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Abstract

In this master thesis we present the class of linear-rational term structure
models developed by D. Filipović, M. Larson and A. Trolle, and described in their
work [8]. This new class of term structure models has several distinct advantages.
The short rate is non-negative at any time. The model admits analytical solution
to swaptions. One can easily accommodate the unspanned stochastic volatility
(USV) factors affecting the volatility and the risk premia. In the first part of this
master thesis we briefly describe some important classes of term structure models.
We discuss the concept of arbitrage free pricing in term structure models and
present three different arbitrage free pricing systems, using a state price deflator
(state space density), a risk-neutral probability measure and a market price of
risk. We show that if one of these objects can be specified, then, under certain
conditions, the other two can also be specified. We also take a closer look at affine
processes. The second part of this master thesis focuses on examining linear-
rational term structure models in greater detail. The parameters of the liner-
rational square root models can be estimated from the market swap rates and
market swaption prices by a maximum likelihood approach in conjunction with the
unscented Kalman filter (UKF). In the last part of this master thesis we introduce
the UKF algorithm. We also present the results from the parameter estimation of
three different specifications of the linear-rational square-root diffusion models.

Key words: term structure models, arbitrage free pricing, swaption pricing,
MLE, UKF
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Zusammenfassung

Diese Masterarbeit beschäftigt sich mit Linear-Rationalen Zinsstrukturmod-
ellen, die von D. Filipović, M. Larson und A. Trolle in ihrer Arbeit [8] entwickelt
wurden. Diese neue Klasse von Zinsstrukturmodellen hat einige besondere Eigen-
schaften. Die Short-Rate ist zu keiner Zeit negativ. Das Modell lässt analytis-
che Bepreisung von Swaptions zu. Separate Modellierung von Zinsstrukturfak-
toren und Faktoren, die die stochastische Volatilität beeinflussen, ist möglich. Im
ersten Teil dieser Masterarbeit werden einige wichtige Klassen von Zinsstruktur-
modellen beschrieben. Wir erklären das Konzept der arbitragefreien Bepreisung in
Zinsstrukturmodellen und präsentieren drei verschiedene arbitragefreie
Bepreisungsmethoden: Mit Hilfe der Zustand-Preisdichte, des riskneutralen
Wahrscheinlichkeitsmaßes und des Marktrisikopreises. Unter bestimmten Bedin-
gungen zeigen wir, dass eines dieser Objekte die anderen beiden festlegt. Der
zweite Teil der Masterarbeit beschäftigt sich mit der Untersuchung von Linear-
Rationalen Zinsstrukturmodellen. Die Parameter der Linear-Rationalen Wurzeld-
iffusionprozesse können durch die Market Swap Rates und Market Swaption Preise,
mit Hilfe der Maximum-Likelihood Methode im Zusammenhang mit dem Un-
scented Kalman Filter (UKF), geschätzt werden. Im letzten Teil dieser Mas-
terarbeit präsentieren wir den UKF Algorithmus und zeigen die Ergebnisse der
Parameterschätzungen an Hand von drei verschiedenen Linear-Rationalen Wurzel-
Diffusionsmodellen.

Key words: Zinsstrukturmodelle, Arbitragefreiheit, analytische Bepreisung von
Swaptions, ML-Schätzung, UKF
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Introduction

In this master thesis we present the new class of linear rational term structure
models developed by D. Filipović, M. Larson and A. Trolle, and described in
their work [8]. The linear-rational term structure models are term structure factor
models, in which the factors are modelled by a multivariate factor process with
a drift that is affine in the current state and the state price density is given by
an affine deterministic function of the current state. Under these assumptions
the linear-rational term structure models are arbitrage free and the zero-coupon
bond prices and the short rates become linear-rational functions of the current
state. This class of models has several distinct advantages. The short rate is
non-negative at any time. The model admits analytical solution to swaptions.
One can easily accommodate the unspanned stochastic volatility (USV) factors
affecting the volatility and the risk premia.

In the first part of this master thesis we introduce the most common interest
rate securities and discuss their arbitrage free pricing. We briefly describe some im-
portant classes of term structure models. We discuss the concept of arbitrage free
pricing of interest rate securities, a basic requirement for term structure models.
Furthermore we present three different arbitrage free pricing mechanisms, using a
state price deflator (state space density), a risk-neutral probability measure and
a market price of risk. We show that if one of these objects can be specified,
then, under certain conditions, the other two can also be specified. We also take
a closer look at affine processes and give necessary and sufficient conditions for a
diffusion process to be affine. Finally in this chapter we discuss the existence and
the uniqueness of affine diffusion processes.

The second chapter focuses on examining linear-rational term structure models
in greater detail. We define the linear-rational framework of the linear-rational
term structure model. We show that the zero bond prices and the short rates are
linear-rational functions of the current state as well as that the short rate in the
model is non-negative at any time. We give necessary and sufficient conditions for
which a d-dimensional linear-rational term structure model has exactly m term
structure factors and exactly n = d−m unspanned factors. We examine linear-
rational square-root models, a subclass of linear-rational term structure models, in
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which the factor process is modelled by a multi-dimensional square-root diffusion
process. Under this assumption the swaption prices become exponential-affine
functions of the current state. We give the conditions, the parameters in LRSQ
models have to satisfy in order to guarantee that a d-dimensional linear-rational
square root diffusion process has exactly m term structure and exactly n = d−m
unspanned stochastic volatility factors.

The parameters of the liner-rational square root models can be estimated from
the market swap rates and market swaption prices by a maximum likelihood ap-
proach in conjunction with the unscented Kalman filter (UKF). The maximum
likelihood approach finds the parameter values, which maximise the likelihood
function, obtained by the unscented Kalman filter. For the unscented Kalman
filter to be applied, the linear-rational square-root model has to be approximated
by a state space model, consisting of measurement equations, describing the rela-
tionship between the observable market data and unobservable states of the factor
process, and process equations describing the dynamics of the factor process. In
chapter 3 we present the theory of Unscented Kalman Filter. We define the state
space model corresponding to the LRSQ model. In the state space model the tran-
sition density of the factor process is approximated by a Gaussian density with
identical first and second moments. We present a numerical method for calculating
the first two moments of square root diffusion factor processes. Furthermore, we
discuss the properties of the square root diffusion processes. We give a numerical
method for calculating the first two moments and also describe the different meth-
ods for simulation of multi-dimensional square root processes. Finally, we present
the results from the parameter estimation of three different specifications of the
linear-rational square root diffusion model.
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Chapter 1

Term Structure Models of
Interest Rates

1.1 Interest Rate Securities

An interest rate is the price that has to be paid to the lender for using their
money, usually given as a percentage of the borrowed money. The interest rates
can be agreed for an immediate or for a future period of time, in this case the
interest rates are called spot rate and forward rate respectively. Interest rates
can also be classified by their calculation rule. Two examples of interest rates with
different calculation rules are linear (simple) interest rates and exponential
(continuous) interest rates. If R(t, T ) is the annual linear interest rate at time
t, an investment x at time t will yield x(1 + R(t, T )(T − t)) at time T . If r(t, T )
is the annual exponential interest rate at time t, the same investment x at time t
yields x exp(r(t, T )(T − t)) at time T . [11].

Interest rate securities are securities that derive their value from an under-
lying interest rate or a set of different interest rates. They are contracts between
two parties that specify conditions under which payments are to be made between
them. The interest rate securities can be traded on an exchange. However trading
them over-the-counter (OTC), which is a direct trade between two parties, is more
common. The interest rate securities are most commonly used to hedge against
the risk of an unfavourable movement of the interest rate. They are also used for
speculation. The basic interest rate securities are bonds, forward rate agreements
(FRA’s), interest rate swaps, swaptions, interest rate caps and floors and constant
maturity swaps.
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1.1.1 Bond

A bond is the simplest interest rate security. It is a debt contract in which an
investor (buyer of a bond) loans money to the issuer of bond for a definite period
of time for predetermined scheduled payments [14]. Bonds are traded with various
maturities and types of payment schedules. The typical issuers are governments,
municipalities, private and public corporations, and financial institutions to fund
their activities. Most of corporate and government bonds are publicly traded on
exchanges, while others are traded only over-the-counter (OTC).

Dependant on the number of the scheduled payments we distinguish zero-
coupon bonds and coupon bonds.

• Zero-coupon bond

A zero-coupon bond (or discount bond) is a bond that pays to the holder
the nominal value on a single future date called maturity date. The nominal value
is also known as face value, par value or principle. We assume that the nominal
value of any bond is equal to one unit of a currency (for example 1 Euro). A zero-
coupon bond is normally issued under the face value and its price is calculated by
discounting the face value with the interest rate effective from the present moment
till the maturity date. Therefore if a zero-coupon bond with maturity T is traded
at some date t ≤ T at a price P (t, T ) then the price of a zero-coupon bond
must be

P (t, T ) = e−(T−t)r(t,T ) (1.1)

where r(t, T ) is the annual continuously-compounded interest rate effective for
the period [t, T ] (or the yield to maturity on a zero-coupon bond). Obviously
P (T, T ) = 1 because the value of getting 1 Euro on the maturity date is 1 Euro.
The zero-coupon bond with maturity date T is also denoted further in the text as
(t, T ) bond or T−bond.

The spot rate at time t, effective for the period [t, T ], can be given by the price
of a (t, T )-bond

r(t, T ) = − 1

T − t
logP (t, T ). (1.2)
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• Coupon bond

A bond, which regularly pays to its holder (semi-annual or annual) interest rates
(coupons) in addition to the face value is called coupon bond. A coupon bond is
initially traded near the price of its face value. Therefore the coupon bondholders
gain from the regular payments of interest and not form the difference between the
bond price and the face value they will receive at maturity. The coupon bond that
pays a fixed coupon rate is called fixed coupon bond. The coupon bond that
pays a variable coupon that is linked to a reference rate of interest, such as LIBOR
or EURIBOR is called floating coupon bond. The coupon rate is recalculated
periodically. Typically, the coupon rate, effective for the payment at the end of
one period, is set at the beginning of the period at the current market interest
rate for that period, e.g. to the 6-month interest rate for a floating rate bond with
semi-annual payments. Any coupon bond can be seen as a portfolio of zero-coupon
bonds which has the same payments as the coupon bond. Then the price of the
coupon bond must be equal to the value of the portfolio, otherwise there is an
arbitrage opportunity in the market. Therefore the price of any coupon bond can
be expressed by the prices of the zero-coupon bonds in the portfolio and if the
prices of the zero-coupon bonds are known then the price of the coupon bond is
known too. [11, 14]

Fixed coupon bond

Let PC1,...,Cn
T1,...,Tn

denote the price of a fixed coupon bond, promising at time Ti the
coupon payment Ci (for i = 1, . . . , n) and additionally at time Tn the face value of
1. Since the portfolio consisting at time t < T1 of C1 units of T1−bond, C2 units of
T2−bond, ..., Cn−1 units of Tn−1−bond and Cn + 1 units of Tn−bond ensures the
same payments as the fixed coupon bond, the arbitrage free price of the fixed
coupon bond at any time t < T1 must be

PC1,...,Cn
T1,...,Tn

(t) = P (t, Tn) +
n∑
i=1

CiP (t, Ti) (1.3)

Floating coupon bond

Let P float
T0,T1,...,Tn

denote the price of a floating coupon bond paying at time Tn
the face value of 1 Euro and at time Ti the variable coupon Ci = R(Ti−1, Ti)∆i for
i = 1, . . . , n, where ∆i = Ti − Ti−1 and R(Ti−1, Ti) is the reference annual linear
rate. The reference annual rate, hence the variable coupon Ci, is known at time
Ti−1 and it is valid for the period [Ti−1, Ti], therefore the time Ti−1 is called reset
date and the time Ti is called payment date. The same payments can be ensured by
the following trading strategy (see [11]): at time t buy one (t, T0)-bond; at time T0
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the (t, T0)-bond yields 1 Euro which is reinvested in 1
P (T0,T1)

units of P (T0, T1)-bond;

at time Ti (i < n) the (Ti−1, Ti)-bonds yields 1
P (Ti−1,Ti)

= 1+R(Ti−1, Ti)∆i = 1+Ci,

the coupon Ci is paid and 1 Euro is invested in 1
P (Ti,Ti+1)

units of (Ti, Ti+1)-bond;

at time Tn the (Tn−1, Tn)-bonds yield 1 +Cn. Since the investment for this trading
strategy equals the price of one (t, T0)-bond, the arbitrage free price of the
floating coupon bond at any time t < T0 must be

P float
T0,T1,...,Tn

(t) = P (t, T0). (1.4)

1.1.2 Forward rate agreement

A forward rate agreement (FRA) is an over-the-counter contract between two
parties (buyer and seller) that determines a fixed rate of interest for a future period
of time which has to be paid or received. At maturity the difference between the
contracted interest rate and the market interest rate is exchanged. This way the
buyer of FRA hedges against the risk of rising interest rates, while the seller hedges
against the risk of falling interest rates. How do Forward Rate Agreements work?
Let f denote the contracted continuous forward rate at time t for the future period
of time [T0, T1]. The buyer of FRA pays at time T0 1 Euro and receives at time T1

1 Euro and the interest e(T1−T0)f . The same payments at time T0 and T1 can be
ensured by the following trading strategy: sell at time t one T0−bond and buy at
time t e(T1−T0)f units of T1−bond [11].

The value of these payments at time t and hence the arbitrage free price of
forward rate agreement can be given by

P fra,f
T0,T1

(t) = −P (t, T0) + e(T1−T0)fP (t, T1) (1.5)

The continuous forward rate f(t, T0.T1) at time t for the future period
[T0, T1] is the rate f for which P fra,f

T0,T1
(t) = 0, i.e. neither the buyer nor the seller

pays for the FRA at time t,

f(t, T0.T1) = − 1

T1 − T0

log

[
P (t, T1)

P (t, T0)

]
. (1.6)

1.1.3 Interest rate swap

An interest rate swap is an agreement between two parties to exchange a stream
of fixed interest rate payments and a stream of floating interest rate payments [11].
It is specified by a tenor structure of reset and payment dates T0 < T1 < · · · < Tn
and a predetermined annualized rate K. At each payments date Ti, (i = 1, . . . , n)
the floating leg pays R(Ti−1, Ti)∆i and the fixed leg pays K∆i, where R(Ti−1, Ti)
is the annualized reference rate and ∆i = Ti − Ti−1. Note that the sale of a fixed
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coupon bond paying at time Ti the fixed coupon K∆i and the buying at the same
time of a floating coupon bond paying at time Ti the variable coupon R(Ti−1, Ti)∆i

for i = 1, . . . , n ensure the same payments as the interest swap from perspective
of the fixed-rate payer. Hence, the arbitrage free price of the interest swap at
any time t < T0 must be

P swap,K
T0,T1,...,Tn

(t) = P (t, T0)− P (t, Tn)−∆iK
n∑
i=1

P (t, Ti). (1.7)

The rate K = St for which P swap,K
T0,T1,...,Tn

(t) = 0 is called the time-t forward
swap rate. It is given by

St =
P (t, T0)− P (t, Tn)∑n

i=1 ∆iP (t, Ti)
(1.8)

Swaps are very similar to FRAs. Both are used for hedging against the risk of
raising resp. falling interest rate. They can be used also for speculating. Unlike
the swap in FRAs the payment is only made once at maturity. Interest rate swaps
could be viewed as a chain of FRAs [11].

1.1.4 Swaption

A swaption is an option on a swap, it gives its holder the right, but not the
obligation, to enter into an underlying swap at or before a given future date called
maturity date. There are two type of swaption. A payer swaption gives the
holder of the swaption the right but not the obligation to enter into an interest
swap, paying the fixed leg at a pre-determined rate and receiving the floating leg
[7]. A receiver swaption gives the holder the right to enter into an interest swap
paying the floating leg and receiving the fixed leg. The buyer and seller of the
swaption agree on the price of the swaption and expiration date, which is usually
two business days prior to the start date of the underlying swap. They also agree
on the parameters of the underlying swap as settlement/payment days, the fixed
rate (which equals the strike of the swaption), the reference rate (for example, 3
month LIBOR paid quarterly). The holder of the swaption exercises the right to
enter into the underlying interest swap if its value is positive on the maturity date.
Hence, the swaption price also depends on this value and can be calculated only
if the term structure of the interest rates is known. The swaption pricing includes
development of the term structure models.
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1.2 Term Structure of Interest Rates

The current term structure of interest rates (or yield curve) represents the
relationship between the interest rates and different maturities. For a fixed time
t the yield curve is observable at the market and can be given by the function
T → r(t, T ).

Because of the one to-one relationship between zero-coupon bond prices and
spot rates,

r(t, T ) = − 1

T − t
logP (t, T ),

the discount function T → P (t, T ) and the zero-coupon yield curve
T → r(t, T ) give exactly the same information. If P (t, T ) is defined for all matu-
rity dates T , we can easily recover the yield (i.e. the annualized interest rate) for
borrowing money for that period. The actual challenge in defining a yield curve
therefore lies in the determination of the discount function T → P (t, T ).

The entire term structure of the interest rates describes the relationship
between the interest rate r(t, T ) (or the price P (t, T )) and the time variables t
and T . It is given by (r(t, T ))0≤t≤T<∞ or (P (t, T ))0≤t≤T<∞. The term structure of
interest rates is not observable and has to be modelled.

1.2.1 Extracting the Current Term Structure from the Mar-
ket Prices

If all zero-coupon bonds were traded, the term structure could be specified by their
market prices. However, in many bond markets only very few zero-coupon bonds
are issued and traded, which means that the term structure is known with certainty
only for a few specific maturity dates. In markets where the coupon bonds are
intensively traded the zero-coupon bonds can be constructed by forming certain
portfolios of coupon bonds. The arbitrage free price of this zero-coupon bond can
be derived and transformed into zero-coupon yield. This technique for constructing
the yield of zero-coupon bond from the prices of a set of coupon-bearing products,
e.g. bonds and swaps is called bootstrapping. Examples and detailed description
of this technique are given in [14].

The bootstrapping technique is a simple technique, but the term structure
extracted with this technique seems often unrealistic. A reason for this is that the
bond prices are not only affected by interest rates but also by other factors. To
determine more realistic term structure we need more sophisticated mathematical
techniques, for example stochastic models.
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1.2.2 Modelling the Term Structure by Using
Stochastic Variables

The term structure of interest rates can also be modelled by a deterministic func-
tion of one or more time-dependent, non-observable, stochastic variables. These
variables normally describe the factors which affect the term structure or factors
which affect the price of interest rate derivatives but not the term structure. They
are usually non-observable and have to be modelled.

The instantaneous spot rate and the instantaneous forward rate are two exam-
ples of factors affecting the term structure and can be used to describe the entire
term structure of interest rates.

Instantaneous forward rate

Definition 1.1 (Instantaneous forward rate). Assume that P (t, T ) is differentiable
with respect to T . The instantaneous forward rate f(t, T ) is the forward
rate with maturity T , arranged at time t for an infinitesimal short time interval
[T,T+dT] defined by

f(t, T ) = lim
h↓0

f(t, T, T + h) = −
dP
dT

(t, T )

P (t, T )
. (1.9)

The zero-coupon bond prices P (t, T ) for 0 ≤ t ≤ T <∞ can be defined as solution
of the differential equation (1.9) with initial condition P (T, T ) = 1 given by

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
. (1.10)

The instantaneous forward rates (f(t, T ))0≤t≤T<∞ determine the prices P (t, T ) for
all 0 ≤ t ≤ T < ∞ and hence the entire term structure of interest rates. Since
the instantaneous forward rates are unobservable at the market, they are usually
modelled by the stochastic processes. [11]

Instantaneous spot rate (or short rate)

Definition 1.2 (Instantaneous spot rate). Assume that P (t, T ) is differentiable
with respect to T . The instantaneous spot rate (or short rate) rt is the spot
rate for an infinitesimal short time interval [t,t+dt] defined by

rt = lim
h↓0

r(t, T ) = f(t, t) = −dP
dT

(t, T ). (1.11)

Unlike the instantaneous forward rate, the short rates (r(t))0≤t≤T ∗ can not
determine the entire term structure alone. But if we assume that the short rate
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follows an Itô process defined on the probability space (Ω,A,F ,P) with F0 =
{∅,Ω} and choose a risk-neutral measure Q, equivalent to P, then the short rate
process (r(t))0≤t≤T ∗ and the risk-neutral measure Q together define an arbitrage
free system of zero-coupon bond prices

P (t, T ) = EQ

[
exp

(
−
∫ T

t

r(u)du

)
| Ft
]

(1.12)

for 0 ≤ t ≤ T ≤ T ∗, and hence, the entire term structure of interest rates.[11]

1.3 Some Important Groups of Term Structure

Models

There is a wide variety of term structure models of interest rates, described in
financial literature. We give a brief description of some important groups of term
structure models [19].

1.3.1 Parametric Models of the Current Term Stricture

In parametric models the current term structure is fitted by a smooth parametric
function with a finite number of parameters, chosen in such a way that many of
the typically observed shapes of the yield curve can be captured. One of the most
popular models of these groups is the model of Nelson and Siegel introduced in
1987, in which the shape of the yield curve is modelled as

fNS(x, z) = z1 + (z2 + z3x) exp(−z4x)

where z1, z2, z3, z4 are parameters which have to be estimated. This family of
interest rates curves was extended by Svensson as

fSv(x, z) = z1 + (z2 + z3x) exp(−z4x) + z5 exp(z6x)

This model is now used by central banks in Canada, Germany, France and the
United Kingdom [19].

1.3.2 Affine-Factor Diffusion Models

The factor diffusion models assume the existence of factors which can affect the
prices of all tradable securities and this factors are modelled by stochastic diffusion
processes Xt. In affine-factor diffusion models the zero-coupon bond prices can be

10



written as an exponential-affine function of the short rate r(t,Xt), which means
there are deterministic functions A(t, T ) and B(t, T ) so that

P (t, T ) = exp(A(t, T ) + r(t,Xt)B(t, T )).

An important result of Duffie and Kan (1996) shows that the yields are affine
if and only if the drift and the square of the diffusion components of stochastic
differential equations of Xt are also affine in r(t,Xt). The functions A(t, T ) and
B(t, T ) can be determined by solving Riccati differential equations.

1.3.3 Short Rate Models

In short rate modles it is assumed that the short rates follow an Itô process defined
on the probability space (Ω,A,F ,P) with F0 = {∅,Ω}. The short rate process
(rt)0≤t≤T ∗ together with the risk-neutral pricing measure Q define an arbitrage
free system of zero-coupon bond prices given by (1.12), and hence they determine
the entire term structure of interest rates. The first attempt in this direction was
made in 1977 by O. Vasicek. He describes the short rate by an Ornstein-Uhlenbeck
process

drt = κ(θ − rt)dt+ σdBt.

The short rate in Vasicek’s model is asymptotic normal distributed with mean θ
and variance σ2

2κ
. A disadvantage of this model is that it is theoretically possible

for the interest rates to become negative. Furthermore, the model is not flexible
enough to capture all shapes of the yield curve.

In the CIR model, proposed in 1985 by Cox, Ingersoll and Ross (CIR), the
short rate is described by

drt = κ(θ − rt)dt+ σ
√
rtdBt.

The short rate in the CIR model is non-centred χ2-square distributed and
almost surly positive. Nevertheless the model is not flexible enough.

Since both the drift and σ2(rt) are affine function of rt both Vasicek and CIR
models are one factor affine models where the only factor is the short rate.

1.3.4 HJM Models

Heath, Jarrow and Morton (HJM) introduced in 1992 a new framework for mod-
elling of interest rates. They model the evolution of the forward rates by a family
of (an infinite number of) stochastic differential equations

∀T : 0 ≤ T ≤ T ∗ f(t, T ) = f(0, T ) +

∫ t

0

α(t, T )dt+

∫ t

0

σ(t, T )dBt ∀t ∈ [0, T ] .

11



In this class of models σ is essentially chosen freely, while α is determined from σ
by the HJM drift condition in order to get an arbitrage free model.

The instantaneous forward rates (f(t, T ))0≤t≤T≤T ∗ determine the zero-coupon
bond prices for all 0 ≤ t ≤ T ≤ T ∗ by (1.10) and hence the entire term structure
of interest rates.

1.3.5 Market Models

The LIBOR market model does not describe the entire term structure. It models
the (linear) forward rates Li = F (t, Ti−1, Ti), (0 ≤ t ≤ Ti−1), for a fixed tenor
structure T0 < T1 < · · · < Tn as lognormal process.

dLi(t)

Li(t)
= µi(t)dt+ σi(t)dWi, i = 1, . . . , n,

Note that at time t the LIBOR rates Li(t) are directly observable in the market.
Its volatilities are naturally linked to traded contracts. This model class was first
introduced in 1997 by Brace, Gatarek and Musiela [2] and extended by Miltersen,
Sandmann and Sondermann in the same year. It is used for pricing interest rate
derivatives, especially exotic derivatives like Bermudan swaptions, ratchet caps
and floors, etc. [19]

1.4 Arbitrage free pricing

An essential requirement to term structure models is the arbitrage-free pricing of
all interest rate securities. An arbitrage is a trading strategy that generates a
risk-free profit due to the price differences at the same time at different markets
[14]. Munk describes in [14] the general arbitrage free pricing mechanisms using
three different objects: a state-price deflator (also known as state space density),
a risk-neutral probability measure, and a market price of risk. He shows that if
one of these objects can be specified, then the model is arbitrage free and a payoff
stream can be specified. If one of these objects can be specified, then the other two
can also be specified, under certain conditions. In this section we present these
pricing mechanisms.

Consider a model of financial market in which one instantaneously risk-free
asset (i.e. bank account) and one zero-coupon bond with maturity T are traded.
Since the zero-coupon bond is traded up to maturity T and the prices after ma-
turity date are not relevant, we define the model for the time period [0,T]. We
assume for this model that the basic uncertainty in economy is represented by
a standard Brownian motion, B = (Bt)0≤t≤T defined on the filtered probability
space (Ω,A,P,F) with F0 = {∅,Ω }.

12



Let A = (At)0≤t≤T denote the price process of the bank account continuously
compounded with the instantaneously risk-free interest rate rt for the infinitesimal
interval [t, t + dt]. The price of a bank account at time t ≤ T describes the value
at time t of a deposit A0 made at time t = 0 and therefore satisfies

dAt = Atrtdt

which is equivalent to

At = e
∫ t
0 rtdt (1.13)

assuming that A0 = 1 and that the process r = (rt) is such that
∫ t

0
|rt| dt is finite

with probability one.
The price of a zero-coupon bond at time t > 0 is random except on the maturity

date T , when the nominal value is repaid. On this day it is P (T, T ) = 1. We
assume that the price at time t ≤ T of the zero-coupon bond with maturity
day T follows an Itô process (see Definition A.2) of the form

dP (t, T ) = P (t, T )(µtdt+ σtdBt), P (T, T ) = 1 (1.14)

where µ = (µt) denotes the (relative) drift, and σ = (σt) reflects the relative
sensitivity of the price to the exogenous shock to the economy at time t, described
by the evolution of the standard Brownian motion B = (Bt)0≤t≤T .

For this model we will represent three equivalent arbitrage-free price systems
based on three different objects: state-price deflators, risk-neutral probability mea-
sures, and markets price of risk and we show that if one of these objects is specified,
any payoff stream can be priced.

State-price deflators

Definition 1.3. A state-price deflator (or state space density) is a strictly
positive process ζ = (ζt) with ζ0 = 1 and the property that the product of the
state-price deflator, and the price of an asset is a martingale, i.e. (ζtP (t, T )) and
(ζtAt) = (ζtexp(

∫ t
0
rudu) are P-martingales. [14]

Suppose we are given a state-price deflator ζ and hence the distribution of
ζT/ζt. Then it follows from the martingale properties of (ζtP (t, T )) that the price
at time t ≤ T of a zero-coupon bond with maturity T is

P (t, T ) = Et

[
ζT
ζt
P (T, T )

]
= Et

[
ζT
ζt

]
, (1.15)

where Et denote the expected value under the P-probabilities conditionally on the
available information at time t, i.e. Et[X] = E[X | Ft].

The existence of a state-price deflator (state space density) is closely related
to absence of arbitrage:
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Theorem 1.4. If a state-price deflator exists, the prices admit no arbitrage. [14]

Theorem 1.5. If the prices admit no arbitrage and technical conditions are sat-
isfied, then a state-price deflator exists. [14]

Corollary 1.6. Under technical conditions, the existence of a state-price deflator
is equivalent to the absence of arbitrage. [14]

A proof of these theorems can be found in [14]. Duffie (2001) gives a pre-
cise description of the technical condition. Munk (2005) shows that if prices ad-
mit no arbitrage and technical conditions are satisfied, then the marginal rate
of intertemporal substitution of some agent investing in the market, defined by
ζt = e−δtu′(ct)/u

′(c0), is a state-price deflator. Here it is assumed that c = (ct) is
the optimal consumption process for this agent, u(·) is a utility function and δ is
the time-preference rate of this agent. Since agents have different utility functions,
different time preference rates, and different optimal consumption plans, there can
potentially be (at least) as many state-price deflators as agents.

Risk-neutral probability measures

Bonds are usually priced with the help of a so-called risk-neutral probability mea-
sure.

Definition 1.7. A probability measure Q is said to be a riskneutral probability
measure (or equivalent martingale measure) if the following three conditions
are satisfied:

(i) Q is equivalent to P,

(ii) the discounted price process P̃ (t, T ) = A−1
t P (t, T ) = P (t, T ) exp

(
−
∫ t

0
rudu

)
is a Q-martingale,

(iii) the Radon-Nikodym derivative dQ/dP has finite variance.

(see [14])

The margingal property (ii) implies that under the risk-neutral probability
measure Q the price at time t ≤ T of a zero-coupon bond with maturity T is given
by

P (t, T ) = EQ
t

[
e−

∫ T
t ruduP (T, T )

]
= EQ

t

[
e−

∫ T
t rudu

]
(1.16)

The Radon-Nikodym derivative dQ/dP is a random which is known at time T
and usually not before time T since in our market all uncertainties are resolved at
time T . Let dQ/dP = ξT and then define a density process ξ = (ξt)0≤t≤T by

ξt = Et [dQ/dP] = Et [ξT ]
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The process (ξt) is a P-martingale, since for any t < t′ ≤ T we have

Et [ξt′ ] = Et [Et′ [ξT ]] = Et [ξT ] = ξt

Then under the probability measure P the price at time t ≤ T of a zero-coupon
bond with maturity T is given by Bayes rule

P (t, T ) = EQ
t

[
e−

∫ T
t rudu

]
=
Et

[
ξT e

−
∫ T
t rudu

]
Et [ξT ]

= Et

[
ξT
ξt
e−

∫ T
t rudu

]
(1.17)

The existence of the risk-neutral measure Q implies that the model, we consider,
is arbitrage free.

Theorem 1.8. If a risk-neutral probability measure exists, prices admit no arbi-
trage.

Proof: (see [14], p. 76)

The next theorem shows that there is a one-to-one relation between risk-neutral
probability measures and state-price deflators. Under certain technical conditions
the state-price deflator can specify the risk neutral measure, and vice verse the
state-space deflator can be specified by Radon-Nykodim derivative dQ/dP.

Theorem 1.9. Given a risk-neutral probability measure Q. Let ξt =
Et[dQ/dP] and define ζt = ξt exp(−

∫ t
0
rudu). If ζt has finite variance for all t ≤ T ,

then ζ = (ζt) is a state-price deflator. Conversely, given a state-price deflator ζ,
define ξt = exp(

∫ t
0
rudu)ζt. If ξT has a finite variance, then a risk-neutral proba-

bility measure Q is defined by dQ/dP = ξT . [14]

Proof: Suppose that Q is a risk-neutral probability measure and
ξt = Et[dQ/dP] = Et[ξT ] is the probability density process. We prove that
ζt = ξt exp(−

∫ t
0
rudu) is a state price density. According to Definition 1.3 of

state price density we have to show that ζ0 = 1, ζT > 0 and (ζtAt) and (ζtP (t, T ))
are P-martingals.

Obviously ζ0 = ξ0 = E [dQ/dP] = Q(Ω) = 1 if F0 = {Ω,∅} and ζT > 0
since ξT > 0. (ζtAt) is a P-martingale, because ζtAt = ζ exp(

∫ t
0
rudu) = ξt and

ξt = Et[dQ/dP] is a P-martingale. Further, since Q ∼ P and ξ is the probability

density process it follows that e−
∫ t
0 ruduP (t, T ) is a Q-martingale if and only if

e−
∫ t
0 ruduP (t, T )ξt is a P-martingale. The martingale property implies

e−
∫ t
0 ruduP (t, T )ξt = Et

[
e−

∫ T
0 ruduP (T, T )ξT

]
and hence ζtP (t, T ) = Et [ζT ] is a P-martingale.
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Conversely, suppose that (ζt)t≤T is a state-price density, then according to Def-

inition 1.3 ξt = ζt exp(
∫ t

0
rudu) is a P-martingale. Since ζT > 0 and EP[ξT ] =

EP[ξt] = EP[ξ0] = 1 (martingale property) the random variable dQ
dP = ZT de-

fines a probability measure Q, equivalent to P, with a probability density pro-
cess EP[ZT | Ft] = ξt. Hence, e−

∫ t
0 ruduP (t, T ) is a Q-martingale if and only if

e−
∫ t
0 ruduP (t, T )ξt = ζtP (t, T ) is a P-martingale. Since by assumption ζtP (t, T )

is a P-martingale it follows, according to Definition 1.7, that Q is an equivalent
martingale measure.

2

In the previous subsection we saw that, the absence of arbitrage implies the
existence of a state-price deflator under some technical conditions. It follows from
Theorem 1.5 and Theorem 1.9 the absence of arbitrage also implies the existence
of a risk-neutral probability measure - again under technical conditions.

Theorem 1.10. If the prices admit no arbitrage and technical conditions are sat-
isfied, then a risk neutral measure Q exists.

Market price of risk

Suppose that Q is a risk-neutral probability measure with Radon-Nikodym deriva-
tive dQ/dP = ξT . As we already discussed the process ξt = (ξt), defined by ξt =
Et[dQ/dP] = Et[ξT ], is a square integrable P-martingale with ξ0 = E[dQ/dP] = 1
(since Q is a probability measure). Then it follows from the Martingale Represen-
tation Theorem (see Annex), that a process λ = (λt) exists such that

dξt = −ξtλtdBt

or, equivalently (using ξ0 = 1),

ξt = exp

(
−1

2

∫ t

0

λ2
udu−

∫ t

0

λudBu

)
. (1.18)

According to Girsanov’s Theorem (see Annex), the process W = (Wt) defined by

dWt = dBt + λtdt (1.19)

is a standard Brownian motion under the Q-measure.
Let us define the process λ = (λt). Since we assumed that Q is a risk-neutral

measure, it follows from Definition 1.7 that the discounted price process given by
P̃ (t, T ) = exp(−

∫ t
0
rudu)P (t, T ) is a Q-martingale. Applying Itô’s Formula (see
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Annex) and (1.15), and then substituting dBt = dWt − λtdt, we obtain that the
dynamics of the discounted prices are given by

dP̃ (t, T ) = P̃ (t, T )(µt − rt − σtλt)dt+ σtdWt (1.20)

Since, according to Definition 1.7, the discounted price process is a Q-martingale,
the drift must be zero and hence λ is defined as a solution of

µt − rt = σtλt. (1.21)

Suppose that λ is a solution of (1.21). Suppose also that λ satisfies Novikov’s

condition, i.e. Et

[
exp

(
1
2

∫ T
0
λ2
udu
)]

< ∞. Let us define the process ξt by (1.18)

and assume that ξT has finite variance. Under these technical conditions the
measure Q, defined by dQ/dP = ξT , satisfies all conditions of risk neutral measure
given in Def. 1.7, and hence the measure Q is a risk-neutral probability measure.
[Proof: (ii) Novikov’s condition ensures that the process ξ = (ξt) is a martingale.
According to Girsanov’s Theorem, the process W , defined by (1.19), is a standard

Browning moving under Q and the discount price process P̃ is a Q-martingale.
(i) ξT > 0 and ξ0 = 1 imply that Q and P are equivalent. (iii) satisfied by
assumption]. These results are summarized in the following theorem:

Theorem 1.11. If a risk-neutral probability measure exists, there must be a solu-
tion to (1.21) for all t. If a solution λt exists for all t and the process λ = (λt)
satisfies technical conditions, then a risk-neutral probability measure exists. [14]

Definition 1.12. Any process λ = (λt) solving (1.21) is called a market price
of risk process.

The market price of risk is a measure of the extra return, or risk premium, that
investors demand to bear risk.

Theorem 1.11 proves that there is a one-to-one relation between risk-neutral
probability measures and market prices of risk. According to the result from a
previous subsection we can conclude that under technical condition the existence
of a mark-price of risk is equivalent to the absence of arbitrage.

Theorem 1.9 and Theorem 1.11 imply that up to technical condition there is
also a one-to-one relationship between state-price deflators and the market price
of risk.

Supposing that λ is a market price of risk and ξ = (ξt) is a process defined by
(1.18), then under the certain technical condition, the process ζ defined by

ζt = ξte
−

∫ t
0 rudu = exp

(
−
∫ t

0

rudu−
1

2

∫ t

0

λ2
udu−

∫ t

0

λudBu

)
(1.22)
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is a state-price deflator and ξ is a density process [14]. We apply Itô’s Lemma to
(1.22). Since ξ also satisfies dξt = −ξtλtdBt, it follows that the state-space deflator
satisfies

dζt = −ζt(rtdt+ λtdBt). (1.23)

We see that the relative drift of a state-price deflator equals the negative of the
short-term interest rate. The sensitivity vector of a state-price deflator equals the
negative of a market price of risk.

We proved that the state-space deflator, the risk-neutral probability measure
and the market price of risk are three different but equivalent objects. If one
exists, the other two can be defined. Under the certain technical condition the
existence of one of them is equivalent to the absence of arbitrage. These objects
give three different (but equivalent) ways to define arbitrage free price systems.

We defined three different formulas for the arbitrage free pricing at time t ≤ T
of a zero-coupon bond with maturity date T by

P (t, T ) = Et

[
ζT
ζt

]
= EQ

t

[
e−

∫ T
t rudu

]
= Et

[
exp

(
−
∫ T

t

rudu−
1

2

∫ T

t

λ2
udu−

∫ T

t

λudBu

)]
where ζ is the state-price deflator, Q is the risk-neutral measure, λ is the market
price of risk.
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This arbitrage free price formulas can also be used for pricing of zero-coupon
bonds with maturity date T ′ ≤ T . Suppose that Q is a risk-neutral probability
measure. A zero-coupon bond with maturity date T ′ ≤ T pays at time T ′ one
unit of currency, e.g. 1 Euro. If we invest at time T ′ this payment in the bank

account over the period [T ′, T ], then the pay off at time T is e
∫ T
T ′ rudu. The price

we pay at time t for these two investments is exactly the price at time t of the
zero-coupon bond with maturity date T ′, P (t, T ′), and it must correspond to the
t-time value of the T -time pay off. Otherwise there is an arbitrage opportunity.
Hence, the price at any time t ≤ T ′ ≤ T of the zero-coupon bond with maturity
date T ′ under Q must be

P (t, T ′) = EQ
t

[
e−

∫ T
t rudu

(
P (T ′, T ′)e

∫ T
T ′ rudu

)]
= EQ

t

[
e−

∫ T ′
t rudu

]
.

In term of state-price deflator we have

P (t, T ′) = Et

[
ζT ′

ζt

]
.

If λ is a market price of risk we have

P (t, T ′) = Et

[
exp

(
−
∫ T ′

t

rudu−
1

2

∫ T ′

t

λ2
udu−

∫ T ′

t

λudBu

)]
.

The arbitrage free price formulas can be applied also for zero-coupon bond pric-
ing in models with N risky assets paying a single dividend at time T [14]. In this
case the assets price dynamics is given by

dPt = diag(Pt)(µtdt+ σtdBt)

Here Pt = (P1t, . . . , PNt)
T is the price vector of all N risky assets,

µt = (µ1t, . . . , µNt)
T is a vector of expected returns, σt = (σijt)1≤i≤N,1≤j≤d is a

N × d matrix reflecting the sensitivity of the prices to the exogenous shocks and
determines the instantaneous variances and covariances (and hence also the cor-
relations) of the risky asset prices. Bt = (B1t, . . . , Bdt) is a vector of d exogenous
shocks to the economy at time t. We assume that all the uncertainties that affect
the investors stem from these exogenous shocks.

The market price of risk is, in this case, any process λ = (λt) solving the system
of N equations and d unknown variables λ1t, . . . , λdt

σtλt = µt − rt1d (1.24)

The number of solutions of this system depends on the rank of the N × d matrix
σt. Let k denote the rank of the σt. If k < d, there are several solutions to (1.24),
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hence several arbitrage free price systems. Therefore the prices of the traded risky
assets are not unique and they are only sensitive to k of the d exogenous shocks
(risks). If k = d there is an unique solution to (1.24) given by

λ∗t = σ−1
t (µt − rt1d)

and therefore an unique arbitrage free price system. The prices are sensitive to all
risks of the market. This is possible only in so called complete markets [14].

All definitions and theorems we consider in this section are valid also for models
with N risky assets paying a single dividend at time T .

Finally, it is important to note that all tree arbitrage free price formulas are
defined by conditional expectations and in affine term structure factor models the
conditional expectations and hence the zero-coupon bond prices can be given in
a closed form. Therefore the affine term structure factor models are often the
preferred models. Some properties of the affine term structure factor models will
be introduced in the following section.

1.5 Affine Diffusion Term Structure Models

The factor models assume the existence of one or several state variables (factors)
whose current values contain all the relevant information about the economy and
which can affect the short rate, market price of risk and hence the prices of all
traded securities. Principally these factors are unobservable and have to be mod-
elled.

In affine diffusion term structure models the state variables follow an affine
diffusion process.

1.5.1 Affine Diffusion Processes

Consider a d-dimensional stochastic diffusion process X = (Xt)t≥0 with values in
E ⊆ Rd which solves the stochastic differential equation

dXt = b(Xt, t)dt+ ρ(Xt, t)dBt, X0 = x (1.25)

where x ∈ E, B = (Bt)t≥0 is a d dimensional standard Brownian motion defined on
the filtered probability space (Ω,F , (Ft),P), b : E → Rd is continuous in X ∈ E,
ρ : E → Rd is measurable so that the diffusion matrix a(Xt, t) = ρ(Xt, t)ρ(Xt, t)

>

is continuous in X ∈ E. Suppose that for any x ∈ E there exists a unique solution
X = Xx of SDE (1.25).
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Definition 1.13 (Affine Diffusion Process). The stochastic diffusion process
X is affine if Ft-conditional characteristic function of XT is exponential affine
in Xt, i.e. there exist C- and Cd-valued functions φ(t, u) and ψ(t, u), respectively,
with jointly continuous t-derivatives such that X = Xx satisfies

E
[
eu
>XT | Ft

]
= eφ(T−t,u)+ψ(T−t,u)>Xt (1.26)

for all u ∈ iRd, t ≤ T, x ∈ E.

Remarks:
1) Since the conditional characteristic function is bounded by one, the real part of
the exponent φ(T − t, u) + ψ(T − t, u)>Xt) ≤ 0 in (1.26) has to be negative [9].
2) φ and ψ uniquely determined by (1.26) with φ(0, u) = 0, ψ(0, u) = u.

The following two theorems provide necessary and sufficient conditions for the
stochastic diffusion process X (1.25) to be affine [7].

Theorem 1.14 (Necessary Condition). Suppose that X is affine. Then the
diffusion matrix a(x, t) and drift b(x, t) are affine in x, i.e.

a(x, t) = a+
d∑
i=1

xiαi

b(x, t) = b+
d∑
i=1

xiβi = b+ Bx

(1.27)

for some d× d-matrices a and αi and d-vectors b and βi, where

B = (β1, . . . , βd)

denotes the d × d-matrix with ith column vector βi, 1 ≤ i ≤ d. Moreover, φ and
ψ = (ψ1, . . . , ψd)

> solve the system of Ricatti ODEs

∂tφ(t, u) =
1

2
ψ(t, u)>aψ(t, u) + b>ψ(t, u)

ψ(0, u) = 0

∂tψi(t, u) =
1

2
ψ(t, u)>αiψ(t, u) + β>i ψ(t, u), 1 ≤ i ≤ d

ψ(0, u) = u.

(1.28)

In particular φ is determined by ψ via simple integration

φ(t, u) =

∫ t

0

(
1

2
ψ(s, u)>aψ(s, u) + b>ψ(s, u)

)
ds.
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Proof: Suppose that X is affine. For T > 0 and u ∈ iRd define the complex-valued
Itô process

M(t) = exp(φ(T − t, u) + ψ(T − t, u)>Xt).

Applying Itô formula separate to the real and to the imaginary part of M , one
obtains

dM(t) = I(t)dt+ ψ(T − t, u)>ρ(Xt)dBt, t ≤ T

with

I(t) = −∂Tφ(T − t, u)− ∂Tψ(T − t, u)>Xt

+ ψ(T − t, u)>b(Xt) +
1

2
ψ(T − t, u)>a(Xt)ψ(T − t, u)

Since M(t) is a martingale, we have I(t) = 0 for all t ≤ T a.s. Letting t → 0, by
continuity of drift b(Xt) and diffusion matrix a(Xt) it follows that

∂Tφ(T, u) + ∂Tψ(T, u)>x = ψ(T, u)>b(x) +
1

2
ψ(T, u)>a(x)ψ(T, u)

for all x ∈ E, T ≥ 0, u ∈ iRd. Since ψ(0, u) = u it follows that the a(x) and b(x)
are affine of the form (1.27). Plugging this into the equation above and separating
first order terms in x one obtains the Ricatti SDEs (1.28). [7]

�

Theorem 1.15 (Sufficient Condition). Suppose that the diffusion matrix a(x, t)
and drift b(x, t) are affine of the form (1.27) and suppose there exists a solution
(φ, ψ) of the Ricatti ODEs (1.28) such that Re(φ(T − t, u) + ψ(T − t, u)>Xt) ≤ 0
for all t ≥ 0, u ∈ iRd and x ∈ E. Then X is affine with conditional characteristic
function (1.26).

Proof: Suppose that a(x, t) and b(x, t) are affine of the form (1.27) and (φ, ψ) is a
solution of the Ricatti ODEs (1.28) such that Re(φ(T − t, u)+ψ(T − t, u)>Xt) ≤ 0
for all t ≥ 0, u ∈ iRd and x ∈ E. Then M , defined as above, is uniformly
bounded local martingale, and hence a martingale with MT = eu

>XT . Therefore
E [MT | Ft] = Mt, which is equivalent to (1.26). [7]

�

Remark: In the literature affine diffusion processes are frequently defined as stochas-
tic diffusion process with affine drift and diffusion matrix of the form (1.27).
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Up until now we assumed the existence of a unique solution Xx of SDE (1.25)
on some space E ⊂ R. Now the question arises if such a solution truly exists.
Filipović and Mayerhofer prove in [9] the existence and the uniqueness of affine
processes on the canonical state space E = Rm

+ × Rn for some integers m,n ≥ 0
with m+ n = d.

The following theorem characterises the affine processes on the canonical state
space.

Theorem 1.16. The process X on the canonical state space Rm
+ × Rn is affine if

and only if a(x) and b(x) are affine of the form (1.27) for parameters a, αi, b, βi
which are admissible in the following sense:

a, αi are symmetric positive semi-definite,

aII = 0 ( and thus aIJ = a>JI = 0),

αj = 0 for all j ∈ J,
αi,kl = αi,lk = 0 for k ∈ I \ {i}, for all 1 ≤ i, l ≤ d, (1.29)

b ∈ Rm
+ × Rn,

BIJ = 0,

BII has positive off-diagonal elements.

In this case, the corresponding system of Riccati equations (1.28) simplifies to

∂tφ(t, u) =
1

2
ψJ(t, u)>aJJψJ(t, u) + b>ψ(t, u),

φ(0, u) = 0,

∂tψi(t, u) =
1

2
ψ(t, u)>αiψ(t, u) + β>i ψ(t, u), i ∈ I,

∂tψJ(t, u) = B>JJψJ(t, u),

ψ(0, u) = u,

and there exists a unique global solution (φ(, u), ψ(, u)) : R+ → C− × Cm
− × iRn

for all initial values u ∈ Cm
− × iRn. In particular, the equation for ψJ forms an

autonomous linear system with unique global solution ψJ(t, u) = eB
>
JJ tuJ for all

uJ ∈ Cn. ( [9], Theorem 3.2)
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Corollary 1.17 (Exponential Affine Transform Formula). Suppose that X
is affine diffusion process. Then there exist C- and Cd-valued functions φ(t, u, v)
and ψ(t, u, v), respectively, with jointly continuous t-derivatives such that X = Xx

satisfies

E
[
eu+v>XT | Ft

]
= eφ(T−t,u,v)+ψ(T−t,u,v)>Xt (1.30)

for all u ∈ R, v ∈ Rd, t ≤ T, x ∈ E.

• Re(φ(T − t, u) + ψ(T − t, u)>Xt) ≤ 0 ,

• φ and ψ solve the system of Ricatti SDEs

∂tφ(t, u, v) =
1

2
ψ(t, u, v)>aψ(t, u, v) + b>ψ(t, u, v)

ψ(0, u, v) = u

∂tψi(t, u, v) =
1

2
ψ(t, u, v)>αiψ(t, u, v) + β>i ψ(t, u, v), 1 ≤ i ≤ d

ψ(0, u, v) = v.

(1.31)

• φ and ψ uniquely determined by (1.30) with φ(0, u, v) = u, ψ(0, u, v) = v.

Example 1.18 (Ornstein-Uhlenbeck Process).

dXt = κ(θ −Xt)dt+ σdBt, Xt = x

• state space: Rd

• parameters: κ ∈ Rd×d, θ ∈ Rd, σ ∈ Rd×d
+

• Ricatti equations:

∂tφ(t, u) =
1

2
ψ(t, u)>σσ>ψ(t, u) + (κθ)>ψ(t, u)

ψ(0, u) = 0

∂tψ(t, u) = −κ>ψ(t, u)

ψ(0, u) = u.

• the unique solution of Ricatti equations for d = 1

ψ(t, u) = e−κtu

φ(t, u) = θu(1− e−κt) +
σ2

4κ
(1− e−2κt).

24



Example 1.19 (CIR process).

dXt = κ(θ −Xt)dt+ σ
√
XtdBt, Xt = x

• state space: Rd

• parameters: κ ∈ Rd×d, θ ∈ Rd, σ = Diag(σ1, . . . , σd) ∈ Rd×d
+

• Ricatti equations:

∂tφ(t, u) = (κθ)>ψ(t, u)

ψ(0, u) = 0

∂tψ(t, u) =
1

2
ψ(t, u)>σσ>ψ(t, u)− κ>ψ(t, u)

ψ(0, u) = u.

• the unique solution of Ricatti equations for d = 1

ψ(t, u) =
ue−κt

1− σ2

2κ
u(1− e−κt)

φ(t, u) = −2κθ

σ2
log

(
1− σ2

2κ
u(1− e−κt)

)
• numeric solution for d > 1.

1.5.2 Pricing in Affine Diffusion Models

Suppose that the factor process X follows an affine diffusion process of the form
(1.25).

Consider a T -claim with payoffHT = H(XT , T ) at time T so that E
[
exp(−

∫ T
0
r(s)ds |H(XT , T )|)

]
<

∞. Then its arbitrage free price at time t ≤ T is given by

π(t) = EQ
t

[
e−

∫ T
t r(s)dsH(XT , T )

]
where Q is a risk-neutral probability measure.

In affine diffusion models the zero-coupon bond price at time t ≤ T is an
exponential affine function of the short tare rt

P (t, T ) = e−A(T−t)−B(T−t)r(Xt)

where A(T − t) and B(T − t) solve the Ricatti differential equations [14].
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Chapter 2

Linear-Rational Term Structure
Models

The linear-rational term structure models are a new class of term structure models
introduced by Filipović, Larsson and Trolle [8]. They assume that the state vari-
ables follow a multivariate factor process with a drift that is affine in the current
state and specify the state price density as a positive affine function of the current
state. Under these assumptions the zero-coupon bond prices and the short rate
become linear-rational functions of the current state, and this is why the models
are called linear-rational term structure models.

Specifying the state price density as a positive adaptive process ensures that
the linear-rational term structure models are arbitrage-free (see Theorem 1.4) and
according to (1.15) the price Π(t, T ) at time t of any time T cash-flow HT is given
by

Π(t, T ) = Et

[
ζT
ζt
HT

]
. (2.1)

The linear-rational term structure models are due to the aforementioned as-
sumptions highly tractable and compared to the affine term structure models has
several distinct advantages [8]. They i) ensure non-negative interest rates, ii) eas-
ily accommodate unspanned factors affecting volatility and risk premiums, and
iii) admit semi-analytical solutions to swaptions.

The affine term structure models can match either i) or ii), but not simulta-
neously, and never iii). In the affine term structure models non-negative interest
rates are guaranteed, only if all factors are of square-root type. Easy accommoda-
tion of unspanned stochastic volatility (USV) requires at least one Gaussian factor
[8].

In this chapter we define the class of linear-rational term structure models and
discuss its advantages. We show also how the interest rate derivatives like swap
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and swaption can be valued with this class of models. All theorems and their
proofs are taken from [8].

2.1 The Linear-Rational Framework

2.1.1 Term Structure Specification

A linear-rational term structure model consists of two components:

• a multivariate factor process Xt whose state space is some subset E ⊂ Rd,
has a drift that is affine in the current state and is of the form

dXt = κ(θ −Xt)dt+ dMt (2.2)

for some κ ∈ Rd×d, θ ∈ Rd and some martingale Mt and

• a state price density ζt which is assumed to be an affine function of the
current state given by

ζt = e−αt(φ+ ψ>Xt) (2.3)

for some φ ∈ R and ψ ∈ Rd such that φ + ψ>x > 0 for all x ∈ E, and some
α ∈ R. Here the role of the parameter α is to ensure that the short rate
stays non-negative.

To specify the term structure it is necessarily the price of zero-coupon bond
to be defined. Applying the price formula (2.1) one obtains the following price
formula for a zero-coupon bond with a payment HT = 1 at maturity date T

P (t, T ) = e−α(T−t)φ+ ψ>E [XT | Ft]
φ+ ψ>Xt

. (2.4)

According to the lemma bellow, the conditional expectation of factor process
with an affine drift is an affine function in the current state. Hence, it follows that
the price of zero-coupon bond is a linear-rational function in the current state Xt.

Lemma 2.1. Assume that Xt is of the form (2.2) with integrable starting point X0.
Then for any bounded stopping time ρ and any deterministic τ ≥ 0, the random
variable Xρ+τ is integrable, and we have

E [Xρ+τ | Ft] = θ + e−κτ (Xρ − θ), t ≤ T (2.5)

Proof. I case: We prove first the lemma for ρ = 0. Itô Lemma to the process

Yt = θ + e−κ(τ−t)(Xt − θ)
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implies that

dYt = κe−κ(τ−t)(Xt − θ)dt+ e−κ(τ−t)dXt + 0

= κe−κ(τ−t)(Xt − θ)dt+ e−κ(τ−t)(κ(θ −Xt)dt+ dMt)

= e−κ(τ−t)dMt

Hence Yt is a local martingale. We show that Yt is even a true martingale. Inte-
gration by parts yields

Yt = Y0 + e−κ(τ−t)Mt −
∫ t

0

Msκe
−κ(τ−s)ds

which implies together the integrability of X0 and martingale Mt that Yt is inte-
grable. Then it follows from Fubini’s theorem that for any 0 ≤ t ≤ u

E [Yu | Ft] = Y0 + e−κ(τ−u)E [Mu | Ft]−
∫ u

0

E [Ms | Ft]κe−κ(τ−s)ds

= Y0 + e−κ(τ−u)Mt −
∫ u

0

Ms∧tκe
−κ(τ−s)ds

= Y0 + e−κ(τ−u)Mt −
∫ t

0

Msκe
−κ(τ−s)ds−

∫ u

t

Mtκe
−κ(τ−s)ds

= Y0 + e−κ(τ−u)Mt −
∫ t

0

Msκe
−κ(τ−s)ds− (e−κ(τ−u) − e−κ(τ−t))Mt

= Yt

which proves that Y is a true martingale. Since Yτ = Xτ it follows that

E [Xτ | F0] = Y0 = θ + e−κτ (X0 − θ)

II case: If ρ is a bounded stopping time, then the L1-boundedness of Y , and
hence of X, implies that Xρ is integrable. Applying the ρ = 0 case to the process
(Xρ+s)s≥0 and the filtration (Fρ+s)s≥0 we obtain

E [Xρ+τ | Fρ] = θ + e−κτ (Xρ − θ).

2

By substituting the conditional expectation (2.5) in the pricing formula (2.4)
we get explicit formulas for zero-coupon bond prices given by P (t, T ) = F (τ,Xt),
where τ = T − t and F is a linear-rational function

F (τ, x) =
(φ+ ψ>θ)e−ατ + ψ>e−(α+κ)τ (x− θ)

φ+ ψ>x
. (2.6)
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Moreover, it follows from (1.2) that the short rate satisfies
rt = −∂T logP (t, T ) |T=t. The simple calculations show that the short rate is
given by the linear-rational function in the current state variable,

rt = α− ψ>κ(θ −Xt)

φ+ ψ>Xt

. (2.7)

We see from the formula above that if the parameter α is chosen large enough,
the short rate is non-negative at any time t. One possible choice of α is the smallest
value that yields a non-negative short rate. If one defines

α∗ = sup
x∈E

ψ>κ(θ − x)

φ+ ψ>x
and α∗ = inf

x∈E

ψ>κ(θ − x)

φ+ ψ>x
(2.8)

and sets α = α∗ then the short rate lies in the interval

rt ∈ [0, α∗ − α∗] (rt ∈ [0,∞] if α∗ = −∞)

and α∗ and α∗ depend on the model parameters, which have to be calibrated.
The parameter α can also be interpreted as an infinite-maturity spot rate, since

if the eigenvalues of κ have a non-negative real part, the equality

lim
τ→∞
−1

τ
logF (τ, x)

(2.6)
= lim

τ→∞
−1

τ
log

e−ατ ((φ+ ψ>θ) + ψ>e−κτ (x− θ))
φ+ ψ>x

= lim
τ→∞

α− 1

τ
log((φ+ ψ>θ) + ψ>e−κτ (x− θ)︸ ︷︷ ︸

−→0

)

︸ ︷︷ ︸
−→0

+
1

τ
log(φ+ ψ>x)︸ ︷︷ ︸

−→0


= α

is valid for any x ∈ E.

2.1.2 Unspanned Factors

In term structure modelling, the factors affecting the term structure are known
as term structure factors. Otherwise, they are called unspanned factors. Since
the term structure is specified by the zero-coupon bond prices, the unspanned
factors do not affect the zero-coupon bond prices, but they can affect the prices
of other interest rate derivatives. The zero-coupon bond prices play a key role by
determining if a model has unspanned factors or not.
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The existence of unspanned factors in linear-rational term structure models
can be verified easily by using only the model parameter. The authors of the
linear-rational term structure model use the concept of kernel to describe the
directions ξ ∈ Rd such that the zero-coupon bond prices remain unchanged when
the state vector moves along ξ. The presence of the non-zero elements in the kernel
means that there are factors in the model which do not affect the term structure.
Conversely, if the kernel consists only of the zero element of Rd, then all factors
affect the term structure, and there are no unspanned factors in the model.

In linear algebra the kernel of a linear map is the null space of the map and
measures the degree of injectivity of this map. In linear-rational term structure
models the term structure is specified by the linear-rational function F (τ, ·), given
in (2.6), which means non-linear in Xt and therefore the usual kernel can not be
used. For this reason the authors introduce the term kernel of the differentiable
function and then define the term structure kernel as a kernel of the differentiable
function F (τ, ·) for τ ≥ 0.

Definition 2.2 (Kernel of a differentiable function). The kernel of a differ-
entiable function f on E ⊂ Rd is the linear subspace of Rd defined by

ker f =
{
ξ ∈ Rd : ∇f(x)>ξ = 0 for all x ∈ E

}
,

where ∇f(x) denote the gradient with respect to x. If f(x) = ν>x is linear for
some ν ∈ Rd, then ∇f(x) = ν for all x ∈ E and the new definition gives the usual
kernel of f .

Definition 2.3 (Term structure kernel). The term structure kernel is defined
by

U =
⋂
τ≥0

kerF (τ, ·).

An alternative representation of the term structure kernel in terms of the model
parameters is given in the following proposition, in which the term structure kernel
is presented as a kernel of a linear map.

Proposition 2.4. Assume that the term structure is not trivial, i.e.
the short rate is not constant. Then

U =
d−1⋂
p=0

ker ψ>κp. (2.9)

Proof : According to Def. 2.2 the kernel is a set of elements orthogonal to the
gradient ∇F (τ, x) for τ ≥ 0, x ∈ E and hence the orthogonal complement of term
structure kernel is U⊥ = span {∇F (τ, x) : τ ≥ 0, x ∈ E}. To prove (2.9) we have
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to prove that U⊥ = span
{

(κ>)pψ : p = 0, . . . , d− 1
}

. By the Cayley-Hamilton
Theorem (see Horn and Johnson (1990 Theorem 2.4.3)) (κ>)d can be expressed as
a linear combination of (κ>)0, . . . , (κ>)d−1. In this case we have to prove

span {∇F (τ, x) : τ ≥ 0, x ∈ E} = span
{

(κ>)pψ : p ≥ 0
}

(2.10)

Let S denote the left side. After calculation, we obtain for the gradient of F

∇F (τ, x) =
e−ατ

φ+ ψ>x

[
e−κ

>τψ − e−ατF (τ, x)ψ
]

(2.11)

from which S = span
{
e−κ

>τψ − e−ατF (τ, x)ψ : τ ≥ 0, x ∈ E
}

. We assume that

there are x, y ∈ E and τ ≥ 0 such that F (τ, x) 6= F (τ, y). It follows that

e−ατ (F (τ, x)ψ−F (τ, y)ψ) and hence ψ itself, lies in S. Therefore S = span
{
e−κ

>τψ : τ ≥ 0
}

.

Since e−κ
>τψ =

∑
p≥0

(−τ)p

p!
(κ>)pψ we can conclude that S = span

{
(κ>)pψ : p ≥ 0

}
.

2

As a corollary one obtains a necessary and sufficient condition for a linear-
rational model to have only term structure factors.

Corollary 2.5. Assume that κ is diagonalizable with real eigenvalues, i.e. κ =
S−1ΛS with Λ diagonal and real. Then U = {0} if and only if all eigenvalues of κ
are distinct and all components of S−>ψ are non zero.

Proof : Let Λ = Diag(λ1, . . . , λd) and consider the matrix

A =
[
ψ κ>ψ · · · (κ>)d−1ψ

]
.

According to Proposition 2.4, U consists of elements ξ ∈ Rd such that ψ>κpξ =
0 for all p = 0, . . . , d − 1, which is equivalent to A>ξ = 0. Then U = {0} if and
only if the determinant of the matrix A is non-zero.

Let ψ̂ = S−>ψ. The determinant of A is then given by

detA = det(S>) det(ψ̂ Λ>ψ̂ · · · (Λ>)d−1ψ̂)

= det(S>)ψ̂1 · · · ψ̂d det

1 λ1 . . . λd−1
1

...
...

...
1 λd . . . λd−1

d


= det(S>)ψ̂1 · · · ψ̂d

∏
1≤i<j≤d

(λi − λj),

The last equation follows from the formula for calculating of Vandermonde matrix.
We see that the determinant of A is not zero if and only if the eigenvalues of κ are
distinct and all components of ψ̂ are non-zero.
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2

The term structure factors alone are not enough to describe modern finance
markets. Therefore we concentrate on linear-rational models with unspanned fac-
tors. For convenience the state space of the factor process is transformed in such a
way that the unspanned directions correspond to the last components of the state
vector.

Assume now that the linear-rational term structure model has n ≤ d unspanned
factors andm = d−n term structure factors. We also assume that S is an invertible
linear transformation on Rd, which maps the term structure kernel into

S(U) = {0} × Rn,

where n = dimU and m = n−d. This transformation defines a new linear-rational
term structure model equivalent to the original model with

• a factor process dX̂t = SXt whose dynamics is given by

dX̂t = κ̂(θ̂ − X̂t)dt+ dM̂t,

where
k̂ = SkS−1, θ̂ = Sθ, M̂t = SMt (2.12)

• a state price process
ξt = e−αt(φ̂+ ψ̂>X̂t)

where
φ̂ = φ, ψ̂ = S−>ψ. (2.13)

The transformed model has exactly n unspanned factors, corresponding to the
last n components of the transformed factor process X̂t under certain technical
conditions, given in the theorem below. In this case the transformed factor process
can be decomposed into X̂t = (Zt, Ut), where Zt is a m-dimensional factor process
affecting the term structure and Ut is a n-dimensional factor process describing
the unspanned factors.

Theorem 2.6. Let m,n ≥ 0 be integers with m+ n = d. Then

S(U) = {0} × Rn (2.14)

if and only if the transformed model parameters (2.12) - (2.13) satisfy:

(i) ψ̂ = (ψ̂Z , 0)> ∈ Rm × Rn;
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(ii) κ̂ has block lower triangular structure,

κ̂ =

(
κ̂ZZ 0
κ̂UZ κ̂UU

)
∈ R(m+n)×(m+n);

(iii) The upper left block κ̂ZZ of κ̂ satisfies

m−1⋂
p=0

ker ψ̂>Z κ̂
p
ZZ = {0} .

In this case, the dimension of the term structure kernel U equals n.

Proof: The proof of the case n = 0 follows immediately from Prop. 2.4. If n = 0
then m = d, ψ̂ = ψ̂Z , κ̂ = κ̂ZZ and according to Prop. 2.4 U =

⋂m−1
p=0 ker ψ̂>Z κ̂

p
ZZ .

Consider now the case n ≥ 1.
⇒: We denote Û = S(U) and assume that (2.14) holds, i.e. Û = {0} × Rn. This
means that

Û =
{
ξ̂ ∈ Rd : ξ̂ = (0, ξ̂U)>, where ξ̂U ∈ Rn

}
⊂ Rm × Rn (2.15)

On the other hand, it follows from the Prop. 2.4 and Def. 2.2 that

Û =
{
ξ̂ ∈ Rd : ψ̂>κ̂pξ̂ = 0 for p = 0, 1, . . . , d− 1

}
(2.16)

We partition ψ̂ and κ̂ so that

ψ̂ =

(
ψ̂Z
ψ̂U

)
∈ Rm × Rn, κ̂ =

(
κ̂ZZ κ̂ZU
κ̂UZ κ̂UU

)
∈ R(m+n)×(m+n).

It follows from (2.15) and (2.16) that ψ̂>U ξ̂U = 0 for ξ̂U ∈ Rn. Hence ψ̂>U = 0, which
proves (i). We show that

ψ̂>κ̂p =
(
ψ̂>Z κ̂

p
ZZ ψ̂>Z κ̂

p−1
ZZ κ̂ZU

)
(2.17)

For p = 1 follows immediately from (i). Suppose that (2.17) holds for some p ≥ 1.
Then (2.15) and (2.16) imply

0 = ψ̂>κ̂p
(

0

ξ̂U

)
= ψ̂>Z κ̂

p−1
ZZ κ̂ZU ξ̂U ,

for any ξ̂U ∈ Rn and hence
ψ̂>Z κ̂

p−1
ZZ κ̂ZU = 0. (2.18)
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By multiplying both sides of (2.17) by κ̂ from the right we see that (2.17) holds
for p+ 1. It follows by induction that (2.17) and (2.18) holds for all p ≥ 1.

Now we take any ξ̂Z such that ψ̂>Z κ̂
p
ZZ ξ̂Z = 0 for all p ≥ 0. Then the vector

ξ̂ = (ξ̂Z 0)> ∈ Rm×Rn satisfies ψ̂>κ̂pξ̂ = 0 for all p ≥ 0. Hence ξ̂ ∈ Û by (2.16),
and then ξ̂Z = 0 by (2.15). This proves (iii).

Finally, since (2.18) holds for all p ≥ 1, the range of κ̂ZU lies in the kernel of
ψ̂Z κ̂

p−1
ZZ for all p ≥ 1. This implies by (iii) that the range of κ̂ZU consists of the

zero vector and hence κ̂ZU = 0. This proves (ii).
⇐: Conversely, we now assume that ψ̂ and κ̂ given in (2.12) and (2.13) satisfy
the condition (i) − (iii). We show that (i) − (ii) imply S(U) ⊃ {0} × Rn. Let
{e1, e2, . . . , ed} the canonical basis of Rd, then we have for p = 0, . . . , d− 1,

ψ>κpS−1ei = ψ>S−1(SκS−1)
p
ei = ψ̂>κ̂pei

Note that κ̂p has the same block triangular structure as κ̂ for all p ≥ 1. Thus for i =
m+1, . . . , d, the right side above is zero for all p ≥ 0. Therefore S−1ei ∈ U by (2.16)
and hence ei ∈ S(U) for i = m + 1, . . . , d. Since {0} × Rn = span(em+1, . . . , ed)
and according to the definiton of span, is the smallest set containing the vectors
em+1, . . . , ed, it follows that {0} × Rn ⊂ S(U). Suppose now that (iii) holds
additionally, i.e.

m−1⋂
p=0

ker ψ̂>Z κ̂
p
ZZ =

{
ξ∗ ∈ Rm : ψ̂>Z κ̂

p
ZZξ

∗ = 0 for all p = 0, . . . ,m− 1
}

= {0}

and consider a vector ξ ∈ span(S−1e1, . . . , S
−1em). Then Sξ = (ξ̂Z , 0) ∈ Rm ×Rn.

By (i) and (ii) we have

ψ>κpξ = ψ̂>κ̂pSξ = ψ̂>Z κ̂
p
ZZ ξ̂Z .

If ξ ∈ U , the left side is zero for all p = 0, . . . , d − 1. Hence so is the right
side, which by (iii) implies ξ̂Z = 0 and therefore also ξ = 0. This means that
span(S−1e1, . . . , S

−1em) = {0}. We deduce that

U = span(S−1em+1, . . . , S
−1ed)

and hence
S(U) = span(em+1, . . . , ed) = {0} × Rn

.

2
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The proof of Theorem (2.6) shows that the first two conditions (i)− (ii) of
the theorem guarantee the existence of at least n unspanned factors in the linear
rational model. The model has exactly n unspanned factors if in addition the
condition (iii) is satisfied.

Lemma 2.7. Let m,n ≥ 0 be integers with m + n = d. If the transformed
model parameters (2.12)-(2.13) satisfy (i)− (ii) in Theorem 2.6, we have S(U) ⊃
{0} × Rn. In this case dimU ≥ n.

Theorem 2.6 implies that if (2.14) holds then the zero-coupon bond prices
depend only on the components of vector Zt and not on the components of the
vector Ut where X̂t = (Zt, Ut). Let S x = (z, u) and θ̂ = (θ̂Z , θ̂U). According to
Theorem 2.6, (2.14) holds if and only if the parameters of the transformed model
satisfy (i)− (iii). Then the function

F̂ (τ, z) = F (τ, x) =
(φ+ ψ>θ)e−ατ + ψ>e−(α+κ)τ (x− θ)

φ+ ψ>x

=
(φ+ ψ>S−1Sθ)e−ατ + ψ>S−1Se−(α+κ)τS−1S(x− θ)

φ+ ψ>S−1Sx

=
(φ̂+ ψ̂>Z θ̂Z)e−ατ + ψ̂>Z e

−(α+κ̂ZZ)τ (z − θ̂Z)

φ̂+ ψ̂>Z z

does not depend on u and the bond prices are given by P (t, T ) = F̂ (T − t, Zt).
Therefore the components of Ut do not change the zero-coupon bond prices. Just
the opposite, the vector Zt affects the zero-coupon bond prices. Its components
are the term structure factors. Moreover, if the term structure function z 7→
(F̂ (τ, z))τ≥0 is injective the vector Zt can be reconstructed from a snapshot of the
term structure at the time t. A necessary and sufficient condition for injectivity
of this function is given in the following proposition.

Proposition 2.8. The term structure function z 7→ (F̂ (τ, z))τ≥0 is injective if and

only if the κ̂ZZ is invertible and φ̂+ ψ̂>Z θ̂Z 6= 0.

2.1.3 Unspanned stochastic volatility factors

Under the condition (i)− (iii) the dynamics of X̂t = (Zt, Ut) can be decomposed
into term-structure dynamics

dZt = κ̂ZZ(θ̂Z − Zt)dt+ dM̂Zt (2.19)

and unspanned factor dynamics

dUt = (κ̂UZ(θ̂Z − Zt) + κ̂UU(θ̂U − Ut))dt+ dM̂Ut (2.20)

35



where M̂t = (M̂Zt, M̂Ut). The state price density is affine in Zt

ζt = e−αt(φ̂+ ψ̂>ZZt) (2.21)

If the unspanned factors Ut do not enter the dynamics of M̂Zt, then Zt is a
fully autonomous process and the unspanned factors play no role in the model. In
this case the m−dimensional linear-rational term structure model (2.19)−(2.20) is
equivalent to (2.2)− (2.3), has only term structure factors and is minimal. If there
are some unspanned factors that enter into the dynamics of M̂Zt, then they can
be seen as unspanned factors affecting the stochastic volatility. They are called
unspanned stochastic volatility (USV) factors.

2.1.4 Swaption Price

An important advantage of the linear-rational term structure models is that they
allow a semi-analytical formula for the swaption price. A swapion is an option on
an interest rate swap that gives the right, but not the obligation to enter into the
swap.

Consider a swap that pays fixed versus floating interest rates specified by a
tenor structure of equidistant reset and payment dates T0 < T1 < · · · < Tn with
∆ = Ti−Ti−1 and a pre-determined annualized rateK. At each date Ti the fixed leg
pays ∆K and the floating leg pays LIBOR for the preceding time period [Ti−1, Ti]
and at the same time the floating rate for the next period is set. According to (1.7)
the value of the swap at any time t ≤ T0, from the perspective of the fixed-rate
payer, is given by

Πswap
t = P (t, T0)− P (t, Tn)−∆K

n∑
i=1

P (t, Ti). (2.22)

A European payer swaption expiring at time T0 enters the swap specified above
only if the swap value is positive at time T0. Its value at expiration is

HT0 =
(∏swap

T0

)+

=

(
n∑
i=0

ciP (T0, T i)

)+

=
1

ζT0

(
n∑
i=0

ciE[ζTi | FT0 ]

)+

,

where c0 = 1, cn = −1−∆K and ci = −∆K for i = 1, . . . , n−1. The last equality
follows from (1.15).

According to Lemma 2.1 the conditional expectations E[ζTi | FT0 ] in a linear-
rational term structure model are affine functions in XT0 . Substituting the expec-
tation in the formula above we obtain for the swaption value

HT0 =
1

ζT0

(
pswap(XT0)

)+

,

36



where pswap is the explicit affine function

pswap(x) =
n∑
i=0

cie
−αTi

(
φ+ ψ>θ + ψ>e−κ(Ti−T0)(x− θ)

)
.

Applying the pricing formula (2.1) we obtain that the price of a European
payer swaption at time t ≤ T0 is given by∏swpt

t =
1

ζt
E[ζT0CT0 | Ft] =

1

ζt
E
[(
pswap(XT0)

)+

| Ft
]
. (2.23)

To compute the swaption price with this formula we need the conditional ex-
pectation E [XT0 | Ft]. If the conditional density of XT0 given Ft is known then the
conditional expectation can be computed by numerical integration over Rd. The
authors of the model propose an alternative approach to evaluating the condition
expectation, based on the Fourier transform methods.

Theorem 2.9. Define q̂(z) = E [exp(zpswpt(XT0)) | Ft] for every z ∈ C such that
the conditional expectation is well-defined. Pick any µ > 0 such that q̂(µ) < ∞.
Then the swaption price is given by

Πswpt
t =

1

ζtπ

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ (2.24)

Proof : The proof uses that the function f(s) = s+ can be presented by its inverse
Fourier transform as follow

s+ =
1

2π

∫
R
e(µ+iλ)s 1

(µ+ iλ)2
dλ (2.25)

for any µ > 0 and s ∈ R (see Bateman and Erdélyi (1954)).
Let q(ds) denote the conditional distribution of the random variable pswap(XT0)

given Ft. Its Fourier transform is then defined as

q̂(z) = E [exp(zpswpt(XT0)) | Ft] =

∫
R
ezsq(ds)

for every z ∈ C such that the right side is well-defined and finite. Pick µ > 0

such that
∫
R e

µsq(ds) < ∞. We show now that the function e(µ+iλ)s 1

(µ+ iλ)2
is

dλ⊗ q(ds)-integrable and Fubini’s theorem can by applied.∫
R2

∣∣∣∣e(µ+iλ)s 1

(µ+ iλ)2

∣∣∣∣ dλ⊗ q(ds) =

∫
R2

eµs
1

µ2 + λ2
dλ⊗ q(ds)

=

∫
R
eµsq(ds)

∫
R

1

µ2 + λ2
dλ <∞
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The second equality follows from Tonelli‘s theorem. The conditional expectation
of pswap(XT0) given Ft can be calculated as follow

E [pswpt(XT0) | Ft] =

∫
R
s+q(ds)

=

∫
R

(
1

2π

∫
R
e(µ+iλ)s 1

(µ+ iλ)2
dλ

)
q(ds)

=
1

2π

∫
R

1

(µ+ iλ)2

(∫
R
e(µ+iλ)sq(ds)

)
dλ

=
1

2π

∫
R

q̂(µ+ iλ)

(µ+ iλ)2
dλ

=
1

π

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ

Here the third equality follows form Fubini’s theorem. The last equality uses that
the left, and hence the right, side is real, and that the real part of (µ+ iλ)−2 q̂(µ+
iλ) is an even function of λ. Substituting the last expression of the conditional
expectation in (2.23) gives the price formula from theorem 2.9.

2

Theorem 2.9 simplifies the problem of computing an integral over Rd to comput-
ing a simple line integral. The difficulty of the Fourier method for price calculation
is to evaluate q̂(µ+ iλ) as λ varies through R+. If the factor process is affine, the
Exponential-affine transform formula can be applied and the calculation of q̂(z)
amounts to a numerical solving a system of ordinary differential equations.

2.2 Models with Unspanned Stochastic

Volatility (USV) Factors

The unspanned stochastic volatility (USV) factors are unspanned factors
affecting stochastic volatility of the factor process. They also affect the volatility
of the zero-coupon bond price, although as unspanned factors they do not affect
the price of zero-coupon bond. The unspanned factors, which affect neither the
zero-coupon bond price volatility nor the covariance matrix, are called residual
factors. Therefore, the volatility and covariance matrix of zero-bond price can
be used to determine if an unspanned factor in the model is a USV factor or a
residual factor.

In this section we consider linear-rational diffusion models of Filipović in which
the unspanned factors are presented and give conditions under which the un-
spanned factors are USV factors as well. Moreover, we show which conditions the
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model should satisfy, so that each unspanned factor in the model is also a USV
factor. Finally, we show how a d- dimensional linear-rational square root model
of Filipović et al. is specified, so that it has exactly m term structure factors and
n = d−m USV factors.

2.2.1 Linear-Rational Diffusion Models

The linear-rational diffusion model is a linear-rational term structure model whose
factor process follows an affine diffusion process of the form

dXt = κ(θ −Xt)dt+ σ(Xt)dBt (2.26)

where σ : E → Rd×d is measurable, Bt is d-dimensional Brownian motion and
a(x) = σ(x)σ(x)> is differentiable. The state price density in the linear-rational
diffusion model is an affine process of the form

ζt = e−αt(φ+ ψ>Xt).

It follows by Itô formula that ζt solves the following SDE

dζt = −αe−αt(φ+ ψ>Xt)dt+ e−αtψ>dXt +
1

2
· 0 · (dXt)

2

= −αζt + e−αtψ>(κ(θ −Xt)dt+ σ(Xt)dBt)

= ζt

(
−αdt+

ψ>(κ(θ −Xt)

φ+ ψ>Xt

dt+
ψ>σ(Xt)

φ+ ψ>Xt

dBt

)
= ζt

(
−rtdt+

ψ>σ(Xt)

φ+ ψ>Xt

dBt

)
= ζt (−rtdt− λtdBt) ,

where rt = α − ψ>(κ(θ−Xt)
φ+ψ>Xt

is the short rate given in (2.7) and according (1.23)

λt = −ψ>σ(Xt)
φ+ψ>Xt

is the market price of risk.

In order for us to define the zero bond price volatility, we need the dynamics
of the zero-coupon bond price. The zero-coupon bond price in the linear-rational
diffusion model is an affine function of the factor process, P (t, T ) = F (τ,Xt),
where τ = T − t and F is the price function (2.6). By Itô formula and (2.26) one
obtains for the price dynamics

dP (t, T ) = −∂F
∂t

(τ,Xt)dt+∇F (τ,Xt)
>dXt +

1

2

d∑
i,j=0

∂2F

∂xi∂xj
(τ,Xt) dX

i
tdX

j
t

= P (t, T )

({
rt +

∇F (τ, x)>σ(Xt)

F (τ,Xt)
λt

}
dt+

∇F (τ, x)>σ(Xt)

F (τ,Xt)
dBt

)
= P (t, T )

({
rt + v(t, T )>λt

}
dt+ v(t, T )>dBt

)
.
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Hence the volatility vector is given by

v(t, T ) =
σ(Xt)

>∇F (τ, x)

F (τ,Xt)

and the instantaneous covariance between the returns on two bonds with maturities
T1 and T2 is given by v(t, T1)>v(t, T2) = G(τ1, τ2, Xt), where
τ1 = T1 − t, τ2 = T2 − t and

G(τ1, τ2, x) =
∇F (τ1, x)>a(x)∇F (τ2, x)

F (τ1, x)F (τ2, x)

with a(x) = σ(x)σ(x)>.

The variance-covariance kernel describes the directions in ξ ∈ Rd with the
property that movements of the state vector along ξ change neither the bond return
volatility nor the covariation between returns on bonds with different maturities.

Definition 2.10. The variance-covariance kernel, denoted by W, is given by

W =
⋂

τ1,τ2≥0

ker G(τ1, τ2, ·).

That means, W consists of all ξ ∈ Rd such that ∇G(τ1, τ2, x)>ξ = 0 for all
τ1, τ2 ≥ 0 and all x ∈ E. The linear-rational diffusion model has at least one USV
factor if there is at least one element of the term structure kernel U that does not lie
in the variance-covariance kernel W , i.e. U \W 6= ∅. In the model all unspanned
factors are USV factors if there is no element of the term structure kernel except
the null element that lies in the variance-covariance kernel, i.e U

⋂
W = {0}.

We assume now that there exists an invertible transformation S that satisfies
(2.14) and additionally has the property

S(U ∩W) = {0} × {0} × Rq,

where q = dimU ∩W , p+ q = n and n = dimU . S transforms the state space so
that the intersection U ∩W of the term structure kernel and variance-covariance
kernel corresponds to the last components of the state vector. Therefore the un-
spanned factors Ut in the transformed factor process X̂t = (Zt, Ut) decompose into
Ut = (Vt,Wt), where Vt is a vector of unspanned stochastic volatility factors and
Wt is a vector of residual factors that affect neither the term structure nor the
bond return volatility or covariance.

The next theorem gives sufficient condition, under which every unspanned
factor in the models is a USV factor and there are no residual factors in the
models. The sufficient condition is given in terms of variance-covariance matrix
â(z, u) = Sa(S−1(z, u))S> of the transformed factor process X̂t = (Zt, Ut).
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Theorem 2.11. Assume for every j ∈ {1, . . . , n}, there exists i ∈ {1, . . . ,m}
such that âii(z, u) is not constant in uj. Then U ∩W = {0}, and therefore every
unspanned factor is a USV factor. ([8], Theorem 3.4)

The sufficient condition of Theorem 2.11 is satisfied for the square root diffusion
model. Moreover, the linear-rational square root model can be specified in such
a way that it has exactly m term structure and n unspanned stochastic volatility
factors.

2.2.2 The Linear-Rational Square-Root Model

The Linear-Rational Square-Root (LRSQ) Model is a Linear-Rational Diffusion
Model with state space E = Rd

+ in which the dynamics of the factor process is
given by the multivariate square-root process of the form

dXt = κ(θ −Xt)dt+ Diag
(
σ1

√
X1t, . . . , σd

√
Xdt

)
dBt, (2.27)

and the state space density is given by

ζt = e−αt(φ+ ψ>Xt) (2.28)

with parameters φ, ψ, κ ∈ Rd×d, θ ∈ Rd and σi > 0.

We show how a class of LRSQ specifications with m term structure factors and
n USV factors can be constructed. We first specify the state space density.

Theorem 2.12. The short rate (2.7) is bounded from bellow if and only if, after
coordinatewise scaling of the factor process (2.27), we have ζt = e−αt(1 + 1>Xt).
In this case, the extremal values in (2.8) are given by α∗ = maxS and α∗ = minS,
where

S =
{
1>κθ,−1>κ1, . . . ,−1>κd

}
and κi denotes the ith column of κ. ([8], Theorem 4.1)

Hence, the state space density ζt can be assumed to be of the form

ζt = e−αt(1 + 1>Xt)

where
α = α∗ = maxS = max

{
1>κθ,−1>κ1, . . . ,−1>κd

}
. (2.29)

According to Theorem 2.12, the parameters φ = 1 and ψ = 1 = 1d ensure that
the short rate (2.7) in LRSQ model (2.27)-(2.28) is bounded from bellow. The
choice of the parameter α = α∗ ensures that it is non-negative for any t ≥ 0.
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Next we specify the factor process Xt (2.27) such that its parameters satisfy the
conditions of Theorem 2.6. In this way we guarantee that the model has exactly
m term structure and n unspanned factors with m + n = d. For this purpose we
consider the invertible linear transformation S on Rd

S =

(
Idm A

0 Idn

)
, S−1 =

(
Idm −A

0 Idn

)
, (2.30)

where A ∈ Rm×n is given by

A =

(
Idn
0

)
.

Let I = {1, . . . ,m} and J = {m+ 1, . . . , d} be the index sets and write the
mean reversion matrix κ in block form as

κ =

(
κII κIJ
κJI κJJ

)
where κIJ denotes the submatrix whose rows are indexed by I and columns by J ,
and similarly for κII , κJI , κJJ .

Let us also decompose the mean reversion into θ = (θI , θJ) ∈ Rm × Rn and
fix some volatility parameters σi > 0, i = 1, . . . , d. Then the dynamics of the
transformed factor process X̂t = S Xt = (Zt, Ut) can be given by the square root
diffusion process (2.27) with parameters obtained from (2.12):

κ̂ = SκS−1 =

(
κII + AκJI −κIIA+ AκJJ + κIJ − AκJIA

κJI κJJ − κJIA

)
,

ψ̂ = Sψ =

(
1m
0

)
, θ̂ = Sθ =

(
θI + AθJ

θJ

)
.

Assuming that κIJ satisfies the restriction

κIJ = κIIA− AκJJ + AκJIA (2.31)

it follows that the transformed LRSQ model satisfies the condition (i)− (ii) of
Theorem 2.6 and therefore the LRSQ model (2.27)-(2.28) has at least n unspanned
factors. The following result of Filipović et al. shows that if the model parameters
satisfy

κ̂ZZ = κII + AκJI (2.32)

and
σi 6= σm+i for all i = 1, . . . , n (2.33)

the LRSQ model (2.27)-(2.28) has exactly n USV factors.
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Proposition 2.13. The dimension of the term structure kernel is at least n, dimU ≥
n, with equality if κ̂ZZ = κII + AκJI satisfies Theorem 2.6 (iii). In this case, if
σi 6= σm+i for i = 1, . . . , n, all unspanned factors are USV factors.

Proof: The first assertion about dimU follows from Theorem 2.6. The assertion
that all unspanned factors are USV factors follows from Theorem 2.11. We use
that the diffusion matrix of the transformed factor process X̂t = (Zt, Ut) is given
by â(z, u) = Sσσ>(S−1(z, u))S>. After calculation we obtain

âii(z, u) = σ2
i zi + (σ2

m+i − σ2
i )ui, i = 1, . . . , n,

which is non-constant in ui since σi 6= σm+i.
The next assumptions for the parameters of LRSQ(m,n) specification

κJI = 0 and κJJ = A>κIIA (2.34)

ensure the existence and the uniqueness of the square root diffusion process (2.27).
Note that κJJ coincides with the upper left n× n block of κII .

We present two specifications of LRSQ models. The first example specifies a
LRSQ model with one term structure factor and one USV factor. The second
example specifies a LRSQ model with three term structure factors and one USV
factor.

Example 2.14 (LRSQ(1,1)).

In LRSQ(1,1) specification we have one term structure factor and one USV
factor. According to (2.30) A = 1 and hence the transformation S for this speci-
fication and its inverse are given by

S =

(
1 1
0 1

)
, S−1 =

(
1 −1
0 1

)
.

Since X̂t = (Zt, Ut) = S Xt the term structure factor and the unspanned factor
become Zt = X1t + X2t and Ut = X2t. The restrictions (2.31) and (2.34) imply
that the mean reversion matrix is given by

κ =

(
κ11 0
0 κ11

)
and the transformed mean reversion matrix κ̂ = SκS−1 coincide with κ,

κ̂ =

(
κ11 0
0 κ11

)
.
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Assuming that the volatility matrix is σ(Xt) = Diag(σ1

√
X1t, σ2

√
X2t) then trans-

formed volatility matrix is

σ̂(z, u) = Sσ(x) =

(
σ1

√
z1 − u1 σ2

√
u1

0 σ2
√
u1

)
.

Therefore the transformed diffusion matrix â(z, u) = σ̂(z, u)σ̂(z, u)> satisfies â11(z, u) =
σ2

1z1 + (σ2
2 −σ2

1)u1 and it is non-constant in u1 if σ1 6= σ2. Then according to The-
orem 2.11 the only one unspanned factor Ut in the LRSQ(1,1) specification is a
USV factor if σ1 6= σ2. The parameter in the LRSQ(1,1) specification which have
to be calibrated are α, κ11, σ1, σ2, θ1, θ2.[8]

Example 2.15 (LRSQ(3,1)).

We consider the LRSQ(3,1) specification of a LRSQ model with three term
structure factors and one unspanned factor. According to (2.30) the transformation
S for this specification and its inverse are given by

S =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , S−1 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 .

Here the matrix A ∈ R3×1 is A = (1, 0, 0, 0)>. In this case the term structure
factors und the unspanned factor become

Z1t

Z2t

Z3t

U1t

 = SXt =


X1t +X4t

X2t

X3t

X4t

 .

Under the restrictions (2.31) and (2.34) the mean reversion matrix is given by

κ =


κ11 κ12 κ13 0
κ21 κ22 κ23 κ21

κ31 κ32 κ33 κ31

0 0 0 κ11


and the transformed mean reversion matrix by

κ̂ = SκS−1 =


κ11 κ12 κ13 0
κ21 κ22 κ33 0
κ31 κ32 κ33 0
0 0 0 κ11

 .
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The corresponding volatility matrix is

σ̂(z, u) =


σ1

√
z1 − u1 0 0 σ4

√
u1

0 σ2
√
z2 0 0

0 0 σ3
√
z3 0

0 0 0 σ4
√
u1

 .

Applying the Theorem 2.11 to the transformed diffusion matrix â(z, u) = σ̂(z, u)σ̂(z, u)>

we see that â11(z, u) = σ2
1z1 + (σ2

4 − σ2
1)u1 is non-constant in u1 if σ1 6= σ4. This

means that the unspanned factor Ut in the LRSQ(3,1) specification is a USV factor
if σ1 6= σ4. [8]

2.2.3 Swaption Pricing in Linear Rational Square Root
Model

The swaption price in a LRSQ model is calculated according to the price formula
(2.23). Since the factor process Xt is affine, the Exponential-Affine Transform
Formula can be applied (see Theorem 1.30) and the function q̂(z) in the swaption
price formula can be evaluated. The evaluation of q̂(z) amounts to solving a system
of ordinary differential equation given in the following theorem.

Theorem 2.16 (Exponential-Affine Transform Formula). Suppose that Xt is a d-
dimensional affine diffusion process of the form (2.27). Then for any x ∈ Rd, t ≥
0, u ∈ C, v ∈ Cd such that Ex

[∣∣exp(v>Xt)
∣∣] <∞

Ex

[
eu+v>Xt

]
= eΦ(t)+x>Ψ(t),

where Φ : R+ −→ C,Ψ : R+ −→ Cd solve the system

Φ′(τ) = b>Ψ(τ)

Ψ′i(τ) = β>i Ψ(τ) +
1

2
σ2
i Ψi(τ)2, i = 1, . . . , d,

with initial condition Φ(0) = u,Ψ(0) = v. The solution to this system is unique.
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Chapter 3

Estimation of LRSQ Models

3.1 Data

Filipović et al. estimate the model on a panel data set involving 827 weekly obser-
vations of swaps and swaptions over the time from January 29, 1997 to November
28, 2012. At each observation date, they observe rates on spot-starting swap con-
tracts with maturities of one, two, three, five, seven and ten years, respectively as
well prices on swaptions with three-month options maturities, the same six swap
maturities, and strikes equal to the forward swap rates. For convenience they
represent the swaption prices in term of implied volatilities. They convert the
swaption prices into normal implied volatilities using the formula

Πswpt
t =

√
T0 − t

1

2π

(
n∑
i=1

∆P (t, Ti)

)
σN,i (3.1)

where the zero-coupon bonds are bootstrapped from the swap curve.

3.2 Maximum Likelihood Estimation

For modelling of the linear-rational term structure Filipović et al. use three
LRSQ(m,n) specifications in which the number of term structure factors is al-
ways set m = 3 while the number of USV factors is set n = 1, 2 or 3, respectively.
The specification LRSQ(3, 1) is used for a model in which the volatility of Z1t

contains one unspanned component, the specification LRSQ(3, 2) for a model in
which the volatility of Z1t and Z2t contains unspanned components and the last
specification LRSQ(3, 3) is used for a model in which the volatility of all term
structure factors Z1t, Z2t, Z3t contains unspanned components.

The model parameters are estimated by using the maximum likelihood ap-
proach in conjunction with Kalman filtering. As we will see in the next section
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the Kalman filter allows simultaneous estimation of model parameters, unobserv-
able state variables and also the likelihood function of the observable variables.
For the Kalman filter to be applied, the linear-rational term structure model is
approximated by a state space model with a measurement equation describing the
relation between the state variables and observable swap rates and swaptions im-
plied volatilities, and a transition equation describing the discrete-time dynamics
of the state space variables.

In the linear-rational term structure models both the swap rates and the swap-
tion implied volatilities are functions of the unobservable vector Xt. Therefore the
measurement equation in state space model can be given by

Yt = H(Xt,Θ) + ut, ut ∼ N(0,Σ), (3.2)

where Yt denotes the vector consisting of observable swap rates and swaption
implied volatilities, Xt denotes the vector of unobservable state variables at time
t, Θ is the vector of model parameters, H is a vector-valued pricing function
defined by (1.8) and (2.24) and ut is a vector of i.i.d. Gaussian pricing errors with
covariance matrix Σ. To reduce the number of parameters in Σ Filipović et al.
assume that the pricing errors are cross-sectionally uncorrelated, i.e. Σ is diagonal.
They also assume that all pricing errors for the swap rates and all pricing errors
for the swaption implied volatilities have the same variances, denoted by σ2

rates and
σ2
swaptions respectively.

In linear-rational term structure models the state variables follow a multidi-
mensional CIR process. As an affine diffusion process its conditional mean and
variance can be written in a closed form, however, the transition density is un-
known. Filipović et al. approximate the transition density with a Gaussian density
with identical first and second moments. They assume that the transition equation
is of the form

Xt = Φ0 + ΦXXt−1 + ωt, ωt ∼ N(0, Qt), (3.3)

and chose the parameters Φ0, ΦX and Qt in such a way that the conditional mo-
ments of Xt are identical with conditional moments of the factor process in the
linear-rational model. In this case the parameter Φ0 and ΦX depend on the param-
eter Θ. The variances Qt are affine functions of Xt−1 depending on the parameter
Θ.

The measurement and transition equations (3.2)–(3.3) define the state space
model corresponding to the linear-rational term-structure model. Since both price
functions in the measurement equations are non-linear some of the non linear
Kalman Filters have to be applied for estimating the state space model. Filipvić
et al. use the non-linear unscented Kalman Filter. The Unscented Kalman Filter
produces one-step-ahead forecasts Ŷt|t−1 for the observation Yt and corresponding

error covariance matrices, F̂t|t−1, which are used to construct the log-likelihood
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function

L(Θ) =
1

2

T∑
t=1

(
# log 2π + log | F̂t|t−1 + (Yt − Ŷt|t−1)>F̂−1

t|t−1(Yt − Ŷt|t−1)
)
, (3.4)

where T is the number of observation data and # is the number of observations
in Yt. The (quasi) maximum likelihood estimator, Θ̂ is then

Θ̂ = arg max
Θ
L(Θ). (3.5)

3.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a filtering algorithm for estimating non-
linear dynamic systems with measurement and process (transition) equations of
the form

yk = H(xk,uk) (3.6)

xk = F (xk−1,vk−1) (3.7)

where xk is a d-dimensional random vector describing the unobservable state vari-
ables of the non-linear system on time step k, yk describes the measurement vector
observed on time step k and uk and vk are uncorrelated random vectors describing
the measurement and process noise, respectively with a zero-mean and diagonal
covariance matrices Rk and Qk, respectively. Note that it is not required that the
noise sources are additive or Gaussian. The vector-valued function H describes
the relation between the observations and the unobservable state variables, the
vector-valued function F describes the dynamics of the state variables. It is as-
sumed that the function F and H, as well as the initial state and the corresponding
error covariance, are known. The equations (3.6) and (3.7) are called measurement
and process equations, respectively.

The UKF estimation of the non-linear dynamic system includes an estimation
of the unobservable states, an estimation of the unknown parameters as well as a
simultaneous estimation of the states and parameters.

The Unscented Kalman Filter is a relatively new method for non-linear esti-
mation, proposed by Julier and Uhlmann [10] as an extension of the traditional
Kalman filter to the non-linear dynamic system, and at the same time as an im-
provement of the widely used Extended Kalman Filter for non-linear estimation.

The Unscented Kalman Filter uses an unscented transformation to approximate
the joint distributions (or at least the first two moments) of the state xk and
measurement yk. This way it allows the classical linear Kalman filter algorithm
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to be applied for the estimation of non-linear dynamic systems. This method does
not require the assumption that the noise sources are additive or Gaussian.

In order to understand better how the Unscented Kalman Filter works we
first review the classical Kalman Filter algorithm. We introduce the Unscented
Transformation and discuss how by means of Unscented Transformation the linear
Kalman Filter algorithm can be applied for no-linear systems as well. We also
show how the unobservable state variables and the unknown parameter can be
estimated by UKF.

3.3.1 Kalman Filter

The Kalman Filter is a recursive algorithm for the estimation of linear time-
discrete dynamic systems. On each time step the unknown state variables of the
dynamic system can be estimated in a real time using only the present input
measurement, the previous estimated state variables and its covariance matrix.
The algorithm works in two steps:

• Prediction (Prior estimation)

On each time step k the Kalman Filter first predicts the current state given
the measurement observed on the previous time step as well as the prior esti-
mated state and its covariance matrix. The optimal prediction of the state,
x̂k|k−1, and its covariance matrix, Pk|k−1, are obtained by the conditional
expectations

x̂k|k−1 = E [F (x̂k−1,vk−1) | yk−1] (3.8)

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)> | yk−1

]
(3.9)

• Update (Posterior estimation)

Once the next measurement is observed, the predicted state and its covari-
ance matrix are updated. The optimal state estimate is the expected current
state xk conditional on the current observation yk

x̂k = E [xk | yk] .

Assuming that both the states and the measurements are Gaussian random
variables, the optimal estimate of the current state is the weighted average
of the predicted state and the new measurement given by the equation

x̂k = x̂k|k−1 +Kk(yk − ŷk|k−1), (3.10)

its covariance is given by

Pk = Pk|k−1 +KkPyyK>k (3.11)
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with

ŷk|k−1 = E
[
H(x̂k|k−1,uk) | yk−1

]
(3.12)

Pyy = E
[
(yk − ŷk|k−1)(yk − ŷk|k−1)> | yk−1

]
(3.13)

Pxy = E
[
(xk − x̂k|k−1)(yk − ŷk|k−1)> | yk−1

]
(3.14)

Kk = PxyP
−1
yy (3.15)

where ŷk|k−1 and Pyy are the predictions of the expected observation on the
time step k and its covariance matrix, respectively; Pxy is the predicted cross
correlation matrix; the weight Kk is the optimal Kalman gain which shows
how much the predicted state and its covariance matrix should be corrected
and whereby the Kalman gain is chosen to minimize the mean square error
of the estimate for x̂k.

The Kalman Filter repeats these two step until there are no more observations
or until it reaches a stable state and covariance matrix.

It is obvious that all equations in the prediction and update step are functions
of the predicted value of the first two moments of the state xk and measurement
yk. In linear case the Kalman Filter calculates these statistics exactly and in this
way provides a closed form recursive estimate for the unobserved state variables
of the linear discrete-time dynamic systems.

However, in practice the discrete-time dynamic systems are mostly non-linear.
This means that both equations in the dynamic system (3.6)-(3.7) can be non-
linear. In this case the traditional Kalman Filter can not be applied since the
prediction of the current state and the prediction of the expected observation
require calculating expectations of non-linear functions of the prior state estimate.
An analytical solution of these expectations is possible only if the distribution of
xk given yk is known, but even in this case the number of parameters which have
to be propagated can be too great (is unlimited).

Some extensions of the Kalman Filter solve the problem with the conditional
distributions and its moments, applying a transformation to the non-linear equa-
tions of the dynamic system. This way an approximation of the first two con-
ditional moments of the state and measurement is obtained and the traditional
Kalman Filter algorithm can be applied.

The Extended Kalman Filter (EKF), which was for many years the most com-
mon approach for non-linear estimation, first linearises the dynamic system (3.6)-
(3.7) approximating the non-linear functions F andH with first order Taylor series,
and then applies the Kalman Filter to the linearised dynamic system. However, the
EKF has some significant drawbacks. The linearisation can introduce significant
errors (in the true posterior mean and covariance). The Taylor series approxima-
tion requires the derivation of the Jacobian matrices which are not always trivial
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and often lead to significant implementation difficulties. The EKF is reliable for
systems which are almost linear on the time scale of the update intervals. The
EKF achieves only first order (Taylor series expansion) accuracy when estimate
the state [10].

The Unscented Kalman Filter is an improvement of the EKF. It is an extension
of the Kalman Filter which uses the Unscented transformation (UT) to approxi-
mate the conditional moments of the state and measurement so that the traditional
Kalman Filter can be applied. It has not the drawbacks of the EKF. The UKF
does not need to calculate the Jacobian matrices as in EKF. The UKF achieves
3rd order (Taylor series expansion) estimation accuracy for any non-linearity, even
though the computational complexity is the same as in EKF. [18].

3.3.2 Unscented Transformation

The Unscented Transformation is a method for calculating the statistics of a ran-
dom variable (or vector) which undergoes a non-linear transformation [10]. Con-
sider a random vector x (dimension L) with mean x̄ and covariance matrix Pxx

and also the random vector y, obtained after applying the non-linear vector-valued
function f to the random vector x, i.e. y = f(x). Suppose that the mean ȳ and
the covariance matrix Pyy of the random vector y have to be calculate, and the
density function of y can not be determined. In this case the mean and covariance
of y can be approximated using the unscented transformation. For this goal a set
of 2L+ 1 sigma points Xi and corresponding weights Wi are chosen in such a way
that the sample mean and sample covariance of the sigma points coincide with the
mean and the covariance of x:

X0 = x̄ (3.16)

Xi = x̄ +
(√

(L+ λ)Pxx

)
i

i = 1, . . . , L

Xi = x̄−
(√

(L+ λ)Pxx

)
i−L

i = L+ 1, . . . , 2L

W
(m)
0 = λ/(L+ λ)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/ {2(L+ λ)} i = 1, . . . , 2L,

where L is the dimension of x, λ = α2(L + κ) − L, α, κ, β are three scaling
parameters, which fully determinate the scaling of the UT. The primary parameter
α determines the spread of the sigma points around x̄ and varies from 1e − 4 to
1, the secondary parameter κ is usually set to 0 and the tertiary parameter β
includes information about the prior distribution of x (for Gaussian distribution

51



β = 2 is optimal, see [18]).
(√

(L+ λ)Pxx

)
i

is the ith row of the matrix square

root. After that the sigma points are propagated through the non-linear function
f to obtain a set of 2L+ 1 transformed sigma points,

Yi = f(Xi) i = 1, . . . , 2L. (3.17)

The mean and covariance of y are approximated through the weighted sample
mean and covariance of the transformed sigma points as follow,

ȳ ≈
2L∑
i=0

W
(m)
i Yi (3.18)

Pyy ≈
2L∑
i=0

W
(c)
i (Yi − ȳ)(Yi − ȳ)>. (3.19)

Note that this method resembles the Monte Carlo methods. However, there
is a very important difference between them. The methods using UT use a very
small number of deterministically chosen sample points to achieve an accurate ap-
proximation for the moments of the random variable y while Monte Carlo methods
require a huge number of sample points drawn at random [18, 10].

3.3.3 UKF State Estimation

The Unscented Kalman Filter provides a recursive estimate of the state following
all steps of the classical Kalman Filter (3.8)–(3.15) and applying the UT to

• predict the new state x̂k|k−1 and its covariance Pk|k−1 given by (3.8)–(3.9);

• predict the expected observation ŷk|k−1 and its covariance Pyy given by
(3.12)–(3.13);

• predict the the cross-correlation matrix Pxy given by (3.14);

Note that in the prediction steps the UT propagates the sigma points through the
non-linear functions H and F given in the dynamic system (3.6)–(3.7), which
depend not only on the state vector but also on the measurement noise and
the process noise, respectively. In order UT to be applied the original state is
augmented with the measurement noise and the process noise and UKF is ap-

plied to the new state xak =
[
x>k u>k v>k

]>
. The dimension of the new state is

dim(xk) = dim(xk) + dim(uk) + dim(vk). The UKF can be applied with the origi-
nal state only when both process and measurement noise sources are additive and
Gaussian. All equations of UKF algorithm for state estimation are given in the
box below.

52



Initialize before executing the UKF:

x̂0 = E[x0] P0 = E[(x0 − x̂0)(x0 − x̂0)>]

x̂a0 = E[x0] =
[
x̂>0 0 0

]>
Pa

0 = E[(xa0 − x̂a0)(xa0 − x̂a0)>] =

P0 0 0
0 Pu 0
0 0 Pv


For each k = 1, 2, 3, . . .
Calculate the sigma points:

X a
k−1 =

[
x̂ak−1 x̂ak−1 +

√
(L∗ + λ)Pa

k−1 x̂ak−1 −
√

(L∗ + λ)Pa
k−1

]
Prediction equation:

X x
k|k−1 = F (X x

k−1,X u
k−1)

x̂k|k−1 =
2L∑
i=0

W
(m)
i X x

i,k|k−1

Pk|k−1 =
2L∑
i=0

W
(c)
i (X x

i,k|k−1 − x̂k|k−1)(X x
i,k|k−1 − x̂k|k−1)>

Update equation

Yk|k−1 = H(X x
k−1,X v

k−1)

ŷk|k−1 =
2L∑
i=0

W
(m)
i Yi,k|k−1

Pyy
k =

2L∑
i=0

W
(c)
i (Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)>

Pxy
k =

2L∑
i=0

W
(c)
i (X x

i,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)>

Kk = Pxy
k (Pyy

k )−1

x̂k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk = Pk|k−1 +KkPyy
k K

>
k

where xa =
[
x> u> v>

]>
, X a =

[
(X x)>(X u)>(X v)>

]
, L is the dimension of the aug-

mented state, Pu is the measurement noise covariance, Pv is the process noise covariance,

λ is the scaling parameter,W
(m)
i andW

(c)
i are the weights calculated according to (3.16).
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3.3.4 UKF Parameter Estimation

In many applications the functions H and F of the non-linear dynamic system
(3.6)-(3.7) are known up to a fixed number of parameters θ = (θ1, . . . , θp)

> which
also have to be estimated. In this case the equation of the non-linear system can
be written in the form

yk = H(xk,uk, θ)

xk = F (xk−1,vk−1, θ).

By the means of UKF the unknown parameter θ can be estimated from the obser-
vations even when the state is unknown. Which estimation method is used depends
on the model. We consider the most common model, in which the measurement
and process noise terms are additive and Gaussian. The non-linear system of the
model is given by

yk = H(xk, θ) + uk

xk = F (xk−1, θ) + vk−1,

where H and F depend no more on the noise terms and according to the as-
sumption, the state and observation vectors are approximated through Gaussian
random variables. In this case the classical methods for parameter estimation like
the Maximum likelihood method can be applied in conjunction with the UKF to
estimate the parameter θ from the observation vectors yk.

As we already mentioned, the Maximum likelihood method finds the values of
parameter θ that maximizes the (log-)likelihood function, L(θ) and the Maximum
likelihood estimate (MLE) for the parameter θ is obtained by

θ̂ = arg max
θ

logL(θ).

The likelihood function is a function of the parameter θ, which corresponds to the
joint density function of all observation,

L(θ) = f(y1, . . . ,yN | θ) =
N∏
k=1

f(yk | yk−1),

and shows how probable the observations for a given parameter θ are. Here N
denotes the number of the observation. The likelihood function can be presented
also as a product of conditional density functions f(yk | yk−1). The likelihood
function can be calculated if all conditional density functions are known.

In models with additive Gaussian noise terms the conditional observations are
Gaussian random vectors,

yk | yk−1 ∼ N
(
E[H(xk, θ) | yk−1],E[(yk −H(xk, θ))(yk −H(xk, θ))

> | yk−1]
)
.
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Since the UKF produces on each time step k the one-step-ahead forecast ŷk|k−1

for yk and corresponding error covariance matrices, Pyy
k|k−1, the UKF can be also

used to construct the log-likelihood function

logL(θ) =
1

2

T∑
t=1

(
# log 2π + log |Pyy

k |+ (yk − ŷk|k−1)>Pyy
k
−1(yk − ŷk|k−1)

)
,

(3.20)
where T is the number of observation dates and # is the number of observations
in yk.

In non additive models or models in which the likelihood function can not be
constructed the Maximum likelihood approach can not be applied, and in this case
other estimation approaches are applied, see [18].

3.4 Square Root Diffusion Process

In term structure factor models, the square root diffusion process (also known as
CIR process) is usually used to model the dynamics of unknown state variables
(risk factors), e.g. short rate, volatility, etc.

In CIR model, one of the most commonly used short rate models, the square
root diffusion process describes the dynamics of the short rate. The CIR model
was introduced in 1985 by The Cox Ingersoll and Ross, and since then it is a
standard model used for evaluation of interest rate derivatives.

The square root diffusion process is also used in Heston model to model the
asset price volatility as a stochastic process.

The Chen model is an example for a three factors short rate model in which the
short rate, the mean of short rate and the volatility of short rate are assumed as
stochastic processes and their dynamics is specified by a three dimensional square
root diffusion process.

The square root diffusion process also specifies the dynamics of the factors
process in the linear-rational term structure model of Filipović. For this reason
we focus on the properties of square root diffusion processes.

3.4.1 Definition

The d-dimensional square root diffusion process (Xt)t≥0 is a stochastic
process defined as a solution of the stochastic differential equation (SDE)

dXt = κ(θ −Xt)dt+ σ
√
XtdBt, X0 = x (3.21)

where d ≥ 1, x ∈ Rd
+, Xt = (X1

t , . . . , X
d
t )>,

√
Xt = diag(

√
X1
t , . . . ,

√
Xd
t ),

Bt = (B1
t , . . . , B

d
t )> is a d-dimensional Wiener process (modelling the random
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market risk factors) defined on the filtered probability space (Ω,A, (Ft)t≥0,P) with
F0 = {∅,Ω} and κ ∈ Rd×d, θ ∈ Rd, σ ∈ Rd×d, σ = diag(σ1, . . . , σd) are parameters.

The square root diffusion process is well defined when the positivity of process
and the existence of solution are guaranteed. According Theorem 8.1 in [9], for
any x ∈ Rd

+, there exists a unique Rd
+-valued solution X = Xx of (3.21) and X

satisfies E(supt≤T X
2
t ) <∞ for all T ≥ 0.

The solution of the square root diffusion process can not be given in closed
form. However the moments can be evaluated. To find the solution of the SDE
we apply the Itô formula to the stochastic process

Yt := f(Xt, t) = θ + etκ(Xt − θ),

where etκ denotes the matrix exponential on the square matrix κ, defined by the
power series etκ =

∑
k≥0

tk

k!
κk and its derivation with respect to t is given by

d

dt
etκ = κetκ = etκκ. By Itô formula, we obtain the stochastic differential equation

dYt = ft(Xt, t)dt+ fx(Xt, t)dXt +
1

2
fxx(Xt, t)(dXt)

2

= κetκ(Xt − θ)dt+ etκ
(
κ(θ −Xt)dt+ σ

√
XtdBt

)
= etκσ

√
XtdBt

and its solution

Yt = Y0 +

∫ t

0

euκσ
√
XudBu.

After substitution of Yt and Y0 in the last equation we obtain the solution of the
SDE (3.21)

Xt − θ = e−tκ(X0 − θ) + e−tκ
∫ t

0

euκσ
√
XudBu. (3.22)
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3.4.2 Properties of d-dimensional Square Root
Diffusion Process

• Distribution

In general, the distribution of multi-dimensional square root diffusion process
is unknown, but the moments can be evaluated.

According to (3.22) the square root diffusion process can be presented as the
sum of the deterministic function f(t,X0) = θ + e−tκ(X0 − θ) and the stochastic
integral

∫ t
0
euκσ
√
XudBu which has the properties [12]:

(1)
∫ t

0
euκσ
√
XudBu is a martingale w.r. to the filtration F = (Ft)t≥0

(2) E
[∫ t

0
euκσ
√
XudBu

]
= 0

(3) E
[(∫ t

0
euκσ
√
XudBu

)(∫ t
0
euκσ
√
XudBu

)>]
=

= E
[∫ t

0

(
euκσ
√
Xu

) (
euκσ
√
Xu

)>
du
]

(4) E
[(∫ t

s
euκσ
√
XudBu

)(∫ t
s
euκσ
√
XudBu

)>
| Fs

]
=

= E
[∫ t

s

(
euκσ
√
Xu

) (
euκσ
√
Xu

)>
du | Fs

]
• Conditional Expectation

For t ≥ s the square root diffusion process can be written in the form

Xt = θ + e−(t−s)κ(Xs − θ) + e−tκ
∫ t

s

euκσ
√
XudBu.

Since the stochastic integral
∫ t

0
euκσ
√
XudBu is a martingale (1) it follows from

the martingale property E
[∫ t

0
euκσ
√
XudBu | Fs

]
=
∫ s

0
euκσ
√
XudBu that the Fs-

conditional expectation of the square root diffusion process is an affine
function of Xs given by

E [Xt | Fs] = θ + e−(t−s)κ(Xs − θ) = (1− e−(t−s)κ)θ + e−(t−s)κXs. (3.23)
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• Moments Calculation

We write the square root diffusion process in the form

dXt = b(Xt)dt+ ρ(Xt)dBt

where

b(x) = κ(θ − x)

ρ(x) = σdiag(
√
x1, ...,

√
xd)σ

>

a(x) = ρ(x)ρ(x)> = σdiag(σ2
1X1, ..., σ

2
dXd)σ

>

Applying Itô formula to f ∈ C2(Rd), we obtain

df(Xt) =
d∑
i=1

∂f

∂xi
(Xt)dX

i
t +

1

2

d∑
i,j=1

∂2f

∂xi∂xj
(Xt) dX

i
tdX

j
t︸ ︷︷ ︸

=aij(Xt)dt

= A(f)(Xt)dt+
d∑
i=1

∂f

∂xi
(Xt)

d∑
l=1

σil(Xt)dB
l
t

mit A(f)(x) +
d∑
i=1

bi(x)
∂f

∂xi
(x) +

1

2

d∑
i,j=1

aij(x)
∂2f

∂xi∂xj
(x).

It follows for t ≥ s that

f(Xt) = f(Xs) +

∫ t

s

A(f)(Xu)du+
d∑

i,l=1

∫ t

s

∂(f)

∂xi
(Xu)σil(Xu)dB

l
u︸ ︷︷ ︸

(local) martingale

,

and hence

E(f(Xt)) = f(X0) +

∫ t

0

E(A(f)(Xu))du (if true martingale).

Note that if X is a CIR process then

A(f)(x) =
d∑
i=1

e>i κ(θ − x)
∂f

∂xi
(x) +

1

2

d∑
i,j=1

e>i σdiag(x1....x2)σ>e>j
∂2f

∂xi∂xj

maps polynomials of degree ≤ m to polynomials of degree ≤ m
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1. moments:

Consider the function f(x) = xl with ∂f
∂xi

(x) = δi,l and ∂2f
∂xixj

(x) = 0 for i = 1, . . . , d.

Then
A(f)(x) = e>l κ(θ − x)

and hence

E(X l
t) = X l

0 + e>l

∫ t

0

κ(θ − E(Xu))du

and

⇒ E(Xt) = X0 +

∫ t

0

κ(θ − E(Xn))du.

The vector yt =
(
1,E(X1

t ), . . .E(Xd
t )
)>

satisfies yt = y0 +
∫ t

0

(
0 0
κθ −κ

)
︸ ︷︷ ︸

=:A

yudu, and

hence it solves the differential equation. Therefore

yt = etAy0

Note that etA is matrix exponential and

etA =
∑
k≥0

tk

k!

(
0 0
κθ −κ

)k
=

(
0 0
−eκtθ e−tκ

)
.

The first moment of Xt is

⇒ E(Xt) = −e−tκθ + e−tκE(X0) = −e−tκ(θ − E(X0))

2. moments:

Consider the function f(x) = xlxm with ∂f
∂xl

(x) = xm, ∂f
∂xm

(x) = xl,
∂f
∂xi

(x) = 0,

for i 6= {l,m} and ∂2f
∂xlxm

(x) = ∂2f
∂xmxl

(x) = 1, otherwise is 0. Then

for l 6= m

A(f)(x) = e>l κ(θ − x)xm + e>mκ(θ − x)xl + e>l σdiag(x1, ..., xd)σem︸ ︷︷ ︸
=0, if σ=diag(σ1,...,σd)

,

for l = m
A(f)(x) = 2e>l κ(θ − x)xl + e>l σdiag(x1, ..., xd)σel︸ ︷︷ ︸

=σ2xl, if σ=diag(σ1,...,σd)

,

and hence for f(x) = xlxm

A(f)(x) = e>l κ(θ − x)xm + e>mκ(θ − x)xl + δl,mσ
2
l xl
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and

E(X l
tX

m
t ) = E(X l

0X
m
0 )+

+

∫ t

0

(
e>l κ(θE(Xm

u )− E(Xm
u Xu)) + e>mκ(θE(X l

u)− E(X l
uXu)) + δl,mσ

2
l E(X l

u)
)
du.

Since A(f) maps the space

L(1, x1, ..., xd, x
2
1, x1x2, ..., x1xd, x

2
2, x2x3, ..., x2xd, ...., x

2
d)

into the same space with base elements

f1 = 1, f2 = x1, ..., fd+1 = xd, fd+2 = x2
1, fd+3 = x1x2, . . . , fD = x2

d

where D = 1 + d+ d+
d(d− 1)

2
, there exists a matrix A ∈ RD×D such that

A(fi) = e>i Af.

Let yt = (E(f1(Xt)), ...,E(fD(Xt)))
>, then yt satisfies

yt = y0 +

∫ t

0

Ayudu, and hence also dyt = Aytdt.

The first two moments are given by

yt = etAy0

.
Example 1: d = 2V D = 1 + 2 + 2 + 1 = 6

κ =

(
κ11 κ12

κ21 κ22

)
, θ =

(
θ1

θ2

)
,

yt = (1,E(X1
t ),E(X2

t ),E(X1
t )2,E(X1

tX
2
t ),E(X2

t )2)

1 = 1

E(X1
t ) = X1

0 +
∫ t

0
(κ1.θ − κ11E(X1

u)− κ12E(X2
u))du

E(X2
t ) = X2

0 +
∫ t

0
(κ2.θ − κ22E(X2

u)− κ22E(X2
u))du1

E((X1
t )2) = (X1

0 )2 +
∫ t

0
(2κ1.θE(X1

u)− 2κ1.

(
E(X1

u)2

E(X1
uX

2
u)

)
+ σ2

1E(X1
u))du

60



E((X2
t )2) = (X2

0 )2 +
∫ t

0
(2κ2.θE(X2

u)− 2κ2.

(
E(X1

uX
2
u)

E(X2
u)

)
+ σ2

2E(X2
u))du

E(X1
tX

2
t ) = X1

0X
2
0 +
∫ t

0
(κ1.θE(X2

u)−κ1.

(
E(X1

uX
2
u)

E(X2
u)2

)
+κ2.θE(X1

u)−κ2.

(
E(X1

u)2

E(X1
uX

2
u)

)
)du

⇒ yt = y0 +

∫ t

0

Ayudu⇒ dyt = etAy0 ⇒ yt = etAy0

The elements ofthe matrix A are given in the table below

1 E(X1
0 ) E(X2

0 ) E((X1
0 )2) E(X1

0X
2
0 ) E((X2

0 )2)
1 0 0 0 0 0 0

E(X1
t ) κ1·θ −κ11 −κ12 0 0 0

E(X2
t ) κ2·θ −κ21 −κ22 0 0 0

E((X1
t )2) 0 σ2

1 + 2κ1·θ 0 −2κ11 −2κ12 0
E(X1

tX
2
t ) 0 κ2·θ κ1·θ −κ21 −κ11 − κ22 −κ12

E((X2
t )2) 0 0 σ2

2 + 2κ2·θ 0 −2κ21 −2κ22

Example 2: d = 4V D = 1 + 4 + 4 + 6 = 15

κ =


κ11 κ12 κ13 κ14

κ21 κ22 κ23 κ24

κ31 κ32 κ33 κ34

κ41 κ42 κ43 κ44

 , θ =


θ1

θ2

θ3

θ4

 ,

yt = etAy0

The elements of the matrix A are given in the table below.
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A
1

E(
X

1 0
)

E(
X

2 0
)

E(
X

3 0
)

E(
X

4 0
)

E(
(X

1 0
)2

)
E(
X

1 0
X

2 0
)

E(
X

1 0
X

3 0
)

E(
X

1 0
X

4 0
)
E(

(X
2 0
)2

)
E(
X

2 0
X

3 0
)

E(
X

2 0
X

4 0
)
E(

(X
3 0
)2

)
E(
X

3 0
X

4 0
)
E(

(X
4 0
)2

)
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
E(
X

1 t
)

κ
1
·θ
−
κ

1
1

−
κ

1
2

−
κ

1
3

−
κ

1
4

0
0

0
0

0
0

0
0

0
0

E(
X

2 t
)

κ
2
·θ
−
κ

2
1

−
κ

2
2

−
κ

2
3

−
κ

2
4

0
0

0
0

0
0

0
0

0
0

E(
X

3 t
)

κ
3
·θ
−
κ

3
1

−
κ

3
2

−
κ

3
3

−
κ

3
4

0
0

0
0

0
0

0
0

0
0

E(
X

4 t
)

κ
4
·θ
−
κ

4
1

−
κ

4
2

−
κ

4
3

−
κ

4
4

0
0

0
0

0
0

0
0

0
0

E(
(X

1 t
)2

)
0
σ

2 1
+

2κ
1
·θ

0
0

0
−

2κ
1
1

−
2κ

1
2

−
2κ

1
3

−
2κ

1
4

0
0

0
0

0
0

E(
X

1 t
X

2 t
)

0
κ

2
·θ

κ
1
·θ

0
0

−
κ

2
1
−
κ

1
1
−
κ

2
2
−
κ

2
3

−
κ

2
4

−
κ

1
2

−
κ

1
3

−
κ

1
4

0
0

0
E(
X

1 t
X

3 t
)

0
κ

3
·θ

0
κ

1
·θ

0
−
κ

3
1

−
κ

3
2
−
κ

1
1
−
κ

3
3
−
κ

3
4

0
−
κ

1
2

0
−
κ

1
3

−
κ

1
4

0
E(
X

1 t
X

4 t
)

0
κ

4
·θ

0
0

κ
1
·θ

−
κ

4
1

−
κ

4
2

−
κ

4
3
−
κ

1
1
−
κ

4
4

0
0

−
κ

1
2

0
−
κ

1
3

−
κ

1
4

E(
(X

2 t
)2

)
0

0
σ

2 2
+

2κ
2
·θ

0
0

0
−

2κ
2
1

0
0

−
2κ

2
2

−
2κ

2
3

−
2κ

2
4

0
0

0
E(
X

2 t
X

3 t
)

0
0

κ
3
·θ

κ
2
·θ

0
0

−
κ

3
1

−
κ

2
1

0
−
κ

3
2
−
κ

2
2
−
κ

3
3
−
κ

3
4

−
κ

2
3

−
κ

2
4

0
E(
X

2 t
X

4 t
)

0
0

κ
4
·θ

0
κ

2
·θ

0
−
κ

4
1

0
−
κ

2
1

−
κ

4
2

−
κ

4
3
−
κ

2
2
−
κ

4
4

0
−
κ

2
3

−
κ

2
4

E(
(X

3 t
)2

)
0

0
0

σ
2 3

+
2κ

3
·θ

0
0

0
−

2κ
3
1

0
0

−
2κ

3
2

0
−

2κ
3
3

−
2κ

3
4

0
E(
X

3 t
X

4 t
)

0
0

0
κ

4
·θ

κ
3
·θ

0
0

−
κ

4
1

−
κ

3
1

0
−
κ

4
2

−
κ

3
2

−
κ

4
3
−
κ

3
3
−
κ

4
4
−
κ

3
4

E(
(X

4 t
)2

)
0

0
0

0
σ

2 4
+

2κ
4
·θ

0
0

0
−

2κ
4
1

0
0

−
2κ

4
2

0
−

2κ
4
3

−
2κ

4
4
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3.4.3 Properties of one dimensional Square Root Diffusion
Process (or one dimensional CIR Process)

• Distribution

The Fs-conditional distribution of one dimensional CIR process (d = 1) for any
0 ≤ s ≤ t is, up to a scale factor, a non-central Chi-Squared distribution

Xt

τ(t− s)
∼ χν(µ)

with a degree of freedom ν = 4κθ
σ2 and non-centrality parameter µ = Xse−κ(t−s)

τ(t−s) ,

where τ(t− s) = 4κ
σ2 (1− e−κ(t−s)) and 0 ≤ s ≤ t.

Proof: We show that Xt
τ(t−s) conditional on Fs has the moment generating function

of a non-central Chi-Squared distribution with parameter ν and µ,

M Xt
τ(t−s)

(u) = (1− 2u)−ν/2e
µu

1−2u .

The CIR process is an affine process and therefore its SDE can be written in
the form

dXt = b(Xt)dt+ ρ(Xt)dBt,

where b(Xt) = b0 + b1Xt with b0 = κθ, b1 = −κ and a(Xt) = ρ(Xt)
2 = a0 + a1Xt

with a0 = 0, a1 = σ2.
According to the Definition for affine processes, given in [7], the

Fs-conditional characteristic function of Xt is exponential affine in Xt, i.e. there
exist the C-valued functions φ(t, u) and ψ(t, u), respectively, with jointly continu-
ous t−derivatives so that the solution X = Xx satisfies

MXt|Fs(u) = E
[
euXt | Fs

]
= exp(φ(t− s, u) + ψ(t− s, u)Xs)

for all u ∈ C and 0 ≤ s ≤ t, and the functions φ(t, u) and ψ(t, u) solve the system
of Ricatti equations

∂tφ(t, u) =
1

2
a0ψ(t, u)2 + b0ψ(t, u), φ(0, u) = 0

∂tψ(t, u) =
1

2
a1ψ(t, u)2 + b1ψ(t, u), φ(0, u) = u

where b0 = κθ, b1 = −κ, a0 = 0 and a1 = σ2 (see for example [7], [11]).
According to Theorem A.3 in [11] the solution of the second equation is

ψ(t− s, u) =
ue−κ(t−s)

1− 2uτ(t− s)
,
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where τ(t − s) = σ2

4κ
(1 − e−κ(t−s)). It can be also shown that the solution of the

first equation is

φ(t− s, z) = −2κθ

σ2
log(1− 2uτ(t− s)).

Hence, the moment generating function of Xt conditional on Fs

MXt|Fs(u) = (1− 2uτ(t− s))−ν/2 exp

(
ue−κ(t−s)

1− 2uτ(t− s)
)Xs

)
(u ∈ C)

and it can be rewritten as

M Xt
τ(t−s) |Fs

(u) = MXt|Fs

(
u

τ(t− s)

)
= (1− 2u)−ν/2 exp

Xse
−κ(t−s)

τ(t− s)︸ ︷︷ ︸
µ

u

1− 2u

 .

�

• Conditional Expectation

The mean and covariance of a non-central Chi-squared distribution with a
degree of freedom ν and a non-centrality parameter µ are given by E [χν(µ)] =
ν + µ and and Var [χν(µ)] = 2(ν + 2µ).

We should obtain the same formula for conditional expectation of square
root diffusion process Xt given Fs as in (3.23)

E [Xt | Fs] = τ(t− s)
(

4κθ

σ2
+
Xse

−κ(t−s)

τ(t− s)

)
=

4κθτ(t− s)
σ2

+Xse
−κ(t−s)

= θ
(
1− e−κ(t−s))+Xse

−κ(t−s)

• Conditional Variance

Unlike the multi-dimensional case the conditional variance of one dimensional
square root diffusion process has an explicit solution,

Var [Xt | Fs] = 2τ(t− s)2

(
4κθ

σ2
+ 2

Xse
−κ(t−s)

τ(t− s)

)
=

8κθτ(t− s)2

σ2
+ 4Xse

−κ(t−s)τ(t− s)

=
θσ2

2κ

(
1− e−κ(t−s))2

+Xs
σ2

κ

(
e−κ(t−s) − e−2κ(t−s)) . (3.24)
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3.4.4 Euler-Maruyama Scheme for Simulation of Square
Root Diffusion Process

The Euler-Maruyama scheme is a simple method for an approximate numerical
solution of a stochastic differential equation based on the Euler method for solving
ordinary deterministic differential equations. A description of the Euler-Maruyama
scheme can be found in many sources.

Suppose that we have to solve the SDE of the d-dimensional square root diffu-
sion process (3.21)

dXt = κ(θ −Xt)dt+ σ
√
XtdWt, X0 = x

on some interval of time [0, T ] and some d ≥ 1. The Euler-Maruyama scheme
calculates an approximation X̂ of the true solution Xt using the following discreti-
sation scheme

• The interval [0, T ] is divided into N subintervals of width ∆t = T/N choosing
N + 1 time-discrete points

0 = t0 < t1 < · · · < tN = T, where tk = k∆t.

• The stochastic differentials are substituted

dXk = Xk+1 −Xk

dt = ∆t

dWk = ∆Wk = Wk+1 −Wk

Note that it follows from the properties of Wiener process that
the increments ∆Wk are independent and identically distributed nor-
mal random variables with expected value zero and variance ∆t, i.e.
∆Wk ∼ N(0,∆t) for k = 1, . . . , N .

• The approximation X̂ of X is defined recursively for k = 1, . . . , N as follows

X̂0 = X0

X̂k+1 = Xk + κ(θ −Xk)k∆t+ σ
√
Xk∆Wk (3.25)

Figure 3.1: Euler-Maruyama scheme for simulation of square root diffusion process
dXt = κ(θ −Xt)dt+ σ

√
XtdBt with X0 = x.
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The Euler-Maruyama approximation scheme has the advantage over other ap-
proximative methods that it is fast and simple, however it has also some draw-
backs [17]. Due to the fact that the continuous time process is approximated by
the discrete-time process, the Euler-Maruyama scheme can introduce a bias into
the estimator used for the approximation, however the bias can be reduced to an
acceptable level for a big enough N . Another serious problem is that the algo-
rithm can break down due to the negative value and the impossibility to calculate
the square root. Since the Gaussian increments are non bounded from bellow the
Euler-Maruyama approximation can lose its accuracy near zero, especially, for large
σ even when the positivity of the CIR process, that have to be approximated, is
guaranteed. Many improvements to the Euler-Maruayama approximation scheme
are proposed.

• Improvement of Euler-Maruyama scheme

X̂k+1 = Xk + κ(θ(−Xk)
+)k∆t+ σ

√
(Xk)+∆Wk (3.26)

proposed by Deelstra and Delbaen.

• Improvement of Euler-Maruyama scheme

X̂k+1 =
∣∣∣Xk + κ(θ −Xk)k∆t+ σ

√
Xk∆Wk

∣∣∣ (3.27)

proposed by Diop.

3.4.5 Exact Simulation of One Dimensional Square Root
Diffusion Process

The exact simulation of a one dimensional square root diffusion process X is based
on the property of simulated process that for any 0 ≤ s < t the distribution of
X(t) given X(s) is, up to a scale factor, a non-central Chi-Squared distribution

Xt ∼ τ(t− s)χν(µ),

where ν = 4κθ
σ2 is a degree of freedom, µ = Xse−κ(t−s)

τ(t−s) is the non-centrality parameter

and τ(t− s) = 4κ
σ2 (1− e−κ(t−s)) is the scale factor.

The exact simulation algorithm of a one dimensional square root diffusion pro-
cess

dXt = κ(θ −Xt)dt+ σ
√
XtdBt, X0 = x,

on a time grid 0 = t0 < t1 < . . . , < tN = T includes the following steps:
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Initialization

• set time grid 0 = t0 < t1 < . . . , < tN = T

• set degree of freedomν = 4κθ
σ2

For each k = 1, 2, 3, . . .

• calculate scale factor τ(tk − tk−1) = 4κ
σ2 (1− e−κ(tk−tk−1))

• calculate non-centrality parameter µ = Xse
−κ(tk−tk−1)

τ(tk−tk−1)

• generate random variable Y ∼ χν(µ)

• Xtk = τ(tk − tk−1)Y

Figure 3.2: Exact simulation of one dimensional square root diffusion process
dXt = κ(θ −Xt)dt+ σ

√
XtdBt with X0 = x.

3.5 Estimation of LRSQ(1,0) Model

3.5.1 Model Specification

The first model, we estimate, is the linear-rational square root model with only
one term structure factor and no unspanned factors (LRSQ(1,0)). In the simplest
LRSQ model the dynamics of term structure factor is given by the one-dimensional
square root diffusion process

dZt = κ(θ − Zt)dt+ σ
√
ZtdBt, with Z0 = x > 0 (3.28)

and the state space density by

ζt = e−αt(1 + Zt), (3.29)

where κ, θ ∈ R and σ ∈ R+ are unknown real-valued parameters and (Zt)t≥0 is
unknown state space process with values in R+. The parameter α is set

α = α∗ = max(κθ,−κ)

to guarantee that the short rate (2.7) in LRSQ(1,0) model is non-negative for any
time t.

The unknown parameters κ, θ and σ of the LRSQ(1,0) model as well as the
unknown state variables Zt for t ≥ 0 can be estimated from the market swap rates
and the market swaption prices. As market data we use we use the model swap
rates and the model swaption prices.
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3.5.2 Model Data

We generate a panel data set including weekly data for swaps and swaptions over
the time period of sixteen years. Each panel data row consists of model rates on
spot-starting swap contracts with maturities of one, two, three, five, seven and ten
years, respectively, and six months payment frequency as well as of models prices
on swaptions with three-month options maturities, the same six swap maturities,
and strikes equal to the forward swap rates.

In linear-rational term structure models the swap rates and the swaption prices
are non-linear functions of the factor process (Zt)t≥0 and depend on the parameters
κ, θ and σ. The factor process (Zt)t≥0 is a one dimensional CIR process with the
same parameters κ, θ, σ and start value Z0. A path of Z can be simulates.

We assume that one financial year consists of 52 weeks and the time interval
between two observations is 1/52. To obtain the weekly data for a period of 16
years we calculate for given parameters κ, θ, σ and factor process (Zt)t≥0 the afore
mentioned swap rates and swaption prices using the formulas (1.8) and (2.24) on
the time grid

0 = t0 < t1 < · · · < tN = 16,

where N = 16 · 52 and tk = k · 1
52

for k = 1, . . . , N .

Simulation of the factor process Z
Since both the swap rates and the swaption prices at time t are non-linear

functions of the factor process Zt, we first have to simulate the factor process Z on
the same time grid 0 = t0 < t1 < · · · < tN = 16. The factor process is unobserv-
able, but according to the assumption in the LRSQ(1,0) model it follows the one
dimensional CIR process (3.28) with the parameters κ, θ and σ. To generate the
factor process Z we simulate a path of one dimensional CIR process with given
values for the parameters κ, θ and σ by using either Euler-Maruyama approach or
Exact simulation.

Calculation of the swap rates
A swap with maturity T and six months payment frequency is specified by a

predetermined annualized rate and a tenor structure of reset and payment dates

0 ≤ t ≤ T0 < T1 < · · · < Tn = T

where n is the number of interest rate payments and also the number of interest
rate periods, Ti is the payment date for the ith period and therefore Ti = T0 + i · 1

2
.

The t-time interest rate of a spot-starting swap (t = T0) is given, according to (1.8),
by

St =
1− P (t, Tn)∑n
i=1 ∆iP (t, Ti)

(3.30)
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and according to (2.6) and the assumption in LRSQ(1,0) model, the zero-coupon
bond prices P (t, Ti) are given by the linear-rational function of the state Zt

P (t, Ti) =
(φ+ ψ>θ)e−ατ + ψ>e−(α+κ)τ (Zt − θ)

φ+ ψ>Zt
, for i = 1, . . . , n (3.31)

where φ = ψ = 1, τ = Ti − t and ∆i = Ti − Ti−1 = 1/2.

Calculation of the swaption prices
The price of swaption (swap option) on the same swap with three-months

option maturity (i.e. T0 − t = 1/4) is given according to Theorem 2.9 and Theorem
2.16 by

Πswpt
t =

1

ζtπ

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ ıλ)2

]
dλ (3.32)

for some µ > 0 such that q̂(µ) <∞, where

q̂(µ+ iλ) = E [exp((µ+ iλ)pswpt(ZT0)) | Ft] = eΦ(T0−t)+ZtΨ(T0−t), (3.33)

and the functions Φ : R+ → C and Ψ : R+ → C solve the system of ordinary Ricatti
differential equations

Φ′(τ) = κθΨ(τ),

Ψ′(τ) = −κΨ(τ) +
1

2
σ2Ψ(τ)2

(3.34)

with initial condition

Φ(0) = u = (µ+ iλ)
n∑
i=0

cie
−αTi(φ+ ψ>θ − ψ>e−κ(Ti−T0)θ),

Ψ(0) = v = (µ+ iλ)
n∑
i=0

cie
−αTiψ>e−κ(Ti−T0),

where

c0 = 1, cn = −1−∆K, ci = −∆K, i = 1, . . . , n− 1

K = ST0 , ∆ = Ti − Ti−1 = 1/2 and

φ = ψ = 1.

We calculate the different swap rates and swaption prices with parameters
κ = 0.0630, θ = 0.6709, σ = 0.2269 and α = κθ, following the algorithm in figure
3.3 and use the calculated data as market data for the estimation of LRSQ(1,0)
models.
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Initialization

• Set the parameter κ, θ, σ, α = max{κθ,−κ}

• Set the time grid 0 = t0 < t1 < · · · < tN

Simulation of CIR process Z with parameters κ, θ, σ on the time grid
0 = t0 < t1 < · · · < tN

• Set the start value Z0

For k = 1, . . . , 16 · 52

• Exact simulation of Ztk

Calculation of the swap rates on a spot-starting swap contract with maturity T and
six months payment frequency on the time grid 0 = t0 < t1 < · · · < tN

• Set the number of payment dates: n = 2T

• Set the reset/payment dates: T0 = tk; Ti = T0 + 1
2
i, i = 1, . . . , n

For k = 1, . . . , 16 · 52

• Calculate the zero-coupon bond prices P (tk, Ti) for i = 1, . . . , n

• Calculate the spot-starting swap rate Stk (for T0 = tk)

Calculation of swaption prices on 3 months option
For k = 1, . . . , 16 · 52

• Calculate ζtk = e−αtk(1 + Ztk)

• Calculate the swap rate K = Stk ( for T0 = tk + 1/4)

• Calculate the swaption price Πswpt
tk

= 1
ζtkπ

∫∞
0

Re
[
q̂(µ+iλ)
(µ+ıλ)2

]
dλ

Figure 3.3: Calculation of swap rates and swaption prices given parameter values
κ, θ, σ and start value Z0

Figure 3.4 shows the simulated path of the one dimensional CIR process (with
the κ = 0.0630, θ = 0.6709, σ = 0.2269 and α = κθ), used for the calculation of
the swap rates and the swaption prices. In figure 3.5 we can see that the short
rate is non-negative on each time point. The calculated swap rates and swapion
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prices are shown in figure 3.6 and figure 3.7.

Figure 3.4: Simulated path of one dimensional CIR process Z with parameters
κ = 0.0630, θ = 0.6709, σ = 0.2269, α = κθ and start value Z0 = 1.2

Figure 3.5: Short rate in LRSQ(1,0) model
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Figure 3.6: Swap rates of spot-starting swaps with 1-, 2-, 3-, 5-, 7- and
10 years maturity and 6 months payment frequency. Parameters: κ = 0.0630,
θ = 0.6709, σ = 0.2269, α = κθ

Figure 3.7: Simulated swaption prices on 3 months swap options with
1-, 2-, 3-, 5-, 7- and 10 years maturity and 6 months payment frequency. Pa-
rameters: κ = 0.0630, θ = 0.6709, σ = 0.2269, α = κθ
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3.5.3 Reconstruction of κ, θ, σ and Z

To check our numerical calculation we reconstruct the model parameters κ, θ, σ
and the factor process Z from the swap rates and swaption prices calculated by
the LRSQ(1,0) model on a time grid 0 = t0 < t1 < · · · < tk · · · < tn = 16 (with
tk = k · 1

52
).

• Reconstruction of κ, θ, α and Z

In LRSQ(1,0) model the zero-coupon bond prices and the swap rates depend
only on the parameters κ, θ and the factor process Z. Only three different market
swap rates (or zero-coupon bond prices) at time t = 0 (for example with maturity
1, 2 and 3 years) are necessary to be determined the exact values of κ, θ and Z0.
Having these values, the process Z can be exactly reconstructed from a series of
swap rates (for example with maturity 1 year). Note that according to Proposition
2.8 the zero-coupon bond price function is injective and Zt can be reconstructed
from the model price at time t.

Let S1
0 , S

2
0 , S

3
0 denote the market/model swap rates at time t = 0 of swap with

maturity 1, 2, or 3 years, and 6 months payment frequency. Then
κ, θ and Z0 solve the following non-linear system:

S1
0 =

P0 − P2

(P1 + P2)∆

S2
0 =

P0 − P4

(P1 + P2 + P3 + P4)∆
(3.35)

S1
0 =

P0 − P6

(P1 + P2 + P3 + P4 + P5 + P6)∆

where for i = 0, . . . , 6

Pi = P (0, Ti) =
(1 + θ)e−ατi + e−(α+κ)τi(Z0 − θ)

1 + Z0

α = κθ

t = 0, T0 = t+ 1/4, Ti = T0 + i · 1/2
τi = Ti − t, ∆ = Ti − Ti−1 = 1/2.

The numerical solution of the system (3.35) is given by

κ̂ = 0.0630

θ̂ = 0.6618

α̂ = 0.0417

Ẑ0 = 1.2132.
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The factor process (Ztk)0=t0≤tk≤tN=16 is reconstructed (see figure 3.8) from the
equation

S1
tk

=
P (tk, T0)− P (tk, T2)

(P (tk, T1) + P (tk, T2))∆
,

where S1
t is the market/model swap rate at time t = t0, . . . , tN of a swap with

maturity 1 year and P (t, Ti) is the price at time t of a zero-coupon bond with
maturity Ti given in (3.31).

Figure 3.8: Estimated and simulated factor process Z

• Estimation of parameter σ

Once we have the values of the parameters κ, θ, α and the values of the factor
process Zt at time 0 = t0 < t1 < · · · < tk · · · < tn = 16 (with tk = k · 1

52
), we need

the market price of only one swaption to estimate the parameter σ. Let P 1
0 denote

the market/model price at time t of a swaption on a swap with maturity 1 year.
Then σ solves the equation (3.32)

P 1
0 =

1

ζtπ

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ ıλ)2

]
dλ.

The numerical solution of this equation is

σ̂ = 0.22690. (3.36)
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3.5.4 Maximum Likelihood Estimation in Conjunction with
UKF

The state space model corresponding to the LRSQ(1,0) model is given by the
following measurement and process equations

Ytk = h(Ztk ,Θ) + utk (3.37)

Ztk = Φ0 + ΦZZtk−1
+ wtk (3.38)

where

• 0 ≤ tk ≤ 16 and tk = k · 1
52

for k = 0, 1, . . . , 16 · 52.

• Ytk = (Y 1
tk
Y 2
tk

)> ∈ R2 is a vector of observable market swap rates and swap-
tion prices at time tk with maturity 1, 2, 3, 5, 7 or 10 years.

• Ztk ∈ R is the unobservable state variable at time tk and by assumption it
is a Gaussian variable whose first two conditional moments are equal to the
first two conditional moments of the factor process (3.28).

• h = (h1, h2)> : R → R2 is a vector-valued function where h1 is defined
according to (3.30) and h2 according to (3.32).

• utk is the measurement noise and utk ∼ N(0, R) with R =

(
σ2
swap 0
0 σ2

swpt

)
.

• wtk is the process noise and wtk ∼ N(0, Qtk).

• Θ = (κ, θ, σ)> as well as Φ0,ΦX and Qtk are the unknown parameters,
which have to be estimated from the market data.

Estimation of parameters Φ0,ΦX and Qtk

Since, by assumption, the conditional moments of the state variables Ztk in
state space model are identical to the conditional moments of the factor process
(which is a CIR process), it follows that

Φ0 + ΦZZtk−1
= E

[
Ztk | Ftk−1

]
= θ

(
1− e−κ(tk−tk−1)

)
+ Ztk−1

e−κ(tk−tk−1)

Qtk = Var
[
Ztk | Ftk−1

]
=
θσ2

2κ

(
1− e−κ(tk−tk−1)

)2
+ Ztk−1

σ2

κ

(
e−κ(tk−tk−1) − e−2κ(tk−tk−1)

)
.

75



Hence, the parameters Φ0,ΦZ and Qtk can be expressed by the parameters
κ, θ, σ and the state variable Ztk−1

as follow

Φ0 = θ
(
1− e−κ/52

)
ΦZ = e−κ/52

Qtk =
θσ2

2κ

(
1− e−κ/52

)2
+ Ztk−1

σ2

κ

(
e−κ/52 − e−2κ/52

)
.

and therefore κ, θ and σ are the only parameters which have to be estimated.

Maximum likelihood estimation of parameters

To estimate the parameters Θ = (κ, θ, σ)> we first apply the UKF algorithm
to the state space model (3.37)-(3.38) to construct the log-likelihood function

L(Θ) =
1

2

tN∑
t=t0

(
2 log 2π + log | F̂t|t−1 + (Yt − Ŷt|t−1)>F̂−1

t|t−1(Yt − Ŷt|t−1)
)
,

where Ŷt|t−1 is the one-step-ahead forecast for Yt at time t and F̂t|t−1 is the cor-
responding error covariance matrix. Then we calculate the maximum likelihood
estimation for Θ by

Θ̂ = arg max
Θ
L(Θ).

Applying the UKF to the model swap rates with 1 year maturity and the model
swaption prices with 1 year maturity, calculated with parameters κ = 0.0630, θ =
0.6709, σ = 0.2269, we obtain the maximum likelihood estimation for the param-
eters κ, θ, σ

estimated true
κ̂ = 0.0636 κ = 0.0630

θ̂ = 0.6738 θ = 0.6709
σ̂ = 0.2239 σ = 0.2269

as well as the UKF estimate for the factor process Z. The simulates and estimated
factor process are given in figure 3.9.
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Figure 3.9: Estimated and simulated factor process Z (UKF)

3.6 Estimation of LRSQ(1,1) Model Specifica-

tion

3.6.1 Model Specification

The second model, we estimate, is a two-dimensional linear-rational square root
model LRSQ(1,1), which has exactly one term structure factor and one unspanned
stochastic volatility (USV) factor. According to the specification of LRSQ(1,1)
model (see Example 2.14) the factor process X follows the two-dimensional square
root diffusion process (CIR process)

dXt = κ(θ −Xt)dt+ Diag(σ1

√
X1t, σ2

√
X2t)dBt, X0 = x ∈ R2

+ (3.39)

and the state space density ζ is given by

ζt = e−αt(1 + 1>2 Xt), (3.40)

where

• κ =

(
κ11 0
0 κ11

)
∈ R2×2, θ =

(
θ1

θ2

)
∈ R2, σ1, σ2 ∈ R+ with σ1 6= σ2 are

unknown real-valued parameters;

• X = (X1t, X2t)
>
t≥0 denotes a vector of unobservable state space variables with

values in R2
+;
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• B = (B1t, B2t)
>
t≥0 is a two-dimensional Browning motion;

• α is a real-valued parameter which has to be chosen large enough to guarantee
that the short rate is non-negative for any time t. We set

α = α∗ = max
{
1>2 κθ,−1>2 κ·1,−1>2 κ·2

}
= max {κ11θ1, κ11θ2,−κ11}

according to Theorem 2.12.

The estimation of LRSQ(1,1) specification includes the estimation of unknown
parameters Θ = (κ11, θ1, θ2, σ1, σ2) as well as the estimation of unobservable state
variables Xt = (X1t, X2t)

> on specific time points from the market swap rates and
the market swaption prices. As market data we use the model swap rates and the
model swaption prices. We estimate the unknown parameters and the unknown
state variables by Maximum likelihood approach in conjunction with Unscented
Kalman Filter.

3.6.2 Model Data

Similar to LRSQ(1,0) model, we generate a panel data set including weekly data
for swaps and swaptions over the time period of sixteen years. Each panel data row
consists of model rates on spot-starting swap contracts with maturities of one, two,
three, five, seven and ten years, respectively, and six months payment frequency
as well as of models prices on swaptions with three-month options maturities, the
same six swap maturities, and strikes equal to the forward swap rates. The model
swap rates and swaption prices in the LRSQ(1,1) model are functions of the two
dimensional factor process (Xt)t≥0 and depend on the parameters κ11, θ1, θ2, σ1, σ2.
To obtain the model data we first have to simulate the factor process (Xt)t≥0 for
given parameters κ11, θ1, θ2, σ1, σ2 and a given start value X0 and then calculate
the model swap rates and the model swaption prices according to (1.8) and (2.24).
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Calculation of model swap rates and model swaption prices

We calculate the model swap rates and model swaption prices on the time grid

0 = t0 < t1 < · · · < tN = 16, tk = k · 1/52 for k = 1, . . . , N

for the parameters

Θ = (κ11, θ1, θ2, σ1, σ2)> = (0.0630, 0.6709, 0.2903, 0.2269, 0.1688)>

and the start value
X0 = (1.2, 0.5)>.

Following the algorithm in figure 3.3 we

1. set the time grid
0 = t0 < t1 < · · · < tN = 16,

where N + 1 = 16 ·52+1 is the number of the simulated weekly observations
and tk = k · 1

52
for k = 1, . . . , N .

2. simulate a path of the two-dimensional CIR process (3.39) with start value
X0 = (1.2, 0.5)> on the time grid 0 = t0 < t1 < · · · < tN = 16 using
Euler-Maruyama approach.

3. calculate for each tk the swap rates of spot-starting swaps with maturity
T = 1, 2, 3, 5, 7, 10 and payment dates tk = T0 < T1 < · · · < Tn = T
according to

Stk =
P (tk, T0)− P (tk, Tn)∑n

i=1 ∆iP (tk, Ti)
(3.41)

where

P (tk, Ti) =
(φ+ ψ>θ)e−ατ + ψ>e−(α+κ)τ (Xtk − θ)

φ+ ψ>Xtk

, (3.42)

φ = 1, ψ = (1 1)>, τ = Ti − t, ∆i = Ti − Ti−1 = 1/2,

n = 2T = 2, 4, 6, 10, 14 or 20.

4. calculate for each tk the prices of swaptions on three-month swap options with
maturity T = 1, 2, 3, 5, 7, 10, payment dates tk = T0 < T1 < · · · < Tn = T
and strikes equal to the forward swap rates according to

Πswpt
tk

=
1

ζtkπ

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ ıλ)2

]
dλ (3.43)
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for some µ > 0 such that q̂(µ) <∞, where

q̂(µ+ iλ) = E
[
e(µ+iλ)pswpt(XT0 ) | Ft

]
= eΦ(T0−t)+X>t Ψ(T0−t), (3.44)

and Φ : R+ → C,Ψ : R+ → C2 solve the system of Ricatti ordinary differen-
tial equations

Φ′(τ) = κθ>Ψ(τ)

Ψ′(τ) = −κ>Ψ(τ) +
1

2
Ψ(τ)>Diag(σ2

1, σ
2
2)Ψ(τ)

(3.45)

with initial condition

Φ(0) = u = (µ+ iλ)
n∑
i=0

cie
−αTi(φ+ ψ>θ − ψ>e−κ(Ti−T0)θ)

Ψ(0) = v = (µ+ iλ)
n∑
i=0

cie
−αTiψ>e−κ(Ti−T0)

where

c0 = 1, cn = −1−∆K, ci = −∆K, i = 1, . . . , n− 1

K = ST0 , τ = T0 − tk = 1/4, ∆ = Ti − Ti−1 = 1/2 and

φ = 1, ψ = (1, 1)>.

In figure 3.10, figure 3.12 and figure 3.13 can be seen the simulated CIR pro-
cess X, the model swap rates and the model swaption prices with parameters
κ11 = 0.0630, θ1 = 0.6709, θ2 = 0.2903,, σ1 = 0.2269, σ2 = 0.1688, α = 0.0636.

80



Figure 3.10: Simulated path of two dimensional CIR process X = (X1t X2t)
> with

parameters κ11 = 0.0630, θ1 = 0.6709, θ2 = 0.2903,, σ1 = 0.2269, σ2 = 0.1688,
α = 0.0636 and start value X0 = (1.2, 0.5)>

Figure 3.11: Short rate in LRSQ(1,1) model
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Figure 3.12: Swap rates of spot-starting swaps with 1-, 2-, 3-,
5-, 7- and 10 years maturity and 6 months payment frequency. Parame-
ters: κ11 = 0.0630, θ1 = 0.6709, θ2 = 0.2903,, σ1 = 0.2269, σ2 = 0.1688,
α = 0.0636 and start value X0 = (1.2, 0.5)>

Figure 3.13: Swaption prices on 3 months swap options with
1-, 2-, 3-, 5-, 7- and 10 years maturity and 6 months payment frequency.
Parameters: κ11 = 0.0630, θ1 = 0.6709, θ2 = 0.2903,, σ1 = 0.2269, σ2 = 0.1688,
α = 0.0636 and start value X0 = (1.2, 0.5)>
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3.6.3 Maximum Likelihood Estimation in Conjunction with
UKF

The state space model corresponding to the LRSQ(1,1) model is given by the
following measurement and process equations

Ytk = h(Xtk ,Θ) + utk (3.46)

Ztk = Φ0 + ΦXXtk−1
+ wtk (3.47)

where

• 0 ≤ tk ≤ 16 and tk = k · 1
52

for k = 0, 1, . . . , 16 · 52.

• Ytk = (Y 1
tk
Y 2
tk

)> ∈ R2×6 is a vector of observable market swap rates and
swaption prices at time tk with maturity 1, 2, 3, 5, 7, 10 years, respectively.

• Xtk ∈ R2 is the unobservable vector of state variables at time tk and by
assumption it is a Gaussian random vector, whose first two conditional mo-
ments are equal to the first two conditional moments of the factor process
(3.39).

• h = (h1, h2)> : R → R2 is a vector-valued function where h1j are defined
according to (3.41) and h2j according to (3.43).

• utk is the measurement noise and utk ∼ N(0, R) with R =

(
σ2
swap 0
0 σ2

swpt

)
.

• wtk is process noise and wtk ∼ N(0, Qtk).

• Θ = (κ11, θ1, θ2, σ1, σ2)> as well as Φ0,ΦX and Qtk are the unknown param-
eters which have to be estimated from the market data.

Estimation of parameters Φ0,ΦX and Qtk

The assumption, that the first two conditional moments of the state variables
Xtk in the state space model and conditional moments of the factor process (which
follow a CIR process) are identical, implies

Φ0 + ΦZZtk−1
= E

[
Ztk | Ftk−1

]
= θ

(
1− e−κ(tk−tk−1)

)
+Xtk−1

e−κ(tk−tk−1)

Qtk = Var
[
Ztk | Ftk−1

]
.

From the first equality we obtain that the parameters Φ0,ΦX depend only on
the parameters κ11, θ1 and θ2, and can be given in closed form by

Φ0 = θ
(
1− e−κ/52

)
ΦX = e−κ/52.
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From the second equality, it follows that the variance of the process noise is
equal to the conditional variance of the two dimensional CIR process (3.39), which
can not be given in a closed form but it can be calculated numerically if the
parameters κ11, θ1, θ2, σ1, σ2 and the previous state are known.

Therefore the unknown parameters of the state space model are only
κ11, θ1, θ2, σ1, σ2.

Maximum likelihood estimation of parameters Θ = (κ11 θ1 θ2 σ1 σ2)> and state
variables Xt

To estimate the unknown parameters Θ = (κ11, θ1, θ2, σ1, σ2)>, we apply the
UKF algorithm to the state space model (3.46)-(3.47). The Unscented Kalman
Filter produces a recursive estimation for of the state variables Xtk and at the
same time constructs the log-likelihood function

L(Θ) =
1

2

tN∑
t=t0

(
2 log 2π + log | F̂t|t−1 + (Yt − Ŷt|t−1)>F̂−1

t|t−1(Yt − Ŷt|t−1)
)
,

where Ŷt|t−1 is the one-step-ahead forecast for Yt at time t and F̂t|t−1 is the cor-
responding error covariance matrix. The maximum likelihood estimation for Θ is
obtaind by

Θ̂ = arg max
Θ
L(Θ).

Applying the UKF to the model swap rates with 1 year maturity and the
model swaption prices with 1 year maturity, calculated with the parameters κ11 =
0.0630, θ1 = 0.6709, θ2 = 0.2203, σ1 = 0.2269, σ1 = 0.1688, we obtain the maxi-
mum likelihood estimation for the parameters κ, θ, σ

estimated true
κ̂11 = 0.0640 κ11 = 0.0630

θ̂1 = 0.7021 θ1 = 0.6709

θ̂2 = 0.2204 θ2 = 0.2203
σ̂1 = 0.2250 σ1 = 0.2269
σ̂2 = 0.1629 σ2 = 0.1688

as well as the UKF estimate for the factor process X. The simulates and estimated
factor process are given in figure figure 3.14 and figure 3.15.
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Figure 3.14: Estimated and simulated factor process X (UKF)

Figure 3.15: Estimated and simulated factor process X (UKF)
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3.7 Estimation of LRSQ(3,1) Model Specifica-

tion

3.7.1 Model Specification

The LRSQ(3,1) model is a four-dimensional linear-rational square root model,
which has exactly three term structure factors and one unspanned stochastic
volatility factor. According to LRSQ(3,1) specification (see Example 2.15), the
factor process X follows the four-dimensional square root diffusion process (CIR
process)

dXt = κ(θ −Xt)dt+ Diag(σ1

√
X1t, σ2

√
X2t, σ3

√
X3t, σ4

√
X4t)dBt

X0 = x ∈ R4
(3.48)

and the state space density is given by

ζt = e−αt(1 + 1>4 Xt), (3.49)

where

• κ =


κ11 κ12 κ13 0
κ21 κ22 κ23 κ21

κ31 κ32 κ33 κ31

0 0 0 κ11

 ∈ R4×4, θ =


θ1

θ2

θ3

θ4

 ∈ R4, and

σ1, σ2, σ3, σ4 ∈ R+ with σ1 6= σ4 are unknown real-valued parameters;

• X = (X1t, X2t, X3t, X4t)
>
t≥0 denotes the vector of unobservable state space

variables with values in R4
+;

• B = (B1t, B2t, B3t, B4t)
>
t≥0 is a four-dimensional Browning motion;

• α = α∗ = max
{
1>4 κθ,−1>4 κ·1,−1>4 κ·2,−1>2 κ·3,−1>4 κ·4

}
ensures that the short rate in the LRSQ(3,1) model stays non-negative for
any time t (see Theorem 2.12).

The estimation of LRSQ(3,1) specification includes an estimation of the un-
known parameters

Θ = (κ11, κ12, κ13, κ21, κ22, κ23, κ31, κ32, κ33, θ1, θ2, θ3, θ4, σ1, σ2, σ3, σ4)
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as well as an estimation of the unobservable state variables
Xt = (X1t, X2t, X3t, X4t)

> on specific time points from the market swap rates and
the market swaption prices. As market data we use the model swap rates and the
model swaption prices with added white noise. We estimate the unknown param-
eters by Maximum likelihood approach in conjunction with Unscented Kalman
Filter.

3.7.2 Model Data

We generate a panel data set for the LRSQ(3,1) model including weekly data for
swaps and swaptions over the time period of sixteen years. Each panel data row
consists of model rates on spot-starting swap contracts with maturities of one, two,
three, five, seven and ten years, respectively, and six months payment frequency
as well as of models prices on swaptions with three-month options maturities, the
same six swap maturities, and strikes equal to the forward swap rates. The model
swap rates and swaption prices in the LRSQ(3,1) model are functions of the four
dimensional factor process (Xt)t≥0 and depend on the parameter vector Θ. To
obtain the model data we first simulate the four dimensional CIR process (Xt)t≥0

for a given parameters vector Θ and a given start value X0 and then calculate the
model swap rates and the model swaption prices according to (1.8) and (2.24). To
obtain more realistic data we add a white noise to the model swap rates and the
model swaption prices.

Calculation of model swap rates and model swaption prices with noise

We calculate the model swap rates and model swaption prices on the time grid

0 = t0 < t1 < · · · < tN = 16, tk = k · 1/52 for k = 1, . . . , N = 16 · 52

for the parameters

Θ = (κ11, κ12, κ13, κ21, κ22, κ23, κ31, κ32, κ33, θ1, θ2, θ3, θ4, σ1, σ2, σ3, σ4)

= (0.0630, 0.0000, 0.0000,−0.1266, 0.4377, 0.0000, 0.0000,−0.5012, 0.1652,

0.6709, 0.2903, 0.8810, 0.3275,

0.2269, 0.1688, 0.1229, 1.8097)

and the start value
X0 = (1.2, 0.5, 0.8, 0.1)>.

We generate 6(N+1) i.i.d. Gaussian variables Zswap
tk,T
∼ N (0, 1e− 8) and 6(N+1)

i.i.d. Gaussian variables Zswpt
tk,T
∼ N (0, 1e− 10) and add them to the model swap

rates and to the model swaption prices, respectively.
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Calculation scheme

1. set the time grid
0 = t0 < t1 < · · · < tN = 16,

where N + 1 = 16 ·52+1 is the number of the simulated weekly observations
and tk = k · 1

52
for k = 1, . . . , N .

2. simulate a path of the four-dimensional CIR process (3.48) with start value
X0 = (1.2 0.5 0.8 0.1)> on the time grid 0 = t0 < t1 < · · · < tN = 16 using
Euler-Maruyama approach.

3. generate 6(N + 1) random variables Zswap
tk,T

iid∼ N (0, 1e− 8).

4. generate 6(N + 1) random variables Zswpt
tk,T

iid∼ N (0, 1e− 10).

5. calculate for each tk the noisy swap rates of spot-starting swaps with ma-
turity T = 1, 2, 3, 5, 7, 10 and payment dates tk = T0 < T1 < · · · < Tn = T
according to

Stk,T =
P (tk, T0)− P (tk, Tn)∑n

i=1 ∆iP (tk, Ti)
+ Zswap

tk,T
, (3.50)

where

P (tk, Ti) =
(φ+ ψ>θ)e−ατ + ψ>e−(α+κ)τ (Xtk − θ)

φ+ ψ>Xtk

, (3.51)

φ = 1, ψ = (1 1 1 1)>, τ = Ti − t, ∆i = Ti − Ti−1 = 1/2,

n = 2T = 2, 4, 6, 10, 14 or 20.

6. calculate for each tk the noisy prices of swaptions on three-month swap
options with maturity T = 1, 2, 3, 5, 7, 10, payment dates tk = T0 < T1 <
· · · < Tn = T and strikes equal to the forward swap rates according to

Πswpt
tk,T

=
1

ζtkπ

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ ıλ)2

]
dλ+ Zswpt

tk,T
(3.52)

for some µ > 0 such that q̂(µ) <∞, where

q̂(µ+ iλ) = E
[
e(µ+iλ)pswpt(XT0 ) | Ft

]
= eΦ(T0−t)+X>t Ψ(T0−t), (3.53)

given Xt = x and Φ : R+ −→ C,Ψ : R+ −→ C4 solve the system of Ricatti
differential equations

Φ′(τ) = κθ>Ψ(τ)

Ψ′(τ) = −κ>Ψ(τ) +
1

2
Ψ(τ)>Diag(σ2

1, σ
2
2, σ

2
3, σ

2
4)Ψ(τ)

(3.54)
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with initial condition

Φ(0) = u = (µ+ iλ)
n∑
i=0

cie
−αTi(φ+ ψ>θ − ψ>e−κ(Ti−T0)θ)

Ψ(0) = v = (µ+ iλ)
n∑
i=0

cie
−αTiψ>e−κ(Ti−T0)

where

c0 = 1, cn = −1−∆K, ci = −∆K, i = 1, . . . , n− 1

K = ST0 , τ = T0 − tk = 1/4, ∆ = Ti − Ti−1 = 1/2 and

φ = 1, ψ = (1 1 1 1)>.

The figure 3.16, figure 3.17, figure 3.18 and figure 3.19 show the simulated
CIR process X, the model short rate, the noisy model swap rates and the noisy
model swaption prices with parameters κ11 = 0.0630, κ12 = 0, κ13 = 0, κ21 =
−0.1266, κ22 = 0.4377, κ23 = 0, κ31 = 0, κ32 = −0.5012, κ33 = 0.1652, θ1 = 0.6703,
θ2 = 0.2903, θ3 = 0.8810, θ4 = 0.3275, σ1 = 0.2269, σ2 = 0.1688, σ3 = 0.1229,
σ4 = 1.8097, α = 0.0636.

Figure 3.16: Simulated path of four dimensional CIR process
X = (X1t, X2t, X3t, X4t)

> with parameters κ11 = 0.0630, κ12 = κ13 = 0,
κ21 = −0.1266, κ22 = 0.4377, κ23 = 0, κ31 = 0, κ32 = −0.5012, κ33 = 0.1652,
θ1 = 0.6703, θ2 = 0.2903, θ3 = 0.8810, θ4 = 0.3275, σ1 = 0.2269, σ2 = 0.1688,
σ3 = 0.1229, σ4 = 1.8097, α = 0.0636 and start value X0 = (1.2, 0.5, 0.8, 0.1)>
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Figure 3.17: Short rate in LRSQ(3,1) model

Figure 3.18: Noisy swap rates of spot-starting swaps with 1-, 2-, 3-,
5-, 7- and 10 years maturity and 6 months payment frequency.
Parameters: κ11 = 0.0630, κ12 = κ13 = 0, κ21 = −0.1266, κ22 = 0.4377, κ23 = 0,
κ31 = 0, κ32 = −0.5012, κ33 = 0.1652, θ1 = 0.6703, θ2 = 0.2903, θ3 = 0.8810,
θ4 = 0.3275, σ1 = 0.2269, σ2 = 0.1688, σ3 = 0.1229, σ4 = 1.8097, α = 0.0636 and
start value X0 = (1.2, 0.5, 0.8, 0.1)>
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Figure 3.19: Noisy swaption prices on 3 months swap options with
1-, 2-, 3-, 5-, 7- and 10 years maturity and 6 months payment frequency.
Parameters: κ11 = 0.0630, κ12 = κ13 = 0, κ21 = −0.1266, κ22 = 0.4377, κ23 = 0,
κ31 = 0, κ32 = −0.5012, κ33 = 0.1652, θ1 = 0.6703, θ2 = 0.2903, θ3 = 0.8810,
θ4 = 0.3275, σ1 = 0.2269, σ2 = 0.1688, σ3 = 0.1229, σ4 = 1.8097, α = 0.0636 and
start value X0 = (1.2, 0.5, 0.8, 0.1)>

3.7.3 Maximum Likelihood Estimation in Conjunction with
UKF

The state space model, corresponding to the LRSQ(3,1) model, is given by the
following measurement and process equations

Ytk = h(Xtk ,Θ) + utk (3.55)

Ztk = Φ0 + ΦXXtk−1
+ wtk (3.56)

where

• 0 ≤ tk ≤ 16 and tk = k · 1
52

for k = 0, 1, . . . , 16 · 52.

• Ytk = (Y 1
tk
, Y 2

tk
, Y 3

tk
, Y 4

tk
)> ∈ R4 is a vector of observable market swap rates and

swaption prices at time tk with maturity 1, 2, 3, 5, 7, 10 years, respectively.
Note that we need at least four measurement equations to estimate four
unknown variable.

• Xtk ∈ R4 is a vector of 4 unobservable stare variable at time tk and by
assumption it is a multidimensional Gaussian random vector, whose first

91



two conditional moments are equal to the first two conditional moments of
the factor process (3.48).

• h = (hi)1≤i≤4 : R4 → R4 is a vector-valued function where h1 and h2 are
defined according to (3.50) and h3 and h4 according to (3.52).

• utk is the measurement noise and utk ∼ N(0, R) withR =

(
σ2
swapId2 0

0 σ2
swptId2

)
.

• wtk is process noise and wtk ∼ N(0, Qtk).

• Θ = (κ11, κ12, κ13, κ21, κ22, κ23, κ31, κ32, κ33, θ1, θ2, θ3, θ4, σ1, σ2, σ3, σ4) as well
as Φ0,ΦX and Qtk are the unknown parameters which have to be estimated
from the market data.

Estimation of parameters Φ0,ΦX and Qtk

The assumption that the first two conditional moments of the state variables
Xtk in the state space model and conditional moments of the factor process (which
is a CIR process) are identical, implies

Φ0 + ΦZZtk−1
= E

[
Ztk | Ftk−1

]
= θ

(
1− e−κ(tk−tk−1)

)
+Xtk−1

e−κ(tk−tk−1)

Qtk = Var
[
Ztk | Ftk−1

]
.

From the first equality, we obtain that the parameters Φ0,ΦX depend on the
parameters κ11, κ12, κ13, κ21, κ22, κ23, κ31, κ32, κ33, θ1, θ2, θ3, θ4 and can be given in a
closed form by

Φ0 = θ
(
1− e−κ/52

)
ΦX = e−κ/52.

From the second equality, it follows that the variance of the process noise is
equal to the conditional variance of the four dimensional CIR process (3.48) which
can be calculated numerically, if all parameters in Θ and the previous state are
known.

Therefore the state space model parameters are

Θ = (κ11, κ12, κ13, κ21, κ22, κ23, κ31, κ32, κ33, θ1, θ2, θ3, θ4, σ1, σ2, σ3, σ4).
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Maximum likelihood estimation (MLE) for Θ

To obtain the MLE for the unknown parameter Θ we first apply the UKF to
the state space model (3.55)-(3.56) to construct the log-likelihood function

L(Θ) =
1

2

tN∑
t=t0

(
4 log 2π + log | F̂t|t−1 + (Yt − Ŷt|t−1)>F̂−1

t|t−1(Yt − Ŷt|t−1)
)
,

where Ŷt|t−1 is a one-step-ahead forecast for Yt at time t and F̂t|t−1 is the corre-
sponding error covariance matrix. Then we find numerically the parameter value
Θ̂ which minimize the negative log-likelihood function L(Θ) by

Θ̂ = arg max
Θ
L(Θ).

UKF state estimation given parameter Θ

We first consider a state space model in which all parameters are known and
estimate by UKF the state variables in the model from the the noisy model swap
rates and with maturity 1- and 5 years and the noisy model swaption prices with
the same maturity.

Figure 3.20 - 3.23 show the estimated and simulated factor process with pa-
rameters κ11 = 0.0630, κ12 = κ13 = 0, κ21 = −0.1266, κ22 = 0.4377, κ23 = 0,
κ31 = 0, κ32 = −0.5012, κ33 = 0.1652, θ1 = 0.6703, θ2 = 0.2903, θ3 = 0.8810,
θ4 = 0.3275, σ1 = 0.2269, σ2 = 0.1688, σ3 = 0.1229, σ4 = 1.8097, α = 0.0636 and
start value X0 = (1.2, 0.5, 0.8, 0.1)>.

Figure 3.20: Estimated and simulated factor process X1 (UKF)
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Figure 3.21: Estimated and simulated factor process X2 (UKF)

Figure 3.22: Estimated and simulated factor process X3 (UKF)
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Figure 3.23: Estimated and simulated factor process X4 (UKF)

Maximum likelihood estimation for Θ

In practice, the model parameters are unknown and have to be estimated from
the market prices.

We assume that in the state space model (3.55)-(3.56) both the parameters
and the state variables are unknown. We apply the Maximum likelihood approach
in conjunction with UKF to estimate the parameter Θ from the market data. As
market data we use the noisy model swap rates with maturity 1- and 5 years and
the noisy model swaption prices with the same maturity.
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Example 1

Θ0 = Θ∗

Θ̂= fminsearch(−L(Θ | x209),Θ0, options)

In the table below are given the MLE Θ̂, the true model parameter Θ∗ as well
as the start value Θ0 for the numerically minimization of the likelihood function.

Figure (3.24)-(3.27) show the estimated and simulated factor process.

estimate true start

Θ̂ Θ∗ Θ0

κ̂11 = 0.0640 κ11 = 0.0630 κ0
11 = 0.0630

κ̂12 = 0.0001 κ12 = 0.0000 κ0
12 = 0.0000

κ̂13 = 0.0001 κ13 = 0.0000 κ0
13 = 0.0000

κ̂21 = −0.1274 κ21 = −0.1266 κ0
21 = −0.1266

κ̂22 = 0.4393 κ22 = 0.4377 κ0
22 = 0.4377

κ̂23 = 0.0001 κ23 = 0.0000 κ0
23 = 0.0000

κ̂31 = 0.0001 κ31 = 0.0000 κ0
31 = 0.0000

κ̂32 = −0.5000 κ32 = −0.5012 κ0
32 = −0.5012

κ̂33 = 0.1626 κ33 = 0.1652 κ0
33 = 0.1652

θ̂1 = 0.6730 θ1 = 0.6709 θ0
1 = 0.6709

θ̂2 = 0.2918 θ2 = 0.2903 θ0
2 = 0.2903

θ̂3 = 0.8729 θ3 = 0.8810 θ0
3 = 0.8810

θ̂4 = 0.3220 θ4 = 0.3275 θ0
4 = 0.3275

σ̂1 = 0.2261 σ1 = 0.2269 σ0
1 = 0.2269

σ̂2 = 0.6905 σ2 = 0.6882 σ0
2 = 0.6882

σ̂3 = 0.1216 σ1 = 0.1229 σ0
1 = 0.1229

σ̂4 = 1.8389 σ4 = 1.8097 σ0
4 = 1.8097

α̂ = 0.0631 α = 0.0630 α0 = 0.0630

L(Θ̂ | x209) = 5472.38 L(Θ∗ | x209) = 5367.91 L(Θ0 | x209) = 5367.91

Remark: The samlpe period consists of 209 simulated weekly observation.
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Figure 3.24: Estimated and simulated factor process X1 (UKF)

Figure 3.25: Estimated and simulated factor process X2 (UKF)
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Figure 3.26: Estimated and simulated factor process X3 (UKF)

Figure 3.27: Estimated and simulated factor process X4 (UKF)
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Example 2

Θ0 ≈ Θ∗

Θ̂= fminsearch(−L(Θ | x209),Θ0)

The MLE estimation for the parameter Θ is given in the table below. Figure
(3.28)-(3.31) show the estimated and the simulated factor process.

estimate true start

Θ̂ Θ∗ Θ0

κ̂11 = 0.05925 κ11 = 0.0630 κ0
11 = 0.0600

κ̂12 = 0.00003 κ12 = 0.0000 κ0
12 = 0.0000

κ̂13 = 0.00006 κ13 = 0.0000 κ0
13 = 0.0000

κ̂21 = −0.12189 κ21 = −0.1266 κ0
21 = −0.1200

κ̂22 = 0.43090 κ22 = 0.4377 κ0
22 = 0.4300

κ̂23 = 0.000021 κ23 = 0.0000 κ0
23 = 0.0000

κ̂31 = 0.00006 κ31 = 0.0000 κ0
31 = 0.0000

κ̂32 = −0.49779 κ32 = −0.5012 κ0
32 = −0.5000

κ̂33 = 0.16166 κ33 = 0.1652 κ0
33 = 0.1600

θ̂1 = 0.6702 θ1 = 0.6709 θ0
1 = 0.6700

θ̂2 = 0.2922 θ2 = 0.2903 θ0
2 = 0.2900

θ̂3 = 0.8898 θ3 = 0.8810 θ0
3 = 0.8800

θ̂4 = 0.3241 θ4 = 0.3275 θ0
4 = 0.3200

σ̂1 = 0.2232 σ1 = 0.2269 σ0
1 = 0.2200

σ̂2 = 0.6588 σ2 = 0.6882 σ0
2 = 0.6800

σ̂3 = 0.1213 σ3 = 0.1229 σ0
3 = 0.1200

σ̂4 = 1.7790 σ4 = 1.8097 σ0
4 = 1.8000

α̂ = 0.06692 α = 0.0630 α0 = 0.0700

L(Θ̂ | x209) = 5472.38 L(Θ∗ | x209) = 5469.18 L(Θ0 | x209) = 5319.79

Remark: The samlpe period consists of 209 simulated weekly observation.
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Figure 3.28: Estimated and simulated factor process X1 (UKF)

Figure 3.29: Estimated and simulated factor process X2 (UKF)
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Figure 3.30: Estimated and simulated factor process X3 (UKF)

Figure 3.31: Estimated and simulated factor process X4 (UKF)
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Appendix A

Stochastic calculus

Assume that X = (Xt)t≥0 is a stochastic process defined on the filtered probability
space (Ω,F , (Ft)t≥0,P).

Definition A.1 (Martingale). A stochastic process X = (Xt)t≥0 is called mar-
tingale with respect to the filtration (Ft)t≥0, if E(|Xt|) < ∞ for all t ≥ 0, X is
adapted and

E (Xt | Fs) = Xs P-a.s. for all 0 ≤ s ≤ t.

Examples: 1) Xt = E (Y | Ft), where Y is a random variable with E(|Y |) < ∞;
2) B = (Bt)t≥0;

Definition A.2 (Itô process). A d-dimensional stochastic process X is said to
be an Itô process, if the local increments are on the form

dXt = µtdt+ σtdBt (A.1)

where B = (Bt)t≥0 is assumed to be a d-dimensional standard Brownian motion
on (Ω,F , (Ft)t≥0,P), the drift is a d-dimensional process µ = (µt)t≥0, and the
sensitivity towards the shock is a stochastic processes σ = (σt)t≥0 taking d × d
matrices as values. [14]

Lemma A.3 (Itô’s Formula). Let X = (X1, . . . , Xd)
> be a continuous d-dimensional

semimartingale, taking P-a.s values in an open set U ⊂ Rd, and let f : U → R be
a twice continuously differentiable function (f ∈ C2(U)). Then the process f(X)
is a continuous semimartingale and P-a.s

f(Xt) = f(X0) +
d∑
i=1

∫ t

0

∂f

∂xi
(Xs)dX

i
s +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d[X i, Xj]s.

[see [12], Theorem 10.2]
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Theorem A.4 (Martingale Representation Theorem). Let B = (Bt)t≥0 be a
d-dimensional Browning motion on the probability space (Ω,F , (Ft)t≥0,P), where
F = σ(FBt ∪N ) is the standard filtration. Then for each d-dimensional martingale
X = (X1, . . . , Xd) with respect to F there exist a predictable processes Y 1, . . . , Yd ∈
H2 such that

X i
t = X i

0 +
d∑
j=1

∫ t

0

Y j
s dB

j
s , (P-a.s.), t ≥ 0.

[see [12], Theorem 12.2]

Remark: H2 =
{
Y : Y is addapted, measurable and E

(∫∞
0
Y 2
s ds

)1/2
}
<∞

Theorem A.5 (Girsanov’s theorem). Let B = (Bt)t≥0 be a Browning motion
on the probability space (Ω,F , (Ft)t≥0,P) and Y ∈ L1(B), and let

Zs = exp

(∫ s

0

YudBu−
1

2

∫ s

0

Y 2
u du

)
, for 0 ≤ s ≤ t,

be a P-martingale. Then the measure Q can be defined such that Q ∼ P and
dQt
dP = Zt, and the process W = (Wt)s≤t, defined by

Ws = Bs −
∫ s

0

Yudu,

is a Browning motion with respect to Q. [see [12], Theorem 11.8]

Remark: The process (Zs)s≤t is a P-martingale, if the Novikov condition,

EP
(

exp

(
1

2

∫ t

0

Y 2
u du

))
<∞,

is satisfied.
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