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Abstract

In magnetic confinement fusion research the numerical simulation of collective plasma
behavior is of high interest. For this purpose, direct modeling of charged particle orbits
is utilized in important kinetic approaches. The reduced dynamics of such a charged
particle in a slowly-varying electromagnetic field is described by the guiding-center
equations of motion. In particular, the relatively fast circular motion around a point
called the guiding-center is separated and primarily the comparatively slow drift
motion of this point is treated.
In the present work, “a numerical integration method for guiding-center orbits of
charged particles in toroidal fusion devices with three-dimensional field geometry is
described. Here, high order interpolation of electromagnetic fields in space is replaced
by a special linear interpolation leading to locally linear Hamiltonian equations of
motion with piecewise constant coefficients. This approach reduces computational
effort and noise sensitivity while the conservation of total energy, magnetic moment
and phase-space volume is retained. The underlying formulation treats motion
in piecewise linear fields exactly and thus preserves the non-canonical symplectic
form. The algorithm itself is only quasi-geometric due to a series expansion in the
orbit parameter. For practical purposes an expansion to the fourth order retains
geometric properties down to computer accuracy in typical examples. When applied
to collisionless guiding-center orbits in an axisymmetric tokamak and a realistic three-
dimensional stellarator configuration, the method demonstrates stable long-term orbit
dynamics conserving invariants. In Monte Carlo evaluation of transport coefficients,
the computational efficiency of quasi-geometric integration is an order of magnitude
higher than with a standard fourth order Runge-Kutta integrator.”1

Moreover, a brief review of the Lagrangian and Hamiltonian description of classical
mechanics is given and the derivation of guiding-center dynamics is presented. Further,
the implementation of the guiding-center orbit code GORILLA, which is based on
this integration method, is outlined and the integration method is tested for the
computation of fusion alpha losses in a realistic stellarator configuration.
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Introduction

The content of this chapter can also be found in section I of Ref. [1] and Ref. [2]
formulated by the author and including some modifications.

“Extremely hot plasmas with a temperature of the order of hundred million degrees
Celsius are needed to produce energy from nuclear fusion. Under these conditions,
hydrogen isotopes are fused, and energy is released. The energy release from 1 kg of
fusion fuel corresponds approximately to that of 10000 tons of coal. A future use of
this energy source is the subject of worldwide research projects. The confinement
of such hot plasmas, however, poses major physical and technological problems for
researchers. In particular, complex numerical methods are necessary to understand
the physics of such plasmas in complicated toroidal magnetic fields.
An important kinetic approach for simulating the collective behavior of a plasma
utilizes direct modeling of particle orbits. A well-known approximation for computing
the motion of electrically charged particles in slowly-varying electromagnetic fields is
to reduce the dynamical equations by separating the relatively fast circular motion
around a point called the guiding-center, and primarily treat the relatively slow drift
motion of this point. This drift motion is described by the guiding-center equations;
see, e.g., Ref. [5, 6] and [7].”2

“In particular, global kinetic computations of quasi-steady plasma parameters in 3D
toroidal fusion devices utilize the evaluation of the distribution function and/or its
moments by direct modeling of particle orbits. This includes Monte Carlo transport
simulations in given external fields8–16 as well as self-consistent turbulence models with
particle codes.17–20 Kinetic modeling of 3D plasma equilibria21 or edge plasmas22 puts
specific requirements on solving the guiding-center equations.5–7,23 Namely, particle
orbit integration should be computationally efficient, tolerant to statistical noise in the
electromagnetic field and efficient in scoring statistical data from the orbits. Geometric
integrators24,25 address these targets by relaxing the requirement to the accuracy of
guiding-center orbits while preserving physically consistent long time orbit dynamics.
In this context the word geometric refers to the preservation of the geometric structure
of phase-space being a symplectic manifold. The best-known class of geometric
integrators is the class of symplectic integrators that relies on canonical coordinates
in phase-space. Symplectic integrators are not directly applicable to guiding-center
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dynamics that are formulated in non-canonical coordinates. One way to circumvent this
problem is the use of a (usually implicit) transformation to canonical coordinates.26–28

Up to now such approaches rely either on magnetic flux coordinates or require a more
expensive transformation of phase-space coordinates in the general case. The other
well-known alternative are variational integrators.29,30 Such integrators do not assume
canonical coordinates and include symplectic integrators as a special case. Stability
problems of variational integrators arise for guiding-center orbit computations due to
the degeneracy of their phase-space Lagrangian. This issue has only recently been
resolved.31–33 The resulting integrators are fully implicit and/or require an augmented
set of dynamical variables, and their competitiveness for practical applications is still
a topic open to investigation. Yet another alternative could arise from very recent
results on slow-manifold methods34 that introduce a different construction of the
guiding-center equations well suited for geometric integration.
The method presented here is geometric in both a structure-preserving and a more
literal sense, as it considers intersections of orbits with a spatial mesh. The under-
lying formulation and discretization of fields exactly preserves the (non-canonical)
Hamiltonian structure of the equations. In contrast to usual geometric integrators,
this is achieved by solving the exact motion in simplified fields, i.e. the Hamiltonian
flow in the original fields is approximated by the exact Hamiltonian flow in piecewise
linear fields. The final algorithm is only quasi-geometric, as it relies on a series
expansion in the orbit parameter. Here the term quasi-geometric means that the error
can be brought below any given (computer) accuracy by a sufficiently high order.
Expansions to order 3 and 4 are shown to conserve invariants extremely well for
at least 106 toroidal turns in numerical experiments for typical fusion devices. The
approach has been introduced in Ref. [4] as a generalization of the 2D geometric
integrator of Ref. [35] for general 3D toroidal fields. This approach has two features
useful for application in global equilibrium and transport simulations: straightforward
computation of spatial distributions of macroscopic parameters and robustness in
the presence of noise in field data. Moreover, the new method preserves total energy,
magnetic moment and phase-space volume. In its present version the method is
designed for (quasi-)static electromagnetic fields.
The integration procedure is based on a special 3D discretization of space resulting in
locally linear guiding-center equations while retaining the symplectic property of the
original set. Formally, such an interpolation could be denoted by Whitney forms or
finite element exterior calculus in a way similar to existing work on charged particle
orbits36–38 and results in a divergence-free magnetic field. Within this discretiza-
tion, vectors and scalars characterizing the electromagnetic field are represented by
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continuous piecewise linear functions which reduces the cost of spatial interpolation
as compared to high-order interpolation with continuous derivatives (e.g. with help
of 3D-splines) required for usual integration. In return, the integration procedure
requires accurate tracing of intersections of the orbit with spatial cell boundaries
where the coefficients of the linear guiding-center equation set are discontinuous.
However, tracing of the boundaries is also required in Monte Carlo procedures for
the computation of the spatial distribution of various velocity space moments of the
distribution function which are computed as path integrals over the test particle dwell
time within spatial cells.
In the original implementation of Ref. [4], the linear guiding-center equation set was
solved numerically by using a usual Runge-Kutta (RK) integrator. In this case, tracing
of orbit intersections with spatial cell boundaries requires a few Newton iterations
for the computation of the dwell time within the cell. Since the integration error of
this set scales with the third power of the Larmor radius, accurate results can still be
obtained by a single RK integration step over the dwell time. For the same reason,
sufficient accuracy can be achieved also by using the polynomial expansion of the
solution over an orbit parameter which allows to compute the dwell time and integrals
of velocity powers analytically.
In the case of magnetic fields with spatial symmetry (e.g., tokamaks with toroidal sym-
metry) the quasi-geometric integration accurately preserves the respective (toroidal)
canonical momentum. Thus, the property of such systems to ideally confine the
orbits is retained. In the absence of spatial symmetry, the parallel adiabatic invariant,
which is an approximate conserved quantity in stellarators, is well preserved, since
the quasi-geometric integration does not lead to a significant error accumulation.
It should be noted that the piecewise linear approximation of the guiding-center
equations represents field lines as polygonal chains in coordinate space. Such a
representation may introduce artificial chaos in case of 3D fields when using non-field-
aligned coordinate systems. In our earlier publication4, some field line diffusion has
been observed in a perturbed tokamak field which seemed to be in agreement with the
quasilinear estimate assuming a continuous safety factor profile of the unperturbed
field (which is, actually, not the case), and, therefore, this diffusion has been attributed
to the linearization. However, further detailed studies and resulting improvements
of the algorithm revealed that the level of artificial diffusion observed earlier is not
connected to the intrinsic deficiency of the method. In the improved algorithm this
diffusion is actually much smaller so that it provides a negligible correction to the
existing neoclassical transport even for the relatively strongly perturbed non-aligned
3D fields and a coarse mesh.
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The above mentioned characteristics of the method allow, in particular, its effective
application to the computation of neoclassical transport coefficients using the Monte
Carlo method. For demonstration, the mono-energetic neoclasscial diffusion coefficient
is evaluated here for a quasi-isodynamic reactor-scale stellarator field39. The results
and performance of the new method are compared to usual (RK) orbit integration
methods.”1

Nevertheless, the inherent artificial chaos of the method, which is induced by the
linearization of the electromagnetic field, strongly scales with the particle’s Larmor
radius. When applying the method to the computation of fusion alpha particle losses
for the slowing-down time of 1 s, moderate grid sizes are not sufficient to yield accurate
results. (The Larmor radius of a 3.5 MeV alpha particle is roughly 24 times larger
than that of a 3 keV D ion.) Consequently, the quasi-geometric integration method
is not suited to be used for tracing of high-energetic 3.5 MeV fusion alpha particles
for the total slowing-down time. In return, the quasi-geometric integration method
is successfully applied for the comparatively shorter trace time of 0.01 s utilizing a
moderate grid size and showing a significant CPU speed-up.
The remainder of this thesis is organized in three parts: (I) theoretical background, (II)
derivations and implementation and (III) applications, results and discussion; including
the following chapters. Chapter 1 gives a brief recapitulation of the Lagrangian and
Hamiltonian formulation of mechanics. In chapter 2 the guiding-center Lagrangian and
the resulting equations of motion are derived. In chapter 3 the spatial discretization
procedure is introduced and the numerical solution of the resulting piecewise linear
guiding-center equations is described. Furthermore, details on the Hamiltonian
structure of the underlying locally linear equations are discussed and a useful feature
for scoring orbit statistics is presented. Chapter 4 gives a concise overview of the
implementation of the guiding-center orbit code GORILLA. In chapter 5 collisionless
guiding-center orbits obtained with the quasi-geometric integration method and
respective invariants of motion for axisymmetric and non-axisymmetric geometries
are analyzed in detail. Moreover, the introduced artificial chaos is studied. The
application of the method to the evaluation of transport coefficients is presented in
chapter 6, where the computational orbit-integration performance is benchmarked as
well. In chapter 7 the method is tested for the computation of fusion alpha losses in a
realistic stellarator configuration. Finally, conclusions from these studies and further
outlook is given in chapter 8.
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Theoretical background
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Chapter 1

Lagrangian and Hamiltonian
mechanics

The description of Lagrangian and Hamiltonian mechanics follows mainly the books by
Landau and Lifshitz (Ref. [40]) and Goldstein (Ref. [41]) as well as the review paper
by Cary and Brizard (Ref. [7]). This chapter is not considered to be an independent
work of the author but outlines a brief review of the theoretical background which is a
prerequisite for chapter 2 and the derivations in part II.

Lagrangian description of classical mechanics:
A classical mechanical system with N degrees of freedom can be fully described via its
Lagrangian L(q(t), q̇(t), t) which is a function of (arbitrary) generalized coordinates in
configuration space, q = (q1, q2, . . . , qN ), their respective time derivatives (“generalized
velocities”), q̇ = (q̇1, q̇2, . . . , q̇N ), and time t. The motion of such a mechanical system
is given by a trajectory in 2N -dimensional phase-space. The stationary action principle
requires that this trajectory’s action,

S =

Z
t1

t0

L(q(t), q̇(t), t) dt, (1.1)

must be stationary with respect to variations of the trajectory �q(t) (virtual displace-
ments) in configuration space. From this variational principle the Euler-Lagrange
equations of motion follow,

d

dt

@L

@q̇i
=
@L

@qi
, (1.2)

which are a set of N second order ordinary differential equations. In the case that the
Lagrangian is independent of a coordinate qi, i.e. qi does not appear in the Lagrangian
but only its time derivative q̇

i appears,

@L

@qi
= 0, (1.3)

10



Lagrangian and Hamiltonian mechanics

there exists due to this symmetry in the Lagrangian (in accordance with Noether’s
theorem) an associated invariant of motion,

@L

@q̇i
= const. (1.4)

Furthermore, it is worth to mention that the Lagrangian is not unique. In fact, one
can add a total time derivative of a function F (q, q̇, t) to the Lagrangian yielding a
new Lagrangian,

L̃ = L+
dF (q, q̇, t)

dt
, (1.5)

without affecting the equations of motion, since the added terms in the action integral,

S̃ =

Z
t1

t0

L(q(t), q̇(t), t) +
dF (q, q̇, t)

dt
dt

= S(q(t), q̇(t), t) + F (q(t1), q̇(t1), t1)� F (q(t0), q̇(t0), t0), (1.6)

are independent of q and will thus vanish upon variation.
Moreover, another useful feature of the Lagrangian formalism is its coordinate in-
dependence, i.e. the action integral, Eq. (1.1), is allowed to be computed in any
coordinate system. In order to obtain the Lagrangian for new generalized coordinates
and velocities (s, ṡ) one simply applies the chain rule for partial derivatives and
substitutes q(s, t) and q̇ = @q/@t+ ⌃ṡi@q/@si in the former Lagrangian.

Canonical Hamiltonian description of classical mechanics:
The Hamiltonian formalism gives a different insight into problems of classical mechan-
ics when compared with the Lagrangian formalism due to its description with a set of
canonical coordinates (q,p). In contrast to the Lagrangian formalism, q and p are
placed on equal footage and, thus, canonical transformations leading to new ideas of
phase space structure are allowed.7

First, we define the components of the canonical momentum p,

pi =
@L(q, q̇, t)

@q̇i
, (1.7)

and, second, we introduce the Hamiltonian H(q,p, t) via the Legendre transformation,

H(q,p, t) = p · q̇ � L(q, q̇(q,p, t), t). (1.8)

The equivalence to the Euler-Lagrange equations (1.2) are then Hamilton’s canonical
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Lagrangian and Hamiltonian mechanics

equations,
q̇
i =

@H

@pi
and ṗi = �@H

@qi
, (1.9)

which are a set of 2N first order ordinary differential equations.
A point in phase-space, whose time evolution obeys these equations, can be conveniently
denoted by the 2N -dimensional vector z = (q1, . . . , qN , p1, . . . , pN). Moreover, we
introduce the fundamental symplectic N ⇥N matrix,

� =

 
0 �

ij

��ij 0

!
, (1.10)

which we utilize to define the Poisson brackets for the coordinates and canonical
momenta among themselves,

{z↵, z�} = �
↵� or {qi, pj} = �

i

j
. (1.11)

Here, the greek indices ↵, � denote phase-space components and take values from 1 to
2N , the latin indices i, j denote configuration or momentum space components and
take the values from 1 to N .
The canonical Poisson bracket for any functions f and g in phase-space is defined as

{f, g} =
@f

@z↵
�
↵�
@g

@z�
=
@f

@q
· @g
@p

� @f

@p
· @g
@q

, (1.12)

which is a bilinear antisymmetric differential operator. The total derivative of such
a function f(q(t),p(t), t), i.e. the convective derivative of f in phase-space, can be
expressed with the help of the Poisson bracket,

df

dt
=
@f

@t
+ {f,H}. (1.13)

By utilizing this property we can now denote Hamilton’s canonical equations of motion
(1.9) in the form

dz↵

dt
= �

↵�
@H

@z�
. (1.14)

Moreover, in a similar manner it can be shown that

dH

dt
=
@H

@t
=
@L

@t
(1.15)

and, hence, it follows that H is conserved if L does not explicitly depend on time.
Coordinate transformations z = (q,p) ! Z = (Q,P ) for which the Poisson bracket
remains form invariant are termed canonical transformations. Hence, canonical
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Lagrangian and Hamiltonian mechanics

transformations preserve the form of Hamilton’s equations, i.e. after transforming
z ! Z there exit a new Hamiltonian K(Q,P ) for which the time evolution is given
by Eqs. (1.9) in the new variables. E.g., replace H,q and p with K,Q and P .
The Hamilton formalism and the corresponding Hamilton’s equations can be used for
problems of classical mechanics under the condition that Eq. (1.7) may be inverted,
i.e. velocities can be expressed as functions of the canonical momenta, q̇(q,p, t).7

Phase-space Lagrangian:
Without going into details, we will now also introduce the concept of the phase-space
Lagrangian L which is a Lagrangian that yields the correct equations of motion in
phase-space when all phase-space coordinates are varied.7 The phase-space Lagrangian
is defined via

L(q,p, q̇, ṗ, t) = p · q̇ �H(q,p, t). (1.16)

and equals the Lagrangian L in value. When applying the phase-space Euler-Lagrange
equations for q and p we obtain Hamilton’s canonical equations,

d

dt

@L
@q̇i

=
@L
@qi

! ṗi = �@H
@qi

and

d

dt

@L
@ṗi

=
@L
@pi

! q̇
i =

@H

@pi
. (1.17)

Non-canonical Hamiltonian description of classical mechanics:
We consider now a transformation from canonical variables (q,p) to any non-canonical
variables z

↵ where ↵ takes the values from 1 to 2N . In order to express a new phase-
space Lagrangian in these non-canonical variables, we require the appropriate phase-
space parametrization, i.e. qi(z, t) and pi(z, t). The corresponding total derivative of
the coordinates q is then

q̇
i =

@q
i

@t
+ ż

↵
@q

i

@z↵
(1.18)

and after inserting in the phase-space Lagrangian, Eq. (1.16), the non-canonical
formulation follows,

L(z, t) = pi(z, t) ·
@q

i(z, t)

@z↵| {z }
⇤↵

ż
↵ �

0

B@H(qi(z, t), pi(z, t), t)� pi(z, t) ·
@q

i(z, t)

@t| {z }
H

1

CA

= ⇤↵(z, t)ż
↵ �H(z, t). (1.19)

The vector ⇤↵(z, t) and the Hamiltonian H(z, t) define Hamiltonian flows, i.e. the

13



Lagrangian and Hamiltonian mechanics

integral lines of the Hamiltonian vector fields in both canonical and non-canonical
coordinates. The first term ⇤↵ż

↵ is the symplectic part, in which the time derivatives
ż
↵ appear only at first order and the second term �H is the Hamiltonian part.7

We define now the skew symmetric Lagrange tensor,

!↵� =
@⇤�(z, t)

@z↵
� @⇤↵(z, t)

@z�
, !↵� = �!�↵ (1.20)

which is inspired from the Euler-Lagrange equations for z,

d

dt

@L(z, t)
@ż↵

=
@L(z, t)
@z↵0

BB@
@⇤�(z, t)

@z↵
� @⇤↵(z, t)

@z�| {z }
!↵�

1

CCA ż
↵ =

@H(z, t)

@z�
+
@⇤�(z, t)

@t
. (1.21)

Eventually, we invert the Lagrange tensor !↵� and obtain the Poisson matrix ⇧↵�

(⇧↵�
!�� = �

↵

�
) which allows us to express the non-canonical equations of motion as

dz↵

dt
= ⇧↵�

✓
@H(z, t)

@z�
+
@⇤�(z, t)

@t

◆
. (1.22)

Let us now transform the canonical equations of motion, Eq. (1.14), by directly
transforming the canonical variables y = (q,p) to the non-canonical variables z and
by expressing the canonical Hamiltonian in terms of the non-canonical variables,
H(q(z, t),p(z, t), t).

dy↵

dt
= �

↵�
@H(y, t)

@y�

= �
↵�
@H(y(z, t), t)

@z�

@z
�

@y�
. (1.23)

Furthermore, the direct transformation of ẏ in accordance with Eq. (1.18) yields

dy↵

dt
=
@y

↵

@t
+
@y

↵

@z�
ż
�
. (1.24)

By combining these two expressions and multiplication from the left with @z
�
/@y

↵
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we obtain

ż
� =

@z
�

@y↵

✓
dy↵

dt
� @y

↵

@t

◆

=
@z

�

@y↵

✓
�
↵�
@z

�

@y�

@H(y(z, t), t)

@z�
� @y

↵

@t

◆

=
@z

�

@y↵
�
↵�
@z

�

@y�| {z }
⇧��

✓
@H(y(z, t), t)

@z�
� @y

µ

@z�
�µ⌫

@y
⌫

@t

◆
. (1.25)

In accordance with Eq. (1.12) we identify here the Poisson matrix ⇧↵� to be the
Poisson bracket of z↵ and z

�. Thus, the Poisson matrix ⇧↵� equals the symplectic
matrix �↵� in the case of canonical coordinates.
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Chapter 2

Guiding-center dynamics

The derivation of guiding-center dynamics follows mainly the papers by Littlejohn
(Ref. [5]) and Boozer (Ref. [6]) as well as the review paper by Cary and Brizard
(Ref. [7]). This chapter is not considered to be an independent work of the author but
outlines a brief review of the theoretical background for the derivations in part II.

2.1 Motivation for guiding-center theory

The dynamics of a charged particle with mass m and charge e in a straight and
uniform magnetic field, B = Bĥ, are well known as a movement along a helix. In the
absence of an electric field its kinetic energy remains conserved and its speed v = |v|.
Furthermore, this particle velocity can be separated into two constant components,
specifically the velocity vk = v · ĥ parallel to the magnetic field and the perpendicular
velocity v? = |v?| = (v2 � v

2
k)

1/2. While the motion parallel to the magnetic field
is uniform along a magnetic field line, the perpendicular motion (“gyromotion”) is
confined to a circle, whose center of gyration moves along the same magnetic field
line. The cyclotron frequency !c = eB/mc with the speed of light c is obtained by
the equality of centripetal force and magnetic Lorentz force. The radius vector of
gyration (“Larmor radius”) ⇢(v?,�) = ĥ ⇥ v?/!c is dependent on the gyrophase �.7

Inspired by the simple motion of the gyration-center along the magnetic field line in
a straight and uniform magnetic field, we long for a theory for reduced dynamical
equations describing the charged particle motion in a slowly-varying electromagnetic
field, i.e. the scale length L of the magnetic field is large in comparison with the
Larmor radius and the distance vk/!c travelled by the particle during one period of
gyration. Under these assumptions the electromagnetic field is approximately constant.
Thus, the above described motion in a constant field should be approximately correct
in a slowly-varying field. This includes that invariants of motion in the constant field,
e.g. the magnetic moment µ = mv

2
?/2B, should still be approximately invariants.7 In

1940 H. Alfvén showed that in fact the magnetic moment is the adiabatic invariant
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Guiding-center dynamics

associated with the fast gyromotion in a slowly-varying magnetic field42. Furthermore,
Alfvén derived that cross-field drift speeds due to the gradient of the magnetic field
and the curvature of the magnetic field line are smaller than v? by the factor ⇢/L.
The goal of this chapter is to start from a first principle variational approach to derive
Hamiltonian equations of motion which describe the reduced dynamics of a charged
particle in a slowly-varying electromagnetic field and which are independent of the
gyrophase. Specifically, we separate the relatively fast circular motion around a point
called the guiding-center, and primarily treat the relatively slow drift motion of this
point. Moreover, we specifically seek a Hamiltonian formulation due to two major
beneficial properties: “Hamiltonian formulations possess Noether’s theorem (hence
invariants follow from symmetries), and they preserve the Poincaré invariants (so
that spurious attractors are prevented from appearing in simulations of guiding-center
dynamics).”7

2.2 Derivation of guiding-center Lagrangian

Phase-space Lagrangian:
We start our derivation with the Lagrangian in Cartesian coordinates corresponding to
a charged particle with mass m and charge e moving in a (quasi-)static electromagnetic
field,

L(x, ẋ) =
m

2
|ẋ|2 + e

c
ẋ · A(x)� e�(x), (2.1)

with the speed of light c and in terms of the scalar electrostatic potential � and the
vector potential A. The electromagnetic field is given via E = �r� and B = r⇥A.
By computing the canonical momentum, pi = @L/@ẋ

i, and performing the Legendre
transformation, H(x,p) = p · ẋ� L, we obtain the corresponding Hamiltonian,

H(x,p) =
1

2m

���p� e

c
A(x)

���
2

+ e�(x), (2.2)

with the canonical momentum

p = mẋ+
e

c
A. (2.3)

The phase-space Lagrangian L, which equals the configuration-space Lagrangian L in
value, can now be denoted as

L(x,p, ẋ, ṗ) = p · ẋ� 1

2m

���p� e

c
A(x)

���
2

� e�(x). (2.4)

In the Lagrangian formalism, arbitrary coordinate transformations are allowed. Thus,
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we are free to define the particle velocity as

v =
1

m

⇣
p� e

c
A(x)

⌘
(2.5)

and transform from the canonical coordinates (x,p) to the non-canonical coordinates
(x,v) yielding

L(x,v, ẋ, v̇) =
⇣
mv +

e

c
A(x)

⌘
· ẋ�

⇣
e�(x) +

m

2
|v|2

⌘
. (2.6)

When applying the phase-space Euler-Lagrange equations for the velocity variables v,
we obtain the identification

ẋ = v. (2.7)

An explicit evaluation of the phase-space Euler-Lagrange equations for the coordinate
variables x yields

mv̇ = eE(x) +
e

c
ẋ⇥ B(x), (2.8)

which is the Lorentz force after the identification Eq. (2.7) is made.7 (The solution for
a uniform magnetic field yields the particle motion along a helix which is described in
section 2.1.)

Transformation to guiding-center coordinates:
Inspired by the solution in a uniform magnetic field, we transform now from the non-
canonical particle coordinates (x,v) in phase-space to new guiding-center coordinates
(xgc,�, vk, v?) related to particle position x and velocity v via

x(xgc,�, v?) = xgc + ⇢(xgc,�, v?), where (2.9)

⇢(xgc,�, v?) ⌘
mcv?

eB(xgc)
⇢̂(xgc,�) ⌘ ⇢c(v?,xgc)⇢̂(xgc,�), and (2.10)

v(xgc,�, vk, v?) = vkĥ(xgc) + v?n̂(xgc,�). (2.11)

Here, the unit vector in the direction of the magnetic field, ĥ(xgc) = B(xgc)/B(xgc),
forms a tripod with some pair of fixed but possibly space-dependent unit vectors
ê1(xgc) and ê2(xgc) via ê1(xgc) ⇥ ê2(xgc) = ĥ(xgc). The dynamic gyrating unit
vectors ⇢̂ and n̂ are defined as

⇢̂(xgc,�) = cos(�) ê1(xgc)� sin(�) ê2(xgc) = �@n̂(xgc,�)

@�
, (2.12)
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n̂(xgc,�) = ⇢̂(xgc,�)⇥ ĥ(xgc) = � sin(�) ê1(xgc)� cos(�) ê2(xgc) =
@⇢̂(xgc,�)

@�
.

(2.13)
Furthermore, (ê1, ê2, ĥ) and (n̂, ⇢̂, ĥ) form an orthonormal basis, where ê1, ê2 depend
only on xgc, but n̂, ⇢̂ also on �.43

In the case of a uniform magnetic field, the variables �, vk and v? are respectively
equal to the gyrophase and parallel and perpendicular velocity of the particle. In
a slowly-varying field, these variables still approximate the particle values averaged
over one gyro-period. In the same manner, xgc describes the center of the Larmor
circle only in the limiting case of a uniform magnetic field, but remains close to it in
a slowly-varying field. We term xgc the guiding-center position.43

We express the phase-space Lagrangian, Eq. (2.6), now in terms of the guiding-center
coordinates (xgc,�, vk, v?)

L(xgc, ẋgc,�, �̇, vk, v?) =
⇣
mvkĥ(xgc) +mv?n̂(xgc,�) +

e

c
A(xgc + ⇢)

⌘
· (ẋgc + ⇢̇)

�
 
m(v 2

k + v
2
?)

2
+ e�(xgc + ⇢)

!
(2.14)

with the Larmor radius ⇢ = ⇢(xgc,�, v?) = x � xgc from Eq. (2.9). It is worth
mentioning that the transformation of Eqs. (2.9-2.11) and the phase-space Lagrangian
in the guiding-center coordinates, Eq. (2.14), are still exact.

Transformation to guiding-center phase-space Lagrangian:
As stated in the motivation of this chapter, we seek a transformation of the Lagrangian,
Eq. (2.14), to a new guiding-center phase-space Lagrangian Lgc in which the degree
of freedom corresponding to the gyromotion, i.e. the gyrophase �, is absent from
the equations of motion. In accordance with Noether’s theorem that means, if the
gyrophase � is an ignorable variable in the Lagrangian, it does not appear in the
equations of motion and, furthermore, its conjugated variable in the Lagrangian is an
invariant of motion.7

We will now make the actual guiding-center approximation that relies on a “small”
Larmor radius and a slowly-varying field. Specifically, the scale length L of the electro-
magnetic field must be large in comparison with the Larmor radius and the distance
vk/!c travelled by the particle during one period of gyration. This transformation
is accomplished by utilizing a Taylor series expansion of the field quantities that is
truncated at the first order and in addition we introduce an ordering parameter "
that will help us to collect terms of similar order of magnitude. Eventually, we want
to omit small terms up to the order " in the Lagrangian with the result of describing
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Guiding-center dynamics

purely the guiding-center motion (including appropriate drifts) and neglecting the
fast gyromotion.
There exist different approaches how to introduce the ordering parameter ". On the
one hand special units can be introduced such that the transformation is performed
with " = e/m and units are restored at the end of the transformation; see Ref. [7]. On
the other hand terms of the Lagrangian can simply be marked by " in the intermediate
calculations and in the final result " is set to one. We pursue here the latter approach.
In order to satisfy the small Larmor radius and slowly-varying field condition, we
choose

⇢c = |⇢| = mcv?

eB(xgc)
⇠ " (2.15)

and we define the cyclotron frequency at the guiding-center position

!c =
eB(xgc)

mc
⇠ "

�1
, (2.16)

as a large parameter compared to typical rates. This choice corresponds to the physical
conditions in which the guiding-center approximation is applicable. Furthermore, the
perpendicular velocity v?, which is a a quantity of interest, has naturally the order
"
0 = 1 and is thus prevented from being swallowed by our perturbation expansion.43

In Ref. [7] an ordering is chosen, in which the electric drift is in the same order as
the perpendicular velocity. In contrast, we assume here the electric field to be small
(� ⇠ "

0); see Ref. [5]. The magnetic field should dominate the remaining terms and is
thus in the order of "�1.
The vector potential and the scalar electrostatic potential at the particle position are
expanded via a Taylor series,

"
�1A(x) = "

�1A(xgc) + "⇢ · "�1rA(xgc) +O("2), (2.17)

�(x) = �(xgc) + "⇢ ·r�(xgc) +O("2), (2.18)

where the ordering parameter " marks small terms.
The ordering specification of Eqs. (2.15) and (2.16) is however not sufficient for
completing our derivation, since also the relative sizes of the time derivatives of
variables need to be known. This becomes apparent if we look at the total time
derivative of the Larmor radius vector

⇢̇ =
d

dt
⇢(xgc,�, v?) = ẋgc ·r⇢+ �̇

@⇢

@�
+ v̇?

@⇢

@v?

= "ẋgc ·r⇢+ "
�1
�̇"⇢cn̂+ "

v̇?

v?
⇢ = �̇⇢cn̂+ "(ẋgc ·r⇢+

v̇?

v?
⇢), (2.19)
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where in the first term the fast gyration �̇ and the small ⇢c cancel to order "0.
The Taylor series expansion of the fields and the ordering of the individual terms with
respect to their orders of magnitude allows us now to write the Lagrangian as

L(xgc, ẋgc,�, �̇, vk, v?) =
⇣
mvkĥ+mv?n̂+ "

�1 e

c
A(xgc) +

e

c
⇢ ·rA(xgc)

⌘
· ẋgc

+ mv?�̇⇢c +
⇣
"
�1 e

c
A(xgc) +

e

c
⇢ ·rA(xgc)

⌘
· ⇢̇

�
 
m(v 2

k + v
2
?)

2
+ e�(xgc)

!
+O("), (2.20)

by keeping only terms until O(1). Here, the term with ĥ·n̂ vanished and we performed
a scalar product n̂ · n̂ = 1 in order to obtain the first term in the second line. All
occurring components of the electromagnetic field (A,rA,�) are now evaluated at
the guiding-center position.43

However, in Eq. (2.20) the vectors ⇢, ⇢̇ and n̂ are still functions of the gyrophase
�, despite omitting all terms up to the order ". Thus, the appropriate terms with
dependencies on � should be pushed up to higher orders so that the Lagrangian of
the order "0 does not contain gyrophase-dependent terms.
For this purpose we perform gauge transformations of some terms of the Lagrangian.
Specifically, we will use consecutively twice the fact that one can add or subtract an
arbitrary total time derivative to the Lagrangian without changing its dynamics.
First of all, we want to cancel the term "

�1
ec

�1A(xgc) · ⇢̇. By taking

d

dt
(⇢ ·A(xgc)) = ⇢̇ ·A(xgc) + ⇢ · Ȧ(xgc)

= ⇢̇ ·A(xgc) + ⇢ · (ẋgc ·rA(xgc)), (2.21)

we can combine the second term with the term (⇢ ·rA) · ẋgc = ⇢ · ((rA) · ẋgc) by
utilizing Graßmann’s identity for the cross product of a curl,

(rA) · ẋgc � ẋgc ·rA = ẋgc ⇥ (r⇥A) = ẋgc ⇥B. (2.22)

The combination then yields

(⇢ ·rA) · ẋgc � ⇢ · (ẋgc ·rA) = ⇢ · (ẋgc ⇥B), (2.23)

which allows us to express the first term together with Eq. (2.21) and we finally obtain

(⇢ ·rA) · ẋgc = ⇢ · (ẋgc ⇥B+ ẋgc ·rA) = ⇢ · (ẋgc ⇥B) +
d

dt
(⇢ ·A)� ⇢̇ ·A. (2.24)
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By inserting Eq. (2.24) into the Lagrangian, Eq. (2.20), the term including A · ⇢̇ is
successfully cancelled and we obtain

L(xgc, ẋgc,�, �̇, vk, v?) =
⇣
mvkĥ+mv?n̂+ "

�1 e

c
A(xgc)

⌘
· ẋgc

+
e

c
⇢ · (ẋgc ⇥B) +mv?�̇⇢c +

e

c
(⇢ ·rA(xgc)) · ⇢̇

�
 
m(v 2

k + v
2
?)

2
+ e�(xgc)

!

+
e

c

d

dt
(⇢ ·A(R)) +O("), (2.25)

where the term including the total time derivative can be omitted from the Lagrangian
without affecting the equations of motion. Furthermore, two terms of this Lagrangian
are cancelling, which becomes apparent by rotating the triple-product and extracting
the basis vectors,

e

c
⇢ · (ẋgc ⇥B) =

e

c
⇢cBẋgc · (ĥ⇥ ⇢̂) = �mv?ẋgc · n̂. (2.26)

Thus, the remaining term in the Lagrangian that needs to be eliminated in order to
obtain an gyrophase-independent Lagrangian is the term ec

�1(⇢ ·rA) · ⇢̇. For this
purpose we use the total time derivative

1

2

d

dt

�
"⇢ · "�1rA · "⇢

�
=

1

2
(⇢̇ ·rA · ⇢+ ⇢ ·rA · ⇢̇)

+
"

2
⇢ ·

✓
drA

dt

◆
· ⇢. (2.27)

Furthermore, we utilize the expression for the term

(⇢⇥ ⇢̇) ·B = (⇢⇥ ⇢̇) · (r⇥A)

= ("ijk⇢j ⇢̇k)("imn@mAn)

= (�jm�kn � �jn�km)(⇢j ⇢̇k@mAn)

= ⇢ ·rA · ⇢̇� ⇢̇ ·rA · ⇢ (2.28)

in order to express

⇢ ·rA · ⇢̇ =
1

2
(⇢ ·rA · ⇢̇� ⇢̇ ·rA · ⇢)| {z }

(⇢⇥⇢̇)·B

+
1

2
(⇢̇ ·rA · ⇢+ ⇢ ·rA · ⇢̇)| {z }

d
dt (⇢·rA·"⇢)�O(")

. (2.29)
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Finally, we extract the basis vectors of the first term,

(⇢⇥ ⇢̇) ·B =
⇣
⇢c⇢̂⇥ �̇⇢cn̂

⌘
·B = ��̇⇢ 2

c
B = �mcv?

e
⇢c�̇ (2.30)

and we can replace (⇢ ·rA) · ⇢̇ in the Lagrangian, Eq. (2.25), in order to obtain

L(xgc, ẋgc,�, �̇, vk, v?) =
⇣
mvkĥ+ "

�1 e

c
A(xgc)

⌘
· ẋgc

+ mv?�̇⇢c �
mv?

2
�̇⇢c

�
 
m(v 2

k + v
2
?)

2
+ e�(xgc)

!

+
e

2c

d

dt
(⇢ ·rA · "⇢)�O("), (2.31)

where the term including the total time derivative can again be omitted. By further
omitting all terms (including) up to O(") and eventually setting " = 1, we obtain the
sought guiding-center phase-space Lagrangian,

Lgc(xgc, ẋgc, �̇, vk, v?) =
⇣
mvkĥ+

e

c
A(xgc)

⌘
· ẋgc +

mv?

2
⇢c�̇

�
 
m(v 2

k + v
2
?)

2
+ e�(xgc)

!
, (2.32)

in which all fields are evaluated at the guiding-center position.

Associated (perpendicular) invariant of motion:
Due to the fact that the derived guiding-center phase-space Lagrangian, Eq. (2.32), is
gyrophase-independent, we can find in accordance with Noether’s theorem an invariant
of motion which is the conjugate to �̇. In particular, we apply the Euler-Lagrange
equations for the gyrophase,

d

dt

✓
@Lgc

@�̇

◆
=
@Lgc

@�
= 0, (2.33)

to obtain the conservation and in order to identify the perpendicular adiabatic invariant
(“gyroaction”)

J? ⌘ @Lgc

@�̇
=

mv?

2
⇢c =

m
2
cv

2
?

2eB(xgc)
. (2.34)
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2.3 Derivation of guiding-center equations of motion

In order to reduce notational clutter, in the following the sub-index “gc” is dropped
and the guiding-center Lagrangian Lgc is simply denoted by L, as well as the guiding-
center particle position xgc is denoted by x. The guiding-center equations of motion
are separately derived for both the parallel velocity vk and the Hamiltonian H as
independent phase-space coordinates. We will further show that the obtained equations
of motion are equivalent for both choices. In chapter 3 we will make use of this fact
when we will derive locally linear guiding-center equations of motion.

2.3.1 vk as independent phase-space coordinate

Starting with the guiding-center Lagrangian with vk as independent phase-space
coordinate

L(x, ẋ, vk, J?, �̇) =
⇣
e

c
A(x) +mvkĥ(x)

⌘
· ẋ� J?�̇�H(x, vk, J?) with

H(x, vk, J?) =
mv

2
k

2
+ J?!c(x) + e�(x), (2.35)

we compute its partial derivatives with respect to the generalized phase-space coordi-
nates

@L
@x

=
⇣
e

c
rA(x) +mvkrĥ(x)

⌘
· ẋ� (J?r!c(x) + er�(x)) (2.36)

@L
@�

= 0 (2.37)

@L
@vk

= mĥ(x) · ẋ�mvk (2.38)

@L
@J?

= ��̇� !c, (2.39)

and its partial derivatives with respect to the generalized phase-space velocities

@L
@ẋ

=
e

c
A(x) +mvkĥ(x) (2.40)

@L
@�̇

= �J?. (2.41)

Recalling the Euler-Lagrange equations (1.2),

d

dt

@L
@q̇i

=
@L
@qi

, (2.42)
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we see that on their left-hand sides (LHS) the total derivative with respect to time
is needed, which can be expressed as a convective derivative along the phase-space
trajectory

d

dt
= ẋ ·r+ v̇k

@

@vk
+ J̇?

@

@J?
+ �̇

@

@�
+
@

@t
. (2.43)

As already shown in section 2.2, by looking at the guiding-center Lagrangian, Eq. (2.35),
we notice that � does not occur explicitly and, therefore, a corresponding integral of
motion must exist which can be found by d/dt @L/@�̇ = @L/@� yielding

d

dt
J? = 0. (2.44)

The conservation of J? is equivalent to the conservation of the magnetic moment µ
due to its proportionality with a constant factor by J? = µ

mc

e
.

Second, we perform the Euler-Lagrange equations in vk and J?, namely d/dt @L/@v̇k =
@L/@vk and d/dt @L/@J̇? = @L/@J?. Both phase-space coordinates do not have
generalized velocity terms in the guiding-center Lagrangian, Eq. (2.35), and therefore,
their left-hand sides are identically zero. Hence, from Eq. (2.38) and Eq. (2.39) we
obtain, respectively,

vk = ĥ(x) · ẋ (2.45)

and
�̇ = �!c(x). (2.46)

Finally, the Euler-Lagrange equations in x using the convective derivative of Eq.(2.43),
in which some terms vanish due to above observations, are

d

dt

@L
@ẋ

� @L
@x

= ẋ ·
⇣
e

c
(rA(x)) +mvk(rĥ(x))

⌘
+mv̇kĥ(x)

�
⇣
e

c
(rA(x)) +mvk(rĥ(x))

⌘
· ẋ+ J?r!c(x) + er�(x) = 0.

(2.47)

Here, it can be mentioned that the scalar product in the convective derivative is not
commutative, e.g. (ẋ ·r)A = ẋ · (rA) 6= (rA) · ẋ.
Before we proceed, let us define

A?(x, vk) = A(x) +
mc

e
vkĥ(x), (2.48)

B?(x, vk) = r⇥A?(x, vk), (2.49)

E?(x) = �1

e
rH = � 1

mc
J?rB(x)�r�(x). (2.50)
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Further, let us use Graßmann’s identity for the cross product of a curl, a⇥ (r⇥h) =

(rh) · a� a ·rh, in order to express

ẋ⇥
�
r⇥A?(x, vk)

�
=
�
rA?(x, vk)

�
· ẋ� ẋ ·

�
rA?(x, vk)

�
. (2.51)

The Euler-Lagrange equations in x, Eq. (2.47) can now be written with the definitions
(2.48) - (2.50) and the identity (2.51) as

d

dt

@L
@ẋ

� @L
@x

= 0 = �e

c
ẋ⇥

�
r⇥A?(x, vk)

�
+mv̇kĥ(x)� eE?(x)

= �e

c
ẋ⇥B?(x, vk) +mv̇kĥ(x)� eE?(x). (2.52)

As a next step we would like to explicitly express ẋ which we achieve by taking a
cross product of ĥ(x) with Eq. (2.52)

� e

c
ĥ(x)⇥

�
ẋ⇥B?(x, vk)

�
� eĥ(x)⇥E?(x) = 0, (2.53)

where the second term vanished. By applying again Graßmann’s identity, ĥ ⇥
(ẋ⇥B?) = ẋ

⇣
ĥ ·B?

⌘
�B?

⇣
ẋ · ĥ

⌘
, and using ĥ(x) · ẋ = vk from (2.45), Eq. (2.53)

yields

�e

c

⇣
ẋ
⇣
ĥ(x) ·B?(x, vk)

⌘
�B?(x, vk)vk

⌘
= eĥ(x)⇥E?(x)

ẋ =
B?(x, vk)vk � cĥ(x)⇥E?(x)

ĥ(x) ·B?(x, vk)
. (2.54)

In a similar manner an explicit expression for v̇k is obtained by the scalar product of
B?(x, vk) with Eq. (2.52)

mv̇kB
?(x, vk) · ĥ(x)� eB?(x, vk) ·E?(x) = 0

v̇k =
e

m

B?(x, vk) ·E?(x)

B?(x, vk) · ĥ(x)
. (2.55)

The obtained guiding-center equations of motion, (2.55) and (2.54), can be used to
derive the guiding-center energy equation for time-independent fields,

d

dt
H(x, vk, J?) = ẋ ·rH(x, vk, J?) + v̇k

@H(x, vk, J?)

@vk
= 0, (2.56)

by utilizing the convective total time derivative of Eq. (2.43).
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2.3.2 H as independent phase-space coordinate

In this subsection it will be shown that the actual guiding-center orbits do not
depend on the choice of their representing variables in phase-space, specifically the
parallel velocity vk does not need to be treated as independent phase-space coordinate
necessarily, but can also be treated as a function of position, if the Hamiltonian H

is an independent coordinate. Choosing vk = vk (x, H, J?) or H = H
�
x, vk, J?

�
is

equivalent as long as

H =
mv

2
k

2
+ J?!c(x) + e�(x) (2.57)

is kept exact. Hence, the guiding-center Lagrangian with H as an independent
phase-space coordinate is

L(x, ẋ, J?, �̇, H) =
⇣
e

c
A(x) +mvk(H, J?,x)ĥ(x)

⌘
· ẋ� J?�̇�H with

vk(H, J?,x) = �

r
2

m
(H � J?!c(x)� e�(x)), (2.58)

where � is ±1, namely the direction of the particle velocity parallel (+1) or anti-parallel
(�1) to the magnetic field.
The derivation of the equations of motion is very similar to that in section 2.3.1 and
thus, only the main differences are highlighted here.
Let us start with the convective time derivative

d

dt
= ẋ ·r+ Ḣ

@

@H
+ J̇?

@

@J?
+ �̇

@

@�
+
@

@t
. (2.59)

By utilizing the time t as an extended phase-space variable, the last term of Eq. (2.58)
can be written as H = Hṫ because the conjugated velocity of H in extended phase-
space is ṫ = 1. Thus, the Euler-Lagrange equation in t, d/dt @L/@ ṫ = @L/@t,
yields

d

dt
H = 0, (2.60)

and the respective term in Eq. (2.59) including Ḣ vanishes. Furthermore, we define
similar to Eqs. (2.48) and (2.49)

eA
?

(x, H, J?) = A(x) +
mc

e
vk(H, J?,x)ĥ(x), (2.61)

eB
?

(x, H, J?) = r⇥ eA
?

(x, H, J?), (2.62)

where it must be mentioned that eA
?

= A?, if Eq. (2.57) is kept exact. However,
eB

?

6= B? since vk is a function of x in (2.61) and thus, an additional term occurs
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in (2.62).
The cyclic variable � in Eq. (2.58) yields the conservation of J?. The Euler-Lagrange
equations in H and J?, namely d/dt @L/@Ḣ = @L/@H and d/dt @L/@J̇? = @L/@J?,
result in vk(H, J?,x) = ĥ(x) · ẋ and �̇ = �!c(x). Here, attention must be paid to
the parallel velocity’s dependence on the phase-space coordinates when computing
the respective implicit derivatives.
Finally, performing the Euler-Lagrange equations in x, namely d/dt @L/@ẋ = @L/@x,
and subsequently using Graßmann’s identity as above yields

ẋ⇥
⇣
r⇥ eA

?

(x, vk)
⌘
= 0. (2.63)

Making the cross product of ĥ(x) with this equation allows for eventually rearranging
to

ẋ =
eB

?

(x, H, J?)vk(H, J?,x)

eB
?

(x, H, J?) · ĥ(x)
, (2.64)

which is the most compact form of the guiding-center equations of motion. With
the choice of H as an independent coordinate, the parallel velocity vk is a function
of coordinates given in second of (2.58), nevertheless, a differential equation for an
explicit expression of v̇k can be obtained by

d

dt
vk(H, J?,x) =

d

dt
�

r
2

m
(H � J?!c(x)� e�(x))

v̇k =
1

m

1

vk(H, J?,x)
ẋ · (�J?r!c(x)� er�(x)) . (2.65)

Equivalence of guiding-center equations of motion:
We will show now that Eqs. (2.64) and (2.65) are respectively equivalent to Eqs. (2.54)
and (2.55).
First, let us have a look at the equation for the guiding-center position, Eq. (2.64)
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expressed with eA
?

(x, vk),

ẋ =

⇣
r⇥ eA

?

(x, vk)
⌘
vk(H, J?,x)

⇣
r⇥ eA

?

(x, vk)
⌘
· ĥ(x)

=

⇣
r⇥

⇣
A(x) + mc

e
vk(H, J?,x)ĥ(x)

⌘⌘
vk(H, J?,x)

⇣
r⇥

⇣
A(x) + mc

e
vk(H, J?,x)ĥ(x)

⌘⌘
· ĥ(x)

=

⇣
r⇥A(x) + mc

e

⇣
vk(H, J?,x)r⇥ ĥ(x) +rvk(H, J?,x)⇥ ĥ(x)

⌘⌘
vk(H, J?,x)

⇣
r⇥A(x) + mc

e

⇣
vk(H, J?,x)r⇥ ĥ(x) +rvk(H, J?,x)⇥ ĥ(x)

⌘⌘
· ĥ(x)

=

⇣
r⇥A(x) + mc

e
vk(H, J?,x)r⇥ ĥ(x)

⌘
vk(H, J?,x)

⇣
r⇥A(x) + mc

e
vk(H, J?,x)r⇥ ĥ(x)

⌘
· ĥ(x)

+

⇣
c

e

1
vk(H,J?,x) (�J?r!c(x)� er�(x))⇥ ĥ(x)

⌘
vk(H, J?,x)

⇣
r⇥A(x) + mc

e
vk(H, J?,x)r⇥ ĥ(x)

⌘
· ĥ(x)

. (2.66)

Here, r⇥(fF ) = f (r⇥ F )+(rf)⇥F was used in the numerator and (a⇥ h)·h = 0

in the denominator.
Now, we choose vk as an independent coordinate implying that H = H

�
x, vk, J?

�
and

thus,

ẋ =

⇣
r⇥A(x) + mc

e
vkr⇥ ĥ(x)

⌘
vk +

c

e
(�J?r!c(x)� er�(x))⇥ ĥ(x)

⇣
r⇥A(x) + mc

e
vkr⇥ ĥ(x)

⌘
· ĥ(x)

=
r⇥

⇣
A(x) + mc

e
vkĥ(x)

⌘
vk � c

e
ĥ(x)⇥ (�J?r!c(x)� er�(x))

⇣
r⇥

⇣
A(x) + mc

e
vkĥ(x)

⌘⌘
· ĥ(x)

. (2.67)

The definitions (2.48) - (2.50) can be identified in this equation, yielding

ẋ =
B?(x, vk)vk � cĥ(x)⇥E?(x)

B?(x, vk) · ĥ(x)
, (2.68)

which is identical to Eq.(2.54). Here, we note that

(r⇥A?(x)) · ĥ(x) = B?(x, vk) · ĥ(x)

= eB
?

(x, H, J?) · ĥ(x)

=
⇣
r⇥ eA

?

(x)
⌘
· ĥ(x). (2.69)

29



Guiding-center dynamics

Second, let us also choose vk as an independent coordinate in Eq. (2.65) and plug in
the result of ẋ of Eq. (2.68),

v̇k =
1

m

1

vk

B?(x, vk)vk � cĥ(x)⇥E?(x)

B?(x, vk) · ĥ(x)
· (�J?r!c(x)� er�(x))

=
e

m

B?(x, vk) ·E?(x))

B?(x, vk) · ĥ(x)
� e

m

1

vk

cĥ(x)⇥E?(x)

B?(x, vk) · ĥ(x)
·E?(x)), (2.70)

which is identical to Eq.(2.55) since the second term vanishes here.

2.4 Illustration of guiding-center orbits

The derivation of the guiding-center equations in slowly-varying time-independent
fields revealed the conservation of energy and the perpendicular adiabatic invariance,

H =
mv

2
k

2
+ J?

eB(x)

mc
+ e�(x) = const. (2.71)

If we assume for the sake of simplicity the absence of an electric field, a gradient of
the magnetic field modulus B(x) must cause a force parallel to the magnetic field.
This force can reflect particles in the direction of the magnetic field and is thus
termed “magnetic mirror force”. Further, a particle dichotomy emerges: (a) particles
with sufficient parallel kinetic energy to overcome the magnetic mirror force are not
reflected and thus termed “passing particles”, (b) those particles which are reflected
are termed “trapped particles”.
In Fig. 2.1 a passing particle (a) and a trapped particle (b) guiding-center orbit of
a Deuterium ion with a kinetic energy of 3 keV in the axisymmetric magnetic field
configuration of ASDEX Upgrade is depicted. The guiding-center equations were
integrated with an adaptive Runge-Kutta 4/5 integrator and the electromagnetic field
was represented by splines. The blue transparent area in Fig. 2.1 shows the poloidal
' = 0 plane. We term the orbit intersections with this plane as “Poincaré plot” and
we will further (in this thesis) utilize this graphical representation as an important
tool to investigate the properties of guiding-center orbits.
Fig. 2.2 shows the Poincaré plot of (a) two passing and (b) two trapped 3 keV D ions
in axisymmetric ASDEX Upgrade configuration in order to illustrate the drift motion
due to the B ⇥rB drift. In dependence of the signs of the parallel velocities �(vk)
at the start, the particles drift either inside or outside the magnetic flux surface.
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Figure 2.1: Illustration of (a) passing particle and (b) trapped particle guiding-center orbits of a

Deuterium ion with a kinetic energy of 3 keV in the axisymmetric magnetic field configuration of

ASDEX Upgrade. The blue transparent area shows the poloidal ' = 0 plane with blue dots

indicating the intersections of the orbit with this plane (Poincaré plot). Red solid lines represent the

guiding-center orbits.
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Figure 2.2: Poincaré plot (' = 0) for illustration of guiding-center drift motion of (a) two passing

and (b) two trapped 3 keV D ions in axisymmetric ASDEX Upgrade configuration. All particle

orbits start from the same starting position xi
start. The magnetic flux surface which contains the

orbit starting position is marked in black. The signs of the parallel velocities �(vk) at the start are

in accordance with the legends. The figure is taken from Ref. [44] and modified.
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2.5 Summary of guiding-center dynamics

We have started the discussion of guiding-center dynamics with the Lagrangian in
Cartesian coordinates corresponding to a charged particle with mass m and charge e

moving in a (quasi-)static electromagnetic field,

L(x, ẋ) =
m

2
|ẋ|2 + e

c
ẋ · A(x)� e�(x). (2.72)

By applying the small Larmor radius and slowly-varying field approximation we
obtained the guiding-center phase-space Lagrangian,

L(x, ẋ, vk, J?, �̇) =
⇣
e

c
A(x) +mvkĥ(x)

⌘
· ẋ� J?�̇�H(x, vk, J?) with

H(x, vk, J?) =
mv

2
k

2
+ J?!c(x) + e�(x), (2.73)

which is gyrophase-independent and in which all fields are evaluated at the guiding-
center position.
Furthermore, we have shown in this chapter that the guiding-center equations of
motion can be obtained from the guiding-center Lagrangian by utilizing the Euler-
Lagrange equations. The choice of independent coordinates, whether the parallel
velocity vk or the Hamiltonian H, does not influence the actual equations of motion.
In their most compact form, the guiding-center equations of motion are denoted by

ẋ =
r⇥A?

vk

B?

k
, A? = A+

mc

e
vkĥ, B?

k = (r⇥A?) · ĥ

vk = �

r
2

m
(H � J?!c � e�), J̇? = 0, �̇ = �!c. (2.74)
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Chapter 3

Quasi-geometric integration of the
guiding-center equations in piecewise
linear toroidal fields

The content of this chapter including the figures can also be found in section II and
appendix A and B of Ref. [1] formulated by the author and including some minor
modifications.

In the following chapter we derive locally linear Hamiltonian guiding-center equations.
We do not approximately solve Hamiltonian guiding-center equations in exact fields,
but we solve the guiding-center equations exactly to computer accuracy in piecewise
linearized fields.

3.1 Derivation of locally linear Hamiltonian guiding-
center equations

“As a starting point, the equations of guiding-center motion, Eq. (11) of Ref. [5]
equivalent to Eq. (A7) of Ref. [6], are expressed in general curvilinear coordinates x

i,

ẋ
i =

vk"
ijk

p
g B

⇤
k

@A
⇤
k

@xj
, A

⇤
k
= Ak +

vk

!c

Bk. (3.1)

Here, Ak, Bk, !c, � and p
g are the covariant components of the vector potential

and the magnetic field, cyclotron frequency, electrostatic potential and the metric
determinant, respectively, and p

g B
⇤
k = "

ijk(Bi/B)@A⇤
k
/@x

j. Charge e↵ and mass
m↵ of the considered species ↵ enter !c = e↵B/(m↵c) together with the magnetic
field modulus B =

p
BkB

k and the speed of light c. The equations of motion are
considered with the invariants w = m↵v

2
/2 + e↵� and J? = m↵v

2
?/(2!c) being total

energy and perpendicular adiabatic invariant (gyroaction), respectively, and used as
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independent phase-space variables. The latter variable is related to the magnetic
moment µ by a constant factor, J? = µm↵c/e↵. The parallel velocity vk in (3.1) is
not an independent variable but a known function of coordinates,

v
2
k = 2U, U = U(x) =

1

m
(w � J?!c(x)� e↵�(x)) . (3.2)

Due to the fact that the actual guiding-center orbits do not depend on the choice
of their representing variables in phase-space, the parallel velocity vk can also be
treated as an independent variable. (Choosing vk = vk (x, w, J?) or w = w

�
x, vk, J?

�

is equivalent as long as Eq. (3.2) is kept exact.) By replacing the first expression
of (3.2) with the differential equation

v̇k =
1

vk
ẋ
i
@U

@xi
, (3.3)

the set (3.1) turns into

B
⇤
k
p
g ẋ

i =
dxi

d⌧
= "

ijk

✓
vk
@Ak

@xj
+ 2U

@

@xj

Bk

!c

+
Bk

!c

@U

@xj

◆
,

B
⇤
k
p
g v̇k =

dvk
d⌧

= "
ijk
@U

@xi

✓
@Ak

@xj
+ vk

@

@xj

Bk

!c

◆
. (3.4)

Here, vk should be treated as an independent variable only at its explicit occurrences,
while the quantity U(x) should only be treated as a function of coordinates as defined
by the second expression of (3.2). Note that the invariants of motion remain in (3.4)
as parameters entering the function of coordinates U . As long as the contra-variant
components of the phase-space velocity defined by the right hand sides of set (3.4) are
used for obtaining the exact solution of this set, both representations (3.2) lead to the
same result. However, if the derivatives of these components are computed for the
Jacobian as, e.g., in Appendix 3.3.1 the quantity U should be treated as a function of
parallel velocity defined by the first of (3.2). In (3.4) the time variable is replaced
by an orbit parameter ⌧ related to time by dt = B

⇤
k
p
gd⌧ , and the time evolution is

obtained implicitly from the integral t(⌧).
The special form (3.4) allows to reduce computational effort and noise sensitivity by
independently approximating the field quantities Ak, Bk/!c, !c and � by continuous
piecewise linear functions. Thus, curvilinear coordinate space is split into tetrahedral
cells with exact field values on the cell’s vertices. Fig. 3.1 depicts such a real space
illustration of a curvilinear field-aligned grid for the plasma core of a tokamak.”1

Within the tetrahedral cells the linear representation of the electromagnetic fields
is a result of an interpolation but not of a regression which would be the case for

35



Quasi-geometric integration of the guiding-center equations in piecewise linear
toroidal fields

polyhedra with more than four vertices. “These tetrahedral cells must be specially
oriented (explained below in section 4.2) in order to preserve an invariant of motion
in the case of axisymmetry.
As a result of this piecewise field linearization, in each cell, the equations of motion
(3.4) turn into a set of four linear ODEs with constant coefficients

dzi

d⌧
= a

i

l
z
l + b

i
, (3.5)

in phase-space variables z
i = x

i for i = 1, 2, 3 and z
4 = vk. The matrix elements are

a
i

l
= "

ijk

✓
2
@U

@xl

@

@xj

Bk

!c

+
@U

@xj

@

@xl

Bk

!c

◆
for 1  i, l  3,

a
i

4 = "
ijk
@Ak

@xj
for 1  i  3,

a
4
l

= 0 for 1  l  3,

a
4
4 = "

ijk
@U

@xi

@

@xj

Bk

!c

, (3.6)

and components of vector b
i are

b
i = "

ijk

✓
2U0

@

@xj

Bk

!c

+

✓
Bk

!c

◆

0

@U

@xj

◆
for 1  i  3,

b
4 = "

ijk
@U

@xi

@Ak

@xj
, (3.7)

where quantities with zero mean the value at the origin of the coordinates shifted in
each tetrahedral cell to one of the cell’s vertices,”1

U = U0 + x
i
@U

@xi
,

Bk

!c

=

✓
Bk

!c

◆

0

+ x
i
@

@xi

Bk

!c

. (3.8)

The derivatives in Eqs.(3.6)-(3.8) are taken by using the coefficients of three planar
fits at the faces adjacent to the vertex to which the origin of the coordinates is shifted.
The resulting sets of linear algebraic equations for derivatives are solved and stored
before the actual orbit tracing.
It is worth to mention that the special combination of vk being either an independent
variable or a function of xi and w in Eqs. (3.4) is chosen in order to obtain constant
coefficients a

i

l
and b

i inside the cells. It is not possible to achieve this with either vk

or w being independent coordinates alone. The coefficients a
i

l
and b

i are constant
due to the fact that the derivatives of linearly interpolated values are constants. In
particular, on the right hand sides of (3.6) and (3.7), vk does not occur explicitly as
an independent coordinate but only implicitly via U . Further, U is only a function of
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position (second of (3.2)) and, thus, its gradient is also given inside the tetrahedral
cell, because !c and � are linear functions inside the cell.
“Since the piecewise constant coefficients of set (3.5) are discontinuous at the cell
boundaries, orbit intersections with tetrahedra faces must be computed exactly when
integrating particle trajectories.
In fact, a linear approximation of field quantities which locally breaks the physical
connection between them does not destroy the Hamiltonian nature of the original
set (3.1). Indeed, despite the approximation made, equation set (3.4) can still be cast
to the non-canonical Hamiltonian form

dzi

d⌧
= ⇤ij

@H

@zj
, ⇤ij(z) =

�
z
i
, z

j
 
⌧
, (3.9)

where the Hamiltonian function is H(z) = v
2
k/2�U(x) and ⇤ij(z) is an antisymmetric

Poisson matrix. The latter is linked to Poisson brackets that are slightly re-defined
from those in Ref. [45] due to a different orbit parameter,

{f, g}
⌧
= b

i

⇤

✓
@f

@xi

@g

@vk
� @g

@xi

@f

@vk

◆
+"ijk

@g

@xi

@f

@xj

Bk

!c

, b
i

⇤ = "
ijk

✓
@Ak

@xj
+ vk

@

@xj

Bk

!c

◆
.

(3.10)
In the derivation above, one occurrence of v2k has been replaced by 2U(x) to obtain
equation set (3.4). As long as this equality in the first of (3.2) is kept exact by a
numerical scheme, this formal violation of the Poisson structure doesn’t affect the
final result.
The presented method integrates equations of motion to computer accuracy and thus
exactly conserves invariants with respect to piecewise linear fields in order to fulfil
this requirement. The invariants with respect to the original smooth fields oscillate
within fixed bounds in a similar way as for conventional symplectic integrators24.”1

Conservation properties and symplectic features of the locally linear equation set (3.5)
are discussed in more detail in the sections 3.3 and 3.4.
It is worth to mention that despite the very accurate integration of the linear ODE
set (3.5) certain errors are nevertheless present in that solution and can be accumulated
over long time evolutions. If the total energy is kept exactly constant, this may lead
to the consequence that the different two formal definitions of vk (as an independent
variable or as a function of w and x

i) result in different values. Therefore, everytime
when a particle enters a tetrahedral cell, the total energy w is computed at the entry
point from the guiding-center position x

i and the parallel velocity vk. This total
energy value goes in the quantity U0 (Eq. (3.8)) and is kept constant during the local
integration of Eq. (3.5). Thus, w is renewed every time the particle enters a new cell,
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and the errors due to inaccuracy of the integration of the local linear ODE sets do
not lead to divergence between the two definitions of vk.

Figure 3.1: Real space illustration of field-aligned grid for the plasma core of a toroidal fusion device.

Magnetic field lines are traced in general curvilinear coordinates (x1
,x2

,x3) on Ns flux surfaces. At

equidistant spacing in toroidal and poloidal direction a 3D grid consisting of Ns ⇥N# ⇥N'

hexahedra is created.

(a) 2D poloidal projection of 3D grid with a marked hexahedron cell. (b) Magnification of marked

hexahedron in (a) with indication how each hexahedron is split into six tetrahedral cells. The

symmetry direction is along the coordinate x3
. (c) Six individual tetrahedral cells compose

stackable hexahedron such that adjacent tetrahedra faces are congruent.

3.2 Numerical solution of locally linear guiding-center
equations

“An approximate formal solution of set (3.5) in a single cell is given as a polynomial
series of the orbit parameter,

z(⌧) = z0 +
KX

k=1

⌧
k

k!

�
âk�1 · b+ âk · z0

�
, (3.11)

where â and b stand for matrix a
i

l
and vector b

i, respectively, z(0) = z0 is a starting
point, and the exact solution is obtained in the limit K ! 1. In the case k = 1 the
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matrix âk�1 = â0 is the identity matrix. It should be noted that for mild electric fields
(validity domain of Eq. (3.1)) where the potential energy e↵� is of the order of the
kinetic energy (sub-sonic rotations) all elements of matrix â except for ai4 scale linearly
with the Larmor radius, and in the zero Larmor radius limit the series expansion
of the order K = 2 does already provide an exact solution. Therefore, the series
expansion (3.11) converges rapidly in the case that the Larmor radius is small in
comparison with the spatial scale of the electromagnetic field (see Eq. (3.13) below).
Since intersections with cell boundaries (tetrahedra faces) must be computed exactly,
the particle is pushed from cell boundary to cell boundary, if no intermediate position
inside a cell, e.g. after a pre-defined time step, is required deliberately. In the latter
case, the positions before and after the time step are located inside the cells, while the
time step itself includes tracing of all orbit intersections with cell boundaries between
these positions.
An orbit intersection with a tetrahedron is found on exit as an intersection with one
of four planes

F
↵(z) ⌘ n

(↵)
i

�
x
i � x

i

(↵)

�
= 0, ↵ = 1, . . . , 4 (3.12)

reached in the smallest positive time, “exit time”, from the starting position x
i(⌧0)

located either on the cell boundary or inside the cell , see Fig. 3.2. Here, n(↵)
i

and x
i

(↵)

are the (constant) normal to the plane containing tetrahedron face ↵ and coordinates
of some vertex on that face, respectively. In the case that the starting position is
located on the cell boundary (due to boundary-boundary-pushings as in Fig. 3.2),
the exit time coincides with the “dwell time” of the particle inside the cell. If an
intermediate stop (inside the cell) is deliberately required, the dwell time is the sum
of the time to reach this stop (“entry time”) and the exit time.
With substitution of the orbit, z = z(⌧), Eqs. (3.12) are nonlinear equations with
respect to the orbit parameter, F ↵(z(⌧)) = 0, which should be solved numerically.
They become algebraic and can be solved analytically if an approximate solution (3.11)
is used with K  4, as explained below in detail.
Both cases have been implemented in a Fortran program with the name Guiding-center
ORbit Integration with Local Linearization Approach (GORILLA).
As a matter of completeness, it is worth mentioning that a third similar to Ref. [35]
variant exists to solve the linear equation set (3.5) exactly in terms of exponential
functions of eigenvalues in the eigenvector basis (as any other linear equation set).
Formally, this solution corresponds to the limit K ! 1 in Eq. (3.11) where infinite
sums can be expressed in terms of the exponential function exp(⌧ â). This method,
however, has two drawbacks. First, Eqs. (3.12) turn into nonlinear transcendental
equations which have to be solved numerically up to computer accuracy. Second, the
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Figure 3.2: Illustration of intersections of the

orbit xi(⌧) with planes confining the cell. The

three-dimensional tetrahedral cell is depicted

as a two-dimensional triangle in the interest of

simplification. The particle enters the cell at

xi(⌧0) and leaves the cell at 1○. Other

intersections at the points 2○ and 3○ are not

realized. The correct orbit-tetrahedron

intersection 1○ is reached in the smallest

positive time among all intersections.

analytical solution results in strong cancellation errors in the case of small Larmor
radii which is exactly the case where the finite series expansion results in negligible
errors. Therefore, we refrain from such a solution.
In its first variant (GORILLA RK4), the orbit intersections with tetrahedra faces are
computed numerically by solving equation set (3.5) in each cell with a single step
of the Runge-Kutta 4 method embedded into an iterative scheme using Newton’s
method to obtain the integration time �⌧ required to reach the cell boundary (exit
time ⌧e = �⌧). This iterative scheme predominantly converges after roughly two
Newton iterations, due to an analytic estimation for the necessary initial step length
using an approximate parabolic solution of ODE set (3.5) taken in zeroth order in
Larmor radius, ai

l
= 0 for 1  i, j  3 and a

4
4vk(⌧) = a

4
4vk,0.

Nevertheless, in the case of numerically challenging orbits (tangential to a tetrahedron
face or almost intersecting with a tetrahedron’s edges or vertices), several special
cases appear in which the iterative scheme does not converge, and those cases must
be treated separately in a computationally more expensive manner. Since such cases
appear only rarely, the additionally required computational effort is negligible in
comparison to the standard procedure.
A single RK4 integration step per iteration is sufficient because the magnetic field is
uniform within a cell. Respectively, the error of the RK4 method strongly scales with
the Larmor radius ⇢ and can be brought below computer accuracy by a moderate grid
refinement. Namely, in a tokamak geometry the error of a single step traversing the
cell can be estimated as

�R(�⌧)

a
⇠ ⇢

3

q4R3
�'5

, (3.13)

where R, a, q and �' denote major radius, plasma radius, safety factor and toroidal
cell length, respectively.
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Due to the scaling of the error with ⇢, for particles with mild energies (thermal
electrons and ions) a less elaborate algorithm (GORILLA Poly) can be realized. By
truncating the summation of Eq. (3.11) at K = 2, 3 or 4 one obtains approximate
solutions of various orders in Larmor radius. With these solutions, equations for the
exit time ⌧e are algebraic equations which are solved analytically up to order K = 4,
by finding the smallest positive root of

n↵ ·
 

z0 +
KX

k=1

⌧
k

e

k!

�
âk�1 · b+ âk · z0

�
� z↵

!
= 0, (3.14)

where n↵ =
⇣
n
(↵)
1 , n

(↵)
2 , n

(↵)
3 , 0

⌘
are face normals (see above) and z↵ =

⇣
x
1
(↵), x

2
(↵), x

3
(↵), 0

⌘
.

Furthermore, by using the quadratic polynomial solution K = 2 of Eq. (3.14), the
appropriate orbit intersection plane ↵ can be predicted for higher orders K = 3 or 4,
which predominantly reduces the number of higher order root finding operations from
four to one. In the numerical implementation, series (3.11) which contains matrix
products is not directly evaluated as written above. Instead, various sub-products are
preliminarily evaluated and stored for grid cells, minimizing the number of matrix
products that need to be evaluated directly. The finite series solution (3.11) allows to
analytically evaluate also various integrals over the dwell time needed for scoring of
macroscopic plasma plasma parameters in Monte Carlo procedures. In Appendix ??,
such integrals of vk and of v2? and v

2
k are given, which respectively determine parallel

plasma flow and components of the pressure tensor in Chew-Goldberger-Low form
essential for computation of equilibrium plasma currents.”1

3.3 Hamiltonian structure of locally linear guiding-
center equations

3.3.1 Liouville’s theorem

“Let us check that Liouville’s theorem is fulfilled for the piecewise linear set represented
locally by Eq. (3.5) despite the discontinuities of the phase-space velocity at cell
boundaries and the fact that the vector potential is not exactly linked with magnetic
field, i.e. that the relation !c (B/!c) = r ⇥ A is not fulfilled anymore by the
piecewise linear approximations !(L)

c , (Bi/!c)
(L) and A

(L)
i

of the respective magnetic
field parameters within the exact curvilinear coordinate metrics. (In this section we use
sub- or superscripts (L) for quantities representing the piecewise linear electromagnetic
field.) Formally, independent interpolation errors in these originally related quantities
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result in a slight distortion of the metric tensor, but produce a consistent set of
equations of motion with a divergence-free modified magnetic field B⇤

(L) being a
necessary condition for correct geometric properties. Namely, B⇤

(L) = r ⇥ A?

(L)

remains divergence-free by using an interpolation of covariant components Ak and
covariant unit vector components Bk/B / Bk/!c that are both given in a curl-
compatible representation. The gyrofrequency !c / B just plays the role of a scalar
potential in Eq. (3.2) and doesn’t affect the symplectic structure.
First, we notice (see Eq. (44) of Ref. [5]) that the phase-space Jacobian of the
coordinate set y = (x, J?,�, vk) where � is the gyrophase is

J =
@(r,p)

@(x, J?,�, vk)
=

m↵e↵

c

p
gB

⇤
k . (3.15)

Liouville’s theorem states that divergence of the phase-space flow velocity is identically
zero, J�1

@ (Jẏi) /@yi ⌘ 0, yielding

@

@xi
Jẋ

i

(L) +
@

@J?
JJ̇? +

@

@�
J �̇+

@

@vk
Jv̇

(L)
k =

@

@xi
Jẋ

i

(L) +
@

@vk
Jv̇

(L)
k = 0, (3.16)

where two terms vanished due to J̇? = 0 and the independence of �̇ of the gyrophase.
The remaining phase-space velocity components are defined in accordance with (3.4)
and a subsequent piecewise linear approximation as

ẋ
i

(L) =
1

p
gB

⇤
k

✓
dxi

d⌧

◆

(L)

, v̇
(L)
k =

1
p
gB

⇤
k

✓
dvk
d⌧

◆

(L)

. (3.17)

Here, B⇤
k corresponds to the exact field while the derivatives with respect to ⌧ are

given for the linearized field,

✓
dxi

d⌧

◆

(L)

= "
ijk

 
vk
@A

(L)
k

@xj
+ v

2
k
@

@xj

✓
Bk

!c

◆(L)

+

✓
Bk

!c

◆(L)
@U

(L)

@xj

!
,

✓
dvk
d⌧

◆

(L)

= "
ijk
@U

(L)

@xi

 
@A

(L)
k

@xj
+ vk

@

@xj

✓
Bk

!c

◆(L)
!
. (3.18)

Note that here we had to replace the quantity U
(L) (but not its spatial derivatives

computed for constant w) back with its expression (3.2) via vk (which remains exact
also for the linearized field), because U

(L) is the only quantity containing the total
energy w which is not a constant parameter but a function of phase-space coordinates
for the derivatives in (3.16). Substitution of (3.18) in (3.17) and subsequently (3.17)
in (3.16) yields
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m↵e↵

c

 
@

@xi

✓
dxi

d⌧

◆

(L)

+
@

@vk

✓
dvk
d⌧

◆

(L)

!
=

=
m↵e↵

c
"
ijk

 
vk
@
2
A

(L)
k

@xi@xj
+ v

2
k

@
2

@xi@xj

✓
Bk

!c

◆(L)

+

✓
Bk

!c

◆(L)
@
2
U

(L)

@xi@xj
+
@U

(L)

@xj

@

@xi

✓
Bk

!c

◆(L)

+
@U

(L)

@xi

@

@xj

✓
Bk

!c

◆(L)
!

=

= 0 (3.19)

which proves the theorem due to the symmetry of the expression in parentheses
over i and j. Note that generally the second derivatives in (3.19) formally contain
Dirac � functions, because the first derivatives of the piecewise linear functions are
discontinuous at the cell boundaries. However, the � functions do not appear at a
given boundary if one linearly transforms the spatial variables x

i so that one of the
coordinate planes, e.g. x1 = const., contains the respective tetrahedral cell face. This
makes it evident that the normal component of the spatial velocity (dx1

/d⌧)(L) is
continuous at the cell boundary since it does not contain discontinuous derivatives over
x
1 while the discontinuous tangential components (dx2,3

/d⌧)(L) are not differentiated
in (3.19) across the boundary (over x1).”1

3.3.2 Symplecticity

“Let us show that the piecewise linearization of the electromagnetic field does not
affect the symplectic properties of the orbit geometry by using a similar to Ref. [5]
derivation of the guiding-center equations. First, we introduce the Lagrangian for the
piecewise linear field,

L
(L) =

e↵

c
A

⇤(L)
i

ẋ
i � J?�̇�H

(L)
, (3.20)

where the independent phase-space variables are y = (x, J?,�, vk) and

A
⇤(L)
i

= A
(L)
i

+ vk

✓
Bi

!c

◆(L)

, H
(L) = !

(L)
c

J? +
m↵v

2
k

2
+ e↵�

(L)
. (3.21)

The corresponding Euler-Lagrange equations,

d
dt
@L

(L)

@ẏi
=
@L

(L)

@yi
, (3.22)
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are explicitly given as

e↵

c
ẋ
j

 
@A

⇤(L)
i

@xj
�
@A

⇤(L)
j

@xi

!
+

e↵

c

✓
Bi

!c

◆(L)

v̇k +
@

@xi

�
!
(L)
c

J? + e↵�
(L)
�
= 0,

�̇+ !
(L)
c

= 0, J̇? = 0,
e↵

c

✓
Bi

!c

◆(L)

ẋ
i �m↵vk = 0. (3.23)

Making a convolution of the first vector equation of (3.23) with the tensor "ikl (Bk/!c)
(L)

and using the last of Eqs. (3.23) one obtains an explicit expression for ẋi. The convo-
lution of the same vector equation with the vector "ikl@A⇤(L)

l
/@x

k yields an expression
for v̇k. All these phase-space velocity components are expressed via (3.18) as follows

ẋ
i =

1
⇣p

gB
⇤
k

⌘(L)

✓
dxi

d⌧

◆

(L)

, v̇k =
1

⇣p
gB

⇤
k

⌘(L)

✓
dvk
d⌧

◆

(L)

, (3.24)

and differ from (3.17) by the first factor, where

�p
gB

⇤
k
�(L)

=
e↵

m↵c
"
ijk

✓
Bi

!c

◆(L)
@A

⇤(L)
k

@xj
. (3.25)

By replacing in (3.15) the exact expression p
gB

⇤
k with the linearized one of (3.25),

we obtain the Jacobian of the phase-space coordinates y which formally have slightly
modified dependence on (r,p).
The preservation of the symplectic properties of the phase-space flow by a piecewise
linearization of the field is obvious in case of 3D toroidal fields with embedded
flux surfaces. Using the canonical straight field line flux coordinate system28 x =

(r,#,') where Ar = Br = 0 and, respectively, A⇤
r
= 0 one can introduce canonical

momenta P ⌘ (P1, P2, P3) = (P#, P', J?) which are conjugates to the coordinates
Q ⌘ (Q1

, Q
2
, Q

3) = (#,',��) with

P# =
e↵

c
A

⇤(L)
#

, P' =
e↵

c
A

⇤(L)
'

. (3.26)

Then the Lagrangian (3.20) and the Hamiltonian (3.21) respectively take the form

L
(L) = PiQ̇

i �H
(L)

, (3.27)

H
(L) = !

(L)
c

J? +
m↵

2

 ✓
B'

!c

◆(L)
!�2✓

c

e↵
P' � A

⇤(L)
'

◆2

+ e↵�
(L)

.

Consequently, the Euler-Lagrange equations (3.22) for the variable set y = (Q,P)
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result in Hamilton’s equations. Note that due to the continuity of the piecewise
linearization the mutual relations between canonical and non-canonical variables and
the Hamiltonian are continuous at the cell boundaries. Respectively continuous are
the orbits which fulfill the usual symplectic relations of mapping in time.
Note that both, Eqs. (3.17) and Eqs. (3.24) result in the same phase space orbit
geometry with the latter having Hamiltonian time dynamics described by

dt
d⌧

=
�p

gB
⇤
k
�(L)

. (3.28)

High accuracy of this dynamics, however, is not important for the steady state
problems which are here of main interest. Since none of the coefficients of the kinetic
equation depend in this case on the time variable, it can be replaced by ⌧ resulting in

@f

@⌧
+ {f,H}

⌧
= � @

@yi
JF

i

C
(f) + Jq, (3.29)

where {a, b}
⌧

are modified Poisson brackets (3.10), J is the Jacobian (3.15), F i

C
(f) is

phase-space flux density due to collisions, and q is some phase-space particle source.
Obviously, the subsequent linearization of the fields does not violate the conservation
properties of Eq. (3.29). Moreover, Boltzmann’s distribution f = fB(H) remains to
be a steady state solution since it commutes with the Hamiltonian in the Vlasov part
and results in F

i

C
(fB) = 0 for the background in the thermodynamic equilibrium.”1

3.4 Analytical integrals of velocity powers over the
dwell time

“In this section it is presented how analytical expressions for the dwell time integrals
of v2?, vk and v

2
k can be obtained. Furthermore, the latter quantity is exemplary given

as an explicit expression.
We start with the exact polynomial series solution of ODE set (3.5)

z = z0 +
1X

k=1

⌧
k

k!

�
âk�1 · b+ âk · z0

�
, (3.30)

already given in Eq. (3.11). For the parallel velocity vk = z
4 this series can be written

in form of a shifted exponential function

vk(⌧) = e
↵⌧

✓
vk,0 +

�

↵

◆
� �

↵
, (3.31)
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where ↵, � and vk,0 stand for the matrix element a44, the vector component b
4 and

the initial value for the parallel velocity at the cell entry, respectively. After squaring
Eq. (3.31), one can perform a Taylor series expansion of the orbit parameter up to
the 4th order,

v
2
k(⌧) ⇡ v

2
k,0 + ⌧(2�vk,0 + 2↵v2k,0) + ⌧

2
�
�
2 + 3↵�vk,0 + 2↵2

v
2
k,0
�

(3.32)
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v
2
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�
.

This is the highest order, where an algebraic expression of the dwell time td to pass
a cell can be found. In order to obtain the dwell time integral of v2k, its polynomial
representation can simply be integrated

Z
td

0

v
2
k(t)dt ⇡ C

✓
⌧dv

2
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,

where C = dt/d⌧ = B
⇤
k
p
g = const. within the cell. Here, this lowest order approxi-

mation of C is intended, because for the moments of a steady state (3.29) only the
integrals over the orbit parameter ⌧ are needed to be computed accurately. The
reason is that ther error of such an approximation is always small as long as the field
quantities are well resolved by the grid. In turn, the cross-field drift terms which
formally scale with the Larmor radius must be accounted accurately in ⌧d as well as
the respective integrals because they determine the orbit dynamics near the banana
tips. In the case that higher order accuracy of the moments with respect to the
grid size is required the derivative dt/d⌧ must be used in its form (3.28). Due to
Eq. (3.25) this derivative is a product of a linear function of the coordinates and a
linear function of vk. Therefore, the dwell time td and the time integrals can still
be computed analytically leading to somewhat more complicated expressions. Note
that here the dwell time ⌧d may be a sum of entry and exit times in the case of a
pre-defined time step.
Clearly, the dwell time integral of vk requires to omit squaring of Eq. (3.31) and to
proceed straightforwardly in the same manner.
Moreover, the squared perpendicular velocity v

2
? is purely a function of position inside

a tetrahedral cell due to its proportionality with the cyclotron frequency, v2? = 2!c

J?
m

,
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which is a piecewise linear function of position in the quasi-geometric orbit integration
formulation. Thus, the dwell time integral of v2? is obtained via an integral along the
orbit which can easily be computed by using its polynomial representation given in
Eq. (3.30).”1
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Chapter 4

Implementation of the guiding-center
orbit code GORILLA

The quasi-geometric integration method derived in chapter 3 has been implemented
in a Fortran program with the name Guiding-center ORbit Integration with Local
Linearization Approach (GORILLA). The code has been made publicly available
on GitHub as scientific open source software under the MIT license; see Ref. [2].
Further, the source code for GORILLA has been archived on Zenodo with the linked
DOI of Ref. [46]. GORILLA has been developed in collaboration of TU Graz (ÖAW),
IPP Garching, and IPP Kharkov (KIPT), whereby the author contributed as main
developer.

A first proof of concept of GORILLA’s underlying algorithm was originally presented
in detail in the author’s Master’s thesis; see Ref. [44]. In this original realization,
the guiding-center orbits were integrated in cylindrical coordinates. Furthermore, the
tetrahedral grid which is necessary for this approach was not field-aligned, instead the
vertices of the tetrahedra were uniformly distributed along the coordinate contours
of a cylindrical coordinate system. Due to structural limitations and deficiencies of
the original algorithm, as well as new insights, this code was jointly re-factored and
extended in a cooperation between L. Bauer and the author, including:

• introduction of flux coordinates

• generation of a field-aligned grid

• complete re-factoring of the numerical approach with Runge-Kutta

• implementation of an analytical approach with polynomials

• suitable code preparation for physics applications

• conditioning for analysis of the underlying quasi-geometric integration method
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In the following chapter, an overview of the structure of this guiding-center orbit code
and the working principle of its modules and subroutines is shown with the intention
of presenting the code in a concise and unified manner. Thus, this chapter can also be
found in a slightly modified version in the documentation of GORILLA; see Ref. [46].
Some parts of the content of this chapter were already published before in the Master’s
thesis of L. Bauer, see Ref. [47], which was co-supervised by the author. Modifications
(including some figures), extensions and conflations were performed by the author.
Whenever already published content of Ref. [47] which was firmly co-developed by the
author seemed not improvable with respect to compactness and clarity, this content is
literally quoted in this thesis.

4.1 General structure of GORILLA

   2D MHD equilibrium
 (g-file) Tetrahedral grid

(field aligned)

Tetrahedral physics
(piecewise linearization)

GORILLA 
Plot

GORILLA 
Orbit time step

  

Pusher tetrahedron
(boundary to boundary)

Magnetic field input Core modules Settings

Orbit applications
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 (VMEC)

Test field 
(analytical)

tetra_grid.inp

gorilla.inp

gorilla_plot.inp

Runge-Kutta

Polynomial

Supply data
 

Call subroutine

select
Poly / RK

select
field

repeat

Figure 4.1: General overview of the structure of GORILLA: Core modules, magnetic field input,

settings and orbit applications. Dotted lines with line-arrows indicate the supply of data for the

subsequent execution of subroutines. Solid lines with filled arrows show the direction of the

subroutine calls. (Data flow of called subroutine return values is implied in the opposite direction.)

For various simulations in magnetic confinement fusion, direct modeling of guiding-
center particle orbits is utilized, e.g. global kinetic computations of quasi-steady
plasma parameters or fast alpha particle loss estimation for stellarator optimization;
see introduction of this thesis. In such complex simulations a simple interface for the
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guiding-center orbit integration part is needed. Specifically, the initial condition in
five-dimensional phase-space is provided (e.g. guiding-center position, parallel and
perpendicular velocity) and the main interest is in the condition after a prescribed
time step while the integration process itself is irrelevant. Such a pure “orbit time
step routine” acting as an interface with a plasma physics simulation is provided
(“GORILLA orbit time step”). In the context of this work, however, the integration
process itself is of great interest as well and a program allowing the detailed analysis
of guiding-center orbits, their respective invariants of motion and Poincaré plots is
thus provided as well (“GORILLA Plot ”). Both orbit application routines can be used
independently from each other, whereby they utilize the same underlying modules
and subroutines.
In Fig. 4.1 a general overview of the structure of GORILLA is depicted, in which these
two orbit application routines can be seen in a red box. The blue box shows the input
options for the magnetic field, which can be either provided by magnetohydrodynamics
(MHD) equilibria in 2D (e.g. EFIT48,49) and in 3D (e.g. VMEC50,51, GPEC52,53) or
by an analytical test field.
The major part of GORILLA can then be divided in three separate core modules,
which are depicted in green. First, the tetrahedral grid module loads the magnetic
field data and generates a 3D field-aligned grid consisting of tetrahedra. Second,
in the tetrahedral physics module the electromagnetic field is linearly interpolated
within the tetrahedra of the grid such that globally (in the plasma core) the field
is represented by piecewise linear functions. Further, normal vectors describing the
planes which confine the tetrahedra and which are later needed are computed. Third,
the actual guiding-center orbit integration is performed in the pusher tetrahedron
module, where “a particle is pushed from tetrahedral cell boundary to cell boundary,
if no intermediate position inside a cell, e.g. after a pre-defined time step, is required
deliberately. The positions before and after the time step are, in general, located
inside the cells while the time step itself includes tracing of all orbit intersections with
cell boundaries between these positions.”1 A numerical Runge-Kutta and a Polynomial
option, as briefly described in section 3.2, are implemented for the pushing of a particle
in this manner. These options are depicted in violet boxes. Eventually, one of the two
pushing options is repeatedly called in a loop (within the orbit applications) until the
prescribed time has elapsed.
All settings for the grid generation, the orbit integration and the plotting of full guiding-
center orbits, Poincaré sections and the time evolution of invariants of motion are
governed by the input files tetra_grid.inp, gorilla.inp and gorilla_plot.inp

which are shown in orange. E.g., a switch parameter in gorilla.inp determines
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whether the Runge-Kutta or the Polynomial option is used.

4.2 Field-aligned tetrahedral grid with linearized elec-
tromagnetic field quantities

In this section an overview is given of how the grid which is used in GORILLA is
generated. This grid consists of tetrahedral cells and is aligned to the magnetic field.
A detailed description of the grid generation (with some modifications) including
also a non-field-aligned grid can be found in Ref. [47]. Furthermore, inside the
tetrahedral cells the quantities describing the electromagnetic field are independently
approximated by linear functions.

Magnetic field input:
As stated in section 4.1, the magnetic field must be either provided by an MHD equi-
librium or by an analytical test field. As shown below, for the utilization in GORILLA
a field-aligned grid has an inherent benefit with respect to the linear interpolation
of the covariant component of the vector potential when this is represented in flux
coordinates. Without going into details, the working principle of GORILLA requires
neither flux coordinates nor a field-aligned grid. However, non-flux coordinates, e.g.
cylindrical coordinates, affect the shape of guiding-center orbits significantly and can
also lead to artificial chaos in the case of three-dimensional fields. These circumstances
are explained and illustrated in detail in chapter 5.
Without loss of generality, we use (straight field-line) symmetry flux coordinates54

(s,#,') here, where s denotes the flux label (normalized poloidal or toroidal flux), #
the symmetry flux poloidal angle and ' the toroidal angle, respectively. A prerequisite
for the generation of a field-aligned grid to be used in GORILLA is that the following
quantities which represent the electromagnetic field are available as functions of arbi-
trary positions inside the plasma core: Ak, Bk, !c, � and p

g, which are the covariant
components of the vector potential and the magnetic field, the cyclotron frequency,
the electrostatic potential and the metric determinant, respectively. If these are not
inherently available through analytic functions (in the case of a test field), interpola-
tion of data points (in the case of MHD equilibria) and appropriate transformation
to symmetry flux coordinates (SFC) are needed. Here, it should be mentioned that
the divergence freeness of the magnetic field must not be violated. Since it is not an
inherent part of this work, a description how to achieve such a transformation and
interpolation is omitted, instead we assume that the above mentioned quantities are
available as functions of SFC. A detailed description can be found in Ref. [47].
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Requirements and structure of the tetrahedral grid:
Several requirements exist that must hold for a tetrahedral grid in order to function
correctly while being used in GORILLA. “These requirements are:

1. The three-dimensional spatial domain, which is relevant for calculations, must be
fully covered by non-overlapping tetrahedra. In this application tetrahedra are
necessary since field quantities are used in a piecewise linearized form, meaning
they are saved as a scalar value at a reference point and a corresponding gradient
of the quantity. Such a linear representation has four independent parameters,
therefore, the use of tetrahedra is ideal since the parameters of the linearized
field quantity can be exactly defined via the field quantities at the four vertices
of the tetrahedron. One might think that apart from tetrahedra other spatial
objects with more vertices can still be used by fitting a linear function of the field
quantity, however, such an application would destroy the important property
of the field quantities being continuous through adjacent faces of tetrahedra.
Furthermore, for vector quantities each vector component is independently
linearized.

2. All the tetrahedra edges must coincide with the edges of the neighboring tetra-
hedra. Edges that lie on the faces of neighboring tetrahedra (these are termed
hanging nodes) or crossings between edges are not permitted. This requirement
is given by the continuity condition of linearized field quantities through the
faces of each tetrahedron.

3. Each tetrahedron must be defined via four corner vertices in a given coordinate
system. The coordinate values of each vertex are stored in an array and each
vertex is identified by its array index. The index of the four vertices belonging
to a specific tetrahedron has to be stored in a 4⇥ 1 array and can be accessed
by indices 1 to 4 within each tetrahedron.

4. The tetrahedra are stored in an array of tetrahedron objects and identified by
their index. Each tetrahedron has four defined faces labeled face 1 to 4. Each
face i (i = 1, 2, 3, 4) is spanned by the vertices of the tetrahedron excluding
tetrahedron-vertex i. For instance, face 3 will be spanned by tetrahedron-vertices
1,2,4. This implies that the tetrahedron-vertex i will be the only tetrahedron-
vertex not lying on face i.

5. For a given tetrahedron, the neighboring tetrahedron which is separated by
the i-th face of the current tetrahedron will be considered the neighbor i to
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the current tetrahedron with its global labeling index being saved in the i-th
position of a 4⇥ 1 array.

6. In addition to saving the four faces and neighbors of each tetrahedron, the index
of the intersecting face between the original tetrahedron and its neighbor in the
index system of the neighbor will be saved with the original tetrahedron. This
means that the face through which a particle enters a neighboring tetrahedron
can be determined by knowing through which face it is leaving the current one.

7. Tetrahedra at the outer boundary of the grid will not have neighboring tetrahedra
at the boundary face, the neighboring tetrahedron index as well as the index of
the face in the index system of the neighboring tetrahedron will be set to �1.

8. The normal vectors corresponding to each face of all tetrahedra must be explicitly
calculated and saved together with a reference point. This enables the calculation
of normal distances of any arbitrary point to all faces of each tetrahedron.

9. Grids that are made in a coordinate system with a periodic coordinate need
to have an additional property set for tetrahedra faces lying at the periodic
boundary, depending on which side the face lies. This determines in which
direction the coordinate needs to be shifted when the particle passes through
the boundary.”47 In the case that an approach with Cartesian coordinates is
used for the particle position exchange between adjacent tetrahedral cells, see
section 4.3.3, this requirement can be neglected.

10. In the case of axisymmetry of the electromagnetic field (with respect to the
toroidal direction, e.g. field inside a tokamak), this symmetry property must not
be violated when approximating field quantities with piecewise linear functions.

Generation of the vertices of the tetrahedral grid:
“The first step in implementing this grid is to generate the vertices that will define the
corner points for the tetrahedral cells filling a given space. In order to achieve this,
the domain which will be covered by the grid needs to be specified in the coordinate
system where the grid will be generated.”47 In this case, we choose SFC as described
above. In its most simple form, the grid will have vertices equidistantly spaced in
s,# and ' direction with intervals for s being [0, 1], [0, 2⇡] for # and [0, 2⇡/Nfp] for ',
where Nfp is the number of field periods of the toroidal fusion device.
“Each coordinate xi will now be discretized into Ni equidistant values for each given
interval. Using nested loops, these discretized values will be connected to Ns⇥N#⇥N'
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unique triples representing the coordinates of the individual vertices of the grid.”47 As
a result, one obtains the vertices of a regular grid consisting of hexahedra, if all vertices
are connected to their nearest neighbors, assuming that all intervals are normalized
to the same value. These hexahedral cells are subsequently split into tetrahedral cells
as shown below.
The coarseness of the hexahedral grid, which also implies the total number of tetra-
hedral cells, is defined by Ni. Thus, we call Ns ⇥ N# ⇥ N' the “grid size” of the
tetrahedral grid. However, in order to obtain the number of tetrahedral cells the
product of this grid size must be multiplied by the number of tetrahedral cells per
hexahedron.

Generation of tetrahedral cells and linearized electromagnetic field quan-
tities:

Figure 4.2: Flux coordinate space illustration of two realizations of a hexahedron (red) being split

into tetrahedral cells. The symmetry direction is along the coordinate x3
.

(a) The hexahedron is split into six tetrahedral cells such that the axisymmetry property of the

electromagnetic field is preserved upon linearization of field quantities.

(b) The hexahedron is split into five tetrahedral cells without preserving axisymmetry upon

linearization. Figure (a) is taken from Ref. [3]

As stated in section 3.1, the field quantities Ak, Bk/!c, !c and � are independently
approximated by continuous piecewise linear functions. This approximation is achieved
by linearly interpolating the field quantities inside the tetrahedral cells of the described
grid. Here, it should be mentioned that the exact field values are retained on the
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tetrahedral cell’s vertices.
In the case that the electromagnetic field is axisymmetric with respect to the toroidal
direction, this symmetry property must not be violated by the interpolation. Thus, the
tetrahedral cells must be specially oriented in order to preserve this symmetry and its
respective invariant of motion of the guiding-center equations; see section 5.1. “Namely,
this is achieved with stackable hexahedra each consisting of two triangular prisms,
which are both subsequently split into 3 tetrahedral cells. The prisms are oriented
such that all triangular prism faces lie on x

3 = const. planes where x
3 is the symmetry

direction. Thus, each tetrahedron face which lies on a x
3 = const. plane is congruent

with all other tetrahedron faces opposing it in the symmetry direction.”1 This specific
splitting realization can be seen in a real space illustration of the field-aligned grid
in Fig. 3.1. Furthermore, Fig. 4.2 (a) shows this specific splitting realization which
is used in GORILLA in flux coordinate space. For a better understanding of the
preservation of axisymmetry, let us assume that the modulus of the magnetic field B,
which is proportional to the cyclotron frequency, !c = eB/mc, is exactly given on the
8 vertices of the hexahedron in Fig. 4.2 (a). In an axisymmetric field, the respective
values at vertices which oppose in the symmetry direction x

3 remain constant, e.g. B

has the same value at vertex 1 and 5. Due to the linearization, the value of B at a
random position (x1

a
, x

2
a
, x

3
a
) on the triangular tetrahedron face confined by the vertices

1, 2 and 3 is a linear superposition of the values of B at these vertices. If we keep
x
1
a
, x

2
a

constant and make a variation of the component x
3
a
, the point describing the

position will cross the tetrahedral cell boundary and eventually reach the triangular
tetrahedron face confined by the vertices 5, 6 and 7. Throughout this variation, the
value of B(x1

a
, x

2
a
, x

3
a
) remains constant, since the values at the vertices opposing in

the symmetry direction remain constant, while the vertices themselves, which are the
basis of the superposition, change when entering an adjacent tetrahedron.
In contrast, Fig. 4.2 (b) shows an alternative splitting realization, where the field
property of axisymmetry is not preserved. The triangular tetrahedron face confined by
the vertices 1, 2 and 3 is not opposed by a congruent triangular face in the symmetry
direction. E.g., the value of B at a random position (x1

b
, x

2
b
, x

3
b
) on the triangular face

with the vertices 1, 2 and 3 is in general affected by the value at vertex 3, while the
non-congruent opposing triangular face with the vertices 5, 6 and 8 has the same B

values at vertices 5 and 6 but not at vertex 8. If we make the same variation as above,
specifically by keeping x

1
b
, x

2
b

constant and change only x
3
b
, the value of B(x1

b
, x

2
b
, x

3
b
)

will in general change throughout this variation.
Moreover, if one carefully observes the splitting realization of Fig. 4.2 (a), one can
see that symmetry is not only preserved in the x

3 direction, but that the criterion for
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conservation (upon linearization) is also valid for the directions x1
, x

2 in the case that
these directions possess a symmetry property. In particular, in the case of transport
optimized stellarators55 a grid with this specific splitting realization should preserve
the quasi-axisymmetry (B is independent of the toroidal angle ') and quasi-poloidal
symmetry (B is independent of the poloidal angle #).
Finally, for the utilization in GORILLA a field-aligned grid has an inherent benefit
with respect to the linear interpolation of the covariant component of the vector
potential Ak when this is represented in flux coordinates. With the appropriate gauge
transformation, Ak can be denoted in SFC as As = 0, A# = s 

max
tor and A' =  pol,

where s,  max
tor and  pol are the normalized toroidal flux surface label, the toroidal flux

at the separatrix and the poloidal flux, respectively. In the described linearization
approach, for vector quantities each vector component is independently linearized.
Thus, with this representation of Ak in SFC, no interpolation errors in the poloidal
and toroidal direction are introduced, since none of the covariant components of Ak are
dependent on # or '. As a consequence, the existence of flux surfaces is not violated in
piecewise linear toroidal fields. However, due to the s-dependence of  pol, the rotational
transform, ◆ =  

0
pol/ 

0
tor, is a piecewise constant function in this approach. Associated

consequences with respect to artificial chaotization are discussed in detail in section 5.2.

Numerical implementation:
In the numerical implementation of GORILLA, the tetrahedral grid module loads the
magnetic field data and generates the field-aligned tetrahedral grid with the (symmetry
preserving) splitting procedure of a regular hexahedral grid in flux coordinate space.
Further, the linear interpolation of the electromagnetic field quantities is performed
within the tetrahedral physics module as well as the construction of normal vectors
that describe planes which confine these tetrahedra and which are essentially needed
in the subroutines for appropriately pushing particles through the tetrahedral cells;
see below.
The technical details of the remaining implementation for a logic that fulfils the
requirements from above, specifically the indexing of tetrahedra, their faces and the
indexing of the respective neighboring tetrahedra and their adjacent faces, etc., are
omitted in this work, since this chapter is intended to present the code in a concise
and unified manner. A detailed description can be found in Ref. [47].
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pusher_tetra_rk

pusher_handover2neighbour

integration_step_rk
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newton_face_convergence

last_line_defense bisection_search_start

final_processing

bisection_face_convergence

find_tetra

GORILLA 
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gorilla.inp

Pusher tetrahedron - Runge-Kutta option

Module for data exchange

Supply data
 

Call subroutine

select
Poly / RK
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Figure 4.3: Overview of the structure of the Runge-Kutta option belonging to the pusher tetrahedron
module of GORILLA. Dotted lines with line-arrows indicate the supply of data for the subsequent

execution of subroutines. Solid lines with filled arrows show the direction of the subroutine calls.

(Data flow of called subroutine return values is implied in the opposite direction.) This figure is
taken from Ref. [47] and modified and extended.

4.3 Algorithm for pushing particles through tetrahe-
dral cells

In this section an overview of the algorithm to integrate a guiding-center orbit by
consecutively pushing a particle through tetrahedral cells (with its two options Runge-
Kutta and Polynomial) is presented. As can be seen in Fig. 4.1, this is done within
the pusher tetrahedron module. The working principle of the required routines and
auxiliary methods is briefly explained. Without loss of generality, here, we limit
to only one orbit application, namely GORILLA orbit time step. The second orbit
application (GORILLA Plot), which is intended for the analysis of the quasi-geometric
integration method itself, works in the same manner with some additional diagnostic
extensions intended for visualization.
“The focus of the pusher tetrahedron module lies, however, not only on the computation
of the trajectory and the calculation of the next tetrahedron intersection but rather on
finding a numerically inexpensive scheme that allows to save computational cost while
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reliably yielding accurate results for the intersection of the orbit with the tetrahedron.
While the results are in theory equivalent for both pushing options, the approaches
are completely independent and thus may vary in both computational efficiency and
numerical accuracy, depending on the polynomial order K of Eq. (3.11) up to which
the orbit is computed.”47

Due to the interchangeability of these two options, we will now demonstrate the
common algorithmic approach by referencing only the Runge-Kutta option. The
distinctive details of these two options are subsequently discussed in separate sections.
Fig. 4.3 shows the overview of the structure of the Runge-Kutta option, belonging to
the pusher tetrahedron module of GORILLA, and also how this module is called from
the orbit application GORILLA orbit time step. The actual Runge-Kutta option is
depicted in a violet box.
A prerequisite for the functionality of this module is the pre-computed linearized
electromagnetic field, as well as the normal vectors describing the planes which confine
the tetrahedra. Both are provided by the tetrahedral physics module (green in Fig. 4.3).
All the necessary settings including the pushing option (Runge-Kutta or Polynomial)
are governed by the input file (orange in Fig. 4.3).
The GORILLA orbit time step application is realized as a wrapping routine with the
name orbit_timestep_gorilla (red in Fig. 4.3) which is given the initial conditions
of the particle and returns the condition after the pre-defined time step.
“For starting a particle at a given position without knowing to which tetrahedron it
belongs to in coordinate space, an auxiliary routine find_tetra was constructed for
efficiently finding the corresponding tetrahedron index to start a calculation”47; see
section 4.3.3. This routine must be called only at the very first time when a particle
is started. Further subsequent orbit time steps, e.g. after a scattering process in a
simulation, do not require to find the appropriate tetrahedron in the grid anymore,
as long as the particle position stays unchanged between consecutive time steps, and
thus, the information to which tetrahedron the particle belongs can be retained.
The first subroutine to be called for an orbit time step within the pusher tetrahedron
module (and after the appropriate tetrahedron has been found) is
initialize_const_motion_rk which sets the constants of motion (perpendicular
adiabatic invariant J? and respective squared value) for the given initial conditions.
“The constants of motion will retain their set values for a number of tetrahedral
pushings until the next time step is executed. Usually, between time steps collision
events will occur. As a consequence, the constants of motion may change and have to
be defined anew for every orbit time step.”47

Eventually, the subroutine pusher_tetra_rk which is responsible for the actual push-
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ing through a tetrahedral cell is called repeatedly inside the wrapping routine until
the pre-defined time is elapsed. Since the pre-defined time step for an orbit will, in
general, lead to a particle position somewhere inside a final tetrahedron, the remaining
time of the orbit to reach the pre-defined time must be given to the subroutine
pusher_tetra_rk when being called repeatedly. “This subroutine then computes
the time it takes until the particle exits the current tetrahedron and compares this
value to the remaining time of the orbit time step. In the case that the time it takes
to leave the tetrahedron is less than the remaining time of the orbit time step, the
pushing is computed. The remaining time is then reduced by this value and the next
pushing through the adjacent tetrahedron is started. In the case there is not sufficient
time to complete the pushing, the orbit is instead integrated up to the value of the
orbit parameter ⌧ corresponding to the remaining time, leading to a final position
somewhere inside the tetrahedron.”47

The strategy how to achieve a pushing through a tetrahedral cell with the Runge-
Kutta option (within the subroutine pusher_tetra_rk) and, specifically, in a com-
putationally efficient manner is discussed in the following. The algorithm for the
Polynomial option is identical until here, with the exception of calling the subrou-
tines initialize_const_ motion_poly and pusher_tetra_poly instead. The latter
subroutine realizing the alternative polynomial approach is discussed below as well.

4.3.1 Numerical approach with Runge-Kutta

The subroutine pusher_tetra_rk is called with the initial conditions, specifically
guiding-center position and parallel and perpendicular velocity, as well as the required
tetrahedron information, specifically the indices of the appropriate tetrahedron and
tetrahedron face. The face index takes the values 1 . . . 4, meaning that the particle’s
position lies in on one of the four tetrahedra faces, or 0 in the case the particle’s
position is somewhere inside the tetrahedron. In addition, the remaining time of the
orbit time step prior the pushing is also given to pusher_tetra_rk. In the violet box
in Fig. 4.3 the subroutines used within the Runge-Kutta option for pushing a particle
through a tetrahedron can be seen. After the execution, the subroutine returns the
new initial conditions for a subsequent pushing through a tetrahedron, as well as the
remaining time of the orbit time step after the pushing.

Initialize the module for data exchange:
“In the pusher_tetra_rk subroutine, first an initialization subroutine initialize_pu
sher_tetra_rk is called. Here, the initial conditions are used to compute the coeffi-
cients a

i

l
, b

i for the ordinary differential equation set (3.5), representing the equations
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of motion in the specific tetrahedron. It should be emphasized here that this ODE set
is solved within a shifted coordinate system, where the coordinate origin lies on the
first vertex of the given tetrahedron.”47

Initial guess of exit time and exit face:
Now, the intersection between the orbit and the tetrahedral cell, which can be reached
in the smallest positive time from the initial position (“exit time”) and its appropriate
tetrahedral face (“exit face”), needs to be computed. (A representative illustration can
be seen in Fig. 3.2.) “Since this must be done efficiently, a numerically inexpensive ap-
proximative quadratic solution is first evaluated by subroutine quad_analytic_approx
to compute the guess for the orbit parameter ⌧ at the first intersection of the particle
trajectory with the cell boundary. Based on the approximative (quadratic) result for
the orbit parameter ⌧ , an integration step is performed for the given step length”47

using integration_step_rk. This subroutine solves the initial value problem for
the set (3.5) either, determined by the user, with a single step of the Runge-Kutta 4
method (RK4) or with the adaptive Runge-Kutta 4/5 method (RK4/5) and returns
the evaluated position.
“In general, due to inaccuracies in the approximation, this value does not correspond
to a “converged” orbit position. In the context of the subroutine pusher_tetra_rk,
converged simply means that the particle position is within a defined convergence
distance to a given tetrahedral plane. This distance can be set manually. Its default
value is 10�10 times the normal distance of the first vertex within a given tetrahedron
to its opposing cell boundary spanned by vertices 2,3 and 4 of the given tetrahedron.
In addition, the normal velocity, which can also be computed from the output of the
RK integration step, must have a negative sign in order for the convergence to be
valid.”47 (By definition, the normal vectors describing the planes which confine the
tetrahedra are pointing inwards.) “The negative sign assures here, that only outflowing
particles (i.e. with negative normal velocity) are accepted as a solution. Since the
orbit position is generally not yet converged after the quadratic approximation, the
next step is to apply Newton’s method for the convergence of the orbit position on
the tetrahedron face by calling the subroutine newton_face_convergence.”47 Runge-
Kutta integration steps are there embedded into an iterative scheme using Newton’s
method in various orders. A detailed description of this approach is given in Ref. [44].

Convergence and validation loop (conv_val_loop):
“What has been obtained so far is a proposal for the exit plane and a converged orbit
position on this plane. There may still be some problems, however, since for example
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Newton’s method can fail if the orbit in fact turns before it intersects with the plane.
Furthermore, it might happen that it does converge on the suggested plane but at the
point of convergence it had already left the tetrahedron through another plane which
is not allowed as it would be the actually correct exit plane instead of the proposed
one. Such cases need to be checked and handled appropriately. For this purpose,
the convergence and validation loop (conv_val_loop) was implemented. This loop
starts directly after the above mentioned quadratic approximation just before the
convergence using Newton’s method. Here, in each iteration of the loop, the algorithm
tries to converge the particle orbit position on the currently proposed intersection face.
Next, if convergence is reached the algorithm checks for the remaining planes if the
particle lies outside the tetrahedron. If this is not the case, furthermore, the normal
velocity is checked to see if the particle flies outside. In case this is also correct, the
particle is considered “converged” and, hence, accepted.
In any case, where an error is detected, an appropriate approach is suggested. In
most cases this involves using the quadratic approximation to suggest a different
face, however, in some special cases this is not sufficient. Therefore, one calls inside
conv_val_loop an additional convergence routine last_line_defense, which no
longer opts for high computational efficiency but rather for a reliable way of finding
the intersection point.
This subroutine is very comprehensive, but a central piece of it is a bisection scheme.
For a short overview, in this scheme (bisection_face_convergence) one computes
the relative particle positions to all four faces and furthermore checks the normal
velocities. Here, if the particle is inside the tetrahedron, the current step length
is doubled and an integration step is performed. If the particle is now outside the
tetrahedron, the last integration step is halved and integrated back in negative ⌧ -
direction. This is done in an iterative scheme until a converged particle position has
been found.”47 In extremely rare cases (less than one in 100 million pushings) an
unsuitable starting position for the bisection procedure can lead to failure with respect
to face convergence. In such a case, the orbit is stepwise integrated in the subroutine
bisection_search_start in order to find an appropriate starting position for the
consecutive bisection procedure, leading to face convergence.
“Albeit the subroutine last_line_defense is computationally expensive, it remains
an indispensable element of the algorithm due to its high reliability. This effect on
performance remains small, however, as only a small portion of particle pushings
actually need to be solved by last_line_defense.
Due to the used approach of guessing the exit face with an approximation instead
of computing all intersections with all four planes, which would be computationally
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much more expensive, many special cases of particle trajectories had to be taken
into account in order that the logic can deal with them correctly.”47 It should be
mentioned that much thought has gone into developing such an efficient and reliable
logic.

Final processing:
Eventually, the last steps of the orbit integration are to first check if the computed
time is in fact smaller than the remaining time of the orbit time step. When this is
true, the remaining time of the orbit time step which was given to pusher_tetra_rk

is reduced by the exit time computed in this pushing. By calling the subroutine
pusher_handover2neighbour, the tetrahedron and face index of the tetrahedron
which is adjacent to the exit face will be evaluated. Due to periodic boundaries of adja-
cent tetrahedra, particle positions might be updated in pusher_handover2neighbour

which is explained in section 4.3.3. Finally, the orbit condition (position and velocities)
and the tetrahedron information for the subsequent pushing are returned to the orbit
application, i.e. orbit_timestep_gorilla.
If the computed time is in fact greater than the remaining time of the orbit time
step, the corresponding position at the remaining time is evaluated instead of the
converged orbit position. In this case the current tetrahedron index will be returned
while the face index is manually set to 0, meaning that the particles is somewhere
inside the tetrahedron.

4.3.2 Analytical approach with polynomials

The subroutine pusher_tetra_poly is called in the same manner as its counterpart
pusher_tetra_rk, specifically with the initial conditions of the particle, as well as
the required tetrahedron information and the remaining time of the orbit time step.
After the execution, the subroutine returns the new initial conditions for a subsequent
pushing through an (adjacent) tetrahedron, as well as the remaining time of the orbit
time step after the pushing. In the following, an overview of the working principle
of the analytical approach with polynomials, which differs significantly from the
numerical approach with Runge-Kutta and Newton’s method, is given.
As already stated in section 3.2, by truncating the summation of the formal solution
of the locally linear guiding-center equations (3.11) at K = 2, 3 or 4, one obtains
approximate solutions of various orders in Larmor radius. With these solutions,
the equations for the exit time, which is the time it takes for the particle to reach
the tetrahedral cell boundary, are algebraic equations. Thus, we call this approach
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Call subroutine

initialize_const_motion_poly

pusher_tetra_poly

pusher_handover2neighbour

analytic_integration
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analytic_approx

analytic_coeff

trouble_shooting_poly

physical_estimate_tau

find_tetra
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Orbit time step

orbit_timestep_gorilla
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(piecewise linearization)
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Pusher tetrahedron - Polynomial option

linear_solver

quadratic_solver

cubic_solver

quartic_solver

Module for data exchange

Runge-Kutta

repeat

select
Poly / RK

Figure 4.4: Overview of the structure of the Polynomial option belonging to the pusher tetrahedron
module of GORILLA. Dotted lines with line-arrows indicate the supply of data for the subsequent

execution of subroutines. Solid lines with filled arrows show the direction of the subroutine calls.

(Data flow of called subroutine return values is implied in the opposite direction.)

“analytical”.
In general, the orbit can be computed separately for all orders K = 2, 3 or 4, however,
since computational efficiency is also aspired to in this approach, the quadratic
polynomial solution K = 2 is used in a manner similar to the RK-approach, for
predicting the exit face, in the event that the orbit is computed with the orders
K = 3 or 4. The predominant effect of this is the reduction of the number of
higher order root finding operations from four to one, while demanding an algorithm
that guarantees that the “correct” face is found. In the context of the subroutine
pusher_tetra_poly, correct simply means that the particle position is within a
negligible convergence distance to the plane, which requires an accurate polynomial
root finding procedure, and that the particle flies outwards the tetrahedron with
respect to the exit plane.
In the violet box in Fig. 4.4 one can see the subroutines used within this Polynomial
option. Similarly as in the Runge-Kutta option, by calling the initialization subroutine
initialize_pusher_tetra_poly the initial conditions for orbit integration within
the specific tetrahedron are preprocessed, e.g. local coordinates, while the coordinate
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handling for subsequent pushing in an adjacent tetrahedron is performed within
pusher_handover2neighbour at the end of the pushing procedure.
In the context of the actual orbit integration let us recall, as stated in Eq. 3.14, that
for computing the appropriate exit time, we need to find the smallest positive root of
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e
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pending on the aspired polynomial order K, the coefficients of this polynomial are then
computed in the subroutine analytic_coeff for the initial condition z0. Although
the roots of such a polynomial can be exactly solved in an analytical sense, quite
some difficulties arise when implementing such an analytical root solving procedure
due to ill-conditioned coefficients that lead to numerical cancellations. Thus, the
algorithm of Ref. [56] was applied for accurately and efficiently obtaining all roots of
general real quadratic, cubic and quartic polynomials. The respective subroutines are
linear_solver, quadratic_solver, cubic_solver and quartic_solver.
However, such a pure root solver is not sufficient in our case due to three major reasons.
First, if a particle orbit is started from one of the four faces, which is predominantly
the case, one is not interested in this intersection of the orbit with the tetrahedral
face, specifically the actual starting position at time zero. Since this root is already
known, the order of the polynomial is reduced by one. Second, the coefficients of
the polynomial can turn zero (or almost zero in a numerical sense) due to scattering
events of the particles or by definition of the user, e.g. if the perpendicular velocity of
the particle is set to zero by the user. Also in this case the order of the polynomial is
reduced. The third case is rather technical and deals with ill-conditioned coefficients.
The root solving algorithm of Ref. [56] expects the coefficient of the highest order
polynomial term to be normalized to one, but such a normalization can lead to severe
numerical cancellations since the orders of magnitude of the individual coefficients
differ quite drastically. This issue is solved by rescaling the polynomial, then finding
the roots of this rescaled polynomial and finally scaling back the appropriate smallest
positive root. E.g., let us assume we have a fourth order polynomial for the orbit
parameter ⌧ . We introduce the scaling parameter � by multiplying every polynomial
term with one and subsequently perform the transformation ⌧̃ = �⌧ ,
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If we demand that the coefficient of the highest order polynomial term is normalized
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to one,
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then the scaling parameter � gives us the freedom to rebalance the ill-conditioned
coefficients by choosing that, e.g., e

a
�
4 !
= d

a
�
3. For the sake of completeness, rescaling

of the polynomial can also be performed without the required normalization, in the
case a different root solving procedure is applied.
The subroutine analytic_approx takes care of the appropriate reduction of the order
of the polynomial, wherever necessary, and also scales the polynomial before and after
the root finding procedure. Since there are infinite choices for how to set the scal-
ing parameter �, the subroutine trouble_shooting_poly systematically varies this
choice with the result that the root finding procedure does not suffer from numerical
cancellations. It should be mentioned, that this subroutine is very seldom needed,
since in the vast majority of the root finding operations one choice of � is sufficient.
Moreover, without going into the details, more cases arise for particle pushing with the
polynomial approach that need to be handled within the subroutine pusher_tetra_poly.
E.g., let us assume that the position of a trapped particle’s banana-tip is exactly at
the face of a tetrahedral cell. The correct root (“exit position”) has been found, but
instead of entering the adjacent tetrahedron, the particle actually enters again at the
very same tetrahedron after turning exactly at the boundary.
For appropriately dealing with all the cases, an essential tool is to estimate the dwell
time with some physical assumptions in order to obtain a maximum value for the exit
time, e.g. 10 times the estimated dwell time. This is realized within the subroutine
physical_estimate_tau.
When implementing the Polynomial option, however, the number of special cases that
need to be treated is much smaller than in the case of the Runge-Kutta option, in
which an appropriate root is found in a numerical iterative scheme with Newton’s
method and bisection. This is due to the analytic approach in which the smallest
real positive root can be found in an (almost) straight forward form up to the order
K = 4.

4.3.3 Auxiliary methods

The subroutine find_tetra:
“Since a user generally defines a particle starting position in global coordinates,
rather than specifying a tetrahedron index and a local position, the search routine
find_tetra is implemented for finding the corresponding tetrahedron index. More-
over, a function is_inside is implemented for this purpose, which allows the checking

65



Implementation of the guiding-center orbit code GORILLA

of whether the particle position lies inside a proposed tetrahedron. This function uses
the Hesse normal form to compute the distances to all tetrahedral planes. Due to the
axisymmetry of the grid, based on the current ' position one can vastly reduce the
number of possible tetrahedra by allowing only tetrahedra of the current '-slice. Now,
a loop over all possible tetrahedron indices is implemented to check if the particle lies
inside.”47

Once a tetrahedron fulfilling this criterion has been found, the distances to the four
planes need to be checked for convergence on a plane. If this is the case for one or more
planes, the normal velocities with respect to these planes where the orbit position is
converged must be evaluated. When a particle pushing through a tetrahedral cell is
initiated, both pushing routines (Runge-Kutta or Polynomial) assume that a given
particle flies inwards. If a particle is started on the face of a tetrahedron but, indeed,
immediately flies outwards, this can lead to errors in the pushing logic.
Thus, in find_tetra a tetrahedron is found, where the particle position is located
inside the tetrahedron and the normal velocities with respect to the planes where
the orbit position is converged has a positive sign, meaning that the particle is flying
inwards the tetrahedral cell. This circumstance and the implied importance of the
algorithm can easily be made clear, if one imagines a particle starting exactly on the
vertex of a tetrahedron. Such a vertex position is shared by multiple neighbouring
tetrahedra, whereby only one specific tetrahedron among these can be taken into
account to initiate particle pushing.
It should be mentioned, that generally in a simulation the particle positions for starting
orbits are uniformly distributed in the respective coordinate space and, therefore, the
probability that such a position is converged on a face or even on a vertex is negligibly
small. In the majority of these cases only the criterion of whether the particle lies
inside the tetrahedron, which is computationally much less expensive, is thus evaluated.

The subroutine pusher_handover2neighbour:
After the orbit position is converged on the exit face of a tetrahedron, the indices of
the adjacent tetrahedron and the respective “entry face” (belonging to the adjacent
tetrahedron; congruent and adjacent to the exit face) are needed for a consecutive
pushing. The subroutine pusher_handover2neighbour provides this information and
furthermore, in the event that the intersection between the orbit and the face is at a
periodic boundary of the coordinate system, also takes care of appropriate handling
of the particle position with respect to such a periodic boundary.
For this purpose, two options are implemented. First, the period length is either added
to or subtracted from the respective coordinate component depending on the direction
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from which the periodic boundary is crossed. E.g., in the case of symmetry flux
coordinates54 the period length for poloidal component # is 2⇡, and for the toroidal
component ' it is 2⇡/Nfp, where Nfp is the number of field periods of the toroidal
fusion device. A prerequisite for this is, however, that every tetrahedral cell also stores
the information regarding its faces if they are adjacent to any periodic boundary and
if this is the case, on which side of the periodic boundary they are located. Let us now
assume that we are dealing with a coordinate with a periodic boundary at 0 = 2⇡.
Integers for each face and every periodic coordinate can take the values 0, 1 and �1,
meaning, respectively, that the face is not on a periodic boundary, or that the face is
either on the periodic boundary 2⇡ or 0.
The second implementation manages the handling of the position with respect to
the adjacent tetrahedron without cell-stored information of this kind and also omits
addition and subtraction of the period length to the periodic component. Instead
of this, the particle position is exchanged via Cartesian coordinates. The only
prerequisite here is that the periodic boundary coincides with the tetrahedral cell
boundary and does not lie inside a tetrahedral cell. We denote the Cartesian exchange
coordinates with (x, y, z) and the “internal” coordinates used for the pushing with
(s,#,'); allowing these to be symmetry flux coordinates54 (SFC) in this example
without loss of generality. For every vertex of a tetrahedron the coordinates are stored
in two sets, both SFC and Cartesian coordinates. Specifically, the tetrahedron vertices
1 . . . 4 take the Cartesian coordinates (x1, y1, z1), . . . , (x4, y4, z4) and, respectively, the
SFC (s1,#1,'1), . . . , (s4,#4,'4).
Now, let us express in the internal SFC the particle position (s,#,'), which is converged
on the exit face, as a linear combination of vectors which span the tetrahedron. In
this case, let us assume that the vertex (s4,#4,'4) is contained in the exit plane. For
this purpose, we need to solve for the coefficients ⇠i the linear equation set,

⇠1(s1 � s4) + ⇠2(s2 � s4) + ⇠3(s3 � s4) = s� s4,

⇠1(#1 � #4) + ⇠2(#2 � #4) + ⇠3(#3 � #4) = #� #4,

⇠1('1 � '4) + ⇠2('2 � '4) + ⇠3('3 � '4) = '� '4, (4.4)

which can also be denoted by ÂSFC · ⇠ = bSFC, where ÂSFC is a matrix containing
the vectors which span the tetrahedron in SFC and bSFC is the right hand side of
Eqs. (4.4). We use the coefficients ⇠i to approximately express the particle coordinate
(s,#,') in Cartesian coordinates (x, y, z) by simply making a linear combination of
vectors which span the tetrahedron in Cartesian coordinates, but which are identically
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constructed from the same vertices as their counterparts in SFC,

x = x4 + ⇠1(x1 � x4) + ⇠2(x2 � x4) + ⇠3(x3 � x4),

y = y4 + ⇠1(y1 � y4) + ⇠2(y2 � y4) + ⇠3(y3 � y4),

z = z4 + ⇠1(z1 � z4) + ⇠2(z2 � z4) + ⇠3(z3 � z4). (4.5)

Here, a matrix ÂCart. can be defined which contains the vectors spanning the tetrahe-
dron in Cartesian coordinates. The particle position in Cartesian coordinates can thus
be computed by (x, y, z)T = (x4, y4, z4)T + ÂCart. · (Â�1

SFC · bSFC). It is clear that the
transformation is only approximative and not exact, since only the local basis is in
fact directly exchanged while the coefficients remain unchanged. This transformation,
however, will subsequently also be performed in the opposite direction cancelling this
transformation error. It should be mentioned that the matrices ÂCart. and Â�1

SFC as
well as their respective matrix multiplication ÂCart. · Â�1

SFC can be precomputed for
every tetrahedron face due to the associativity of matrix multiplications. Thus, the
transformation is in reality only a multiplication of a matrix with a vector resulting
in a total amount of 9 multiplications.
In order to obtain the internal (SFC-)position of the particle in the adjacent tetra-
hedron, which is needed for consecutive pushing, the Cartesian coordinates of the
particle are transformed to SFC in a similar way as above, but with (x, y, z) and
(s,#,') being switched.
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Applications, results and discussion
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Chapter 5

Collisionless guiding-center orbits

The content of this chapter including the figures can also be found in section III of
Ref. [1] formulated by the author and including some minor modifications.

5.1 Guiding-center orbits in an axisymmetric toka-
mak field

“In this section the results of quasi-geometric orbit integration computed with GO-
RILLA and the comparison to an exact orbit computed with a usual adaptive RK4/5
integrator are presented for an axisymmetric tokamak field configuration of ASDEX
Upgrade (shot 26884 at 4300 ms) described in Ref. [57]. The adaptive RK4/5 integrator
requires high-order interpolation of electromagnetic fields with continuous derivatives,
e.g. with help of 3D-splines, instead of continuous piecewise linear functions as in the
case of the quasi-geometric integration method.
In axisymmetric configurations, the shape of the orbit is fully determined by three
conservation laws, p' = const., J? = const. and w = const., where

p' =
e

c
A

⇤
'
= mvk

B'

B
+

e

c
A' (5.1)

is the canonical toroidal angular momentum. The conservation of p' is obvious from
Eq. (3.1) since after its substitution in ṗ' = ẋ

i
@p'/@x

i all the terms in the resulting
expression are proportional to partial derivatives over ' of various A

⇤
k

components.
In geometric/symplectic numerical integration schemes these conservation properties
are retained24, which means that orbits must remain closed in the poloidal projection.
In order to preserve p' upon linearization, the tetrahedral cells of the method’s
underlying grid must be specially oriented with respect to the symmetry direction;”1

see section 4.2. “Consequently, the canonical toroidal angular momentum remains
invariant in the presented method, since the linearization of the electromagnetic field
within a tetrahedral cell does not introduce an interpolation error in the symmetry

70



Collisionless guiding-center orbits

direction. Namely, partial derivatives of the field quantities with respect to the
symmetry direction remain zero. In the following, cylindrical (R, ', Z) and symmetry
flux coordinates (s, #, ') of Ref. [54] are used, where ' = x

3 in both coordinate
systems.
Fig. 5.1 depicts Poincaré plots (' = 0) of trapped thermal ion orbits making
107 toroidal turns which are integrated by different methods from the same starting
conditions. Quasi-geometric integration using an iterative scheme with RK4 integration
and Newton steps has been performed in cylindrical and symmetry flux coordinates
and is compared to the exact orbit. It can be seen, that the coarseness of the grid
leads to slightly differently shaped orbits obtained in different coordinate systems,
whereas the effect of the integration error (3.13) is negligible.
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Figure 5.1: (a) Poincaré plot (' = 0, 107 toroidal mappings) of a trapped 1.5 keV D ion in

axisymmetric ASDEX Upgrade configuration with a tetrahedral grid size of 20x20x20.

Two-dimensional Poincaré sections of orbits obtained with different integration methods are

indicated with markers: Exact orbit (adaptive RK4/5): N, GORILLA with cylindrical coordinates:

⌅, GORILLA with symmetry flux coordinates: ⌥. (b) and (c) are magnifications of the pertinent

zones in (a).

In Fig. 5.2 results of the quasi-geometric integration of a passing high energy ion
(300 keV) using the polynomial series solution (3.11) are shown for the same axisym-
metric geometry and compared to the exact orbit. Symmetry flux coordinates are
used for the quasi-geometric integration, the results are then converted to cylindrical
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coordinates in the first plot (a). In general, the quartic polynomial solution (K = 4) of
ODE set (3.5) is equivalent to the numerical solution using Runge-Kutta 4, thus, the
result of the latter is omitted in the figure. Moreover, it can be seen that even for high
energy ions the series expansions of third and fourth order are already accurate enough
in order to fulfill the condition p' = const. over 106 toroidal mappings. However, the
second order series expansion shows a convective behavior, due to a systematic error
from solving the ODE set (3.5). Nevertheless, the second order series expansion is
sufficient for electrons which have much smaller Larmor radii.
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Figure 5.2: (a & b) Poincaré plot (' = 0, 106 toroidal mappings) of a passing 300 keV D ion in

axisymmetric ASDEX Upgrade configuration evaluated by GORILLA with the analytical solution in

form of a polynomial series truncated at K = 2 (⌃), K = 3 (⇤) and K = 4 (O) compared to the

exact orbit (•). Cylindrical coordinates are used for the Poincaré plot in (a), whereas symmetry flux

coordinates are used in (b).

(c) Canonical toroidal angular momentum p' normalized to the value at t = 0 is evaluated at the

Poincaré sections in (a): Exact result (solid) is compared to polynomial series truncated at K = 2
(dash-dotted), K = 3 (dotted) and K = 4 (dashed).

To obtain the orbits of thermal ions shown in Fig. 5.3, uniformly distributed axisymmet-
ric random noise (⇠ = 0 . . . 1) is added to the electrostatic potential �noisy = �(1+✏�⇠),
to the vector potential Anoisy

k
= Ak(1 + ✏A⇠) and simultaneously to both quantities,

respectively. Here, ✏ is the relative magnitude of added noise. The guiding-center
orbits are evaluated in symmetry flux coordinates by GORILLA with the analytical
solution in form of a polynomial series truncated at K = 4, the results are then
converted to cylindrical coordinates. Even though relatively high noise (up to 30 %)
is added, the orbits keep a similar shape in comparison with the unperturbed ones
and remain closed in the poloidal projection, meaning the condition p' = const. is
still fulfilled.
Therefore, the quasi-geometric integration method is suitable for self-consistent Monte
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Figure 5.3: Poincaré plot (' = 0) of trapped and passing 1.5 keV D ions in axisymmetric ASDEX

Upgrade configuration with axisymmetric perturbation of electrostatic potential � and vector

potential Ak. Orbits are evaluated by GORILLA with the analytical solution in form of a

polynomial series truncated at K = 4.
The Poincaré plot for unperturbed electromagnetic fields is depicted in black as a reference.

Uniformly distributed axisymmetric random noise (⇠ = 0 . . . 1) is added in (a) to the electrostatic

potential �noisy = �(1 + ✏�⇠), in (b) to the vector potential Anoisy
k = Ak(1 + ✏A⇠) and in (c) to both

quantities.

Carlo modeling of 2D equilibrium plasma parameters and electromagnetic fields
computed from those parameters. Further, it should be noted that the computational
efficiency of the quasi-geometric integrator is not affected by the presence of small-
scale noise. However, this would be the case for an adaptive RK4/5 integration in
combination with high order smooth interpolation where the noise leads to small-scale
oscillations.
The Poincaré plots (' = 0) of Fig. 5.4 (a) & (b) correspond to a trapped high energy
ion (300 keV), where the orbits are integrated using the polynomial series expansion in
several orders and compared to the exact orbit. Again, symmetry flux coordinates are
used for the quasi-geometric integration, the results are then converted to cylindrical
coordinates in the first plot (a). Despite the same starting conditions for all orbits,
the magnification in (b) clearly depicts differences in the shape of the orbits caused
by a finite grid size (100⇥ 100⇥ 100) and different orders of the series expansion.
Fig. 5.4 (c) shows the corresponding time evolution of the parallel adiabatic invariant Jk,
which is defined by an integral over the distance l passed along the field line during a
single bounce period tb by a trapped particle as follows,

Jk = m

I
vkdl = m

Z
tb

0

v
2
k (t) dt. (5.2)

For an exact orbit, Jk is a conserved quantity. Symplectic orbit integration does
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not lead to an error accumulation in the invariants of motion24 while systematic
changes can only arise from numerical errors in solving the ODE. Even for high energy
ions the series expansions of third and fourth order are already accurate enough
in order to fulfill the condition Jk = const. for 106 bounce periods. Hence, in an
axisymmetric configuration excellent long-term orbit dynamic is demonstrated by
the quasi-geometric orbit integration method, as long as the ODE set (3.5) is solved
accurately.”1
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Figure 5.4: (a & b) Poincaré plot (' = 0, 106 bounce periods) of a trapped 300 keV D ion in

axisymmetric ASDEX Upgrade configuration evaluated by GORILLA with the analytical solution in

form of a polynomial series truncated at K = 2 (⌃), K = 3 (⇤) and K = 4 (O) compared to the

exact orbit (•). Cylindrical coordinates are used for the Poincaré plot in (a), whereas symmetry flux

coordinates are used in (b). The magnification in (b) shows the banana tip and clearly depicts the

difference of polynomial orders.

(c) The parallel adiabatic invariant Jk normalized to the value at t = 0 is depicted for 106 bounce

periods: Exact result (solid) is compared to polynomial series truncated at K = 2 (dash-dotted),

K = 3 (dotted) and K = 4 (dashed).

5.2 Guiding-center orbits in three-dimensional fields

“It can be seen from Eqs. (3.5) and (3.6) that in the field line limit !c ! 1 guiding-
center orbits are straight within spatial cells and magnetic field lines are represented by
polygonal chains, respectively. In case of 3D magnetic fields described in non-aligned
spatial coordinates, the existence of embedded KAM surfaces is not obvious for such
an approximate representation of the field even in the case where these surfaces exist
in the exact system. In order to study artificial chaos induced by the linearization,
quasi-geometric orbit integration has been performed for low energy particles with
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negligible finite Larmor radius (FLR) effects in symmetry flux coordinates (s,#,')

associated with the axisymmetric tokamak field of the previous section with a harmonic
perturbation added to the toroidal co-variant component of the axisymmetric vector
potential,

A' =  pol(s)(1 + "M cos(m0#+ n0')). (5.3)

The harmonic indices m0 = n0 = 2 used in the testing correspond to a non-resonant
perturbation which leads only to a corrugation of the magnetic surfaces, with the
effect that they are no longer aligned with the coordinate surfaces s = const..
In Fig. 5.5, Poincaré plots of magnetic field lines obtained by the quasi-geometric
integration method for this perturbed configuration are shown at the cross section
' = 0 together with a cross section of one exact corrugated flux surface. It can be
seen that the orbits from the quasi-geometric integrator become more chaotic with
increasing perturbation amplitude "M .

Figure 5.5: Poincaré plots of the orbits in zero Larmor radius limit (field lines) for 104 (upper row)

and 105 (lower row) toroidal mappings and various perturbation amplitudes indicated in the titles.

Orbits start at 34 equidistant flux surfaces between s = 0.5 and s = 0.7 and are evaluated by

GORILLA with polynomial series truncated at K = 2 and angular grid size of N# = N' = 30.
Similar results are achieved for angular grid size with incommensurable dimensions, e.g.

N# = 29, N' = 31. Solid line shows a cross-section of one exact corrugated flux surface.
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Diffusive behavior of orbits can be characterized by the variance of the normalized
toroidal flux s, accumulated over the time for the ensemble of test particles starting
from the same perturbed flux surface. This variance is described by the magnetic field
line diffusion coefficient D

ss

M
as h�s2i = 2Dss

M
N where N is the number of toroidal

orbit turns. The effective diffusion coefficient D
ss

M
computed from the orbits has a

strong inverse scaling with poloidal N# and toroidal N' grid sizes and, furthermore,
shows in general a small magnitude of diffusion even at coarse angular grid resolution.
E.g., at an angular grid size of N# = N' = 30 the effective diffusion coefficient
D

ss

M
is of the order of 10�13, 10�11 and 10�9 for relative perturbation amplitudes of

"M = 1 %, 3 % and 10 %, respectively. This level of field line diffusion is roughly
five orders of magnitude smaller than observed for the initial version of the code4,
and, in the worst case of "M = 0.1, results in stochastic diffusion of electrons with the
coefficient D? ⇠ D

ss

M
vkr

2
/R ⇠ 100 cm2s�1. For smaller "M values of the typical order

for external magnetic perturbations in tokamaks this numerical diffusion is below the
level of classical electron diffusion and, therefore, can be safely ignored.
In the case of field aligned coordinates, chaotization of passing orbits (lines of force of
the effective field B⇤) can only be caused by the cross-field drift. Such a case is tested
below for a strong violation of axial symmetry using as an example the stellarator
field configuration described in Ref. [39], namely, a quasi-isodynamic reactor-scale
device with five toroidal field periods and a major radius of 25 m. Here the magnetic
field has been normalized so that its modulus averaged over Boozer coordinate angles
on the starting surface is B00 = 5 T. Guiding-center orbits were computed with the
quasi-geometric integration method in symmetry flux coordinates for strongly passing
electrons and ions with vk/v = 0.9 at the starting point on the flux surface s = 0.6

with an energy of 3 keV. The numerical diffusion observed for a rather coarse angular
grid with the size N# = N' = 30 is roughly seven orders of magnitude smaller than
the minimum level of the neoclassical diffusion with mono-energetic coefficient D11

evaluated in chapter 6 for the same device with particles of the same energy.
For the visualization of a trapped particle orbit, we use orbit footprints on Poincaré
sections defined by the condition vk(⌧ ) = 0, i.e. phase-space hypersurfaces containing
orbit turning points. From the two types of these surfaces, those are chosen in
which the sign of vk changes from negative to positive. Fig. 5.6 depicts a poloidal
projection of orbit footprints corresponding to a trapped ion with an energy of 3 keV.
The orbits have been integrated in symmetry flux coordinates using the polynomial
series expansion in several orders and compared to the exact orbit computed with an
adaptive RK4/5 integrator. Further, the poloidal coordinates of the footprints have also
been converted to cylindrical coordinates and visualized in both coordinate systems,
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Figure 5.6: (a & b) Poloidal projection of Poincaré sections at vk = 0 switching sign from � to + of

a trapped 3 keV D ion in 3D stellarator field configuration. Orbits evaluated by GORILLA with the

analytical solution in form of a polynomial series truncated at K = 2 (⌃), K = 3 (⇤) and K = 4 (O)

are compared to the exact orbit (•). Poincaré plot is depicted in cylindrical coordinates (a) and

symmetry flux coordinates (b).

respectively. Despite the same starting conditions for all orbits, the magnification in
(b) clearly depicts slight differences in the shape of the orbits caused by a finite grid
size (100⇥ 100⇥ 100) and different orders of the series expansion.
In contrast to the axisymmetric tokamak field of the previous section, the parallel
adiabatic invariant Jk is not an exact invariant in a stellarator. Nevertheless, it should
be well preserved as long as the trapped orbit stays within the same class (traverses the
same number of field minima over its bounce period) which is the case here. Fig. 5.7
(a) shows the time evolution of Jk for 4 · 105 bounce periods of the corresponding
orbits of Fig. 5.6. It can be seen that the results for the exact orbit shows no visible
deviation for this configuration. The truncation of the polynomial series at K = 2

causes a violation of the system’s Hamiltonian structure. This is manifested by an
attractor in phase-space, what is clearly visible in Fig. 5.7 (a). A detailed analysis of
the corresponding Poincaré sections when the attractor is already fully established
(last 10000 evaluations) reveals that the orbit strictly follows a continuous curve,
staying in the same class.
However, truncation at higher orders (K = 3 & K = 4) violates the Hamiltonian struc-
ture only negligibly and thus does not lead to non-Hamiltonian features. Nevertheless,
in contrast to the exact orbit, Jk evaluated by GORILLA with these polynomial orders
is not accurately conserved. In particular, the value of Jk meanders randomly around
the exact value which is caused by the diffusive behavior of the orbit induced by the
piecewise linearization of the electromagnetic field.
Fig. 5.7 (b) shows the modulus of the relative error of the parallel adiabatic invariant
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Figure 5.7: (a) Evolution of the parallel adiabatic invariant Jk normalized to the value at t = 0 of

the trapped particle orbit in Fig. 5.6 over 4 · 105 bounce times. Lines in (a) represent window

filtered trend of the Jk data points: Exact result (4) is compared to polynomial series truncated at

K = 2 (⌃), K = 3 (⇤) and K = 4 (O).

(b) Modulus of the relative error of the parallel adiabatic invariant Jk averaged over 105 bounce

times as a function of the angular grid size N' = N#. Orbits are evaluated by GORILLA with the

analytical solution in form of a polynomial series truncated at K = 2 (⌃), K = 3 (⇤) and K = 4
(O). The fits of the results are depicted with lines in accordance with the legend.

Jk averaged over 105 bounce times as a function of the angular grid size N' = N#

varied from 10 to 200. At a moderate angular grid size of N# = N' = 28 (in accordance
with the Nyquist-Shannon sampling theorem58,59 explained below) this mean relative
error stays already below 10�3 for the orders K = 3 & K = 4. Thus, the finite grid
size used in the quasi-geometric orbit computation does not lead to a significant error
accumulation. With regard to the comparatively large number of bounce times, even
the order K = 2 which is naturally the fastest with respect to CPU time yields quite
accurate results at sufficient grid resolution.”1
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Chapter 6

Monte Carlo evaluation of
neoclassical transport coefficients and
performance benchmark

The content of this chapter including the figures can also be found in section IV of
Ref. [1] formulated by the author and including some minor modifications.

“Evaluation of neoclassical transport coefficients using the Monte Carlo method8,9

is widely used for stellarators and tokamaks with 3D perturbations of the magnetic
field11–16,60. An advantage of this method in its original, full-f form is the use of test
particle guiding-center orbits without requiring the model simplifications needed in
(more efficient) local approaches. The Monte Carlo methods thus provide an unbiased
reference point in cases where those simplifications affect the transport in a manner
such as that for regimes with significant role of the tangential magnetic drift61–63.
An obvious disadvantage is that for realistic magnetic configurations Monte Carlo
methods are CPU-intensive with most of the CPU time spent for the integration of the
guiding-center motion. The application of the proposed quasi-geometric integration
method for this purpose instead of the usual Runge-Kutta method results in a visible
speed-up of the computations without significantly biasing the results. Here, this
application is made for benchmarking purposes on the assumption that the inaccuracies
in orbit integration which are tolerable in computations of transport coefficients are
also tolerable in global modelling of macroscopic plasma parameters.
The proposed orbit integration method is applied within a standard Monte Carlo
algorithm8 using the Lorentz collision model for the evaluation of the mono-energetic
radial diffusion coefficient D11. The latter is determined via the average square
deviation of the normalized toroidal flux s from its starting value s0 as follows,

D11 =
1

2t
h(s(t)� s0)

2i. (6.1)
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Figure 6.1: Mono-energetic radial diffusion coefficients D11 for electrons (top) and deuterium ions

(bottom) as functions of (a) normalized collisionality ⌫⇤ and (b) Mach number v⇤E . Lines of various

styles (see the legends) - reference computation, markers - results of quasi-geometric integration with

polynomial solution of the order K for K = 2 (⌃), K = 3 (⇤) and K = 4 (O). Error bars indicate

95 % confidence interval.

Here, angle brackets h. . . i denote an ensemble average, s(0) = s0, and the test particle
tracing time t is chosen to be longer than the local distribution function relaxation
time ⌧rel but shorter than the radial transport time, t = 10⌧rel. A Monte Carlo collision
operator identical to that of Ref. [8] is applied here between constant collisionless
orbit integration steps �t. These steps are small enough compared to the typical
bounce time ⌧b and collision time ⌧c,

�t = min
⇣
⌧b

20
,
⌧c

20

⌘
. (6.2)

Here, ⌧c = 1/⌫ and ⌧b = 2⇡R0/(vNtor.) with ⌫, R0, v and Ntor denoting collisional
deflection frequency, major radius, particle velocity and number of toroidal field
periods, respectively. The relaxation time ⌧rel is determined as the largest of ⌧c and
⌧
2
b/⌧c.

In the present example, the mono-energetic radial diffusion coefficient has been
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evaluated for the quasi-isodynamic stellarator configuration39 used also for collisionless
orbits in section 5.2. Guiding-center orbits were computed with the quasi-geometric
integration method in symmetry flux coordinates using polynomial series solutions
of various orders K. The grid size Ns ⇥ N# ⇥ N' = 100 ⇥ 60 ⇥ 60 was selected to
be appropriate for minimizing the numerical diffusion (see the previous section.) In
a reference computation, guiding-center equations in symmetry flux variables with
electromagnetic field interpolated by 3D cubic splines were integrated by an adaptive
RK4/5 integrator. Computations were performed for a large ensemble size of 10000
particles in order to minimize statistical errors.
The results for D11 computed for 3 keV electrons and ions at s0 = 0.6 are presented
in Fig. 6.1. Values of radial electric field Er and deflection frequency ⌫, which
determine transport regimes, are respectively characterized here by two dimensionless
parameters64, Mach number v⇤

E
= cEr/(vB0) and collisionality ⌫⇤ = (R0⌫)/(◆v), where

◆ is the rotational transform. For the ions, in addition to the E⇥B rotation, also the
tangential magnetic drift plays a significant role which can be seen from the shift of
the D11 maximum on v

⇤
E

dependence. The results of quasi-geometric integration stay
in agreement with the reference computation within the 95 % confidence interval in all
cases even for the lowest order polynomial solution K = 2. Therefore, in calculations
of this kind a significant gain in the computational efficiency can be obtained as shown
below.
Moreover, we compare the performance and scaling for parallel computation of guiding-
center orbits using the quasi-geometric orbit integration method with computations
using standard reference integrators (RK4 and adaptive RK4/5). For this, different
integrators have been used within D11 computation described above for a particular
choice of dimensionless parameters, v

⇤
E

= 10�3 and ⌫
⇤ = 10�3, and an increased

ensemble size of 30000 test particles. The numerical experiment has been performed
on a single node of the COBRA cluster of MPCDF with 40 CPU cores (Intel Xeon
Gold 6126) running 80 concurrent threads with hyperthreading.
The reference value for the transport coefficient, D11,ref , and the reference CPU
time are obtained by orbit integration with an adaptive RK4/5 integrator with
a relative tolerance of 10�9. The accuracy of the D11 evaluation using different
computation parameter settings is represented by the relative error �D11/D11,ref where
�D11 = |D11 �D11,ref |. The CPU time purely used for orbit integration serves as a
measure for the computational effort of the methods. This given CPU time does
not contain any overhead operations, e.g. the construction of the grid, generation
of random numbers for pitch-angle scattering and computation of D11 by evaluating
Eq. 6.1 with the help of a least-squares regression.
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Figure 6.2: Relative error of mono-energetic radial transport coefficient D11 of electrons (top) and

D ions (bottom) vs. relative CPU time. The compared orbit integration methods are: Runge-Kutta

4 (?), Adaptive RK4/5 with various relative errors indicated in the plot (⇥), quasi-geometric

integration with polynomial solution (GORILLA Poly) of the order K = 2 (⌃), K = 3 (⇤) and

K = 4 (O), and with RK4 solution (GORILLA RK4, 4). The fits of the results are depicted with

lines in accordance with the legend. The random error of the reference result, D11,ref , is depicted as

a horizontal line limiting its 95 % confidence interval.

Fig. 6.2 shows the relative error of the mono-energetic radial transport coefficient versus
the relative CPU time of computations using the quasi-geometric orbit integration
method with the polynomial series solution of various orders, GORILLA Poly, and the
iterative scheme with RK4 integration and Newton steps, GORILLA RK4. Accuracy
and CPU time of quasi-geometric orbit integrations have been varied by mutually
changing the angular grid size N# ⇥ N' from 8 ⇥ 8 to 60 ⇥ 60 while keeping the
radial grid size constant at Ns = 100. In the stellarator configuration of Ref. [39]
used here, the number of toroidal harmonic modes per field period is 14, leading
to a minimum toroidal grid size N' = 28 in order to satisfy the Nyquist-Shannon
sampling theorem58,59. Therefore, regression lines are drawn for the range of data
points with grid sizes from 8⇥ 8 until 28⇥ 28, clearly showing a convergent behavior
of D11 with increasing grid refinement. Furthermore, the adaptive RK4/5 integration
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is additionally performed with relative tolerances of 10�3, 10�6, 10�7 and 10�8,
respectively. Note that the computational speed of the adaptive RK4/5 integration
with a relative tolerance of 10�6 cannot be increased by higher relative tolerances, e.g.
10�3, since the macroscopic Monte Carlo time step, �t Eq. (6.2), is already elapsed
within a single RK4/5 step with sufficient accuracy. Hence, also the non-adaptive
Runge-Kutta 4 method is tested, which naturally needs one field evaluation less per
time step than RK4/5. In all cases, the relative error of the RK4/5 and Runge-
Kutta 4 results is determined here mainly by statistical deviations, with a random
error dominating the bias.
Apart from statistical errors due to Monte Carlo sampling, a limit for capturing all
toroidal and poloidal field harmonics is given by a minimum grid size of two points
per period due to the Nyquist–Shannon sampling theorem. Fig. 6.2 visibly shows that
statistical fluctuations already dominate the bias of all variants of the quasi-geometric
integration method above this sampling threshold, despite the large ensemble size
of 30000 particles. To avoid possible sampling artifacts at an even higher particle
count, we consider the quasi-geometric orbit integration method at the toroidal grid
size N' of at minimum twice the number of toroidal modes in the magnetic field
configurations. The variant with the polynomial series solution truncated at K = 2

(GORILLA Poly 2) at this grid resolution can be considered the fastest sufficiently
accurate tested method to compute D11 for thermal ions and electrons. In the case of
D ions with an energy of 3 keV this method is one order of magnitude faster than the
Runge-Kutta 4 integrator which is the fastest reference method.”1
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Chapter 7

Confinement of fusion alpha particles
in a realistic stellarator configuration
and performance benchmark

“The space in which stellarators are optimized has about 50 degrees of freedom.”65

When designing stellarators, one must be careful to ensure the existence of magnetic
surfaces within a large volume66 as well as a maximum confinement of single particle
trajectories.67 Furthermore, neoclassical transport must be optimized55 and also
practical considerations must be taken into account. Finding a stellarator configuration
with favourable properties that satisfy these conditions poses a high-dimensional multi-
objective optimization problem.68

In particular, one major objective among these is to minimize the losses of energetic
fusion alpha particles (kinetic energy of 3.5 MeV) over their slowing-down time. This
is important for heating the bulk plasma of a reactor instead of losing valuable kinetic
energy to the first wall and at the same time risking potential damages of the reactor
device.
In the past, proxy models69,70 were developed to estimate fusion alpha losses with
the drawback of not being able to capture the full physics of drift orbits. In contrast,
direct tracing of guiding-center orbits and subsequent statistical estimation of losses
leads to accurate results.71,72 However, direct massive computation of guiding-center
orbits with usual numerical methods is relatively time consuming in comparison with
other computations in the stellarator optimization loop, e.g., finding 3D magnetohy-
drodynamic equilibria.68

Recently, the symplectic integrator for guiding-center orbits of Ref. [28] was applied to
alpha loss computation in stellarator configurations, where a significant speed up of a
factor 3-6 compared to an adaptive Runge-Kutta integrator was achieved. Furthermore,
with an early classification into regular and chaotic orbit types a computational speed
up of approximately one order of magnitude can be reached. (Regular guiding-center
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orbits stay confined to the drift-surface and only chaotic orbits have to be traced
up to the end, as their behaviour is unpredictable.) Thus, the simulation of fusion
alpha losses via direct guiding-center orbit computations as part of the stellarator
optimization loop comes within reach.68

Due to the promising performance benchmark of the presented quasi-geometric inte-
gration method, which was demonstrated in chapter 6, it is the goal of this chapter to
study its potential application to the confinement simulation of fusion alpha particles
in a realistic stellarator configuration.
Here, the quasi-isodynamic stellarator field configuration described in Ref. [39], which
was already used in section 5.2 and chapter 6, will serve as an optimized realistic
reactor-scale device.

However, there are two major concerns why the computation of fusion alpha particle
losses with the help of the quasi-geometric integration method is not trivially feasible.
On the one hand, the Runge-Kutta 4 integration error of a single step traversing the
tetrahedral cell scales with the third power of the Larmor radius; see Eq. (3.13). Due
to this reason, the analytical solution in form of a truncated polynomial series was
originally developed for mild energies (thermal electrons and ions). But in the context
of tracing fusion alphas, the Larmor radius of a 3.5 MeV alpha particle is roughly 24
times larger than that of a 3 keV D ion. Consequently, inaccurate integration of the
linear ODE set inside a tetrahedral cell, Eqs. (3.5), produces a systematic error and
results in non-Hamiltonian behavior of the guiding-center orbits. A similar behavior
was already demonstrated in section 5.1 where the solution for a 3 keV D ion in form
of the polynomial series was already truncated at K = 2 and as a consequence the
system’s Hamiltonian nature was violated.
On the other hand, the linearization of the electromagnetic field within the tetrahedral
cells causes inherent artificial chaos when applying the quasi-geometric integration
method in 3D fields. In section 5.2 this chaos was studied for low energy particles
with negligible finite Larmor radius (FLR) effects in non-aligned coordinates and for
3 keV D ions in the above described stellarator configuration utilizing symmetry flux
coordinates. In this chapter all computations with the quasi-geometric integration
method are performed in symmetry flux coordinates (s,#,'), since thereby chaos
is strongly reduced (in comparison to non-aligned coordinates). As mentioned in
section 5.2, when utilizing field-aligned coordinates, the chaotization of passing orbits
(lines of force of the effective field B⇤) are caused by the cross-field drift. The latter
quantity is dependent on the particle’s Larmor radius. E.g., if we consider B⇥rB

drift motion, the normalized drift velocity scales roughly linearly with the Larmor
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radius ⇢, namely vd/v ⇡ O(⇢/L), where vd, v and L are the guiding-center drift
velocity, the particle’s absolute velocity and the typical scale length of the variation
of B(x), respectively.73

Figure 7.1: Poincaré plot (' = 0) of strongly passing 3.5 MeV fusion alpha particles in 3D stellarator

field configuration. The guiding-center orbits are started from 6 equidistant flux surfaces between

s = 0.5 and s = 0.7 with a pitch parameter � = 0.95. Orbits are evaluated by GORILLA with the

polynomial solution truncated at K = 4 and a radial grid size of Ns = 100. Similar results are

achieved by GORILLA with the numerical option utilizing an adaptive Runge-Kutta 4/5 integrator

in order to minimize integration errors. The angular grid size (N# ⇥N') is mutually increased from

top (N# = N' = 25) to bottom (N# = N' = 100). The number of toroidal mappings is increased

from left (Nmappings = 104) to right (Nmappings = 106). Solid (red) lines show exact drift-surfaces

obtained by reference guiding-center orbit computations.

86



Confinement of fusion alpha particles in a realistic stellarator configuration and
performance benchmark

Figure 7.2: Poloidal projection of Poincaré sections at vk = 0 switching sign from � to + of deeply

trapped alpha particles in 3D stellarator field configuration. The guiding-center orbits are started

from 6 equidistant flux surfaces between s = 0.5 and s = 0.7 with a pitch parameter � = 0.2. Orbits

are evaluated by GORILLA with the polynomial solution truncated at K = 4 and a radial grid size

of Ns = 100 for 104 bounces. Similar results are achieved by GORILLA with the numerical option

utilizing an adaptive Runge-Kutta 4/5 integrator in order to minimize integration errors. The

angular grid size (N# ⇥N') is mutually increased from top (N# = N' = 50) to bottom

(N# = N' = 200). The kinetic energy of the alpha particles is increased from left (0.35 MeV) to

right (3.5 MeV). Solid (red) lines show exact poloidal projections of Poincaré sections obtained by

reference guiding-center orbit computations.
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Thus, the level of artificial chaos due to the linearization is a function of the particle’s
Larmor radius and might be quite severe in the case of high-energetic fusion alpha
particles.
Nevertheless, regarding the first concern, the occurring integration error can be made
in principle negligibly small by performing the integration of the linear ODE set,
Eq. (3.5), with an adaptive Runge-Kutta 4/5 integrator, yet computational efficiency
will decrease.
For a detailed investigation of the second concern, numerical experiments are performed.
First of all, Poincaré plots at the cross section ' = 0 of strongly passing 3.5 MeV
fusion alpha particles are obtained for six different starting positions by the quasi-
geometric integration method with the polynomial solution truncated at K = 4.
These Poincaré plots are depicted in Fig. 7.1 for 104, 105 and 106 toroidal mappings.
Furthermore, the angular grid size (N#⇥N') is mutually increased from N# = N' = 25

to N# = N' = 100 while the radial grid size is kept constant at Ns = 100. In addition,
exact drift-surfaces obtained by reference guiding-center orbit computations (adaptive
Runge-Kutta 4/5 in splined fields) are visible for comparison for one of these six
starting positions. If one carefully observes these Poincaré plots, some tiny chaotic
features become visible at low grid resolution (N# = N' = 25), whereas at moderate
grid resolution (N# = N' = 70) the guiding-center orbits seem to be perfectly confined
to the drift-surface and appear undistinguishable to the reference orbits.
For the visualization of trapped alpha particle guiding-center orbits, we use orbit
footprints on Poincaré sections defined by the condition vk(⌧) = 0, i.e. phase-space
hypersurfaces containing orbit turning points. From the two types of these surfaces,
those are chosen in which the sign of vk changes from negative to positive. Fig. 7.1
depicts poloidal projections of orbit footprints corresponding to deeply trapped alpha
particles with energies of 0.35 MeV, 1 MeV and 3.5 MeV. Again, the guiding-center
orbits are obtained for six different starting positions by the quasi-geometric integration
method with the polynomial solution truncated at K = 4 and for one of these six
starting positions, exact drift-surfaces are obtained by reference guiding-center orbit
computations. Here, the angular grid size (N# ⇥ N') is mutually increased from
N# = N' = 50 to N# = N' = 200 while the radial grid size is kept constant at
Ns = 100. All Poincaré projections are shown for 104 bounces.
It is clearly visible that the level of the artifical chaos is much stronger for trapped
particles than for passing particles. In the latter case the chaos remains evident even
for the comparatively high angular grid resolution of N# = N' = 200. Furthermore,
one can see that the chaos increases with the particle energy and scales inversely with
the grid size. For both, passing and trapped particles (Figs. 7.1 and 7.2) all results
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of the quasi-geometric integration method with the polynomial solution truncated
at K = 4 were also compared to results obtained by the quasi-geometric integration
method utilizing and adaptive Runge-Kutta 4/5 integrator and did not show any signif-
icant differences. Thus, the observed chaos is most likely induced by the linearization
of the electromagnetic field and not by the truncation of the polynomial series solution.

In section 5.2 an effective diffusion coefficient D
ss

M
was used to characterize the level

of the artificial chaos. Due to the comparatively large Larmor radius in the case of
fusion alpha particles, such a computation cannot be performed here, because the
drift motion will cover the chaotic motion. In principle, one could develop an effective
diffusion coefficient utilizing Poincaré plots and projections. Such a measure would
allow to investigate in detail how the chaos scales with the pitch parameter and the
energy of the particle, but this is a topic for future investigations.
However, in this chapter the goal is to examine the potential application for the
confinement simulation of fusion alpha particles in a realistic stellarator configuration.
Thus, instead of computing an effective diffusion coefficient it appears to be more
straight-forward to compute the confinement fraction fc, which is the fraction of
fusion alpha particles that stay confined in the stellarator configuration after a given
trace time. Such a measure computed with GORILLA can then be compared to the
results obtained by reference guiding-center orbit computations. It is clear that in
the case of diffusive behavior of the guiding-center orbits, the confinement fraction
fc will be strongly a non-linear function of the diffusion coefficient. Nevertheless,
the confinement fraction fc can be considered to be a sufficient measure for our purpose.

“Fig. 7.3 shows the confined fraction fc of 3.5 MeV fusion alpha particles as a function
of the trace time in the 3D stellarator field configuration of Ref. [39]. In Fig. 7.3 (a)
1000 particles are traced for 1 s, whereas in Fig. 7.3 (b) 10000 particles are traced
for 0.01 s. All guiding-center orbits are started from s = 0.6 with a homogeneous
distribution of the pitch parameter. The reference result is obtained by utilizing the
“exact” guiding-center orbits which are computed with an adaptive Runge-Kutta 4/5
integrator with a relative tolerance of 10�9 in splined fields. The quasi-geometric
integration method is performed with its Polynomial 4 and adaptive Runge-Kutta 4/5
options and in addition three different settings for the grid size are examined, namely
Ns = N# = N' = 70, Ns = N# = N' = 100 and Ns = N# = N' = 200.”3

The estimated standard deviation � scales inversely with the total number of particles
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Figure 7.3: Confined fraction fc of 3.5 MeV fusion alpha particles as a function of the trace time in

3D stellarator field configuration. (a) 1000 particles are traced for 1 s. (b) 10000 particles are traced

for 0.01 s.

The guiding-center orbits are started from s = 0.6 with a homogeneous distribution of the pitch

parameter. Orbits are evaluated by GORILLA and the results of fc are compared to those obtained

by exact guiding-center orbits from the reference guiding-center orbit computation. In the case of

GORILLA, the method (Polynomial or Runge-Kutta) and the choice of the grid size are in

accordance with the legend. Error bands at ±1.96� around the curve of fc obtained with the exact

guiding-center orbits describe the 95 % confidence interval due to the Monte Carlo error. The figure
is taken from Ref. [3]

Nparticles of the Monte Carlo computation as

� =

s
fc(1� fc)

Nparticles
. (7.1)

The gray error bands at ±1.96� around the curve of fc obtained with the exact
guiding-center orbits describe the 95 % confidence interval due to the Monte Carlo
error. The error bands for the computations with the quasi-geometric integration
method are of similar size and not depicted due to clarity of the figure.
The trace time of 1 s in Fig. 7.3 (a) is in the order of the slowing-down time of
3.5 MeV fusion alpha particles. In the optimized stellarator configuration of Ref. [39]
roughly 87 % of the particles stay confined in the fusion device after the trace time
of 1 s. One can clearly see that none of the computations performed with the quasi-
geometric integration method lie within the reference 95 % confidence interval after
this time. Furthermore, it is worth mentioning, that the choice of the GORILLA
method (Polynomial 4 or adaptive Runge-Kutta 4/5 ) does not significantly influence
the result.
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Figure 7.4: Relative error of the confined fraction fc of 3.5 MeV fusion alpha particles at ttrace = 1 s

vs. the (a) angular and (b) radial grid size of GORILLA in 3D stellarator field configuration. The

guiding-center orbits are evaluated by GORILLA with the polynomial solution truncated at K = 4.
Orbits are started from s = 0.6 with a homogeneous distribution of the pitch parameter. Error bars

indicate the 95% confidence of the relative error of the confined fraction due to the Monte Carlo

error (1000 particles). The results as function of the grid size and their respective fits are depicted

with markers and lines in accordance with the legend.

However, with an increased grid resolution the results obtained with GORILLA come
closer to the reference confined fraction fc,ref . In order to examine the accuracy
of the GORILLA results, the relative error of the confined fraction is defined as
�fc/fc,ref = |fc � fc,ref |/fc,ref . Fig. 7.4 shows how this relative error of the confined
fraction after 1 s of trace time scales with (a) the angular and (b) the radial grid
size. Integration is performed with GORILLA and the polynomial solution truncated
at K = 4. In Fig. 7.4 (a) one can see how the relative error scales inversely with
the angular grid size, whereas in Fig. 7.4 (b) the variation of the radial grid size
does not significantly influence the relative error at three given angular grid sizes.
Albeit the relative error can be reduced with an increased angular grid size, the
relative error stays at roughly 4 % for a comparatively high angular grid resolution of
N# = N' = 500. (In the chapter 6 an angular grid resolution of N# = N' = 28 was
sufficient to reach 1 % relative error at the D11 computation of 3 keV D ions.)
With this observation, it becomes clear that the quasi-geometric integration method
is not suited to be used for tracing of high-energetic 3.5 MeV fusion alpha particles
for the slowing-down time of 1 s. This is due to the inherent chaos of the method
which is induced by the linearization of the electromagnetic field and which scales
strongly with the particle’s Larmor radius.
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Yet, it can be clearly seen in Fig. 7.3 (b) that for the trace time of 0.01 s most of
the confined fraction results computed with the quasi-geometric integration method
lie within the reference 95 % confidence interval. Here, the number of particles was
increased by one order of magnitude (in comparison with Fig. 7.3 (a)) and, therefore,
the confidence interval became by roughly a factor 3 more narrow. Thus, it is worth
to examine the behavior of the quasi-geometric integration method for a shorter trace
time than 1 s. As mentioned above, an early classification into regular and chaotic
orbit types, as it is done in Ref. [68], can result in a significant computational speed
up for the computation of alpha losses. Hypothetically, for a short trace time (like
0.01 s) the inherent chaos of the quasi-geometric integration might only slightly affect
the guiding-center orbits. Therefore, correct orbit classification would still be possible,
while quasi-geometric guiding-center orbit computation needed for the classification
might be computationally more efficient than the symplectic integration method of
Ref. [28]. Hence, in order to be beneficial for the computation of alpha losses, the
computational efficiency of the quasi-geometric integration method must be higher
than a comparable integrator for the same achieved accuracy.
In accordance with Fig. 7.4 the control parameter for the accuracy of the (confined
fraction) result is the angular grid size (in addition to the choice of the GORILLA
polynomial order). At the same time the computational efficiency of GORILLA
decreases with higher grid resolution, since more numerical operations must be
performed. (In GORILLA, intersections between the guiding-center orbit and the cell
boundaries are inherently computed and the number of these intersections increases
linearly with the grid size.)
Fig. 7.5 shows for various polynomial orders that the CPU time needed for the
computation of the confined fraction linearly increases with the angular grid size; as
it was expected.
Furthermore, in a similar manner as in chapter 6 we compare the performance and
scaling for parallel computation of guiding-center orbits using the quasi-geometric
orbit integration method with computations using a standard reference integrator
(adaptive RK4/5 in splined fields). For this purpose, different settings of GORILLA
(grid size and polynomial order) have been used within the fc computation and an
increased ensemble size of 30000 test particles was chosen in order to decrease the
Monte Carlo error. The numerical experiment has been performed on a single node
with 20 CPU cores (Intel Xeon E5-2630 v4 @ 2.20 GHz) running 40 concurrent threads
with hyperthreading.
The reference value for the confined fraction, fc,ref , and the reference CPU time
are obtained by orbit integration with an adaptive RK4/5 integrator with a relative
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tolerance of 10�9. The CPU time purely used for orbit integration serves as a measure
for the computational effort of the methods. This given CPU time does not contain
any overhead operations, e.g. the construction of the grid or generation of random
numbers.
Fig. 7.6 shows the relative error of the confined fraction for a trace time of 0.01 s
versus the relative CPU time of the computations using the quasi-geometric orbit
integration method with the polynomial series solution of various orders, GORILLA
Poly. Accuracy and CPU time of quasi-geometric orbit integrations have been varied
by mutually changing the angular grid size N# ⇥N' from 28⇥ 28 to 200⇥ 200 while
keeping the radial grid size constant at Ns = 100. Regression lines are drawn for the
range of data points with grid sizes from 28⇥ 28 until 100⇥ 100, clearly showing a
convergent behavior of fc with increasing grid refinement. Furthermore, the adaptive
RK4/5 integration is additionally performed with relative tolerances of 10�3, 10�6,
10�7 and 10�8, respectively.
In all cases, the relative error of the RK4/5 results as well as of the GORILLA Poly
results with angular grid sizes higher than 100⇥ 100 is determined here mainly by
statistical deviations, with a random error dominating the bias. Therefore, we consider
the quasi-geometric integration method with an angular grid resolution that is high
enough to obtain a result for the confined fraction that lies within the 95 % confidence
interval of the reference result, fc,ref , to be sufficiently accurate.
The fastest sufficiently accurate method depicted in Fig. 7.6 is GORILLA with the
solution in form of a polynomial series truncated at K = 2 and an angular grid size
of N# ⇥ N' = 100 ⇥ 100. This method is roughly 3 times faster than the fastest
reference method, namely the adaptive RK4/5 integrator with a relative tolerance
of 10�3. As stated in the introduction of this chapter, the symplectic integration
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Figure 7.6: Relative error of the confined fraction fc of 3.5 MeV fusion alpha particles after a trace

time of 0.01 s vs. relative CPU time in 3D stellarator field configuration. The guiding center orbits

of 30000 particles are started from s = 0.6 with a homogeneous distribution of the pitch parameter.

The compared orbit integration methods are: GORILLA Poly of the order K = 2 (⌃), K = 3 (⇤)

and K = 4 (O), and adaptive RK4/5 with various relative errors indicated in the plot (⇥). The fits

of the results are depicted with lines in accordance with the legend. The random error of the

reference result, fc,ref , is depicted as a horizontal line limiting its 95 % confidence interval.

method of Ref. [28] is 3-6 faster than usual adaptive RK4/5 integration. Thus, when
tracing fusion alpha particles for 0.01 s the computational efficiency of the quasi-
geometric integration method with sufficient accuracy is comparable to the fastest
known methods for this purpose, despite its inherent deficiency of chaos induced by
the piecewise linearization of the electromagnetic field.

94



Chapter 8

Summary, conclusions and outlook

The content of this chapter including the figures can partially also be found in section
V of Ref. [1] formulated by the author and including some minor modifications.

“A quasi-geometric integration method for guiding-center orbits in general three-
dimensional toroidal fields has been developed, implemented and presented here. This
orbit integration procedure is based on a representation of the electromagnetic field
by continuous piecewise linear functions using a spatial mesh.”1 The implementation
has been made publicly available on GitHub as scientific open source software with
the name Guiding-center ORbit Integration with Local Linearization Approach
(GORILLA) under the MIT license.
“Collisionless particle orbits in real space and magnetic coordinates and their respective
invariants of motion have been studied in detail for axisymmetric and non-axisymmetric
geometries. Due to the special formulation of the guiding-center equations, the
magnetic moment and the total energy are conserved naturally. In the case of toroidal
axisymmetry the canonical toroidal angular momentum is accurately preserved by
the quasi-geometric method in third and fourth order series expansion over the orbit
parameter. This is also true for the parallel adiabatic invariant. Thus, the property
of such systems to ideally confine the orbits is retained. In order to evaluate the
limitations of these confinement properties, the kinetic energy of ions was chosen to
be 300 keV. Otherwise systematic ODE integration errors originating from truncating
the series expansion already at the second order would not be visible, since this error
is proportional to the particle energy.
For passing orbits in 3D fields, however, the piecewise linearization of the electro-
magnetic field introduces some artificial chaotic diffusion which, nevertheless, could
be made negligibly small by spatial grid refinement. For trapped orbits in 3D fields,
the approximate conservation of the parallel adiabatic invariant is not violated by
significant error accumulation.
To assess the method’s performance, the mono-energetic radial transport coefficient,
D11, which gives a main contribution to neoclassical transport, has been evaluated
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for a quasi-isodynamic reactor-scale stellarator field39 using the Monte Carlo method.
For both, electrons and ions, the results obtained by quasi-geometric orbit integration
are in good agreement with the results of adaptive RK4/5 integration with usual
spline interpolation of electromagnetic fields. In the performance benchmark, we
observe that the quasi-geometric orbit integration method with the polynomial series
solution truncated at K = 2 is the fastest sufficiently accurate tested method to
compute D11. For the case of D ions with an energy of 3 keV the guiding-center orbit
integration is one order of magnitude faster than 4th order Runge-Kutta integration
in splined fields. Here, truncating the series expansion at the second order is not
necessarily contradicting the result of collisionless guiding-center orbits, where a
second order truncation leads to visible systematic errors at high kinetic energies. An
appropriate choice of grid size and series expansion order strongly depends on the
physical application, the kinetic particle energy and the complexity of the magnetic
field (e.g. number of harmonic modes).”1

Furthermore, the quasi-geometric integration method has been also applied to the
computation of fusion alpha particle losses in a realistic stellarator configuration. “It
has been shown that the inherent artificial chaos of the method, which is induced by
the linearization of the electromagnetic field, strongly scales with the particle’s Larmor
radius. Consequently, the quasi-geometric integration method is not suited to be used
for tracing of high-energetic 3.5 MeV fusion alpha particles for the slowing-down time
of 1 s. Nevertheless, for the trace time of 0.01 s the confined fraction results computed
with the quasi-geometric integration method and an appropriate choice of the grid
size lie within the 95 % confidence interval of the reference computation while showing
a significant CPU speed-up. In particular, the fastest sufficiently accurate method
is GORILLA with the solution in form of a polynomial series truncated at K = 2

and an angular grid size of N# ⇥N' = 100 ⇥ 100. This method is roughly 3 times
faster than the fastest reference method, namely the adaptive RK4/5 integrator with
a relative tolerance of 10�6. The results for the confined fraction of this comparatively
short trace time could be used for an early classification into regular and chaotic orbit
types within fusion alpha loss computations.”3

“For the application in global kinetic computations no extra effort is needed to obtain
dwell times within spatial grid cells as these are computed automatically in the present
approach. Additionally, integrals of velocity powers over these dwell times are available
as analytical expressions. The latter quantities are required for statistical scoring
of orbits in Monte Carlo computations of macroscopic parameters, such as plasma
response currents and charges caused by external non-axisymmetric perturbations
in tokamaks or parameters of the edge plasma in devices with 3D field geometry.
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Moreover, similarly to the geometric integrator for axisymmetric two-dimensional
fields described in Ref. [35], the presented method is less sensitive to noise in the
electromagnetic field than procedures relying upon high order polynomial interpolation.
These characteristics suggest additional overall performance enhancements in both
numerical stability and computational efficiency, when the quasi-geometric orbit
integration is applied to kinetic modeling.
The applicability of the inherently low-order method to particle-in-cell turbulence
computations, where higher order schemes produce smoother solutions, is still an open
question. Finally, it should be mentioned that the method facilitates the coupling
with kinetic neutral particle codes such as EIRENE74, where one needs to model
particle conversion into neutrals and back with plasma and neutral particles described
in different coordinate systems. The necessary transformation of coordinates does not
require solving any implicit dependencies (nonlinear equations), since that is a linear
operation in this approach and is therefore intrinsically fast.”1

Due to its well-suited properties, GORILLA is part of the “EUROfusion Theory,
Simulation, Validation and Verification Task for Impurity Sources, Transport, and
Screening” where it is planned to be coupled to EIRENE and applied for the kinetic
modelling of the impurity ion component. Furthermore, in the “EUROfusion Theory,
Simulation, Validation and Verification Task for Stellarator Optimization” GORILLA
is considered to support fusion alpha loss computations. Chapter 7 of this thesis is
already a preliminary work for this task.
In addition, a grant from the Austrian Marshall Plan Foundation was awarded to
the author for the proposed research project of “Global Monte Carlo computations
of parallel equilibrium current density and other macroscopic parameters in an ax-
isymmetric tokamak using the guiding-center orbit tracing code GORILLA” which
shall be conducted at the Princeton Plasma Physics Laboratory (PPPL), Princeton
University.
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