
Christoph Pilz, BSc

Development of a
Scenario Simulation Platform to Support

Autonomous Driving Verification

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl-Ing. Dr.techn. Gerald Steinbauer

Institute for Softwaretechnology

Graz, April 2019

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

Automotive industry is currently shifting from autonomous driving assis-
tance systems to conditionally automated vehicles. Traditional automotive
component testing methodologies are not enough to verify these increasingly
complex systems. While previous research deals primarily with elementary
components of complex verification systems for autonomous driving, only
commercial software companies combine them without scientifically pub-
lishing results. The focus of this master thesis is to analyze the components
necessary to design and build an autonomous driving verification system.
The results of this analysis are then integrated into a proof-of-concept sys-
tem whose performance is compared with expected results. The outcome
of this master thesis provides a scientific basis for future developments of
autonomous driving verification systems for automotive appliances.

iv

Acknowledgements

The research work presented in this thesis was carried out at the VIRTUAL
VEHICLE Research Center in Graz in cooperation with the institute for
software technologies at technical university of Graz.

The project was funded by the Electronic Component Systems for European
Leadership Joint Undertaking under grant agreement No 737469 and par-
tially by the COMET K2 – Competence Centers for Excellent Technologies –
Program.

I would like to thank my colleagues at the virtual vehicle competence center
for the warm work environment. Ahead of everyone I would like to thank
Markus Schratter for the close support with technical discussions.

I also extend my gratitude to Prof. Gerald Steinbauer for providing a
scientific guideline and for clearing up misconceptions during the planning
phases.

Finally I would like to thank my family: not only for the support during my
studies, but for my whole life so far.

v

Funding

The grant agreement No 737469 of the Electronic Component Systems for
European Leadership Joint Undertaking receives support from the European
Union’s Horizon 2020 research and innovation programme as well as Ger-
many, Austria, Spain, Italy, Latvia, Belgium, Netherlands, Sweden, Finland,
Lithuania, Czech Republic, Romania, Norway. In Austria the project was
also funded by the program “IKT der Zukunft” and the Austrian Federal
Ministry for Transport, Innovation and Technology (bmvit).

The VIRTUAL VEHICLE Research Center in Graz and therefore this thesis
are partially funded by the COMET K2 — Competence Centers for Excellent
Technologies — Program of the Federal Ministry for Transport, Innovation
and Technology (bmvit), the Federal Ministry for Digital, Business and
Enterprise (bmdw), the Austrian Research Promotion Agency (FFG), the
Province of Styria and the Styrian Business Promotion Agency (SFG).

vi

Contents

Abstract iv

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 4

1.2 Goals and Challenges . 4

1.3 Contribution . 5

1.4 Outline . 6

2 Important Terms 7

3 Problem Formulation 10

4 Related Research 12
4.1 High Level Components Validation 12

4.2 Test Criteria And Test Metrics 14

4.3 Simulator Architectures . 15

4.4 Scenario Terminology . 17

4.5 Scenario Modeling . 18

4.6 Overlaps With Traditional Robotics 20

5 Selection Process For Simulator And Scenario Format 22
5.1 Simulation . 22

5.1.1 Requirements . 23

5.1.2 Existing Simulators . 23

5.1.3 Decision . 36

5.2 Scenario Generation . 37

5.2.1 Requirements . 37

5.2.2 Existing Formats . 38

vii

Contents

5.2.3 Decision . 40

6 Prerequisites 41
6.1 Ubuntu . 41

6.2 Robot Operating System . 41

6.3 Drive By Wire Kit . 42

6.4 Carla Simulator . 42

6.5 Miscellaneous Python Libraries 42

7 Concept 43
7.1 General Overview . 44

7.2 Scenario Parser Details . 45

7.3 Simulator Control Details . 45

7.4 Test Control Details . 46

7.5 Time Event Handler Details . 47

7.6 Actor Details . 48

7.7 Conceptional Scenarios . 48

8 Implementation Details 51
8.1 General Overview . 51

8.1.1 Basic Modules . 52

8.1.2 Communication System 53

8.1.3 Run Through . 55

8.2 Code Structure . 57

8.3 Scenario Parsing . 61

8.4 Event Handling . 61

8.5 Actor Routing . 65

9 Evaluation 67
9.1 Carla Simulator . 70

9.2 Simulation Loop . 73

9.3 OpenScenario Reviewed By Experts 75

9.4 OpenScenario Format . 76

9.5 Performance . 77

9.6 Scalability And Expandability 78

viii

Contents

10 Conclusion 80
10.1 Discussion . 80

10.2 Known Issues And Recommended Improvements 81

10.3 Future Work . 83

Acronyms 86

Bibliography 88

ix

List of Figures

1.1 Automatic Parking . 2

1.2 Six Levels of Driving Automation 3

4.1 Testing Taxonomy . 14

4.2 Testing Taxonomy . 15

4.3 Architectural levels of a multi-domain simulator 16

4.4 Scenario-Based Closed-Loop Testing 18

4.5 Scenario-Based Closed-Loop Testing 19

5.1 Carla Simulator Footage . 26

5.2 Gazebo Simulator Footage . 27

5.3 Syncity Simulator Footage . 27

5.4 PreScan Simulator Footage . 28

5.5 Vires VTD Simulator Footage 29

5.6 AutonoVi-Sim Simulator Footage 29

5.7 Righthook Simulator Footage 30

5.8 CarMaker Simulator Footage 30

5.9 Racer Simulator Footage . 31

5.10 SCANeR Simulator Footage . 31

5.11 AirSim Simulator Footage . 32

5.12 rFpro Simulator Footage . 32

5.13 Udacity Simulator Footage . 33

5.14 Cognata Simulator Footage . 33

5.15 SiVIC Simulator Footage . 34

5.16 Sumo Simulator Footage . 35

7.1 Scenario Loader Concept . 44

7.2 Scenario Parser Concept . 45

7.3 Simulator Control Concept . 46

x

List of Figures

7.4 Test Control Concept . 47

7.5 Time Event Handler Concept 47

7.6 Actor Concept . 48

7.7 Four Fundamental Scenarios 49

8.1 Scenario Loader Basic Overview 52

8.2 Scenario Loader Communication System Overview 54

8.3 Scenario Loader Sequence Diagram 56

8.4 Scenario Loader Class Diagram 58

8.5 Scenario Loader Support Class Diagram 60

8.6 Scenario Loader Event Layout 62

8.7 Scenario Loader Event Queues 64

8.8 Execution Queue Actor Routing 66

9.1 Basic OpenScenario Layout . 69

9.2 Deviation Quantification Scenario 2 Setup 71

9.3 Deviation Quantification Scenario 3 Setup 71

9.4 Carla Simulator Crash Deviation 73

xi

1 Introduction

Automotive industry is currently in the middle of going from advanced
driver assistance systems (ADAS) to automated driving systems (ADS).
More specific, the Society of Automotive Engineers (SAE) published a man-
ual [1] in 2014 where they defined six levels of driving automation as shown
in Figure 1.2. Many Original Equipment Manufacturers (OEMs) already
equip their cars with level 1 systems like Adaptive Cruise Control (ACC)
and Lane Keeping Assistant (LKA). Some of these OEMs even provide level
2 systems like the Traffic Jam Assistant (TJA) which guarantee an automated
vehicle in traffic jam situations.

To guarantee a specific functionality of a system, the system has to be tested.
The testing of an ADAS is generally easier than the testing of an ADS, as
the tolerable rate of failures is far smaller. The problem lies with the nature
of ADSs. As [1] states, conditional automation (level 3) supports a discrete
set of driving modes, like traffic jams, but still has human interaction as a
fallback. Especially when upgrading to highly automated systems in level
4, the system does not have the option of a human driver as fallback for
specific situations as driving on the freeway. Because of that, the system has
to provide higher safety levels, which in further consequence needs more
testing.

For example one might compare a basic electronic control unit (ECU) like
the direction-indicator control and an ADAS like ACC with an ADS for
parking maneuvers. The direction-indicator control has a discrete set of
states which lead to an easy to grasp set of input-output relations. Beginning
with ADAS like ACC, it is already more complex. The simulated input can
not be mapped to discrete states, like a single image or a single distance
measure. Most of the time, a consecutive set of measurements is needed to
determine an action. Even more, the output influences the input.

1

1 Introduction

Coming now to ADS, the set of states is far from discrete as visualized in
Figure 1.1. First of all, the output of acceleration and steering massively
influence continuous test scenarios. Second, sensor and vehicle physics
have to be taken into account. And third, ADS are a collection of several
individual components. In other words, a collision avoidance system can
only suggest evasive routes. Meaning, the decision has to be based on other
semantic information like object classification and traffic rules.

Figure 1.1: Automatic Parking [2]

2

1 Introduction

Figure 1.2: Six Levels of Driving Automation [3], [1]

3

1 Introduction

1.1 Motivation

Many papers provide an overview on methods to test ECUs in automotive
industry. This part is important, as the components themselves are tested.
But for higher automation levels, the whole system is important. The whole
system is thereby the physical car and all its mechanical, electrical compo-
nents, as well as the controlling software. Traditionally a prototype car is
tested by test drivers in closed environments and later on, when the basic
stability of the car and its subsystems are confirmed, the cars can be tested
on public roads. To legally test ADS on the ALP.Lab [4] test track — which
is part of a freeway in Austria — 15000 driven kilometers are necessary.
Whereby at least 1000 kilometers have to be driven on a test track and the
rest can be done in simulations.

To cut down the time needed for testing, simulators are sped up to test
different scenarios in shorter time frames. The market for simulators is
highly competitive as Chapter 5.1.2 will show. However, most of the manu-
facturers keep the design of their system a secret. Furthermore, only a few
papers directly target efficient, scalable testing with realistic graphics and
physics.

In other words, scientific research concentrates primarily on individual
fundamentals of simulated verification as presented in Chapter 4. Therefore
this thesis aims to combine these existing elements. The result achieved
by closing the gaps will then support existing software with a scientific
foundation.

1.2 Goals and Challenges

In terms of testing, this thesis has the focus on software in the loop (SIL)
testing. To be more specific, existing automated driving (AD) software is
coupled with a simulator. The architecture of the interface should also
support testing of multiple different traffic scenarios.

4

1 Introduction

The expected primary difficulties can be summarized as follows: (i) the
range of functions of existing simulators, (ii) the formatting of scenarios and
(iii) the architecture of the controlling software.

As Chapter 5.1 will show, existing simulators vary in their field of features.
The disparities do not only comprise graphics and available vehicle models.
Especially the available communication interfaces, sensors and rendering
engine implementations are designed for specific use cases.

Concerning scenario formatting, Chapter 5.2 summarizes the differences
in modeling scenarios. While random assisted tests might be sufficient to
verify functionality, its hard to analyze and reproduce or to even test specific
situations.

On the software side scalability, performance and parallelizability are major
factors. The better these factors are met, the more kilometer can be driven
in specific time frames. Which leads to safer vehicles as the likelihood to
discover bugs increases.

1.3 Contribution

This thesis provides a guideline for the development of automatic test
environments for SIL testing of ADSs. The focus points are hereby (i) the
analysis of existing simulators as rendering engines for virtual environments,
(ii) the discussion of methods for modeling scenarios and (iii) the design
process of architecture for scenario testing software.

To support the findings of this thesis, a proof of concept software will point
out difficulties during the implementation and limits of the used hardware
and software. The limitations found are then further analyzed to support
future development.

5

1 Introduction

1.4 Outline

This thesis will continue with Chapter 4, which contains: (i) an analysis of
existing testing methods for ADAS, (ii) an overview of existing simulators,
their strengths and weaknesses and (iii) a summary of methods to describe
scenarios. After the preliminary research, a system will be designed based
on scalability and modular expandability in Chapter 7. Chapter 8 will point
out some details of the implementation. Finally Chapter 9 will analyze the
proof of concept software and Chapter 10 will close with suggestions for
future developments.

6

2 Important Terms

Science in the field of ADAS and ADS testing uses a few terms which might
be unfamiliar. To avoid misunderstandings and provide a quick reference,
this Chapter outlines the most important and most used terms in this
thesis.

ADAS and ADS are distinguishable via their purpose in SAE levels [1].
ADASs are assistance systems to support the driver in specific situations,
while ADSs posses the possibility to autonomously drive a car in specific
situations. Therefore ADASs find purpose only in the lower SAE levels.

HIL, MIL and SIL are often used when talking about verification and
validation of automotive systems. The “IL” in these terms stands for “in the
loop”. It means that a specific part is taken from its original surroundings
and the real surroundings are emulated. In other words, the virtual envi-
ronment provides valid and invalid data. The system under test then has to
produce output which is checked for valid behavior.

Chronologically the three main test methods can be sorted by model in
the loop (MIL), SIL and hardware in the loop (HIL), whereby parallel
development may be possible. MIL deals with models of systems in the
loop. When a component — like an ECU — is designed it gets specific
requirements. These requirements are put into a model (i.e. Matlab). The
model can then be verified before any hardware or software costs emerge.

The principle of MIL can be applied to SIL and HIL. Virtual input is provided
first to the software itself, then to the software running on actual hardware.
The target of all methods is to validate the output of the components, given
a specific input..

7

2 Important Terms

VeHIL is a concept introduced by TNO Automotive [5]. The term vehicle
hardware in the loop (VeHIL) is a form of HIL where a prototype vehicle
is placed on a dynamometer. Real life objects are then moved on platforms
towards and past the vehicle. The whole system is a very expensive way of
verifying ADASs, as a lot of space and equipment is necessary.

VIL is similar to VeHIL. Both use a prototype car. But while VeHIL tests
the car itself, vehicle in the loop (VIL) has a human driver in the car. Also
different to VeHIL, the car is driving on real roads or parking lots. So physics
and sensor inputs are real at first. VIL additionally overlays the sensor input,
as discussed by [6]. For example other cars can be overlayed on the real
life camera input. The driver is also provided with the virtual environment
via Augmented Reality (AR). With the support of a head mounted display
(HMD), the driver can monitor the situation at any given time.

At this point it is important to point out the difference between VIL testing
and verification of AD software. While the full software of an AD car may
be tested and validated in a virtual environment, its still SIL testing. Even if
physics and graphics are close to the real world.

Scene, Situation and Scenario are three common terms in AD scenario
research. Definition of these terms is very technophilosophical. The authors
of [7] provide a detailed analysis of each concept. For a quick summary, the
following lines provide a reference, while Figure 4.4 in Chapter 4.4 shows
the terms in a simple simulator implementation

The scene is the modeled environment, with dynamic aspects like weather,
all actors, the road layout and all surrounding objects.

The situation is the current state of the environment. The current weather of
the simulator, the current settings of the traffic lights and the current state
of all actors.

The Scenario is a screenplay. Its a sequence of actions and events within a
scenario. When a scenario is played, each single step forms a situation.

8

2 Important Terms

Ego Vehicle is the vehicle under test. For SIL tests in context of this
thesis it is also the only vehicle which is controlled by external software.
Consequently “non-ego vehicles” are all other — internally controlled —
vehicles.

Robot Operating System (ROS) is a software environment administered
by the Open Source Robotics Foundation [8]. robot operating system (ROS)
has the advantage of a big community and high compatibility with different
hardware. Due to easy and fast setup procedures it is very widespread in
prototyping robotics. For a quick and good structured overview of ROS,
especially in context of testing ADASs and ADSs, [9] is a good start.

9

3 Problem Formulation

Research and development in the automotive industry is on the verge of
implementing AD systems in their cars with high SAE levels as introduced in
Chapter 1. As systems get more complex, also testing is more complex. This
in further consequence creates the need for more sophisticated simulation
environments.

The problem can be exemplified with the following test scenario: ego vehicle
is driving straight ahead in the city along parking cars. A person jumps out
between the parked cars. The ego vehicle (i) must not hit the person, (ii)
must not hit other things and (iii) must comply with traffic rules.

To evaluate this scenario, three main necessary components can be iden-
tified: (i) the input has to be defined. The scenario defined as text has to
be put in a computer parsable and reusable format. Furthermore, as men-
tioned in Chapter 1, (ii) the complexity of the input-output relations require
the assistance of a 3D simulation to provide a physics model for evasive
maneuvers. Finally, (iii) the outcome has to be evaluated. Did the test case
fail or succeed? How can it be determined?

The goal of this thesis is to find out how to design a test platform to do SIL
testing of complex ADS. With the above requirements, one can say that the
system has to rest on three pillars: (i) a 3D simulation engine, (ii) a scenario
format and (iii) a controlling software.

The Simulation Engine has to be capable of simulating graphics and
physics close to realism. Additionally it has to have interfaces, able to
connect to a vehicle platform. Chapter 5.1.1 will take these vague require-
ments and pinpoint quantifiable parameters to discuss the selection of a
simulation engine.

10

3 Problem Formulation

The Scenario Format has to be light-weight, but still capable to support
more complex scenarios in the future. Chapter 5.2.1 will further analyze the
requirements necessary for a format of this kind.

Controlling Software has to read and prepare the scenarios. It then has to
communicate with the simulation engine, to load and play the scenario. It
also has to synchronize with the AD-system to guarantee the SIL testing. In
the end it has to report the success or fail of the tested scenario.

As there are already simulators with such capabilities on the market, it can
be anticipated that there are publications for each individual pillar. But in
the end, the overall concept should be analyzed.

11

4 Related Research

The first approach towards a solution for the problem stated in Chapter
3 was to find related research. Therefore, the paper headlines of five dif-
ferent symposia were skimmed, limited to the last five years. While the
International Conference on Intelligent Transportation Systems (ITSC) and
the Intelligent Vehicles Symposium (IV) provided the majority of relevant
papers, the International Conference on Intelligent Robots and Systems
(IROS), the International Conference on Autonomous Robot Systems and
Competitions (ICARSC) and the International Conference on Robotics and
Automation (ICRA) also provided interesting insight into simulation aided
testing. During this search method, around 250-300 papers were collected,
with a title suggesting some influence to simulated testing of ADAS and
ADS.

From this accumulated pool of papers, around eighty were at least partly in
the context of the simulation part of this thesis. Around fifteen additional
papers were at least close to the scenario generation component. These
left over papers have all been skimmed to find additional suitable papers.
During this process the papers also got rated to get the most relevant.

None of the read papers directly covered the topic of this thesis. But they
helped to get necessary background information and guidelines for different
parts of this project. Hence, Chapters 4.1-4.6 will point out related research
done in the field of testing ADAS and ADS in descending applicability.

4.1 High Level Components Validation

To save costs and time during development, every component in a car
is traditionally tested in stand alone environments. Simple components

12

4 Related Research

like ECUs controlling the headlights or the basic form of anti-lock braking
system (ABS) are simple to test. Only a small set of inputs leads to a small
set of different outputs.

If, however, one considers more complex components like ADAS, the input
and output sets get less trivial. For testing its necessary to provide virtual
environments. Else it is very hard to reproduce a sequence of events, leading
to a correct functioning system. A general guideline for the steps necessary
to test and evaluate new ADAS, is provided by [10]. This paper deals with
the first step of using virtual testing to validate automatic car parking
systems. The authors point out the importance of virtual environments: the
input for the ADAS depends on physical reactions of the car. Specifically,
the trajectory of the parking maneuver itself has a major influence on the
sensors.

Overall [10] presents a good comparison between real world testing and
simulated testing. It also confirmed the basic idea from robotics to simply
deal with the pose of involved vehicles, which will be used in the final
implementation. However, the method applied in the paper lacks the ability
to automatically run and evaluate scenarios.

Moving a step further, [11] deals with a more complex simulation environ-
ment to validate high level ADAS components like an automated emergency
braking assistance (AEB) system. The authors built a co-simulation system
which combines a vehicle mechanics and sensor simulation with the traffic
flow simulation engine SUMO. An important point made by this paper is
that the co-simulation environment decouples the testing logic from the
physical simulation part. In other words, the test cases are less dependent
on the physical behavior of a car and can be generalized. Which furthermore
reduces the complexity and increases the test coverage.

Compared to the previous paper ([10]), the task in [11] is therefore closer
to the problem formulated in Chapter 3. Most importantly, it provides a
basic architecture on how to stimulate high level AD components with a
simulator. Figure 4.1 shows the proposed concept, which will also be taken
into account by this thesis. Finally it can be said that the system designed
within [11] is able to generate different traffic scenarios for coverage. But
overall it lacks the possibility to easily define specific scenarios as well as a
suitable 3D simulation engine.

13

4 Related Research

Figure 4.1: Testing Taxonomy [12]

4.2 Test Criteria And Test Metrics

Important for validation is the usage of test criteria and metrics. Several
papers like [12] and [13] provide more general information on taxonomy
and criteria for testing ADAS. Thereby, [12] focuses on the introduction
of test criteria and metrics. A noteworthy point is that test criteria have a
strong relation to test scenarios and test metrics have a strong relation to
reference knowledge of the results as shown in Figure 4.2. Additionally, test
methodologies in general have a big influence on the kind of virtual test
environment. Therefore [13] discusses different approaches like VeHIL and
VIL.

These two papers have a more general view on the principles of ADAS test-
ing. Although using a very high level approach, they provide fundamental
building blocks for this thesis. On the one hand, these are the mentioned
criteria and metrics to decide if a test case succeeded or failed. On the
other hand, these are the principle testing approaches of VeHIL, VIL and
ADAS-SIL. This information has to be kept in mind when designing and
evaluating scenarios as test cases.

14

4 Related Research

Figure 4.2: Testing Taxonomy [12]

4.3 Simulator Architectures

With the definition of metrics and criteria from the previous Chapter 4.2,
the high level testing of ADAS approaches multi-domain simulation. The
authors of [14] discuss the basic structure of a simulator for high level and
multi-domain ADAS testing, as shown in Figure 4.3. The integration part
of this thesis will use a simulator, already consisting of these elements.
Nevertheless, it is important to understand the underlying architecture to
combine it with a scenario loading engine.

Concerning other implementations of ADAS simulators, three papers have
to be pointed out. In the first one [15] the authors introduce a photorealistic
simulator and compare it to USARSim and Gazebo. In 2014 this concept was
a great idea, as photorealistic graphics engines for computer games were
still under development. But as Chapter 5.1.2 will show, the development of
engines for decent graphics and physics renders this approach a graphically
detailed yet too complicated solution.

The second conceptional different architecture was also published in 2014

within [16] and deals with semivirtual simulations. The architecture utilizes
real world driving data and renders virtual objects and obstacles into the
sensor data. This approach again provides good sources for basic sensor
data. However, the problem with this approach is again the need for real
life data. While state of the art simulators are not yet capable to provide real
world physics and graphics, they are close enough to render approaches
like semivirtual simulations infeasable.

15

4 Related Research

Figure 4.3: Architectural levels of a multi-domain simulator [14]

16

4 Related Research

Finally, the third interesting architectural approach published within [17]
already utilizes a 3D simulator for testing. The relation to this thesis is the
extra functionality of vehicular ad hoc network (VANET) communication.
This extra functionality has influence on the behavior of the vehicles in the
3D simulator, similar to the planned ego control of this thesis. However, like
the other simulation engines presented in this Chapter, the system in [17]
was not designed to automatically load independently designed scenarios
as test cases.

Important to point out is also the fact that previous research dealt a lot
with the co-simulation of cooperative maneuver scenarios in contrast to the
verification of ADS with simulators. Therefore, most of the papers used
graphically simpler traffic simulations like SUMO. Only more recent papers
like [17] started to upgrade to 3D simulators. But yet most of them lack the
idea of using a specific standard to load scenarios.

4.4 Scenario Terminology

Each field of research has its own Terminology. Although the terminology
of AD scenario research is on the edge of related research for this thesis, [7]
has to be stated as prime source for the basics. In this paper, the authors
discuss the fundamentals of scenario description. Especially the concepts
scene, situation and scenario can get mixed up easily. For a quick reference,
Figure 4.4 illustrates these terms.

Within this thesis, [7] was also very helpful to identify the core concepts
of scenario modeling. It provides a more objective view when looking for
a fitting scenario format. In further consequence it even provides better
insight into the goals and values when defining and parsing a scene.

17

4 Related Research

Figure 4.4: Scenario-Based Closed-Loop Testing [7]

4.5 Scenario Modeling

Compared to combustion engine research, ADAS and AD research has just
started. Therefore the field of scenario research offers diverse papers with
basics. For example in 2017 [18] discussed the automated generation of
diverse and challenging scenarios for the test and evaluation of autonomous
vehicles. In fact, the simulation engine Cognata [19] also reviewed in Chapter
5.1.2 uses deep learning algorithms to provide diverse scenarios.

However, the creators of these simulation tools have not published their
architectural approach of the scenario description. In consequence it is
interesting to know how diverse scenarios are generated, but the results are
not applicable to this thesis, as the created software should be able to use
scenarios, but not generate them.

Other research teams, like the authors of [20] deal with the generation of
test case libraries. Most of them concentrate on test cases generated from
national traffic accident databases. However, the authors of the mentioned

18

4 Related Research

paper go a step further and use the naturalistic driving data from test drives.
These test drives are automatically analyzed and compressed into a special
database scenario format. Looking at the practical application, the team
evaluated the database format and did not try to couple it with a simulation
engine. Even more, the scenario format is too specific and not open enough
to be used for more general applications as within this thesis

Scenario formats in database form lead to the third important paper in
this Chapter. The authors of [21] use software engineering methods to
describe a database format for scenarios. Their scenario database domain
model, shown in Figure 4.5 has the advantage that everything is decoupled
from each other. Different to the previous paper ([20]), the authors of [21]
implemented a small simulation engine to play their scenarios. However,
they did not try to couple their database with a complete 3D physics and
graphics simulation engine. As Chapter 5.2 will elaborate, the scenario
format is very fitting for this thesis, which helped to outline the design of
the scenario loading mechanism of the resulting software.

Figure 4.5: Scenario-Based Closed-Loop Testing [7]

19

4 Related Research

4.6 Overlaps With Traditional Robotics

AD cars are basically autonomous robots with enough space for humans to
sit in. Traditional robotics is already dealing a long time with the autonomy
of robots. For instance the RoboCup [22], first time held in 1997, is famous for
the autonomous robotic football matches. Since its foundation, the RoboCup
added different Categories. For example the logistics league, which was won
by the GRIPS team of the TU-Graz in June 2018 ([23]). However, each robot
has to deal with a different kind of uncertainty, which can be simulated. In
context of autonomous car robots, uncertainties are the environment around
the road, other vehicles and pedestrians.

Robotic engineers have the option to use the widespread ROS software
environment. The recommended 3D simulator for ROS software is Gazebo.
The authors of [24] analyze the capabilities of ROS and Gazebo in context
of simulated testing in robotics. While the authors can show a variety of
features applicable to this thesis, the overall package of Gazebo is not
applicable. The problem is that Gazebo is designed for robots and not for
traffic simulation. Gazebo is good, if one has to create the physical model
of a robot. But it lacks scalability for larger traffic scenarios. Furthermore,
the paper focuses on the functional scope of ROS and Gazebo, but not on
automotive test scenarios in general.

The similarities between traditional robotics and automotive AD vehicles
can be shown with [25]. The authors of this paper design a hardware
in the loop system for robotic applications. Especially the architecture
of the proposed architecture for the robot hardware in the loop (RHIL)
has many similarities to the architecture of automotive HIL systems. The
difference mainly lies within the interfaces. Although the paper is not
applicable to simulation testing of automotive AD software, the approach of
synchronization seemed interesting: as the authors execute their RHIL, they
simply send a synchronization trigger in the beginning. The rest is done
by the simulation. As the RHIL operates in real-time, the simulation model
simply has to provide real-time data. However, this approach gets tricky if
the simulation is too slow, due to high complexity, as with the case of 3D
traffic simulators.

20

4 Related Research

The most applicable paper for scenario loading principles from robotic
context is [26]. The authors used a 3D simulator to improve the performance
of a grasping robot with deep learning. To train the used network, the
authors had to provide different scenarios. The important thing to learn
from this paper was environment reusability. To be more specific: the first
scenario is loaded with an item in the box. After a successful grasp of the
arm, the environment has not to be reloaded. One can instead remove the
object, reset the arm and spawn a new object in the box, before resetting
the SIL. The same approach is planned to be implemented within this
thesis. The server should provide the world map. The vehicles necessary for
the test scenario are then spawned and deleted according to the scenario
specification.

21

5 Selection Process For Simulator
And Scenario Format

Scenario loaders, as proposed in Chapter 1, need two key components: (i)
the simulator, which provides the virtual world with physics and graphics
support and (ii) the scenario files, which provide information on the traffic
situations to load. The next few Chapters concentrate on finding suitable
components. Chapter 5.1 concentrates on finding a suitable simulator con-
forming to requirements derived from the problem formulation in Chapter 3.
Chapter 5.2 will then deal with different scenario formats to find a suitable
representation.

5.1 Simulation

The field of simulation includes several applications like HIL, MIL and SIL
with steps to VIL and full traffic simulations without external stimuli. For
this thesis the next few Chapters concentrate on finding a suitable simulator
for SIL testing of ADAS and ADS.

The road ahead will thereby be paved by: (i) Chapter 5.1.1 which starts
with a brief overview on the requirements, followed by (ii) Chapter 5.1.2
which grants a broad overview on the strengths and weaknesses of existing
simulators, until closing with (iii) Chapter 5.1.3 which points out the final
decision.

22

5 Selection Process For Simulator And Scenario Format

5.1.1 Requirements

Basic requirements are simple. For a start the simulator has to have compat-
ible interfaces. They either have to be compatible with ROS already, or to
be flexible, open and specified enough to support translation between the
simulator interface language and ROS message interfaces.
Additionally the simulator has to provide specific information. This com-
prises basic pose information of the ego vehicle, the full set of non-ego
vehicles poses and the pose of pedestrians. Additionally more advanced
information, like data streams from camera or light detection and ranging
(LIDAR) systems have to be directly accessible.

Due to future plans of the AD group at the VIRTUAL VEHICLE Research
Center (VIF), the simulator also has to have graphics and physics close to
realism and still be cost efficient. In other words, costs for software and
hardware should be reasonable and integrate into other projects.

The requirements were structured by strategic importance and are listed as
follows:

• Suitable ROS compatible interface
• Minimal accessible live output:

– Ego vehicle pose
– Non-ego vehicle pose
– Pedestrian pose
– Camera and LIDAR feeds

• Graphics close to realism
• Physics close to realism
• Cost efficient

5.1.2 Existing Simulators

To find a suitable simulator — for the task stated in Chapter 3 and the
requirements further specified in Chapter 5.1.1 — some information was
already available and reusable from my preceding master project [27]. The
majority of additional information was then gathered by literature research

23

5 Selection Process For Simulator And Scenario Format

and extended by desk research and personal interviews with experts at the
VIF.

For the simulators found in literature research, the pool of papers from
Chapter 4 was taken to extract around ten simulators for testing of ADASs
and ADSs. The rest of the simulators was then collected via desk research
and informative interviews at the VIF. As one can see in Table 5.1, the
conducted desk research was an important part, as many commercial simu-
lators for testing of ADAS and ADS are not published in symposia of the
Institute of Electrical and Electronics Engineers (IEEE).

Additionally, papers like [28] and [29] were helpful to get insight into
simulator architectures and what to expect from their interfaces. Also, how
to evaluate the strength of engines and the advantages/disadvantages of
open-source implementations when dealing with configuration files, data
interfaces and special sensors.

The evaluated simulators are summarized for an overview in Table 5.1,
which also provides ratings with respect to the requirements listed in
Chapter 5.1.1. The used symbols should be interpreted as (--) very poor,
(-) poor, (o) not rated or irrelevant, (+) good, (++) very good, as well as (i)
which indicates that its not yet implemented, but can be done with some
effort. Additionally each simulator has either a preceding “I” if it was found
during desk research or within informative interviews. Or a preceding “II”
if it was found mainly withing literature.

24

5 Selection Process For Simulator And Scenario Format

Simulator Name ROS Ego Non Ped Sens Viz Phy CE
I-Carla ++ ++ ++ + + + + ++
I-Gazebo ++ ++ ++ + + o + ++
I-SynCity + ++ + + ++ ++ + --
I-PreScan i- ++ + o ++ - o --
I-VTD i- ++ ++ o + ++ ++ +
I-AutonoVi-Sim i ++ ++ -- - -- + +
I-Righthook i ++ + o + ++ + --
I-Carmaker i- ++ + o + + ++ --
I-Racer i ++ o -- - + ++ -
I-SCANeR i ++ + o + + + --
I-AirSim + ++ + - + + + ++
I-rFpro i ++ + o + + ++ --
I-Udacity ++ ++ + -- + - o ++
I-Cognata o ++ + o + ++ o --
II-Aimsun+Vissim i + + -- - + - +
II-SiVIC i ++ + + ++ + ++ --
II-Sumo i + + o -- -- -- ++
II-RTMaps i o -- -- ++ o o --
II-CVIS i + + - o -- -- --
II-RoadView - -- -- -- + o o +
II-USARSim i ++ o - + - o +
II-PELOPS i + + -- - -- -- o
II-MORSE i ++ o - + - o +

Table 5.1: Simulators with respect to suitability

25

5 Selection Process For Simulator And Scenario Format

I-Carla

Carla is a free and open-source driving simulator for AD research. The
platform, visible in Figure 5.1 is based on the Unreal Engine which handles
the graphical and physical modeling. Due to the Open-Source character
and also because research appliances are targeted, the interfaces are very
open. During run-time you get the current pose of every acting model like
vehicles, pedestrians and traffic lights. For the sensor output like camera and
LIDAR, the development community even provides a bridge compatible
with ROS. [30]

However, the simulator is still in development and has not reached a full
release at the time this thesis is written.

Figure 5.1: Carla Simulator Footage [30]

I-Gazebo

Gazebo is the simulator which can be installed with any newer ROS distri-
bution. The major advantage of Gazebo is its full ROS connectivity. Real
world parameters which are accessible in ROS are stimulated by Gazebo.
Therefore every pose and sensor information needed for the task of this
thesis is directly available. [31]

However, Gazebo has only mediocre graphics, as visible in Figure 5.2,
which would be a problem for future appliances for the VIF. Additionally,
pedestrians are not animated and a simulation world in general takes
more effort to be built than with simulators designed for world simulation.
Furthermore, the physics model is light weight meaning not as detailed as
its competitors which are designed for detailed physical behavior.

26

5 Selection Process For Simulator And Scenario Format

Figure 5.2: Gazebo Simulator Footage [32]

I-Syncity

Syncity is one of the best options for AD simulation. Although it was not
possible to get detailed information without buying a license, the available
marketing of CVEDIA and several YouTube videos suggest an all-round
simulation software for AD.

On the Graphics and Physics side it can be estimated that the platform is at
least equal to Carla in its current stage as visible in Figure 5.3. A big feature
of Syncity is the possibility to simulate physical effects of rain on camera
lenses. On the connectivity side, Syncity provides a ROS interface. Now, at
the time of writing this thesis, this simulator also provides an editor for
driving scenarios. [33]

However, for research facilities like the VIF also the yearly budget is a big fac-
tor. While the software costs would be bearable, the hardware requirements
for detailed simulations ruled out the Syncity platform.

Figure 5.3: Syncity Simulator Footage [33]

27

5 Selection Process For Simulator And Scenario Format

I-PreScan

PreScan is a simulation platform emerging from sensor simulation. Con-
cerning the sensor side it is a good option. However the problem starts with
mediocre graphics, as visible in Figure 5.4, and unavailable ROS-bridge at
the time of preliminary research. Even though PreScan can be found in a
variety of papers on simulation of different parts of AD, it was not an option
for this thesis. [34]

Figure 5.4: PreScan Simulator Footage [34]

I-VTD

VTD, distributed by Vires [35], has the big advantage of open standards
for maps (OpenDRIVE [36]) and Scenarios (OpenScenario[37]). It also has
suitable physics and graphics as visible in Figure 5.5. However a big dis-
advantage is the connectivity. While experience at the VIF shows that
additional sensors and other functionality is quite easy to implement with
tools like MATLAB, the interface itself is rather mysterious compared to
OpenSource projects. The reason is that documentation is only available in
a very sparse online wiki or directly via training courses.

As it was not possible to estimate the effort necessary to provide ROS
connectivity, VTD was ruled out as an option.

28

5 Selection Process For Simulator And Scenario Format

Figure 5.5: Vires VTD Simulator Footage [34]

I-AutonoVi-Sim

AutonoVi-Sim is a light weight AD simulator, primarily designed for dy-
namic maneuver testing. The platform is ranked higher in this list, as it suits
the basic idea of scenario testing of this thesis. However graphics were not
suitable, as visible in Figure 5.6 and future development of AutonoVi-Sim
was not foreseeable at the time of preliminary research. [38]

Figure 5.6: AutonoVi-Sim Simulator Footage [38]

I-Righthook

Righthook is similar to SynCity although its strengths are in the support
of Artificial Intelligence (AI) training. Physics and Graphics are decent, as
visible in Figure 5.7. Sensors are also including LIDAR. However, while
there was no direct ROS support at the time of preliminary research, the
factors ruling out Righthook were again the high software and hardware
costs. [39]

29

5 Selection Process For Simulator And Scenario Format

Figure 5.7: Righthook Simulator Footage [39]

I-CarMaker

CarMaker, distributed by IPG, is a simulation software designed to test
vehicle dynamics. While it is a sophisticated platform to test vehicle dynam-
ics and ADAS modules, it was in the process of adapting to AD testing
methods at the time of preliminary research. Especially ROS support was
not available at that time. [40]

As visible in Figure 5.8, graphics would have been optimal, with a physics
layer close to realism. However, the missing ROS support ruled out Car-
Maker, because of better alternatives.

Figure 5.8: CarMaker Simulator Footage [40]

I-Racer

Racer is a free to use platform for non-commercial projects. As the last
update seems to be from 2015, the project seems to be halted as of the time
writing. Nevertheless, it has a strong physics simulation engine as visible in
Figure 5.9 where the heat distribution of the break disc is shown. However,
Racer lacks other features like LIDAR sensors or pedestrians. [41]

30

5 Selection Process For Simulator And Scenario Format

Figure 5.9: Racer Simulator Footage [41]

I-SCANeR

SCANeR, visible in Figure 5.10 has a similar background as PreScan and
similar features as VTD. The reason this platform was not considered is
due to high software and hardware costs and better alternatives as the
aforementioned PreScan and VTD. [42]

Figure 5.10: SCANeR Simulator Footage [42]

I-AirSim

AirSim is an open-source project very similar to Carla. The main background
of AirSim is a simulation platform for drones, as visible in Figure 5.11.
However, at the time of preliminary research, AirSim lacked pedestrians
and other cars. [43]

31

5 Selection Process For Simulator And Scenario Format

Figure 5.11: AirSim Simulator Footage [43]

I-rFpro

The platform rFpro started as a motorsport simulation project in 2007 within
a Formula 1 team. Decent physics and graphics are clearly provided, as
visible in Figure 5.12. Non-Ego cars, pedestrians, sensors and scenarios are
also included. The only open question was ROS compatibility. But again,
due to the high costs, this option was ruled out. [44]

Figure 5.12: rFpro Simulator Footage [43]

I-Udacity

The open-source simulator from the online learning platform Udacity is a
light weight version of Carla, as visible in Figure 5.13. Its primary target is
to quickly teach people how to do the basics of AD. Beside being a light
weight version of Carla, mediocre graphics and the uncertainty of pedestrian
support during preliminary research ruled out this option. [45]

32

5 Selection Process For Simulator And Scenario Format

Figure 5.13: Udacity Simulator Footage [45]

I-Cognata

The strength of Cognata is its deep learning simulation engine. It is able
to generate scenarios for a given vehicle model. Physics and graphics are
decent enough for the requirements and also pedestrians and non-ego
vehicles are available. ROS support is not explicitly stated, but might be
available. However, it has not been further investigated due to cheaper and
technically equal alternatives. [19]

Figure 5.14: Cognata Simulator Footage [19]

II-Aimsun and Vissim

The combination of Aimsun and Vissim is for early stage but detailed
simulation of traffic flow behavior. Thereby Vissim is the visual component
with graphics comparable to VTD. Overall, the focus is on traffic simulation
and does not support detailed sensors as required for this thesis. [46]

33

5 Selection Process For Simulator And Scenario Format

II-SiVIC

Simulator of Vehicle, Infrastructure and sensor (SiVIC) was created for
ADAS prototyping, test and validation. The Software has decent graphics
as visible in Figure 5.15, sophisticated physics similar to Vires VTD and IPG
CarMaker. It is also important to note that in the early stages, focus was on
sensors. Therefore SiVIC is one of the few simulators with radar support.
[47]

However, even though SiVIC has pedestrians from infrastructure simulation,
its expensive and does not support ROS out of the box.

Figure 5.15: SiVIC Simulator Footage [47]

II-Sumo

Sumo can be found in various research papers about traffic simulation, like
[48]. It has no suitable graphical output for sensors, because it is mostly a
top down representation of traffic, as visible in Figure 5.16. But when talking
about simulators, it is important to mention Sumo, due to the amount of
citations and usage in traffic simulation papers.

34

5 Selection Process For Simulator And Scenario Format

Figure 5.16: Sumo Simulator Footage [47]

II-RTMaps

RTMaps is a sensor simulation platform. It is designed to record and play-
back raw sensor data. RTMaps can be combined with other simulators,
like the above stated SiVIC, but is no standalone simulator in the sense of
generating some virtual world. [10]

II-CVIS

Similar to Sumo and RTMaps, Cooperative Vehicle Infrastructure System
(CVIS) is a simulation tool for a specific part of ADS and ADAS research,
development, verification and validation. CVIS can for example be combined
with a visual simulation system as presented in [49]. However, for the task
in this thesis, the system lacks pedestrians and is rather complicated.

II-RoadView

RoadView is no simulator that can create a virtual environment like Carla,
Gazebo or other aforementioned platforms. RoadView simply uses Images,
combined with Global Positioning System (GPS)-poses to provide the ADS
or ADAS real world input as [15] states. Although RoadView is an in-
teresting approach to validate ADS and ADAS, it is not suitable for this
thesis.

35

5 Selection Process For Simulator And Scenario Format

II-USARSim

USARSim is a platform very similar to earlier versions of Gazebo. It was
designed to provide a simulation platform for robotics, as stated by [50],
and can therefore also be used for AD research. Due to the similarity to
Gazebo and due to the inferior graphics and overall development state the
USARSim platform was ruled out.

II-PELOPS

Programm zur Entwicklung längsdynamischer, mikroskopischer Prozesse in
system relevanter Umgebung (PELOPS) is a traffic flow simulation program
similar to Sumo, [51]. It is mentioned for completeness, as it could be
combined with other visual simulators.

II-MORSE

The Modual OpenRobots Simulation Engine (MORSE) [52] is a platform
similar to Gazebo and USARSim. As the simulator has inferior features
compared to Gazebo, it has not been in-depth reviewed, due to a better
alternative. However, considering completeness and future reference, it has
to be listed here.

5.1.3 Decision

The choice finally fell on Carla [30]. The biggest factor in the decision
making process was suitability, especially easy compatibility with ROS.
About a third of the simulators already dropped out due to design concepts
incompatible with the given task. For example RTMaps has its focus on
sensors and does not explicitly render virtual environments. Similar to that,
RoadView simply synchronizes real world images with GPS coordinates.
Furthermore, the majority of commercial simulators has been ruled out due
to high costs not only for software, but also for hardware. At this point it
should also be mentioned that the market for AD simulators is very active,

36

5 Selection Process For Simulator And Scenario Format

as ADAS and ADS get more and more complex and have to be validated to
meet statutory provisions in different countries. In consequence the acquired
software could restrict future projects of the VIF. With open-source versions
the need for adaption is more prominent, but in the end it is cheaper as the
market for simulated AD testing is still very young.

5.2 Scenario Generation

Before going into detail on options available for scenario-describing files, its
worth mentioning [7]. In this paper, the fundamental termination of scenario
related terms is discussed. The right usage of terms is helpful when talking
about scenarios. The paper itself claims to be a guideline for discussions
around scenarios, as some terms like scenario and situation can get mixed
up.

For a better understanding of the Chapters 5.2.1-5.2.3 the importance of
scenarios has to be pointed out. To achieve repeatability and reproducibility
the behavior has to be the same in each execution. This can be achieved
via storing the random seed of a simulation environment or by controlling
each actor via a “script”. While a random seed is rarely a human readable
format, a “script” can be built like a storybook. This storybook for a specific
set of acts and events is called scenario.

5.2.1 Requirements

Generally speaking, a scenario format has to be lightweight and easy to
create. The reason for that is simple. To provide test coverage of a specific
amount of test kilometers, one does need a variety of scenarios. Each
scenario needs effort to be created and each scenario needs storage space.

Easy creation goes hand in hand with easy to read. If some test case fails, an
engineer should be able to backtrack the error in the scenario file. Simple,
human readable representation saves time.

37

5 Selection Process For Simulator And Scenario Format

As requirements change over time, its important to provide a certain amount
of flexibility. The format should be as independent of the simulator in use
as possible. Meaning, if the simulator part is exchanged, the format should
be reusable.

Last but not least, to fulfill the lightweight concept and to avoid having
to change one thing in multiple locations, its important to have few to no
redundancy. For example the scenario should be independent of configura-
tion parts. It should not be the scenario file which defines detailed paths.
And it should not be the scenario file which describes the used equipment.
In the best case, the scenario file links to other files, which aid the simulator
and scenario engine in calculating detailed routes and choose available
equipment.

Summed up, a scenario has to fulfill the following parameters:

• lightweight
• easy to create
• easy to read
• independent reusability
• few to no redundancy

5.2.2 Existing Formats

Finding scenario formats in existing literature turned out to be more difficult
than expected. The majority of papers deals with the creation of scenarios
itself. For example [18] provides a general discussion on testing methods for
the evaluation of autonomous vehicles. They come to the conclusion that
evaluating the performance of autonomous vehicles is mostly a black box
approach, due to the complexity of these systems. Because of that, they try
to identify test cases for the performance boundaries of the system.

Other papers like [20] deal with the idea to provide open naturalistic driving
scenario libraries. To get scenarios, the team behind the paper analyzed crash
databases, as well as existing AD databases in various formats. Providing
an open database in a consistent format is a good idea to aid smaller AD

38

5 Selection Process For Simulator And Scenario Format

development groups with testing. However, the overall format is not easily
usable with a scenario interpreter.

Table 5.2 provides an overview of the found scenario formats with suitable
requirements. The symbols used for rating are (-) for poor fulfillment of
a requirement and (+) for good fulfillment. A more detailed analysis is
provided below.

Scenario Format LW Create Read Reuse Unique
Script + + + - +
OpenScenario - + + + +
SDFormat - - + + +
MBSS - + - + +

Table 5.2: Scenario formats with respect to suitability

Script

The easiest form to create a scenario is a script. Since version 0.9.1, Carla [30]
provides a scenario loading module which takes and executes Python files.
Each Python file contains the logic of the scenario. It spawns the vehicles,
lets them drive a specific route and finally removes them at the end. While
the script is easy to create and easy to read, it is not reusable. Even after an
update of Carla, it might happen that specific code lines have to be changed
in multiple files.

OpenScenario

The OpenScenario format [37] is the logic consequence of the OpenDRIVE
format [36]. While OpenDRIVE files describe road networks, OpenScenario
files describe what happens on these roads. Vires states on their homepage
that the OpenScenario format has been designed together with influential
business partners. They also state that they try to make OpenScenario an
industry standard, as soon as it is released.

39

5 Selection Process For Simulator And Scenario Format

While the format itself is rather complex, its Extensible Markup Language
(XML) background makes it easy to parse. As soon as Editors for this format
are provided it should be easy to create these files. Even without editor, one
can easily read the storybook provided. Additionally the format grants the
ability to reuse huge parts of scenario elements like maneuvers. These parts
can be stored in external library files.

SDFormat

SDFormat [53] is an XML file format to describe environments for robot
simulators. It is the main format to describe environments and robots in
ROS. With some effort it can also be used to describe scenarios. However,
due to the complexity and the different scope, it is not the best format to
describe scenarios.

Model Based Scenario Specification (MBSS)

An interesting format is the model based scenario specification (MBSS)
discussed in [21]. The authors analyzed the different parameters necessary
for a scenario and derived a domain model from it. With the aid of a
database, one could create scenarios. This concept seems to be a good
solution for huge scenario databases, as redundancy is kept on a minimum.
However, the complexity of the system exceeds the scope of the project.

5.2.3 Decision

The decision finally fell on OpenScenario. The main reason for that is
future expectation. As the standardization organization ASAM adopted
OpenDRIVE and announced to accept OpenScenario as well, the future
usage of this format is very likely [54]. The other mentioned possible
scenario types are not suitable. A script is to inflexible, similar to SDFormat
and the MBSS far to complex.

40

6 Prerequisites

For the whole setup procedure, the software repo [55] of this master thesis
also contains a script (InstallAll.sh) which installs and explains all required
components. Nevertheless its important to point out some tricky parts of
the software stack.

6.1 Ubuntu

Carla [30] is developed for Linux distributions like Ubuntu but can also be
built for Windows. For the implementation described in Chapter 8, other
software tools are needed which are only available for Linux based systems.
Due to the recommendations of the Carla developers and the developers of
the additionally needed software stacks, the decision finally fell on Ubuntu
16.04 LTS [56].

Depending on the required performance, it is advisable to run Ubuntu in a
native environment and use a dedicated graphics card. Other than that, a
basic installation is sufficient.

6.2 Robot Operating System

ROS is a software environment administered by the Open Source Robotics
Foundation [8], as already mentioned in Chapter 2. ROS is very widespread
in prototyping robotics. For a quick and good structured overview of ROS,
[9] is a good start. For this thesis the used ROS version is ROS Kinetic
Kame.

41

6 Prerequisites

6.3 Drive By Wire Kit

In Chapter 3 it is already stated that the final software should support
specific drive-by-wire (DBW) messages in ROS, provided by Dataspeed.
[57].

6.4 Carla Simulator

Carla [30] is one of the main pillars for the working result of this thesis.
For the final implementation, version 0.9.3 is used together with version
4.21 of the Unreal Engine. At the end of this thesis, the Carla development
team started to provide frequent and regularly updates to their software.
As pointed out later in Chapter 7, the architecture of the software created
within this thesis is modular to support future upgrades. In other words, as
soon as the Carla simulator itself supports a feature, this feature can be de-
activated in the provided software, to use more compatible and community
maintained code.

6.5 Miscellaneous Python Libraries

The software created in Chapter 8 needs two important packages which are:
(i) the prctl (python-prctl) library, to set meaningful thread names in process
viewers like top and (ii) the xmlschema library to validate and parse XML
files. These two packages play a key role during implementation and are
therefore emphasized here.

42

7 Concept

To recap, the main pillars for the software of this thesis are: (i) a 3D simula-
tion engine capable to provide physics and graphics close to realism, (ii) a
light-weight scenario format capable to describe complex formats and (iii) a
software loading and playing scenarios on the simulator while providing
an interface between simulator and the AD software under test.

In the previous Chapter 5.1.3 the Carla simulator was found to provide the
3D simulation engine. The advantages of Carla are its origin from a research
project and its ongoing development. At the time writing it can also be said
that during the development phase of this thesis, the Carla team got on a
similar path concerning scenario handling.

The scenario format, chosen in Chapter 5.2.3, is OpenScenario. The light-
weight XML format has the advantage that for a proof-of-concept software,
only parts of the XML file have to be parsed.

With the support of the first two pillars, the concept of the software can
now be laid out. The software, shown in Figure 7.1 of Chapter 7.1 is called
Scenario Loader. It will assist the communication between the AD software
and the simulation software. It will also make use of OpenScenario files,
which are the screen play for the simulator.

Also shown in Figure 7.1 is the Carla development block. The introductory
Chapter 7.1 will continue with a brief overview in reference to this Figure.
The Chapters 7.2 and 7.6 will then go into more detail on the semantics and
the behavior.

Finally, Chapter 7.7 will present four different scenarios which shall be
supported by the final software. These scenarios are also designed to support
agile development of the software.

43

7 Concept

7.1 General Overview

Right from the beginning the software was designed to be modular and
flexible. During the development phase it turned out to be a good decision
as the Carla team started to move in a similar direction concerning scenario
aided testing. The Carla development block, shown in Figure 7.1, indicates
that some features have been removed from the Scenario Loader as they
were introduced as a Carla feature. The first one was the ROS support of
sensor messages.

Figure 7.1: Scenario Loader Concept

The concept of the Scenario Loader relies on basic game theory. Games have
a description of the scene. This is on the one hand the map, and on the other
hand the actors. The configuration of this scene is provided by the scenario
file, which is handled by the Scenario Parser block. The Scenario Parser is
in charge to analyze a given scenario and provide the information.

Next the Test Control takes over, which handles all actors of the scene. There
are the Simulator Control, which is the game master — setting the scene
in the simulator. Meaning the Simulator Control loads the map and sets
weather as well as the time of day. After the Simulator Control has set the
scene, the Test Control activates the main actors. These are on the one hand

44

7 Concept

the ego vehicle as Ego Actor and on the other hand, all non-ego vehicles as
Non-Ego Actors.

When the scene is set, the Test Control activates the Timed Event Handler,
which synchronizes all actors and starts to step through the scenario, time
stamp by time stamp, meaning simulator step by simulator step.

7.2 Scenario Parser Details

Coming from a general perspective, the Scenario Parser can be described
with the aid of Figure 7.2. The Scenario Parser is either prepared for a
specific scenario format, or takes a scenario format description file. With
the knowledge about the scenario format, the Scenario Parser is able to
validate the provided scenario file and parse the content. From the parsed
content, the Scenario Parser extracts the scenario screenplay information
and distributes it to the scenario controlling entities.

Figure 7.2: Scenario Parser Concept

7.3 Simulator Control Details

Controlling the simulation environment is the main task of the Simulator
Control as shown in Figure 7.3. During the initialization phase, the Simulator
Control is fed with information on how to connect to the simulation server.

45

7 Concept

In the same process the Scenario Parser provides the Simulator Control with
environment setup information. This information consists of (i) the basic
environment initialization — like the map, but also weather and time of day
— as well as (ii) the event triggered environment changes in form of state
events. State events are events triggered by the change of the server state.
For example this can be on startup or on scenario end.

During run-time the simulator control may receive events from the Time
Event Handler or one of the actors. For example: the scenario requires a time
of day change after two minutes of simulation time, or a weather change
when the ego vehicle arrives at a specific location.

Figure 7.3: Simulator Control Concept

7.4 Test Control Details

The Test Control provides an interface to control the test environment as
shown in Figure 7.4. It wraps the initialization and the cleanup process, as
well as starting and stopping of the threads necessary for the simulation.

46

7 Concept

Figure 7.4: Test Control Concept

7.5 Time Event Handler Details

Time events are events at specific simulation times. At initialization the
Scenario Parser fills the Time Event Handler with time events, as shown
in Figure 7.5. Additionally the Test Control sets the reference time. The
reference time is important to save computation time, as the simulation
will not be reloaded. The approach is thereby similar to the mechanism
discussed in Chapter 4.6.

Then, during run-time, the Time Event Handler gets an update of the
simulation time at every tick of the simulator. The update is provided by
the Simulator Control. At each tick, the Time Event Handler checks the
time events. If an event is triggered, the event is sent either to the Simulator
Control, or to one of the Actors.

Figure 7.5: Time Event Handler Concept

47

7 Concept

7.6 Actor Details

Ego Actors and Non-Ego Actors have the same initialization behavior, as
shown in Figure 7.6. Both get their scenario related information from the
Scenario Parser and are triggered by the Test Control. During run-time they
also share similar behavior as each of them handles their own set of entity
events. If an entity event is triggered it may either be executed within the
current actor, or it is sent to the corresponding actor. The check of the events,
as well as the calculation of the trajectory is done after the reception of a
simulation tick.

However, before sending a vehicle control message via the Simulation
Control, the behavior differs: the Non-Ego Actor calculates the current pose
with the aid of the scenario description, while the Ego Actor loops to the
SIL-tested AD-Algorithms.

Figure 7.6: Actor Concept

7.7 Conceptional Scenarios

Before the implementation step in Chapter 8 it was important to define some
basic scenarios which should be supported. Therefore shown in Figure 7.7
are four scenarios which represent the fundamental support of a scenario

48

7 Concept

loading engine. The advantage of these scenarios is also the potential for
iterative implementation. By targeting the support of one specific scenario
at a time, the software can be developed in an agile manner.

Figure 7.7: Four Fundamental Scenarios

To briefly describe the scenarios shown in Figure 7.7 one might start with
scenario one. This scenario features a simple ego vehicle which should
reach a goal. In the next step, the non-ego vehicle on the oncoming lane can
be implemented. Reaching a step further to scenario two, one can see an
additional non-ego vehicle which decelarates at a specific point.

49

7 Concept

Scenarios three and four then feature an intersection. In scenario three
a vehicle from the right crosses when the ego vehicle reaches a specific
position. Without intervention from the AD algorithms a crash should be
guaranteed. A similar approach is taken by scenario four. However, the
non-ego vehicle takes a left turn at the intersection to provoke a crash.

50

8 Implementation Details

The flexible and modular design presented in Chapter 7 is the foundation
for the software design presented within the next Chapters. The flexibility
is also necessary for agile development as (i) the Carla simulator is still in a
young development state, (ii) the OpenScenario standard is too complex to
be fully implemented from scratch and as (iii) the Scenario Loader may be
further developed by others in the future.

To get a better overview on the implementation, Chapter 8.1 will start with
a more detailed outline of the concept. Chapter 8.2 will then provide a
brief overview by presenting the code structure as a class diagram. Finally,
Chapters 8.3-8.5 will provide an in-depth overview of explicit parts of the
code.

8.1 General Overview

Before further details are explained, the following Chapters present the
principles of the designed software, while referring to the concept presented
in Chapter 7. Thereby Chapter 8.1.1 recaps the modules of the Scenario
Loader software itself. Next Chapter 8.1.2 continues with a more detailed
explanation of the communication between the Scenario Loader software
and the AD software, as well as the simulation environment. Closing by
Chapter 8.1.3 which presents a sequence diagram of a single run through.

51

8 Implementation Details

8.1.1 Basic Modules

Looking at the Scenario Loader, one can distinguish the main method
and six different modules, as shown in Figure 8.1. These modules are
used to process the key functionality of the Scenario Loader as Chapter 7

already pointed out. While the main method triggers start up and console
procedures. The following paragraphs should provide a quick overview
before the next Chapters go into more detailed implemented behavior.

Figure 8.1: Scenario Loader: Basic Overview

Scenario Loader Main handles the command line parameters and the
scenario file lookup. It also uses the modules scenario parser and test
control to process each scenario.

Scenario Parser takes a scenario description as input and creates the actor
classes, as well as the event management system as specified by the file.

52

8 Implementation Details

Test Control manages the test of a single scenario. It triggers the start-up
procedure of the threads created by the scenario parser. After the initial-
ization is complete, it triggers the run procedure. The main thread is then
waiting on a signal flag, which can be signaled by either one of the actors,
or a keyboard thread. After wake-up, test control takes care of the scenario
shut-down procedure.

Simulator Control is the controlling thread for the simulator. In the current
version it is able to start and stop the simulator. But it is prepared for future
development, as functionality is designed to take initialization parameters.
These parameters can be the name of the map, or weather configurations.

Time Event Handler has two functionalities: (i) it is the central synchro-
nization of all actors and (ii) it handles timing events. Ideally a simulator
has a synchronization mode. Meaning the simulator does one calculation
step at a time. In other words, at a so called tick, the simulator provides
output, takes input and continues after a signal. Timing events are in close
connection to the synchronization ability. A timing event can be triggered at
specific simulation times.

Ego Actor and Non-Ego Actors are basically the same. Their purpose is
to control the vehicles in the simulator. The difference is simply that the ego
actor uses the commands coming from the AD implementation, instead of
directly following a route provided by the scenario description.

8.1.2 Communication System

This Chapter provides an overview of the communication system, meaning
the complete loop starting from the AD software implemented in ROS via
the Scenario Loader to the Carla Server and back. The following paragraphs
will reference Figure 8.2 which provides a graphical representation.

To get a functional loop, the ROS AD implementation of the Ford Mondeo
and the Carla server should already be running. As the previous Chapter

53

8 Implementation Details

Figure 8.2: Scenario Loader: Communication System Overview

8.1.1 indicated, the Scenario Loader software initializes the actor threads
and the simulator control connects to the Carla server.

After start-up, the actor threads go into a sleep mode and wait for a wake-up
signal. Each server tick is a calculation step of the server. When the server
tick callback is triggered, the Time Event Handler wakes up all actor threads.
The reason for this wait and signal implementation is the synchronized
mode coming in one of the future Carla releases.

After wake-up, the actor threads query their current position. Now the
behavior of the ego and non-ego actors differ. The ego thread sends its
current position and other DBW commands as ROS messages to the ROS
implementation of the Ford Mondeo. The non-ego threads however calculate
their actions for their own.

The DBW message sent by the ego actor thread is then processed by the
ROS Ford Mondeo AD software. The software also gets sensor and pose
information via the Carla–ROS bridge. At this point it is important to
mention that in previous versions of the Scenario Loader software the ego

54

8 Implementation Details

vehicle thread provided non-ego pose and sensor information itself. But
due to ongoing development, the ROS bridge of Carla made additional
processing obsolete.

Generally the ROS Ford Mondeo software does its calculations according to
the ROS time stamp, which is the current simulation step of the simulator.
Therefore the ROS part is always synchronized. So now the calculations
made by the ROS software can be read by the ego actor thread which sends
them to the Carla server and goes to sleep to wait for another wake-up.

Simultaneously the non-ego actors use their routing information — which
they get from their events — to calculate the position and speed matching
the current simulation step. After the calculation each non-ego actor sends
the new positions of their car to the simulator and goes to sleep, similar to
the ego actor.

8.1.3 Run Through

The following paragraphs provide an overview of the basic internal function-
ality of the Scenario Loader from time perspective. The sequence diagram
shown in Figure 8.3 will be the main reference.

On Scenario Loader program launch, the command line parameters are
analyzed and the scenario files are extracted. Next, the main method goes
into a loop where each step handles one scenario file.

In each loop the scenario file is sent to the scenario parser. The scenario
parser checks the file integrity and parses the contents. The gained infor-
mation is used to initialize the simulator control, actor thread and the time
event handler.

After the important threads have been created, the main method of the
Scenario Loader utilizes the test control module to set-up and start-up the
previously created threads.

As one can see in Figure 8.3, each thread does the job it was designed for.
After each shown loop, they go to sleep, until they are woken up by the
time event handler.

55

8 Implementation Details

Figure 8.3: Scenario Loader: Sequence Diagram

Termination of the inner loop can either be triggered by the keyboard thread
spawned by the test control thread, or if an actor thread terminates. An
actor thread may terminate on error, or if a collision is detected.

When the end signal is signaled, the main thread is woken up in the test
control module. The main thread then sends end signals to each thread and
joins them. After successful termination the flags in the actors are analyzed.
If none of them indicate a failed test, the test is a success.

In any case, the test control module also resets respectively deletes the
threads and returns. Then the next scenario can be handled the same way.
Except if the keyboard press — which stopped the last scenario execution —
was a termination signal. Or if there is no scenario left. In these cases the
program simply terminates.

56

8 Implementation Details

8.2 Code Structure

The implementation of the Scenario Loader follows the structure proposed
in Chapter 7. Figure 8.4 shows the main functionality of the Scenario Loader,
which are (i) the scenario parser, (ii) the test control, (iii) the simulator
control and (iv) the time event handler. The Scenario Loader software was
also designed to be modular and as flexible as possible. A classical approach
to achieve modularity is to use inheritance, which leads to behavior as the
Adapter design pattern suggests.

Looking at the class diagram shown in Figure 8.4, one can see that the
OpenScenarioParser implementation has the ScenarioParser class as base
class. The ScenarioParser class — similar to the SimulatorControl class —
provides an interface for other more specific implementations. Speaking
in terms of code, the user can change the initialized class, because the
underlying implementation is always controlled via the base class.

With the Adapter pattern it is also possible to be open for future scenario
format changes. One idea leading to this pattern was the uncertain stage of
the OpenScenario 0.9.1 format. Vires, the company behind OpenScenario,
was announcing an upgrade to version 1.0 since the end of August. The
idea was to support the old version 0.9.1 and the new version 1.0 with very
few changes to the code. This could have been possible, with two separate
OpenScenarioParser implementations.

Going a step further, the implemented actors are also designed as an Adapter
pattern, as shown in Figure 8.5. The Actor class however, also implements
the Observer pattern. As proposed in Chapter 7, the time event handler
is in charge of the synchronization steps. As mentioned in Chapter 8.1.3,
the actor threads go to sleep after they sent their new commands to the
server. When every actoring thread is waiting, the TimedEventHandler
class triggers the next synchronized simulation time step. After updating
the simulation time, the TimedEventHandler triggers the Observer update
method of every subscribed actor.

To ensure the implementation of patterns, the metaclass system of Python3.x
has been used. Metaclasses basically define additional functionality of a
class. One can use it for logging or registering classes at creation time. But

57

8 Implementation Details

Figure 8.4: Scenario Loader: Class Diagram

58

8 Implementation Details

in case of the Scenario Loader, it is used to define singletons and abstract
base classes to ensure specific implementation behavior.

Before stepping further into the details of the Scenario Loader implementa-
tion, it is important to point out that also the events are created as inheritance
models. Per definition, an event has a condition which triggers the event
and an action which is the result of the event. Combining the knowledge
of related research from Chapter 4 and the far reaching specification of
OpenScenario 0.9.1, one can pin down three different types of events. These
events are: (i) events triggered by entities, (ii) events triggered by the simula-
tion time and (iii) events triggered by the state of the simulator (i.e. start-up,
weather change, . . .)

The Scenario Loader software is prepared to take these events, but other
events than EntityEvents will raise NotImplemented errors. The all over
policy of the implementation is to print warnings to the console if parts of
the implementations are skipped, but not directly necessary and to raise
concrete errors, if program execution can not be guaranteed due to missing
implementations. As also Chapter 9 and 10 will point out, the time needed
to fully implement a complete scenario standard and its effects on the
simulator is a task for a team of developers.

59

8 Implementation Details

Figure 8.5: Scenario Loader Support: Class Diagram

60

8 Implementation Details

8.3 Scenario Parsing

The used OpenScenario standard in version 0.9.1 is a sophisticated XML
standard designed by the company Vires. As mentioned in Chapter 5.1.2,
Vires also published the frequently used OpenDrive standard. Similar to
the creation of OpenDrive, Vires discusses and reviews the OpenScenario
standard with industrial partners as can be gathered from the publications
at [37].

To handle the XML-file, the XMLSchema Python library is used. XMLSchema
is fed with the OpenScenario XML Schema Definition (XSD)-file in version
0.9.1 to initialize the parser. The parser is then able to validate a provided
OpenScenario file. After validation the OpenScenario XML file is parsed by
the XMLSchema library which results in a nested Python dictionary.

Due to the complexity of the dictionary, respectively the OpenScenario
standard itself, the best approach to implement functionality is to select a
specific set of features and iteratively implement them. The most simplistic
start is to get the actors of the scenario from the file. After parsing and
setting their initial parameters, more complex elements can be parsed, like
events and trajectories. With every additional parsed element, the rest of the
Scenario Loader functionality has to be improved too.

In case of unsupported functionality, the same policy applies as mentioned in
Chapter 8.2. Critical components, which directly influence existing behavior,
will raise NotImplemented exceptions. Missing implementations for less
critical components result in a warning on the console log.

8.4 Event Handling

Independent of the type, an event always consists of an action and a trigger-
ing condition as shown in Figure 8.6. The starting condition can either be a
pythonic None or a set of conditions. For example: some acting vehicle has
to be within a specific distance to another acting car. Besides that, the three
different types of events can be distinguished by their purpose:

61

8 Implementation Details

EntityEvents are triggered by one or multiple entities. A list in the event
contains all actors required to trigger the start condition. If one actor triggers
its own start condition, it has to check with all other actors if they also
fulfilled their part of the start condition. In other words, each actor has a
list of events to check every simulation step.

SimTimeEvents are triggered by the simulation time. Therefore the start-
ing condition is normally a pythonic None. But conforming to the OpenSce-
nario definition it is possible to hit a specific simulation time and afterwards
deal with the start condition. In this case, the SimTimeEvent is converted
into an EntityEvent with the aid of the StartCondition.

StateEvents are triggered by the state of the simulator. If the simulator,
respectively the scenario is starting, stopping, or reaching another defined
state, the event is triggered. Similar to SimTimeEvents, StateEvents can fall
back to SimTimeEvents or EntitiyEvents after they are triggered.

Figure 8.6: Scenario Loader: Event Layout

62

8 Implementation Details

The event handling itself is implemented in reduced form. This is due
to several reseaons: (i) the SimTimeEvents are not useful enough for the
application cases of the VIF, (ii) the SimTimeEvents are not applicable as
long as the synchronized mode is missing for Carla, (iii) the StateEvents do
currently not add any value to the used short scenarios.

Since only EntityEvents are used in the current software state, the poten-
tial conversion of SimTimeEvents and StateEvents are not implemented.
However, the design of the event handling architecture of the actors can
easily deal with that in the future, as (i) the actors already manage their own
events, (ii) the TimedEventHandler is ready to deal with SimTimeEvents and
as (iii) the SimulatorControl is designed to be equipped with functionality
to handle StateEvents.

Each actor has (i) an event queue with EntityEvents, (ii) an action queue
with Actions and (iii) an execution queue with poses mapped to time stamps
as shown in Figure 8.7. The idea of queues is that they can be filled from
the right side and popped from the left. Therefore it is possible that at each
simulation step, each actor steps from the left to the right through its event
queue and checks if the StartCondition is fulfilled. If it is fulfilled, the actor
takes the reference to the affected actor and calls its setAction method to
transmit the action contained in the event.

Depending on the overwrite parameter of the action, the setAction method
either appends the action to the right of the action queue or overwrites the
action queue with the provided action. In any case, the setting of the action
queue itself is synchronize, but the actor threads are unsynchronized with
each other. Therefore the affected actor may be already past the check of the
action queue described below.

After dealing with its event queue, the actor checks if the action queue is
empty. If the action queue contains elements, the actor takes the actions to
overwrite or extend its execution queue. The decision depends on another
overwrite flag. For example: a new trajectory can either be put at the back
of the current execution queue, or replace the whole queue.

The execution queue is the last element shown in Figure 8.7. The execution
queue contains the trajectory of the actor and is calculated from the actions,
as Chapter 8.5 will elucidate.

63

8 Implementation Details

Figure 8.7: Scenario Loader: Event Queues

64

8 Implementation Details

8.5 Actor Routing

Important to mention here is the fact that the trajectory is not fully stored in
the scenario file. Only changes in the trajectory are stored. Each actor takes
the action points (explained in Chapter 8.4) and calculates its own trajectory.
The resulting trajectory is stored as waypoints in the execution queue.

A waypoint has a pose, a velocity and a time stamp. Currently the distance
between two poses is ten centimeters. If no action is provided to calculate a
new trajectory, the current desired speed is taken to calculate 100 waypoints
straight ahead. If the desired speed is zero the execution queue is set
pythonic None. The time stamp of a waypoint is the simulation time at
which the pose is valid.

After the calculation of the trajectory, the behavior of the ego actor is
different to the non-ego actors. While not implemented in the current
development state due to time reasons, it is planned that the execution
queue will be published as trajectory for the ROS AD implementation.
The software under test is then able to follow the route prepared by the
scenario.

The non-ego actors however, are different. As mentioned above and shown
in Figure 8.8, the execution queue has a reference to the simulation time.
Each actor uses the sorted queue of waypoints to jump to the specified
pose. Thereby the next pose is popped from the left of the execution queue.
Then the current time stamp of the simulator is compared to the time stamp
of the popped pose and to the time stamp of the left most element in the
execution queue. If the current time stamp is somewhere inbetween, the
new pose is interpolated between the points. Else the next pose is popped
from the execution queue. If the queue is empty, the previous step — where
the action queue was checked — is repeated to fill the execution queue
again. The execution queue stays empty, if the desired speed from the last
action is zero. In this case, the actor goes into standstill

65

8 Implementation Details

Figure 8.8: Execution Queue: Actor Routing

66

9 Evaluation

The evaluation of this thesis concentrates on three factors:

(i) a review of the used simulator and scenario format in Chapter 9.1, 9.3
and 9.4. Here the main external elements are checked for their suitability for
the requirements in Chapter 3. The performance of the simulator is tested
in Chapter 9.1 and compared to the principles of SIL testing as stated in
Chapter 1. The scenario format is then reviewed by experts in Chapter 9.3
and analyzed with a view on industrial applicability in Chapter 9.4.

(ii) an analysis of the architecture and performance in the Chapters 9.2 and
9.5. These Chapters review the Scenario Loader software from a software
architectural perspective and compare its features to the requirements in
Chapter 1 and 3. While Chapter 9.2 concentrates on the simulation loop
as a whole, Chapter 9.5 evaluates the performance of the different key
components.

(iii) a look on the internals, consisting of scalability in Chapter 9.6. This
Chapter sums up existing issues and brings them in perspective to scal-
ability and future development. It also provides some ideas for software
architectural improvements, which is a basis for the conclusions made in
Chapter 10.

For the evaluation of the functionality and the performance, the set of four
basic scenarios — defined in Chapter 7.7 and shown in Figure 7.7 — have
been used. The four scenarios represent scenario groups. In other words,
these basic scenarios were additionally tested in reduced form, for example
without oncoming traffic.

The scenarios were modeled with OpenScenario 0.9.1, chosen in Chapter
5.2.3. The format itself is rather complex. A basic overview is shown in
Figure 9.1, for a better understanding. In context of this thesis, the two most

67

9 Evaluation

important sections of the scenario format are the Entities element and the
Storyboard element. The Entities element contains a description of all objects
(vehicles and pedestrians). The current version of the Scenario Loader needs
simply the definition of a vehicle to create an actor. Sub-elements like the
bounding box or axles are not further parsed.

Within the Storyboard element, the Init element defines the initial position of
the vehicles. The Scenario Loader uses that information to spawn the actors.
The Story element contains the logic of the scenario. From top to bottom it
consists of Acts, Sequences, Maneuvers and Events. Events themselves consist
of Actions and StartConditions.

The running version of the Scenario Loader currently supports only one
element of a kind, except for Sequences. Considering for example scenario
four in Figure 7.7 the non-ego vehicle has (i) a Sequence for the first part as
oncoming traffic, (ii) a Sequence for the turn and (iii) a Sequence for driving
straight ahead after the turn. Taking the full logic of OpenScenario aside,
the Sequences can be broken down to three different Events: (i) Event straight
ahead oncoming, (ii) Event turn, (iii) Event straight ahead after turn.

The StartCondition of the first Event is triggered by the ego vehicle as it
moves by a specific point (calculated via speed and distance before the
scenario). The second and third Event are triggered by the non-ego vehicle
itself. At first the non-ego vehicle reaches a specific position and drives the
turn. And if the ego vehicle successfully prevents the collision, the non-ego
vehicle also reaches the end-point of the turn and continues straight ahead
after triggering the third Event.

This scenario could also be modeled in other ways, but specific guidelines
are not yet published by the OpenScenario team.

68

9 Evaluation

Figure 9.1: Basic Layout of OpenScenario 0.9.1

69

9 Evaluation

9.1 Carla Simulator

First of all it has to be pointed out that two different Carla versions were
used during this thesis. In the beginning, the stable version 0.8.x provided
a Protocol Buffer interface. However, the available features were limited, as
there was no possibility to directly influence the pose of non ego vehicles or
even pedestrians. Additionally the performance was critically limited due
to the Protocol Buffer interface used in Python.

The other Carla version, 0.9.x implemented the remote procedure call (RPC)
library into the communication stack. Although RPC was first criticized as
performance bottleneck, it turned out that the Unreal Engine will most likely
be the first performance limiter. The new interface also allowed to directly
control non-ego vehicles and promised direct control over pedestrians.
However, the new Carla versions lacked the synchronized mode, which later
turned out to be necessary, as the Python implementation of the Scenario
Loader got timing issues as outlined in Chapter 9.5.

In general the performance of Carla has a lot of potential, when compared
to its competitors. Especially as the underlying Unreal Engine is a well
developed game engine. However, as the previous paragraph stated, the
synchronized mode is still missing in the current version 0.9.3. While the
simulator provides the most basic requirements stated in Chapter 5.1.1,
the missing synchronized mode has a strong influence on the reliability
and replayability of the whole Scenario Loader loop. To be more specific:
Carla does not guarantee a fixed time between each simulation step. Carla
simply calculates the graphics and physics as fast as possible. Additionally
the Scenario Loader software can sometimes not guarantee fast enough
responses. The Carla engine and the actors of the Scenario Loader can
therefore reach a highly asynchronous state. This in consequence may lead
to serious deviations as quantified below.

To quantify the derivation, Scenario 2 and 3 — defined in Chapter 7.7 and
shown in Figure 7.7 — were used in a reduced form. The tested scenarios
contained the ego vehicle and one non-ego vehicle to provoke a crash. For
both scenarios, the ego vehicle was defined to travel with 50km/h. The
Scenario Loader software was run on two different machines. Machine 1

was the development machine which ran Ubuntu 16.04 LTS in a VirtualBox

70

9 Evaluation

on a Windows 10 host, with a Intel i7-8550U. Machine 2 was for comparison
and ran native Ubuntu 16.04 LTS and had an Intel i7-7800X.

Scenario 2 was set up as shown in Figure 9.2. The ego vehicle triggers
the start of the non-ego vehicle. The non-ego vehicle immediately drives
40km/h. When the ego-vehicle reaches the next trigger point, it immediately
reduces its speed to 20km/h. The speed reduction will then cause a crash.

Figure 9.2: Deviation Quantification: Scenario 2 Setup

Scenario 3, shown in Figure 9.3 features a non-ego vehicle which is triggered
by the ego vehicle at a specific point. The non-ego vehicle then drives straight
ahead with 10km/h which results in a crash.

Figure 9.3: Deviation Quantification: Scenario 3 Setup

71

9 Evaluation

The results of the deviations, presented in Table 9.1, are based on 10 run-
throughs on each Machine. The deviations in the table are thereby measured
to the average center of the measurement set. The results show, the longer
the scenario, the higher the error. Overall, the results showed that the
asynchronous character creates great deviations if the scenario module is
to slow. Additionally, the asynchronous nature of the simulation creates a
negative feedback with the controller of the SIL environment, which leads
to great variations in the crash area, even though the trigger points are quite
accurate.

Furthermore, as the deviations are also highly influenced by the computa-
tional load of the machine — which was observed during development —
it should be stated that no commercial simulator runs in an asynchronous
mode. At this point it should also be pointed out that deviations in physics
simulations are normal, especially if controllers are used. Deviations de-
pending on the type and complexity of the simulation, as well as the tested
scenario can in most cases be inquired from the simulation vendor.

Deviation Type Avg M1 Range M1 Avg M2 Range M2

S2: Ego Event Trigger 103 52–168 47 21–83

S2: Non-Ego Event Trigger 107 63–201 51 27–85

S2: Crash Area 10700 6900–17400 6900 4300–9900

S3: Ego Event Trigger 17 9–31 9 5–19

S3: Crash Area 3400 2500–5200 2100 1200–4400

Table 9.1: Deviations from the average center of the set (values in mm)

Summarizing the deviation issue, one can estimate that a deviation of 2-5
meters, as in scenario 3, can be the difference between a hit or miss of two
actors. In other words, it could lead to an accidental fail or success of the
tested scenario. Figure 9.4 shows for example that scenario 3 could be a
frontal or side impact with that kind of deviation.

Moving on to scalability, the performance of Carla is limited to the perfor-
mance of the computer running the simulation server. When using only pose
information from the simulation, the server runs with solid 50-70 frames
per second (FPS). The used hardware is an NVIDIA GTX 1060 6GB, 32GB
RAM and an Intel i7-7800X. With this setup it is no problem to connect three

72

9 Evaluation

Figure 9.4: Carla Simulator: Crash Deviation (f.l.t.r.: Frontal and Side Impact)

Scenario Loader clients for tests on one map. It is also possible to control
10-20 cars without major frame drops below 40 FPS. However, the FPS drop
significantly when more than 3 cameras and a complex LIDAR sensor are
used on the mentioned hardware. But as with other simulation platforms,
the used hardware is the main factor for possible sensor computations.

9.2 Simulation Loop

Pointed out in Chapter 3 the Scenario Loader software should be able (i) to
load and play a scenario, (ii) to synchronize the AD implementation with
the simulator and (iii) to report if a scenario failed or succeeded. While it can
be said that all of these requirements are fulfilled, the next few paragraphs
go into detail on the level of support:

Scenario loading and playing is implemented iteratively. Basic functionality
as vehicle definition, spawn location and simple routes can be read from the
file. If something is not yet supported, a console message is printed with
a warning or error message. The decision for the message type is thereby
made by the criticality of the not yet parsable information. Both elements,
loading as well as playing, are dependent on each other. If a feature to load
is implemented, it also has to be implemented on the playing side and vice
versa. The Scenario Loader is also able to handle multiple scenarios, as each
scenario file is handled for its own. The Scenario Loader takes either single
files or multiple folders as parameters for the scenarios.

73

9 Evaluation

Scenario synchronization is the bridge between the ROS AD software and
the simulator. The main problem here is the missing synchronization mode
of Carla. The Scenario Loader software is already able to synchronize new
incoming data from the server with the AD implementation. However, the
server does not wait for a response and floods the client with new calculation
steps, as soon as they are available.

Scenario reporting is implemented very light-weight. The scenario is de-
fined to be a success if the ego-vehicle reaches a specific target point and
stops there with zero velocity. A scenario can be failed, if the Carla server
detects a crash with the ego-vehicle. One can already see that there are other
possibilities for the scenario to fail. For example when the ego-vehicle takes
too long to reach the target. Or when the ego-vehicle disobeys traffic rules.
All of these features can easily be implemented as checks in the ego actor.
However, completeness of scenario success checks was not the target of this
thesis.

Summarizing the above statements, evaluation showed that the implemented
logic works as expected. This is mainly due to the reason that the desired
behavior was immediately tested after its implementation. However, al-
though the basic logic of the simulation loop is working — as tested with
the required scenarios defined in Chapter 7.7 and shown in Figure 7.7 —
there are two important major issues: (i) the simulator has no synchronized
mode and (ii) the simulator needs steering angles for the vehicles to provide
realistic physics.

The missing synchronized mode not only leads to the deviations expained
in Chapter 9.1. But the overall performance of the system suffers due to
necessary synchronization overhead combined with a weakness of Python,
as analyzed in Chapter 9.5. The physics problem, also described in Chapter
9.5 might not be an issue with a working synchronized mode. However the
effect is still important to mention to support more accurate simulations.

74

9 Evaluation

9.3 OpenScenario Reviewed By Experts

To get a better impression of the practicability in everyday research and
development, two experts of the VIF have been asked to review the format
and state their opinion:

Bernhard Hillbrand uses the scenario generator of Vires VTD to create test
scenarios for internal verification scenarios. Overall he pointed out that it is
generally a complicated task to fully specify a scenario. Additionally, the
editing is easier if a graphical user interface (GUI) can be used.

For the review, Bernhard was presented Scenario 3 shown in Figure 7.7 in
form of a hand drawn sketch and in form of the raw OpenScenario XML.
He first analyzed the sketch and said that he never opened the underlying
scenario description files of VTD, as the GUI has everything he needs for
simple scenarios. However, he then built the simple version of Scenario 3

with the VTD scenario creation tool to compare the formats.

During the comparison of both scenario description formats he recognized
similarities between the Vires VTD scenario format and OpenScenario.
As Vires is the main developer of the OpenScenario standard, this fact is
understandable. The biggest similarity he found, is the usage of libraries.
Both scenario formats use libraries for the definition (i) of vehicle attributes
and (ii) of specific trajectories. Although the scenario was very short, he said
that one can assume that the underlying description logic is very similar.
However he pointed out that the XML tags and the nesting logic show the
main differences.

Kailin Tong uses a scenario generation tool for the traffic simulation plat-
form SUMO. Kailin was provided the same setup as Bernhard. He got
the sketch of the scenario as well as the raw OpenScenario XML. At the
beginning of the interview Kailin pointed out that he uses a GUI to design
the principle of the scenario. Afterwards he sets specific parameters directly
in the resulting XML files. When he compared the SUMO format to the
OpenScenario format, he could find similarities in the modular approach of
both scenarios. However, as he uses rather simple scenarios for his simula-
tions, the complexity of the event logic in OpenScenario was rather new to
him.

75

9 Evaluation

Then, after a more detailed analysis he pointed out that SUMO simulates the
vehicles different than what is expected from simulators using OpenScenario.
While SUMO uses parameters to control the vehicles, OpenScenario grants
the opportunity to trigger specific routes for a target vehicle, as soon as a
condition is met. He continued to explain that he usually does not need
event triggered behavior within his SUMO simulations, but he supports the
idea of the underlying concept for complex simulations.

Both interviews turned out to be consistent with the impression that Vires is
developing the OpenScenario format with industrial and research partners.
The main reason for that is the versatile complexity of the OpenScenario
format. As Bernhard said, the format allows to create complex and detailed
scenarios. And it is thereby also flexible and modular as Kailin mentioned
with his expertise.

9.4 OpenScenario Format

The chosen scenario description format OpenScenario fulfills the basic re-
quirements outlined in 5.2.1. Especially modular approaches to use libraries
for vehicles and maneuvers avoids redundancies. Also the nested Syntax of
XML makes parsing and validation relatively easy. During implementation,
version 0.9.1 was used. Due to the pending release, there is currently no
editor with a GUI available. A change in the XML file of the scenario has
therefore be made by hand.

Comparing the OpenScenario format to other approaches in literature, one
can see that the OpenScenario format has strong similarities to the database
format presented by [21]. The basic principle of the possibility to reuse parts
of the scenario (like the vehicle definition or specific trajectories) is the major
feature of both approaches. Although there are no editors for the format,
the modularity of OpenScenario is the key feature for a scenario library.

One can estimate from the features of the format, as well as the two inter-
views provided in Chapter 9.3 that the OpenScenario format has the poten-
tial to become a standard for file based scenario databases. As Vires showed
with the OpenDrive format, they are motivated to provide a common basis

76

9 Evaluation

with the help of industrial and research partners. But a lot depends on
competitors. For example potential competitors may also provide scenarios
in database form, as [21] proposed.

9.5 Performance

To explicitly test the performance, the scenarios from Figure 7.7 have been
used. In the first attempt, all scenarios had three oncoming non-ego vehicles
as traffic. This immediately lead to the first critical problem: the Scenario
Loader is slower than the calculations of the Carla server. This resulted
in lagging vehicles on the simulator. After deep analysis of the code, it
turned out that the locking mechanism used to synchronize the threads
creates roughly one locking call per 5-10ms. Python is not designed to
access the hardware level at such a frequent rate. After talking to Matthias
Scharrer, a Python expert at the VIF and doing some desk research, the issue
was confirmed. At this point it can be said that, as the Python prototype
is working, the software should be reimplemented in C++ to guarantee
execution speed.

After discovering this underlying software performance issue, the tested
scenarios were reduced to simulate only one additional non-ego vehicle.
With only the ego vehicle and one non-ego vehicle left, the Scenario Loader
stayed slightly below maximum processing load. At this point it also has
to be mentioned that a sync mode of Carla would fix this problem, as the
server would not be able to flood the Scenario Loader with new calculation
steps. The Scenario Loader would then be able to take as long for thread
scheduling as necessary.

The overall performance of the Carla simulator has already been evaluated
in Chapter 9.1. The Unreal Engine is generally a fitting simulation platform
for the Scenario Loader, with the exception of the missing synchronous
mode. This missing feature also leads to small jitters of the non-ego cars
in the simulation. The loose asynchronous connection therefore prevents
smooth car placement. The non-ego placement, as explained in Chapter
8.5, is generally applicable. However, due to the asynchronous state, the
current timestamp does not always match the time stamp of the server.

77

9 Evaluation

Therefore, setting the forward speed of the non-ego vehicle is like applying
a smoothing filter to the problem.

Even though the vehicle movement can be fixed to a large extent, scenario
4 in Figure 7.7 is not working. In all other three scenarios the non-ego
vehicle drives straight ahead. When the position of the vehicle is set, the
forward speed is taken and the simulator can calculate logical physical
effects. However, when the non-ego vehicle in scenario 4 takes a left turn,
the vehicle is slightly rotated at each point. Due to a missing steering angle
of the wheels and due to missing rotational speed, the vehicle is not placed
smoothly. The most important thing to get this scenario to work, is the
synchronization mode. Additionally, as soon as the Carla team provides
access to the physical model of the vehicles, the relation between steering
angle and steering float value [0..1] can be set, which should smoothen the
movement similar to setting the forward speed.

9.6 Scalability And Expandability

Summing up the insights of the previous Chapters 9.1-9.5, it can be said
that the Carla simulator based on the Unreal Engine is highly scalable. It
is able to handle multiple clients, as well as multiple simulated vehicles.
Additionally the Scenario Loader can easily handle single scenario files, up
to big databases consisting of scenario files in folders.

The modular architectural concept of the Scenario Loader software, pre-
sented in Chapter 7, guarantees easy implementation of additional features.
These features may be additional parameters contained in the OpenScenario
file, up to new features of the Carla simulator. It is even possible to exchange
the scenario format, or the simulator with minimal effort, as the controlling
classes implement the adapter pattern.

However, iterative implementation lead to one issue: the actors also based
on the adapter pattern started to contain code redundancy and are too
integrated into parts of the communication to the server. Overall, if one
considers to refactor the actor design, it is recommended to also consider
switching to a more embedded programming language. For example C++,

78

9 Evaluation

which has the big advantage of a more shallow connection to the locking
mechanisms of the operating system.

A missing feature is the integration of the routing algorithm for the ego
vehicle. As elaborated in Chapter 8.5, the non-ego vehicles already have a
route in their execution queue. The same calculations have to be done for
the ego-vehicle. But in contrast to the non-ego vehicle, the ego route has to
be published as path message, for the AD SIL to follow. This step should
guarantee that the ego vehicle also takes a specific route in the scenario.

79

10 Conclusion

The Scenario Loader designed within this thesis combines the strengths
of an existing simulator and an existing scenario format with the scenario
handling principles of multiplayer game engines. The performance of the
architecture turned out to be reasonable, although it struggles with Python
as the chosen programming language. The Chapters 10.1–10.3 will continue
to discuss and summarize the resulting solution, respectively point out
improvements and possible future applications.

10.1 Discussion

The best way to analyze the outcome of this thesis is to discuss the three
main components introduced in Chapter 3.

The Simulation Engine fulfills the main requirements stated in Chapter
5.1.1. During the development phase, the missing capability to simulate
pedestrians was a problem. However, the interfaces of the Scenario Loader
are ready and can easily be adapted to also use the pedestrian models which
were reintroduced in the newest Carla version. The only thing absolutely
missing in Carla is a synchronized mode, as stated multiple times in Chapter
9.

The synchronized mode was no requirement in Chapter 5.1.1. However, all
important simulation platforms support that out of the box. Even Carla
supported it until version 0.8.4. Since version 0.9.0, also the Carla community
is waiting for the reimplementation. But generally speaking, the decision to
utilize the Carla simulator was the best. While it was time intensive to adapt
to the version changes, it saved costs for a platform with closed source.

80

10 Conclusion

The Scenario Format OpenScenario is still promising for the future and
combines the knowhow from industry and research, as stated in Chapter
9.4. The format provides a good basis for straight forward, as well as very
complex scenarios. However, the standard is not yet fully released. The
only accessible version is OpenScenario 0.9.1. Missing documentation and
potential deprecated code also prevented the creation of a simple GUI to
create scenarios.

Controlling Software is based on the design of multiplayer game engines,
as presented by Chapter 7. The implementation, explained in more de-
tail in Chapter 8, has an additional focus on modular flexibility. Both, the
underlying design as well as the software architecture, support iterative
development approaches. This way it is possible to exchange the used
simulation engine as well as the scenario format with minimal effort. How-
ever, the biggest flaw in the resulting Scenario Loader software is the used
programming language Python. While Python was a good choice, as it
allowed for rapid development, it massively lacks performance when it
comes to time critical synchronized threading. As analyzed in Chapter 9.5,
Python renders multi non-ego vehicle simulations impossible if mid range
processing hardware is used.

All in all, the Scenario Loader fulfills the expectations and is simply lacking
manpower to further implement the OpenScenario standard.

10.2 Known Issues And Recommended
Improvements

The overall architecture and implementation of the Scenario Loader software
fits the requirements stated in Chapter 3. However, the proof of concept still
contains some issues as outlined in the previous Chapter 9. These issues
and other recommended improvements are listed in the following:

Python should be exchanged for a more embedded programming lan-
guage like C++. As elaborated in Chapter 9.5, the synchronization of the

81

10 Conclusion

actor threads creates a major performance issue: due to the high level script-
ing approach of Python, the access to the atomic locking mechanism takes
too much computational power.

Synchronous mode is a must have for future iterations. The missing syn-
chronous mode in Carla 0.9.3 creates major issues not only for the per-
formance, but also for the accuracy. As soon as the synchronous mode is
implemented, most of the existing issues listed below can be easily fixed, or
may even be obsolete.

Turning vehicles can only be simulated when they drive themselves, as
elaborated in Chapter 9.5. When the vehicles are placed via time progressive
positioning, the physics engine can not handle rotating vehicles due to the
missing steering angle. However, this issue is mainly created by the missing
synchronous mode. Additionally it can not be fixed, as the physical models
of the simulated vehicles are not accessible. In other words, the Scenario
Loader software can not create a relation between the simulated physical
steering angle values and the steering float value [0..1], which has to be
provided.

Jump backs in server time are also caused by the asynchronous mode of
the Carla server. The Carla server mostly provides a constant time delta
between the simulation steps. However, within a timeframe of 1-5 seconds,
the server provides the same simulation time twice. This issue gets more
prominent when the computer, running the Carla server, is under heavy
load. The origin of this issue is yet unknown. It might be an Unreal Engine
problem, a Carla problem, or even a problem triggered by the Scenario
Loader software.

Deadlock on scenario end happens sometimes on bad scheduling. The
test control tries to disconnect the simulator control. At the same time it
may happen that the run cb method is currently active. Due to resource
accesses, the program runs into a deadlock. The issue can be fixed with
a simply lock. However, this lock would create additional overhead, as it

82

10 Conclusion

would be checked at multiple locations. This leads in further consequence to
timing destabilization in combination with the Python locking mechanism
and the missing synchronization mode.

Refactor the actor class to reduce code redundancy. Due to iterative im-
plementation, the adapter pattern architecture of the actor is not fulfilled.
For example event handling and execution queue handling are too inte-
grated into the CarlaActor. Additionally the handling of events and the
execution queue could be converted into a strategy design pattern. This
approach would provide even more flexibility

Actor routing for the ego actor is missing. The ego actor should publish
the calculated execution queue as route for the AD SIL. This would work
best in combination with an interface pattern, to be more flexible on the
used SIL. Additionally, the refactoring of the actor class might come in
handy, as the strategy pattern could easily differentiate between ego and
non-ego execution queue calculation.

10.3 Future Work

After the scientific part of this thesis one might consider the following
points:

Analyse different scenario loading approaches of existing simulators. As
stated in Chapter 4, most research is done in the field of different forms of
HIL and different forms to represent scenarios. For both research applica-
tions it seems to be necessary effort to load and play scenarios. However,
especially in game design there are different possibilities to handle sto-
ries/scenarios. In other words, it would be interesting to apply different
methodologies of story handling from game design to AD SIL testing.

83

10 Conclusion

Testing multiple autonomous cars at once might grant additional testing
possibilities. The common perception of X in the loop is one element in
the loop. In case of this thesis, this is SIL: meaning the AD software of
one vehicle in the loop. However, as Carla already provides the simulator
material to test multiple ego cars, it should be investigated if simulating
multiple ego cars at once gathers benefit. While this approach seems to
generate non-imitable situations at first, it is a great possibility for AD
software to deal with calculation mistakes from other AD implementations.
Compared to human standards, AD SIL testing would be driving school up
to years of experience. Testing multiple autonomous vehicles with injections
of small situations, like in human traffic, could be compared to every day
traffic or to monkey testing approaches in software testing.

Reimplement the software in C++ to get access to the full performance. A
similar idea is already planned, as this thesis will be made publicly available
to the Carla development team. Although they will most likely redesign the
software for their needs, the architecture and experience contained in this
thesis might help them to avoid specific pitfalls.

84

Appendix

85

Acronyms

ABS anti-lock braking system. 12

ACC Adaptive Cruise Control. 1

AD automated driving. 3, 6, 9, 15, 16, 18, 22, 25–29, 31, 35–37, 43, 45, 47, 48,
58

ADAS advanced driver assistance systems. 1, 4–7, 11–13, 16, 21–23, 29, 33,
34, 36

ADS automated driving systems. 1, 3–5, 7, 9, 11, 21, 23, 34, 36

AEB automated emergency braking assistance. 12

AI Artificial Intelligence. 28

AR Augmented Reality. 6

CVIS Cooperative Vehicle Infrastructure System. 34

DBW drive-by-wire. 40, 47, 48

ECU electronic control unit. 3, 5, 12

FPS frames per second. 62

GPS Global Positioning System. 34, 35

GUI graphical user interface. 62, 63

HIL hardware in the loop. 5, 6, 18, 21

HMD head mounted display. 6

ICARSC International Conference on Autonomous Robot Systems and
Competitions. 11

ICRA International Conference on Robotics and Automation. 11

IEEE Institute of Electrical and Electronics Engineers. 23

IROS International Conference on Intelligent Robots and Systems. 11

ITSC International Conference on Intelligent Transportation Systems. 11

86

Acronyms

IV Intelligent Vehicles Symposium. 11

LIDAR light detection and ranging. 22, 25, 28, 29, 62

LKA Lane Keeping Assistant. 1

MBSS model based scenario specification. 39

MIL model in the loop. 5, 21

MORSE Modual OpenRobots Simulation Engine. 35

OEM Original Equipment Manufacturer. 1

PELOPS Programm zur Entwicklung längsdynamischer, mikroskopischer
Prozesse in system relevanter Umgebung. 35

RHIL robot hardware in the loop. 18

ROS robot operating system. 7, 18, 21, 22, 25–29, 31–33, 35, 39, 40, 43, 47,
48, 58

RPC remote procedure call. 61

SAE Society of Automotive Engineers. 1, 5, 9

SIL software in the loop. 3–7, 9, 13, 19, 21

SiVIC Simulator of Vehicle, Infrastructure and sensor. 33

TJA Traffic Jam Assistant. 1

VIF VIRTUAL VEHICLE Research Center. 22, 23, 25–27, 36, 56, 62

VANET vehicular ad hoc network. 15

VeHIL vehicle hardware in the loop. 6, 13

VIL vehicle in the loop. 6, 13, 21

XML Extensible Markup Language. 39, 41, 43, 54, 62, 63

XSD XML Schema Definition. 54

87

Bibliography

[1] S. of Automotive Engineers SAE, Taxonomy and definitions for terms
related to on-road motor vehicle automated driving systems, Jan. 2014.
doi: https://doi.org/10.4271/J3016_201401. [Online]. Available:
https://doi.org/10.4271/J3016_201401 (cit. on pp. 1, 3, 7).

[2] Groovecar. (Mar. 2019). Autonomous parking - image, [Online]. Avail-
able: https://www.groovecar.com/media/images/articles/2016/
09/tech- out- my- new- car/automatic- parking- new- advances-

from-chrysler/automatic-parking-new-advances-from-chrysler-

1.jpg (cit. on p. 2).

[3] A. Miglani, “User interface design for highly and fully automated
driving: Designing for system trust and comfort in non-driving related
tasks,” PhD thesis, Aug. 2017 (cit. on p. 3).

[4] A. GmbH. (Jan. 2019). Alp-lab homepage, [Online]. Available: https:
//www.alp-lab.at/ (cit. on p. 4).

[5] D. J. Verburg, A. C. M. van der Knaap, and J. Ploeg, “Vehil: Developing
and testing intelligent vehicles,” in Intelligent Vehicle Symposium, 2002.
IEEE, vol. 2, Jun. 2002, 537–544 vol.2. doi: 10.1109/IVS.2002.1188006
(cit. on p. 8).

[6] T. Bokc, M. Maurer, and G. Farber, “Validation of the vehicle in the
loop (vil); a milestone for the simulation of driver assistance systems,”
in 2007 IEEE Intelligent Vehicles Symposium, Jun. 2007, pp. 612–617. doi:
10.1109/IVS.2007.4290183 (cit. on p. 8).

[7] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defin-
ing and substantiating the terms scene, situation, and scenario for
automated driving,” in 2015 IEEE 18th International Conference on In-
telligent Transportation Systems, Sep. 2015, pp. 982–988. doi: 10.1109/
ITSC.2015.164 (cit. on pp. 8, 17–19, 37).

88

https://doi.org/https://doi.org/10.4271/J3016_201401
https://doi.org/10.4271/J3016_201401
https://www.groovecar.com/media/images/articles/2016/09/tech-out-my-new-car/automatic-parking-new-advances-from-chrysler/automatic-parking-new-advances-from-chrysler-1.jpg
https://www.groovecar.com/media/images/articles/2016/09/tech-out-my-new-car/automatic-parking-new-advances-from-chrysler/automatic-parking-new-advances-from-chrysler-1.jpg
https://www.groovecar.com/media/images/articles/2016/09/tech-out-my-new-car/automatic-parking-new-advances-from-chrysler/automatic-parking-new-advances-from-chrysler-1.jpg
https://www.groovecar.com/media/images/articles/2016/09/tech-out-my-new-car/automatic-parking-new-advances-from-chrysler/automatic-parking-new-advances-from-chrysler-1.jpg
https://www.alp-lab.at/
https://www.alp-lab.at/
https://doi.org/10.1109/IVS.2002.1188006
https://doi.org/10.1109/IVS.2007.4290183
https://doi.org/10.1109/ITSC.2015.164
https://doi.org/10.1109/ITSC.2015.164

Bibliography

[8] O. S. R. Foundation. (Jan. 2019). Ros-homepage, [Online]. Available:
http://www.ros.org/ (cit. on pp. 9, 41).

[9] A. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera, and N. O. Salschei-
der, “Robot operating system: A modular software framework for
automated driving,” in 2016 IEEE 19th International Conference on In-
telligent Transportation Systems (ITSC), Nov. 2016, pp. 1564–1570. doi:
10.1109/ITSC.2016.7795766 (cit. on pp. 9, 41).

[10] D. Gruyer, S. Choi, C. Boussard, and B. d’Andréa-Novel, “From virtual
to reality, how to prototype, test and evaluate new adas: Application
to automatic car parking,” in 2014 IEEE Intelligent Vehicles Symposium
Proceedings, Jun. 2014, pp. 261–267. doi: 10.1109/IVS.2014.6856525
(cit. on pp. 13, 35).

[11] M. R. Zofka, S. Klemm, F. Kuhnt, T. Schamm, and J. M. Zöllner,
“Testing and validating high level components for automated driving:
Simulation framework for traffic scenarios,” in 2016 IEEE Intelligent
Vehicles Symposium (IV), Jun. 2016, pp. 144–150. doi: 10.1109/IVS.
2016.7535378 (cit. on p. 13).

[12] J. E. Stellet, M. R. Zofka, J. Schumacher, T. Schamm, F. Niewels,
and J. M. Zöllner, “Testing of advanced driver assistance towards
automated driving: A survey and taxonomy on existing approaches
and open questions,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, Sep. 2015, pp. 1455–1462. doi: 10.
1109/ITSC.2015.236 (cit. on pp. 14, 15).

[13] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “Identifying a
gap in existing validation methodologies for intelligent automotive
systems: Introducing the 3xd simulator,” in 2015 IEEE Intelligent Vehi-
cles Symposium (IV), Jun. 2015, pp. 648–653. doi: 10.1109/IVS.2015.
7225758 (cit. on p. 14).

[14] M. Feilhauer and J. Häring, “A multi-domain simulation approach to
validate advanced driver assistance systems,” in 2016 IEEE Intelligent
Vehicles Symposium (IV), Jun. 2016, pp. 1179–1184. doi: 10.1109/IVS.
2016.7535539 (cit. on pp. 15, 16).

89

http://www.ros.org/
https://doi.org/10.1109/ITSC.2016.7795766
https://doi.org/10.1109/IVS.2014.6856525
https://doi.org/10.1109/IVS.2016.7535378
https://doi.org/10.1109/IVS.2016.7535378
https://doi.org/10.1109/ITSC.2015.236
https://doi.org/10.1109/ITSC.2015.236
https://doi.org/10.1109/IVS.2015.7225758
https://doi.org/10.1109/IVS.2015.7225758
https://doi.org/10.1109/IVS.2016.7535539
https://doi.org/10.1109/IVS.2016.7535539

Bibliography

[15] C. Zhang, Y. Liu, D. Zhao, and Y. Su, “Roadview: A traffic scene simu-
lator for autonomous vehicle simulation testing,” in 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC), Oct. 2014,
pp. 1160–1165. doi: 10.1109/ITSC.2014.6957844 (cit. on pp. 15, 35).

[16] M. R. Zofka, R. Kohlhaas, T. Schamm, and J. M. Zöllner, “Semivirtual
simulations for the evaluation of vision-based adas,” in 2014 IEEE
Intelligent Vehicles Symposium Proceedings, Jun. 2014, pp. 121–126. doi:
10.1109/IVS.2014.6856593 (cit. on p. 15).

[17] F. Michaeler and C. Olaverri-Monreal, “3d driving simulator with
vanet capabilities to assess cooperative systems: 3dsimvanet,” in 2017
IEEE Intelligent Vehicles Symposium (IV), Jun. 2017, pp. 999–1004. doi:
10.1109/IVS.2017.7995845 (cit. on p. 17).

[18] G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated gener-
ation of diverse and challenging scenarios for test and evaluation of
autonomous vehicles,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 1443–1450. doi: 10.1109/ICRA.
2017.7989173 (cit. on pp. 18, 38).

[19] Cognata. (Jan. 2019). Cognata-homepage, [Online]. Available: https:
//www.cognata.com/ (cit. on pp. 18, 33).

[20] D. Zhao, Y. Guo, and Y. J. Jia, “Trafficnet: An open naturalistic driving
scenario library,” in 2017 IEEE 20th International Conference on Intelli-
gent Transportation Systems (ITSC), Oct. 2017, pp. 1–8. doi: 10.1109/
ITSC.2017.8317860 (cit. on pp. 18, 19, 38).

[21] J. Bach, S. Otten, and E. Sax, “Model based scenario specification
for development and test of automated driving functions,” in 2016
IEEE Intelligent Vehicles Symposium (IV), Jun. 2016, pp. 1149–1155. doi:
10.1109/IVS.2016.7535534 (cit. on pp. 19, 40, 76, 77).

[22] RoboCup. (Feb. 2019). Robocup-homepage, [Online]. Available: https:
//www.robocup.org/ (cit. on p. 20).

[23] I. TU-Graz. (Feb. 2019). Ist-homepage, [Online]. Available: http://
www.robocup.tugraz.at/?p=1553 (cit. on p. 20).

90

https://doi.org/10.1109/ITSC.2014.6957844
https://doi.org/10.1109/IVS.2014.6856593
https://doi.org/10.1109/IVS.2017.7995845
https://doi.org/10.1109/ICRA.2017.7989173
https://doi.org/10.1109/ICRA.2017.7989173
https://www.cognata.com/
https://www.cognata.com/
https://doi.org/10.1109/ITSC.2017.8317860
https://doi.org/10.1109/ITSC.2017.8317860
https://doi.org/10.1109/IVS.2016.7535534
https://www.robocup.org/
https://www.robocup.org/
http://www.robocup.tugraz.at/?p=1553
http://www.robocup.tugraz.at/?p=1553

Bibliography

[24] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache, “Simulation
environment for mobile robots testing using ros and gazebo,” in 2016
20th International Conference on System Theory, Control and Computing
(ICSTCC), Oct. 2016, pp. 96–101. doi: 10.1109/ICSTCC.2016.7790647
(cit. on p. 20).

[25] A. Martin and M. R. Emami, “An architecture for robotic hardware-in-
the-loop simulation,” in 2006 International Conference on Mechatronics
and Automation, Jun. 2006, pp. 2162–2167. doi: 10.1109/ICMA.2006.
257628 (cit. on p. 20).

[26] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and V.
Vanhoucke, “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” in 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2018, pp. 4243–4250. doi:
10.1109/ICRA.2018.8460875 (cit. on p. 21).

[27] C. Pilz, “Realistic simulation of a time of flight camera for autonomous
parking,” Master project at University of Technology Graz, Aug. 2017

(cit. on p. 23).

[28] A. E. Gómez, T. C. dos Santos, C. M. Filho, D. Gomes, J. C. Perafan,
and D. F. Wolf, “Simulation platform for cooperative vehicle systems,”
in 17th International IEEE Conference on Intelligent Transportation Systems
(ITSC), Oct. 2014, pp. 1347–1352. doi: 10.1109/ITSC.2014.6957874
(cit. on p. 24).

[29] K. S. Swanson, A. A. Brown, S. N. Brennan, and C. M. LaJambe,
“Extending driving simulator capabilities toward hardware-in-the-
loop testbeds and remote vehicle interfaces,” in 2013 IEEE Intelligent
Vehicles Symposium (IV), Jun. 2013, pp. 122–127. doi: 10.1109/IVS.
2013.6629458 (cit. on p. 24).

[30] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual
Conference on Robot Learning, 2017, pp. 1–16 (cit. on pp. 26, 36, 39, 41,
42).

91

https://doi.org/10.1109/ICSTCC.2016.7790647
https://doi.org/10.1109/ICMA.2006.257628
https://doi.org/10.1109/ICMA.2006.257628
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1109/ITSC.2014.6957874
https://doi.org/10.1109/IVS.2013.6629458
https://doi.org/10.1109/IVS.2013.6629458

Bibliography

[31] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside
the virtual robotics challenge: Simulating real-time robotic disaster
response,” Automation Science and Engineering, IEEE Transactions on,
vol. 12, no. 2, pp. 494–506, Apr. 2015, issn: 1545-5955. doi: 10.1109/
TASE.2014.2368997 (cit. on p. 26).

[32] O. S. R. Foundation. (Jan. 2019). Gazebo-homepage, [Online]. Avail-
able: http://gazebosim.org/ (cit. on p. 27).

[33] CVEDIA. (Jan. 2019). Syncity real-world simulator for autonomous
applications, [Online]. Available: https : / / syncity . com/ (cit. on
p. 27).

[34] tass international. (Jan. 2019). Prescan-homepage, [Online]. Available:
https://tass.plm.automation.siemens.com/prescan (cit. on pp. 28,
29).

[35] V. S. GmbH. (Jan. 2019). Vires -homepage, [Online]. Available: https:
//vires.com/ (cit. on p. 28).

[36] ——, (Jan. 2019). Opendrive-homepage, [Online]. Available: http:
//www.opendrive.org/ (cit. on pp. 28, 39).

[37] ——, (Jan. 2019). Openscenario-homepage, [Online]. Available: http:
//www.openscenario.org/ (cit. on pp. 28, 39, 61).

[38] A. Best, S. Narang, D. Barber, and D. Manocha, “Autonovi: Au-
tonomous vehicle planning with dynamic maneuvers and traffic con-
straints,” CoRR, vol. abs/1703.08561, 2017. arXiv: 1703.08561. [Online].
Available: http://arxiv.org/abs/1703.08561 (cit. on p. 29).

[39] R. Inc. (Jan. 2019). Righthook-homepage, [Online]. Available: https:
//righthook.io/ (cit. on pp. 29, 30).

[40] I. A. GmbH. (Jan. 2019). Ipg automotive carmaker-homepage, [Online].
Available: https://ipg-automotive.com/de/produkte-services/
simulation-software/carmaker/ (cit. on p. 30).

[41] D. B.V. (Jan. 2019). Racer-homepage, [Online]. Available: http://www.
racer.nl/ (cit. on pp. 30, 31).

[42] AVSimulation. (Jan. 2019). Scaner-homepage, [Online]. Available: https:
//www.avsimulation.fr/ (cit. on p. 31).

92

https://doi.org/10.1109/TASE.2014.2368997
https://doi.org/10.1109/TASE.2014.2368997
http://gazebosim.org/
https://syncity.com/
https://tass.plm.automation.siemens.com/prescan
https://vires.com/
https://vires.com/
http://www.opendrive.org/
http://www.opendrive.org/
http://www.openscenario.org/
http://www.openscenario.org/
https://arxiv.org/abs/1703.08561
http://arxiv.org/abs/1703.08561
https://righthook.io/
https://righthook.io/
https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/
https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/
http://www.racer.nl/
http://www.racer.nl/
https://www.avsimulation.fr/
https://www.avsimulation.fr/

Bibliography

[43] Microsoft. (Jan. 2019). Airsim-github, [Online]. Available: https://
github.com/microsoft/airsim/ (cit. on pp. 31, 32).

[44] rFpro. (Jan. 2019). Rfpro-homepage, [Online]. Available: http://www.
rfpro.com/ (cit. on p. 32).

[45] Udacity. (Jan. 2019). Udacity self-driving-car-sim - github, [Online].
Available: https://github.com/udacity/self-driving-car-sim/
(cit. on pp. 32, 33).

[46] J. Olstam and R. Elyasi-Pour, “Combining traffic and vehicle simula-
tion for enhanced evaluations of powertrain related adas for trucks,”
in 16th International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), Oct. 2013, pp. 851–856. doi: 10.1109/ITSC.2013.6728338
(cit. on p. 33).

[47] D. Gruyer, O. Orfila, V. Judalet, S. Pechberti, B. Lusetti, and S. Glaser,
“Proposal of a virtual and immersive 3d architecture dedicated for
prototyping, test and evaluation of eco-driving applications,” in 2013
IEEE Intelligent Vehicles Symposium (IV), Jun. 2013, pp. 511–518. doi:
10.1109/IVS.2013.6629519 (cit. on pp. 34, 35).

[48] K. G. Lim, C. H. Lee, R. K. Y. Chin, K. B. Yeo, and K. T. K. Teo,
“Simulators for vehicular ad hoc network (vanet) development,” in
2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-
Asia), Oct. 2016, pp. 1–4. doi: 10.1109/ICCE-Asia.2016.7804797
(cit. on p. 34).

[49] W. ShangGuan, H. Guo, P. Liu, B. Cai, and J. Wang, “Research of
interactive visual simulation method based on cooperative vehicle
infrastructure system,” in 17th International IEEE Conference on In-
telligent Transportation Systems (ITSC), Oct. 2014, pp. 121–126. doi:
10.1109/ITSC.2014.6957677 (cit. on p. 35).

[50] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Usarsim:
A robot simulator for research and education,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, Apr. 2007,
pp. 1400–1405. doi: 10.1109/ROBOT.2007.363180 (cit. on p. 36).

[51] F. K. mbH Aachen. (Jan. 2019). Pelops whitepaper, [Online]. Available:
https://www.fka.de/images/pelops-whitepaper.pdf (cit. on p. 36).

93

https://github.com/microsoft/airsim/
https://github.com/microsoft/airsim/
http://www.rfpro.com/
http://www.rfpro.com/
https://github.com/udacity/self-driving-car-sim/
https://doi.org/10.1109/ITSC.2013.6728338
https://doi.org/10.1109/IVS.2013.6629519
https://doi.org/10.1109/ICCE-Asia.2016.7804797
https://doi.org/10.1109/ITSC.2014.6957677
https://doi.org/10.1109/ROBOT.2007.363180
https://www.fka.de/images/pelops-whitepaper.pdf

Bibliography

[52] M. Team. (Jan. 2019). Morse-homepage, [Online]. Available: https:
//www.openrobots.org/morse/doc/stable/what_is_morse.html

(cit. on p. 36).

[53] O. S. R. Foundation. (Jan. 2019). Sdformat-homepage, [Online]. Avail-
able: http://sdformat.org/ (cit. on p. 40).

[54] M. Software. (Jan. 2019). Vires announces transfer of opendrive R©
standard to asam e.v., [Online]. Available: http://www.mscsoftware.
com/node/8467 (cit. on p. 40).

[55] C. Pilz. (Mar. 2019). Carlascenarioloader - git repo, [Online]. Available:
https : / / github . com / MrMushroom / CarlaScenarioLoader (cit. on
p. 41).

[56] C. Ltd. (Jan. 2019). Ubuntu-homepage, [Online]. Available: https:
//www.ubuntu.com/ (cit. on p. 41).

[57] D. Inc. (Jan. 2019). Dataspeed-bitbucket-homepage, [Online]. Available:
https://bitbucket.org/DataspeedInc/dbw_mkz_ros (cit. on p. 42).

94

https://www.openrobots.org/morse/doc/stable/what_is_morse.html
https://www.openrobots.org/morse/doc/stable/what_is_morse.html
http://sdformat.org/
http://www.mscsoftware.com/node/8467
http://www.mscsoftware.com/node/8467
https://github.com/MrMushroom/CarlaScenarioLoader
https://www.ubuntu.com/
https://www.ubuntu.com/
https://bitbucket.org/DataspeedInc/dbw_mkz_ros

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goals and Challenges
	Contribution
	Outline

	Important Terms
	Problem Formulation
	Related Research
	High Level Components Validation
	Test Criteria And Test Metrics
	Simulator Architectures
	Scenario Terminology
	Scenario Modeling
	Overlaps With Traditional Robotics

	Selection Process For Simulator And Scenario Format
	Simulation
	Requirements
	Existing Simulators
	Decision

	Scenario Generation
	Requirements
	Existing Formats
	Decision

	Prerequisites
	Ubuntu
	Robot Operating System
	Drive By Wire Kit
	Carla Simulator
	Miscellaneous Python Libraries

	Concept
	General Overview
	Scenario Parser Details
	Simulator Control Details
	Test Control Details
	Time Event Handler Details
	Actor Details
	Conceptional Scenarios

	Implementation Details
	General Overview
	Basic Modules
	Communication System
	Run Through

	Code Structure
	Scenario Parsing
	Event Handling
	Actor Routing

	Evaluation
	Carla Simulator
	Simulation Loop
	OpenScenario Reviewed By Experts
	OpenScenario Format
	Performance
	Scalability And Expandability

	Conclusion
	Discussion
	Known Issues And Recommended Improvements
	Future Work

	Acronyms
	Bibliography

