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Abstract

Thermal processes in the manufacturing industry involve highly optimized
equipment for production. In order to run the process the equipment has
to be maintained, replaced and adjusted in their settings regularly. This
requires a certain amount of effort, concerning the economic and timely
aspects.
The goal of this thesis is to purpose an approach for further improvement
of the equipment efficiency, based on data-driven methods. Initially historic
product and process data had been collected, mapped and pre-processed.
In order to train selected machine learning algorithms features had been
engineered and extracted. To ensure the state of the equipment can be
represented through the available data, several models have been trained
and evaluated. The presented heuristic approach dealt with the quality of
the collected data and included a predictive maintenance model. This model
was further analyzed to identify the influencing parameters on the lifespan
of the equipment. Besides the prediction of maintenance actions, a proposal
to optimize the utilization of the equipment is presented.
The data-driven methods applied in this thesis revealed the potential for
future improvements in processes and according parameters.
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Zusammenfassung

Thermische Prozesse in der Fertigungsindustrie erfordern hochoptimierte
Anlagen für die Produktion. Um einen möglichst reibungslosen Ablauf
der Prozesse zu ermöglichen, muss das Equipment regelmäßig gewartet,
getauscht und eingestellt werden. Die wirtschaftliche und zeitliche Kom-
ponente des Aufwands sind signifikant.
Ziel dieser Arbeit war es, einen Ansatz zur weiteren Verbesserung der
Maschineneffizienz auf der Grundlage datengetriebener Methoden zu en-
twickeln. Initial wurden historische Produkt- und Prozessdaten beschafft,
kombiniert und vorverarbeitet. Um die ausgewählten Algorithmen für
maschinelles Lernen zu trainieren, wurden beschreibende Attribute, so-
genannte Features entwickelt und extrahiert. Um sicherzustellen, dass der
Zustand des Equipments anhand der verfügbaren Daten dargestellt werden
kann, wurden mehrere Modelle trainiert und deren Performance evaluiert.
Der vorgestellte heuristische Ansatz befasste sich mit der Qualität der ges-
ammelten Daten und beinhaltete ein Modell für die vorhersagende Wartung.
Die Parameter mit dem meisten Einfluss auf das trainierte Modell wurden
identifiziert, um die Einflüsse der Einstellungen auf die Lebensdauer des
Equipments zu ermitteln. Neben der Vorhersage von Wartungsmaßnahmen
wurde ein Vorschlag zur Optimierung der Einstellungen des Equipments
entwickelt.
Die datengetriebenen Methoden, die in dieser Arbeit angewandt wurden,
zeigten ein Potential für zukünftige Verbesserungen der Prozesse und den
dazugehörigen Parameter auf.
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1. Introduction

On the way to ”Industry 4.0” machines, sensors, several devices and applic-
ations produce huge amounts of data on a daily basis. Those data-sets have
to be stored, processed and analyzed to gain information out of it and make
the manufacturing ’smart ‘.

In the electronic manufacturing industry, especially those involving thermal
processes, equipment efficiency is of significant interest. Optimizing the
equipment is not only impacting the economic factor by decreasing the
costs but also the environmental influence is gaining more importance. In
thermal manufacturing the processes and the equipment are already highly
optimized. Further optimization should be reached with a Big Data ana-
lysis. By analyzing historical process data new information and patterns
for deeper insight should be extracted. The approach of this thesis is to
conclude a proposal to optimize the utilization of the equipment in order
to reach an improvement, which would not have been reached without
data-driven methods. The term Overall Equipment Efficiency is a standard
to measure the equipment productivity defined by Semiconductor Equip-
ment and Materials International (SEMI)1. The measurement is calculated
based on Availability, Performance and Quality. Whereas Availability de-
scribes the time the equipment is available to production per total time,
in percentage. The performance is measured by operational efficiency and
rate efficiency, which refers to the efficiency of the up-time of the machine
and the units produced. Further the quality is measured by calculating the
ratio of accepted produced units regarding quality per total produced units.
The theoretical part should describe the procedure of a data analysis in
general, give an overview of the basic terms and describe the set-up and

1http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?

ProductID=211&DownloadID=3473

1

http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=211&DownloadID=3473
http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=211&DownloadID=3473


1. Introduction

requirements of a data analysis process. Further available platforms, open
source as well as proprietary ones, for those analysis should be evaluated.

The second part, the practical one, consists of realizing the described pro-
cess model from the first part. The data should be extracted from several
platforms in the production system, processed, cleaned and analyzed. Based
on the process data, models for several algorithms will be trained and com-
pared. This should lead to an approach to optimize the Overall Equipment
Efficiency (OEE) by extracting and using new information concerning the
specific process. This part is done in collaboration with a manufacturer from
the electronic industry. It requires a close and frequent interaction with the
experts of the process to gain the specific information regarding the needed
domain knowledge.

The central research issue of this thesis is defined as follows:
- Is it possible to represent the state of the equipment as it is based on
historical process, product and maintenance data?
- Is the quality of the collected data sufficient?
- Does the state of the equipment have an impact on the energy consump-
tion?
- How to discover hidden knowledge from historical production data to
generate an optimizing strategy?
- Does the insight of the data lead to a proposal for optimizing the overall
equipment efficiency?

As a first step the separated data sources are collected and linked to each
other. As the data is not collected for an analysis purpose, the data quality
has to be reviewed. The data-set is pre-processed and provides the basis
for several machine learning algorithms to be trained. After comparing and
evaluating the methods one of them is chosen for optimization and should
lead to new insights concerning the process and the equipment.
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2. Related Work

2.1. Background

In this chapter some fundamental definitions and explanations are given for
an enhanced understanding of the data analysis in this thesis. Additionally
the sate of the art section gives an overview of the current research of the
following three sections: areas of application of data analysis in manufac-
turing in general, improving manufacturing through data analysis and in
particular improving thermal process equipment.

2.1.1. Industry 4.0

The manufacturing sector is currently on its way towards Industry 4.0 as
described by Schwab [40]. Where several devices, machines and platforms
are connected in a physical and logical way. The structure would change
from a hierarchical system with separated operating units to a interconnec-
ted collaborating production network. Within this system the machines and
devices could communicate via sensors and event-based logs on their own
and therefore be independent from human operators. This would lead to a
smart factory, where machines and work pieces could be localized within the
manufacturing and their conditions could be monitored. The processes are
transparent and visualized in real time. Along the way to Industry 4.0 there
are still a lot of challenges to overcome as defined by Kagermann, Wahlster
and Helbig [16], such as standardization, legal restrictions, security aspects
and as well the role of the human working within this environment.

3
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2.1.2. Big Data

The term Big Data has been described with the initial 3 V’s by Laney [20],
where the V’s stand for Volume, Velocity and Variety. Volume describes
the huge amount of data involved and increasing exponentially. Velocity
characterizes the high frequency the data is generated and has to be pro-
ceeded. The term Variety addresses the different types of data originating
from various sources. That is why the data can further be separated into
structured, semi-structured and unstructured. According to Wamba et al.
[48] there are two additional attributes when it comes to the definition of
Big Data which are Value and Veracity. The extent of Value generated from
insights of the data and adds economic benefits to the business. Veracity
described the trustworthiness of the sources and the quality of the data sets.
Those described 5 V’s are located in the center of the figure 2.1 related to
further V’s. Over time several V’s had been defined in the context of Big
Data, such as by Kirk [18].

Interacting with the core consisting of Volume, Variety and Velocity the
terms coming up within the context of Big Data are as follows: Variability
in terms of data describes how wide spread the data is. The Viability is
the ability of the underlying system to process new data sets and changing
data. To interact and explore the data or the new insights gained out of
it, some kind of Visualization is needed. To understand the connections
of the data towards applications, users or other data the Vitality has been
discussed in the Big Data context. Viscosity is described by Shafer [41] as
the difficulty to work with the data. Data Volatility should not have any
impacts toward the stability of the system where data is processed. The
Validity of the data and also for further consumption should be ensured.
The Vocabulary concerning Big Data varies depending on the domain where
it is used, therefore a common understanding should be created. The Venue
refers to the system where the data analysis is performed, depending on
the nature of the data. The Vagueness of the found insights depend on the
interpretation of the meaning.

Dealing with Big Data faces a variety of challenges, the two biggest chal-
lenges has been defined by Katal, Wazid and Goudar [17]. First of all the
design of a system that can store and process those huge amounts of data

4



2.1. Background

Figure 2.1.: The most relevant V’s and its relations defining Big Data and Data Science
according to [41]. Whereas the most dominant terms are Volume, Variety
and Velocity. At the same time those three terms correspond to the initial
explanation in 2011.

5
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in an effective and efficient way. The second challenge is to select the most
essential data out of the huge data collection and further generate additional
value for the business through data analysis. Big Data in manufacturing has
various sources in different formats, such as sensors within machines, ambi-
ent sensors, controllers in production system, log files, process requirements,
etc.

2.1.3. Machine Learning

The application of Machine Learning (ML) methods can solve a given
problem based on sample data and past experiences. In order to train a ML
model, the step by step instructions to solve the problem are not known.
Therefore the lack of knowledge is ’learned ‘from the data, as described by
Alpaydin [1]. ML algorithms can be trained to predict the output variable
(Y) based on the input data (X) which represents a set of features. The basic
ML techniques can be separated into supervised and unsupervised learning
as shown in figure 2.2 [26]. The main difference between the two learning
methods is that the data set for supervised learning is labeled with the
output data (Y) and the unsupervised is not.

Therefore unsupervised learning is used to find unknown structures and
relations in data sets. For example the data points can be clustered to explore
categories. In supervised learning models can be trained with the input
and output data in order to classify new unseen data. The goal is to train
the algorithm, in order to find the function and according parameters to
describe the given data Y = f(X). The goal is to predict the label for input data
with the lowest possible error rate. In other words to find the model which
approximates the process with high predictive accuracy. ML approaches
should be able to adapt to changing environment by learning from the data.
That is why ML is considered to be an application of artificial intelligence. In
the practical part of this thesis some of the ML models are trained, therefore
a selection of three supervised algorithms are chosen for comparison. The
applied algorithms are explained in the following sections.

6



2.1. Background

Figure 2.2.: Overview of the ML techniques according to [26] classified into supervised and
unsupervised learning. The supervised learning consisting of Classification and
Regression is trained with already labeled data to train the model. Whereas
unsupervised learning can be used to cluster the data set into different groups.

2.1.4. Logistic Regression

The Logistic Regression (LR) approach is a supervised learning method,
which is suited for binary classification problems. Basically the input data is
weighted differently within a logistic function to predict the output. [1] [14]
Each of the input values x has an coefficient value to weight the features,
this coefficients are learned from the data. As shown in 2.1b the input
data is combined in a linear way to represent the output data, where β
corresponds to the coefficients of the according input value. The underlying
logistic function, also known as Sigmoid function is shown in 2.1a. In the
Sigmoid function the a is substituted by the linear expression of the input
data. The logistic function limits the value to the range between 0 and 1.
The hypothesis representing the model, which predicts the probability, that
the given input data belongs to the default class is shown in 2.1c.

7
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σ(a) =
1

1 + e−(a)
(2.1a)

Z = β0 + β1 · x (2.1b)

p(x) = σ(Z) =
1

1− e−(β0+β1·x)
(2.1c)

p(x)
1–p(x)

= eβ0+β1·x (2.1d)

The prediction is based on the ratio of the probability that the input belongs
to default class 1 divided by the probability that the input data does not
belong to default class 1. The described ratio 2.1d is called odds. The
graphical representation of the logistic regression is shown in figure 2.3
where the green line corresponds to the hypothesis representing the trained
model. In this example the classes represented by the blue and red dots are
strictly separable [24].

In order to optimize the model the optimal coefficients have to be chosen.
Optimal coefficients are representing the model with minimum error. There-
fore the cost function shown in 2.3 is minimized via gradient descent by
finding the global minimum.

Cost(hΘ(x), y) =

{
−log(hΘ(x)) if y = 0
log(1− hΘ(x)) if y = 1

(2.2)

J(Θ) = − 1
n ∑[y(i)log(hΘ(x(i))) + (1− y(i))log(1− hΘ(x(i)))] (2.3)

There is a possibility that LR is not restricted to binary data. With the so
called Multinomial LR more than 2 classes can be predicted.

P(Yi = y|Xi) =
eβi·Xi·y

1 + eβi·Xi
(2.4a)

8



2.1. Background

Figure 2.3.: Example of separating the input data points with the LR taken from [24]. The
input data is classified in terms of the highest probability of output value. In
this example the two classes, False and True Examples, are strictly separate-able
by the decision boundary.

In this method the basic functionality is the same, except the probabilities
for the classes are calculated and compared to all the other classes. The
representation of the model still contains a linear combination of the input
data. The probability that the input data Xi belongs to class y is calculated
through 2.4a. This calculation has to be done for each of the classes. Further
the data sample i has to be assigned to the class corresponding to the highest
probability value.

2.1.5. Support Vector Machine

The Support Vector Machine (SVM) is an algorithm allocated to supervised
learning techniques and can be used for Classification and Regression. The
goal of the algorithm is to find a hyperplane which separates the data points
in the most sufficient way [30] [1]. A sufficient way would be to chose the
hyperplane, which fits best not only for the training data but also for the new
unseen data. Therefore the goal is to find the hyperplane with the maximum

9
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Figure 2.4.: Graphical representation of SVM algorithm [45]. There is a variety of hy-
perplanes to separate the data points. The optimal hyperplane is chosen by
maximizing the distance to the nearest data points. This is called the separation
margin.

distance to the closest data points. The distance between hyperplane and the
nearest data points is called separation margin. A graphical explanation is
shown in figure 2.4 [45], where the optimal hyperplane with the according
maximum margin is presented with the green line. The margin is described
through the support vectors, they describe the separating function.

The definition of the sample data is defined in 2.5a, where xi refers to
the data point and yi to the according classification. To classify new data
2.5b is defined. The normal vector w represents the hyperplane and b the
bias. In order to get the optimal hyperplane, one has to find the maximum
separation margin to data point with the minimum distance. Therefore the
square norm 2.5c has to be minimized by adjusting b and w, on condition
defined in 2.5d.

Definition: The geometric margin of a hyperplane w with respect to a dataset
D is the shortest distance from a training point xi to the hyperplane defined

10



2.1. Background

by w.

{(xi, yi)|i = 1, . . . , m; yi ∈ {−1, 1}} (2.5a)
yi = sign(〈w, xi〉+ b) (2.5b)

1
2
‖w‖2

2 (2.5c)

yi(〈w, xi〉+ b) ≥ 1 (2.5d)

In the shown formulas the classes are restricted to two (−1, 1) for simpli-
fication. SVM model could be trained for more classes, therefore the same
procedure as described is executed for each class. This is done by separat-
ing the actual class from all others, one-vs-all. Depending on the data set
the classification could be done by a hyperplane in n-dimensional space.
The function representing the hyperplane can be influenced by choosing
different kernels. This could be a linear function, therefore the underly-
ing classification problem has to be linear. For other kernels the above
mentioned formulas have to be extended.

2.1.6. Random Forest

The Random Forest (RF) learning approach belongs to the supervised
ML techniques. It has been designed by Breiman [6] and can be used for
Classification as well as for Regression. The underlying functionality as
explained by Peterek et al. [33] is a decision tree, where each sample is
classified according to the given features. Initially the features are split up
randomly. Each feature range is divided at a specific value based on the
training data. A tree is trained by optimizing the split of each feature, this is
reached through minimizing the squared error. The values should be split
in a way, that the deviation from the average is minimized.

The word forest indicates that the algorithm uses more than one decision
tree. Within this method several decision trees are trained. Each of them
classify each sample, the final classification is the class with the most number
of votes or in case of regression the averaged value. The idea of the algorithm

11
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Figure 2.5.: The Figure shows the simplified functionality of the Random Forest method
Random Forest [38]. The sample with the features is the input to the model
where each of the trees in the forest classifies the sample. The final classification
is done by counting the votes of each sample. As this method can used for
regression as well, the classified values are averaged for the final result.

is based on the wisdom of the crowd, which applies the assumption that
a crowd is wiser compared to an individual. Each tree forming the forest
representing an individual could classify the sample independent from the
other trees. By taking the aggregated result of all classifications of the forest
the error is expected to be smaller.

A simplified functionality of RF is shown in figure 2.5 [38]. The trees are
build independent, therefore each path is different, as the features are
chosen randomly.

A main advantage within this method is the time the model is trained and
evaluated. Because of the separated trees forming the forest the execution
of the algorithm can be parallel. It is robust when it comes to outliers,
due to the separated trees. Further the training data does not have to be
normalized.
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2.1.7. Thermal Process

In manufacturing steps sometimes it is required to change materials through
chemical and physical reactions. The change in structure of the material
can be reached through a temperature-controlled process. The thermal pro-
cess consisting of highly complex mechanisms depending on multivariate
process parameters, such as heating in different zones, gas flow, material
load. Most commonly a thermal process part of a production process and
takes place in a special furnace or kiln. The basis data set described in 5.2
for the data analysis process in this thesis is generated in a thermal process.
The specific thermal process takes place in a rotary kiln , where parts for
the electronic industry are produced. A more detailed description of the
underlying thermal process will be described in 5.1.

2.2. State of the Art

As Auschitzky, Hammer and Rajagopaul [3] revealed how Big Data analysis
can improve manufacturing by enhancing services, processes, maintenance
and products. Isolated data sets are connected to obtain deeper knowledge
of the processes. Several examples were described where the dependency
of the data is investigated, the inter-linkages where pointed out and the
complexity had been analyzed. The core techniques for gaining further
understanding and optimization of the manufacturing processes. Improve-
ments could be reached through the following four aspects: (1) exploratory
data analysis: visualizing the data and finding initial patterns with basic
statistic approaches, (2) using correlation analysis to understand the depend-
ency within the data and forming hypothesis, followed by (3) significance
testing to investigate the hypothesis and training artificial neural networks
to determine the optimal parameters. Even in companies with already high
optimized manufacturing procedures, data analysis could lead to further
achievements.

Over the past decade had been different approaches to use the insights
of Big Data analysis to improve manufacturing processes in the electronic
industry. In the paper of Lv et al. [25] applications of Data Mining (DM) in
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the electronic industry had been reviewed. Over 75% of the articles applied
Big Data analysis to production and control management, 17% dealt with
process design and less than 8% analyzed topics regarding sale, service
and recycling. For recognizing a pattern out of these areas the most used
had been: prediction, classification and clustering functions. Whereas in
Production Management and Optimization (PMO) most commonly a hybrid
analysis consisting of statistical analysis and knowledge discovery analysis
had been used.

Research regarding machine-learning applications in manufacturing had
been reviewed by Pham and Afify [34]. The paper indicates that there is
no universally applicable method. The methods are independent of the
domain and can be very useful for discovering unknown pattern, when
properly used. To choose a technique which is suitable few conditions have
be met: a solid understanding of the requirements and of the problem.
Further (a) the problem has to be of sufficient degree of complexity (b) and
can be formulated as input for machine learning application. The training
data has to be (c) in a adequate format and (d) include representative
samples. The data set should have the ability to be (e) cleansed in an
effective way. Methods for (f) learning and evaluation should be chosen
under consideration of the application. Concrete achievements could be
accomplished through several applications, Nagorny et al. [29] made a
Review of use cases regarding Big Data analysis in smart manufacturing.
An overview can be found in figure 2.6. They figured out several major
applications within the production process:

• enables the identification of patterns and additional knowledge of
influencing factors
• monitoring and observations of defined patterns, could help to detect

anomalies or defects
• possibility to predict trends for optimizing the runtime, avoid failures

etc.
• allows the diagnosis and causality-finding of failures
• increase the visibility of production systems
• could provide decision support
• enables optimization of Key Performance Indicator (KPI)

The wide variety of applications shows that there is a huge potential for
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Figure 2.6.: The figure shows the uses cases for Big Data analytics in manufacturing ac-
cording to Nagorny et al. [29]. There is a wide variety of applications within
the production industry with enormous potential to exploit.

exploitation, especially in production processes.

On the way to efficient applications of those technologies are still a lot of
challenges to overcome. One challenge is to build an sufficient platform
to collect and process the necessary data for further analytics. Zhang et al.
[51] designed a framework to represent the overall life-cycle of the product
in the manufacturing processes. Based on this framework they analyzed
data from sensors, mobile devices, machines, radio-frequency identification
(RFID) tags and other devices by clustering, association, classification and
prediction techniques. The proposed model including an early fault warning
method for intelligent maintenance, energy efficiency and process analysis
for improve production and optimizing the warehouse by zero inventory
spare parts brought the company a competitive advantage. Based on those
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insights new equipment for reusing the heat and energy waste had been
installed.

According to Sheu [43] the true OEE should also consider the input of
the equipment, which is called Overall Input Efficiency (OIE). The input
includes the manpower, spare parts, raw material etc. everything needed to
operate the equipment. The researchers try optimize the total equipment
efficiency by minimizing the required resources and keeping the produced
goods at a constant level. This would cut the costs to operate the machine.
Due to high temperatures needed within the thermal processes, they are one
of the most energy-intense manufacturing sectors. Resulting from the high
consumption of energy, it is considered as a significant cost and input factor
in the production process. Barletta et al. [5] added the energy consumption
to measure the OEE. The researchers revealed the potential energy losses
to reach an optimization instead of focusing on the planned production
time like the traditional OEE. One way to optimize the OEE is to reach an
improvement the energy efficiency within the equipment. Zhang et al. [49]
reviewed several approaches for optimization of the energy consumption
and proposed a data analytic method for the overall production process,
including maintenance and manufacturing process data. Those insights lead
to immense improvements in maintenance, service and production which
further decreased the material and energy consumption.

Among imaging the overall process there had been several researchers
focusing on optimization of only one part of the production process. As
thermal processes in manufacturing are one of the most energy-intense
production steps there are a lot of researchers in this field focusing on
energy efficiency. Therefore another way to optimize the OEE is to improve
the energy efficiency. In order to increase the energy efficiency based on the
data of a single machining process a model for predicting and simulation
the energy consumption was presented by Liu, Xie and Liu [23]. Because of
different energy pattern in the production, the energy consumption was split
into periods and further classified into three different states: idle, start-up
and cutting. For each of those states a model of the energy consumption was
generated. Depending on the production process the energy consumption
can be simulated by adding the energy prediction for the corresponding
state. Further the models were evaluated and optimized, in order that
the prediction is also suitable for different speed levels. Optimizing the
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resource usage within the generated models lead to energy savings. Another
approach was presented by Zhao et al. [52]. The authors also differentiated
between various states and further distinguished between fixed and variable
energy, whereas fixed energy is needed to switch the machine on and keep it
in a ready state and variable consumption is needed in the production state.
Based on those data collections they trained a Neural Network predicting
the energy needed in each step the machine needs to accomplish. With this
network they simulated different settings within the machine and detected
causal relationships. By predicting the energy consumption for various
parameters, a deeper understanding about the processes and its products
has been achieved. The prediction also supports the operators of the machine
to choose the optimal parameters regarding energy. Further adaptation
in the machining cycle, acceleration-deceleration approach, could cut the
energy needed by shorten the standby energy consumption. Machines
within the idle state imply a big potential for improvement in energy
efficiency, according to Vikhorev, Greenough and Brown [47] they are
accountable for 20-30% of the energy losses. In order to use this knowledge
and improve the energy performance of several machines O’Driscoll, Kelly
and O’Donnell [31] introduced the intelligent sensor. Therefore features
had been extracted from energy data stream to describe and separate the
individual loads. Further the operational state within the machine had been
classified with the k-nearest Neighbor (KNN) algorithm into idle, running
and cutting state. The improvement regarding energy efficiency could be
achieved by understanding and adapting the inefficient states. Additionally
an optimization of the overall energy consumption could be designed by
adapting the time and acceleration ratio.

The study of Zhang et al. [50] analyzed the research intersecting energy
consumption, manufacturing and Big Data in the context of energy-intense
production. They found out that, each of them was highly researched
independently, whereas the intersection of all three topics has mostly been
analyzed in a theoretical way. A framework for energy Big Data had been
developed to represent the energy consumption of the whole production
process. The framework includes four sections: the first one is called energy
Big Data perception and acquisition where the data from several sensors
and devices is collected. Followed by energy data big storage and pre-
processing which proposed a sequence to clean the data and transform
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it in a adequate format. The energy Big Data mining and energy-efficient
decision-making layer including different data mining techniques such as
regression, classification, clustering. The top level consist of application
services regarding energy Big Data where the energy is monitored and
different savings are proposed.

In detail there had been researchers focusing on the core equipment needed
in thermal process. Zhou and Chai [53] proposed a pattern-based hybrid
intelligent control for rotary kiln process. Within this research different
temperatures are clustered with fuzzy logic, the clusters resulted in the
different burning zones within the kiln. As any change in the parameters got
a relatively long lag, it is a complex process. Depending on the temperature
and coal feeding they defined two states Normal and Abnormal and the
according rules which have to be applied to control the parameters of the
kiln. By applying this model within an rotary kiln in an aluminum plant
the production capacity, the operating rate and the operational life span of
the equipment has been increased.

The technical report of Steck-Winter and Unger [44] outlines the thermal
processing plants in smart factories. The authors try to determine the present
state of the thermal processing and which steps will be necessary in future.
Besides the required digitalization of the overall production process, also
the condition of the machines and the parts within the machines have to
be represented in digital way. Therefore a so called digital twin of each
machine, including the condition of the parts, the maintenance logs, pro-
duction capacities etc. will be mandatory in order to perform data-driven
optimization. Predictive maintenance could help to reduce inspections and
optimize the maintenance plan to keep the failure rate low and therefore
the availability of the machines high. Within these thermal process plants
predictive maintenance is not yet applicable due to missing data records.
The systematic condition acquisition of several spare parts is challenging
because of their specific and diverging applications and is therefore not yet
sufficient. As a result the knowledge regarding the lifespan of the parts is
not yet exhausted.

As presented there is a variety of research concerning optimization of
equipment and energy within manufacturing, including several data-driven

18



2.2. State of the Art

and machine learning approaches. Although already implemented machine-
learning applications have shown that there is a big potential to improve,
support and develop manufacturing processes, they are not implemented
at scale yet. Still there are a lot of challenges to face, such as underlying
infrastructure or how to collect and process the data in an efficient way.

There is a broader field in the research when it comes to energy optimiz-
ation based on Big Data. There are various models trying to predict the
energy consumption and further optimize the parameters to reach an overall
optimization of the process.

In manufacturing in general there is a collection of attempts for data driven
improvements, but not particularly including thermal processes. The mul-
tivariate process is very complex and the traditional improvements were not
based on data driven approaches. The acquisition of the representing data is
challenging, therefore the optimization of equipment is not yet researched
sufficient.
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3. Requirements towards a Data
Analysis Process

In order to perform a data analysis in an efficient way, some requirements
have to be met. The retrieval and access to various data sources can be labor-
iously and long-winded. Due to different underlying systems and storage
methods, the data records vary in their format. The data mostly is stored in
separated locations and has no linkage. Which requires additional effort to
map the data records to each other. To avoid these efforts the basic require-
ments towards a Data Lake (DL) are mentioned below. Further to ensure a
good practice for the data analysis process, the sequence of common process
models are explained. This chapter handles the requirements towards data
analysis process, consisting of the requirements of the underlying structure
and the process model itself.

3.1. Data Lake

Accessing and collecting data in a traditional IT Infrastructure can be very
time-consuming and limited. Within the research of this thesis the term DL
arose several times in the context of underlying infrastructure as a basis for
data analysis.

The term DL was initially used by Dixon [9] as an approach to handle
the challenges arising from Big Data as described in 2.1.2. A DL should
therefore be drafted to handle the high amount of data, the speed of the
data and the heterogeneous structure. The idea is to create a repository for
storing raw data in their native format, such as structured, unstructured
and semi-structured and process it whenever it is needed. Based on the raw
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data stored in the DL several data analysis on different aspects could be
performed, therefore the data has to be pre-processed and transformed. An
improvement compared to traditional architectures is that the so called data
silos could be connected for exploring relations and correlations to gain
further knowledge. The principle of a DL structure within an enterprise will
be explained in the following section.

The lake could be described as a data management platform where data
should be available and accessible for everyone in an organization. The data
flowing into the DL originates from a variety of sources producing differ-
ent kinds of data. Possible input types are shown in 3.1 originating from
relational database management systems (RDBMS) which are present in
nearly every enterprise such as customer relationship management (CRM),
enterprise resource planning (ERP) and further business integrated systems.
Logs could also be input streams for the DL, originating from several mobile
devices and machines. Another input towards the DL could be sensors
or various timeline data sources. The last shown input type consisting of
files such as emails, reports, guidelines, tables and similar data. These data
can be separated into structured (RDBMS), unstructured (Files) and semi-
structured (Logs, Sensors). Another segregation within the data could be
dividing repetitive and non-repetitive data. Depending on those categoriza-
tions they have to be processed differently. Miloslavskaya and Tolstoy [28]
described the way the data is stored as raw, which means they are stored as
they were proceeded from various inputs. To find the desired data it has to
be search-able, this could be done by labeling the data or adding metadata.
As described by Inmon [15] not creating an understandable context to the
data could lead to a ‘one way‘ lake where the data is only stored and not
consumed. The meta-data should consist of additional information, such
as regarding time, place, amount and purpose of the data generation. The
meta-data is needed to put the data in context and perform the analytic.
The architecture within the lake is flat where each data set get a unique
identifier.

As we do not know the questions arising in the future or deriving from data
explorations, the possible data operations should be highly flexible. Thus
the analytic applications should be designed dynamic, which means they
should not be pre-build functions.
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Figure 3.1.: Data Lake design showing of the input of various data sources from traditional
RDBMS, logs could originate from several mobile devices, another input is
data from sensors or other timeline dependent sources and several files such as
emails, reports, guidelines. Whereas the data could be separated into structured,
semi-structured and unstructured types. Proceeded in the DL, metadata is
added to the raw data. Data-sets are processed, cleaned and transformed on
demand and could be accessed for analysis or information purpose.
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3.1.1. Structure and Requirements

The requirements towards a DL structure had been defined by Miloslavskaya
and Tolstoy [28] and Fang [10].

• Scalability
Handling a growing amount of data also the architecture has to be
scalable. The storing, versioning, searching, indexing and archiving
features should have the capability to scale as your data. Therefore the
format of the data should also support an the growing amount. Further
data processing should be scalable by supporting of the needed data
formats and processing techniques.
• Strategy for archiving data

When huge amount of data is stored into the lake on a daily basis,
there has to be a strategy to archive the data. A possible approach
would be identify those parts of data which are no longer used and
move them to cheaper store. It could still be accessed, if needed. The
data should not be deleted at any time if possible.
• Searchability

The raw data stored in the lake should be accessible and therefore
needs to be searchable. To find the data in the lake whenever it is
needed, metadata has to added to the files. The data should be set into
context to support text-based search queries. Information about who,
where, what, when, etc. to to find the according data sets. An Indexing
scheme would create the opportunity to identify the files uniquely.
• Cardinality

The relations within the individual data sources have to be represented
in a way. At least in a mathematical way and additionally in a visual
presentation. The user should be given the ability to explore the
interrelations between the different data records, to avoid the data silo
representation.
• Trackability

After the raw data is stored in the lake, all the operations should be
replicable and therefore be documented. Also information from the
metadata (where, when, who) could be helpful here, further applied
changes should be within the records. To ensure the operations per-
formed on the data can be tracked and no gained information is lost.
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Additionally implementing analysis multiple times can be prevented
in this way.
• Interfaces

The Data Lake should be Integrated into the It-Infrastructure for
accessing and writing the data. For this purpose defined interfaces
should be designed.
• Shared-access model

A shared-access model should ensue that data can be accessed in a
central point to multiple formats of data. Additionally it should no
require any extracting or transformation of the data for the users, but
it should support some form of in-memory computing.
• Device independency

The accessibility to the Data Lake requires to be independent from
the device, it should be possible with mobile as well as fixed devices.
It should therefore not be bound to a specific operating system or
architecture.
• Agile analytics

The platform should be designed to allow a variety of data analytics.
Analytical approaches can reach from low to high in complexity and
range. The design should be as open as possible for the questions
arising in the future.
• Quality

The data quality should be assured at every step in the DL, independ-
ent whether the data is structured, unstructured or semi-structured.
The quality checks should be separated from ördinaryẅork-flows.
• Efficieny

Due to the high amount of data stored, the processes should be op-
timized in their efficiency. This could be reached by compression or
aggregation of the data.
• Data is never moved

The data should not be moved for any reasons. Instead the analytic
process should be based on the data.
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3.1.2. Implementation

The implementation of a Data Lake should be an agile approach rather
than an ”all in one integration” as described by Hagstroem et al. [13]. Best
practices had been achieved by companies which focused on what they want
to accomplish within data analysis rather than focusing on the technology
factors first. After identifying some use cases, those were implemented in a
few pilot projects on different platforms and further evaluated. Within small
phases of roll-outs challenges regarding the implementation can be identi-
fied in an early stage. Further the future users could give feedback on the
system and it could be adapted or redesigned. Fang [10] also recommends
to ẗhink big and start smallẗo figure out beforehand where and how to start.
Further there should be a team including business and It experts as well as
data scientists, otherwise the value from the data would not be extracted.

The underlying architecture mostly is a distributed processing to ensure
the large data could be handled in an adequate amount of time. In this
thesis the data set for further analysis is collected within an IT-platform
from a manufacturing company. As described in the process of collecting
the data was very time consuming and not straight forward. As there was
no central point of data access and the lack of context it required additional
information from process experts.

3.2. Data Analysis Models

The way from a data collection leading to further insights is called data
analysis process, also known as data mining process. There are several
models to structure the process of a data analysis. In this chapter the
two most common ones will be described and compared afterwards. The
data mining (DM) process has been defined by Fayyad, Piatetsky-Shapiro
and Smyth [11] as follows: ‘The non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data.’ Whereas
non-trivial defines the data mining phase, where there are no predefined
quantities. Instead there should be extracted complex functions and patterns
out of the data sets. The word process implies that there are several steps
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Figure 3.2.: KDD process model shows the main phases and its relations in the data mining
process according to Fayyad, Piatetsky-Shapiro and Smyth [12]

that need to be passed, these steps depending on the chosen model and will
be described in this chapter.

3.2.1. KDD Process Model

The Knowledge Discovery in Databases (KDD) process model is an iterative
and interactive model, starting at the raw data collection leading to further
knowledge as shown in Figure 3.2. The process is described by 5 phases
consisting of 9 steps and has been defined in 1996 by Fayyad, Piatetsky-
Shapiro and Smyth [12].
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• Developing and understanding of the application domain
The first step is about understanding the application domain, which
requires prior knowledge of the business. Further the application goals
should be defined.

• Creating a target data set
Based on the defined goals the relevant data should be extracted from
the overall data collection. As the whole data collection would be too
voluminous for an analysis, it has to be delimited by focusing only on
a subset out of the data.

• Data cleansing and preprocessing
The data has to be cleaned and preprocessed to increase the quality
and make analysis more significant. Within this step outliers and noise
are removed, as well as consideration how to handle missing data take
place.

• Data transformation
The algorithms require different input formats of the data, therefore
the data extracted from several platforms have to be transformed into
the adequate format.

• Choosing the function of data mining
The chosen data mining function could be for example based on sum-
marization, classification, clustering. The model should be be made
upon the already defined goals.

• Choosing the data mining algorithm
The data mining algorithm consists of decisions based on choosing
the methods (usually more than one) with the adequate parameters
for detecting correlations and patterns within the data.

• Data mining
Detecting correlations and patterns in the data for deeper understand-
ing or discover further questioning in the data mining process. This
should be done within the chosen algorithms, forms such as clas-
sification rules or trees, regression, clustering, sequence modeling,
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dependency, and line analysis.

• Interpretation
The extracted pattern have to be understood and interpreted, mostly
within visualization. Information should be filtered, not all of them is
relevant to the discovered processes. Further they have to be presented
in an understandable way for the future users. From this stage of the
model previous steps could be reentered and the data mining process
could be redesigned.

• Using discovered knowledge
To gain a benefit of the discovered knowledge, it has to be integrated
in the corporation. This could be providing it understandably to the
interesting areas or taking actions towards integrating the newly dis-
covered knowledge.

3.2.2. Crisp-DM Process Model

Cross-Industry Standard Process for Data Mining (Crisp-DM) has been
developed in 1996 within a project funded by the European Union from
Chapman et al. [7]. The model can be applied independent from the industry
sector. As shown in 3.3 the model is divided into six phases, whereas the
order of those phases can vary. The sequence of entering the process steps
is cycling and can lead on both directions, backward as well as forward.

• Business Understanding
In this initial step the business background, the objectives as well as
the success criteria should be investigated. Based on the understating
of the current business situation the goal for the data analysis should
be defined.

• Data Understanding
The phase should include getting the data collection and exploring
it with different methods, for example visualizing. This would lead
to first insights, identifying quality issues and getting familiar with
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Figure 3.3.: Crisp-DM according to Chapman et al. [7] process model shows the six phases
and its relations in the data mining process
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the data. Clarifying which data is available and whether it is even
useful. The data understanding is closely connected to the business
understanding, as to define a data mining goal, at least some basic
knowledge of the data is required.

• Data Preparation
Preparation of the data includes choosing the adequate data sets, as
well as filtering and cleansing. Depending on the appliance of the
data sometimes merging and deriving attributes is necessary for fur-
ther steps. The needed preparation depends on model, which will be
chosen in the next phase. That is the reason why data preparation and
modeling states are not independent and therefore alternating.

• Modeling
When it comes to modeling the data adequate models, algorithms and
techniques have to be chosen. Within the implementation of the mod-
els, the parameters have to be adapted until the results are sufficient.
For example the error measure is low enough.

• Evaluation
To ensure that the quality of the process executed is high enough, it has
to be evaluated. The evaluation and interpretation of the results could
lead to new insights and therefore deeper business understanding.
This could lead to new questions and demand further data under-
standing , therefore the circle would be reentered. At the end the
results for the deployment should be selected.

• Deployment
The gained insights should be deployed and presented to the stake-
holders. Depending on the use case this could demand the knowledge
of a domain expert or no specific background at all. That is why it is
important to know in advance what the created model will be used
for. There is a need of visualization and organization of the results for
the future users, in a traceable and understandable way.
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3.2.3. Comparison of Selected Models

In Table 3.1 the phases of KDD and Crisp-DM are compared. As you can
see the Data Understanding phase of Crisp-DM is equivalent to Creating
a target data set and data cleaning and pre-processing in the KDD model.
There are three phases: Choosing the function of data mining, Choosing the
data mining algorithm and the data mining stage can be compared to the
Modeling stage in the Crisp-DM model. The other stages have corresponding
steps in the other models, for example Data preparation can be identified
with Data transformation.

Phases of DM - processes

KDD Crisp-DM

Developing and understanding of
the application domain

Business Understanding

Creating a Target Data Set
Data Understanding

Data Cleaning and Pre-processing

Data Transformation Data Preparation

Choosing the function of data min-
ing Modeling
Choosing the data mining al-
gorithm

Data mining

Interpretation Evaluation

Using discovered knowledge Deployment

Table 3.1.: Comparison of the phases of the data mining process models KDD and Crisp-
DM

According to Azevedo and Santos [4] the Crisp-DM model is an implement-
ation of the KDD model, with the purpose for practical use in the industry.
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Shafique and Qaiser [42] has made a comparison of the two models and
came to the conclusion that the KDD model is more accurate and structured
compared to the Crisp-DM model. That is why the KDD model is mostly
used by researches and data experts. Due to this comparison the applied
process model will be the Crisp-DM as it is better suited within the practical
approach. Whereas CRISP-DM model is more sufficient within the industrial
sector. The guidance is more adequate for implementing the data mining
process in practice.

33





4. Overview and Evaluation of
Data Analysis Tools

There is a variety of tools available for the data analysis process. In this
chapter a selection of tools will be compared on several aspects. Depending
on the purpose within the data analysis process different criteria have to be
met. Therefore the tools will be separated into three stages: scripting tools,
visual programming and visualization.

4.1. Selection of the Tools

As not every tool is suitable for every use case, the selected tools are sep-
arated into different levels as shown in 4.1. The first category contains
scripting tools, where the data process is represented in program code
which is executed in the command line. There are several Integrated De-
veloper Environment (IDE)s which support the data analysis process. The
second stage of tools is the graphical programming which do not require
programming skills but an understanding of the data analysis process. The
process is modeled through nodes which represent one step executed on the
data set, those nodes have an input and output and can be linked through
connections. There are a variety of functionality a node can have, such as
reading the data set, filter, merge, applying an algorithm, visualize certain
data etc. The third and last category is visualization of the data which offers
different techniques to explore the data set in a graphical way. Therefore
plots, information graphics, charts, tables etc. could be used.

The selection of tools which will be compared in this chapter is based on
the list of mostly used data processing tools according to Nagorny et al.
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[29]. As the list contains mostly graphical programming tools, only a part
of it: Orange, Weka and Knime had been chosen for evaluation. Further as
a programming language R was listed and according to the poll of used
data mining tools Piatetsky [35]. Python got the highest share within the
used tools, therefore it was added to the tool selection. While researching R
and Python, almost every time it was in context with Matlab, consequently
this was also added to the selection of tools. 4.1 show that the selection for
scripting environments consists of Python, R and Matlab. As an additional
category a visualization tool had been added to complete the selection.
The tool of choice for visualization is Tableau as it also got a very high
rank within the mentioned poll Piatetsky [35]. The following list of tools is
chosen for comparison and will be used in the practical part 7 within the
data analysis process.

4.2. Evaluation

The tools will be evaluated according to different criteria. One point of
comparison is the license needed, whether the software is open source
or proprietary. Open source software is listed in the table with the GNU
General Public License (GPL) 1. Further basic skills required to use the tools
are evaluated. The scalability, transparency and adaptability will be rated
with a number reaching from 1-5, whereas 1 corresponds to very high and
5 corresponds to very low. Further the tools will be reviewed whether each
of it supports machine learning and or deep learning in any form. The
evaluation containing all criteria is shown in 4.2 and 4.3.

The most obvious difference between the programming frameworks is the
license. As Python and R are open source software and licensed under GNU
GPL, Matlab is only available with a commercial license. Each of the tools
are not only limited to data analysis and have a variety of useful functional-
ities. These functionalities can be accessed through additional libraries or
packages. Ozgur et al. [32] compared those three environments regarding
their pros and cons, as well as their suitability in teaching environments.
There is a variety of comparing reports of these three tools such as by R vs

1https://www.gnu.org/licenses/gpl-3.0.en.html
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Selection of Tools

Level Tool Description

Scripting

Python multipurpose programming language, which
provides a huge set of helpful libraries for the
data mining process such as pandas, numpy,
scikit-learn and matplotlib for visualization

R is a programming language for statistical com-
puting, besides it also provides machine learn-
ing packages for further data analysis and visu-
alization techniques

Matlab provides numerical computing, optimized for
matrices, also funtions and data can be plotted,
further there are also several toolboxes which
provide machine learning functions

Graphical
Programming

Orange a workflow can easily be modelled with the
nodes representing different functions, data
pre-processing and machine-learning can be
implemented very fast

Weka data-mining tool where the process can be rep-
resented through nodes and provides a large
set of funtionalities which can be aplied to the
data set

Knime modelling the data analysis process through
nodes which represent one functionality ex-
ecuted on the data set, those nodes have an
input and output and can be linked through
connections

Visualization
Tableau easy to use visualization tool, which provides

interactive filtering, selecting, highlighting... on
the data

Table 4.1.: Overview of the selected to tools for evaluation separated into the three categor-
ies: Scripting, Graphical Programming and Visualization
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Python vs MATLAB vs Octave [37]. Matlab is very fast concerning execution
time when it comes to vectorized operations, but it is the slowest out of
all three regarding iterative loops. R is faster than Matlab but still slower
than Python. In the subject of scale-ability all three tools are very scalable.
Regarding R and Matlab they are limited in scale when using not only
vectorized operations, might be the case when pre-processing the data. All
three of the listed programming frameworks in Table 4.2 are very adaptable
as they offer a massive set of libraries or packages. As they are not only
limited to data analysis they provide possibilities to manipulate data and
therefore a changing data set, as well as the feasibility to adapt to changing
circumstances. Whereas python and R provide a wider range of libraries for
adaption. Although some libraries are restricted to a particular version of
Python. Therefore some of the libraries and packages with specific versions
do not work together at all. Python further allows to create a stand-alone
application, independent from the underlying system. R got limited capabil-
ities in creating stand-alone applications, therefore an additional framework
is needed. In Matlab this is even harder to accomplish.
All three tools are very transparent when working with them. Considering
the libraries have to be used and therefore the parameters and functions
have to be known by the user. The required skill-set for Python consisting of
programming skills and further have a basic understanding of the libraries,
how to find, install and use them. In order to use R you have to know R
scripting, which packages to use and how to use them. The same applies to
Matlab, you should be familiar with programming in Matlab and depending
on what the user tries to accomplish have a solid mathematical skill set. As
a basis the user has to have some fundamental understanding of the data
set, no matter which of the tools will be used.
The data set mostly has to be cleansed, transformed, filtered etc. before
analyzing it. All three scripting frameworks got a vast amount of libraries
providing helpful functions to pre-process the data. In Python R and Mat-
lab, Machine learning and Deep Learning functionalities can be accessed
through several packages, which need to be installed additionally.

In Table 4.3 the selected data analysis tools are Orange, Weka, Knime and
Tableau, whereas the last one is limited to visualization. Orange, Weka and
Knime are the selected graphical programming tools licensed under GNU
GPL, which provide a Graphical User Interface (GUI) to model the workflow
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4.2. Evaluation

of the data mining process 4.1. Basically all three tools are providing a way
to visualize the data flow, where specific nodes representing operations on
the data[39]. The order of the process steps executed on the data set can
be adapted and changed very fast. Which is why those tools perform very
well within an initial comparison of various algorithms. In Weka this is
calledK̈nowledge Flow,̈ it further provides the Experimenter and Explorer
functions which provide an environment to perform the exploratory data
analysis.
The scalability of Orange and Weka is limited, due to runtime. When ad-
apting the data set, the reload requires a certain amount of time depending
on the size. When it comes to Adaptability all three tools got a very high
rank, because the nodes can be rearranged very quickly and in an easy
way. Adaptions concerning parameters within the algorithms are limited
to the possibilities provided by each tool, whereas further adaptions could
be implemented through several scripts such as python and R. Orange for
example allows a python script to be executed on the data set, represented
by a node. Whereas Knime offers this possibility for both, R and Python
scripts. Further data generated with Knime could be exported for visual-
ization purpose into a report from Tableau. Weka offers an Application
Programming Interface (API) which could be accessed within an Python or
an R script. Also within the Weka GUI several packages can be installed
to support R and Python scripts. When running an external script within
those tools, there is a loss concerning execution time. The Transparency of
the different tools is quite good, as the user has to select and adapt the
parameters in nodes the process is plausible. When executing the nodes
Orange and Knime both show the user the progress of each node. Further
each node could be started independently, when there is a sufficient input
available.
The skill-set to use the tools do not require the user to have programming
skills. It is necessary to understand the software tool, which is very intuitive
within all three of them. Further the user has to have a solid understanding
of the data set itself and what he wants to accomplish and how. The basic
functionality of the algorithms would be necessary to adapt the parameters
and model the process. When it comes to the data set, Orange, Knime
and Weka support the common formats as input. The supported formats
within Orange, Weka and Knime are xlsx, csv, txt and several database
formats (such as postgreSql or mssql) which require according packages to
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4. Overview and Evaluation of Data Analysis Tools

be installed. Knime offers additionally to the common formats supported
by Orange, integration for a variety of other data formats. Although the
csv-reader and the xls packge of Weka offers limited possibilities and the
data might require some pre-processing.
Orange, Weka and Knime offer a variety of built-in visualization tools and
plots. The data set as well as the results and various outcomes of the ana-
lysis can be visualized by applying the corresponding nodes to the data set.
Tableau offers interactive and intuitive visualization options for the data set.
As input it supports most of the common data formats such as csv, xls etc.
Further particular parameters from the input data set can be visualized per
drag and drop. Additionally it offers the functionality of highlighting the
data points with colors, shapes etc. depending on parameters. Out of these
visualizations recurring reports can be generated.
Machine learning is supported in all of the three tools Orange, Weka and
Knime. For using classification and regression techniques no additional
packages have to be installed. Deep Learning algorithms are not supported
within Weka and Orange, but they could be realized in a more complex
way, such as implemented via external libraries implemented through Py-
thon. In Knime Deep Learning techniques are ready to use within the basic
installation.

Depending on the quality and format of data set the pre-processing process
requires certain a amounts of steps. Python an R got a variety of libraries and
are therefore not limited in their functionality regarding data manipulation.
Matlab would be a good fit, when it comes to visualizing the data set in
an easy and understandable way. Orange and Weka are a good choice for
an initial training of various machine learning algorithms to compare the
outcomes of the different algorithms in a very efficient way. Knime offers
a lot more built-in functions compared to Orange and Weka, further it
comes with an intuitive GUI. Knime could be very useful in various aspects,
not only pre-processing of the data , but also training and using machine
learning models. All of the compared tools offer visualization techniques
and in many cases this would already fulfill the requirements. In case it
does not, there is the visualization tool Tableau which visualizes the data
set in a interactive way and give the user a great opportunity to explore
the data. Most of the tools offer several extensions to integrate within the
other tools. For example data generated with Knime could be exported into
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a report from Tableau. Weka offers an API which could be accessed within
an Python script.

There is no multipurpose tool which fit all the needs. In order to map the
overall DM process, there might be more than one tool necessary. Depending
on use case, data set and the desired outcome of the data analysis process
adequate tools has to be chosen. To cover the whole data analysis process
reaching from mining the data to visualizing the results, an individually
chosen mix of tools will be sufficient.
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In this thesis an the overall equipment efficiency is pursued through a
data driven analysis. The underlying data set is generated within thermal
processes, more precisely within the electronic industry. The fundamental
data set for the data analysis consisting of historical process and product
data collected on several platforms. It includes historical data from the
machinery, the process and products, as well as maintenance records and
quality data. In this chapter the data set is briefly described. Further the en-
vironment and the thermal production process where the data is generated,
are explained.

5.1. Production Process

The basic data set is generated within a thermal process in the technical
ceramic production, where the end products are highly optimized ceramics
for technical applications. The ceramic material is widely used, because
of its high heat and wear resistance. Further qualities of the material are
thermal conductivity and electrical insulation. The applications within
the electronic industry includes components, such as sensors, capacitors,
actuators and similar parts. The data analysis will focus on the production
data of piezo-ceramic components, which could be described as electro-
mechanical transducer. Mechanical energy is dissipated into electrical energy
and vice versa.1

The production process of multilayer piezo actuators consists of various
steps. A simplified outline of the process according to Production process
technical ceramics [36] is shown in 5.1. The manufacturing of the components

1https://de.wikipedia.org/wiki/Piezoelement(Accessed on: 2018-11-02)
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5. Data Set and Process

Figure 5.1.: Simplified outline of the production process for technical ceramic components
as stated in Production process technical ceramics [36]. The manufacturing consists
of various steps, reaching from mixing the material to final inspection.

starts at mixing the raw materials as well as the binder for the tape casting
of the ceramic foil. The mixture is pressed into desired form, in the case of
multilayer pirezo actuators, the foil is generated. Followed by printing the
inner electrodes and stacking the foil-layers. In the first thermal process the
components are debindered, which means the binder is burnt out at about
500 degree Celsius. Afterwards the ceramic is sintered, which is the firing
process with temperatures over 1000 degree Celsius. As a last step in the
manufacturing process the contact pins are soldered to the components and
they are tested and taped for delivery.

One of the most essential steps regarding product quality within the process
is sintering. Further in this step the availability of the sensor data was very
high compared to the other steps. In the sintering process the produced
parts pass through a controlled heating process in the kiln. In this step the
binder within the ceramic-mixture is removed through burn-out. Therefore
the fired components will be smaller afterwards and acquired more density
which give them their typical properties such as heat and wear resistance.
Within the sintering process the temperature exceeds 1000 degree Celsius
and has to be held for a certain amount of time. At the same time the
temperature acceleration has to be controlled, this means it should not
increase or decrease too fast. Due to the high temperatures needed, this
manufacturing segment is of intense in energy demand.

The described sintering process takes place in a rotary sintering kiln shown
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5.2. Data Set

Figure 5.2.: Rotary kiln for the sintering process, generating the sensor data for the data
analysis. In this kiln the piezo-electric components are fired and gain their well
known properties such as heat and wear resistance.

in 5.2. Within this kiln, where the sensor data originates there are 3 heating
- zones, at the top, bottom and one in between. Corresponding to these
heating-zone there are also 3 control loops actuating the heating units.
The temperature within the sintering kiln is essential to the quality of
the products and is defined as a constant value in each run. The defined
overall temperature in the kiln is regulated through 3 set temperatures in
the according heating zones. The sintering program stays always the same
to ensure the product quality does not change. An overview and a more
detailed description of the program can be found in the next chapter 6.2.
This process and its parameters are already highly optimized and had been
adapted and researched for more than 20 years.

5.2. Data Set

The data generated within the sintering process is chosen for analysis,
because of the high impact of the condition in the kilns on the end product.
The data set described in this section serves as basis for analyzing the
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process, to gain new insight which would lead to approach for optimize the
efficiency within the kilns.

As a first step the data had been retrieved from several platforms within the
company specific IT-Landscape. Following data sources had been selected
for the final data set:

• sensor data
• product quality data
• maintenance records
• stock disposal history
• process parameters

A detailed description of the data set can be found in 5.1. Each channel of
the sensor data had been exported from a industry-specific software solution
where all available sensor data has been collected. The quality data including
geometry and electrical measurements each had been retrieved from an
Oracle Databases. The maintenance action data had been acquired from the
central maintenance management system. Several process regulations and
further unstructured information had been collected from the process and
production engineers. The process of the data acquisition was very time
consuming and not straight forward. There was no central point of data
access available, instead the records had to be accessed in different ways and
on different platforms. This took certain amount of time and access rights
for the platforms were necessary. The lack of context required additional
information from process experts to collect and understand the data.

The collected data set includes sensor data from 20 sintering kilns, mainten-
ance data, quality measurements geometric and electric as well as several
process information. The data listed in table 5.1 is available in the time range
of over 2 and a half years.

The sensor data is available in comma separated format, consisting of a
time-stamp and the according value. A visualization of the values from
the sensor channels is schown in 5.3. The frequency of the data stored
reaches from 30 seconds to 5 Minutes intervals, in the time range from
01.01.2016 to 09.09.2018. The temperature values are available from three
different locations for top, bottom and inside of the kiln. The values are
measured in degree Celsius and available for target and actual values each.
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5.2. Data Set

Figure 5.3.: The plot represents one run in the kiln. It contains the available sensor values:
the temperatures for top inside and bottom zones, the air and gas flow and the
three actuating values which regulate the heaters. The air, gas and actuating
values are scaled by the factor 10 due to better illustration.

The sensor values representing the air and gas quantity flowing through
the kiln in liters per minute, also target and set values. The actuating
variables are available for each heating element, representing a percentage
of needed capacity in the control loop. The machine state is representing
the operation state of the kiln as described in 6.1. The product quality data
consists of geometric and electrical measurements. The geometric as well
as the electrical ones are tied to a unique lot number. A so called lot or job
consisting of a variable number of parts. The quality measure data for each
lot is available statistically aggregated, consisting of average, minimum and
maximum value of the charge.

The geometric quality data of the product is measured after the sintering
process. Each entry also contains the according time stamp when the meas-
urement is taken. Within the geometric measurements of the parts the width,
length, shrinkage, weight, curvature etc. are stored for the transparency of
the process.
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The electric quality measures consisting of the high and low level signals
and the internal resistance of the components. For each of the measure-
ments specification limits are available to ensure the constant quality of
the products. When exceeding these limits the parts are rejected for further
processing.
The maintenance records consisting of entries about the actions taken on
several parts of the kiln. The actions could be visual inspection, which
happens on a regularly basis and where the state of each part should be
evaluated regarding exchange or repair actions. Another entry could be
exchange of a specific part, such as heater. Lining and renewal of the ceiling
are further possible maintenance actions. Due to insufficient quality within
the maintenance data as described in 5.3, additional data source is needed.
Therefore the disposal in the warehouse stock is exported and added to
the data set. The collected warehouse data is limited to the specific spare
parts from the rotary kilns used in the sintering process. One entry within
the stock export includes the name of the kiln, the date when the part is
consumed, the description, the amount of part and an additional text.

5.3. Data Quality

The described data set was collected over the past years for tracking purpose.
Therefore it was not of importance how the data was stored, but that it
was stored. As a result the data was not stored initially for improving the
processes, that is why the quality of the data requires certain amount of
pre-processing before using the data set for further analysis. Regarding the
sensor data the frequency of the timestamps and according values has a high
variance. Which varies from 2 seconds between entries to 5 minutes. A value
is only stored, when the value changes compared to the last entry but at least
every 5 minutes. Independent of that condition the frequency also changes
within the running state of the kiln where the data changes continuously.
As a result the sensor data has to be re-sampled and interpolated, which
would lead to inaccuracies within the data. Within the maintenance logs
several challenges appeared. Most of the maintenance actions taken are
based on visual inspections, except when there is a defect recognizable in
any of the sensor data. First of all the maintenance actions were not clearly
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defined, due to free text entries from the operator. Therefore the wording is
not explicit and leaves room for interpretation. Some entries could not even
be categorized whether the action had been taken or not. For example one
repetitive entry was ‘Exchange of the spare part according to actual wear,
further comments needed’, where no further comments exist.

Misspelling, abbreviations and different wording for several parts and ac-
tions are most challenging, examples are shown in B.1. These circumstances
led to a variety of words for the same meaning. Even after figuring out
which spare part is affected, the entries were not explicit about the action.
The entries also vary in the way the actions are called, examples are lis-
ted in the appendix. Summarized the records of maintenance actions are
challenging in various aspects. In the survey of Laranjeiro, Soydemir and
Bernardino [21] the following criteria to measure the quality within the
data are pointed out and examples from the data set are added for better
understanding:

• Accessibility
The accessibility of the data is aggravated due to duplicated entries,
which refer to the same taken actions. The records containing also
ambiguous data, which can be interpreted in different ways. For ex-
ample the entry including the description of the part and how it is
affected, but not whether it has been exchanged or repaired or just
recorded. Another problematic case are the abbreviations of different
words, see the appendix for detailed examples B.1. Further challenges
are different word orderings, special character use etc.

• Accuracy
The point in time when the action has been taken is not accurate, due
to more than one entry for the same procedure. This leads to no pre-
cise information concerning the timely manner of certain actions. The
description of the activity is not clearly defined and leads to subjective
interpretations. The entries are not standardized. Further some entries
contain misspelled data.

• Completeness
The entries of the records are inconclusive, several actions are based
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on the condition of other elements in the kiln. As an example ’... the
action is taken based on the condition of the element x... the actual
extent of repair has to be added’. But no further comments were added.
So no information is present whether the action has been taken or
not. Further the amount of exchanged parts is not always available.
Some maintenance actions are not recorded at all. For example when a
heater is exchanged in the kiln. When an entry exists, details regarding
which heating zone in the kiln is affected, are missing.

• Consistency
The data is not consistent concerning the question: What kind of action
was executed? Is there a record of every maintenance process taken?
The way a maintenance action is not unique, therefore the entries are
not consistent. The wordings have different orders and representation
forms, such as the units of heaters.

• Currency
Outdated temporal data, this could occur when a kiln is closed for
production due to needed maintenance and the clearance afterwards
is not within the records.

The described challenges made a automated extraction impossible without
manual preparation and further information. Therefore an additional data
source is added to the data set, the disposal in the warehouse stock. As
the entries are standardized, the quality is of high standard. Based on the
described records of data, an automated extraction of the maintenance
actions taken is not possible. Before further proceeding with the extractions,
manual preparation and pre-processing 6.1 6.3 is needed.
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Data set

type description size

sensor data

temperature (top, bot-
tom, inside)

air quantity about 300 MB

actuating variable (top,
bottom, inside)

per machine

machine state (5.99 GB in total)

gas quantity

product quality data

removal bottom and
top

delta stack length

stack width sintered
(wing 1-4)

bending (wing 1-3, 2-
4)

total length

loss of mass 14.4 MB

stack weight

stack density

length shrink

internal resistance
(RIS)

high level signal (GS)

low level signal (KS)

polarity

optical end control
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Data set

maintenance data

date

maintenance action 618 KB

total count operating
hours

additional description

stock disposal

date

description of the part

machine 102 KB

amount

textual description of
action

process parameter

part specifications

load amount 2.68 MB

offset for each kiln

Table 5.1.: Description of the parameters of the data set originating from the sintering step
within the thermal process available for 20 kilns for a time period of more than
2.5 years.
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6. Data Pre-Processing and
Feature Extraction

The data set described in the previous chapter has to be linked, cleansed and
transformed for further analysis. The data is available in various formats,
therefore it has to be pre-processed in order to train machine learning
algorithms. As a first step the features are extracted from the cleansed
sensor data. Further the available data sources are mapped to each other,
so the relations can be explored. The details of the procedure consisting of
pre-processing and feature extraction are explained within this chapter.

6.1. Pre-Process

In order to train a supervised machine learning algorithm the data has
to be processed into a format which fits for this purpose. An overview of
the data sources and their operations is shown in Figure 6.1. The raw data
consisting of sensor data, maintenance records and product data has to
be cleaned from invalid data. Further the runs representing an operating
cycle within a kiln are extracted from the sensor data, based on the state
sensor. For a more precise description of the runs they are separated into
segments, which represent the heating and stable phase within the sintering
process. The described runs and the respective segments are shown in 6.2.
The features are calculated from the various sensor channels for the extrac-
ted segments. After cleansing and preparing the maintenance records the
relevant information about the actions taken are extracted and transformed
in a suitable form. The maintenance features further have to be mapped
to the runs, the process is briefly described in 6.3. Another part of the raw
data is the product specific quality data set consisting of lot number and
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Figure 6.1.: The procedure of pre-processing and feature extraction based on raw data
set consisting of sensor data, maintenance records and product data. First the
invalid values from sensor logs are removed and the runs are extracted. Further
the runs are separated into segments and according values from the sensor
channels are aggregated and several features are calculated.

corresponding measures of the products. Whereas each lot number has to
be assigned to one run as described in 6.4.

6.2. Sensor Data

Initially all sensor values are validated. Each sensor channel has a range
of correct values, due to defects some values exceed the limits and will be
removed. For example there are several invalid target temperatures within
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6.2. Sensor Data

the sensor data, which are present when a malfunctioning occurs. The
defined temperature limit should not exceed 1400 degree Celsius. There
are aberrant temperatures present, ranging from 1400 degrees up to 1800

degrees Celsius and had been removed from the data set.

In each rotary kiln are so called runs which represent an operating cycle. A
run has a load amount and reaching the time span when the kiln is switched
on until the sintering program is terminated. Each of the sintering kilns got a
sensor channel representing the state of the kiln. Based on this state the runs
had been extracted and validated. The state is represented by the according
bits set, which are listed in the table 6.1 below. The kiln is switched off
when the state is set to 0, this is only the case when the kiln is closed due to
maintenance. Regularly the kiln is in state 256, which represents the idle
state. When a program is running the state sensors is set to 512. After the
program terminates the state is set to 256 again, except when unforeseen
circumstances occur. This could be a manufacturing incident, caused by too
high temperatures, too high gas fluid or any other defects. This could be
detected through invalid sensor values, then the program is ended manually
by the operator. Then the state is set to 1024 and afterwards set to 256 again.
The state 8074 is not defined.

Due to extraordinary activities in a kiln such as to maintenance or Research
and Development (RD) purposes there are several runs which are not valid
or do not represent the production process. A valid run is defined as follows:
last at least 20 hours, the maximum upper time limit of 30 hours should not
be exceeded and the run should have a valid lot number representing the
load.

A run is defined through a start and an end point and within one kiln the
runs are numbered. To assure the run is valid and match the sintering curve
shown in 6.2 several steps had been defined. According to these states a run
can be identified by meeting following conditions: the state of a kiln has to
switch from state 256 to state 512 or 2048. Within this run the segments can
be extracted based on target temperature sensor.

Further a run is divided into 6 segments (s1, s2, s3, s4, s5 and s6). The
Segment s1 is a heating segment where the temperature is raised from
environment temperature to 550 degree Celsius. After reaching the 550

degree Celsius limit the temperature stays constant for an hour which
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States of the kiln

Value Name Description

0 Inactive Kiln is switched off.

256 Reset Kiln is switched on and in idle state.

512

Run Kiln is in active state and sintering

programm is currently running.

1024

Halt The programm has been aborted due to

unforeseen circumstances.

2048 Ende The programm has been manually ended.

8704 not defined Further possible state which is undefined.

Table 6.1.: Overview of the possible states within a kiln. Depending on the bit set a value
represents the operating state.

represents s2. In segment s3 the temperature within the kiln is raised to
operating temperature over 1000 degree Celsius. The stable segment s4 at
top temperature has to last 9 hours to guarantee the quality of the material
as defined in process specifications, whereas the other segments can vary in
their duration.

As mentioned in 5.3 there are missing values within the data stream. The
missing values are up-sampled and linearly interpolated in order to achieve
the same frequency. This step leads to inaccuracies.

6.3. Maintenance Records

The maintenance actions from the records including the exchange of sev-
eral parts within the kiln. The most invasive operation is the lining of
the kiln, which takes several months. Within this time span the kiln is
closed for operation. Another action which takes certain amount of time
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6.3. Maintenance Records

Figure 6.2.: The segmentation of the curve of the temperature representing one run in a
sintering kiln. Segment s1 starting at environment temperature raising to 550

degrees Celsius. In segment s2 the temperature is maintained constantly at
550 degree Celsius for an hour. In the next segment s3 the temperature within
the kiln is raised to the operating temperature 1035 degree Celsius. The stable
segment s4 at top temperature lasts 9 hours. In s5 the temperature is cooled
down to 700 degrees Celsius.
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is the exchange of the ceiling. Afterwards the target temperature in the
3 heating zones have to be re-calibrated, this is done during a so called
3-point-measurement. Therefore the actual temperatures in three points are
measured in the kiln, the chosen points are located where the material is
placed during production. Further the heating elements in the three zones
can be exchanged separately. In each zone a different amount of heating
elements are incorporated. The bottom zone includes 12 heaters, the top
heating zone consists of 6 heaters and the inside zone got only 1 heater. To
describe the maintenance action accordingly, not only the exchange but also
the amount of exchanged elements is extracted. On the heaters rise plugs
due to chemical reactions in the kilns. These plugs are removed regularly
and therefore described in the extracted features. Additionally each zone
has a thermocouple for temperature measurement, which can be replaced.
This element is referenced as S1 (inside), S2 (top) and S3 (bottom).

As the maintenance records are not standardized, the quality of the data
is not sufficient 5.3 to extract the actions taken fully automatic. Therefore
the files have to be prepared to extract the features. First of all a Regular
Expression 1 for matching all possible explanations and combinations of
words is created. This still implies insecurities whether particular actions
are taken or not. To increase the certainty of the extracted entries they will
be validated with the trained model as explained in 7.2 Due to insufficient
records regarding the heater exchange activities, further data is needed.
Additional records from the warehouse operations containing information
about how many heaters are exchanged are mapped to the data set.
To represent the data in an adequate format for machine learning a counter
of runs is added as a feature. The counter for each part representing how
long the specific part has been in the kiln. As an example at run x the ceiling
is in the kiln for 30 runs and the lining has not been exchanged for 70 runs.
Every time a part of the equipment has been replaced the according counter
is set to 0.

1https://en.wikipedia.org/wiki/Regular_expression
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6.4. Product Data

Charges from the production can be uniquely identified through the so
called lot number. This unique identifier is listed within the quality data set
to assign the available measurements and the according time-stamps.
For the validation purpose of the runs not only in a timely manner, but also
in the load aspect those lot numbers are dedicated to the runs. The load
of one run could consist of several lot numbers. A lot number is already
assigned to one kiln, but not to the according run. The assignment within
one kiln is done through the following matches:

• t is the time of demounting at the end of the current sintering process
• r is the current run number (unique within one kiln)
• rstart representing the start time of the run r
• rend representing the end time of the run r
• tconst is defined as the time a kiln could be unloaded before rend
• the lotnumber belongs to one run if t is within the timerange rend −

tconst, (rend + 1)− tconst

With other words, when the load is demounted during two runs within
one kiln, then the lot is assigned to this run. As the kiln could be unloaded
before the actual end of the run, a time-constant of 1.5 hours is subtracted
from the range of the end of each run.

6.5. Extracted Features

Following features had been extracted to describe the runs of the sintering
process. Each feature calculated for the overall time range of one run and
for each of the segments. Further separated into the three heating zones,
representing the top zone, bottom zone and inside zone of the kiln:

• Integral of the actuating variable
The temperatures in the three heating zones are regulated by the
controller in each zone. These controllers got a sensor representing the
actuator reaching from 0 to 100 %. As there is no power measure and
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Figure 6.3.: Graphical illustration of trapezoidal technique [46]. The approximation of the
integral from a to b is done with the trapezoidal rule. Therefore the area within
two sample points is approximated with a trapezoid and the area is calculated.
For the overall area from a to b all trapezoids are summed up.

to represent the energy consumption, the integral from the actuating
variable is calculated. The trapezoidal rule is used to approximate the
integral from the samples:

A =

b∫
a

f (x) · dx ≈ (b− a) · F(a) + F(b)
2

(6.1)

As demonstrated in 6.3 the area between two sample values is approx-
imated with a trapezoid and the area is calculated 2. For the overall
area the areas of the trapezoids have to be summed up. The feature
is calculated for bottom, inside and top zone in the kiln and also for
segment s1-s6 each.

• Weighted integrals of the heating zones
The calculated integrals are summed to represent the overall actuator

value needed. As the three actuator variables of the heating zones do
not refer to the same amount of power the integrals are weighted.

Aweighted = ctop · Atop + cinside · Ainside + cbottom · Abottom (6.2)

2https://en.wikibooks.org/wiki/Introduction_to_Numerical_Methods/

Integration
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6.5. Extracted Features

The weight is calculated based on the amount of heating elements in
each zone. In total 19 heaters are inside the kiln, with the following
distribution: the top zone inherits 6 heaters, inside is only one heater
and the bottom zone includes 12 heaters. This leads to the following
weights:

ctop =
6
19
≈ 0.315 cinside =

1
19
≈ 0.053 cbottom =

12
19
≈ 0.632 (6.3)

• Minimum, Maximum and Arithmetic Mean
To describe the various sensor values for each of the segments within
the runs the minimum, maximum and arithmetic mean are calculated
as follows:

aavg =
1
n
·

n

∑
i=1

ai =
a1 + a2 + . . . + an

n
(6.4)

Those three describing statistics are extracted for each of the sensor
values for the overall run and for each of the segments.

• Average gradient
To represent the slope of the sensor values in each zone the gradient is
calculated between each of the sample points. Further the arithmetic
mean is calculated over all gradients.

mavg =
1
n
·

n

∑
i=1

yi − yi−1

xi − xi−1
(6.5)

The gradient is calculated for the target and set temperatures and the
actuating variables.

• Ratios
To relate the different measures to each other, the following ratios are
calculated as additional features.
- proportion of the integral per degree
- heating segment integral (s2-s3) per stable segment integral (s4)
- difference of temperatures in different zones, e.g. difference of top to
inside divided by difference of inside to bottom di f f oben di f f unten
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Figure 6.4.: Example plot from kiln ’DH04 ‘of extracted features including integrals of
actuating variables from top, inside and bottom heating zones. The graphic also
contains the maintenance actions extracted such as ceiling exchange, lining,
heater exchange etc.

• Difference
For the purpose of describing the change between the runs a differ-
ence of the mean values is calculated. The value from previous run is
subtracted from the value of the actual run.

The graphic representation of extracted features for example of the kiln

’DH04 ‘6.4. The plot contains the integrals of the actuating variables for the
three heating zones and the extracted maintenance actions. Further plots
can be found in the appendix B.3.
The overall amount of extracted features had been 220. An overview of the
detailed features can be found in the appendix A.1.
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6.5. Extracted Features

Figure 6.5.: Example of extracted top temperature in each run from kiln ’DH04 ‘. The target
top temperature is set in each of the three heating zones top (red), inside(blue)
and bottom (green). The shown temperature is set during the stable segment
s4.
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6.6. Feature Selection

In order to train the models not all of the extracted features are needed.
Based on the huge amount of data the process of training would take longer
than necessary. Not all of the attributes contain useful information, some of
them do not have variance and are therefore redundant. The model accuracy
could be improved by selecting a subset of features.

A way to measure the importance of a feature for the trained model is
the Mean Deviation Accuracy (MDA), described by Archer and Kimes [2].
Therefore the feature is ”removed “or permuted and the decrease in ac-
curacy is measured. The more important the variable is for classification
the higher the decrease of the accuracy. As the features contain correlated
values, this does not mean when removing a feature with a high MDA the
model will get worse by this amount. When removing this feature, instead
any other correlated value might be used.
Although the MDA value is a good indicator, the selection of the features
included the consideration of their meaning. As not every feature is rep-
resentative depending on the use-case respectively the target value that
should be predicted. For example the feature removing plugs counted in
runs, had always the highest MDA measure. This action is mostly carried
out immediately prior to the exchange of the ceiling, therefore this feature
has been excluded. In the first segment the heating integral, representing
the used power, varies according to the temperature measured at the start of
the run. In some runs the temperature is still higher than the environment
temperature, because if the residual heat from the run before.

The heater is turned off manually at any point in segment 5 which is not
represented in any of the available data. The actuating variable is still active,
but no power is consumed from this point in time. Therefore also segment
5 as well as 6 will be removed from the feature-set. During training the
features will be scored according to their importance within the models.
The final selection of the features is shown in A.4.

The amount of the extracted runs representing the data described in 5.2
consists of 4950. Depending on the purpose of the chosen method, not all of
the samples are suitable. Further details are described in 7.2.4.
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7. Method

In this chapter the initial selection of the method and comparison of the
algorithms is described. This includes the details of training the models
and calculating the measurements for the evaluation. Based on the gained
insight during the exploratory analysis of the available data, an heuristic
approach is designed to optimize the equipment.

7.1. Selection of Method

Initially the three machine learning algorithms, described in 2.1, are trained
and compared to select the best fit for the data set and the purpose. Further
this comparison is used to ensure that the extracted features and available
data is sufficient to represent the state of the equipment and can be used
to train the machine learning methods. This initial training is done with
the graphical programming tools listed in 4.1. The selected ML techniques
LR, SVM and RF are used to classify the target value explained below 7.1.1.
As these initial comparison only is done to chose an appropriate algorithm
and the used tool, Orange, only supports classification and no classification
techniques, the target value has to be transformed from continuous values
to classes. To do so the target value is discretized as explained in 7.1.1. In
order to compare the algorithms, based each of the techniques a model is
trained and evaluated. The model with the highest accuracy is chosen for
further improvement and is used for implementation of the approach in
described in 7.2.
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7.1.1. Setting Target Value

The selected algorithms belong to the supervised learning techniques. There-
fore a target variable has to be chosen for training the model. During ex-
ploratory data analysis and feature extraction a range of variables had been
considered. The prediction should cover the exchange of the ceiling, as there
is a wide variety for the durability of a ceiling within the kilns. This part is
also of significant interest for the process experts, as they have experimented
with several materials and settings within the last decades to find the caus-
alities for the varying duration. The figure 7.1 shows the ceiling including
the heating zones top and inside. According to the maintenance records a
ceiling could last from 20 to 140. As shown in figure 7.8 the average lasting
of a ceiling reaches from around 40 runs per ceiling up to more than 100

runs.

Further the effort to exchange the ceiling is big, not only economical but
also in a timely manner. For the exchange procedure the kiln is closed
for production for at least 4 weeks where the maintenance action is taken.
Afterwards the kiln has to be re-calibrated by measuring and setting the
temperature within the heating zones. This means there is an interest to
improve the lasting of the ceiling, this would lead also to an improvement of
the OEE by raising the availability of the machines. Further the mentioned
input factors included in OIE could be decreased by demanding less spare
parts.

For the initial training this numeric value was discretized, therefore the
ceiling age was divided into 5 intervals representing the 5 classes as shown
in figure 8.3. The segmentation in 5 intervals seems to be reasonable, as the
classes would represent the age of the ceiling in an adequate way. Reaching
from the class representing a new ceiling (< 26 runs) up to a very old one
(≥ 105 runs), whereas the time between is separated into 3 additional classes
([26-52], [52-79], [79-105]).

Not all of the extracted runs with the according features are suitable for the
training set, due to lack of information. The first respectively the last interval
in each kiln do not contain information when the ceiling has been exchanged
respectively will be exchanged, see the explanation in 7.2.4. Therefore these
samples have to be removed, this reduces the samples from 4950 to 3951.
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Figure 7.1.: On the picture the ceiling within a kiln with the top and inside heating zones
is shown. Whereas the top heating zone consisting of 6 heater, they are marked
white and the inside one consisting of only 1 heater is marked black. The black
mark covers an area of about 20 x 20 cm. Additionally the wear and tear of
ceiling can be recognized by the change in color yellow areas and the small
cracks.
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Figure 7.2.: The cross validation method is shown in the graphic. Initially the data set is is
randomly split into k-folds, where k has to be chosen accordingly. One fold is
chosen to be the test set, whereas the residual k-1 folds represent the training
set. The model is trained with k-1 folds, tested with the last fold and discarded.
These steps are done for each iteration. The final evaluation is the average over
all trained models in each of the k iterations.

7.1.2. Training Method

The chosen training and evaluation method is the so called k-fold cross
validation, described by Kohavi et al. [19]. In this method the data set initially
is shuffled randomly and split into k folds. Where k-1 fold representing the
training set and the test set consist of the last fold as shown in figure 7.2.
The model is trained with the training set and evaluated on the one fold
representing the test set. After evaluation the model is discarded. These
steps are done for each of the k iterations. Choosing k should be good
balance between performance and computational cost, in literature a k of 10

is very common [19]. When choosing a k of 10, the concrete numbers for
this thesis are as follows: the training set consisting of 3555 records and the
test set including 396 samples in each iteration.

The overall performance of the model such as overall accuracy is calculated
through averaging the accuracy rates from each trained model.
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7.1.3. Evaluation Method

In order to compare the performance of the trained models, the confusion
matrix is generated. The confusion matrix is shown in figure 7.3 [8] further
explanations can be found in [1]. It basically measures the amount of the
accurate and inaccurate predicted classes compared to the actual values.

The confusion matrix is divided into the following four sections:

• True Positives (TP)
Count of the data samples which actually belong to the class Positive
(P) and are correctly classified as P.

• True Negatives (TN)
Count of the data samples which actually belong to the class Negative
(N) and are correctly classified as N.

• False Positives (FP)
Count of the data samples which actually belong to the class Positive
(P) and are classified as N, therefore the prediction is incorrect.

• False Negatives (FN)
Count of the data samples which are predicted as belonging to the
class P, but actually belong to the class Negative (N). For samples
within this category, the classification is incorrect.

True (T) and False (F) corresponds to the prediction, whether the classific-
ation is accurate or not. Positive (P) and Negative (N) corresponding to
the classes. This example is only to demonstrate the basic functionality of
a confusion matrix. The classes could be replaced by any other classes of
choice and are not limited in their number.

Further the measurement do not have to consist of counting the data
samples, but can be a percentage. Therefore the amount of the data samples
in each category (TP, TN, FP, FN) have to be divided by the total amount of
the samples classified. Based on the separation in the confusion matrix there
are several measurements for a classifier. First the accuracy is measured by
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Figure 7.3.: The figure shows the structure of a basic confusion matrix [8]. It represents a
method to measure the performance of a trained classification model. The actual
and predicted data are separated into the classes Positive (P) and Negative (N).
The actual Positive class, which are predicted as P are called True Positives
(TP). Whereas the actual Positive class, which is wrongly predicted as N is
called False Negative (FN). True (T) and False (F) corresponds to the prediction,
whether the classification is accurate or not. Further P and N could easily be
replaced by any other classes.
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adding all correct classified samples and divided by all samples classified.
As listed in 7.1 the precision of the model is calculated by dividing the
True Positive samples by all positive samples. This measure is also known
as False Positive Rate. The recall is defined by setting the True Positive
Samples in relation to True Positive and False Negatives. Therefore it is
also called the True Positive rate or sensitivity. As precision and recall are
not independent there is a further measurement which combines those two
dimensions. In order to improve the model only the F1 measurement has to
be improved, as it represents the harmonic mean.

Accuracy =
TP + TN

Total
(7.1a)

Precision =
TP

TP + FP
(7.1b)

Recall =
TP

TP + FN
(7.1c)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(7.1d)

(7.1e)

The listed measurements are suitable for a classifier, but not for regression
techniques. To measure the performance of regression models further met-
rics are needed. To measure how well the model fits to the data R2

7.2 is
defined, it is also called coefficient of determination. The value can be within
[0,1], where 1 corresponds to a model which fits the data exactly. When the
model fits the data worse than expected, it also can have negative values
[1]. The Mean Absolute Error (MAE) calculates the mean deviation of the
predicted values from the actual values.

MAE =
1
n ∑ |Yacti −Ypredi| (7.2a)

MSE =
1
n ∑(Yacti −Ypredi)

2 (7.2b)
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Figure 7.4.: The heuristic approach to optimize the overall equipment efficiency consisting
of four steps. Whereas the first two steps dealing with the data quality, first the
missing and false maintenance data is predicted and corrected and as second
step the outliers are detected. Based on the corrected data set a predictive
maintenance model is build. Further the parameters which are influencing the
duration of the equipment lifetime are identified and an optimization of those
parameters is proposed.

7.2. Approach

Based on the insights and outcome of the exploratory data analysis an
heuristic approach has been designed to represent the process for data
driven optimization. The approach is based on the pre-processed data set
described in 5.2.

The process shown in figure 7.4 consisting of four steps, whereas the first
two dealing with the data quality. As the quality of the data, particularly the
records of the maintenance actions are not sufficient as presented in 5.3, the
maintenance records have to be verified beforehand. Where missing entries
or additional unwarranted entries are identified as false and removed from
the data set. As a second step dealing with the data quality the outliers will
be detected and removed for further analysis. Based on the pre-processed
data a predictive maintenance model will be trained and evaluated.

7.2.1. Predict Missing Data

Within the data analysis process the model trained with RF as explained in
7.1. Based on this model the overall data set is classified, for each sample the
runs since exchange is predicted. When the calculated difference between
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actual and predicted variable runs since exchange is deviating from the
average, it is marked from the algorithm. The marked samples have to be
manually approved, this has been done with the process experts. In a further
step the missing entries are inserted and the wrong entries are removed.

To visualize the process step, an example from kiln DH26 is shown in
figure 7.5. Where the first graphic shows the records as they were and the
second one shows the revised data set. Further examples can be found in the
appendix B.2. After applying the process step there is still uncertainty in the
data samples. Not all entries can verified within this theses. For improving
the quality, several validation steps could be designed for the data to run
through already during acquisition.

7.2.2. Outlier Detection

The detection of irregular runs, which do not represent the routine produc-
tion process, Median Absolute Deviation (MAD) is used. As it is has been
pointed out by Leys et al. [22] the MAD is better suitable to detect outliers
compared to other statistical methods, such as standard deviation. MAD is
calculated with the following formula:

MAD = median(
∣∣∣Xi − X̃

∣∣∣) (7.3)

The basic idea is to calculate the absolute deviations of the median value
and to find the median of that values. An acceptance threshold is set to a
constant value, which could vary depending on the strictness. According to
Miller [27] the value 2 corresponds to poorly conservative, 2.5 to moderately
conservative and 3 to very conservative acceptance criteria. In this example
the threshold is set to 3, as the outliers should be detected very cautious.
The according mathematically expression is as follows:

xi − X̃
MAD

< |±3| (7.4)
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Figure 7.5.: The graphic shows an example for kiln DH26, where a ceiling exchange was
not in the records but predicted by the algorithm. As it is shown at around run
80 the ceiling is predicted to be exchanged. In this case this seems legit, due to
the lining of the kiln.
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Figure 7.6.: The graphical representation of the mad values for kiln ’DH03 ‘. The mad
is calculated for the integrals which represent the power consumption in the
top, inside and bottom heating zones of the kiln. The constant threshold is
chosen very conservative represented by the value 3. Each mad exceeding the
threshold is marked as an outlier.
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Figure 7.7.: The plot contains the detected outliers from one kiln (DH03) set in a semantic
context. Therefore the anomalies are mapped to the according records. The
time frame ranging from the end of the last valid run and the start of the next
run are chosen to select the incidents of the maintenance entries. Those entries
are plotted to the according point in the curve. When no textual description is
present, the data point is marked with an *.

As shown in 7.6 the calculated MAD from the data the values which exceed
the chosen limit 3 are marked as an outlier.

To set the found anomalies in a semantic context, the data points are mapped
to the according maintenance records. All incidents recorded between the
end of the last valid run and the start of the next valid run are mapped
to the outlier. The figure 7.7 shows an example from one kiln and the
according outliers. When a data point is detected as outlier, but there were
no records available the according point in the curve is marked with a *. To
provide better overview the semantic meaning of outliers are plotted on the
weighted integrals, containing the integrals of the three heating zones 6.5.

The MAD is calculated for each setting interval in the kilns. Because chan-
ging the settings could also lead to an abrupt change of the the actuating
variables. An example is shown in figure 6.4. Therefore no sliding window
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Figure 7.8.: The plot shows the average lifespan of a ceiling represented in runs for each of
the inspected 20 kilns. There is a variation reaching from 20 runs to 140 runs,
whereas the overall average is marked at about 60 runs per ceiling.

is chosen, this would lead to mark outliers around the jumps of the values,
which would be wrong. This procedure is performed 2 times before in a
further step the samples are removed from the data set in order to train the
models.

7.2.3. Predictive Maintenance

As the trained algorithms have a moderate accuracy the next step within
the approach is to build a predictive maintenance model. The prediction
should cover the exchange of the ceiling, because there is a wide variety for
the durability of a ceiling within the kilns. The plot 7.8 is a visualization of
the extracted feature, it shows the mean value of the life-cycle of a ceiling
counted in runs.

The actual state is that the ceiling is visually inspected every 10 runs in each
kiln. Therefore a person from the maintenance has to go to the kiln and
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make a prediction whether or not the ceiling will last for another 10 runs.
An predictive maintenance model is build to predict the duration of ceiling,
by predicting how many runs the ceiling will last. The prediction of this
model could be used to send a trigger to the maintenance software. Based
on this a message could be generated to visually inspect the state of the
ceiling before the exchange is predicted, prior to a chosen threshold. This
would decrease the amount of visual inspections needed. The evaluation of
the model is described in the next chapter 8.1.

7.2.4. Parameter Importance

To discover the influencing factors of the duration of the ceiling, the model
will be retrained. Instead of predicting when the ceiling is exchanged,
the model should predict how long the ceiling will last until it has to
be exchanged. Therefore the counter of runs since ceiling exchange is
rearranged to total runs the ceiling will last. For better understanding
the two different values have been plotted in figure 7.9.

As not all the records in the data set contain the information of how long the
lifespan of the ceiling is, those records have to be removed for this training
purpose. The intervals in the beginning and or at the end of the data series,
as an example in figure 6.4 the last exchange at the ceiling is about at run 220.
The runs after this exchange does not contain the data about the lasting of
the ceiling, therefore it is removed. Based on this model the most influencing
parameters for the duration of the ceiling can be identified. Further the
outcome can be discussed with the process experts. The parameters could
be adapted in the data set to see the effect on the classification of the model.
Additionally an overall description of statistics for each kiln is generated,
for the overview for the process experts for future usage.
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Figure 7.9.: The graphic shows the counter until the ceiling has to be exchanged compared
to the duration of the ceiling in the kiln. Overview of all 4900 runs, where some
intervals do not have a duration counter, which is represented by the red line.
This is because in the beginning of the data points there is no information how
long the ceiling is already in the kiln. At the end of the data there is a similar
problem, no information is given of how long the ceiling will last in the kiln.
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The results of the described approach in the last chapter will be evaluated
this chapter. To asses the performance of the trained models the measured
indicators will be presented. Therefore the results of the various measure-
ments are presented and discussed and interpreted afterwards.

8.1. Results

The initial training of the models to select the method as explained in
7.1 led to the results listed in table 8.1. The table contains the prediction
accuracy averaged over all classes for each method. The definition of the
used measurements in this section can be found in 7.1.3.

All three algorithms, LR, SVM and RF, had been evaluated with cross
validation. Where the chosen k was 10, as explained in 7.1.2. The initial
training of the models was done with Orange 4.1 and the training parameters
were set to default. The classification accuracies, in table 8.1 referenced as
CA, of the models had been very distinct. The accuracy of the LR model was
about 0.56, which was quite similar to the SVM technique with the linear
kernel, where the accuracy was about 0.60. The SVM with the non linear
kernel Radial Basis Function (RBF) had a slightly better performance, the
accuracy was 66%. Whereas the initial trained RF model was 0.95 accurate.
The classes can be seen in the confusion matrix 8.3, they represent the
discretization of the target variable into 5 intervals as explained in 7.1.1.

Based on the results of this first training approach, the choice was to im-
plement the described process 7.2 based on the RF algorithm. First step in
order to have a more accurate model and be able to make more precise
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Scores

Method CA F1 Precision Recall

Logistic Regression 0.568 0.514 0.517 0.568

SVM (linear kernel) 0.603 0.611 0.639 0.603

SVM (RBF kernel) 0.663 0.661 0.660 0.663

Random Forest 0.959 0.959 0.959 0.959

Table 8.1.: Initial comparison of the selected machine learning techniques. The graphic
contains the prediction accuracies of the different trained models.

Figure 8.1.: The confusion matrix of the trained SVM showing the result of each target
class. The overall Classification Accuracy is 66.3%.
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Figure 8.2.: The confusion matrix of the trained LR showing the result of each target class.
The overall Classification Accuracy is 56.8%.

Figure 8.3.: The confusion matrix of the trained RF showing the result of each target class.
The overall Classification Accuracy is 95.9%.
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trees features R2 MAE MSE

50 5 0.917 4.198 47.155

50 10 0.934 3.358 37.702

50 15 0.938 3.036 35.310

100 5 0.922 4.087 44.874

100 10 0936 3.263 36.757

100 15 0.939 2.979 34.831

1000 15 0.940 2.904 34.201

Table 8.2.: Overview of the results trained with varying training parameter. Where trees
corresponding to the trees in the forest, features to the maximum features in
each tree.

predictions, the RF was used for regression. Instead of building classification
model, the exact amount of runs since ceiling exchange is predicted.

The model has been trained with varying parameters, such as the amount of
trees in the forest(nestimators = 50, 100, 1000) and the limitation of features
(max f eatures = 5, 10, 15) used in each tree. The model with 100 trees was a
good balance between the needed time for training the model and accuracy.
The increase of the performance for 1000 trees was significantly low, for
comparison the Mean Squared Error (MSE) and MAE are shown in 8.2.

Depending on the parameters of the training algorithm, the MAE of the
model is between 2.9 and 4.1 referencing the average error of the regression.
The value corresponds to runs in the kiln. The MSE reaching from 34 to 47.
The described results in table 8.2 were measured in models trained with
the selected subset of features. Compared to the initial training with all
available features, where the MAE was 7.716 and the MSE was 108.146, the
result has significantly improved within the model trained with the selected
features. So has the time needed for the model to be trained.

Some of the last intervals in the kilns had been removed due to lack of
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information. See runs approximately 210 - 300 in 6.4 as example. These
records do not contain data when the ceiling will be exchanged the next time,
so they can not be used as training or test set. About 400 of these runs can
be classified with the maintenance records and were used as an additional
validation set. As some of the kilns are closed for ceiling exchange within
the time frame of available data, these extra information had been extracted
manually for evaluation purpose. Based on these unseen data, as it has not
been used for training or test set, the model for predictive maintenance has
been evaluated. The target of the model was to predict the runs until the
ceiling has to be exchanged. The evaluation on the described validation set
led to an MAE of 5.438 and an MSE of 33.42762. The MAE increased from
less than 3 to more than 5, but the MSE decreased for about 1.4. Which
indicates that the variation of the prediction error in the validation set is
smaller than in the test set. As the validation set only consisted of 5 intervals,
this result is has to be seen carefully.

The significance according to MDA 6.6 of the features had been plotted
after training of the several models. There has been differences due to the
random chosen features, but the most influencing factors in each of the
models had always been a selected group of features. An example result
can be seen in the appendix A.4.

According to the MDA the age of the heaters as well as the lining of the
ceiling were always important rated features. This could be summarized
by the overall condition of the kiln seems to influence the lifespan of the
ceiling. The target temperatures had been identified as the other influencing
factors. Not only the absolute temperatures set, but the differences of the
temperatures to the other zones. The inspected kilns are the same type of
construction, the only vary in their settings. The most significant difference
in the settings is the target temperature in each heating zone. The program
temperature should always be the same and constant, but the overall tem-
perature in the kiln can be reached through various temperatures in each
level. As the are measured and set from the maintenance personnel and
there are no restrictions and specification except for the overall temperature.
Based on this insights further analysis had been done, the statistic for each
interval had been extracted.

To illustrate this the average top temperature from top and inside had been
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Figure 8.4.: Visualization of the intervals of the ceilings with the according average target
temperatures from the top and inside heating zones. Each dot corresponds to
one interval of the ceiling and the lifespan is plotted next to them with according
lifespan of the ceiling. The data is separated by colors of the corresponding
maximal temperatures, red is top heating zone and blue is inside heating zone.
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plotted representing the intervals 8.4. The intervals representing a point
in the graphic are colored with red if the maximum temperature from the
top heating zone is higher than the temperature in the inside heating zone.
Next to the dots representing an interval, the corresponding lifespan of
the ceiling is plotted. The intervals related to the highest lifespans (> 90

runs) had two aspects in common: the maximal target temperature has
always been in the top heating zone and the temperature set in the inside
heating zone has always been less than 1040 degree Celsius. The the ceiling
intervals represented by the red dots lasted in average 70.19 runs, whereas
the intervals plotted as blue dots had an average ceiling lifespan of 53.93

runs.

8.2. Discussion

The comparison of the initial training results shows a significant difference
between the RF, the SVM and LR techniques. The variety of these results may
derive from the fact that the data is not linearly separable. Whereas SVM and
LR both trying to find a suitable hyperplane dividing the different classes,
RF classifies the data set according to splits in their features. As one of the
major features to describe the actual state is the integral of each heating
zone and these integrals move within different ranges depending on the
actual settings of the kiln. When considering the integrals and their behavior,
the observation shows that the change of the integrals with growing age
of the ceiling is not consistent. Depending on the settings of the kiln there
is a different behavior of the features over time. Further visualizations
of these properties are shown in the appendix A.2. The integrals in each
zone depending and reacting on each other. For example the setting of the
maximum target temperature effects the control behavior. The heating zone
with the maximum target temperature is increasing over time, whereas
the according other zone is decreasing. An exemplified illustration of this
behavior is shown in 6.4 and 6.5, where the temperatures zones are switched
several times. When top and inside heating zone are set to the same target
value the control behavior seems to be random. As the integrals were
calculated based on percentage points which refer to undocumented states
they are not in the same range. These undocumented states could be actual
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electrical voltage, temperature offset, etc. which is individually set in each
kiln depending on the actual point in time. Summarized the integrals vary
in their initial values depending on the settings and in their alteration type
and their alteration rate. This fact makes it really hard to compare the
kiln to each other, as any of the kilns got different settings and resulting
control behavior. The circumstance that the performance of SVM, even when
trained with the non linear kernel, compared to RF is significantly worse
may derive from the fact that the behavior of each kiln cannot be described
with one function. An improvement in the results of the trained SVM model
could be reached through calculating the normalized integrals per setting
interval and kiln. Further improvement could be achieved by acquiring not
referencing values available in percentage but absolute values, especially
when it comes to any kind of power measures.

The performance of the predictive maintenance model based on the RF
algorithm seem to be sufficient for triggering the message for the mainten-
ance system as described in 7.2.3. As the MAE is around 3 and 5 in the
very limited validation set, the message sent for visual inspection could
be chosen with an according offset. For example when the prediction of
the ceiling to be exchanged reaches 10, the message should already be
sent to the experts to decide how long the ceiling will last. The predictive
maintenance model in this case has only a supportive function, the final
decision when to change the ceiling would still be on the expert but could
help to reduce the visual inspections. In order to run this scenario fully
automated, the data quality has to be taken care of in the first place.

The ranking of the features from the trained model indicates that the settings
of the target temperatures in the three heating zones has an impact on the
lifespan of the ceiling. Besides the overall condition of the ceiling and the
particular parts, most influencing factors seem to be the temperatures in
the two heating zones right below the ceiling. These zones are shown in 7.1,
referenced as top and inside heating zones. By increasing the period of the
ceiling in a kiln, the OEE could be increased as well. Based on the available
data not only the absolute temperature is of importance to the life-cyle of
the ceiling, but primarily the difference within the zones. When the top
heating zone has the maximum set temperature the lifespan is more likely
to last longer 8.4. By only applying this restriction, top heating zone has
to have the maximum set temperature, the potential lifespan improvement
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seems to be valuable. The red intervals shown in 8.4 might be improved
by more than 30% from an average of 53 runs to 70 runs. As the actual
average lasting is about 60 runs, as shown in 7.8, this would lead to an
overall increase of the average ceiling lifespan of 16%.

Further improvement of the OEE seems to be feasible through the adjust-
ment of the differences between the three heating zones and their absolute
values. In order to attempt extending the lifespan of the ceiling a model
could be trained for prediction of the optimal settings for each heating
zone. Additionally the predictive maintenance seem to have potential to be
extended to further parts and actions.
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9. Conclusion

The described data analysis in thermal processes was based on the data
set consisting of sensor data from the equipment, product quality data
described through measurements, maintenance records extended through
stock disposal and a diverse set of process parameters.

The data set had been collected in the company specific distributed infra-
structure. Therefore the data had to be accessed and retrieved, from several
platforms. Further the records were cleansed, mapped and pre-processed
in order to train the machine learning algorithms. To accomplish these
steps various tools were necessary, within this thesis a selection of tools had
been compared. The selected tools covering different areas such as scripting
languages, graphical programming and visualization techniques. The com-
parison was based on attributes such as license, transparency, scalability
and needed skill set for the particular software. The all-in-one tool which
fits all the needs as there are so many differentiations in the data set, in the
use-case, in the environment, etc. does not exist. There are multipurpose
tools which cover a variety of functions and applications, but it should
always be selected for the precise use-case.

Within the particular production environment this kind of analysis has not
been done before. This fact led to the focus whether it is possible at all to
train machine learning algorithms with the available data.

Is it possible to represent the state of the equipment as it is based on
historical process, product and maintenance data?
The analysis has shown that the state of the investigated equipment, the
rotary kilns, can be represented definitely with the available data sources.
By choosing the appropriate data, various ML algorithms has been trained
to represent and predict the actual state of particular parts of the equipment.
The detail of the representation depend on the amount and availability of
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the data, with further data sources, such as more sensor data, more detailed
failure description, further setting records etc. the machine learning models
could be extended to various predictions.

Is the quality of the collected data sufficient?
Within this thesis the data quality was challenging. Due to the lack of
standardization of the records it was highly time consuming to extract the
features. Further the missing data made it really hard to describe the actual
happenings. That is the reason for the first step in the presented approach
to predict the missing respectively wrong actions taken. The sensor data
required up-sampling and interpolation due to strong varying frequency of
the data points. Whereas this step led to inaccuracies, but could be done
automatically and does not require manual adjustments. It further required
some significant effort to to map the data to other available data sources.
Anyway with the right amount of preparation the quality of the data seems
to be sufficient to train a model. For further analysis, and in order to generate
a fully automated pipeline for data preparation, an improvement of the
quality is of significance.

Does the state of the equipment have an impact on the energy consump-
tion?
In order to relate the state of the equipment to the energy consumption, any
kind of energy measurements would be required. As the available actuating
variable represented in percentage refers to undocumented settings, they
are not suited for comparison. They are not absolute values and could
therefore only be used to describe the change within one setting interval.
Based on the available data and the calculated integrals representing the
power consumption, it seems that the age of the equipment has an impact
on the energy needed.

How to discover hidden knowledge from historical production data to
generate an optimizing strategy?
When training different machine learning models the most important fea-
tures, according to their influence on the accuracy of the model, had been
identified. In order to assure the plausibility of those features, they had been
discussed with several domain experts. It seems that the target temperatures
in the different heating zones, as well as their differences to each other, have
an impact on the lifespan of the investigated equipment. This discovered
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factor could be used to optimize the life-cyle of the equipment by restricting
the settings accordingly.

Does the insight of the data lead to a proposal for optimizing the overall
equipment efficiency?
By extending the lifespan of the inspected equipment through optimization
of the production parameter, the OEE could be improved as well. Based
on the knowledge that the state of the equipment can be represented with
according features there is huge potential for optimization to exploit. The
trained model is suitable for predictive maintenance and could be used to
trigger a message in the maintenance software. This message would inform
the maintenance unit to visually inspect the according kiln. The scenario
could help to decrease the amount of visual inspections. The predictive
maintenance is not limited to one part of the equipment. In this thesis the
ceiling exchange was particularly described. Further the prediction could
be extended to the break of a heater, the lining, the exchange of different
thermal elements etc. Besides predictive maintenance also the settings for
the target setting measurement (referenced as 3P measurement), where
the temperature levels are set, might be predicted. This could decrease the
effort to adjust the equipment substantially and would further decrease
the resources required without influencing the productivity efficiency. The
impact on the quality of the product is very unlikely, as long as it is assured
that the overall temperature equals the defined value.

There is not only one appropriate way to model a data analysis process, there
are numerous ways. The data analysis in this thesis had been designed to fit
the particular needs within the production environment and the generated
data. The way to design the process was not straight forward as there are a
variety of principles, methods and strategies to chose from. Initial premise
might turn out as incorrect or were adapted during the process, in order to
adjust to these circumstances one has to be resilient.
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Appendix A.

Features

A.1. List of All Extracted Features

1 index 111 s4 temp ist unten mean

2 run 112 s4 temp ist unten min

3 duration 113 s4 temp soll innen grad mean

4 duration h 114 s4 temp soll innen mean

5 from 115 s4 temp soll oben grad mean

6 furnace 116 s4 temp soll oben mean

7 s1 deviation temp innen 117 s4 temp soll unten grad mean

8 s1 deviation temp oben 118 s4 temp soll unten mean

9 s1 deviation temp unten 119 s5 deviation temp innen

10 s1 duration 120 s5 deviation temp oben

11 s1 gas quantity 121 s5 deviation temp unten

12 s1 integral hzg innen 122 s5 duration

13 s1 integral hzg oben 123 s5 gas quantity

14 s1 integral hzg unten 124 s5 integral hzg innen

15 s1 luft ist mean 125 s5 integral hzg oben
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16 s1 luft soll mean 126 s5 integral hzg unten

17 s1 temp ist innen grad mean 127 s5 luft ist mean

18 s1 temp ist innen max 128 s5 luft soll mean

19 s1 temp ist innen mean 129 s5 temp ist innen grad mean

20 s1 temp ist innen min 130 s5 temp ist innen max

21 s1 temp ist oben grad mean 131 s5 temp ist innen mean

22 s1 temp ist oben max 132 s5 temp ist innen min

23 s1 temp ist oben mean 133 s5 temp ist oben grad mean

24 s1 temp ist oben min 134 s5 temp ist oben max

25 s1 temp ist unten grad mean 135 s5 temp ist oben mean

26 s1 temp ist unten max 136 s5 temp ist oben min

27 s1 temp ist unten mean 137 s5 temp ist unten grad mean

28 s1 temp ist unten min 138 s5 temp ist unten max

29 s1 temp soll innen grad mean 139 s5 temp ist unten mean

30 s1 temp soll innen mean 140 s5 temp ist unten min

31 s1 temp soll oben grad mean 141 s5 temp soll innen grad mean

32 s1 temp soll oben mean 142 s5 temp soll innen mean

33 s1 temp soll unten grad mean 143 s5 temp soll oben grad mean

34 s1 temp soll unten mean 144 s5 temp soll oben mean

35 s2 deviation temp innen 145 s5 temp soll unten grad mean

36 s2 deviation temp oben 146 s5 temp soll unten mean

37 s2 deviation temp unten 147 diff diff

38 s2 duration 148 s1 diff grad oben

39 s2 gas quantity 149 s1 diff grad unten

100



A.1. List of All Extracted Features

40 s2 integral hzg innen 150 s1 diff grad innen

41 s2 integral hzg oben 151 s3 diff grad oben

42 s2 integral hzg unten 152 s3 diff grad unten

43 s2 luft ist mean 153 s3 diff grad innen

44 s2 luft soll mean 154 integral hzg oben

45 s2 temp ist innen grad mean 155 integral hzg unten

46 s2 temp ist innen max 156 integral hzg innen

47 s2 temp ist innen mean 157 diff integral hzg oben

48 s2 temp ist innen min 158 diff integral hzg unten

49 s2 temp ist oben grad mean 159 diff integral hzg innen

50 s2 temp ist oben max 160 deviation temp oben

51 s2 temp ist oben mean 161 deviation temp unten

52 s2 temp ist oben min 162 deviation temp innen

53 s2 temp ist unten grad mean 163 temp oben mean

54 s2 temp ist unten max 164 temp unten mean

55 s2 temp ist unten mean 165 temp innen mean

56 s2 temp ist unten min 166 diff temp oben innen

57 s2 temp soll innen grad mean 167 diff temp oben unten

58 s2 temp soll innen mean 168 diff temp innen unten

59 s2 temp soll oben grad mean 169 diff oben diff unten

60 s2 temp soll oben mean 170 diff innen diff unten

61 s2 temp soll unten grad mean 171 diff temp avg oben unten

62 s2 temp soll unten mean 172 s2 s3 integral per degree oben

63 s3 deviation temp innen 173 s2 s3 integral per degree unten
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64 s3 deviation temp oben 174 s2 s3 integral per degree innen

65 s3 deviation temp unten 175 s2 s3 integral per degree oben grad

66 s3 duration 176 s2 s3 integral per degree unten grad

67 s3 gas quantity 177 s2 s3 integral per degree innen grad

68 s3 integral hzg innen 178 s4 integral per degree oben

69 s3 integral hzg oben 179 s4 integral per degree unten

70 s3 integral hzg unten 180 s4 integral per degree innen

71 s3 luft ist mean 181 s4 integral per degree oben grad

72 s3 luft soll mean 182 s4 integral per degree unten grad

73 s3 temp ist innen grad mean 183 s4 integral per degree innen grad

74 s3 temp ist innen max 184 sum intergal per degree oben

75 s3 temp ist innen mean 185 sum intergal per degree unten

76 s3 temp ist innen min 186 sum intergal per degree innen

77 s3 temp ist oben grad mean 187 weighted sum integral

78 s3 temp ist oben max 188 weighted sum integral per degree

79 s3 temp ist oben mean 189 s2 s3 weighted sum integral

80 s3 temp ist oben min 190 s4 weighted sum integral

81 s3 temp ist unten grad mean 191 sum intergal per degree oben grad

82 s3 temp ist unten max 192 sum intergal per degree unten grad

83 s3 temp ist unten mean 193 sum intergal per degree innen grad

84 s3 temp ist unten min 194 s2 s3 weighted sum integral grad

85 s3 temp soll innen grad mean 195 s4 weighted sum integral grad

86 s3 temp soll innen mean 196 heat stable innen

87 s3 temp soll oben grad mean 197 heat stable oben
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88 s3 temp soll oben mean 198 heat stable unten

89 s3 temp soll unten grad mean 199 valid

90 s3 temp soll unten mean 200 runs since ofendecke

91 s4 deviation temp innen 201 runs since ausmauerung

92 s4 deviation temp oben 202 pfropfen

93 s4 deviation temp unten 203 bias

94 s4 duration 204 S1

95 s4 gas quantity 205 S3

96 s4 integral hzg innen 206 S2

97 s4 integral hzg oben 207 temp change

98 s4 integral hzg unten 208 hzg 1

99 s4 luft ist mean 209 hzg 2

100 s4 luft soll mean 210 hzg 3

101 s4 temp ist innen grad mean 211 hzg 2 menge

102 s4 temp ist innen max 212 hzg 1 menge

103 s4 temp ist innen mean 213 hzg 3 menge

104 s4 temp ist innen min 214 temp change oben

105 s4 temp ist oben grad mean 215 temp change unten

106 s4 temp ist oben max 216 temp change innen

107 s4 temp ist oben mean 217 runs since ofendecke dis

108 s4 temp ist oben min 218 outlier

109 s4 temp ist unten grad mean 219 description outlier

110 s4 temp ist unten max 220 top temp
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A.2. Graphic Representation of Feature: Integral
of actuating variable

Each of the kilns got their individual heating profile. Depending on the set-
tings and actual state of the kiln, they have a strong variety. In the following
plot the three heating integrals and their relations towards the others are
shown.
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A.3. Graphic Representation Extracted
Maintenance Actions

The following graphics show the integrals and their behavior. It can be
observed that the change of the integrals with growing age of the ceiling
is not consistent. Depending on the settings of the kiln there is a different
behavior of the features over time.
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A.4. Feature Importance according to MDA

Example for the top rated features according to MDA. The age of the heaters
as well as the lining of the ceiling had been rated as important. Further the
difference of the temperatures in the three heating is rated high.

(0.8016 ’hzg 2’) (0.0937 ’runs since ausmauerung’)

(0.0665 ’hzg 3’) (0.0664 ’run’)

(0.0636 ’hzg 1’) (0.0515 ’diff diff’)

(0.0511 ’diff innen diff unten’) (0.0495 ’heat stable innen’)

(0.0281 ’s4 integral hzg oben’) (0.0238 ’diff temp innen unten’)

(0.0231 ’s4 integral hzg innen’) (0.0185 ’s2 integral hzg oben’)

(0.0135 ’s4 integral hzg unten’) (0.0122 ’s4 temp soll innen mean’)

(0.0114 ’s2 integral hzg innen’) (0.0109 ’furnace ’)

(0.0108 ’s3 integral hzg unten’) (0.0104 ’heat stable unten’)

(0.0101 ’s4 temp ist oben mean’) (0.0095 ’diff temp oben innen’)

(0.0092 ’s4 temp soll oben mean’) (0.0088 ’s3 integral hzg oben’)

(0.0079 ’diff temp avg oben unten’) (0.0078 ’S1’)

(0.0076 ’heat stable oben’) (0.007 ’s1 integral hzg innen’)

(0.0064 ’diff oben diff unten’) (0.006 ’s3 integral hzg innen’)

(0.0057 ’diff temp oben unten’) (0.0046 ’s2 integral hzg unten’)

(0.0027 ’s1 integral hzg oben’) (0.0026 ’s1 integral hzg unten’)

(0.0026 ’S2’) (0.0018 ’duration h’)

(0.0014 ’S3’) (0.0006 ’s1 temp ist oben min’)

(0.0001 ’top temp’)
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A.5. Temperature Integrals and Ceiling - Timeline
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Additional Graphics

B.1. Example of Data Quality

Her some examples from the maintenance records are listed. Particularly
the difference in wording for exchange of the heater. Further some entries
of the sensor values are shown to illustrate the varying frequency.
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B.2. Example of Predicted Missing Data

B.2. Example of Predicted Missing Data

In the following graphic the misclassified data for the ceiling exchange are
highlighted.
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B.3. Product Quality Measurements Compared in the Kilns

B.3. Product Quality Measurements Compared in
the Kilns

As the plots show there are variations within the measured quality data. For
better visualization the outliers have been removed from the plots, compare
the first and the second plot.
For further investigations concerning the causalities of the variations, addi-
tional data would be necessary. As the quality results strongly depend on
the material mix.
Further several quality measures are plotted in respect of the age of the
ceiling within the kilns. The following graphics show the measures from
curvature and length shrinkage. The longer the ceiling is in the kiln the
higher the value of the product quality measure.

131



Appendix B. Additional Graphics

132



B.3. Product Quality Measurements Compared in the Kilns

133



Appendix B. Additional Graphics

134



B.4. Used Software and Packages

B.4. Used Software and Packages

Software / Tool Version Packages

R 3.5.1 dplyr 0.8.0.1

tidyr 0.8.1

stringr 1.3.1

ggplot2 3.1.1

Python 2.7 matplotlib 2.2.3

scikit-learn 0.20.1

numpy 1.15.4

pandas 0.23.4

scipy 1.1.0

statsmodels 0.90.0

seaborn 0.9.0

Matlab 9.2 Test license

Knime 3.7.1

Weka 3.8.3

Orange 3.19.0

Tableau Desktop 2018.3.0 Student license
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