
Klemens Strasser, BSc

Unity Accessibility Toolkit
Enhancing Accessibility of Video Games for People with

Vision Impairments

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. BSc Pirker Johanna

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, May 2021

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

Gaming with a vision impairment has already been researched in several
studies, but most of the times by creating or modifying games that are
not available outside the study. It’s rarely discussed which games visually
impaired players can really play. The root causes why so many games are
not accessible to this demographic are also hardly ever researched.

This work is an attempt to shed a light on what and how people with
vision impairments play video games and how more accessible games can
be built. It shows that most games are made with cross-platform engines
and compares them in terms of vision accessibility tools. The most popular
engine, Unity, has almost no accessibility features built-in. So the work
points out different areas where the vision accessibility of the Unity engine
could be extended through reusable plugins. This research led to the design
and implementation of such a reusable plugin in the form of the Unity
Accessibility Toolkit. It is a first step to provide Unity developers with tools
to create more visually accessible games by offering a navigation agent and a
screen reader. Both are designed to integrate well with existing technologies,
like Unity UI, to make them easy to use for the developer. The work also
shows concrete examples of how these tools can be used to make menu
navigation, environment observation, discrete and continuous navigation
more accessible.

A first evaluation of the screen reader was also conducted. Developers
familiar with Unity used the Unity Accessibility Toolkit to make a simple
match-3 game accessible. Although none of the participants had experience
with a screen reader prior to the evaluation, most of them performed well.
Issues like insufficient labeling could have been avoided with a simple
feedback loop. Such an extra feedback step should be a part in future
studies. The overall response was also good. Participants showed interest in
the topic and would use the toolkit to make their own projects accessible.

iv

Contents

Abstract iv

1 Introduction 1
1.1 Research Goals . 1

1.2 Structure . 2

2 Background and Related Work 4
2.1 Terminology . 4

2.1.1 Impairment and Disability 4

2.1.2 Impairments Concerning the Visual System 5

2.1.3 Usage of the Terms . 8

2.2 Vision Accessibility of Computing Devices 10

2.2.1 The Interaction Framework 10

2.2.2 Vision Accessibility of the Interaction Framework . . . 10

2.2.3 Practical Usage of the Accessibility Technologies . . . 19

2.3 Gaming with Vision Impairment 20

2.3.1 The Gaming Workflow 20

2.3.2 Vision Accessibility of the Pre-Game Phase 20

2.3.3 Vision Accessibility of the In-Menu Step 24

2.3.4 Vision Accessibility of the Gameplay Step 25

2.4 Game Engines and Vision Accessibility 35

2.4.1 Definition of Game Engines 36

2.4.2 Vision Accessibility Features of Different Game Engines 36

2.5 Vision Accessibility Extensions for Unity 40

2.5.1 Asset Packages for Vision Accessibility 41

2.5.2 Areas of Improvement 43

2.6 Summary . 46

v

Contents

3 The Unity Accessibility Toolkit: Design and Implementation 48
3.1 Design . 49

3.1.1 Design of the Screen Reader 52

3.1.2 Design of the Navigation Agent 55

3.2 Basics of the Implementation 56

3.3 Implementation of the Screen Reader 59

3.3.1 Screen Reader Manager Implementation 59

3.3.2 Custom Screen Reader Implementation 61

3.3.3 Native Screen Reader Implementation 64

3.4 Implementation of the Navigation Agent 70

3.5 Possible Applications of the Toolkit 75

3.5.1 Menu Navigation . 75

3.5.2 Environment Observation 76

3.5.3 Continuous Navigation 77

3.5.4 Discrete Navigation . 78

3.6 Summary . 80

4 Evaluation 82
4.1 Procedure . 82

4.2 Participants . 83

4.3 Materials . 84

4.4 Results . 85

4.4.1 Accessibility in General 85

4.4.2 Making the Game Accessible 86

4.5 Discussion . 87

5 Lessons Learned 90
5.1 Theory . 90

5.2 Design & Implementation . 91

5.3 Evaluation . 91

6 Suggestions for Future Work 93
6.1 Improvements for Existing Tools 93

6.1.1 Native Screen Reader Support 93

6.1.2 Voice Configuration and Language Support 94

6.1.3 Custom Rotors . 94

6.1.4 Evaluating and Extending the Navigation Agent . . . 95

vi

Contents

6.2 New Tools . 95

6.2.1 Dynamic Type System & Fonts 95

6.2.2 Increased Contrast . 96

6.3 Increasing Appeal . 96

6.3.1 Support for other Native Assistive Technologies 97

6.3.2 Automatic Testing . 97

7 Summary 98

Bibliography 101

Ludography 112

vii

List of Figures

2.1 Snellen chart with metric measurements, based on a public
domain drawing by Schneider (2002) 7

2.2 A logMAR chart with British Standard 5 x 4 letters for a
standard testing distance of 6m (Bailey and Lovie-Kitchin,
2013). 8

2.3 An image of the Golden Gate Bridge, as seen with different
forms of color blindness. Top left: Original image, top right:
Deuteranopia, bottom left: Protanopia, bottom left: Tritanopia.
The images where altered using Sim Daltonism. 9

2.4 The interaction framework with transition between the com-
ponents. Based on a drawing by Dix et al. (2003). 11

2.5 Display accessibility settings in macOS Big Sur 13

2.6 Stock image of the Brailliant BI 14 refreshable braille display
by HumanWare (2019) . 14

2.7 Zoom accessibility settings on an iPad Pro under iOS 12.3 . . 15

2.8 The interaction framework with transition between the com-
ponents, extended with the additional interface layer, the
scree reader. Based on a drawing by Dix et al. (2003). 16

2.9 Example of user interface serilization in VoiceOver under iOS
14.0.1 . 17

2.10 The Gaming Workflow: A visualisation of the steps a user
has to go through when wanting to play any new game. . . . 21

2.11 List of selected accessibility apps in the App Store (Apple
Inc., 2020d) . 23

2.12 An excerpt from the official menu guide for UFC 3 (Electronic
Arts Inc., 2019) . 25

2.13 The assist options of Mario Kart 8 Deluxe (Nintendo, 2017) . 28

2.14 Blindfold Pinball (Schultz, 2016) 30

2.15 Blindfold Sudoku (Schultz, 2014) 30

viii

List of Figures

2.16 Screenshot of A Blind Legend, showing that the game doesn’t
have any visual representation of the gameplay (DOWINO,
2016) . 31

2.17 The Last Of Us Part II with vision accessibility presets applied
(Sony Interactive Entertainment LLC, 2020; Naughty Dog, 2020) 34

2.18 The Last Of Us Part II with enhanced listen mode feature
applied (Sony Interactive Entertainment LLC, 2020; Naughty
Dog, 2020) . 35

2.19 Areas of improvement for individuals with a color vision
deficiency . 43

2.20 Areas of improvement for individuals with low vision 44

2.21 Areas of improvement for individuals with any form of vision
impairment . 45

3.1 Examples of how to use the values of the accessibility signifier
with a button (left) and a slider (right) 50

3.2 Architecture of the screen reader 53

3.3 Example of how our screen reader will sort the game object
with the accessibility signifier 54

3.4 Sketch of how continuous navigation is eased via the navi-
gation agent. Left: Initial position of player and navigation
agent. Right: The first intersection was reached and the agent
moved to the second one. 55

3.5 Sketch of how recalculating the path of the navigation agent
is working. Left: Player has moved off the intended path.
Right: User has triggered the recalculation of the path and
the agent was re-positioned. 56

3.6 Simplified class diagram of the UA11YElement 57

3.7 Simplified class diagram of the UA11YElement sub-classes we
provide to ease supporting accessibility technologies in Unity
UIs . 58

3.8 Simplified class diagram of the UA11YScreenReaderManager . 60

3.9 Sequence diagram of the screen reader manager. The Game
Manger is a placeholder for a arbitrary element of a game that
will trigger updating the screen reader. 62

ix

List of Figures

3.10 A demo UI with the UA11YCustomScreenReader activated.
The UA11YCustomScreenReaderVisualizer draws a high con-
strat frame around the currently focused element. 63

3.11 Sequence diagram of the UA11YCustomScreenReader with an
UA11YDesktopInput. It covers the initialization, changing the
focused GameObject and selecting the focused GameObject.
The UA11YElement in the diagram is a placeholder for the
dynamically changing focused GameObject. 65

3.12 Simplified class diagram of the Unity side of the UA11Y-

CustomScreenReader . 66

3.13 Simplified Class Diagram of the Unity side of the Native
Screen Reader . 68

3.14 Simplified Class Diagram of the iOS side of the Native Screen
Reader . 69

3.15 Simplified class diagram of the classes involved in our navi-
gation agent . 72

3.16 Sequence diagram of the navigation agent. The Game Manger
is a placeholder for a arbitrary element of a game that will
request the guidance to a certain point. 73

3.17 Navigation agent in a test game 75

3.18 Menu navigation in the Pause/Options menu of the FPS
Microgame. The highlighted element is the Look Sensitivity
slider. 76

3.19 Getting information about the visible objects via environment
observation. 77

3.20 The navigation path calculated by our navigation agent, going
from the players’ position to the turret enemy. 78

3.21 Navigating the match-3 puzzle game with out screen reader. 79

4.1 The three screens of the match-3 sample game. 84

x

1 Introduction

Many of us use video games to socially interact with others and as a
form of escapism from the difficulties of our daily lives (Calleja, 2010).
Together with friends, family, and strangers, we strive through gorgeous
digital worlds, drive around a race track or beat that next level in a puzzle
game (AbleGamers, 2020). But in many of those experiences, we exclude
people with impairments. (Porter, 2014). One group that is particularly
hard hit are people with visual impairments, even though they make up a
significant part of our society. According to a report from the World Health
Organization (2010), there were an estimated 285 million people with visual
impairments in 2010, of whom 39 million are blind.

This inaccessibility comes down to one of video games’ most appealing
features: visuals. Most video games rely heavily on visuals to present infor-
mation to the player and often require a timely reaction to this information
(Andrade et al., 2019). With limited or without any sight, this information
can never reach the player. There have been several proposals in the past
to translate this information in an auditory form, but they rarely reach the
mainstream games (Atkinson et al., 2006). This problem sparked the idea
for this master thesis.

1.1 Research Goals

This thesis’ goals are to explore how people with visual impairments can
play games, why most games aren’t accessible to the visually impaired, and
what can be done to change this. Therefore, our research goals are:

1. Analysing how people with visual impairments interact with comput-
ing devices and how they can play games

1

1 Introduction

2. Researching the tools used to make video games and if any of these
tools support building visually accessible games

3. Discussing what can be done to make vision accessibility features
more common in video games

Besides exploring these questions in theory we will also present the imple-
mentation of a package for the Unity game engine that can help developers
make games more accessible to visually impaired gamers. This packages’
focus is both on making navigation in a game world more accessible and
giving better access to menus and other user interface elements.

1.2 Structure

We will start in Chapter 2 by explaining the difference between impairment
and disability and also discuss other terms commonly used in this thesis.
After that, we will examine accessibility tools for blind and low vision
users that can be used to interact with different computing devices. Next
will be an overview of gaming with a visual impairment. This includes
a discussion of both games with vision accessibility features and games
without such features that are still playable by visually impaired gamers
through some workarounds. We will then transition to game development
by discussing the tools used to make games, game engines, and comparing
them in terms of their vision accessibility features. Finally, we will pick
out one specific game engine, Unity, explore existing extensions to make
visually accessible games with this engine, and present other areas where
extensions are possible.

In the third chapter, we will discuss the plugin itself. We will first talk about
the design of the two main parts, the screen reader and the navigation
agent. The screen reader can help navigate menus and make certain, simpler
games accessible, while the navigation agent helps with navigating in a
unconstraint game environment. While the design of both parts could be
implemented for any game engine, we will present an implementation of
them as a Unity package. Finally, we will show how to make use of the
native screen reader of the iOS platform to increase acceptance by visually
impaired users.

2

1 Introduction

The fourth chapter is all about the evaluation of the plugin. We’ve invited
developers to use our Unity package to make a simple demo project ac-
cessible. We, as domain experts, then evaluated how well the developers
implemented the screen reader support in the sample project. We also sur-
veyed the developers about their experience with the toolkit and accessibility
tools in general. All the results are presented in this chapter.

In the fifth chapter, we will discuss the different lessons learned during the
research of this thesis and the design, implementation, and evaluation of
the package.

The thesis will come to a close in chapter six. Here, we will point at the
most promising areas for future extensions of the Unity plugin.

3

2 Background and Related Work

Video games are highly complex pieces of software experienced with highly
complex computing devices. People of all ages and all physical and cognitive
abilities often struggle to interact with them. This interaction gets even more
complicated when a person has an impairment of one of their senses,
like their visual perception. So throughout this chapter, we explore how
people with visual impairments can interact with computing devices, play
accessible games and how developers can create them. We will start by
discussing some definitions that will be used throughout this thesis.

2.1 Terminology

With the first part of this chapter, we want to clarify and give some context
to different terms used throughout the thesis. This includes a differentiation
between disability and impairment and a brief look at the classification of
different visual impairments.

2.1.1 Impairment and Disability

When writing about accessibility measurements, both the terms ”impair-
ment” and ”disability” are often used as if they describe the same group of
people when in fact they do not. This is why we need to give a definition of
both terms and make it more clear when it is appropriate to use which. The
following was heavily influenced by Gerry Ellis’s chapter on ”Impairment
and Disability: Challenging Concepts of ‘Normality’” in the book ”Researching
Audio Description: New Approaches” (Ellis, 2016).

4

2 Background and Related Work

Impairment The International Classification of Functioning, Disability, and
Health (ICF) was released in 2001 by the World Health Organization (WHO)
with the goal to ”provide a unified and standard language and framework for
the description of health and health-related states” (World Health Organization,
2001). According to this document, impairments are defined as ”problems
in body function or structure as a significant deviation or loss” and that they
”represent a deviation from certain generally accepted population standards in the
biomedical status of the body and its functions” (World Health Organization,
2001). This refers not only to physical conditions but also mental ones. The
ICF also states explicitly that these conditions can be temporary and can
change over time.

Disability Article 1 of the United Nation’s Convention on the Rights of
Persons with Disabilities (CRPD) states that ”Persons with disabilities include
those who have long-term physical, mental, intellectual or sensory impairments
which in interaction with various barriers may hinder their full and effective partic-
ipation in society on an equal basis with others.” (UN General Assembly, 2007).
This means that a disability is caused by barriers in the environment.

These two definitions should make it clear that impairment and disability
are two separate things. An impairment is a mental or physical condition
that makes people with those conditions deviate from a generally accepted
norm. A disability is caused by a barrier that makes something not accessible
to a person, no matter of the mental or physical condition of this person. For
video games, this means that if we do not offer the right tools and settings
to make our games adjust to the needs of players, we disable them to play
our games. These players could be players with impairments, but also older
adults, kids, non-gamers, and any other person who would never describe
themselves as disabled.

2.1.2 Impairments Concerning the Visual System

Since this thesis will concern itself with technical measurements for people
with visual impairments, we need to give some context to this term. In the

5

2 Background and Related Work

International Classification of Diseases 11 (ICD-11), the WHO categorizes
vision impairment in terms of visual acuity (World Health Organization,
2018). The same publication also lists other impairments concerning the
visual field, contrast vision, light sensitivity, or color vision. In the following,
we will describe the categorization of vision impairments from the ICD-11

and take a look at one specific vision impairment: color vision deficiency.

Vision Impairment Categorization The vision impairment categorization
of the ICD-11 gives standardized measurements of how affected one’s
perception of visual details is. It classifies binocular vision impairment
based on both a person’s distance visual acuity and near visual acuity
(World Health Organization, 2018). In both tests, one’s vision is evaluated
with both eyes open and by presenting a correction if needed.

The distance visual acuity is measured using Snellen chart, Figure 2.1, or a
logMAR chart, Figure 2.2. In the following, we describe how a Snellen chart
works.

A Snellen chart consists of multiple lines of letters in different sizes. Each
line has a meter indication. A person with no visual impairment can read
the letters on the 6 meters indication from a distance of 6 meters, letters on
the 12 meters indication from a distance of 12 meters and so on (Hussain
et al., 2006). This is why having no visual impairment is called 6/6 vision.
For a mild visual impairment (worse than 6/12, equal or better than 6/18),
this means that the person needs to be closer than 6 meters to read the
letters on the 12 meters indication but can read letters on the 18 meters line
from at least 6 meters distance. Moderate and serve visual impairment are
often grouped under the term low vision (National Eye Institute, 2019).

Using such a Snellen chart, the distance visual acuity is defined by the
ICD-11 as follows:

• No vision impairment: Equal or better than 6/12

• Mild vision impairment: worse than 6/12, equal or better than 6/18

• Moderate vision impairment: worse than 6/18 equal or better than
6/60

• Severe vision impairment: worse than 6/60 equal or better than 3/60

• Blindness: worse than 3/60 or no light perception

6

2 Background and Related Work

Figure 2.1: Snellen chart with metric measurements, based on a public domain drawing by
Schneider (2002)

Near vision impairment is defined as having a near vision acuity worse
than N6 with existing correction (World Health Organization, 2018). This
value is based on the ability to read letters on a near vision logMAR chart
at a standardized distance of 40cm (WHO Programme for the Prevention of
Blindness and Deafness, 2003).

Color Vision Deficiency When thinking of visual impairments, most peo-
ple think about some kind of impairment to the visual acuity, as described
in the former section. Something that is far more common, affecting 8% of

7

2 Background and Related Work

Figure 2.2: A logMAR chart with British Standard 5 x 4 letters for a standard testing
distance of 6m (Bailey and Lovie-Kitchin, 2013).

males and 0.5% of females, is color vision deficiency, also known as color
blindness vision (Simunovic, 2010). This impairment makes people perceive
colors differently than people with perfect vision. Color blindness is most
commonly caused by an anomaly or lack of working red-, green- or blue-
sensitive cones in the eye. The most common forms of color blindness are
Protanomaly/Protanopia (red cones), Deuteranomaly/Deuteranopia (green
cones) and Tritanomaly/Tritanopia (blue cones). The ending -anomaly
stands for an anomaly in the cones, where the -anopia stands for the total
lack of working cones (Huang et al., 2007). Figure 2.3 shows how these three
forms affect the vision of a person.

2.1.3 Usage of the Terms

In this thesis, we will mostly discuss measurements for visually impaired
people in terms of visual acuity. When we talk about people with visual
impairments we mean any visual impairment, from mild to blindness. Note
that every tool that can help a blind person with a better perception of

1https://michelf.ca/projects/sim-daltonism/

8

https://michelf.ca/projects/sim-daltonism/

2 Background and Related Work

Figure 2.3: An image of the Golden Gate Bridge, as seen with different forms of color blind-
ness. Top left: Original image, top right: Deuteranopia, bottom left: Protanopia,
bottom left: Tritanopia. The images where altered using Sim Daltonism1.

something on the screen will also help a person with any kind of visual
impairment, even though it might not be the most efficient tool for that
person. If any mentioned tool only concerns people with a certain visual
impairment, like low vision, we will point that out.

We now know what a visual impairment is and how strongly affected one’s
vision is to be considered as visually impaired. What is still hard to grasp
is how people with these kinds of impairments can interact with modern
computing devices, which rely heavily on visual stimuli. We will discuss
this in the following section.

9

2 Background and Related Work

2.2 Vision Accessibility of Computing Devices

The history of personal computing devices shows a static rise of importance
for visuals and a decline of haptics. The first operating systems were text-
only and ran on bulky devices. In subsequent years, the graphical user
interface (GUI) emphasized visual representation and became a standard for
operating systems. While we still use a GUI today, our devices became much
smaller and replaced most haptic buttons with virtual ones. Virtual and
augmented reality devices go even a step further. They use a head-mounted
display and sometimes even take away any physical input by replacing it
with hand gestures (Hiliges et al., 2017).

This trend brought immense challenges when it comes to making computing
devices accessible to the visually impaired. While the accessibility in virtual
and augmented reality devices is a topic of current research, all other
previously mentioned devices can already be used by the visually impaired
(Zhao et al., 2019). To understand how this is possible, we will briefly
consider the interaction framework by Abowd and Beale (Dix et al., 2003).

2.2.1 The Interaction Framework

The interaction framework breaks down an interactive system into system,
user, input, and output. The user has a goal and forms a task to achieve that
goal. This task is articulated to the input and then translated for the system.
The system transforms itself as a response and presents the results via the
output. Finally, the user observes the result from the output. Through this
observation, the user can adjust the task at hand or form a new task. This
will lead to another round of the interactive cycle. A visual representation
of this cycle can be seen in Figure 2.4.

2.2.2 Vision Accessibility of the Interaction Framework

The combination of input and output in the interaction framework is called
the interface. For most modern computing devices, the interface is a GUI. The

10

2 Background and Related Work

Output

System User

Input

presentation observation

performance articulation

Interface

Figure 2.4: The interaction framework with transition between the components. Based on a
drawing by Dix et al. (2003).

input for a GUI is most of the time articulated via a mouse, keyboard, or a
touch screen, and the output is observed via a display. This interface will not
work for most visually impaired persons without adjustments. Depending
on the degree of visual impairment, the user will not be able to observe
the output. This break in the interaction cycle does not only influence the
observation of the output, but also the articulation of the task from the user
to the input. How should a user articulate the task, if they cannot even
know basic things like which elements are on the screen or where the mouse
pointer is currently positioned? This question leaves us with three options

11

2 Background and Related Work

to make a computing device accessible to a visually impaired user:

I Adjust or Extend the output of the GUI
II Add an additional layer between interface and the user

III Use an alternate interface

The following subsections will explore different available technologies that
fall in either one of these categories.

(I) Adjust or Extend the Output of the GUI

Depending on the form of visual impairment, simple system settings can be
enough to make the output perceivable to a visually impaired user. There are
impairments for example which only affect the perception of contrast and
not the visual acuity (Hyvärinen, Laurinen, and Romvmo, 1983). Modern
operating systems like Windows or macOS have options to increase the
contrast of text and icons or even allow changing the theme of the operating
system to something legible to the visually impaired user. Other options let
the user invert colors, adjust the mouse cursor size, text size, text weight, or
reduce transparency. Figure 2.5 shows different display accessibility options
that are available in macOS Big Sur.

The issue with having to rely on these system settings alone is that not
all applications will either not support them at all or will not support
them consistently with the rest of the system. Especially on desktops, many
applications are built with non-native technologies like Java or Electron that
either adjust differently or do not adjust at all to these settings. So people
need other tools to make the GUI accessible.

Refreshable Braille Displays One such tool is a refreshable braille display.
Braille is a tactile writing system invented in 1825 by Louis Braille (Oliveira
et al., 2011). It uses a 3x2 matrix of dots to represent different letters,
numbers, and punctuation characters. This system has been brought to
computing devices via the refreshable braille displays (Schmidt et al., 2002).
A refreshable braille display consists of multiple matrices of braille dots
that can be extended and retracted to represent a text that would usually

12

2 Background and Related Work

Figure 2.5: Display accessibility settings in macOS Big Sur

be shown on a screen. Therefore, it’s an alternate output to the traditional
screen that allows visually impaired users to get a text translated in a
perceptible form. Some braille displays can even function as alternate input
by including extra buttons that enable system navigation (HumanWare,
2019). One example of such a display can be seen in Figure 2.6.

Zoom/Magnifier A more trivial but highly effective approach of making
the output legible to people with a mild form of a visual impairment is a
virtual magnifier or a zoom option. These tools have the huge advantage
that they work with every application across the whole operating system
(Irvine et al., 2014). How such a tool looks like in use is shown in Figure
2.7. Besides only working for people with mild visual impairment, the
big downside of such a system is that the user has to drag around the

13

2 Background and Related Work

Figure 2.6: Stock image of the Brailliant BI 14 refreshable braille display by HumanWare
(2019)

magnifier or zoom in and out all the time. This can make interacting with
the computing device very tedious.

Speech Synthesizers Speech synthesizers are yet another technology that
can be found in many modern operating systems. These systems take a
written text as an input and create artificially spoken text from it (Taylor,
2009). This enables a visually impaired person to mark certain portions
of the screen and let it read out loud to them, effectively replacing the
visual output with a vocal one. This can be particularly useful when com-
bined with Optical Character Recognition (OCR). OCR tools can convert
an image of text back to text Dix et al. (2003). In the context of interacting
with computing devices, one can mark any section of a screen with tools
like EasyScreenOCR2, get a textual representation, and then use a speech
synthesizer to convert this text to spoken word.

2https://easyscreenocr.com

14

https://easyscreenocr.com

2 Background and Related Work

Figure 2.7: Zoom accessibility settings on an iPad Pro under iOS 12.3

Additional Layer between Interface and the User (II)

The aforementioned tools can work for people with some kind of mild to
mediate blindness. A fully blind person is not able to see anything on the
screen and therefore, cannot make use of settings or magnifiers. They also
cannot select any text which could then be represented via a braille display
or spoken out with a speech synthesizer; at least not without an additional
layer between the interface and the blind user. This layer comes in the form
of a screen reader.

Screen Reader The first screen readers already existed before the GUI
became popular, like the IBM Screen Reader for DOS (Thatcher, 1994).
The capabilities of these systems evolved, but the basic idea stayed the
same. A screen reader is an additional interface, and thus, an additional input
and additional output, that sits between the user and the GUI. A visual
representation can be seen in Figure 2.8. The screen reader helps the user
with the articulation of a task to the input and makes the presentation of
the output perceptible. This is done by fetching all interface elements on

15

2 Background and Related Work

the screen and representing them in a serial manner (Borodin et al., 2010).
The visually impaired user can then step through elements one by one, go
in and out of groups of elements, or activate each element with keyboard
shortcuts or swipe gestures (i.e. articulation to the sdditional input). To
know which element is currently highlighted and what can be done with
it, a screen reader uses the aforementioned speech synthesizer or braille
display to convey this information (i.e. translation to the additional output).
To make this concept clearer, Figure Figure 2.9 shows how a user interface
is serialized by the VoiceOver3 screen reader under iOS.

Every major operating system now includes a screen reader, like the Narra-
tor4 on Windows, VoiceOver on macOS and iOS and TalkBack5 on Android.

Output

System User

Input

presentation

performance

Interface

Additional
Output

Additional
Input

Additional
Interface

translation

translation

articulation

observation

Figure 2.8: The interaction framework with transition between the components, extended
with the additional interface layer, the scree reader. Based on a drawing by Dix
et al. (2003).

3https://www.apple.com/accessibility/iphone/vision/
4https://support.microsoft.com/en-us/help/22798/windows-10-complete-guide-to-

narrator
5https://support.google.com/accessibility/android/answer/6283677?hl=en

16

https://www.apple.com/accessibility/iphone/vision/
https://support.microsoft.com/en-us/help/22798/windows-10-complete-guide-to-narrator
https://support.microsoft.com/en-us/help/22798/windows-10-complete-guide-to-narrator
https://support.google.com/accessibility/android/answer/6283677?hl=en

2 Background and Related Work

All iCloud
-

Back button
-

Note Actions
-

Button
"Double tap to show the note actions

and sharing menu"

29. October 2020 at 09:33
-
-

"Double tap to show creation date"

Note
"Hello"

Text Field
"Double tap to edit. Actions available"

Right Swipe Left Swipe

Right Swipe
Left Swipe

Left Swipe

Left Swipe

Right Swipe

Checklist
-

Button
"Double tap to add a checklist to the

current note"

Camera
-

Button
"Double tap to add a photo or scan a

document into the current note"

Show Handwriting Tools
-

Button
"Double tap to show handwriting tools"

New Note
-

Button
"Double tap to compose a new note"

Right Swipe

Right Swipe

Right Swipe

Right Swipe

Left Swipe

Left Swipe

Left Swipe

Label
Value
Trait

"Hint"

Structure

Figure 2.9: Example of user interface serilization in VoiceOver under iOS 14.0.1

17

2 Background and Related Work

There are also third-party alternatives for specific systems like NVDA6

or JAWS7 (Vtyurina et al., 2019). While screen readers are a tremendous
achievement for vision accessibility, all of them face a similar problem to the
one discussed in 2.2.2. Depending on how the application is built, a screen
reader might not be able to find all interactive elements of this application
(Borodin et al., 2010). We will encounter this specific problem again when
discussing the accessibility of video games.

Use an Alternate Interface (III)

The most prominent alternate interface comes in the form of Intelligent
Personal Assistants (IPAs). An IPA is ”an application that uses input such as
the user’s voice, vision (images), and contextual information to provide assistance
by answering questions in natural language, making recommendations” (Baber,
1993). These applications are not only available on modern Smartphone
operating systems like Siri8 on iOS or Google Assistant9 on Android, but
also in homes within standalone devices like the Amazon Echo Dot10 or
the Nest Audio from Google11 (Cowan et al., 2017). IPAs are often used in
order to save time or when the users’ hands are occupied (Luger and Sellen,
2016). Common tasks are responding to messages, creating reminders, or
starting a navigation.

Many of the standalone IPA devices do not feature a screen and therefore
lack any kind of GUI. In fact, studies suggest that it is perceived negatively
by the users if a GUI is available and the IPA shows a graphical element that
is not reflected in spoken text (Cowan et al., 2017). Not having a mandatory
graphical representation makes these devices accessible to visually impaired
users out of the box and thus, are perfectly suited as an alternate interface
(Pradhan, Mehta, and Findlater, 2018). To see how well suited this interface
is for people with visual impairments, Abdolrahmani, Kuber, and Branham

6https://www.nvaccess.org
7https://www.freedomscientific.com/products/software/jaws/
8https://www.apple.com/siri/
9https://assistant.google.com

10https://www.amazon.com/Echo-Dot/dp/B07FZ8S74R
11https://store.google.com/product/nest audio

18

https://www.nvaccess.org
https://www.freedomscientific.com/products/software/jaws/
https://www.apple.com/siri/
https://assistant.google.com
https://www.amazon.com/Echo-Dot/dp/B07FZ8S74R
https://store.google.com/product/nest_audio

2 Background and Related Work

(2018) interviewed fourteen legally blind people about their usage of IPAs.
The study shows that time-saving and hands-free interactions are again
important factors. IPAs can for example ease or enable multitasking and
interaction with smart home devices. But the participants also expressed
frustrations over being misinterpreted by IPAs and having to adjust how a
question is formulated for it to be understood. The study also pointed out
that some standalone devices still use visual cues for indicating things like
a mutated microphone or a notification that have no audio representation.
Even though these issues exist, the ”Accessibility by Accident” study shows
that the adaption of IPAs visually impaired users is already high and will
potentially grow as these interfaces become richer (Pradhan, Mehta, and
Findlater, 2018).

2.2.3 Practical Usage of the Accessibility Technologies

What should be clear from the descriptions of all the technologies is that
there is no single solution to solve interaction with computing devices
for visually impaired people. All the different technologies solve different
problems. IPAs are great for small, quick tasks like starting to play music
or turning on the lights, but they often fail to work for more complex
tasks (Abdolrahmani, Kuber, and Branham, 2018). Magnifiers or speech
synthesizers with OCR technology can make any screen element more
accessible, but they make interacting with the device tedious and will not
work for every kind of visual impairment. And a screen reader can help
with navigation in an application, but it might fail to find all interactive
elements, depending on how the application is built (Borodin et al., 2010).

So the real power of all these technologies is their combined usage and
shared availability and support on a system. Having access to as many
technologies as possible can make it possible to interact with many complex
applications. One important group of highly complex applications are video
games. So the question is - can these discussed technologies be used to
interact with video games?

19

2 Background and Related Work

2.3 Gaming with Vision Impairment

The assistive technologies we’ve discussed in the last part can help a visu-
ally impaired user to navigate and interact with a computing device. To
determine if the same is true when it comes to video gaming, we need to
look at something we call the Gaming Workflow.

2.3.1 The Gaming Workflow

We define the Gaming Workflow as a set of steps a user must take to play
any new game. Figure 2.10 gives a visual representation of these steps and
the actions needed to move between them. We can separate the steps into
two phases, Pre-Game and In-Game. Pre-Game includes the process from
wanting to play a new game to having everything set up to actually start the
game. For a single platform, the Pre-Game experience is mostly identical
for every game because the experience lies in the hands of the platform
maker or the creator of a software distributing platform. For the In-Game
experience, which is everything that happens within one single game, the
experience can differ tremendously between games. The In-Game phase is
mostly determined by the game developer.

While the Gameplay step is definitely the most interesting part of this
workflow when discussing how people play games, we will need to take a
quick look at everything else first. The Gameplay will be further discussed
in Section 2.3.4.

2.3.2 Vision Accessibility of the Pre-Game Phase

Video games are enjoyed on different platforms. The most common devices
used to play games are according to the ”2020 Essential Facts About the Video
Game Industry” report mobile devices (smartphones), game consoles, and
personal computers (Entertainment Software Association, 2020). We will
take a look at the Pre-Game experience for each of them.

20

2 Background and Related Work

No Game

Game Owned
(Unplayable)

I: Acquire

Game Installed
(Playable)

II: Install

In Menu

III: Launch

Gameplay

IV: Navigate Menu

V: Interact

IV: Navigate Menu

A:
Pre-Game

B:
In-Game

Figure 2.10: The Gaming Workflow: A visualisation of the steps a user has to go through
when wanting to play any new game.

21

2 Background and Related Work

Mobile devices We have previously mentioned in Section 2.2.2 that the two
common operating systems, Android and iOS, come with built-in screen
readers. Those screen readers make the operating system accessible to
visually impaired users, including everything from interacting with built-in
applications to launching installed apps (Apple Inc., 2020c). Because games
and applications can both be installed and downloaded through built-in
applications, via the App Store12 on iOS and the Google Play Store13 on
Android, having these powerful screen readers already makes the whole
Pre-Game part of the Gaming Workflow accessible to visually impaired
users. To make discovery even easier, the iOS App Store features a specific
article about accessible apps and games, as can be seen in Figure 2.11.

Game Consoles The accessibility of acquiring, installing, and launching
games on consoles varies between platforms. As of April 2021, the most
recent consoles of the three major console vendors, Sony, Nintendo, and
Microsoft, are the Playstation 5 (PS5), the Nintendo Switch (Switch), and
Xbox Series S/X (Xbox Series). Games on these systems are bought either
on physical mediums or, with growing popularity, digitally through built-in
digital stores (Dring, 2019).

For the PS5 and the Xbox Series, these stores and the rest of the system can
be adjusted to be more visually accessible. This includes a high contrast
mode and a magnifier on the Xbox Series14, bolder and larger text on the
PS5

15. Both also feature a screen reader, a feature that the Switch is lacking.
As of this writing, the only vision accessibility feature provided by the
Switch is a Magnifier16, making it the least visually accessible console of the
three.

12https://www.apple.com/app-store/
13https://play.google.com/store
14https://support.xbox.com/en-US/help/account-profile/accessibility/ease-of-

access-settings
15https://www.playstation.com/en-us/support/hardware/ps5-accessibility-settings/
16https://en-americas-support.nintendo.com/app/answers/detail/a id/44641/ /how-

to-use-zoom

22

https://www.apple.com/app-store/
https://play.google.com/store
https://support.xbox.com/en-US/help/account-profile/accessibility/ease-of-access-settings
https://support.xbox.com/en-US/help/account-profile/accessibility/ease-of-access-settings
https://www.playstation.com/en-us/support/hardware/ps5-accessibility-settings/
https://en-americas-support.nintendo.com/app/answers/detail/a_id/44641/~/how-to-use-zoom
https://en-americas-support.nintendo.com/app/answers/detail/a_id/44641/~/how-to-use-zoom

2 Background and Related Work

Figure 2.11: List of selected accessibility apps in the App Store (Apple Inc., 2020d)

Personal Computers The openness of the computer platform makes it pos-
sible to download games from multiple different sources, so the accessibility
of the Pre-Game phase highly depends on where the game is available.
Looking at all different ways would go beyond the scope of this work. So
for this analysis, we’ve chosen the leading digital distributor, Steam17, and
one of its competitors, the Epic Games Launcher and Store18.

Steam and the Epic Game Launcher roughly work in the same way. Both

17https://store.steampowered.com
18https://www.epicgames.com/store/en-US/

23

https://store.steampowered.com
https://www.epicgames.com/store/en-US/

2 Background and Related Work

have desktop applications that are used to acquire games through a built-in
store, install games from the user’s library, or launch them, also through
the library. Sadly, both desktop applications are not accessible through a
screen reader (Andrade et al., 2019; IllegallySighted, 2017). Therefore, low
vision users have to rely on other tools like magnifiers to interact with
those applications. Fully blind users are not able to download or launch any
games through the clients without external help or through the laborious
process of using a speech synthesizer with an OCR tool to learn the layout
of the client.

2.3.3 Vision Accessibility of the In-Menu Step

When the actual game is launched, the next hurdle is game menu navigation
(Game Accessibility Guidelines, 2019a). No matter if desktop, mobile, or
console game, modern games for all platforms are often built with cross-
platform game engines like Unity19 or the Unreal Engine20. Most of these
engines render the user interface in a way that its elements are not exposed
to a screen reader. Thus, menu navigation is not possible with a screen reader
in these games (Hamilton, 2013; Andrade et al., 2019). The aforementioned
system wide zooming options and OCR tools, if available on the respective
platform, can help people with mild visual impairment to overcome this
hurdle. Some games still found a way of making the menu accessible
by imitating screen reader like behavior. Here, every menu element is
communicated to the user through spoken word (RARECSM, 2019). These
settings are not always turned on by default though, so if they aren’t,
visually impaired users need to find a way of enabling them.

One such way could be a written menu guide (Stevens, 2018). A written
menu guide is a text representation of all menus and settings in a game
with a description of how to reach each of them. Guides like these are
mostly done by the community, but Electronic Arts (EA) for example has
created official ones for games like UFC 3, as can be seen in Figure 2.12

(Electronic Arts Inc., 2019). For these guides to work, the game menu has to
be deterministic (Stevens, 2018). While a user with perfect vision can see

19https://unity.com
20https://www.unrealengine.com/

24

https://unity.com
https://www.unrealengine.com/

2 Background and Related Work

changes in the menu layout immediately, a visually impaired user can get
lost if the menu guide suddenly does not correlate with the current layout
anymore. It is also very helpful to get audio cues for moving the focus in
the menu, for selecting something and when the menu wraps, so the user
knows if an input changed something on the screen (Stevens, 2018).

Figure 2.12: An excerpt from the official menu guide for UFC 3 (Electronic Arts Inc., 2019)

If no screen reader support, no screen reader imitation and no guide exist
for a certain game, visually impaired, and especially blind gamers, have to
rely on their sighted friends to assist them with the navigation (Icel, 2017).

2.3.4 Vision Accessibility of the Gameplay Step

We have now established a knowledge of how a visually impaired user can
go from wanting to play a game to the actual point of playing the game.
While researching games that can be played by visually impaired gamers,
we found four different categories of games:

25

2 Background and Related Work

I Games that are not accessible at all
II Games that were not intended to be accessible, but the visually im-

paired community found ways to play them nonetheless. Thus, these
games can be called Unintentionally Accessible Experiences.

III Games that communicate the content first and foremost via audio
instead of visuals. These games are called Audio Games

IV Games that heavily rely on visuals, but have either special accessibility
settings or support tools like screen readers to make them accessible
to visually impaired players. We call them Intentionally Accessible
Mainstream Experiences

Besides those categories, there are also games that have been specifically
built for scientific studies but were never made available outside the studies.
Examples are Blind Hero (Yuan and, 2008) and Rock Vibe (Allman et al.,
2009), imitations of popular music games Guitar Hero (Harmonix, 2007a)
and Rock Band (Harmonix, 2007b), which require special hardware that
was only built for the study. It is definitely valuable to think about the
usage of special hardware to make games more accessible, but this lies
beyond the scope of this thesis. We want to understand how people with
visual impairments play games that are already available to them. So to get
this understanding, we will now look into such video games based on our
categorization.

II: Unintentionally Accessible Experiences

The category of unintentionally accessible experiences includes all games
where the creators didn’t intentionally offer or support any tools to make
them accessible for people with visual impairments, but the community has
still found ways to play them. Most of the time, this is possible because the
game had already a realistic or carefully crafted sound design, something
like an assist mode for less skilled players, or have a limited control scheme
(Stevens, 2018). A prime example of games with a realistic sound design are
sports games, like Madden NFL (EA Tiburon, 2020).

26

2 Background and Related Work

Madden NFL Madden NFL is an American football video game series
(EA Tiburon, 2020). Like many other sports video games, the developers
decided to include a sports commentary to make the experience feel like an
interactive sports broadcast. The commentary includes all kinds of useful
information, from things like the current score or yard line to detailed
information about the whereabouts of the players team members and the
members of the opponent team. This fact alone can give visually impaired
users all the information they need to interact with the game. In addition,
the goal of the game in its default settings is basically to move upwards
(Stevens, 2018). This movement is simplified once more through an artificial
intelligence that automatically steers the player until they take action them-
selves. Therefore, the amount of input a user has to make to be successful is
limited.

Mortal Kombat Similar to Madden NFL, the fighting game series Mortal
Kombat also features a limited directional movement (NetherRealm Studios,
2019). But this fact alone doesn’t make it accessible. It is a highly detailed
sound design that makes this game, along with many other fighting games,
accessible to visually impaired players (Andrade et al., 2019). How this is
possible is demonstrated in the HBO documentary ”This Is How To Play
Video Games If You’re Totally Blind” (Vice News, 2019). This documentary also
shows that blind players often need assistance when playing fighting games
for the first time. The game features a vast variety of different moves, so
when training modes lack a voice over, the visually impaired player cannot
correlate the auditory feedback with the impact in the game when initially
playing it.

Mario Kart 8 In contrast to fighting games, racing games like Mario
Kart 8 Deluxe feature a smaller amount of possible inputs and auditory
feedback and are therefore easier to learn without assistance (Nintendo,
2017). Information like the motor becoming louder when the vehicle speed
increases or tires squealing when the vehicle takes a turn can be used to
paint a mental picture of the racing course by following and listening to
AI players (Stevens, 2018). This approach works for every racing game
with a detailed sound design and AI players. We’ve chosen Mario Kart 8

27

2 Background and Related Work

Deluxe for this discussion because of its assist options, that can be seen in
Figure 2.13 (Game Accessibility Guidelines, 2019b). The Smart Steering and
Auto-Accelerations options can help a player to easier traverse the course
and learn its layout quicker. But having these options enabled also adds
a small disadvantage, disabling people to reach certain shortcuts or use a
special boost. Nevertheless, having a disadvantageous gaming experience is
still better than having no gaming experience at all (Stevens, 2018).

Figure 2.13: The assist options of Mario Kart 8 Deluxe (Nintendo, 2017)

All of those unintentionally accessible games are accessible because they
have good sound design besides their visuals. Good sound design is also
key to the next category of accessible games.

III: Audio Games

All information the user needs to play an audio game is provided via audio
(Preece, 2013). It is possible that these games feature some visuals, but ”it is
always the sounds that are central to the game” (Friberg and Gärdenfors, 2004).
Tutorials, story bits, and other texts are typically read by a voice actor or
are converted to audio via Text-To-Speech technology (Araújo et al., 2017).
Game elements are usually conveyed via two types of sounds: Auditory
icons and earcons (Andrade et al., 2019). Auditory icons are natural sounds

28

2 Background and Related Work

and are used if the game element has a natural equivalent (Gaver, 1986).
An example would be the sounds of someone walking on grass or dirt to
convey the current terrain the player is walking on. Earcons, on the other
hand, are artificial sounds (Blattner, Sumikawa, and Greenberg, 1989). The
player has to learn these sounds for every game separately because there is
no standard set of earcons (White, Fitzpatrick, and McAllister, 2008). The
Blindfold games by ObjectiveEd21 show how these earcons can effectively
be used to turn well-known games into audio games.

Blindfold The range of games turned into accessible audio games under the
Blindfold label reach from well-known video games like Bejeweled (PopCap
Games, 2001) to physical games like Sudoku or Pinball. All Blindfold games
that we’ve tested can roughly be grouped into two kinds: Games with
discrete and games with continuous changes. Blindfold Pinball is an example
for the latter category (Schultz, 2016). Here, the player releases a ball into
the playing field, which then moves continuously towards the bottom. While
the ball moves around the playing field, different obstacles can be hit to
get points. Upon hitting, each obstacle emits an earcon, so that the obstacle
can be located through stereo sound. The current location of that ball is
communicated by a sound that gets louder when the ball is getting closer
to the bottom. In addition to this, a countdown will start when the ball is
getting very close to the bottom. The player can then trigger the two flippers
at the bottom of the screen via tapping to prevent the ball from falling into
a hole. The game ends when the ball has fallen into this hole. So to actually
succeed in the game, the player has to constantly listen to the different
earcons and react timely to them.

This gameplay substantially differs from the games with discrete changes.
In games with discrete changes, the elements stay the same until the user
performs an action. After the action, the game updates and becomes static
again until the next action is performed. For example, in Blindfold Sudoku,
the user has to fill out numbers in a 9x9 playing field. The field only changes
when the user enters a new number into a cell and stays static otherwise
(Schultz, 2014). The user moves between those cells of this field via swiping.
Every time a highlighted element changes, its location and value are spoken

21https://blindfoldgames.org

29

https://blindfoldgames.org

2 Background and Related Work

Figure 2.14: Blindfold Pinball
(Schultz, 2016)

Figure 2.15: Blindfold Sudoku
(Schultz, 2014)

out, which is very reminiscent of screen reading technologies. With this
information, players can paint a mental picture of the scene in their heads
and react to it in their own time.

We could go through numerous other Blindfold games and explain how they
use earcons to turn different kinds of games into audio games. But since
they all follow roughly the same approach as the two games mentioned
above, we will shift our focus to a game that was built from the ground up
as an audio game.

A Blind Legend A Blind Legend is an action-adventure game by the French
developer DOWiNO released for multiple platforms (DOWINO, 2016). We
have used the iOS version22 for the following description. In the game, the

22https://itunes.apple.com/fr/app/a-blind-legend/id973483154

30

https://itunes.apple.com/fr/app/a-blind-legend/id973483154

2 Background and Related Work

player takes on the role of Edward, a blind swordsman on a quest to save
his wife. The experience is possible through auditory icons, earcons, and
audio recordings from voice actors, all of which are conveyed to the user via
binaural sound. Binaural recordings can be created with an artificial human
head and two high-fidelity microphones embedded into the dummy head’s
ears (Andrade et al., 2019). Using this method, the ”microphones record the
audio stream as it is heard and processed by the human” (Kovács et al., 2015). To
perceive this audio recording correctly in the game, the player has to wear
stereo headphones. Even a player with perfect sight cannot play the game
without stereo headphones, since there is also no visual representation of
the gameplay, as can be seen in Figure 2.16.

Figure 2.16: Screenshot of A Blind Legend, showing that the game doesn’t have any visual
representation of the gameplay (DOWINO, 2016)

The gameplay is split into two parts, namely movement and fighting. Move-
ment happens in a 3D environment with the help of the protagonist’s
daughter, Louise. Tapping the screen will make Louise speak up. Since her
voice is conveyed via binaural sound, the user can perceive her location
through audio and move towards her. To move, the user swipes the screen
to turn left, right forward, or backward. If the player has reached Louise,
she will go to the next point and the same procedure repeats until a final

31

2 Background and Related Work

location is reached. The second gameplay part consists of fighting against
various enemies. The position of the enemies is again conveyed through
binaural sound. Auditory icons are used to warn the player when the enemy
strikes. As soon as the icon is noticed, the player has to swipe in the direc-
tion of the sound to strike back. Attacks can also be blocked by pinching on
the screen, so the player can listen and get a feeling for the attack pattern of
the enemy. Edwards current health is represented by another auditory icon,
a heartbeat, that increases in speed when it is lowered.

The games we’ve just described can be experienced by all players indepen-
dent from how good their sight is. But there are indeed examples of audio
games that are not necessarily accessible (Araújo et al., 2017). Zombies, Run!
for example requires the player to physically run in the real world, which
not every gamer can do (Six to Start, 2012). But inaccessible audio games
are rare. The bigger problem with audio games is their acceptance in the
general gaming community. Audio games often have a lesser appeal to
sighted players than they do to visually impaired (Andrade et al., 2019).
This is made worse by the fact that audio games are often overly simplis-
tic, probably because developers underestimate the skills of their audience
(Andrade et al., 2019; Arielle M. Silverman and Van Boven, 2014). So play-
ers with full sight will rather play more complex and visually appealing
games; and visually impaired players would want to play the same games
as their sighted friends (Smith and Nayar, 2018). This shows that audio
games are not a solution to include visually impaired gamers in the general
gaming community. So it’s the task of all game developers to create visual
experiences that are accessible to all. This brings us to our next category of
games.

IV: Intentionally Accessible Mainstream Experiences

Intentionally accessible mainstream experiences are games that are high on
visuals but still built with vision accessibility in mind. Sadly, we could not
find many games during our research that fit this category. Most games
we’ve found are already very limited in interaction and scope, which enabled
the developers to make them playable through a screen reader. This include

32

2 Background and Related Work

virtual board games like Shredder Chess (Skizzix, 2009) and word games
like Subwords (Strasser, 2018).

The group of complex visually accessible games is very sparse. We think one
reason is that complex games often fail to translate highly complex visuals
into audio. Studies have shown that navigation in a virtual environment
through audio cues only is theoretically possible, but it is less accurate
than audio-visual navigation (Lokki and Grohn, 2005). This lack of accuracy
occurs because developers do not want to overwhelm the player with
too much audio signals (Yuan, Folmer, and Harris, 2011; Kruger and Zijl,
2014).

While we were already deep into the writing of this thesis, a new game
was released that is highly complex, has options to enhance visuals for low
vision users, and found a way around the problem of translating information
into an auditory form. This game is The Last of Us Part II (Naughty Dog,
2020).

The Last of Us Part II The Last of Us Part II by Naughty Dog has become
the proclaimed ”most accessible game ever” (Molloy and Carter, 2020). What
makes a game accessible to a certain person is highly subjective, so this
statement should be taken with a grain of salt, but The Last of Us Part II is
still a remarkable game in this category. It can be called a mainstream video
game, having sold more than 4 million copies within the first few days after
its release, and still has more accessibility options than any other game
we’ve found during our research (Sony Interactive Entertainment Europe,
2020; Sony Interactive Entertainment LLC, 2020).

In this 3D action-adventure game, the user controls a character through a
post-apocalyptical world. Throughout the game, the user has to traverse
a 3D environment, solve puzzles, and fight various enemies. All of these
interactions are highly complex and usually would be hardly playable for
users with visual impairments, if playable at all. But Naughty Dog has
included a vast range of tools and settings to improve vision accessibility.
One set of tools is about magnification and visual aids. Users can scale
up elements heads-up display (HUD), change its color and appearance.
There is even a special colorblind mode for the HUD. Besides that, a screen

33

2 Background and Related Work

magnifier can be used to scale up all the content of the game upon usage.
We’ve discussed similar tools in the context of computing devices in section
2.2.2. A more advanced tool is the High Contrast Display option of the game.
The setting mutes environment colors, highlights edges of the obstacles in
the game and tints interactive elements in distinguishable colors. Figure
2.17 shows the high contrast display option applied to the game.

Figure 2.17: The Last Of Us Part II with vision accessibility presets applied (Sony Interactive
Entertainment LLC, 2020; Naughty Dog, 2020)

These visual aids are helpful for low-vision users, but cannot assist blind
players to play the game. So for blind players, Naughty Dog included the
Enhanced Listen Mode and audio cues (Saylor, 2020). With the Enhanced
Listen Mode enabled, users can scan the world and get both visual feedback
and audio cues for different objects, like enemies or items. In the scientific
literature, features like this are often referred to as a Sonar, because of
its similarities to the underwater navigation technique of the same name
(White, Fitzpatrick, and McAllister, 2008). Users of The Last Of Us Part II
can use this sonar to either manually change between scanning and moving
around to find a certain location or use a second feature, called Navigation
Assistance, to automatically move towards the last scanned item. The game
also has options to skip parts that are not easily accessible, like difficult
jumps or puzzles. All of this makes the game fully experienceable for blind
players.

34

2 Background and Related Work

Figure 2.18: The Last Of Us Part II with enhanced listen mode feature applied (Sony
Interactive Entertainment LLC, 2020; Naughty Dog, 2020)

As we’ve already mentioned, building in accessibility features like the ones
just discussed is a highly complex task and requires many resources. The
Last Of Us II was the follow-up to a highly successful game and funded
by a multinational company, Sony, and thus, had access to those resources.
But what about other game developers? Do any of the standard tools they
use to build games include special options to make accessible games? And
what tools do they even use? This will be the topic of the next section.

2.4 Game Engines and Vision Accessibility

In the previous section, we’ve looked into how visually impaired people can
play some video games, but far from all games. To get a better understanding
of why many games do not work with tools like screen readers and if we
can improve this situation, we have to take a look at how most video games
are built nowadays: using game engines.

35

2 Background and Related Work

2.4.1 Definition of Game Engines

Gregory (2014) describes game engines as ”software that is extensible and can
be used as the foundation for many different games without major modification”.
Another definition is given by the creators of the Unity engine, who describe
a game engine as ”the software that provides game creators with the necessary set
of features to build games quickly and efficiently” (Unity Technologies, 2019b).

While the exact set of features differ between game engines, some com-
mon parts are a rendering engine, a physics system, an audio system, tools
to build a graphical user interface, and an artificial intelligence system
(Gregory, 2014; Unity Technologies, 2019b). Having all those tools in place
instead of building them from scratch for every game makes game de-
velopment drastically faster and more approachable (Christopoulou and
Xinogalos, 2017). Modern game engines even come with powerful graphical
editors that enable people with little to no coding skills to develop their
own games (Unity Technologies, 2019c).

As already mentioned, each game engine has a different set of features.
There are publications, like ”Overview and Comparative Analysis of Game
Engines for Desktop and Mobile Devices” by Christopoulou and Xinogalos
(2017), which compare those features across engines. But we could not find
any work that includes a comparison in terms of vision accessibility features.
So that’s what we are going to do in the following.

2.4.2 Vision Accessibility Features of Different Game
Engines

For our comparison, we will take a look at the vision accessibility features of
five different game engines: Unity23, Unreal Engine24, Godot25, SpriteKit26

and SceneKit27. We have selected the first two engines because of their

23https://unity.com
24https://www.unrealengine.com/
25https://godotengine.org/
26https://developer.apple.com/spritekit/
27https://developer.ape.com/scenekit/

36

https://unity.com
https://www.unrealengine.com/
 https://godotengine.org/
https://developer.apple.com/scenekit/
https://developer.apple.com/scenekit/

2 Background and Related Work

popularity, Godot because of its open-source nature and SpriteKit/SceneKit
because its developer, Apple, is known for their strong focus on accessibility.
We also left out game engines like eAdventure because they limit themselves
to building experiences for visually impaired players only (Torrente et al.,
2014).

Note that when we talk about vision accessibility features, we only talk
about the features and tools offered by the game engine to make games
suited for the visually impaired without having to add any additional
software or plugins. We also do not look into how accessible the tools for
building games are for people with vision impairments because this goes
beyond the scope of this thesis.

Unity

The Unity engine was first introduced in 2005 as a game engine for Mac
OS X (Higgins, 2010). Since then, it rose from a niche product Mac games
to one of the biggest game engines in the industry, supporting 18 different
platforms and powering countless games (Unity Technologies, 2020d). Unity
claims that more than 50% of games released in 2020 are powered by Unity
(PC/console/top mobile games combined) (Unity Technologies, 2019d).

This huge market share comes with a big problem for vision accessibility.
As of version 2021.2, Unity does not offer any advanced vision accessibility
features. The only feature available is a color-blind safe color palette gen-
erator, which generates a palette of colors that should be distinguishable
no matter if and what kind of color vision deficiency a user has (Unity
Technologies, 2019e). Many users in the official Unity forums requested
features like screen reader support for years, but these features did not
make it to the engine yet (Schaller, 2006). The only indication of a potential
change in the future is a forum post about ”Accessibility and inclusion” by the
Unity R&D UX Department (Unity R&D UX, 2019). So it looks like Unity
has acknowledged that there is a need for better vision accessibility support,
but the addition of features like a screen reader support might still be years
away.

37

2 Background and Related Work

Unreal Engine

The first version of the Unreal Engine was developed by Epic MegaGames,
Inc., known today as Epic Game, Inc., for their 1998 First-Person-Shooter
Unreal (Thomsen, 2012; Epic MegaGames, 1998). Since then, it has been the
foundation for countless popular games like Fornite (Epic Games, 2017) or
Minecraft: Dungeons (Mojang Studios, 2020).

When this thesis was already started, Epic has released version 4.23 of the
Unreal Engine. Prior to this version, the only vision accessibility feature
of the engine was a way to simulate the three most common color vision
deficiencies (Epic Games, Inc, 2020a). This can help developers to find out
if all elements are visible and easy to distinguish for people with a color
vision deficiency. But since 4.23, the Unreal Engine now allows developers
to expose the UI elements to a screen reader (Epic Games, Inc, 2020c). This
feature supports the previously mentioned screen readers VoiceOver on iOS
and JAWS, NVDA and others on Windows . But it is important to note that
this is only working with the Unreal Motion Graphics UI Designer (UMG).
Everything else that is rendered in the game is not accessible through a
screen reader. Furthermore, screen reader support is still an experimental
feature. Epic does not recommend shipping projects with this feature turned
on (Epic Games, Inc, 2020b).

Godot

With its first stable version being released in 2014, Godot is a fairly new game
engine (Linietsky, 2014). It is an open-source project, funded by donations
and free to use for everyone (Juan Linietsky, Ariel Manzur, 2019). Because of
Godot’s open-source nature, we can get a glimpse into current developments
surrounding the accessibility of the Godot engine. Sadly, in the current
version (3.2) there are no vision accessibility features implemented in Godot.
There has been a major discussion ongoing since 2017 to make both the
engine and the engine editor more accessible for visually impaired gamers
and developers, but nothing has been implemented yet (ghost, 2017). Other
than that, there is a proposal to make a color vision deficiency simulator
similar to the one the Unreal Engine has and another proposal to add an

38

2 Background and Related Work

accessibility description to UI elements (Two-Tone, 2018; Darilek, 2018). The
latter would be the first step towards screen reader support.

SpriteKit and SceneKit

SpriteKit and SceneKit are two engines developed by Apple for 2D (SpriteKit)
and 3D (SceneKit) game development (Apple Inc., 2019d; Apple Inc., 2019b).
Both engines are limited to Apple platforms iOS, macOS, watchOS, and
tvOS, which restricts its reach for both developers and users.

We’ve grouped the two engines for this discussion because of their similarity
when it comes to vision accessibility. Both are built atop of the same standard
UI frameworks of the Apple platforms, AppKit on macOS and UIKit on
iOS, watchOS, and tvOS. Developers can therefore leverage the accessibility
features of those UI frameworks within the games they built in SpriteKit or
SceneKit. This includes access to system settings like a high contrast mode
or larger font size, easy usage of the systems speech synthesizer, and most
importantly, being able to expose every game element to the VoiceOver
screen reader (Apple Inc., 2019a; Apple Inc., 2019c). Still, the engines lacks
more advanced features for vision accessibility in games, like a Sonar or
automatic navigation feature we’ve seen in The Last of Us II, section 2.3.4.

Direct Comparison

The result of our research in the visual accessibility of the different engines
can be seen in Table 2.1. It shows that SpriteKit and SceneKit are the
most advanced engines when it comes to vision accessibility features. But
SpriteKit and SceneKit might not be an option for a developer if they want
to reach gamers beyond the Apple Platforms. Unreal Engine seems to be
the next best choice, but its screen reader support is limited to UI elements
and is still an experimental feature. Besides that, none of the engines do
support a Sonar system or Auto Navigation.

39

2 Background and Related Work

Unity Unreal
Engine Godot

SpriteKit
SceneKit

Color Vision
Deficiency Tools

yes (Palette
Generator)

yes
(Simulation) no no

Screen Reader
Support

no Partially (UI
Only) no yes

Speech Synthe-
sizer Access

no no no yes

System Settings
Access

no no no yes

Sonar no no no no
Auto Navigation no no no no

Table 2.1: Comparison of the different engines based on their vision accessibility features

So these results leave developers who want to make a cross-platform game
vision accessible with two options: Build everything from scratch or search
if other developers have created plugins to extend the selected engine. So
in the next section, we will look into work that has been done by other
developers to extend the functionality of the Unity engine in terms of
vision accessibility. We’ve selected Unity because of its popularity and its
lack of any substantial vision accessibility features, as we’ve shown in this
section.

2.5 Vision Accessibility Extensions for Unity

The most common way to extend the functionality to a Unity project is
through asset packages (Unity Technologies, 2019a). Asset packages are a
bundle of files like scripts or materials that can be reused in other projects.
Developers can then distribute those Asset packages themselves or sell them
to other developers through the Unity Asset Store28.

28https://assetstore.unity.com

40

https://assetstore.unity.com

2 Background and Related Work

2.5.1 Asset Packages for Vision Accessibility

In the following, we will take a brief look at several such asset packages
that concern themselves with vision accessibility.

Colorblind Effect

The Colorblind Effect29 asset package is a free addition to Unity that adds
a new camera effect to Unity to simulate Protanopia, Deuteranopia, or
Tritanopia. It enables a developer to test out if all elements in the game are
distinguishable for a person with one of these color deficiencies. This func-
tionality is similar to the previously discussed color deficiency simulation
built into the Unreal Engine (Epic Games, Inc, 2020a).

UI Accessibility Plugin

The goal of the UI Accessibility Plugin30 (UAP) is to make UI and UI-heavy
games accessible by providing a screen reader. The way it works is that the
developer has to add a specific accessibility component to every object that
should be exposed to the screen reader. The screen reader then searches for
all objects with this accessibility component and lets a user step through
them sequentially and interact with them via the keyboard or touch gestures.
This interaction is only working with the UAP screen reader and does not
work with any system wide screen readers like VoiceOver or Narrator.

The UAP is available through the Unity Asset Store as a paid extension.

29https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-
effects/colorblind-effect-76360

30https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935

41

https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/colorblind-effect-76360
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/colorblind-effect-76360
https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935

2 Background and Related Work

Responsive Spatial Audio for Immersive Gaming

The Responsive Spatial Audio for Immersive Gaming31 asset package is a
project by Microsoft which can be downloaded for free in the Unity Asset
Store. The package adds tools to help with unconstrained navigation and
observation in a Unity game using audio. Developers can tag objects with a
description and make that description accessible to a player by letting them
scan the scene and getting feedback through earcons and text-to-speech.
This is similar to Enhanced Listen Mode of The Last Of Us II. But the
package goes a step further with a tool called Accessible Navigation. This
tool guides a user to a selected object by using an agent that moves around
obstacles and emits spatial earcons (Huston, 2019). Thus, the tool allows to
fully navigate a 3D-environment without the possibility of getting stuck.

Accessibility Features for Game Creator

Game Creator32 is a set of tools that makes game development in Unity
even easier. It includes tools like a visual scripting language, a save/load
system, and a module manager to extend its functionality further. One of
these modules, Accessibility Features for Game Creator33, concerns itself
with visual, auditory, motoric, and cognitive accessibility . For the visual
accessibility part, the package allows to dynamically increase the text size
and apply an adjustment or replacement of all colors within a scene (Pivec
Labs, 2020). It also includes a shader to show the outlines of all objects,
allowing for an effect similar to the High Contrast Display in The Last Of
Us II, which we’ve discussed in section 2.3.4.

The Accessibility Features for Game Creator is available in the Unity Asset
Store. It is a paid product and only works in combination with Game
Creator.

31https://assetstore.unity.com/packages/tools/game-toolkits/responsive-spatial-
audio-for-immersive-gaming-a-microsoft-garage-144702

32https://assetstore.unity.com/packages/tools/game-toolkits/game-creator-89443

33https://assetstore.unity.com/packages/tools/utilities/accessibility-features-for-
game-creator-149171

42

https://assetstore.unity.com/packages/tools/game-toolkits/responsive-spatial-audio-for-immersive-gaming-a-microsoft-garage-144702
https://assetstore.unity.com/packages/tools/game-toolkits/responsive-spatial-audio-for-immersive-gaming-a-microsoft-garage-144702
https://assetstore.unity.com/packages/tools/game-toolkits/game-creator-89443
https://assetstore.unity.com/packages/tools/utilities/accessibility-features-for-game-creator-149171
https://assetstore.unity.com/packages/tools/utilities/accessibility-features-for-game-creator-149171

2 Background and Related Work

2.5.2 Areas of Improvement

We have now reached a point where we’ve seen how people with vision
disabilities interact with computing devices and with games. We’ve also
discussed the tools and extensions to Unity that allow building vision
accessible games. Based on all this knowledge, we’ve created Figure 2.19,
2.20 and 2.21 to point out different areas where vision accessibility can
be enhanced for games created in Unity. The measurements are split into
enhancements for individuals with a color vision deficiency, people with
low vision, and enhancements for any form of vision impairment. We also
gave suggestions to make enhancements in all of these areas. Note that not
all suggestions in the Figures can be created as an extension for Unity. Some
of them are deeply interconnected with every game and thus, have to be
created specifically for each one of them. An example would be the addition
of a realistic sound design. Areas where a plugin could not help to create
an accessibility feature are dashed in the Figures.

Color Vision Deficiency
(In-Menu and In-Game)

Ensure all elements are
visible with any form of color
blindness

Create color vision
deficiency simulator

Allow players to pick colors
for important information

Create a color picker UI
element

Provide a predefined color
palette suitable for different
forms of color vision
deficiency

Don’t use color alone to
convey information

Provide a standardized set
of icons that can be used for
different colored objects

Figure 2.19: Areas of improvement for individuals with a color vision deficiency

43

2 Background and Related Work

Low Vision

In-Menu

Contrast

Ensure that there is always
a high contrast between
background and menu
elements

Create a Unity Plugin to
calculate a color with high
contrast for a given color

Automatically adjust
contrast to the settings of
the platform

Expose platform settings to
Unity

Implement a Dark Mode

Allow to remove stylized
backgrounds

Legibility
Allow the user to change
the font of UI elements Provide a set of legible fonts

Increase Size

Allow to increase size of
menu elements

Create a scalable UI system

Implement dynamic font
size system for Unity UI

Automatically adjust sizing
to the settings of the
platform

Expose platform settings to
Unity

In-Game

Contrast

Offer an outline shader

Allow to adjust color of
subtitles

Create a color picker UI
element

Create an accessible
subtitling system

Allow to add a background
to subtitles

Create an accessible
subtitling system

Automatically adjust
contrast to the settings of
the platform

Expose platform settings to
Unity

Increase Size

Allow to increase size of
HUD elements Create a scalable UI system

Allow to increase size of
subtitles and other texts in
the game

Implement dynamic font
size system for Unity UI

Automatically adjust sizing
to the settings of the
platform

Expose platform settings to
Unity

Allow zooming the camera
freely

Legibility

Allow the user to change
the font of subtitles and
other texts Provide a set of legible fonts

Figure 2.20: Areas of improvement for individuals with low vision

44

2 Background and Related Work

Any Form of Vision
Impairment

Pre-Game

Buying

Website

Create a template for a
screen reader accessible
website

Create a tool to generate a
website that highlights
accessibility features

Offer a screen reader
accessible way to buy the
game

Installation

Offer a screen reader
accessible way to install
the game

Launching

Offer a screen reader
accessible way to launch
the game

In-Menu

Offer screen reader
support

Voiced menu items

Offer Text to Speech
support

Create audio recordings
for all menu items

Make sure the menu is
deterministic

In-Game

Cut Scenes Offer a audio description

Menu Navigation

Implement a system that
can automatically create
an audio description of an
Unity scene

Create a separate audio
description track

Gameplay

Navigation

Discrete Navigation

Offer screen reader
support

Imitate screen reader
behavior

Continuous Navigation

Implement a navigation
agent that can guide the
player to a given target
point via audio

Implement an Auto
Navigation system

Observation

Implement a Sonar system

Implement a system that
can automatically create
an audio description of an
Unity scene

Add a system to pause the
game and let the player
observe all elements that
are currently visible

Offer screen reader
support

Imitate screen reader
behavior

Implement a voiced
location system that can
tell the player what’s in
front of them while moving

Add realistic audio design

Figure 2.21: Areas of improvement for individuals with any form of vision impairment

45

2 Background and Related Work

2.6 Summary

This chapter gave a broad overview of how visually impaired people can
experience the digital world, how they can play video games, and what
developers can do to enable this community to enjoy more games.

We’ve started with some terminology and pointed out the difference between
disability and impairment and how to use them. We then listed different
types of visual impairments, how the WHO classifies them in terms of
visual acuity, and what the term low vision means. Color vision deficiency
was also briefly discussed.

The second section listed different software and hardware solutions that
enable visually impaired people to interact with the highly visual computing
devices of today. This included, among others, settings to enlarge screen
content, refreshable braille displays, and screen readers. Intelligent Personal
Assistants (IPAs) were also mentioned, which can speed up access to a wide
range of simple tasks through a voice interface.

We continued with vision accessible video gaming in the third section. The
Gaming Workflow was defined as the steps a user needs to go through
from wanting to play a game to actually playing it. We then talked about
how visually accessible the Pre-Game part of the Gaming Workflow is on
different platforms and about problems in the In-Menu phase. After that,
we continued with Audio Games, which are audio-only experiences often
designed specifically for visually impaired gamers. Next, we’ve discussed
games that were not designed for people with vision impairments, but are
playable because of their realistic audio design. And finally, we’ve looked at
games that were intentionally made visually accessible by the developers,
like The Last of Us II (Naughty Dog, 2020).

Such games are rare and we wanted to find out why this is by looking
at how video games are built. So the fourth section concerned itself with
video game engines. We defined game engines as a set of tools to ease
the development of video games. After that, we compared some engines
in terms of vision accessibility features and found that the only engines
that have extensive vision accessibility support are limited to the Apple

46

2 Background and Related Work

platforms. The far more popular, cross-platform engine Unity is very limited
in terms of built-in vision accessibility features.

But there are ways to extend the Unity engine and we’ve looked at some of
those extensions in the fifth section of the chapter. Most of these extensions
are paid, limited, or not frequently maintained, which limits their potential.
Based on what plugins we’ve seen and all the knowledge from the previous
chapters, we’ve created Figure 2.19, 2.20 and 2.21 to highlight different areas
of how Unity could be extended to build vision accessible games.

All of this shows that there is still an urgent need for further work in the
area of vision accessible gaming. So we have decided to create our own
Asset Package for Unity to ease development for the visually impaired
gaming community. The next chapter will concern itself with our idea, the
design, and the implementation of this package.

47

3 The Unity Accessibility Toolkit:
Design and Implementation

In the last chapter, we have discussed the different ways of how visually
impaired players can interact with their computing devices and play video
games. We’ve seen the tools that are used to create video games and showed
that the popular Unity game engine has a significant lack of features to
create games for the visually impaired. This is why we started our work on
the Unity Accessibility Toolkit, an asset package to help make Unity games
more visually accessible. In this chapter, we want to present the design and
implementation of this package.

Before starting with any specifics, we want to briefly discuss our intentions
behind this project. Our goal is to provide a toolkit that can be integrated
into as many games as possible. This makes our target group all Unity
developers, though more specifically, developers that have an interest in
making games accessible, but lack the resources to build something like a
screen reader themselves. Therefore, our main requirements for the toolkit
are:

• Ease of Usage: The tools should be easy to integrate into a game. This
should minimize the work overhead to make a game accessible and
thus, increase adaption.

• Base on existing technologies: Use existing and familiar technologies
wherever possible. This should ease adaption by the developer and
acceptance by the gamer.

• Extensibility: The toolkit should lay a foundation that can be reused
for other accessibility technologies included in future versions of the
toolkit.

48

3 The Unity Accessibility Toolkit: Design and Implementation

• Open-Source: The toolkit should be available to everyone free of charge
as an open-source project.

With these requirements in mind, we turn back to Figure 2.21. In this Figure,
we showed that there are tons of possible areas of improvement for vision
accessibility. Implementing all of them would go beyond the scope of the
thesis, so we’ve focused on those we consider most important. This lead to
selection of the following four areas:

• Menu Navigation: Help navigation through the menu of a game to start
the actual gameplay or to adjust settings

• Environment Observation: Pausing the game and letting the user observe
all the elements that are currently visible

• Discrete Navigation: Navigating elements or a character on a fixed grid
• Continuous Navigation: Freely moving a character around an environ-

ment

Menu navigation, discrete navigation and environment observation have a
single thing in common: They can all be realised by creating a screen reader.
So the first part of our package will concern itself with providing such a
screen reader. For the continuous navigation, we’ve decided to implement a
navigation agent. The design of both technologies will be discussed in the
next section of this chapter.

3.1 Design

As a basis for all our accessibility tools, we needed an auditory signifier
that a developer can attach to any game object. Norman (2002) refers to
signifiers as ”any mark or sound, any perceivable indicator that communicates
appropriate behavior to a person”. Our accessibility signifier does have a dual
purpose. Firstly, it is used to store details about a game object and possible
interactions with it. Secondly, it lets our accessibility tools know which game
objects are even accessible. The last point comes from the fact that both our
screen reader and the navigation agent system behaves as an additional
layer in the interaction framework between interface and the user, as we’ve

49

3 The Unity Accessibility Toolkit: Design and Implementation

discussed in Section 2.2.2. The additional layer will collect information about
which game objects should be presented in an auditory form.

For the concrete design of our accessibility signifier, we drew inspiration
from the UIAccessibility protocol from UIKit, which is a standard UI
framework for iOS (Apple Inc., 2020b). Similar to objects in UIKit, each
of our signifiers communicates the information about the game object it’s
attached to using the following four properties:

• Label: A short but concise label of the object.
• Traits: Indication of how the game object behaves or should be treated.
• Value: The value of the game object.
• Description: Detailed description of the function of the game object.

This should give additional context if the function of the object and
how to interact with it if this isn’t obvious through label, value, and
traits.

Note that these properties are available for every signifier of a game object,
but not every game object has to provide a value for every property. Figure
3.1 should make this point clearer by showing an example of how the values
can be used for a button and a slider.

Start Game

Label: Start Game
Traits: [Button]
Value: -
Description: -

Label: Soundeffects Volume
Traits: [Adjustable]
Value: 50%
Description: Swipe up or
down with one finger to adjust
the value

Soundeffects

Figure 3.1: Examples of how to use the values of the accessibility signifier with a button
(left) and a slider (right)

The signifier for a button needs a label and traits, but doesn’t have value.
It also might not need a description, if its label already states its function

50

3 The Unity Accessibility Toolkit: Design and Implementation

clearly enough. A signifier for a slider on the other hand has besides its label
and traits also a value indicating the position of the slide handle. The slider
also might need description of how to interact with it, if the interaction is
not common.

The example also gives a glimpse at how traits can be use. Thr following
lists all the traits that we provide:

• Button: Marking it as a button.
• Toggle: Marking it as a toggle.
• Link: Marking it as a link to somewhere outside the game, like the

developers’ website.
• Image: Marking it an image.
• Static Text: Marking it as uneditable text.
• Header: Marking it as a header text.
• Summary Element: Indicating that it gives a summary of multiple game

objects .
• Adjustable: Marking it as an adjustable game object, like a slider.
• Selected: Indicating that the game object has been selected. An example

usage would be marking a checkbox button as checked.
• Not enabled: Indicating that the game object has been disabled.
• Allows Direct Interaction: Indicating that the game object wants to

accept direct touch or mouse interaction, instead of forwarding this
interaction to the accessibility tool.

• Hide From Screen Reader: Indicating that the game object is an accessible
element, but should be hidden from the screen reader.

Our selection of these traits is based on both the UIAccessibilityTraits

(Apple Inc., 2020a) UIKit and the built-in controls that Unity features (Unity
Technologies, 2020b). Developers can also to add custom traits to fit the
needs of their game.

As we’ve already mentioned, these accessibility traits and everything else
the accessibility signifier holds should be used to show our accessibility
tools which game objects in a game are accessible and how to handle them.
So next we’re going to discuss what our screen reader should do with this
information.

51

3 The Unity Accessibility Toolkit: Design and Implementation

3.1.1 Design of the Screen Reader

The main reason why there is even a need for this screen reader is that
game objects in Unity are not visible to other screen readers like VoiceOver
or Windows Narrator, as we’ve pointed out in section 2.4.2. It would be
preferable to use those screen readers over a self-built one because they are
already familiar to the gamer in both interaction and auditory output, i.e.
the synthesized voice. This is something we want to consider for our design.
So instead of directly building a screen reader, we will have a screen reader
manager that captures all the accessible game objects on the screen. This
manager then reads the system settings to see if a system screen reader is
available and can be accessed. If it can be accessed, the information about
the accessible game objects is forwarded to the so-called native screen reader,
an interface to a system screen reader. If the system screen is not available,
the information is forwarded to the custom screen reader, a screen reader built
from the ground up for Unity. Figure 3.2 gives a visual representation of
this design. Both the native and the custom screen reader will be discussed
in the following.

Custom Screen Reader Like most other screen readers, our custom screen
reader gives access to all accessible game objects in a serial manner. We
use the screen location of each accessible object to sort them first by their
y-coordinate. If two game objects have the same y-coordinate, those objects
are sorted by the x-coordinate. Figure 3.3 shows how this sorting works on
an example UI.

When entering a screen, the first game object in the sequence will be high-
lighted by the screen reader. The screen reader will then announce the
different properties of our accessibility signifier in the following order: label,
traits, value and finally the description. This auditory announcement is
done via the speech synthesizer of the system. We also use the screen reader
visualizer to draw a rectangle around the currently highlighted element, to
give people with a mild vision impairment an additional hint.

The highlighting can be changed either sequentially or via browsing. The
sequential change moves the highlighting either to the next or the previous
element in our sequence. The browsing strategy changes the highlighting

52

3 The Unity Accessibility Toolkit: Design and Implementation

System

Unity

Visible Game
Elements

Game Object
Accessibility
Signifier

Game Object
Accessibility
Signifier

Game Object
Accessibility
Signifier

Game Object
Accessibility
Signifier

Game Object

Game Object
Screen Reader
Visualizer

Input
Receiver

Screen Reader
Manager

Native
Screen Reader

Custom
Screen Reader

Screen Reader Speech Synthesizer

Settings

Figure 3.2: Architecture of the screen reader

via a pointing device, like a mouse or a finger. To indicate that the highlight-
ing was successfully changed, an earcon will be played and the different
properties of the accessibility signifier will be announced. For the sequen-
tial change, the user might try to move to the next element when the last
element is highlighted or to the previous element if the very first element is
highlighted. If that happens, another earcon will be played to signal that a
bound of the sequence has been reached and the highlighting didn’t change.
This should not trigger our screen reader to announce the properties of the
signifier again.

The input for changing the highlighting will come from our input receiver.
This element can either forward touch gestures or keyboard and mouse

53

3 The Unity Accessibility Toolkit: Design and Implementation

Soundeffects

Music

Accessibility About

Settings 1
2

3

4

5 6

Figure 3.3: Example of how our screen reader will sort the game object with the accessibility
signifier

input to our screen reader, depending on the platform. Besides changing
the highlighting, it is also responsible to forward interactions like activating
an object, and, if suitable, increase and decrease the value of it.

Native Screen Reader The sole purpose of the native screen reader is to
forward the accessible game objects and their signifiers to a system screen
reader and to communicate the interaction from that system screen reader
back to the game. The actual serialization of the interface, the interaction,
and announcing the properties of the signifier is up to the system screen
reader.

We think having both the native and a custom screen reader in place will
give us the benefits of familiarity, if the system screen reader can be accessed,
combined with broad platform support if the system screen reader can’t
be accessed. This should ensure a great experience for gamers and broader
adaptation by developers.

54

3 The Unity Accessibility Toolkit: Design and Implementation

2 3

4 5

6 7

89

Player

Destination

Current
Auditory Area

Agent

2 3

4 5

6 7

89

Player

Destination

Current
Auditory Area

Agent

Figure 3.4: Sketch of how continuous navigation is eased via the navigation agent. Left:
Initial position of player and navigation agent. Right: The first intersection was
reached and the agent moved to the second one.

3.1.2 Design of the Navigation Agent

The idea of the navigation agent is to ease the continuous navigation from
any location to any reachable point of interest. To make this work, the
developer has to provide a user interface to chose this destination and
forward it to our agent. When it has been selected, we will calculate a path
from the users’ current position to this location. To ease navigation, the path
only consists of straight lines. Our navigation agent will then move to the
first intersection between two lines. The user should then be able to locate
the navigation agent by triggering a positional earcon upon hitting a key or
performing a touch gesture. The location of the agent relative to the player’s
position should be determinable through stereo sound, the distance to it
through the loudness of the earcon.

After reaching the agent, it will emit another earcon to confirm that it has
been reached. The agent will then move to the next intersection of the path.
This process will repeat until the final destination has been reached. Figure
3.4 shows a graphical representation of this interaction flow.

While following the navigation agent, it might happen that the player gets
stuck or cannot hear the earcon anymore because they went in the wrong
direction. To resolve such a scenario, users can trigger a recalculation of the
path at any time. How this is intended to work can be seen in Figure 3.5.

55

3 The Unity Accessibility Toolkit: Design and Implementation

3

4 5

6 7

89
Player

Destination

Current
Auditory Area

Agent

1

2 3

4 5

67
Player

Destination

Current
Auditory Area

Agent

Figure 3.5: Sketch of how recalculating the path of the navigation agent is working. Left:
Player has moved off the intended path. Right: User has triggered the recalcula-
tion of the path and the agent was re-positioned.

This concludes the design of both the screen reader and the navigation
agent. The design we’ve presented in this section could be theoretically
implemented for any kind of game engine. But we’ve decided to build our
toolkit for Unity, so next we’re going to present how the proposed toolkit
has been implemented for Unity.

3.2 Basics of the Implementation

The basic building blocks of Unity games are GameObjects and Components.
Every object within a game is a GameObject. But GameObjects themselves
are nothing else then empty containers; they get their properties from
Components. An example for a basic Component is the Transform Component,
which adds position, rotation and scale properties to the GameObject.

For our plugin, we came up with an Component called UA11YElement. The
UA11YElement Component marks a GameObject as an accessible element and
gives it the basic properties needed for every accessibility technology that
we implement. So the UA11YElement will act as our accessibility signifier
that we’ve described in Section 3.1. The simplified class diagram of the
UA11YElement can be seen in Figure 3.6.

The traits and the other properties like label and description cover

56

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YElement

+ label:string
+ value:string
+ description:string
+ frame:Rect
onClick: UnityEvent
onIncrement: UnityEvent
onDecrement: UnityEvent
onBecomeFocused: UnityEvent
onLoseFocus: UnityEvent

+ InvokeEventOfType(eventType: UA11YElementInteractionEventType)
+ AddListenerForEventOfType(eventType: UA11YElementInteractionEventType, action: UnityAction)
+ RemoveListenerForEventOfType(eventType: UA11YElementInteractionEventType, action: UnityAction)
+ RemoveAllListenersForEventOfType(eventType: UA11YElementInteractionEventType)
+ ToString()
+ LabelWithTraitAndValue()

UA11YTrait

- identifier:string

1.. *

traits<<enumeration>>
UA11YElementInteractionEventType

Click
Increment
Decrement
BecomeFocused
LoseFocus

Figure 3.6: Simplified class diagram of the UA11YElement

the signifier part of the UA11YElement, but doesn’t cover reacting to inter-
action. For this, we have implemented a system based on the observer
pattern (Gamma et al., 1995). The developer can register as a listener to
the UA11YElement for any specified UA11YElementInteractionEventType.
When the event type is invoked through InvokeEventOfType(eventType),
the callback to all the listeners will be called. Triggering the interaction itself
is still up to the accessibility technology and other game specific parts.

From a developers perspective, the UA11YElement comes with the down-
side that both rerouting the interaction from accessibility technologies to
the game and filling in the accessibility properties has to be done manu-
ally. While this cannot be eased for most parts of the game, we can ease
it for the menus and other UI parts. For this, we provide multiple sub-
classes of the UA11YElement Component for common Unity UI elements. All
of them can be seen in Figure 3.7. These subclasses automatically fill in

57

3 The Unity Accessibility Toolkit: Design and Implementation

accessibility information and handle certain interactions. For example, when
the UA11YButton Component is attached to a GameObject that has a Button

Component, it automatically sets the traits to [.Button], uses the string
value of its Label Component as the accessibility label and forwards the
Click UA11YElementInteractionEventType to Unitys’ event system. This
tremendously eases supporting accessibility technologies for standard UIs,
because developers only have to attach the correct Component to the UI
elements and the rest will work automatically.

UA11YButton

+ traits: UA11YTrait = [.Button]
+ label: string = gameObject.Button.Text.text

InvokeSelection()

UA11YPopover UA11YImage

+ traits: UA11YTrait = [.Image]UA11YElement

UA11YSlider

+ traits: UA11YTrait = [.Adjustable]
+ value: string = gameObject.Slider.value.ToString()

InvokeDecrement()
InvokeIncrement()

UA11YText

+ traits: UA11YTrait = [.StaticText]
+ label: string = gameObject.Text.text

UA11YToggle

+ traits: UA11YTrait = [.Toggle]
+ label: string = gameObject.Toggle.Text.text
+ value: string = gameObject.Toggle.isOn.ToString()

InvokeSelection()

Figure 3.7: Simplified class diagram of the UA11YElement sub-classes we provide to ease
supporting accessibility technologies in Unity UIs

The accessibility technology that is most likely to be used when interacting
with Unity UIs is the screen reader. So in the next part, we will take a close
look at its implementation and features.

58

3 The Unity Accessibility Toolkit: Design and Implementation

3.3 Implementation of the Screen Reader

We’ve already discussed in Section 3.1.1 that our screen reader technology
consists of multiple interconnected parts, both in Unity and on the system
side. The main component on the Unity side is the screen reader manager,
which we’re gonna describe in the following. Note that the implementation
on the system side was only done fully for iOS and partially for macOS
and Windows. Supporting more platforms than these would go beyond the
scope of the thesis. We nevertheless made sure that the interface from Unity
was built in a way that it is easily extendable for other platforms. Extending
the platform support should be covered in potential future work.

Without further ado, let’s dive into the implementation of the screen reader
manager.

3.3.1 Screen Reader Manager Implementation

The screen reader manager is the central part of our screen reading tech-
nology and was implemented in Unity in form of the UA11YScreenReader-

Manager Component. We provide a Unity prefab1, which is a pre-configurated
and reusable Unity GameObject, with this Component attached to it. A sim-
plified class diagram of the manager can be seen in Figure 3.8.

When the developer adds the UA11YScreenReaderManager prefab to a Unity
scene, the manager will first determine what screen reading technology is
available. If the currently available platform has a screen reader and we’ve
implemented the required parts on the system side to communicate with this
screen reader, the manager will create a UA11YNativeScreenReader. Other-
wise, a UA11YCustomScreenReader is created. After that, the manager will
fetch all GameObjects from the scene that have a UA11YElement Component

attached to them and filter out those who are not visible on the screen.
Finally, these accessibility elements are forwarded to the screen reader that
was created earlier.

1https://docs.unity3d.com/Manual/Prefabs.html

59

https://docs.unity3d.com/Manual/Prefabs.html

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YScreenReaderManager

- needsUpdateElements
- retainSelectedElementIndex

- LoadScreenReaderElements():UA11YElement[]
- GetAccessibilityElementsFromPopover(popover: UA11YPopover): UA11YElement[]
+ AnnouceMessage(message: string)
+ VisibleElementsDidChange()
+ SetNeedsUpdateElements(keepHighlightedElement: bool)
+ SetScreenReaderEnabled(enabled: bool)

UA11YCustomScreenReader

- focusedElement: UA11YElement
- focusedElementIndex: int
- soundEffectAudioSource: AudioSource
- accessibilityElements: UA11YElement[]

- AnnouceFocusedElement(includeDescription: bool,
 startImmediately: bool)
- AnnouceValueOfFocusedElement()
- PlayFocusSound()
- PlayBlockingSound()
- PlaySelectSound()
- UpdateFocusedElement(newFocusedElementIndex: int)

UA11YNativeScreenReader

- accessibilityElements: UA11YElement[]
- currentlyFocusedElement: UA11YElement

- InvokeSelectionOfElementWithID(instanceID: int)
- InvokeValueChangeOfElementWithID(instanceID: int,
 modifier: int)
- SetFocusOnElementWithID(instanceID: int)

<<interface>>
IUA11YScreenReader

+ UpdateWithScreenReaderElements(elements: UA11YElement[],
 tryRetainingIndex:bool)
+ FocusElement(elementToFocus: UA11YElement)
+ SetEnabled(enabled: bool)
+ AnnouceMessage(message: string)

Instance

1

1

screenReader

Figure 3.8: Simplified class diagram of the UA11YScreenReaderManager

60

3 The Unity Accessibility Toolkit: Design and Implementation

After this initial fetching of the accessible elements, it is up to the game itself
to ensure that the screen reader elements stay up to date. Whenever appropri-
ate, the VisibleElementsDidChange() method of the UA11YScreenReaderManager
can be called. This will trigger a refetch of all visible GameObjects with an
UA11YElement Component attached and the screen reader update with these
objects. This operation can be pretty resourceful, especially when dealing
with system screen readers. So we advise that these refetches are scheduled
thoughtfully.

The previously described sequence of events is shown graphically as a
sequence diagram in Figure 3.9. This diagram intentionally left out the inner
workings of the UA11YNativeScreenReader and the UA11YCustomScreen-

Reader. These are gonna be the topics of the following two sections.

3.3.2 Custom Screen Reader Implementation

The UA11YCustomScreenReader is a screen reader built from the ground up
for Unity. Figure 3.12 shows the class diagram of the main parts of this
screen reader. On the input side, we have an UA11YInput to retrieve actions
from the gamer. On the output side, there is the UA11YSpeechSynthesizer

to convert the properties of UA11YElements to an auditory form, and the
UA11YCustomScreenReaderVisualizer to draw a frame around the currently
focused element.

To understand how the UA11YCustomScreenReader works, we again turn to
Figure 3.9 and to its extension in Figure 3.11. When no native screen reader is
accessible, the UA11YScreenReaderManager creates the UA11YCustomScreen-

Reader and forwards the initial GameObjects with an UA11YElement Component

attached to this screen reader by calling UpdateWithScreenReaderElements(e).
Before being stored as the accessibilityElements property, the GameObjects
will be sorted based on their screen location, as we’ve discussed in Section
3.1.1. The Unity Engine will then call the Start method of the UA11Y-

CustomScreenReader. Here, the screen reader will create the UA11YSpeech-

Synthesizer, the UA11YCustomScreenReaderVisualizer and a fitting UA11Y-

Input. On mobile platforms with a touch screen, a UA11YMobileInput will

61

3 The Unity Accessibility Toolkit: Design and Implementation

Game
Scene UA11YScr eenReader Manager

UA11YCust omScr eenReader

St ar t ()
Avai l abl e

Alternative

Avai l abl e

[Else]

UA11YNat i veScr eenReader

UA11YNat i veScr eenReader Br i dge

UA11YNat i veScr eenReader ()

UA11YCust omScr eenReader ()

Unity
Engine

Fi ndObj ect sOf Type
<UA11YEl ement >()

LoadScr eenReader El ement s()

Updat eWi t hScr eenReader El ement s(e)

Updat eWi t hScr eenReader El ement s(e)

Alternative

Avai l abl e

[Else]

Game
Manager

Vi si bl eEl ement sDi dChange()

Set NeedsUpdat eEl ement s()

Fi ndObj ect sOf Type
<UA11YEl ement >()

Updat eWi t hScr eenReader El ement s(e)

Updat eWi t hScr eenReader El ement s(e)

Alternative

Avai l abl e

[Else]

Updat e()

Figure 3.9: Sequence diagram of the screen reader manager. The Game Manger is a place-
holder for a arbitrary element of a game that will trigger updating the screen
reader.

62

3 The Unity Accessibility Toolkit: Design and Implementation

Figure 3.10: A demo UI with the UA11YCustomScreenReader activated. The
UA11YCustomScreenReaderVisualizer draws a high constrat frame
around the currently focused element.

be created. The UA11YDesktopInput will be used on devices with mouse
and keyboard attached.

After that, the screen reader will update itself for the first time. This means
that it will set the focus on the first object of the accessibilityElements

array and announce the different properties of the UA11YElement Component

attached to it, i.e. label, value, traits and description. Synthesizing the
text is done by the system. So the UA11YSpeechSynthesizer itself only acts
as a bridge to the system speech synthesizer.

Besides announcing its values, we also want to give a visual indication
for the focused element as a visual hint for people with low vision. So we
draw a rectangle around the focused element every time the Unity Engine
redraws the UI, via the OnGUI() method. This frame consists of a thin black
and a thin white line to be well easily visible on every background. Figure
3.10 shows how this frame looks like in a demo UI.

This last step concludes the initial phase of the screen reader. After it,
the screen reader sits there idle until the UA11YInput recognizes some

63

3 The Unity Accessibility Toolkit: Design and Implementation

input from the player. If a focus change is trigged via FocusNextElement(),
FocusPreviousElement() or FocusElementAtPosition(p), and the update
was successful, the screen reader will play a sound to indicate the change,
announces the values of the newly focused element and draws the rect
around it when the next OnGUI() call happens. In case the focus could
not be successfully updated, like when the user tries to focus the previous
element when the very first element is focused, another sound will be played
to indicate that the focus didn’t change.

For interactions recognized by the UA11YInput, like selecting the focused
element, the screen reader simply forwards this event to the UA11YElement

Component. Likewise, the UA11YElement will forward the event to the lis-
teners that have previously subscribed to it, as described in Section 3.2.
Additionally, the screen reader will play a fitting sound to indicate the suc-
cess of the interaction and, in case the value of the UA11YElement changed,
announce just the new value via the UA11YSpeechSynthesizer.

This is all there is to say about the implementation of the UA11YCustom-

ScreenReader A simplified class diagram of the previously described parts
can be found in Figure 3.12. As with the rest of our description, this dia-
gram only covers the Unity side of the UA11YSpeechSynthesizer. We left
out the system side because it looks virtually identical to the Unity side.
The system part is going to be more interesting for our next topic, the
UA11YNativeScreenReader.

3.3.3 Native Screen Reader Implementation

The native screen reader allows visually impaired players to interact with
Unity using the system screen reader. So most parts of its implementation
happen on the system side via a Unity native plug-in2 and have to be tailored
to each platform and its screen reader. We’ve limited this implementation to
the iOS platform, as multi-platform support would go beyond the scope of
this thesis.

2https://docs.unity3d.com/Manual/NativePlugins.html

64

https://docs.unity3d.com/Manual/NativePlugins.html

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YCust omScr eenReader

UA11YDeskt opI nput

Unity
Engine

St ar t ()
UA11YDeskt opI nput ()

Updat eFocusedEl ement (i = 0)

UA11YScr eenReader Vi sual i zer

UA11YSpeechSynt hesi zer

UA11YScr eenReader Vi sual i zer ()

UA11YSpeechSynt hesi zer ()

AnnounceFocusedEl ement ()

St ar t Speaki ng(t ext)

FocusNext El ement ()

Updat eFocusedEl ement (i + 1)

Pl ayFocusSound()

AnnouceFocusedEl ement ()

UA11YEl ement

ToSt r i ng()

ToSt r i ng()

OnGUI ()

Dr awI ndi cat or For El ement (f ocuEl ement)

St ar t Speaki ng(t ext)

Dr awI ndi cat or For El ement (f ocuEl ement)

OnGUI ()

Sel ect FocusedEl ement ()I nvokeEvent
Of Type(. Cl i ck)

Pl aySel ect Sound()

Figure 3.11: Sequence diagram of the UA11YCustomScreenReader with an
UA11YDesktopInput. It covers the initialization, changing the focused
GameObject and selecting the focused GameObject. The UA11YElement in the
diagram is a placeholder for the dynamically changing focused GameObject.

65

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YCustomScreenReader

- focusedElement: UA11YElement
- focusedElementIndex: int
- soundEffectAudioSource: AudioSource
- accessibilityElements: UA11YElement[]

- AnnouceFocusedElement(includeDescription: bool, startImmediately: bool)
- AnnouceValueOfFocusedElement()
- PlayFocusSound()
- PlayBlockingSound()
- PlaySelectSound()
- UpdateFocusedElement(newFocusedElementIndex: int)

<<interface>>
IUA11YScreenReader

+ UpdateWithScreenReaderElements(elements: UA11YElement[],
 tryRetainingIndex: bool)
+ FocusElement(elementToFocus: UA11YElement)
+ SetEnabled(enabled: bool)
+ AnnouceMessage(message: string)

UA11YSpeechSynthesizer

+ StartSpeakingImmediately(message: string)
+ PauseSpeaking()
+ ContinueSpeaking()
+ StopSpeaking()
+ IsSpeaking():bool
+ IsPaused():bool

1

speechSynthesizer

UA11YCustomScreenReaderVisualizer

- borderTexture: Texture2D

+ DrawIndicatorForElement(element: UA11YElement)
- DrawRectBorder(rect: Rect, borderWidth: float,
 color: Color)
- DrawRect(rect: Rect, color: Color)

<<UA11YInput>>

+ inputReceiver: IUA11YInputReceiver

- Update()

UA11YDesktopInput

+ nextElementKey:KeyCode = KeyCode.RightArrow;
+ previousElementKey:KeyCode = KeyCode.LeftArrow;
+ escapeKey:KeyCode = KeyCode.E;
+ selectKey:KeyCode = KeyCode.Space;
+ incrementValueKey:KeyCode = KeyCode.UpArrow;
+ decrementValueKey:KeyCode = KeyCode.DownArrow;
+ browseElementsKey:KeyCode = KeyCode.Caret;

visualizer

1

UA11YMobileInput

- MaximumSwipeGestureTime:float = 0.25f
- MaximumTapTime:float = 0.175f
- MaximumTapCooldownTime:float = 0.1f
- SwipeResistance:Vector2 = Vector2(50f, 50f)

- currentTouchActionState:UA11YTouchActionState
- touchStartPosition:Vector3
- touchDownTime:float
- tapCount:int
- timeSinceLastTap:float

<<enum>>
UA11YTouchActionState

None
SwipeLeft
SwipeRight
Browsing
Tappin

1

input

<<interface>>
IUA11YInputReceiver

+ FocusNextElement()
+ FocusPreviousElement()
+ FocusElementAtPosition(position: Vector2)
+ SelectFocusedElement()
+ IncrementValueOfFocuedElement()
+ DecrementValueOfFocuedElement()

Figure 3.12: Simplified class diagram of the Unity side of the UA11YCustomScreenReader

66

3 The Unity Accessibility Toolkit: Design and Implementation

Lets start with the Unity side of the implementation. The only two classes
needed there are the UA11YNativeScreenReader and the UA11YNativeScreen-
ReaderBridge, both can be seen in Figure 3.13. The UA11YNativeScreen-

Reader handles the communication with the UA11YScreenReaderManager

and the UA11YNativeScreenReaderBridge, but also stores the current acces-
sibilityElements and forwards events to them. The UA11YNativeScreen-

ReaderBridge is a singleton that forwards information about the accessible
elements on the screen to the system and reroutes callbacks from the system.
These callbacks are the reason why the UA11YNativeScreenReaderBridge

has to be a singleton, because they have to be static methods within Unity.

On the iOS side of the implementation, we have the UA11YVoiceOverPipe.
This C-interface is accessible from Unity, so the UA11YNativeScreenReader-

Bridge calls its methods to send information about the accessible ele-
ments to iOS. The UA11YVoiceOverPipe converts the information to the
correct format and forwards it, with a few intermediate steps, to the
UA11YVoiceOverHookOverlaySKScene. All classes involved can be seen in
Figure 3.14.

The UA11YVoiceOverHookOverlaySKScene is actually responsible to trans-
late the information about each accessible elements in Unity into an iOS
view, called the UA11YVoiceOverHookSKNode. These views draw an invisi-
ble background so that no game content is visually blocked. While this
makes them hidden to the eye, they are clearly visible to the VoiceOver
screen reader. The user can step through these views as if the game was
built with native elements. Interactions triggered from VoiceOver are routed
back from the UA11YVoiceOverHookSKNode through multiple intermediate
steps to the UA11YNativeScreenReader, where it forwards the events to the
UA11YElement Component in the same fashion as we’ve discussed it for the
UA11YCustomScreenReader.

This whole translation from Unity content into screen reader perceivable
elements is, as we’ve previously mentioned, resource-heavy. It should be
triggered as sparsely as possible, otherwise, it might affect the game’s
performance and thus, the user enjoyment of the game. But if implemented
correctly by the developer, we believe that this screen reader gives the best
possible experience to the user.

67

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YNativeScreenReaderBridge

+ Available:bool
+ selectionCallback:UA11YInvokeSelectionCallback
+ focusCallback:UA11YInvokeFocusCallback
+ valueChangeCallback:UA11YInvokeValueChangeCallback

+ InvokeSelectionCallback(instanceID: int)
+ InvokeValueChangeCallback(instanceID: int, modifier: int)
+ InvokeFocuseCallback(instanceID: int)
+ UpdateWithScreenReaderElements(elemens: UA11YElement[])
+ AnnouceMessage(message: string)
+ ClearAllHooks()
- AccessibilityHookForElement(element: UA11YElement):
 UA11YExternalAccessibilityHook

<<struct>>
UA11YExternalAccessibilityHook

+ instanceID:int
+ x:float
+ y:float
+ width:float
+ height:float
+ label:string
+ value:string
+ hint:string
+ trait:ulong
+ selectionCallback
 :UA11YInvokeSelectionCallback
+ focusCallback
 :UA11YInvokeFocusCallback
+ valueChangeCallback
 :UA11YInvokeValueChangeCallback

1

Instance

UA11YNativeScreenReader

- accessibilityElements: UA11YElement[]
- currentlyFocusedElement: UA11YElement

- InvokeSelectionOfElementWithID(instanceID: int)
- InvokeValueChangeOfElementWithID(instanceID: int, modifier: int)
- SetFocusOnElementWithID(instanceID: int)

<<interface>>
IUA11YScreenReader

+ UpdateWithScreenReaderElements(elements: UA11YElement[],
 tryRetainingIndex: bool)
+ FocusElement(elementToFocus: UA11YElement)
+ SetEnabled(enabled: bool)
+ AnnouceMessage(message: string)

Figure 3.13: Simplified Class Diagram of the Unity side of the Native Screen Reader

68

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YInternalAccessibilityHook

+ instanceID:NSNumber*
+ frame:CGRect
+ label:NSString*
+ value:NSString*
+ hint:NSString*
+ trait:uint64_t
+ selectionCallback:InvokeSelectionCallback
+ focusCallback:InvokeFocusCallback
+ valueChangeCallback:InvokeValueChangeCallback

<<C-interface>>
UA11YVoiceOverPipe

+ UA11YIsScreenReaderRunning():bool
+ UA11YUpdateHook(eHook: UA11YExternalAccessibilityHook)
+ UA11YUpdateHooks(eHook: UA11YExternalAccessibilityHook*, id: int)
+ UA11YClearAllHooks()
+ UA11YAnnoucnceVoiceOverMessage(message: const char *)
- getBridgeViewController(): UA11YVoiceOverBridgeViewController

<<interface>>
UA11YVoiceOverHookOverlayViewDelegate

+ triggerActivateCallbackOfHookWithID(id:NSNumber *)
+ triggerIncrementCallbackOfHookWithID(id:NSNumber *)
+ triggerDecrementCallbackOfHookWithID(id:NSNumber *)
+ triggerDidBecomeFocusedCallbackOfHookWithID(id:NSNumber *)

UA11YVoiceOverHookOverlaySKView

+ viewDelegate: id<UA11YVoiceOverHookOverlayViewDelegate>

+ makeHidden(hidden: bool)
+ updateHookViewForAccessibilityHook(hook:
 UA11YInternalAccessibilityHook *)
+ removeHookWithID(instanceID: NSNumber *)
+ clear()

UA11YVoiceOverBridgeViewController

+ updateHookViewForHook(hook: UA11YInternalAccessibilityHook *)
+ updateHookViewsForHooks(
 hooks: NSArray<UA11YInternalAccessibilityHook *> *)
+ clearAllHooks()

UA11YVoiceOverHookSKNode

+ delegate: id<UA11YVoiceOverHookSKNodeDelegate>
+ instanceID:NSNumber *
+ frame:CGRect

- accessibilityActivate():BOOL
- accessibilityIncrement()
- accessibilityDecrement()
- accessibilityElementDidBecomeFocused()
- accessibilityFrame():CGRect

<<interface>>
UA11YVoiceOverHookSKNodeDelegate

hookWasAccessibilityActivated(hook:
 UA11YVoiceOverHookSKNode *)
hookWasAccessibilityIncremented(hook:
 UA11YVoiceOverHookSKNode *)
hookWasAccessibilityDecremented(hook:
 UA11YVoiceOverHookSKNode *)
hookDidBecomeAccessibilityFocused(hook:
 UA11YVoiceOverHookSKNode *)

UA11YVoiceOverHookOverlaySKScene

+ sceneOverlayDelegate:
id<UA11YVoiceOverHookOverlaySKSceneDelegate>

+ updateHookViewForAccessibilityHook(hook:
UA11YInternalAccessibilityHook *)
+ removeHookWithID(instanceID: NSNumber *)
+ clear()
- accessibilityElementCount: NSInteger
- indexOfAccessibilityElement(element: id): NSInteger
- accessibilityElementAtIndex(index: NSInteger): nullable id

<<interface>>
UA11YVoiceOverHookOverlaySKSceneDelegate

- hookWithIDWasAccessibilityActivated(id: NSNumber *)
- hookWithIDWasAccessibilityIncremented(id: NSNumber *)
- hookWithIDWasAccessibilityDecremented(id: NSNumber *)
- hookWithIDDidBecomeAccessibilityFocused(id: NSNumber *)

1

hookOverlayView

hookNodes

0..n

scene

1

hookDictionary

0..n

Figure 3.14: Simplified Class Diagram of the iOS side of the Native Screen Reader

69

3 The Unity Accessibility Toolkit: Design and Implementation

What a screen reader cannot do well is to assist with continuous navigation.
For this purpose, we’ve created the navigation agent. Its design will be the
topic of the next section.

3.4 Implementation of the Navigation Agent

The purpose of the navigation agent is to help users with vision impairments
find certain points of interest in a game world in which they can move freely.
As we’ve discussed in the design part of this chapter, we help with this
navigation by calculating a path from the point of interest to the user and
guide the user along this path with an agent that emits earcons.

For the implementation of this agent, we take advantage of the Navigation
and Pathfinding3 system of Unity. This system allows developers to create
non-player characters that intelligently moves around the games environ-
ment. The system first needs a walkable area, which is a space in a Unity
scene that a character can walk on (Unity Technologies, 2020c). This area is
calculated from the environment of the game and stored as a data structure
called NavMesh. NavMesh Baking is the name of the process to create such a
data structure. For this process to work, the developer has to mark all static
elements, like floors, walls, or other static obstacles in a scene as Navigation
Static through the navigation window (Unity Technologies, 2020a). After
that, the developer can navigate to the ake-tab in the same window and
click on Bake to calculate the NavMesh.

Having such a NavMesh setup is the first precondition for our navigation
agent. The second is about the actual player character. For our navigation
agent to work, the developer needs to attach an AudioListener Component

to the player object. Only this can ensure that the spatial audio emitted
from the navigation agent will be retrieved relative to the players’ position.
Additionally, the player object also needs a Collider and a Rigidbody

Component so that we can detect when the player has reached the agent.

With all of this set up, we can talk about the actual navigation agent.
The two classes involved here are the UA11YNavigationAgentManager and

3https://docs.unity3d.com/Manual/Navigation.html

70

https://docs.unity3d.com/Manual/Navigation.html

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YNavigationAgentController, both of which can be seen in the class di-
agram in Figure 3.15. The UA11YNavigationAgentManager is responsible for
triggering the calculation of the path to a destination location and for rede-
positing the actual navigation agent. The UA11YNavigationAgentController

is the Component attached to the navigation agent object, the NavAgent, and
responsible for emitting the earcons. Similar to the UA11YScreenReader-

Manager, we also provide a prefab of an GameObject with the UA11YNaviga-

tionAgentManager attached, which the developer can simply drag into the
scene. But no matter how a UA11YNavigationAgentManager is added to the
scene, the developer must in any case set its player property before request-
ing a guide. The procedure of guiding a player to a requested location can
be seen in the sequence diagram in Figure 3.16. A textual description is
given in the following.

When the player wants to be guided to a certain point of interest, the devel-
oper has to call the StartGuideToTargetPosition(p) method, where p is
a Vector3 of a reachable position within the NavMesh. This will trigger the
internal RecalculatePath, which will use the NavMesh.CalculatePath()

method to create a NavMeshPath from the player position to the given
point. The NavMeshPath includes orthogonal and diagonal subsections. Since
we want to make the guidance as easy as possible, we try to straighten the
diagonals by calling the StraightenDiagonalsInPath method. This method
recursively splits a diagonal into orthogonal lines that fully lie in the walka-
ble area. Listing 1 shows the pseudo code of this algorithm.

After we have removed the diagonals from the NavMeshPath, we move the
NavAgent to the first point of the path, set it to active and start the audio
signal by calling StartSignal. Depending on the mode, this will either start
a continuous audio signal or allow the user to manually trigger the earcon
by hitting the manualNavAgentTriggerKey key. Since the audio is spatial,
the user can now find the NavAgent by listening to the direction and the
volume of the audio signal.

71

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YNavAgentManager

+ player:GameObject
+ shouldStraightenDiagonals:bool = true
+ isValidDiagonalThreshhold:float = 0.35f
+ maxRecursionLevel:float = 10
+ changeNavAgentModeKey:KeyCode = KeyCode.B
+ manualNavAgentTriggerKey:KeyCode = KeyCode.N
+ forcePathRecalculationKey:KeyCode = KeyCode.R
- manuallyTriggerNavAgentSignal: bool = false;
- pathPoints: List<Vector3>
- cornerIndex: int = -1
- NavAgent: GameObject
- playerTransform: Transform
- soundEffectAudioSource: AudioSource
- NavAgentReachedAudioClip: AudioClip
- targetReachedAudioClip: AudioClip
- NavAgentController: UA11YNavAgentController

+ StartGuideToTargetPosition(targetPosition: Vector3)
+ StartGuideWithPoints(points: List<Vector3>)
- ExtractValuesFromPlayer()
- RecalculatePath(targetPosition: Vector3): List<Vector3>
- ForcePathRecalculation()
- ManualTriggerNavAgentSignal()
- StraightenDiagonalsInPath(path: NavMeshPath): List<Vector3>
- IsAValidLine(pointA: Vector3, pointB: Vector3): bool
- RecursiveSplitDiagonal(a: Vector3, b: Vector3, depth: int): List<Vector3>
- IsSplitValid(source: Vector3, target: Vector3, split: Vector3): bool
- RepositionNavAgent()
- CurrentDistanceToNavAgent(): float

<<interface>>
IUA11YNavAgentEventReceiver

+ NavAgentReached()

UA11YNavAgentController

+ minDistance: float = 4.0;
- playerCollider: Collider
- audioSource: Audiosource

+ UpdatePosition(position: Vector3, distance: float)
+ EnsureThatSignalCanBeHeard(distance: float)
+ SetPlayerCollider(collider: Collider)
+ StartSignal()
+ StopSignal()
+ ShouldLoop(shouldLoop: bool)
- OnTriggerEnter(other:collider)

1

navAgentController

Figure 3.15: Simplified class diagram of the classes involved in our navigation agent

72

3 The Unity Accessibility Toolkit: Design and Implementation

UA11YNavAgent Manager UA11YNavAgent Cont r ol l er
Game

Manager

St ar t Gui deTo
Tar get Posi t i on(p)

NavAgent . Get Component
<UA11YNavAgent Cont r ol l er >()

Ext r act Val uesFr omPl ayer ()

St ar t Si gnal ()

Unity
Engine

Awake()

OnTr i gger Ent er (ot her Col)

Cr eat eNavAgent ()

NavAgent . Set Act i ve(t r ue)

NavAgent . Set Act i ve(f al se)

Reposi t i onNavAgent ()

NavMesh

Recal cul at ePat h(t ar get Posi t i on)

Cal cul at ePat h(pPos,
t Pos, . Al l Ar eas, pat h)

St r ai ght enDi agonal sI nPat h(pat h)

NavAgent Reached()

Reposi t i onNavAgent ()

NavAgent . Set Act i ve(f al se)

NavAgent . Set Act i ve(t r ue)

Pl ayAgent ReachedSound()

St ar t Si gnal ()

St ar t Si gnal ()

Figure 3.16: Sequence diagram of the navigation agent. The Game Manger is a placeholder
for a arbitrary element of a game that will request the guidance to a certain
point.

73

3 The Unity Accessibility Toolkit: Design and Implementation

Result: Array of points that can be connected with orthogonal lines
Function SplitDiagonal(Point pointA, Point pointB, int depth) is

points = [];
if IsOrthogonalLine(pointA, pointB) then

pointAxBy = Point(pointA.x, pointB.y) ;
pointBxAy = Point(pointB.x, pointA.y) ;
if NoObstaclesBetweenLines(pointA, pointAxBy, pointB) then

points += pointAxBy;
else if NoObstaclesBetweenLines(pointA, pointBxAy, pointB) then

points += pointBxAy;
else if depth ¡ maximumRecurrsion then

center = CenterOfDiagonal(pointA, pointB) ;
points += SplitDiagonal(pointA, center, depth + 1) ;
points += center ;
points += SplitDiagonal(center, pointB, depth + 1) ;

end
return points;

end
Listing 1: Pseudo code of the SplitDiagonal algorithm

When the NavAgent is actually reached, the UA11YNavigationAgentManager

gets a callback from the UA11YNavigationAgentController. This will repo-
sition the NavAgent to the next point and emit an earcon to indicate this
event. The procedure of searching for the NavAgent and repositioning it
when it has been found repeats until the point of interest has been reached.
When this happens, the NavAgent will be deactivated, and another earcon
will be played.

How the navigation agent can look in a game is shown in figure 3.17. The
game seen there is a very simple labyrinth based on a sample project by
Brackeys4.

As we’ve mentioned in the design section of this chapter, the user or de-
veloper can also manually trigger a recalculation of the path by hitting the
forcePathRecalculationKey. Through this, we can ensure that the user can

4https://github.com/Brackeys/NavMesh-Tutorial

74

https://github.com/Brackeys/NavMesh-Tutorial

3 The Unity Accessibility Toolkit: Design and Implementation

Figure 3.17: Navigation agent in a test game

always be guided to the destination location, even if they unintentionally
move away from the agent.

3.5 Possible Applications of the Toolkit

At the beginning of this chapter, we’ve mentioned that we want to concen-
trate on making four different areas accessible: menu navigation, environ-
ment observation, continuous navigation and discrete navigation of a game
world. To show how our toolkit can help in each of these areas, we will
present some concrete examples in the following.

3.5.1 Menu Navigation

Menu navigation is about making game menus accessible through a screen
reader. As a basis for this demonstration, we’ve used the FPS Microgame5

project provided by Unity as a learning example. To make menus like
the Pause/Options menu of this game accessible, we had to add the

5https://assetstore.unity.com/packages/templates/fps-microgame-156015

75

https://assetstore.unity.com/packages/templates/fps-microgame-156015

3 The Unity Accessibility Toolkit: Design and Implementation

Figure 3.18: Menu navigation in the Pause/Options menu of the FPS Microgame. The
highlighted element is the Look Sensitivity slider.

UA11YSlider, UA11YToggle, UA11YButton, UA11YText and UA11YPopover Com-

ponents to the corresponding Unity UI elements. We also needed to set
the label property for all of them, with the exception of the UA11YText,
manually, because an understandable label couldn’t be inferred from the
GameObject. We also had to add the UA11YScreenReaderManager prefab to
the scene, which is responsible for creating the screen reader, finding the
accessible objects in the scene, and handing them to the screen reader.

Now when the menu visibility changes, we had to activate or deactivate
the UA11YScreenReaderManager and call its VisibleElementsDidChange()

method. After that, we were able to use the screen reader to step through
the UI, get an auditory description of the highlighted element and interact
with each element. Figure 3.18 shows how this menu with the activated
screen reader looks like.

3.5.2 Environment Observation

The idea of environment observation is to let the player pause the game and
observe their surroundings via the screen reader by either stepping through
the visible objects or browsing the elements with the mouse cursor. To

76

3 The Unity Accessibility Toolkit: Design and Implementation

(a) Door indicator (b) Enemy robot

Figure 3.19: Getting information about the visible objects via environment observation.

demonstrate this, we again used the FPS Microgame from Unity as a basis.
For this to work, we had to add the UA11YElement Component to important
objects, like enemies or door markers, label them and made sure that every
element had an Collider Component attached. The latter was necessary
so that we can exclude objects that are not visible to the player through
ray casting6. Finally, we needed to implement a way to pause the game
through a key press, activate the UA11YScreenReaderManager and call its
VisibleElementsDidChange(). After that, we could step through the visible
accessible elements on the screen, as can be seen in Figure 3.19.

What we’ve just described is only a trivial implementation of the environ-
ment observation. In a real game, developers could include information
about the current on-screen location of each object in their accessibility de-
scription, allow to lock the shooting cursor on an object, or start a navigation
guide to it. The latter could make use of our navigation agent, which we
will describe more in the next subsection.

3.5.3 Continuous Navigation

With continuous navigation we mean navigating in a 2D or 3D space without
any constraints. An example would be to find a certain location or non-player
character within an open-world game. To make this kind of navigation
accessible, we’ve created the navigation agent. See Section 3.4 for more

6https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

77

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

3 The Unity Accessibility Toolkit: Design and Implementation

Figure 3.20: The navigation path calculated by our navigation agent, going from the players’
position to the turret enemy.

details. To demonstrate the agent in practice, we turned one last time to the
FPS Microgame.

This game features a main enemy, the turret, and we wanted to get an
auditory guide to this enemy via the navigation agent. All we had to do
was to add the UA11YNavAgentManager to the scene and on a keypress,
retrieve the enemy turret GameObject and start the navigation guide by
calling UA11YNavAgentManager.Instance.StartGuideToTargetPosition().
This triggered a calculation of a navigation path from the players’ position
to the turret and starts the audio navigation along this path, as described in
Section 3.4. The path can be seen in Figure 3.20.

3.5.4 Discrete Navigation

The last area we wanted to address is discrete navigation, which is nav-
igating on a fixed grid with the screen reader. Since the FPS Microgame
features Continuous Navigation, we had to use another sample project to

78

3 The Unity Accessibility Toolkit: Design and Implementation

Figure 3.21: Navigating the match-3 puzzle game with out screen reader.

demonstrate this. The game we chose comes from a RayWenderlich tutorial7

and is a match-3 puzzle game, similar to Bejewled (PopCap Games, 2001).

To make the game playable to someone with a vision impairment, we
had to attach a UA11YElement Component to each game tile and label them
with their type. We also included the location of each item in the grid to
make it playable with sequential navigation, though browsing is a much
quicker and effective way to play this game. We also had to subscribe
to the Click UA11YElementInteractionEventType to trigger the internal
method for selecting a tile. Lastly, the screen reader needed to be kept up to
date by calling UA11YScreenReaderManager VisibleElementsDidChange()

every time a match has been made. With this last addition, the game board
was fully observable and interactive through the screen reader, as can be
seen in Figure 3.21.

7https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

79

https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

3 The Unity Accessibility Toolkit: Design and Implementation

3.6 Summary

In this chapter, we went over the design and implementation of the Unity
Accessibility Toolkit, a Unity asset package that helps making accessible
games for visually impaired gamers. The package comes with two major
parts: a screen reader and a navigation agent. As a basis for both of them,
we introduced an accessibility signifier. This signifier marks an element as
accessible for our accessibility systems and holds information like the label
or the value of the element. We then discussed the implementation of this
signifier as the UA11YElement Component, which can be added to any Unity
GameObject. Other classes can register themselves to a certain UA11YElement

to get callbacks for different events, like when the value of the element
changes or when a selection is invoked.

After discussing the signifier, we continued by sketching out the inner
workings of our screen reader. The core of this system is the screen reader
manager, implemented as the UA11YScreenReaderManager Component in
Unity. It is responsible for fetching the accessible elements within a Unity
scene and forwarding it either the native or the custom screen reader.

The custom screen reader is a screen reader built from the ground up in
Unity as the UA11YCustomScreenReader Component. We’ve shown that this
screen reader gives access to the accessible elements in a serial manner
and how the user can change the currently focused element. We’ve also
discussed the connection from Unity to the system that is used to convert
the properties of the UA11YElement to a speech when the focused element
changes. Far stronger tied to the system is the native screen reader, which is
just a bridge to a system screen reader. We’ve discussed its implementation
for iOS to let the user interact with the Unity game through the VoiceOver
screen reader.

We then discussed the navigation agent, a tool to guide a person to any
reachable point of interest through audio cues. We went over its implementa-
tion and showed that the path calculation takes advantage of the navigation
and pathfinding system of Unity, which is already commonly used in many
games.

80

3 The Unity Accessibility Toolkit: Design and Implementation

Finally, we did present concrete examples of how the toolkit can be used
to make games menu navigation, environment observation, continuous
navigation, and discrete navigation accessible in games.

These concrete examples gave a glimpse at how easy it is to use the toolkit is
if one is familiar with it, but they are not a good measure for how easy it is
to use for someone who has no experience with the toolkit. To find out how
newcomers cope with the toolkit, we made an evaluation. This evaluation
will be presented in the next chapter.

81

4 Evaluation

The Unity Accessibility Toolkit was built to make adding vision accessibility
features easier to any Unity game. To find out how effective the toolkit is,
we wanted to evaluate its usability. In the following, we will present this
evaluation and its results.

4.1 Procedure

The focus of the evaluation was set on the screen reader because it is both a
familiar tool to visually impaired users and can be used in many different
game scenarios. So we asked developers familiar with the Unity game
engine to make a simple match-3 puzzle game accessible with the screen
reader of our toolkit.

The evaluation was conducted remotely in two phases: An implementation
phase (I) and a post-questionnaire (II). As preparation, participants were
asked to install Unity version 2020.1.10f1 and a screen recording tool of
their choosing. No hard time limit was set, but the participants were told
to expect it to take at least 2 hours. Each of them was compensated with a
10esteam gift card for their participation.

We connected with the participants via Discord and used it to sent them
the project and a task description. Participants were requested to check if
the project did open correctly and afterward, start the screen recording.
This marks the start of the implementation phase, where the participants
were advised to read the task description and solve the task. To simulate a
somewhat realistic scenario, we asked participants to solve the task without
our intervention. We were still reachable during the whole phase in case
some serious problem would occur. To conclude the first phase, participants

82

4 Evaluation

were asked to contact us when they were done and send us their implemen-
tation and screen recording. Being done was determined by the participant
playing the game with closed eyes.

We need to point out here that just being able to play a game with closed
eyes as a sighted participant is not a sufficient way to determine vision
accessibility. The sighted participant already has a mental model of the
game and thus will navigate and interact with the game differently from a
visually impaired person unfamiliar with the game. So we as domain experts
compared the participants’ solution with a reference implementation.

In the second phase, each participant was given a short post-questionnaire
to assess their experience with the toolkit. We also asked them about their
experience with accessibility tools before the evaluation.

4.2 Participants

9 developers (8 male) participated in the study, with most of them being
between the ages 21-30. Table 4.1 gives an overview of all the participants.
As can be seen there, every participant was familiar with the Unity game
engine and had multiple years of programming experience. One of the
participants uses Unity professionally.

Participant
Age

Group
Programming

Experience
Unity

Experience
Uses Unity

Professional
P1 21-30 5-6 years less than 1 year no
P2 21-30 5-6 years 3-4 years no
P3 21-30 3-4 years 1-2 years no
P4 21-30 5-6 years 1-2 years no
P5 21-30 6+ years 3-4 years no
P6 21-30 6+ years 1-2 years no
P7 31-40 6+ years 5-6 years yes
P8 21-30 6+ years 1-2 years no
P9 31-40 1-2 years 3-4 years no

Table 4.1: Demography of the evaluation participants

83

4 Evaluation

(a) Start screen (b) Game screen (c) Result screen

Figure 4.1: The three screens of the match-3 sample game.

In addition to these 9 developers, we also had one (male) pilot tester. His
results are not included here because we did alter the evaluation process
and post-questionnaire slightly after his participation.

4.3 Materials

For the evaluation, we used the same sample game as for demonstrating
discrete navigation in Section 3.5. This project was taken from a RayWen-
derlich tutorial1 and consists of three screens. These screens can be seen
in Figure 4.1. The project sent to the participants was a slightly modified
version of this Unity game project, which included the UA11Y toolkit and
added a convenience method to retrieve the name of a game tile. The exact
project is included in the materials appendix on the CD.

Additionally to the Unity project, each participant also received a task
description. It included an overview of the screen reader part of the UA11Y
toolkit, the exact task split into smaller subtasks, and a list of tips. These tips

1https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

84

https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

4 Evaluation

did not give away the solution to the task but helped the users navigate the
project more efficiently to keep the evaluation in a reasonable time frame.

The questionnaire that was given to the participants after the implementation
was finished consisted of three parts. The first part included 5 demographic
questions, the second 10 questions about making the sample project acces-
sible and interacting with a screen reader, and the last part 11 questions
about vision accessibility in general. Finally, there was a possibility to give
closing remarks.

4.4 Results

The results presented in the following both consist of our assessment of
the participants’ solutions and the answers given by the participants in the
post-questionnaire. The latter are a combination of multiple choice answers,
single choice answers, answers on a Likert scale between 1 (strongly agree)
and 5 (strongly disagree), and open-ended and answers.

4.4.1 Accessibility in General

The questionnaire about accessibility in general, shows that most of the
participants lack experience with adding accessibility support to software
products. Only 3 of the 9 participants worked on the implementation of
accessibility features prior to this evaluation, namely on color blindness
post-processing filters and button remapping for a Unity game. None of the
participants implemented screen reader support for any software before.
The reasons for this vary for both participants and for projects they worked
on. They range from just not thinking of adding screen reader support (6/9),
to believing that the target group for the screen reader support was too
small (3/9) and wanting to do adding support but not having the right tools
provided by the engine (2/9). Only one participant noted that someone else
in the project was responsible for adding support.

We asked participants about their general knowledge of accessibility. The
majority (7/9) informed themselves about game accessibility in the past.

85

4 Evaluation

These 7 participants did it by watching videos (4/7), attending talks (6/7),
reading articles (6/7), and learning about it during a lecture (1/7).

Around half of the participants (4/9) also used accessibility features them-
selves while playing games. Almost all participants (8/9) already knew
what a screen reader is before the evaluation. 5 had used a screen reader
before and everyone who did stated that using the custom screen reader of
our toolkit felt natural.

4.4.2 Making the Game Accessible

As expected, most of the participants (6/9) needed 90-120min to complete
the task. Only one was done earlier, after 60 - 90min, and two participants
were only finished after 150-180min. All participants stated that the task was
easy to understand (AVG: 4.44 STD: 0.53). They also could find everything
they needed easily in the package (AVG: 4.78 STD: 0.44) and, on average,
did think that implementing the screen reader support was easy (AVG: 4.00

STD: 1.00). The majority (AVG: 4.67 STD: 0.71) thought that it is important
to offer accessibility features in a game. They would also consider making
their next game accessible with a screen reader (AVG: 4.33 STD: 0.50), and
use our toolkit for this task (AVG: 4.67 STD: 0.50), if applicable.

When asking the participants about what they found particularly easy to
implement, everyone pointed to making texts, buttons, and other Unity UI
elements accessible. For example, one participant stated that ”All Ui elements
and text were basically only drag and drop in Unity, which was nice”. This fact is
also visible in our assessment of their solutions. The UI elements of the start
screen, result screen, and game screen were visible and interactive with the
screen reader in every solution.

Our assessment also shows where people did struggle the most, namely
with making the tiles and actual gameplay accessible. As one participant put
it: ”The tile was the only thing where no finished script was provided, hence this
took the most effort”. But before talking about the solutions of the participants,
we need to take a step back and talk about the reference implementation
here. To make the game tiles perfectly discoverable with both sequential
navigation and browsing, the accessibility description of each tile in our

86

4 Evaluation

reference implementation included its type, the location of the item (row
and column), and a hint if it was selected. The selection of an item in
this reference implementation could be toggled with the usual selection
mechanism of the screen reader.

Looking at the solutions that the participants provided, almost all differ
from the reference implementation. Only one participant (P8) did match
our reference implementation in both interaction and description of the
tiles. One participant (P3) missed updating the description of the tiles
after interacting with the game board. This made the game state diverge
from what was presented to the user via the screen reader, making the
implementation of P3 unplayable to someone with a visual impairment. All
other 7 solutions that we got diverged from the reference solution, but were
all still playable with closed eyes, as requested from the participants.

One issue was that majority of solutions (7/9) didn’t include the location of
a tile, making it hard to play with sequential navigation. Another problem
with most solutions (6/9) was the selection state. After selecting a tile, it
was not possible to determine if the tile is still selected by simply focusing
it with the screen reader. The selection state can only be determined by
trying to select the tile and listen to the audio cue. Speaking of selection, 4/9

solutions implemented selecting the tiles via a mouse click instead of using
the screen reader for interaction like in the reference implementation.

Where exactly the solution of each participant differed from the reference
can be seen in Tables 4.3 and 4.2.

4.5 Discussion

We were very pleased with the general reception of the toolkit. ”It was an
interesting first contact with integrating accessibility features for visually impaired
people in a video game. Looking forward to doing this more often!”. ”Please keep
working on this package and publish it to the asset store. Once you get the hang
of it becomes really easy to use and in the end providing screen reader support
can make a huge difference for people with vision impairment.”. The participants

87

4 Evaluation

Solution

Visible to
Screen
Reader

Description
Includes

Type

Description
Includes
Location

Description
Includes
Selection

Description
Updates

Reference yes yes yes yes yes
P1 yes yes no no yes
P2 yes yes no yes yes
P3 yes yes yes no no
P4 yes yes no no yes
P5 yes yes no yes yes
P6 yes yes no no yes
P7 yes yes no no yes
P8 yes yes yes yes yes
P9 yes yes no no yes

Table 4.2: Visibility and accessibility description of the tiles in the different solutions.

overall liked the toolkit and seemed to be inspired to make their games
more accessible in the future.

The results of the assessment and the feedback from the post-questionnaire
showed that there were no major issues with the package itself. We think
that the problems that did arise during the implementation can be at least
partially traced back to the lack of experience the participants had. None of
them worked on implementing a screen reader before, so it should be no
surprise that only one solution matched the reference implementation, even
if that result is not ideal. The problems that made the solutions differ from
the reference, which was (I) a not detailed enough accessibility description,
(II) missing updates of the accessibility description, and (III) interaction
through the mouse instead of the screen reader, could have been avoided
through a simple feedback loop. So we should try to include a feedback and
a refinement step in future evaluations of this package, ideally including a
person with visual impairments in this process.

88

4 Evaluation

Solution
Interactive through
the Screen Reader

Interactive through
Mouse Overall Playable

Reference yes no yes
P1 no yes yes
P2 yes no yes
P3 no yes no
P4 no yes yes
P5 no yes yes
P6 yes no yes
P7 yes no yes
P8 yes no yes
P9 yes no yes

Table 4.3: How interaction was solved in the different solutions and if they are overall
playable.

89

5 Lessons Learned

The following chapter will discuss what we’ve learned during the theoretical,
implementation, and evaluation parts of this thesis. Parts of it will already
be a peek into potential future work, which will be discussed in Chapter
6.

5.1 Theory

Game accessibility for people with visual impairments has been a topic
in the scientific community for several years now, but most work focuses
on experimental solutions and games that do not exist beyond the stud-
ies they’ve been created for. So it was helpful to get insight from other
developers on this topic and to have several people in the blind gaming
community speak out online, in documentaries, and conference talks about
their gaming experiences. These insights showed us that people with visual
impairment can play far more games than we initially thought. But most
of these games can only be played through exhausting workarounds, like
repeatedly listening to audio cues to learn the layout of a racing track, and
not thanks to extensive accessibility features. This made it clear to us both
how important our work is and that a lot more research into mainstream
gaming with visual impairment needs to be done, especially in the light of
games like The Last of Us Part II (Naughty Dog, 2020).

90

5 Lessons Learned

5.2 Design & Implementation

During the implementation of the toolkit, we found it particularly useful
to have access to different kinds of screen readers. This let us explore what
features and properties could work well in the context of game interaction
and use that knowledge to design and implement our basic accessibility
building block.

For translating this building block to a perceptible form, we’ve used a speech
synthesizer. Going into the project, we imagined searching for some library
to do this or build a crude speech synthesizer ourselves. So it was very
helpful to find a way to access the systems speech synthesizer on Windows,
macOS, and iOS and use it both for the navigation agent and the screen
reader. This simplified our work while also providing a familiar voice to the
user.

Implementing the native plugin to access the systems speech synthesizer
also opened the door for the native screen reader. This allows the user
to interact with the Unity game via the VoiceOver screen reader on iOS.
Having access to the systems screen reader is something we didn’t think
was feasible when we started this thesis.

5.3 Evaluation

The evaluation showed us that developers seem to be interested in game
accessibility in general, but lack experience with building accessible games
and software. So it is important to give them clear documentation and easy-
to-use tools to help them get started. In future evaluations, it would also
be useful to either have a feedback loop during the evaluation or provide
other sample projects to account for their lack of experience. This would
probably have prevented non-detailed accessibility descriptions and other
smaller problems. But even without experience, users were able to make
Unitys’ UI elements accessible without any problems, which showed that
our simple system for this worked well.

91

5 Lessons Learned

What we didn’t see coming were problems with the sequential navigation.
Participants did expect to be able to also navigate the game board vertically
with the arrow keys. Because of this limitation, some participants only
used the browsing strategy to interact with the game. This might be an
explanation why some participants used the mouse instead of screen reader
interaction to toggle the tile selection. The restriction to sequential navigation
was intended because we think there is a better solution to the problem of
quickly navigating a large number of elements with a screen reader, which
will be discussed in the next chapter. While this reason was clear to us, it
wasn’t clear to the participants. So we should have at least provided them
with some kind of explanation.

92

6 Suggestions for Future Work

We know that building the toolkit as presented in this thesis was only the
first step in making Unity games more accessible. Continuing to extend
its features and platform support is crucial to increase both adoption from
developers and the impact for visually impaired gamers. We have already
shown several areas for future work in Section 2.5.2, but we want to use this
chapter to discuss the ones where we see the most potential.

6.1 Improvements for Existing Tools

This first part will concern itself with extending the capabilities of tools that
have already been created for this thesis.

6.1.1 Native Screen Reader Support

With our work to support the VoiceOver screen reader on iOS, we did
already show that bridging to a native screen reader is possible. The logical
next step would be to do the same for other platforms and screen readers.
The easiest is probably supporting for VoiceOver on macOS since it could
potentially reuse some of the code from the iOS implementation.

Another good pick would be looking into support for the Android screen
reader TalkBack. Android is the leading mobile operating system, powering
76 percent of all mobile devices (Statista, 2019). Since Android and iOS
together cover 98 percent of the mobile market, supporting these two screen
readers makes the adoption of our package for cross-platform mobile games
more likely.

93

6 Suggestions for Future Work

Other interesting choices for future support would be the aforementioned
screen readers Microsoft Narrator, NVDA, and JAWS.

6.1.2 Voice Configuration and Language Support

Our toolkit provides access to the platform speech synthesizer on Windows,
iOS, and macOS, which is mainly used to power text to speech conversion
for our custom screen reader. To make the implementation easier, we’ve
used a fixed configuration for the speech synthesizer. This is far from ideal
and should be enhanced in future iterations of the toolkit. Users should
be able to adjust pace, gender, and most importantly, the language of the
voice. This last point also ties into another feature that should be considered
for further enhancement. All the properties of our accessibility signifier,
like label or description, are only localized in a single language. A future
version of the toolkit should give a possibility to provide localizations of
these values for different languages and use the most appropriate language
for the users’ system settings.

6.1.3 Custom Rotors

We’ve previously discussed that our screen reader built for Unity gives
access to the different elements in either a serial manner or by browsing
the screen with a finger or a mouse cursor. Accessing elements in a serial
manner only allows moving to the next or previous element. The position
of the element in the series is based on their location on the screen. This can
make it hard and overly complicated to find a particular element if there
are many accessible elements on the screen. To enhance this experience,
we could turn again to the VoiceOver screen reader for inspiration. This
screen reader has a feature called Custom Rotors, which allows the developer
to limit the series of accessible elements to certain kinds of elements. For
example, this allows to cycle through all available links on a website (Apple
Inc., 2021).

In the context of games, such a feature can be quite useful. In a chess game,
for example, there could be a Rotor to give quicker access to all the games’

94

6 Suggestions for Future Work

UI elements and another Rotor that only cycles through pieces that can be
moved.

6.1.4 Evaluating and Extending the Navigation Agent

The previously mentioned extensions all focused on the screen reader, but
a second major part of the toolkit is our navigation agent. Doing a proper
evaluation of it exceeded the scope of this thesis. So another topic for future
work would be to do such an evaluation both with developers and visually
impaired players, preferably by using existing projects of developers. The
results of such an evaluation then could be used to enhance the current
version of the navigation agent.

6.2 New Tools

We’ve selected the screen reader and navigation agent for this thesis because
we think that our work in this area can have a big impact. But there are
additional tools that could ease the development of visually accessible
games. We want to explore two more in the following.

6.2.1 Dynamic Type System & Fonts

Many modern operating systems offer some kind of system-wide setting
that lets the user dynamically change the font size. Depending on the
platform, applications can sometimes automatically adjust to these changes,
or retrieve such a setting and manually adapt to it. The idea would be to
build native plugins for different platforms to expose this dynamic type
setting in Unity and make user interface components adapt to it.

In combination with that, future contributors could research which typefaces
are more easily legible for people with low vision and either offer a selection
of such fonts to developers or create a new font for this purpose.

95

6 Suggestions for Future Work

6.2.2 Increased Contrast

Another area that concerns legibility is contrast. Since video games are an
interactive medium, a player can almost always cause a situation where two
elements are hard to distinguish because they have low contrast to each
other. A common example where this happens is with the so-called heads-
up display (HUD). The HUD is an overlay to show crucial information to
players while they move around in the gaming world. For many games
the HUD does not visually adapt to the background it is displayed on and
thus, can be hardly legible in certain situations. So a useful tool for Unity
would be to have a system that calculates a color with high contrast to the
image or section of the screen. This color could then be used to dynamically
recolor or add a border around these elements and thus, make them easier
to see. Such a dynamic recoloring would not work for all games though,
since colors are often used to transport information and because of aesthetic
reasons. For these cases, we can imagine a variation of the proposed system
which could detect areas of low contrast and make the developer aware of
them during development.

Besides offering tools to increase the HUDs contrast, future versions of this
toolkit could add an outline shader or some other means to increase contrast
in the whole game, similar to the ones we’ve seen in Section 2.3.4 when
discussing the accessibility tools of The Last of Us Part II (Naughty Dog,
2020).

6.3 Increasing Appeal

Having a broad number of very capable vision accessibility tools is impor-
tant to increase the appeal of the toolkit, but there are other things that can
be done to make it more relevant to developers.

96

6 Suggestions for Future Work

6.3.1 Support for other Native Assistive Technologies

Different assistive technologies are often built upon the same basic building
blocks. So while a screen reader and a voice interface are two completely
different technologies that often serve different people, they need to access
the same accessibility information of UI elements, like their position or a
label. This basic fact implies that our toolkit could already support other
assistive technologies on the iOS platform where we have a plugin to access
the native screen reader.

The two technologies that come to mind are Switch Control1 and Voice
Control2. Both of these technologies support people with motor disabilities
to use their devices. So one area for future work would be testing out the
support for these assistive technologies on iOS, making potential adaptions
to enhance the support, and trying to do the same for other platforms and
technologies.

6.3.2 Automatic Testing

Something that we’ve learned while implementing the toolkit is that screen
reader accessibility support is sometimes used for automated testing, like in
UIKit using the UIAccessibilityIdentification 3 protocol. We can image
building something similar for Unity using our accessibility toolkit. Having
such a system in place would help both with discoverability of the toolkit
and adoption, since making the game accessible can then also help increase
the general quality of the software through testing.

1https://support.apple.com/en-us/HT201370

2https://support.apple.com/en-us/HT210417

3https://developer.apple.com/documentation/uikit/uiaccessibilityidentification

97

https://support.apple.com/en-us/HT201370
https://support.apple.com/en-us/HT210417
https://developer.apple.com/documentation/uikit/uiaccessibilityidentification

7 Summary

Video games are intended to be a medium for everyone, and yet people
with visual impairments are often excluded from them. Most games that
can be played by this demographic are either created specifically for them
or require a tiresome trial-and-error process to learn the basic structure
of the game. Mainstream games, the ones that everyone else plays, only
rarely support accessibility tools like screen readers or navigation agents.
The main reason for this lack of support is the way that games are built,
using cross-platform game engines. Unity, the most popular game engine,
does not include any advanced tools to make visually accessible games.
So making even simple Unity games accessible is often not feasible for
developers, since they have to build all the tools themselves.

In this thesis, we’ve presented the design and implementation of the Unity
Accessibility Toolkit, which helps developers build visually accessible games
with the Unity game engine. We showed how an accessibility signifier, the
UA11Y Element, can be used as the basic building block for different
accessibility tools. The first of these tools was a Navigation Agent. This
agent can guide a player to a selected location in an environment using
auditory signals. The second tool is a screen reader, which can be used
in a range of different scenarios, from menu navigation to environment
observation. In addition to this custom screen reader, we’ve also managed
to implement a native plugin for iOS that allows gamers to interact with
Unity using the VoiceOver screen reader.

We also conducted a first evaluation of the screen reader that is included
in the toolkit. Developers familiar with Unity were given a sample project
of a match-3 puzzle game that is not accessible at all. Their task was to
make the game accessible using our toolkit and fill out a post-questionnaire
about their experience with the toolkit and with accessibility technologies
in general.

98

7 Summary

The evaluation showed that the toolkit is easy to use even for developers
without any prior experience with implementing screen reader support. We
also discovered that a feedback loop would have been useful during the
evaluation to prevent simple errors likely caused by that lack of experience.
This is something we should consider for future evaluations. But all partici-
pants have shown a high interest in such a tool, empathizing the importance
of work in this field.

99

Appendix

100

Bibliography

Abdolrahmani, Ali, Ravi Kuber, and Stacy M. Branham (2018). “”Siri Talks at
You”: An Empirical Investigation of Voice-Activated Personal Assistant
(VAPA) Usage by Individuals Who Are Blind.” In: Proceedings of the 20th
International ACM SIGACCESS Conference on Computers and Accessibility.
ASSETS ’18. Galway, Ireland: ACM, pp. 249–258. isbn: 978-1-4503-5650-3.
doi: 10.1145/3234695.3236344. url: http://doi.acm.org/10.1145/
3234695.3236344 (cit. on pp. 18, 19).

AbleGamers (2020). The AbleGamers Charity: Our Stories. AbleGamers. url:
https://ablegamers.org/pages/our-stories/ (visited on 01/15/2021)
(cit. on p. 1).

Allman, Troy et al. (2009). “Rock Vibe: Rock Band R© computer games for
people with no or limited vision.” In: pp. 51–58. doi: 10.1145/1639642.
1639653 (cit. on p. 26).

Andrade, Ronny et al. (2019). “Playing Blind: Revealing the World of Gamers
with Visual Impairment.” In: Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI ’19. Glasgow, Scotland Uk:
ACM, 116:1–116:14. isbn: 978-1-4503-5970-2. doi: 10.1145/3290605.
3300346. url: http://doi.acm.org/10.1145/3290605.3300346 (cit. on
pp. 1, 24, 27, 28, 31, 32).

Apple Inc. (2019a). Accessibility for iOS and tvOS. url: https://developer.
apple.com/documentation/uikit/accessibility_for_ios_and_tvos

(visited on 10/17/2019) (cit. on p. 39).
Apple Inc. (2020a). Accessibility Traits. url: https://developer.apple.com/

documentation/objectivec/nsobject/uiaccessibility/accessibility_

traits?language=objc (visited on 11/05/2020) (cit. on p. 51).
Apple Inc. (2019b). SceneKit. url: https://developer.apple.com/documentation/

scenekit (visited on 07/16/2019) (cit. on p. 39).

101

http://dx.doi.org/10.1145/3234695.3236344
http://doi.acm.org/10.1145/3234695.3236344
http://doi.acm.org/10.1145/3234695.3236344
https://ablegamers.org/pages/our-stories/
http://dx.doi.org/10.1145/1639642.1639653
http://dx.doi.org/10.1145/1639642.1639653
http://dx.doi.org/10.1145/3290605.3300346
http://dx.doi.org/10.1145/3290605.3300346
http://doi.acm.org/10.1145/3290605.3300346
https://developer.apple.com/documentation/uikit/accessibility_for_ios_and_tvos
https://developer.apple.com/documentation/uikit/accessibility_for_ios_and_tvos
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility/accessibility_traits?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility/accessibility_traits?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility/accessibility_traits?language=objc
https://developer.apple.com/documentation/scenekit
https://developer.apple.com/documentation/scenekit

Bibliography

Apple Inc. (2019c). Speech Synthesis. url: https://developer.apple.com/
documentation/avfoundation/speech_synthesis (visited on 07/16/2019)
(cit. on p. 39).

Apple Inc. (2019d). SpriteKit. url: https://developer.apple.com/documentation/
spritekit (visited on 07/16/2019) (cit. on p. 39).

Apple Inc. (2020b). UIAccessibility. url: https://developer.apple.com/
documentation/objectivec/nsobject/uiaccessibility?language=

objc (visited on 10/30/2020) (cit. on p. 50).
Apple Inc. (2021). UIAccessibilityCustomRotor. url: https://developer.

apple.com/documentation/uikit/uiaccessibilitycustomrotor (vis-
ited on 01/15/2021) (cit. on p. 94).

Apple Inc. (2020c). Vision Accessibility - iPhone. url: httpshttps://www.
apple.com/accessibility/iphone/vision/ (visited on 10/02/2020)
(cit. on p. 22).

Apple Inc. (2020d). Apps for Accessibility. url: https://apps.apple.com/
story/id1266441335 (visited on 10/08/2020) (cit. on p. 23).

Araújo, Maria C. C. et al. (2017). “Mobile Audio Games Accessibility
Evaluation for Users Who Are Blind.” In: Universal Access in Human–
Computer Interaction. Designing Novel Interactions. Ed. by Margherita
Antona and Constantine Stephanidis. Cham: Springer International
Publishing, pp. 242–259. isbn: 978-3-319-58703-5 (cit. on pp. 28, 32).

Arielle M. Silverman, Jason D. Gwinn and Leaf Van Boven (2014). “Stum-
bling in Their Shoes: Disability Simulations Reduce Judged Capabilities
of Disabled People.” In: Social Psychological and Personality Science 6.4,
pp. 464–471. doi: 10.1177/1948550614559650 (cit. on p. 32).

Atkinson, Matthew T. et al. (2006). “Making the Mainstream Accessible: Re-
defining the Game.” In: Sandbox ’06. Boston, Massachusetts: Association
for Computing Machinery, pp. 21–28. isbn: 1595933867. doi: 10.1145/
1183316.1183321. url: https://doi.org/10.1145/1183316.1183321
(cit. on p. 1).

Baber, C. (1993). “Interactive Speech Technology.” In: ed. by Christopher
Baber and Janet M. Noyes. Bristol, PA, USA: Taylor & Francis, Inc.
Chap. Developing Interactive Speech Technology, pp. 13–18. isbn: 0-7484-
0127-X. url: http://dl.acm.org/citation.cfm?id=210140.210143
(cit. on p. 18).

Bailey, Ian L. and Jan E. Lovie-Kitchin (2013). “Visual acuity testing. From
the laboratory to the clinic.” In: Vision Research 90. Testing Vision: From

102

https://developer.apple.com/documentation/avfoundation/speech_synthesis
https://developer.apple.com/documentation/avfoundation/speech_synthesis
https://developer.apple.com/documentation/spritekit
https://developer.apple.com/documentation/spritekit
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility?language=objc
https://developer.apple.com/documentation/uikit/uiaccessibilitycustomrotor
https://developer.apple.com/documentation/uikit/uiaccessibilitycustomrotor
httpshttps://www.apple.com/accessibility/iphone/vision/
httpshttps://www.apple.com/accessibility/iphone/vision/
https://apps.apple.com/story/id1266441335
https://apps.apple.com/story/id1266441335
http://dx.doi.org/10.1177/1948550614559650
http://dx.doi.org/10.1145/1183316.1183321
http://dx.doi.org/10.1145/1183316.1183321
https://doi.org/10.1145/1183316.1183321
http://dl.acm.org/citation.cfm?id=210140.210143

Bibliography

Laboratory Psychophysical Tests to Clinical Evaluation, pp. 2–9. issn:
0042-6989. doi: https : / / doi . org / 10 . 1016 / j . visres . 2013 . 05 .

004. url: http://www.sciencedirect.com/science/article/pii/
S0042698913001259 (cit. on p. 8).

Blattner, Meera M., Denise A. Sumikawa, and Robert M. Greenberg (1989).
“Earcons and Icons: Their Structure and Common Design Principles
(Abstract Only).” In: SIGCHI Bull. 21.1, pp. 123–124. issn: 0736-6906. doi:
10.1145/67880.1046599. url: http://doi.acm.org/10.1145/67880.
1046599 (cit. on p. 29).

Borodin, Yevgen et al. (2010). “More Than Meets the Eye: A Survey of
Screen-reader Browsing Strategies.” In: Proceedings of the 2010 Inter-
national Cross Disciplinary Conference on Web Accessibility (W4A). W4A
’10. Raleigh, North Carolina: ACM, 13:1–13:10. isbn: 978-1-4503-0045-2.
doi: 10.1145/1805986.1806005. url: http://doi.acm.org/10.1145/
1805986.1806005 (cit. on pp. 16, 18, 19).

Calleja, Gordon (2010). “Digital Games and Escapism.” In: Games and Culture
5.4, pp. 335–353. doi: 10.1177/1555412009360412. eprint: https://doi.
org/10.1177/1555412009360412. url: https://doi.org/10.1177/
1555412009360412 (cit. on p. 1).

Christopoulou, Eleftheria and Stelios Xinogalos (2017). “Overview and Com-
parative Analysis of Game Engines for Desktop and Mobile Devices.” In:
International Journal of Serious Games 4, pp. 21–36. doi: 10.17083/ijsg.
v4i4.194 (cit. on p. 36).

Cowan, Benjamin R. et al. (2017). “”What Can I Help You with?”: Infrequent
Users’ Experiences of Intelligent Personal Assistants.” In: Proceedings
of the 19th International Conference on Human-Computer Interaction with
Mobile Devices and Services. MobileHCI ’17. Vienna, Austria: ACM, 43:1–
43:12. isbn: 978-1-4503-5075-4. doi: 10.1145/3098279.3098539. url:
http://doi.acm.org/10.1145/3098279.3098539 (cit. on p. 18).

Darilek, Nolan (2018). Add accessible description property to Control. url:
https://github.com/godotengine/godot/pull/20254 (visited on
10/16/2020) (cit. on p. 39).

Dix et al. (2003). Human-Computer Interaction (3rd Edition). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc. isbn: 0130461091 (cit. on pp. 10, 11,
14, 16).

Dring, Christopher (2019). AAA game downloads on the brink of overtaking
physical in Europe. url: https://www.gamesindustry.biz/articles/

103

http://dx.doi.org/https://doi.org/10.1016/j.visres.2013.05.004
http://dx.doi.org/https://doi.org/10.1016/j.visres.2013.05.004
http://www.sciencedirect.com/science/article/pii/S0042698913001259
http://www.sciencedirect.com/science/article/pii/S0042698913001259
http://dx.doi.org/10.1145/67880.1046599
http://doi.acm.org/10.1145/67880.1046599
http://doi.acm.org/10.1145/67880.1046599
http://dx.doi.org/10.1145/1805986.1806005
http://doi.acm.org/10.1145/1805986.1806005
http://doi.acm.org/10.1145/1805986.1806005
http://dx.doi.org/10.1177/1555412009360412
https://doi.org/10.1177/1555412009360412
https://doi.org/10.1177/1555412009360412
https://doi.org/10.1177/1555412009360412
https://doi.org/10.1177/1555412009360412
http://dx.doi.org/10.17083/ijsg.v4i4.194
http://dx.doi.org/10.17083/ijsg.v4i4.194
http://dx.doi.org/10.1145/3098279.3098539
http://doi.acm.org/10.1145/3098279.3098539
https://github.com/godotengine/godot/pull/20254
https://www.gamesindustry.biz/articles/2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-physical-in-europe
https://www.gamesindustry.biz/articles/2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-physical-in-europe
https://www.gamesindustry.biz/articles/2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-physical-in-europe

Bibliography

2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-

physical-in-europe (visited on 10/02/2020) (cit. on p. 22).
Electronic Arts Inc. (2019). EA Sports UFC 3 Guide for the Blind and Visually

Impaired. url: https://www.ea.com/able/resources/ufc/ufc-3/ps4/
guides (visited on 06/13/2019) (cit. on pp. 24, 25).

Ellis, Gerry (2016). “Impairment and Disability: Challenging Concepts of
‘Normality‘.” In: Researching Audio Description. New Approaches. Ed. by
Anna Matamala. Ed. by Pilar Orero. First. Palgrave Macmillan UK.
Chap. 3, pp. 35–45. isbn: 978-1-137-56916-5 (cit. on p. 4).

Entertainment Software Association (2020). 2020 Essential Facts About the
Video Game Industry. Tech. rep. url: https://www.theesa.com/wp-
content/uploads/2020/07/Final- Edited- 2020- ESA_Essential_

facts.pdf (visited on 10/02/2020) (cit. on p. 20).
Epic Games, Inc (2020a). Set Color Vision Deficiency Type. url: https://docs.

unrealengine . com / en - US / BlueprintAPI / Widget / Accessibility /

SetColorVisionDeficiencyType/index.html (visited on 10/16/2020)
(cit. on pp. 38, 41).

Epic Games, Inc (2020b). Supporting Screen Readers. url: https://docs.
unrealengine.com/en- US/Engine/UMG/UserGuide/ScreenReader/

index.html (visited on 10/16/2020) (cit. on p. 38).
Epic Games, Inc (2020c). Unreal Engine 4.23 Release Notes. url: https://

docs.unrealengine.com/en-US/Support/Builds/ReleaseNotes/4_23/

index.html (visited on 10/16/2020) (cit. on p. 38).
Friberg, Johnny and Dan Gärdenfors (2004). “Audio Games: New Per-

spectives on Game Audio.” In: Proceedings of the 2004 ACM SIGCHI
International Conference on Advances in Computer Entertainment Technol-
ogy. ACE ’04. Singapore: ACM, pp. 148–154. isbn: 1-58113-882-2. doi:
10.1145/1067343.1067361. url: http://doi.acm.org/10.1145/
1067343.1067361 (cit. on p. 28).

Game Accessibility Guidelines (2019a). Ensure screenreader support, including
menus & installers. Game Accessibility Guidelines. url: http://game%5C-
accessibility%5C-guidelines.com/ensure-screenreader-support-

including-menus-installers/ (visited on 06/22/2019) (cit. on p. 24).
Game Accessibility Guidelines (2019b). Include assist modes such as auto-

aim and assisted steering. Game Accessibility Guidelines. url: http : / /

gameaccessibilityguidelines.com/include-assist-modes-such-as-

104

https://www.gamesindustry.biz/articles/2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-physical-in-europe
https://www.gamesindustry.biz/articles/2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-physical-in-europe
https://www.gamesindustry.biz/articles/2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-physical-in-europe
https://www.gamesindustry.biz/articles/2019-06-07-aaa-game-downloads-on-the-brink-of-overtaking-physical-in-europe
https://www.ea.com/able/resources/ufc/ufc-3/ps4/guides
https://www.ea.com/able/resources/ufc/ufc-3/ps4/guides
https://www.theesa.com/wp-content/uploads/2020/07/Final-Edited-2020-ESA_Essential_facts.pdf
https://www.theesa.com/wp-content/uploads/2020/07/Final-Edited-2020-ESA_Essential_facts.pdf
https://www.theesa.com/wp-content/uploads/2020/07/Final-Edited-2020-ESA_Essential_facts.pdf
https://docs.unrealengine.com/en-US/BlueprintAPI/Widget/Accessibility/SetColorVisionDeficiencyType/index.html
https://docs.unrealengine.com/en-US/BlueprintAPI/Widget/Accessibility/SetColorVisionDeficiencyType/index.html
https://docs.unrealengine.com/en-US/BlueprintAPI/Widget/Accessibility/SetColorVisionDeficiencyType/index.html
https://docs.unrealengine.com/en-US/Engine/UMG/UserGuide/ScreenReader/index.html
https://docs.unrealengine.com/en-US/Engine/UMG/UserGuide/ScreenReader/index.html
https://docs.unrealengine.com/en-US/Engine/UMG/UserGuide/ScreenReader/index.html
https://docs.unrealengine.com/en-US/Support/Builds/ReleaseNotes/4_23/index.html
https://docs.unrealengine.com/en-US/Support/Builds/ReleaseNotes/4_23/index.html
https://docs.unrealengine.com/en-US/Support/Builds/ReleaseNotes/4_23/index.html
http://dx.doi.org/10.1145/1067343.1067361
http://doi.acm.org/10.1145/1067343.1067361
http://doi.acm.org/10.1145/1067343.1067361
http://game%5C-accessibility%5C-guidelines.com/ensure-screenreader-support-including-menus-installers/
http://game%5C-accessibility%5C-guidelines.com/ensure-screenreader-support-including-menus-installers/
http://game%5C-accessibility%5C-guidelines.com/ensure-screenreader-support-including-menus-installers/
http://gameaccessibilityguidelines.com/include-assist-modes-such-as-auto-aim-and-assisted-steering/
http://gameaccessibilityguidelines.com/include-assist-modes-such-as-auto-aim-and-assisted-steering/
http://gameaccessibilityguidelines.com/include-assist-modes-such-as-auto-aim-and-assisted-steering/
http://gameaccessibilityguidelines.com/include-assist-modes-such-as-auto-aim-and-assisted-steering/

Bibliography

auto-aim-and-assisted-steering/ (visited on 06/13/2019) (cit. on
p. 28).

Gamma, Erich et al. (1995). Design Patterns: Elements of Reusable Object-
Oriented Software. USA: Addison-Wesley Longman Publishing Co., Inc.
isbn: 0201633612 (cit. on p. 57).

Gaver, William W. (1986). “Auditory Icons: Using Sound in Computer
Interfaces.” In: Hum.-Comput. Interact. 2.2, pp. 167–177. issn: 0737-0024.
doi: 10.1207/s15327051hci0202_3. url: https://doi.org/10.1207/
s15327051hci0202_3 (cit. on p. 29).

ghost (2017). Add Accessibility for Blind Developers Who Use Screenreaders. url:
https://github.com/godotengine/godot/issues/14011 (visited on
07/16/2019) (cit. on p. 38).

Gregory, Jason (2014). Game Engine Architecture, Second Edition. 2nd. Natick,
MA, USA: A. K. Peters, Ltd. isbn: 1466560010, 9781466560017 (cit. on
p. 36).

Hamilton, Ian (2013). Screenreaders and game engines. url: http://ian-
hamilton.com/screenreaders-and-game-engines/ (visited on 06/21/2019)
(cit. on p. 24).

Higgins, Tom (2010). Unity Turns 5, Happy Birthday! Unity Technologies.
url: https://blogs.unity3d.com/2010/06/07/unity-turns-5-happy-
birthday/ (visited on 04/29/2021) (cit. on p. 37).

Hiliges et al. (2017). “Grasping Virtual Objects in Augmented Reality.” US
9,552,673 B2. Microsoft Corporation (cit. on p. 10).

Huang, Jia-Bin et al. (2007). “Information Preserving Color Transformation
for Protanopia and Deuteranopia.” In: Signal Processing Letters, IEEE 14,
pp. 711–714. doi: 10.1109/LSP.2007.898333 (cit. on p. 8).

HumanWare (2019). Brailliant BI 14 braille display. url: https://store.
humanware.com/hus/brailliant-bi14-braille-display.html (visited
on 07/12/2019) (cit. on pp. 13, 14).

Hussain, Badrul et al. (2006). “Changing from Snellen to LogMAR: debate
or delay?” In: Clinical & Experimental Ophthalmology 34.1, pp. 6–8. doi:
10.1111/j.1442-9071.2006.01135.x. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1442- 9071.2006.01135.x. url:
https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1111 / j . 1442 -

9071.2006.01135.x (cit. on p. 6).
Huston, Lainie (2019). New Garage project bakes accessibility into game devel-

opment via responsive spatial audio. Microsoft Cooperation. url: https:

105

http://gameaccessibilityguidelines.com/include-assist-modes-such-as-auto-aim-and-assisted-steering/
http://gameaccessibilityguidelines.com/include-assist-modes-such-as-auto-aim-and-assisted-steering/
http://gameaccessibilityguidelines.com/include-assist-modes-such-as-auto-aim-and-assisted-steering/
http://dx.doi.org/10.1207/s15327051hci0202_3
https://doi.org/10.1207/s15327051hci0202_3
https://doi.org/10.1207/s15327051hci0202_3
https://github.com/godotengine/godot/issues/14011
http://ian-hamilton.com/screenreaders-and-game-engines/
http://ian-hamilton.com/screenreaders-and-game-engines/
https://blogs.unity3d.com/2010/06/07/unity-turns-5-happy-birthday/
https://blogs.unity3d.com/2010/06/07/unity-turns-5-happy-birthday/
http://dx.doi.org/10.1109/LSP.2007.898333
https://store.humanware.com/hus/brailliant-bi14-braille-display.html
https://store.humanware.com/hus/brailliant-bi14-braille-display.html
http://dx.doi.org/10.1111/j.1442-9071.2006.01135.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1442-9071.2006.01135.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1442-9071.2006.01135.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1442-9071.2006.01135.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1442-9071.2006.01135.x
https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/
https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/
https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/

Bibliography

//www.microsoft.com/en-us/garage/blog/2019/04/new-garage-

project-bakes-accessibility-into-game-development-via-responsive-

spatial-audio/ (visited on 07/17/2019) (cit. on p. 42).
Hyvärinen, Lea, Pentti Laurinen, and Jyrki Romvmo (1983). “Contrast

sensitivity in evaluation of visual impairment due to diabetes.” In: Acta
Ophthalmologica 61.1, pp. 94–101. doi: 10.1111/j.1755-3768.1983.
tb01399.x. url: https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1755-3768.1983.tb01399.x (cit. on p. 12).

Icel, Berk (2017). Gaming Through New Eyes. Youtube. url: https://www.
youtube.com/watch?v=P7n9s7yBlGw (visited on 06/13/2019) (cit. on
p. 25).

IllegallySighted (2017). Steam, Steam Website, & Steam IOS App Accessibility.
Youtube. url: https : / / www . youtube . com / watch ? v = DIHyg8 - BrMk

(visited on 06/22/2019) (cit. on p. 24).
Irvine et al. (2014). “Tablet and Smartphone Accessibility Features in the

Low Vision Rehabilitation.” In: Neuro-Ophthalmology 38.2, pp. 53–59. doi:
10.3109/01658107.2013.874448. url: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC5123149/ (cit. on p. 13).

Juan Linietsky, Ariel Manzur (2019). Godot License. Godot. url: https :

//godotengine.org/license (visited on 07/16/2019) (cit. on p. 38).
Kovács, Péter et al. (2015). “Application of immersive technologies for

education: State of the art.” In: pp. 283–288. doi: 10.1109/IMCTL.2015.
7359604 (cit. on p. 31).

Kruger, Rynhardt and Lynette van Zijl (2014). “Rendering Virtual Worlds in
Audio and Text.” In: Proceedings of International Workshop on Massively
Multiuser Virtual Environments. MMVE ’14. Singapore, Singapore: ACM,
5:1–5:2. isbn: 978-1-4503-2708-4. doi: 10.1145/2577387.2577390. url:
http://doi.acm.org/10.1145/2577387.2577390 (cit. on p. 33).

Linietsky, Juan (2014). Godot Engine Reaches 1.0, First Stable Release. Godot.
url: https://godotengine.org/article/godot-engine-reaches-1-0
(visited on 07/16/2019) (cit. on p. 38).

Lokki, Tapio and Matti Grohn (2005). “Navigation with Auditory Cues
in a Virtual Environment.” In: IEEE MultiMedia 12.2, pp. 80–86. issn:
1070-986X. doi: 10.1109/MMUL.2005.33. url: http://dx.doi.org/10.
1109/MMUL.2005.33 (cit. on p. 33).

Luger, Ewa and Abigail Sellen (2016). “”Like Having a Really Bad PA”:
The Gulf Between User Expectation and Experience of Conversational

106

https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/
https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/
https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/
https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/
https://www.microsoft.com/en-us/garage/blog/2019/04/new-garage-project-bakes-accessibility-into-game-development-via-responsive-spatial-audio/
http://dx.doi.org/10.1111/j.1755-3768.1983.tb01399.x
http://dx.doi.org/10.1111/j.1755-3768.1983.tb01399.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-3768.1983.tb01399.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-3768.1983.tb01399.x
https://www.youtube.com/watch?v=P7n9s7yBlGw
https://www.youtube.com/watch?v=P7n9s7yBlGw
https://www.youtube.com/watch?v=DIHyg8-BrMk
http://dx.doi.org/10.3109/01658107.2013.874448
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123149/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123149/
https://godotengine.org/license
https://godotengine.org/license
http://dx.doi.org/10.1109/IMCTL.2015.7359604
http://dx.doi.org/10.1109/IMCTL.2015.7359604
http://dx.doi.org/10.1145/2577387.2577390
http://doi.acm.org/10.1145/2577387.2577390
https://godotengine.org/article/godot-engine-reaches-1-0
http://dx.doi.org/10.1109/MMUL.2005.33
http://dx.doi.org/10.1109/MMUL.2005.33
http://dx.doi.org/10.1109/MMUL.2005.33

Bibliography

Agents.” In: Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. CHI ’16. San Jose, California, USA: ACM, pp. 5286–
5297. isbn: 978-1-4503-3362-7. doi: 10.1145/2858036.2858288. url:
http://doi.acm.org/10.1145/2858036.2858288 (cit. on p. 18).

Molloy, David and Paul Carter (2020). Last of Us Part II: Is this the most
accessible game ever? BBC. url: https://www.bbc.com/news/technology-
53093613 (visited on 10/08/2020) (cit. on p. 33).

National Eye Institute (2019). Priority eye diseases: Refractive errors and low
vision. url: https://www.who.int/blindness/causes/priority/en/
index4.html (visited on 07/15/2019) (cit. on p. 6).

Norman, Donald A. (2002). The Design of Everyday Things: Revised & Expanded
Edition. USA: Basic Books, Inc. isbn: 9780465050659 (cit. on p. 49).

Oliveira, João et al. (2011). “BrailleType: Unleashing Braille over Touch
Screen Mobile Phones.” In: Human-Computer Interaction – INTERACT
2011. Ed. by Pedro Campos et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 100–107. isbn: 978-3-642-23774-4 (cit. on p. 12).

Pivec Labs (2020). Visual Aids. url: https://docs.piveclabs.com/game-
creator/accessibility- module- for- game- creator/visual- aids

(visited on 10/21/2020) (cit. on p. 42).
Porter, John R. (2014). “Understanding and Addressing Real-World Acces-

sibility Issues in Mainstream Video Games.” In: SIGACCESS Access.
Comput. 108, pp. 42–45. issn: 1558-2337. doi: 10.1145/2591357.2591364.
url: https://doi.org/10.1145/2591357.2591364 (cit. on p. 1).

Pradhan, Alisha, Kanika Mehta, and Leah Findlater (2018). “”Accessibil-
ity Came by Accident”: Use of Voice-Controlled Intelligent Personal
Assistants by People with Disabilities.” In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18. Montreal QC,
Canada: ACM, 459:1–459:13. isbn: 978-1-4503-5620-6. doi: 10.1145/
3173574 . 3174033. url: http : / / doi . acm . org / 10 . 1145 / 3173574 .

3174033 (cit. on pp. 18, 19).
Preece, Aaron (2013). The World of Audio Games: A Crash Course. American

Foundation for the Blind. url: https://www.afb.org/aw/14/11/15738
(visited on 06/13/2019) (cit. on p. 28).

RARECSM (2019). Sea of Thieves: Configuring ‘Let Games Read to Me’ Game
Transcription. Microsoft Corporation. url: https://support.seaofthieves.
com/hc/en-gb/articles/360022122074--Configuring-Let-Games-

107

http://dx.doi.org/10.1145/2858036.2858288
http://doi.acm.org/10.1145/2858036.2858288
https://www.bbc.com/news/technology-53093613
https://www.bbc.com/news/technology-53093613
https://www.who.int/blindness/causes/priority/en/index4.html
https://www.who.int/blindness/causes/priority/en/index4.html
https://docs.piveclabs.com/game-creator/accessibility-module-for-game-creator/visual-aids
https://docs.piveclabs.com/game-creator/accessibility-module-for-game-creator/visual-aids
http://dx.doi.org/10.1145/2591357.2591364
https://doi.org/10.1145/2591357.2591364
http://dx.doi.org/10.1145/3173574.3174033
http://dx.doi.org/10.1145/3173574.3174033
http://doi.acm.org/10.1145/3173574.3174033
http://doi.acm.org/10.1145/3173574.3174033
https://www.afb.org/aw/14/11/15738
https://support.seaofthieves.com/hc/en-gb/articles/360022122074--Configuring-Let-Games-Read-to-Me-Game-Transcription
https://support.seaofthieves.com/hc/en-gb/articles/360022122074--Configuring-Let-Games-Read-to-Me-Game-Transcription
https://support.seaofthieves.com/hc/en-gb/articles/360022122074--Configuring-Let-Games-Read-to-Me-Game-Transcription
https://support.seaofthieves.com/hc/en-gb/articles/360022122074--Configuring-Let-Games-Read-to-Me-Game-Transcription

Bibliography

Read- to- Me- Game- Transcription (visited on 10/02/2020) (cit. on
p. 24).

Saylor, Steve (2020). The Last Of Us Part II - MOST ACCESSIBLE GAME
EVER! - Accessibility Impressions. Youtube. url: https://www.youtube.
com/watch?v=PWJhxsZb81U&t=689s (visited on 06/13/2020) (cit. on
p. 34).

Schaller, Dave (2006). Unity and Accessibility. url: https://forum.unity.
com/threads/unity-and-accessibility.8606/ (visited on 07/16/2019)
(cit. on p. 37).

Schmidt et al. (2002). “Refreshable Braille Display System.” US 6,354,839 B1

(cit. on p. 12).
Schneider, Joel (2002). Classic Eye Chart. url: http://www.i- see.org/

block_letter_eye_chart.pdf (visited on 10/29/2020) (cit. on p. 7).
Simunovic, M P (2010). “Colour vision deficiency.” In: Eye 24.5, pp. 747–755.

doi: 10.1038/eye.2009.251. url: https://doi.org/10.1038/eye.
2009.251 (cit. on p. 8).

Smith, Brian A. and Shree K. Nayar (2018). “The RAD: Making Racing
Games Equivalently Accessible to People Who Are Blind.” In: Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. CHI
’18. Montreal QC, Canada: ACM, 516:1–516:12. isbn: 978-1-4503-5620-6.
doi: 10.1145/3173574.3174090. url: http://doi.acm.org/10.1145/
3173574.3174090 (cit. on p. 32).

Sony Interactive Entertainment Europe (2020). The Last of Us Part II sells more
than 4 million copies. url: https://blog.playstation.com/2020/06/
26/the-last-of-us-part-ii-sells-more-than-4-million-copies/

(visited on 10/09/2020) (cit. on p. 33).
Sony Interactive Entertainment LLC (2020). Accessibility options for The Last

of Us Part II. url: https://www.playstation.com/en-us/games/the-
last-of-us-part-ii-ps4/accessibility/ (visited on 10/09/2020)
(cit. on pp. 33–35).

Statista (2019). Mobile operating systems’ market share worldwide from January
2012 to July 2019. url: httpshttps://www.statista.com/statistics/
272698/global-market-share-held-by-mobile-operating-systems-

since-2009/ (visited on 11/03/2019) (cit. on p. 93).
Stevens, Karen (2018). AAA Gaming While Blind. Youtube. url: https://www.

youtube.com/watch?v=YaDR4hJkskc (visited on 06/26/2019) (cit. on
pp. 24–28).

108

https://support.seaofthieves.com/hc/en-gb/articles/360022122074--Configuring-Let-Games-Read-to-Me-Game-Transcription
https://support.seaofthieves.com/hc/en-gb/articles/360022122074--Configuring-Let-Games-Read-to-Me-Game-Transcription
https://support.seaofthieves.com/hc/en-gb/articles/360022122074--Configuring-Let-Games-Read-to-Me-Game-Transcription
https://www.youtube.com/watch?v=PWJhxsZb81U&t=689s
https://www.youtube.com/watch?v=PWJhxsZb81U&t=689s
https://forum.unity.com/threads/unity-and-accessibility.8606/
https://forum.unity.com/threads/unity-and-accessibility.8606/
http://www.i-see.org/block_letter_eye_chart.pdf
http://www.i-see.org/block_letter_eye_chart.pdf
http://dx.doi.org/10.1038/eye.2009.251
https://doi.org/10.1038/eye.2009.251
https://doi.org/10.1038/eye.2009.251
http://dx.doi.org/10.1145/3173574.3174090
http://doi.acm.org/10.1145/3173574.3174090
http://doi.acm.org/10.1145/3173574.3174090
https://blog.playstation.com/2020/06/26/the-last-of-us-part-ii-sells-more-than-4-million-copies/
https://blog.playstation.com/2020/06/26/the-last-of-us-part-ii-sells-more-than-4-million-copies/
https://www.playstation.com/en-us/games/the-last-of-us-part-ii-ps4/accessibility/
https://www.playstation.com/en-us/games/the-last-of-us-part-ii-ps4/accessibility/
httpshttps://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
httpshttps://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
httpshttps://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.youtube.com/watch?v=YaDR4hJkskc
https://www.youtube.com/watch?v=YaDR4hJkskc

Bibliography

Taylor, Paul (2009). Text-to-Speech Synthesis. Cambridge University Press. doi:
10.1017/CBO9780511816338 (cit. on p. 14).

Thatcher, J. (1994). “Screen Reader/2: Access to OS/2 and the Graphical
User Interface.” In: Proceedings of the First Annual ACM Conference on
Assistive Technologies. Assets ’94. Marina Del Rey, California, USA: ACM,
pp. 39–46. isbn: 0-89791-649-2. doi: 10.1145/191028.191039. url: http:
//doi.acm.org/10.1145/191028.191039 (cit. on p. 15).

Thomsen, Mike (2012). History of the Unreal Engine. IGN. url: https://
www.ign.com/articles/2010/02/23/history-of-the-unreal-engine

(visited on 07/16/2019) (cit. on p. 38).
Torrente, Javier et al. (2014). “Development of a Game Engine for Accessible

Web-Based Games.” In: Games and Learning Alliance. Ed. by Alessandro
De Gloria. Cham: Springer International Publishing, pp. 107–115. isbn:
978-3-319-12157-4 (cit. on p. 37).

Two-Tone (2018). Have in editor options to simulate common forms of color vision
deficiency (color blindness). url: https://github.com/godotengine/
godot/issues/21304 (visited on 07/16/2019) (cit. on p. 39).

UN General Assembly (2007). Convention on the Rights of Persons with Disabil-
ities. url: https://www.refworld.org/docid/45f973632.html (visited
on 04/24/2019) (cit. on p. 5).

Unity R&D UX (2019). Accessibility and inclusion. url: https://forum.
unity.com/threads/accessibility-and-inclusion.694477/ (visited
on 07/16/2019) (cit. on p. 37).

Unity Technologies (2019a). Asset packages. url: https://docs.unity3d.
com/Manual/AssetPackages.html (visited on 07/16/2019) (cit. on p. 40).

Unity Technologies (2020a). Building a NavMesh. url: https : / / docs .

unity3d.com/Manual/nav-BuildingNavMesh.html (visited on 12/03/2020)
(cit. on p. 70).

Unity Technologies (2020b). Built-in Controls. url: https://docs.unity3d.
com/Manual/UIE-Controls.html (visited on 11/05/2020) (cit. on p. 51).

Unity Technologies (2019b). Game engines — how do they work? url: https:
//unity3d.com/what-is-a-game-engine (visited on 07/16/2019) (cit.
on p. 36).

Unity Technologies (2019c). How to make a video game in Unity without any
coding experience. url: https://unity3d.com/make-a-game-in-unity-
without-programming (visited on 07/16/2019) (cit. on p. 36).

109

http://dx.doi.org/10.1017/CBO9780511816338
http://dx.doi.org/10.1145/191028.191039
http://doi.acm.org/10.1145/191028.191039
http://doi.acm.org/10.1145/191028.191039
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine
https://github.com/godotengine/godot/issues/21304
https://github.com/godotengine/godot/issues/21304
https://www.refworld.org/docid/45f973632.html
https://forum.unity.com/threads/accessibility-and-inclusion.694477/
https://forum.unity.com/threads/accessibility-and-inclusion.694477/
https://docs.unity3d.com/Manual/AssetPackages.html
https://docs.unity3d.com/Manual/AssetPackages.html
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/Manual/UIE-Controls.html
https://docs.unity3d.com/Manual/UIE-Controls.html
https://unity3d.com/what-is-a-game-engine
https://unity3d.com/what-is-a-game-engine
https://unity3d.com/make-a-game-in-unity-without-programming
https://unity3d.com/make-a-game-in-unity-without-programming

Bibliography

Unity Technologies (2020c). Inner Workings of the Navigation System. url:
https://docs.unity3d.com/Manual/nav-InnerWorkings.html (visited
on 12/03/2020) (cit. on p. 70).

Unity Technologies (2020d). Multiplatform. url: httpshttps://unity.com/
features/multiplatform (visited on 10/16/2020) (cit. on p. 37).

Unity Technologies (2019d). Public Relations. url: https://unity3d.com/
public-relations (visited on 07/16/2019) (cit. on p. 37).

Unity Technologies (2019e). VisionUtility.GetColorBlindSafePalette. url: https:
//docs.unity3d.com/ScriptReference/Accessibility.VisionUtility.

GetColorBlindSafePalette.html (visited on 07/16/2019) (cit. on p. 37).
Vice News (2019). This Is How To Play Video Games If You’re Totally Blind.

Youtube. url: https://www.youtube.com/watch?v=aX0oPwQPo9A (vis-
ited on 06/13/2019) (cit. on p. 27).

Vtyurina, Alexandra et al. (2019). “Bridging Screen Readers and Voice
Assistants for Enhanced Eyes-Free Web Search.” In: The World Wide
Web Conference. WWW ’19. San Francisco, CA, USA: ACM, pp. 3590–
3594. isbn: 978-1-4503-6674-8. doi: 10.1145/3308558.3314136. url:
http://doi.acm.org/10.1145/3308558.3314136 (cit. on p. 18).

White, Gareth R., Geraldine Fitzpatrick, and Graham McAllister (2008).
“Toward Accessible 3D Virtual Environments for the Blind and Visually
Impaired.” In: Proceedings of the 3rd International Conference on Digital
Interactive Media in Entertainment and Arts. DIMEA ’08. Athens, Greece:
ACM, pp. 134–141. isbn: 978-1-60558-248-1. doi: 10.1145/1413634.
1413663. url: http://doi.acm.org/10.1145/1413634.1413663 (cit. on
pp. 29, 34).

WHO Programme for the Prevention of Blindness and Deafness (2003).
Consultation on Development of Standard for Characterization of Vision Loss
and Visual Functioning. url: https://apps.who.int/iris/handle/
10665/68601 (visited on 07/15/2019) (cit. on p. 7).

World Health Organization (2001). International Classification of Functioning,
Disability and Health. isbn: 92 4 154542 9 (cit. on p. 5).

World Health Organization (2010). Gobal data on visual impairment 2010.
url: https://www.who.int/blindness/publications/globaldata/en/
(visited on 01/15/2021) (cit. on p. 1).

World Health Organization (2018). International Classification of Diseases.
Version 11. url: https://icd.who.int/browse11/l-m/en (visited on
07/15/2019) (cit. on pp. 6, 7).

110

https://docs.unity3d.com/Manual/nav-InnerWorkings.html
httpshttps://unity.com/features/multiplatform
httpshttps://unity.com/features/multiplatform
https://unity3d.com/public-relations
https://unity3d.com/public-relations
https://docs.unity3d.com/ScriptReference/Accessibility.VisionUtility.GetColorBlindSafePalette.html
https://docs.unity3d.com/ScriptReference/Accessibility.VisionUtility.GetColorBlindSafePalette.html
https://docs.unity3d.com/ScriptReference/Accessibility.VisionUtility.GetColorBlindSafePalette.html
https://www.youtube.com/watch?v=aX0oPwQPo9A
http://dx.doi.org/10.1145/3308558.3314136
http://doi.acm.org/10.1145/3308558.3314136
http://dx.doi.org/10.1145/1413634.1413663
http://dx.doi.org/10.1145/1413634.1413663
http://doi.acm.org/10.1145/1413634.1413663
https://apps.who.int/iris/handle/10665/68601
https://apps.who.int/iris/handle/10665/68601
https://www.who.int/blindness/publications/globaldata/en/
https://icd.who.int/browse11/l-m/en

Bibliography

Yuan, Bei and eelke folmer eelke (2008). “Blind Hero: Enabling Guitar Hero
for the Visually Impaired.” In: pp. 169–176. doi: 10.1145/1414471.
1414503 (cit. on p. 26).

Yuan, Bei, Eelke Folmer, and Frederick C. Harris (2011). “Game accessibility:
a survey.” In: Universal Access in the Information Society 10.1, pp. 81–
100. issn: 1615-5297. doi: 10.1007/s10209-010-0189-5. url: https:
//doi.org/10.1007/s10209-010-0189-5 (cit. on p. 33).

Zhao, Yuhang et al. (2019). “SeeingVR: A Set of Tools to Make Virtual
Reality More Accessible to People with Low Vision.” In: Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. CHI
’19. Glasgow, Scotland Uk: ACM, 111:1–111:14. isbn: 978-1-4503-5970-2.
doi: 10.1145/3290605.3300341. url: http://doi.acm.org/10.1145/
3290605.3300341 (cit. on p. 10).

111

http://dx.doi.org/10.1145/1414471.1414503
http://dx.doi.org/10.1145/1414471.1414503
http://dx.doi.org/10.1007/s10209-010-0189-5
https://doi.org/10.1007/s10209-010-0189-5
https://doi.org/10.1007/s10209-010-0189-5
http://dx.doi.org/10.1145/3290605.3300341
http://doi.acm.org/10.1145/3290605.3300341
http://doi.acm.org/10.1145/3290605.3300341

Ludography

DOWINO (2016). A Blind Legend. (Visited on 12/18/2020) (cit. on pp. 30,
31).

EA Tiburon (2020). Madden NFL 20. (Visited on 12/19/2020) (cit. on pp. 26,
27).

Epic Games (2017). Fortnite. (Visited on 12/18/2020) (cit. on p. 38).
Epic MegaGames Digital Extremes, Legend Entertainment (1998). Unreal

(cit. on p. 38).
Harmonix (2007a). Guitar Hero (cit. on p. 26).
Harmonix (2007b). Rock Band (cit. on p. 26).
Mojang Studios, Double Eleven (2020). Minecraft Dungeons. (Visited on

12/18/2020) (cit. on p. 38).
Naughty Dog (2020). The Last of Us Part II. (Visited on 12/18/2020) (cit. on

pp. 33–35, 46, 90, 96).
NetherRealm Studios (2019). Mortal Kombat 11. (Visited on 12/19/2020)

(cit. on p. 27).
Nintendo (2017). Mario Kart 8 Deluxe. (Visited on 12/18/2020) (cit. on pp. 27,

28).
PopCap Games (2001). Bejewled. (Visited on 12/19/2020) (cit. on pp. 29, 79).
Schultz, Marty (2014). Blindfold Sudoku. (Visited on 12/18/2020) (cit. on

pp. 29, 30).
Schultz, Marty (2016). Blindfold Pinball. (Visited on 12/18/2020) (cit. on

pp. 29, 30).
Six to Start (2012). Zombies, Run! (Visited on 12/19/2020) (cit. on p. 32).
Skizzix (2009). Shredder Chess. (Visited on 12/18/2020) (cit. on p. 33).
Strasser, Klemens (2018). Subwords. (Visited on 12/18/2020) (cit. on p. 33).

112

	Abstract
	Introduction
	Research Goals
	Structure

	Background and Related Work
	Terminology
	Impairment and Disability
	Impairments Concerning the Visual System
	Usage of the Terms

	Vision Accessibility of Computing Devices
	The Interaction Framework
	Vision Accessibility of the Interaction Framework
	Practical Usage of the Accessibility Technologies

	Gaming with Vision Impairment
	The Gaming Workflow
	Vision Accessibility of the Pre-Game Phase
	Vision Accessibility of the In-Menu Step
	Vision Accessibility of the Gameplay Step

	Game Engines and Vision Accessibility
	Definition of Game Engines
	Vision Accessibility Features of Different Game Engines

	Vision Accessibility Extensions for Unity
	Asset Packages for Vision Accessibility
	Areas of Improvement

	Summary

	The Unity Accessibility Toolkit: Design and Implementation
	Design
	Design of the Screen Reader
	Design of the Navigation Agent

	Basics of the Implementation
	Implementation of the Screen Reader
	Screen Reader Manager Implementation
	Custom Screen Reader Implementation
	Native Screen Reader Implementation

	Implementation of the Navigation Agent
	Possible Applications of the Toolkit
	Menu Navigation
	Environment Observation
	Continuous Navigation
	Discrete Navigation

	Summary

	Evaluation
	Procedure
	Participants
	Materials
	Results
	Accessibility in General
	Making the Game Accessible

	Discussion

	Lessons Learned
	Theory
	Design & Implementation
	Evaluation

	Suggestions for Future Work
	Improvements for Existing Tools
	Native Screen Reader Support
	Voice Configuration and Language Support
	Custom Rotors
	Evaluating and Extending the Navigation Agent

	New Tools
	Dynamic Type System & Fonts
	Increased Contrast

	Increasing Appeal
	Support for other Native Assistive Technologies
	Automatic Testing

	Summary
	Bibliography
	Ludography

