
Christoph Tiffner, BSc

Online Time Management For University
Students

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Nikolai Scerbakov

Institute of Interactive Systems and Data Science

Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, March 2019

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to tugrazonline is identical to
the present master‘s thesis.

Date Signature

ii

Abstract

University students often face the problem of organizing their courses, grades
and exams and thereby keeping track of their time. This problem extends
even further as courses often require students to write documents that are
needed for the course exams and should always be accessible when needed.
Students that are not technically versed often struggle with the applications
that exist right now or cannot afford them, so they fall back to pen and
paper. It is also important that besides all of the organizational work for
the university, students need to organize and keep track of the rest of their
time not spend in a university context. This thesis highlights technologies
to develop an application to solve the problems of fulfilling the students’
tasks. It features the applications concept and a prototype developed as a
starting point based on the concept. As the software project is specifically
developed for students, it is free to use and therefore all of the source code
for the prototype and further development is licensed under the MIT license
[24].

iii

Contents

Abstract iii

1 Introduction 1

1.1 Current Situation . 2

1.1.1 Firefly Student Planner 2

1.1.2 myHomework Student Planner 2

1.1.3 Evernote . 3

1.1.4 Focus Booster . 3

1.1.5 Remember The Milk . 3

1.1.6 iStudiez Pro . 3

1.1.7 Student Agenda . 4

1.1.8 My Study Life . 4

1.1.9 Studo . 4

1.2 Comparison . 4

1.3 Conclusion . 5

2 Requirements 7

2.1 Functional Requirements . 7

2.1.1 Time Management . 7

2.1.2 Course Management . 10

2.2 Technological Requirements . 12

2.2.1 Platform . 12

2.2.2 Open Source . 14

v

Contents

2.2.3 User Interface . 14

3 Problem Statement 15

3.1 User Interface Design . 15

3.2 User Interface Logic . 16

3.3 Backend Logic . 16

3.3.1 Authorization Module 17

3.3.2 University Management Module 17

3.3.3 Time Management Module 17

3.3.4 Course Management Module 17

3.3.5 Document Management Module 18

3.4 Mobile . 18

4 State-Of-The-Art Technologies 21

4.1 Backend Technologies . 21

4.1.1 Concepts . 21

4.1.2 Frameworks . 24

4.2 Frontend Technologies . 26

4.2.1 Concepts . 26

4.2.2 Frameworks and Technologies 27

4.2.3 HTML and CSS . 28

4.3 Database Technologies . 30

4.3.1 Structured Query Language 30

4.3.2 NoSQL . 31

4.3.3 In-memory Database . 31

5 Solution 33

5.1 Prototyping . 33

5.1.1 JSF . 33

5.1.2 JHipster . 34

vi

Contents

5.2 User Interface Design . 34

5.2.1 Mockups . 36

5.2.2 Navigation . 36

5.2.3 Social Features . 47

5.3 Frontend Logic . 47

5.4 Backend Logic . 48

5.4.1 Authorization . 48

5.4.2 Repository . 48

5.4.3 Domain . 55

5.4.4 Service Interface . 65

5.4.5 Data Transfer API . 66

5.4.6 Document Management 75

5.5 Mobile . 76

6 Outlook 77

6.1 Including University Frameworks 77

6.2 Extensions . 78

6.3 Microservices . 78

7 Summary 79

List of Figures 83

List of Tables 84

List of Code listings 86

Bibliography 89

vii

1 Introduction

In today’s society, it becomes more and more important to stay organized.
This is especially true for university students. Students face problems and
tasks in all kind of directions. Starting from keeping track of their courses,
grades and exams to organizing their documents and keeping their social
contacts during all of this. Although there are already several application
appliances for the task of time management, pen and paper is still often the
first weapon of choice. People are drawn to intuitive and simple solutions,
so working with what they know is the logical step and we must build
applications with this in mind. Existing applications often only focus on
one or few of the everyday tasks and are mostly not that simple to use.
Therefore, the idea is that it should be possible to handle time management
and organizational tasks with ease and provide additional functionality. The
additional functions have to be tailored to fit students’ needs and tackle their
everyday problems. [25] While some features are needed for specific studies
or universities others are not. In the end, students should be convinced to
work with a software solution with the features they need and is not stuffed
with a lot of overhead. It is not an easy task and there are many requirements
to take into consideration.

1

1 Introduction

1.1 Current Situation

Currently there are already some applications available that focus on the
problem of online time management and organization. Some of them also
claim to be designed for university students. However, analyzing the appli-
cations it is clear that most of them are missing key features like including
social elements.

Following there are some state-of-the-art applications dealing with this func-
tionality premises listed.

1.1.1 Firefly Student Planner

The Firefly Student Planner [8] is a web application and online learning
platform developed by Firefly Learning Ltd. It provides a lot of possibilities
including direct communication between students and teachers. This includes
learning material, tests and time planning. This platform however is neither
free to use nor open source.

1.1.2 myHomework Student Planner

The myHomework Student Planner [18] is a multi-platform application for
mobile devices. It supports iOS, Android, Microsoft Windows, Kindle Fire
and is available as a Google Chrome Add-On. The application is free to use
(including advertisements) in the basic version but with costs in the premium
version. It is strictly designed to work with tasks concerning university course,
test and homework planning.

2

1.1 Current Situation

1.1.3 Evernote

Evernote [7] is a popular multi-platform application to create and manage
notes. It is available on iOS, Android and Microsoft Windows. It enables the
user to create and share notes but does not include a time management.

1.1.4 Focus Booster

Focus Booster [10] is an online application to manage your time efficiently. It
is not free to use and not specifically adapted to university students’ needs.
On the pro side, it features a lot of graphical evaluation for the planned
tasks.

1.1.5 Remember The Milk

Remember The Milk [49] is a free online application that works as a reminder.
It is not specifically designed for students but has a good feature to remind
you over multiple platforms. It is also missing a fully functional calendar and
the feature to include external calendars.

1.1.6 iStudiez Pro

iStudiez Pro [19] is a specialized student time planning application for
iOS, Mac and Microsoft Windows. It can keep track of courses, grades and
assignments. It has most of the needed features for students but is missing
the possibility to link courses and full notes (e.g. PDFs, Microsoft Word
Documents or Google Docs).

3

1 Introduction

1.1.7 Student Agenda

Student Agenda [5] is a simple android app to manage courses and exams
in a calendar and include the possibility to create notifications and enter
marks. This application is sufficient for fast and simple tasks, but for a total
replacement of analog student planners there still are features missing.

1.1.8 My Study Life

My Study Life [35] is a free to use online application specialized on planning
for university students. Like in most of the other student time management
applications you can manage your courses, homework and exams. You have
the possibility to create to-do lists and put calendar entries into specific
categories.

1.1.9 Studo

Studo [32] is a partially free Android and iPhone application specialized on
time and course planning. It has the possibility to link your calendar to some
of their partner universities to present timetables and course updates. A big
drawback is the price you have to pay for the full range of functions.

1.2 Comparison

All the mentioned apps are compared in table 1.1. Comparison indicators
mainly focus on the students’ point of view but also include several technical
requirements.

4

1.3 Conclusion

General Time management Course management Personal timeline Export Share Adapt-
ability

User
management

Application Platform Open
Source

Free to use

Application
Designed

for
students

Regular
Course

Schedule

Single
course
dates

Exams Extended
Categories

Private
appointments

Reminder Courses Exams Grades Learning
Material

Course
Notes

Reporting Personal
Notes

Media
Content

Social
Content

Arbitrary
Conent

Client Mobile Web
Application

Firefly Student Planner [8] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

myHomework Student Planner [18] 3 3 3 3 3 3 3 3 3 3 3 3 3 3* *Free
Premium

iStudiez Pro [19] 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Student Agenda [5] 3 3 3 3 3 3 3 3 3 3 3 3 3

My Study Life [35] 3 3 3 3 3 3 3 3 3 3 3 3 3

Evernote [7] 3 3 3 3 3 3 3 3 3 3

Remember the Milk [49] 3 3 3 3 3 3 3 3

Focus Booster [10] 3 3 3 3 3 3 3 3 3

Studo [32] 3 3 3 3 3 3 3 3 3 3 3 3 3 3* *Free
Premium

Table 1.1: Application Comparison

1.3 Conclusion

If you compare all these planning applications, they are missing a feature
to keep track of items that are on first thought not directly linked to the
university work. They are missing a feature to save social elements like
images, social events and other items you want to memorize. This feature
is provided by social networks but not on a private personal level. Another
missing feature is the possibility to link documents (self-written or provided)
and other learning material for different courses. Therefore, the application
should combine a learning oriented planning and tracking environment
with some of the features offered by social networks. Features like these
have to be easy working with, in order to replace analog alternatives like
paper notebooks and student planners. To achieve this level of accessibility
it is necessary to work with “what you see is what you get” (WYSIWYG)
elements. People tend to distribute their generated data over a lot of different
services and systems. It should be possible to easily include elements from
these different external systems like Facebook, Google Drive, Dropbox etc.
The system also should be open source or have an open API (application
programming interface) to make development of add-ons for including
elements from different systems possible.

5

2 Requirements

The requirements incorporate the comparison indicators mentioned in section
1.2. The requirements are split into functional requirements and technological
requirements.

2.1 Functional Requirements

The application has three main issues to handle: time management, course
management and personal features. These main requirements are a result of
my personal university student experience. They reflect what students are
currently handling either with many different applications or on paper. Beside
the main functionalities, there are some secondary functional requirements
that should help the application to get a higher acceptance.

2.1.1 Time Management

The main focus of this application has to be a simple and fitted time man-
agement for a university setting. This includes the regular courses and corre-
sponding exams. Besides that, there is the requirement to add off schedule
appointments to make it possible handling private and irregular university
appointments. Another requirement is a configurable reminder to keep track

7

2 Requirements

of all the due dates. For this requirement, an intuitive calendar would be the
best choice.

Regular Courses

The main appointments for university students are their regular courses.
These courses, in contrast to simple appointments, need to provide more
flexibility. Therefore, they are categorized into scheduled lectures and un-
scheduled lectures.

Scheduled Lectures Scheduled lectures are recurring events on a timely
basis (e.g. weekly, daily, . . .). To manage these events there is a schedule for
those courses with the possibility to exclude or include certain dates.

Unscheduled Lectures Unscheduled lectures can always happen during
the semester. This is especially needed for technical exercises that do not
follow a schedule at all. It is possible to define these unscheduled lecture
appointments as a single appointment.

Exams

Exams are an important part of time management for students. The exam
dates have to be configurable for higher priority. The reminder provides the
possibility to show how far the learning progress for the exam is. This data is
presented in a statistical way.

8

2.1 Functional Requirements

Homework

Homework is handled like the exams and therefore it is also linked to the
courses.

Semester

Semesters are used for statistical purposes but also for planning ahead. It
is possible to accept pre-defined time spans or define a new time spans to
count as a semester.

Appointment Categories

Appointments can be tagged with one or multiple Categories. It is possible
to add own categories to these appointments. These categories fit the spe-
cific academic studies. One tag for example could be “exercise interview”
specifically for technical studies as there are a lot of exercise courses.

Private Appointments

To provide the full functionality of a calendar application private appoint-
ments are an essential part of the time management. This is especially true to
maintain the application as personal and comfortable to use as possible.

9

2 Requirements

Reminder

This feature is important to keep track of the appointments in the calendar.
The user is notified whenever homework, exams, important or other marked
appointments are due. The way the user is reminded is configurable for
example per e-mail.

2.1.2 Course Management

This core feature extends the simple time management with tools that are
important for university students. It has to be possible to keep track of
their tasks, accomplishments and progress regarding all of their courses
throughout the semester.

Courses

Courses provide the starting point for further management options. Newly
created courses provide the functionality to set a schedule. This feature is
directly linked to the time management.

The current course progress including time and grade is viewable. It is also
possible that a course is marked as passed or failed. This can either be
dependent on current grade of the course, time or a manual selection.

Courses can be defined to have a set amount of ECTS [6]. You can link
learning material and course notes to a course.

10

2.1 Functional Requirements

Exams

Exams have date and time and are linked to a single course. It is possible to
define a weight on how much the exam influences the grade. You can link
specific learning material to the exam.

Homework

Homework is handled like exams with the difference that you can link the
homework documents.

Grades

For any created course it is required that a student can enter grades. Either the
grade can be linked to an exam or homework or it can be a standalone grade
in case of for example an extended category like an exercise interview.

Learning Material And Course Notes

It is possible to link documents created by either teachers or students to the
corresponding course. These documents can be accessed using the course
management but also using the time management. This is important for
students to access them in a timely manner. The documents have to be
accessible by the application. This can be done either via upload or via access
through cloud-based services.

11

2 Requirements

Reporting

Reports can be generated to show different statistics like

• Grade development
• Missed appointments
• Overall statistics
• ECTS statistics

These reports can be stored in the students’ documents and exported for
convenience.

2.2 Technological Requirements

The requirements for the application allow different possible implementation
approaches.

2.2.1 Platform

The selection of the platform is important as it defines the available technolo-
gies and the target group of users. For the management application platform,
there are three possibilities:

• Desktop
• Mobile
• Web Application

12

2.2 Technological Requirements

Desktop Application

Desktop applications have the advantage that you can access operating
system functions directly. Using a web-service the problem with central
storage can be handled. The problem with desktop applications however
is the accessibility. Especially students spend a lot of their time without
a desktop environment with only mobile devices accessible. Therefore, a
desktop application is not very well suited for the stated requirements.

Mobile Application

Mobile applications are an important consideration. They are designed for
mobile devices and have simple access.

The disadvantage of the platform is the screen size. For an application like
the planner, the more space available the easier it is for the user to work
with. Another problem are the different operating systems. As there are
three operating systems Android, iOS, Windows Mobile a lot of the effort
goes into multi-platform support. There are however solutions that can
create applications for all platforms at once. When considering the prior
disadvantages, a mobile only application should not be the first choice.

Web Application

Web applications are very well suited for the stated requirements. There are
many state-of-the-art frameworks to work with. Time management, course
management and personal timeline can be visualized in full size on fitting
devices. For smaller devices, there is still an option for a different view. Good
performance with the correct usage of up-to-date technologies.

13

2 Requirements

Further advantages include:

• accessible from everywhere
• usable on both desktop and mobile devices (if developed using certain

frameworks)
• platform (operating system) independent
• refactor or pack into a mobile application later

Therefore, the best choice to develop an online application for personal time
and course management with social features is a web application.

2.2.2 Open Source

In the university setting applications should be open source licensed. [25] It
provides other students with the option to extend on the work in the future.
For the developed software the MIT license [24] should be used.

2.2.3 User Interface

Applications that try to mimic an analog medium have to be as accessible as
the paradigm. It needs to provide an UI that provides:

• a very low learning curve
• intuitive controls
• easy access to all areas
• fast responses
• quick findings
• modern and simple design

14

3 Problem Statement

The problem statement focuses on user interface design, user interface logic
and backend logic. It is important to separate frontend from backend to
keep the application flexible. A publicly accessible API handles connection
between frontend and backend.

3.1 User Interface Design

User Interface design is important to not only draw the user in but to
encourage the user to keep using the application.

As Silva and Andrade point out in “Development of a Web Application for
Management of Learning Styles”

“According [2] and [27], user satisfaction in the interaction with the
product and its utility are critical factors to be considered in software
design. These factors are governed by the guidelines set out in inter-
national standards regarding usability (ISO/DIS 9241:11, European
Usability Support Centres). In this context and according to this stan-
dard, usability is defined as �the extent to which a product can be used
by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use�” [52]

15

3 Problem Statement

Regarding the Student Online Management, it is important that it has a clean
and modern feel to it. Therefore, a “what you see is what you get” (WYSI-
WYG) approach is crucial. The look should follow the following rules:

• Modern font
• Font size appropriate for large display sizes
• Small and fixed main navigation area
• Meaningful Icons enhancing or replacing text when possible
• Buttons execute exactly one action
• Drag and drop when helpful
• Loading indication
• Customization options
• WAI-ARIA

3.2 User Interface Logic

The user interface logic is the “backend” of the user interface. It should act as
the user interface data processor and provide the connection to the backend
via the defined API. It is responsible for handling the HTTP requests and
responses and in this function reacting to and updating HTTP headers.

3.3 Backend Logic

The backend is split into modules and each module is assigned to a specific
task. The modules can easily be replaced, removed or new modules can be
added. All modules are connected and can exchange information. A publicly
accessible API is provided, which allows access to backend functions and
data.

16

3.3 Backend Logic

3.3.1 Authorization Module

The authorization module handles user accounts, authorities and login infor-
mation. With these authorities, it is possible to restrict access to certain parts
of the application.

3.3.2 University Management Module

The university management module should handle everything related to
university administration data. This includes data for universities, professors,
students, studies, courses etc.

3.3.3 Time Management Module

The time management module is dedicated to on users’ or students’ time
planning. It handles everything that can be added to the calendar e.g. per-
sonal appointments or memories, recurring course appointments and social
events.

3.3.4 Course Management Module

The course management module handles course related material like exams,
grades and learning material.

17

3 Problem Statement

3.3.5 Document Management Module

The document management module handles all documents, either personal
or public accessible. A Document can be any resource a user can upload or
link from an external provider.

Personal Documents

The document management module has to provide the possibility to man-
age personal documents that are only visible to the current user. The user
has the possibility to allow and deny public or individual access to these
documents.

Document Library

The document management module has to provide a library that consists
of all public accessible documents. These documents are categorized and
searchable. They have the minimum requirement of having a connection to
the creator but can also include the study, course, . . .

3.4 Mobile

Most people use smartphones on a daily basis and therefore accessing ap-
plications via a mobile device is necessary to get the needed acceptance.
Fortunately, nowadays this is no longer a big problem. Many frameworks
are available for using applications developed for the web on mobile devices
without downsides. If we don’t want to rely on a framework, using HTML5

18

3.4 Mobile

in combination with CSS3 and JavaScript is sufficient to build applications
for most display sizes and performances [23].

19

4 State-Of-The-Art Technologies

This chapter describes state of the art technologies that are capable of fulfilling
all of the mentioned requirements in chapter 2. These Technologies are split
into backend and frontend technologies although some technologies fit both
tasks.

4.1 Backend Technologies

The backend technologies will mainly focus on current web server technolo-
gies. Furthermore, we have a look at the details of frameworks that already
implement most of these stateless web technologies. After the basic concepts,
we have a look at state-of-the-art frameworks applying these concepts.

4.1.1 Concepts

The concepts show a small selection of state-of-the-art web technologies. In
fact, there are a lot more technologies but the ones listed are some of the
most prominent today.

21

4 State-Of-The-Art Technologies

SOAP Web Services

“SOAP or Simple Object Access Protocol is a protocol designed to
exchange information in the form of Web Services. It is primarily based
on XML documents exchanged over HTTP, but it’s possible to transmit
messages through other mediums like email and JMS.”[46]

SOAP web services use Web Services Description Language [59] files. As [46]
mentions both the client and the server commit to the WSDL contract for
exchanging information and making remote procedural calls [54].

As compared in [53], SOAP is more commonly used for enterprise applica-
tions in shared environments, it is platform independent and it is standard-
ized.

RESTful Web Services

REST or Representational State Transfer is an abstraction that mostly builds
upon the HTTP methods GET, POST, PUT, PATCH, DELETE. Most modern
browsers also use an OPTIONS request to verify which of these methods are
allowed.

“REST is an architectural style for designing distributed systems. It
is not a standard but a set of constraints, such as being stateless, having
a client/server relationship, and a uniform interface. REST is not strictly
related to HTTP, but it is most commonly associated with it.” [45]

The principles of REST as mentioned in [45] are:

• Resources - Every request accesses a resource that is accessible via a
simple URI

22

4.1 Backend Technologies

• Representations - Data transferred is either a simple text, or more
commonly a JSON or XML object

• Messages - Only use the defined HTTP methods and their required
format

• Stateless - Between server and client there is no context stored, therefore
it can scale very well. Session information for one client is stored directly
on this client.

“RESTful webservice” implies that we take the basic REST approach and
strictly stick to the HTTP standard described in [36]. [50]

As compared in [53], RESTful webservices and SOAP webservices, both have
advantages in certain areas.

HATEOAS

“HATEOAS (Hypermedia as the Engine of Application State) is a
constraint of the REST application architecture. A hypermedia-driven
site provides information to navigate the site’s REST interfaces dynami-
cally by including hypermedia links with the responses. This capability
differs from that of SOA-based systems and WSDL-driven interfaces.
With SOA, servers and clients usually must access a fixed specification
that might be staged somewhere else on the website, on another website,
or perhaps distributed by email. ” [44]

HATEOAS provides us with a new set of opportunities, as we always de-
fine where our resources are located with links and know that these links
implement the required standard methods.

23

4 State-Of-The-Art Technologies

4.1.2 Frameworks

Frameworks in software technology are used to apply certain implemented
technologies or parts repeatedly in applications. [26] The frameworks in this
section implement the above-mentioned concepts and provide a comfortable
way to incorporate them in the application. These frameworks are very
powerful and extensive and therefore we do not cover ever single detail.

Spring

The Spring framework [39] is developed for Java and provides a vast number
of components for developing business applications. It consists of several
projects [42] that can be used for example for building web applications,
accessing databases or authentication. For our application Spring Boot [40],
Spring Data [41] and Spring Security [43] are the most relevant projects.

Spring Boot

SpringBoot [40] provides all needed components to build a running web
application without the need for an external web server. It includes an
embedded web server and does most of the configuration automatically via
Java annotations as shown in code listing 4.1.

Code listing 4.1: Spring Boot Demo

1 package at.tugraz.stups;

2

3 import org.springframework.boot.*;

4 import org.springframework.boot.autoconfigure.*;

5 import org.springframework.web.bind.annotation.*;

6

7 @RestController

8 @EnableAutoConfiguration

24

4.1 Backend Technologies

9 public class DemoApplication {

10

11 @RequestMapping("/")

12 String demo() {

13 return "Response";

14 }

15

16 public static void main(String[] args) {

17 SpringApplication.run(DemoApplication.class, args);

18 }

19

20 }

Further information on how to build Spring Boot applications can be found
in the “Building an Application with Spring Boot” [38] guide.

Spring Data

SpringData [41] provides the needed components for accessing data using
underlying frameworks like Java Database Connectivity or the Java Persistence
API. The configuration is mostly done via annotations.

Spring Security

SpringSecurity [41] provides the needed components for authentication and
authorization with Java. It supports Kerberos, OAuth and SAML security.

JavaServer Faces

JavaServer Faces or JSF [37] is a framework developed by Oracle to build web
applications. It has many similarities to the Spring framework but follows a
different approach concerning frontend-backend split. JSF is designed to use

25

4 State-Of-The-Art Technologies

the MVC approach. XHTML pages that are linked to the models represent
the view part. Models are domain objects that can be used by the view and
get their data from the persistence layer using the controllers. Parts of the JSF
framework are called components and they also follow the MVC approach.
There are many JSF component frameworks for building web applications.
One of the best-developed and active frameworks is Primefaces [17].

ASP.NET

ASP.NET [29] is an open source web framework that builds upon the pro-
prietary .NET Framework [28]. Both technologies are developed by Microsoft
and the main programming language is C#. It is well suited for building
web applications as it offers nearly all the features and components men-
tioned in the previous Java based frameworks. When choosing between these
technologies it is up to personal preferences.

4.2 Frontend Technologies

The frontend technologies will mainly focus on libraries and frameworks to
build client-side user interfaces depending on Java Script [33] or TypeScript
[30]. After basic concepts, we have a look at some of the modern frameworks
applying these concepts.

4.2.1 Concepts

The concepts relevant for the frontend development are the same as described
in section 4.1.1.

26

4.2 Frontend Technologies

4.2.2 Frameworks and Technologies

Frameworks in general are described in section 4.1.2. Frontend frameworks
for the most part only differ in the used programming languages.

JSF

The core concepts of the JSF [37] framework are already described in section
4.1.2. The frontend consists of XHTML pages that contain JSF tag libraries.
These tag libraries allow us to access variables and functions from our
backend. This can either be synchronous or asynchronous using AJAX (Asyn-
chronous JavaScript and XML) calls. The corresponding client-side Java Script
for this functionality is generated by JSF.

Java Script

Java Script [33] is a script language that most modern browser can interpret.
Therefore, it enables us to execute programs inside the browser that acts
as the client for the web application. You can say Java Script enhances the
mostly static web experience when using only HTML and CSS (see section
4.2.3). It is possible to develop the frontend using only Native Java Script but
there are many useful libraries, like JQuery [9], that make the development
process much easier.

Angular

Angular [11] is a client-side web framework. In this section when talking
about Angular, we refer to Angular versions 2 and above. In contrast to
version 1 or AngularJS, Angular is based on TypeScript rather than pure Java

27

4 State-Of-The-Art Technologies

Script. Browser cannot directly interpret Typescript, therefore we need a
pre-processor for converting the Typescript code into Java Script code.

Angular Material

Angular Material [12] contains Material Design components for Angular. All
components follow the Material Design Guide [13] written by Google. This
includes most of the styling and functionality and allows for quick and
appealing web development.

React

In contrast to Angular, React [16] is only a node library rather than a complete
framework. It is designed to build reactive we applications by enhancing the
basic java script functions for modifying the Document Object Model of the
HTML page.

4.2.3 HTML and CSS

The Hypertext Markup Language or HTML and Cascading Style Sheets or CSS
build the structure of our website or web application. For appealing and
web applications with good performance it is mandatory that during the
development process they do not come too short. One of the biggest issues
with HTML and CSS today is the Cross Browser Compatibility, where the web
application should look the same in every browser and on mobile devices.

28

4.2 Frontend Technologies

HTML5

HTML5 [57] is the current standard for building web pages. It defines the
tags browser can understand to display the web page. One of the biggest
advancements in the HTML5 standard is the canvas tag, that allows us to
draw directly in the browser e.g. with Java Script.

CSS3

CSS3 [56] is the current standard for defining the style of web pages. It allows
to style and layout the tags or components defined in HTML. Some of the
biggest advancements in version 3 of CSS are the Flex Box Layout for dynamic
web page building and CSS Animations that do not require Java Script.

SASS

Syntactically Awesome Style Sheets or SASS [15] allows us to write CSS in a
more “logical” fashion. It is possible to define style classes hierarchical and
nested and use so called Mixins for function like calls. For this to work we
need a pre-processor that converts our SASS syntax into CSS syntax that can
be interpreted by the browser.

Accessible Rich Internet Applications (WAI-ARIA)

WAI-ARIA is a standard defined by the W3 group that aims to make web
applications more accessible to people with disabilities. [58] For example all
controls should be accessible in different ways and it should always be clear
which actions can be executed from the current state.

29

4 State-Of-The-Art Technologies

4.3 Database Technologies

Business grade applications need to persist their large amount of data in
databases. The field of database technologies is very wide and therefore we
take a look at some of the more established technologies for smaller business
web applications. We differentiate between database technologies based on
the Structured Query Language and so-called NoSQL databases.

4.3.1 Structured Query Language

Technologies based on the Structured Query Language or SQL build their core
around tables and the connection of these tables.

MySQL

MySQL [1] is a largely distributed Relational Database Management System
based on SQL. It is open source and capable of handling business appli-
cation sized data amounts. Because it is so widely used, there is a lot of
documentation and community support for development.

PostgreSQL

PostgreSQL [14] is also widely used and provides the same functionality as
MySQL. It only differs in minor implementation of different features and can,
under the right circumstances, outperform MySQL by a tiny bit.

30

4.3 Database Technologies

4.3.2 NoSQL

In comparison to SQL databases, NoSQL databases are non-relational. They are
designed to work with huge amounts of data as they have a high scalability.
NoSQL databases can store any kind of unstructured data with a high
performance. [22]

MongoDB

MongoDB is a NoSQL database where the data is represented by documents
(similar to JSON format) and collections of documents. It is highly flexible
and scalable. [31]

“In MongoDB, there are no database outlines or tables. Documents
are like rows and are assembled into collections which are like tables.
The document is an information structure made out of field and value
pairs. The value of fields may incorporate different records, clusters, and
varieties of documents. MongoDB consequently produces a primary key
(id) to uniquely recognize each record. MongoDB endeavors to hold the
greater part of the information in memory so straightforward questions
take less time by staying away from costly hard disk recovery operations.”
[22]

4.3.3 In-memory Database

In-memory databases store all the data directly in the RAM of the server. This
leads to a very high performance if the server has enough RAM. It should
only be used for testing because the data is lost the minute the server is
turned off. Example for an in-memory database is the H2 database [34].

31

5 Solution

The solution proposal takes optimal prerequisites and includes some features
not implemented in the developed prototype.

5.1 Prototyping

For demonstration on how to apply the technologies from chapter 4, two
prototypes where developed using two different technology stacks.

5.1.1 JSF

The first prototype was developed using JSF with the Primefaces [17] UI
Framework. Data storage was handled by a PostgreSQL database. The ap-
plication was deployed using a Wildfly [48] server instance. The problem
with this prototype was, that due to the limitations that came by the incor-
porated UI Framework, it was not possible to develop a modern appealing
application. From a strictly functional approach, it works but the acceptance
by students would be very low.

33

5 Solution

5.1.2 JHipster

The second prototype and all of the following described solutions are de-
veloped with JHipster [20]. JHipster generates the backend (Spring Boot)
application, the database and database access, the Rest API and a basic web
user interface. The developed prototype is based on many modern technolo-
gies [21]. For the prototype, the support of the following technologies is
relevant:

• Java 8 (Spring Framework)
• Angular 6+

– Typescript
– HTML5

– CSS3

∗ Sass
∗ Twitter Bootstrap

• Maven
• Yarn
• PostgreSQL

With this technology stack there are several advantages in comparison to the
JSF approach. The differences between these two technologies are shown in
table 5.1

5.2 User Interface Design

The user interface design is important and if done correctly it makes the
process of implementing the user interface logic much easier. For the design
process, it is essential to start with general mockups. After the mockups

34

5.2 User Interface Design

JSF Spring Framework +
Angular

Frontend and backend
connection

Frontend and backend
are deployed as one
packed web applica-
tion file and are depen-
dent of each other

Frontend and back-
end are independent
and can be exchanged
as long as the API is
implemented

Application server A configured applica-
tion server like Glass-
fish, Apache Tomcat
or Wildfly is needed to
run the application

Handled by Spring
Boot, no need for an
external application
server instance to run
the application

Database Access Need to configure
most of the database
access

Easy pre-configured
database access with
Spring Data

Security Choose a security
framework and con-
figure this framework

Easy pre-configured
security management
with Spring Security

User Interface Depends a lot on ex-
ternal frameworks like
Primefaces to get a
modern feel

State of the art Type-
script/JavaScript
based user interface
backed by a growing
community

Table 5.1: JSF vs. JHipster

are completed we select the needed UI frameworks to create a website
that represents the previous mockups. We introduce a style that is applied
throughout the application user interface. This includes

• Color palette

35

5 Solution

• Font palette
• Control sizes
• Fixed elements
• Element spacing

5.2.1 Mockups

The mockups represent the basic user interface idea for the prototype. Figure
5.1 shows a simple login page without a lot of distraction and the possibility
to have more than one method of logging in. Figures 5.2, 5.3 and 5.4 show the
planner page that also acts as the central access point or dashboard for the
application. Figure 5.5 shows a basic concept for the course management.

5.2.2 Navigation

Navigation in the web application should feel natural and intuitive. Therefore,
we need a navigation bar that is fixed in place, so the user always has the
same feel and opportunity to change to a different part of the application.
The application should feel like a desktop or single page application where
the different sections only change the current possible functions.

Navigation Bar

For displaying the navigation bar there were three options:

1. Sidebar
2. Top-bar
3. Sidebar and Top-bar

36

5.2 User Interface Design

Figure 5.1: Mockup Login Page

37

5 Solution

Figure 5.2: Mockup Planner Page 1

38

5.2 User Interface Design

Figure 5.3: Mockup Planner Page Add

39

5 Solution

Figure 5.4: Mockup Planner Page 2

40

5.2 User Interface Design

Figure 5.5: Mockup Courses Page

41

5 Solution

Figure 5.6: JSF Prototype Login Page

The prototype only uses a top-bar as for the planner it is much more conve-
nient to have more horizontal space. The navigation bar for the prototype is
e.g. shown on the top in figure 5.7. The menu items are displayed as highly
recognizable icons with their description as tooltip text.

Login Page

The login page as shown in figure 5.6 is also the landing page and provides
a simplistic login form. The design is friendly but also professional. Existing
users can login easily and fast and new users can register easily using the
corresponding button that takes them to the register page described in section
5.2.2. If the user credentials are invalid, a general error message is presented.
Unused buttons that could be used in the future are login via linked social
network and university accounts. After successful login the user is redirected
to the dashboard or time manager described in section 5.2.2.

42

5.2 User Interface Design

Registration

The registration page only consists of a registration form with required and
optional fields. The required fields are

• Username
• First name
• Last name
• E-Mail
• University (list of universities pre-persisted in the database)

The optional fields are

• Prefix/Postfix title
• Street
• House number
• City
• Zip code
• Courses (after university selection)

After filling out the form, the user can use a button to register and go back
to the login page.

Dashboard/Time Manager

The dashboard or time manager is the main unit of the application. In this
view, the user can perform several actions. These actions include

• Go to any date
• Create an appointment (unscheduled lecture, exam, private appoint-

ment)
• View appointments created by scheduled lectures or exams

43

5 Solution

Figure 5.7: JSF Prototype Time Management Page

• Change view between scrapbook and calendar
• In scrapbook view the user can add any number of pages to a specific

date
• Add item that is not an appointment (e.g. image, document from library,

external document, link, note, video, ...)
• Delete any of the created items

The positions of items in the scrapbook view as shown in figure 5.7 are
saved.

Library

The library page consists of two subpages. The first subpage is the users’
private library. This library contains documents grouped by course and loose
documents not assigned to any course grouped by a user defined label. In the
user library, it is possible to add new documents, edit existing documents,
delete documents and publish documents to the general library or revoke

44

5.2 User Interface Design

Figure 5.8: JSF Prototype Library Page

the publication. The second subpage contains the general library where
all published documents from users can be viewed. Because of the larger
amount, these documents are grouped in a treelike structure going from
university level, over study level to course level.

In both libraries a full text search with optional filters is possible as all
documents are indexed. Also, a preview image for easier identification of
documents is generated and presented when searching or browsing the
library.

As the prototype uses a SQL database the full text search is problematic and
does not have a very good performance, therefore a NoSQL database would
be better suited in future builds.

An example of the user library is shown in figure 5.8.

45

5 Solution

University

The university page is all for information. It presents information about the
universities, their studies, the corresponding courses and the professors.

Courses

The courses page shows all courses the user has added either during regis-
tration or afterwards on this page. The user can add or delete courses and
view the course details that include

• Grades
• Documents
• Professor
• Lectures
• Exams
• ECTS
• Notes

When adding the user can choose to add an existing course from the system
or create a course by providing the necessary information.

A demonstration for a course page is shown in figure 5.9.

Settings and Personalization

The settings page enables the user to customize the look and feel of the
application. This page should be update continuously and contains only
settings for the time management page in the prototype.

46

5.3 Frontend Logic

Figure 5.9: JSF Prototype Course Page

5.2.3 Social Features

This is a future improvement to enable the user to add other students as
friends and chat with them.

5.3 Frontend Logic

The frontend is stateless, and the logic mostly consists of checking form
validity and presenting data from the backend. The data is retrieved and
updated via Data Transfer Objects or DTOs (see section 5.4.5) over a defined
REST API.

47

5 Solution

5.4 Backend Logic

The backend is implemented in a MVC pattern using Java extended by
the Spring framework. The MVC classes for university management, time
management, course management and grade management are generated by
JHipster and extended with additional methods.

5.4.1 Authorization

The authorization method can be selected during the application generation.
For the prototype, the authorization is handled via JSON Web Tokens or JWT
[3]. JWT is stateless and therefore suited for our stateless angular application.
JWT is not included in Spring Security and JHipster is using an implemen-
tation of their own. For productive installations JWT should be switched
to a more secure authorization like OAuth2 that is also included in Spring
Security.

5.4.2 Repository

The repository handles database operations. JHipster can generate a new
database or use an existing database. It also generates data access classes for
the provided or generated database using the Spring Data JPA.

Database

For the prototype, we use a generated MySQL database for all of the data.
Real world applications should consider using a NoSQL database for the
document management part. It is possible to prepare a database in advance

48

5.4 Backend Logic

and only provide the connection to the existing database. For applications
beyond prototypes, this should always be the preferred choice.

JHipster Domain Language

JHipster uses JHipster Domain Language (JDL) to describe the database rela-
tionships. The JDL file is the base on which JHipster generates the database
(and services) independent of the selected technology. The complete data
model is shown in figure 5.10. The prototype includes the following entities
(and enumerations)

• User
• Student
• Address
• Course
• CourseType
• Study
• Exam
• Appointment
• LibraryDocument
• Library
• Professor
• University
• Planner
• PlannerPage
• PlannerPageItem
• PlannerItemTye
• Preferences
• Locale

49

5 Solution

Figure 5.10: JDL Diagram

Code listing 5.1 contains the JDL code behind figure 5.10. It includes the enti-
ties, relationships and instructions for the database and service generation.

Code listing 5.1: JDL

1

2 entity User {

3 userName String required,

4 eMail String required

5 }

6

7 entity Student {

8 firstName String required,

9 lastName String required,

10 prefixTitle String,

11 postfixTitle String,

12 studentNumber String required

50

5.4 Backend Logic

13 }

14

15 entity Address {

16 street String required,

17 doorNumber String required,

18 postalCode String required,

19 city String required,

20 detailLine String,

21 stateProvince String,

22 countryCode String required

23 }

24

25 entity Course {

26 title String required,

27 courseType CourseType required,

28 ects Float required,

29 sst Float,

30 externalId String

31 }

32

33 enum CourseType {

34 VO, VU, SE, PR, UE

35 }

36

37 entity Study {

38 title String required,

39 description String,

40 externalId String,

41 }

42

43 entity Exam {

44 title String required,

45 description String,

46 grade Float,

47 date Instant

48 }

49

50 entity Appointment {

51 title String required,

52 description String,

53 date Instant

54 }

51

5 Solution

55

56 entity LibraryDocument {

57 title String required,

58 description String,

59 thumbnail Blob,

60 creationDate Instant required,

61 fileRef String required,

62 publicAccess Boolean required

63 }

64

65 entity Library {

66 title String,

67 description String

68 }

69

70 entity Professor {

71 firstName String required,

72 lastName String required,

73 prefixTitle String,

74 postfixTitle String,

75 }

76

77 entity University {

78 name String required,

79 nameShort String,

80 externalId String

81 }

82

83 entity Planner {

84 }

85

86 entity PlannerPage {

87 plannerUid Uid required,

88 date Instant required

89 }

90

91 entity PlannerPageItem {

92 plannerItemType PlannerItemType required,

93 title String required,

94 contentId Long,

95 contentString String,

96 contentData Blob

52

5.4 Backend Logic

97 }

98

99 enum PlannerItemType {

100 DOCUMENT,

101 NOTE,

102 IMAGE,

103 EXAM,

104 COURSE_APPOINTMENT,

105 PRIVATE_APPOINTMENT

106 }

107

108 entity Preferences {

109 locale Locale

110 }

111

112 enum Locale {

113 DE, EN

114 }

115

116 relationship ManyToMany {

117 Student{studies} to Study{students},

118 Student{courses} to Course{students},

119 Course{documents} to LibraryDocument{courses},

120 Course{professors} to Professor{courses},

121 University{professors} to Professor{universities},

122 Student{friends} to Student{friends}

123 }

124

125 relationship OneToMany {

126 Planner to PlannerPage,

127 PlannerPage{Item} to PlannerPageItem,

128 Course{exam} to Exam,

129 Study{course} to Course,

130 Student{library} to Library,

131 Library{document} to LibraryDocument{library},

132 University{study} to Study{university},

133 Course{appointment} to Appointment,

134 Student{appointment} to Appointment

135 }

136

137 relationship OneToOne {

138 User{student} to Student{user}

53

5 Solution

139 Student{planner} to Planner{student},

140 Student{preferences} to Preferences,

141 Student{address} to Address,

142 Professor{address} to Address,

143 University{address} to Address

144 }

145

146 paginate LibraryDocument, Course, Study, Student, Professor with pagination

147

148 dto * with mapstruct

149

150 // Set service options to all except few

151 service all with serviceImpl

Spring Data JPA

Spring Data wraps the JPA (Java Persistence API) functions that connect
our java application to our database. For every entity, a Spring Data JPA
repository is generated (@Repository Spring Data annotation). The basic
generated repository only includes query methods for find one and find all
but can be easily extended. Code listing 5.2 displays the generated repository
class for the student entity.

Code listing 5.2: Spring Data JPA Student Repository

1 package at.tugraz.stups.repository;

2

3 import at.tugraz.stups.domain.Student;

4 import org.springframework.stereotype.Repository;

5

6 import org.springframework.data.jpa.repository.*;

7 import org.springframework.data.repository.query.Param;

8 import java.util.List;

9

10 /**

11 * Spring Data JPA repository for the Student entity.

12 */

13 @SuppressWarnings("unused")

54

5.4 Backend Logic

14 @Repository

15 public interface StudentRepository extends JpaRepository<Student, Long> {

16 @Query("select distinct student from Student student left join fetch

student.studies left join fetch student.courses")

17 List<Student> findAllWithEagerRelationships();

18

19 @Query("select student from Student student left join fetch student.

studies left join fetch student.courses where student.id =:id")

20 Student findOneWithEagerRelationships(@Param("id") Long id);

21

22 }

5.4.3 Domain

The domain layer connects the repositories to their corresponding service
classes. JHipster uses Hibernate as the persistence framework.

Hibernate

Hibernate extends the Java Persistence API and enables us to use annotations
in our entity classes for almost all database related actions. In our case JHip-
ster uses hibernates caching mechanism for faster data access. An example of
an entity class is the student entity presented in code listing 5.3

Code listing 5.3: Student Entity

1 package at.tugraz.stups.domain;

2

3 import com.fasterxml.jackson.annotation.JsonIgnore;

4 import org.hibernate.annotations.Cache;

5 import org.hibernate.annotations.CacheConcurrencyStrategy;

6

7 import javax.persistence.*;

8 import javax.validation.constraints.*;

9

55

5 Solution

10 import org.springframework.data.elasticsearch.annotations.Document;

11 import java.io.Serializable;

12 import java.util.HashSet;

13 import java.util.Set;

14 import java.util.Objects;

15

16 /**

17 * A Student.

18 */

19 @Entity

20 @Table(name = "student")

21 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

22 @Document(indexName = "student")

23 public class Student implements Serializable {

24

25 private static final long serialVersionUID = 1L;

26

27 @Id

28 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "

sequenceGenerator")

29 @SequenceGenerator(name = "sequenceGenerator")

30 private Long id;

31

32 @NotNull

33 @Column(name = "first_name", nullable = false)

34 private String firstName;

35

36 @NotNull

37 @Column(name = "last_name", nullable = false)

38 private String lastName;

39

40 @Column(name = "prefix_title")

41 private String prefixTitle;

42

43 @Column(name = "postfix_title")

44 private String postfixTitle;

45

46 @NotNull

47 @Column(name = "student_number", nullable = false)

48 private String studentNumber;

49

50 @OneToOne

56

5.4 Backend Logic

51 @JoinColumn(unique = true)

52 private Planner planner;

53

54 @OneToOne

55 @JoinColumn(unique = true)

56 private Preferences preferences;

57

58 @OneToOne

59 @JoinColumn(unique = true)

60 private Address address;

61

62 @OneToMany(mappedBy = "student")

63 @JsonIgnore

64 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

65 private Set<Library> libraries = new HashSet<>();

66

67 @ManyToOne

68 private Student student;

69

70 @OneToMany(mappedBy = "student")

71 @JsonIgnore

72 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

73 private Set<Student> friends = new HashSet<>();

74

75 @OneToMany(mappedBy = "student")

76 @JsonIgnore

77 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

78 private Set<Appointment> appointments = new HashSet<>();

79

80 @ManyToMany

81 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

82 @JoinTable(name = "student_study",

83 joinColumns = @JoinColumn(name="students_id",

referencedColumnName="id"),

84 inverseJoinColumns = @JoinColumn(name="studies_id",

referencedColumnName="id"))

85 private Set<Study> studies = new HashSet<>();

86

87 @ManyToMany

88 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

89 @JoinTable(name = "student_course",

57

5 Solution

90 joinColumns = @JoinColumn(name="students_id",

referencedColumnName="id"),

91 inverseJoinColumns = @JoinColumn(name="courses_id",

referencedColumnName="id"))

92 private Set<Course> courses = new HashSet<>();

93

94 public Long getId() {

95 return id;

96 }

97

98 public void setId(Long id) {

99 this.id = id;

100 }

101

102 public String getFirstName() {

103 return firstName;

104 }

105

106 public Student firstName(String firstName) {

107 this.firstName = firstName;

108 return this;

109 }

110

111 public void setFirstName(String firstName) {

112 this.firstName = firstName;

113 }

114

115 public String getLastName() {

116 return lastName;

117 }

118

119 public Student lastName(String lastName) {

120 this.lastName = lastName;

121 return this;

122 }

123

124 public void setLastName(String lastName) {

125 this.lastName = lastName;

126 }

127

128 public String getPrefixTitle() {

129 return prefixTitle;

58

5.4 Backend Logic

130 }

131

132 public Student prefixTitle(String prefixTitle) {

133 this.prefixTitle = prefixTitle;

134 return this;

135 }

136

137 public void setPrefixTitle(String prefixTitle) {

138 this.prefixTitle = prefixTitle;

139 }

140

141 public String getPostfixTitle() {

142 return postfixTitle;

143 }

144

145 public Student postfixTitle(String postfixTitle) {

146 this.postfixTitle = postfixTitle;

147 return this;

148 }

149

150 public void setPostfixTitle(String postfixTitle) {

151 this.postfixTitle = postfixTitle;

152 }

153

154 public String getStudentNumber() {

155 return studentNumber;

156 }

157

158 public Student studentNumber(String studentNumber) {

159 this.studentNumber = studentNumber;

160 return this;

161 }

162

163 public void setStudentNumber(String studentNumber) {

164 this.studentNumber = studentNumber;

165 }

166

167 public Planner getPlanner() {

168 return planner;

169 }

170

171 public Student planner(Planner planner) {

59

5 Solution

172 this.planner = planner;

173 return this;

174 }

175

176 public void setPlanner(Planner planner) {

177 this.planner = planner;

178 }

179

180 public Preferences getPreferences() {

181 return preferences;

182 }

183

184 public Student preferences(Preferences preferences) {

185 this.preferences = preferences;

186 return this;

187 }

188

189 public void setPreferences(Preferences preferences) {

190 this.preferences = preferences;

191 }

192

193 public Address getAddress() {

194 return address;

195 }

196

197 public Student address(Address address) {

198 this.address = address;

199 return this;

200 }

201

202 public void setAddress(Address address) {

203 this.address = address;

204 }

205

206 public Set<Library> getLibraries() {

207 return libraries;

208 }

209

210 public Student libraries(Set<Library> libraries) {

211 this.libraries = libraries;

212 return this;

213 }

60

5.4 Backend Logic

214

215 public Student addLibrary(Library library) {

216 this.libraries.add(library);

217 library.setStudent(this);

218 return this;

219 }

220

221 public Student removeLibrary(Library library) {

222 this.libraries.remove(library);

223 library.setStudent(null);

224 return this;

225 }

226

227 public void setLibraries(Set<Library> libraries) {

228 this.libraries = libraries;

229 }

230

231 public Student getStudent() {

232 return student;

233 }

234

235 public Student student(Student student) {

236 this.student = student;

237 return this;

238 }

239

240 public void setStudent(Student student) {

241 this.student = student;

242 }

243

244 public Set<Student> getFriends() {

245 return friends;

246 }

247

248 public Student friends(Set<Student> students) {

249 this.friends = students;

250 return this;

251 }

252

253 public Student addFriend(Student student) {

254 this.friends.add(student);

255 student.setStudent(this);

61

5 Solution

256 return this;

257 }

258

259 public Student removeFriend(Student student) {

260 this.friends.remove(student);

261 student.setStudent(null);

262 return this;

263 }

264

265 public void setFriends(Set<Student> students) {

266 this.friends = students;

267 }

268

269 public Set<Appointment> getAppointments() {

270 return appointments;

271 }

272

273 public Student appointments(Set<Appointment> appointments) {

274 this.appointments = appointments;

275 return this;

276 }

277

278 public Student addAppointment(Appointment appointment) {

279 this.appointments.add(appointment);

280 appointment.setStudent(this);

281 return this;

282 }

283

284 public Student removeAppointment(Appointment appointment) {

285 this.appointments.remove(appointment);

286 appointment.setStudent(null);

287 return this;

288 }

289

290 public void setAppointments(Set<Appointment> appointments) {

291 this.appointments = appointments;

292 }

293

294 public Set<Study> getStudies() {

295 return studies;

296 }

297

62

5.4 Backend Logic

298 public Student studies(Set<Study> studies) {

299 this.studies = studies;

300 return this;

301 }

302

303 public Student addStudy(Study study) {

304 this.studies.add(study);

305 study.getStudents().add(this);

306 return this;

307 }

308

309 public Student removeStudy(Study study) {

310 this.studies.remove(study);

311 study.getStudents().remove(this);

312 return this;

313 }

314

315 public void setStudies(Set<Study> studies) {

316 this.studies = studies;

317 }

318

319 public Set<Course> getCourses() {

320 return courses;

321 }

322

323 public Student courses(Set<Course> courses) {

324 this.courses = courses;

325 return this;

326 }

327

328 public Student addCourse(Course course) {

329 this.courses.add(course);

330 course.getStudents().add(this);

331 return this;

332 }

333

334 public Student removeCourse(Course course) {

335 this.courses.remove(course);

336 course.getStudents().remove(this);

337 return this;

338 }

339

63

5 Solution

340 public void setCourses(Set<Course> courses) {

341 this.courses = courses;

342 }

343

344 @Override

345 public boolean equals(Object o) {

346 if (this == o) {

347 return true;

348 }

349 if (o == null || getClass() != o.getClass()) {

350 return false;

351 }

352 Student student = (Student) o;

353 if (student.getId() == null || getId() == null) {

354 return false;

355 }

356 return Objects.equals(getId(), student.getId());

357 }

358

359 @Override

360 public int hashCode() {

361 return Objects.hashCode(getId());

362 }

363

364 @Override

365 public String toString() {

366 return "Student{" +

367 "id=" + getId() +

368 ", firstName=’" + getFirstName() + "’" +

369 ", lastName=’" + getLastName() + "’" +

370 ", prefixTitle=’" + getPrefixTitle() + "’" +

371 ", postfixTitle=’" + getPostfixTitle() + "’" +

372 ", studentNumber=’" + getStudentNumber() + "’" +

373 "}";

374 }

375 }

64

5.4 Backend Logic

5.4.4 Service Interface

The service interface defines all functions that have to be implemented in
order to access our persistence layer. The interface for the student service is
shown in code listing 5.4

Code listing 5.4: Student Service Interface

1 package at.tugraz.stups.service;

2

3 import at.tugraz.stups.service.dto.StudentDTO;

4 import org.springframework.data.domain.Page;

5 import org.springframework.data.domain.Pageable;

6

7 /**

8 * Service Interface for managing Student.

9 */

10 public interface StudentService {

11

12 /**

13 * Save a student.

14 *

15 * @param studentDTO the entity to save

16 * @return the persisted entity

17 */

18 StudentDTO save(StudentDTO studentDTO);

19

20 /**

21 * Get all the students.

22 *

23 * @param pageable the pagination information

24 * @return the list of entities

25 */

26 Page<StudentDTO> findAll(Pageable pageable);

27

28 /**

29 * Get the "id" student.

30 *

31 * @param id the id of the entity

32 * @return the entity

33 */

65

5 Solution

34 StudentDTO findOne(Long id);

35

36 /**

37 * Delete the "id" student.

38 *

39 * @param id the id of the entity

40 */

41 void delete(Long id);

42

43 /**

44 * Search for the student corresponding to the query.

45 *

46 * @param query the query of the search

47 *

48 * @param pageable the pagination information

49 * @return the list of entities

50 */

51 Page<StudentDTO> search(String query, Pageable pageable);

52 }

5.4.5 Data Transfer API

The data transfer API defines the connection between the frontend and the
backend. It consists of the DTO definition, a mapping that maps DTOs to
domain objects and the implementation of the domain services to update the
objects on the persistence layer.

Data Transfer Objects

DTOs are serializable objects that are transferred between the backend and
a client or in our case the frontend. The fields of the DTO can vary in
comparison to the domain object but for the prototype, they are the same.
DTOs are transferred and received in JSON format as in code listing 5.6. The
DTO for the student domain object is presented in code listing 5.5

66

5.4 Backend Logic

Code listing 5.5: Student DTO

1 package at.tugraz.stups.service.dto;

2

3

4 import javax.validation.constraints.*;

5 import java.io.Serializable;

6 import java.util.HashSet;

7 import java.util.Set;

8 import java.util.Objects;

9

10 /**

11 * A DTO for the Student entity.

12 */

13 public class StudentDTO implements Serializable {

14

15 private Long id;

16

17 @NotNull

18 private String firstName;

19

20 @NotNull

21 private String lastName;

22

23 private String prefixTitle;

24

25 private String postfixTitle;

26

27 @NotNull

28 private String studentNumber;

29

30 private Long plannerId;

31

32 private Long preferencesId;

33

34 private Long addressId;

35

36 private Long studentId;

37

38 private Set<StudyDTO> studies = new HashSet<>();

39

40 private Set<CourseDTO> courses = new HashSet<>();

41

67

5 Solution

42 public Long getId() {

43 return id;

44 }

45

46 public void setId(Long id) {

47 this.id = id;

48 }

49

50 public String getFirstName() {

51 return firstName;

52 }

53

54 public void setFirstName(String firstName) {

55 this.firstName = firstName;

56 }

57

58 public String getLastName() {

59 return lastName;

60 }

61

62 public void setLastName(String lastName) {

63 this.lastName = lastName;

64 }

65

66 public String getPrefixTitle() {

67 return prefixTitle;

68 }

69

70 public void setPrefixTitle(String prefixTitle) {

71 this.prefixTitle = prefixTitle;

72 }

73

74 public String getPostfixTitle() {

75 return postfixTitle;

76 }

77

78 public void setPostfixTitle(String postfixTitle) {

79 this.postfixTitle = postfixTitle;

80 }

81

82 public String getStudentNumber() {

83 return studentNumber;

68

5.4 Backend Logic

84 }

85

86 public void setStudentNumber(String studentNumber) {

87 this.studentNumber = studentNumber;

88 }

89

90 public Long getPlannerId() {

91 return plannerId;

92 }

93

94 public void setPlannerId(Long plannerId) {

95 this.plannerId = plannerId;

96 }

97

98 public Long getPreferencesId() {

99 return preferencesId;

100 }

101

102 public void setPreferencesId(Long preferencesId) {

103 this.preferencesId = preferencesId;

104 }

105

106 public Long getAddressId() {

107 return addressId;

108 }

109

110 public void setAddressId(Long addressId) {

111 this.addressId = addressId;

112 }

113

114 public Long getStudentId() {

115 return studentId;

116 }

117

118 public void setStudentId(Long studentId) {

119 this.studentId = studentId;

120 }

121

122 public Set<StudyDTO> getStudies() {

123 return studies;

124 }

125

69

5 Solution

126 public void setStudies(Set<StudyDTO> studies) {

127 this.studies = studies;

128 }

129

130 public Set<CourseDTO> getCourses() {

131 return courses;

132 }

133

134 public void setCourses(Set<CourseDTO> courses) {

135 this.courses = courses;

136 }

137

138 @Override

139 public boolean equals(Object o) {

140 if (this == o) {

141 return true;

142 }

143 if (o == null || getClass() != o.getClass()) {

144 return false;

145 }

146

147 StudentDTO studentDTO = (StudentDTO) o;

148 if(studentDTO.getId() == null || getId() == null) {

149 return false;

150 }

151 return Objects.equals(getId(), studentDTO.getId());

152 }

153

154 @Override

155 public int hashCode() {

156 return Objects.hashCode(getId());

157 }

158

159 @Override

160 public String toString() {

161 return "StudentDTO{" +

162 "id=" + getId() +

163 ", firstName=’" + getFirstName() + "’" +

164 ", lastName=’" + getLastName() + "’" +

165 ", prefixTitle=’" + getPrefixTitle() + "’" +

166 ", postfixTitle=’" + getPostfixTitle() + "’" +

167 ", studentNumber=’" + getStudentNumber() + "’" +

70

5.4 Backend Logic

168 "}";

169 }

170 }

Code listing 5.6: Student DTO JSON

1 {

2 "id":23842,

3 "firstName":"John",

4 "lastName":"Student",

5 "prefixTitle":"DI",

6 "postfixTitle":"BSc",

7 "studentNumber":"0011223344",

8 "plannerId":23841,

9 "preferencesId":23840,

10 "addressId":23823,

11 "studies":[...],

12 "courses":[...]

13 }

Mapping

The mapping is the connection between our DTOs and the corresponding
domain objects. For every DTO a mapping is present. Code listing 5.7 shows
the mapping for the StudentDTO.

Code listing 5.7: Student Mapping

1 package at.tugraz.stups.service.mapper;

2

3 import at.tugraz.stups.domain.*;

4 import at.tugraz.stups.service.dto.StudentDTO;

5

6 import org.mapstruct.*;

7

8 /**

9 * Mapper for the entity Student and its DTO StudentDTO.

10 */

71

5 Solution

11 @Mapper(componentModel = "spring", uses = {PlannerMapper.class,

PreferencesMapper.class, AddressMapper.class, StudyMapper.class,

CourseMapper.class})

12 public interface StudentMapper extends EntityMapper<StudentDTO, Student> {

13

14 @Mapping(source = "planner.id", target = "plannerId")

15 @Mapping(source = "preferences.id", target = "preferencesId")

16 @Mapping(source = "address.id", target = "addressId")

17 @Mapping(source = "student.id", target = "studentId")

18 StudentDTO toDto(Student student);

19

20 @Mapping(source = "plannerId", target = "planner")

21 @Mapping(source = "preferencesId", target = "preferences")

22 @Mapping(source = "addressId", target = "address")

23 @Mapping(target = "libraries", ignore = true)

24 @Mapping(source = "studentId", target = "student")

25 @Mapping(target = "friends", ignore = true)

26 @Mapping(target = "appointments", ignore = true)

27 Student toEntity(StudentDTO studentDTO);

28

29 default Student fromId(Long id) {

30 if (id == null) {

31 return null;

32 }

33 Student student = new Student();

34 student.setId(id);

35 return student;

36 }

37 }

Service Implementation

The service implementation class implements the interface from section 5.4.4.
The service methods define the writing and loading of the persistence layer.
Code Listing 5.8 shows the implementation of the student service interface
from code listing 5.4.

Code listing 5.8: Student Service Implementation

72

5.4 Backend Logic

1 package at.tugraz.stups.service.impl;

2

3 import at.tugraz.stups.service.StudentService;

4 import at.tugraz.stups.domain.Student;

5 import at.tugraz.stups.repository.StudentRepository;

6 import at.tugraz.stups.repository.search.StudentSearchRepository;

7 import at.tugraz.stups.service.dto.StudentDTO;

8 import at.tugraz.stups.service.mapper.StudentMapper;

9 import org.slf4j.Logger;

10 import org.slf4j.LoggerFactory;

11 import org.springframework.data.domain.Page;

12 import org.springframework.data.domain.Pageable;

13 import org.springframework.stereotype.Service;

14 import org.springframework.transaction.annotation.Transactional;

15

16

17 import static org.elasticsearch.index.query.QueryBuilders.*;

18

19 /**

20 * Service Implementation for managing Student.

21 */

22 @Service

23 @Transactional

24 public class StudentServiceImpl implements StudentService {

25

26 private final Logger log = LoggerFactory.getLogger(StudentServiceImpl.

class);

27

28 private final StudentRepository studentRepository;

29

30 private final StudentMapper studentMapper;

31

32 private final StudentSearchRepository studentSearchRepository;

33

34 public StudentServiceImpl(StudentRepository studentRepository,

StudentMapper studentMapper, StudentSearchRepository

studentSearchRepository) {

35 this.studentRepository = studentRepository;

36 this.studentMapper = studentMapper;

37 this.studentSearchRepository = studentSearchRepository;

38 }

39

73

5 Solution

40 /**

41 * Save a student.

42 *

43 * @param studentDTO the entity to save

44 * @return the persisted entity

45 */

46 @Override

47 public StudentDTO save(StudentDTO studentDTO) {

48 log.debug("Request to save Student : {}", studentDTO);

49 Student student = studentMapper.toEntity(studentDTO);

50 student = studentRepository.save(student);

51 StudentDTO result = studentMapper.toDto(student);

52 studentSearchRepository.save(student);

53 return result;

54 }

55

56 /**

57 * Get all the students.

58 *

59 * @param pageable the pagination information

60 * @return the list of entities

61 */

62 @Override

63 @Transactional(readOnly = true)

64 public Page<StudentDTO> findAll(Pageable pageable) {

65 log.debug("Request to get all Students");

66 return studentRepository.findAll(pageable)

67 .map(studentMapper::toDto);

68 }

69

70 /**

71 * Get one student by id.

72 *

73 * @param id the id of the entity

74 * @return the entity

75 */

76 @Override

77 @Transactional(readOnly = true)

78 public StudentDTO findOne(Long id) {

79 log.debug("Request to get Student : {}", id);

80 Student student = studentRepository.findOneWithEagerRelationships(id);

81 return studentMapper.toDto(student);

74

5.4 Backend Logic

82 }

83

84 /**

85 * Delete the student by id.

86 *

87 * @param id the id of the entity

88 */

89 @Override

90 public void delete(Long id) {

91 log.debug("Request to delete Student : {}", id);

92 studentRepository.delete(id);

93 studentSearchRepository.delete(id);

94 }

95

96 /**

97 * Search for the student corresponding to the query.

98 *

99 * @param query the query of the search

100 * @param pageable the pagination information

101 * @return the list of entities

102 */

103 @Override

104 @Transactional(readOnly = true)

105 public Page<StudentDTO> search(String query, Pageable pageable) {

106 log.debug("Request to search for a page of Students for query {}",

query);

107 Page<Student> result = studentSearchRepository.search(queryStringQuery

(query), pageable);

108 return result.map(studentMapper::toDto);

109 }

110 }

5.4.6 Document Management

The data for the document management is also stored in the database. As
documents have to possibility to be either private or publicly accessible, there
is an access control in place.

75

5 Solution

“Access control seeks to restrict access to protected resources by enforc-
ing policies that state which subjects can perform which actions under
which conditions on which resources.[51]” [55]

Personal Documents

These documents are only accessible by the student that uploaded them.
They are marked by the public access flag that is set to false by default.

Document Library

The library is the connection to all of the documents. Therefore, the API offers
the possibility to do searches over all documents accessible by the current
user. The search technology used in the prototype is Elasticsearch [4].

5.5 Mobile

The prototype is developed specifically as a web application for desktop
devices but with the used technologies, the user interface is also responsive
and can be used on mobile devices.

76

6 Outlook

The application prototype in chapter 5 provides the base for a lot of further
development and expansions. Because there are so many opportunities, we
will focus only on three that could allow for the most benefit in the short
term.

• Including University Frameworks
• Extensions
• Microservices

Further improvements for the long term could include

• Social features (e.g. Friends, Chat)
• Including social networks (e.g. Facebook, Twitter, Instagram)
• Mobile optimized application

All improvements should raise the acceptance factor but keep the usability
the same or make it better.

6.1 Including University Frameworks

Most universities offer an API that can be used to access the information pro-
vided to the students if logged in. With the integration of these frameworks,
students would only have to provide their credentials for the university login

77

6 Outlook

and the available information would be transferred automatically into the
time management application. This would make the application much more
convenient and the acceptance would rise.

6.2 Extensions

This would allow for custom extensions that users could write e.g. in Groovy
[47] or JavaScript that would automate certain tasks or add new types of
content to the planner.

6.3 Microservices

This would mean that we refactor the application to use a microservice
approach, where every module of the application is a microservice and they
are connected via a message bus. For the frontend nothing would change, as
we would still have our single API gateway, but the backend would get a lot
more scalable and in the long term more performant.

78

7 Summary

This work analysis all requirements for an online time management web
application that is tailored for university students. Existing applications
on their own are missing features for a higher acceptance. Therefore, we
checked different aspects on how to get higher acceptance for our application.
The development process contained the definition of several requirements
to stay on track tackling the existing problems. Choosing the best-suited
technology stack is one of the biggest challenges and therefore we analyzed
most state-of-the-art concepts and frameworks in the field of web application
development. Two java-based prototypes were developed using Java Server
Faces with Prime Faces and the JHipster generator including Angular 2+
and Spring. The later one proved to be more viable and should be used for
further development. We demonstrated that, on the right basis, it is possible
to build a web application helping university students time management
with manageable effort. A final solution to this problem would still require
more development work and usability testing in cooperation with students
from different universities.

79

Appendix

81

List of Figures

5.1 Mockup Login Page . 37

5.2 Mockup Planner Page 1 . 38

5.3 Mockup Planner Page Add . 39

5.4 Mockup Planner Page 2 . 40

5.5 Mockup Courses Page . 41

5.6 JSF Prototype Login Page . 42

5.7 JSF Prototype Time Management Page 44

5.8 JSF Prototype Library Page . 45

5.9 JSF Prototype Course Page . 47

5.10 JDL Diagram . 50

83

List of Tables

1.1 Application Comparison . 5

5.1 JSF vs. JHipster . 35

85

List of Code listings

4.1 Spring Boot Demo . 24

5.1 JDL . 50

5.2 Spring Data JPA Student Repository 54

5.3 Student Entity . 55

5.4 Student Service Interface . 65

5.5 Student DTO . 67

5.6 Student DTO JSON . 71

5.7 Student Mapping . 71

5.8 Student Service Implementation 72

87

Bibliography

[1] Oracle Corporation and/or its affiliates. What is MySQL? 2019. url:
https://dev.mysql.com/doc/refman/8.0/en/what-is-

mysql.html (visited on 01/07/2019) (cit. on p. 30).

[2] António Manuel Andrade. “Ensino a Distância e e-learning.” In: Insti-
tuto Educação-Universidade Católica Portuguesa (2005) (cit. on p. 15).

[3] Auth0. JSON Web Token. 2019. url: https://jwt.io/introduction/
(visited on 01/27/2019) (cit. on p. 48).

[4] Elasticsearch B.V. Elasticsearch. 2019. url: https://www.elastic.
co/de/products/elasticsearch (visited on 02/24/2019) (cit. on
p. 76).

[5] Claudivan de Carvalho. Firefly Student Planner. 2019. url: https://
play.google.com/store/apps/details?id=com.clawdyvan.

agendadigitalaluno (visited on 12/05/2017) (cit. on pp. 4, 5).

[6] European Commission. ECTS Users’ Guide 2015. Publications Office of
the European Union, 2015 (cit. on p. 10).

[7] Evernote Corporation. Evernote. 2019. url: https://evernote.com/
(visited on 01/04/2019) (cit. on pp. 3, 5).

[8] Firefly Learning Ltd. Firefly Student Planner. 2019. url: https://
fireflylearning.com/ (visited on 01/04/2019) (cit. on pp. 2, 5).

89

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://jwt.io/introduction/
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/elasticsearch
https://play.google.com/store/apps/details?id=com.clawdyvan.agendadigitalaluno
https://play.google.com/store/apps/details?id=com.clawdyvan.agendadigitalaluno
https://play.google.com/store/apps/details?id=com.clawdyvan.agendadigitalaluno
https://evernote.com/
https://fireflylearning.com/
https://fireflylearning.com/

Bibliography

[9] The JQuery Foundation. JQuery. 2019. url: https://jquery.com/
(visited on 01/27/2019) (cit. on p. 27).

[10] Francesco Cirillo. Focus Booster. 2019. url: https://www.focusboosterapp.
com/ (visited on 01/04/2019) (cit. on pp. 3, 5).

[11] Google. Angular Docs. 2019. url: https://angular.io/docs (vis-
ited on 01/07/2019) (cit. on p. 27).

[12] Google. Angular Material. 2019. url: https://material.angular.
io/ (visited on 01/27/2019) (cit. on p. 28).

[13] Google. Material Design. 2019. url: https://material.io/design/
(visited on 01/27/2019) (cit. on p. 28).

[14] The PostgreSQL Global Development Group. PostgreSQL About. 2019.
url: https://www.postgresql.org/about/ (visited on 01/07/2019)
(cit. on p. 30).

[15] Chris Eppstein Hampton Catlin Natalie Weizenbaum. Sass (Syntacti-
cally Awesome StyleSheets). 2019. url: https://sass-lang.com/
documentation/file.SASS_REFERENCE.html (visited on 01/27/2019)
(cit. on p. 29).

[16] Facebook Inc. React. 2019. url: https://reactjs.org/ (visited on
01/27/2019) (cit. on p. 28).

[17] PrimeTek Informatics. Primefaces for JavaServer Faces. 2019. url: https:
//www.primefaces.org/showcase/ (visited on 01/05/2019) (cit.
on pp. 26, 33).

[18] instin, LLC. myHomework. 2019. url: https://myhomeworkapp.
com/ (visited on 01/04/2019) (cit. on pp. 2, 5).

[19] iStudiez Team. iStudiez Pro. 2019. url: https://istudentpro.com/
(visited on 01/04/2019) (cit. on pp. 3, 5).

[20] JHipster. JHipster. 2019. url: https://www.jhipster.tech/ (vis-
ited on 01/05/2019) (cit. on p. 34).

90

https://jquery.com/
https://www.focusboosterapp.com/
https://www.focusboosterapp.com/
https://angular.io/docs
https://material.angular.io/
https://material.angular.io/
https://material.io/design/
https://www.postgresql.org/about/
https://sass-lang.com/documentation/file.SASS_REFERENCE.html
https://sass-lang.com/documentation/file.SASS_REFERENCE.html
https://reactjs.org/
https://www.primefaces.org/showcase/
https://www.primefaces.org/showcase/
https://myhomeworkapp.com/
https://myhomeworkapp.com/
https://istudentpro.com/
https://www.jhipster.tech/

Bibliography

[21] JHipster. JHipster Tech Stack. 2019. url: https://www.jhipster.
tech/tech-stack/ (visited on 01/05/2019) (cit. on p. 34).

[22] J. Kumar and V. Garg. “Security analysis of unstructured data in
NOSQL MongoDB database.” In: 2017 International Conference on Com-
puting and Communication Technologies for Smart Nation (IC3TSN). Oct.
2017, pp. 300–305. doi: 10.1109/IC3TSN.2017.8284495 (cit. on
p. 31).

[23] Ivano Malavolta. “Beyond Native Apps: Web Technologies to the Res-
cue! (Keynote).” In: Proceedings of the 1st International Workshop on Mobile
Development. Mobile! 2016. Amsterdam, Netherlands: ACM, 2016, pp. 1–
2. isbn: 978-1-4503-4643-6. doi: 10.1145/3001854.3001863. url:
http://doi.acm.org/10.1145/3001854.3001863 (cit. on
p. 19).

[24] Massachusetts Institute of Technology. MIT License. 2019. url: https:
//opensource.org/licenses/mit-license.php (visited on
01/04/2019) (cit. on pp. iii, 14).

[25] Ritesh Mehra et al. “Configuring Java-Based Web Application Develop-
ment Environment for an Academic Setting.” In: Jan. 2004, pp. 111–118

(cit. on pp. 1, 14).

[26] Y. Mei and F. Lingjie. “ATS Software Framework Design Pattern and
Application.” In: 2015 Fifth International Conference on Instrumentation
and Measurement, Computer, Communication and Control (IMCCC). Sept.
2015, pp. 141–146. doi: 10.1109/IMCCC.2015.37 (cit. on p. 24).

[27] Luis Mena Tobar, Pedro M. Latorre Andrés, and Elena Lafuente Lapena.
“WebA: A Tool for the Assistance in Design and Evaluation of Web-
sites.” In: J. UCS 14 (Jan. 2008), pp. 1496–1512 (cit. on p. 15).

[28] Microsoft. .NET. 2019. url: https://dotnet.microsoft.com/
(visited on 03/16/2019) (cit. on p. 26).

91

https://www.jhipster.tech/tech-stack/
https://www.jhipster.tech/tech-stack/
https://doi.org/10.1109/IC3TSN.2017.8284495
https://doi.org/10.1145/3001854.3001863
http://doi.acm.org/10.1145/3001854.3001863
https://opensource.org/licenses/mit-license.php
https://opensource.org/licenses/mit-license.php
https://doi.org/10.1109/IMCCC.2015.37
https://dotnet.microsoft.com/

Bibliography

[29] Microsoft. ASP.NET. 2019. url: https://dotnet.microsoft.com/
apps/aspnet (visited on 02/17/2019) (cit. on p. 26).

[30] Microsoft. TypeScript. 2019. url: https://www.typescriptlang.
org/ (visited on 02/17/2019) (cit. on p. 26).

[31] Inc. MongoDB. MongoDB. 2019. url: https://www.mongodb.com/
de/what-is-mongodb (visited on 01/05/2019) (cit. on p. 31).

[32] Moshbit GmbH. Studo. 2019. url: https://studo.co/ (visited on
01/04/2019) (cit. on pp. 4, 5).

[33] Mozilla and individual contributors. JavaScript. 2019. url: https:
//developer.mozilla.org/en-US/docs/Web/JavaScript

(visited on 01/27/2019) (cit. on pp. 26, 27).

[34] Thomas Müller. H2. 2019. url: http://www.h2database.com/
html/main.html (visited on 01/05/2019) (cit. on p. 31).

[35] My Study Life, Ltd. My Study Life. 2019. url: https://www.mystudylife.
com/ (visited on 01/04/2019) (cit. on pp. 4, 5).

[36] Henrik Frystyk Nielsen et al. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616. June 1999. doi: 10.17487/RFC2616. url: https://rfc-
editor.org/rfc/rfc2616.txt (cit. on p. 23).

[37] Oracle. JavaServer Faces Technology. 2019. url: https://www.oracle.
com/technetwork/java/javaee/javaserverfaces-139869.

html (visited on 01/27/2019) (cit. on pp. 25, 27).

[38] Inc. Pivotal Software. Building an Application with Spring Boot. 2019.
url: https://spring.io/guides/gs/spring-boot/ (visited on
02/17/2019) (cit. on p. 25).

[39] Inc. Pivotal Software. Spring. 2019. url: https://spring.io (visited
on 02/17/2019) (cit. on p. 24).

[40] Inc. Pivotal Software. Spring Boot. 2019. url: https://spring.io/
projects/spring-boot (visited on 02/17/2019) (cit. on p. 24).

92

https://dotnet.microsoft.com/apps/aspnet
https://dotnet.microsoft.com/apps/aspnet
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.mongodb.com/de/what-is-mongodb
https://www.mongodb.com/de/what-is-mongodb
https://studo.co/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html
https://www.mystudylife.com/
https://www.mystudylife.com/
https://doi.org/10.17487/RFC2616
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc2616.txt
https://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://spring.io/guides/gs/spring-boot/
https://spring.io
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot

Bibliography

[41] Inc. Pivotal Software. Spring Data. 2019. url: https://spring.io/
projects/spring-data (visited on 02/17/2019) (cit. on pp. 24, 25).

[42] Inc. Pivotal Software. Spring Projects. 2019. url: https://spring.
io/projects (visited on 02/17/2019) (cit. on p. 24).

[43] Inc. Pivotal Software. Spring Security. 2019. url: https://spring.
io/projects/spring-security (visited on 02/17/2019) (cit. on
p. 24).

[44] Inc. Pivotal Software. Unterstanding HATEOAS. 2019. url: https:
//spring.io/understanding/HATEOAS (visited on 01/05/2019)
(cit. on p. 23).

[45] Inc. Pivotal Software. Unterstanding REST. 2019. url: https://spring.
io/understanding/REST (visited on 01/05/2019) (cit. on p. 22).

[46] Inc. Pivotal Software. Unterstanding SOAP. 2019. url: https : / /
spring.io/understanding/SOAP (visited on 01/05/2019) (cit.
on p. 22).

[47] Apache Groovy project. Groovy - A multi-faceted language for the Java plat-
form. 2019. url: http://groovy-lang.org/ (visited on 02/23/2019)
(cit. on p. 78).

[48] Inc. Red Hat. Wildfly. 2019. url: http://wildfly.org/ (visited on
01/05/2019) (cit. on p. 33).

[49] Remember The Milk. Remember The Milk. 2019. url: https://www.
rememberthemilk.com/ (visited on 01/04/2019) (cit. on pp. 3, 5).

[50] Usha Sakthivel, Neha Singhal, and Pethuru Raj Chelliah. “RESTful
web services composition & performance evaluation with different
databases.” In: Dec. 2017, pp. 1–4. doi: 10.1109/ICEECCOT.2017.
8284608 (cit. on p. 23).

93

https://spring.io/projects/spring-data
https://spring.io/projects/spring-data
https://spring.io/projects
https://spring.io/projects
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/understanding/HATEOAS
https://spring.io/understanding/HATEOAS
https://spring.io/understanding/REST
https://spring.io/understanding/REST
https://spring.io/understanding/SOAP
https://spring.io/understanding/SOAP
http://groovy-lang.org/
http://wildfly.org/
https://www.rememberthemilk.com/
https://www.rememberthemilk.com/
https://doi.org/10.1109/ICEECCOT.2017.8284608
https://doi.org/10.1109/ICEECCOT.2017.8284608

Bibliography

[51] R. S. Sandhu and P. Samarati. “Access control: principle and practice.”
In: IEEE Communications Magazine 32.9 (Sept. 1994), pp. 40–48. issn:
0163-6804. doi: 10.1109/35.312842 (cit. on p. 76).

[52] Rosa Silva and António Andrade. “Development of a Web Application
for Management of Learning Styles.” In: J. UCS 15 (Jan. 2009), pp. 1508–
1525 (cit. on p. 15).

[53] SmartBear Software. SOAP vs REST Infographic. 2018. url: https:
//www.soapui.org/resources/infographic/api-testing/

soap-vs-rest-infographic.html (visited on 01/05/2019) (cit.
on pp. 22, 23).

[54] Robert Thurlow. RPC: Remote Procedure Call Protocol Specification Version
2. RFC 5531. May 2009. doi: 10.17487/RFC5531. url: https://
rfc-editor.org/rfc/rfc5531.txt (cit. on p. 22).

[55] Kam S. Tso, Michael J. Pajevski, and Bryan Johnson. “Access Control
of Web and Java Based Applications.” In: Proceedings of the 2011 IEEE
17th Pacific Rim International Symposium on Dependable Computing. PRDC
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 320–
325. isbn: 978-0-7695-4590-5. doi: 10.1109/PRDC.2011.54. url:
http://dx.doi.org/10.1109/PRDC.2011.54 (cit. on p. 76).

[56] W3C. Cascading Style Sheets. 2019. url: https://www.w3.org/
Style/CSS/ (visited on 01/27/2019) (cit. on p. 29).

[57] W3C. HTML 5.2. 2017. url: https://www.w3.org/TR/html5/
(visited on 01/27/2019) (cit. on p. 29).

[58] W3C. WAI-ARIA. 2019. url: https://www.w3.org/WAI/standards-
guidelines/aria/ (visited on 01/05/2019) (cit. on p. 29).

[59] W3C. XML WSDL. 2019. url: https://www.w3schools.com/xml/
xml_wsdl.asp (visited on 01/05/2019) (cit. on p. 22).

94

https://doi.org/10.1109/35.312842
https://www.soapui.org/resources/infographic/api-testing/soap-vs-rest-infographic.html
https://www.soapui.org/resources/infographic/api-testing/soap-vs-rest-infographic.html
https://www.soapui.org/resources/infographic/api-testing/soap-vs-rest-infographic.html
https://doi.org/10.17487/RFC5531
https://rfc-editor.org/rfc/rfc5531.txt
https://rfc-editor.org/rfc/rfc5531.txt
https://doi.org/10.1109/PRDC.2011.54
http://dx.doi.org/10.1109/PRDC.2011.54
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/TR/html5/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3schools.com/xml/xml_wsdl.asp
https://www.w3schools.com/xml/xml_wsdl.asp

	Abstract
	Introduction
	Current Situation
	Firefly Student Planner
	myHomework Student Planner
	Evernote
	Focus Booster
	Remember The Milk
	iStudiez Pro
	Student Agenda
	My Study Life
	Studo

	Comparison
	Conclusion

	Requirements
	Functional Requirements
	Time Management
	Course Management

	Technological Requirements
	Platform
	Open Source
	User Interface

	Problem Statement
	User Interface Design
	User Interface Logic
	Backend Logic
	Authorization Module
	University Management Module
	Time Management Module
	Course Management Module
	Document Management Module

	Mobile

	State-Of-The-Art Technologies
	Backend Technologies
	Concepts
	Frameworks

	Frontend Technologies
	Concepts
	Frameworks and Technologies
	HTML and CSS

	Database Technologies
	Structured Query Language
	NoSQL
	In-memory Database

	Solution
	Prototyping
	JSF
	JHipster

	User Interface Design
	Mockups
	Navigation
	Social Features

	Frontend Logic
	Backend Logic
	Authorization
	Repository
	Domain
	Service Interface
	Data Transfer API
	Document Management

	Mobile

	Outlook
	Including University Frameworks
	Extensions
	Microservices

	Summary
	List of Figures
	List of Tables
	List of Code listings
	Bibliography

