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of Graz, Universitätsplatz 5/II, 8010 Graz, Austria.

Graz, Mai 2021



Tom Eynard-Machet

Grad-Shafranov Reconstruction Of Magnetic Flux Ropes − The Influence Of The Boundary Selection

On The Reconstruction

Thesis in partial fulfillment of the requirements for the degree of MSc;

Thesis submitted on Mai 26, 2021 and defended on July 2, 2021.

Department for Geophysics, Astrophysics and Meteorology,

Institute for Physics, NAWI Graz, University of Graz.

Supervisors: Assoc. Prof. Mag. Dr. rer. nat. Manuela Temmer1

1 Institut für Physik, Institutsbereich Geophysik, Astrophysik und Meteorologie,

NAWI Graz, University of Graz, Universitätsplatz 5/II, 8010 Graz, Austria.



Abstract

Aims. In this thesis, we explore the Grad-Shafranov method to reconstruct magnetic flux
ropes. The goal is to determine the influence of the selection of the cloud boundaries on
the output of the reconstruction. Moreover, we study the impact of the smoothing on the
reconstruction. Finally, we try to evaluate the sensitivity of the reconstruction procedure.

Methods. We are using the new MATLAB code written by Qiang Hu to reconstruct 17
times the magnetic cloud detected on 2013-06-28. For each reconstruction, we modify the
boundaries and analyse the differences in the output parameters of the reconstruction. We
also repeat the 17 reconstructions with smoothed data and compare these results with the
literature. At last, we compare seven reconstructions of the same event and vary the input
parameters to investigate the robustness of the code.

Results. A variation of one minute on the front boundary has an average influence three to
four times greater than an equal variation of the rear boundary on the output parameters.
However, the uncertainty on the location of the front boundary is almost four times lower
than the one of the rear boundary. The study on smoothed data leads to similar results. The
results of the 17 reconstructions deviate from those of the literature by 10.2% and 0.7%
for the unsmoothed and smoothed data respectively. Finally, seven reconstructions do not
represent a statistically large enough sample size and, therefore, do not allow to draw a
conclusion on the robustness of the code.

Keywords: Space weather; Solar physics; CMEs; Magnetic field
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1Introduction

The Sun dictates our sleep, our mood, and provides a fix point to measure our time on Earth.
As a physicist, the Sun is the greatest laboratory in our reach. The most energetic events and
violent phenomena take place in, on, and around the Sun.

Due to the Sun, the effects of general relativity have been observed. We received, from
stars, photons that have been deflected by the curved space-time in the surroundings of the
Sun. In addition, some fundamental theoretical progress has been made observing the Sun.
As an example, we can cite the neutrino problem. In fact, the number of neutrinos coming
from the Sun represented a third of the predicted neutrinos. This observation led, in turn, to
the discovery of the oscillation of neutrinos. Furthermore, quantum mechanics are involved
as it allows the fusion to occur in the core of the Sun. During the fusion process, the energy
produced is radiated and transported through the different layers of the Sun. The energy is
carried away through radiative energy transport or convective energy transport. Overall, the
Sun unites a large scope of physical topics.
The Sun is hot enough to ionise the atoms and create plasma, whose motion creates an
electromagnetic field. The convection in the Sun coupled with its differential rotation
generate a solar activity cycle with a period of 22 years (Balogh et al., 2015). The magnetic
field lines can be either open or closed. The open magnetic field lines are associated with
coronal holes. These are regions of lower density and temperature where the plasma is
accelerated to high velocities and expelled in the interplanetary medium. This high speed
stream is known as fast solar wind, in opposition to slow solar wind associated with the
expansion of the solar corona. The coronal holes usually situate at high latitudes, but
can move towards lower latitudes during high solar activity, creating a higher pressure on
the Earth’s magnetic field. Closed magnetic field lines are dragged by the plasma on the
surface of the Sun. Some of them carry plasma up to the solar corona. The differential
rotation is creating torsion, shearing and twisting of the closed magnetic field lines, storing
energy. When the balance breaks down, the magnetic field lines reconnect and release
this energy, triggering an eruptive event. The plasma, along with the magnetic field, is
ejected into the interstellar medium at high speeds. This event is called a Coronal Mass
Ejection (CME) (Balogh et al., 2015). Eventually, this magnetic ejecta, also called magnetic
cloud, will propagate towards the Earth. A magnetic flux rope expands alongside the core
of the magnetic cloud. The latter is defined as a group of magnetic field lines twisting
around a common axis (Lowder and Yeates, 2017). The Global Geospace Science WIND
satellite, launched in 1994, measures, among others, the magnetic field, plasma temperature,
plasma density and plasma velocity at the Lagrange point L1 (NASA et al., 2021). At
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this point L1, the satellite is situated on the day side of the Earth, allowing measurements
without interruptions. The database of CDAWeb (https://cdaweb.gsfc.nasa.gov/
index.html/) gives an access to the measurements of WIND’s instrumentations. With
these tools, we can have an insight in the physics that happens in the magnetic ejecta
reaching the Earth. Several methods are modelling the magnetic flux ropes. The Lundquist
(1950) or the Gold-Hoyle (1960) methods have been able to apprehend and reconstruct
the shape of the magnetic flux ropes. More recently, the Grad-Shafranov method has been
used to reconstruct these clouds. Originally used to reconstruct the interaction between the
solar wind and the Earth’s magnetopause, it is now efficient in reconstructing the magnetic
clouds themselves (Möstl et al., 2009). Unlike the Lundquist and Gold-Hoyle methods,
the Grad-Shafranov method does not make assumptions about the shape of the magnetic
field components, but uses the symmetries of the magnetic flux ropes as a base for the
reconstruction. However, with the measured magnetic fields, the boundaries of the flux
ropes are not well defined and have yet to be tested.
In this master thesis, I will describe the Grad-Shafranov method and discuss the influence
of the choice of the magnetic flux rope’s boundaries on the reconstruction. At first, I will
summarize the state of our knowledge of the Sun and its activity. It is followed by an
explanation why this activity is at the origin of the propagation of magnetic flux ropes in the
interstellar medium. Thereafter, I will present the Grad-Shafranov reconstruction method
and apply it on an example. Additionally, the choice of the boundaries of the magnetic flux
rope is going to be discussed through a set of reconstructions of the same event. Finally, I am
going to test the robustness of the code by reconstructing several times the same magnetic
flux rope with identical boundaries.

2 Chapter 1 Introduction
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2The Sun and its activity

In order to understand the importance and the origin of the study of magnetic clouds, it is
necessary to recall some knowledge that we have on the Sun. In this section, I will start
by describing the Sun in its entirety and explain the origin of its magnetic field. Then,
I will define what solar winds, CMEs and magnetic flux ropes are and enumerate their
characteristics. Lastly, I will attempt to summarize the impacts that the Sun’s activity has on
the Earth.

2.1 The sun as a star

2.1.1 The sun in the galaxy

The Sun seems enormous to us, containing 99.8% of the mass of our solar system. In
the spectrum of the stars we know, the Sun is considered a Yellow Dwarf (NASA, 2019),
even though it is heavier than 93.9% of the stars in our galaxy (Kroupa, 2000). Moreover,
it is possible to classify the Sun according to the Harvard classification of stars. This
classification has been created to describe easily, but efficiently the stars according to their
emission and absorption lines (Jaschek and Jaschek, 1987). On the other hand, each type of
star has its temperature range. An analysis of the blackbody spectrum of the star should be,
therefore, enough to classify the star (as given in table. 2.1 ) (Habets and Heintze, 1981).

Star Type Temperature (Kelvin)
O ≥ 30 000K
B 10 000 - 30 000K
A 7 500 - 10 000K
F 6 000 - 7 500K
G 5 200 - 6 000K
K 3 700 - 5 200K
M 32 400 - 3 700K

Table 2.1: Correspondence between the type of a star and its effective temperature.

In this table, it is easy to see that the Sun, with its effective temperature of 5772K, is a G
type star (Mamajek et al., 2015; Habets and Heintze, 1981). In fact, knowing its temperature
and its age, it is possible to characterize the Sun as a G2V star. The V means that the Sun is

3



on the main sequence. The evolution track of stars can be seen in the Herzsprung Russel
Diagram (figure 2.1). This diagram displays the relative luminosity with respect to the color
index, which yields a single Planck curve equivalent to a temperature.
Stars are often created from the contraction of an interstellar cloud, that may be the remnant
of a supernova. Once the protostar is created, accretion of mass increases the mass of the
star. Eventually, if the internal pressure of the object is high enough, fusion processes occur.
The main fusion process is known as proton-proton chain (or pp-chain) and is considered
as the beginning of the main sequence (Karttunen et al., 2017). A star leaves the main
sequence when the Hydrogen in its core is exhausted. Then, the radiation pressure does not
counteract the gravitational pressure, and the star collapses. For large stars, the collapse can
result in a black hole or a neutron star, whereas lighter ones will mainly end in white dwarfs.
Furthermore, light stars burn their Hydrogen slower than massive ones. There is a strong
correlation between mass and life expectancy. We can read it in the figure 2.2 (Karttunen
et al., 2017; Bertulani, 2013). The Sun should live approximately 10 Gy (109 years). Its
actual age can be calculated with the help of helioseismology, which yields an age of 4.6
Gy, also corresponding to the age of the oldest meteorite (Dziembowski et al., 1998). The
same age, 4.567 ± 0.0003 Gy, has been predicted by the study of Calcium-Aluminium-rich
Inclusion (CAI) in primitive meteorites (Bizzarro et al., 2012). Furthermore, the mass of
the Sun can be calculated with the third Kepler’s law and has a value of 1.327 1020m3 s−2

(GM), meaning a mass of 1.98 1030 kg (Luzum et al., 2011; Mamajek et al., 2015). Finally,
the radius of the Sun is 695660 km according to both seismic and photospheric studies
(Haberreiter et al., 2008).
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Fig. 2.1: Herzsprung Russel Diagram of 22 000 stars from Hipparcos Catalogue (Powell,
2011).

Table 2.2: Life expectancy of stars with respect to their masses (Bertulani, 2013).

2.1 The sun as a star 5



2.1.2 The solar interior

Now that the situation of the Sun among the other stars has been clarified, the structure of
the Sun itself has to be described. We will list shortly the different layers of the solar interior
and give some of their main characteristics.

The core The core of the Sun is the place where fusion processes take place. The Hy-
drogen fuse into Helium. This fusion process happens only because the conditions
of temperature and pressure are extremes. Indeed, the density at the very center of
the core is estimated at 150 g cm−3, and at the transition point from core to radiation
zone, it is estimated to be 20 g cm−3 (Basu et al., 2009). Likewise, the temperature
at the very center reaches 15 million Kelvin. The NASA has released in its book
"Solar Math Educator Guide" of 2013 that the density inside the Sun can be modeled
by the function: ρ(x) = 519x4 − 1630x3 + 1844x2 − 889x + 155, where x is r

R and
R is the radius of the Sun. Using the integrated mean formula 2.1, it is possible to
calculate the mean value of the density between x = 0 and x = 0.25, considered
here as the outer boundary of the core. This mean value equals 76.32 g cm−3. The
core encompasses the volume included within 25% of the total radius of the Sun
(Hathaway, 2015; Christensen-Dalsgaard et al., 1996). This volume represents 1.5%
of the total volume of the Sun, but according to our calculation, it should contain 84%
of its mass. However, it seems like the core really contains only 50% of the total mass
of the Sun (Dunbar, 2017).

ρ(x) =
1

b − a

∫︂ b

a
ρ(x)dx (2.1)

The radiative zone The radiative zone extends from 25% to 70% of the radius of the
Sun. It is called radiative zone due to the type of energy transport that takes place
in this region, called radiative transfer. Indeed, the nuclear energy created in the
core is stored in photons that propagate through the radiative zone. The radiative
zone contains mainly plasma. Hence, the photons can bounce and scatter with other
particles (Dunbar, 2017). The path followed by such a photon is called random walk.
A photon takes approximately 170 000 years to escape the Sun due to these succesive
bounces (Mitalas and Sills, 1992). In fact, the mean distance that a photon can travel
without encountering another particle is called mean free path, and its value is of
1.2 10−4 m in the solar radiative zone (Walker, 2006).
Convection does not happen in this region. First, let us imagine a "bubble" of hot
matter. The bubble expands and starts to rise due to the buoyancy force. If the
rate of energy exchange between the bubble and its environment is high, the hot
matter will immediately cool down and sink or stabilize at its level. Here, there
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is no convection. Now, if the rate of energy exchange between the bubble and its
environment is low, the bubble rises, but does not cool down. It will rise until it
reaches a layer with the same density, cool down, and sink again. This last process
is called convection. To summarize, a high temperature gradient and a low energy
dissipation lead to convective energy transport, but a low temperature gradient with
a high energy dissipation creates radiative energy transport (Leblanc, 2011). The
temperature gradient or the ability of a fluid to dissipate energy are both strongly
linked to their capacity to absorb energy or photons. This characteristic is called
opacity. In other words, if the opacity of a fluid is high, it will store the energy, create
a temperature gradient and cool down slowly. On the contrary, if the opacity is low,
the photons travel through the medium, creating a low temperature gradient.
The temperature of the radiation zone decreases from 7 million to 2 million Kelvin
(Hathaway, 2015). Moreover, the state of the matter in this region does not allow
complex molecules to keep their electrons. In turn, this means that the photons are
less likely to be absorbed, meaning that the opacity is low. As we discussed, a high
temperature gradient and a low opacity do not allow convection. This zone is radiative.

Fig. 2.2: The structure of the Sun interior (Jenny Mottar, 2017).

The convection zone The convection zone starts when the radiation zone ends. It ends
near the surface of the Sun. The transition region between the radiative and the
convective zone is called the tachocline. It is also the depth at which a differential
rotation starts to be observed (Route, 2016). At the tachocline, the temperature is
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approximately 2 million Kelvin, which is low enough for some atoms to keep their
electrons bonded. Eventually, those can absorb photons and excite. This phenomenon
increases the opacity of the matter, and makes it unstable (Hathaway, 2015). The
temperature gradient coupled with the opacity of this region allows convection in this
layer. It is probable that the motion of the ionised matter in this layer is at the origin
of a strong magnetic field.

2.1.3 The solar atmosphere

The solar interior can be understood as everything that lies under the surface of the Sun. In
opposition, the atmosphere represents the layers that add up above this surface. The surface
is the layer where the Sun becomes optically thin. I will now describe each atmosphere
layer and their characteristics.

Table 2.3: The Holweger-Müller model describing the photosphere and its boundaries
(Holweger and Müller, 1974).

8 Chapter 2 The Sun and its activity



The photosphere The photosphere is known as the lowest atmospheric region of the
Sun. The opacity changes from thick to thin within this layer (Holweger and Müller,
1974). Indeed, in the figure 2.3, we can see that the opacity becomes inferior to one
between −34 km and 0 km above the surface. The photosphere extends up to 500 km
above the surface of the Sun. From the same figure 2.3, we can read the temperature
at each border of the photosphere (0 km and 500 km). These temperatures range from
6533 K to 4368 K. In reality, the effective temperature of the Sun has been evaluated
at 5772 K from an analysis of the blackbody spectrum of the Sun (Mamajek et al.,
2015). The maximum of the spectrum yields the temperature of this blackbody.

The chromosphere Literally, the word chromosphere means "the sphere of colors". This
can be explained by the fact that, during solar eclipses, one can see the chromosphere
with bare eyes as a pink halo that surrounds the Sun. In fact, the chromosphere
is the layer where the temperature gradient reverses. Indeed, from the core to the
photosphere, the temperature gradient is negative. In other words, the temperature
decreases with increasing distance to the center of the Sun. The chromosphere presents
a minimum temperature at its boundary with the photosphere, and then increases up
to 6500 K from 1000 km to 1500 km over the surface. Higher than this plateau, the
temperature increases again up to 20000 K (Thay and Thomas, 1956). Overall, the
chromosphere extends up to 2000 km. The consequence of the positive temperature
gradient is that instead of absorption lines, the chromosphere can be observed off-limb
with its emission lines, especially the Hα line (Bray, 1973).

The transition zone The transition zone is the layer that is found between the chromo-
sphere and the corona. It deserves to be distinguished from those two layers, because
it is within this region that the temperature and the density are changing radically.
While the temperature increases by a factor of 100 (from 20 000K to 2 million K), the
density decreases by a factor of 100 over a distance of 500 km approximately (Golub
and Pasachoff, 2010).

The corona The corona is the outermost layer of the Sun’s atmosphere. It is still largely
unknown nowadays. Some studies have tried to explain how the temperature could
be so high in the region (Aschwanden et al., 2007). Indeed, the temperature was
measured to be over one million Kelvin (Golub and Pasachoff, 2010). Nevertheless,
several hypotheses like Alfvén waves heating or microflaring still try to explain it
(Heyvaerts and Priest, 1983; Moore et al., 1991). The temperature and the density of
the solar corona induce that the plasma should expand in the less dense interstellar
medium. The tail of comets gives a clue of the presence of this expansion. This
slow outflow of the corona is called the slow solar wind (Golub and Pasachoff, 2010).
The interstellar medium, in which this wind is flowing is, however, not empty. It
means that this wind slows down, and eventually, creates a shock that surrounds the
Heliosphere. Voyager 1 crossed this termination shock on December 2004 (Stone

2.1 The sun as a star 9



et al., 2005).
On the contrary, some regions of the corona are cooler and less dense than usual. In
these darker regions, called coronal holes, the plasma is accelerated at higher speeds
than the average solar wind velocities. The winds are then called fast solar winds.
In the observations, the corona contains three distinct spectra. The first is called
K-corona (Kontinuum), it refers to the photospheric light that gets through the corona,
also known as "white corona". The second is the F-corona (Frauenhofer), and it refers
to the absorption lines of the photons scattered by dust particles. The last one is the
E-corona (Emission), and represents the emission lines that the corona produces due
to its high temperature (Golub and Pasachoff, 2010).

2.2 Solar magnetic activity

The Sun features a strong magnetic activity that is spread over 11 years cycles, or 22 years
if we include magnetic polarities (Newkirk and Frazier, 1982).
At the beginning of the research about the origin of the solar magnetic fields, it was thought
that it could come from a primordial magnetic field (Newkirk and Frazier, 1982). This one
would have been created at the beginning of the Sun’s life, and would have lasted until our
days. However, the occurrence of a cycle has denied this theory. Through the calculation of
the sunspot number present on the surface of the Sun, an activity cycle of 11 years has been
found. This cycle usually starts with 3 years of an increase, followed by a maximum and by
a 8 years decrease of the sunspot numbers (Schove, 1983). This discovery led the scientists
to elaborate a new theory called the solar dynamo (Ossendrijver, 2003).

The solar tachocline could be a major actor of the solar dynamo (Dikpati, 2006). Indeed,
it is known from hydrodynamics that charged and moving particles generate a magnetic
field. The convection zone, containing moving ionised or partially ionised matter, amplifies
the magnetic field and produces the large scale magnetic field around the Sun. It is important
to notice that a magnetic field tends to increase the stability under convection. In fact, such
cancellations of the convectivity due to large magnetic fields happen on the surface of the
Sun. Those regions cool down and are observable on the photosphere as sunspots. The solar
dynamo is the source of several phenomena. Firstly, it is crucial to note that the rotation of
the Sun is not homogeneous. A differential rotation is observed on the surface of the Sun.
Indeed, the matter is rotating faster at the equator than at the poles. Around the equator,
the Sun rotates one time every 25 days. This rotation is called sidereal rotation. Whereas,
around the poles, it rotates one time every 35 days (Zell, 2017). On the other side, the
matter drags the magnetic field lines. Consequently, the magnetic field lines wrap around
the equator during the differential rotation. This effect, illustrated in figure 2.4, is called the
ω-effect. In addition, a Coriolis force can kink the magnetic field lines, creating loops, the
α-effect (Ossendrijver, 2003). The distortion of those lines determines how active the Sun

10 Chapter 2 The Sun and its activity



is.
Regarding the observation, this solar dynamo manifests, as mentioned, as sunspots. The
more numerous and complex the sunspots are, the more active the Sun is. Nonetheless, the
sunspots seem to obey some organisational rules. Indeed, a sunspot with a polarity seems to
come together with another sunspot of the other polarity. Moreover, this pair of sunspots
is composed of a leading and a trailing one. The trailing one follows the leading one with
respect to the solar rotation direction. Furthermore, the leading sunspots of each hemisphere
always have the same polarity. The polarities of the sunspots on both hemispheres are
opposed. After a period of 11 years, the polarity of the hemispheres reverse, implying an
overall cycle of 22 years called Hale’s cycle. Finally, all sunspot pairs are tilted with respect
to the solar equator, with the leading spot closer to this equator. This is known as the Joy’s
rule. An additional law, called Spörer’s law, claims that the sunspots migrate towards the
equator with time (Ossendrijver, 2003). A visualisation of the latitude of the sunspots over
time is the so-called Butterfly diagram.
While sunspots are mainly associated with close magnetic field lines, coronal holes are
associated with open magnetic field lines. These open lines accelerate the plasma in the
interstellar medium and create the fast solar wind. The coronal holes, usually located at high
latitudes can migrate at lower latitudes during periods of higher solar activity (Cranmer,
2009). Then, the fast solar wind has a greater impact on the Earth as the pressure on the
magnetosphere of the Earth increases with the solar wind speed.

Fig. 2.3: The evolution of the sunspot number since 1750 and the appearance of a solar cy-
cle from the Space Weather Prediction Center https://www.swpc.noaa.gov/
products/solar-cycle-progression.

2.2 Solar magnetic activity 11
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Fig. 2.4: The mengetic field lines wrap around the Sun due to the solar differential rota-
tion. Credits: https://solarscience.msfc.nasa.gov/dynamo.shtml, by
Hathaway (2014).

2.3 The Solar wind

The solar wind is a constant flow of particles coming from the Sun that propagates in the
interstellar medium.
The transition between the hot and dense corona with the sparse and cool interstellar
medium creates a pressure-gradient force that accelerates the plasma away from the Sun.
This expansion of the solar corona is called the solar wind.
The plasma of the solar wind can drag the magnetic field lines of the Sun. The solar wind
expands in a radial direction, whereas the magnetic field lines’ feet, rooted in the Sun, follow
the differential rotation. As a result, the magnetic field lines and the solar wind create a
spiral structure around the Sun shown in figure 2.5. This spiral is called Parker’s spiral
(Parker, 1958). The two tails (ion and dust tail) of comets are a proof of the existence of this
solar wind. One is a result of the solar radiation pressure, the other is due to the solar wind,
tilted with respect to the radial direction Sun-comet.

12 Chapter 2 The Sun and its activity
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Fig. 2.5: Reconstruction of Parker’s spiral. The left panel shows the number density and the
right panel the radial velocity. The magnetic field lines follow the same structure.
(Biondo1 et al., 2021)

Fig. 2.6: Magnetic polarity as function of heliolatitudes measured by the Ulysses mission
with three concentric images taken with the NASA/GSFC E1T instrument (cen-
ter), the HAO Mauna Loa coronagraph (inner ring), and the NRL LASCO C2
coronagraph (outer ring). Each 1-hour averaged speed measurement has been
color coded to indicate the orientation of the observed IMF: red for outward
pointing and blue for inward. Digital versions of this figure are available for
scientific and educational purposes through the Ulysses/SWOOPS homepage
(http://nis-www.lanl.gov/nis- projects/swoops/) by McComas et al. (1998).

In fact, two types of solar winds are observed:
Namely, the slow and the fast solar wind. The slow solar wind emanates from the solar
corona expansion in the region where the magnetic field lines are closed. Its velocity is
about 400 km s−1.
The fast solar wind is accelerated by the open magnetic field lines of the Sun (Verscharen
and B. A. Maruca, 2019). The open magnetic field lines can be found in coronal holes.
Figure 2.6 shows the speed of the solar wind with respect to the latitudes, as well as the
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Interplanetary Magnetic Field (IMF). In point of fact, the regions where the solar wind is
fast, coincide with the regions where the magnetic field lines are open. This figure presents
the Sun at its minimum of activity and the coronal holes are situated at the poles i.e. at high
latitudes (McComas et al., 2000).
When the fast solar wind catches up the slow solar wind, those two interact. A co-rotating
interaction region (CIR) is a region where the fast solar wind interacts with the slow solar
wind, creating a pressure gradient (Jian et al., 2009).

As the solar wind expands supersonically outwards, it encounters the interstellar density
pressure. A so-called termination shock appears where the solar wind speed becomes
subsonic. Beyond the termination shock lies a region of transition called heliosheath. It
is the region where the equilibrium between solar wind pressure and interstellar density
pressure is reached. At the end of this heliosheath, the heliopause is drawing the end of the
heliosphere (Pogorelov et al., 2016). Figure 2.7 is showing two plots of the reconstruction
of the heliosphere. The left panel shows the density distribution on the polar plane, and the
second one the magnetic field strength on this same plane.

Fig. 2.7: Reconstruction of the termination shock, heliosheath and heliopause. Originally,
this reconstruction aimed at showing the instabilities of the heliopause (Pogorelov
et al., 2016).

2.4 Coronal Mass Ejection (CME)

The magnetic activity of the Sun gives birth to multiple phenomena on the surface or in the
atmosphere of the Sun. One of these phenomena is the Coronal Mass Ejection (CME). In
few words, it can be seen as a large eruption of plasma and magnetic field that can drag over
10 billion of tons of matter and often has over 1032erg of energy (Antiochos et al., 1999). In
the next sections, we will see what the causes and the characteristics of such CMEs are.
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2.4.1 Causes

As we have already seen in the solar magnetic activity section, the solar magnetic field lines
kink due to the Coriolis force. In fact, these lines can do much more than just kink. They can
twist and shear, and thereby, store energy. The base structure of a CME onset is composed
of a core, which is made of several shear magnetic field lines that link regions of opposite
polarities, itself covered by some surrounding magnetic field lines (Moore and Sterling,
2006). Often, those phenomena come together with prominences that are accumulations of
chromospheric plasma (Taubenschuss, 2009). We can, as an example, illustrate and explain
the start of an eruption by ideal magnetohydrodynamic (MHD) instability.

Fig. 2.8: Solar CME onset by the ideal MHD instability followed by magnetic reconnection
(non-ideal MHD). The blue lines are the magnetic field lines. The plus and minus
under the bases are the polarities of the surface of the Sun. (Moore and Sterling,
2006).

On the figure 2.8, we can see a quadrupolar based CME onset. On the first panel, we
can distinguish the core as the central lobe and some surrounding closed magnetic lines.
The differences to the second panel are the two current sheets that appear at the null point
(the point over the core), and between the legs of the central lobe, under the core. Those
current sheets appear when two magnetic field lines of opposite direction get closer to
one another. At this point, the magnetic tension is relatively high, meaning that a relevant
quantity of energy is stored in the system. Eventually, this equilibrium will cease and
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magnetic reconnections will occur. The magnetic field lines will rearrange in order to lower
the tension of the structure. Yet, the energy that was stored in the system is released as
thermal and kinetic energy, allowing the core to reach high velocities (Moore and Sterling,
2006). Two other possibilities of CME onsets are the internal and external tether-cutting
reconnections. Those cases are similar to the Ideal MHD instability, the difference being
that the two current sheets and reconnections do not occur simultaniously. The reconnection
of the null point happens earlier than the one between the core’s legs in the external tether
cutting reconnection. Whereas, in the internal tether-cutting reconnection, the magnetic
reconfiguration takes place earlier between the legs of the core than at the null point. These
three cases of CME initiation are well described and detailed in the article of Moore and
Sterling (2016).
Some other initiation models exist and explain how a CME could start. It is the case of
toroidal forces in a current loop. This model assumes an arc-like current loop located in the
solar corona, whose feet are attached to the solar photosphere. When becoming unstable, i.e.
the fluxes below the loop becoming greater than the fluxes above it, the current loop could
extend through the background gas, triggering shocks as well as shock heating of the sur-
rounding gas. Interestingly, the trigger of the instability could come from subphotospheric
dynamics of the current structure, and thereby, the corona would have no contribution (Chen,
1989).

A CME event evolves through three distinct phases. The first is the onset. The second
phase is the acceleration phase. Mainly, the core behaves as if it would not be magnetically
connected to the Sun anymore, and therefore, the gradient of the magnetic field line density
is accelerating the cloud outwards. Finally, the third phase is the propagation. Once out
of reach, the magnetic cloud has enough mass and kinetic energy to propagate through the
interstellar medium. Often, the decelerating due to the interstellar medium particle density
can be neglected (Zhang and Dere, 2006).

2.4.2 Characteristics

In figure 2.9, we recognize the CME onset mechanism explained by figure 2.8. In addition,
a large structure labeled as "Large Coronal Loop" is shown. This feature is what we call the
flux rope. In a few words, it is a group of magnetic field lines circling around a common
axis. Indeed, it forms a rope connecting two locations of the Sun having opposite polarities.
This flux rope is represented as a straight magnetic line in the center, and an additional
magnetic line turning around the latter. We will call the center line flux rope center or flux
rope axis. Even though flux ropes do not contain only two magnetic field lines, an ideal flux
rope indeed contains a flux rope axis at the center with other magnetic field lines turning
around it. In fact, the number of times that the field lines are turning around this flux rope
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axis is called the twist. The twist of field lines seems to be larger for field lines further away
from the flux rope center.
Figure 2.10 is the coronagraph image data of a real CME, visible on the left side of the
picture. We can distinguish a bright surrounding loop with a bright core in the middle. These
two features are separated by a dark region. This region is called the cavity. The cavity is
where the magnetic flux rope is located. The bright front structure is the dense hot plasma
pushed by the magnetic flux rope in the interstellar medium. In fact, the fast CME drags
the solar wind with it and creates a shock on its front boundary (Reames, 2000; Vršnak and
Cliver, 2008).

Fig. 2.9: Scheme of a coronal mass ejection onset. The blue solid lines are mag-
netic field lines. We recognize the ideal MHD eruption described in fig-
ure 2.8. The flux rope is labeled a "Large Coronal Loop" and represented
with its twist. The red square surrounds a region which is zoomed in
in figure 2.11. Credits: http://www.earthquakepredict.com/2017/07/
what-is-coronal-mass-ejection-cme.html

The reason why the cavity appears dark is that plasma density and temperature are low
in this region. As a result, the gas pressure Pgas = nkT drops (n and T are the density and
the temperature respectively). However, the pressure balance is such that the magnetic
pressure Pmag =

B2

2µ0
is high in this region. The β parameter, β = Pgas

Pmag
, is a useful indicator

for describing the different regions. Indeed, if the magnetic field has the priority over the
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plasma, β will drop below one, as in the cavity or flux rope. This means that the magnetic
field lines dictate how the plasma moves, and the plasma is frozen-in. If the β parameter is
over one, this means that the plasma has the priority over the magnetic field. In this case,
the plasma drags the magnetic field lines with it (Nieves-Chinchilla et al., 2016). The CMEs
have speeds that range from 100 km s−1 to over 1200 km s−1, with some approaching 3000
km s−1 (NOAA, 2020; Gosling et al., 1976).

Fig. 2.10: SOHO/LASCO coronograph image of the event on the 10th of February 2015,
at 12:44 UTC. The bright features are the hot and dense plasma, while the dark
region in between is the magnetic flux rope.

Symmetries are important in the Grad-Shafranov reconstruction, as those can be associ-
ated to conserved parameters. Ideal CMEs contain some symmetries.
In the ideal case, the toroidal flux in the flux rope is conserved. This means that the number
of magnetic field lines connected to the two feet of opposite polarity of the flux rope does
not change. In turn, this also means that the magnetic field lines in the flux rope did not
reconnect and are, therefore, attached to the Sun.
The expansion of the CME in the interstellar medium respects the self-similar expansion.
This means that all the proportions associated with the structure of the CME are conserved
over its propagation. As the size of the magnetic cloud increases, the radius of the flux rope
increases at the same rate. This phenomenon explains that the plasma velocity decreases
linearly inside the flux rope. Indeed, when the spacecraft enters the flux rope, it measures a
plasma speed equal to the sum of the mean cloud velocity and the expansion speed. When
the spacecraft reaches the center of the flux rope, it measures only the cloud mean velocity as
the expansion of the flux rope radius scales with the distance to its center. Finally, when the
spacecraft exits the flux rope, it measures a plasma speed equal to the mean cloud velocity
minus the expansion velocity.
Another symmetry is represented in figure 2.11. The top panel is the reconstruction of a
cross-section of an artificial ideal flux rope with a noise level of 0.01. The green solid line is
the path of the spacecraft in the flux rope, and the green arrows are the measurements of
the magnetic field in the normal (n) and radial (r) directions (in the plane of the flux rope
cross section). The bottom panel shows the measurements of the magnetic field components
associated with the spacecraft’s path in the cross section. The two panels are displayed such
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that the measurements are aligned vertically with the position where the measurements were
taken.
The tangential (t) component on the bottom panel is not trivial to connect to the top panel.
However, the values of the normal component seem to match the length of the green arrows
of the top panel along the spacecraft’s path. This feature is called the rotation. When a
spacecraft crosses a flux rope, a frame should exist in which this rotation is observable.
In fact, the black solid lines of the top panel are isocontours of RBϕ (radial distance times
the magnetic field strength in the plane of the cross-section). We see that the structure of
those lines constructs closed contours around the apparent center of the flux rope. As these
lines are isocontours, it is understandable that the measurements of the magnetic field on
these lines have to be related. Hence, a symmetry appears between the path of the spacecraft
moving towards the center of the flux rope and its path moving away from the center. On
the other side, the measurements are positive on one side and negative on the other. It gives
the impression that the magnetic field is rotating around the central axis.
Last but not least, the Grad-Shafranov equation assumes a force-free magnetic field and a
vanishing Lorentz force. This has the effect of cancelling the coupling of the electromagnetic
force with the other forces. Moreover, the Grad-Shafranov reconstruction makes the calcu-
lations in the de Hoffman-Teller frame. This frame ensures that the electric field vanishes
(Chao et al., 2014). In addition, this leads to a constant electromagnetic potential four-vector.
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Fig. 2.11: Top panel: Grad-Shafranov reconstruction of the cross section of an artificial
ideal flux rope with a noise level of 0.01. The colors map the magnetic field
in the transverse direction and can be ignored for the moment. The green solid
line is the path of the spacecraft in the flux rope. The green arrows are the
measurements of the normal component of the magnetic fields. Bottom panel:
Magnetic field components measurement from a spacecraft crossing the flux
rope of the panel above. The labels ’r’, ’t’ and ’n’ stand for ’radial’, ’tangential’
and ’normal’, respectively. (Hu, 2017).

2.5 The effects on the Earth

The solar wind arrives as a continuous flow of particles at Earth. Whereas CMEs are
punctual and have more important consequences on Earth, like magnetic storms.
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The Earth possesses a quasi-dipolar magnetic field almost aligned with its rotation axis.
However, since the first measurements in 1831, the north magnetic pole of the Earth has
wandered in the direction of Siberia, and has even accelerated between 1990 and 2005
(Livermore et al., 2020). The fact remains that the Earth’s magnetic field is acting like a
shield against heliospheric magnetic fields and charged particles. Much as the heliosphere
reaches an equilibrium with the interstellar pressure density at the heliopause, the magnetic
pressure of the Earth and the one coming from the Sun are finding a balance point called the
magnetopause. The solar winds and CMEs, representing a consequent part of the pressure
applied on this shield, are shaping the magnetosphere. Indeed, the incoming pressure on
the day side of the Earth is significantly larger than the pressure on its night side. The
width of the magnetosphere on the day side reaches about 10 RE (Earth radius), whereas
the mean distance of the magnetopause lies at 30 RE on its night side (Pulkkinen, 2007).
Yet, the magnetotail stretches in the night side direction over hundreds of RE . Under strong
solar wind conditions, the magnetopause can get closer than 6.6 RE on the day side, having
substantial influences on geostationary satellites (Pulkkinen, 2007). While the corotating
interaction region (interaction between fast and slow solar winds) has been found to be only
moderately geomagnetically effective, some solar flares can accelerate particles that heat the
upper atmosphere and have an influence on the drag of low orbit satellites, or even destroy
some of their onboard instrumentation. In some cases, those high energetic particles can also
change the composition of the atmosphere and damage, with it, the ozone layer (Pulkkinen,
2007). Moreover, the apparition of aurorae around the poles is the result of particles entering
the lower atmosphere and ionising the local molecules (Pulkkinen, 2007).

For those who are not simply interested in the Sun and its mysteries, the geoeffectiveness
of the space weather itself is a sufficient reason to study it, considering the impacts that it
can have on humanity. For example, the solar storm of May 1921 burned out telephone
stations and numerous electrical components (Silverman and Cliver, 2001).
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3The theory of the Grad-Shafranov
reconstruction

The Grad-Shafranov method is a symmetry based reconstruction assuming that the magnetic
flux rope has a toroidal structure. After explaining the geometry in which we work, I will
present the Grad-Shafranov equation. I will describe the reconstruction procedure and then,
to illustrate the theory, reconstruct a magnetic cloud.

3.1 Geometry and procedure

At first, the geometry of the reconstruction is going to be presented. Secondly, we are going
to explain the Grad-Shafranov equation and its implications for the reconstruction. Finally,
we are going to review the procedure of the Grad-Shafranov reconstruction.

3.1.1 The coordinate systems and parameters

The Grad-Shafranov reconstruction assumes that the flux rope has a toroidal structure.
Figure 3.1 illustrates two coordinate systems. The global coordinate system is going to be
(R,ϕ,Z), and refers to the geometry of the torus. R is the distance from the center of the torus
to the center of the flux rope, ϕ is the angle of rotation of the torus, and Z is, therefore, the
symmetry axis of this torus.
On the other side, the local coordinate system is also a cylindrical coordinate system: The
one of the flux rope itself. Locally, the flux rope can be approximated to a straight cylinder
with coordinates (r,θ,z). r is the distance to the flux rope’s center, z assimilates with the flux
rope axis, and θ is the third normal component of this base.
In the reconstruction, we will be interested in the parameters describing the geometry of the
torus:

R0 is the major radius of the torus. It is the distance between the center of the torus and the
center of the flux rope.

θ and ϕ are the orientation angle of the Z-axis. The Z-axis is perpendicular to the plane
of the torus. The orientation of the Z-axis in the solar ecliptic yields, therefore, the
orientation of the torus with respect to the ecliptic plane. Note that these angles have
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nothing to do with the variables of the global coordinate system decribed in figure 3.1,
even though their names are the same.

r0 is the radius of the flux rope. It is the distance between the center of the flux rope and its
outer boundary.

b is the impact parameter. It is the point of closest approach of the spacecraft to the center
of the flux rope.

Fig. 3.1: Geometric visualisation of the toroidal flux rope and the parameters describing it,
i.e., the Z-axis origin and orientation, the major radius R0, the invariant direction
ϕ and the local variables of the cross section (r,θ) (Hu, 2017).

3.1.2 Calculate R0 with the self-similar expansion

It is already possible to calculate the main radius of the flux rope R0. Under the assumptions
that self-similar expansion takes place and that the spacecraft crosses the center of the flux
rope (b = 0), we can deduce the major radius R0 from the plasma velocity.
In the figure 3.2, we see the frame in which the calulations can be made. |−→ra| is the distance
from the Sun to the center of the flux rope. |−→r1| and |−→r2| are respectively the distances from
the Sun to the enter and the exit points of the spacecraft in the flux rope. For an ideal flux
rope, we derive:

ra = 2R0 + v̄t r1 = 2R0 − r0 + v̄t − et (3.1)

r2 = 2R0 + r0 + v̄t + et rsc = 2R0 + r0 (3.2)

d(t) = |r2 − ra| = r0 + et D(t) =
ra

2
= R0 +

v̄t
2

(3.3)
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Where v̄ is the mean velocity of the cloud, R0 is the major radius at t = 0, r0 is the flux
rope radius at t = 0 and e is the expansion speed of the flux rope’s boundary. ra,1,2,sc are the
distances from the Sun to the respective points of the figure 3.2. D(t) and d(t) are the time
dependant major radius and flux rope radius.

The time of entry of the spacecraft in the flux rope is t = 0. v̄ is the mean velocity of the
cloud and e is the velocity of the boundary of the flux rope with respect to its center i.e., the
expansion velocity. D(t) and d(t) are the radii of the torus and of the flux rope respectively.
By solving r1 = rsc for t, we find the time of exit of the spacecraft t⋆ = 2r0

v̄−e . We can compute
the radii at t = 0 and t = t⋆:

d(t = 0) = r0 d(t⋆) = r0 +
2r0e
v̄ − e

(3.4)

D(t = 0) = R0 D(t⋆) = R0 +
2v̄r0

2(v̄ − e)
(3.5)

The self-similar expansion means that d(t=0)
D(t=0) =

d(t⋆)
D(t⋆) . Solving this equation for R0 gives

us R0 =
v̄r0
2e . In figure 3.5, we note a velocity decrease from 800 km s−1 to 600 km s−1.

We can make a quick calculation by taking v̄ as 700 km s−1 and e as 100 km s−1. From
figure 3.12, we have the r0 for the same cloud. It is approximately 0.2 AU in this case. We
use our solution and obtain a R0 of 0.7 AU.

Fig. 3.2: Sketch of the system Sun-spacecraft-flux-rope. The yellow dot is the Sun, the
green circle is the outer boundary of the flux rope and the red dot is the position
of the spacecraft. The points r1, ra and r2 are the rear boundary, the center of the
flux rope and the front boundary, respectively.
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3.1.3 The Grad-Shafranov equation

The Grad-Shafranov equation has been found in 1958 from a series of hypotheses (Grad
and Rubin, 1958). The first hypothesis is to suppose an invariant axis, such as ∂∂z =

∂
∂ϕ = 0,

constraining B = ∇ × A. Additionally, we also assume balance between the magnetic forces
and the pressure on the isosurfaces of the structure (here, a torus), which implies ∇p = j× B.
Furthermore, it has to respect the two Maxwell equations: ∇ × B = µ0J and ∇ · B = 0. After
some manipulations detailed by Haverkort (2009), it is possible to derive the Grad-Shafranov
equation:

R
∂

∂R
(
1
R
∂Ψ

∂R
) +
∂2Ψ

∂Z2 = −µ0R2 dp
dΨ
− F

dF
dΨ

(3.6)

This equation can also be written as:

∇2A = −µ0
d

dA
(p +

B2
z

2µ0
). (3.7)

From equation 3.7, we can rewrite the Grad-Shafranov equation in a (r, Θ) coordinate
system as:

1
r
∂

∂r
(r
∂Ψ

∂r
) +

1
r2

∂2Ψ

∂Θ2 −
1
R

(cosΘ
∂Ψ

∂r
−

sinΘ
r
∂Ψ

∂Θ
) = −µ0R2 dp

dΨ
− F

dF
dΨ

(3.8)

The three equations are equivalent. Equation 3.6 is the toroidal version of equation 3.7
and the two variables F and Ψ are defined as:

F =
RBϕ
µ0

(3.9)

Ψ = RAϕ (3.10)

There is no analytical solution to this equation. However, we request Ψ to be single
valued, meaning that the source function Aϕ should only take one value for each R. Besides,
the formulation of equation 3.8 limits the geometry parameters to a Z-axis orientation and
a major radius R0. Since the spacecraft position is fixed and known (it is located at the
Lagrange point L1), the major radius parameter can be replaced by the origin of the Z-axis.
Along with the radius of the flux rope, every geometrical parameter has been introduced.
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3.1.4 Determination of the Z-axis orientation

The first step of the reconstruction is to determine the Z-axis orientation. The code minimises
the residues of a function that is evaluating the symmetry of the flux rope. That means that
the code is maximizing the symmetry.

In the global coordinate system (R,ϕ,Z), a cross section is defined as a slice of the torus
perpendicular to the eϕ base vector. As illustrated in figure 3.1, the path of the spacecraft
may cross several of these cross sections. In other word, −→rsc ·

−→eϕ ≠ 0. Hence, it can be
laborious to rebuild the symmetry of a single flux rope cross section. With the condition
∂
∂ϕ = 0, we can project every crossed cross-sections on one of them along the −→eϕ base vector.
Note here the importance of the projection under rotation " along the −→eϕ base vector ", as it
is a symmetry under rotation. Indeed, a usual Cartesian projection could give wrong results.
To truly understand how the code works, we have to look closer at how a cross section is
constructed, and which symmetries we are looking for within it.

Fig. 3.3: Magnetic flux rope cross section with isolines of constant F(Ψ) (solid lines). The
smaller circles represent the inbound measurements and the stars the outbound
ones. rsc is the path of the spacecraft. (Hu, 2016).

Figure 3.3 shows the two branches of the spacecraft’s path inside the flux rope. Namely,
the inbound and the outbound branches. The symmetry that we were searching for is a
symmetry between those two branches. In fact, we are searching to minimise the differences
between the values of F on the inbound and outbound branches. Indeed, the contours in
figure 3.3 are isocontours. The measurements of F on the inwards path should, therefore,
have their twin measurements on the outwards path. In reality, we are going to measure the
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differences between the measurements of F on the inwards and outwards branches. This is
calculated as a residue function that takes the following form:

Res =
[
∑︁

i(Finbound
i − Foutbound

i )2]
1
2

|△F|
(3.11)

where △F = Fmax − Fmin.

We know how to project the measurements on one cross-section of the torus, and we
know how to compute a minimal residue, that evaluates how symmetric the flux rope is. Yet,
this is not quite enough to reconstruct magnetic clouds. We do not know how to project our
measurements, since we do not know in which direction the eϕ base vector points. Moreover,
we have only one residue that tells us how symmetric the flux rope is, but no other residues
to compare it with. We need to introduce the Z-axis orientation, Z-axis origin and the radius
of the flux rope r0.

First, the flux rope radius is the easiest to compute as it is fixed by the chosen boundaries
of the cloud, the impact parameter derived from the reconstruction and the cloud velocity.
Secondly, the origin of the Z-axis can be seen as the point where the Z-axis crosses the
ecliptic plane. On this same plane, a polar grid of radius 1 AU is constructed. Each knot of
this grid is at the origin of the second step. An example of this grid is given in the figure 3.9.
This second step consists of building, over each knot of the equatorial grid, a unit one
half-sphere. The vector from the center of this half-sphere to one of the half-sphere surface’s
point stands for a direction i.e. a Z-axis orientation. Therefore, similarly to step one, the code
is constructing a grid on the surface of this half-sphere, and testing all the possible directions
for the Z-axis orientation. Figure 3.7 shows a visualisation of one of these half-spheres. To
summarize, each knot on the half-sphere, standing for one Z-axis orientation, is going to
yield one residue, and each knot on the equatorial plane’s grid is yielding a half-sphere. The
code is hence testing every Z-axis orientation at every point of the equatorial plane. The
computed residues can be compared. The lowest of the residues gives the most symmetric
flux rope as well as the Z-axis orientation and origin creating it.

3.1.5 Determination of the Z-axis origin

The second step is mainly a re-run of the first step with an additional comparison with the
measured magnetic field components. Two variables are added. They release understandable
information about the goodness of the reconstruction.

This second step does not re-run the orientation of the Z-axis. The Z-axis orientation
is hence fixed by the previous computation. Whereas, the Z-axis origin is going to be
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recalculated with the additional varibles χ2 and Q. χ is called the goodness-of-fit, as it is an
evaluation of the differences between the measured magnetic field and the reconstructed one.
Q is the probability of the associated χ2 having the lowest value possible. Explicitly:

χ2 =
1
N

∑︂
i=X,Y,Z

N∑︂
j=1

(bi j − Bi j)2

σ2
i j

(3.12)

Q = 1 − chi2cd f (χ2, do f ) (3.13)

In these equations, b describes the computed magnetic field, B, the measured magnetic
field, σ the uncertainties given by CDAWeb, do f , the degrees of freedom of the system and
chi2cd f , a cumulative distribution function of χ2.
We notice, from equation 3.12, that if the differences between measured and reconstructed
magnetic fields are lower than the uncertainties, their ratio is going to be inferior to one.
Naturally, through the summation, we obtain N terms like these. Dividing by N gives the
averaged relation between differences in magnetic fields and uncertainties. Summing over
the three Cartesian components makes us think that, theoretically, a χ2 inferior to three is a
successful reconstruction. In fact, χ2 has to be inferior to two to consider the reconstruction
as a success (Hu, 2017). From equation 3.13, we can summarize the function chi2cd f by
being the probability of χ2 having a lower ( i.e., a better) value. Thus, Q represents the
probability of the fit (and the χ2) being the best possible outcome. In a few words, χ should
be below two and Q should be high for a successful reconstruction.

3.1.6 Reconstruction and Parameters

By solving the Grad-Shafranov (GS) equation, the code is able to reconstruct the cross
section of the flux rope and yields important information about the cloud. For example, the
code calculates the maximum magnetic field in the z direction, the poloidal and toroidal
fluxes, the major radius R0 and the impact parameter b.
To understand what poloidal and toroidal fluxes represent, we can imagine our torus in
cylindrical coordinates (see figure 3.4). The toroidal flux is the magnetic flux (the sum
of the magnetic field lines) crossing through one of the cross sections in the plane (R,Z).
Equivalently, it is the flux in the z direction of the local coordinate system. The poloidal
flux is then the magnetic flux crossing the surface parametrized by: R ≤ R0, ϕ ∈ [0, 2π] and
Z = 0. Those values are directly linked to another value called twist.
The twist is the number of loops that a magnetic line completes over a certain distance.
Here, the magnetic lines are turning around the flux rope’s center. The twist is then used to
describe how often those lines are circling around this axis (see figure 3.13).
Now, to highlight the link between twist, poloidal flux and toroidal flux, we will have to
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make the projection of the magnetic field lines on the local base (r, θ, z). We are going to
assume that each line stays at a fixed distance of the flux rope’s center. We will also assume
that the twist does not change over the line. Hence, the lines are turning on the surface of a
cylinder of radius r0 and evolve always at the same pace. The projection of the magnetic
field lines (call it

−→
Bl) is made with the components −→eθ and −→ez.

Now, if
−→
Bl ·
−→eθ = 0, it means that the magnetic field lines are parallel to the flux rope axis z,

and therefore, that the twist vanishes. Equally, this means that the magnetic field lines are
perpendicular to the surface (r,θ), hence, only creating a toroidal flux.
On the other hand, if

−→
Bl ·
−→ez = 0, this means that the magnetic field line has no motion in the

direction of the flux rope axis. This is, the magnetic field line stays in the (r,θ) plane. The
flux is then only poloidal, and the twist infinite.
Note that the poloidal flux can be seen as the sum of two fluxes: The flux through the surface
of S outside of the flux rope and the flux through the surface of S inside the flux rope (see
figure 3.4). We could think that, with a flux rope radius small enough, the contribution of
the twist inside the flux rope is going to be a negligible part of the poloidal flux. In fact,
in our case, only the flux through the surface inside the flux rope is considered. It is the
surface outside that is neglected. It is possible to do so, as outside of the flux rope β > 1.
Hence, the plasma dictates the magnetic field lines how to bend and the magnetic field has
no structure. Overall, the magnetic field lines are crossing this surface in both directions
and the flux vanishes.

Fig. 3.4: The poloidal and toroidal magnetic fluxes are the sum of the magnetic lines
crossing the blue and the pink surfaces respectively. The point P indicates where
the center of the flux rope is located on the (r, θ) plane. In the case of the Grad-
Shafranov reconstruction, the plane S should be at the hight Z=0. (Yongsheng and
Chao, 2008).
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3.2 WIND Event on 2004-11-09

The Grad-Shafranov reconstruction that we are testing is based on the new code of Hu
(2017). The method is the one developed by Hu and Sunnuerup, originally designed to
understand the interaction between the solar wind and the Earth magnetic field (Möstl et al.,
2009). In a scientific purpose, it is sensible to test our code, and compare the results with
some reliable sources. In fact, this section is either an explanation of the reconstruction
method and a proof of the code’s efficiency, as it agrees with the results of Isavnin et al.
(2011).

3.2.1 The Data

The understanding of the data is required to choose wisely the boundaries of the flux rope.
The characteristics of flux ropes have already been explained. The presence or not of these
characteristics guide our choice of the boundary selection.

The data of the WIND spacecraft are extracted from CDAWeb. From this source, the data
reduction has already been made.
The top plot of the figure 3.5 presents different curves. From the top to the bottom, they
are: The total magnetic field and its components, the total velocity of the cloud, the electron
temperature, the density, the gas pressure, the magnetic pressure, followed by the proton
temperature and the β parameter. On the same plot, colored regions are giving the important
parts of the CME. On the left side of the red zone, the data can be understood as the
background noise. The red zone, however, contains spikes in almost every component. The
magnetic field strongly increases and the plasma speed starts to linearly evolve. On the other
hand, the density, the temperature and therefore, the gas pressure all abruptly enhance. This
region is the shock-sheath region.
After the shock, the flux rope is dominating. The choice of the flux rope boundaries is
a meticulous task and it influences the reconstruction. Inside the flux rope, the magnetic
pressure has to overcome the gas pressure. Otherwise, the charged particles would drag the
magnetic field lines and dictate its shape to the line’s arrangement. Hence, the plasma has to
be frozen-in and β < 1, as highlighted in green in the top panel of figure 3.5.
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Fig. 3.5: Top: WIND data of the event on 2004-11-09. The red vertical lines are the
boundaries taken for the example reconstruction. The red region highlights the
data representing the shock. The green region represents the flux rope. Inside
this one, β < 1. The time on the x-axis has the format days:hours:minutes, where
00:00:00 is the beginning of the day 2004-11-08. Bottom: Data used in the article
of Isavnin et al. (2011). The green and red vertical lines are the two sets of
boundaries used for their reconstructions.

Inside the flux rope, the magnetic field has to be enhanced and relatively smooth. We
should also distinguish the magnetic field rotation. Here, the Bz component of the magnetic
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field is indeed rotating. As we can see, it drops over time from 30 nT to −20 nT, while the
Bx component is stable around 0 nT. However, it happens that the rotation is not easy to
recognize. In this case, it is helpful to look at the velocity graph. This one linearly decreases
through the flux rope.
To exhibit the rotation of the magnetic field components, we can look at the hodograms
of figure 3.6. B1, B2 and B3 are the projections of the magnetic field onto the minimum,
intermediate and maximum variance directions, respectively. With λ1, λ2, λ3 their respective
eigenvalues. In other words, B1 is taken to vary the less and B3 to vary the most. Therefore,
the ratio of their eigenvalues should be high (right panel of figure 3.6). B2 varying at an
intermediate speed, the ratio of λ1 over λ2 should be significantly lower than the ratio of λ1

over λ3.
On the other hand, the hodograms give useful information about the boundaries. Indeed,
those plots translate the rotation of the magnetic field into a visual representation. If an
anomaly is present on one of the hodograms, it may mean that a part of the data does not
belong to the flux rope.

Fig. 3.6: Hodograms displaying B1 with respect to B2 and B3, the projections of the mag-
netic field in the minimum, intermediate and maximum variance directions, re-
spectively. The left panel translates the rotation of the magnetic field, and the right
panel shows the invariant axis.

3.2.2 Finding the orientation of the Z-axis

The reconstruction starts with a first trial-and-error test on the orientation of the Z-axis. As
we have already the boundaries from Isavnin’s article, we can immediately start running the
code and show the first results. The figure 3.7 is the residue map of the Z-axis orientation.
It is the main result of the first step of the reconstruction. The blue cross is the point that
we consider as a possible Z-axis orientation. In fact, this cross is picked up by hand. A
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discussion on the influence of the manual pick is provided in a section 4.5. The residue
map is supposed to show an island or a group of islands. The best Z-axis orientation is
theoretically selected in the middle of the island, or in the middle of the group of islands.
This explains the position of the blue cross. The position of the cross indicates the following
angles: θ ≈ −20 and ϕ ≈ 45. In fact, these angles are not exactly the angles to compare
with Isavnin’s ones. Indeed, one of the components is missing in this graph, and the code
is giving the three components in Cartesian coordinates. Hence, in order to get the two
Z-axis orientation angles, we should transform the three Cartesian coordinates in the three
sphercial coordinates following the usual coordinate system transformation’s relations:

θ = arctan(

√︁
x2 + y2

z
) (3.14)

ϕ = arctan(
y

x
) (3.15)

Fig. 3.7: Residue map of the magnetic cloud on 2004-11-09. The black contour lines
display values equal to twice the minimum residue’s value. The colored contours
are additional contours of lower residues. The colors of the contours are accorded
with the color bar. The blue cross points at Z-axis orientations taken for the
reconstruction.
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Fig. 3.8: This figure maps the ecliptic plane. The color map indicates the value of the
residues considering the best Z-axis orientation at each point. The black dot points
at the location where this residue reaches its minimum. The y and x-axis display
lengths in AU. The values of the residues are detailed by the colorbar.

The first step indeed consists in trying every Z-axis orientation on every knot of the solar
ecliptic grid. Figure 3.8 is showing this grid, on which the colors are a visualisation of
the best residues found on each knot. The black dot is indicating the point where the best
residue has been found. In fact, the figure 3.7 is a representation of the half-sphere over the
point indicated by the black dot of the figure 3.8. In other words, the minimum residue is
given by the Z-axis orientation of figure 3.7, and the Z-axis origin of figure 3.8.

It is for the moment not relevant to claim the Z-axis position, as it is still going to be
calculated in the second step. However, this first step provides the Z-axis orientation. The
results derived from that analysis are in very good agreement with those given in the paper
by Isavnin et al. (2011) with θ = −29 and ϕ = 45, showing a difference of less than 7%.

3.2.3 Positioning the Z-axis

In this second step of the reconstruction, we find the Z-axis origin and derive the χ2 and
Q parameters describing the quality of the magnetic components’s fit. The results give
χ2 = 0.441 and Q = 1. Both of these parameters confirm the success of the reconstruction.
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Fig. 3.9: Mapping of the solar ecliptic plane. The colormap shows the values of χ2 at each
points of the surface. The pink solid lines display the countour, where χ2 = 1. The
pink cross is the best Z-axis origin found by the reconstruction.

Fig. 3.10: The fit of the magnetic field components considering the Z-axis orientation and
origin calculated previously. Each data point comes with its associated error-bar.
The solid black line is the fitting line. The values of χ2 and Q are revealed at the
top of the plot.
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In the figure 3.9, the pink cross indicates the position of the Z-axis origin according to the
code’s computations. This one is located at 1.41 AU of the spacecraft on the x-axis, and
−1.37 AU of the spacecraft on the y-axis. Here, x and y are on the ecliptic plane. The major
radius R0 measures 1.38 AU. As for now, we have the best position of the Z-axis origin and
the best Z-axis orientation. Nevertheless, we will verify the χ2 and Q parameters.

Figure 3.10 shows the fit of the magnetic components. The data with the error-bars
are interpolations of the real magnetic field, the errors being imported from CDAWeb and
available in the data of the cloud. The solid black lines are showing the fits. The plot also
indicates the two important parameters: χ2 = 0.441 and Q = 1. χ2 is here relatively low, as
a value of 2 is already considered to be a successful reconstruction (Hu, 2017). Moreover,
the Q parameter tells us the probability of this χ2 being the lowest possible. This probability,
being one, means that our reconstruction is reliable.

3.2.4 Symmetry and reconstruction

This last part uses all the previous results to reconstruct the cross-section of the magnetic
flux rope. After looking at the symmetry of the F function over the inward and outward
branches, the GS-solver is used to obtain a contour plot of the isocontours of the F function
in the flux rope cross-section.

Fig. 3.11: This plot displays the values of F(Ψ) measured during the inward (blue circles)
and outward (red stars) motions of the spacecraft in the flux rope. The solid
black line is the fit of these two lines and will be used for the reconstruction. The
horizontal black line shows the selected single valued Ψ. The Ψb is the value of
Ψ at the flux rope’s boundary. R f is the residue of the fit. The poloidal flux is
equal to the width of the black fitting curve.
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Figure 3.11 relates how symmetric the F function is. The circles are the inward values of
F and the stars are the outward values of F. The black solid line is the fit of those two curves.
The fit is made with a polynome of the third degree. R f = 0.09 is the residue of this fitting.
Residues under 0.2 are acceptable (Hu, 2017). In the article of Hu (2017), a noise level of
0.01 on a synthetic ideal magnetic flux rope yields a residue of R f = 0.1. This noise level
being small, we conclude that 0.1 is a low residue’s value. Our reconstruction is, therefore,
acceptable.
The parameters R f , χ2 and Q are valid. The calculated angles correspond to the results of
Isavnin. The final step is to display the reconstruction of the flux rope’s cross section. This
reconstruction is shown in figure 3.12.

Fig. 3.12: Reconstruction of the cross section of the magnetic flux rope. The color map
shows the magnetic field’s strength in the z direction. The unit of the color bar is
in nT. The solid green line is the path of the spacecraft. The green arrows are the
magnetic field components in the (r,θ) plane. The red dot is the center of the flux
rope. The white dotted line is the contour of Ψb.

With the solving of the Grad-Shafranov equation come several interesting parameter
results.
The impact parameter is calculated to be 0.011 AU. In the article of Isavnin, the impact
parameter has also been derived and equals 0.025 AU. It means, our impact parameter is
more than two times smaller than the one derived in the paper, even though our angles are
similar. Nevertheless, this does not mean that the results are false. Indeed, in the same article,
two reconstructions are made. One with ACE data, and the other with WIND data. The
difference in the impact parameter calculated is larger by 0.05 AU even after withdrawing
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the distance between the two spacecrafts. This discrepancy can be explained by the fact that
the method is based on ideal assumptions. These assumptions are not totally respected in
reality. Moreover, the fluctuations of the data and the uncertainty of the selection of the flux
rope boundaries may alter the results. Also, other methods as minimum variance analysis
(MVA) give other Z-axis orientation. The difference reaches 40-50° for this event (Isavnin
et al., 2011).
The toridal flux, the poloidal flux and Bmax (the maximum of the magnetic field in the
z direction) are additional outputs of the reconstruction. Here Ftor = 3.31 1012 T m2,
Fpol = 7.13 1013 T m2 and Bmax = −32 nT.

The reconstruction contains an additional function to reconstruct the appearance of the
flux rope in three dimensions, as shown in figure 3.13. In this figure, the twist of the
magnetic flux rope is visible. All the lines turn around the center of the flux rope. The twist
increases with the distance to the center of the flux rope. Hence, the blue line is on the
outside, the red line on the inside, and the pink one is located between the two previous
lines. In fact, we could have understood this from figure 3.12. From the color map, we see
that the strength of the magnetic field in the z direction increases near the center of the flux
rope. On the other side, the green arrows represent the projection of the magnetic field on
the cross section’s plane. We notice that the arrows are larger (shorter) in the regions where
the z-oriented magnetic field is weaker (stronger). That is, the magnetic field near the center
is strong in the z direction and weak in the (r,θ) plane. These lines mainly contribute to the
toroidal magnetic flux, as their twist is low. Whereas, further away from this center, the
magnetic field is weak in the z direction and strong in the (r,θ) plane. In this region, the
lines contribute to the poloidal magnetic field and their twist is high. We understand now
why the figure 3.12 implies the figure 3.13.

The poloidal flux is over 10 times the toroidal flux. This can have several explanations.
On the outer layers of the flux rope, the magnetic field lines have a higher twist and are
mainly poloidal. We could imagine a new boundary on the flux rope cross section displaying

where
−→
Bl ·
−→ez =

√︂
(
−→
Bl ·
−→er)2 + (

−→
Bl ·
−→eθ)2, i.e., where the toroidal magnetic field equals poloidal

one. In reality, the −→er component of the field does not participate to the poloidal nor toroidal
magnetic flux. Hence, the equation becomes:

−→
Bl ·
−→ez =

−→
Bl ·
−→eθ or Bz = Bθ. Assuming that the

flux rope has a symmetry under rotation in θ, we can locate this border with a parameter
req, distance from the center of the flux rope (r = 0). The surface that is going to dominate
in the poloidal flux is then the surface within req. Yet, the surface within req decreases
quadratically with this value. In turn, the rate at which the twist evolves inside the flux
rope can largely influence the proportions of poloidal and toroidal fluxes. Moreover, the
geometry of the flux rope can have an effect on the fluxes through flattening or pancaking
effects (Riley and Crooker, 2004).
Additionally, the poloidal flux is integrated over the whole flux tube length. This length
is one of the main uncertainties in deriving the poroidal flux. In short, the poloidal flux
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depends on the total radius of the torus R, whereas the toroidal flux depends on the local
radius of the flux rope r, itself dominated by the contribution within req.

Fig. 3.13: 3D representation of the magnetic field lines. The lines turn around the center of
the flux rope. We note that the twist increases when the magnetic field lines are
further away from the center of the flux rope.
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4
The influence of the boundary
selection: the event on
2013-06-28

In this section, we are going to examine the consequences of the choice of the boundaries on
the reconstruction. This choice has a large effect on the residue map of the Z-axis orientation,
and on the position of this one on the ecliptic plane. Therefore, all the reconstruction
parameters are influenced by such a modification.
To discuss the influence of the boundary selection, we will make several reconstructions of
the same event with different boundary choices. We will compare the results with the values
found by Al-Haddad et al. (2018). This article relates several reconstructions of the same
event using several methods. Our reconstruction with the new code of Qiang Hu agrees with
the results of Al-Haddad when the data are smoothed.

4.1 The data

A profound understanding of the data is crucial for choosing sensible boundaries. Previously,
we discussed the characteristics of several parameters inside a flux rope. Those charac-
teristics greatly restrict the choice of the boundaries. Nevertheless, a freedom remains in
the choice of those boundaries. For example, in the previous CME event on 2004-11-09,
whose duration extends up to 2173 minutes, the front boundary could be chosen within a
time range of 165 minutes. Whereas, the time range in which we could have selected the
rear boundary lasted 636 minutes. It seems that the inaccuracy of the selection of the rear
boundaries is greater than the one of the front boundaries.
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Fig. 4.1: The data of the cloud on 2013-06-28. From top to bottom: The magnetic field and
its components, the cloud’s velocity, the electron temperature, the proton density,
the gas pressure, the magnetic pressure, the total temperature and the β parameter.
The green area highlights the frozen-in region. The green and red vertical lines
are every front and rear boundary used for the later reconstructions. The time on
the x-axis is given with the format day:hour:minutes with 00:00:00 starting at the
beginning of 2013-06-28.

At a first glance, we can immediately see that each magnetic field component is rotating.
Indeed, the Bx component starts at 0 nT, rises up to 10 nT and then, falls back down
to −10 nT. By, on its side, sweeps all values from −20 nT to 20 nT over the frozen-in
region. Finally, Bz decreases strongly, and stabilises in a second time, when the two other
components seem to accentuate their rotations.
Secondly, we see that the front boundary’s range (green vertical lines on figure 4.1) is more
restricted than the rear boundary’s range (red vertical lines on figure 4.1). In fact, all the
characteristics of a flux rope appear at the same time: While the magnetic field starts to be
enhanced and smooth, the cloud velocity begins to decrease linearly. Simultaneously, the β
parameter drops below one. All in all, the uncertainty of the front boundary of the flux rope
is lower than the uncertainty of the rear one.
Indeed, one could take as rear boundary the point where the β parameter reaches one again.
This would be the latest boundary possible. Another possibility is to follow the cloud
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velocity, and to stop at the second blue dashed line. Notice that shortly after this blue dashed
line, the β parameter gets closer to one. At the same point, the temperature, the magnetic
pressure, the gas pressure and the density all show a spike. The gas pressure leaves its
minimum at this exact point. This time is another possibility for the end of the flux rope.

In reality, we can almost distinguish two flux ropes from the magnetic field components.
This claim is supported by the look of the cloud velocity curve. Precisely, the velocity V
decreases two times linearly. One first time from the front boundary to the first blue dashed
line, and a second time from the first to the second blue dashed line. Furthermore, at the
start of the second linear decrease, we can see a spike in the density curve. This could be
the remnant of a shock. Over those two regions, we could interpret the magnetic fields as
rotating two times. In the first region, the components By and Bz rotate. Whereas, in the
second region, the components Bx and By rotate.
In fact, we have tried to confirm this theory by reconstructing the two hypothetical flux
ropes. At the end, the reconstruction proves that this event contains only one flux rope.
Indeed, the function F(Ψ) is not folded (does not present the two branches). This means that
the code does not find a symmetry in the function F(Ψ). In other words, no closed contours
can be extrapolated from these boundaries. The event on the 2013-06-28 is a simple event
with a single flux rope.

To summarize, the flux rope has a clear start, meaning that the range of the choice of the
front boundary is short. The rear boundary can be assumed at different times depending
on the parameters we are looking at. Also, the features of the magnetic field and the cloud
velocity remind of two separate flux ropes. The Grad-Shafranov reconstruction tells us,
however, that this event contains only one flux rope.

4.2 Comparing two different reconstructions

In order to understand how the differences manifest in the reconstructions, we are going to
proceed to two reconstructions of the same cloud. Thereby, the boundaries are going to be
different.
The first step is to take a successful reconstruction. To be sure, we will define as successful a
reconstruction whose residues are low, χ2 is under two, with a double folded F(Ψ) function
and with Z-axis angles near Al-Haddad’s results: θ = −66 and ϕ = 330 (Al-Haddad et al.,
2018).

The results of Al-Haddad are composed of three reconstruction methods. The circular-
cylindrical fitting model (CCS), the Force free fitting model (FF) and the Grad-Shafranov
model (GS). Here are their results for this cloud:
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Model θ (◦) ϕ (◦)
CCS 283 -55
FF 240 -62
GS 330 -66

Table 4.1: Results of the reconstructions of the event on 2013-06-28 following three differ-
ent reconstruction methods: Circular-cylindrical fitting model (CCS), Force free
fitting model (FF) and Grad-Shafranov model (GS) (Al-Haddad et al., 2018).

Our reconstruction being a GS model, we should get close to the GS reconstruction’s
results of Al-Haddad.
The green boundaries in figure 4.2 are those of our successful reconstructions. These
boundaries are chosen as they give the closest results to the article’s ones. The red boundaries
of figure 4.2 represent the boundaries chosen for the second (or test) reconstruction. The
differences in the results of those two boundary choices are studied.

Fig. 4.2: Data of the cloud on 2013-06-28. The green highlighted area is the region where
the β parameter is below one. The two colored vertical lines stand for the bound-
aries of the two test reconstructions. The green boundaries limit the successful
reconstruction, whereas the red boundaries refer to the test reconstruction.
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The figure 4.3 shows how we have selected the Z-axis orientation. Indeed, in the purpose
to get as close as possible to the results of Al-Haddad, we have marginally manipulated
the procedure. Here, the Z-axis orientation has been slightly shifted compared to the ideal
choice of the Z-axis orientation in the residue map. By doing so, the Z-axis orientation
agrees with the Grad-Shafranov results of Al-Haddad (see table 4.1). With this Z-axis
orientation, we verify that the other reconstruction parameters χ2 and Q are acceptable.

Fig. 4.3: Residue map of the successful reconstruction. The black solid line is the contour
of twice the minimum residue. The colored contours have levels associated with
the color bar. The blue cross represents the selected Z-axis orientation.

As a matter of fact, the results are highly satisfying. This reconstruction yields a χ2

of 0.885 and a Q of 0.724. Recalling that a χ2 under two was considered a successful
reconstruction. The inward and outward branches of the F function are folded, and the
residue of the fit is 0.09, which is below 0.2, and therefore, accepted. Last but not least, the
reconstruction map contains all the expected characteristics, i.e. the isolines of F(Ψ) are
closed inside the flux rope’s boundary, it contains a point of maximal toroidal magnetic field
at the center of the closed contour lines. Note that, in the article of Al-Haddad, the aspect
ratio was also given as output. The aspect ratio is the ratio of the flux rope’s radius over the
major radius ( r0

R0
). Our reconstruction does not give the aspect ratio explicitly. However, we

can approximate it with the reconstruction map and the calculated major radius. Our major
radius in this reconstruction is 0.8847 AU. Here, in the reconstruction map of figure 4.5, we
can guess the radius of the flux rope, being the radius of the white line circle. The size of
the axes are approximately 0.4 AU and, to be sure, we can limit the size of the flux rope by
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0.25 AU from beneath. Therefore, we can say, without much risk, that the size of the flux
rope is 0.325 ± 0.075 AU. The aspect ratio is then 0.37 ± 0.09 AU. This is the half of 0.8
AU, which is the result of Al-Haddad.

Fig. 4.4: Fit of the inward and outward measurements of F(Ψ) of the successful reconstruc-
tion. The black solid line represents the fit of the two colored branches. R f is
the residue of the fitting cruve. The black vertical line is the value of Ψ at the
boundary of the flux rope.

Fig. 4.5: Flux rope cross section of the successful reconstruction. The two red crosses point

at the locations where Bz =

√︂
B2

r + B2
θ . The color map, associated with the color

bar, displays the z component of the magnetic field. The black contours are the
contours of F(Ψ). The red dot is the center of the flux rope. The green solid line
is the path of the spacecraft. The green arrows are the magnetic field components
in the plane of the cross section.

Figures 4.6, 4.7 and 4.8 are the principal results of the second reconstruction. The main
differences between the test reconstruction and the second one is the apparent global rotation
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of the residue islands in figure 4.6. As for the previous reconstruction, the axis orientation
has been shifted, in order to make a compromise between the residue map results and the
results that we are supposed to obtain from a GS reconstruction. This procedure is not
outrageous as the Z-axis orientation has been selected among the minimal residue island
present on this map in green (see figure 4.6). Nonetheless, the outcoming Z-axis orientation
present a 27% difference with the results of the Al-Haddad, and up to 28% with our previous
results.

Fig. 4.6: Residue map of the test reconstruction.

The figures 4.4 and 4.7 look quite similar. The single valued Ψb is, in both cases barely
over 0, and the fitting curves have a similar appearance. Yet, these curves span over different
ranges. The range of the curve on the x-axis equals the poloidal flux. Our original test
has Fpol = 1.75 1013 T m2, whereas the second reconstruction yields a poloidal flux of
Fpol = 1.15 1013 T m2. This is a consequence of the difference of tilt of the curves. The
direct effect that this flatter curve has on the reconstruction map is the elongation of the
flux rope. On the reconstruction map of figure 4.8, we have to be careful with the x and y
axes’s scales. The y-axis covers a distance of 0.15 AU while the x-axis covers a range of
0.25 AU. The figure is not on scale and we have to imagine the structure almost two times
brighter in the x-direction. This elongation is not unknown from the scientists. Magnetic
flux ropes often elongates in the direction of motion of the cloud (Möstl et al., 2009). A
curious output of this reconstruction is that the final residues are lower than our success-
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ful reconstruction, as it equals 0.06 for these boundaries instead of 0.09 for the previous ones.

Fig. 4.7: Fit of the inward and outward measurement of F(Ψ) for the test reconstruction.

Fig. 4.8: Cross section of the flux rope for the test reconstruction.

Table 4.2 shows the accuracy of the reconstructions. Even though the change on the
boundaries makes sense, the results of this second reconstruction show large uncertainties.
Indeed, the χ2 equals two. Which is, as we already discussed, the upper acceptable value for
this parameter. Q is really low here, even if we do not have any references on what should
be a valid Q. Moreover, it turns out that, in some reconstructions, the Q is under 1

2 when the
χ2 is below 1.
For such a boundary shift, the discrepancies in the angles are enormous. The θ angle changes
by 17 degrees, or 25%. The ϕ angle changes by 91 degrees, or 27% (see table 4.3).
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N◦ Start (DOY:H:Min) Duration (D:H:Min) χ2 Q R f

a 179:02:45 1:07:50 2 0.1 0.06
b 179:03:10 1:10:39 0.885 0.724 0.09

Table 4.2: Reconstruction quality parameters of the test (a) and the successful (b) recon-
structions.

N◦ θ ϕ R0 b Bmax Fpol Ftor

Unit ◦ ◦ AU AU nT 1013T m2 1013T m2

a -50 243 0.75 0.01 -10.9 0.276 1.16
b -67 334 0.88 0.002 -11.6 0.108 1.75

Table 4.3: Output parameters of reconstruction giving information on the cloud for the test
boundaries (a) and the successful one (b).

4.3 Study on 17 reconstructions

From 17 different reconstructions having 17 different boundaries, we calculated a weighted
average of the output and quality parameters. The two resulting Z-axis angles are ϕ = −64◦

and θ = 247◦. These results disagree with the results of Al-Haddad. In fact, this would
mean that our results are closer to the FF model than to the GS one.
The 17 reconstructions have been selected for having a χ2 under two. All reconstructions
have final residues inferior to 0.12, and in all cases, the F(Ψ) function was double folded
and symmetrical. The results of these reconstructions can be found in tables 4.4 and 4.5.

4.3.1 Comparison to the results of Al-Haddad et al. (2018)

The reconstruction is based on the symmetry that exists within the composed F(Ψ) function.
This function folds on itself. One branch represents the inward movement of the spacecraft,
the other its outward movement. As the contours of F are circling around the center of the
flux rope, each value of F that the spacecraft is crossing during its inward path should also
be crossed during its outward path.
Guided by this idea, we will consider the final residue as the best indicator of a success-
ful reconstruction. A χ2 under two is also going to be important for the validity of the
reconstruction. Q does, however, not tell us that the reconstruction is false. It is merely a
probability of having the best reconstruction possible.
To derive more objective results we introduce a weighted average for the goodness of the
reconstruction. Indeed, we want the final residue R f to define the strength of the weight.

4.3 Study on 17 reconstructions 49



N◦ Start (DOY:H:Min) Duration (D:H:Min) χ2 Q R f

1 179:01:36 01:09:49 1.44 0.01 0.07
2 179:01:43 01:10:22 0.506 0.996 0.07
3 179:01:47 01:01:26 0.847 0.089 0.06
4 179:01:54 01:02:38 1.28 0.03 0.06
5 179:02:05 01:02:56 0.702 0.999 0.04
6 179:02:08 1:07:51 0.916 0.729 0.03
7 179:02:45 1:07:50 2 0.1 0.06
8 179:02:59 1:09:13 0.692 0.835 0.07
9 179:02:55 1:08:55 1.25 0.118 0.12
10 179:03:10 1:10:39 1.64 0.01 0.11
11 179:03:13 1:06:17 0.929 0.877 0.12
12 179:03:24 1:06:06 1.12 0.618 0.05
13 179:03:35 1:07:10 0.546 0.278 0.13
14 179:03:40 1:09:35 0.527 1 0.07
15 179:03:53 1:05:37 0.403 1 0.12
16 179:04:05 1:08:41 0.885 1 0.05
17 179:04:25 1:07:25 0.731 0.841 0.11
w̄ 179:02:40 1:07:03 0.930 0.610 x

Table 4.4: Results of the quality of the 17 reconstructions of the event on 2013-06-28. DOY
means Day of Year, H, hour and Min, minutes. The duration has the same format.
The line following w̄ is a simple average of the data of the 17 reconstructions.

Therefore, we can write:

w̄ = δ̄ + v̄ (4.1)

In equation 4.1, w̄ is our weighted average, δ̄ is the difference to the average and v̄ is the
average of the value we are studying.

δ̄ =

∑︁N
j=1(v j − v̄)( 1

R j
− 5)∑︁N

i=1( 1
Ri
− 5)

(4.2)

In equation 4.2, v j are the values for each reconstructions, R j are the residues associated
with the values v j. Our weight is 1

Ri
− 5.

We want that the weight vanishes if the residue of a reconstruction equals 0.2, as it is the
limit of an acceptable reconstruction. 1

R j
− 5 = 0 for R j = 0.2. Note that δ̄ is never infinite

as the denominator is the sum of all weights, and does not vanish if at least one weight
is different from 0.2. Naturally, as 0.2 being the worst acceptable solution, we expect to
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N◦ ϕ θ R0 b Bmax Ftor Fpol

Unit ◦ ◦ (AU) (AU) (nT ) (1013T m2) (1013T m2)
1 −55 282 1.11 0.005 −11.43 0.523 2.29
2 −67 303 0.60 0.006 −11.65 0.661 1.33
3 −53 221 0.67 0.004 −11.42 0.276 1.23
4 −58 259 0.73 0.01 −10.83 0.349 1.36
5 −66 87 0.81 0.011 −11.27 0.334 1.73
6 −70 283 1.12 0.002 −12.02 0.501 2.69
7 −50 243 0.75 0.010 −10.90 0.276 1.16
8 −70 304 0.66 0.010 −11.76 0.682 1.39
9 −50 253 0.59 0.003 −10.54 0.443 0.903

10 −67 334 0.88 0.002 −11.60 0.108 7.75
11 −48 237 0.64 0.015 −10.31 0.409 0.879
12 −55 248 0.37 0.001 −11.80 0.316 0.646
13 −49 225 0.70 0.006 −11.13 0.455 0.925
14 −75 280 0.76 0.012 −11.64 0.627 1.63
15 −63 290 0.63 0.018 −11.02 0.548 0.855
16 −69 279 1.23 0.000 −11.99 0.673 2.48
17 −65 417 0.307 0.001 −10.19 0.363 3.31

w̄(m = 2.04) −64 247 0.86 0.005 −11.57 0.446 1.94
w̄(m = 29.6) −70 283 1.13 0.002 −12.02 0.501 2.69

Table 4.5: Output parameters of the 17 reconstructions of the event on 2013-06-28. The
lines called w̄ represent the weighted averages for different values of m.

have several residues below this value. If one R j equals 0.2, δ j =
(v j−v̄)( 1

R j
−5)∑︁N

i=1( 1
Ri
−5)

N = 0, and the

associated reconstruction does not influence the average.
On the other side, we are going to derive what happens if one residue tends towards 0.
Obviously, 1

Rl
tends to infinity when Rl vanishes. But more importantly, if one of the residue

vanishes, the associated weight will take over the others. Mathematically:

limRl→0

N∑︂
j=1

(v j − v̄)(
1
R j
− 5)→ (vl − v̄)(

1
Rl
− 5) (4.3)

Here Rl is the residue that vanishes and is included into the R js. Symmetrically:

limRl→0

N∑︂
j=1

(
1
R j
− 5)→ (

1
Rl
− 5) (4.4)

Using equations 4.3 and 4.4 in equation 4.2, we find δ̄ = (vl − v̄) and therefore, w̄ =
(vl − v̄) − v̄ = vl. This result is satisfying for two reasons. The first is that if one of the
residue is null, the weighted average will not exceed the value associated with the vanishing
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residue. The other reason is that this average will simply become the value associated with
the vanishing residue. In other words, w̄ is not ill-behaved and always tends to the best
value.
Of course, there is an infinity of possible weights to take. For example, the weights ( 1

Rm
j
−5m),

for any positive m, would have the same properties as the original weight. In fact, a higher
m will give more influence to low residues. The weighted average tends faster towards
the values associated with the lowest residues. We could have also not used weights at all,
and compute a simple average of each output parameter. In this case, the quality of the
reconstruction would not have been taken into account at all.

Fig. 4.9: Top panel: The blue line profiles the weighted averages of ϕ with respect to the
degrees of m. Bottom panel: The blue line profiles the weighted averages of θ
with respect to the degrees of m. In both plots, the red, yellow and green lines are
the values of ϕ or θ in the GS, FF and CCS models, respectively.
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Fig. 4.10: In both panels, the red, yellow and green lines are the error profiles (ratio of the
difference over the results of Al-Haddad) of the weighted averaged angles (for
each degree of m) with respect to the GS, FF and CCS results of Al-Haddad,
respectively.

In reality, we can compute the weighted averages of the values with respect to different
weights. Figure 4.9 shows the weighted averages of ϕ (ϕ̄w) and θ (θ̄w) for different degrees m
of the weight mentioned previously. The three horizontal lines are the values of ϕ and θ that
Al-Haddad found in each model (GS, CCS, FF). Then, the figure 4.10 shows the relative
error between our results and each of the model’s angles. We define the total relative error
as the average of the errors on both angles: Errmodel

tot = 1
2 (Errmodel

ϕ + Errmodel
θ ). With this,

the minimum error for each model is:

ErrGS
tot = 10.2% for m = 29.6

ErrCCS
tot = 10.6% for m = 0

ErrFF
tot = 3% for m = 2.04

The minimum error (3%) is found in the FF model for m = 2.04. Our angles with a
m = 2.04 are ϕ = −64◦ and θ = 247◦.
Hence, without any assemption on the strength of the weight, our results seem to confirm
the FF model, and not the GS one.
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4.3.2 The influence of the boundary selection

One of the goals of these 17 reconstructions was to find the influence of the choice of
the boundaries on the ϕ and θ angles. Figure 4.11 contains the information regarding this
influence.

Fig. 4.11: The first column of plots concerns the variable θ. The second column concerns
ϕ. The first, the second and the third lines plot the differences in the angles
with respect to the differences on the front boundary, rear boundary and cloud
duration, respectively. The red curves are the fitting curves of the data points.
The legends display the tilt of the curve in the unit degrees per minute. P is the
Pearson correlation coefficient.

The data points have been created from every possible combination of differences that
one can obtain from the 17 reconstructions. P is the Pearson correlation coefficient. A low
correlation coefficient means that a possible linear relation between the parameters (red
in figure 4.11) is not very strong. We can deduce with relatively high reliability that the
boundary choice has a greater influence on θ than it has on ϕ. However, the time range of
choice for the front boundary is shorter than the one for the rear boundary. This means
that the value of ∂θ∂T1

= 0.63◦ min−1 will be integrated over a shorter time as the value of
∂θ
∂T2
= 0.20◦ min−1. Overall, we can say that the choice on the rear boundary will have a

great influence on the θ angle.
On the other side, for this cloud, the influence of the duration is equal to the influence of the
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second boundary. We could expect this result, regarding the fact that the range of the rear
boundary is much greater than the front one. The differences on the rear boundary selection
will almost entirely define the differences in duration of the cloud.

4.4 Reconstruction from smoothed data

We now show how data smoothing affects the results. For that, we used a smoothing over
two hours. The results of the reconstructions for the smoothed data confirm the results of
the Al-Haddad study. Indeed, with the best degree of m being 0, the angles of the Z-axis
are ϕ = −65◦ and θ = 330◦. These results have an average error of 0.7% with the results of
Al-Haddad.
Smoothing the data has an impact on the statistics of the reconstructions. The goodness
of fit decreases slightly from 0.930 without to 0.916 with the smoothing. However, the Q
parameter increases significantly from 0.610 without to 0.916 with the smoothing. Addition-
ally, the residues are overall lower with the smoothing. The results of these reconstructions
are shown in tables 4.6 and 4.7.

N◦ Start (DOY:H:Min) Duration (D:H:Min) χ2 Q residue
1 179:01:36 01:09:49 0.31 1 0.08
2 179:01:43 01:10:22 0.459 0.997 0.07
3 179:01:47 01:01:26 0.497 0.996 0.05
4 179:01:54 01:02:38 0.263 1 0.05
5 179:02:05 01:02:56 0.322 1 0.05
6 179:02:08 1:07:51 0.859 0.698 0.04
7 179:02:45 1:07:50 0.44 1 0.04
8 179:02:59 1:09:13 0.264 1 0.04
9 179:03:00 1:07:15 0.616 0.988 0.06
10 179:03:10 1:10:39 1.14 0.258 0.06
11 179:03:13 1:06:17 0.083 1 0.06
12 179:03:24 1:06:06 0.366 1 0.04
13 179:03:35 1:07:10 0.815 0.764 0.14
14 179:03:40 1:09:35 0.442 0.998 0.10
15 179:03:53 1:05:37 0.732 0.891 0.05
16 179:04:05 1:08:41 0.469 0.998 0.09
17 179:04:25 1:07:25 0.435 0.999 0.07
w̄ = 1 179:02:40 1:07:03 0.490 0.916 x

Table 4.6: Results of the quality of the 17 smoothed reconstructions of the event on 2013-
06-28. DOY means Day of Year, H hour and Min minutes. The duration has the
same format, except that DOY becomes D for Days, and the overall measure is
a duration, not a date.
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N◦ ϕ θ R0 b Bmax Ftor Fpol

Unit ◦ ◦ (AU) (AU) (nT ) (1013T m2) (1013T m2)
1 −73 397 0.30 0.014 −10.61 0.607 0.672
2 −66 298 0.76 0.005 −11.62 0.637 1.66
3 −66 242 1.43 0.012 −11.83 0.317 3.01
4 −62 282 0.94 0.003 −12.02 0.348 1.86
5 −64 278 1.29 0.006 −12.04 0.396 2.59
6 −76 376 0.17 0.029 −10.03 0.819 0.457
7 −58 304 1.00 0.008 −11.75 0.571 1.98
8 −69 313 1.20 0.0 −11.97 0.820 2.64
9 −66 266 0.71 0.006 −11.46 0.460 1.41
10 −73 313 0.62 0.096 −11.58 1.01 1.62
11 −79 405 0.46 0.017 −10.69 0.459 1.49
12 −51 321 0.86 0.018 −11.49 0.537 1.99
13 −45 470 1.41 0.037 −10.51 0.432 0.643
14 −64 418 0.40 0.01 −11.18 0.503 1.13
15 −44 366 0.73 0.027 −11.15 0.541 1.26
16 −70 447 0.74 0.007 −11.50 0.581 0.855
17 −80 424 0.122 0.02 −11.38 0.785 2.21

w̄(m = 1) −65 328 0.842 0.017 −11.41 0.589 1.71
w̄(m = 0.63) −65 330 0.838 0.017 −11.40 0.487 1.70

Table 4.7: Output parameters of the 17 smoothed reconstructions of the event on the 2013-
06-28. The lines with w̄ represent the weighted averages.

4.4.1 Comparison to the results of Al-Haddad et al. (2018)

The same analysis has been made as with the original data. From this study, we can plot
ϕ and θ with respect to the orders of m of the weight (see figures 4.12 and 4.13). The best
relative errors with respect to the models are:

ErrGS
tot = 0.7% for m = 0.63

ErrCCS
tot = 14.2% for m = 5.65

ErrFF
tot = 17.8% for m = 5.44

Once again, these results do not depend on the strength of the weight. We let the weight
vary to obtain the best results. It turns out that this coefficient gives us information on the
meaning of R f . Indeed, our weight depends on R f . A higher degree of m empowers the
lower residues. Hence, the fact that we found the best error (0.7%) with a m that equals 0.63
tells us that, in this case, the parameter R f does not summarize efficiently the quality of the
reconstruction.
This time, The GS reconstruction seems to be the most accurate and agrees with the results
of Al-Haddad. We have used the same boundaries as in the study of the original data.
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Therefore, the increase in the quality of the results comes from the smoothing process.

Fig. 4.12: Top panel: The blue line profiles the weighted averages of ϕ with respect to the
degrees of m. Bottom panel: The blue line profiles the weighted averages of θ
with respect to the degrees of m. In both plots, the red, yellow and green lines
are the values of ϕ or θ in the GS, FF and CCS models, respectively.
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Fig. 4.13: In both panels, the red, yellow and green lines are the error profiles (ratio of the
difference over the results of Al-HAddad) of the weighted averaged angles (for
each degree of m) with respect to the GS, FF and CCS results of Al-Haddad,
respectively.

4.4.2 The influence of the boundary selection

Figure 4.14 tells us that the influence of the boundary selection on the reconstruction does
not strongly depends on the smoothing. Indeed, the tilts of the red curves in figure 4.11
and 4.14 are almost similar.
Moving the front boundary modifies θ of 0.66◦ min−1 and ϕ of 0.02◦ min−1. A change in
the rear boundary shifts θ by 0.16◦ min−1 and ϕ by 0.02◦ min−1. While the choice of the
front boundary seems to have a greater impact on the reconstruction, once again, the range
of the rear boundary is much greater than the front one. As a quick example, for the cloud
on 2013-06-28, the front boundary range stretches over 180 minutes. The rear boundary

58 Chapter 4 The influence of the boundary selection: the event on 2013-06-28



range covers 750 minutes. Then, θ and ϕ vary with 120 degrees and 4 degrees, respectively,
due to the uncertainty in the location of the front boundary. On the other hand, the maximal
change in the rear boundary implies a change of 120 degrees for θ and 15 degrees for ϕ. In
this example, the rear boundary has a greater impact on the ϕ angle, while both boundaries
potentially change the θ angle with the same strength.

All in all, we calculated angles of ϕ = −65 and θ = 330. These results agree with
the results of Al-Haddad with an average accuracy of 99.3%. The code allows us to give
additional information about the cloud: The center of the torus is located at a distance of
0.838 AU of the spacecraft. The spacecraft approaches the center of the flux rope to a
minimal distance of 0.017 AU. The intensity of the magnetic field in the z direction reaches
up to −11.4 nT. Lastly, the poloidal flux overcomes the toroidal flux by a factor of 3.5 with
a value of Fpol = 1.7 1013 T m2.

Fig. 4.14: The first column of plots concerns the variable θ. The second column concerns
ϕ. The first, the second and the third lines plot the differences in the angles
with respect to the differences on the front boundary, rear boundary and cloud
duration, respectively. The red curves are the fitting curves of the data points.
The legends display the tilt of the curve in the unit degrees per minute. P is the
Pearson correlation coefficient.
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4.5 Influence of the manual pick

Once the code is yielding the residue map for the Z-axis orientation, the user has to select
the best angle by hand. The goal of this section is to determine the influence of that choice
on the quality of the reconstruction and on the cloud’s parameters.

In order to study the robustness of the code, we will fix the boundaries of the cloud.
179:04:25 (DOY:H:Min) is going to be the starting date, and 1:07:25 (D:H:Min) the duration.
Smoothed data gives better accuracy. The data is smoothed over 2 hours periods. For
this configuration, the relation between the eigenvalues of B1, B2 and B3 are λx

λy
= 4 and

λx
λz
= 121. These relations mean that the magnetic field rotates within these boundaries.

Table 4.8 summarizes the results of our reconstructions. The angles are those that we
selected manually. The other parameters (Bmax, Fpol, χ

2,Q,R f ), are the outputs of the re-
constructions with their respective angles. Note that once the angles are chosen, the other
outputs do not depend on the user of the code.
It is important to mention that the angles have been chosen within the minimum residues
islands. It explains the wide range of the θ angle and the restricted one of the ϕ angle.

N◦ ϕ θ Bmax Fpol χ2 Q R f

Unit ◦ ◦ (nT ) (1013T.m−2) x x x
1 −80 425 −11.39 2.31 0.433 0.999 0.07
2 −75 488 −11.71 2.99 0.453 0.999 0.05
3 −80 273 −11.24 2.03 0.474 0.998 0.06
4 −78 459 −11.5 2.57 0.456 0.999 0.06
5 −75 246 −11.5 3.64 0.424 0.999 0.06
6 −64 297 −11.77 0.668 0.464 0.998 0.11
7 −80 225 −11.55 3.95 0.608 0.962 0.05
< x > −76 344 −11.52 2.6 0.473 0.993 0.07

Table 4.8: Results of seven test reconstructions to determine the influence of the manual
pick in the new code of Qiang Hu. The line labeled with < x > is the average of
the studied variables.

4.5.1 Study of the robustness with a linear fit

Figures 4.15 and 4.16 are, respectively, the impacts of the choice of the angles ϕ and θ on
some of the reconstruction parameters i.e Bmax, Fpol, χ2, Q, R f . These two figures show the
robustness of the code to a change in the choice of the Z-axis angles.
At first, recall that ϕ’s maximal change is of 90 degrees. If we consider the quality parame-
ters (R f , χ2, Q), the approximated percentage of change to the average is 0.05% per degree.
This means that the change to the average that one can obtain is 90 times this value. We can
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have, roughly, a 4.5% change to the average by selecting an arbitrary ϕ inside the minimum
residue contours of the residue map. In fact, for the cloud’s parameters (Bmax and Fpol), we
have exactly the same 4.5% change to the average.
Secondly, the angle θ can have a maximal change of 180 degrees. Indeed, the change can be
positive or negative. Then, we recover the 360 degrees of the residue map. Figure 4.16 tells
us that the percentage of change to the average is 0.0004% per degree. Therefore, we can
estimate a potential change of 0.072% to the average.
Obviously, quick calculations on the results of table 4.8 give us an idea of how approximate
these conclusions are. Indeed, the red fitting curves have a low tilt, but the data points scatter
broadly around them, making our predictions unprecise. On the other hand, the test sample
is far from having a statistical size. Moreover, some of the Pearson coefficients are low. A
linear fit may not be the best method to analyse the robustness. This is the reason why the
next section repeat the study with the bootstrapping method.

Fig. 4.15: The influences of a change of ϕ on several variables. The red lines represent the
linear fits. The label of the red line displays the tilts of the red curves divided
by the average of the studied value. The results can be read as a percentage of
change per degree with respect to the average.
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Fig. 4.16: The influences of a change of θ on several variables. The red lines represent the
linear fits. The label of the red line displays the tilts of the red curves divided
by the average of the studied value. The results can be read as a percentage of
change per degree with respect to the average.

4.5.2 Study of the robustness with a bootstrapping method

Seven reconstructions do not represent a statistical sample, even after computing every
possible combination of differences to increase the dataset. The bootstrapping method may
represent an alternative to the linear fit.

The bootstrapping method consists in selecting randomly several values of a parameter
and computing the mean of the selected values. This operation is repeated a large number of
times. Hence, the method yields a large amount of partial mean values. These mean values
are plotted as histograms.
We have seven reconstructions. All the possible combinations of differences increase the
sample to

∑︁7
i=1 i = 21 values. The bootstrapping is set up to select randomly 10 values out

of these 21, and to calculate the average of these 10 values. This operation is repeated 10000
times. As a result, we obtain 10000 partial mean values. These means values are plotted
as in the histograms of figures 4.17 and 4.18. Finally, the total mean of the 10000 partial
mean values is calculated for each parameter, normalized with the average of this parameter
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(last line of table 4.8), and displayed as label "Mean" on the histograms of figures 4.17
and 4.18.

Fig. 4.17: The influences of a change of ϕ on several variables. The red lines represent the
linear fits. The label of the red line displays the tilts of the red curves divided
by the average of the studied value. The results can be read as a percentage of
change per degree with respect to the average.

The variations of the parameters (Bmax, Fpol, χ
2,Q,R f ) with respect to the angle θ are all

below 4 10−3 times their average value. The changes to the parameter’s averages are below
0.4% per degree of variation of θ. As for the linear fit method, the conclusion is that the
code is relatively robust under a change of θ angle.

The variations of the parameters (Bmax, Fpol, χ
2,Q,R f ) with respect to the angle ϕ, how-

ever, reach up to 7 times their average value. For the parameters R f , Fpol, χ2, the changes
in their average are between 200% and 700% per degrees of variation of ϕ. These changes
equal 4% and 40% for the parameters Bmax and Q respectively. Nevertheless, the Pearson
coefficients for the variation in ϕ all had acceptable values with the linear fit method.

According to the bootstrapping analysis, the variation of the selection of the θ angle has a
reasonable influence on the output parameters. These ones vary of few percents. However,
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according to the same method, the variation of the selection of the ϕ angle has a great impact
on the output parameters. The parameters vary of hundreds of percents.

Fig. 4.18: The influences of a change of θ on several variables. The red lines represent the
linear fits. The label of the red line displays the tilts of the red curves divided
by the average of the studied value. The results can be read as a percentage of
change per degree with respect to the average.

As a conclusion, the linear fit analysis highlights a low influence of the selection of the
angles on the outputs of the reconstruction. Yet, the results of the linear fit method are not
all reliable as some Pearson coefficients are low.
On the other hand, the bootstrapping method results in a greater influence of the selection of
the angles on the reconstruction, especially regarding the ϕ angle.
Even though the numbers of tests are too low to provide a reliable statistical analysis, it looks
like the code is robust to the choice of the Z-axis angles. Choosing the Z-axis orientation
within the minimum residue contours of the residue map should provide satisfying results.
This section gives even more importance to the choice of the boundaries. Indeed, if the
choice on the Z-axis orientation has a limited influence on the output parameters, the choice
of the boundaries has been the most important part of the reconstruction.
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5Conclusion

Magnetic flux ropes can be recognized through the rotation of the magnetic field, the
linear decrease in the plasma velocity and the freeze-in of the plasma. In both events on
2004-11-09 and on 2013-06-28, the front boundaries were easier to localize than the rear
boundaries. Indeed, the characteristics of flux ropes appeared clearly at the starts of the
magnetic clouds, but disappeared slowly during the ends of the events. The Grad-Shafranov
method is sensitive to the choice of the boundaries of the flux ropes. Nevertheless, the code
of Qiang Hu, based on the Grad-Shafranov reconstruction, is able to reconstruct successfully
magnetic flux ropes and retrieve the results published in the literature i.e. the articles of
Isavnin et al. (2011) and Al-Haddad et al. (2018).

The study of the set of 17 reconstructions (event on 2013-06-28) gave an insight on the
influence that the boundary selection has on the reconstruction of the magnetic flux ropes.
A change of one minute on the front boundary changes the θ angle by 0.66◦ and the ϕ angle
by 0.02◦. Whereas, a change of one minute on the rear boundary changes the θ angle by
0.16◦ and the ϕ angle by 0.02◦. However, the uncertainty of the rear boundary is more than
four times greater than the uncertainty on the front one. The impact of the selection of the
rear boundary becomes, thereby, greater than the impact of the front one. The duration of
the cloud is almost entirely determined by the choice of the rear boundary and its study
does not add substantial results. While smoothing the data did not change the influence
that the boundary selection has on the reconstruction, it increased the quality parameter Q
and retrieved the results of Al-Haddad et al. (2018). It appeared that the final residue R f

describes better the quality of the reconstruction in the original than in the smoothed data.

Finally, the selection of the best Z-axis orientation on the residue map of the reconstruc-
tion does not have a strong impact on the output parameters according to a linear fit on the
results of seven reconstructions. However, a bootstrapping of the same results contradicts
this conclusion. The latter method shows that the selection of the Z-axis orientation on the
residue map has a significant impact on the output parameters of the reconstruction.
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