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Abstract

Machine learning (ML) models have become popular in the field of condensed matter physics,

in combination with traditional quantum-mechanical methods, such as Density Functional The-

ory (DFT). One of the possible applications is to use ML to learn the potential energy landscapes

of solids for crystal structure prediction applications. In general, the efficiency and accuracy of a

ML application depend on the available data, the learning algorithm and the data representation,

which provides relevant information about the system suitable for the learning algorithm. In this

work we apply ML techniques to estimate the internal energies of polymorphic mono-elemental

crystal structures of carbon and boron, generated by crystal structure prediction techniques. We

explore different learning algorithms and develop a physically-motivated data representation, which

encodes the structural information of the crystals. We optimize and evaluate the ML performance

on datasets containing relaxed and mixed, i.e. relaxed and unrelaxed, crystal structures. Our

results show that kernel-based regression methods with the proposed data representation provide

promising predictions on energies of mixed structures, with accuracies comparable to DFT. We

measure a mean absolute error (MAE) of about 10 meV/atom which suggests that ML models of

this type can be used to replace expensive first-principles calculations in cost-intensive applications,

such as crystal structure predictions.





Kurzfassung

Maschinelles Lernen ist weit verbreitet auf dem Gebiet der kondensierten Materie, besonders im

Zusammenhang mit traditionellen quantenmechanischen Methoden, wie zum Beispiel der Dichte-

funktionaltheorie (DFT). Eine mögliche Anwendung ist das Erlernen der Potentialhyperfläche

von Festkörpern zur Vorhersage von Kristallstrukturen. Im Allgemeinen ist die Effizienz und

Genauigkeit des maschinellen Lernens abhängig von den verfügbaren Daten, dem Lernalgorith-

mus und der Datendarstellung. Die Datendarstellung ist notwendig um relevante Informationen

über das System quantitativ zu erfassen, sodass diese vom Lernalgorithmus verarbeitbar sind.

In dieser Arbeit wenden wir unterschiedliche Methoden des maschinellen Lernens an, um die in-

neren Energien von polymorphen mono-elementaren Kristallstrukturen aus Kohlenstoff und Bor

zu erlernen, die zuvor durch Kistallstruktur-Vorhersagen erzeugt wurden. Wir untersuchen unter-

schiedliche Lernalgorithmen und entwickeln eine physikalisch-motivierte Datendarstellung, welche

die Kristallstruktur beschreibt. Wir optimieren und evaluieren die Leistung der Lernalgorithmen

an Datensätzen, die relaxierte und gemischte, d.h. relaxierte und unrelaxierte, Kristallstrukturen

beinhalten. Unsere Ergebnisse zeigen, dass Kernel-basierende Regressionsverfahren mit der ent-

wickelten Datendarstellung genaue Vorhersagen von Energien gemischter Kristallstrukturen liefern,

die mit quantenmechanischen Methoden vergleichbar sind. Mit einem ermittelten mittleren abso-

luten Fehler (MAE) von ungefähr 10 meV / Atom könnte die entwickelte Methode teure Berech-

nungen ersetzen, die in kostenintensiven Vorhersagen von Kristallstrukturen benötigt werden.
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Chapter 1

Introduction

Improvements in technology are likely to be driven forward by findings and innovations in
materials science. In 1964 Walter Kohn and Pierre Hohenberg published two theorems [1,
2], which set the framework of Density Function Theory (DFT); a computational quantum
mechanical method, for which Walter Kohn was awarded the Nobel Prize in Chemistry in
1998. DFT, together with often so-called first-principles methods, is capable of solving the
fundamental quantum mechanical equations of a system of interacting nuclei and electrons,
permitting to calculate the properties of a material computationally, given only its chemical
composition and structure. As a consequence, the search for novel materials has been
increasingly motivated and accelerated by theoretical investigations on the computer.

Despite their strong predictive power, DFT calculations are still computationally too
intensive for applications in which the system under study is large or calculations have
to be performed repeatedly for different materials; these applications comes into play in
so-called high-throughput screening or crystal structure prediction. In the field of crystal
structure prediction, several techniques [3,4] have been developed to systematically search
for relevant structures, by exploring the potential energy surface (PES) of a system under
given external conditions; usually the energies are computed with first-principles methods.
The amount of crystal structures one obtains from these techniques provide a suitable
database for training a machine learning (ML) model.

These structure prediction techniques, in turn, vastly benefit from a successful ML
application: once trained, ML models are capable of making estimations of material prop-
erties with a computational cost which is order of magnitude smaller, compared to first-
principles methods. However, a requirement for ML models to be efficiently applied in
the field of crystal structure prediction is to achieve a prediction accuracy comparable
to the first-principles methods (1 10 meV/atom). This can be difficult since the model
performance depends on several components, e.g. the quantity and quality of the data or
the learning algorithm used. The most challenging and crucial part, though, is to describe
materials through a suitable data representation in order to be processable by the learning
algorithm.

The main aim of this thesis is to use different ML algorithms to learn and estimate
internal energies of mono-elemental crystal structures. We obtain structures of carbon
and boron from structure prediction methods using DFT, and our intent is to achieve ML
accuracies, which are comparable to the DFT calculations. ML models of this kind can
replace DFT calculations in a structure prediction application, speeding up the searching
process considerably.

We have chosen carbon and boron due to their polymorphism: these elements exist
in several crystalline phases with different atomic arrangements. On the one hand, this
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2 Chapter 1. Introduction

provides a large database of heterogeneous mono-elemental crystal structures for the ML
application. On the other hand, the complex bonding pattern of these structures renders
the development of a suitable data representation challenging.

An ideal representation depends on the system under study, and has to fulfill certain
properties in order to establish an efficient ML application. In the field of condensed
matter physics ML models have been used for different applications. For problems similar
to the one treated in this thesis, i.e. learning the potential energy landscape, Coulomb
matrices [5,6], bag of bonds [7] and fingerprint techniques [8] have been successfully used
to represent molecules and non-periodic materials for ML models. Nevertheless, these
representations are not applicable for periodic crystalline solids. Symmetry functions [9,10]
and smooth overlap of atomic positions [11] have been developed to individually encode the
local environment of atoms in chemical compounds. As a consequence, ML predictions
on all kinds of materials can be performed, by disassembling the materials into atomic
environments, which are learned separately. Accurate estimations on material properties
can be obtained by these methods, even though the training process demands a large
amount of data and high cost of computer power. A different approach, which is more
relevant for high-throughput applications, is to directly target a specific material property,
by making use of descriptors. A descriptor is a single quantity, or a combination of a few
quantities, which can easily be extracted from experiments or calculations, and correlates
with the desired property. Examples of this approach can be found in [12,13].

In this thesis, we develop a data representation which contains several descriptors that
encode relevant information about the geometry of mono-elemental crystal structures. We
use physically motivated short- and long-range order descriptors to represent the crystal
structures for the application of ridge and lasso regression. Furthermore, we introduce a
radial distribution function [14,15], representing the local density, and an angular distribu-
tion function [16], which provides additional information about the orientation of chemical
compounds in the structure. Both functions are adjusted and optimized on our data, to
serve as a suitable data representation for kernel ridge regression and support vector re-
gression. These are kernel-based methods, which in this thesis are implemented with the
Gaussian kernel. In this way, we determine which regression method, in combination with
our data representation, yields the most promising predictions on the internal energies of
our mono-elemental crystal structures.

The structure of the thesis is the following: in chapter 2 a physical background of
this thesis is given. Basic concepts of quantum mechanics are used to briefly discuss the
fundamentals of density function theory in the beginning of this chapter. The concept
of PES is discussed, which is crucial for understanding the ML application analyzed in
the thesis. Furthermore, we explain the structure prediction techniques, which we use to
obtain the crystal structures, that form our database.

Chapter 3 gives a theoretical framework on machine learning. At first, a general in-
troduction of machine learning can be found, followed by a detailed discussion on linear
regression. Linear regression is at the origin of any regression method used in this thesis:
based on its concept, the most powerful ML methods have been developed, which are
discussed in this section. Support vector regression is explained in the next section. The
final section of this chapter contains practical machine learning techniques, which later
are used to measure and improve the ML model performance.

Chapter 4 describes the crystal structures used in the thesis, and the data represen-
tation. We discuss the common description of crystal structures, in order to emphasize
the difficulties in finding a suitable data representation for ML models. The main part of
this chapter covers the introduction of our data representation and its components. We
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discuss the representation for ridge and lasso regression, as well as the radial distribution
function and the angular distribution function. We also give a description of the method,
which we use to clean the database from duplicates. In the final section of this chapters
we investigate correlations within components of our data representation.

Chapter 5 presents the machine learning application of ridge and lasso regression.
First, we use the discussed ML techniques to adjust the data representation and model
parameters. This approach provides the optimal parameters, which then are used to
analyze the training process. Finally, we use the same settings to measure the prediction
accuracy of ridge and lasso regression.

In chapter 6 the machine learning application of kernel-based regression methods is
discussed. In the beginning of this chapter we optimize the data representation on our
crystal structures. In particular, the radial distribution function and the angular distri-
bution function are discretized. Then, we adjust the model parameters of kernel ridge
regression and support vector regression using the optimized data representation. Again,
we analyze the training process at optimal settings. Final predictions are performed and
discussed by the end of this chapter.

Chapter 7 concludes the obtained results; further applications and possible improve-
ments are discussed as well.

The appendices contain conventions and more theoretical background and derivations,
which did not fit into the main body of this thesis. In particular, we describe the parameter
estimation in the regression methods from a probabilistic point of view, as well as the
application of the kernel trick in the kernel-based methods.
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Chapter 2

Density Functional Theory

Density functional theory (DFT) is a powerful and commonly used technique to solve the
quantum-mechanical problem for atoms, molecules and crystals. DFT is a first-principles,
or ab-initio technique, i.e. it is a theoretical method that rely solely on fundamental
laws and natural constants without any additional assumptions. A detailed discussion on
DFT would be far beyond the scope of this thesis, however, in this chapter a compressed
introduction and some basic concepts of DFT are given, to get a brief overview of how the
database used in this thesis was generated. Furthermore, one of the final aims of machine
learning approaches to solids, like those we discussed in this thesis, is to replace at least
partially computationally expensive DFT calculations, and for this a good understanding
of the DFT approach is needed. The following introduction is based on the book by D.S.
Sholl and J.A. Steckel [17], as well as on the book by J.P. Perdew and S. Kurth [18].

2.1 Adiabatic Approximation of Many-Body Problems

The fundamental equation of first-principles theories is the Schrödinger equation with the
Hamilton operator corresponding to a many-body problem. Typical many-body problems
encountered in condensed matter physics comprise many electrons interacting with many
nuclei, as in solids or molecules. The total wave function Ψ in real space consequently is a
function of electronic and nuclear position coordinates, denoted by Ψ(r1, .., rN ,R1, ..,RM )
for a quantum system with N electrons and M nuclei. In this work we do not consider
any spin effects; therefore we omit the spin dependency in the wave function and further
discussions. Furthermore, we will use Hartree atomic units (~ = e = me = 1/(4πε0) = 1)
and a short hand notations for the coordinates, re ≡ (r1, .., rN ) and Rn ≡ (R1, ..,RM ).

The Hamilton operator is composed of the kinetic energy operator for electrons T̂e

and nuclei T̂n, as well as of electron-electron interactions Ûee, nucleus-nucleus Ûnn and
electron-nucleus V̂en interactions,

Ĥ = T̂e + T̂n + Ûee + Ûnn + V̂en . (1)

The electron-nucleus interactions couples the nuclear and electronic motion, and thus
prevents the separation of electronic and nuclear systems. A common approximation to
treat this issue of non-separable electronic and nuclear systems is the Born-Oppenheimer
approximation [19]. The approximation is based on the observations that atomic nuclei
are much heavier than electrons; in fact a proton or neutron has more than 1800 times the
mass of a single electron. As a consequence of the large disparity electrons are much more
mobile than nuclei, and thus they are more sensitive to changes in their surroundings.

5



6 Chapter 2. Density Functional Theory

The atomic nuclei, on the other hand, are comparatively unaffected by the motion of
the electrons, and hence the nuclear geometry is assumed to be fixed. The infinitesimal
changes in the atomic positions equal the conditions of an adiabatic process, why the
Born-Oppenheimer approximation also refers to an adiabatic approximation.

In the Born-Oppenheimer approximation we consequently neglect the kinetic term of
atomic nuclei T̂n, and assume that the Coulomb potential between the fixed nuclei Ûnn

corresponds to a constant. The electron-nucleus Coulomb interaction V̂en furthermore is
considered as an external potential, i.e. the electrons move in a field of nuclei. This finally
permits to decouple the electronic and nuclear motion; hence the total wave function can
be broken into its electronic ψe and nuclear ψn components

Ψ(re,Rn) = ψe(re;Rn)⊗ ψn(Rn) . (2)

In further discussions the total electron wave function will be written without subscript and
the parametric dependence on the nuclear coordinates will be neglected as well: ψ(re) ≡
ψe(re;Rn). The remaining part of the Schrödinger equation for N electrons moving in the
field of fixed nuclei in real space is given by−1

2

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N−1∑
i=1

N∑
j<i

U(ri, rj)

ψ(re) = Eψ(re) . (3)

V (ri) denotes the Coulomb interaction between an electron i and the fixed atomic nuclei,
which reads as

V (ri) = −
M∑
I

ZI
|ri −RI |

. (4)

U(ri, rj) represents the repulsive interaction between two electrons

U(ri, rj) =
1

|ri − rj |
, (5)

and E corresponds to the total energy of the electronic system.

2.2 The Two Hohenberg-Kohn Theorems

The fundamental object in density function theory is the electron density n(r), which
describes the probability of finding an electron at position r in space. The total electron
density is given by

n(r) = N

∫
d3r2 ...

∫
d3rN |ψ(r, r2, ..., rN )|2 , (6)

assuming the wave function to be normalized, 〈ψ |ψ 〉 = 1. In the mid-1960 Hohenberg and
Kohn [1] gave the proof, that for a given ground-state density n0, in principle, it is possible
to determine the corresponding ground-state wave function ψ0. Generally speaking, the
wave function is a unique functional of the electron density, ψ[n], and the ground-state
wave function is determined by

ψ0 = ψ[n0] . (7)
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Consequently, also the energy is a functional of the electron density

E[n] = 〈ψ[n] | Ĥ | ψ[n] 〉
= 〈ψ[n] | T̂e + Ûee + V̂en | ψ[n] 〉 ,

(8)

where we have used the Hamilton operator in the Born-Oppenheimer approximation.
Hohenberg and Kohn have recorded their findings in their first theorem:

Theorem 1: The ground-state energy of a many-electron system is an unique
functional of the electron density, E0[n].

This set down the groundwork for reducing the original problem with 3N variables to only
three coordinates. We use equation (8) to express the energy functional by its functional
components

E[n] = Te[n] + Uee[n] + Ven[n] , (9)

where Te[n] and Uee[n] are called universal functionals. The non-universal functional Ven[n]
depends on the system under study and can be written explicitly in terms of the density

Ven[n] =

∫
d3r V (r)n(r) . (10)

The second theorem of Hohenberg and Kohn describes an important characteristic of the
unique energy functional:

Theorem 2: The functional will give the lowest energy if and only if it is
evaluated at the true ground-state electron density.

As a consequence, one has to minimize equation (9) with respect to the electron density
n to obtain the ground-state electron density n0, and hence the ground-state Energy E0.

E0 = min
ψ→n

〈ψ | Ĥ | ψ 〉 = min
n
〈ψ[n] | Ĥ | ψ[n] 〉 . (11)

2.3 The Kohn-Sham Equations

The electron-electron interaction Ûee is responsible for the complexity of solving the many-
electron system: electron motions are dependent on each other, hence, the problem has be
solved considering all electrons simultaneously. To circumvent this issue, we consider an
auxiliary system of N non-interacting electrons, which are moving in an external potential
v(r). In this case the single electron equations read[

−1

2
∇2 + v(r)

]
ψi(r) = εiψi(r) , (12)

where ψi denotes a single electron wave function, and εi the corresponding energy of the
single electron quantum system. The electron density for this system is simply given by

n(r) =
N∑
i=1

|ψi(r)|2 . (13)



8 Chapter 2. Density Functional Theory

We can express the total kinetic energy of this system in terms of the single electron wave
function

TKS
e [n] =

N∑
i=1

∫
d3r ψ∗i (r)

(
−1

2
∇2

)
ψi(r) . (14)

We further introduce an electron-electron interaction energy by the so-called Hartree en-
ergy:

UH[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
. (15)

The Coulomb interaction between the electrons and the fixed atomic nuclei again can
be determined according to equation (10). We express the energy functional (9) of the
many-electron system in terms of the introduced functionals of the auxiliary system:

E[n] = Te[n] + Uee[n] + Ven[n]

= TKS
e [n] + UH[n] + Ven[n] + EXC[n] ,

(16)

where we have defined the so-called exchange-correlation functional EXC[n]. This func-
tional corrects all omitted many-body effects due to the non-interacting auxiliary system:

EXC[n] = (Te[n]− TKS
e [n]) + (Uee[n]− UH[n]) . (17)

It can be shown [18] that by the variational problem of equation (11) an expression of the
external potential in equation (12) follows, so as to solving the auxiliary system gives rise to
the ground-state density. For this the functional derivative of the energy functionals (15)
and (17) has to be taken, which yields an expression for the external potential as follows:

veff[n(r)] = v(r) + uH[n(r)] + vXC[n(r)] , (18)

with the Hartree potential

uH[n(r)] =

∫
d3r′

n(r′)

|r− r′|
, (19)

and the exchange-correlation potential

vXC[n(r)] =
δEXC[n]

δn(r)
. (20)

The potential veff is commonly referred to as effective potential, as the electrons seem to
effectively interact with each other through a field caused by the electron density. We use
the effective potential, to finally write down the Kohn-Sham equations [2]:[

−1

2
∇2 + veff[n(r)]

]
ψi(r) = εiψi(r) , (21)

where the single electron wave functions ψi are commonly referred to as Kohn-Sham
orbitals. Here it should be mentioned, that until the present day the exact representation
of the exchange-correlation functional EXC – except for the free electron gas – has not been
found yet. Nevertheless, various approximations to the exchange-correlation functional
exist, which achieve accurate results for certain quantum systems. The most commonly
used approximations are the local density approximation [20] (LDA) and the generalized
gradient approximation [21] (GGA). In the local density approximation the functional
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depends only on the density at the position in space where the functional is evaluated:

ELDA
XC [n] =

∫
d3r n(r) εXC(n(r)) , (22)

where εXC is the exchange-correlation term determined for the free electron gas. The
generalized gradient approximation additionally includes the gradient of the density at
the position in space to account for the non-homogeneity of the true density:

EGGA
XC [n] =

∫
d3r n(r) εXC(n(r),∇n(r)) . (23)

Further terms can be added to achieve more accurate results at a higher computational
cost. A commonly known illustration of the collection of exchange-correlation functionals
in dependence on simplicity and accuracy of methods is the Jacob’s Ladder of DFT [22].

The Kohn-Sham equations (21), in combination with the definition of the electron
density (13), form a set of non-linear differential equations, which can be far easier solved
than the original many-electron system. However, the definition of the external potential
includes the electron density, which is obtain from the single electron wave functions.
Those, in turn, are determined by the Kohn-Sham equations, which again use the definition
of the external potential. Therefore, the differential equations have to be solved self-
consistently:

1) An initial trial electron density ninit(r) is defined, for instance as a superposition of
atomic densities

2) The defined electron density is used to solve the Kohn-Sham equations, which yields
the Kohn-Sham orbitals ψi

3) The obtained Kohn-Sham orbitals are used to determine the electron density n(r)
according to equation (13)

4) The energies, using the electron densities from step 2 and 3, are compared. If
the difference is larger than a defined threshold, the density is updated with a linear
mixing scheme of the two density and is used to start again the calculations from step
2. The self-consistent procedure is stopped as the difference is below the threshold

5) The finally obtained density corresponds to the – approximated – true electron
density, and thus the determined energy represents the ground-state energy

2.4 Plane Waves and Brillouin Zone Sampling

Solving the Kohn-Sham equations directly is still a complicated and computationally ex-
pensive procedure; hence, further approximations are needed to be done in order to solve
the Kohn-Sham equations numerically.

In this work we consider crystal structures, which are solid materials with a certain
periodicity. We refer the crystal periodicity to a set of translation vectors T and the
corresponding reciprocal lattice vector G, so that

T ·G = 2πN where N ∈ Z , (24)

holds for any choice of translation and reciprocal lattice vectors of the crystal structure.
The physicist Felix Bloch gave the proof [23] that wave functions for particles in a periodic
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potential, as in crystals, must be of the form

ψk,n(r) = eik·ruk,n(r) , (25)

where eik·r describes a plane wave and uk,n is a function, which has the period of the
crystal lattice, i.e. uk,n(r) = uk,n(r + T ). The wave vector k is also referred to as the
Bloch vector. The subscript indicates that for each Bloch vector k, there exist multiple
solutions to the Schrödinger equation, which are different in energies and labeled by the
band index n. Equation (25) shows that the eigenfunctions of the Schrödinger equation
for a periodic potential can be expressed by the product of a plane wave eik·r times a
function uk,n(r) with the periodicity of the crystal.

To describe the lattice periodic functions uk,n(r), one expands them in terms of basis
functions. There are essentially two classes of basis functions: the first class can be referred
to atom-centered basis functions, for instance Gaussian-type [24] or muffin-tin orbitals [25].
However, in this thesis we consider the second class of basis functions, which are planes
waves [26]. In the plane wave approach the function, invariant under a crystal lattice
translation, is expanded as a Fourier series, which forms a complete and orthonormal
plane wave basis. For the Kohn-Sham orbitals we thus obtain

ψk,n(r) = eik·r
∑
G

ck,n(G)eiG·r , (26)

where ck,n(G) are the expansion coefficients. The corresponding Kohn-Sham energies are
εk,n, and using the Kohn-Sham orbitals (26), the electron density is given by

n(r) =
∑
k,n

∑
G,G′

f(εk,n)c∗k,n(G′)ck,n(G)ei(G−G
′)·r , (27)

where the f(εk,n) represent the occupation numbers.
The Fourier series in the reciprocal lattice vectors G forms an infinite basis set. For the

practical implementation a cut-off energy Ecut-off is defined: wave vectors which do not
fulfill 1

2 |k+G|2 < Ecut-off are omitted for the calculation. Another computational simpli-
fication is to represent the quasi-continuous Bloch vectors k by a discrete set of k-points
within the first Brillouin-zone. This is commonly realized by generating an equally spaced
k-mesh. Both approximations are introduced to circumvent the infinite summations in
equation (27). Hence, due to the simplifications there are two convergence parameters
that have to be adjusted in the practical implementation of the plane wave method: the
Brillouin zone sampling and the energy cut-off.

Moreover, wave functions in the vicinity of the atomic cores can oscillate rapidly, for
which an extremely large basis set has to be considered. To reduce the high computational
effort, pseudopotential are introduced which describe the wave functions around the atomic
cores by smooth pseudo-wave functions.

In this thesis we use the Vienna Ab Initio Simulation Package (VASP) [27] to implement
the plane wave-pseudopotential codes.

2.5 Potential Energy Surface and Crystal Structure Predic-
tion

The Kohn-Sham approach yields the ground-state energy of the many-electron system.
To obtain the ground-state energy of the many-body system, one needs to take account
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stable structures

transition states
E(R1,...,RM)

Figure 2.1: Conceptual representation of a potential energy surface, simplified
to two dimensions. Local minima on the surface correspond to
stable structures. Transition states can be found on saddle points
between local minima.

of the repulsive Coulomb term between atomic nuclei, and add to the total energy

Enn =
M−1∑
α=1

M∑
β>α

ZαZβ
|Rα −Rβ|

, (28)

whereM is the number of atoms in the system. As a consequence of the Born-Oppenheimer
approximation, and the parametric dependence on the nuclear coordinates R1, ..,RM , we
can consider the ground-state energy of the many-body system as a function of atomic
nuclei positions E(R1, ..,RM ).

This multivariate function is known as the potential energy surface (PES), which for
an arbitrary two-dimensional projection is plotted in figure 2.1. Each point on the sur-
face represents a set of atomic positions {Ri}. The number of possible configurations in
principle is infinite, and an infinitesimal small change in atomic positions causes a small
change in the energy; the PES thus is a continuous function. Global and local minima on
the PES correspond to stable and metastable structures, i.e. configurations for which in-
teratomic distances are relaxed and thus for which all forces within the structures vanish.
Relaxation of a structure describes the approach by which its current atomic positions
are varied until interatomic distances are in equilibrium. Since forces equal the negative
gradient of the PES, minimizing them under relaxation can be seen as moving towards
the nearest local minima on the PES; similar to a marble on the surface, falling into the
nearest local minimum in the absence of external actions.

In the later course of this thesis, we refer to minima structures as relaxed structures.
We refer to structures, which are not stable and do not correspond to minima on the PES,
as unrelaxed structures. Saddle points on the PES correspond to transition states which
are the highest energy points on the lowest energy pathway connecting two local minima.
The transition states divide the PES into so-called basins of attraction. These are regions
on the PES, corresponding to a set of configurations which under relaxation converge to
the same basin minimum. Multiple basins can form a funnel, which describes a collections
of basins, where the lowest minimum of the collection can be reached without crossing
high-energy barriers.

In materials science the consideration of first-principles methods became essential: by
knowing the correct atomic structure of a material, one can determine its physical proper-
ties, even before the material is synthesized. In practice, one is interested in determining
the physical properties of the thermodynamically stable structures of a system at a given
temperature and pressure. Initially, crystal structures of this kind thought to be funda-
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mentally unpredictable, but recent development, taking into account the PES, has shown
that crystal structure prediction can be successfully performed [28,29]. Common structure
prediction approaches, which are based on computational optimizations, are simulated an-
nealing [30], metadynamics [31], basin hopping [32], minima hopping [4] and evolutionary
algorithms [3].

In this thesis, we consider random structure generation and minima hopping techniques.
Random structure generation is based on the fact that most of the PES corresponds to
high-energy structures, in which atoms are much closer or far apart from their equilibrium
positions. Minima structure, on the other hand, tend to appear in funnels, located on small
areas on the PES. Hence, generating structures from undesired high-energy regions can be
circumvent by putting a priori constraints on structures of the system under study. For
instance, including information from experimental observations or previous searches can
reduce the number of possible candidates considerably. Furthermore, the stoichiometry
and the number of atoms of structures is fixed for practical reasons. A structure search
starts by generating crystal structures with random atomic positions, taking into account
the constraints on the bond lengths. Using first-principles calculations, the structures are
relaxed to their basin minimum. Performing random displacements of the atomic positions
potentially pushed structures into a nearby basin of attraction. In this way, the PES is
scanned for global and local minima structures, which has been proven to be a successful
and reliable method for small systems.

The minima hopping method is based on a feedback mechanism, which helps to climb
out of a funnel in order to explore new regions on the PES. Two essential components form
the feedback mechanism: the first part is an inner loop, which performs a certain number of
molecular dynamics steps to push the current crystal structure out of its basin. The second
part is an outer loop, which relaxes the structure after the molecular dynamics simulation,
and checks if the relaxed structure landed in a new basin minimum by comparing the
energies and structure fingerprints [33–35]. In case of the structure being the same from
which the escape trail started, the inner loop is repeated with an increased number of
molecular dynamics steps. However if the structure differs from the initial one, the outer
loop determines whether the new minima structure is rejected or accepted, based on a
defined energy threshold. The threshold is continuously adjusted after each outer loop
step: a rejection of the new minima increases the threshold; an acceptance decreases it.
This introduces a mechanism which drives the system to local minima, but also helps to
escape from regions where the algorithm got stuck.



Chapter 3

Machine Learning

’Machine learning is the field of study that gives computers the ability to learn
without being explicitly programmed.’

This definition was given by Arthur Samuel in 1959 and coined the term machine learning
which is often abbreviated to ML. At that time machine learning had not yet become
established as it is nowadays. In fact, machine learning did not start flourishing until the
90’s; this led Tom Mitchell to formulate a more precise definition of the field:

’A computer program is said to learn from experience E, with some task T
and some performance measure P, if its performance on T, as measured by P,
improves with experience E.’

This definition can be used to express the main aim of this thesis using similar considera-
tions: DFT calculations have been used on crystal structures to obtain their ground-state
energies (E). The available data is used to train a machine learning model which con-
sequently performs estimations of ground-state energies on unexplored crystal structures
(T). Its predictive performance (P), measured by the deviation of predicted energies from
energies obtained using DFT calculations, improves with the quality and the quantity of
available data used in the training process. This in particular emphasizes that machine
learning approaches have great similarities to methods from statistics and probability.

The following section is used to give an overview of the classification of basic machine
learning methods and the commonly used terminology which is adopted in the course
of the thesis. Section 3.2 introduces linear regression and its improvements since these
approaches provide the basis for modern machine learning models used in this thesis. After
a brief section on support vector regression, there is a practical discussion on approaches
used to determine and improve model performances. Parts of the sections are based on
the book by A. Géron [36].

3.1 Types of Learning Algorithms

With the growth of computational power over the last decades, novel algorithms and
methods commonly referred to as machine learning have been developed. Today, already
numerous methods exist and state-of-the-art models achieve tremendous performances on
highly complex fields of applications, such as image or speech recognition [37, 38]. A
general categorization of machine learning methods is given by figure 3.1.

The first main category of machine learning is supervised learning, which uses labeled
data to learn and predict discrete or continuous outputs. In other words, the machine

13
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Figure 3.1: A categorization of machine learning algorithms. In this thesis we
consider the application of regression methods.

learning model tries to learn a mapping from input variables x, called features, to output
variables y, named labels. Alternative definitions for the input variables from statisti-
cal perspectives are attributes, covariates, independent variables, explanatory variables,
predictor variables or regressors. However, typically in machine learning only the word
features is used exclusively. In the field of condensed matter physics the input variables
often are referred to as descriptors, as they are used to describe the structures under study.
The output variables can also be called target variables, response variables or dependent
variables. In this case there is no unique definition used in machine learning, and all these
expressions are used equivalently.

In order to learn the mapping from available data, input-output pairs {(x(i), y(i))}Mi=1

with a total number of M instances are provided forming the so-called training set. In
the previous expression, we have used the bold face for the features, because a single
training example usually depends on several features, which are packed into a single feature
vector x.

Supervised learning can be further divided into two categories, depending on possible
values of the labels. If the label is a categorical or nominal variable, i.e. its value can be
chosen from a finite set y(i) ∈ {1, .., C} with at maximum of C values, one speaks of a
classification problem. In contrast, if labels are real-valued and thus continuous without
any restrictions, one speaks of a regression problem.

The second category of machine learning is unsupervised learning or descriptive learn-
ing. This method uses solely unlabeled input {x(i)}Mi=1 to cluster the data and detect
patterns in it. It is not possible to tell a priori to the model which pattern it should
detect, and hence there is no simple way to measure its performance. Some important
tasks solved typically by unsupervised learning are clustering, visualization, dimensionality
reduction and association rule learning.

In the categorization of figure 3.1 the last and third category of machine learning is
known as reinforcement learning. This technique defines a learning system, called agent,
which tries to maximizes its cumulative rewards by observing the environment, selecting
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and performing actions for which it receives positive or negative rewards based on the main
objective. These systems typically make headlines when beating human world champions
at strategic games like chess or Go [39].

There exists another common categorization in machine learning based on how the
model is trained. In contrast to online learning where the ML model is trained incremen-
tally by feeding data sequentially to improve the performance of the model, the batch
learning – sometimes offline learning – uses all the available data at once to learn from
them and to make predictions afterwards without learning anymore.

3.2 Linear Regression

(x(i),y(i))

Figure 3.2: The basic concept of linear regression: the underlying linear rela-
tionship (dashed line) is estimated by the hypothesis function (solid
line) based on given input-output samples (dots) of the underlying
relationship.

Linear regression is one of the most fundamental techniques in machine learning since
modern algorithms and models, like kernel ridge regression, support vector regression
or even neural networks, are based on the concept of linear regression. With modern
software packages, such as Scikit-learn [40] or TensorFlow [41], the implementation of
high-performance algorithms can be easily achieved with few lines of programming code.
Nevertheless, a basic understanding of the underlying concepts and derivations is beneficial
for a proper usage.

The fundamental concept of linear regression is, that for a given set of input features
x a linear response of the output label y is assumed:

y(x) = βTx+ ε =

N∑
j=0

βjxj + ε . (29)

Here, βT denotes the transposed weight vector containing the weights of the function, N+1
is the number of features, and ε is called the statistical error between the theoretical and
the observed outcome. Weights can be also referred to as feature weights, model weights
or model coefficients. We identify the feature and weight vectors with column vectors,
wherefore the weight vector is assumed to be transposed to represent the algebraic dot or
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inner product in equation (29):

x ≡


x0

x1
...
xN

 ∈ RN+1 , β ≡


β0

β1
...
βN

 ∈ RN+1 . (30)

The indexing in equations (29) and (30) starts from j = 0 since by convention the
parameter β0 corresponds to the intercept or bias term. In order to leave this parameter
independent of any input quantity, we define x0 ≡ 1, so that the original input feature

vector x̃ containing N features can be constructed as x ≡
[

1
x̃

]
.

Equation (29) does not represent the prediction of the linear regression model, but
the mapping from input to output, which the linear regression model tries to find and
learn. Figure 3.2 should give a clearer picture: the dashed line represents the theoretical
linear relationship between the input features and the output labels - in the figure a one-
dimensional case is considered where the output depends on a single feature. The linear
relationship – in case of figure 3.2 described by the slope of the dashed line – corresponds
to the values of the weights β. Linear regression estimates this theoretical relation from a
representative sample of input-output pairs indicated by dots in figure 3.2. Furthermore
the observed output values underlie a certain deviation from their expected values which
is described by the statistical error ε in equation (29). The extent of the statistical error is
determined by inaccuracies in calculations, measurements or natural spread. The common
approach is to assume that the distribution of all statistical errors is Gaussian which helps
estimating the model parameters. The training data is then used to estimate the weights.
Here, several training objectives can come into play: minimizing the mean squared error,
the mean absolute error, or maximizing the likelihood of the weights under a certain
probabilistic model. In this sense, the estimated weights do not only depend on the
true theoretical relation between the observed input and output samples, but also on the
training objective and, potentially, on the training algorithm.

Once the model is trained with data, the weights are estimated which subsequently can
be used to make predictions on new data according to

hβ̂(x) ≡ ŷ = β̂Tx , (31)

where β̂ here denotes the estimated model parameters, and ŷ the prediction using these
parameters in the hypothesis function hβ̂(x).

3.2.1 Vectorization and Parameter Estimation

The approach to find the optimal weights comes from the Bayesian concept learning and is
part of the discussion in appendix B. Assuming the statistical errors in (29) to be Gaussian
distributed, the maximum likelihood estimation (MLE) minimizes the mean squared error
(MSE) to estimate the weights. The mean squared error is given by

J(β̂) ≡ MSE(β̂) =
1

M

M∑
i=1

(y(i) − β̂Tx(i))2 , (32)

where J(β̂) is a commonly used abbreviation in the context of ML, and often referred to
as cost function. The quantities y(i) and x(i) denote the output label and the input feature
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vector of the i-th training example or, more generally, the given data set {(x(i), y(i))}Mi=1

with M training examples.
The quantity in brackets in (32) is identified as the residual errors ε̂(i) = (y(i)−β̂Tx(i)) =

y(i)− ŷ(i). The residual error ε̂ is frequently confused with the statistical error ε. However,
the residual error measures the difference between predicted and observed values, whereas
the statistical error corresponds to the deviation between the observed and expected values.
In figure 3.2 the residual error is illustrated as vertical lines between observed (dots) and
predicted (crosses) values. The statistical error instead is not shown, but would correspond
to vertical lines from observed values to the dashed line.

The mean squared error (32) can be rewritten in a vectorized form improving simplicity
and efficiency of algorithms. In order to make this possible, we store the observed labels
y(i) in the training set with M instances in a single label vector

y ≡


y(1)

y(2)

...

y(M)

 ∈ RM . (33)

Furthermore, we arrange the feature vectors x(i) as the rows into a matrix X which is
often called design matrix :

X ≡


−(x(1))T−
−(x(2))T−

...

−(x(M))T−

 =


x

(1)
0 x

(1)
1 · · · x

(1)
N

x
(2)
0 x

(2)
1 · · · x

(2)
N

...
...

. . .
...

x
(M)
0 x

(M)
1 · · · x

(M)
N

 ∈ RM×(N+1) . (34)

Here, x
(i)
j denotes the j-th feature of the i-th training example. The features in the first

column correspond to the additional feature due to the bias term, hence x
(i)
0 ≡ 1. Using

these definitions, we express the mean squared error (32) by

J(β̂) =
1

M
‖y − β̂TX‖2 , (35)

where ‖v‖ =
√∑

i v
2
i corresponds to the Euclidean or `2-Norm of a vector.

The optimal weights β̂ can be determined analytically (appendix B.1). The equation
that yields the optimal weights is known as normal equation and defined as

β̂MLE = (XTX)−1XTy , (36)

where XTX ∈ R(N+1)×(N+1) is called the sum of squares matrix, and MLE refers to the
maximum likelihood estimate.

Determining the inverse of the sum of squares matrix limits the application of the
normal equation for obtaining the optimal parameters. This calculation is computationally
expensive and its numerical cost increases as O(N3), where N is the matrix dimension.
Consequently, increasing the number of features considerably increases the computational
effort required for solving equation (36). In addition, the matrix has to be invertible which
is possible if and only if all rows and columns of the matrix are linearly independent.

When the number of features exceeds the limit of available computational resources,
numerical optimization packages find their practical usage. The most widely used numer-
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Figure 3.3: The concept of gradient descent: from an initial set of parameters
(orange), updates are made according to the steepest descent at
the current position on the surface of the cost function. The global
minimum (red) corresponds to the optimal set of parameters that
minimize the cost function.

ical optimization method is gradient descent.
Gradient descent takes advantage of the fact that the surface of the cost function (35)

is convex in the parameter vector β̂. Hence, the optimal set of parameters that minimizes
the total cost corresponds to the global minimum of the cost function.

The basic approach is to randomly choose an initial set of parameters which corresponds
to a certain cost. The steepest descent at a given position on the surface, i.e. the direction
of the largest reduction in cost regarding the model parameters β̂, is equal to the negative
gradient at this position ∇β̂J(β̂). Thus, the initial set of parameters is updated according
to

β̂ → β̂ − α · ∇β̂J(β̂) , (37)

where α is called the learning rate and determines the step size. Updates are repeated as
many times until either a maximum number of iterations is reached or the difference in
cost after an update step falls below a certain threshold. Figure 3.3 illustrates the surface
of an arbitrary cost function and the path followed by gradient descent steps. Gradient
descent has the great advantage that it is not as susceptible to a large number of features as
the normal equation is, but has the disadvantage that its numerical implementation and
fine-tuning of convergence requires the adjustment of additional parameters. Table 3.1
highlights the basic differences between the two estimation methods.

3.2.2 Expansion on Basis Functions

So far, we have only considered a linear relationship between input features x and output
labels y, but the concept of linear regression can be applied to more complex relations
than linear functions. In particular the expression linear regression refers to the fact that
the model is linear in the weight parameters. A non-linear relationship between input and
output can be obtained by modifying the original features x with a non-linear function
of the features φ(x), called basis function expansion. In other words, a basis function
expansion is a mapping of the original set of features to another feature space:

φ : RN+1 → RN
′
, (38)
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Normal equations Gradient descent

analytical numerical

slow if number of features is large
suitable for high numbers of

features

susceptible to redundant features
and exact duplicates in examples

no restrictions

no additional parameters
learning rate and iteration steps

have to be adjusted

Table 3.1: Property and behavior comparison of the normal equation and gra-
dient descent

where N + 1 is the original number of features and N ′ the number of features after the
transformation. Any appearance of the original feature vector x can be replaced by the
transformed set of features φ(x). Hence, final predictions are made using a modified
hypothesis function

hβ̂(x) = β̂Tφ(x) . (39)

A basis function expansion is a powerful tool, which can be used to model a non-linear re-
lationship between input and output. For instance, the basis function φ(x) = [x, x2, .., xd]
transforms the original feature x to a feature space containing the polynomial expansion
of x up to degree d. Using the resulting set of features permits to estimate a polynomial
relation of degree d. This approach is referred to as polynomial regression. In practice, the
exact form of the underlying relationship is unknown; therefore, one determines the opti-
mal polynomial degree among probable values by comparing the predictive performance
on new data. This approach is further discussed in section 3.4.4.

Figure 3.4 illustrates estimations of polynomial regression with a basis function expan-
sions of degree d = 2 (left) and d = 10 (right). The function of polynomial degree d = 10,
however, overshoots the actual objective of estimating the underlying relationship, since
the function would also fit the stochastic noise, i.e. the statistical error, in the data. This
should not be considered at all. In machine learning this situation is indicated with the
term overfitting and its consequences will be discussed in section 3.4.

Considering data with multiple input features stored in the feature vector x, the most
general polynomial basis function expansion transforms the input features according to

φ(x) = [x1, x2, ... , x1x2, ... , x
2
1x2, ... , x

d
1, ... , x

d
N ] ∈ RN

′
. (40)

This basis expansion, however, leads to an explosion of (N ′ + d)!/(d!N ′!) features. To
understand why a polynomial basis function expansion as defined in equation (40) could be
problematic, we can consider the following example: if, for instance, the number of original
features is N = 10 and a basis function expansion with polynomial degree of d = 10 is
applied, the original set of features is transformed to a set of approximately N ′ = 185 000
features. This, in turn, requires estimating 185 000 model parameters which definitely
limits the effectiveness of high polynomial basis function expansions when training set is
small.

A useful practical approach to avoid overfitting and increase the algorithms computa-
tional efficiency, would be to determine the most important terms in the expansion and
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Figure 3.4: With the application of basis function expansions a non-linear rela-
tionship between input and output can be estimated. In polynomial
regression the original feature is transformed by a basis function ex-
pansion, for instance with polynomial degree d = 2 (left) or d = 10
(right).

to leave out terms that do not improve the model performance. In section 3.2.4 lasso
regression is introduced which mathematically realizes this idea, and obtains a sparse so-
lution of optimal model parameters. Moreover, one of the most effective improvements in
machine learning to deal with this issue is the concept of kernel functions, discussed in the
following section.

3.2.3 Kernel Functions

In modern machine learning kernel functions – in short kernels – have achieved great suc-
cess in improving efficiency and applicability to complex systems; The underlying concept
is the kernel trick. The kernel trick permits to transform the original set of N features
to a higher or even infinite dimensional feature space N ′ → ∞, often called hyperspace,
without actually carrying out the transformation φ(x). This can be mathematically real-
ized formulating the original problem in such a way, that the kernel trick can be applied.
This permits to solve the optimization problem at a reduced computational cost. We will
give further details on this topic after a general discussion on kernel functions.

In general a kernel function κ describes a mapping from two input arguments, e.g. two
feature vectors x and x′, to a single real value, i.e. κ(x,x′) ∈ R. In order to make use
of the kernel trick a few conditions, better known as the Mercer conditions, have to be
fulfilled. A kernel is said to be a Mercer (positive definite) kernel if it is symmetric, i.e.
κ(x,x′) = κ(x′,x), and non-negative, i.e. κ(x,x′) ≥ 0. Under these conditions, Mercer’s
theorem [42] proves that there exists a basis function expansion φ(x), such that

κ(x,x′) = φ(x)T · φ(x′) . (41)

Conversely, this implies that instead of determining the dot product of two transformed
feature vectors, one could simply determine the value of the corresponding kernel function,
without ever carrying out the transformation of the original vectors.

This we can show using the polynomial kernel, for instance:

κ(x,x′) = (r + γxTx′)d . (42)

This kernel fulfills the Mercer conditions. We consider two feature vectors, each of which
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contains two features

x ≡
(
x1

x2

)
, x′ ≡

(
x′1
x′2

)
(43)

and a polynomial basis function expansion with degree d = 2 which maps the original
feature vector to a 6-dimensional feature space, according to

φ(x) ≡ [1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2] . (44)

Here, we have included certain scaling prefactors; however, this does not affect the ac-
tual optimization of the problem. Subsequently, the dot product of the basic function
expansion, applied to both vectors, can be calculated and further rearranged:

φ(x)T · φ(x′) =



1√
2x1√
2x2

x2
1

x2
2√

2x1x2



T

·



1√
2x′1√
2x′2
x′21
x′22√
2x′1x

′
2


= 1 + 2x1x

′
1 + 2x2x

′
2 + (x1x

′
1)2 + (x2x

′
2)2 + 2x1x

′
1x2x

′
2

= (1 + x1x
′
1 + x2x

′
2)2

= (1 + xTx′)2 ,

(45)

which equals the polynomial kernel (42) with degree d = 2 and parameters γ = r = 1. In
other words, the dot product of the transformed vectors is equal to the square of the dot
product of the original vectors, φ(x)T ·φ(x′) = (1 +xTx′)2. The latter, however, is com-
putationally more efficient, particularly in situations where the basis function expansion
transforms the vectors to a even higher dimensional feature space.

A commonly used kernel of great importance is the Gaussian radial basis function
(RBF) kernel, which is defined by

κ(x,x′) = exp(−γ ‖x− x′‖2) , (46)

where γ is a free parameter and referred to as the kernel coefficient. The Gaussian kernel
fulfills the Mercer conditions which proves the existence of a corresponding basis func-
tion expansion. The form of the underlying basis function expansion, though, can not be
explicitly represented since the transformed feature map lives in an infinite dimensional
space due to the Taylor expansion of the exponential function. Hence, the application of
the Gaussian kernel enables access to an infinite dimensional feature space at low compu-
tational cost. This makes the Gaussian kernel one of the most powerful tools in modern
machine learning techniques.

An alternative perspective on the Gaussian kernel is, that it serves as similarity measure
since the kernel will return values close to κ ≈ 1 when two feature vectors are similar
and κ ≈ 0 when input vectors differ from each other. The range of similarity, i.e. the
characteristic drop from κ ≈ 1 to κ ≈ 0, is determined by the kernel coefficient γ.

Up to this point, the application of the kernel trick has not been discussed. The
complete discussion on the kernel trick can be found in appendix C. It can be shown that
the original optimization problem can be restated in a different optimization problem,
called the dual problem. In the dual problem, terms of the inner product φ(x(i))T ·φ(x(j))
appear, which then can be replaced by the corresponding kernel function κ(x(i),x(j)).
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Furthermore, dual variables α̂ are defined, which finally help to completely kernelize the
original problem. By this means, the entire optimization problem can be treated using
solely the computational cheaper kernel functions, instead of basis function expansions.

The dual problem yields the hypothesis function

hα̂(x) =
M∑
i=1

α̂(i)κ(x,x(i)) , (47)

which shows that the prediction on new data depends directly on the data x(i) from the
training set. Instead of learning the weights β̂ for a fixed-sized feature vector, the model
remembers each training example and learns a corresponding weight α̂(i) for it.

Specifically for the Gaussian kernel, the original set of features is no longer used to
directly estimate the output value, but only serves as a representation that uniquely de-
scribes the data in the feature space. This alternative perspective on designing relevant
features implies that the prediction on new data is based on the similarity to already
learned and known data.

Applying the kernel trick, and treating the optimization in the dual problem, demands
a computational cost of order O(M3), where M is the number of training examples. This
implies that the usage of kernel functions renders the number of original features negligible.
Therefore, applying kernel functions, especially the Gaussian kernel, has great advantages
over ordinary basis function expansions particularly in situations where

• the number of training examples M is a small or intermediate number and

• the data representation or rather the feature engineering cannot be achieved easily.

The second statement applies especially to situations in which there is no background
knowledge about the true relationship between input and output. In other words, designing
features and determining the optimal polynomial degree of the basis function expansion can
be complicated when the underlying system is complex. The application of the Gaussian
kernel, however, simplifies this procedure.

3.2.4 Regularization

Regularization in machine learning is a key concept which is used to avoid fitting the
statistical error in the data. This issue typically occurs when the degree of the polynomial
of the model used for estimation is larger than the degree of the underlying relationship. On
one hand, reducing the polynomial degree may help to simplify the class of the hypothesis
function. On the other hand however, regularization provides a versatile and more flexible
way to prevent model estimations from fitting the statistical error. Beyond that, a specific
definition of regularization yields a sparse solution of model parameters which can be a
computational advantage.

In general, regularization can be realized by demanding small weight parameters β̂ as
discussed in appendix B.2. Among different definitions to achieve this, a common approach
yields the new cost function

J(β̂) =
1

M
‖y − β̂TX‖2 + λ

N∑
j=1

β̂2
j (48)

with the additional regularization term in the weight parameters β̂j . The parameter λ
is called the regularization parameter and determines the degree of regularization. The
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Figure 3.5: Regularization simplifies the class of the hypothesis function; the
degree is adjusted with the regularization parameter λ. This helps
to avoid fitting the statistical error in the data.

sum in the regularization term is written out explicitly to emphasize that the bias term β̂0

should not be regularized since its suppression can cause a large bias error. Considering
the weight vector β̂ without the bias term, the regularization term can be expressed
using the squared `2-norm of the vector ‖β̂‖2. Therefore, this regularization is called `2-
regularization or Tikhonov regularization [43]. In machine learning the application of the
`2-regularization in the linear regression approach is referred to as ridge regression.

The regularization term causes the weight parameters to be small, and the level of reg-
ularization can be adjusted by the regularization parameter λ. With λ = 0, regularization
is removed and (48) simplifies to (35), the unconstrained linear regression. This corre-
sponds to the blue line in figure 3.5, which uses all weights in full extent to fit all training
examples. Turning on regularization by choosing λ > 0 causes the weight parameters to be
diminished, which results in a simpler class of the hypothesis function, conforming to the
orange line in the figure. Setting the regularization parameter to large values λ� 0, the
weight parameters are forced to assume low values. This translates into a simple class of
the hypothesis function, where in the extreme case of λ→∞ only the bias term remains.

Including the regularization term in the objective of minimizing the cost function (48)
yields a new analytical solution of optimal weight parameters, given by

β̂ridge = (λIN+1 +XTX)−1XTy (49)

where IN+1 denotes the identity matrix with matrix dimension N+1. Applying the kernel
trick to ordinary ridge regression – as discussed in appendix C – one of the most powerful
regression methods in machine learning, the kernel ridge regression, is obtained. Kernel
ridge regression combines the concept of regularization with that of kernel functions.

In addition to ridge regression, an alternative regularized regression approach exists,
the lasso regression [44]. Lasso stands for least absolute shrinkage and selection operator
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(a) Ridge Regression
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(b) Lasso Regression

Figure 3.6: The difference of ridge and lasso regression: using numerical op-
timization methods, model parameters in ridge regression (a) are
updated without any preference for sparsity. In lasso regression
(b) model parameters of least importance are set to zero during
the updates which corresponds to sparse solutions.

and its cost function is defined by

J(β̂) =
1

M
‖y − β̂TX‖2 + λ

N∑
j=1

|β̂j | . (50)

Again, the regularization term can be expressed by a vector norm if the bias term is not
considered. In lasso regression, however, this corresponds to the absolute value or `1-norm.

In lasso regression there exists no closed form solution for optimum parameters like the
modified normal equation (49) for ridge regression. Due to the absolute value function in
equation (50), the regularization term is not differentiable at β̂j = 0. Several techniques
from convex analysis and optimization theory, for instance subgradient methods [45] or
least-angle regression [46], have been developed to numerically estimate optimal parame-
ters.

In the numerical optimization approach the main difference between ridge and lasso
regression is revealed: The `2-regularization in ridge regression causes the weights to be
modified simultaneously when λ > 0. The `1-regularization in lasso regression, in contrast,
tends to completely eliminate weights of least importance first, leaving behind a sparse
model, i.e. unimportant weights are set equal to zero as regularization is adjusted.

Considering the application of basis function expansions with high polynomial degrees
and hence large feature vectors, lasso regression can achieve better computational perfor-
mances compared to ridge regression as sparse solutions of model parameters are used and
considered. In addition, lasso regression is often used to determine the relative importance
of single features.

Whether ridge or lasso regression achieves better predictions depends on the underlying
problem, the available data and particularly the choice of the regularization parameters.
In the optimal case both methods give the same result.

Summarizing the discussion on the two methods, figure 3.6 shows an illustration of how
`1- and `2-regularization act on the minimization problem when considering numerical op-
timization methods. The update of weights are marked by white dots, while the yellow
dots represent the arbitrary initial set of parameters. In both pictures the background
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Figure 3.7: (a) MSE-cost and the ε-insensitive cost where ε = 1. (b) Support
vector regression tries to fit as many points inside the ε-margin
while reducing the cost of margin violations. Points inside the
margin do not give any cost.

contours indicate the regularized cost function, i.e. the ordinary least square function,
and the red dot marks the optimal value of two arbitrary feature parameters β̂1 and β̂2.
In this example the parameter weight β̂2 is assumed to be less important than β̂1, which
is indicated by the lower optimal weight value. Turning on regularization is equivalent
to imposing an upper constraint B to possible values of weights, whose value increases
as regularization gradually gets turned off, i.e. B ∼ 1

λ . The constraint surface of ridge

regression due to the regularization term β̂2
1 + β̂2

2 ≤ B can be illustrated as concentric cir-
cles, whereas considering lasso regression the regularization term |β̂1|+ |β̂2| ≤ B describes
diamond-shaped contours. The larger the constraint contour, the higher the cost for the
particular choice of weights; varying the degree of regularization consequently changes the
distance between the constraint contours in the figures.

In the actual optimization problem, the final cost function is the superposition of the
two contours, the regularized and the regularized. Thus, the resulting contour has a slightly
different shape with different optimal feature weights whose values depend on the applied
regularization. In particular, when the regularization exceeds a certain degree, the optimal
value of the parameter weight β̂2 in lasso regression would lie on the horizontal axis, i.e.
β̂2 = 0. However, in figure 3.6 the unregularized and constraint contours are plotted
separately in order to show their exact influence on the actual optimization problem.

The total cost for a set of parameters is lowest where the contours of the ordinary
cost function intersects the constraint contours in a single point. Here it becomes evident,
that in lasso regression the model tries to update the weights along the corners of the
diamond shape since the corners of the regularization contours first intersect the contours
of the objective cost function. This corresponds to sparse solutions since, as shown, the
parameter β̂2 first is set to zero and further updates occur along the axis. In contrast, in
ridge regression the constraint contours do not have any sides or corners, so the intersect
takes places at any point without any preference for sparsity.

3.3 Support Vector Regression

In machine learning support vector machines (SVM) are powerful models which like ker-
nel ridge regression are capable of performing regression with the application of kernels
and regularization. Mostly known for their great performance on complex classification
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problems, support vector machines are also widely used as regression models.
In case of kernel ridge regression the application of kernel functions causes the model

to estimate the weights α̂(i) of each training example in the dual problem. Support vector
machines, however, do not take into account every single training example to make pre-
dictions according to equation (47), but only use a sparse estimate of weights α̂(i). This
can be achieved defining a new cost function

Lε(y, ŷ) =

{
0 if |y − ŷ| < ε

|y − ŷ| − ε otherwise
. (51)

This cost function is called the ε-insensitive cost function and by definition any observed
output value that lies outside an ε-margin around the prediction gives rise to a certain
cost, which increases linearly with the residual error as shown in figure 3.7a. Any point
lying inside an ε-margin around the true value is not penalized and thus the approach of
the support vector regression model can be seen to fit as many instances as possible in the
margin while trying to reduce the margin violations, i.e. instances off the shaded area, as
shown in figure 3.7b. The final objective cost function including regularization is given by

J(β̂) = C
N∑
i=1

Lε(y
(i), ŷ(i)) +

1

2

M∑
j=1

β̂2
j . (52)

Using support vector machines the cost function typically is divided by the regularization
parameter yielding the new regularization constant C = 1/2λ. Without proof, the cost
function is convex, but not differentiable due to the absolute value function. One common
approach is to define slack variables which helps restating the cost function without an
absolute value function. The slack variables correspond to the degree to which points lie
above or below the ε-margin:

y(i) ≤ ŷ(i) + ε+ ξ
(i)
+

y(i) ≥ ŷ(i) − ε− ξ(i)
−

ξ
(i)
+ , ξ

(i)
− ≥ 0

(53)

Consequently, points above the margin have ξ
(i)
+ > 0 and ξ

(i)
− = 0. Inside the ε-margin

ξ
(i)
+ = 0 and ξ

(i)
− = 0 applies and points below the margin have ξ

(i)
+ = 0 and ξ

(i)
− > 0. We

express the cost function (52) using the slack variables:

J(β̂) = C
N∑
i=1

(ξ
(i)
+ + ξ

(i)
− ) +

1

2

M∑
j=1

β̂2
j , (54)

which has to be minimized under the constraints of equations (53). One can show, e.g. in
ref. [47], that the optimal solution for a given dataset depends on the parameters ε and C
and that the kernelized hypothesis function is given by

h(x) = β̂0 +
∑
i

α̂(i)κ(x,x(i)) . (55)

The solution of optimal dual weights α̂(i), though, is sparse because instances inside the
ε-margin are disregarded. This results in considerably faster predictions of the SVR algo-
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Figure 3.8: Components in machine learning: the model learns the data in the
training database, represented by features of the data representa-
tion. The performance on the task increases with experience. The
data, the data representation and the ML model can be a source
of errors, affecting the model performance.

rithm, especially for large datasets. Training examples that lie on or outside the ε-tube,
i.e. for which α̂i > 0, are called the support vectors.

3.4 Machine Learning Concepts and Methods

In this section we introduce practical approaches and concepts in machine learning, such
as scoring parameters and methods providing helpful tools for applying and developing a
model. In the beginning of chapter 3 we have discussed the definition of machine learning
given by Tom Mitchell. The definition comprises the expressions experience, task and
performance; Figure 3.8 gives a graphical overview on how these expressions combine with
the instances an entire machine learning application consists of.

Here we want to emphasize, that each component – the data, the features and the
ML model – can be a source of error, and thus influences the final model performance;
for instance, outliers in the data, inefficient features to describe the data or inadequate
model assumptions. How strongly these sources of errors influence the final prediction de-
pends completely on the system under study and cannot be assessed in advance. Methods
introduced in this section, though, can be used to detect and minimize the errors.

3.4.1 Scoring Parameters

Scoring parameters are the main instruments available to rate performances of models.
Especially in optimization steps, measuring the model performance on the test set, as well
as on the training set, is a common approach to monitor the behavior and improvements
of the model. Numerous scoring parameters exist; each comes along with advantages and
disadvantages.

A commonly used scoring parameter in regression analysis is the mean squared error
which already has been introduced as objective quantity that becomes minimized in the
least squares approach. Nevertheless, the mean squared error is also applicable in re-
gression methods which do not use the least squares cost function, for instance support
vector regression. The fundamental characteristic of the mean squared error, which gives
a straightforward interpretation, is that its value always is non-negative and the closer its
value is to zero, the better the performance. A value of zero hence corresponds to perfect
predictions meaning predicted target values have zero deviation from true values.

Nonetheless, the mean squared error also has drawbacks: the mean squared error is
database dependent [48], which is why a direct comparison of model performances and
generalized statements on the predictive power should be considered in combination with
the used data. Furthermore, the mean squared error is not dimensionless, but its unit is
equal to the squared unit of the data. We use the mean squared error in the optimization
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y(i)

ŷ(i)

Figure 3.9: The coefficient of determination explains how much variation in the
target value y is described by the input features x. This is deter-
mined by the ratio between the residual sum of squares (orange)
and the total sum of squares (blue).

of our machine learning model.
Further performance measures, we consider to rate the final predictive power, are the

root mean squared error (RMSE) and the mean absolute error (MAE). Both share the
advantage of describing the performance in units of the variable of interest. The root mean
squared error can be directly obtained from the mean squared error by RMSE =

√
MSE.

In contrast, the mean absolute error is defined by

MAE =
1

N

N∑
i=1

|y(i) − ŷ(i)| . (56)

Compared to the mean absolute error, the root mean squared error gives higher weights to
larger errors due to the squaring before the averaging. This fact can be used to characterize
the distribution of errors that are made: in case that exactly equal errors are made, the
root mean squared error would show the same value as the mean absolute error. The more
the errors are dispersed, the larger the difference between both.

Lastly, we introduce the coefficient of determination, which provides a dimensionless
rate of the predictive power. The coefficient of determination is denoted by R2 and among
several, a common definition is given by

R2 = 1− RSS

TSS
, (57)

where RSS =
∑

i(y
(i)− ŷ(i))2 is the residual sum of squares and TSS =

∑
i(y

(i)− ȳ)2 the
total sum of squares. The coefficient of determination is a measure, based on the ratio of
the prediction error and the total variance in the true values, as shown in figure 3.9. In
regression analysis the R2 value is typically seen as a measure of how much variation in
the target value y is explained by the features x.

By its definition, the R2-value is dimensionless and always R2 ≤ 1. Perfect predictions
are R2 = 1 since the residual sum of squares converges to zero in the numerator of the
second term in (57). The R2-value is zero if no variation in y, hence, no relationship
between y and x is explained. This corresponds to a situation, where the model always
predicts the mean of the target value. Moreover if predictions are worse than this, the
value shows R2 < 0.

The coefficient of determination, due to the directly defined total sum of squares, has
the drawback that adding data to the validation set possibly increases the R2-value. This
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Test set
Training set

(a) Overfitting (b) Underfitting

Figure 3.10: (a) The model overfits the data, i.e. it performs well on the train-
ing set but generalizes badly on the test set. (b) The class of the
hypothesis function is too simple to estimate the underlying rela-
tionship, and underfits the data. The performance is bad on the
test set and the training set as well.

would be possible since the additional data increases the total sum of squares, whose rise
could be larger than the increase of the residual sum of squares. Consequently, R2-values
are only comparable if measured on one and the same database.

A common method to practically optimize and measure the model performance is cross
validation. Instead of using always the same training and test set, which would focus and
optimize the model on that specific training set, all available data points are combined in
a single database. The model performance then is measured during multiple runs while
randomly choosing at each run the training and test set from the entire data. Usually,
80% or 90% of the data serves as the training set and the complementary part is taken
as the test set. This random separation and validation is repeated a certain number of
times to reduce variability and to obtain a performance value by the average of the single
runs. Additionally, the standard deviation from the sequence is determined to provide an
estimate of the stability of predictions.

3.4.2 Overfitting and Underfitting the Data

In supervised learning, overfitting and underfitting are the most frequent situations which
highly affect the model’s predictive power. In following discussions we use the mean
squared error to characterize the model performance.

Overfitting the data refers to the undesirable situation in which the model performs
well on the training data, but shows a bad generalization and performance on the test
set. The underlying cause has been already discussed and corresponds to circumstances
in which the model also fits the statistical error in the data as shown in figure 3.10a. As
a consequence the mean squared error measured on the training set is low, but the model
fails to generalize the predictions on the test set, causing high errors on the test set. Using
cross-validation the model may randomly take training sets which at this specific choice
represents the entire data well, and hence the error on the test set can be low. This leads
to high variation in the sequence of performance runs wherefore overfitting is also often
referred to as high variance.

In contrast, when the model underfits the data the performance is bad on the test set,
but also on the training set. This is caused by the class of the hypothesis function being to
simple to estimate the true structure of the relationship, as captured by figure 3.10b. Too
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simple features could be a possible explanation for this, as well as a low polynomial degree
or a high regularization. Since the prediction error here is independent on the choice and
amount of data, underfitting is referred to as high bias.

3.4.3 Learning Curves

Visualizing and detecting overfitting and underfitting issues as shown by figure 3.10 is
generally hard; especially in the use of multiple input features or kernel functions. Under
circumstances like this, a common approach is to have a look onto the learning curves.

The concept of learning curves is to visualize overfitting and underfitting by means of
the performance difference between training and test set. In practice, this is realized by
incrementally increasing the number of data used for training the model, starting with
solely two training examples and increasing the training set size up to the maximum
available data. At each stage the performance is measured on the used training set and
the test set, which unlike the training set is kept at fixed size during the entire process.

The performances on the training and test set then are plotted against the number
of training examples as shown in figure 3.11. Starting with training solely two examples,
the model will be able to fit and predict the two examples perfectly by a simple straight
line, while the predictions on the test set will completely miss their true values. Thus,
the prediction error is low on the training set and high on the test set. As soon as more
training data is introduced, the model cannot fit every single training example anymore,
which is shown by an increase in the training set prediction error as new instances are
included. The prediction error on the test set, though, is decreased since the model better
generalizes on the data. Both error curves approach each other as more data is included
in the training process.

In the event of underfitting issues, where the model’s hypothesis function is too simple
as shown in figure 3.10b, the model makes equal prediction errors on the training and
test set at the maximum available data. Hence, both prediction curves converge to the
same error value, and the absence of any gap between both curves can be the indication
of underfitting issues. This is shown by figure 3.11b. Furthermore, the final error value
corresponds to the bias error caused by the class of the hypothesis function being to simple.

Overfitting, in contrast, can be shown by a comparably slow increase of the prediction
error on the training set, as the complex class of the hypothesis function is able to accu-
rately learn and describe more training examples. Going back to figure 3.10a, the model
also learns the statistical error – even at the maximum available data – why the prediction
error on the test set will be higher than on the training set due to the bad generalization.
This is indicated by a distinct gap between the prediction curves of the training and the
test set, which is the typical proof of overfitting issues. Furthermore, in the use of cross
validation the final performance on the test set would show variations in the sequence of
performance runs, and hence instability in the performance. Figure 3.11a represents the
corresponding situation of overfitting the data.

A good fit of the learning algorithm exists between an overfit and underfit model. In
this case the training and the test set performance decrease to a point of stability with a
minimal gap between the two final prediction errors. The prediction error on the training
set will still be slightly lower than on the test set; the corresponding final gap between the
two curves is referred to as generalization gap.
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Figure 3.11: (a) The distinct gap between the MSE on the training set and test
set indicates high variance issues. (b) The absence of a gap can
indicate that the class of the hypothesis function is to simple; the
model suffers from high bias issues.

3.4.4 Model Selection and Regularization Path

Visualizing the learning curves gives information whether the model suffers from overfitting
or underfitting. Overfitting and underfitting can be the consequence of a non-optimal
degree of the basis function expansion, or an inappropriately adjusted regularization. Here,
the concepts of model selection and regularization path are helpful tools, which determine
the optimal degree of polynomial expansion and regularization. While the model selection
method will be used in the application of ridge and lasso regression, the regularization path
technique will be also applied in kernel-based regression. By the end of this subsection we
introduce practical approaches to avoid overfitting or underfitting.

Model selection is based on the model being prone to overfit or underfit the data as
non-optimal degrees of polynomial are chosen. The model performance is determined on
the training and the test set for incrementally increased degrees of the polynomial basis
function expansion. Consequently the prediction errors are plotted against the polynomial
degree as shown in figure 3.12a.

In the case of a polynomial degree being lower than the optimal value, the model
underfits the data. This is shown by a high prediction error on the test set and the
training set as well. Increasing the polynomial degree, increases the complexity of the
class of the hypothesis function, which reduces the bias error, and hence improves the
prediction on both datasets. The optimal degree of the polynomial corresponds to the
minimum of the prediction error on the test set. As the polynomial degree exceeds the
optimal value, the model tends to overfit the data, which is indicated by a further decrease
of the prediction error on the training set, while the prediction error on the test set rises.

The regularization path approach is similar to that of the model selection: the predic-
tion errors on the training and the test set are measured for various parameters of the
regularization. The model performance then is visualized as a function of the incrementally
increased regularization as given by figure 3.12b.

In the case of no regularization the model is more likely to overfit the data, if the class
of the hypothesis function is complex enough. Consequently, the prediction error is low on
the training set and high on the test set at a low degree of regularization. Increasing the
regularization parameter in a step-wise manner reduces the complexity of the hypothesis
function, which increases the error on the training set; the error on the test set, though,
decreases. The optimal choice of regularization, again, is determined by the minimum of
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(a) At low polynomial degrees the model is more
prone to underfit the data; at high degrees the
model can overfit the data. The optimal de-
gree is in between, where the prediction error
on the test set shows a minimum.

degree of regularization

(b) Without regularization the model is more
prone to overfit the data; high regularization
causes the class of the hypothesis function to
be simple, causing underfitting. The optimal
degree of regularization is determined by the
minimal prediction error on the test set.

Figure 3.12: The concept of model selection and regularization path

the prediction error on the test set. Continuing increasing regularization further simplifies
the class of the hypothesis function, which causes the errors to rise again on both datasets.

In practice, regularization will affect the optimal degree of polynomial and vice versa.
We will treat this two-dimensional optimization problem by performing the model selection
at different degrees of polynomial and consequently use the best polynomial degrees to
determine the regularization path.

If a model is more prone to overfit the data, getting more training examples is likely to
help, since adding new training instances causes the model to better generalize the under-
lying relation. This in turn reduces the prediction error on the test set. This idea can be
also seen in the learning curves in figure 3.11a: introducing more data continues the graph
to the right, where the gap between training set and test set eventually narrows down.
Unfortunately this can not be used in the presence of high bias issues, since adding new
instances will not help to reduce the bias error caused by a simple class of the hypothesis
function. Here, adding additional features or increasing the polynomial degree can cause
a more complex class of the hypothesis function, which could help avoiding the high bias
issues. Choosing a smaller set of features or reducing the polynomial degree, in turn, again
could fix high variance problems. Finally, the regularization parameter can be adjusted
to force the model using simpler or more complex class of the hypothesis function. There
exists no universal approach, though, on how to proceed when a model suffers from high
bias or high variance issues, but this has to be chosen individually depending on the actual
situation. We summarize these final ideas in table 3.2.
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Avoid Overfitting Avoid Underfitting

getting more training data -

reducing the set of features adding more features

reducing the complexity of
the class of hypothesis

functions

increasing the complexity of
the class of hypothesis

functions

increasing regularization reducing regularization

Table 3.2: Approaches which could help to avoid overfitting or underfitting
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Chapter 4

Representing and Preparing the
Data

Data is the most valuable resource for machine learning; however, it can also be the cause
of failures in the machine learning application, as emphasized by figure 3.8 where we have
shown the possible sources of error in a machine learning application. Providing and
preparing data, hence, is of great importance. This is why we decided to discuss this issue
in a separate chapter. In the following part of the thesis we train and test the machine
learning model using features, which are obtained directly from the geometry of crystal
structures.

The common description of the geometry of crystal structures, also used in standard
DFT calculations, is in terms of atomic positions and lattice vectors. This description is
discussed in more detail in section 4.1. While DFT codes are able to directly process this
information, this crystal structure description cannot be used for the machine learning
model, as argued in the beginning of section 4.2. In the same section we discuss the
alternative data representation, i.e. the input features, which we use for the machine
learning model. In particular, we clarify the features considered for the application of
ridge and lasso regression, and the kernel-based methods. In section 4.3 a discussion on
the crystal structures is given, followed by the introduction of a database cleaning process.
In the final section 4.4 we visually examine the data and investigate correlations in the
features.

Figure 4.1: A conventional unit cell of the crystal structure of diamond; the
unit cell contains eight atoms.

35



36 Chapter 4. Representing and Preparing the Data

A

B

Figure 4.2: Two equivalent representations of the same crystal structure. Unit
cell A contains two lattice points, whereas unit cell B contains a
single lattice point. The latter is referred to as the primitive unit
cell.

4.1 The Crystal Structures

Crystal structures are defined by a crystal lattice and a basis containing one or more
atoms, ions or molecules. The crystal lattice is described by the lattice, or basis, vectors:
a1, a2, a3. Any point on the crystal lattice can be described by a linear combination of
the lattice vectors

T = n1a1 + n1a2 + n1a3 , (58)

where T describes the translational vector pointing to a lattice point. We have already
used this notation in the discussion of Bloch’s theorem in section 2.4. The parallelepiped,
spanned by the three lattice vectors, is called the unit cell. In the three-dimensional case,
all crystal structures can be reduced to 14 crystal lattices, which are known as the Bravais
lattices [23].

Nevertheless, there are no restrictions on the definition of the lattice vectors, as long as
their translation covers the entire crystal. In figure 4.2 we show a graphical representation
of a two-dimensional crystal lattice. Here, the dots correspond to lattice points, which
could be any combination of atoms, ions or molecules. The two definitions A and B are
both valid, as the repetitive translation of their lattice vectors generates the entire crystal
lattice. However, definition B contains a single lattice point, and its corresponding unit
cell (shaded area) is referred to as the primitive unit cell. On the other hand, the unit
cell A is identified as a non-primitive, or conventional unit cell, and includes more than
one lattice point of the crystal lattice. A common conventional unit cell of the crystal
structure of diamond, containing eight atoms, is shown in figure 4.1.

The position of the atoms inside the unit cell are described by either absolute Cartesian
coordinates, or fractional coordinates of the lattice vectors. The latter defines the atomic
positions according to

R = x1a1 + x2a2 + x3a3 , (59)

where x1, x2, x2 are the fractional coordinates, and 0 ≤ x1, x2, x2 ≤ 1. A crystal structure
is thus described by 3N+9 coordinates: nine coordinates are needed to define the unit cell
by the lattice vectors, and three additional coordinates are used to describe the position
of each of the N atoms inside the unit cell.
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4.2 Feature Engineering

In this section we introduce the features used in our data representation, starting with a
discussion on the general properties required for a crystal structure representation. In the
previous section we have explained the common description of crystal structures in terms
of unit cells. The 3N + 9 coordinates, though, are not suitable to serve as features for a
machine learning model. This can be clarified by the first and most important property
of an ideal data representation for crystal structures:

Property i) invariance with respect to the choice of the unit cell.

In the previous section we have shown that the definition of the unit cell is not unique, i.e.
there are infinite ways to describe one and the same crystal structure with different unit
cells. The machine learning model would interpret the various descriptions incorrectly
and consider them as different structures. Hence, property i) emphasizes that any crystal
structure should be reduced to features which always have the same values, independently
of the unit cell. This ensures that predictions on new crystal structures are actually
improved by training data.

The second important property of an optimal data representation is:

Property ii) translational and rotational invariance.

This is a direct consequence of an obvious physical considerations: translating and rotating
a crystal should leave its properties unchanged. This means that the features should
exhibit the same value independently on the origin and on the rotation of the unit cell.

In addition,

Property iii) uniqueness,

should be fulfilled, i.e. two different crystal structures should not yield the same feature
values.

In particular for the use of the Gaussian kernel the ideal data representation should
also satisfy

Property iv) continuity.

For machine learning algorithms based on the Gaussian kernel it is beneficial that crystal
structures which have similar energies, have small distances in the feature space. Therefore,
two structures i and j which have similar features ‖x(i) − x(j)‖ → 0, should also show a
similar energy |E(i)−E(j)| → 0. Furthermore, small deviations in the geometry of a crystal
structure should cause small changes in its features, which can be actually motivated by
the continuity of the PES.

Finally, for the data representation used in this work we require

Property v) independence on the structure and system size.

The data representation should be designed to be applicable to various structures and
crystal sizes. Consequently, neither the number of features, nor the values of the fea-
tures should scale with the number of atoms inside the unit cell. This limits the feature
engineering to a mean value approach, but considerably increases the number of crystal
structures which can be used in the same machine learning application.

The data representation used in this thesis is based on these properties. In addition,
we also try to use features which contain physical and chemical information.
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Figure 4.3: The number density determines how many atoms are within a unit
volume.

From the available atomic positions Ri we obtain the radial interatomic distances:

dij = ‖Ri −Rj‖ . (60)

These quantities provide a useful basis for the further feature engineering, as they directly
fulfill the required properties i) and ii). In order to take the crystal periodicity into account,
we additionally determine interatomic distances from atoms inside the unit cell to atoms
in the neighboring unit cells. For further discussions, we use the index i to denote atoms
inside the unit cell and the index j is used for atoms in the super-cell.

In the following subsections we introduce short-range and long-range order features,
which will be used for ridge and lasso regression, as well as for the kernel-based methods.
We also present a radial distribution function and an angular distribution function, which
will be only considered for the kernel-based regression methods.

4.2.1 Number and Packing Density

We use the number density and the packing fraction as a system scale and long-range
order measure. Both quantities are intensive quantities, i.e. they are independent on the
system size.

The number density, here ρ, is a measure for the concentration of atoms in physical
space, and is determined by the number of atoms inside the unit cell and the volume of
the unit cell:

ρ =
N

Vunit cell
, (61)

where the volume of the unit cell is obtained using the triple product of the lattice vectors

Vunit cell = a1 · (a2 × a3) . (62)

By the definition, the number density is an isotropic and homogeneous quantity, and
represents a measures of how many atoms are within a unit volume, assuming atoms to
be of equal size (figure 4.3).

The packing fraction is a measure of how much of the unit cell volume is occupied by
the volume of the constituent atoms. In its commonly used definition, and assuming equal-
sized atoms, the packing fraction again is an isotropic and homogeneous measure, which
thus would highly correlate with the number density introduced before. However, we do
not assume equal-sized atoms for the packing fraction, in order to reduce the correlation to
the number density. In particular, here we consider that the volume of an atom in the unit
cell is determined by the distance to the nearest neighbors. We obtain the atomic radii and
volumes of atoms from interatomic distances, by successively determining the maximum
extent each atom can take in its environment. This approach yields individual atomic
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(a) Coordination number (b) Bond length

Figure 4.4: The coordination number determines the number of nearest neigh-
bors in the chemical environment of an atom; the bond length
corresponds to the distance to these neighbors.

volumes Vi, which are used to determine the packing fraction using following definition:

PF ≡
∑N

i=1 Vi
Vunit cell

. (63)

One intention, using the packing fraction in addition to the number density, is to create
a broad measure of the density distribution inside the structure: while the number density
is independent on the actual atomic positions inside the unit cell, the packing fraction takes
different values depending on how closely the atoms are arranged. We assume that this
measures are particularly important for unrelaxed structures, where interatomic distances,
within the unit cell, can differ considerably.

4.2.2 Coordination Number and Bond Length

The coordination number and the bond length represent the most essential features for
ridge and lasso regression. The coordination number and the bond length include short-
range information on the chemical environment of atoms at low computational cost.

The coordination number of an atom is equal to the number of neighboring atoms bound
to it; the bond length specifies the distance to these atoms. Determining the coordination
number in crystals consistently, though, can be challenging due to varying bond lengths in
the environment of atoms. Here, we use a self-consistent method, introduced in ref. [49],
which yields the effective coordination number and average bond length.

The effective coordination number is a fractional number of nearest neighbors, which
can be seen as a measure of how many atoms effectively are located in the environment of
an atom. In the following, we omit the expression effective for the coordination number.

The algorithm starts with an initial guess of the average bond length d̄i and iteratively
updates the quantity to the actual average bond length of the i-th atom. Using the
interatomic distances dij from (60), we update the average bond length of the i-th atom
according to

d̄i =
∑
j

dijpij , pij =
ef(dij)∑
j e

f(dij)
, f(dij) =

[
1−

(
dij

d̄i

)6
]
. (64)

Once the average bond length has converged, we use it to determine the coordination



40 Chapter 4. Representing and Preparing the Data

number of the i-th atom using

Ci =
∑
j

ef(dij) . (65)

This procedure is performed on the N atoms in the unit cell. To ensure the independence
on the system size, we average over the obtain quantities:

d̄ =
1

N

N∑
i=1

d̄i, C̄ =
1

N

N∑
i=1

Ci, σC =

√∑N
i=1(Ci − C̄)2

N
. (66)

We additionally determine the standard deviation of the coordination number to charac-
terize its distribution in the structure.

Furthermore, we use the same algorithm to determine the effective number and average
distance of second nearest neighbors in the structure. This is achieved by omitting the
interatomic distances dij , which correspond to first nearest neighbor distances.

4.2.3 Radial Distribution Function

Various definitions of a radial distribution function [14,15] have been used as data repre-
sentation for kernel-based methods. In this subsection we introduce a radial distribution
function for the machine learning application on mono-elemental crystal structures.

In general, the radial distribution function determines the ratio between the local num-
ber density ρ(r), at the distance r from a reference atom, and the bulk number density
ρ (61),

g(r) =
ρ(r)

ρ
. (67)

The local number density ρ(r) is determined by the number of atoms within a spherical
shell of radius r and infinitesimal thickness dr, centered at a reference atom. The picture
on the left-hand side of figure 4.5 visually illustrates this definition. For increasingly
large distances r, the local number density converges to the bulk number density, hence,
limr→∞ g(r) = 1.

The local number density with respect to atom i can also be obtained from the inter-
atomic distances dij , using

ρi(r) =
1

Vr

∑
j

θ(dij − r)θ(r + dr − dij) , (68)

where dr denotes the thickness and Vr the volume of the sphere shell. Averaging over the
atoms and using the definition of the number density (61), we obtain the expression:

g(r) =
Vunit cell

N2

1

Vr

N∑
i=1

∑
j

θ(dij − r)θ(r + dr − dij) . (69)

This is a continuous function, which has to be discretized in order to be used as an
input feature. Extending the infinitesimal thickness of the sphere to a finite thickness
dr → ∆r, corresponding to the bin size, simply achieves the desired intent. Furthermore,
for the practical use of the radial distribution function a cut-off distance rcut-off has to be
used. Both adjustable quantities, the bin size ∆r and the cut-off distance rcut-off, have to
optimized directly in the machine learning application, as their optimal value depends on
the crystal structures under study.



4.2. Feature Engineering 41

 []

dij

r
dr

g
(r

)

r  [A]°

Figure 4.5: The radial distribution function determines the ratio between the
local number density ρ(r) and the bulk number density ρ. The
local number density corresponds to the number of atoms within
a spherical shell of infinitesimal thickness dr. In crystal structures
the radial distribution function shows distinct peaks the nearest
neighbor distances.

Crystal structures are highly ordered structures, hence, their radial distribution func-
tion shows distinct peaks at the distance of nearest neighbors. Due to the Heaviside step
functions in equation (69) this characteristic violates the desired continuity of the radial
distribution function.

We apply a Gaussian smoothing on interatomic distances, δ(d − dij) → N (dij , σ
2
rdf)

with free smoothing parameter σrdf. As a consequence, the Heaviside step functions can
be replaced by an integral over the bin ranges. We arrive at the final expression for the
radial distribution function used in our machine learning application:

g(r) =
Vunit cell

N2

1

Vr

N∑
i=1

∑
j

∫ r+∆r

r

1√
2πσ2

rdf

exp

(
−(r − dij)2

2σ2
rdf

)
. (70)

The optimal degree of smoothing, again, has to be adjusted in the machine learning
application.

4.2.4 Angular Distribution Function

In this subsection we introduce an angular distribution function that provides information
on the bond angles in crystal structures. In a system with N atoms the total number of
angles between any three of them is N(N−1)(N−2)/2. However, for our machine learning
application we only consider angles for nearest neighbors, as these angles are sufficient to
determine the structure of a system.

The angle formed by atom j and atom k, measured at central atom i, is determined
by the the dot product

ϑjik =
180◦

π
cos−1

(
rij · rik
‖rij‖‖rik‖

)
, (71)

where rij and rik denote the position vectors, pointing from atom i towards atom j and
k. To simplify further discussions on the angular distribution function, we express angles
in degrees.

Based on the angular distribution function introduced in ref. [16], we additionally
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Figure 4.6: The angular distribution function determines the bond angles be-

tween nearest neighbors. Here, the angular distribution function is
described by a probability density P (ϑ).

introduce a weighting factor for angles

w(ϑjik) =
1

d4
ijd

4
ik

, (72)

where dij are the corresponding interatomic distances, or the lengths of the position vectors
dij = ‖rij‖. This definition adds a weight to angles, which is higher for close-range atoms.

Again, we use a Gaussian smoothing on angles, i.e. δ(ϑ − ϑjik) → N (ϑjik, σ
2
adf), in

order to ensure continuity of the angular distribution function. We discretize the angular
distribution function by binning the angles into a histogram, using a similar approach
as for the radial distribution function. By definition (71), angles occur in the range of
0◦ ≥ ϑ ≥ 180◦; therefore, we apply periodic boundary conditions, in order to do not
neglect any contributions outside the range, induced by the Gaussian smoothing process.
Furthermore, by using a weighting factor and considering only angles between nearest
neighbors, the amplitude of the resulting distribution does not have any meaning, hence,
we normalize the distribution for consistency. Our angular distribution function, thus,
equals a weighted probability density, given by

P (ϑ) =
1

A

N∑
i=1

∑
<j,k>nn
j 6=k 6=i

w(ϑjik)

∫ ϑ+∆ϑ

ϑ

1√
2πσ2

adf

exp

(
−

(ϑ− ϑjik)2

2σ2
adf

)
, (73)

where A refers to the normalization factor and < j, k >nn denotes all possible nearest
neighbor pairs of atom i. The angular distribution function, as the radial distribution
function, has to be optimized in the machine learning application. The angular distribution
function, though, has to be solely optimized in terms of the bin size ∆ϑ and the smoothing
parameter σadf, and does not have any cut-off quantities due to its periodicity.

4.3 Structure Generation and Database Cleaning

In this thesis we consider mono-elemental crystal structures of carbon and boron. The
carbon and boron crystal structures, though, are considered separately for the machine
learning applications. Carbon and boron are well-known for their polymorphism, i.e. the
ability to exist in more than one crystal structure. Carbon has this behavior due to orbital
hybridization, while boron is able to form multiple bonds due to electron deficiency. As
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Carbon Structures

Boron Structures

Figure 4.7: Fingerprint distances using the radial distribution function and the
angular distribution function. Points in the lower left corner cor-
respond to similar crystal structures. We discard duplicates to
improve the quality of the database.
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a consequence, the two crystalline systems provide a large number of complex crystal
structures, which at the same time are an ideal application and test case for our data
representation. In fact, their ability to form clusters with low internal symmetry renders
the energy prediction on these structures challenging.

As discussed in section 2.5, we have used random structure generation and minima
hopping [4] methods to generate our crystal structures for carbon and boron. From both
methods we have obtained relaxed structures, as well as unrelaxed structures. The crystal
structures are of varying system sizes, starting from two atoms per unit cell to 24 atoms
per unit cell.

We have repeated DFT calculations with a certain choice of the energy cut-off and the
Brillouin zone sampling, after we had obtained the data from the two structure prediction
methods. This has reduced any deviations in the internal energies due to differently used
DFT settings in the crystal structure prediction methods. Furthermore, we have performed
the final DFT calculations with an estimated error of 1-10 meV/atom. With our machine
learning model we want to achieve comparable prediction accuracies.

The crystal structures have been obtained from multiple generation runs, hence, the
same crystal structure may appear more than once in the database, i.e. the database con-
tains numerous duplicates. Here we want to emphasize again, that the machine learning
performance strongly depends on the quality of the data. Hence, the data should be as
good in quality as possible, hence, a typical approach is to clean the available database,
and discard bad data points, for instance outliers and duplicates. This process involves
either manually checking for bad data or the implementation of an algorithm, which auto-
matically filters and cleans the data. The latter is used in this thesis and will be introduced
in the following discussion.

Measuring the similarity between crystal structures has always been a concern in mate-
rials science, and yet no clearly defined method exists. Several fingerprint measures [33,34]
have been developed, to determine whether two crystal structures can be considered equal
or not. In this thesis, though, we use the simple definition of cosine distances [35].

First, we construct two fingerprint vectors Frdf and Fadf for each structure. We use the
radial distribution function (70) and the angular distribution function (73) to construct
the vectors according to

Frdf =

g(r1)
g(r2)

...

 , Fadf =

P (ϑ1)
P (ϑ2)

...

 , (74)

where investigations have shown that for our purpose the optimal choice of bin sizes and
free parameters is:

∆r = 0.05Å , rcut-off = 10Å , σrdf = 0.025Å , ∆ϑ = 5◦ , σadf = 2.5◦ . (75)

We define the cosine function, which measures the similarity between fingerprint vectors
of structure i and j, by

Dcos(F
(i),F (j)) ≡ 1− F (i) · F (j)

‖F (i)‖‖F (j)‖
. (76)

According to this definition, two similar structures yield a value close to Dcos = 0, while
structures that completely differ from each other have Dcos = 1.

We determine the Dcos values for all structure pairs; the results are shown in the
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Database Number of structures

Carbon − Minima 1400
Carbon − Mixed 7500

Boron − Minima 3500

Boron − Mixed 7500

Table 4.1: Databases for the machine learning application. The Minima
databases contain relaxed structures; the Mixed databases addition-
ally include unrelaxed structures.

scatter plot 4.7, where the difference in energies ∆E = |E(i) −E(j)| is additionally shown
as color code. We identify structure pairs on the lower left corner as duplicates and set
the following threshold for duplicates: if a structure pair shows

Carbon: (Drdf
cos < 0.10) AND (Drdf

cos < 0.10) AND (∆E < 10 meV/atom)

Boron: (Drdf
cos < 0.05) AND (Drdf

cos < 0.05) AND (∆E < 10 meV/atom)

we consider one of the two structures to be a duplicate and discard the structure from the
database.

Using this definition and data cleaning algorithm we discard all duplicates from the
database, to increase the quality of the data. To visualize the effect of this cleaning
process, we plot the energy distribution of structures in the database before and after the
data cleaning. The two situations are shown in figure 4.8 The energy distribution before
the data cleaning clearly suffered from skewness, i.e. the distribution is asymmetric, which
gradually tapers at one side and falls off rapidly at the other side. A characteristic of this
kind should be avoided in database, since it negatively affects the model weights in the
training process, resulting in a bad model performance.

Finally, we want to study the effect of including relaxed and unrelaxed crystal structures
on the machine learning application. For this, we additionally create a second database
for the carbon and boron structures, which only contains the relaxed, i.e. the minima,
structures. We label this database as Minima. The database containing the relaxed and
the unrelaxed structure we label as Mixed. In table 4.1 we give an overview of the datasets
with the final number of crystal structures included.

4.4 Data Monitoring

Data visualization is an useful concept to gain insights into large datasets. However,
these concepts are more effective for the use of ridge and lasso regression, than for the
kernel-based methods: ridge and lasso regression directly use the features in the hypothesis
function (31), while kernel-based methods use the features for determining the dual vari-
ables in the hypothesis function (47). The former approach allows a direct visualization of
correlations between features and the target value. In the case of kernel-based methods,
there is basically no point in doing so, since feature correlations have less effect on the
model performance.

We use scatter plots to visualize the correlation of the features considered for ridge and
lasso regression. For this specific purpose we only use the mixed databases as the inclu-
sion of unrelaxed structures gives a better representation of the data point distribution.
Furthermore, we only choose a reduced number of randomly chosen data points for the
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Figure 4.8: The energy distribution in the datbase before and after we have
cleaned it. The distribution containing duplicates shows a skewed
behavior, which is reduced by the data cleaning process.



4.4. Data Monitoring 47

Carbon Structures
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Boron Structures
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Figure 4.9: Visualizing correlations of features among each other, and with the
internal energy. Scatter plots of features, where points are aligned
diagonally, usually indicate a high correlation. Our features highly
correlate with the internal energies.
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visualization. Although any combination of two features can be used to create a scatter
plot, we use a certain selection of feature pairs, shown in figure 4.9.

From the plots it is evident, that the coordination number and the bond length (up-
per left panel) contain good information on the energies of carbon structures and boron
structures as well. The coordination number in combination with the dispersion in the
coordination number (lower right panel) also provides a useful measure for the energies.
We see that the packing fraction and the number density (lower left panel) correlate more
in carbon structures than in boron structures. This can be seen because the points tend to
align along the plot diagonal. Likewise the number and distance of second nearest neigh-
bors (upper right panel) seem to be more correlated for boron structures than for carbon
structures. Nevertheless, we assume the packing fraction, the number density, as well as
the number and distance of second nearest neighbors to be still useful for the machine
learning application, as their specific patterns clearly show a correlation to the energies.



Chapter 5

Learning Energies with Ridge and
Lasso Regression

In this chapter the crystal structure datasets are used to train a machine learning model on
the internal energies using ridge and lasso regression. We have discussed and preprocessed
the data in chapter 4. In particular, we have discarded duplicates and obtained features
from the crystal structures to serve as an input for the machine learning model. Table 5.1
gives a list of the features used for ridge and lasso regression. The crystal structure datasets
are considered separately in order to study the performance of the machine learning model
with regard to relaxed and mixed – i.e. relaxed and unrelaxed – structures, as well as in
dependence on carbon and boron structures. Furthermore, we use ridge regression and
lasso regression to study the effect of `1- and `2-regularization.

In the first half of this chapter we improve the performance of the machine learning
model using basis function expansions and regularization. The optimization includes the
adjustment of two parameters: the degree of polynomial of the basis function expansion
and the regularization parameter. In section 5.1 we use the model selection approach to
optimize the degree of polynomial. The regularization path method is used in section 5.2
to obtain the optimal regularization parameter. We perform the model selection at three
different levels of regularization, since the degree of polynomial and regularization affect
over- and underfitting simultaneously. Subsequently, three degrees of polynomial are used
in the regularization path approach.

In the second half of this chapter we use the model at optimal settings to obtain the
learning curves in section 5.3. As final measurements the model’s predictive power is rated
in section 5.4.

Features used

Number density

Packing fraction

Coordination number

Dispersion in the coordination number

Bond length

Number of second nearest neighbors

Distance of second nearest neighbors

Table 5.1: Features used for the application of ridge and lasso regression.

49
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Polynomial degree d Number of features N

1 8
2 36
3 120
4 330
5 792
6 1716

7 3432

Table 5.2: Number of features N in the ML application at polynomial degree
d. Lasso regression may find a sparse selection of features effectively
used.

The machine learning algorithms are implemented using the sci-kit learn library
for python [40]. The features are scaled using the StandardScaler and basis function
expansions are applied using the PolynomialFeatures function. We use the mean squared
error to compare the model performance during the optimization process and the learning
curves. In the last section of this chapter we use various scoring parameters to analyze
the predictive power of the model.

5.1 Model Selection

The model selection approach has been introduced in section 3.4.4. We apply a polynomial
basis function expansion on the features to provide a more complex class of the hypothesis
function, which the model can use to estimate the energies. Polynomial degrees higher than
the optimal cause overfitting; degrees lower make the class of the function too simple, which
results in underfitting issues. High polynomial degrees, in addition, cause an explosion of
the features, which is illustrated for our specific application in table 5.2.

We stepwisely increase the degree of polynomial to search for the transition from under-
fitting to overfitting and hence to find the optimal degree. The performance is measured
at each step using cross-validation with 50 repetitions. As soon as the model clearly suffers
from overfitting further measurements at higher degrees are omitted. Here, we determine
overfitting by an increased error on the test set and furthermore by a high variance in
the sequence of performances. The influence of regularization is taken into account by
performing the model selection at three different degrees of regularization. The levels of
regularization are chosen according to low, intermediate and high regularization.

The model selection curves using ridge regression are shown in figure 5.1. The results
from the application of lasso regression are given by figure 5.2. The plots outline the
measured mean squared error as a function of the polynomial degree. The lowest prediction
error, measured on the test set, is indicated by a horizontal line to comparably show the
best performance at each regularization level. It is evident that the significant rise in the
number of features causes a rapid transition to overfitting, especially using ridge regression.
Lasso regression is able to partly suppress this behavior. In the case of minima structures,
optimal performances are obtained at d = 2 and d = 3. These values are consistent for
carbon and boron structures, as well as for both regression methods. In contrast, the
hypothesis function for the mixed structures has to be more complex, shown by greater
optimal degrees of the polynomial. Here, d = 4 and d = 5 achieve the lowest errors. For
the regularization path approach in the next section we additionally consider d = 4 in the
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Carbon Structures

Boron Structures

Figure 5.1: Model selection using ridge regression at low (λ = 1e−02), inter-
mediate (λ = 1e+00) and high (λ = 1e+02) regularization. The
lowest prediction error determined on the test set is highlighted by
a horizontal line.
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Carbon Structures

Boron Structures

Figure 5.2: Model selection using lasso regression at low (λ = 1e−06), inter-
mediate (λ = 1e−04) and high (λ = 1e−02) regularization. The
lowest prediction error determined on the test set is highlighted by
a horizontal line.
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Database Regression method d λ

Carbon − Minima
Ridge 2 1e+00

Lasso 2 1e−03

Carbon − Mixed
Ridge 4 1e+00

Lasso 5 1e−04

Boron − Minima
Ridge 2 1e+00

Lasso 2 1e−03

Boron − Mixed
Ridge 4 1e+00

Lasso 5 1e−04

Table 5.3: Optimal values of the polynomial degree d and the regularization
parameter λ using ridge and lasso regression.

case of minima structures and d = 6 for the mixed case, as high regularization may reduce
the overfitting issue.

5.2 Regularization Path

Regularization affects over- and underfitting at a more adjustable level, compared to the
choice of discrete degrees of polynomial. This is possible because the regularization pa-
rameter is adjustable at a continuous range of values.

We have obtained three optimal degrees of polynomial in the previous section, which
are used for the regularization path approach in this section. Cross-validation with 50
repetitions is used and regularization is chosen in the transition range from high regu-
larization to low regularization. Reducing regularization is stopped as the model clearly
suffers from overfitting issues.

The regularization paths are given by figure 5.3 for ridge regression and 5.4 for lasso
regression. Here, the positive x-direction corresponds to the transition from low regular-
ization to high regularization. The lowest error achieved on the test set, again, is marked
with a horizontal line. At first it becomes apparent that regularization could not fix the
overfitting issues at d = 4 in the minima and d = 6 in the mixed case. This is shown by
high and unstable prediction errors on the test set. Overfitting due to numerous features,
hence, overwhelms the effect of regularization. Neither can `1-regularization reduce the
number of features in lasso regression, and thus suppress the overfitting issues. In terms
of ridge regression, the model seems to achieve the lowest prediction errors at a polyno-
mial degree of d = 2 for the minima and d = 4 for the mixed structures. Accordingly,
we determine these degrees in combination with a regularization λ = 1e+00 as optimal
settings. Lasso regression, in contrast, achieves the best performances on mixed structures
at d = 5 and regularization λ = 1e−04; consequently this parameters are determined as
optimal settings. In the event of minima structures we determine the optimal settings
with parameters d = 2 and λ = 1e−03, since the model suffers from overfitting at d = 3.
We summarize the optimal settings in table 5.3.
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Carbon Structures

Boron Structures

Figure 5.3: Regularization path using ridge regression at different polynomial
degrees. The lowest prediction error determined on the test set is
highlighted by a horizontal line.
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Carbon Structures

Boron Structures

Figure 5.4: Regularization path using lasso regression at different polynomial
degrees. The lowest prediction error determined on the test set is
highlighted by a horizontal line.
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5.3 Learning Curves

The learning curve method is a widely used diagnostic tool, which has been introduced in
section 3.4.3. Learning from a training dataset incrementally yields useful information on
the training process and the final model performance. Here it should be mentioned that
the course of the learning curves is clearly defined by our specific choice of parameters.
We determine the model curves at settings listed in table 5.3 using again cross-validation
with 50 repetitions.

The obtained learning curves are given by figure 5.5, in which results using ridge re-
gression can be found at the left-hand side and the learning curves from lasso regression
are shown on the right. Horizontal lines indicate the final prediction errors on the test set
and the training set, highlighting the gap between the errors at the maximum available
data. In the training process no distinct difference between ridge regression and lasso
regression can be observed. This is consistent with the mentioned statement, that ridge
and lasso regression yields equal results, when both methods are optimized in the parame-
ters. Furthermore, this validates that we have determined the optimal parameters for the
two methods. In the case of carbon structures, the model performance on the test and
the training set converges moderately towards equal prediction errors within a reasonable
error range. This indicates that the model suffers neither from overfitting, nor underfit-
ting. It can be observed that boron structures yield a similar performance The learning
curves in case of the minima boron structures, though, show a different behavior: the
model learns more rapidly and errors flatten out towards larger training sets, which would
allow an improvement of the complexity of the class of the hypothesis function. In the
previous section neither increasing the polynomial degree, nor reducing the regularization
could improve the performance on the test set; therefore we assume that the features in
table 5.1 are missing information, which is needed to learn and estimate the energies of
minima boron crystals more accurately and consistently.

5.4 Model Performance and Discussion

The application of ridge and lasso regression has been optimized and analyzed in previous
sections. The optimization was done with respect to the datasets and the regression
methods. In this last section of the chapter using ridge and lasso regression, the optimal
parameters are used to make final predictions. Here, the model performance is measured
only on the test set and rated using multiple scoring parameters. For the final predictions
we use the model parameters listed in table 5.3 and cross-validation with 100 repetitions
to measure the performance.

Figure 5.6 gives a visual representation of predicted machine learning energies, com-
pared to energies obtained from density function theory. The corresponding scoring pa-
rameters can be found in table 5.4. Contours in the background represent the model’s
prediction tendency at that certain energy domain. The dots correspond to sample predic-
tions; their density in the case of the mixed structures is consistent with the distribution
given in figure 4.8. Thin lines, above and below the solid line, correspond to a 2%- and
5%-deviation from the DFT energies. The inset shows a normalized distribution of the
residual errors

Again, neither the prediction plots, nor the scoring parameters show a distinct dif-
ference between ridge and lasso. This is why we assume that an optimized `1- and `2-
regularization yields the same prediction performance on our crystal structures and none
of both has an advantage over the other in terms of prediction accuracy.
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Carbon Structures

Boron Structures

Figure 5.5: Learning Curves at optimal model parameters. The horizontal lines
highlight the final prediction errors determined on the test and
training set.
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Database Regression method
R2 RMSE MAE

[%] [meV/atom] [meV/atom]

Carbon − Minima
Ridge 60 ± 5 194 ± 11 146 ± 7

Lasso 61 ± 5 196 ± 10 151 ± 8

Carbon − Mixed
Ridge 75 ± 2 182 ± 4 134 ± 3

Lasso 74 ± 2 184 ± 4 135 ± 3

Boron − Minima
Ridge 62 ± 9 88 ± 11 62 ± 3

Lasso 63 ± 8 86 ± 8 62 ± 2

Boron − Mixed
Ridge 82 ± 1 90 ± 1 68 ± 1

Lasso 82 ± 1 90 ± 1 68 ± 1

Table 5.4: The model performance measured by the coefficient of determination
R2, the root mean squared error (RMSE) and the mean absolute
error (MAE).

The error values in table 5.4 do not show a distinct improvement of the model per-
formance as also unstable structures are included in the database. In case of the boron
structures, the regression on mixed structures yields a higher prediction error than on the
minima structures. However, the performance on mixed structures, caught by figure 5.6,
seems to be better with regard to overall predictions measured on the entire energy range.
This is verified by the listed R2-values, which is a measure of how well the variance in
the energy values is explained by the model. Here, the mixed structures clearly show an
improvement. We assume that this behavior is explained by the distributions of energies,
which in the case of the minima structures is denser accumulated within a certain energy
domain, as it can be seen by the dots in the figure. This, in turn, induces the machine
learning model to adjust its weights according to the accumulated structures, which again
yields a comparably low prediction error, when these structures appear in the test set due
to cross-validation. Therefore, we suggest training a machine learning model, performing
ridge or lasso regression on energies of minima crystal structures, with a more uniformly
distributed training set.
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Figure 5.6: Model predictions: a comparison between predicted ML energies
and DFT energies. The background contours represent the predic-
tion tendency of the model; dots are sample predictions. The inset
axis shows the distribution of the residual errors. The thin lines
correspond to a 2%- and 5%-deviation from DFT energies.
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Chapter 6

Learning Energies with
Kernel-Based Regression

In this chapter the application and optimization of kernel-based regression methods are
discussed. In the previous chapter we have used ridge and lasso regression, where initial
features have been transformed to a higher-dimensional feature space using polynomial
basis function expansions. Kernel-based methods, though, usually provide a more feasible
application of a complex class of the hypothesis function: the kernel trick enables access
to a high- or infinite-dimensional features space at low computational cost. In this case,
limiting the total number of used features has a negligible effect on the performance; hence,
we can use any number of features to serve as data representation for the special use of
the Gaussian kernel.

On that account, we have introduced a radial distribution function (section 4.2.3) and
an angular distribution function (section 4.2.4). In combination with the features from
the previous chapter, these features provide an unique data representation for kernel-
based regression methods. Nevertheless, the continuous functions have to be described by
a discrete set of features, which in turn demands the adjustment of additional parameters,
such as the bin size, the cut-off distance and the smoothing parameter.

With figure 3.8 we have given a brief overview on the components of a machine learning
application and its sources of errors existing in the data, the data representation and
the model itself. Here we note that the optimal parameters of the machine learning
model – especially the kernel coefficient – are affected by the specific choice of parameters
used in the discretization of the data representation. Hence, we carefully conduct the
model optimization step by step, starting with the discretization of the radial distribution
function in section 6.1. The binning of the angular distribution function is treated in
section 6.2. Kernel ridge regression with default model parameters is used to optimize the
data representation.

We additionally use support vector regression from section 6.3 onwards, to study the
model performance using the ε-insensitive cost function. Here, we study the model perfor-
mance in terms of prediction accuracy and do not compare computational performances
of the different regression methods. In section 6.3 the kernel coefficient is adjusted, as well
as model parameters of kernel ridge regression and support vector regression. The optimal
settings are used in section 6.4 and 6.5 to obtain the learning curves and final predictions.
We again measure the model performance throughout the optimization process by the
mean squared error, using cross-validation with 50 repetitions.
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Figure 6.1: Optimizing the RDF. The bin size and the cut-off distance deter-
mine the resolution of the discretization of the function. The lowest
prediction error obtained on the test set is highlighted by a hori-
zontal line.
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Figure 6.2: Adjusting the Gaussian smoothing of the RDF. The smoothing is
clearly optimal when the parameter is set equal to the bin size used
in the RDF.

6.1 Optimization of the Radial Distribution Function

The application of a radial distribution function, in data representations for machine
learning models, is well known in literature [14,15]. Using the radial distribution function
inefficiently, though, can have serious consequences: a highly-resolved radial distribution
function describes structures too differently, which causes a failure of the Gaussian kernel
measuring similarities between structures. This issue corresponds to overfitting, causing
large errors in generalized predictions.

In this section we optimize the radial distribution function (70) on the datasets, by ad-
justing the bin size ∆r, the cut-off distance rcut-off and the smoothing parameter σrdf . The
bin size and the cut-off distance determine the characteristics of the radial distribution
function, this is why both quantities have to be optimized simultaneously. The smoothing
parameter can be adjusted independently. Thus, we initially set the smoothing parameter
equal to the bin size. We use kernel ridge regression with scikit-learn’s default settings
of hyperparameters to perform the optimization at fixed model parameters. We addition-
ally use features from the previous chapter (table 5.1) in the data representation, to take
long range order into consideration; the angular distribution function is not used in this
section.

Figure 6.1 shows the mean squared error as a function of the bin size, measured at cut-
off distances rcut-off = 5 Å, 10 Å, 15 Å. Horizontal lines indicate the lowest errors achieved
on the test set. The results of the minima structures show that the lowest prediction errors
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Database ∆r [Å] rcut-off [Å] σrdf [Å] ∆ϑ [◦] σadf [◦]

Carbon − Minima 0.1 5 0.1 15 15

Carbon − Mixed 0.1 15 0.1 15 15

Boron − Minima 0.15 5 0.15 10 10

Boron − Mixed 0.2 15 0.2 10 10

Table 6.1: Optimal parameters for the discretization of the RDF (∆r, rcut-off,
σrdf ) and the ADF (∆ϑ, σadf ).

are achieved at the cut-off distance rcut-off = 5 Å. Beyond that distance, the model starts
to overfit the data, especially in combination with small bin sizes. In the case of mixed
structures, though, the radial distribution function with the long range cut-off distance
rcut-off = 15 Å yields the best performances. The optimal bin size for the carbon structures
is ∆r = 0.1 Å. The bin size for boron structures is optimal for the minima structures at
∆r = 0.15 Å and ∆r = 0.2 Å for the mixed structures.

We take these settings to determine the optimal smoothing parameter by measuring
the performance using the parameter at fractions or multiples of the bin size. The results
are given by figure 6.2. The plots show a common trend: the smoothing is optimal when
the free parameter is set equal to the bin size. Table 6.1 contains the parameters obtained
in this section.

6.2 Optimization of the Angular Distribution Function

Features used in the previous sections do not contain a detailed description of angles
between nearest neighbors; an essential, yet unexploited, information. In this section we
use the angular distribution function, discussed in section 4.2.4, to further develop the
data representation with respect to bond angles. Again, the angular distribution function
has to be described through binning, entailing the threat to overfit the data. An optimized
angular distribution function potentially improves the data representation and reduces the
bias error. The binning of the angular distribution function needs to be adjusted in terms
of the bin size ∆ϑ and the smoothing parameter σadf . Due to its periodicity the angular
distribution function does not have any cut-off parameter.

We measure the model performance subject to the bin size and the smoothing parame-
ter of the angular distribution function, including the optimized data representation from
the previous section. The bin size is chosen with ∆ϑ = 5◦, 10◦, 15◦ and the smoothing
parameter, again, as fraction and multiple of the bin size.

Figure 6.3 shows the measured mean squared error as a function of the smoothing
parameter using different bin sizes. The results show that the angular distribution with
bin size ∆ϑ = 15◦ gives the best performance on both carbon datasets. In contrast, the
model achieves the lowest prediction errors on the boron structures using the bin size
∆ϑ = 10◦.

As for the radial distribution function, the smoothing is optimal when the parameter is
set equal to the bin size. We summarize the determined parameters for the discretization
of the radial distribution function and the angular distribution function in table 6.1.
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Carbon Structures

Boron Structures

Figure 6.3: Optimizing the ADF by adjusting the bin size ∆ϑ and the smooth-
ing parameter σadf . The lowest prediction error determined on the
test set is highlighted by a horizontal line.
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Database Regression method γ λ ε C

Carbon − Minima
KRR 1/5000 1e−04 - -

SVR 1/5000 - 0.05 1e+03

Carbon − Mixed
KRR 1/1000 1e−05 - -

SVR 1/1000 - 0.05 1e+04

Boron − Minima
KRR 1/10000 1e−04 - -

SVR 1/10000 - 0.05 1e+03

Boron − Mixed
KRR 1/10000 1e−05 - -

SVR 1/10000 - 0.05 1e+03

Table 6.2: Optimal kernel and model parameters of kernel ridge regression and
support vector regression. The same kernel coefficient γ can be used
for kernel ridge regression and support vector regression.

6.3 Fine-Tuning of the Kernel and Model Parameters

In this section the machine learning model is adjusted in terms of hyperparameters, such
as the regularization parameter λ and the kernel coefficient γ. We additionally use support
vector regression to compare the model performance using the ε-insensitive cost function.
The application of support vector regression demands the additional adjustment of the
penalty tolerance ε and the penalty parameter C; latter corresponds to the concept of
regularization.

First, we optimize the kernel coefficient γ, which appears in the Gaussian kernel defini-
tion (46) and determines the sensitivity to differences in feature vectors; here, the feature
vectors are given by the data representation. Hence, the kernel coefficient regulates the
sensitivity to differences of structures in the data representation. Its optimal value de-
pends entirely on the data; strictly speaking on the distances x−x′ we have adjusted with
the optimization of the data representation. Therefore, the same kernel coefficient can be
used for kernel ridge regression and support vector regression as well, since we are using
the same data representation for both methods.

First, we use kernel ridge regression with the optimized data representation, listed in
table 6.1. We choose three different values for the kernel coefficient and measure the
model performance as a function of the regularization parameter λ. The results are given
in figure 6.4. The kernel coefficient for the carbon structures is optimal at γ = 1/5000
for the minima and γ = 1/1000 for the mixed dataset. The prediction on the two boron
structure sets is optimized at the kernel coefficient γ = 1/10000. The optimal values for
the regularization parameter λ are listed in table 6.2.

We use the obtained kernel coefficients to adjust the penalty tolerance ε and penalty
parameter C using support vector regression. The results are given in figure 6.5. We
notice that the penalty tolerance is optimal at ε = 0.05 for all structure sets. We list
the optimal penalty parameter and furthermore all parameters obtained in this section in
table 6.2.
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Figure 6.4: Determining the optimal kernel coefficient γ and the regularization
parameter λ of kernel ridge regression. The lowest prediction error
determined on the test set is highlighted by a horizontal line.
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Carbon Structures

Boron Structures

Figure 6.5: Determining the optimal penalty tolerance ε and penalty parameter
C, used by the support vector regression. The lowest prediction
error determined on the test set is highlighted by a horizontal line.
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6.4 Learning Curves

The learning curves at the optimal settings are shown in figure 6.6. With respect to
the learning process, we do not observe any significant difference between kernel ridge
regression and support vector regression. Both regression methods show an equal learning
progress when the number of training examples is incrementally increased. The learning
curves do not show any serious over- or underfitting issues. However, one can already notice
that the performance of support vector regression on the mixed dataset is remarkable worse
than the performance of kernel ridge regression. This will be validated quantitatively in
the next and final section of this chapter.

We further notice that the prediction error on the training set, using kernel ridge
regression on the carbon mixed structures, is completely reduced, i.e. the model achieves
perfect predictions on the training set. This in turn implies, that we have completely
reduced the bias error in the machine learning application, while we have also optimized
the performance on the test set. Therefore, we assume that the gap between the training
and the test set in the case of the mixed carbon structures already corresponds to the
generalization gap; this also means that the model performance cannot be further improved
significantly.

6.5 Final Prediction and Discussion

To determine the predictive power of our machine learning model we use the optimal
parameters listed in table 6.1 and 6.2. Cross-validation is used with 100 repetitions to
obtain the mean and the standard deviation of the scoring parameters.

The measured values are given in table 6.3; the predictions are visualized in figure 6.7.
Compared to the results of ridge and lasso regression, one can observe a great improvement
of the model performance using kernelized regression methods. In the case of the mixed
datasets, kernel ridge regression achieves a mean absolute error of 9.5 meV/atom on carbon
structures and 16.0 meV/atom on boron structures. These prediction errors are far smaller
than errors made on the minima structures using kernel ridge regression, as well as using
support vector regression on any dataset. We assume that these observations share a
common explanation: each dataset is a sample of the potential energy surface, which in the
case of the dataset containing solely relaxed structures is a sparse representation compared
to dataset including also unrelaxed structures. Hence, the denser representation of the
potential energy surface in the case of mixed structures allows more accurate predictions
because the Gaussian kernel learns the potential energy surface more precisely. When only
relaxed structures are used in the dataset, the information from unstable structures is
missing; this is why the model predicts energies less well. Since support vector regression
generally obtains a sparse representation, the computational advantage – which is not
taken into account in this thesis – is obtained at the expense of the prediction accuracy.
The difference in prediction errors between kernel ridge regression and support vector
regression is less significant used on the minima datasets.

With the model performance achieved using kernel ridge regression on the mixed struc-
ture sets, we assume to have optimized the machine learning application towards prediction
errors comparable to the DFT calculations. In particular, we have seen from the learning
curves that in case of the carbon mixed structures we could reduce the bias error com-
pletely; therefore, we expect that the error of 9.5 meV/atom cannot be further reduced
significantly, but this error already reflects the approximate statistical error of the under-
lying system. In the case of the boron structures, we assume to be able to achieve an
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Carbon Structures

Boron Structures

Figure 6.6: Learning Curves at optimal model parameters. The horizontal lines
highlight the final prediction errors on the test and training set.
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Database Regression method
R2 RMSE MAE

[%] [meV/atom] [meV/atom]

Carbon − Minima
KRR 91.2 ± 1.4 89.5 ± 4.5 67.5 ± 3.0

SVR 90.6 ± 1.7 91.0 ± 5.5 68.5 ± 3.5

Carbon − Mixed
KRR 99.7 ± 0.1 19.0 ± 3.5 9.5 ± 0.5

SVR 98.3 ± 0.2 45.5 ± 2.0 37.5 ± 1.0

Boron − Minima
KRR 85.9 ± 1.8 53.5 ± 3.0 39.0 ± 1.5

SVR 85.7 ± 1.4 52.5 ± 2.5 38.5 ± 1.0

Boron − Mixed
KRR 98.1 ± 0.3 28.5 ± 2.0 16.0 ± 0.5

SVR 96.4 ± 0.2 38.5 ± 1.5 32.5 ± 1.0

Table 6.3: Model performance measured by the coefficient of determination R2,
the root mean squared error (RMSE) and the mean absolute error
(MAE).

equal error, if more crystal structures were used for the optimization and in the training
process.
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Figure 6.7: Model predictions: a comparison between predicted ML energies
and DFT energies. The background contours represent the predic-
tion tendency of the model; dots are sample predictions. The inset
axis shows the distribution of the residual errors. The thin lines
correspond to a 2%- and 5%-deviation from DFT energies.



Chapter 7

Conclusion

Machine learning models are capable of predicting material properties with accuracies
comparable to first-principles methods, but significantly reduced computational cost. In
order to achieve low prediction errors, the machine learning application has to be optimized
on the system under study; in particular, in terms of data, data representation and model
parameters.

In this thesis we presented the application of a machine learning model to predict
DFT energies for mono-elemental crystal structures of carbon and boron. The discussion
on DFT and used crystal structure prediction techniques was given in chapter 2. We
presented the regression methods considered in this work in chapter 3. The discussion on
the available crystal structures and the used data representation was covered in chapter 4.
Chapter 5 presented the optimization and prediction accuracy of ridge and lasso regression.
The results using kernel ridge regression and support vector regression were provided in
chapter 6.

Our results showed that kernel ridge regression performs best among the various regres-
sion methods. With the use of the Gaussian kernel and an optimized data representation
we could achieve a steady prediction accuracy of 99.7% on the carbon and 98.1% on the
boron structures in terms of R2-values. The corresponding prediction errors, measured by
the mean absolute error, were 9.5 meV/atom for the carbon and 16.0 meV/atom for the
boron structures.

These prediction accuracies were obtained on datasets which included relaxed and
unrelaxed structures; applying machine learning on relaxed structures only could not
achieve the same prediction accuracies. This behavior was explained by the particular
choice of the Gaussian kernel, which makes predictions on new structures according to
the similarity to learned structures. Including unrelaxed structures in the training process
gave a more detailed presentation of the potential energy surface, and hence a better
starting point for the algorithm to measure similarities. Support vector regression could
not obtain equal prediction accuracies, since the algorithm uses for the prediction a sparse
selection of training examples. Ridge and lasso regression do not apply kernel functions,
why the limited extent of the data representation could be seen as reason for less accurate
energy predictions.

With our optimized data representation and machine learning model, capable of mak-
ing predictions with accuracies of DFT calculations, we provide the basis for further de-
velopment and improvement of machine learning applications on mono-elemental crystal
structures. As open questions a few interesting points can be mentioned. The data rep-
resentation was tested on crystal systems containing up to 24 atoms. The prediction
accuracy and model performance using the same data representation on larger systems
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has not been validated, and represents an unanswered question. Furthermore, the ma-
chine learning estimation of further material quantities could be tested; for instance the
prediction of the density of states, the band gap or the hardness may be of interest for
practical implementations in materials science. Finally, extending the data representation
for the machine learning application on crystal structures of binary compounds would
improve the field of application greatly.
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Appendix A

Conventions

Throughout this thesis, we use Hartree atomic units:

~ = e = me =
1

4πε0
= 1 , (77)

where ~ is the reduced Planck’s constant, e the elementary charge, me the electron mass
and ε0 the vacuum permittivity. Furthermore, we use a short hand notations for electronic
and atomic coordinates:

re ≡ (r1, .., rN ) , Rn ≡ (R1, ..,RM ) . (78)

General math notation

Symbol Meaning

≡ Defined as
→ Tends towards
∞ Infinity
∝ Proportional to
∈ Is an element of
R Real numbers
⊗ Tensor product
! Factorial
d Derivative
∂ Partial derivative
δ Functional derivative
∇ Vector of first derivatives
∆ Difference
〈 Ψ | Bra vector
| Ψ 〉 Ket vector
{xi} Set
|x| Absolute value
x̄ Mean value
x Vector
xT Transpose of a vector

‖x‖ Euclidean or `2-Norm, ‖x‖ =
√∑

i x
2
i
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X Matrix
X−1 Inverse of a matrix
XT Transpose of a matrix
O Order of magnitude
θ Heaviside-function

Machine learning/statistics notation

Symbol Meaning

β Parameter vector

β̂ Estimate of β
x Feature vector

x
(i)
j j-th feature of the i-th training example

φ(x) Basis function expansion of feature vector x

hβ̂ Hypothesis function with estimated parameters β̂

J(β̂) Cost function
IN Identity matrix of dimension N
X Design matrix
K Kernel matrix
κ Kernel function
α̂ Estimate of dual variable
p(x) Probability density
p(x|y) Conditional probability density of x given y
N Gaussian distribution



Appendix B

Maximum a Posteriori Estimation

In the following section, we discuss the parameter estimation in linear regression from a
probabilistic point of view, using Bayesian probability theory. The discussion is based on
the book by Kevin P. Murphy [50]. The fundamental idea of Bayesian probability theory
is to express probability in terms of the uncertainty or knowledge of an event, rather than
long term frequencies. Central object is Bayes’ theorem which is given by:

posterior =
likelihood× prior

normalization
. (79)

The posterior represents the probability density p(β̂|D) for the weight parameters β̂ of
the underlying linear relationship, given the sample pairs D = {(x(i), y(i))}Mi=1. This
probability density is given by the product of the likelihood and the prior. The likelihood
p(D|β̂) describes the probability for the data D, given the linear relation at the parameters
β̂. The prior p(β̂) represents the probability density for the weights β̂ based on suitable
assumption or constraints. We express Bayes’ theorem (79) as follows:

p(β̂|D) =
p(D|β̂)p(β̂)

p(D)
, (80)

where p(D) represents the normalization factor. A possible point estimate of optimal
weights β̂ is given by the mode of the posterior distribution, which equals its maximum
and is referred to as the maximum a posteriori (MAP) estimate.

B.1 Ordinary Least Squares

For the standard ordinary least squares (OLS) approach, we assume an uniform prior
p(β̂) = const. In this case, the MAP equals the maximum of the likelihood, referred to as
the maximum likelihood estimate (MLE), which can be formally expressed by

ˆ̂
βMLE = argmaxβ̂ p(D|β̂) . (81)

We assume that the statistical error in the data, hence the observed target value y, is
Gaussian distributed:

p(y|x, β̂) = N (y|β̂Tx, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(y − β̂Tx)2

)
, (82)
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where β̂Tx represents the theoretical mean and σ2 the variance. Furthermore, we assume
the M training examples to be independent and identically distributed idd. Thus, the
log-likelihood is given by

log p(D|β̂) = log

M∏
i=1

p(y(i)|x(i), β̂) =

M∑
i=1

log p(y(i)|x(i), β̂) . (83)

For practical reasons, we express the MLE in terms of the negative log-likelihood (NLL)
to determine the optimal weights which minimize the NLL:

NLL(β̂) = −
M∑
i=1

log

[
1√

2πσ2
exp

(
− 1

2σ2
(y(i) − β̂Tx(i))2

)]
=
M

2
log(2πσ2) +

1

2σ2
RSS(β̂) .

(84)

Here we have used the definition of the residual sum of squares (RSS),

RSS(β̂) =

M∑
i=1

(y(i) − β̂Tx(i))2 . (85)

The RSS is convex in the weights β̂, hence numerical optimization methods, e.g. gradient
descent, can be used to determine its minimum. Typically, one divides the RSS by the
number of given data points, which results in the mean squared error (MSE):

MSE(β̂) =
1

M

M∑
i=1

(y(i) − β̂Tx(i))2 . (86)

The optimization of the weight parameters in machine learning is referred to as minimizing
the cost function J(β̂); here given by the MSE.

To determine the minimum analytically, we use the vectorized form of the given labels
and features from (33) and (34), to rewrite the RSS according to:

RSS(β̂) = (y −Xβ̂)T (y −Xβ̂)

= yTy − yTXβ̂ − (Xβ̂)Ty + (Xβ̂)T (Xβ̂)

= yTy − 2 · (XTy)T β̂ + β̂T (XTX)β̂ .

(87)

We use
∂
(
bTa

)
∂a

= b ,
∂(aTAa)

∂a
= (A+AT )a (88)

to obtain the derivative of the RSS with respect to the weights β̂:

∂ RSS(β̂)

∂β̂
= 2 · (XTXβ̂ −XTy) . (89)

The minimum of (89), hence the optimal weights β̂, is given by the closed form solution,
referred to as the normal equations:

β̂MLE = (XTX)−1XTy . (90)
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The MLE yields the optimal weights for modeling the data, exclusively used in the op-
timization and training process. As a consequence, this method is prone to overfit the
data.

B.2 Gaussian & Laplacian Prior

In order to reduce overfitting, and aim for a more general choice of weights, we encourage
the weights to be small by defining a zero-mean Gaussian prior:

p(β̂) =
N∏
j=1

N (β̂j |0, τ2) . (91)

Here, the free parameter τ2 controls the strength of the prior, and we do not put any con-
straint on the bias weight β̂0. Consequently, the MAP estimate is given by the likelihood
and the non-uniform prior:

β̂MAP = argmaxβ̂

 M∑
i=1

logN (y(i)|β̂Tx(i), σ2) +

N∑
j=1

logN (β̂j |0, τ2)

 . (92)

Again, we have used a more convenient expression by taking the logarithm. Similar to the
previous approach, we obtain an expression for the new cost function:

J(β̂) =
1

M

M∑
i=1

(y(i) − β̂Tx(i))2 + λ
N∑
j=1

β̂2
j , (93)

where we have defined a regularizaton parameter with λ ≡ 1/2τ2. The first term in (93)
corresponds to the OLS approach, while the second term comes into play due to the
defined prior in (91). This regression approach is commonly referred to as Tikhonov regu-
larization [51] or ridge regression. The analytical solution of the weights, which minimize
equation (93), is given by

β̂ridge = (λIN+1 +XTX)−1XTy , (94)

where IN+1 denotes the identity matrix with dimension N+1. Here, the matrix dimension
is N + 1 due to the bias term being considered explicitly.

For the least absolute shrinkage and selection operator (lasso) method, we consider a
prior of the form

p(β̂) =

N∏
j=1

Lap(β̂j |0, 1/λ) ∝
N∏
j=1

e−λ|β̂j | . (95)

Similar to previous approaches, we obtain the corresponding cost function

J(β̂) =
1

M

M∑
i=1

(y(i) − β̂Tx(i))2 + λ

N∑
j=1

|β̂j | , (96)

which in contrast to (93) has no closed form solution due to the absolute value function
being not differentiable at β̂j = 0.
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Appendix C

The Kernel Trick

In order to demonstrate the application of the kernel trick, we recall the shape and di-
mension of the design matrix and its transpose, which we explicitly express in terms of a
basis function expansion φ(x):

X =


−φ(x(1))T−
−φ(x(2))T−

...

−φ(x(M))T−

 ∈ RM×N
′
, XT =

 | |
φ(x(1)) · · · φ(x(M))
| |

 ∈ RN
′×M , (97)

where M denotes the number of training examples, and N ′ is the dimension of the fea-
ture space after the basis transformation. The MAP approach, including the zero-mean
Gaussian prior, is discussed in appendix B.2, and yields the analytical solution:

β̂ = (λIN ′ +XTX)−1XTy . (98)

Here, the cost of the matrix inversion is O(N ′3). We use the matrix inversion lemma or
Sherman-Morrison-Woodbury formula [52]

(A+BC−1D)−1BC−1 = A−1B(C +DA−1B)−1 (99)

to rewrite equation (98) as follows:

β̂ = XT (XXT + λIM )−1y . (100)

The matrix XXT is called the Gram matrix of X, and its shape is given by

XXT =

 φ(x(1))T · φ(x(1)) · · · φ(x(1))T · φ(x(M))
...

φ(x(M))T · φ(x(1)) · · · φ(x(M))T · φ(x(M))

 ∈ RM×M . (101)

According to Mercer’s theorem and the proof of κ(x(i),x(j)) = φ(x(i))T · φ(x(j)), we
replace the matrix XXT with the Gram matrix

K =

 κ(x(1),x(1)) · · · κ(x(1),x(M))
...

κ(x(M),x(1)) · · · κ(x(M),x(M))

 , (102)
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and obtain the partially kernelized optimization problem

β̂ = XT (K + λIM )−1y . (103)

We perform a Legendre transformation by defining the so-called dual variables as follows:

α̂ ≡ (K + λIM )−1y . (104)

Here, the cost of the matrix inversion is O(M3). The primal weights in (103) thus are
given as a linear sum of the feature vectors of the M training examples:

β̂ = XT α̂ =
M∑
i=1

α̂(i)φ(x(i)) . (105)

We use this relation to finally kernelize the hypothesis function (39) as well:

h(x) = β̂Tφ(x) =
M∑
i=1

α̂(i)φ(x(i))Tφ(x) =
M∑
i=1

α̂(i)κ(x,x(i)) . (106)

By this means, the optimization problem can be completely performed in the kernelized
dual problem, and the original computational effort O(N ′3) in the primal problem is
changed to O(M3) in the dual problem.
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