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Autonomous vehicles rely heavily on 3D object detection for safely navigating without

human intervention. Existing 3D object detection approaches are often based on LiDAR

data. While producing more accurate results than methods relying on stereo image data,

LiDAR sensors are very expensive. Recently, Pseudo-LiDAR approaches based on stereo

image data showed notable results. However, there is still a performance gap compared to

LiDAR-based 3D detectors. We investigate improvements for Pseudo-LiDAR to increase

3D object detection accuracy.

We propose to include object masks during training of Pseudo-LiDAR for exact estima-

tion of 3D bounding boxes in border areas of foreground objects. Additionally, we enable

both the stereo and point cloud component of the Pseudo-LiDAR framework to interact

with each other by training in an end-to-end way. Further, this joint training collectively

minimizes a global learning loss.

Our approach is evaluated on a publicly available dataset. The experiments confirm that

the integration of object masks and end-to-end training of Pseudo-LiDAR improves the

3D detection accuracy.





Kurzfassung

Autonome Fahrzeuge verlassen sich stark auf 3D-Objekterkennung, um ohne menschliches

Eingreifen sicher navigieren zu können. Bestehende 3D-Objekterkennungsansätze basie-

ren häufig auf LiDAR-Eingabedaten. LiDAR-Sensoren liefern zwar genauere Ergebnis-

se als Methoden die auf Stereobildern basieren, sind jedoch sehr teuer. Kürzlich zeigten

Pseudo-LiDAR-Ansätze, die Stereobilddaten als Eingabe verwenden, bemerkenswerte Er-

gebnisse. Im Vergleich zu LiDAR-basierten Methoden besteht jedoch immer noch eine

Leistungslücke. Zu diesem Zweck untersuchen wir in dieser Arbeit Verbesserungen für

Pseudo-LiDAR, um die Genauigkeit der 3D-Objekterkennung zu erhöhen.

Wir schlagen vor, Objektmasken während des Trainings von Pseudo-LiDAR für genauere

Schätzungen in Randbereichen des Objekts einzuschließen. Darüber hinaus ermöglichen wir

beiden Komponenten des Pseudo-LiDAR-Frameworks die Interaktion miteinander, indem

wir End-to-End-Training durchführen. Weiters optimiert dieses gemeinsame Training eine

globalen Zielfunktion.

Wir evaluieren unseren Ansatz anhand eines öffentlich verfügbaren Datensatzes. Unsere

Experimente bestätigen, dass das End-to-End-Training von Pseudo-LiDAR und die Inte-

gration von Objektmasken die Genauigkeit der 3D-Objekterkennung verbessern.
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Chapter 1

Introduction

Contents

1.1 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The first chapter describes challenges in 3D object detection. We then discuss motivations

and the research objective. Furthermore, we will address our contributions and present

the structure of this master thesis.
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1.1 3D Object Detection

1.1.1 Definition

3D object detection estimates oriented rectangular boxes and a class description for phys-

ical objects from various sensor data [1]. Ideally, a 3D bounding box captures object

information while having the minimum volume. In other words, the goal is to know the

location and size of all objects of interest.

Figure 1.1: Visualization of 3D object detection results.

Figure 1.1 shows an example image after applying an 3D object detector. As described

before, the task is to recognize all objects from a specified input data.

1.1.2 Motivation

The rise of autonomous vehicles development brought new challenges into the field of

modern computer science. They need to be aware of their environment and navigate

safely without human intervention [2]. In particular, the localization and detection is one

of the most important tasks of autonomous vehicles vision perceptual systems.

Currently, most of the 3D object detection and recognition methods heavily rely on LiDAR

(Light Detection and Ranging) data for providing accurate scene information. LiDAR

uses light waves to measure the range to a target [3]. It shoots off thousands of rays

simultaneously to build up a 3D measurement of the current surroundings, commonly

referred to as a 3D point cloud. Due the high precision and data rate, LiDAR systems

are used by a majority of modern autonomous vehicles. However, LiDAR sensors have

the disadvantage of very high costs and lower density of captured points compared to

traditional cameras. Additionally, weather-based reflections caused by rain or fog can

present issues for LiDAR systems [4].



Chapter 1. Introduction 7

Figure 1.2: Example from the KITTI dataset. Top: Stereo input images.
Bottom: 3D bounding boxes of objects projected into the input image.

Other methods estimate 3D bounding boxes from stereo input images. Here, the input

consists of two separate images of the same scene, taken simultaneously from two nearby

points of view. For example, these two cameras could be placed on top of a car. Using

triangulation, the distance to objects can be provided via correspondence estimation of the

input image pairs [5]. In combination with the original input images, this depth information

is used for predicting the 3D bounding boxes. Figure 1.2 shows an example input and

output of 3D box estimation from stereo input. Due to the low cost of camera systems,

stereovision is an interesting alternative compared to LiDAR sensors. Since stereovision

consists of two cameras, it provides a built-in redundant system. Additionally, LiDAR

sensors only measure depth sparsely which may loose details of a scene and do not provide

as high resolution as modern camera systems. [6].

3D object detection based on a single camera uses only one image as an input. This ap-

proach is often used for autonomous vehicles without space for mounting a second camera.

However, a monocular camera system is not capable of capturing enough spatial infor-

mation of the environment. Therefore, current single image approaches have significantly

worse performance compared to stereo and LiDAR methods.

Accordingly, we will focus on 3D object detection using stereo input images in our thesis.
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1.1.3 3D Object Detection From Stereo Input Images

3D object detectors rely heavily on the underlying stereo vision algorithm. These algo-

rithms estimate the depth of objects by obtaining the disparity between two input images.

Traditionally, the disparity is calculated by searching for corresponding pixels in the input

image pair [7].

In recent years, the progress of neural networks also pushed the performance in the field

of 3D object detection from stereo input images. Presently, most object detection systems

are based on convolutional neural networks (CNNs). We will shortly introduce recent

methods in this section.

Chen et al. [8] formulated the problem of placing pre-defined bounding boxes in the 3D

space as an energy function. After calculating the depth using traditional stereo methods,

they estimate the bounding box coordinates and direction using a CNN.

Li et al. [9] introduced the extraction of region proposals [10] from the input image pair.

Using the corresponding left and right region proposals, they regress 3D bounding boxes

at different scales using a pyramid structured network [11].

Recently, Wang et al. [12] proposed a modular pipeline which first converts a predicted

disparity map into a 3D representation structure. Afterwards, this point-cloud repre-

sentation is fed into an existing LiDAR point cloud detector. This method performs at

state-of-the-art level on current public datasets. However, it needs careful tuning of several

hyper-parameters and both components cannot be trained jointly.

Li and colleagues [13] showed that focusing on objects of interest during depth estimation

increases the overall accuracy of 3D object detection. In particular, pixels associated with

foreground objects are crucial to the object detection accuracy.

Accordingly, we propose a 3D object detection pipeline with integrated foreground ob-

ject masks. Additionally, we suggest modifications to train the network in an end-to-end

manner.

1.2 Contributions

This thesis seeks to address the challenge of estimating the 3D bounding box of an object

using the left eye’s and right eye’s view of a fixed camera setup as an input. In particular,

we want to employ a CNN to estimate 3D bounding box parameters from calculated input
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image depth information. The final step will be to compare the proposed method to current

stereo 3D methods on public benchmarks like the KITTI 3D dataset.

To summarize, the goal of the thesis is:

• Integration of foreground object masks during training

Li et al. [13] showed that 3D detection accuracy heavily relies on pixels associated

with foreground objects. Defined as split stereo matching, they estimate depth maps

individually for foreground and background objects. However, they did not investi-

gate into further usage of segmenting foreground objects. Therefore, we propose a

modified network architecture that includes object masks into the point cloud detec-

tor module of 3D object detection. In our experiments, we show promising results

on public datasets using additional object masks during training.

• End-to-end 3D object detection

The object detection pipeline proposed by [14] is based on a modular design consisting

of two independent components which need to be trained separately. According to

Bojarski et al. [15], this decoupled approach of training two networks using a loss

objective that does not acknowledge dependence may not be the best fit for the final

learning objective of 3D object detection. To this end, we study an approach to

train whole pipeline for a global objective. We enable joint training of both modules

and optimize for a global loss function. Our approach is able to increase the object

detection accuracy compared to the decoupled structure used as a baseline.

• Comparison with other methods

Finally, we want to compare the proposed approach with other current 3D detection

methods on public datasets.

1.3 Outline

The first chapter gives a short introduction into the topic of the thesis. Chapter 2 contains

related work and theoretical backgrounds in the field of 3D object detection.

In Chapter 3, we define a framework for estimating 3D bounding boxes from stereo input

images. Additionally, we report the network architecture and details of the applied model.

Chapter 4 focuses on the integration of object masks. Further, we describe how these

masks can help to increase detection accuracy.
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End-to-end learning is described in Chapter 5. We first show how individual components

of the object detection framework can interact with each other. Afterwards, we describe

a global learning objective for jointly training the framework components.

The results of the conducted experiments are reported and discussed in Chapter 6. The

final chapter will summarize the aspects of this thesis and consider topics for future ex-

tensions.



Chapter 2

Related Work

Contents

2.1 Stereo disparity estimation . . . . . . . . . . . . . . . . . . . . . . 12

2.2 2D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Deep Learning on Point Clouds . . . . . . . . . . . . . . . . . . . 17

2.4 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Semantic Segmentation for Street Scenes . . . . . . . . . . . . . 23

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The second chapter gives an overview about principles that are of particular interest for

this work and provides a survey of related research.

We start with disparity estimation from stereo images and 2D object detection. After that,

we discuss point cloud object detectors, 3D object detectors and semantic segmentation.
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2.1 Stereo disparity estimation

Autonomous vehicles heavily rely on the quality of depth estimations, which can be ob-

tained from the disparity between two images. The disparity is defined as the displacement

of a pair of corresponding pixels in the image pair. The estimation happens by taking an

input image pair and calculating the difference in image location of the same 3D point [7].

Rectifying the input images limits the search space for the matching to a one-dimensional

scan line called the epipolar line. The difference of corresponding points on the same

epipolar line results in the disparity, as shown in Figure 2.1.

Figure 2.1: Visualization of a stereo camera setup, where C1 and C2 relate to the left
and right camera centers, f relates to the focal length and T is defined as the stereo
baseline . Point X1 on epipolar line in the left image plane can appear anywhere on the

epipolar line in the right image plane.

Traditional stereo vision algorithms can be separated into global, local and semiglobal

approaches. Global approaches formulate a cost function over the whole image. Then,

this cost function gets minimized by applying global matching methods such as Graph Cut

[16]. Global methods achieve high accuracy for the disparity output. However, minimizing

the global cost function step-by-step results in more computational complexity.

Local methods displace a predefined support window to search for points with high cor-

relation. This behavior achieves better runtimes while suffering from lower quality than

global approaches.

Semiglobal methods [17] combine the efficiency of local methods with the accuracy of global

methods. They approximate a 2D minimization problem with several 1D scanline opti-

mizations, which can be solved efficiently via dynamic programming. However, traditional

methods are of limited accuracy due to their hand-crafted feature selection [18].
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With the advent of machine learning methods in computer vision, Convolutional Neural

Networks (CNNs) replaced several components of the traditional vision pipeline. Zbontar

et al. [19] pioneered by leveraging CNNs to compute the matching cost of a stereo vision

task. Their Matching Cost Convolutional Neural Network (MC-CNN) learns a similarity

measure of small image patches which gets trained in a supervised manner. The outputs

of the network are used as an initial matching cost before applying several post-processing

steps. Compared to traditional methods, MC-CNN achieves considerable gains in accuracy.

Mayer et al. [20] replaced the whole stereo pipeline by introducing end-to-end stereo

learning. Their disparity network first constructs a cost volume using correlation layers

and then estimate the disparity map by end-to-end training. Additionally, they released

a synthetic dataset with over 35,000 stereo frames. On public benchmarks, their network

achieves smaller stereo error results compared to traditional multi-stage approaches.

eometry and Context Network (GC-Net), introduced by Kendall et al. [21], proposes to

regularize the cost volume with 3D convolution layers. In contrast to traditional distance

metric methods, they construct their 4D cost volume by concatenating the unary features

of the input images to maintain the original geometric input information. The innovative

usage of 3D convolutions results in higher memory usage while producing more accurate

disparity values.

Figure 2.2: Qualitative results of different stereo methods. The left column shows the
according input image. On the right side, the disparity and error map for each method is

obtained. Image taken from [11].

Pyramid Stereo Matching Network (PSMNet) by Chang et al. [11] tackles this problem by

proposing a pyramid stucture. While extracting multi-scale features, the network decreases

the high-resolution input into a lower resolution. This way, it can take advantage of global

information in addition to pixel-level features by aggregating context in different scales.

The pyramid feature performs the matching in a hierarchical manner, constructing a single

cost volume using multiscale features. As visualized in Figure 2.2, PSMNet outperforms

other modern methods especially in ill-posed regions while having the same run-time speed.
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2.2 2D Object Detection

The task of 2D object detection is to estimate a 2D bounding area and a class description

for all objects of attentation in a given input image. The 2D bounding box is described

by four parameters and should fit the desired object closely. An example visualization is

shown in Figure 2.3.

Figure 2.3: Example 2D bounding box groundtruth annotations from the KITTI
dataset. Image taken from [22].

There have been large improvements in 2D prediction accuracy on account of the advent

of CNNs for feature extraction and the availability of larger and more complexe training

data. The modern detector pipeline has been introduced by Region Based Convolutional

Neural Networks (R-CNN) [23].

The first step of R-CNN is that several proposed regions from the input image on multiple

scales are selected via a predefined method like selective search [24] through basic color

segmentation. The aim of this search is to filter out objects of interest from background

scenes. After that, the selected regions are resized and fed into a pretrained AlexNet [25]

CNN which extracts a feature vector for each region. Finally, support vector machines

(SVM) predict a bounding box and object category from the extracted feature vectors.

Although producing appealing results, the main downside of R-CNN is the massive com-

puting load due to the high number of individual forward computations of the CNN.

Since the feature extraction for each individual region produces a large amount of repeating

calculations, Fast R-CNN [26] combines them into one CNN forward pass over the entire

image. Then, the output of the CNN and the regions from the selective search are combined

using a region of interest pooling layer. Before predicting bounding boxes and classes, the

systems applies a fully connected layer for transforming the merged feature vector. Since

only one CNN forward computation is necessary, Fast R-CNN decreases both training and

inference time compared to R-CNN.
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Figure 2.4: Overview of Faster R-CNN. The model consists of convolutional layers and
a final RoI pooling layer. Image taken from [27]

The framework was quickly followed by Faster R-CNN [27], which introduced the region

proposal network (RPN) as displayed in Figure 2.4. This results in a single model consisting

of an RPN and Fast R-CNN which can be trained together using weight sharing.

The RPN is a fully convolutional network which uses every element of the extracted map

as a base for anchor generation. Anchors are predetermined bounding boxes which serve

as a default size for the region proposals to assume. Finally, all positive anchors get refined

by a regressor to produce a final output. The sharing of computation of Faster R-CNN

increases the pipeline performance further, proceeding in state-of-the-art (SOTA) scores

on public benchmarks.

In contrast to two-stage approaches described before, one-stage object detection models

directly predict a set of bounding boxes on an input image. They aim to encapsulate all

calculations in one network, resulting in an easier training process compared to two-stage

approaches. One of the first attempts in this direction was SSD (Single Shot Detector)

[28] introduced by Liu et al. which treats object detection as a regression problem.

Similar to RPN, the network places pre-defined anchors on extracted feature maps. The

feature maps in different scales can be extracted from individual layers of the CNN. Finally,

matching anchors from different scales are merged and pruned by non-maximum suppres-

sion (NMS) to produce scores for every class besides width and height of the bounding

area.



Chapter 2. Related Work 16

Another one-stage approach named YOLO (You Only Look Once) [29] aims toward real-

time object detection. It uses fully convolutional layers for feature map extraction. After

that, anchors are placed on grid locations similar to SSD. Additionally, YOLO predicts a

confidence score for each resulting anchor apart from the anchor size and offset.

In summary, one-stage detectors defined new benchmarks in the field of 2D object detection

inference time. However, they reach lower accuracy scores than two-stage detectors while

being significantly faster [30]. Furthermore, one-stage detectors often have problems to

detect small objects compared to region based networks [31].

Recently, fully-convolutional anchor-free methods like FCOS [32] and CenterNet [33] have

been introduced. One major advantage of anchor-free object detectors is the removal of

hyper parameter tuning.

In general, FCOS uses Feature Pyramid Networks (FPN) [34] for feature map extraction.

On every pyramid level, a detection head consisting of fully connected layers is used for

prediction. The design of this pyramid allows to share the rich semantics of higher level

feature maps to lower level feature maps.

Besides a class label and four bounding box values FCOS also predicts a centerness score

for each pixel in an image. This means that the number of predictions matches the pixel

count exactly. The centerness score is defined as

ctr =

√
min(l, r)

max(l, r)
× min(t, b)

max(t, b)
, (2.1)

where l, r, b and t denote the bounding box regression targets. It refers as an value

describing the distance to the center of the ground truth bounding box for suppressing low-

quality predictions. FCOS surpasses previous one-stage detectors on public benchmarks

with the advantage of being much simpler. However, it does not reach the accuracy of

recent two-stage detectors.
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2.3 Deep Learning on Point Clouds

As deep learning has shown promising results on images, there has been interest to transfer

this techniques into geometric spaces like 3D point clouds as found in Figure 2.5. Initial

methods [35][36] applied traditional deep learning models on point clouds transformed into

multiple views. This way, existing methods could be used for geometric spaces without

expensive network modifications.

Figure 2.5: Example lidar visualization from the KITTI dataset. Image taken from [22].

Squeezeseg [37] introduced by Wu et al. adopts a spherical projection to transform sparse

3D point clouds to dense 2D grid representations. This way, they can apply conventional

CNN models on the generated front view camera images. Another preprocessing method

transforms the input point cloud into a birds-eye-representation before applying a CNN

[38].

Currently, there are two streams on how to apply deep learning on point clouds: voxel-

based and point-based.

Conventionally, VoxelNet [39] proposed by Zhou et al. divides 3D data points into equally-

sized 3D elements named voxels. It introduced voxel feature encoding (VFE), which allows

interactivity inside a voxel-element, by merging point-wise structures with a multi-voxel

extracted feature. It then groups up all points inside a voxel to a representive feature.

Finally, a region proposal network with stacked structure is applied to integrate multi-

scale representations.

However, transformation operations in the prepocessing step of voxel-based methods often

leads to information losses. Additionally, they produce intense computational cost [40].

Therefore, deep learning models which operate on raw point clouds have been introduced.
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Processing on raw point clouds has been pioneered by PointNet [41]. Instead of 3D voxels,

PointNet directly consumes a point cloud without any preprocessing, which also respects

the invariance of points in the input using symmetric functions. One big advantage of

PointNet is that it can learn both individual point feature vectors and global point aggre-

gation feature vectors. Figure 2.6 show the general architecture of PointNet.

Figure 2.6: Basic architecture of PointNet. Image taken from [42]

PointNet first applies a multi layer perceptron (MLP) to each indivual point pc to get a

feature vector fc. Using max pooling, all feature vectores result into one global feature

vectore fg describing the whole point cloud. Eventually, this global feature vector is fed

into another MLP to output a final classification score.

Furthermore, an extension to PointNet uses the same base network for classification and

segmentation by adding a segmentation network. It therefore concatenates local geometric

information and global semantics to compute output scores for each individual point.

PointRCNN [43] exploits PointNet by predicting and segmenting objects directly on point-

clouds. It is composed of two stages.

The first phase generates 3D bounding area proposals and acts as a classic region proposal

network. First, it uses PointNet as a base network to extract a description vector fc for

every input point pc. Next, all foreground features are put into a box regression head to

generate a 3D bounding box proposal.

The distinction between foreground and background features helps to predict better pro-

posals and is naturally given by the groundtruth annotations. Finally, NMS from bird’s

eye view is applied to filter out redundant bounding box proposals.

The aim of the second stage is to refine the locations and orientations of the generated

box proposals. It starts with a pooling of 3D locations and their correlated extracted

features from the first phase. Therefore, PointRCNN enlarges proposed bounding boxes

by a constant factor to include additional information from the context.
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After that, the refinement sub-network in the second stage merges the locally extracted

features with the global description. Then, the combined features are fed into a network

related to [44] for generating a discriminative feature vector which is necessary for the

following steps.

Finally, the output layer directly regresses the size offset from the average dimension of each

training set object. For the orientation a bin-based regression loss is applied. Additionally,

a confidence score is trained using a traditional cross-entropy loss. All 3D boxes with a

IoU score higher than 0.55 are counted as training samples.

With PointRCNN, Shi et al. claim to address key flaws of traditional point cloud detectors.

Using the bottom-up proposal approach, they claim to achieve significantly higher recall

than previous methods [39]. The proposed concatenation of local and global semantic

feature vectors in combination with the bin-based loss demonstrate the efficiency and

effectiveness of PointRCNN for 3D bounding box regression. Compared to other methods

[45], PointRCNN reports improved performance for 3D object detection on public datasets

while having the same inference time.

2.4 3D Object Detection

3D object detection estimates oriented 3D bounding areas and a class label for physical

objects from various sensor data. A 3D box is described by the box core point (x,y,z),

dimensions (h,w,l), and an observation angle. Ideally, a 3D bounding box captures all

necessary information while having the minimum volume. Example boxes are visualized

in Figure 2.7.

Figure 2.7: Example 3D bounding box groundtruth annotations from the KITTI
dataset. Image taken from [22].

There are various sources for sensor data, such as e.g. RADAR (Radio Detection and

Ranging), LiDAR, monocular cameras, or stereo cameras. Due the focus of research on
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autonomous cars, there has been more attention on LiDAR, stereo and monocular input

sources for 3D frameworks.

However, stereo cameras have shown to be a good trade-off between efficiency and com-

putation time. Due their low acquisitions cost, they are a viable alternative to LiDAR

sensors. Additionally, they can be used to generate dense depth maps. In comparison,

LiDAR describes scenes by sparse point clouds.

3DOP (3D Object Proposals) [8] proposed by Chen et al. was one of the first deep learning

3D pipelines in the context of autonomous vehicles using stereo images as an input. They

formulate the problem of placing pre-defined anchors in the 3D space as an energy function.

After calculating the depth using traditional stereo methods, they estimate the bounding

box dimensions and direction by applying a CNN. Using this combination, this approach

outperformed all non-CNN based approaches until then.

In 2019, Li et al. [9] introduced Stereo R-CNN as an extension to Faster R-CNN which

simultaneously detects and identifies objects in stereo input images. In contrast to the

classic R-CNN pipeline, Stereo R-CNN uses a modified RPN to output corresponding left

and right proposals. Similar to FPN, the RPN of Stereo R-CNN uses a pyramid structure

as visualized in Figure 2.8. It merges the extracted left and right features at every scale

before continuing. The RPN regresses proposals 2D bounding box coordinates for the left

image and a center offset for the right image.

Figure 2.8: Stereo R-CNN architecture. Image taken from [9]
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After that, RoI Align [46] is applied on these left-right proposal pairs. The aligned features

get passed into fully connected layers for semantic information extraction. The output of

these layers are all bounding box regression terms defined above.

Besides bounding boxes, Stereo R-CNN also predicts a perspective keypoint. Keypoints

are defined as the four corners at the bottom of a 3D cubicle. Stereo R-CNN defines

the perspective keypoint as the only visible keypoint projected to the box middle. This

keypoint prediction helps to provide more constraints for estimating the 3D bounding box.

The final step of Stereo R-CNN is to predict a dense bounding box by solving the disparity

problem on the final left-right object pair.

More recent methods convert an estimated depth map from stereo input into a 3D repre-

sentation before applying a point cloud detector. Methods based on the Pseudo-LiDAR

framework [12] receive highest scores on public datasets by taking advantage of the best

networks from stereo estimation and point cloud detection. They argue the remaining gap

between image and LiDAR-based detection results that stereo images are poorly repre-

sented inside CNN-based 3D object detection pipelines. In comparison, computations on

transformed point clouds [47] are invariant to depth changes. Therefore, they propose a

two-step approach based on existing techniques which get aligned together.

Instead of a direct 3D estimation on a given stereo image pair, Pseudo-LiDAR starts with

a per-pixel disparity estimation. After calculating the depth value from each per-pixel

disparity, the depth map gets transformed into a sparse 3D point cloud representation as

shown in 2.9, which they refer as Pseudo-LiDAR. This transformation happens by back-

projecting all the pixels and their individual depth into 3D coordinates.

To imitate a real LiDAR signal, the dense Pseudo-LiDAR point cloud gets sub-sampled

and cropped to a height of 1 m. Treating this fictitious signal as a LiDAR point cloud,

any 3D detector can be applied. Specifically, they apply AVOD [45] and achieve double

the performance of previous state of the art. Additionally, they prove the compatibility of

their approach by applying different 3D detectors [47].

Figure 2.9: Overview of the Pseudo-LiDAR pipeline. Image taken from [12]
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Pseudo-LiDAR++ [14] modifies the framework to be more tailored for autonomous driving.

They argue that the calculation of pixel-level depth by inverting the disparity is a major

source of error. The over-emphasizes on near objects of traditional stereo networks results

in a poor depth estimation for far-away objects. Especially, they adjusts the stereo loss

function to predict distant objects more precisely by directly regressing the per-pixel depth

and enabling 3D convolutions.

In addition, they propose to use an extremely sparse LiDAR sensor to boost object detec-

tion accuracy. Since standard LiDAR sensors using 32 beams are expensive, they connect

a 4 beam sensor input to their pipeline. Paired with dual image input, the sparse sig-

nal can help to de-bias the depth error from stereo estimation. Pseudo-LiDAR++ shows

consistent improvement over its predecessor on all benchmarks.

The work of Li et al. [13] is also based on the same framework while using two separated

depth estimation networks for foreground and background scenes. This separation of

depth networks causes less depth estimation errors. They prove that this modification also

yields a better 3D object localization accuracy. Additionally, they leverage the predicted

confidence scores from the foreground stereo prediction as an supplementary input for the

3D point cloud detector. This approach pushes the CNN to aim for points with high scores.

Naturally, the extension of the depth network increase the training and inference speed by

large margins. On the other hand, they surpass the next best-performing method by 1.4

% on average.

In 2020, DSGN (Deep Stereo Geometry Network) [48] introduced an one-stage detection

pipeline which detects and localizes 3D bounding boxes in an end-to-end way. DSGN

intermediately creates a plane sweep volume [49] which encodes accurate geometric infor-

mation of the 3D space. They create this volume from the input images to learn stereo

correspondences in the camera frustum as show in Figure 2.10.

Figure 2.10: DSGN detection pipeline. Image taken from [48]
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After that, this plane sweep is lifted into a 3D geometric volume where 3D convolution

layers can be applied. This results in a top-view representation of the setting. By learning

the necessary object structure in this 3D world space, DSGN outruns all current stereo

networks. However, multi-task training and lifting into 3D space requires more GPU

memory than other methods.

To get a good starting point for our research, we conducted a comparison of current meth-

ods. The results of this comparison can be found in Table 2.1. Besides the 3D object

detection scores, we also noticed the inference runtime for one image-pair and the memory

consumption during training.

Method name
KITTI AP@0.7 Val Set Inference

Runtime [s]
Memory

consumptionEasy Moderate Hard

Stereo R-CNN [9] 54.11 36.69 31.07 0.35 11 GB

Pseudo-LiDAR [12] 61.90 45.30 39.00 0.4 8 GB

Pseudo-LiDAR++ [14] 67.90 50.10 45.30 0.4 8 GB

DSGN [48] 73.21 54.27 47.71 0.67 24 GB

CG-Stereo [13] 76.17 57.82 54.63 0.57 11 GB

Table 2.1: Different 3D detectors applied on the KITTI validation dataset.

We can clearly see that CG-Stereo yields the best 3D detection scores of all cited meth-

ods. However, the inference speed of 0.57 seconds is considerably slower compared to e.g.

Pseudo-LiDAR. DSGN produces very good results for 3D detection while consuming 24

GB of GPU memory.

Pseudo-LiDAR++ ranks both in the midfield in terms of detection accuracy, runtime and

GPU memory. Stereo R-CNN has the fastest runtime while having the worst 3D detection

results of all compared methods.

2.5 Semantic Segmentation for Street Scenes

The objective of semantic segmentation is to estimate a class to every pixel in an picture

[50]. Since every pixel gets classified, semantic segmentation is commonly referred as dense

prediction. In contrast to instance segmentation, there is no distinction of separate objects

of the same class.
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The first methods to solve the problem of semantic segmentation were base on Random

Forests [51] and K-means Clustering [52]. Modern approaches like U-NET [53] are based

on fully convolutional networks to take input images of arbitrary size. They consist of an

encoder-decoder system and take advantage of skip connections to overcome information

loss during sampling of images.

In 2018, Yang et al. proposed SegStereo [54] for pixel-level semantic segmentation on the

KITTI semantic dataset. It exploits semantic cues into a backbone disparity network.

While originally constructed for stereo estimation, SegStereo yields appealing results in

the task of semantic segmentation.

Ladder-style DenseNets (LSDN), [55] introduced by Kreso et al., construct an effective

architecture for semantic segmentation which augments the base CNN with ladder-style

skip-connections. LSDN supports calculation on very large natural images without high-

end hardware, by having only few feature maps at higher resolution.

Since the annotation of training data for semantic segmentation networks is very expensive,

recent work has proposed the integration of synthetic data. Particularly, VideoPropLa-

belRelax [56] has shown significant improvements in accuracy on the KITTI semantic

segmentation dataset by scaling up training data with video prediction networks. It in-

corporates new training samples by predicting future frames and future labels. These

predictions result from a given sequence of past video frames which have been sparsely

labeled at regular intervals.

Method IoU class

SegStereo 59.10

LSDN 63.51

VideoPropLabelRelax 72.83

Table 2.2: Different semantic segmentation methods applied on KITTI.

Table 2.2 compares the segmentation performance of the discussed methods. We can

clearly observe that VideoPropLabelRelax yields the best results on the KITTI validation

dataset.

In semantic segmentation, pixel-wise cross entropy [57] is often used to evaluate class label

predictions. This can be problematic when there is an imbalance of class labels as the

most widespread class may dominate the training.
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In order to counteract this circumstance, Focal loss [58] down-weights well-classified classes

and adjusts on rare classes. Particularly, this approach can be very useful for autonomous

driving scenes where there is an imbalance between background and foreground classes.

2.6 Chapter Summary

This chapter gave an introduction into the current research of 3D object detection. It

started the concept of disparity estimation from stereo input pairs. This disparity estima-

tion is fundamental for any 3D object detector using stereo input. After that, we described

current point cloud and 3D object detectors. We concluded with insights about current

semantic segmentation networks for road scenes.
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3.1 Methodology

As already discussed, the task of 3D object detection is to estimate oriented 3D boxes and

class labels for physical objects from various sensor data. Due to reason described in the

section before, we focus on stereo image-pairs as an input source for our detection pipeline.

For better understanding the possibilities for improvement of the current methods, a com-

parison of these methods has been conducted. We compared them on several benchmarks

and also tried to weigh up their respective strengths and weaknesses. The findings of this

assessment can be found in Table 2.1.

As a result, we were able to identify the advantages and disadvantages of these methods,

creating our own modifications to overcome the observed limitations. Based on these

findings, we decided for one approach as starting point.

Pseudo-LiDAR++ [14] has shown to produce visually compelling results for 3D object

detection problems and to close the gap between image- and LiDAR-based detection. By

both enforcing low GPU memory usage during training and a focus on short inference

runtime, we chose Pseudo-LiDAR++ as a baseline for our modifications. Furthermore, we

claim that the modularity of Pseudo-LiDAR++ offers chances of improvement while being

a good starting point for 3D object detection.

We also notice the trend of effective end-to-end 3D learning approaches like DSGN [48].

The joint training of one unified network is able to learn both pixel- and high-level fea-

tures. Using a multi-task loss, 3D geometry encoding of point clouds and expensive 3D

convolutions, they achieve comparable accuracy with a few LiDAR-based methods.

Additionally, we observe the impact of better object stereo estimation on 3D detection

results implemented in CG-Stereo [13]. Li et al. have shown that the 3D detection per-

formance directly depends on the quality of the preceding stereo estimation. By using a

separate stereo estimation network for foreground objects, they outperformed all current

approaches evaluated the KITTI 3D dataset.
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3.2 Network Architecture

The default pipeline is based on a modular design consisting of two independent compo-

nents which need to be trained separate. Starting with a left-right image pair, a modified

stereo estimation network predicts a depth map with the left image as a reference im-

age. After that, this depth map gets transformed into a point cloud. This transformation

happens via back-projecting all pixels into 3D coordinates. After subsampling the result-

ing Pseudo-LiDAR signal, we apply a 3D point cloud detector to estimate final object

bounding boxes.

Figure 3.1 gives an overview of the proposed network architecture. In the next chapters

we will describe the individual modules and modifications of this pipeline.

Figure 3.1: Visualization of the proposed pipeline architecture
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3.3 Depth Estimation

The whole framework relies on the precision of the previous depth prediction. Depth errors

get propagated through the network which directly affects the accuracy of 3D detection

negatively.

Therefore, we chose a proven stereo architecture similar to PSMNet [11] as a foundation.

As shown in Section 2, it surpasses other approaches both in quantitative and qualitative

results. Additionally, the pyramid structure of PSMNet can handle multiple depth map

objects at different scales.

Haeusler et al. [59] have shown that stereo estimation networks perform inferior for far-

away objects. Especially for small objects like cars, a small disparity error may result in

a huge error in depth. Additionally, Izzat et al. [60] showed that disparity estimation

networks spend more time on correcting errors of nearby objects than of distant objects.

Since the aim of PSMNet is to estimate disparities, we adapt it to better align with the

learning objective of depth estimation. We modify the loss to directly regress the depth

values instead of disparity values. Additionally, we transform the constructed disparity

cost volume towards a depth cost volume before applying 3D convolutions.

A schematic overview of our pipeline can be found in Figure 3.2.

Figure 3.2: Our proposed depth network estimation network.
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The feature extractor network uses two input pictures Il and Ir as inputs and extracts

feature maps ml and mr from them using a weight-sharing CNN. We can see the details of

the feature extractor network in Table 3.1.

Contrary to large filter sizes proposed in other approaches [61], our network starts with

three stacked convolutional layers with a filter size of 3x3 to develop a deeper network.

Each layer uses batch normalization [62] and is followed by a ReLU activation function.

Batch normalization is a method to stabilize a deep neural network by normalizing the

inputs of nonlinear activation functions.

After that, several residual blocks with 3x3 filter size are applied. A residual block [61]

uses skip connections to add the output from a previous layer to the layer ahead.

As shown in the last column of the table, the feature extractor CNN reduces the pixel size

of the original image to one fourth. This downsampling happens via the layers using a

stride of 2. Stride describes the amount of movement between the application of the filter.

The final residual block contains convolutional layers with a dilation of 2. Introduced by

Yu et al. [63], dilated convolutions are normal filters applied to an input with defined gaps.

This way, the receptive field can be enlarged.

Feature Extractor CNN

Block Filters Filter Size Stride Dilation Output dimension

Conv + ReLU 32 3 x 3 2 1 H/2 x W/2 x 32
Conv + ReLU 32 3 x 3 1 1 H/2 x W/2 x 32
Conv + ReLU 32 3 x 3 1 1 H/2 x W/2 x 32
3 x ResBlock 32 3 x 3 1 1 H/2 x W/2 x 32
16 x ResBlock 64 3 x 3 1 (first block: 2) 1 H/4 x W/4 x 64
3 x ResBlock 128 3 x 3 1 1 H/4 x W/4 x 128
3 x ResBlock 128 3 x 3 1 2 H/4 x W/4 x 128

Table 3.1: Feature extractor network structure.

To incorporate hierarchical context information, He et al. [61] introduced spatial pyramid

pooling. This approach also removed the fixed input size constraint of CNNs. Spatial pyra-

mid structures in stereo estimation networks have shown to produce significantly improved

performance on challenging scene tasks [64].

Having this advantages in mind, we feed the extracted feature maps of both images into a

pyramid pooling module. Table 3.2 shows the structure of this network.
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Pyramid Module

Block Details Output dimension

Branch 1
Average Pooling 8 x 8

H/4 x W/4 x 32Conv + ReLU 32 Filter, 1 x 1
Bilinear Upsampling

Branch 2
Average Pooling 16 x 16

H/4 x W/4 x 32Conv + ReLU 32 Filter, 1 x 1
Bilinear Upsampling

Branch 3
Average Pooling 32 x 32

H/4 x W/4 x 32Conv + ReLU 32 Filter, 1 x 1
Bilinear Upsampling

Branch 4
Average Pooling 64 x 64

H/4 x W/4 x 32Conv + ReLU 32 Filter, 1 x 1
Bilinear Upsampling

Concat
Branch 1-4

H/4 x W/4 x 320Feature Extractor Output
Res16 Block Output

Fusion
Conv + ReLU 128 Filter, 3 x 3

H/4 x W/4 x 32
Conv + ReLU 32 Filter, 1 x 1

Table 3.2: Feature extractor network structure.

We have split up the module into 4 branches on different fixed scales. Each pyramid branch

starts with an average pooling layer to downsample the input feature to the desired size.

After that, a convolutional layer with 32 filter of size 1x1 and a ReLU activation function

is applied. The intermediate representation gets upsampled via bilinear interpolation to

match the pyramid input size.

The output of all 4 branches gets concatenated with the final output of the feature extractor

CNN and the output of the ResBlockx16. Finally, the concatenated features get fused by

two standard convolutional layer.

These features are then used to form a 4D disparity cost volume CVdisp which expresses

the pixel difference among the left and the right picture.

As discussed before, disparity regression can be a source for errors when used for depth

prediction. Instead of directly determining the disparity values from CVdisp, we modify

the original architecture to better fit into the Pseudo-LiDAR pipeline.

In Equation 3.1 we can see the formula to convert a disparity map D(u,v) into a depth

map T(u,v). Opposed to homogeneous convolutions applied in traditional stereo networks,

we can clearly observe the non-linear ratio between disparity and depth. The usage of the

same kernel for the whole disparity cost volume may lead to a negative outcome when
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using disparity networks for depth estimation. Therefore, we transform the disparity cost

volume CVdisp into a depth cost volume CVdepth using Equation 3.1.

T (u, v) =
focal length× baseline

D(u, v)
. (3.1)

After forming the 4D cost volume and transforming it as described, we apply the 3D CNN

architecture shown in Table 3.3 for the final depth map prediction.

3D CNN

Block Details Output dimension

Cost volume
aggregation

Concat left & right
pooling module outputs

H/4 x W/4 x D/4 x 64

3D Block x 5
3D Conv + ReLU 32 Filter, 3 x 3 x 3

H/4 x W/4 x D/4 x 32
3D Conv + ReLU 32 Filter, 3 x 3 x 3

Upsampling Trilinear interpolation H x W x D

Depth Regression Softmax H x W

Table 3.3: Cost volume 3D CNN network structure.

The network starts with 5 residual blocks. Each block contains two 3D convolution layers

with a filter size of 3 x 3 x 3 followed by a ReLU activation function. As already discussed,

the residual blocks use skip connections to ensure the gradient flow. The final output gets

upsampled to match the input image dimensions.

The depth regression of the 3D CNN takes place using a softmax operation. Softmax is

defined as a function that turns a vector of real values into a vector of real values of the

same size that sums up to 1. The final depth value is computed by the sum of each depth

value weighted by its probability. Bahdaneu et al. [65] argue that this weighting makes

the prediction more robust.

Furthermore, we modify the default loss to directly estimate the depth values instead of

disparity values via the following combination,

∑
L(T (u, v)− T †(u, v)). (3.2)

L denotes the L1 loss and T† the annotated depth image. We use the L1 loss because of

its stability and low awareness to deviations [26]. Based on our knowledge from Section 2,

we argue that this network structure and modifications improve the depth prediction for

autonomous car scenes compared to traditional stereo estimation pipelines.



Chapter 3. 3D Object Detection 34

3.4 3D Object Detection

We chose the PointRCNN model proposed by Shi et al. in [43] as our reference architecture

for the 3D object detection component. This network was chosen because of its high results

on public datasets [22] and the approach of taking raw point clouds as an input. Figure

3.3 shows an overview of the network.

As PointRCNN is classified as a two-stage network, it first generates bottom-up 3D pro-

posals which get refined afterwards to get final results. Originally, the first stage directly

works on 3D point clouds. Since our depth estimation network outputs 2D depth maps,

we have to transform them into the right input shape for the 3D object detection. A pixel

(u, v) from depth map T will be reshaped into three-dimensional space by

x =
(u− qU)× z

fU
, y =

(v − qV)× z
fV

, z = Z(u, v). (3.3)

(qU, qV) denotes the camera origin and fU and fV describes the focal length up- and

sideways. Furthermore, the transformed three-dimensional represenations needs to be

sub-sampled according to [14] because of the high amount of points compared to sparser

point clouds captured with LiDAR scanners.

Figure 3.3: Visualization of the modified PointRCNN architecture.
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3.4.1 Region Proposal Network

Once the sub-sampling is completed, the sparse point-cloud is fed into the first stage of

3D object detection. There, point-wise features get extracted using PointNet++ [44] as a

backbone network. All extracted semantic features get pushed as input to the first stage

region proposal network. Its structure is presented in Table 3.4.

RPN

Block Details Output channels

Downsampling 4 x SA module 512

Upsampling 4 x FP module 128

Foreground
Segmentation

Conv + ReLU 1 x 1 128
Conv 1 x 1 1

Regression
Conv + ReLU 1 x 1 128

Conv 1 x 1 7

Table 3.4: Region proposal network structure.

The RPN starts with 4 set abstraction (SA) modules introduced by [44]. Set abstraction

can be described as a downsampling of point clouds. New sets are created by finding one

centroid point and assigning points to them in a defined radius. Sets are completed by

encoding local region patterns into feature vectors.

On the other hand, feature propagation (FP) modules work similar to upsampling layers

on point cloud. It uses linear interpolation to upsample the point cloud. In detail, points

which get dropped during downsampling are assigned feature vectores based on weighted

distances.

Once all features have been extracted, they are fed into two separate heads. Both of

them first apply a convolutional layer with ReLU activation function. Finally, the network

estimates an output with pre-defined output channels.

As already discussed, we define a bounding box as (x, y, z, h, w, l, θ) in the 3D space.

The object dimension (h, w, l) are estimated by computing residuals respective to the

pre-calculated category-wise average target class size in the dataset. Similar to [66], the

yaw rotation θ for each object is represented in bins using eight scalars. The object center

location (x, y, z) gets directly regressed using residuals.

Since generating 3D proposals for every single point is very time-consuming, the model

segments the input into foreground and background points via a foreground segmentation

head. This improves the performance of box proposal generation due to the limited area
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of potential bounding box spaces. Furthermore, this segmentation head also builds a

synergy among different tasks of segmentation and object detection by providing contextual

information.

We formulate the posterior probability as

p =

{
p if foreground

(1− p) if background,
(3.4)

where p is the calculated prediction.

Next, we can define the segmentation loss as

LSegmentation = −ws log(p), (3.5)

where ws is the segmentation weight. For our experiments we us a weight of 15, as this is

the default value from PointRCNN.

For all foreground points, we formulate the RPN regression loss as

LRPN = LCE(θbin, θ
∗
bin) +

L1(θres, θ
∗
res) +

∑
p∈{x,y,z}

L1(p, p∗) +
∑

q∈{h,w,l}

L1(qres, q
∗
res),

(3.6)

where L1 refers to the smooth L1 loss, qres are the predicted size residuals, q∗res are the

groundtruth size residuals, LCE is the cross-entropy loss, θbin is the predicted orientation

bin, and θ∗bin is the groundtruth orientation bin. We predict the orientation θ via first

estimating a θbin and then estimating an offset θres inside the respective bin.

3.4.2 3D Box Refinement Network

The refinement and classification part of PointRCNN takes all foreground point box pro-

posals from the first stage as an input. An overview of all steps included can be found in

Table 3.5.
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Before starting, we merge the output of the RPN head with the original point cloud and

extracted features. Similar to NMS, we perform RoI pooling to remove redundant box

proposals. Next, we perform an inside-outside test for every point from the input point

cloud with each box proposal. If inside, we keep the point and the extracted feature

for refining the box. This way, we can encode local features into the 3D box refinement

network.

Box Refinement Network

Block Details Output channels

Merge RPN outputs 128

Downsampling 3 x SA module 512

Confidence
Prediction

2 x Conv + ReLU 1 x 1 256
Conv 1 x 1 1

3D Bounding Box
Refinement

2 x Conv + ReLU 1 x 1 256
Conv 1 x 1 7

Table 3.5: Box refinement network structure.

After merging, we apply a similar approach as before by downsampling using 3 set ab-

straction modules. The final prediction happens via two separate heads. Each of them

first applies two convolutions with ReLU activation. As before, the output channels are

pre-defined for confidence prediction and 3D box prediction. As a last step, non maximum

suppression (NMS) strains out overlapping boxes to come up with the ultimate bounding

box location and dimension.

For refining the boxes, we use a similar loss as in Eq. 3.6. This regression loss is responsible

to find the correct localization, size and orientation. Additionally, we add a loss to optimize

the correct class for individual objects. We formulate it as

Lconfidence = LCE(p, p∗). (3.7)

LCE is the cross entropy loss which acts as a target for the predicted confidence.
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3.5 Chapter Summary

This chapter started with the motivation and reasons for our proposed 3D object detection

architecture from stereo input images including a description of the whole algorithm. Next,

we explained the details of the stereo estimation module and the transformation from depth

maps to point clouds. We finish with the in-depth explanation of the applied Point-RCNN

3D object detector.
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4.1 How Can Object Masks Help?

In the previous sections we described that there is a direct dependency between stereo

estimation accuracy and the subsequent 3D object detection accuracy. Also small errors in

the stereo estimation can result in huge differences during 3D box detection. As described

in Section 2, we noticed that deep stereo networks without modifications advocate near

and big objects for several reasons.

One of them is the inverse relation between disparity and depth values. We already solved

this problem by adjusting the default PSMNet network to internally estimate depth values.

Another reason is the class imbalance in the KITTI dataset. Wang et al. [12] analyzed

that 90 % of all pixel in this dataset refer to background pixels. To overcome this problem,

we will issue a loss modification to balance out inequal classes.

Pon et al. [67] showed that three-dimensional representation acquired from depth images

can contain false predictions at object edges. To address this problem, they present object-

centric stereo matching. It only estimates the disparity value for foreground objects using

segmentation masks. After transforming, they only cover object point clouds for further

processing.

As discussed in the previous section, we apply PointRCNN as our 3D detector in the

Pseudo-LiDAR framework. Besides proposing regions of interest, the RPN module also

segments between foreground and background object. Originally, the object masks for

training the segmentation classifier are given by the groundtruth 3D bounding boxes.

Naturally, these object masks are not precise enough to exactly distinct between foreground

and background.

This leads us to the idea of including external segmentation masks into the RPN module

of Point-RCNN. For our approach, we adapt the network to use object masks provided by

an external segmentation network. The details and additional benefits of this method are

described in the next section.
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4.2 Integration of Object Masks

As stated in Section 3.3, PointRCNN segments foreground objects from input point clouds

before predicting final 3D boxes. Originally, it uses proximate masks given by the groundtruth

3D bounding boxes. We modify the point cloud detector to use external objects masks

predicted by an external provider instead.

Figure 4.1 shows an overview of our modified 3D bounding box detector. Besides the

converted point cloud from the depth estimation, we also include a front-view object mask

of the same scene. This helps to make more accurate point-wise box proposals as non-

object points are now excluded. Additionally, the reduced amount of potential target

points increases the overall performance of the point cloud proposal component.

Since the stereo module already has pixel-level information about objects via the disparity

matching, we do not include the segmentation masks there.

Figure 4.1: Visualization of the modified PointRCNN architecture with external object
masks.
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For estimating object masks, we compared different image segmentation networks in Chap-

ter 2. Due the high accuracy and low memory usage we chose VideoPropLabelRelax [56] as

a base network for integration. It is an encoder-decoder architecture with spatial pooling

layers based on DeepLabV3Plus [68] by Chen et al. Combining the multi-scale encoder

with the sharp low-level upsampling of the decoder results in high quality segmentation

masks.

Table 4.1 shows the structure of the implemented encoder network. It starts with ex-

tracting features from the input image using a Resnet50 [25] backbone network. Next, we

apply a Atrous Spatial Pyramid Pooling (ASPP) module. It consists of several parallel

atrous convolution layers with different rates. Atrous convolutions allow to explicitly con-

trol the resolution by adjusting the kernel’s point of view. This way, the ASPP module

can probe convolutional layers at multiple scales. The encoder ends with concatenating

all ASPP module outputs. After that, a final 1x1 convolutional layer with ReLU activa-

tion is applied. The output feature map contains 256 channels and encodes rich semantic

information.

Encoder

Block Details Output channels

Backbone Resnet50 1 x 1 2048

ASPP Module

Conv + ReLU 1 x 1 256
Conv + ReLU 3 x 3, Atrous: 6 256
Conv + ReLU 3 x 3, Atrous: 12 256
Conv + ReLU 3 x 3, Atrous: 18 256

AvgPool + Conv +
ReLU + Upsample

1 x 1 256

Head
Concat all ASPP outputs 1280

Conv + ReLU 1 x 1 256

Table 4.1: Image segmentation encoder.

Once completing the encoder network, a decoder network as described in Table 4.2 follow.

We first apply a 1 x 1 convolution on the backbone outputs to cut down the amount of

channels. The high number of channels could outweigh the rich semantics of the encoder

output. In parallel we bilinearly upsample the ASPP outbut by a factor of 4. After that, we

merge the reduced low level backbone features with the upsampled ASPP output features.
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Decoder

Block Details Output channels

Reduce low
level features

from backbone
Conv + ReLU 1 x 1 48

Concat
Reduced low level feature

+ ASPP output
304

Classifier
Conv + ReLU 3 x 3 256

Conv 1 x 1 No. classes

Table 4.2: Image segmentation decoder.

Once merged, we apply a 3x3 convolutional layer to refine the features. During the final

classification, the amount of channels matches the number of classes to predict. The output

image gets bilinearly upsampled by a factor of 4.

Figure 4.2 shows a comparison of cropped target objects using the different methods. We

can clearly see the difference of precision especially in the border areas of objects. Since

especially border areas are a source for errors, we expect to support the point cloud detector

during region proposal and thus increase bounding box accuracy.

Figure 4.2: Top: Original image.
Middle: Segmented target objects using groundtruth 3D bounding boxes.
Bottom: Segmented target objects using VideoPropLabelRelax [56] masks
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Due to the focus of VideoPropLabelRelax [56] on semantic segmentation, we expect the

network to estimate better object masks than the groundtruth masks. However, there may

be cases where VideoPropLabelRelax produces inferior results or misses objects. There-

fore, we use the groundtruth masks as a backup during training. Whenever the predicted

masks exceed the groundtruth masks, we crop it to fit into the groundtruth mask. Addi-

tionally, we dismiss predicted masks when there is no matching groundtruth objects with

a specified overlap.

4.2.1 Focal loss

According to Abdou et al. [69], imbalanced distribution of classes in point cloud input data

can lead to wrongly classified objects. Therefore, they propose a weighted loss function to

overcome discrimination of under-represented classes. Opposed to previous methods, they

do not down-weight objects of over-represented classes.

Since there is an imbalance among front- and background objects in the chosen dataset,

we adapt the segmentation head of the point cloud detector to use Focal loss [21]. This

loss function is a modification of the standard cross entropy function by down-weighting

the loss allocated to easily-classified objects.

We reformulate the RPN segmentation loss from Eq. 3.5 as

LSegmentation = −ws(1− p)γ log(p), (4.1)

where the hyperparameters γ and ws are used to tune the weight of different samples. This

gives us more control for prioritizing classes than using the standard cross entropy loss.

For all our experiments, we set the hyperparameters to their default settings γ = 2 and

ws = 0.25 as described in the paper.
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4.3 Chapter Summary

This section showed how external object masks can be integrated in our framework during

training. We described the beneficial effects of modifying the default segmentation head,

allowing detailed bounding box proposals from the boarder areas of objects. Finally, we

explained the class imbalance problem in the KITTI dataset and how to overcome it using

a modified loss function.
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5.1 Power of End-to-End Learning

The default pipeline is based on a modular design consisting of two independent compo-

nents which need to be trained separately. However, this decoupled approach of training

two networks may not be the best fit for the learning objective of 3D object detection.

For instance, standalone depth estimation networks accurately predict near and over-

represented objects while producing more errors for far-away objects [14].

Therefore, we investigate into end-to-end neural networks. End-to-end learning is defined

as training a possibly complex system by applying gradient-based techniques to the model

as a whole. They have the benefit that single components can interact and jointly minimize

a global learning loss. This means that there is no need to optimize for any auxiliary task

unrelated to the main objective. Besides, training a system in a holistic manner results in

conceptual beauty.

End-to-end learning models yield powerful results in different domains [70]. Bojarski et al.

[15] have shown that autonomous vehicles can operate in diverse conditions with sparse

training data using a unified loss function. They argue that the non-decomposition of

their self-driving car optimization will eventually lead to better performance and smaller

systems.

On the contrary, unifying a complex system offers potential for inefficiencies. As discussed

by Shalev et al. [71], the traditional limitations of gradient-based learning models can

occur. Especially the chance of vanishing gradients and slow convergence increases by

coupling different networks into one system.

Additionally, interacting components can restrict each other’s learning progress which may

result in a complete breakdown of training. Therefore, the stacking of multiple networks

with too complex learning tasks is not recommended [72].

With all the merits and limitations in mind, we propose end-to-end learning for both the

depth and object detection module in our Pseudo-LiDAR pipeline. The details will be

described in the next section.
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5.2 Joint Training

As described earlier, Pseudo-LiDAR enables to replace single components by being de-

signed in a modular way. This allows to integrate new state-of-the-art models nearly

immediately. However, this modularity is not suited to optimize the ulimate learning

objective of object detection. There is no need to train modules on an auxiliary objective.

Compared to the explicit decomposition of components, such as stereo estimation and point

cloud detection, our end-to-end system optimizes all processing steps simultaneously. This

will lead to better performance and smaller system, which has been proven in various

domains [73]. Better accuracy will result because the internal components self-optimize to

maximize the overall learning objective of 3D object detection.

Figure 5.1 shows an overview of the end-to-end learning system.

Figure 5.1: Joint training.

To make end-to-end learning possible, we need to connect both components to permit the

detection gradients to back-propagate to the stereo estimation module. This includes the

upscaling of the traditional backpropagation algorithm [74] for our complex architecture.

In addition, the individual components need to be differentiable in terms of all adjustable

parameters. Furthermore, we optimize our model to use a global, supervised loss function

which will be described in the next sections.
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The architecture shows the united design of depth estimation and point cloud object de-

tection. In between, we have the transformation from the depth map to a point cloud. We

have already described this transformation in the previous chapter. Since the transforma-

tion includes the subsampling of points and thus outputs a sparse representation of the

original scene, we need to re-prioritize the loss for the depth network in our experiments.

As we already know, the backpropagation algorithmn for calculating gradients consists of

forward and backward passes. The forward pass multiplies the input by weights and passes

the results forward to the next layers. After calculating the error, we can update weights

using backward passes. Compared to our default network architecture shown in Figure

3.1, we can clearly see the dotted-lined arrows in Figure 5.1. The flow of these arrows

describes the backward passes of the losses.

We argue that this back-flowing gradient works similar to a soft-attention [75] to the depth

estimation network. This way the final error from the point cloud detector can guide the

depth network where to put focus and improve. Often, we observed that the errors occur in

and around objects to detect. When using the external masks from the previous chapter,

we can softly guide the depth network in border regions more precise than without external

masks.

As we know from the previous section, deep networks offer the chance of vanishing gradi-

ents. If the gradient is too small, it will prevent changing the value of weights. The reason

for this problem is the gradient computation by the chain rule.

We try to solve this problem using several approaches:

• First, we heavily use residual layers in both the depth estimation and point cloud

estimation network. Using these skip connections permits the gradient to proceed

into deeper structures of the model.

• Additionally, we employ the sigmoid-like non-linearity ReLU activation in our net-

work. However, ReLU does not feed deeper parts of the network with additional

information.
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5.3 Loss Functions

The proposed end-to-end model described in the previous section optimizes a global learn-

ing function.

We define the end-to-end loss as

Ltotal = Ldepth + L3D, (5.1)

where Ldepth denotes the depth loss as defined in Eq. 3.2 and L3D describes the point

cloud detector loss from Chapter 5.

5.3.1 Weighted Global Loss Function

Since we subsample the converted depth map to better suit existing 3D detectors, it outputs

a sparse point cloud. Therefore, we need to introduce weights to distinct between depth

and point cloud gradients.

To conclude, we define the global objective function as

Ltotal = Ldepth + w3DL3D, (5.2)

where w3D denotes the point cloud detector weight.

For our experiments, we aim to find the best trade-off between weighting the depth and

point cloud detector loss. Due the subsampling of depth maps to point cloud, we anticipate

to start with an down-weighted 3D loss for a good balance.

Optimizing for this global learning goal, we anticipate the network to learn the optimal

internal weights of the architecture in an end-to-end way. The model should improve in

terms of accuracy compared to the modular design consisting of two independent compo-

nents which need to be trained separately.
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5.4 Chapter Summary

In this section, we discussed methods to improve information flow between the individual

components via end-to-end learning. Additionally, we described details for implement-

ing end-to-end learning in the Pseudo-LiDAR framework via a global loss function using

backward passes.
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This chapter begins with a explanation of the dataset and evaluation metric used for the

performed experiments. Next, we explore the details of the implementation of the proposed
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with other methods.
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6.1 Dataset Description

We evaluate the proposed network on the openly obtainable KITTI dataset [22]. It consists

of 7,481 training and 7,518 images, where every instance includes two pictures from a

stereo camera setup and a LiDAR point cloud from a Velodyne laser sensor [76]. In total,

it comprises 80,256 labeled objects. All images were taken of streets in daylight around

the city of Karlsruhe. A typical scene of the dataset can be seen in Figure 6.1.

We also investigated into other public datasets for our experiments. The Waymo Open

Dataset [77] features 3,000 driving scenes totalling 16.7 hours of video data. However, it

does not offer stereo camera input.

Another popular dataset named nuScenes [78] comprises over 1,000 driving scenes for sev-

eral object detection challenges. Even so, it also only exposes LiDAR and mono-camera

sensor data.

Figure 6.1: Example image from the KITTI dataset. Image taken from [22].

Table 6.1 describes the KITTI annotation format used for our experiments. Note that the

provided 2D bounding box is not processed by the model and therefore not necessary. The

score field is only necessary for predicted labels and therefore not available during training.

Additionally, we only perform experiments on the ’Car’ class and ignore any other classes.

6.2 Evaluation Criteria

To evaluate the 3D detection performance of the presented architecture, we use the PAS-

CAL criteria [79] for a fair comparison with other methods.
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Values Name Description

1 type
Describes the type of object: ’Car’, ’Van’, ’Truck’, ’Pedestrian’,
’Person sitting’, ’Cyclist’, ’Tram’, ’Misc’ or ’DontCare’

1 truncated
Float from 0 (non-truncated) to 1 (truncated), where truncated
refers to the object leaving image boundaries

1 occluded
Integer (0,1,2,3) indicating occlusion state: 0 = fully visible,
1 = partly occluded, 2 = largely occluded, 3 = unknown

1 alpha Observation angle of object, ranging [-pi..pi]

4
bounding

box
2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates

3 dimensions 3D object dimensions: height, width, length (in meters)

3 locations 3D object location x,y,z in camera coordinates (in meters)

1 rotation y Rotation ry around Y-axis in camera coordinates [-pi..pi]

1 score Only for results: Float, indicating confidence in detection

Table 6.1: KITTI annotation format as specified by [22].

6.2.1 Intersection over Union

The prediction of bounding boxes in 3D space require a metric to measure how accu-

rate these outputs are. Therefore, the intersection over union evaluates the magnitude of

overlap between two objects as:

IoU(A,B) =
A ∩B
A ∪B

. (6.1)

In the described datasets, an 3D bounding box IoU overlap of 70 % is necessary for all

objects to be counted as correct.

6.2.2 Average Precision

Basic concepts for calculating objected detection metrics are:

• True Positive (TP): A correct detection, where the IoU is above a specific threshold.

• False Positive (FP): A wrong detection, where the IoU is below a specific threshold.

• False Negative (FN): A groundtruth bounding box which gets not detected.
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Precision is defined as the probability of correct positive predictions:

Precision =
TP

TP + FP
=

TP

All Detections
. (6.2)

Recall is defined as the probability of groundtruth objects being correctly detected:

Precision =
TP

TP + FN
=

TP

All GroundtruthBoxes
. (6.3)

For better comparison, a single numerical metric called average precision (AP) gets cal-

culated. It averages the precision by interpolating across 40 spaced recall values from 0 to 1.

6.3 Implementation Details

We now proceed with the training details for all conducted experiments. We have im-

plemented all models using the PyTorch [80] framework. It is an open-source machine

learning library optimized for achieving state of the art results in research without sacri-

ficing flexibility.

6.3.1 Data Augmentation

For all experiments we apply input augmentation using horizontal flip, scaling by a factor

in [0.90, 1.10] in addition to rotating the Y axis of [-15, 15] degrees.

6.3.2 Semantic Segmentation

We use a starting learning rate of 0.002 and train the network for 90 epochs. As already

described, we use a pretrained Resnet50 [25] feature extractor as a backbone network.

6.3.3 Stereo Depth Estimation

Before feeding the images into the network, we apply color normalization and randomly

crop them according to [25].

We pre-train the stereo network for 200 epochs with a 0.002 learning rate. For training, we

transform the groundtruth point clouds onto the images to obtain the depth. Therefore,
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6.3.4 3D Object Detection

As an input, we subsample every point cloud to a defined amount of 16,384 points. This

amount of points refers to the mean of points in the dataset per scene.

For 3D detection, we pre-train the RPN network for 200 epochs using a 0.002 learning rate

in addition to the batch size of 8. We keep 300 proposals after NMS has been applied.

This way, we can ensure high-quality proposals for further refinement.

We pre-train the refinement network for 250 epochs with a learning rate of 0.002 in addition

to a batch size defined as 8.

6.3.5 End-to-End Training

We apply stochastic gradient descent for jointly optimizing the global objective function.

We set the weight decay and momentum to 0.0004 and 0.95.

For end-to-end optimization, we set both modules of the pipeline as trainable. This allows

the gradients of the point cloud detector to flow back into the depth estimation network.

We experiment with different loss weights to find the best relationship between point

cloud and depth gradients. We report the weight and parameter settings in the different

experiment results.

For the final fine-tuning, we train the network for 15 epochs with the batch size specified

to 4. For the beginning the learning rate is set to 0.0002.
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6.4 Experimental Results

This section presents the quantitative results of training our end-to-end 3D object detec-

tion architecture using the methods described in the previous chapters. The aim of the

experiments is the demonstration of improvement by integrating objects masks and joint

training of separate pipeline modules.

For the validation of this idea, we measured the mean IoU with a minimum overlap of 70

of our modified model and compare it with a reference. As a baseline model, we used

the public implementation of Pseudo-LiDAR++ [14]. Both the results from the baseline

implementation and our implementation can be found in Table 6.2.

Model Input
IoU (0.7)

Easy Moderate Hard

Baseline Stereo 58.03 42.48 36.65

Baseline + Objects masks Stereo 59.79 43.85 37.91

Baseline + Objects masks + E2E Learning Stereo 61.43 45.69 39.48

Table 6.2: Obtainend results of the proposed modifications compared with the baseline
model on the KITTI validation dataset.

The outcomes of the experiments in combination with the qualitative results in Figure

6.2 confirm our intention of combining the separate components to optimize a common

learning objective. We also notice that end-to-end learning mainly improves the ’Hard’

category on KITTI compared to the baseline implementation. This may be an outcome

of the back-propagated loss into the depth estimation module, making it easier to propose

far-away and occluded objects.

We also see improvements in all categories by adding object masks and a segmentation

head during training of the network. Naturally, generated object masks specifically for 3D

object detection are cost-intensive. However, often these masks are already provided by

any other module of an autonomous vehicle vision system and can therefore be integrated

without any additional cost.
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Figure 6.2: Qualitative results obtained from the experiments. The top row of each
image pair shows the groundtruth bounding boxes, the bottom row presents the detected

bounding boxes from our model.
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Figure 6.3 shows a comparison of 3D detection results on the middle and right side and

the groundtruth annotation on the left side. In the middle column we see the detections

using external object masks during training. As already described, 3D bounding boxes

need an IoU overlap of 70 % to be counted as correct.

Figure 6.3: Comparison of qualitative results with different modifications applied. From
left to right: groundtruth annotation, results from model with integrated object masks,

results from end-to-end model with integrated object masks

In the first row, we can clearly see that the bounding box in the back of the car becomes

more narrow using our model with all modifications. For smaller and further away object

as shown in the second row, there is not a huge difference in bounding box location and

size. The last row also presents that end-to-end learning helps for tine-tuning the bounding

box size for narrow cars. Overall, we see how using external masks and end-to-end learning

improves the size of predicting bounding boxes.
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For an better overview, we compare our implementation on the KITTI 3D dataset. The

results are presented in Table 6.3. We observe that our model performs better than tra-

ditional stereo methods like Stereo-RCNN. However, memory-intensive approaches like

DSGN and CG-Stereo outperform all other methods based on stereo input. These meth-

ods accurately estimate depth maps by internally applying more high computational op-

erations as shown in Table 2.1 than we use our architecture. Additionally, there is still a

huge gap between approaches based on stereo input and approaches based on LiDAR-only

input like Voxel R-CNN.

Model Input
IoU (0.7)

Easy Moderate Hard

SMOKE [81] Mono 14.76 12.85 11.50

Stereo-RCNN [9] Stereo 54.1 36.7 31.1

PL++ [14] Stereo 58.03 42.48 36.65

Ours Stereo 61.43 45.69 39.48

DSGN [48] Stereo 72.31 54.27 47.71

CG-Stereo [13] Stereo 76.17 57.82 54.63

PointRCNN [43] LiDAR 89.2 78.9 77.9

Voxel R-CNN [82] LiDAR 89.41 84.52 78.93

Table 6.3: Obtained results our model compared with other methods on the KITTI
validation dataset.

Since the KITTI dataset shows a class imbalance between foreground and background

objects, we introduced a loss modification in Eq. 4.1. We defined a focusing parameter γ

for individually down-weighting easy examples. For our experiments, we smoothly adjust

the parameter. In Table 6.4 we observe that setting γ = 3 yields the best object detection

results.

γ IoU@0.7 (Moderate)

1.0 42.48

2.0 44.62

3.0 45.69

4.0 44.02

Table 6.4: Obtained results of our model with varying focal detector loss weight.
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In Eq. 5.2, we use parameters to individually weigh the balance between depth and point

cloud detector loss. We conducted the experiments with different settings to find the best

parameter setup. As shown in Table 6.5, setting the parameter w3D = 0.05 turned out to

work well on the validation dataset.

w3D IoU@0.7 (Moderate)

0.01 43.48

0.05 45.69

0.1 41.35

Table 6.5: Obtained results of our model with varying 3D detector loss weight.

Figure 6.4 show the tradeoff between precision and recall at a threshold of 0.7. The

figure compares the true positive rate and the positive predictive value for our model. For

generating this curve, all recall results get approximated to a linear function. From the

figure we can observe that compared to Pseudo-Lidar++ [14] our model does not show

any outstanding drops in the curve.

Figure 6.4: Precision-recall curve on the KITTI dataset moderate level.
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We compared different semantic segmentation networks in Chapter 2. Due the reported

results on the KITTI dataset, we chose VideoPropLabelRelax [56] for our implementation.

However, the object masks can be generated by any arbitrary solution. For our experi-

ments, we visually compared the results of SegStereo [54] to our selected network. The

results can be found in Figure 6.5. We can clearly see the higher error of SegStereo [54],

especially in the boundary areas of cars.

Figure 6.5: Visual comparison of different semantic segmentation methods. From top
to bottom: image, color-coded result from VideoPropLabelRelax [56], error from Video-
PropLabelRelax [56], color-coded result from SegStereo [54] and error from SegStereo[54]
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6.5 Runtime

Given its importance, a lot of research effort has been made to push 3D object detection

accuracy. Most current methods are unable to obtain real-time speeds and require plenty of

memory footprint in the training phase. However, autonomous vehicles often have limited

hardware resources, processor power and memory.

Having those hardware restrictions in mind, we are aiming to find a trade-off between

detection accuracy and performance. To validate this idea, we measure the runtime of our

3D object detection implementation. First, we identify the used hardware specifications.

For all our experiments, we utilized a GeForce RTX 2070 GPU with 8 GB memory.

All models were implemented in the PyTorch [80] framework. It supports designing net-

work architectures in Python, while remaining structured and supporting hardware accel-

erators such as GPUs.

We analyze the performance by measuring the runtime to infer the 3D bounding boxes

of a stereo input image pair. On the GeForce GPU, the end-to-end model requires 0.54

seconds for a single input pair with prepared object masks.

Since object detection is often applied with complimentary tasks, we assume that the

segmentation masks are already given. The segmentation of objects takes up 0.17 seconds

per input image using the reference implementation of VideoPropLabelRelax [56]. The

total runtime can be reduced by running several processes in parallel using more GPUs.
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6.6 Chapter Summary

The final chapter summarizes the results obtained of the experimental evaluation. It

started with a description of the used dataset and the metrics for comparison with other

methods.

Further, we described the details of our implementation. Due to different modification

each component of the whole pipeline is capable of optimizing the learning objective of 3D

object detection.

Finally, we presented our experiment results and showed that our presented approach

increases the accuracy on public datasets compared with traditional methods. We complete

with a runtime evaluation of our model.





Chapter 7

Conclusions and Future Work
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The final chapter will summarize the aspects of this thesis and consider topics for future

studies.

67



Chapter 5. Conclusions and Future Work 68

7.1 Conclusions

Our thesis shows that convolutional networks are able to successfully detect and localize

objects in road scenes using stereo input images. Based on the existing Pseudo-LiDAR

framework [14], we proposed modifications to the network architecture to increase the

object detection accuracy. Using segmentation masks from an external network, we could

eliminate wrong bounding box proposals especially in border areas of objects. Additionally,

we implemented end-to-end learning to optimize for a global learning function. We assessed

our approach on a public 3D dataset [22] and showed improvements compared to the chosen

baseline.

By default, the PointRCNN [43] 3D object detector of the Pseudo-LiDAR framework dis-

tinguishes between foreground and background objects for proposing 3D bounding boxes.

However, the network uses the groundtruth 3D boxes for segmenting objects which are

imprecise in border areas. To solve this issue, we leverage foreground object masks pre-

dicted by the VideoPropLabelRelax [56] network. This way we can improve the proposal

generator of the two-stage network by precisely dismissing any out-of-object bounding

box proposals. Further, analysis show that the KITTI dataset contains class imbalances.

Therefore, we modified the model to use Focal loss [58] for optimization. We saw that

these modifications are beneficial for the task of 3D object detection.

Current stereo object detection pipelines are built on a modular design consisting of two

independent components which need to be trained separately. According to other studies

this decoupled approach of training two networks may not be the best fit for the final

learning objective of 3D object detection. Therefore, we adapt the baseline architecture to

train in an end-to-end fashion. Our modifications enable both components of the Pseudo-

LiDAR framework to interact with each other and collectively minimize a global learning

loss. Our evaluations proved that training jointly improves the object detection accuracy.
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7.2 Future Work

As indicated by the reported results, there is still a gap among camera-based 3d object

detectors and LiDAR-based 3d object detectors. However, we showed that image-based

methods are improving continuously. There are multiple directions in which our work

could be improved.

To generate the synthetic point clouds, we applied a pyramid-based stereo estimation

network. Future work could investigate more complex stereo network architecture designs.

Neural Architecture Search (NAS) can achieve promising results in the area of stereo

estimation, as shown by Cheng et al. [83].

In our framework, we first estimate a depth map based on stereo input images and then

transform this map into a point cloud. While being fast and conceptually simple, this

method does not directly encode 3D geometric structures and thus offers the chance of

loosing information. Therefore, it would be compelling to think about better suited rep-

resentations for processing 3D data from stereo input. For example, DSGN [48] and the

work of Bewley et al.[84] proposed ideas for other representation.

In the case of 3D detection, our transformed depth map gets downsampled before getting

fed into the point cloud detector. Future work could improve current point cloud detectors

for fusion-based input. This way, the complementary strengths of Pseudo-LiDAR, LiDAR

and input images may result in higher detection accuracy.

As shown in the thesis, current stereo object detection pipelines including our model do not

operate in real-time. With the rising of autonomous vehicles and drones, future work could

try to lower the inference time of stereo object detection for concurrent usage. With a

view on edge computing, exploiting simpler network architectures could be advantageous

for decreasing GPU usage. Königshof et. al [85] showed promising results in terms of

inference time using image-based detectors.
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