 and Re(qa) ≈ 28.0. The corresponding values are λ1 = 0.072(1± 10%) s,
λ1 = 0.095(1± 10%) s and λ1 = 0.12(1± 10%) s, respectively. The mean
value of the stress relaxation time λ1 obtained near Re(qa) ≈ 24.9 is in ex-
cellent agreement with the value λ∗1 = 0.095 s from elongational rheometry.
Figure 7.2(b) shows the probability density function of the normally dis-
tributed λ2 calculated at Re(qa) ≈ 21.7, Re(qa) ≈ 24.9 and Re(qa) ≈ 28.0.
The corresponding values are λ2 = 0.85 · 10−4(1 ± 13%) s, λ2 = 0.90 ·
10−4(1± 12%) s and λ2 = 0.93 · 10−4(1± 12%) s, respectively. Although
the results show a rather weak dependence of λ2 on the solution qa, the
deviation between the calculated mean values is less than 10%.

(η0, λ2) (λ1, λ2)
Re(qa) η0 [Pa s] λ2 [10−4 s] λ1 [s] λ2 [10−4 s]
≈ 21.7 0.12 (1± 11%) 0.91(1± 13%) 0.072(1± 10%) 0.85(1± 13%)
≈ 24.9 0.090 (1± 10%) 0.90(1± 13%) 0.095(1± 10%) 0.90(1± 12%)
≈ 28.0 0.070 (1± 10%) 0.90(1± 14%) 0.12(1± 10%) 0.93(1± 12%)

Table 7.1: Results of the sensitivity analysis obtained by variation of the input parameters.
Pairs of (η0, λ2) and (λ1, λ2) calculated near three different solutions qa for
the case of the investigated aqueous 0.3 wt.% Praestol 2500 solution drop. The
highlighted row represents the correct solutions.

The presented error analysis yields similar results for all the aqueous poly-
mer solutions studied here. The main motivation of this thesis is to develop
a reliable and precise experimental method to measure the deformation
retardation time λ2 of polymer solutions. From the presented uncertainty
analysis follows that λ2 can be accurately measured even if the right solu-
tion qa of the characteristic equation cannot unambiguously be identified
[14]. This is due to the rather weak dependency of λ2 on the solution qa of
the characteristic equation (4.64). On the other hand, in order to accurately
determine the zero-shear-rate viscosity η0 or the stress relaxation time λ1,
accurate and precise measurements of all the input parameters are required
[14].
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(a)

(b)

Figure 7.2: The uncertainties of the calculated pair (λ1, λ2) . The probability density func-
tion of the normally distributed (a) stress relaxation time λ1 and (b) the defor-
mation retardation time λ2, calculated for three different values of qa.
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7.2 Results and discussion

With each of the aqueous polymer solutions, a set of at least 30 oscillation
experiments were performed. The polymer solutions were contained in 250

ml plastic bottles, from which the test liquid was sampled by a syringe. At
least five different samples were taken from each polymer solution. From
each sample, one or two drops were levitated. With a single drop a series of
oscillation measurements in immediate succession were performed, varying
the excitation frequency. In case that the polymer mass fraction in the drop
liquid is more than 10 % higher than the nominal polymer mass fraction,
due to the solvent evaporation, the corresponding oscillation measurement
was rejected.

Aqueous Praestol 2500 solutions

The results of the drop oscillation experiments with aqueous Praestol 2500

solutions are presented in figures 7.3-7.5 and listed in tables 7.2 and 7.3.

First, the values of zero-shear-rate viscosity and stress relaxation time ob-
tained from the drop oscillation experiments are presented. Pairs of (η0, λ2)
and (λ1, λ2) of the investigated aqueous P2500 solutions obtained by the
oscillating drop method are listed in table 7.2. Both pairs provide similar
values of λ2 which differ by no more than 5%.
Figure 7.3(a) shows the values of zero-shear-rate viscosity obtained from
the drop oscillation experiments (η0) and from the shear rheometry (η∗0 )
against the Praestol 2500 polymer mass fraction. The results show excellent
agreement within ±10% between the two methods, except in the case of
high polymer mass fractions (0.9 wt.% and 1 wt.%).
Figure 7.3(b) shows the values of stress relaxation time λ1 as measured by
drop oscillations and λ∗1 from elongational rheometry against the Praestol
2500 polymer mass fraction. Again, the results show excellent agreement
within ±10% between the two methods, except in the case of high polymer
mass fractions (0.9 wt.% and 1 wt.%).
The discrepancy between the methods at high polymer mass fractions could
be due to the experimental error of the complex angular frequency measure-
ments and due to the uncertainty of the measured liquid properties.
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(a)

(b)

Figure 7.3: (a) Zero-shear-rate viscosity η0 as measured by drop oscillations and η∗0 from
shear rheometry and (b) stress relaxation time λ1 as measured by drop oscil-
lations and λ∗1 from elongational rheometry against the Praestol 2500 mass
fraction w.
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w η∗0 λ∗1 η0 λ2 λ1 λ2
[wt.%] [Pa s] [s] [Pa s] [10−4 s] [s] [10−4 s]

0.1 0.017 0.033 0.016 0.4 0.034 0.4
0.2 0.051 0.066 0.051 0.5 0.065 0.5
0.3 0.089 0.095 0.093 0.9 0.092 0.9
0.4 0.17 0.11 0.165 2.2 0.11 2.3
0.5 0.35 0.14 0.38 2.0 0.13 1.9
0.6 0.55 0.16 0.52 2.5 0.17 2.5
0.7 0.94 0.20 0.8 2.6 0.23 2.6
0.8 1.53 0.21 1.54 2.8 0.21 2.8
0.9 2.24 0.23 1.86 2.9 0.28 2.9
1.0 2.97 0.25 2.03 2.7 0.37 2.8

Table 7.2: Pairs of (η0, λ2) and (λ1, λ2) of the investigated aqueous P2500 solutions at 22 ◦C
obtained by the oscillating drop method. Values of η∗0 and λ∗1 are added for
comparison.

The deformation retardation time λ2 is determined from the measured pairs
of (η0, λ2) or (λ1, λ2) (see table 7.2). Both pairs provide similar values of λ2
(±5%). Measured deformation retardation time λ2 and calculated λ2,EVSS
of the investigated aqueous P2500 solutions are presented in figure 7.4 and
listed in table 7.3.
Figure 7.4 shows the measured λ2 and calculated λ2,EVSS (3.36) against the
Praestol 2500 mass fraction. The λ2 obtained by the oscillating drop method
is of the order of 10−4 s and increases monotonically with the polymer
mass fraction w. In contrast, the deformation retardation time obtained
by the stress-splitting approach λ2,EVSS shows a different trend, namely, a
decrease with increasing polymer mass fraction. There is a narrow range
of polymer mass fractions around 0.7 wt.% where the measured values of
the deformation retardation time λ2 agree with the calculated ones λ2,EVSS.
This is rather by a coincidence [14].
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w λ2 λ2,EVSS λ2/λ∗1 λ2,EVSS/λ∗1[wt.%] [10−4 s] [10−4 s]
0.1 0.4 19.4 0.0012 0.059

0.2 0.5 13.2 0.0008 0.02

0.3 0.9 10.6 0.0009 0.011

0.4 2.3 6.5 0.0021 0.0059

0.5 1.9 4.0 0.0013 0.0029

0.6 2.5 2.9 0.0015 0.0018

0.7 2.6 2.1 0.0013 0.0011

0.8 2.8 1.4 0.0013 0.0007

0.9 2.9 1.0 0.0013 0.0004

1.0 2.7 0.84 0.0011 0.0003

Table 7.3: Measured deformation retardation time λ2 and calculated λ2,EVSS of the investi-
gated aqueous P2500 solutions.

Figure 7.4: Measured deformation retardation time λ2 and calculated λ2,EVSS against poly-
mer mass fraction for aqueous P2500 solutions.
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In simulations of viscoelastic fluid flow, the ratio of the deformation retarda-
tion time to the stress relaxation time is often set to λ2/λ1 = 0.1 [10]. In the
present study, however, the values of λ2/λ1 are found to be of the order of
10−3. Figure 7.5 shows the values of λ2/λ1 against the Praestol 2500 mass
fraction, where the stress relaxation time from elongational rheometry was
used (λ∗1). For the values λ2 of the deformation retardation time obtained
from the oscillation experiments, the ratio λ2/λ∗1 is nearly constant with a
mean value of about 1.3 · 10−3. For the calculated values of the deformation
retardation time λ2,EVSS, the ratio λ2,EVSS/λ∗1 monotonically decreases with
increasing polymer mass fraction from about 6 · 10−2 for the lowest polymer
mass fraction to 3 · 10−4 for the highest polymer mass fraction.

Figure 7.5: Values of λ2/λ∗1 and λ2,EVSS/λ∗1 against polymer mass fraction for aqueous
P2500 solutions.

The excellent agreement between η0 and η∗0 (figure 7.3(a)), and between
λ1 and λ∗1 (figure 7.3(b)), and the fact that the pairs (η0, λ2) and (λ1, λ2)
provide the same value of λ2, leads to the conclusion, that the proposed
method provides a reliable tool for measuring different material properties
of viscoelastic solutions of flexible polymers.
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Aqueous Praestol 2540 solutions

The results of the drop oscillation experiments with aqueous Praestol 2540

solutions are presented in figures 7.6-7.8 and tables 7.4 and 7.5. Only
the aqueous solutions with Praestol 2540 polymer mass fractions above
0.03 wt.% are considered, for reasons explained in the previous section.
Pairs of (η0, λ2) and (λ1, λ2) of the investigated aqueous P2540 solutions
obtained by the oscillating drop method are listed in table 7.4. Figure 7.6(a)
shows the values of the zero-shear-rate viscosity obtained from the drop
oscillation experiments (η0) and from shear rheometry (η∗0 ) against the poly-
mer mass fraction. Considering all the uncertainties of the input parameters,
the agreement between the two methods is good. In the case of the 0.07 wt.%
P2540 mass fraction, the agreement is within 1%, while for the 0.05 wt.%
polymer mass fraction the agreement is within 17%. For the 0.1 wt.% P2540

mass fraction, the deviation between the methods is about 5%.
Figure 7.6(b) shows the values of stress relaxation time λ1 as measured by
drop oscillations and λ∗1 from elongational rheometry against the Praestol
2540 polymer mass fraction. Again, the results show excellent agreement
within ±10% between the two methods. In the case of the 0.1 wt.% P2540

mass fraction the agreement is within 1%.

w η∗0 λ∗1 η0 λ2 λ1 λ2
[wt.%] [Pa s] [s] [Pa s] [10−4 s] [s] [10−4 s]

0.05 2.09 0.08 2.45 1.3 0.07 1.3
0.07 3.11 0.11 3.14 1.7 0.10 1.7
0.10 4.45 0.15 4.65 1.8 0.15 1.8

Table 7.4: Pairs of (η0, λ2) and (λ1, λ2) of the investigated aqueous P2540 solutions at 22 ◦C
obtained by the oscillating drop method. Values of η∗0 and λ∗1 are added for
comparison.
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(a)

(b)

Figure 7.6: (a) Zero-shear-rate viscosity η0 as measured by drop oscillations and η∗0 from
shear rheometry and (b) stress relaxation time λ1 as measured by drop oscil-
lations and λ∗1 from elongational rheometry against the Praestol 2540 mass
fraction w.
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7 Results and discussion

Figure 7.7: Measured deformation retardation time λ2 and calculated λ2,EVSS against poly-
mer mass fraction for aqueous P2540 solutions.

Figure 7.8: Values of λ2/λ∗1 and λ2,EVSS/λ∗1 against polymer mass fraction for aqueous
P2540 solutions.

117
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The deformation retardation time λ2 is determined from the measured pairs
of (η0, λ2) or (λ1, λ2) (see table 7.4). Both pairs provide similar values of
λ2. Measured deformation retardation time λ2 and calculated λ2,EVSS of the
investigated aqueous P2540 solutions are presented in figure 7.7 and listed
in table 7.5.

w λ2 λ2,EVSS λ2/λ∗1 λ2,EVSS/λ∗1[wt.%] [10−4 s] [10−4 s]
0.05 1.3 0.41 0.0012 0.0007

0.07 1.7 0.47 0.0015 0.0004

0.1 1.8 0.55 0.0016 0.0003

Table 7.5: Measured deformation retardation time λ2 and calculated λ2,EVSS of the investi-
gated aqueous P2540 solutions.

Figure 7.7 shows the measured λ2 and calculated λ2,EVSS (3.36) against the
Praestol 2540 mass fraction. Similar conclusions can be drawn as for the
aqueous P2500 solutions. Again, the λ2 obtained by the oscillating drop
method is of the order of 10−4 s and increases monotonically with the poly-
mer mass fraction w, while the values of the deformation retardation time
obtained by the stress-splitting approach λ2,EVSS decrease with increasing
polymer mass fraction. Contrary to the aqueous P2500 solutions (7.3(b)),
there is no region of polymer mass fractions where agreement between λ2
and λ2,EVSS could be observed. Also, for the rigid, rod-like polymer P2540,
the values λ2,EVSS are always less than λ2, in contrast to the flexible P2500

data, where for some range of polymer mass fractions the opposite was
found.

Figure 7.8 shows the values λ2/λ∗1 against the Praestol 2540 mass fraction.
For the values of the deformation retardation time obtained from the oscil-
lation experiments λ2, the ratio λ2/λ∗1 is nearly constant with a mean value
of about 1.4 · 10−3. For the calculated values of the deformation retardation
time λ2,EVSS (3.36), the ratio λ2,EVSS/λ∗1 slowly decreases with increasing
polymer mass fraction from about 7 · 10−4 for the lowest polymer mass
fraction to 3 · 10−4 for the highest polymer mass fraction.
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7.3 Validation of the experimental method

In order to validate the experimental method for measuring the deformation
retardation time and to confirm the correctness of the measured values
λ2, the theoretical predictions of the linear theory are compared with the
experimental results. Further comparison is made regarding the stress
splitting approach.

As a test case, the 0.3 wt.% Praestol 2500 solution drop with an equilibrium
radius of 0.9167 mm is considered. The material properties are listed in table
5.2. For this polymer solution, the corresponding value of the measured
deformation retardation time is λ2 = 0.9 · 10−4 s and, for comparison, the
deformation retardation time obtained from the stress splitting approach is
λ2,EVSS = 10.67 · 10−4 s.
The calculated Rayleigh frequency (1.9) for m = 2 is α2,0 = 2π · 139.1 Hz,
and the measured complex angular frequency for this drop is
α∗2 = 36.24 s−1 + i2π · 134.2 Hz. Solving the characteristic equation (4.64)
for the complex frequency by inserting the measured λ2 and all the other
material properties of the liquid, a discrete set of solutions is obtained,
as shown in table 7.6. The correct solution is identified by comparison
with either the measured complex frequency α∗2 or with the calculated
Rayleigh frequency α2,0. In the present test case, the correct solution is
α2 = 36.31 s−1 + i2π · 132.34 Hz.

α2
...

22.57 s−1 + i2π · 98.66 Hz
28.99 s−1 + i2π · 115.53 Hz
36.31 s−1 + i2π · 132.34 Hz
44.81 s−1 + i2π · 149.15 Hz
54.27 s−1 + i2π · 165.88 Hz
64.67 s−1 + i2π · 182.58 Hz

Table 7.6: A set of solutions α2 of the characteristic equation for the 0.9167 mm 0.3 wt.%
Praestol 2500 solution drop. The value λ2 = 0.9 · 10−4 s was used in the calcula-
tions. The highlighted value indicates the correct solution.
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By inserting the calculated λ2,EVSS into the characteristic equation (4.64) and
solving it for the complex angular frequency, only one solution is obtained,
namely α2,EVSS = 6.19 s−1 + i2π · 139.51 Hz.
Comparison of the calculated α2 and α2,EVSS shows that both calculations
yield similar oscillation frequencies, while the difference in the calculated
damping rates is significant. Further, by comparing α2 and α2,EVSS to the
measured value α∗2, it is evident that α2 matches the measured complex
frequency perfectly, while α2,EVSS does not.
Similar results are obtained for other aqueous polymer solutions studied.
These observations confirm the correctness of the presented experimental
method and cast doubt on the validity of the stress splitting approach.

Next, for the present test case, the calculated time evolution of the drop
shape is compared to the experimental results. The time evolutions of the
equatorial and polar radii of the drop are calculated by numerically integrat-
ing the velocity components ur(t) and uθ(t), given by the equations (4.48)
and (4.49), respectively. Due to the fact that the velocity component uθ(t) is
zero for θ = 0 and θ = π/2, the calculations were performed for θ = 0.05
and θ = 0.995 · π/2 in order to observe the influence of both velocity com-
ponents. The numerical integration was done with the computer software
MATHEMATICA by using the fourth-order Runge-Kutta method.
The relevant parameters entering the numerical calculations, among those
listed in table 5.2 for the corresponding polymer solution, are the calculated
complex angular frequency α2, the equilibrium radius and the initial oscilla-
tion amplitude ε0.
It is important to note, however, that the initial oscillation amplitude and
the equilibrium radius obtained experimentally have different values for the
oscillations in the equatorial and polar directions, due to the oblate shape
of the levitated drop. For this reason two cases are considered. For the first
case, the equilibrium polar and equatorial radii of the oscillating drop and
the corresponding initial oscillation amplitudes in the equatorial and polar
directions were taken from the corresponding drop oscillation measurement.
For the second case, the drop is considered spherical with the prescribed
equilibrium radius a, and the oscillation amplitude set as ε0 = 0.05 · a.
The results for these two cases are presented in figures 7.9 and 7.10.

The comparison between the calculated and the measured drop shapes as
functions of time is presented in figure 7.9, where the exact initial positions
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and the oscillation amplitudes for the calculations were taken from the
experimental data. The results of the numerical calculations obtained with
the deformation retardation time λ2 from oscillation measurements show
very good agreement with the experimental data. The especially good
agreement in the first part of the oscillation is due to the fact that the initial
values for the numerical calculations were obtained from the experimental
data. For the later times, a phase shift can be observed, which is due to the
difference between the calculated α2 and the measured oscillation frequency
α∗2 .

Figure 7.9: Temporal evolution of the polar and equatorial radii of the oscillating drop.
Comparison between the measurements (symbols) and the numerical calcula-
tions performed using the measured λ2 (solid line) and the calculated λ2,EVSS
(dashed line). The exact initial positions and the oscillation amplitudes were
obtained from the experimental data.
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(a)

(b)

Figure 7.10: Temporal evolution of the (a) polar and (b) equatorial radii of the oscillating
drop. Comparison between the measurements (symbols) and the numerical
calculations performed using the measured λ2 (solid line) and the calculated
λ2,EVSS (dashed line). The calculations were performed for spherical drop
shape with the equilibrium radius a and prescribed initial oscillation amplitude
ε0 = 0.05 · a.
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On the contrary, the results of the numerical calculations obtained with
the calculated deformation retardation time λ2,EVSS show a disagreement
with the experimental data. The discrepancy is found both in the oscillation
frequency and damping rate. This result is a direct consequence of the
calculated complex angular frequency α2,EVSS, which does not match the
measured frequency α∗2 .

These results for the depicted test case (figure 7.9) are a strong indication
for the validity of the proposed experimental method for measuring the
deformation retardation time.

Figure 7.10 shows the results of the numerical calculations where a spherical
drop shape is assumed. Again, two numerical models, constructed with
different deformation retardation times λ2 and λ2,EVSS, are considered. As
expected, both models fail to correctly describe the experimental data, due
to the assumption of the spherical drop shape.
Numerical calculation with the measured deformation retardation time λ2
provides good results regarding the oscillation frequency and damping rate,
due to the calculated α2 which matches the measured frequency α∗2. On
the other hand, the calculated polar (figure 7.10(a)) and equatorial radii
(figure 7.10(b)) differ from the measured ones, due to the incorrect initial
conditions.
Numerical calculation with the calculated deformation retardation time
λ2,EVSS does not match the experimental data for obvious reasons. The
reasons are the incorrect angular frequency λ2,EVSS and the incorrect initial
conditions.
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7.4 Flow curves from the Jeffreys model

Finally, a comparison between the flow curves obtained by shear rheometry
and the flow curves calculated from the Jeffreys model is presented. The
flow curves η(γ̇) from the rotational experiments are described using the
Carreau model (see section 5.2.1).

The flow curves from the oscillation experiments (section 5.2.2) have to be
calculated. The complex viscosity is introduced as

η∗ = η′ − iη′′ =
∫ ∞

0
G(s)e−iωsds (7.1)

where ω is the oscillation angular frequency, G(s) is the linear relaxation
modulus, η′ represents the viscous and η′′ the elastic behaviour. The real
and imaginary parts of the complex viscosity, η′ and η′′, are defined as
[3, 16]

η′(ω) =
G′′

ω
and η′′(ω) =

G′

ω
. (7.2)

where G′ and G′′ are the storage and loss moduli, respectively.

From the measured storage and loss moduli G′ and G′′, the linear relaxation
modulus G(t) is obtained using the software from ANTON PAAR. Further,
with known G(t), the complex viscosity η∗(ω) as a function of the oscillation
frequency ω is determined.
The next step is to relate the shear rate to the imposed oscillation frequency.
The oscillation experiments (see section 5.2.2) were performed using the
cone-and-plate geometry (figure 5.3) at the constant deformation amplitude
γ̂ = 10%. The frequency-dependent mean shear rate is calculated as

¯̇γ = γ̂
2ω

π tan(βcp)
(7.3)

where βcp = 2◦ is the cone angle [16]. Hence, by using equation (7.3), the
complex dynamic viscosity η∗( ¯̇γ) as a function of the (mean) shear rate can
now be presented.

The time dependency of motion in the oscillation experiments (section 5.2.2)
can be described by an exponential function of time (equation (5.3)). This
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leads, together with the Jeffreys model (equation (3.49)), to an expression for
the frequency-dependent dynamic viscosity of the Jeffreys model (equation
(3.63)) given as

η∗B(ω) = η0
1− iωλ2

1− iωλ1
= η0

1 + λ1λ2ω2 + i(λ1 − λ2)ω

1 + ω2λ2
1

(7.4)

where ω is the oscillation angular frequency. The real and imaginary parts
of the complex viscosity ηB are given as

η′B = Re (η∗B(ω)) = η0
1 + λ1λ2ω2

1 + ω2λ2
1

(7.5)

and

η′′B = Im (η∗B(ω)) = η0
(λ1 − λ2)ω

1 + ω2λ2
1

. (7.6)

By using relation (7.3), the complex viscosity η∗B as a function of the (mean)
shear rate can be presented.

Figure 7.11 presents the dynamic viscosity as a function of the shear rate
for the 0.8 wt.% Praestol 2500 solution. The flow curves in figure 7.11 are
obtained from the steady and oscillatory experiments, and calculated from
the linear relaxation modulus G(t) and from the Jeffreys model. For the
comparison, only the real parts η′B(γ̇) and η′(γ̇) of the complex dynamic
viscosities are used.
Good agreement between the viscosities measured by the steady and oscil-
latory experiments can be observed. The agreement is weaker for higher
shear rates.
The flow curve η′(γ̇) calculated from the linear relaxation modulus G(t) is
in good agreement with η(γ̇) from shear rheometry up to shear rates of
approximately 10 s−1. The first Newtonian plateau and the shear thinning
behaviour are correctly described. For shear rates above 10 s−1, the good
agreement is lost and the discrepancy increases with the shear rate.
The flow curve η′B(γ̇) obtained from the Jeffreys model correctly reproduces
the first Newtonian plateau, but fails to describe the viscosity at higher
shear rates. Although the curve η′B(γ̇) shows the shear thinning behaviour,
it fails to capture both the onset of shear thinning behaviour and the slope of
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the curve. The explanation for this discrepancy may lie in the fact that η′B(γ̇)
obtained from the Jeffreys model has only three free parameters, which is
apparently not sufficient to correctly describe the behaviour of the measured
flow curves.

1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

 E x p e r i m e n t s  -  o s c i l l a t o r y  t e s t s  
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 C a l c u l a t e d  -  f r o m  G ( t )
 C a l c u l a t e d  -  f r o m  J e f f r e y s  m o d e l
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sity
 [P

a⋅s
]

S h e a r  r a t e  [ 1 / s ]
Figure 7.11: Flow curves of the 0.8 wt.% Praestol 2500 solution obtained by different

methods.

In contrast, for example, the Carreau model given by the equation (5.2) has
four free parameters, which accurately describe the measured flow curves.
This leads to the conclusion that the reason for the discrepancy between
η′B(γ̇) and η(γ̇) at high shear rates lies in the linear Jeffreys model rather
than in the accuracy of the measured λ1 and λ2. In the present work, how-
ever, the linear theory of small deformations and shear rates is considered,
for which the linear Jeffreys model holds, as demonstrated in figure 7.11.
Similar results and conclusions were obtained for all test liquids investi-
gated.
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In the present thesis, the dynamic behaviour of viscoelastic drops undergo-
ing small-amplitude oscillations was investigated. The experimental inves-
tigations based on acoustic drop levitation were carried out with aqueous
solutions of different polymers at varying polymer concentration. The main
focus was on the measurements of the polymeric time scales appearing in
the constitutive equation of linear viscoelasticity. The constitutive equation
employed was the linearized Oldroyd-B model, also known as the Jeffreys
model, which contains three parameters. Two of the parameters, namely the
zero-shear-rate viscosity η0 and the stress relaxation time λ1, can be deter-
mined by well established rheological methods. For the third parameter, the
deformation retardation time λ2, no such method existed. The aim of the
work was to develop a method for measuring the deformation retardation
time and to provide a complete and consistent set of material properties
relevant for the linear Oldroyd-B model.
Several reasons can be given to explain the lack of experimental methods
for measuring the deformation retardation time. The first reason is the fact
that, for the majority of theoretical works dealing with Oldroyd-B type
models, the retardation time represents a free parameter. For example, in
studies of viscoelastic fluid flow, the fluid behaviour for different values
of λ2 is examined, or in viscoelastic fluid flow simulations λ2 is adjusted
to achieve a faster convergence of numerical simulations. A second reason
is the fact that alternative derivations of the Oldroyd-B model lead to an
explicit expression for the deformation retardation time, relating it to other
material properties. That means that λ2 can be calculated, and there seemed
to be no apparent need to develop a method to measure it.

In this study we use linear damped shape oscillations of drops for measuring
the deformation retardation time and either the zero-shear viscosity or the
stress relaxation time of viscoelastic polymeric drop liquids. The solution of
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the linearized equations of change governing the drop shape oscillations
yields the characteristic equation for the complex oscillation frequency
of the drop which is used for determining the material properties. For a
given drop, the oscillation frequency and the damping rate are measured
in an experiment using acoustic drop levitation. Liquid material properties
relevant for the oscillations, such as liquid density, surface tension and
stress relaxation time, are measured by appropriate standard methods. The
deformation retardation time and either the zero-shear viscosity or the stress
relaxation time of the liquid are obtained as solutions of the characteristic
equation of the oscillating drop. Values of the liquid dynamic viscosity are
close to those from shear rheometry, and the values of the stress relaxation
time are close to those from elongational experiments. They allow the correct
solution of the characteristic equation to be identified from a manifold and
support the correctness of the deformation retardation time determined.
The uncertainty analysis shows, however, that the deformation retardation
time λ2 can be accurately measured even in cases where the correct solution
qa of the characteristic equation cannot undoubtedly be identified.

The deformation retardation time measured with the proposed method is
of the order of 10−4 s and increases with the polymer mass fraction. This
result was obtained for both polymers examined. On the other hand, the
deformation retardation time λ2,EVSS calculated by the equation obtained
from the stress splitting approach decreases with increasing polymer mass
fraction.
The value of λ2/λ1 is of the order of 10−3 and is nearly the same for all of
the polymer solutions studied. This value strongly deviates from the value
λ2/λ1 = 0.1 which is often used in viscoelastic fluid flow simulations.
For the aqueous Praestol 2500 solutions there exists a range of concentrations
where the measured values of the deformation retardation time agree with
the calculated ones, but this rather by coincidence. For the most diluted
Praestol 2500 solution studied, the measured and calculated values of λ2
strongly deviate from each other. The values of the zero-shear dynamic
viscosity η0 agree with the values from η∗0 shear rheometry to within ±10 %,
except in the case of high polymer mass fractions. For the 0.9 wt.% solution,
the deviation is around 18 %, and in the case of the 1.0 wt.% solution the
deviation is around 32 %. Similar, the values of the stress relaxation time
λ1 agree with the values λ∗1 from elongational rheometry to within ±10 %,
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except in the case of high polymer mass fractions. This disagreement could
be due to experimental error, that is, the measurement error of the input
parameters is too large.
In the case of aqueous solutions of rigid rod-like polymers Praestol 2540,
only three polymer mass fractions were considered. The oscillating drop
experiments provide similar results as in the case of solutions of flexible
polymers. The results show good agreement between η0 and η∗0 , and between
λ1 and λ∗1. The measured and calculated values of λ2, however, strongly
deviate from each other.

The experimental method was validated by comparing the predictions of
the underlying linear theory with the experimental results. The calculated
complex angular frequency obtained using the measured deformation re-
tardation time is in excellent agreement with the measured one. On the
contrary, the calculation using the deformation retardation time λ2,EVSS
from the stress splitting approach provides an undoubtedly false damping
rate, while the calculated oscillation frequency is near the measured one.
Further, the calculated time evolution of the drop shape was compared
to the experimental results. The numerical calculations obtained with the
deformation retardation time λ2 from the oscillation measurements show
very good agreement with the experimental data, while the calculation with
λ2,EVSS fails to correctly describe the time evolution of the drop shape.

The results of the deformation retardation time measurements, together with
the presented sensitivity analysis and validity check, are a strong indication
for the validity of the proposed experimental method for measuring the
deformation retardation time and cast doubt on the validity of the stress
splitting approach.
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