

Experimentelle Untersuchung des Tragverhaltens mehrachsig beanspruchter Holzschrauben


```
M-4-3/2021
```

Markus Burtscher Institut für Holzbau und Holztechnologie Technische Universität Graz

Markus Burtscher, BSc.

Experimentelle Untersuchung des Tragverhaltens mehrachsig beanspruchter Holzschrauben

MASTERARBEIT

zur Erlangung des akademischen Grades Diplom-Ingenieur Masterstudium Bauingenieurwissenschaften – Konstruktiver Ingenieurbau

> Eingereicht an der Technischen Universität Graz

Betreuer DI Dr. techn. Andreas Ringhofer, BSc. DI Raimund Sieder, BSc. DI Michael Gstettner, BSc.BSc. Institut für Holzbau und Holztechnologie

Graz, Juni 2021

EIDESSTATTLICHE ERKLÄRUNG AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Datum / Date

Unterschrift / Signature

Danksagung

Mit den folgenden Zeilen möchte ich meinen Dank zum Ausdruck bringen und jenen Personen die mich sowohl während meines Studiums, in meinem Privatleben und dieser Masterarbeit betreut, begleitet, motiviert und unterstützt haben, danke sagen.

Zu Beginn möchte ich mich recht herzlich bei meinen Betreuern DI Dr. techn. Andreas Ringhofer, BSc., DI Raimund Sieder, BSc. und DI Michael Gstettner, BSc.BSc. bedanken. Die mir das Thema vorschlugen und mich im Verlauf der Masterarbeit erstklassig betreut haben. Sie standen mir zu jeder Zeit mit Rat und Tat zur Seite.

Des Weiteren gilt mein Dank allen Mitarbeitern des Instituts für Holzbau und Holztechnologie, die mich während der praktischen Durchführung meiner Versuche, sowie den Vorbereitungen für die Versuche, unterstützt haben. Wie auch den Unternehmen die mich bei der Durchführung, Vorbereitung und Herstellung begleitet haben.

Insbesonders bedanken möchte ich mich bei meinen Studienkollegen, die mich unterstützten, das Studium in dieser Zeit abzuschließen. Hierbei möchte ich namentlich Andre Tauss, Lukas Jantscher und Michael Gstettner erwähnen. Danke für die gemeinsame Zeit.

Abschließend möchte ich mich bei meiner Familie und meinen Freunden bedanken. Sie waren mir immer ein verlässlicher Rückhalt. Sie haben mich in meinen Entscheidungen immer unterstützt und bestärkt. Ohne sie wäre es nicht möglich gewesen diesen Punkt in meinem Leben zu erreichen. Besonders hervorheben möchte ich:

Meine Eltern, Gabriele und Reinhard Burtscher, das was sie für mich geleistet haben lässt sich nur schwer in Worte fassen. Sie unterstützen mich in jeder Lebenslage und dafür möchte ich einfach nur **Danke** sagen.

Danke

Kurzfassung

Die Verwendung von selbstbohrenden Holzschrauben in ingenieurmäßigen Verbindungen stellt eine der wirtschaftlichsten Methoden zur Fügung statisch wirksamer Bauteile dar. Dabei wird durch geometrisch einzuhaltende Randbedingungen zumeist bereits ein wesentlicher Teil der Verbindung vorgegeben. Die Art der Beanspruchung der Verbindung (rein axial, rein lateral oder kombiniert) wird beispielsweise so bereits oft vorgegeben.

Im Bereich der axialen und lateralen Beanspruchung von selbstbohrenden Holzschrauben sind die wesentlichsten Einflussparameter bereits anhand umfangreicher Versuchsreihen bestimmt worden. Die kombinierte Beanspruchung stellt dabei eine Belastungssituation dar, die bisher nur in wenigen Arbeiten einer umfangreichen Untersuchung unterzogen wurde. Die Verifizierung des gültigen Bemessungskonzepts des Eurocode 5 für die Ermittlung der Tragfähigkeit ist dabei ein wesentlicher Punkt welcher in dieser Arbeit behandelt wird. Um dies zu realisieren wurde eine geeignete Prüfkonfiguration entwickelt, mithilfe derer eine Variation des Winkels der Kraft die auf die Verbindung einwirkt möglich ist.

Ein weiterer wesentlicher Aspekt dieser Arbeit ist die Ermittlung der Steifigkeit solcher Verbindungen. Dabei erfolgte eine Betrachtung der Steifigkeiten, aufgeteilt auf die zwei Belastungsrichtungen.

Insgesamt wurden im Zuge der Versuchsdurchführung 52 Prüfserien mit insgesamt 607 Versuchen geprüft. Die Versuche gliederten sich dabei in Versuche zur reinen axialen Belastung (4 Prüfserien, 48 Versuche), in Versuche zur reinen lateralen Beanspruchung (16 Prüfserien, 190 Versuche) und Versuche zur kombinierten Beanspruchung (32 Prüfserien, 369 Versuche). Die Variationsparameter waren der Achs-Faserwinkel (0, 30, 60, 90 °), der Last-Faserwinkel (0, 30, 60, 90 °) und die Schraubenlänge (40, 105, 165 und 225 mm).

Die Prüfergebnisse wurden zur Verifizierung mit Bestimmungsgleichungen aus Forschungsarbeiten und Bemessungskonzepten der gültigen Normenwerke verglichen. Dies führte zu Empfehlungen für die zukünftige Bemessung.

Abstract

The use of self-tapping wood screws in engineering connections is one of the most economical methods for joining statically effective components. A substantial part of these connections is usually already provided by the geometrical boundary conditions. For instance, the type of stress on the connection (purely axial, purely lateral or combined) is often specified in this way.

In the area of the axial and lateral loading of self-tapping wood screws, the most important influencing parameters have already been determined based on extensive test series. However the combined stress has so far only been examined in a few studies. The verification of the valid design concept of Eurocode 5 for the determination of load-bearing capacities is an essential part of this thesis. Consequently, it was indispensable to develop a suitable test configuration allowing a variation of the force's angle acting on the connection.

Another essential aspect is the determination of the stiffness of connections with combined loading. The stiffnesses were considered divided into the two directions of loading.

A total of 52 test series with 607 specimen were conducted in this work. The tests were divided into pure axial loading tests (4 test series, 48 specimen), pure lateral loading tests (16 test series, 190 specimen) and combined loading tests (32 test series, 369 specimen). The variation parameters where the angle between axis and grain (0, 30, 60, 90°), the angle between load and grain (0, 30, 60, 90°) and the length of the applied screw (40, 105, 165 und 225 mm).

For verification, the test results were compared with determining equations from research work and dimensioning concepts from the applicable standards. This has led to recommendations for future design.

Inhaltsverzeichnis

KAPITEL 1: I	EINLEITUNG	.1
1-1	MOTIVATION UND ZIEL DIESER ARBEIT	. 1
1-2	KAPITELÜBERSICHT	. 2
KAPITEL 2: S	STAND DER TECHNIK	.3
2-1	EINFÜHRUNG IN DIE VERBINDUNGTECHNIK	. 3
2-1.1	Selbstbohrende Holzschraube	.4
2-2	BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER AXIALEN TRAGFÄHIGKEIT	. 5
2-2.1	ÖNORM En/B 1995-1-1 [3][4]	. 5
2-2.1.1	Anforderungen	.6
2-2.1.2	Bemessungskonzept	.7
2-2.1.3	Erkenntnisse	. 8
2-2.2	Ringhofer [6]	. 8
2-2.2.1	Bemessungskonzept charakteristische Ausziehtragfähigkeit	.9
2-2.2.2	Bemessungskonzept Mittelwert Vorhersage	11
2-2.2.3	Erkenntnisse	11
2-2.3	Brandner et al. [5]	11
2-2.3.1	Bemessungskonzept charakteristische Ausziehtragfähigkeit	11
2-2.3.2	Bemessungskonzept Mittelwert Vorhersage	12
2-2.3.3	Erkenntnisse	13
2-2.4	ETA-12/0373 [2]	13
2-2.4.1	Erkenntnisse	14
2-3	BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER LATERALEN	
	TRAGFÄHIGKEIT	14
2-3.1	Bestimmung der wesentlichsten parameter	16
2-3.1.1	Nach ÖNORM EN/B 1995-1-1 [3][4]	16
2-3.1.2	Ansätze Lochleibungsfestigkeit	17
2-4	BEMESSUNGSKONZEPTE ZU KOMBINIERT BEANSPRUCHTEN STIFTFÖRMIGEN VERBINDUNGSMITTELN.	18
2-4.1	Munse und Cox [13]	18
2-4.2	DeBonis und Bodig [3]	19
2-4.3	Ehlbeck und Siebert [11]	19
2-4.4	Mcclain und Carroll [15]	20
2-4.5	Reyer und Linzner [10]	21
2-4.6	Laggner [12]	21
2-5	BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER AXIALEN STEIFIGKEIT	23
2-5.1	Blaß et al. [6]	24
2-5.2	ETA 12-0373 [1]	24
2-5.3	Ringhofer et al. [13]	24
2-5.4	Modell Konfiguration Burtscher Light	25
2-6	BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER LATERALEN STEIFIGKEIT	26

SIa 265 (2012) [13]	26
Bemessungskonzept für nicht vorgebohrte Nägel	27
Bemessungskonzept für Stabdübel	27
ÖNORM EN/B 1995-1-1 [3][4]	27
GEGENÜBERSTELLUNG ARBEITSRELEVANTER BEMESSUNGSMODELLE	28
Gegenüberstellung der Tragfähigkeiten	29
Tragfähigkeiten in axialer Richtung	29
Gegenüberstellung der Steifigkeiten	32
Steifigkeiten in axialer Richtung	32
Steifigkeiten in lateraler Richtung	33
Resümee der Gegenüberstellungen	34
MATERIAL UND METHODEN	35
VORSTELLUNG DES PRÜFPROGRAMMS	35
Prüfprogramm	35
Prüfkörperbezeichnung	36
Variationsparameter	36
Last- Faserwinkel a	36
Axial abweichender Winkel zur Schraubenachse β bzw. γ	37
Achs-Faserwinkel ε	38
Eindrehtiefe l _e	38
Effektive Gewindelänge im Holz lef	39
Übersicht der Winkelvariationen	40
Rohdichte und Holzfeuchte	42
Belastungsrichtung	42
Sortierung Rohmaterial	44
Manipulation Rohmaterial	45
Anforderungen	45
Prüfkörperabmessungen	45
Einteilung in fehlerfreie Segmente	49
Herstellung Prüfkörper	50
PRÜFKONFIGURATION	55
Variantenstudie für die Findung einer geeigneten Prüfkonfiguration	55
Variante 1	55
Variante 2	57
Variante 3	57
Variante 4	58
Ermittlung erforderlicher Blechstärken und Abmessungen	59
Beschreibung Detailpositionen Prüfkonfiguration	62
Pos. 1 Steher	62
Pos. 2 Prüfrad	62
Pos. 3 Verbindungsplatte	63
	Sla 265 (2012) [13]

3-2.3.4	Pos. 4 Prüfkörperhalterung	64
3-2.3.5	Pos. 5 Stahlplattenhalterung	65
3-2.3.6	Pos. 6 Schraubenblech	66
3-2.3.7	Pos. 7 Verbindung Holzkörper	67
3-2.3.8	Zusammenbau Detailpositionen	
3-3	PRÜFDURCHFÜHRUNG	71
3-3.1	Versuchsablauf	71
3-3.2	Versuchsdurchführung	73
3-3.3	Messmethoden	73
3-3.3.1	Kraftmessung	74
3-3.3.2	Wegmessung	74
3-3.3.3	Bestimmung der zu erwartenden Höchstlast der Verbindung	77
3-3.3.4	Prüfprotokoll	77
3-3.4	Wegkorrektur	77
3-4	AUSWERTEMETHODEN	
3-4.1	Schraubenparameter	
3-4.1.1	Schraubenzugtragfähigkeit	
3-4.1.2	Fließmomentbestimmung	
3-4.2	Kenngrössen der Holzprüfkörper	
3-4.2.1	Rohdichte p	
3-4.2.2	Holzfeuchtigkeit u	
3-4.3	Versuchskenngrössen	
3-4.3.1	Erstbelastungsstart	
3-4.3.2	Erstbelastungsende	
3-4.3.3	Halten von 40 % der berechneten Höchstlast der Verbindung	
3-4.3.4	Entlastungsphase	
3-4.3.5	Halten von 10 % der berechneten Höchstlast der Verbindung	
3-4.3.6	Wiederbelastungsstart	
3-4.3.7	Wiederbelastungsende	
3-4.3.8	maximale Kraft bis 15 mm Verformung der Verbindung	
3-4.3.9	maximal aufnehmbare Kraft der Verbindung	91
3-4.3.10	maximal aufgetretene globale Verformung der Verbindung	91
3-4.3.11	Steifigkeitsauswertung	91
3-4.3.12	Auslesen wesentlicher Prüfgrößen	
3-4.4	Bestimmung Ausgewählter Statistischer Parameter	96
3-4.4.2	Darstellung statistischer Kenngrößen	
3-4.5	Ausreisserbereinigung	
KAPITEL	4: ERGEBENISSE UND DISKUSSION	
4-1	ROHDICHTE UND HOLZFEUCHTIGKEIT	
4-2	SCHRAUBENPARAMETER	
4-3	MODELLVERGLEICH AXIALE TRAGFÄHIGKEIT	

4-4	MODELLVERGLEICH LATERALE TRAGFÄHIGKEIT	109
4-4.1	Achs-Faserwinkel 90 °	110
4-4.2	Achs-Faserwinkel 60 °	
4-4.3	Achs-Faserwinkel 30 °	
4-4.4	Achs-Faserwinkel 0 °	
4-4.5	Fazit bezüglich des Modellvergleichs	126
4-4.5.1	Einfluss des Reibbeiwerts als Vorfaktor des additiven Seileffekt-Terms	126
4-4.5.2	Versagensmechanismus gemäß Berechnung vs. aus Beobachtung	126
4-5	EINFLUSSPARAMETER AUF DIE TRAGFÄHIGKEIT	128
4-5.1	Einfluss des globalen Winkels	128
4-5.2	Einfluss des Achs-Faserwinkels	129
4-6	MODELLVERGLEICH KOMBINIERTE BEANSPRUCHUNG	
4-6.1	Eindrehtiefe 40 mm	
4-6.2	Eindrehtiefe 105 mm	
4-6.3	Eindrehtiefe 165 mm	
4-6.4	Eindrehtiefe 225 mm	
4-6.5	Fazit bezüglich des Modellvergleichs	141
4-7	MODELLVERGLEICH DER AXIALEN STEIFIGKEIT	
4-7.1	Globaler Winkel 0 °	
4-8	MODELLVERGLEICH DER LATERALEN STEIFIGKEIT	144
4-8.1	ÖNORM EN/B 1995-1-1 [3][4]	144
4-8.1.1	Globaler Winkel 90 °	144
4-8.1.2	Globaler Winkel 60 °	
4-8.1.3	Globaler Winkel 30 °	146
4-8.2	SIA 265	147
4-8.2.1	Bemessungskonzept für Nägel	147
4-8.2.2	Bemessungskonzept für Stabdübel	
KAPITEI	. 5: ZUSAMMENFASSUNG UND AUSBLICK	
5-1	FAZIT ZU DEN AUSZIEHVERSUCHEN	150
5-1.1	Tragfähigkeit	150
5-1.2	Steifigkeit	150
5-2	FAZIT ZU DEN ABSCHERVERSUCHEN	
5-2.1	Tragfähigkeit	
5-2.2	Steifigkeiten	
5-3	FAZIT ZUR KOMBINIERTEN BEANSPRUCHUNG	151
5-3.1	Tragfähigkeit	
5-3.2	Steifigkeit	
5-3.2.1	Axiale Steifigkeit	
5-3.2.2	Laterale Steifigkeit	
5-4	FAZIT	
5-5	AUSBLICK	

ANHANG A	LITERATURVERZEICHNIS	I
ANHANG B	PRÜFKONFIGURATION	III
B-1	PLÄNE PRÜFKONFIGURATION	
ANHANG C	PÜRFKÖRPERHERSTELLUNG	XII
C-1	PLÄNE PROBEKÖRPERHERSTELLUNG	XII
ANHANG D	PRÜFPROTOKOLLE	XXXVI
D-1	AUSZIEHVERSUCHE	XXXVI
D-1.1	Prüfserie 15	XXXVI
D-1.2	Prüfserie 16	XXXVII
D-1.3	Prüfserie 17	XXXVIII
D-1.4	Prüfserie 18	XXXIX
D-2	KOMBINIERTE BEANSPRUCHUNG Γ = 30 °	XL
D-2.1	Prüfserie 19	XL
D-2.2	Prüfserie 20	XLI
D-2.3	Prüfserie 21	XLII
D-2.4	Prüfserie 22	XLIII
D-2.5	Prüfserie 23	XLIV
D-2.6	Prüfserie 24	XLV
D-2.7	Prüfserie 25	XLVI
D-2.8	Prüfserie 26	XLVII
D-2.9	Prüfserie 27	XLVIII
D-2.10	Prüfserie 28	XLIX
D-2.11	Prüfserie 29	L
D-2.12	Prüfserie 30	LI
D-2.13	Prüfserie 31	LII
D-2.14	Prüfserie 32	LIII
D-2.15	Prüfserie 33	LIV
D-2.16	Prüfserie 34	LV
D-3	KOMBINIERTE BEANSPRUCHUNG Γ = 60 °	LVI
D-3.1	Prüfserie 35	LVI
D-3.2	Prüfserie 36	LVII
D-3.3	Prüfserie 37	LVIII
D-3.4	Prüfserie 38	LIX
D-3.5	Prüfserie 39	LX
D-3.6	Prüfserie 40	LXI
D-3.7	Prüfserie 41	LXII
D-3.8	Prüfserie 42	LXIII
D-3.9	Prüfserie 43	LXIV
D-3.10	Prüfserie 44	LXV
D-3.11	Prüfserie 45	LXVI
D-3.12	Prüfserie 46	LXVII

D-3.13	Prüfserie 47	LXVIII
D-3.14	Prüfserie 48	LXIX
D-3.15	Prüfserie 49	LXX
D-3.16	Prüfserie 50	LXXI
D-4	ABSCHERVERSUCHE	LXXII
D-4.1	Prüfserie 51	LXXII
D-4.2	Prüfserie 52	LXXIII
D-4.3	Prüfserie 53	LXXIV
D-4.4	Prüfserie 54	LXXV
D-4.5	Prüfserie 55	LXXVI
D-4.6	Prüfserie 56	LXXVII
D-4.7	Prüfserie 57	LXXVIII
D-4.8	Prüfserie 58	LXXIX
D-4.9	Prüfserie 59	LXXX
D-4.10	Prüfserie 60	LXXXI
D-4.11	Prüfserie 61	LXXXII
D-4.12	Prüfserie 62	LXXXIII
D-4.13	Prüfserie 63	LXXXIV
D-4.14	Prüfserie 64	LXXXV
D-4.15	Prüfserie 65	LXXXVI
D-4.16	Prüfserie 66	LXXXVII
D-4.16 ANHANG E	Prüfserie 66 EINZELVERSUCHSERGEBNISSE	LXXXVII LXXXVIII
D-4.16 ANHANG E E-1	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG	LXXXVII LXXXVIII LXXXVIII
D-4.16 ANHANG E E-1 E-2	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG	LXXXVII LXXXVIII LXXXVIII XCI
D-4.16 ANHANG E E-1 E-2 E-3	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG	LXXXVII LXXXVIII LXXXVIII XCI XCI
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG	LXXXVII LXXXVIII LXXXVIII XCI
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$	LXXXVII LXXXVIII LXXXVIII XCI CIV CIV
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$	LXXXVII LXXXVIII LXXXVIII XCI XCI
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1	Prüfserie 66EINZELVERSUCHSERGEBNISSEAXIALE BEANSPRUCHUNGLATERALE BEANSPRUCHUNGKOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSESTATISTISCHE KENNGRÖßEN	LXXXVII LXXXVIII LXXXVIII XCI XCI CIV CIV CIV CXVI CXVI
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit	LXXXVII LXXXVIII LXXXVIII LXXXVIII
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit Kraft F_{15}	LXXXVII LXXXVIII LXXXVIII LXXXVIII
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit. Kraft F_{15} Kraft F_{max}	LXXXVII LXXXVIII LXXXVIII XCI XCI CIV CIV CIV CXVI CXXIX CXXIX CXXIX CXXIX
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit. Kraft F_{15} Kraft F_{max} Steifigkeit	LXXXVII LXXXVIII LXXXVIII LXXXVIII XCI CIV CIV CIV CXVI CXXIX CXXIX CXXIX CXXIX CXXXI CXXXII
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4 F-2	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit Kraft F_{15} Kraft F_{max} Steifigkeit KOMBINIERTE BEANSPRUCHUNG	LXXXVII LXXXVIII LXXXVIII XCI XCI CIV CIV CIV CXVI CXXIX CXXIX CXXIX CXXIX CXXXII CXXXII CXXXII CXXXV
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4 F-2 F-2.1	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit. Kraft F_{15} Kraft F_{max} Steifigkeit KOMBINIERTE BEANSPRUCHUNG	LXXXVII LXXXVIII LXXXVIII XCI XCI CIV CIV CIV CXVI CXXIX CXXIX CXXIX CXXIX CXXXII CXXXII CXXXV
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4 F-2 F-2.1 F-3	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit. Kraft F_{15} Kraft F_{max} Steifigkeit KOMBINIERTE BEANSPRUCHUNG LATERALE TRAGFÄHIGKEIT	LXXXVII LXXXVIII LXXXVIII LXXXVIII LXXXVIII
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4 F-2 F-2.1 F-3 F-3.1	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit. Kraft F_{15} Kraft F_{max} Steifigkeit KOMBINIERTE BEANSPRUCHUNG F_{max} LATERALE TRAGFÄHIGKEIT F_{max} , Fließmoment Variante A und Berücksichtigung von F_{tens}	LXXXVII LXXXVIII LXXXVIII XCI CIV CIV CIV CIV CXVI CXXIX CXXIX CXXIX CXXXI CXXXII CXXXII CXXXV CXXXV CXXXV
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4 F-2 F-2.1 F-3 F-3.1 F-3.2	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit. Kraft F_{15} Kraft F_{max} Steifigkeit KOMBINIERTE BEANSPRUCHUNG F_{max} LATERALE TRAGFÄHIGKEIT F_{max} , Fließmoment Variante A und Berücksichtigung von F_{tens}	LXXXVII LXXXVIII LXXXVIII LXXXVIII
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4 F-2 F-2.1 F-3 F-3.1 F-3.2 F-3.3	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit Kraft F_{15} Kraft F_{max} Steifigkeit KOMBINIERTE BEANSPRUCHUNG F_{max} LATERALE TRAGFÄHIGKEIT F_{max} , Fließmoment Variante A und Berücksichtigung von F_{tens} F_{max} , Fließmoment Variante C und Berücksichtigung von F_{tens}	LXXXVII LXXXVIII LXXXVIII LXXXVIII CIV CIV CIV CIV CXVI CXXIX CXXIX CXXIX CXXXII CXXXII CXXXV CXXXV CXXXV CXXXIX CXXXIX CXXXIX CXXIX
D-4.16 ANHANG E E-1 E-2 E-3 E-3.1 E-3.2 ANHANG F F-1 F-1.1 F-1.2 F-1.3 F-1.4 F-2 F-2.1 F-3 F-3.1 F-3.2 F-3.3 F-3.4	Prüfserie 66 EINZELVERSUCHSERGEBNISSE AXIALE BEANSPRUCHUNG LATERALE BEANSPRUCHUNG KOMBINIERTE BEANSPRUCHUNG $\gamma = 30^{\circ}$ $\gamma = 60^{\circ}$ GESAMMELTE ERGEBNISSE STATISTISCHE KENNGRÖßEN Rohdichte und Holzfeuchtigkeit. Kraft F_{15} Kraft F_{max} Steifigkeit KOMBINIERTE BEANSPRUCHUNG F_{max} LATERALE TRAGFÄHIGKEIT F_{max} , Fließmoment Variante A und Berücksichtigung von F_{tens} F_{max} , Fließmoment Variante C und Berücksichtigung von F_{tens} F_{max} , Fließmoment Variante A und ohne Berücksichtigung von F_{tens}	LXXXVII LXXXVIII LXXXVIII XCI CIV CIV CIV CIV CXVI CXXIX CXXIX CXXIX CXXIX CXXXII CXXXII CXXXV CXXXII CXXXV CXXXIX CXXXII CXXXII CXXXV CXXXII CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXXV CXXVI CXXVI CXXVI

F-3.6	F_{max} , Fließmoment Variante B und ohne Berücksichtigung von F_{tens}	CLIX
F-3.7	F_{15} , Fließmoment Variante B und Berücksichtigung von F_{tens}	CLXIII
F-3.8	F_{15} , Fließmoment Variante C und Berücksichtigung von F_{tens}	CLXVII
F-3.9	F_{15} , Fließmoment Variante A und ohne Berücksichtigung von F_{tens}	CLXXI
F-3.10	F_{15} , Fließmoment Variante B und ohne Berücksichtigung von F_{tens}	CLXXV
F-3.11	F_{15} , Fließmoment Variante C und ohne Berücksichtigung von F_{tens}	CLXXIX
F-3.12	Ergebnisse Variation der Belastungsrichtung	CLXXXIV
ANHANG G	SCHRAUBENPRÜFUNGEN	CCVIII
G-1	SCHRAUBENZUGTRAGFÄHIGKEIT	CCVIII
G-2	FLIEBMOMENTPRÜFUNGEN	CCX

KAPITEL 1: EINLEITUNG

1-1 MOTIVATION UND ZIEL DIESER ARBEIT

Einer der wesentlichsten Aspekte der Arbeit als planender Ingenieur ist die Bemessung der Tragstruktur des Bauwerks. Dabei müssen unterschiedlichste Blickpunkte abgehandelt werden. Die Hauptaufgabe ist dabei zumeist unabhängig von dem zu errichtenden Bauwerk; das Erstellen eines Tragwerksentwurfs mit den statisch wirksamen Bauteilen sowie die daraus resultierenden Belastungspfade für die Lastweiterleitung in die Fundation. Dabei ist die Verbindung statisch wirksamer Bauteile unabdingbar. Für das Zusammenfügen stehen je nach verwendeter Baustoffart eine Vielzahl von Möglichkeiten zur Verfügung.

Für den modernen Ingenieurholzbau fällt dabei die Wahl zumeist auf metallische, stiftförmige Verbindungsmittel. Diese sind unter anderem zum Beispiel Stabdübel, Nägel oder auch Schrauben. Dabei sind die Bemessungskonzepte für diese Verbindungsmittel oftmals sehr konservativ in deren Festlegungen. Das Potenzial, welches die Verbindung aufweist, kann mit den aktuell gültigen Bemessungskonzepten daher nur unzureichend genau beschrieben werden. Mit der selbstbohrenden Holzschraube wurde ein Verbindungsmittel entwickelt, welches nicht nur ein sehr hohes Tragvermögen besitzt, sondern auch den Herstellungsaufwand der Verbindung deutlich reduzieren kann.

In der heutigen Zeit ist zumeist der Personalaufwand der größte Kostenfaktor bei der Errichtung von Bauwerken; deshalb und aufgrund des enormen Potenzials der selbstbohrenden Holzschraube wird im Holzbau immer mehr auf dieses Verbindungsmittel gesetzt. Sie kann sowohl zur Verstärkung von Bauteilen, zum Beispiel von querdruckbeanspruchten Auflagerbereichen, oder, wie bereits erwähnt, zur Verbindung statisch wirksamer Bauteile angewandt werden.

Die rechnerische Bestimmung der Tragfähigkeit dieser Verbindungsmittel bzw. die Dimensionierung von Verbindungen ist gegenwärtig im Wesentlichen von empirischen Zusammenhängen unterschiedlicher Parameter abhängig. Diese sind insbesondere die Rohdichte des verwendeten Grundmaterials Holz oder auch die geometrischen Randbedingungen wie Achs-Faserwinkel oder Last-Faserwinkel. Um deren Einfluss auf die Verbindungstragfähigkeit abzuschätzen bzw. im Idealfall zu berechnen, werden Forschungsschwerpunkte im Bereich der entsprechenden quantitativen Analyse dieser Parameter gesetzt.

Die Tragfähigkeiten hinsichtlich reiner Ausziehbeanspruchung sind bereits weitestgehend bekannt bzw. für diese liegen Bemessungskonzepte vor, womit die Tragfähigkeit vergleichsweise genau abgeschätzt werden kann. Im Bereich der lateralen Tragfähigkeit stützen sich die Bemessungskonzepte seit geraumer Zeit auf die Fließgelenktheorie nach Johansen [1], wobei allerdings nahezu keine Anpassung aufgrund unterschiedlicher stiftförmiger Verbindungsmitteltypen getroffen wird. Für die Interaktion lateraler und axialer Belastung von stiftförmigen Verbindungsmitteln lieferte die Arbeit von Ehlbeck und Siebert [2] die Bemessungsregeln die in den gültigen Normenwerken verankert sind. Die Untersuchungen von Ehlbeck und Siebert [2] befassten sich dabei mit der kombinierten Beanspruchung von Nagelverbindungen. Für die Bemessung kombiniert beanspruchter Holzbauschrauben wurden diese Ansätze ohne Anpassung übernommen.

Für diese Arbeit liegt daher ein wesentlicher Forschungsschwerpunkt in der Untersuchung der Interaktion unterschiedlicher Belastungsrichtungen für Verbindungen mit selbstbohrenden Holzschrauben hinsichtlich der Tragfähigkeit. Ein weiterer wesentlicher Aspekt, welcher im Rahmen dieser Arbeit behandelt werden soll, ist die Steifigkeit von Verbindungen mit selbstbohrenden Holzschrauben; hierbei liegt ebenfalls großes Verbesserungspotenzial vor.

Für das Ausarbeiten der beiden genannten Themenstellungen im Verlauf der Arbeit war die Entwicklung eines Prüfverfahrens bzw. eines Messsystems unabdingbar. Aufgrund des Fehlens normativer Regelungen zu Prüfverfahren von kombiniert beanspruchten Verbindungsmitteln galt es vordergründig, geeignete Dimensionen für Prüfungen von eben diesen Verbindungsmitteln zu finden.

Ziel dieser Arbeit ist es, die aktuell gültigen Bemessungsregeln von solchen Verbindungen hinsichtlich der Tragfähigkeit und Steifigkeit mit Ergebnissen umfangreicher, experimenteller Untersuchungen zu vergleichen und etwaige Verbesserungsvorschläge für die zukünftige Bemessung anzuführen.

1-2 KAPITELÜBERSICHT

Hierbei soll ein kurzer Überblick über die nachfolgenden Kapitel und deren Inhalt aufgezeigt werden.

Kapitel 2: Stand der Technik

Das Kapitel 2 befasst sich mit aktuell gültigen Bemessungsregeln für axial, lateral und kombiniert beanspruchte Holzbauschrauben. Dabei folgt eine komprimierte Einführung verschiedenster Bemessungskonzepte und Auszüge aus Forschungsarbeiten, welche das Verhalten unter reiner Auszieh-, Abscherbeanspruchung und kombinierter Beanspruchung abbilden. Die weiteren Punkte befassen sich mit der Berechnung der Steifigkeiten solcher Verbindungen. Dabei werden zuerst Bemessungsregeln für die axiale Steifigkeit aufgezeigt und im Anschluss jene für die laterale Steifigkeit. Am Ende des Kapitels werden die Ergebnisse, welche zuvor beschrieben wurden, nochmals zusammenfassend in einem Modellvergleich verglichen.

Kapitel 3: Material und Methoden

Das umfassendste Kapitel dieser Arbeit befasst sich sowohl mit der Findung der Prüfkonfiguration wie auch mit den nötigen Schritten für eine erfolgreiche Prüfdurchführung bis hin zur Darstellung der wesentlichsten statistischen Parameter der Versuchsreihen. Erläutert werden die gültigen Regeln für diese Arbeit bzw. die Nomenklatur der einzelnen Parameter. Die Prüfkörperkennzeichnung und deren Herstellung werden ebenfalls aufgezeigt, wobei die benötigten Schritte bis zum fertigen Probekörper beschrieben werden. Dabei werden die Regeln bzw. Annahmen, welche getroffen wurden, erläutert und diskutiert. Zum Ende des Kapitels werden wesentliche statistische Parameter und deren Ermittlung beziehungsweise Darstellung aufgezeigt.

Kapitel 4: Ergebnisse und Diskussion

Die Prüfergebnisse, welche im Verlauf des experimentellen Teils dieser Arbeit bestimmt wurden, werden in diesem Kapitel aufgezeigt und erläutert. Zu Beginn stehen die Ergebnisse für die Rohdichteverteilung in den einzelnen Serien und die tabellarische Auflistung wesentlicher statistischer Parameter zum Holzwerkstoff. In weiterer Folge werden die Ergebnisse für die Tragfähigkeiten der unterschiedlichen Belastungsrichtungen aufgeführt. Die jeweiligen Auswirkungen der Einflussparameter, welche während der Versuchsdurchführung variiert wurden, sind anschließend dargestellt und diskutiert. Der letzte Punkt, welcher in Kapitel 4 behandelt wird, befasst sich mit dem Aufzeigen der Ergebnisse für die Steifigkeitsermittlung.

Kapitel 5: Ausblick und Fazit

Hierbei sind die Ergebnisse, welche in Kapitel 4 umfassend dargestellt werden, zusammengefasst und wesentliche Erkenntnisse formuliert. Der Ausblick resultiert aus den gewonnenen Erkenntnissen und zeigt ebenfalls etwaige weiterführende Forschungsschwerpunkte auf.

KAPITEL 2: STAND DER TECHNIK

In diesem Kapitel werden die aktuellen Bemessungskonzepte sowie einige wichtige Forschungsarbeiten zum Thema Verbindungstechnik im modernen Holzbau genauer betrachtet und Auszüge der einzelnen Arbeiten, die als Grundlage bzw. als Referenzmodelle für die Ergebnisse dieser Masterarbeit verwendet werden, vorgestellt. Am Ende des Kapitels steht eine Gegenüberstellung der verschiedenen Bemessungskonzepte sowohl für die Tragfähigkeiten als auch die Steifigkeiten.

Das Kapitel gliedert sich wie folgt:

- Einführung in die Verbindungstechnik
- Bemessungskonzepte zur Bestimmung der axialen Tragfähigkeit
- Bemessungskonzepte zur Bestimmung der lateralen Tragfähigkeit
- Bemessungskonzepte zur Bestimmung der Tragfähigkeit kombiniert beanspruchter Verbindungsmittel
- Bemessungskonzepte zur Bestimmung der axialen Steifigkeit
- Bemessungskonzepte zur Bestimmung der lateralen Steifigkeit
- Gegenüberstellung ausgesuchter arbeitsrelevanter Bemessungsmodelle

2-1 EINFÜHRUNG IN DIE VERBINDUNGTECHNIK

Die Verbindung statisch wirksamer Bauteile stellt den modernen Ingenieur immer wieder vor Herausforderungen. Die Verbindung stellt in der Regel das schwächste Glied einer Tragkonstruktion dar, daher wird in diesem Bereich sehr großer Forschungsaufwand betrieben. Das Ziel dieser Forschungen ist es, eine Verbindung zu konzipieren, welche eine annähernd gleiche Tragfähigkeit aufweist, wie die zu verbindenden Bauteile. Im Wesentlichen werden dabei zwei Forschungsfragen unterschieden. Einerseits sind dies die Forschungsschwerpunkte die auf die Entwicklung neuartiger Verbindungstypen abzielen und andererseits die Forschungsschwerpunkte welche auf eine Überprüfung gültiger Bemessungskonzepte hinsichtlich der Tragfähigkeitsbemessung oder auch der Ermittlung der Steifigkeiten von Verbindungen abzielen.

Im Hinblick auf die Tragfähigkeitsbemessung von Verbindungsmitteln sind beispielsweise die Europäisch Technischen Bewertungen zu nennen. Diese stellen dabei Ergänzungen zu den aktuellen Normenwerken, wie der ÖNORM EN/B 1995-1-1 [3][4] dar. Durch die Bemessung mittels den Europäisch Technischen Bewertungen, wie beispielsweise die ETA-12/0373 [5], sind Tragfähigkeits- und auch Steifigkeitsbestimmungen von Verbindungsmitteln für herstellerspezifische Produkte möglich.

Im modernen Holzbau steht eine Vielzahl von Verbindungstypen von zwei Bauteilen miteinander zur Verfügung. Schickhofer et al. [6] liefert hierfür eine Einteilung der möglichen Verbindungsmittel bzw. Verbindungen anhand ihrer Herstellungsart. Diese Einteilung kann der Abbildung 2-1 entnommen werden. Grundlegend werden dabei nach Schickhofer et al. [6] zimmermannsmäßige Verbindungen, welche für vorwiegend auf Druck beanspruchte Verbindungen eingesetzt werden, und ingenieurmäßige Verbindungen unterschieden. Zumeist werden bei ingenieurmäßigen Verbindungen metallische Verbindungsmittel eingesetzt. Zu diesen Verbindungen zählen auch die Holzbauschrauben.

Abbildung 2-1 Einteilung Verbindungen bzw. Verbindungsmittel nach Schickhofer et al. [6]

Im weiteren Verlauf dieser Arbeit wird die selbstbohrende Holzschraube bzw. deren Anwendung im modernen Holzbau näher betrachtet.

2-1.1 SELBSTBOHRENDE HOLZSCHRAUBE

Abbildung 2-2 Aufbau selbstbohrende Holzschraube lt. ETA-12/0373 [5]

Die selbstbohrende Holzschraube wird zunehmend zum wichtigsten Verbindungselement im modernen ingenieurmäßigen Holzbau. Sie wird sowohl zur mechanischen Verbindung von Holz-Holz- als auch Holz-Stahl(Metall)-Anschlüssen verwendet. Des Weiteren kann sie zur Verstärkung von Bauteilen, zum Beispiel im Bereich der Querdruckverstärkung, angewendet werden.

Die wesentlichsten Komponenten einer selbstbohrenden Holzschraube sind der Schraubenkopf, der Schaft, der Gewindeteil und die Schraubenspitze. Wobei es für jede Komponente unterschiedlichste Ausführungsformen gibt, z. B. im Bereich des Schraubenkopfes sind es Senk-, Birnen, - Linsen- oder Scheibenköpfe, nur um ein paar zu nennen.

Selbstbohrende Holzschrauben können in Verbindungen sowohl axial als auch lateral oder durch eine Kombination der beiden Richtungen belastet werden, dies hängt sehr stark von der Verbindungsgeometrie

bzw. deren Ausführung ab. Aufgrund ihres enormen Potenzials im Bereich der axialen Tragfähigkeit gilt der Einsatz für Anschlüsse, bei denen die Schraube lediglich in ihrer Achse belastet wird, als besonders effizient. Ein weiterer wesentlicher Aspekt, der die Anwendung von selbstbohrenden Holzschrauben gegenüber herkömmlichen stiftförmigen metallischen Verbindungsmitteln wie z. B. Stabdübeln (mit größeren Durchmessern) hervorhebt, ist, dass kein Vorbohren mehr nötig ist. Dies stellt einen wesentlichen wirtschaftlichen Aspekt in Hinsicht auf die benötigte Herstellungszeit dar.

Die Regelung selbstbohrender Holzschrauben erfolgt zumeist über herstellerspezifische Zulassungen, wobei sehr starke Unterschiede in den Bemessungskonzepten bzw. den Kennwerten, welche in der Zulassung enthalten sind, bestehen können.

Die Geometrie einer Schraube wird über deren Nenndurchmesser d (=Außendurchmesser), den Schaftdurchmesser d_s , den Kerndurchmesser d_c , den Kopfdurchmesser d_k , die Schraubengesamtlänge L, die Gewindelänge l_g und die Länge der Spitze l_{sp} beschrieben. Weitere wesentliche Parameter zur Beschreibung der Geometrie sind der Flankenwinkel v, die Gewindeganghöhe p und das Verhältnis von Kerndurchmesser / Außendurchmesser η . Diese Werte können aus Zulassungen bzw. Produktbroschüren entnommen werden.

Anhand dieser Parameter kann eine passende Schraube ausgewählt werden. Ein Beispiel soll nun zeigen, welche Parameter sich aus einer Produktbeschreibung entnehmen lassen. Dies geschieht anhand der Europäisch Technischen Bewertung für Schmid RAPID, STARDRIVE und SP, vgl. ETA-12/0373 [5]. Die Schraube, die für dieses Beispiel gewählt wurde, entspricht einem Typ, der bei den Prüfungen im experimentellen Teil der vorliegenden Masterarbeit verwendet wurde, siehe hierzu Abschnitt 3-4.1.

Produktbezeichnung:	080x120/110 A0C 1A1 C1E

Produktbezeichnung	Bedeutung	Ausprägung
080	Außendurchmesser	d = 8,00 mm
120	Schraubengesamtlänge	l = 120 mm
110	Gewindelänge	$l_{\rm g} = 110 \ {\rm mm}$
А	Kopfform	Senkkopf $d_k = 15,00 \text{ mm}$
0	Schaftform	Glatter Schaft ohne Reibteil $d_s = 5,90 \text{ mm}$
С	Unterkopf	Senkkopf 90 °
1	Verdichter	Mit Verdichter $d_v = 6,00 \text{ mm}$
А	Gewindeform	Einganggewinde $p = 3,80 \text{ mm}$
1	Schneidrille	Gewinde mit Schneidrillen
С	Spitzenform	Halbspitze $a = 11,00 \text{ mm}$
1	Charakteristischer Kopfdurchziehparameter	<i>f</i> _{head,k} = 17,10 N/mm ²
Е	Andere Produkteigenschaften	sh. ETA-12/0373 [5] Tabelle A6.8

 Tabelle 2-1:
 Erläuterung Produktbezeichnung nach ETA-12/0373 [5]

2-2 BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER AXIALEN TRAGFÄHIGKEIT

2-2.1 ÖNORM EN/B 1995-1-1 [3][4]

Die für sämtliche Mitgliedstaaten der Europäischen Union einheitliche EN 1995-1-1 (Eurocode 5) in Zusammenhang mit den jeweiligen nationalen Festlegungen (in AT: ON B Dokument) sind eine der

wesentlichsten Grundlagen für die Bemessung von stiftförmigen Verbindungsmitteln. Diese Dokumente regeln die Bemessung und Konstruktion von Holzbauten. Im Teil 1-1 werden allgemeine Regeln und Regeln für den Hochbau angegeben.

Das Bemessungskonzept für Holzbauschrauben bei einer Beanspruchung in Richtung der Schraubenachse wird in Abschnitt 8.7.2 geregelt. Dabei müssen die folgenden Versagensmechanismen überprüft werden bzw. bestimmte Anforderungen eingehalten werden.

2-2.1.1 Anforderungen

<u>Versagensmechanismen</u>

- das Ausziehversagen des eingeschraubten Gewindeteils der Schraube;
- das Abreißversagen des Kopfes von Schrauben, die in Verbindung mit Stahlblechen verwendet werden; der Abreißwiderstand des Schraubenkopfes sollte grösser sein als die Zugfestigkeit der Schraube;
- das Durchziehversagen des Schraubenkopfes;
- das Abreißen der Schraube auf Zug;
- das Knickversagen der Schraube bei Druckbelastung;
- das Scherversagen entlang des Umfangs einer Gruppe von Schrauben, die in Verbindung mit Stahlblechen verwendet wurde (Blockversagen)

Mindestabstände

• Voraussetzung für die Gültigkeit der Mindestabstände ist eine Mindestholzdicke von

$$t \ge 12 \cdot d \tag{2.1}$$

Tabelle 2-2:	Mindestabstände untereinander sowie von Hirnholzenden und Rändern bei in Richtung der
	Schraubenachse beanspruchten Schrauben lt. ÖNORM EN/B 1995-1-1 [3][4]

Mindest-Schrauben-abstand in einer parallel zur Faserrichtung und Schraubenachse liegenden Ebene	<i>a</i> ₁	7 <i>d</i>
Mindest-Schrauben-abstand rechtwinklig zu einer parallel zur Faserrichtung und Schraubenachse liegenden Ebene	<i>a</i> ₂	5 <i>d</i>
Mindestabstand der Hirnholzenden zum Schwerpunkt des Schraubengewindes im Bauteil	<i>a</i> 1,cg	10 <i>d</i>
Mindestrandabstand des Schwerpunkts des Schraubengewindes im Bauteil	<i>a</i> 2,cG	4 <i>d</i>

Abbildung 2-3 Mindestabstände lt. ÖNORM EN/B 1995-1-1 [3][4]

Einbindetiefe

Die geringste Einbindetiefe des Gewindeteils auf der Seite der Schraubenspitze sollte 6 d betragen

Schrauben nach EN 14592 [7]

Der Schraubendurchmesser sollte zwischen 6 mm $\le d \le 12$ mm liegen. Das Verhältnis Außendurchmesser des Gewindes zu Innendurchmesser des Gewindes muss zwischen $0.6 \le d_1 / d \le 0.75$ liegen.

2-2.1.2 Bemessungskonzept

Sind die oben angeführten Anforderungen eingehalten, kann der charakteristische Ausziehwiderstand wie in Gleichung (2.2) angegeben bestimmt werden.

$$F_{\mathrm{ax},\varepsilon,\mathrm{Rk}} = \frac{n_{\mathrm{ef}} \cdot f_{\mathrm{ax},\mathrm{k},1} \cdot d \cdot l_{\mathrm{ef}} \cdot k_{\mathrm{d}}}{1,2 \cdot \cos(\varepsilon)^2 + \sin(\varepsilon)^2}$$
(2.2)

Die Bestimmung der Gleichungsparameter kann den Gleichungen (2.3) bis (2.5) entnommen werden.:

$$f_{\rm ax,k,1} = 0.52 \cdot d^{-0.5} \cdot l_{\rm e}^{-0.1} \cdot \rho_{\rm k}^{0.8}$$
(2.3)

$$k_{\rm d} = \min \begin{cases} \frac{d}{8} \\ 1 \end{cases} \tag{2.4}$$

$$n_{\rm ef} = n^{0.9}$$
 (2.5)

Die Eindrehtiefe im Holz l_e ist dabei stets mit der Länge der Spitze einzusetzen, sh. hierzu auch Abschnitt 3-1.3.4

Sind die Anforderungen bezüglich des Durchmesserverhältnisses nicht gegeben, sollte der Ausziehwiderstand anhand Gleichung (2.6) bestimmt werden.

$$F_{\text{ax},\varepsilon,\text{Rk}} = \frac{n_{\text{ef}} \cdot f_{\text{ax},\text{k},2} \cdot d \cdot l_{\text{ef}}}{1,2 \cdot \cos(\varepsilon)^2 + \sin(\varepsilon)^2} \cdot \left(\frac{\rho_k}{\rho_a}\right)^{0,8}$$
(2.6)

Der charakteristische Durchziehwiderstand von Verbindungen mit in Richtung der Schraubenachse beanspruchten Schrauben sollte wie nachstehend angegeben ermittelt werden.

$$F_{\text{ax},\varepsilon,\text{Rk}} = n_{\text{ef}} \cdot f_{\text{head},k} \cdot d_h^2 \cdot \left(\frac{\rho_k}{\rho_a}\right)^{0,8}$$
(2.7)

Die charakteristische Zugfestigkeit der Verbindung (Abreißwiderstand des Schraubenkopfes oder Zugwiderstand des Schaftes) sollte anhand Gleichung (2.8) bestimmt werden.

$$F_{\rm t,Rk} = n_{\rm ef} \cdot f_{\rm tens,k} \tag{2.8}$$

Parameterdefinitionen

 $F_{ax,\epsilon,Rk}$charakteristischer Wert des Ausziehwiderstandes der Verbindung unter einem Winkel α zur Faser n_{ef}wirksame Anzahl von Schrauben

 $f_{ax,k,1}$charakteristischer Wert der Ausziehfestigkeit rechtwinklig zur Faserrichtung

d.....Nenndurchmesser der verwendeten Schraube

 $l_{\rm ef}$ Eindringtiefe des Gewindeteils (effektive Gewindelänge im Holzbauteil)

- ϵWinkel zwischen der Schraubenachse und Faserrichtung, mit $\epsilon \ge 30^{\circ}$
- $f_{ax,k,2}$ Nach EN 14592 [7] bestimmte charakteristische Ausziehparameter rechtwinklig zur Faser für Rohdichte ρ_a

 ρ_k charakteristischer Wert der Rohdichte

 $d_{\rm h}$der Durchmesser des Schraubenkopfes

 $F_{t,Rk}$charakteristische Zugfestigkeit der Verbindung

 $f_{\text{tens},k}$der charakteristische Zugwiderstand der Schraube

Dieses Bemessungskonzept kann für alle Schraubenhersteller sowie für alle Achs-Faserwinkel $\epsilon \ge 30^{\circ}$ verwendet werden. Dies bedeutet aber wiederum, dass Hirnholzverschraubungen nicht geregelt sind und daher für Hirnholzverschraubungen auf herstellerspezifische Angaben bzw. Bemessungskonzepte zurückgegriffen werden muss.

2-2.1.3 Erkenntnisse

Aufgrund der Regelung, welche herstellerunabhängige Bemessungsregeln angibt, wird dieses Modell zumeist als sehr konservativ angesehen. Die Bemessung von Verbindungen mit selbstbohrenden Holzschrauben sollte, sofern der Hersteller der Schrauben bekannt ist, mit den herstellerspezifischen Zulassungen erfolgen. Für die Bestimmung grober Abmessungen der Verbindung in Bereichen der Vorstatik bzw. bei der Erstellung der Ausschreibung, bei der zumeist noch keine Angaben zu Herstellern gemacht werden, ist dies sicherlich das zu bevorzugende Bemessungskonzept.

Für die Erstellung einer Ausführungsstatik hingegen sollte auf eine herstellerspezifische Zulassung zurückgegriffen werden. Dies ermöglicht einen wirtschaftlicheren Einsatz und dadurch auch geringere Errichtungskosten.

2-2.2 RINGHOFER [6]

Die Vorstellung des Bemessungskonzeptes nach ÖNORM EN/B 1995-1-1 [3][4] erfolgte dabei für mehrere Versagensmechanismen die bei axialer Belastung auftreten können. Die Nachstehend aufgeführten Forschungsarbeiten befassen sich dabei nur mehr mit dem Ausziehversagen des eingeschraubten Gewindeteils der Schraube.

Die Arbeit von Ringhofer [8] beschreibt in sieben Kapiteln unter anderem die Anwendungsgebiete der selbstbohrenden Holzschraube und wesentliche Einflussparameter auf die Ausziehtragfähigkeit dieser. Des Weiteren wird auf wesentliche Geometrieverhältnisse und Materialeigenschaften verwiesen.

Auf Grundlage von experimentell ermittelten Einzelergebnissen von ca. 14.000 Versuchen wird ein empirisches Modell angegeben, welches dem Anwender erlaubt, sowohl den Mittelwert als auch den charakteristischen Wert der Verbindungsmitteltragfähigkeit auf Herausziehen zu ermitteln. Dabei fließen Parameter, welche die Verbindungsmitteltragfähigkeit wesentlich beeinflussen, in die empirische Vorhersage mit ein.

2-2.2.1 Bemessungskonzept charakteristische Ausziehtragfähigkeit

Das empirische Bemessungskonzept, welches den Zusammenhang unterschiedlicher Einflussparameter herstellt, wird anhand von k-Faktoren gesteuert. Dabei wird in den k-Faktoren unter anderem der Holzfeuchtegehalt u, der Einfluss des Vorbohrens η_{PD} , Einfluss des Achs-Faserwinkels ε und der Rohdichteeinfluss berücksichtigt. Die Länge der Schraube ist nach Gleichung (2-9) stehts ohne die Länge der Spitze einzusetzen, sh. hierzu auch Abschnitt 3-1.3.5.**Fehler! Verweisquelle konnte nicht gefunden werden.**

$$F_{\mathrm{ax},\varepsilon,\mathrm{Rk}} = f_{\mathrm{ax},\mathrm{k}} \cdot d \cdot \pi \cdot l_{\mathrm{ef}} \text{ (vgl. Glg. 6.15)}$$
(2.9)

$$f_{\rm ax,k} = \eta_{\rm mc} \cdot \eta_{\rm PD} \cdot k_{\rm red} \cdot k_{\rm lemb} \cdot k_{\rm ax,k} \cdot k_{\rm sys,k}(N) \cdot f_{\rm ax,ref,k} \cdot \left(\frac{\rho_{\rm k}}{\rho_{\rm ref,k}}\right)^{k_{\rho}} (\text{vgl. Glg. 6.20}) \quad (2.10)$$

$$\eta_{\rm mc} = \begin{cases} 1,00\\ 1,00 - k_{\rm mc} \cdot (u - 12) \end{cases} f \ddot{u}r \begin{cases} 8\% \le u \le 12\%\\ 12\% \le u \le 20\% \end{cases} (\rm vgl.\,Glg.\,6.3) \tag{2.11}$$

Tabelle 2-3:Gradienten für kmc in Abhängigkeit des Materials und des Achs-Faserwinkels (vgl. Tabelle
5.19 [8])

Material	Achs-Faserwinkel ε	k _{mc}
Vollholz (ST)	0	0,036
Vollholz (ST)	90	0,031
Vollholz (ST)	0 < ε < 90	0,034
CLT	90	0,017

$$\eta_{\rm PD} = \begin{cases} 1,00\\ 1,00 - k_{PD} \cdot (d_{\rm PD} - 1,1 \cdot d_{\rm c}) \end{cases} f \ddot{\rm u}r \begin{cases} d_{\rm PD} \le 1,1 \cdot d_{\rm c}\\ 1.1 \cdot d_{\rm c} < d_{\rm PD} \le d \end{cases} (\text{vgl. Glg. 5.92})$$
(2.12)

$$k_{\rm PD} = \frac{1}{d \cdot (1, 1 \cdot \eta)} \text{ (vgl. Glg. 5.93)}$$
 (2.13)

$$k_{\rm red} = \frac{A_{\rm red}}{A_{\rm tot}} \text{ (vgl. Glg. 5.89)}$$
(2.14)

$$A_{\rm red} = \sum_{i=1}^{IV} A_{\rm red,i} \text{ (vgl. Glg. 5.83)}$$
 (2.15)

$$A_{red,i} = \frac{\pi}{4} \cdot a \cdot b - \frac{1}{2} \cdot \left[a \cdot b \cdot \cos\left(\frac{|x_i|}{a}\right)^{-1} - |x_i| \cdot |y_i| \right] - \frac{1}{2} \cdot \left[a \cdot b \cdot \cos\left(\frac{|y_j|}{b}\right)^{-1} - |x_j| \cdot |y_j| \right] (2.16)$$

$$A_{\text{red},i} = |x_i| \cdot |y_j| \text{ wenn } |x_i| \le |x_j|$$

$$(2.17)$$

$$k_{\text{lemb}} = \begin{cases} 1,00\\ 1,05+1,11\cdot 10^{-3}\cdot\varepsilon \end{cases} f \ddot{u}r \ l_{\text{emb}} = \begin{cases} 0 \ mm \\ 2d \end{cases} (\text{vgl. Glg. 6.4})$$
(2.18)

$$k_{\rho} = \frac{-0.05 \cdot d + 0.15}{e^{\frac{\varepsilon}{10}}} + 1.10 \text{ (vgl. Glg. 6.6)}$$
(2.19)

$$k_{\rm ax,k} = \begin{cases} 1,00\\ 0,64 \cdot k_{\rm gap,k} + \frac{1 - 0,64 \cdot k_{\rm gap,k}}{45} \cdot \varepsilon & \text{für } 0^{\circ} \le \varepsilon \le 90^{\circ} \\ 0^{\circ} \le \varepsilon \le 45^{\circ} \end{cases} \text{ (vgl. Glg. 6.22)}$$
(2.20)

$$k_{\text{gap,k}} = \begin{cases} 0.90 \\ 1.00 \end{cases} \text{ für } \frac{\text{CLT Schmalseite}}{\text{Andere}} \text{ (vgl. Glg. 6.23)} \tag{2.21}$$

$$f_{\text{ax,ref,k}} = 0.013 \cdot \rho_{\text{ref,k}}^{1.11} \cdot d^{-0.33} \text{ (vgl. Glg. 6.21)}$$
 (2.22)

$$k_{\rm sys}(N) = \frac{1}{[\ln(N) \cdot \beta_{\rm c} + 1]^{\alpha_{\rm c}}}$$
(vgl. Glg. 5.68) (2.23)

Tabelle 2-4:	Parameter α _c und β _c nach	Ringhofer [8] (vgl. Tabelle 5.22)
--------------	--	-----------------------------------

Material	6%	8%	10%
α _c	0,8294	0,8289	0,8419
β _c	0,3832	0,3811	0,3706

$$\rho_{\rm ref,k} = 376 \, \rm kg/m^3 \tag{2.24}$$

Aufgrund der Komplexität des Modells und dem damit verbundenen Aufwand bei der Bemessung für den konstruktiven Ingenieur wurde im weiteren Verlauf der Arbeit ein reduziertes Modell vorgestellt, welches ebenfalls eine Vorhersage des 5% Fraktil Niveaus erlaubt.

$$F_{\mathrm{ax},\varepsilon,\mathrm{Rk}} = f_{\mathrm{ax}} \cdot d \cdot \pi \cdot l_{\mathrm{ef}} \text{ (vgl. Glg. 6.15)}$$
(2.25)

$$f_{ax} = k_{ax,k} \cdot k_{sys,k}(N) \cdot f_{ax,ref,k} \cdot \left(\frac{\rho_k}{\rho_{ref,k}}\right)^{k_{\rho}} \text{ (vgl. Glg. 7.1)}$$
(2.26)

$$k_{\rm ax,k} = \begin{cases} 1,00\\ 0,64 \cdot k_{\rm gap,k} + \frac{1 - 0,64 \cdot k_{\rm gap,k}}{45} \cdot \varepsilon & \text{für } \frac{45^\circ \le \varepsilon \le 90^\circ}{0^\circ \le \varepsilon \le 45^\circ} \text{ (vgl. Glg. 7.2)} \end{cases}$$
(2.27)

$$k_{\text{gap,k}} = \begin{cases} 0.90\\ 1.00 \end{cases} \text{ für } \underset{\text{Andere}}{\text{CLT Schmalseite}} (\text{vgl. Glg. 7.3}) \tag{2.28}$$

$$k_{\rm sys,k}(N) = \begin{cases} 1,00 & \text{ST} \\ 1,10 & \text{für CLT } \mathbb{D}\text{nd } N \ge 3 \text{ (vgl. Glg. 7.4)} \\ 1,13 & \text{GLT} \end{cases}$$
(2.29)

$$k_{\rho} = \begin{cases} 1,10 \\ 1,25 - 0,05 \cdot d \end{cases} \text{ für } \begin{array}{c} 0^{\circ} < \varepsilon \le 90^{\circ} \\ \varepsilon = 0^{\circ} \end{array}, \text{ oder } k_{\rho} = \begin{cases} 1,10 \\ 0,70 \end{array} \text{ für } \begin{array}{c} 0^{\circ} < \varepsilon \le 90^{\circ} \\ \varepsilon = 0^{\circ} \end{array} \text{ (vgl. Glg. 7.5) (2.30)} \end{cases}$$

$$\rho_{\rm ref,k} = 376 \, \rm kg/m^3 \tag{2.31}$$

Parameterdefinitionen

 $F_{ax,\epsilon,Rk}$charakteristischer Wert des Ausziehwiderstandes der Verbindung unter einem Winkel ϵ zur Faser $f_{ax,k}$charakteristischer Wert des Ausziehparameters

 η_{mc}Einflussparameter für die Holzfeuchte

. . .

 η_{PD} Einflussparameter für den Einfluss eines etwaigen Vorbohrens

kredBerücksichtigung der reduzierten Spannungsfläche des Holzquerschnitts

klemb Einflussparameter zur Berücksichtigung der Einbettungslänge für Teilgewindeschrauben

 $k_{\text{ax,k}}$ Einflussparameter für unterschiedliche Achs-Faserwinkel ε

 $k_{sys,k}$ Einflussparameter für die Verwendung unterschiedlicher Holzprodukte bzw. die Anzahl der durchschraubten Schichten

fax,ref,k Referenzausziehparameter bezogen auf eine Rohdichte von 376 kg/m³

 ρ_k charakteristische Rohdichte des zu verbindenden Elements

 $\rho_{ref,k}$ Referenzrohdichte 376 kg/m³

 $k_{
ho}$ Einflussparameter für den Einfluss abweichender Rohdichten

 k_{mc} Einflussparameter für den Einfluss abweichender Holzfeuchtigkeiten

u Holzfeuchtigkeit

 $k_{\rm PD}$ Einflussparameter zur Berücksichtigung des Effektes des Vorbohrens

d_{PD} Durchmesser Vorbohrung

 η Durchmesserverhältnis Kerndurchmesser / Nenndurchmesser

 l_{emb} Einbettungslänge für Teilgewindeschrauben, gibt die Länge des glatten Schaftes im Holzbauteil an $k_{gap,k}$ Einflussparameter zur Berücksichtigung der Fugendicke bei Holzprodukten

2-2.2.2 Bemessungskonzept Mittelwert Vorhersage

Das Bemessungskonzept, welches eine Vorhersage des zu erwartenden Mittelwertes erlaubt, gliedert sich wie jenes der Vorhersage der charakteristischen Ausziehtragfähigkeit. Berücksichtigung finden dieselben Parameter wie zuvor.

$$f_{ax} = \eta_{mc} \cdot \eta_{PD} \cdot k_{red} \cdot k_{lemb} \cdot k_{ax} \cdot k_{sys}(N) \cdot f_{ax,ref} \cdot \left(\frac{\rho}{\rho_{ref}}\right)^{k_{\rho}} (vgl. Glg. 6.20)$$
(2.32)

2-2.2.3 Erkenntnisse

Das Modell, welches von Ringhofer [8] entwickelt wurde, liefert sowohl auf 5% Fraktil Niveau als auch auf mittelwertebene sehr gute Übereinstimmungen mit den Ausziehfestigkeiten tatsächlich geprüfter Schrauben bzw. Serien von Schrauben. Die wesentlichsten Unterschiede zum Eurocode sind, dass durch die Modifikation der Gleichung über k-Faktoren weitere Einflussparameter Berücksichtigung finden. Dadurch lässt sich anhand der Schraubengeometrie eine genauere Vorhersage bezüglich ihrer Tragfähigkeit in Verbindung mit der vorherrschenden Holzfeuchte ermitteln.

2-2.3 BRANDNER ET AL. [5]

Das Modell in der Veröffentlichung von Brandner et al. [9] baut dabei auf dem Modell von Ringhofer [8] auf. Dabei wird das Bemessungsmodell für den konstruktiven Bauingenieur soweit vereinfacht, dass eine schnelle Ermittlung der Tragfähigkeiten ohne größeren Aufwand ermöglicht wird. Es werden wiederum Bemessungsansätze sowohl für den Mittelwert als auch für die charakteristische Ausziehtragfähigkeit angegeben.

Die wesentlichsten Unterschiede zu den zuvor gezeigten Bemessungsmodellen liegen in den Werten für die k-Faktoren zur Modifikation des Referenzausziehparameters. Geprüft wurden sowohl verschiedene Ausführungen von Schrauben als auch deren Verwendung in unterschiedlichen Holzprodukten.

2-2.3.1 Bemessungskonzept charakteristische Ausziehtragfähigkeit

$$F_{\mathrm{ax},\varepsilon,\mathbf{k}} = f_{\mathrm{ax},\varepsilon,05} \cdot d \cdot \pi \cdot l_{\mathrm{ef}}$$
(2.33)

$$f_{\text{ax},\epsilon,05} = f_{\text{ax},\text{ref},05} \cdot k_{\text{ax},05} \cdot k_{\text{sys},05} \cdot \left(\frac{\rho_{05}}{\rho_{\text{ref},05}}\right)^{k_{\rho}} \text{ (vgl. Glg. 11)}$$
(2.34)

$$f_{\text{ax,ref,05}} = \begin{cases} 0,01300 \cdot \rho_{\text{ref,05}}^{1.10} \cdot d^{-0,33} & \text{CONF} \\ 0,00290 \cdot \rho_{\text{ref,05}}^{1.40} \cdot d^{-0,33} & \text{für } \text{RP} & (\text{vgl. Glg. 12}) \\ 0,00040 \cdot \rho_{\text{ref,05}}^{1.70} \cdot d^{-0,33} & \text{DP} \end{cases}$$
(2.35)

$$k_{\rm ax,05} = \begin{cases} 1.0\\ 0.70 \cdot k_{\rm gap,05} + \varepsilon \cdot \frac{1 - 0.70 \cdot k_{\rm gap,05}}{30} \text{ für } \frac{30^{\circ} \le \varepsilon \le 90^{\circ}}{0^{\circ} \le \varepsilon < 30^{\circ}} \text{ (vgl. Glg. 13)} \end{cases}$$
(2.36)

$$k_{\text{gap,05}} = \begin{cases} 0.90\\ 1.00 \end{cases} \text{ für } \frac{\text{CLT narrow face}}{\text{other}} \text{ (vgl. Glg. 14)}$$
(2.37)

$$k_{\text{sys,05}} = \begin{cases} 1.00 & \text{Vollholz; } n = 1\\ 1.10 & \text{für CLT Seitenfläche; } n \ge 3 \text{ (vgl. Glg. 15)}\\ 1.13 & \text{GLT (BSH); } n \ge 5 \end{cases}$$
(2.38)

$$k_{\rho} = \begin{cases} 1,10 & \text{CONF \& 15^{\circ} \le \epsilon \le 90^{\circ}} \\ 1,25 - 0,05 \cdot d & \text{für } \begin{array}{c} \text{CONF \& 0^{\circ} \le \epsilon < 15^{\circ}} \\ 1,40 & \text{RP \& 0^{\circ} \le \epsilon \le 90^{\circ}} \\ 1,70 & \text{DP \& 0^{\circ} \le \epsilon \le 90^{\circ}} \end{array} (\text{vgl. Glg. 16}) \end{cases}$$
(2.39)

$$\rho_{\rm ref,05} = \begin{cases} 451 \, \rm kg/m^3 & \rm CONF \\ 644 \, \rm kg/m^3 & \rm für \, RP \\ 621 \, \rm kg/m^3 & \rm DP \end{cases}$$
(2.40)

Parameterdefinitionen

*F*_{ax,ɛ,k}......charakteristischer Wert der Ausziehtragfähigkeit des Verbindungmittels

 $f_{ax,\epsilon,05}$charakteristischer Wert der Ausziehfestigkeit bei einem Achs-Faserwinkel von ϵ

d.....nomineller Durchmesser des Verbindungsmittels

 $l_{\rm ef}$ effektive Gewinde Verankerungslänge im Holz

 $f_{ax,ref,05}$...Referenzwert der charakteristischen Ausziehfestigkeit bei einem Achs-Faserwinkel $\varepsilon = 90^{\circ}$

 $k_{ax,05}$Einflussparameter für den Einfluss unterschiedlicher Achs-Faserwinkel ε auf die Ausziehfestigkeit

- $\rho_{ref.05}$ Referenzrohdichte zur Bestimmung der Referenzausziehfestigkeit $f_{ax,ref.05}$
- $k_{\text{sys,05}}$Einflussparameter für die Berücksichtigung von Systemeffekten bei der Verwendung von Schrauben in mehrlagigen Holzprodukten
- k_{ρ} Einflussparameter zur Berücksichtigung der tatsächlichen Rohdichte abweichend zur Referenzrohdichte

2-2.3.2 Bemessungskonzept Mittelwert Vorhersage

$$F_{\text{ax},\varepsilon,\text{mean}} = f_{\text{ax},\varepsilon,\text{mean}} \cdot d \cdot \pi \cdot l_{\text{ef}}$$
(2.41)

$$f_{\text{ax},\text{e,mean}} = f_{\text{ax},\text{ref,mean}} \cdot k_{\text{ax},\text{mean}} \cdot k_{\text{sys},\text{mean}} \cdot \left(\frac{\rho_{\text{mean}}}{\rho_{\text{ref},\text{mean}}}\right)^{k_{\rho}} \text{ (vgl. Glg. 11)}$$
(2.42)

$$f_{ax,ref,mean} = \begin{cases} 0,01400 \cdot \rho_{\rm ref,mean}^{1,10} \cdot d^{-0,33} & \text{CONF} \\ 0,00310 \cdot \rho_{\rm ref,mean}^{1,40} \cdot d^{-0,33} & \text{für } \text{RP} & (\text{vgl. Glg. 12}) \\ 0,00042 \cdot \rho_{\rm ref,mean}^{1,70} \cdot d^{-0,33} & \text{DP} \end{cases}$$
(2.43)

$$k_{\text{ax,mean}} = \begin{cases} 1.0\\ 0.75 \cdot k_{\text{gap,mean}} + \varepsilon \cdot \frac{1 - 0.75 \cdot k_{\text{gap,mean}}}{30} \text{ für } \frac{30^{\circ} \le \varepsilon \le 90^{\circ}}{0^{\circ} \le \varepsilon < 30^{\circ}} \text{ (vgl. Glg. 13)} \qquad (2.44) \end{cases}$$

lignum study research engineering test cente

$$k_{\text{gap,mean}} = \begin{cases} 0.85\\ 1.00 \end{cases} \text{ für} \frac{\text{CLT narrow face}}{\text{other}} \text{ (vgl. Glg. 14)} \tag{2.45}$$

$$k_{\text{sys,mean}} = \begin{cases} 1,00 & \text{str}\mathbb{Z}\text{ct}\mathbb{Z}\text{ral timber}; n = 1\\ 1,07 & \text{für CLT side face}; n \ge 3\\ 1,10 & \text{GLT (gl}\mathbb{Z}\text{lam}); n \ge 5 \end{cases}$$
(vgl. Glg. 15) (2.46)

$$k_{\rho} = \begin{cases} 1,10 & \text{CONF \& 15^{\circ} \le \epsilon \le 90^{\circ}} \\ 1,25 - 0,05 \cdot d \\ 1,40 & \text{für } \begin{array}{c} \text{CONF \& 0^{\circ} \le \epsilon < 15^{\circ}} \\ \text{RP \& 0^{\circ} \le \epsilon \le 90^{\circ}} \\ \text{DP \& 0^{\circ} \le \epsilon \le 90^{\circ}} \end{array} (\text{vgl. Glg. 16}) & (2.47) \end{cases}$$

$$\rho_{\text{ref,mean}} = \begin{cases} 451 \text{ kg/m}^3 & \text{CONF} \\ 644 \text{ kg/m}^3 \text{ für RP} \\ 621 \text{ kg/m}^3 & \text{DP} \end{cases} (2.48)$$

Parameterdefinitionen

$F_{\mathrm{ax},\varepsilon,\mathrm{mean}}$.	Mittelwert der Ausziehtragfähigkeit des Verbindungmittels	
$f_{\mathrm{ax},\varepsilon,\mathrm{mean}}$.	Mittelwert der Ausziehfestigkeit bei einem Achs-Faserwinkel von ϵ	
<i>d</i>	nomineller Durchmesser des Verbindungsmittels	
<i>l</i> _{ef}	effektive Gewinde Verankerungslänge im Holz	
$f_{\rm ax,ref,mean}$	Referenzwert der Ausziehfestigkeit bei einem Achs-Faserwinkel ε = 90 °	
k _{ax,mean}	Einflussparameter für den Einfluss unterschiedlicher Achs-Faserwinkel ϵ auf die	
	Ausziehfestigkeit	
$ ho_{ m ref,mean}$.	Referenzrohdichte zur Bestimmung des Referenzausziehparameters fax, ref, mean	
k _{sys,mean} .	Einflussparameter für die Berücksichtigung von Systemeffekten bei der Verwendung von	
	Schrauben in mehrlagigen Holzprodukten	
<i>k</i> ₀	Einflussparameter zur Berücksichtigung der tatsächlichen Rohdichte abweichend zur	
r	Referenzrohdichte	

2-2.3.3 Erkenntnisse

Bei den Versuchen, die der Arbeit von Brandner et al. [9] zugrunde lagen, wurde darauf abgezielt, die Verwendung von selbstbohrenden Holzschrauben verschiedener Spezifikationen in unterschiedlichen Holzprodukten zu untersuchen. Die verwendeten Faktoren wie k_{gap} oder auch k_{sys} basieren dabei auf probabilistischen Modellen. Diese sind unabhängig von dem verwendeten Holzprodukt.

Für das Holzprodukt Baubuche zeigte sich das Modell für DP als gute Lösung bei der Bestimmung der Ausziehtragfähigkeit des Verbindungsmittels. Lediglich für Eiche und Esche wurden höhere Abweichung zu den verwendeten empirischen Ansätzen festgestellt. Für die Bemessung von Verbindungsmittelgruppen können die Modelle jedoch nicht verwendet werden. Bei den Prüfungen handelte es sich durchwegs um Verbindungen mit nur einem Verbindungsmittel.

Anhand der zuvor angegebenen Gleichungen kann festgestellt werden, dass die Ausziehfestigkeit linear mit dem verwendeten Verbindungsmitteldurchmesser und der effektiven Eindrehtiefe aufgerechnet werden kann. Für die Parameter, welche für die Ausziehfestigkeit benötigt werden, kann festgestellt werden, dass die Rohdichtekorrektur exponentiell vorgenommen werden muss. Die übrigen Parameter liefern einen linearen Einfluss.

2-2.4 ETA-12/0373 [2]

Die europäisch technische Bewertung der Firma Schmid Schrauben Hainfeld GmbH liefert dabei Bemessungskonzepte für unterschiedlichste Anwendungsgebiete unter anderem sind dies die Querdruckverstärkungen, Schubverstärkungen und die Bestimmung der axialen Tragfähigkeit bei Ausziehbeanspruchung. Im Weiteren soll die Bestimmung der axialen Tragfähigkeit vorgestellt werden. Die Vorhersage ist dabei auf die in der Praxis vorherrschenden Bemessungsregeln zugeschnitten.

Bei der Vorhersage wird die charakteristische Tragfähigkeit bestimmt. Bei der Bestimmung der Tragfähigkeit finden sowohl die Rohdichte des verwendeten Holzwerkstoffes wie auch die Einschraubtiefe und der Nenndurchmesser des verwendeten Verbindungsmittels Einfluss. Des Weiteren werden materialspezifische Ausziehparameter für die unterschiedlichen Ausführungen des Verbindungsmittels angegeben. Dies sind unter anderem der charakteristische Ausziehparameter oder auch die Zugtragfähigkeit des Verbindungsmittels.

Das Bemessungskonzept für die Ausziehtragfähigkeit kann der nachstehenden Formel entnommen werden, dabei sind:

 $F_{ax,k,\epsilon}$charakteristischer Ausziehtragfähigkeit für den Achs-Faserwinkel ϵ

 k_{ax}Parameter zur Berücksichtigung unterschiedlicher Achs-Faserwinkel ε

 $l_{\rm ef}$ effektive Gewindelänge im Holz

 $f_{ax,k,90^\circ}$charakteristischer Ausziehparameter für einen Achs-Faserwinkel von $\varepsilon = 90^\circ$

d.....Nenndurchmesser des verwendeten Verbindungsmittels

ε.....Achs- Faserwinkel

$$F_{\mathrm{ax},\mathrm{k},\varepsilon} = k_{\mathrm{ax}} \cdot f_{\mathrm{ax},\mathrm{k},90^{\circ}} \cdot l_{\mathrm{ef}} \cdot \left(\frac{\rho_{\mathrm{k}}}{350}\right)^{0,8} \cdot d \qquad (2.49)$$

$$k_{\rm ax} = \begin{cases} 1.0 \\ 0.3 + \frac{0.7 \cdot \varepsilon}{45} & \text{für } \frac{45^{\circ} \le \varepsilon \le 90^{\circ}}{0^{\circ} \le \varepsilon < 45^{\circ}} \end{cases}$$
(2.50)

2-2.4.1 Erkenntnisse

Das Bemessungsmodell, welches in der ETA-12/0373 [5] angegeben wird, liefert gute Ergebnisse für die Verwendung von selbstbohrenden Holzschrauben, wenn der Achs-Faserwinkel $\varepsilon \ge 45^{\circ}$ ist. Für die Dimensionierung von Verbindungsmitteln mit einem kleineren Achsfaserwinkel wird in der ETA-12/0373 [5] von einer Langezeitbeanspruchung ausgegangen. Dies führt für die Betrachtungen in dieser Arbeit zu deutlicheren Abweichungen, da im Zuge dieser Arbeit nur kurzzeitige Beanspruchungen untersucht wurden. Dies lässt sich auf die verwendeten Faktoren bei der Bestimmung von k_{ax} zurückführen.

Aus den Gleichungen ist ersichtlich, dass sowohl der effektiven Gewindelänge im Holz als auch der Nenndurchmesser des verwendeten Verbindungsmittels ein linearer Einfluss unterstellt wird. Des Weiteren ist eine Rohdichtekorrektur für abweichende Holzwerkstoffrohdichten zu C24 durchzuführen. Der Einfluss des Achs-Faserwinkels wird als konstant angenommen für Achs-Faserwinkel $\epsilon \ge 45^{\circ}$. Für Achs-Faserwinkel $\epsilon \le 45^{\circ}$ kann ein linearer Einfluss des Winkels festgestellt werden.

2-3 BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER LATERALEN TRAGFÄHIGKEIT

Die Ermittlung der Tragfähigkeiten von Verbindungen mit stiftförmigen Verbindungsmitteln stützt sich auf die Fließgelenktheorie nach Johansen [1]. Dieses Bemessungskonzept ist aktuell ebenfalls in der ÖNORM EN/B 1995-1-1 [3][4] verankert.

Die Ermittlung der Tragfähigkeit erfolgt je Verbindungsmittel und Scherfuge. Dabei ist es erforderlich, die Verbindung zu kategorisieren. Die Kategorisierung erfolgt nach Ausführung, dabei wird grundsätzlich unterschieden zwischen:

- einschnittigen Verbindungen,
- zweischnittigen Verbindungen, oder
- mehrschnittigen Verbindungen.

Bei mehrschnittigen Verbindungen wird die Tragfähigkeit unter der Annahme bestimmt, dass jede Scherfuge Teil einer Reihe von zweischnittigen Verbindungen ist. Auf die Vorgehensweise zur Bestimmung der Tragfähigkeit mehrschnittiger Verbindungen soll an dieser Stelle aber nicht näher eingegangen werden.

Des Weiteren erfolgt eine Einteilung der Verbindung bezüglich der zu fügenden Komponenten. Dabei stehen folgende Möglichkeiten zur Verfügung:

- Holz-Holz Verbindungen,
- Holz-Stahlblech Verbindungen
 - o dünnes Stahlblech einschnittig,
 - o dickes Stahlblech einschnittig,
 - o Stahlblech als Mittelteil einer zweischnittigen Verbindung,
 - o dünne Stahlbleche als Seitenteile einer zweischnittigen Verbindung, und
 - o dicke Stahlbleche als Seitenteile einer zweischnittigen Verbindung.

Diese Unterteilung der Verbindungen kann ÖNORM EN/B 1995-1-1 [3][4] Abschnitt 8.2 entnommen werden.

Die Fließgelenktheorie nach Johansen [1] bildet die Grundlage für die Bemessung von lateral beanspruchten Verbindungsmitteln. Holzbauschrauben sind dabei je nach Kerndurchmesser d_s , 1,1 x $d_s > 6$ mm, wie Bolzen und 1,1 x $d_s \le 6$ mm wie Nägel zu betrachten.

Nach Einteilung der unterschiedlichen Verbindungsarten ist der in dieser Arbeit verwendete Verbindungstyp als einschnittige Stahlblech-Holzverbindung mit Stahlblech als Seitenteil zu betrachten.

Die drei Kernversagensmechanismen dieses Verbindungstyps sind:

- Lochleibungsversagen (Versagensmechanismus c)
- Versagen mit einem Fließgelenk (Versagensmechanismus d)
- Versagen mit zwei Fließgelenken (Versagensmechanismus e)

Abbildung 2-4 soll diese drei Versagensmechanismen veranschaulichen.

Beim Versagensmechanismus Lochleibungsversagen wird die Kraft durch Kontaktpressung zwischen dem Gewindeteil der Schraube und dem Holzwerkstoff übertragen. Dabei übersteigt die Einwirkende Kraft den Lochleibungswiderstand des Holzwerkstoffes wodurch das Verbindungsmittel nahezu ohne Verformung durch den Holzwerkstoff gedrückt wird. Dieser Versagensmechanismus tritt vorwiegend bei kurzen Einschraubtiefen auf.

Der Versagensmechanismus bei dem sich ein Fließgelenk ausbildet wird zwar ebenfalls in gewissen Bereichen die Lochleibungsfestigkeit überschritten, wodurch es zu einer Verformung des oberen Teiles des Gewindes kommt. Jedoch kommt es durch die Einspannung des Schraubenkopfes im Stahlblech zu der Ausbildung eines plastischen Gelenkes. Durch die Ausbildung eines plastischen Fließgelenkes und der damit einhergehenden Verdrehung um diesen Punkt kommt es zu einer Lastumlagerung, wodurch zusätzlich zur lateralen Beanspruchung ein Teil der Kraft die Schraube axial beansprucht. Durch diesen Effekt können zusätzliche Reserven des Querschnitts ausgenützt werden. Dieser Effekt wird auch als Seileffekt bezeichnet.

Beim Versagensmechanismus mit zwei Fließgelenken wird durch die einwirkende Kraft die plastische Biegetragfähigkeit in einem weiteren Punkt überschritten. Dies führt zur Ausbildung eines weiteren Fließgelenks. Durch die Ausbildung des zweiten Fließgelenks ist die maximale Beanspruchung des Querschnitts erreicht. Wird die Last weiter gesteigert versagt der Schraubenquerschnitt.

Abbildung 2-4 Kernversagensmechanismen für dicke Stahlbleche als Seitenteil einer einschnittigen Verbindung

Die Ermittlung der Abschertragfähigkeit für die Modellvergleiche die in dieser Arbeit behandelt werden erfolgt dabei nach dem in ÖNORM EN/B 1995-1-1 [3][4] verankerten Bemessungskonzept, dass auf der Fließgelenktheorie nach Johansen [1] beruht. Die Bestimmungsgleichungen für die bereits zuvor beschriebenen Kernversagensmechanismen (c Lochleibungsversagen, d Ausbildung eines Fließgelenkes und e Ausbildung von zwei Fließgelenken) sind in der Gleichung (2.51) angegeben.

$$F_{\nu,Rk} = min \begin{cases} f_{h,1,k} \cdot t_1 \cdot d \\ f_{h,1,k} \cdot t_1 \cdot d \cdot \left[\sqrt{2 + \frac{4 \cdot M_{y,Rk}}{f_{h,1,k} \cdot d \cdot t_1}} - 1 \right] + \frac{F_{ax,Rk}}{4} \ (vgl. Glg. 8.10) \\ 2.3 \cdot \sqrt{M_{y,Rk} \cdot f_{h,1,k} \cdot d} + \frac{F_{ax,Rk}}{4} \end{cases}$$
(2.51)

2-3.1 BESTIMMUNG DER WESENTLICHSTEN PARAMETER

2-3.1.1 Nach ÖNORM EN/B 1995-1-1 [3][4]

Die Einteilung der Schrauben für die Bestimmung der Abschertragfähigkeit erfolgt wie bereits zuvor erläutert anhand ihres Kerndurchmessers d_s . Dabei gilt der in Gleichung (2.52) angegebene Zusammenhang für die Einstufung von Holzbauschrauben als Nägel und der in Gleichung (2.53) angegebene Zusammenhang für die Einstufung von Holzbauschrauben als Stabdübel (Bolzen).

$$1,1 \cdot d_{\rm s} \le 6 \, mm \tag{2.52}$$

$$1,1 \cdot d_{\rm s} > 6 \, mm$$
 (2.53)

Bestimmung der Lochleibungsfestigkeit:

Anhand der Einteilung von Holzbauschrauben kann nun die Bestimmung eines der wesentlichsten Gleichungsparameter erfolgen. Die Lochleibungsfestigkeit wird dabei für Nagelverbindungen wie in Gleichung (2.54) angegeben bestimmt:

$$f_{h,k} = \begin{cases} 0,082 \cdot \rho_k \cdot d^{-0,3} \\ 0,082 \cdot (1-0,01 \cdot d) \cdot \rho_k \end{cases} \quad f"ur \quad \substack{\text{N"agel o. vorgebohrte L"ocher} \\ \text{N"agel m. vorgebohrten L"ochern}} (vgl. Glg. 8.15 \ bzw. 8.16) (2.54)$$

Für Stabübelverbindungen (Bolzenverbindungen) kann die Lochleibungsfestigkeit wie in Gleichung (2.55) angegeben bestimmt werden. Dabei wird zusätzlich eine Anpassung für unterschiedliche Last-Faserwinkel α durchgeführt.

$$f_{h,0,k} = 0,082 \cdot (1 - 0,01 \cdot d) \cdot \rho_k(vgl.\,Glg.\,8.32)$$
(2.55)

$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90} \cdot \sin(\alpha)^2 + \cos(\alpha)^2} \ (vgl. Glg. 8.31)$$
(2.56)

$$k_{90} = \begin{cases} 1,35 + 0,015 \cdot d & Nadelhölzer \\ 1,30 + 0,015 \cdot d & für & Furnierschichthölzer (vgl. Glg. 8.33) \\ 0,90 + 0,015 \cdot d & Laubhölzer \end{cases}$$
(2.57)

Verbindungsmitteldurchmesser:

Die Bestimmung des Parameters d (Durchmesser des Verbindungsmittels) wird für Schrauben modifiziert. Dabei ist nicht der Nenndurchmesser der Schraube in die Gleichungen (2.58) einzusetzen, vielmehr ist ein effektiver Verbindungsmitteldurchmesser zu bestimmen. Dieser ergibt sich für Schrauben als das 1,1-fache des Kerndurchmessers (d_s) der Schraube.

$$d_{\rm ef} = 1, 1 \cdot d_{\rm s} \tag{2.58}$$

Anteil des Seileffektes:

Ein weiterer wesentlicher Parameter befasst sich mit dem bereits erläuterten Seileffekt. Dieser darf bei den Versagensmechanismen bei denen sich zumindest ein Fließgelenk ausbildet mitberücksichtigt werden. Dabei darf ein gewisser Anteil der Schraubentragfähigkeit auf Herausziehen (25 %) zusätzlich zur Abschertragfähigkeit addiert werden. Allerdings wird hier von der ÖNORM EN/B 1995-1-1 [3][4] gefordert, dass maximal 100 % des Minimums der Gleichung (2.51) angesetzt werden darf.

2-3.1.2 Ansätze Lochleibungsfestigkeit

Nachstehend sollen Ansätze zur Bestimmung der Lochleibungsfestigkeit aus Forschungsprojekten sowie Schraubenherstellern aufgezeigt werden.

Blaß et al. [10]:

Durch die Versuche von Blaß et al. [10] konnte ein direkter Ansatz der Lochleibungsfestigkeit für Holzbauschrauben ermittelt werden. Dabei erfolgt die Bestimmung der Lochleibungsfestigkeit explizit für Holzbauschrauben. Eine Anpassung des Verbindungsmitteldurchmessers entfällt für diesen Ansatz. Berücksichtigung finden dabei sowohl die Rohdichte, der Verbindungsmitteldurchmesser wie auch der Achs-Faserwinkel.

$$f_{h,\alpha,k} = \frac{0.019 \cdot \rho_k^{1.24} \cdot d^{-0.3}}{2.5 \cdot \cos(\varepsilon)^2 + \sin(\varepsilon)^2} \ (vgl. \ Glg. \ 3)$$
(2.59)

Gstettner [11]:

In der Masterarbeit von Michael Gstettner [11], die sich mit der Bestimmung des Tragverhaltens lateral beanspruchter, selbstbohrender Holzschrauben befasst, konnte festgestellt werden, dass der Ansatz, welcher von Blaß et al. [10] ermittelt wurde, zu sehr guten Übereinstimmungen mit den Prüfergebnissen führt.

ETA-11/0190 [12]:

Ein weiterer Ansatz zur Bestimmung der Lochleibungsfestigkeit wird in der ETA-11/0190 [12] angegeben. Dabei erfolgt die Ermittlung der Lochleibungsfestigkeit für Schrauben die in nicht vorgebohrtes Nadelholz eingebracht werden wie in Gleichung (2.60) angegeben. Für die Bestimmung der Lochleibungsfestigkeit von in vorgebohrten Nadel-, Buchen-, Eschen- oder Eichenholz wie in Gleichung (2.61) angegeben. Die Ansätze entsprechen dabei einer abgewandelten Form der Bestimmungsgleichungen der Lochleibungsfestigkeit, welche in der ÖNORM EN/B 1995-1-1 [3][4] angegeben werden. Der Einfluss

variierender Achs-Faserwinkel wird dabei ebenfalls durch einen k_{90} Beiwert geregelt. Dieser unterscheidet sich dahingehend, dass ein fixer Wert von 2,5 für k_{90} angesetzt wird.

$$f_{h,\alpha,k} = \frac{0.082 \cdot \rho_{k} \cdot d^{-0.3}}{2.5 \cdot \cos(\varepsilon)^{2} + \sin(\varepsilon)^{2}} \ (vgl. Glg. 2.2)$$
(2.60)

$$f_{h,\alpha,k} = \frac{0.082 \cdot \rho_{k} \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos(\varepsilon)^{2} + \sin(\varepsilon)^{2}} \ (vgl. Glg. 2.3)$$
(2.61)

Weiter Ansätze für die Bestimmung der Lochleibungsfestigkeit für abweichende Holzerzeugnisse können dabei ebenfalls aus der ETA-11/0190 [12] entnommen werden. Auf die Anführung dieser wird an dieser Stelle verzichtet.

2-4 BEMESSUNGSKONZEPTE ZU KOMBINIERT BEANSPRUCHTEN STIFTFÖRMIGEN VERBINDUNGSMITTELN

2-4.1 MUNSE UND COX [13]

Munse und Cox [13] untersuchte im Jahr 1956 den Einfluss von kombinierter Beanspruchung auf Nieten in Stahl-Stahl Verbindungen. Die Prüfkonfiguration (vgl. Abbildung 2-5) welche dabei entwickelt wurde, besteht aus vier Stahlscheiben, welche es erlauben, unterschiedliche Kraft-Angriffswinkel auf die Niete aufzubringen. Dabei können die Befestigungen, welche die Kraftübertragung von der Prüfmaschine auf die Prüfkonfiguration übertragen, beliebig anhand der zuvor getroffenen Unterteilung von Kraft-Angriffswinkeln $\Delta \gamma = 15^{\circ}$ angeordnet werden.

Fig. 8. Assembly of Test Fixture for Direct Tension Test of Rivets

Abbildung 2-5 Prüfkonfiguration entwickelt von Munse und Cox [13] (vgl. Abbildung 8)

Das zu prüfende Verbindungsmittel wird bei den Prüfungen in die dafür vorgesehenen Belastungsblöcke eingeführt. Die Belastungsblöcke sind dabei mit je zwei Verbindungsbolzen an den Stahlscheiben befestigt. Die Stahlscheiben können nach dem Einbau der Belastungsblöcke um den gewünschten Winkel gedreht werden. Dabei stellt die Befestigung in den Punkten G die reine Zugbeanspruchung und die Befestigung in den Punkten A die reine Abscherbeanspruchung dar.

Die Resultate, welche aus dieser Arbeit hervorgehen, sind für den modernen Ingenieurholzbau nur von untergeordneter Bedeutung, daher wird an dieser Stelle nur die Prüfkonfiguration erläutert, da diese einen wesentlichen Einfluss auf die Findung der Prüfkonfiguration dieser Arbeit darstellt.

2-4.2 DEBONIS UND BODIG [3]

DeBonis und Bodig [14] untersuchten in Ihrer Arbeit aus dem Jahr 1975 die Tragfähigkeit von Nagelverbindungen unter kombinierter Beanspruchung. Dabei wurde eine abgewandelte Form der Prüfkonfiguration, welche bereits bei der Arbeit von Munse und Cox [13] aus dem Jahr 1956 eingesetzt wurde, verwendet.

Variiert wurden sowohl die Holzsorte als auch die Kraftangriffswinkel und die Einschlagtiefe der Nägel. Dabei wurden insgesamt 144 Versuche durchgeführt. Die Ergebnisse der Versuche zeigen, dass das Hankinson Theorem nicht geeignet für Nagelverbindungen unter kombinierte Beanspruchung ist, da hierbei Fehler von bis zu 800 % zu erwarten sind. In weitere Folge wurde eine lineare Interaktion untersucht, welche im Zuge um eine sin-Funktion erweitert wurde, um das Verhalten besser abbilden zu können. Diese erweiterte lineare Interaktion liefert Fehler im Bereich von 15 % zu den getesteten Werten. Die empfohlenen Interaktionen für das Tragverhalten hinsichtlich der maximal aufnehmbaren Belastung sind in Gleichung (2.62) ausgewiesen:

$$\left(\frac{F_{\text{max,pred}} \cdot \sin(\gamma)}{F_{\text{lat}}}\right) + \left(\frac{F_{\text{max,pred}} \cdot \cos(\gamma)}{F_{\text{ax}}}\right) = 1,0 + K \cdot \sin(2\gamma) \text{ (vgl. Glg. 9 bzw. 10)}$$
(2.62)

Dabei sind:

 $F_{\text{max,pred}}$. maximal aufnehmbare Kraft der Verbindung F_{ax} maximal aufnehmbare Kraft der Verbindung auf reine Ausziehbeanspruchung F_{lat} maximal aufnehmbare Kraft der Verbindung auf reine Abscherbeanspruchung γ Last- Angriffswinkel K....... Amplitude einer Sinus Kurve ausgewertet an der Stelle $\gamma = 45^{\circ}$

Für die Ermittlung der Steifigkeiten war dieses Modell jedoch nicht zutreffend und lieferte Fehler von bis zu 50 %, daher wird im weiteren Verlauf der Arbeit von DeBonis und Bodig [14] empfohlen, eine logarithmische Interaktion der Steifigkeiten zu verwenden. Dies begründet DeBonis und Bodig [14] mit vorläufigen Gegenüberstellungen die einen nicht linearen Zusammenhang zwischen den Steifigkeiten und der Winkelvariation vermuten lassen.

Auswirkungen unterschiedlicher Winkel auf das Steifigkeitsverhalten wurden ebenfalls untersucht, hierbei konnte festgestellt werden, dass der Winkel durchaus Einfluss auf die Steifigkeiten nimmt. Dabei erhöht sich die Steifigkeit bei zunehmendem Last-Faserwinkel.

Die Effekte von axial aufgebrachter Last auf die Steifigkeit in lateraler Richtung wurde ebenfalls untersucht, dabei konnte ein linearer Zusammenhang festgestellt werden. Mit zunehmender Last erhöht sich auch die Steifigkeit.

2-4.3 EHLBECK UND SIEBERT [11]

Im Jahr 1984 untersuchten Ehlbeck und Siebert [2] das Tragverhalten von Nagelverbindungen bei gleichzeitiger Beanspruchung auf Abscheren und Herausziehen. In der Arbeit wird eine ähnliche Prüfkonfiguration verwendet wie bereits zuvor bei DeBonis und Bodig [14]. Diese Prüfkonfiguration ist sehr stark an jene angelehnt, welche bereits bei den Versuchen von Munse und Cox [13], bei der Untersuchung von kombiniert beanspruchten Stahlnieten verwendet wurde.

Insgesamt wurden so sechs Prüfserien mit Variation der Nageltypen und auch der Holzfeuchtigkeiten durchgeführt. Des Weiteren wurden die Einschlagtiefe und die Last-Faserwinkel variiert. Auf eine Variation des Achs-Faserwinkels wurde verzichtet. Dieser ist für alle Versuche mit 90 ° festgelegt.

Die Ergebnisse der Versuche zeigen, dass sich die untersuchten Einflussgrößen auf die Tragfähigkeiten gleichermaßen auswirken. Damit kann ein Einfluss von Nageldurchmesser, Schaftform, Einschlagtiefe, Holzrohdichte oder auch Holzfeuchtigkeit unabhängig vom Last-Faserwinkel erfolgen. Weiters wird aus den Ergebnissen klar, dass die Verformungen mit steigendem Last-Faserwinkel deutlich zunehmen.

Die Empfehlungen zur Ermittlung der Tragfähigkeiten von kombiniert beanspruchten Nägeln sind nachstehend aufgeführt. Dabei wird von Ehlbeck und Siebert [2] für $\gamma = 45^{\circ}$ eine lineare Interaktion empfohlen. Für Last-Achswinkel γ zwischen 0° und 30° sowie 60° und 90° kann mit einem günstigeren Verhalten gerechnet werden.

Für glattschaftige Nägel:

$$\frac{F_{\rm s}}{maxF_{\rm s}} + \frac{F_{\rm z}}{maxF_{\rm z}} = 1 \tag{2.63}$$

Für übliche Schraubennägel und Rillennägel:

$$\left(\frac{F_{\rm s}}{maxF_{\rm s}}\right)^2 + \left(\frac{F_{\rm z}}{maxF_{\rm z}}\right)^2 = 1 \tag{2.64}$$

Dabei sind:

 $F_{\rm s}$einwirkende Abscherkraft auf die Verbindung $maxF_{\rm s}$aufnehmbare Abscherkraft der Verbindung $F_{\rm z}$einwirkende Ausziehkraft auf die Verbindung $maxF_{\rm z}$aufnehmbare Ausziehkraft der Verbindung

2-4.4 MCCLAIN UND CARROLL [15]

McLain und Carroll [15] untersuchten im Jahr 1989 das Tragverhalten von Verbindern im Holzbau unter Einwirkung einer kombinierten Beanspruchung. Dabei wurde ein ähnliche Prüfkonfiguration verwendet wie zuvor bereits bei den Untersuchungen von Munse und Cox [13] zur Beanspruchung von kombiniert beanspruchten Nieten im Stahlbau aus dem Jahr 1956 und der Arbeit von DeBonis und Bodig [14] aus dem Jahr 1975.

Dabei konnte festgestellt werden, dass die Hankinson Gleichung und die quadratische Interaktion den Zusammenhang der unterschiedlichen Kraftkomponenten in Bezug auf die Tragfähigkeit am besten beschreiben. Um diese Aussage zu untermauern, wurden im Zuge dieser Arbeit jeweils zwischen 10 und 22 Versuche für die unterschiedlichen Kombinationen aus Befestigungs- und Kraftangriffswinkel durchgeführt. Insgesamt wurden so 125 Versuche für Zugschrauben mit einem Durchmesser von 10 mm, 163 Versuche für Zugschrauben mit einem Durchmesser von 16 mm und 164 Versuche für Schneidschrauben mit einem Durchmesser von 4,47 mm umgesetzt.

Es sind Kraft-Angriffswinkel von 0 ° (reine Ausziehbeanspruchung), 22,5 °, 45 °, 67,5 ° und 90 ° (reine Abscherbeanspruchung) durchgeführt worden.

Die Gleichungen, welche den Zusammenhang am besten beschreiben, sind in den Gleichungen (2.65) und (2.66) aufgeführt:

$$F_{\text{max,pred}} = \frac{F_{\text{ax}} \cdot F_{\text{lat}}}{F_{\text{ax}} \cdot \cos(\gamma)^2 + F_{lat} \cdot \sin(\gamma)^2} \text{ (vgl. Glg. 2)}$$
(2.65)

$$\left(\frac{F_{\text{max,pred}} \cdot \sin(\gamma)}{F_{\text{lat}}}\right)^2 + \left(\frac{F_{\text{max,pred}} \cdot \cos(\gamma)}{F_{\text{ax}}}\right)^2 \le 1 \text{ (vgl. Glg. 3)}$$
(2.66)

Dabei sind:

2-4.5 REYER UND LINZNER [10]

1993 untersuchten Reyer und Linzner [16] in mehreren Versuchen die Belastbarkeit von Nägeln in Hirnholzverbindungen mit Stahlblechen bzw. BFU Platten.

Hierbei wurden neben der kombinierten Beanspruchung auch das Verhalten bei Herausziehen sowie Abscheren untersucht. Insgesamt wurden 310 Abscherversuche, 150 Ausziehversuche und 100 Versuche mit kombinierter Belastung durchgeführt.

Für die kombinierte Beanspruchung wurde eine eigens dafür vorgesehene Messkonfiguration entwickelt. Untersucht wurden jeweils die Winkel von $\gamma = 15, 30, 45, 60$ und 75 °.

Die Ergebnisse der Untersuchungen zeigen, dass die quadratische Interaktion bei Nägeln bis zu Last-Angriffswinkeln $\gamma = 30^{\circ}$ als die Bestimmungsmethode zur Ermittlung der Tragfähigkeit angesetzt werden sollte.

Für Last-Angriffswinkel $\gamma < 30^{\circ}$ wird die Ausziehkomponente günstig durch das Abscheren beeinflusst. Für die Ermittlung der Tragfähigkeit für $\gamma < 30^{\circ}$ wird empfohlen, die quadratische Interaktion nur bei kurzfristiger Wirkung der Ausziehkomponente anzusetzen, bei langfristiger Wirkung der Ausziehkomponente wird empfohlen auf einen Ansatz der Tragfähigkeit zu verzichten.

Dies ergibt die Empfehlungen für die Ermittlung von kombiniert beanspruchten Nägeln für Last-Angriffswinkel von $\gamma \ge 30^{\circ}$:

$$\left(\frac{N_{1\text{HiHo}}}{empf B_{1\text{HiHo}}}\right)^2 + \left(\frac{N_{Z\text{HiHo}}}{empf B_{Z\text{HiHo}}}\right)^2 \le 1 \text{ (vgl. Glg. 6.4 - 1)}$$
(2.67)

$$empfB_{1\text{HiHo}} = 0.67 \cdot zulN_1 \text{ (vgl. Glg. 6.2.1 - 1)}$$
 (2.68)

$$zulN_1 = 1,25 \cdot \frac{500 \cdot d_n}{10 + d_n} \tag{2.69}$$

$$empfB_{\rm ZHiHo} = \begin{cases} 0.5 \cdot d_{\rm n} \cdot s_{\rm w} \\ 0.3 \cdot d_{\rm n} \cdot s_{\rm w} \end{cases} \text{für Rillennägel}_{\rm glatte Nägel} \text{ (vgl. Glg. 6.3 - 1 @nd Glg. 6.3 - 2)} \qquad (2.70)$$

Dabei sind:

N _{1HiHo} N	einwirkende Abscherkraft auf die Verbindung einwirkende Ausziehkraft auf die Verbindung
$empf B_{1HiHo}$	empfohlene Belastbarkeit der Verfasser für auf Abscheren belastete Nägel im Hirnholz
empfB _{ZHiHo}	empfohlene Belastbarkeit der Verfasser für auf Ausziehen belastetet Nägel im Hirnholz
<i>d</i> _n	Nageldurchmesser
S _w	wirksame in Rechnung zu stellende Einschlagtiefe

2-4.6 LAGGNER [12]

In der Masterarbeit von Laggner [17] wird das Verhalten von kombiniert beanspruchten, selbstbohrenden Holzschrauben genauer untersucht. Im Speziellen wurde versucht, eine Prüfkonfiguration zu finden, bei der – im Gegensatz zu den, auf Munse und Cox [13] basierenden Konfigurationen – eine getrennte Steuerung der Belastungsgröße und –geschwindigkeit für die axiale und laterale Richtung möglich ist.

Bei der vorliegenden Prüfkonfiguration, welche in Abbildung 2-6 dargestellt ist, wird der Prüfkörper über eine Stahlplatte, welche sich an der Oberseite des Prüfkörpers befindet, mittels Gewindestangen am Biegetisch befestigt. Das Anschlussblech, welches die Verbindung zwischen der axialen und lateralen

Lastaufbringung darstellt, ist durch die zu prüfende Schraube mit dem Prüfkörper verbunden. Um die Reibungskräfte, welche bei der Aufbringung der Abscherkomponente entstehen zu minimieren, wurde zusätzlich eine Teflonschicht zwischen Anschlussblech und Prüfkörperoberfläche eingesetzt. Die Lastaufbringung der Abscherkomponente erfolgt dabei über die Universalprüfmaschine. Die Aufbringung der Ausziehkomponente wird über Kopplung von Gewindestangen mit dem Anschlussblech sichergestellt. Dabei wird die Zugkraft in den Gewindestangen durch verschweißte Ösen auf das Anschlussblech übertragen. Die Änderung der Zugkraft in der Gewindestange wird über das Anziehen von Muttern bewerkstelligt. Mithilfe dieses Aufbaus der Prüfkonfiguration ist es möglich, eine unabhängige Kombination aus Abscher- und Ausziehbeanspruchung auf die Schraube zu übertragen.

Abbildung 2-6 Prüfkonfiguration nach Laggner [17] (oben: umgesetzter Aufbau; unten: schematischer Aufbau) (vgl. Abbildung 3.25)

Die Versuchsdurchführung zielte dabei speziell auf die Ermittlung des Tragvermögens einer Stahlblechholzverbindung bei kombinierter Beanspruchung ab. Dabei wurde ferner die Auswirkung einer sequentiellen (anstatt simultanen) Aufbringung der Kraftkomponenten axial und lateral untersucht. Insgesamt wurden im Zuge der Versuchsdurchführung 17 Prüfserien zu je mind. 5 bis max. 10 Versuche durchgeführt. Untersucht wurde dabei Brettschichtholz der Holzart Fichte. Bei der verwendeten Schraube handelte es sich um eine ASSY Plus Vollgewindeschraube der Firma Würth mit einem nominellen Durchmesser von d = 6 mm. Der Achs-Faserwinkel wurde für alle Prüfserien konstant mit $\varepsilon = 90^{\circ}$

festgelegt. Das Prüfprogramm, welches der Masterarbeit von Laggner [17] zugrunde liegt, kann Tabelle 2-5 entnommen werden.

Serie	Lastaufbringung	Anzahl der Versuche
01	Rein axial bis Versagen	10
02	Rein lateral bis Versagen	10
03	Gleichzeitige Steigerung beider Komponenten	10
04	Gleichzeitige Steigerung beider Komponenten	10
05	Gleichzeitige Steigerung beider Komponenten	10
06	Gleichzeitige Steigerung beider Komponenten	10
07A	Rein axial bis Bruch ohne Führung	5
07B	Rein lateral bis Bruch ohne Führung 5	
08	Axial bis 13.0 kN; dann lateral bis Versagen	10
09	Lateral bis 2.3 kN; dann axial bis Versagen	10
10	Axial bis 10.4 kN; dann lateral bis Versagen	10
11	Lateral bis 4.8 kN, dann axial bis Versagen	10
12	Axial bis 5.6 kN; dann lateral bis Versagen	10
13	Lateral bis 5.6 kN; dann axial bis Versagen 10	
14	Axial bis 2.2 kN; dann lateral bis Versagen 10	
15	Lateral bis 6.0 kN; dann axial bis Versagen	10
16	Rein lateral bis Versagen	6

Tabelle 2-5:Erläuterung Prüfserien Laggner [17] (vgl. Tab. 4.3)

Die Gesamtanzahl der Hauptversuche beläuft sich auf 156 Versuche. Die daraus resultierenden Ergebnisse für die Bemessung bei kombinierter Beanspruchung sind mittels der quadratischen Interaktion, laut Laggner [17], als konservativ zu betrachten. Daher wurden alternative Hochzahlen mittels Anpassung der Interaktionbeziehung an die Prüfergebnisse bestimmt. Für die Interaktion der Tragfähigkeiten sollte nach Laggner [17] eine Hochzahl von 2,4 für Mittelwerte und eine Hochzahl von 3,1 für charakteristische Werte verwendet werden.

Für die Forschungsfragen zur sequentiellen Belastung im Vergleich zur simultanen Lastaufbringung zeigte sich anhand der Ergebnisse eine höhere Tragfähigkeit bei sequentieller Lastaufbringung im Vergleich zur simultanen Lastaufbringung. Speziell bei den Prüfserien 13 und 15 ist eine deutlich höhere axiale Tragfähigkeit im Vergleich zu den Prüfserien der simultanen Lastaufbringung zu erwarten.

Für die Interaktion der Steifigkeiten konnte kein geeignetes Modell ermittelt werden. Daher wird von Laggner [17] empfohlen die Steifigkeiten mit zwei getrennten Federn zu modellieren. Dies begründet Laggner [17] mit der Verhältnismäßig geringen Beeinflussung der Steifigkeit durch unterschiedliche Belastungsszenarien.

2-5 BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER AXIALEN STEIFIGKEIT

Ein weiterer Aspekt, der bei der Dimensionierung von Verbindungen Berücksichtigung finden muss, ist die Ermittlung der Steifigkeiten eben dieser Verbindungen, dabei sind die Steifigkeiten je nach Belastungssituation zu unterscheiden. Dies ist notwendig, um Verformungen zufolge dynamischer oder

statischer Einwirkungen besser vorhersagen bzw. eine genauere Modellierung von Systemen vornehmen zu können. In Zeiten computerbasierter Berechnungsprogramme ist eine möglichst realitätsnahe Modellierung von Verbindungen durchaus ein Punkt, welcher leichter zu realisieren ist wie in Zeiten ohne Computerunterstützung. Mithilfe der Prüfungen, welche in Forschungsarbeiten oder auch Zulassungsverfahren durchgeführt wurden, lassen sich Steifigkeiten von Verbindungsmitteln in Kombination mit Holz abschätzen bzw. berechnen.

Die Ermittlung eben dieser Steifigkeiten ist ein wesentlicher Punkt, welcher in der Betrachtung der Grenzzustände der Tragfähigkeit und vor allem der Gebrauchstauglichkeit von signifikanter Bedeutung ist.

Nachstehend sollen einige Ansätze zur Ermittlung von Steifigkeiten in axialer Richtung der Verbindungsmittel aufgezeigt bzw. erläutert werden.

2-5.1 BLAß ET AL. [6]

Für die Bestimmung des Verschiebungsmoduls in axialer Richtung wurden 413 Einzelversuche herangezogen. Für alle Versuche ist ein Einschraubwinkel von $\varepsilon = 90^{\circ}$ fixiert worden. Die Bestimmung der Gleichung erfolgte über eine multiple Regressionsanalyse der vorliegenden Prüfdaten. Die so ermittelte Bemessungsformel kann der nachstehenden Gleichung entnommen werden.

$$K_{\text{ser,ax}} = 234 \cdot (\rho \cdot d)^{0,2} \cdot l_{\text{ef}}^{0,4} \text{ (vlg. Glg. 12)}$$
(2.71)

Dabei sind:

 $K_{ser,ax}$Verschiebungsmodul für in Achsrichtung beanspruchte Schrauben *d*.....Gewindeaußendurchmesser der Schraube l_{ef}Eindringtiefe des Schraubengewindes in das Holzbauteil

ρ.....Rohdichte des Grundmaterials

Weiters wird angegeben, dass die Gleichung nur für rechtwinklig zur Faser eingeschraubte Verbindungsmittel verwendet werden sollte. Für die Achs-Faserwinkel $\varepsilon < 90^{\circ}$ konnte keine akzeptable Funktion mittels multipler Regressionsanalyse gefunden werden. Dies begründen Blaß et al. [10] mit der Tatsache einer nicht ausreichenden Variation der Eindrehtiefe. Zur Ermittlung einer axialen Steifigkeit von Verbindungsmitteln mit einem Achs-Faserwinkel $\varepsilon < 90^{\circ}$ wurden 799 Versuche herangezogen.

2-5.2 ETA 12-0373 [1]

Die ETA-12/0373 [5] beinhaltet Gleichungen für die Ermittlung der Steifigkeiten in axialer Richtung. Dabei werden die Einflüsse unterschiedlicher Holzarten über einen Vorfaktor gesteuert. Unterschieden werden jedoch nur Nadelhölzer und Laubhölzer. Für die Tragfähigkeit wesentliche Parameter wie etwa der Achs-Faserwinkel finden dabei keine Berücksichtigung.

$$K_{\text{ser,ax}} = \begin{cases} 25 \cdot d \cdot l_{\text{ef}} & \text{Nadelholz} \\ 30 \cdot d \cdot l_{\text{ef}} & \text{LaZbholz} \end{cases}$$
(2.72)

Dabei sind:

 $K_{ser,ax}$Verschiebungsmodul für in Achsrichtung beanspruchte Schrauben *d*.....Gewindeaußendurchmesser der Schraube l_{ef}Eindringtiefe des Schraubengewindes in das Holzbauteil

Wie in Gleichung 2.90 ersichtlich, kann von einem linearen Einfluss des verwendeten Verbindungsmitteldurchmessern als auch der effektiven Eindrehtiefe ausgegangen werden.

2-5.3 RINGHOFER ET AL. [13]

In der Publikation von Ringhofer et al. [18] aus dem Jahr 2015 wird neben der Tragfähigkeit ebenfalls ein Modell zur Bestimmung der axialen Steifigkeit von selbstbohrenden Holzschrauben angegeben. Dieses

. . .

Verfahren beruht ähnlich wie das Verfahren zur Ermittlung von axialen Tragfähigkeiten von Ringhofer [8] und Brandner et al. [9] auf der Verwendung sogenannter *k*-Faktoren. Der Einfluss unterschiedlicher Parameter wird über die *k*-Faktoren gesteuert. Die Referenzsteifigkeit kann durch das Einsetzen der *k*-Faktoren auf die Einbau- und Belastungssituation adaptiert werden.

$$K_{\text{ser.ax}} = k_{\text{ser}} \cdot d \cdot \pi \cdot l_{\text{ef}} \text{ (vgl. Glg. 4)}$$
(2.73)

igniim

tost conta

$$k_{\text{ser,ref}} = 24.7 \cdot \rho^{0.75} \cdot d^{-1.70} \cdot l_{\text{ef}}^{-0.60} \text{ (vgl. Glg. 15)}$$
 (2.74)

$$k_{\text{ser}} = k_{\text{ser,ref}} \cdot k_{\text{ax}} \cdot k_{\text{sys}} \cdot \left(\frac{\rho}{\rho_{\text{ref}}}\right)^{k_{\rho}}$$
 (2.75)

$$k_{\rm ax} = \begin{cases} 1,00\\ 0,75 + \frac{1-0,75}{\varepsilon} \cdot \varepsilon & \text{für } 0 \le \varepsilon \le 90^{\circ} \text{ (vgl. Glg. 10)} \end{cases}$$
(2.76)

$$k_{\text{svs}} = 1 \text{ für Vollholz (vgl. Tab. 3)}$$
 (2.77)

$$k_{\rm p} = 0.75 \,(\text{vgl. Glg. 9})$$
 (2.78)

Dabei sind:

Anhand der zuvor vorgestellten Gleichungen zeigt sich das der Einfluss sowohl des Durchmessers des Verbindungsmittels als auch die effektive Gewindelänge, die im Holzbauteil verankert ist, linear in die Betrachtungen der Steifigkeit einfließen. Bei der Anpassung des Referenz-Verschiebungsmoduls auf die vorherrschende Belastungssituation, sind der Einfluss des Achs-Faserwinkels sowie die Anpassung für unterschiedliche Holzprodukte ebenfalls linear einzurechnen. Die Anpassung der Rohdichte erfolgt, wie in anderen zuvor gezeigten Bemessungsmodellen mit exponentiellem Faktor.

2-5.4 MODELL KONFIGURATION BURTSCHER LIGHT

Das empirische Modell welches in Gleichung (2.79) angegeben wird, entstammt dabei einer unveröffentlichten Arbeit, welche ebenfalls am Institut für Holzbau und Holztechnologie der Technischen Universität Graz durchgeführt wurde. Die Prüfkonfiguration, welche hierfür zur Anwendung kam, entspricht dabei einer vereinfachten Konfiguration dieser Arbeit, sh. hierzu auch Abschnitt 3-2, diese kann der Abbildung 2-7 entnommen werden. Mit Anwendung dieser Konfiguration wurden Versuche zur reinen axialen Beanspruchung durchgeführt und der in Gleichung (2.79) angegebene Zusammenhang der Steifigkeiten festgestellt.

$$K_{\text{ser,ax}} = 125,46 \cdot \left(\frac{\rho_{12}}{420}\right)^{0.85} \cdot d \cdot l_{\text{ef}}^{0.58}$$
(2.79)

Dabei sind:

Kser,ax Verschiebungsmodul für in Achsrichtung beanspruchte Schrauben

d..... Gewindeaußendurchmesser der Schraube

 $l_{\rm ef}$ Eindringtiefe des Schraubengewindes in das Holzbauteil

Abbildung 2-7 Prüfkonfiguration Burtscher Light

2-6 BEMESSUNGSKONZEPTE ZUR BESTIMMUNG DER LATERALEN STEIFIGKEIT

2-6.1 SIA 265 (2012) [13]

Im Zuge der Auswertung der Ergebnisse dieser Arbeit wurde festgestellt, dass die Steifigkeiten nach ÖNORM EN/B 1995-1-1 [3][4] deutliche Abweichungen zu den Prüftechnisch ermittelten Steifigkeiten aufwiesen. Daher wurde im Verlauf der Arbeit festgelegt, dass die Ergebnisse der lateralen Steifigkeit auch mit den Bemessungskonzepten der SIA 265 [19] verglichen werden sollten.

Die Bemessungskonzepte für Steifigkeiten von auf Abscheren beanspruchten Verbindungsmitteln sollen nun kurz erläutert werden. Dabei werden die zwei aktuell gültigen Bemessungsregeln für nicht vorgebohrte Nägel und Stabdübel vorgestellt, welche auch bei der Bestimmung der lateralen Steifigkeit von Holzbauschrauben zu verwenden sind. Dabei wird unterschieden zwischen nicht vorgebohrten Holzbauschrauben, die wie nicht vorgebohrte Nagelverbindungen zu behandeln sind und vorgebohrten Holzbauschrauben, die wie Stabdübelverbindungen zu behandeln sind.

Anzumerken ist, dass die Bestimmungen für die Bemessung für jeweils ein Verbindungsmittel und eine Scherfuge gelten. Das bedeutet, dass die Steifigkeit für Verbindungsmittelgruppen mit der Anzahl der Verbindungsmittel sowie der Anzahl der Scherfugen zu multiplizieren ist.

2-6.1.1 Bemessungskonzept für nicht vorgebohrte Nägel

Beim Bemessungskonzept für Nägel wird unterschieden zwischen Holz-Holz Verbindungen und Holz-Stahl Verbindungen. Eine weitere Unterscheidung erfolgt aufgrund des Achs-Faserwinkels ϵ . Die vorherrschenden Bemessungsregeln sind in Tabelle 2-6 aufgelistet.

Tabelle 2-6:Verschiebungsmodul Kser pro Nagel und Scherfuge lt. SIA 265 [19] (vgl. Tabelle 25 SIA 265 [19])

Kraft- zur Faserrichtung	Holz-Holz Verbindungen	Holz-Stahl Verbindungen
Parallel zur Faserrichtung $K_{ser,0}$	$K_{ m ser,0} = 60 \cdot d^{1,7}$	$K_{\rm ser,0} = 120 \cdot d^{1,7}$
Rechtwinklig zur Faserrichtung $K_{ser,90}$	$K_{ m ser,90} = 30 \cdot d^{1,7}$	$K_{ m ser,90} = 60 \cdot d^{1,7}$

Dabei sind:

 $K_{\text{ser},0}$ Steifigkeit für parallel zur Faserrichtung belastete Verbindungsmittel

 $K_{ser,90}$ Steifigkeit für rechtwinklig zur Faserrichtung belastete Verbindungsmittel

d..... Nenndurchmesser des Verbindungsmittels

Für abweichende Achs-Faserwinkel dürfen die Ergebnisse der Gleichungen aus Tabelle 2-6 linear interpoliert werden. Bei den Bemessungsregeln zeigt sich, dass die Steifigkeiten für Stahl-Holz Verbindungen den doppelten Wert zu jenen für Holz-Holz-Verbindungen annehmen. Dies entspricht demselben Ansatz, der in den Normen ÖNORM EN/B 1995-1-1 [3][4] angewendet wird.

Wie in der Tabelle 2-6 ersichtlich, kann ein exponentieller Einfluss des Durchmessers des Verbindungsmittels festgestellt werden.

2-6.1.2 Bemessungskonzept für Stabdübel

Für das Bemessungskonzept für Stabdübel wird ein ähnlicher Ansatz verfolgt wie bei der Bemessung für Nägel. Die Unterscheidung erfolgt wiederum für Holz-Holz- und Holz-Stahl-Verbindungen. Zusätzlich wird jedoch eine Berücksichtigung der Rohdichte des verwendeten Grundmaterials eingeführt. Unterschiedliche Achs-Faserwinkel des Verbinders zum Grundmaterial werden wie bei den Nägeln berücksichtigt. Die Regelungen sind in Tabelle 2-7 ausgewiesen.

Tabelle 2-7:Verschiebungsmodul Kser pro Stabdübel und Scherfuge lt. SIA 265 [19] (vgl. Tabelle 21
SIA 265 [19])

Kraft- zur Faserrichtung	Holz-Holz Verbindungen	Holz-Stahl Verbindungen
Parallel zur Faserrichtung $K_{ser,0}$	$K_{\text{ser},0} = 3 \cdot \rho_k^{0,5} \cdot d^{1,7}$	$K_{\rm ser,90} = 6 \cdot \rho_{\rm k}^{0,5} \cdot d^{1,7}$
Rechtwinklig zur Faserrichtung K _{ser,90}	$K_{\text{ser},0} = 1.5 \cdot \rho_k^{0.5} \cdot d^{1.7}$	$K_{\text{ser},0} = 3 \cdot \rho_k^{0,5} \cdot d^{1,7}$

Dabei sind:

 $K_{ser,0}$ Steifigkeit für parallel zur Faserrichtung belastete Verbindungsmittel $K_{ser,90}$ Steifigkeit für rechtwinklig zur Faserrichtung belastete Verbindungsmittel ρ_k charakteristische Rohdichte des Grundmaterials

d Nenndurchmesser des Verbindungsmittels

Für abweichende Achs-Faserwinkel dürfen die in Tabelle 2-7 angegebenen Gleichungen linear interpoliert werden.

2-6.2 ÖNORM EN/B 1995-1-1 [3][4]

Die Bestimmung der lateralen Steifigkeit von Holz-Holz-Verbindungen wird nach ÖNORM EN/B 1995-1-1 [3][4] wie in Gleichung (2.80) angegeben durchgeführt. Die in Gleichung (2.80) angegebene Gleichung

kann dabei für Stabdübel, Bolzen, Holzbauschrauben und vorgebohrte Nägel angewendet werden. Der Versagensmechanismus nach der Fließgelenktheorie nach Johansen [1] bleibt dabei unberücksichtigt.

$$K_{\text{ser,lat}} = \rho_{\text{m}}^{1,5} \cdot \frac{d}{23} \text{ (vgl. lt. Tab. 7.1)}$$
 (2.80)

Dabei sind:

 $K_{\text{ser,lat}}$ berechnete Steifigkeit für Holz-Holz Verbindung ρ_{m}Mittlere Rohdichte des Grundmateriales d.....Nenndurchmesser des Verbindungsmittels

Bei der Bestimmung der Steifigkeit laut Gleichung (2.80) handelt es sich wie bereits zuvor bei der SIA 265 [19] um die Steifigkeit für ein Verbindungsmittel und eine Scherfuge. Für die Betrachtung einer Gesamtsteifigkeit einer Verbindungsmittelgruppe sind die Werte mit der Anzahl der Verbindungsmittel sowie der Anzahl der Scherfugen zu multiplizieren.

Für die Bestimmung der Steifigkeit kann festgestellt werden, dass ein exponentieller Einfluss der Rohdichte sowie ein linearer Einfluss des verwendeten Verbindungsmitteldurchmessers in die Betrachtungen mit eingehen. Bei Betrachtungen der Steifigkeiten wird immer von Mittelwerten ausgegangen, deshalb können die Werte der charakteristischen Rohdichte mit der Formel laut Gleichung (2.81) auf eine mittlere Rohdichte umgerechnet werden.

$$\rho_{\rm m} = 1,15 \cdot \rho_{\rm k} \, (\text{vgl. Glg. NA. 7.1} - \text{E1})$$
 (2.81)

Werden bei Holz-Holz-Verbindungen unterschiedliche Rohdichten kombiniert, so ist eine mittlere Rohdichte der verwendeten Grundmaterialien in der Gleichung zu verwenden. Dies kann wie in Gleichung (2.82) angegeben durchgeführt werden.

Dabei sind:

 $\label{eq:pm.lements} \begin{array}{l} \rho_m......berechnete mittlere Rohdichte der Verbindung\\ \rho_{m,1}.....Mittlere Rohdichte des Holzwerkstoffes 1\\ \rho_{m,2}.....Mittlere Rohdichte des Holzwerkstoffes 2 \end{array}$

$$\rho_{\rm m} = \sqrt{\rho_{\rm m,1} \cdot \rho_{\rm m,2}} \ (\text{vgl. Glg. 7.1})$$
(2.82)

Für Stahl-Holz-Verbindungen oder auch Beton-Holz-Verbindungen wird empfohlen, die Steifigkeit $K_{\text{ser,lat}}$ um den Faktor von 2,0 zu erhöhen.

$$K_{\text{ser,lat}} = 2 \cdot \rho_{\text{m}}^{1,5} \cdot \frac{d}{23}$$
(2.83)

2-7 GEGENÜBERSTELLUNG BEMESSUNGSMODELLE

ARBEITSRELEVANTER

In diesem Abschnitt sollen die zuvor aufgezeigten Bemessungskonzepte miteinander verglichen und Unterschiede aufgezeigt und diskutiert werden. Die Modelle, welche in Abschnitt 2-7 verglichen werden, sollen ebenfalls für den Vergleich der prüftechnisch bestimmten Daten mit Modellen herangezogen werden. Dies dient der Bestimmung des Modells, welches die prüftechnischen Daten in seiner Gesamtheit am besten beschreiben kann.

Durchgeführt wird die Gegenüberstellung für sowohl die Tragfähigkeiten als auch die Steifigkeiten. Dabei erfolgt eine Aufteilung der Ergebnisse hinsichtlich der Belastungsrichtung.

2-7.1 GEGENÜBERSTELLUNG DER TRAGFÄHIGKEITEN

2-7.1.1 Tragfähigkeiten in axialer Richtung

Für die Gegenüberstellung der axialen Tragfähigkeit werden die Modelle der ÖNORM EN/B 1995-1-1 [3][4] und den dazugehörigen nationalen Festlegungen lt. ÖNORM EN/ B 1995-1-1 [3][4] mit den Modellen lt. ETA-12/0373 [5], Brandner et al. [9] und Ringhofer [8] verglichen. Für den Modellvergleich wird ausgehend von der Ausziehfestigkeit nach ETA-12/0373 [5] die Abweichung der unterschiedlichen Modellansätze in Tabelle 2-8 aufgezeigt. Die ausführliche Berechnung der Einzelergebnisse ist den Gleichungen (2.84) bis (2.89) für die ÖNORM EN/B 1995-1-1 [3][4], den Gleichungen (2.90) bis (2.92) für die ETA-12/0373 [5], den Gleichungen (2.93) bis (2.104) für den Modellansatz nach Brandner et al. [9] und den Gleichungen (2.105) bis (2.116) für den Modellansatz nach Ringhofer [8] zu entnehmen.

Für die Gegenüberstellung werden folgenden Werte festgelegt.

- Verbindungsmitteldurchmesser d = 8 mm und Kerndurchmesser $d_c = 5,2$ mm
- Effektive Gewindelänge im Holzbauteil $l_{ef} = 105 \text{ mm}$
- Rohdichte $\rho_k = 350 \text{ kg/m}^3$
- Achs-Faserwinkel $\varepsilon = 30^{\circ}$
- Verbindungsmittelanzahl n = 1

Ausgehend von den Ergebnissen der ETA-12/0373 [5] sind die Abweichungen der Bemessungsmodelle für die Ausziehfestigkeit in Tabelle 2-8 angegeben. Anhand der Ergebnisse ist zu erkennen, dass die Modellansätze der ÖNORM EN/B 1995-1-1 [3][4] und der ETA-12/0373 [5] eine gute Übereinstimmung aufweisen. Die Modellansätze nach Brandner et al. [9] und Ringhofer [8] weisen dabei deutlichere Abweichungen zu der Ausziehfestigkeit nach ETA-12/0373 [5] auf. Zu erkennen ist, dass die Modelle von Brandner et al. [9] und Ringhofer [8] eine gute Übereinstimmung aufweisen. Dies ist, wie bereits in Abschnitt 2-2.3 erläutert, darauf zurückzuführen, dass das Modell nach Brandner et al. [9] auf den Untersuchungen von Ringhofer [8] aufbaut.

Tabelle 2-8:Gegenüberstellung arbeitsrelevanter Bemessungsmodelle zur Bestimmung der axialen
Tragfähigkeit

	ÖNORM EN/B 1995-1-1 [3][4]	ETA-12/0373 [5]	Brandner et al. [9]	Ringhofer [8]
$f_{\mathrm{ax}, \varepsilon, \mathrm{Rk}}$	3,47 N/mm ² +8,3 %	3,20 N/mm ²	4,12 N/mm ² +28,7 %	4,37 N/mm ² +36,7 %

Bestimmung It. ÖNORM EN/B 1995-1-1 [3][4]

Im ersten Schritt der Bemessung lt. ÖNORM EN/B 1995-1-1 [3][4] muss bestimmt werden, welche Regelungen für die verwendete Schraube zutreffen.

$$\eta = \frac{d_{\rm c}}{d} = \frac{5.2}{8} = 0.65 \tag{2.84}$$

Das Verhältnis von Kerndurchmesser d_c zu Nenndurchmesser d ergibt sich für das gewählte Beispiel zu $\eta = 0,65$. Daraus resultiert die Verwendung der Formel It. Gleichung (2.2) bis (2.5). Damit ergibt sich die aufnehmbare Kraft der Verbindung zu:

$$F_{\text{ax},\epsilon,\text{Rk}} = \frac{n_{\text{ef}} \cdot f_{\text{ax},\text{k},1} \cdot d \cdot l_{\text{ef}} \cdot k_{\text{d}}}{1,2 \cdot \cos(\epsilon)^2 + \sin(\epsilon)^2} = \frac{1 \cdot 12,52 \cdot 8 \cdot 105 \cdot 1}{1,2 \cdot \cos(30)^2 + \sin(30)^2} = 9144,8 \, N$$
(2.85)

Dabei sind die Gleichungsparameter wie nachstehend angegeben zu bestimmen:

$$f_{\rm ax,k,1} = 0.52 \cdot d^{-0.5} \cdot l_{\rm ef}^{-0.1} \cdot \rho_{\rm k}^{0.8} = 0.52 \cdot 8^{-0.5} \cdot 105^{-0.1} \cdot 350^{0.8} = 12.52 \frac{N}{\rm mm2}$$
(2.86)

$$k_{\rm d} = \min \begin{cases} \frac{d}{8} = \frac{8}{8} = 1\\ 1 \end{cases}$$
(2.87)

$$n_{\rm ef} = n^{0,9} = 1^{0,9} = 1 \tag{2.88}$$

Für einen Vergleich der Auszichsteifigkeiten wird eine Anpassung der obenstehenden Auszichsteifigkeit $f_{ax,e,Rk}$ durchgeführt. Dies resultiert in einer Vergleichsauszichsteifigkeit wie in Gleichung (2.89) angegeben.

$$f_{\text{ax},\epsilon,\text{Rk}} = \frac{F_{\text{ax},\epsilon,\text{Rk}}}{d \cdot \pi \cdot l_{\text{ef}}} = \frac{9144.8}{8 \cdot \pi \cdot 105} = 3,47 \ N/mm^2$$
(2.89)

Der Parameter k_{ax} wird laut der Bemessung in ÖNORM EN/B 1995-1-1 [3][4] nicht bestimmt. Der Einfluss des Achs-Faserwinkels ε wird mittels Hankinson-Term berücksichtigt. Dabei wird von einem k_{90} -Beiwert von 1,2 ausgegangen.

Bestimmung It. ETA-12/0373 [5]

Für die Bestimmung der charakteristischen Tragfähigkeit nach der europäisch technischen Zulassung der Firma Schmid muss im ersten Schritt der Einfluss des Achs-Faserwinkels ε bestimmt werden. Dies wird über die Gleichung (2.90) durchgeführt und ergibt sich für das vorliegende Beispiel zu:

$$k_{\rm ax} = 0.3 + \frac{0.7 \cdot \varepsilon}{45^{\circ}} = 0.3 + \frac{0.7 \cdot 30^{\circ}}{45^{\circ}} = 0.77$$
 (2.90)

Mithilfe von k_{ax} und den Parametern für das vorliegende Beispiel kann die aufnehmbare axiale Tragfähigkeit bestimmt werden.

$$F_{\text{ax},k,\varepsilon} = k_{\text{ax}} \cdot f_{ax,k,90^{\circ}} \cdot l_{\text{ef}} \cdot \left(\frac{\rho_k}{350}\right)^{0,8} \cdot d = 0,77 \cdot 13,1 \cdot 105 \cdot \left(\frac{350}{350}\right)^{0,8} \cdot 8 = 8436,4 \, N \quad (2.91)$$

Für den Vergleich der Ausziehsteifigkeiten zu den Arbeiten von Ringhofer [8] und Brandner et al. [9] wird wiederum eine Vergleichsausziehsteifigkeit ermittelt. Dies wird analog zur Vorgehensweise bei ÖNORM EN/B 1995-1-1 [3][4] durchgeführt.

$$f_{\text{ax},\epsilon,\text{Rk}} = \frac{F_{\text{ax},k,\epsilon}}{d \cdot \pi \cdot l_{\text{ef}}} = \frac{8436.4}{8 \cdot \pi \cdot 105} = 3,20 \ N/mm^2$$
(2.92)

Bestimmung It. Brandner et al. [9]

Für die Bestimmung der Ausziehtragfähigkeit lt. Brandner et al. [9] müssen die Koeffizienten der Gleichungen (2.93) bis (2.104) bestimmt werden. Diese Ermittlung ist nachstehend aufgezeigt.

$$F_{ax,\epsilon,k} = f_{ax,\epsilon,05} \cdot d \cdot \pi \cdot l_{ef} = 4,12 \cdot 8 \cdot 105 \cdot \pi = 10859,9 N$$
(2.93)

$$f_{\text{ax},\varepsilon,05} = f_{\text{ax},\text{ref},05} \cdot k_{\text{ax},05} \cdot k_{\text{sys},05} \cdot \left(\frac{\rho_{05}}{\rho_{\text{ref},05}}\right)^{k_{\rho}} = 5,44 \cdot 1 \cdot 1 \cdot \left(\frac{350}{451}\right)^{1,10} = 4,12 \ N/mm^2 \ (2.94)$$

$$f_{\rm ax, ref, 05} = 0.0130 \cdot \rho_{\rm ref, 0.5}^{1,10} \cdot d^{-0.33} = 0.0130 \cdot 451^{1.10} \cdot 8^{-0.33} = 5.44 \, N/mm^2 \tag{2.95}$$

$$k_{\rm ax,05} = 1,00$$
 (2.96)

$$k_{\text{gap},05} = 1,00$$
 (2.97)

$$k_{\rm sys,05} = 1,00$$
 (2.98)

$$k_{
ho} = 1,10$$
 (2.99)

$$\rho_{\rm ref,05} = 451 \, kg/m^3 \tag{2.100}$$

Die Werte für $k_{ax,05}$, $k_{gap,05}$, $k_{sys,05}$ und k_{ρ} ergeben sich nach der verwendeten Holzart bzw. deren Rohdichte und dem vorherrschenden Achs-Faserwinkel ε von 30 ° wie oben angegeben. Für die Bestimmung sind die zuvor aufgezeigten Formeln It. Gleichung (2.101) bis (2.104) verwendet worden. Unten aufgeführt nochmals die Ermittlung der Parameter.

$$k_{\rm ax,05} = \begin{cases} 1,00\\ 0,70 \cdot k_{\rm gap,05} + \varepsilon \cdot \frac{1 - 0,70 \cdot k_{\rm gap,05}}{30} \text{ für } \frac{30^{\circ} \le \varepsilon \le 90^{\circ}}{0^{\circ} \le \varepsilon < 30^{\circ}} \end{cases}$$
(2.101)

Der Einfluss des Achs-Faserwinkels wird dabei wie oben ersichtlich zu 1,00. Da es sich bei dem verwendeten Material um Vollholz handelt, wird $k_{gap,05}$ zu 1,00.

$$k_{\text{gap,05}} = \begin{cases} 0.90\\ 1.00 \end{cases} \text{ für } \begin{array}{c} \text{CLT Schmalseite} \\ \text{Andere} \end{array}$$
(2.102)

gnum

Für den *k*-Faktor $k_{sys,05}$ ist ersichtlich, dass dieser für die Verwendung von Vollholz ebenfalls zu 1,00 angenommen werden kann. Dieser Faktor berücksichtigt den Einfluss beim Durchdringen mehrerer Schichten von Holzprodukten. Für Vollholz ist die Schichtanzahl immer zu n = 1 anzunehmen, da kein geschichtetes Material vorliegt.

$$k_{\text{sys},05} = \begin{cases} 1.00 & Vollholz; n = 1\\ 1.10 & \text{für CLT Seitenfläche}; n \ge 3\\ 1.13 & GLT (BSH); n \ge 5 \end{cases}$$
(2.103)

Der Einfluss variierender Rohdichten wird über den Faktor k_{ρ} gesteuert. Dieser ergibt sich für Vollholz mit einem Achs-Faserwinkel zwischen 15 ° $\leq \epsilon \leq 90$ ° zu 1,10. Brandner et al. [9] empfiehlt die Anpassung dieses Faktors erst unterhalb eines Achs-Faserwinkels von 15 °.

$$k_{\rho} = \begin{cases} 1,10 & \text{CONF \& 15^{\circ} \le \epsilon \le 90^{\circ}} \\ 1,25 - 0,05 \cdot d & \text{für } \frac{\text{CONF \& 0^{\circ} \le \epsilon < 15^{\circ}}}{\text{RP \& 0^{\circ} \le \epsilon \le 90^{\circ}}} \\ 1,40 & \text{DP \& 0^{\circ} \le \epsilon \le 90^{\circ}} \end{cases}$$
(2.104)

Bestimmung It. Ringhofer [8]

Die Bestimmung der Tragfähigkeit lt. Ringhofer [8] ist ähnlich dem Bemessungsmodell lt. Brandner et al. [9]. Aufgezeigt werden soll in der Gegenüberstellung der arbeitsrelevanten Bemessungsmodelle, dass Verfahren nach Ringhofer [8] mit Berücksichtigung der Holzfeuchte und Effekten des Vorbohrens. Dieses gliedert sich wie in den Gleichungen (2.105) bis (2.116) angegeben. Die Holzfeuchtigkeit wird für dieses Berechnungsbeispiel zu u = 12 % angenommen. Die daraus resultierenden Werte sind nachstehend ersichtlich

$$F_{\text{ax},\varepsilon,\text{Rk}} = f_{\text{ax},\text{k}} \cdot d \cdot \pi \cdot l_{\text{ef}} = 4,37 \cdot 8 \cdot \pi \cdot 105 = 11533,7 \, N \tag{2.105}$$

$$f_{\text{ax,k}} = \eta_{\text{mc}} \cdot \eta_{\text{PD}} \cdot k_{\text{red}} \cdot k_{\text{lemb}} \cdot k_{\text{ax,k}} \cdot k_{\text{sys,k}}(N) \cdot f_{\text{ax,ref,k}} \cdot \left(\frac{\rho_k}{\rho_{\text{ref,k}}}\right)^{k_{\rho}} = 4,37 \ N/mm^2 \ (2.106)$$

$$\eta_{\rm mc} = 1,00$$
 (2.107)

$$\eta_{\rm PD} = 1,00$$
 (2.108)

$$k_{\rm red} = 1,00$$
 (2.109)

$$k_{\text{lemb}} = 1,00$$
 (2.110)

$$k_{\rho} = \frac{-0.05 \cdot d + 0.15}{e^{\frac{\varepsilon}{10}}} + 1.10 = 1.10$$
 (2.111)

$$k_{\rm ax,k} = 1,00$$
 (2.112)

$$k_{\rm gap,k} = 1,00$$
 (2.113)

$$f_{\text{ax,ref,k}} = 0.013 \cdot \rho_{\text{ref,k}}^{1.11} \cdot d^{-0.33} = 0.013 \cdot 376^{1.11} \cdot 8^{-0.33} = 4.72 \, N/mm^2$$
(2.114)

$$k_{\rm sys}(N) = 1,00$$
 (2.115)

$$\rho_{\rm ref.k} = 376 \, \rm kg/m^3$$
 (2.116)

2-7.2 GEGENÜBERSTELLUNG DER STEIFIGKEITEN

2-7.2.1 Steifigkeiten in axialer Richtung

Für den Modellvergleich der Steifigkeiten in axialer Richtung werden das Modell nach Ringhofer et al. [18], das Modell nach Blaß et al. [10] und das Modell Prüfkonfiguration Burtscher Light mit dem Modell der ETA-12/0373 [5] verglichen. In Tabelle 2-9 sind die ermittelten Steifigkeiten und die Abweichungen der einzelnen Modelle aufgezeigt. Die ausführliche Berechnung kann für das Modell Ringhofer et al. [18] den Gleichungen (2.117) bis (2.1122), für das Modell Prüfkonfiguration Burtscher Light der Gleichung (2.125), für das Modell ETA-12/0373 [5] der Gleichung (2.124) und für das Modell Blaß et al. [10] der Gleichung (2.123) entnommen werden. Für die Gegenüberstellung der relevanten Bemessungsmodelle werden die Spezifikationen wie folgt gewählt:

- Verbindungsmitteldurchmesser d = 8 mm
- Effektive Gewindelänge im Holzbauteil $l_{ef} = 105 \text{ mm}$
- Rohdichte $\rho = 350 \text{ kg/m}^3$
- Achs-Faserwinkel $\varepsilon = 90^{\circ}$

Aufgrund der Werte in Tabelle 2-9 zeigt sich, ausgehend von der Steifigkeit welche lt. ETA - 12/0373 [5] bestimmt wurde, die Abweichung der unterschiedlichen Modellansätze. Die Werte von Ringhofer et al. [18] und Blaß et al. [10] weisen dabei eine gute Übereinstimmung auf. Das Modell Prüfkonfiguration Burtscher Light liefert dabei eine Steifigkeit, die sich zwischen den Steifigkeiten nach Ringhofer et al. [18] bzw. Blaß et al. [10] und dem Modell der ETA-12/0373 [5] befindet. Die Steifigkeit, welche nach der ETA-12/0373 [5] bestimmt wurde, weist dabei signifikante Abweichungen zu den übrigen Bemessungsmodellen auf.

Tabelle 2-9:	Gegenüberstellung arbeitsrelevanter Bemessungsmodelle zur Bestimmung der axialen
	Steifigkeit

	Ringhofer et al. [18]	Model neu	ETA-12/0373 [5]	Blaß et al. [10]
K _{ser,ax}	8103,61 N/mm -61,4 %	12781,48 N/mm -39,1 %	21000 N/mm	7364,16 N/mm -64,9 %

Ringhofer et al. [18]

Für die gewählten Parameter der Gegenüberstellung ergibt sich die Steifigkeit in axialer Richtung nach Ringhofer et al. [18] zu:

$$K_{\text{ser,ax}} = k_{\text{ser}} \cdot d \cdot \pi \cdot l_{\text{ef}} = 3,07 \cdot 8 \cdot \pi \cdot 105 = 8103,6 \, N/mm \tag{2.117}$$

$$k_{\text{ser,ref}} = 24.7 \cdot \rho^{0.75} \cdot d^{-1.70} \cdot l_{\text{ef}}^{-0.60} = 24.7 \cdot 350^{0.75} \cdot 8^{-1.70} \cdot 105^{-0.6} = 3.57 \text{ N/mm}^3 (2.118)$$

$$k_{\rm ser} = k_{\rm ser, ref} \cdot k_{\rm ax} \cdot k_{\rm sys} \cdot \left(\frac{\rho}{\rho_{\rm ref}}\right)^{k_{\rho}} = 3,57 \cdot 1 \cdot 1 \cdot \left(\frac{350}{428}\right)^{0,75} = 3,07 \, N/mm^3 \qquad (2.119)$$

$$k_{\rm ax} = 1,00$$
 (2.120)

$$k_{\rm sys} = 1,00$$
 (2.121)

$$k_{
ho} = 0.75$$
 (2.122)

Blaß et al. [10]

Die axiale Steifigkeit ergibt sich nach Blaß et al. [10] für die vorliegenden Parameter wie folgt:

$$K_{\text{ser,ax}} = 234 \cdot (\rho \cdot d)^{0,2} \cdot l_{\text{ef}}^{0,4} = 234 \cdot (350 \cdot 8)^{0,2} \cdot 105^{0,4} = 7364,16 \, N/mm \qquad (2.123)$$

ETA-12/0373 [5]

Für die Bestimmung der Steifigkeit in axialer Richtung lt. ETA-12/0373 [5] muss für unterschiedliche Holzarten die jeweils gültige Bemessungsformel gewählt werden. In diesem Beispiel wird die Holzart Nadelholz gewählt. Dies führt zu der nachstehend ausgewiesenen Steifigkeit in axialer Richtung.

$$K_{\text{ser.ax}} = 25 \cdot d \cdot l_{\text{ef}} = 25 \cdot 8 \cdot 105 = 21000 \, N/mm \tag{2.124}$$

Model Konfiguration Burtscher Light

$$K_{\text{ser,ax}} = 125,46 \cdot \left(\frac{\rho_{12}}{420}\right)^{0,85} \cdot d \cdot l_{\text{ef}}^{0,58} = 125,46 \cdot \left(\frac{350}{420}\right)^{0,85} \cdot 8 \cdot 105^{0,58} = 12781 \, N/mm \, (2.125)$$

2-7.2.2 Steifigkeiten in lateraler Richtung

Für den Modellvergleich der lateralen Steifigkeit werden das aktuell gültige Bemessungskonzept der ÖNORM EN/B 1995-1-1 [3][4] mit den Steifigkeiten nach SIA 265 [19] für sowohl die Bemessung für Nägel als auch die Bemessung für Stabdübel verglichen. Holzbauschrauben sind dabei nach SIA 265 [19], wie bereits in Abschnitt 2-6.1 beschrieben, zu unterschieden. Dabei sind Holzbauschrauben die vorgebohrt werden wie Stabdübel und Holzbauschrauben die nicht vorgebohrt werden wie Nägel zu betrachten. Die ausführliche Ermittlung der Steifigkeiten kann für die Bemessung von Nägeln nach SIA 265 [19] Gleichung (2.126), für die Bemessung von Stabdübeln nach SIA 265 [19] der Gleichung (2.127) und für die ÖNORM EN/B 1995-1-1 [3][4] der Gleichung (2.128) entnommen werden. Die Spezifikationen, welche für die Gegenüberstellung gewählt wurden, sind nachstehend aufgelistet.

- Last-Faserwinkel $\alpha = 90^{\circ}$
- Rohdichte $\rho_k = 350 \text{ kg/m}^3$
- Effektive Gewindelänge im Holzbauteil $l_{ef} = 105 \text{ mm}$
- Verbindungsmitteldurchmesser d = 8 mm
- Effektiver Verbindungsmitteldurchmesser $d_{ef} = 5,72 \text{ mm}$

Ausgehend vom geringsten Wert, hier die Bestimmung lt. SIA 265 [19] für Stabdübel, ergeben sich die Abweichungen der einzelnen Steifigkeiten wie in Tabelle 2-10 angegeben. Es zeigt sich, dass die Bestimmung lt. SIA 265 [19] für sowohl die Bemessung für Nägel als auch die Bemessung für Stabdübel eine gute Übereinstimmung liefert. Die Bemessung lt. ÖNORM EN/B 1995-1-1 [3][4] liefert dabei signifikante Abweichungen zu den Bemessungsmodellen lt. SIA 265 [19].

	Steifigkeit		
	SIA 265 Nägel [19]	SIA 265 Stabdübel [19]	ÖNORM EN/B 1995-1-1 [3][4]
K _{ser,lat}	2326,78 N/mm +6,9%	2176,50 N/mm	5617,47 N/mm +158,1%

Tabelle 2-10:Gegenüberstellung arbeitsrelevanter Bemessungsmodelle zur Bestimmung der lateralen
Steifigkeit

SIA 265 [19] Bemessungsmodell für Nägel

Anhand der oben aufgeführten Bestimmung errechnet sich die laterale Steifigkeit für eine einschnittige Stahl-Holz-Verbindung wie folgt.

$$K_{\rm ser,lat} = 120 \cdot d_{\rm ef}^{1.70} = 120 \cdot 5{,}72^{1,70} = 2326{,}78 \, N/mm$$
 (2.126)

SIA 265 [19] Bemessungsmodell für Stabübel

Für das Bemessungsmodell mit Stabdübeln ergibt sich die laterale Steifigkeit wie folgt.

$$K_{\rm ser,lat} = 6 \cdot \rho_{\rm k}^{0,5} \cdot d_{\rm ef}^{1,70} = 6 \cdot 350^{0,5} \cdot 5,72^{1,70} = 2176,50 \, N/mm \tag{2.127}$$

<u>ÖNORM EN/B 1995-1-1 [3][4]</u>

Das Bemessungsmodell, welches in der ÖNORM EN/B 1995-1-1 [3][4] angegeben wird, liefert für die oben gewählten Parameter die folgenden Werte.

$$K_{\text{ser,lat}} = \rho_{\text{m}}^{1,5} \cdot \frac{d}{23} = 402,5^{1,5} \cdot \frac{8}{23} \cdot 2 = 5617,47 \text{ N/mm}$$
(2.128)

Der Faktor 2,0 entspringt dabei den Forderungen der ÖNORM EN/B 1995-1-1 [3][4] für Stahl-Holz Verbindungen.

Die Umrechnung der charakteristischen Rohdichte auf eine mittlere Rohdichte ist anhand der Gleichung 2.141 vorzunehmen. Anzumerken ist hierbei, dass für das verwendete Material der Gegenüberstellung C24 auch die mittlere Rohdichte von 420 kg/m³ eingesetzt werden kann.

$$\rho_{\rm m} = 1,15 \cdot \rho_{\rm k} = 402,5 \, kg/m^3 \tag{2.129}$$

2-7.3 RESÜMEE DER GEGENÜBERSTELLUNGEN

Aus den Gegenüberstellungen wird ersichtlich, dass je nach verwendetem Modell durchaus signifikant abweichende Werte zu erwarten sind. Da es sich bei allen aufgezeigten Modellen um empirisch ermittelte Zusammenhänge der jeweils im Zuge der Forschungsarbeiten durchgeführten Versuche handelt, ist eine Aussage darüber, welches Bemessungsmodell zur Ermittlung der Tragfähigkeit bzw. Ermittlung der Steifigkeit heranzuziehen ist nur schwer durchführbar. Grundsätzlich ist jedoch zu erkennen, dass die Abweichungen für sowohl die laterale Steifigkeit als auch die axiale Steifigkeit deutlich größer ausfallen wie zuvor bei der Tragfähigkeit in axialer Richtung. Weiters ist für die axialen Steifigkeiten eine Eindrehlänge von l_{ef} von 105 mm gewählt worden, würde hierbei eine größere Eindrehlänge gewählt sind deutlich größere Abweichungen zu erwarten.

Aufgrund dessen soll für die vorliegenden Prüfergebnisse dieser Arbeit ein Vergleich der Prüfdaten mit den Modellen durchgeführt werden, welche in der Gegenüberstellung aufgezeigt wurden. Dadurch kann bestimmt werden, durch welches Bemessungsmodell die Prüfergebnisse dieser Arbeit am besten beschrieben werden können.

KAPITEL 3: MATERIAL UND METHODEN

3-1 VORSTELLUNG DES PRÜFPROGRAMMS

3-1.1 PRÜFPROGRAMM

Das Prüfprogramm, welches den Versuchen dieser Arbeit zugrunde liegt, kann Tabelle 3-1 entnommen werden. Die Tabelle 3-1 gliedert sich dabei wie folgt:

- Versuche zu rein axialer Beanspruchung ($\gamma = 0^{\circ}$) (Serien 15 18)
- Versuche zu kombinierter Beanspruchung ($\gamma = 30^{\circ}$) (Serien 19 34)
- Versuche zu kombinierter Beanspruchung ($\gamma = 60^{\circ}$) (Serien 35 50)
- Versuche zu rein lateraler Beanspruchung ($\gamma = 90^{\circ}$) (Serien 51 66)

Innerhalb der einzelnen Belastungsrichtungen (rein axial $\gamma = 0^{\circ}$ / kombiniert $\gamma = 30^{\circ}$ / kombiniert $\gamma = 60^{\circ}$ / rein lateral $\gamma = 90^{\circ}$) ist jeweils eine Variation des Achs-Faserwinkels ε in Schritten zu je 30 $^{\circ}$ (0° / 30 $^{\circ}$ / 60 $^{\circ}$ / 90 $^{\circ}$) durchgeführt worden. Des Weiteren ist für die Belastungsrichtungen der kombinierten Beanspruchung ($\gamma = 30^{\circ}$ und $\gamma = 60^{\circ}$) und der rein lateralen Beanspruchung ($\gamma = 90^{\circ}$) eine Variation für sowohl den Last-Faserwinkel a (0° / 30° / 60° / 90°) als auch der Schraubenlänge *l* (40 mm / 105 mm / 165 mm / 225 mm) umgesetzt worden. Auf eine Variation des verwendeten Holzwerkstoffes und der Holzfeuchtigkeit *u* wurde dabei verzichtet. Zur Prüfung herangezogen wurde das Material Vollholz Fichte, welches der Festigkeitsklasse C24 nach ÖNORM EN 338 [20] entspricht. Die gewählte Holzausgleichsfeuchte ist dabei mit u = 12 % festgelegt worden.

Die Gesamtanzahl der durchgeführten Versuche beläuft sich, anhand der zuvor beschriebenen Variationsparameter, auf **607 Versuche**. Dabei wurden **48** Versuche zu rein axialer Belastung mit $\gamma = 0^{\circ}$, **181** Versuche zu kombinierter Beanspruchung mit $\gamma = 30^{\circ}$, **188** Versuche zu kombinierter Beanspruchung mit $\gamma = 60^{\circ}$ und **190** Versuche zu rein lateraler Beanspruchung mit $\gamma = 90^{\circ}$ umgesetzt. Dies kann der Tabelle 3-1 entnommen werden. Für jede Prüfserie wurden im Zuge der Prüfdurchführung mind. **11** bzw. max. **13** Versuche durchgeführt. Die Anzahl der Versuche ergibt sich dabei aus dem zur Verfügung stehenden Material. Für jene Prüfserien, bei denen ein Überschuss an Material zur Verfügung stand, sind Testversuche für die Bestimmung der aufnehmbaren Kraft durchgeführt worden. Eine ausführliche Auflistung der Prüfserien sowie den zugehörigen Winkelkombinationen und Schraubenlängen kann Oentnommen werden.

Art der Beanspruchung	Anzahl der Prüfserien	Variationsparameter	Anzahl der Versuche
rein axiale Beanspruchung ($\gamma = 0^{\circ}$)	4	3	48
komb. Beanspruchung ($\gamma = 30^{\circ}$)	16	α, ε, <i>l</i> e	181
komb. Beanspruchung ($\gamma = 60^{\circ}$)	16	α, ε, <i>l</i> e	188
rein laterale Beanspruchung ($\gamma = 90^{\circ}$)	16	α, ε, <i>l</i> e	190

Tabelle 3-1:Prüfprogramm

Dabei sind:

 ϵ Achs-Faserwinkel Variation (0 ° / 30 ° / 60 ° / 90 °)

 α Last-Faserwinkel bezogen auf die Orientierung der Abscherkomponente (0 ° / 30 ° / 60 ° / 90 °)

 $l_{\rm e}$ Eindrehtiefe der Schraube im Holzwerkstoff (40 mm / 105 mm / 165 mm / 225 mm)

3-1.2 PRÜFKÖRPERBEZEICHNUNG

Um eine genaue Zuordnung der einzelnen Prüfkörper zu gewährleisten, war es aufgrund der Vielzahl variierter Parameter notwendig, ein geeignetes System der Prüfkörperbezeichnung einzuführen. Aus der Prüfkörperbezeichnung können wesentliche Prüfparameter wie z.B. die Eindrehtiefe, Winkelkombination (γ , α , β und ε) und die Prüfseriennummer entnommen werden.

Die gewählte Prüfkörperbezeichnung soll anhand eines Beispiels erläutert werden. Die Beschreibung kann der Tabelle 3-2 entnommen werden.

Prüfkörperbezeichnung: B25-(34)-08-225-30-90-30-00-05

Parameter	Bedeutung
B25	Balkennummer
(34)	Prüfseriennummerierung
08	Schrauben Nenndurchmesser
225	Eindrehtiefe le
30	Winkel γ der Prüfkonfiguration
90	Winkel α Last-Faserwinkel bezogen auf die Abscherkomponente
30	Winkel β axial abweichender Winkel zur Schraubenachse
00	Winkel ε Achs- Faserwinkel
05	Prüfkörpernummer

Tabelle 3-2:Erläuterung Prüfkörperbezeichnung

3-1.3 VARIATIONSPARAMETER

3-1.3.1 Last- Faserwinkel α

Der Last-Faserwinkel α wird hierbei definiert als der Winkel zwischen der rechtwinklig auf die Schraubenachse wirkende Kraftkomponente und der Faserorientierung des Holzprüfkörpers. Die Abbildung 3-1 soll dies anhand von einem Beispiel verdeutlichen.

Abbildung 3-1 Erläuterung des Last-Faserwinkels a

3-1.3.2 Axial abweichender Winkel zur Schraubenachse β bzw. γ

Für eine Definition, unter welchem Winkel die globale Kraft auf die Schraube einwirkt, wurde der Winkel γ eingeführt. Dieser beschreibt die Verdrehung der Prüfkonfiguration zur Nulllage. Dabei wurde die Nulllage als jene Lage definiert, bei der eine reine axiale Beanspruchung auf die Schraube einwirkt. Dementsprechend ist die Lage, bei der die Prüfkonfiguration um 90° gedreht wird, jene, bei der die aufgebrachte Last einer rein lateralen Beanspruchung entspricht. Weiters stellt der Winkel γ bzw. β den Winkel zwischen Schraubenachse und Richtung der global einwirkenden Kraft dar. Die grafische Erläuterung kann der Abbildung 3-2 entnommen werden.

Aufgrund der zuallererst geplanten Variation des Angriffswinkels in zwei Ebenen war es nötig, einen zweiten Winkel einzuführen, um die Richtung der angreifenden Kraft genau zu beschreiben. Im weiteren Verlauf wurde jedoch auf die Variation in der zweiten Ebene verzichtet, sodass β gleich γ für alle Prüfserien gilt.

Abbildung 3-2 Erläuterung des axial-abweichenden Winkels zur Schraubenachse γ bzw. β

3-1.3.3 Achs-Faserwinkel ε

Der Achs-Faserwinkel entspricht einer rein geometrischen Größe, welche sich auf die Faserorientierung in Bezug auf die Eindrehrichtung der Schraube bezieht. Abbildung 3-3 soll dies veranschaulichen.

Abbildung 3-3 Erläuterung des Achs-Faserwinkels ε

3-1.3.4 Eindrehtiefe le

Die Eindrehtiefe (siehe Abbildung 3-4) der Schraube ist als Differenzbetrag zwischen der Gesamtlänge der verwendeten Schraube und der Stärke des Stahlbleches zu sehen. Dies findet Anwendung bei den Eindrehtiefen 105, 165 und 225 mm. Für die Eindrehtiefe 40 mm wurden die Prüfkörper so bearbeitet, dass lediglich 40 mm des Gewindes im Holz verankert werden. Um die Eindrehtiefe von 40 mm bei den gegebenen Mindestabmessungen des Prüfkörpers zu realisieren, wurde ein Sackloch (bzw. Schlitzfräsung) an der Unterkante des PK angeordnet. Bei den eingebrachten Schrauben durchdrang die Schraube den Prüfkörper komplett (Spitze nicht im PK) und es verblieb dadurch eine effektive Verbundlänge der Schraube von 40 mm.

Es kam für alle Versuche eine einheitliche Stahlblechstärke t von 15 mm zur Anwendung. Demnach ist die Definition von l_e für diese Arbeit für die Eindrehtiefen von 105, 165 und 225 mm als Gesamtlänge der Schraube abzüglich der Stärke des Schraubenbleches von 15 mm zu sehen.

Abbildung 3-4 Erläuterung der Eindrehtiefe le

3-1.3.5 Effektive Gewindelänge im Holz lef

Aufgrund der Verankerung der effektiven Gewindelänge im Holz in den verschiedenen Bemessungskonzepten muss auch dieser Parameter definiert werden. Die effektive Gewindelänge (siehe Abbildung 3-5) entspricht im Rahmen dieser Arbeit der Länge des Gewindes im Holz abzüglich der Länge der Spitze.

Für die Eindrehtiefen von 105, 165 und 225 mm ergibt sich die effektive Gewindelänge wie in Gleichung (3.1) angegeben.

$$l_{\rm ef} = l_{\rm e} - (1, 17 \cdot d) \tag{3.1}$$

Für die Eindrehtiefe von 40 mm gilt: Eindrehtiefe = effektive Gewindelänge im Holz

$$l_{\rm ef} = l_{\rm e} \tag{3.2}$$

Dabei sind:

 l_{ef}effektive Gewindelänge im Holz l_{e}Eindrehtiefe im Holz d.....Nenndurchmesser der Schraube

Abbildung 3-5 Erläuterung der effektiven Gewindelänge im Holz leff

Bei der Herstellung der Prüfkörper, welche für eine Einschraubtiefe bzw. eine effektive Gewindelänge im Holz von 40 mm geplant wurden, wurde der Prüfkörper derart bearbeitet, dass im Einschraubbereich eine Prüfkörperhöhe von 40 mm vorhanden war, sodass die Spitze der hierfür eingesetzten Holzbauschrauben aus dem Prüfkörper austrat. Dies geschah über eine Schlitzfräsung mit b = 12 mm. Die Schlitzfräsung bzw. die Bearbeitung der Prüfkörperunterkante ist dabei in Abbildung 3-6 ersichtlich.

Abbildung 3-6 Darstellung der Bearbeitung der Prüfkörper für Einschraubtiefen von 40 mm

3-1.3.6 Übersicht der Winkelvariationen

Nachfolgend wird das Eingangs vorgestellte Prüfprogramm im Sinne der einzelnen variierten Parameter im Detail diskutiert. Aufgrund der unterschiedlichen Deklarierungen in verschiedenen normativen Regelungen bzw. Forschungsarbeiten werden die Auslegungen bzw. Definitionen, die für diese Arbeit gelten, nachstehend erläutert. Dabei beziehen sich die Werte, welche in der Tabelle 3-3 bis Tabelle 3-5 angegeben sind, jeweils auf eine zu prüfende Serie mit mind. 11 Einzelversuchen.

Um einen Vergleich zu anderen Forschungsarbeiten im Bereich der axialen Tragfähigkeit zu erhalten bzw. die aktuell verankerten Bemessungsmodelle zu überprüfen, wurden für rein axial beanspruchte Holzbauschrauben vier Prüfserien zu je mind. 11 Versuchen mit einer Variation des Achs- Faserwinkels

durchgeführt. Die Variationsparameter können der Tabelle 3-3 entnommen werden. Der Last-Faserwinkel, welcher auf die Abscherkomponente bezogen wird, ist bei reiner Ausziehbeanspruchung undefiniert, da keine Abscherbeanspruchung auf die Schraube einwirkt.

Aufgrund des linearen Einflusses der Einschraubtiefe auf die Tragfähigkeit auf Herausziehen, wurde hier auf eine Variation der Einschraubtiefe verzichtet und lediglich mit einer ausgesuchten Einschraubtiefe geprüft. Dies ist anhand der in Abschnitt 2-2 vorgestellten Bemessungsmodelle zu begründen, sowohl bei dem Modell nach Ringhofer [8] als auch den übrigen Modellen (ÖNORM EN/B 1995-1-1 [3][4], Brandner et al. [9] und ETA-12/0373 [5]) wird der Eindrehtiefe bzw. effektive Gewindelänge im Holz ein linearer Einfluss unterstellt. Daher wird für den Vergleich mit anderen Einschraubtiefen der Mittelwert der geprüften Serie herangezogen und mit der Vergleichseinschraubtiefe aufgerechnet:

$$F_{\text{mean,pred}} = F_{\text{mean,105}} \cdot \frac{l_{\text{ef}}}{(105 - 1, 17 \cdot d)}$$
 (3.3)

gniim

test cont

$\gamma = 0^{\circ}$	$\epsilon = 0^{\circ}$	30 °	60 °	90 °
$\alpha = 0^{\circ}$				
30 °				
60 °				
90 °				
Undef	1	1	1	1

 Tabelle 3-3 Prüfprogramm für rein axiale Beanspruchung

Bei kombiniert beanspruchten selbstbohrenden Holzschrauben wurde sowohl eine Variation des Achs-Faserwinkels als auch der Einschraubtiefe durchgeführt. Dabei wurden jeweils für einen Lastangriffswinkel von 30 ° und 60 °, vier Eindrehtiefen und vier Achs- Faserwinkel geprüft. Der Last- Faserwinkel ist dabei stets als komplementär Winkel zu Epsilon zu verstehen. Es gilt 90 = α + ε . Die Übersicht der Variationsparameter kann der Tabelle 3-4 entnommen werde. Dabei sind die Werte, welche in der Tabelle eingetragen sind, wiederum für die Anzahl der Serien angegeben. Jede Serie stellt dabei mind. 11 Einzelversuche dar.

$\gamma = 30^{\circ} \mathrm{u}.$ 60 $^{\circ}$	$\epsilon = 0^{\circ}$	30 °	60 °	90 °
$\alpha = 0^{\circ}$				4
30 °			4	
60 °		4		
90 °	4			

Tabelle 3-4 Prüfprogramm für kombinierte Beanspruchung

Für die Abscherversuche gelten dieselben Variationsparameter wie bei den kombiniert beanspruchten selbstbohrenden Holzschrauben. Die Angaben der Tabelle 3-5 beziehen sich wiederum auf die Anzahl der Serien mit mind. 11 Einzelversuchen je Serie. Für Vergleiche mit anderen Forschungsarbeiten bzw. zum Erkenntnisgewinn im Bereich der lateralen Tragfähigkeit wurde dieselbe Variation der Prüfparameter, wie zuvor bei der kombinierten Beanspruchung, auch für rein lateral beanspruchte Holzbauschrauben durchgeführt.

$\gamma = 90^{\circ}$	$\epsilon = 0^{\circ}$	30 °	60 °	90 °		
$\alpha = 0^{\circ}$				4		
30 °			4			
60 °		4				
90 °	4					

Tabelle 3-5 Prüfprogramm für rein laterale Beanspruchung

3-1.3.7 Rohdichte und Holzfeuchte

Im Zuge der Festlegung der Variationsparameter wurde darauf verzichtet, mehrere Rohdichteklassen zu untersuchen. Aufgrund der enormen Anzahl an Versuchen, die nötig gewesen wären, um das Verhalten für mehrere Rohdichteklassen abzubilden, wird in dieser Arbeit nur die Festigkeitsklasse C24 untersucht. Die Bezeichnung der Rohdichteklasse (Rohdichteklasse B) entstammt dabei einer übergeordneten Definition aus dem Forschungsvorhaben in dem auch diese Arbeit inkludiert ist. Dies entspricht einer charakteristischen Rohdichte von $\rho_k = 350 \text{ kg/m}^3$ und einer mittleren Rohdichte von $\rho_m = 420 \text{ kg/m}^3$. Die Sortierung der Rohware, siehe hierzu Abschnitt 3-1.4, diente dabei der Sicherstellung, dass die mittleren Rohdichten und der Variationskoeffizient annähernd gleich für alle Prüfserien sind.

Die Holzfeuchtigkeit wurde im Verlauf dieser Arbeit nicht variiert. Sie wurde für alle Prüfserien zu u = 12 % festgelegt. Um dies zu erreichen, erfolgte eine Konditionierung der Rohware über einen Zeitraum von ca. 2 Wochen.

3-1.3.8 Belastungsrichtung

Im Vorfeld der Versuche zu der rein lateralen Beanspruchung konnte festgestellt werden, dass bei der Aufbringung einer Abscherkomponente mit einem Achs-Faserwinkel ε von 0 ° < ε < 90 ° (dies gilt sowohl für die reinen Abscherversuche als auch für die kombinierte Beanspruchung) Unterschiede in der Form des Last-Verschiebungsdiagramms bestehen, wie die Holzfaser durch die Abscherkomponente beansprucht wird. Jedoch sind die bemessungsbestimmenden geometrischen Einflussgrößen, wie der Achs-Faserwinkel oder auch der Last-Faserwinkel, für beide Belastungsrichtungen ident. Im Zuge der Versuchsdurchführung der einzelnen Serien, welche die oben genannte Bedingung des Achs-Faserwinkels erfüllen, wurde daher eine Variation der Belastungsrichtung durchgeführt. Dabei wurden die zwei möglichen Belastungsrichtungen bei den jeweiligen Serien, jeweils für gerade bzw. ungerade Prüfkörpernummern variiert. Bei Prüfkörpernummern mit geraden Zahlen, wurde die Belastungsrichtung "Druck mit der Faser" und für Prüfkörpernummern mit ungeraden Zahlen, die Belastungsrichtung "Druck gegen die Faser" geprüft. Tabelle 3-6 soll die Variation am Beispiel der Prüfserie 26 aufzeigen.

Tabelle	3-6	Variation	der	Belastungsrichtung	

Prüfseriennummer (26)	Balkennummer	Belastungsrichtung		
B01-(26)-08-225-30-60-30-30-01	1	Druck gegen die Faser		
B10-(26)-08-225-30-60-30-30-02	10	Druck mit der Faser		
B13-(26)-08-225-30-60-30-30-03	13	Druck gegen die Faser		
B20-(26)-08-225-30-60-30-30-04	20	Druck mit der Faser		
B26-(26)-08-225-30-60-30-30-05	26	Druck gegen die Faser		
B30-(26)-08-225-30-60-30-30-06	30	Druck mit der Faser		
B34-(26)-08-225-30-60-30-30-07	34	Druck gegen die Faser		
B41-(26)-08-225-30-60-30-30-08	41	Druck mit der Faser		
B47-(26)-08-225-30-60-30-30-09	47	Druck gegen die Faser		
B53-(26)-08-225-30-60-30-30-10	53	Druck mit der Faser		
B56-(26)-08-225-30-60-30-30-11	56	Druck gegen die Faser		
B26-(26)-08-225-30-60-30-30-test	26	Druck gegen die Faser		

Druck gegen die Faser

Für diese Belastungsrichtung stellt sich die Faser mit ihrer Orientierung gegen die aufgebrachte Abscherkomponente $F_{\rm h}$. Dargestellt in Abbildung 3-7 die Gegenüberstellung der grafischen Darstellung und der praktischen Versuchsdurchführung für die Variation der Belastungsrichtung.

Abbildung 3-7 Belastungsrichtung Druck gegen die Faser (links: grafische Darstellung der Belastungsrichtung; rechts: Druck gegen die Faser für Prüfkörper B01-(26)-08-225-30-60-30-01)

Druck mit der Faser

Für diese Belastungsrichtung stellt sich die Faser mit ihrer Orientierung in dieselbe Richtung wie die Abscherkomponente F_h . Dargestellt in Abbildung 3-8 die Gegenüberstellung der grafischen Darstellung und der praktischen Versuchsdurchführung für die Variation der Belastungsrichtung.

Abbildung 3-8 Belastungsrichtung Druck mit der Faser (links: grafische Darstellung der Belastungsrichtung; rechts: Druck mit der Faser für Prüfkörper B20-(26)-08-225-30-60-30-30-04)

3-1.4 SORTIERUNG ROHMATERIAL

Die Sortierung der Rohware erfolgte bei der Firma Holz-Reisecker in 5273 Rossbach. Das Rohmaterial wurde nach der Rohdichte sortiert und ausgewählt, um dem geforderten Mittelwert und der Streuung zu entsprechen. Für eine erste Bestimmung der globalen Rohdichte war es notwendig, die Holzfeuchte und die Abmessungen der einzelnen Kanthölzer, zu bestimmen. Hierbei wurde an den einzelnen Paketen mehrere (min. 8 und max. 12 Messungen) Holzfeuchtemessungen durchgeführt, um auf eine mittlere Holzfeuchte des gesamten Paketes Rückschlüsse zu ziehen. Abbildung 3-9 zeigt das zur Verfügung gestellte Rohmaterial bzw. die exemplarische Messung der Holzfeuchte der Rohware.

Abbildung 3-9 Sortiervorgang (links: zur Verfügung gestelltes Rohmaterial; rechts: Holzfeuchtemessung des Rohmaterials)

Anhand dieser mittleren Holzfeuchte und der Abmessungen konnten anschließend Gewichtsbereiche festgelegt werden, welche den einzelnen Rohdichteklassen entsprachen. Dies erfolgte über die Gleichungen (3.4) bis (3.5). Hierbei entspricht $\rho_{a,req}$ der erforderlichen Rohdichte bei den gemessenen Holzfeuchtigkeiten und m_{VH} dem erforderlichen Gewicht der Kanthölzer.

study research engineering test center

$$\rho_{A,\text{req}} = \frac{\rho_{12}}{[1 - 0,005 \cdot (u - u_{12})]} \tag{3.4}$$

$$m_{\rm VH} = \rho_{\rm A,req} \cdot b_{\rm VH} \cdot l_{\rm VH} \cdot h_{\rm VH} \cdot 1,05 \tag{3.5}$$

Dabei sind:

 $\rho_{a,req}$ erforderliche Rohdichte bei gemittelter Holzfeuchte aus den Messungen ρ_{12} Rohdichte bezogen auf eine Holzfeuchtigkeit bei u = 12 % u........ gemittelte gemessene Holzfeuchtigkeit b_{VH} gemessene Breite der Kanthölzer l_{VH} gemessene Länge der Kanthölzer h_{VH} gemessene Höhe der Kanthölzer

Um einen Bereich anzugeben, in welchem sich die Kanthölzer gewichtsmäßig befinden müssen, wurde anhand der mittleren Rohdichte von C24 ($\rho_m = 420 \text{ kg/m}^3$) ein oberer und unterer Schwellenwert von ± 4 % eingeführt. Zusätzlich wurde ein Aufschlag von 5 %, für etwaige Holzanomalien in der Berechnung berücksichtigt.

Anhand dieser Parameter konnte nun eine Zuordnung der einzelnen Balken mittels Wiegung erfolgen. Insgesamt wurden so ca. 100 m³ Rohware sortiert, um die erforderlichen 12 m³ für die erfolgreiche Prüfdurchführung zu erhalten.

3-1.5 MANIPULATION ROHMATERIAL

3-1.5.1 Anforderungen

Beim Rohmaterial Fichte handelt es sich um ein stark inhomogenes Material, dass jedoch fehlerfreie Stellen von ca. 80 cm zwischen den Astansammlungen aufweist. Aufgrund der Anforderung von möglichst fehlerfreiem Material der Prüfkörper musste eine Einteilung des Rohmaterials in Segmente mit Längen von ca. 80 cm erfolgen. Um dem Anteil an fehlerbehaftetem Material Rechnung zu tragen, wurde bei der Ermittlung des Holzbedarfes von 40 % an Volumen ausgegangen, welches nicht genutzt werden kann.

Des Weiteren galt es, eine ausgewogene Verteilung der Rohdichte in den einzelnen Prüfserien zu erreichen, sodass sich der Mittelwert der Rohdichte je Prüfserie bei ca. 420 kg/m³ einpendelt. Um dies zu erreichen, mussten die Schritte, welche in Abschnitt 3-1.4 erläutert wurden, wiederholt werden.

3-1.5.2 Prüfkörperabmessungen

Die Abmessungen der Prüfkörper, welche den Prüfungen unterzogen werden, wurden aus den Normen ÖNORM EN 1382 [21] und ÖNORM EN 383 [20], entnommen. Die Prüfkörperabmessungen für die kombiniert beanspruchten Versuche sind nicht normativ geregelt, daher wurden hier Abmessungen gewählt, welche sich zwischen den Abmessungen für die rein axiale und die rein laterale Beanspruchung befinden. Dies wurde lediglich aus wirtschaftlichen Aspekten so gewählt, da mit den Abmessungen für die rein laterale Beanspruchung der Holzbedarf enorm angestiegen wäre.

Abscherversuche mit $\epsilon > 0^{\circ}$

Die Abmessungen, welche durch die ÖNORM EN 383 [20] vorgegeben werden sind wie folgt:

$$L_{P,erf} = 2 \cdot 20 \cdot d = 320 \, mm \tag{3.6}$$

$$B_{\rm P,erf} = 2 \cdot 5 \cdot d = 80 \, mm \tag{3.7}$$

EN 383:2006 (D)

a) Druck in Faserrichtung

b) Zug in Faserrichtung

c)

Druck rechtwinklig zur Faserrichtung Faserrichtung oder eine der Hauptrichtungen von Holzwerkstoffplatten A

x Messpunkt

Abbildung 3-10 Mindestabmessungen der Prüfkörper gem. ÖNORM EN 383 [20]

Die erforderliche Höhe der Prüfkörper wird in der ÖNORM EN 383 [20] nicht geregelt. Für diese Zusammenhang Abmessung wurde der in Bezug auf die Eindrehtiefe und dem Verbindungsmitteldurchmesser gewählt, welcher in Gleichung (3.8) angegeben ist:

$$H_{\rm P,erf} = l_e + 5 \cdot d \tag{3.8}$$

Dabei sind:

L_{P.erf}.....erforderliche Länge des Prüfkörpers in Richtung der Lastaufbringung B_{P.erf}......erforderliche Breite des Prüfkörpers rechtwinklig zur Richtung der Lastaufbringung H_{P.erf}erforderliche Höhe des Prüfkörpers in Richtung der Schraubenachse

Um ein sprödes Holzversagen vor Eintritt des Verbindungsversagens so weit als möglich zu verhindern, wurden diese erforderlichen Maße großzügig aufgerundet und ergeben sich für die unterschiedlichen Eindrehtiefen wie folgt:

$$L_{\rm P,gew} = 370 \ mm \tag{3.9}$$

$$B_{\rm P,gew} = 115 \ mm \ bzw. \ 135 \ mm$$
 (3.10)

 $H_{\rm P,gew.5d} = 110 \, mm$ (3.11)

$$H_{\rm P,gew,12d} = 140 \, mm$$
 (3.12)

$$H_{\rm P,gew,19d} = 220 \, mm$$
 (3.13)

$$H_{\rm P.gew,26d} = 280 \, mm$$
 (3.14)

Dabei sind:

L_{P,gew}gewählte Länge des Prüfkörpers in Richtung der Lastaufbringung H_{P,gew,5d}.....gewählte Höhe des Prüfkörpers für eine Eindrehtiefe le von 40 mm H_{P,gew,12d}gewählte Höhe des Prüfkörpers für eine Eindrehtiefe le von 105 mm $H_{P,gew,19d}$ gewählte Höhe des Prüfkörpers für eine Eindrehtiefe l_e von 165 mm H_{P.gew.26d}gewählte Höhe des Prüfkörpers für eine Eindrehtiefe le von 225 mm

Abscherversuche mit $\varepsilon = 0^{\circ}$

Für die Abscherversuche mit $\varepsilon = 0^{\circ}$ mussten spezielle Abmessungen in Belastungsrichtung des Prüfkörpers gewählt werden. Diese Abscherversuche stellen das Verhalten von im Hirnholz eingebrachten Verbindungsmitteln dar. Aufgrund der Prüfungen mit dem Material Vollholz war es nicht möglich, eine Balkenabmessung von h / b = 370 / 120 mm zu erhalten. Im Vorfeld der Untersuchungen wurde daher festgelegt, dass die Abmessungen für Versuche mit Verbindungsmitteln im Hirnholz auf dieselben Abmessungen wie bei Versuchen zur kombinierten Beanspruchung mit Verbindungsmitteln im Hirnholz festgelegt werden. Nachstehend sind diese Abmessungen angeführt.

$$L_{\rm P,gew} = 280 \ mm$$
 (3.15)

 $B_{\rm P,gew} = 115 \, mm \, bzw. \, 135 \, mm$ (3.16)

$$H_{\rm P,gew,5d} = 110 \, mm$$
 (3.17)

 $H_{\rm P,gew,12d} = 140 \, mm$ (3.18)

$$H_{\rm P,gew,19d} = 220 \, mm$$
 (3.19)

$$H_{\rm P,gew,26d} = 280 \ mm$$
 (3.20)

Dabei sind:

Ausziehversuche

Die Abmessungen, welche in der ÖNORM EN 1382 [21] geregelt werden, ergeben sich für Verbindungsmittel, die rechtwinklig zur Faserrichtung beansprucht werden wie in den Gleichungen (3.21) bis (3.23) angegeben:

$$L_{\rm P,erf} = 2 \cdot 10 \cdot d = 160 \, mm \tag{3.21}$$

$$B_{\mathrm{P,erf}} = 2 \cdot 5 \cdot d = 80 \, mm \tag{3.22}$$

$$H_{\rm P,erf} = l_{\rm e} + 5 \cdot d = 145 \, mm \tag{3.23}$$

Abbildung 3-11 Mindestabmessungen Prüfkörper ÖNORM EN 1382 [21] rechtwinklig zur Faser beanspruchte Verbindungsmittel

Dabei sind:

 $L_{P,erf}$erforderliche Länge des Prüfkörpers in Faserrichtung $B_{P,erf}$erforderliche Breite des Prüfkörpers rechtwinklig zur Faserrichtung $H_{P,erf}$erforderliche Höhe des Prüfkörpers in Richtung der Schraubenachse

Für in Faserrichtung eingeschraubte Verbindungsmittel ergeben sich die Abmessungen wie in Gleichungen (3.24) bis (3.26) angegeben:

$$L_{\rm P,erf} = 2 \cdot 5 \cdot d = 80 \, mm \tag{3.24}$$

$$B_{\text{P.erf}} = 2 \cdot 5 \cdot d = 80 \, mm \tag{3.25}$$

$$H_{\rm P,erf} = 2 \cdot l_e + 5 \cdot d = 250 \, mm \tag{3.26}$$

Dabei sind:

L_{P,erf}erforderliche Länge des Prüfkörpers

B_{P,erf}.....erforderliche Breite des Prüfkörpers

 $H_{P,erf}$ erforderliche Höhe des Prüfkörpers in Richtung der Schraubenachse

Abbildung 3-12 Mindestabmessungen Prüfkörper ÖNORM EN 1382 [21] in Richtung der Faser beanspruchte Verbindungsmittel

Die Abmessungen der Prüfkörper hatten signifikanten Einfluss auf die Ausführung bzw. Planung der Prüfkonfiguration, daher wurde im Vorfeld der Versuche festgelegt das die Abmessungen der Prüfkörper für die einzelnen Belastungssituationen einheitlich gestaltet werden sollten. Dies führte zu den gewählten Abmessungen der Prüfkörper, die auf Ausziehen beansprucht werden:

$$L_{\rm P,gew} = 190 \ mm$$
 (3.27)

$$B_{\rm P,gew} = 115 \, mm \, bzw. \, 135 \, mm$$
 (3.28)

$$H_{\rm P,gew,12d} = 280 \ mm$$
 (3.29)

Dabei sind:

 $L_{P,gew}$ gewählte Länge des Prüfkörpers $B_{P,gew}$ gewählte Breite des Prüfkörpers $H_{P,gew,12d}$ gewählte Höhe des Prüfkörpers in Richtung der Schraubenachse

Kombinierte Beanspruchung

Wie bereits zuvor erwähnt, sind die Abmessungen für Prüfungen zu kombiniert beanspruchten Verbindungsmitteln aktuell nicht normativ geregelt. Für die Abmessungen wurde daher ein empirischer bzw. wirtschaftlicher Ansatz gewählt. Dieser ist nachstehend aufgelistet.

$$L_{\rm P,gew} = 280 \ mm \tag{3.30}$$

$$B_{\rm P,gew} = 115 \, mm \, bzw. \, 135 \, mm$$
 (3.31)

$$H_{\rm P,gew,5d} = 110 \, mm$$
 (3.32)

$$H_{\rm P,gew,12d} = 140 \ mm$$
 (3.33)

$$H_{\rm P,gew,19d} = 220 \ mm$$
 (3.34)

$$H_{\rm P,gew,26d} = 280 \, mm$$
 (3.35)

Dabei sind:

3-1.5.3 Einteilung in fehlerfreie Segmente

Die Einteilung in fehlerfreie Segmente war aufgrund von zwei Gesichtspunkten erforderlich. Einerseits aufgrund der Anforderungen an möglichst fehlerfreies Material bei den Prüfungen und andererseits aufgrund der Manipulationsfähigkeit bei der Herstellung.

Die Einteilung erfolgte mithilfe von Plänen, auf denen mehrere Prüfserien mit gleichen Abmessungen zusammengefasst wurden. Die Abbildung 3-13 soll dies veranschaulichen.

Abbildung 3-13 Einteilung Rohmaterial (links: Einteilung für Grobzuschnitt mit Laufzetteln (sh. ANHANG C); rechts: Planung Prüfkörperzuschnitt)

Wie in Abbildung 3-13 ersichtlich, wurden die Prüfkörper derart eingeteilt, dass die Abmessungen in zumindest zwei Raumrichtungen einheitlich sind. Bei den in der Abbildung 3-13 dargestellten Prüfserien sind dies die Länge des Prüfkörpers in Verformungsrichtung der Schraube gemessen und die Breite rechtwinklig zur Verformungsrichtung der Schraube. Die Pläne für die Gesamtheit der Prüfungen und der Einteilung des Grobzuschnitts sind dem ANHANG C zu entnehmen.

3-1.5.4 Herstellung Prüfkörper

Grobzuschnitt

Anhand der zuvor getroffenen Einteilung in fehlerfreie Segmente mit Zuordnung der einzelnen Prüfserien zu den Segmenten konnte nun ein erster Zuschnitt der Rohware erfolgen. Die daraus entstandenen Segmente dienten lediglich der besseren Verarbeitbarkeit in der Werkstätte.

Richten und Fügen

Unter Richten wird das Planhobeln einer Fläche verstanden. Dies dient im nächsten Arbeitsschritt als Anschlag zur Herstellung eines exakten rechten Winkels der Seitenflächen des Kantholzes. Unter Fügen wird das Herstellen eines rechten Winkels auf die gerichtete Fläche verstanden.

Dickenhobeln

Beim Dickenhobeln werden die erforderlichen Maße des Kantholzes hergestellt. Die Abmessungen, die erzeugt werden mussten, sind h = 280 mm und b = 115 mm bzw. 135 mm. Dies geschieht über wiederholtes Durchführen des Kantholzes durch die Hobelmaschine.

Aufgrund des enormen Bedarfes an Sortiermaterial war es der Firma Holz-Reisecker nicht möglich, die Gesamtheit des Rohmaterials in derselben Stärke zur Verfügung zu stellen. Aus diesem Grund wurden im Rahmen der vorliegenden Arbeit zwei unterschiedliche Dicken der Prüfkörper geprüft. Da die Abmessungen der Prüfkörper in Dickenrichtung von Beginn an sehr großzügig gewählt wurden, findet dieser Aspekt in der weiteren Betrachtung keine wesentliche Berücksichtigung.

<u>Verklebung</u>

Bei manchen Prüfserien, im speziellen jene mit Achs-Faserwinkel 30° und 60° , war es notwendig, zusätzliche Aufleimer anzubringen, um die geforderte Höhe von 280 mm zu erreichen. Hierbei wurde ein konventioneller Weißleim verwendet. Die Verklebung erfolgte mithilfe einer hydraulischen Furnierpresse.

Bei der Sortierung der Rohware wurden jene Kanthölzer, welche unter bzw. über den Schwellenwerten des Gewichtes liegen, als Aufleimer deklariert. Dies geschah während der zweiten Sortierung und Wiegung, im Anschluss an die technische Trocknung. Dadurch war eine Verleimung von unterschiedlichen Rohdichten nicht zu vermeiden. Jedoch wurde bei der Prüfkörperplanung darauf geachtet, dass die aufgeleimten Stücke lediglich auf der unbelasteten Seite der Verbindung zur Anwendung kamen. So konnte gewährleistet werden, dass sowohl die geprüfte Schraube als auch das beanspruchte Holzvolumen nur in Material ohne Aufleimer zu liegen kamen. Die Abbildung 3-14 und Abbildung 3-15 zeigen die Zusammenstellung der Kanthölzer und der Aufleimer bzw. den Vorgang des Zusammenfügens.

Abbildung 3-14 Zusammenstellung der Aufleimer und Kanthölzer

Abbildung 3-15 Leimung mittels hydraulischer Presse

Feinzuschnitt und Beschriftung

Beim Feinzuschnitt des Materials wurden die Kanthölzer mittels Kreissäge so zugeschnitten, dass die geforderten Maße erreicht wurden. Dabei war es notwendig sehr genau zu arbeiten. Die Maßtoleranzen, welche hierbei einzuhalten sind, wurden von der Planung der Prüfkonfiguration wesentlich beeinflusst. Da die Toleranzen im Stahlbau in Bereichen von $\pm 0,1$ mm liegen, diese jedoch im Holzbau respektive bei der Bearbeitung des Grundmaterials nur schwer zu erreichen sind, mussten die Toleranzen mithilfe des Lochspiels der Stahlbauschrauben für die Verbindung der Einzelteile der Prüfkonfiguration sichergestellt werden. Damit war es möglich, eine Maßtoleranz von ± 2 mm für die bearbeiteten Holzkörper sicher zu stellen.

Aufgrund der Vielzahl an Prüfkörpern wurde die Beschriftung direkt im Anschluss an den Feinzuschnitt aufgebracht, um Verwechslungen zu vermeiden. Die verwendete Beschriftung entspricht dabei einer Kurzform der in Abschnitt 3-1.2 erläuterten Prüfseriennummerierung. Diese enthält lediglich die Balkennummer, die Prüfseriennummer sowie die Nummer des Prüfkörpers. Dadurch konnte dennoch eine exakte Zuordnung gewährleistet werden. Die Balkennummer wiederum erlaubt eine Zuordnung zu der jeweiligen Rohware, aus der der Prüfkörper ausgeschnitten wurde.

Wie in Abbildung 3-16 aufgezeigt, sind aus der Prüfkörperbezeichnung die Balkennummer mit der Bezeichnung 04, die Prüfseriennummer mit Prüfserie 19 und die Prüfkörpernummer der Prüfserie 19 mit 01, ersichtlich.

Abbildung 3-16 Beschriftung Prüfkörper Feinzuschnitt

Tabelle 3-7 zeigt am Beispiel der Prüfserie 19 die Zuordnung der Winkelkombination bzw. welchem Balken mit welcher Nummer die einzelnen Prüfkörper entnommen wurden. Des Weiteren sind die gewählten Prüfkörperabmessungen und die Eindrehtiefe der Prüfschraube ersichtlich.

Prüfseriennummer (19)	Balken [ID]	<i>l</i> e [mm]	γ [°]	α [°]	β [°]	3 [°]	L _{P,gew} [mm]	B _{P,gew} [mm]	H _{P,gew} [mm]
B04-(19)-01	04	40	30	0	30	90	280	135	110
B12-(19)-02	12	40	30	0	30	90	280	115	110
B15-(19)-03	15	40	30	0	30	90	280	135	110
B18-(19)-04	18	40	30	0	30	90	280	135	110
B25-(19)-05	25	40	30	0	30	90	280	135	110
B33-(19)-06	33	40	30	0	30	90	280	135	110
B37-(19)-07	37	40	30	0	30	90	280	135	110
B39-(19)-08	39	40	30	0	30	90	280	135	110
B45-(19)-09	45	40	30	0	30	90	280	135	110
B54-(19)-10	54	40	30	0	30	90	280	115	110
B58-(19)-11	58	40	30	0	30	90	280	135	110

Tabelle 3-7 Zuordnung der Kurzbezeichnung zu Winkelkombinationen und Prüfkörperabmessungen

Vorbereitung für Prüfgeschirr

Zur Gewährleistung eines raschen Einbaus der Prüfkörper in die dafür vorgesehene Prüfkörperhalterung (siehe Abschnitt 3-2.3.4) wurden die Halteschrauben, welche den Prüfkörper mit dem Unterbau der Prüfkonfiguration verbinden, vorgebohrt. Dabei wurde ein Holzbohrer mit Durchmesser 5 mm verwendet. Die Tiefe der Bohrung wurde auf ca. 50 mm eingestellt. Des Weiteren wurde die Lage der Prüfschraube auf dem Prüfkörper ebenfalls mittels einer Bohrung des Durchmessers 5 mm und einer Tiefe von max. 3 mm markiert. Durch diese Arbeitsschritte entfällt das genaue Positionieren des Prüfkörpers im Prüfgeschirr und ermöglicht dadurch eine schnellere Prüfdurchführung. Die Abbildung 3-17 zeigt die Maße für sowohl die Zentrierbohrung als auch die Lage der Halteschrauben.

Abbildung 3-17 Bohrungen Probekörper (links: Zentrierbohrung für Prüfschraube; rechts: Bohrungen für Halteschrauben

3-2 PRÜFKONFIGURATION

Die eigens für diese Arbeit entwickelte Prüfkonfiguration sollte es ermöglichen, unterschiedliche Belastungsszenarien für selbstbohrende Holzschrauben zu prüfen. Unter anderem sollte es machbar sein, sowohl reine Ausziehversuche als auch reine Abscherversuche durchzuführen. Das Aufbringen einer kombinierten Belastung aus Auszieh- und Abscherbeanspruchung, sollte mit mehreren Winkeln möglich sein.

Dabei wurden einige Anforderungen an die Prüfkonfiguration gestellt, welche bei der Planung zu berücksichtigen waren. Unter anderem waren dies:

- Möglichkeit zur Prüfung unterschiedlicher Last-Angriffswinkel
 - Die Abstufung des Last- Angriffswinkels beträgt 15°
- Die Option zur Prüfung von sowohl Holz-Holz als auch Holz-Stahlverbindungen
 - Mit der vorliegenden Konstruktion ist es möglich, Holz-Holz Verbindungen mit Seitenholzdicken von bis zu 90 mm zu prüfen.
 - Es ist möglich, eine variable Anpassung der Stahlblechdicken vorzunehmen.
- Geforderte maximale Verformungen unter Höchstlast von 1,0 mm
 - Für eine Abschätzung der auftretenden Verformungen der Stahlkonstruktion während der Prüfungen, wurde eine FEM-Analyse mithilfe des Programms RFEM durchgeführt. Dabei wurden die maximalen Anforderungen der Höchstlast wie folgt definiert:
 - maximale Kraft Ausziehbeanspruchung 60 kN
 - maximal Kraft kombinierte Beanspruchung 30° 50 kN
 - kombinierte Beanspruchung 60° 40 kN
 - Abscherbeanspruchung 30 kN
- Prüfung von Verbindungsmittelgruppen

3-2.1 VARIANTENSTUDIE FÜR DIE FINDUNG EINER GEEIGNETEN PRÜFKONFIGURATION

Im Verlauf der Planung der Prüfkonfiguration wurden einige Varianten untersucht, welche eine Prüfung einer kombinierten Beanspruchung ermöglichen. Diese sollen nachstehend kurz aufgezeigt und erläutert werden.

3-2.1.1 Variante 1

Die erste Prüfkonfiguration, welche untersucht wurde, sollte eine Drehung des Prüfkörpers in zwei der drei Raumrichtungen ermöglichen. Ein erster Konstruktionsentwurf ist in Abbildung 3-18 dargestellt.

Abbildung 3-18 Variante 1 (links: Prüfkonfiguration gesamt; rechts: Probekörperhalterung)

Diese Konfiguration besteht ähnlich wie die ausgeführte Prüfkonfiguration aus einem Stahlrad, welches eine Drehung um die y-Achse des Prüfkörpers ermöglicht. Des Weiteren wurde für diese Variante eine spezielle Prüfkörperhalterung entwickelt, welche die Drehung um die x-Achse des Prüfkörpers ermöglichen sollte. Dabei müssten die Prüfkörper derart bearbeitet werden, sodass die Oberseite eine Fräsung an den Außenseiten aufweist, um ein Einfädeln in die Halterung zu ermöglichen.

Die Halterung des Prüfkörpers orientiert sich dabei sehr stark an der Halterung, welche bereits von Jockwer et al. [22] verwendet wurde. Diese ist in Abbildung 3-19 abgebildet.

Abbildung 3-19 Prüfkonfiguration Jockwer et al. [22] (vgl. Abbildung 4)

3-2.1.2 Variante 2

Die zweite Variante entspricht einer annähernd gleichen Konfiguration wie Variante 1, jedoch wurde die Lagerung des Prüfrades für die Variante 2 doppelt ausgeführt, um die Stabilität der Konstruktion zu erhöhen. Im Speziellen die Flügelbleche, welche die Drehung um die x-Achse des Prüfkörpers ermöglichen, mussten weiter stabilisiert werden. Der Konstruktionsentwurf ist in Abbildung 3-20 dargestellt.

Abbildung 3-20 Variante 2 (links: Prüfkonfiguration gesamt; rechts: Probekörperhalterung)

3-2.1.3 Variante 3

Im Verlauf der Planung der Prüfkonfiguration wurde vereinbart, auf die Drehung um die zweite Raumrichtung, d.h. die Drehung um die x-Achse des Prüfkörpers zu verzichten. Daher ist im weiteren Verlauf auf die Möglichkeit zur Drehung um diese Raumrichtung verzichtet worden.

Die dritte Variante der Prüfkonfiguration, welche untersucht wurde, ähnelt bereits sehr stark der ausgeführten Prüfkonfiguration. Die Unterschiede zu der ausgeführten Variante liegen in der Prüfkörperhalterung, welche wiederum in Zangenform ausgeführt werden sollte, wie sie bereits von Jockwer et al. [22] verwendet wurde. Der Konstruktionsentwurf ist in Abbildung 3-21 ersichtlich.

Abbildung 3-21 Prüfkonfiguration Variante 3 gesamt

3-2.1.4 Variante 4

Die Variante 4, welche schlussendlich ausgeführt wurde, unterscheidet sich zur Variante 3 in der Prüfkörperhalterung. Diese wurde, um den Aufwand bei der Prüfkörperherstellung zu minimieren, in einer ähnlichen Art wie bei Variante 3 ausgeführt. Für die Stahlplattenhalterung wurde die Zangenform gewählt, jedoch für die Halterung des Prüfkörpers selbst wurde auf die Halterung in Zangenform verzichtet. Anstatt der Zangenhalterung wurde eine Variante gesucht, bei der die Prüfkörperoberfläche nicht bearbeitet werden muss. Hierfür kam ein L-Stahlprofil zum Einsatz, welches durch eine Schubknagge mit dem Unterbau der Prüfkonfiguration verbunden wird. Durch die Ausführung mittels Schubknagge inklusive L-Profil entfiel der Arbeitsschritt zur Bearbeitung der Prüfkörperoberfläche, was eine wesentliche Zeitersparnis bei der Herstellung zur Folge hatte. In Abbildung 3-22 wird die ausgeführte Prüfkonfiguration gezeigt. Die Erklärung der Einzelteile folgt in den anschließenden Kapiteln.

Abbildung 3-22 Variante 4 (links: Prüfkonfiguration gesamt; rechts: Holzkörperhalterung)

3-2.2 ERMITTLUNG ERFORDERLICHER BLECHSTÄRKEN UND ABMESSUNGEN

Die Ermittlung der erforderlichen Blechstärken bzw. Abmessungen der Verbindungselemente wurde mithilfe des Finite Element Programmes RFEM durchgeführt. Dabei wurde die Geometrie des Entwurfes der Prüfkonfiguration zuerst im CAD Programm Allplan gezeichnet und als IFC Modell in das Berechnungsprogramm eingelesen. Aufgrund der Fehlerhaftigkeit beim Auslesen von 3D Kreiselementen wurden die Bohrungen der Verbindungsschrauben als Quadrate exportiert.

Für die Modellierung wurden die einzelnen Elemente der Prüfkonfiguration getrennt implementiert, die Verbindungspunkte wurden über Steife Knotenkopplungen der Verschiebungen bzw. der Verdrehungen realisiert. Die Auflagerpunkte sind dabei in der Fußplatte der Steher als unverschiebliche Lager in alle 3 Raumrichtungen modelliert. Dies bedeutet, dass die Prüfkonfiguration in 6 Punkten unverschieblich gelagert wird.

Ausziehversuche

Für die Ausziehversuche wurde eine Kraft von 60 kN als Einzellast auf die Prüfkörperhalterung bzw. die Unterkonstruktion, welche am Biegetisch befestigt wird, aufgebracht. Die maximal zu erwartende Verformung ergibt sich für das Prüfrad zu 0,3 mm.

Kombinierte Beanspruchung 30°

Für die kombinierte Beanspruchung wurde eine Einzellast von 50 kN auf die Konstruktion aufgebracht. Die zu erwartende Verformung für diese Beanspruchung beträgt 0,8 mm.

Kombinierte Beanspruchung 60°

Für die Belastung, bei der das Prüfrad um 60° gedreht wird, wurde eine Belastung von 40 kN auf die Konstruktion aufgebracht. Die zu erwartende Verformung für diese Beanspruchung beträgt 0,6 mm.

Abscherversuche

Die Belastung, welche die maximal zulässige Abscherbeanspruchung der Konstruktion darstellt, beträgt 30 kN, diese Belastung würde eine theoretische Verformung der Konstruktion von 0,5 mm hervorrufen.

Nachstehend werden die Ergebnisse der RFEM Analyse dargestellt:

Abbildung 3-23 Modellierung FEM Analyse (links: Ausziehbeanspruchung; rechts: kombinierte Beanspruchung mit γ = 30 °)

Abbildung 3-24 Modellierung FEM Analyse (links: kombinierte Beanspruchung mit $\gamma = 60^{\circ}$; rechts: Abscherbeanspruchung)

Die Analyse der Konstruktion führte zu folgenden Blechstärken bzw. Verbindungsmitteldimensionen:

- Pos. 1 Steher:
 - \circ Fussplatte t = 20 mm S355J2
 - \circ seitliche Halterungen t = 20 mm S355J2
 - Verschraubungen:
 - Biegetisch 4 x DIN933-M20x100-8.8 je Steher
 - Prüfrad 2 x DIN933-M20-8.8 je Steher
- Pos. 2 Prüfrad t = 20 mm S355J2
- Pos. 3 Verbindungsplatte:
 - \circ seitliche Halterungen t = 20 mm S355J2
 - \circ Verbindungsplatte t = 20 mm S355J2
 - Verschraubungen:
 - 4 x DIN933-M12x80-8.8 für Verschraubung mit Pos. 2
 - 4 x DIN933-M12x80.8.8 für Verschraubung mit Pos. 4
- Pos. 4 Prüfkörperhalterung:

0

- \circ seitliche Halterungen t = 15 mm S355J2
- L-Profil Prüfgeschirr t = 15 mm S355J2
 - Verschraubungen
 - 3 x DIN933-M12x80-8.8 / je Halterung für Verschraubung mit Pos. 2
- Pos. 5 Stahlplattenhalterung:
 - \circ Blechstärken t = 20 mm S355J2

- Verschraubungen:
 - 4 x DIN933-M20x100-8.8 für Fixierung Pos 6.
- Pos. 6 Schraubenblech
 - \circ Blechstärke t = 15 mm S355J2
- Pos. 7 Verbindung Holzkörper
 - Blechstärke t = 12 mm S355J2

3-2.3 BESCHREIBUNG DETAILPOSITIONEN PRÜFKONFIGURATION

3-2.3.1 Pos. 1 Steher

Abbildung 3-25 stellt den Steher der Prüfkonfiguration dar. Dabei sind in grau dargestellt die Stahlbleche, welche für die Steher zum Einsatz gekommen sind; des Weiteren sind die Verschraubungen mit dem Biegetisch in der Fußplatte des Stehers ersichtlich. Dieser gibt ebenfalls den Lochabstand der einzelnen Bohrungen vor. In Gelb dargestellt sind die Schweißnähte, welche die biegesteife Verbindung der Fußplatte mit dem aufgehenden Stahlblech sicherstellen. Dies sind Kehlnähte mit a = 5 mm. Der Bolzen, welcher am aufgehenden Stahlblech mit einer HY-Naht mit a = 8 mm verschweißt ist, dient dabei nicht zur Lagerung der Pos. 2 Prüfrad, sondern soll als Erleichterung bei der Umstellung des Winkels des Prüfrades dienen. Hierbei handelt es sich um einen Bolzen mit d = 40 mm. Die Verbindung mit der Pos. 2 Prüfrad erfolgt dabei über jeweils 2 x DIN 933 – M20 Schrauben der Festigkeitsklasse 8.8.

3-2.3.2 Pos. 2 Prüfrad

Das Prüfrad (siehe Abbildung 3-26) entspricht einem Flachstahl der Stärke t = 20 mm und einem Durchmesser von d = 1240 mm. Die Bohrungen an der Außenseite sind dabei die Befestigungspunkte für die Verschraubung mit Pos. 1 Steher (siehe Abschnitt 3-2.3.1). Diese sind in 15 ° Schritten an dem Prüfrad eingebohrt. Die weiteren Bohrungen sind für die Verschraubungen mit der Pos. 3 Verbindungsplatte (siehe Abschnitt 3-2.3.3). Diese sind bei der Aussparung im Prüfrad unten angeordnet. Die Bohrungen, welche

sich seitlich an der Aussparung befinden, dienen der Befestigung des Prüfgeschirrs bzw. Pos. 4 Prüfkörperhalterung (siehe Abschnitt 3-2.3.4).

Abbildung 3-26 Pos. 2 Prüfrad

3-2.3.3 Pos. 3 Verbindungsplatte

Die Detailposition 3 (siehe Abbildung 3-27) dient der Verbindung der zwei Prüfradpositionen. Dies wird mittels 8 x DIN 933 – M12 der Festigkeitsklasse 8.8 an der doppelt ausgeführten Pos. 2 Prüfrad (siehe Abschnitt 3-2.3.2) befestigt. Die Langlochbohrungen wurden für DIN 933 – M12 Schrauben entworfen. Diese Langlochbohrungen ermöglichen variable Prüfkörperdimensionen, wobei die Abstufung der Prüfkörper in 9 cm Schritten erfolgen sollte. Ansonsten werden zusätzliche Polsterhölzer an der Seitenfläche der Prüfkörper nötig. Die minimal mögliche Prüfkörperlänge entspricht dabei einem Balken mit der Länge von 180 mm und die maximal mögliche Abmessung einem Balken mit der Länge von 450 mm. Dazwischen können zwei weitere Abstufungen eingestellt werden. Die Verschweißung der nach unten zeigenden Stahlbleche mit der eigentlichen Verbindungsplatte erfolgt über eine HY-Naht mit a = 5 mm und ohne Überstand. Die Verbindungsplatte ist dabei ein Flachstahl mit der Stärke t = 20 mm. Die Stahlbleche, welche die Verschraubung mit der Pos. 2 Prüfrad (siehe Abschnitt 3-2.3.2) ermöglichen, entsprechen einem Flachstahl der Stärke t = 15 mm.

Abbildung 3-27 Pos. 3 Verbindungsplatte

3-2.3.4 Pos. 4 Prüfkörperhalterung

Die Pos. 4 Prüfkörperhalterung ist in Abbildung 3-28 dargestellt. Wie die Pos. 1 Steher und die Pos. 2 Prüfrad ist diese doppelt ausgeführt. Die einzelnen Komponenten sind dabei die Flügelbleche und die Fußplatten. Die Flügelbleche, welche eine variable Einstellung der Prüfkörpergröße erlauben, werden mit der Pos. 2 Prüfrad (siehe Abschnitt 3-2.3.2) über jeweils 3 x DIN 933 – M12 der Festigkeitsklasse 8.8 verschraubt. Der Anschluss der Fußplatten mit der Pos. 3 Verbindungsplatte erfolgt ebenfalls über eine Schraubverbindung mit jeweils 2 x DIN 933 – M12 der Festigkeitsklasse 8.8. Diese dient dabei ebenfalls der Einstellung der variablen Prüfkörpergrößen. Weiters sind die Schlitzbleche, welche als Fixierung der Pos. 7 Prüfkörperhalterung (siehe Abschnitt 3-2.3.7) dienen, mit den Flügelblechen verschweißt. Die Blechstärken, welche sich durch die FEM – Analyse ergeben, sind dabei jeweils t = 15 mm für sowohl die Flügelbleche als auch die Fußplatte und die Schlitzbleche. Die Verbindung der einzelnen Komponenten erfolgt über Schweißverbindungen des Typs HY mit a = 5 mm.

Abbildung 3-28 Pos. 4 Prüfkörperhalterung

3-2.3.5 Pos. 5 Stahlplattenhalterung

Die Pos. 5 Stahlplattenhalterung (siehe Abbildung 3-29) besteht aus einem geschweißten C – Profil und einem Flachstahl mit Durchmesser d = 900 mm. Diese Position dient sowohl der Halterung der Pos. 6 Schraubenblech (siehe Abschnitt 3-2.3.6) als auch der Verbindung mit der Prüfmaschine. Die Bohrungen, welche im Flachstahl eingebracht sind, entsprechen derselben Teilung wie zuvor bei der Pos. 2 Prüfrad (siehe Abschnitt 3-2.3.2), d.h. die Bohrungen sind mit einer Schrittweite von 15 ° im Flachstahl eingebohrt. Bei den Bohrungen handelt es sich um Bohrungen mit einem Durchmesser von d = 30 mm. Die Blechstärke ist dabei t = 20 mm. Die Verbindung des C – Profils mit dem Flachstahl erfolgt über eine Schweißverbindung des Typs Kehlnaht mit a = 5 mm. Das geschweißte C – Profil wird dabei aus Flachstählen der Stärke t = 20 mm gefertigt. Die einzelnen Flachstähle werden dabei wie folgt verschweißt:

Die unterbrochenen Stegbleche, welche die Lagerung der Pos. 6 Schraubenblech (siehe Abschnitt 3-2.3.6) ermöglichen, werden mit den Flanschblechen durch eine Verschweißung des Typs HY mit a = 7 mm verbunden. Das durchgehende Stegblech wird mit den Flanschblechen über eine einseitige Kehlnaht mit a = 8 mm verbunden. Die Bohrungen an der Oberseite des durchgehenden Stegbleches ermöglichen die Verpressung der Pos. 6 Schraubenblech (siehe Abschnitt 3-2.3.6) mit der Pos. 5 Stahlplattenhalterung (siehe Abschnitt 3-2.3.5), dies wird über 4 x DIN 933 – M20 der Festigkeitsklasse 8.8 realisiert und soll dabei das Abheben bzw. Verschieben der Pos. 6 Schraubenblech (siehe Abschnitt 3-2.3.6) während der Prüfdurchführung verhindern.

Abbildung 3-29 Pos. 5 Stahlplattenhalterung

3-2.3.6 Pos. 6 Schraubenblech

Die Pos. 6 Schraubenblech, welche in Abbildung 3-31 ersichtlich ist, besteht aus einem gefrästen Querschnitt der Stärke t = 15 mm und dient der Fixierung des Oberbaus der Prüfkonfiguration, bestehend aus Pos. 5 Stahlplattenhalterung und dem Unterbau der Prüfkonfiguration, bestehend aus Pos. 1 Steher, Pos. 2 Prüfrad, Pos. 3 Verbindungsplatte, Pos. 4 Prüfkörperhalterung und Pos. 7 Verbindung Holzkörper mittels der zu prüfenden selbstbohrenden Holzschraube. Im Mittelpunkt der Pos. 6 ist dabei eine Senkkopfbohrung mit d = 9.5 mm und einem Winkel von 90 $^{\circ}$ eingebracht.

Abbildung 3-30 Pos. 6 Schraubenblech

3-2.3.7 Pos. 7 Verbindung Holzkörper

Die Detailposition 7 Verbindung Holzkörper (siehe Abbildung 3-31) dient der Halterung des Prüfkörpers und besteht aus einem geschweißten L – Profil mit zusätzlichen Versteifungsblechen an den Seiten, welche durchwegs über eine Schweißnaht des Typs HY mit a = 4 mm realisiert wird. Das Stegblech wird dabei gefräst, sodass kein Aufschweißen der Aufkantung an der Hinterseite notwendig ist. Die Aufkantung an der Hinterseite dient dabei der Verbindung der Pos. 7 mit der Pos. 4. Durch dieses System ist es möglich, den Prüfkörper wie unter Abschnitt 3-1.5.4 beschrieben vorzubereiten und anschließend das Prüfgeschirr, welches aus den Positionen 7 und 6 inkl. des zu prüfenden Holzkörpers besteht, in die Pos. 4 bzw. Pos. 5 einzuschieben.

Abbildung 3-31 Pos. 7 Verbindung Holzkörper

3-2.3.8 Zusammenbau Detailpositionen

Der Zusammenbau der einzelnen Detailpositionen wird, wie bereits in den zuvor beschriebenen Punkten durchwegs über Schraub- bzw. Steckverbindungen realisiert. Die Schraubverbindungen entsprechen dabei der Festigkeitsklasse 8.8 und variieren je nach Position von M12 bis M20.

Nachstehend sind einige Impressionen der Prüfkonfiguration in zusammengebautem Zustand ersichtlich bzw. Gegenüberstellungen der geplanten Prüfkonfiguration zu Anschauungsbildern in Realität sowie Detailaufnahmen verschiedenster Positionen der Prüfkonfiguration.

Abbildung 3-32 Prüfkonfiguration (links: Planerische Darstellung; rechts: Probezusammenbau)

Abbildung 3-33 Prüfkonfiguration (links: Unterbau mit eingesetztem Prüfgeschirr; rechts: Versuch zur kombinierten Beanspruchung mit eingebautem Wegmesssystem)

Abbildung 3-34 Detailaufnahme (links: Prüfgeschirr; rechts: Abscherversuch mit eingebautem Prüfgeschirr)

Abbildung 3-35 Detailaufnahme (links: Schraubenbleche; rechts: Probekörperhalterung)

Die Fertigungspläne für die einzelnen Detailpositionen und der Montageplan für die gesamte Konstruktion sind in ANHANG B ersichtlich.

3-3 PRÜFDURCHFÜHRUNG

3-3.1 VERSUCHSABLAUF

Für die Versuchsdurchführung wurde ein Ablauf inklusive Hysterese im Sinne einer Be- und Entlastungsschleife im linear-elastischen Bereich der Kraft-Verschiebungslinie festgelegt. Dieser erlaubte es, sowohl Rückschlüsse auf Erstbelastungsverhalten als auch Wiederbelastungsverhalten zu ziehen. Hierfür wurde eine weggesteuerte Laustaufbringung mit konstantem Verformungsgeschwindigkeit gewählt.

Dabei galt es einen geeigneten Ablauf für die Erstbelastung, die anschließende Entlastung und die Wiederbelastung bis zum Versagen festzulegen. Die Prüfung wurde hierfür in sechs Schritte unterteilt. Die Abbildung 3-36 zeigt das Kraft-Zeit Diagramm mit farblicher Darstellung der verschiedenen Bereiche. Die Erläuterung der einzelnen Bereiche erfolgt im Anschluss an die Abbildung.

Abbildung 3-36 Kraft-Zeit-Diagramm mit farblicher Kennzeichnung der Prüfungsschritte

- 1. Festlegung einer Vorkraft von 50 N für alle Versuche
 - a. Bis zum Erreichen der eingestellten Vorkraft, wurden keine Aufzeichnungen von Verformungen durchgeführt. Die eigentliche Prüfung startete erst nach Erreichen der Vorkraft.
- 2. Steigerung der Last bis ca. 40% der geschätzten Höchstlast der Verbindung
 - a. Die Abschätzung der Verbindungstragfähigkeit erfolgte für die Ausziehversuche anhand des Modells der ETA-12-0373 [5]

$$F_{\rm ax,mean} = \frac{n_{\rm ef} \cdot k_{\rm ax} \cdot f_{\rm ax,k} \cdot d \cdot l_{\rm ef} \left(\frac{\rho_{\rm k}}{350}\right)^{0,8}}{1 - CoV \cdot 1,645}$$
(3.36)

$$k_{\rm ax} = 0.3 + \frac{0.7 \cdot \varepsilon}{45^{\circ}} \text{ für } 0^{\circ} \le \varepsilon \le 45^{\circ}$$

$$(3.37)$$

$$k_{\rm ax} = 1,0 \text{ für } 45^\circ \le \varepsilon \le 90^\circ \tag{3.38}$$

b. Für die Abscherversuche anhand der in ÖNORM EN/B 1995-1-1 [3][4] angegebenen Formeln für Abscheren lt. der Theorie, welche von Johansen entwickelt wurde.

$$F_{h,0.05} = \min \begin{cases} f_{h,1,d} \cdot t_1 \cdot d \\ f_{h,1,d} \cdot t_1 \cdot d \cdot \left[\sqrt{2 + \frac{M_{y,d}}{f_{h,1,d} \cdot t_1^2 \cdot d}} - 1 \right] + \Delta R_d \\ 2 \cdot \sqrt{M_{y,d} \cdot f_{h,1,d} \cdot d} + \Delta R_d \end{cases}$$
(3.39)

$$\Delta R_{\rm d} = \min \begin{cases} F_{\rm ax,mean} \\ F_{\rm tens} \end{cases}$$
(3.40)

$$F_{\rm h,mean} = \frac{F_{\rm h,0.05}}{1 - CoV \cdot 1,645} \tag{3.41}$$

Für die kombinierte Beanspruchung erfolgte die Ermittlung der Tragfähigkeit anhand der c. zuvor durchgeführten Versuche zu den Ausziehtragfähigkeiten und den Abschertragfähigkeiten. Diese Versuchsergebnisse wurden gemittelt und über die quadratische Interaktion, welche in der ÖNORM EN/B 1995-1-1 [3][4], sowie dem nationalen Anhang verankert ist, miteinander kombiniert. Die Formel kann Gleichung (3.42) entnommen werden. Dabei wurden die Versuchsergebnisse für gleiche Winkel- und Schraubenlängenkombinationen miteinander interagiert. Für die Ausziehversuche erfolgte eine Aufrechnung des Mittelwertes der Eindrehtiefe von 105 mm auf die tatsächliche Eindrehtiefe. Dabei wurde keine Rücksicht auf die Schraubenzugtragfähigkeit genommen, da festgestellt wurde, dass eine Berücksichtigung der Schraubenzugtragfähigkeit zu einer Unterschätzung der Prüfergebnisse führt.

$$F_{\text{komb,mean}} = \sqrt{\frac{\frac{1}{\cos(\gamma)^2} + \frac{1}{\frac{\sin(\gamma)^2}{F_{\text{ax,mean}}^2} + \frac{1}{\frac{\sin(\gamma)^2}{F_{\text{h,mean}}^2}}}$$
(3.42)

- 3. Halten von ca. 40% der geschätzten Höchstlast der Verbindung für 30 Sekunden
- 4. Reduzierung der aufgebrachten Last auf ca. 10% der geschätzten Höchstlast der Verbindung
- 5. Halten von 10% für 30 Sekunden
- 6. Steigerung bis zum Versagen der Verbindung oder Erreichen der Grenzverformung

Der Gesamtablauf der Versuchsdurchführung sollte dabei ca. 250 Sekunden dauern. Dies wurde vorab so gewählt um eine rasche Versuchsdurchführung zu gewährleisten. Daher war es notwendig, die Verformungsgeschwindigkeit abzuschätzen und im Zuge der Versuchsdurchführung laufend anzupassen.

Die geschätzte Höchstlast der Verbindung wurde ebenfalls während der Prüfdurchführung angepasst. Dies geschah entweder nach Beendigen des Testversuchs, wenn vorhanden, nach Durchführung von drei Versuchen der jeweiligen Prüfserie oder nach Beendigung des ersten Versuchs, wenn die Höchstlast eine signifikante Abweichung zur Schätzung aufwies. Dabei wurde die geschätzte Höchstlast jeweils aus den Versuchsergebnissen der vorangegangenen Versuche gemittelt.

3-3.2 VERSUCHSDURCHFÜHRUNG

Aufgrund der Entwicklung einer neuartigen Methode der Prüfdurchführung galt es ebenfalls die Versuchsdurchführung zu planen. Der Ablauf der Versuchsdurchführung gliederte sich für alle Versuche in derselben Art und Weise.

Im ersten Schritt wurde ein Prüfkörper für den Einbau in die Prüfkonfiguration vorbereitet. Dafür war es notwendig, den Prüfkörper in der Detailposition 7 (Verbindung Holzkörper) auszurichten und die Halteschrauben, welche von der Unterseite der Position eingeschraubt werden, anzubringen. Für die Prüfkörper, welche nicht die erforderliche Höhe von 280 mm aufwiesen, wurden Platzhalter gefertigt, die die Prüfkörperhöhe auf 280 mm ergänzen. Um die Versuchsergebnisse nicht zu verfälschen, wurden in die Platzhalter Bohrungen mit d = 12 mm gebohrt, sodass die Halteschrauben ohne Verankerung durch den Platzhalter hindurch in den Prüfkörper geschraubt werden konnten.

Im nächsten Schritt wurde die Detailposition 6 (Schraubenblech) auf den Prüfkörper aufgesetzt und an der Zentrierbohrung ausgerichtet. Die Prüfschraube wurde in den Prüfkörper eingebracht, jedoch nicht vollständig angezogen, da ansonsten ein Einbringen in die Prüfkonfiguration nicht möglich wäre. Für eine reibungslose Einbringung des Prüfkörpergeschirrs, welches aus dem Prüfkörper selbst, der Detailposition 7 und der Detailposition 6 besteht, war es vorteilhaft, die Prüfschraube lediglich soweit anzuziehen, dass das Schraubenblech ca. 2 mm Spiel zur Prüfkörperoberfläche besitzt.

Im Anschluss an das Aufbringen des Schraubenbleches erfolgte der Einbau des Prüfgeschirrs in die Prüfkonfiguration und das Anziehen der Prüfschraube. Beim Anziehen der Prüfschraube wurde darauf geachtet, dass die Zugkraft in der Schraube auf einem Niveau zwischen ± 100 N gehalten wird. Dies konnte mithilfe von Veränderungen der Lage in z-Richtung der Detailposition 5 erreicht werden.

Im letzten Schritt wurde das Wegmesssystems montiert und die Kontrolle der Ausrichtung des Messingbleches durchgeführt, welches als Anschlag für das horizontale Messsystem diente. Im Anschluss an diese Schritte konnte die Prüfung gestartet werden. Während der Versuchsdurchführung war es möglich bereits einen zweiten Prüfkörper vorzubereiten, um die Gesamtdauer der Prüfungen zu reduzieren. Des Weiteren erfolgte während der Prüfdurchführung die Dokumentation von Besonderheiten der Prüfung, wie z.B. ob ein Abheben des Schraubenbleches von der Prüfkörperoberfläche stattfindet, ob sich Risse während der Prüfung öffnen oder Astansammlungen bzw. einzelne Äste in der Nähe des Schraubenkanals liegen. Dies wurde sorgfältig in den Prüfprotokollen vermerkt. Die Prüfprotokolle der einzelnen Prüfserien sind in ANHANG D ersichtlich.

Die Prüfung wurde beendet, wenn einer der nachstehenden Mechanismen auftrat:

- Lastabfall auf 75% der Tragfähigkeit der Verbindung
- Erreichen der maximalen Verformung
 - o bei Abscherversuchen 50 mm
 - o bei kombinierter Beanspruchung 40 mm
- Stahlbruch der Prüfschraube

Für die Ausziehversuche wurde kein Verformungslimit festgelegt, da bei dieser Beanspruchungsart die Verformungswege nicht dieselben Ausprägungen annehmen wie bei den Abscherversuchen oder den kombiniert beanspruchten Schrauben. Die Ausziehversuche wurden jeweils bis zum Lastabfall auf 75% der Tragfähigkeit der Verbindung durchgeführt. Der Versagensmechanismus wurde ebenfalls in dem Prüfprotokoll vermerkt.

3-3.3 MESSMETHODEN

Bei der Prüfmaschine handelt es sich um eine Universalprüfmaschine "lignum_uni_275" des Herstellers ZwickRoell GmbH & Co. KG (Ulm/Deutschland). Die wesentlichsten Komponenten sind der Lastrahmen für die starre Lagerung der Traverse, die bewegliche Traverse für das Aufbringen der gewünschten Belastung und der Biegetisch zur starren Befestigung des Unterbaus.

3-3.3.1 Kraftmessung

Die Messungen der Kraft, welche auf die Verbindung einwirkt, erfolgte über das Aufbringen eines Verformungsweges mit einer Verformungsgeschwindigkeit. Die Verformungsgeschwindigkeit bezieht sich dabei auf die von der Prüfmaschine aufgebrachte Verformung und entspricht dem Weg, welcher die Traverse zurücklegt. Gemessen wird dabei die Kraft, welche zur Überwindung des Verformungsweges benötigt wird. Diese Messmethode wird auch als weggesteuertes Messverfahren bezeichnet. Abbildung 3-37 zeigt die Lastaufbringung auf die zu prüfende Holzbauschraube.

Abbildung 3-37 grafische Darstellung Lastaufbringung (links: Ausziehversuche; mitte: kombinierte Beanspruchung; rechts: Abscherversuche)

Anzumerken ist hierbei, dass der Verformungsweg der Traverse nicht dem Verformungsweg der zu prüfenden Schraube entsprechen muss.

3-3.3.2 Wegmessung

Ausziehversuche

Für die Ausziehversuche kamen zwei Wegaufnehmer (siehe Abbildung 3-38) zum Einsatz, welche jeweils an der Projektion des Schwerpunkts des sich im Holz befindlichen Gewindeteils an den seitlichen Prüfkörperoberflächen angebracht wurden. Die eigentliche Messung erfolgte hierbei nur in Schraubenrichtung an den jeweiligen Seitenflächen des Prüfkörpers. Der zur Auswertung herangezogene Weg ergibt sich durch Mittelung der Ergebnisse der beiden Wegaufnehmer.

Abbildung 3-38 Wegmesssystem für die Ausziehversuche

Abscherversuche

Bei der Durchführung der Abscherversuche kamen zwei unterschiedliche Messmethoden zur Anwendung. Diese Messmethoden sind nachstehend erläutert und in Abbildung 3-39 dargestellt.

Einerseits eine Methode mit vier Wegaufnehmern (siehe hierzu Abbildung 3-39 (links)), wobei zwei Wegaufnehmer in Schraubenrichtung und zwei rechtwinklig zur Schraubenachse angebracht wurden. Die Befestigung erfolgte wiederum im Schwerpunkt des sich im Holz befindlichen Gewindeteils.

Aufgrund von Beobachtungen während der Vorversuche, bei denen ein Abheben und Verdrehen des Stahlteils festgestellt wurde, galt es hierfür eine Messmethode zu entwickeln, welche es erlaubt die zusätzlichen Wege, die durch das Verdrehen entstehen, zu addieren (für die Messung in Schraubenrichtung) oder zu subtrahieren (für die Messung rechtwinklig zur Schraubenachse). Hierfür kam ein System mit sechs Wegaufnehmern zum Einsatz (siehe hierzu Abbildung 3-39 (rechts)), wobei wiederum zwei in Schraubenrichtung und zwei rechtwinklig zur Schraubenachse montiert wurden. Die zusätzlichen Wegaufnehmer, fünf und sechs, dienten zur Messung der Verdrehung des Stahlbleches. Durch diese Anordnung und fortlaufende Kontrolle der Lage des Messingblechs zum Stahlteil war es möglich, alle wichtigen Lageparameter des Schraubenkopfes in verformter Lage zu bestimmen.

Abbildung 3-39 Wegmesssystem für die Abscherversuche (links: System mit vier Wegaufnehmern; rechts: System mit sechs Wegaufnehmern)

kombinierte Beanspruchung

Für die Versuche mit kombinierter Beanspruchung wurde wiederum die Methode mit sechs Wegaufnehmern angewendet.

Abbildung 3-40 Wegmesssystem für die kombinierte Beanspruchung

3-3.3.3 Bestimmung der zu erwartenden Höchstlast der Verbindung

Die Bestimmung der zu erwartenden Höchstlast der Verbindung $F_{\text{max,pred}}$ stellt eine der wesentlichsten Größen für den Ablauf der Prüfungen dar. Sie bestimmt dabei den Ablauf des Belastungszyklus für die Erstbelastungsphase sowie die Entlastungsphase, da sie die Schwellenwerte für eben diese festlegt.

Die Formeln, welche zur Bestimmung gewählt wurden, können Abschnitt 3-3.1entnommen werden.

3-3.3.4 Prüfprotokoll

Für die lückenlose Dokumentation der Prüfungen, sowohl während der Vorbereitung des Prüfkörpers für das dafür vorgesehene Prüfgeschirr bis hin zum Ausbau des geprüften Körpers, war es nötig, ein Prüfprotokoll für jede Prüfserie zu erstellen.

Im Prüfprotokoll sind wesentliche Besonderheiten der Prüfungen, wie zum Beispiel die Belastungsgeschwindigkeit, Belastungsrichtung oder auch Besonderheiten der Prüfkörper bis hin zum aufgetretenen Versagensmechanismus eingetragen. Des Weiteren sind anhand des Prüfprotokolls die eingestellten Schwellenwerte für das Ende der Erstbelastung sowie das Ende der Entlastungsphase ersichtlich. Diese Werte wurden, wie bereits zuvor beschrieben, bestimmt und in den dafür vorgesehenen Prüfablauf eingetragen.

Die ausgefüllten Prüfprotokolle sind dem ANHANG D zu entnehmen.

3-3.4 WEGKORREKTUR

Wie zuvor erwähnt, wurde bei der Durchführung der Vorversuche festgestellt, dass bei kombinierter Beanspruchung ein Abheben und Verdrehen der Stahllasche (siehe Abbildung 3-41) stattfindet. Dies führt dazu, dass die gemessenen Wege nicht den tatsächlichen Wegen entsprechen. Aufgrund dessen war es notwendig, eine Korrektur durchzuführen. Durch die Anordnung der sechs Wegaufnehmer war es möglich, die Lage des deformierten Schraubenkopfes zu jedem Zeitpunkt zu bestimmen.

Die Formel, welche hierfür herangezogen wird, wurde mithilfe des Programms Wolfram Mathematica ermittelt. Dabei mussten einige Vereinfachungen getroffen werden. Diese Vereinfachungen waren wie folgt:

- Fixierung der Strecke zwischen Schraubenkopfmittelpunkt und Beginn der Messinglasche mit 83 mm (definiert durch Geometrie der Prüfkonfiguration),
- Annahme, dass das Wegmesssystem immer auf Höhe der halben Schraubenlänge im Prüfkörper befestigt wird,
- rechter Winkel zwischen Messinglasche und Prüfblech, dies wurde vor jeder Prüfung mittels Stahlwinkel überprüft,
- Abstand der Wegaufnehmer immer konstant 55 mm, dies konnte durch spezielle Fertigung der Messingteile erreicht werden, und
- Ausrichtung der Wegaufnehmer in Schraubenrichtung im Schraubenkanal exakt im Mittelpunkt des Schraubenkopfes.

Die Vereinfachungen, welche getroffen wurden, sind bei der Durchführung der Prüfung anhand von Beschriftungen auf der Prüfkörper Seitenfläche sichergestellt worden. Dabei wurden die Nummer des Prüfkörpers und die unbelastete Seite gekennzeichnet. Weiters wurde die Lage des Wegmesssystems sowohl in der horizontalen als auch in der vertikalen Lage angezeichnet. Durch diese Schritte kann mit ausreichender Genauigkeit gewährleistet werden, dass sich das Wegmesssystem anhand der oben angeführten Vereinfachungen an der Seitenfläche des Prüfkörpers befestigen lässt. Die Fixierung der Strecke zwischen Schraubenkopfmittelpunkt und Beginn der Messinglasche ist von der Planung der Stahlprofile vorgegeben. Der rechte Winkel zwischen Messinglasche und Stahlblech bzw. Prüfkörperoberfläche wurde im Zuge der Durchführung vor jeder neuen Prüfung mithilfe eines Stahlwinkels kontrolliert und wenn nötig neu ausgerichtet.

Abbildung 3-41 Verdrehung Stahllasche

Die nachstehende Formel zeigt die Wegkorrektur. Hierbei sind:

- Δw_aAbstand der Wegaufnehmer in Schraubenrichtung (65 mm für Prüfserien 59 und 60 und 55 mm für die restliche Prüfserien)
- w_1gemessener Wert Wegaufnehmer im Schraubenkanal in Schraubenrichtung + Wert der halben Einschraubtiefe l_e
- w_2gemessener Wert Wegaufnehmer in Schraubenrichtung im Abstand von Δw_a zu w_1 + Wert der halben die Einschraubtiefe l_e
- w_3gemessene Verschiebung rechtwinklig zur Schraubenrichtung + Abstand zwischen Schraubenkopfmittelpunkt und Beginn der Messingplatte
- *w*_{AS}.....Strecke zwischen Mittelpunkt Stahlblech und Messingplatte (83 mm für alle Prüfserien)
- SStrecke zwischen Schraubenkopf im Ausgangszustand und deformiertem Schraubenkopf

$$S = \begin{pmatrix} \frac{-\Delta w_{a} \cdot (w_{1}^{2} - w_{1} \cdot w_{2} + \Delta w_{a} \cdot w_{3})}{\Delta w_{a}^{2} + (w_{1} - w_{2})^{2}} \\ \frac{\Delta w_{a} \cdot (\Delta w_{a} \cdot w_{1} + (w_{2} - w_{1}) \cdot w_{3})}{\Delta w_{a}^{2} + (w_{1} - w_{2})^{2}} \end{pmatrix} + \begin{pmatrix} w_{AS} \cdot \left(1 + \frac{(w_{1} - w_{2})^{2}}{\Delta w_{a}^{2}}\right)^{-\frac{1}{2}} \\ \frac{w_{AS} \cdot (w_{1} - w_{2})}{\Delta w_{a}} \cdot \left(1 + \frac{(w_{1} - w_{2})^{2}}{\Delta w_{a}^{2}}\right)^{-\frac{1}{2}} \end{pmatrix}$$
(3.43)

Abbildung 3-42 zeigt die Wegkorrektur mit den Eingangsparameter (links) und den resultierenden Ergebnissen der tatsächlichen Verformungswege (rechts). Die Berechnung der Koordinaten des verformten Schraubenkopfes erfolgt mithilfe von Punktkoordinaten. Der Punkt S stellt dabei die Position des verformten Schraubenkopfes dar. Der Punkt U entspricht dem Koordinatenursprung der Berechnung.

Abbildung 3-42 Eingangsparamater für Gleichung 3.45 (links: Definition der gemessenen Verformungen und Vereinfachungen laut Abschnitt 3-3.4; rechts: Definition der Ergebnisse nach Gleichung (3.43))

Um etwaige Montagefehler des Wegmesssystems zu eliminieren, wurde eine Mittelung der Messergebnisse beider Seitenflächen für alle drei Richtungen durchgeführt.

Ein Zahlenbeispiel soll die Verwendung der Wegkorrektur aufzeigen. Das Zahlenbeispiel entspringt dem Prüfkörper B38-22-08-225-30-00-30-90-07 und der Aufzeichnung für die maximal geprüfte Kraft.

Hierbei sind:

 Δw_a 55 mm w_1 0,89655 mm + 112,5 mm w_2 1,84100 mm + 112,5 mm w_3 9,12400 mm + 83 mm w_{AS} 83 mm

Mit den oben aufgeführten Werten und der Formel nach Gleichung (3.43) ergeben sich die Werte für die korrigierte horizontale Verschiebung, die korrigierte vertikale Verschiebung und die Verdrehung des Stahlblechs wie folgt:

$$S = \begin{pmatrix} 7,16 \text{ mm} \\ 1,02 \text{ mm} \\ 0,98 \circ \end{pmatrix}$$
 korrigierter horizontaler Weg
für korrigierter vertikaler Weg
Verdreh 🛙 ng Stahllasche (3.44)

Abbildung 3-43 zeigt dabei die Verdrehung der Stahllasche für den Prüfkörper B38-22-08-225-30-00-30-90-07 zum Ende der Prüfung.

Abbildung 3-43 Verdrehungen Stahllasche (links: Verdrehung für Prüfkörper B38-22-08-225-30-00-90-07 Nordseite; rechts: Verdrehung für Prüfkörper B38-22-08-225-30-00-90-07 Südseite)

3-4 AUSWERTEMETHODEN

3-4.1 SCHRAUBENPARAMETER

3-4.1.1 Schraubenzugtragfähigkeit

Die Bestimmung der Schraubenzugtragfähigkeit erfolgte gemäß ÖNORM EN 14592 [7]. Aufgrund des Auftretens von Schraubenbruch während den Prüfungen, war es zwingend notwendig die Schraubenzugtragfähigkeit zu bestimmen. Diese stellt einen wesentlichen Parameter für die Ergebnisdarstellung dar.

Die Bestimmung der Schraubenzugtragfähigkeit wurde chargenweise durchgeführt, wobei je Länge zwischen 5 und 6 Stück geprüft wurden. Die Prüfungen der Schraubenzugtragfähigkeit erfolgten nur für die erste Charge der Schrauben, da bei den Prüfungen mit Schrauben der zweiten Charge kein Stahlbruch aufgetreten ist. Im Weiteren wird die Schraubenzugtragfähigkeit definiert als F_{tens} . Die Übersicht des Prüfprogramms der Schraubenzugtragfähigkeit kann der Tabelle 3-8 entnommen werden.

Schraubenbezeichnung Schraubenlänge Stückzahl Charge 080x120/110 A0C 1A1 C1E 120 mm 1 6 080x180/170 A0C 1A1 C1E 180 mm 1 6 080x240/230 A0C 1A1 C1E 240 mm 1 6

Tabelle 3-8 Prüfprogramm Schraubenzugtragfähigkeit

Die Ergebnisse wurden für jeden Versuch ausgewertet und so die wesentlichsten statistischen Parameter (siehe hierzu auch Abschnitt 3-4.4) je Schraubentyp bestimmt. Die Abbildung 3-44 zeigt die Auswertung für den Einzelversuch 080 x 120/110 AOC 1A1 C1E - 1.

Abbildung 3-44 Prüfkurve der Probe 080 x 120/110 A0C 1A1 C1E – 1 zur Bestimmung der Schraubenzugtragfähigkeit

3-4.1.2 Fließmomentbestimmung

Das Fließmoment, welches für die rechnerische Ermittlung der lateral aufnehmbaren Höchstlast benötigt wird, wurde anhand dreier unterschiedlicher Varianten bestimmt.

Variante A entspricht dabei einer Modellvorhersage, bei der die in Abschnitt 3-4.1.1 erläuterte Zugtragfähigkeit der Schrauben als Eingangskenngröße diente. Bei Variante B und C wurde das Fließmoment mittels Prüfung bestimmt, jedoch unterscheiden sich hierbei die Auswertemethoden. Die Prüfungen, welche Variante B und C zugrunde liegen, wurden nach ÖNORM EN 409 [23] durchgeführt. Dabei wurde die zu prüfende Schraube einseitig in einem starren Auflager eingespannt und die zweite Seite in einem beweglichen Zylinder befestigt. Nach dem Start der Prüfung wurde die Schraube durch den beweglichen Zylinder verdreht. Anhand des Abstandes der Auflagerpunkte sowie der Länge des beweglichen Zylinders kann nun für die Verdrehungswinkel das zugehörige Moment bestimmt werden.

Nachstehend findet sich eine Erläuterung der unterschiedlichen Methoden inklusive der verwendeten Formeln.

Variante A:

Bei der rechnerischen Bestimmung des Fließmomentes wurde auf Modelle zurückgegriffen, welche einen Zusammenhang zwischen der maximal aufnehmbaren Zugkraft F_{tens} der Schraube und dem zugehörigen Fließmoment $M_{y,pl}$ herstellen. Dieser Zusammenhang wurde in der Dissertation von Ringhofer [8] hergeleitet.

$$M_{\rm y,pl,pred} = W_{\rm pl,z} \cdot f_{\rm y,pred} \tag{3.45}$$

$$W_{\rm pl,z} = A_{\rm s} \cdot y_{\rm s} \tag{3.46}$$

$$A_{\rm s} = \frac{\pi \cdot \tan \psi}{12 \times p} \cdot \left[d^3 - (d + (\omega - 1) \cdot p \cdot \cot \psi)^3 \right] + \frac{\eta^2 \cdot d^2}{4} \cdot \omega \cdot \pi \tag{3.47}$$

$$y_{\rm s} = \frac{A_2 \cdot y_{\rm s,2} + A_{\rm dc,1} \cdot y_{\rm s,dc}}{0.5 \cdot A_{\rm s}} \tag{3.48}$$

$$y_{s,2} = \frac{p \cdot [a + b \cdot \cos(\omega \pi) - c \times \sin(\omega \pi)]}{\tan \psi \cdot \pi^4 \cdot [\tan \psi^3 \cdot d^3 - (\tan \psi \cdot d + (\omega - 1) \cdot p)^3]}$$
(3.49)

$$y_{s,dc} = \frac{\eta \cdot d \cdot [1 - \cos(\omega \pi)]}{3 \cdot \omega \cdot \pi}$$
(3.50)

$$A_2 = \frac{\pi \cdot \tan \psi}{24 \cdot p} \cdot \left[d^3 - (d + (\omega - 1) \cdot p \cdot \cot \psi)^3 \right]$$
(3.51)

$$A_{\rm dc,1} = \frac{\eta^2 \cdot d^2}{4} \cdot \omega \tag{3.52}$$

$$a = -6 \cdot \tan \psi \cdot d \cdot p^2 \cdot \pi + \tan(\psi)^3 \cdot d^3 \cdot \pi^3$$
(3.53)

$$b = [\tan \psi \cdot d + (\omega - 1) \cdot p] \cdot \pi \cdot [-6 \cdot p^2 + (\tan \psi \cdot d + (\omega - 1) \cdot p^2) \cdot \pi^2]$$
(3.54)

$$c = 3 \cdot p \cdot [-2 \cdot p^2 + (\tan \psi \cdot d + (\omega - 1) \cdot p)^2 \cdot \pi^2]$$
(3.55)

$$A_{\rm dc,2} = \frac{\eta^2 \cdot d^2}{8} \cdot \omega \cdot \pi \tag{3.56}$$

$$A_{\rm pl,N,emp} = A_{\rm dc,2} \cdot \omega^{(\frac{-0.015}{\eta^{3.95}})}$$
(3.57)

study research engineering test cente

$$f_{\rm y,pred} = \frac{F_{\rm y}}{A_{pl,N,emp}} \tag{3.58}$$

$$\eta = \frac{d_c}{d} \tag{3.59}$$

$$\omega = \left[\frac{p}{2} - \frac{d}{2} \cdot (1 - \eta) \cdot \tan \psi\right] \cdot \frac{2}{p}$$
(3.60)

$$\psi = \frac{v}{2} \tag{3.61}$$

$$F_{\rm y} = K_{\rm ser} \cdot \left(\upsilon_{\rm u} - \sqrt{\upsilon_{\rm u}^2 - \frac{2 \cdot A}{K_{\rm ser}}}\right) \tag{3.62}$$

$$K_{\rm ser} = \frac{F_{40} - F_{10}}{w_{40} - w_{10}} \tag{3.63}$$

Hierbei sind:

$M_{\rm v,pl,pred}$.	rechnerisch ermitteltes Fließmoment der Schraube
<i>W</i> _{pl,z}	plastisches Widerstandsmoment um die z-Achse
<i>A</i> _s	Querschnittsfläche
<i>y</i> _s	y-Abstand zum Schwerpunkt
ψ	Parameter für die Berücksichtigung des Flankenwinkels
p	Gewindeganghöhe
<i>d</i>	Nenndurchmesser der Schraube
η	Verhältnis Kerndurchmesser zu Nenndurchmesser der verwendeten Schraube
ν	Flankenwinkel
<i>A</i> ₂	Fläche der Gewindefase
<i>y</i> _{s,2}	Schwerpunktsabstand zur Fläche A2
<i>A</i> _{dc,1}	Fläche des Gewindeschaftes
<i>y</i> _{s,dc}	Schwerpunktsabstand zur Fläche A _{dc}
<i>a</i>	Substitutionsparameter
b	Substitutionsparameter
<i>C</i>	Substitutionsparameter
$A_{\rm pl,N,emp}$.	Fläche unter Zugbeanspruchung
<i>A</i> _{dc,2}	Fläche des Gewindeschaftes
<i>f</i> _{y,pred}	rechnerische Zugfestigkeit der Schraube
<i>F</i> _y	rechnerische Zugtragfähigkeit der Schraube
<i>K</i> _{ser}	Verschiebungsmodul
υ _u	Verformung bei Erreichen der Bruchlast $F_{\rm u}$
A	Flächeninhalt unter der Prüfkurve
<i>F</i> ₄₀	geprüfte Kraft bei 40 % der Tragfähigkeit
<i>F</i> ₁₀	geprüfte Kraft bei 10 % der Tragfähigkeit
<i>w</i> ₄₀	Verformungsweg bei 40 % der Tragfähigkeit
<i>w</i> ₁₀	Verformungsweg bei 10 % der Tragfähigkeit

Variante B:

Für diese Variante wurde die Prüfkurve durch den nachstehenden Zusammenhang in eine geglättete Prüfkurve umgerechnet. Der Zusammenhang entstammt dabei der Arbeit von Blaß et al. [10].

$$M_{\rm y,korr} = M \cdot (0,866 + 0,00295 \cdot \varphi) \cdot \left[1 - e^{\left(\frac{-0.248 \cdot \varphi}{0.866}\right)}\right]$$
(3.64)

Hierbei sind:

 $M_{y,korr}$ Wert der korrigierten Prüfkurve M...... maximal Wert des Fliessmomentes der orginalen Prüfkurve

 ϕVerdrehung für jeden Prüfwert

Durch diese Methode lässt sich eine Prüfkurve erzeugen, welche denselben Maximalwert aufweist, jedoch einen geglätteten Verlauf zur orginalen Prüfkurve hat.

Durch Summation von dem elastischen Verdrehungswinkels φ_{el} nach Gleichung (3.66) und φ_{y} nach Gleichung (3.71) erhält man jenen Verdrehungswinkel, für den nun das Fließmoment bestimmt werden kann.

$$\varphi_{\rm pl} = \varphi_{\rm el} + \varphi_{\rm y} \tag{3.65}$$

Für die Bestimmung des plastischen Fließmomentes muss im nächsten Schritt der elastische Verdrehungswinkel bestimmt werden.

$$\varphi_{\rm el} = \frac{45^{\circ}}{d^{0,7}} \tag{3.66}$$

Hierbei sind:

 φ_{el}der elastische Verdrehungswinkel *d*.....Nenndurchmesser der geprüften Schraube

Die Fläche A unter der Prüfkurve wird durch eine Approximation der Prüfkurve berechnet. Hierfür werden benachbarte Werte sowohl für das Moment als auch den Verdrehungswinkel gemittelt und miteinander multipliziert. Durch Aufsummierung der Teilflächen kann so die Gesamtfläche unter der Kurve bestimmt werden.

$$\Delta A = M_{y,korr,n-1} \cdot (\varphi_n - \varphi_{n-1}) + (M_{y,korr,n} - M_{y,korr,n-1}) \cdot \frac{(\varphi_n - \varphi_{n-1})}{2}$$
(3.67)

Hierbei sind:

ΔA	Teilfläche unter der Prüfkurve zwischen den Werten n und n-1
$M_{\rm y,korr,n-1}$	Wert n-1 der korrigierten Prüfkurve
φ _n	zugehörige Verdrehung zum n-ten Prüfwert
ϕ_{n-1}	zugehörige Verdrehung zum n-1-ten Prüfwert
M _{y,korr,n}	Wert n der korrigierten Prüfkurve

$$A = \sum \Delta A \tag{3.68}$$

$$K_{\text{ser}} = \frac{M_{\text{korr,40}} - M_{\text{korr,10}}}{\phi_{\text{korr,40}} - \phi_{\text{korr,10}}}$$
(3.69)

Hierbei sind:

A......Gesamtfläche unter der korrigierten Prüfkurve $M_{korr,40}$...Moment bei 40 % des maximal Wertes der korrigierten Prüfkurve $M_{korr,10}$...Moment bei 10 % des maximal Wertes der korrigierten Prüfkurve $\phi_{korr,40}$zugehörige Verdrehung zu Moment bei 40 % des maximal Wertes der korrigierten Prüfkurve $\phi_{korr,10}$zugehörige Verdrehung zu Moment bei 10 % des maximal Wertes der korrigierten Prüfkurve

$$M_{\rm y} = K_{\rm ser} \cdot \left(\varphi_{\rm u} - \sqrt{\varphi_{\rm u}^2 - \frac{2 \cdot A}{K_{\rm ser}}} \right) \tag{3.70}$$

Das Moment My entspricht noch nicht dem gesuchten Fließmoment der Schraube!

Hierbei sind:

 $M_{\rm y}$ berechnetes Moment für die Bestimmung des Winkels $\varphi_{\rm y}$

*K*_{ser}.....Verschiebungsmodul

 φ_uVerdrehung zugehörig zu $M_{\rm max}$

A.....Gesamtfläche unter der Prüfkurve

Nach Bestimmung des Momentes M_y , erfolgt die Berechnung des zugehörigen Winkels φ_y .

$$\varphi_y = \frac{M_y}{K_{\text{ser}}} \tag{3.71}$$

Nun kann das Fließmoment für den berechneten plastischen Verdrehungswinkel aus der korrigierten Prüfkurve abgelesen werden.

Variante C:

Für die Variante C werden die Schritte, welche bereits unter Variante B erläutert wurden, wiederholt jedoch folgt hierbei nicht mehr die Umrechnung auf eine korrigierte Prüfkurve anhand der Gleichung (3.64), sondern die Prüfkurve wird in ein bilineares Modell nach Gleichung (3.70) umgerechnet. Dabei stellt das bilineare Modell jene Kurve dar, bei der derselbe Flächeninhalt unter der Kurve besteht wie bei der Prüfkurve selbst.

Das Fließmoment kann nach Umrechnung der Prüfkurve in das bilineare Modell für den Knickpunkt des bilinearen Modells abgelesen werden.

Modellvergleich Fließmomentbestimmung

In dem nachstehenden Diagramm sind die Varianten B und C abgebildet. Dabei sind wie in der Legende ersichtlich, die unterschiedlichen Prüfkurven sowohl für die orginale Prüfkurve als auch die korrigierte Prüfkurve und die zugehörigen bilinearen Modelle abgebildet. Die einzelnen Werte, welche angegeben sind, entsprechen den unten aufgelisteten Werten:

- 43,86 ° bei 41,46 Nm → zugehörige Verdrehung bei maximal geprüftem Fließmoment
- 15,50 ° und 37,45 Nm → berechneter plastischer Verdrehungswinkel lt. Gleichung (3.65) und zugehöriges Moment der korrigierten Prüfkurve
- 11,46° und 37,85 Nm → berechnetes Fließmoment anhand des bilinearen Zusammenhangs inkl. Zugehörigem Verdrehungswinkel

Abbildung 3-45 Prüfkurve für Fließmomentbestimmung Prüfschraube 080 x 120/110 A0C 1A1 C1E - 1

Der Unterschied in der Versuchsanzahl bei $M_{y,pl,pred}$ im Vergleich zu den anderen Fließmomenten ergibt sich aus der Tatsache, dass dieses Fließmoment aus den Schraubenzugversuchen ermittelt wurde und für diese Versuche jeweils sechs Schrauben der unterschiedlichen Längen geprüft wurden. Für die Fließmomentbestimmung anhand von Prüfung lt. Norm ÖNORM EN 14592 [7] wurden jeweils 15 Versuche für die Schraubenlänge 120 und 180 mm und 10 Versuche für die Schraubenlänge 240 mm durchgeführt.

3-4.2 KENNGRÖSSEN DER HOLZPRÜFKÖRPER

Die wesentlichsten Kenngrößen der Holzprüfkörper, welche über empirische Zusammenhänge eine Klassifizierung in Hinblick auf die mechanischen Eigenschaften des Grundmaterials erlauben, sind:

- die Rohdichte ρ, und
- die Holzfeuchtigkeit *u*.

Grundlage für die Bestimmung dieser Kenngrößen bildet die Darrprobe. Dabei handelt es sich um eine aus dem geprüften Holzkörper gewonnene Kleinprobe, die aus repräsentativen Gründen im Bereich um den Schraubkanal entnommen werden sollte. Aufgrund der unterschiedlichen aufgetretenen Versagensmechanismen, bei denen die Schraube zum Teil im Prüfkörper verblieb, wurden die Darrproben auf zwei unterschiedliche Arten erstellt.

Bei Proben, bei denen kein Versagen der Schraube selbst auftrat (Zug bzw. Biegung), konnte die Probe direkt um den Schraubenkanal ausgeschnitten werden. Dabei wurden die Abmessungen der Darrprobe wie in Abbildung 3-46 (links) ersichtlich, gewählt. Für Proben, bei denen Versagen der Stahlschraube aufgetreten ist, wurde die Probe direkt neben dem Schraubenkanal (siehe Abbildung 3-46 (rechts)) im unbelasteten Bereich ausgeschnitten.

Abbildung 3-46 Darrprobe (links: Versagensmodus kein Stahlbruch; rechts: Versagensmodus Stahlbruch)

3-4.2.1 Rohdichte p

Für die Bestimmung der Rohdichte wurden die Darrproben direkt im Anschluss an das Zuschneiden mithilfe einer Waage (Präzision von 0,01 g) gewogen. Diese Masse stellt die Feuchtmasse m_f dar.

Die Kantenlängen wurden mithilfe eines elektronischen Messschiebers bestimmt. Dabei erfolgte die Messung immer an zwei gegenüberliegenden Seiten. Durch Mittelung dieser Längen konnte nun das Volumen bestimmt werden.

Anhand des Volumens und des Feuchtgewichtes kann die Rohdichte bestimmt werden. Dies erfolgte wie in der Gleichung (3.72) angegeben.

$$\rho_{\rm u} = \frac{m_{\rm f}}{(l_{\rm m} \cdot b_{\rm m} \cdot h_{\rm m})} \tag{3.72}$$

Hierbei sind:

 ρ_u Rohdichte bezogen auf eine Holzfeuchtigkeit u in kg/m³

 $m_{\rm f}$ Masse der Darrprobe bezogen auf eine Holzfeuchtigkeit u, in kg

 $l_{\rm m}$ gemittelte Länge der Darrprobe (in Verformungsrichtung der Schraube gemessen)

 $b_{\rm m}$ gemittelte Breite der Darrprobe (gemessen rechtwinklig zur Verformungsrichtung der Schraube

*h*_m..... gemittelte Höhe der Darrprobe (gemessen in Richtung der Schraubenachse)

Um den Einfluss einer variierenden Holzfeuchtigkeit auszuschließen, wurden die Prüfkörper einer umfassenden Konditionierung unterzogen. Abweichungen bei Bestimmung der Holzfeuchtigkeit zu der gewählten Holzausgleichsfeuchte von u = 12 %, wurden mit der Gleichung (3.73) adaptiert, sodass alle Rohdichten, welche in die Auswertung eingehen, auf eine Holzfeuchte von u = 12 % bezogen sind.

$$\rho_{12} = \rho_{\rm u} \cdot (1 - 0.005 \cdot (u - u_{12})) \tag{3.73}$$

Hierbei sind:

u.....Holzfeuchtigkeit je Probekörper, in % u_{12}gewählte Referenzholzfeuchtigkeit $u_{12} = 12$ %

3-4.2.2 Holzfeuchtigkeit u

Für die Bestimmung der Holzfeuchtigkeit wurde wiederum die Darrprobe herangezogen. Die Methode, welche zur Bestimmung der Holzfeuchtigkeit zur Anwendung gekommen ist, wird als Darrverfahren bezeichnet und stellt wohl das präziseste Verfahren zur Bestimmung der Holzfeuchtigkeit dar. Dieses Verfahren wird in der ÖNORM EN 13183-1 geregelt.

Die Vorgehensweise gliederte sich dabei wie folgt: Im ersten Schritt wurde eine Erstwiegung, direkt im Anschluss an den Zuschnitt durchgeführt. Für die Bestimmung der Holzfeuchtigkeit u war es wiederum notwendig die Abmessungen der Darrprobe exakt zu bestimmen. Dafür wurde wiederum jeweils an zwei gegenüberliegenden Seiten die Abmessungen mittels Messschieber bestimmt. Im Anschluss an die Vermessung der Darrprobe wurde diese bis zur Massenkonstanz getrocknet. Für die Kontrolle inwiefern die Massenkonstanz bereits erreicht wurde wurden periodische Messungen des Gewichts der Darrprobe durchgeführt. Die Massenkonstanz gilt dabei als erreicht, wenn für zwei aufeinanderfolgenden Messungen (im Abstand von 2 h) der Massen bestimmt. Einerseits handelt es sich hierbei um die Masse der feuchten Darrprobe $m_{\rm f}$ und die Masse der darrtrockenen Darrprobe $m_{\rm t}$.

Nach erfolgreicher Trocknung der Probe kann nun die Holzfeuchtigkeit bestimmt werden. Die Holzfeuchtigkeit wird wie folgt berechnet.

$$u = \frac{m_{\rm f} - m_{\rm t}}{m_{\rm t}} \cdot 100 \tag{3.74}$$

Hierbei sind:

u.....Holzfeuchtigkeit in % $m_{\rm f}$Masse der Darrprobe im feuchten Zustand, in g $m_{\rm t}$Masse der Darrprobe im getrockneten Zustand, in g

3-4.3 VERSUCHSKENNGRÖSSEN

Abbildung 3-47 soll einen Überblick über die zu bestimmenden Versuchskenngrößen liefern. Die Erläuterung der einzelnen Kenngrößen folgt in den darauffolgenden Abschnitten (3-4.3.1 bis 3-4.3.10).

Abbildung 3-47 Kraft-Zeit-Diagramm mit Bezeichnung der wesentlichen Versuchskenngrößen

3-4.3.1 Erstbelastungsstart

Für die Bestimmung des Erstbelastungsstartes wurde ein Schwellenwert von 300 N angenommen. Das bedeutet, sobald die geprüfte Kraft den Schwellenwert von 300 N überstieg, wurde dieser Wert als Erstbelastungsstart definiert und die entsprechenden Größen für die Prüfdauer, Verformungen zum Zeitpunkt des Erreichens des Schwellenwertes, eventuelle Verdrehungen der Stahllasche und Kraftgrößen für die jeweilige Belastungsrichtung, in einer Tabelle festgehalten.

Bestimmung der globalen Verformung zum Zeitpunkt *t*:

$$w_{\text{global,t}} = \sqrt{w_{\text{v,korr,t}}^2 + w_{\text{h,korr,t}}^2}$$
(3.75)

Hierbei sind:

 $w_{global,t}$... globale Verformung zum Zeitpunkt *t* $w_{v,korr,t}$... korrigierte Verschiebung in Schraubenrichtung zum Zeitpunkt *t* $w_{h,korr,t}$... korrigierte Verschiebung rechtwinklig zur Eindrehrichtung der Schraube zum Zeitpunkt *t*

Bestimmung der Kraftkomponente zum Zeitpunkt t:

$$F_{\rm v,t} = F_{\rm t} \cdot \cos(\gamma) \tag{3.76}$$

$$F_{\rm h,t} = F_{\rm t} \cdot \sin(\gamma) \tag{3.77}$$

Hierbei sind:

 $F_{v,t}$Kraftkomponente in Schraubenrichtung zum Zeitpunkt t

- F_{t}aufgezeichnete Kraft zum Zeitpunkt t
- γ Winkelverdrehung der Prüfkonfiguration

F_{h,t}.....Kraftkomponente rechtwinklig zur Eindrehrichtung der Schraube zum Zeitpunkt t

Die Bestimmung der Verdrehung der Stahllasche:

$$\varphi_t = \tan^{-1} \left(\frac{w_{2,t} - w_{\nu,korr,t}}{\Delta w_a} \right) \tag{3.78}$$

Hierbei sind:

 φ_tVerdrehung der Stahllasche zum Zeitpunkt *t* $w_{2,t}$korrigiert Verschiebung in Schraubenrichtung gemessen im Abstand Δw_a zum Schraubenkanal $w_{v,korr,t}$korrigierte Verschiebung in Schraubenrichtung zum Zeitpunkt *t*

 Δw_a Abstand der Wegaufnehmer zur Messung der Verschiebung in Schraubenrichtung

3-4.3.2 Erstbelastungsende

Das Ende der Erstbelastung wurde dabei definiert als jener Wert der geprüften Kraft, bei dem das Halten von 40 % der berechneten Höchstlast der Verbindung $F_{\text{max,pred}}$ begann. Wiederum wurden die entsprechenden Werte, wie zuvor beim Erstbelastungsstart, in einer Tabelle festgehalten.

3-4.3.3 Halten von 40 % der berechneten Höchstlast der Verbindung

Der Wert, bei dem das Halten von 40 % der berechneten Höchstlast der Verbindung begann, entsprach dem Wert des Erstbelastungsendes. Dabei wurde der Verformungsweg, der bis zum Erreichen des Erstbelastungsendes erreicht wurde, für 30 Sekunden konstant gehalten.

3-4.3.4 Entlastungsphase

Sobald die Phase des Aufrechterhaltens des Verformungsweges für das Erstbelastungsende erreicht wurde, begann die Entlastungsphase, welche bis zum Schwellenwert von 10 % der errechneten Höchstlast der Verbindung andauerte. Die Werte für Entlastungsstart und Entlastungsende wurden wiederum aufgezeichnet, inklusive der bereits beim Erstbelastungsstart genannten Werte.

3-4.3.5 Halten von 10 % der berechneten Höchstlast der Verbindung

Sobald die Entlastungsphase beendet war, wurde der Verformungsweg wie zuvor beim Halten von 40 % der berechneten Höchstlast der Verbindung konstant gehalten. Dies wurde für einen Zeitraum von wiederum 30 Sekunden durchgeführt.

3-4.3.6 Wiederbelastungsstart

Der Start der Wiederbelastung erfolgte im Anschluss an das Halten von 10 % der berechneten Höchstlast der Verbindung. Der Wert entsprach dabei dem Ende der Phase des Haltens des Verformungsweges.

3-4.3.7 Wiederbelastungsende

Das Ende der Wiederbelastung wurde dabei definiert als jene Kraftgröße, die bereits zuvor beim Erstbelastungsende aufgezeichnet wurde. Das bedeutete, dass die Kraftgrößen für das Erstbelastungsende und das Wiederbelastungsende nahezu denselben Wert aufwiesen. Sie unterschieden sich lediglich anhand der Prüfdauer bzw. des Verformungsweges.

3-4.3.8 maximale Kraft bis 15 mm Verformung der Verbindung

Der Wert F_{15} wurde für diese Arbeit definiert als die maximale Kraftgröße bis zu einer maximalen globalen Verformung von 15 mm. Für Verbindungen, bei denen das Versagen bei einer globalen Verschiebung ≤ 15 mm auftrat, entsprach die Kraft F_{15} der maximal aufnehmbaren Kraft der Verbindung F_{max} . Dies war vor allem bei Verbindungen, die vorwiegend einer Ausziehbeanspruchung ausgesetzt waren, der Fall.

3-4.3.9 maximal aufnehmbare Kraft der Verbindung

Für Verbindungstypen, die eine maximale globale Verformung von > 15 mm aufwiesen, wurde die maximal aufgezeichnete Kraft ebenfalls bestimmt.

3-4.3.10 maximal aufgetretene globale Verformung der Verbindung

Aufgrund der Tatsache, dass die maximale Kraft mit der dazu gehörigen Verformung oftmals nicht das Ende der Prüfungen darstellte, musste ebenfalls die maximal aufgetretene Verformung der Verbindung aufgezeichnet werden. Diese stellte zumeist den zuletzt aufgezeichneten Wert der Prüfungen dar.

3-4.3.11 Steifigkeitsauswertung

Im Zuge der Steifigkeitsauswertung wurden zusätzliche Werte benötigt, für diese Werte mussten wie bereits zuvor, die Werte für die Prüfkraft, Prüfzeit, korrigierte Verformungen und eventuelle Verdrehungen der Stahllasche bestimmt werden. Dies geschah für die in Tabelle 3-9 aufgelisteten Werte. Die Prozentangaben, welche in der Tabelle angegeben sind, beziehen sich auf die aufgezeichnete maximal geprüfte aufnehmbare Kraft der Verbindung. Abbildung 3-48 soll dabei den Ausschnitt ,der für die Steifigkeitsauswertung herangezogen wurde, veranschaulichen.

Abbildung 3-48 Kraft-Weg-Diagramm mit Hystereseschleife (vergrößert und skaliert)
Maßgebende Werte für Steifigkeitsauswertung	Erstbelastung	Wiederbelastung
10 %	X	X
17,5 %		Х
25 %	X	
32,5 %		X
40 %	Х	Х
80 %	Х	

Tabelle 3-9 Bestimmung wesentlicher Prüfwerte für die Steifigkeitsauswertung

Anhand dieser Werte wird nun die Bestimmung der wesentlichen Steifigkeitskenngrößen erläutert. Diese sind:

- Erstbelastungssteifigkeit zwischen den Grenzen 10 % und 40 % der maximal aufnehmbaren Kraft der Verbindung
 - Dabei entsprach die Grenze für 40 % entweder dem tatsächlichen Wert für 40 % der maximal aufnehmbaren Kraft oder falls dieser während der Prüfung, aufgrund des Unterschätzens der maximalen Kraft $F_{\text{max,pred}}$ der Verbindung im Vorfeld, nicht erreicht wurde, dem Erstbelastungsende. Die Aufteilung der Kraftkomponenten erfolgte wie zuvor angegeben, über die sin- bzw. cos-Funktion des Winkels der Prüfkonfiguration. Die Verformungswege, aufgeteilt auf die Richtungen in Schraubenrichtung bzw. rechtwinklig zur Eindrehrichtung der Schraube, berechneten sich wie bereits bei der Berechnung der Wegkorrektur angegeben.

$$K_{\text{ser,global,10-40}} = \frac{F_{40} - F_{10}}{w_{\text{global,40}} - w_{\text{global,10}}}$$
(3.79)

$$K_{\text{ser,v,10-40}} = \frac{F_{\text{v,40}} - F_{\text{v,10}}}{w_{\text{v,korr,40}} - w_{\text{v,korr,10}}}$$
(3.80)

$$K_{ser,h,10-40} = \frac{F_{h,40} - F_{h,10}}{w_{h,korr,40} - w_{h,korr,10}}$$
(3.81)

Hierbei sind:

K _{ser,global,10-40}	Steifigkeit der Verbindung zwischen den Grenzen 10 $\%$ und 40 $\%$ der maximal aufnehmbaren Kraft der Verbindung											
<i>F</i> ₄₀	0 % der maximal aufnehmbaren Kraft der Verbindung oder Erstbelastungsende beim nterschätzen der maximal aufnehmbaren Kraft der Verbindung $F_{max,pred}$											
<i>F</i> ₁₀	10 % der maximal aufnehmbaren Kraft der Verbindung											
Wglobal,40	ugehörige globale Verformung zu 40 % Grenze											
Wglobal,10	ugehörige globale Verformung zu 10 % Grenze											
<i>K</i> _{ser,v,10-40}	Steifigkeit der Verbindung in Schraubenrichtung zwischen den Grenzen 10 % und 40 % der Kraftkomponenten in Schraubenrichtung											
F _{v,40}	Kraftkomponente in Schraubenrichtung oder Kraftkomponente des Erstbelastungsendes in Schraubenrichtung beim unterschätzen der maximal aufnehmbaren Kraft der Verbindung											
<i>F</i> _{v 10}	Kraftkomponente in Schraubenrichtung											
W _{v.korr.40}	zugehörige Verformung zur 40 % Grenze in Schraubenrichtung											
<i>W</i> _{v,korr,10}	zugehörige Verformung zur 10 % Grenze in Schraubenrichtung											
<i>K</i> _{ser,h,10-40}	Steifigkeit der Verbindung rechtwinklig zur Eindrehrichtung der Schraube zwischen den Grenzen 10 % und 40 % der Kraftkomponenten rechtwinklig zur Eindrehrichtung der Schraube											

$F_{h,40}$	Kraftkomponente rechtwinklig zur Eindrehrichtung der Schraube oder Kraftkomponente
	des Erstbelastungsende rechtwinklig zur Eindrehrichtung der Schraube beim unterschätzen
	der maximal aufnehmbaren Kraft der Verbindung F _{max,pred}
$F_{h,10}$	Kraftkomponente rechtwinklig zur Eindrehrichtung der Schraube
$W_{h,korr,40}$	zugehörige Verformung zur 40 % Grenze rechtwinklig zur Eindrehrichtung der Schraube
$W_{h,korr,10}$	zugehörige Verformung zur 10 % Grenze rechtwinklig zur Eindrehrichtung der Schraube

- Erstbelastungssteifigkeit des Hysterese Erstbelastungsastes ermittelt mittels linearer Regression
 - Für die Ermittlung dieser Steifigkeit wurde eine lineare Regressionsanalyse der Prüfdaten des Erstbelastungsastes durchgeführt. Dabei wurden alle möglichen Kombinationen zwischen den gewählten Grenzen berechnet und jene Regression mit dem höchsten Bestimmtheitsmaß ausgewählt. Für die Berechnung der Regression mussten Festlegungen getroffen werden, so ist die minimale Differenz der Kraft auf 15 % der maximal geprüften Kraft festgelegt worden. Das bedeutete, dass für die Steifigkeit, welche mittels linearer Regression ermittelt wurde, immer ein Kraftunterschied zwischen Obergrenze und Untergrenze von 15 % eingehalten werden muss.

$$K_{\text{ser,global,lin}} = \frac{F_{\text{o,lin}} - F_{\text{u,lin}}}{w_{\text{global,o,lin}} - w_{\text{global,u,lin}}}$$
(3.82)

$$K_{\text{ser,v,lin}} = \frac{F_{\text{v,o,lin}} - F_{\text{v,u,lin}}}{w_{\text{v,korr,o,lin}} - w_{\text{v,korr,u,lin}}}$$
(3.83)

$$K_{\text{ser,h,lin}} = \frac{F_{\text{h,o,lin}} - F_{\text{h,u,lin}}}{w_{\text{h,korr,o,lin}} - w_{\text{h,korr,u,lin}}}$$
(3.84)

Hierbei sind:

$K_{ m ser,global,lin}$	Steifigkeit der Verbindung zwischen den Grenzen welche mittels Regressionsanalyse bestimmt wurden
<i>F</i> _{o,lin}	Obergrenze der Regressionsanalyse, diese kann sich lt. Definition zwischen dem Ende des Erstbelastungsastes der Hysterese und 25 % der maximal aufnehmbaren Kraft der Verbindung befinden
<i>F</i> _{u,lin}	Untergrenze der Regressionsanalyse, diese kann sich definitionsgemäß zwischen 10 % der maximal aufnehmbaren Kraft der Verbindung und dem Erstbelasungsendes – 15 % befinden
Wglobal,o,lin	zugehörige globale Verformung zur Obergrenze der Regressionsanalyse
Wglobal,u,lin	zugehörige globale Verformung zur Untergrenze der Regressionsanalyse
$K_{ m ser,v,lin}$	Steifigkeit der Verbindung in Schraubenrichtung zwischen der Obergrenze und Untergrenze der Regressionsanalyse für die Kraftkomponenten in Schraubenrichtung
<i>F</i> _{v.o.lin}	Kraftkomponente in Schraubenrichtung für die Obergrenze der Regressionsanalyse
<i>F</i> _{v.u.lin}	Kraftkomponente in Schraubenrichtung für die Untergrenze der Regressionsanalyse
W _{v,korr,o,lin}	zugehörige Verformung in Schraubenrichtung zur Obergrenze der Regressionsanalyse
W _{v,korr,u,lin}	zugehörige Verformung in Schraubenrichtung zur Untergrenze der Regressionsanalyse
$K_{\text{ser,h,lin}}$	Steifigkeit der Verbindung rechtwinklig zur Eindrehrichtung der Schraube zwischen Obergrenze und der Untergrenze der Regressionsanalyse
<i>F</i> _{h,o,lin}	Kraftkomponente rechtwinklig zur Eindrehrichtung der Schraube für die Obergrenze der Regressionsanalyse
<i>F</i> _{h,u,lin}	Kraftkomponente rechtwinklig zur Eindrehrichtung der Schraube für die Untergrenze der
	Regressionsanalyse
W _{h,korr,o,lin}	zugehörige Verformung rechtwinklig zur Eindrehrichtung der Schraub zur Obergrenze der Regressionsanalvse
W _{h,korr,u,lin}	zugehörige Verformung rechtwinklig zur Eindrehrichtung der Schraube zur Untergrenze der Regressionsanalyse

• Wiederbelastungssteifigkeit zwischen den Grenzen 10 % und 40 % der maximal aufnehmbaren Kraft der Verbindung

 Die Festlegungen, welche f
ür die Erstbelastungssteifigkeit zwischen den Grenzen 10 % und 40 % aufgezeigt wurden, k
önnen f
ür die Wiederbelastungssteifigkeit sinngem
äß übernommen werden.

$$K_{\text{ser,global,10-40}} = \frac{F_{40} - F_{10}}{w_{\text{global,40}} - w_{\text{global,10}}}$$
(3.85)

$$K_{\text{ser,v,10-40}} = \frac{F_{\text{v,40}} - F_{\text{v,10}}}{w_{\text{v,korr,40}} - w_{\text{v,korr,10}}}$$
(3.86)

$$K_{\text{ser,h,10-40}} = \frac{F_{\text{h,40}} - F_{\text{h,10}}}{w_{\text{h,korr,40}} - w_{\text{h,korr,10}}}$$
(3.87)

- Wiederbelastungssteifigkeit des Hysterese-Wiederbelastungsastes ermittelt mittels linearer Regression
 - Die Festlegungen, welche bereits bei der Ermittlung der Erstbelastungssteifigkeit aufgezeigt wurden, können sinngemäß für die Wiederbelastungssteifigkeit ermittelt, mittels linearer Regressionsanalyse, übernommen werden.

$$K_{\text{ser,global,lin}} = \frac{F_{\text{o,lin}} - F_{\text{u,lin}}}{w_{\text{global,o,lin}} - w_{\text{global,u,lin}}}$$
(3.88)

$$K_{\text{ser,v,lin}} = \frac{F_{\text{v,o,lin}} - F_{\text{v,u,lin}}}{w_{\text{v,korr,o,lin}} - w_{\text{v,korr,u,lin}}}$$
(3.89)

$$K_{\text{ser,h,lin}} = \frac{F_{\text{h,o,lin}} - F_{\text{h,u,lin}}}{w_{\text{h,korr,o,lin}} - w_{\text{h,korr,u,lin}}}$$
(3.90)

- Erstbelastungssteifigkeit für den gesamten Erstbelastungsast
 - o Für die Ermittlung einer Steifigkeit, welche das Verhalten des gesamten Erstbelastungsastes beschreibt, wurde eine weitere Steifigkeitskenngröße ermittelt. Diese Steifigkeit bezog sich auf das Verhalten während der Erstbelastungsphase und berücksichtigte dabei nicht nur das Verhalten bis zum Beginn der Hystereseschleife, sondern darüber hinaus. Um diese Steifigkeit zu ermitteln, wurden die Prüfdaten dahingehend gekürzt, dass der gesamte Hystereseverlauf, das heißt sowohl die Phasen des Haltens der Verformung als auch die Entlastungsphase und die anschließende Wiederbelastungsphase, aus den Prüfdaten entfernt wurden. So war es möglich, das Verhalten für die reine Erstbelastung abzubilden. Für diese gekürzten Prüfdaten wurde eine ähnliche Regressionsanalyse, wie zuvor für die Erstbelastungssteifigkeit und die Wiederbelastungssteifigkeit, durchgeführt. Dabei wurden die Prüfdaten zwischen den Grenzen von 10 % und 80 % der maximal aufnehmbaren Kraft der Verbindung untersucht und jene Regression ausgewählt, welche das höchste Bestimmtheitsmaß für einen Kraftbereich von mindestens 35 % ergaben. Die Ermittlung der Steifigkeit erfolgte sinngemäß zu den zuvor genannten.

$$K_{\text{ser,global,lin,ges}} = \frac{F_{\text{o,lin,ges}} - F_{\text{u,lin,ges}}}{w_{\text{global,o,lin,ges}} - w_{\text{global,u,lin,ges}}}$$
(3.91)

$$K_{\text{ser,v,lin,ges}} = \frac{F_{\text{v,o,lin}} - F_{\text{v,u,lin}}}{w_{\text{v,korr,o,lin}} - w_{\text{v,korr,u,lin}}}$$
(3.92)

$$K_{\text{ser,h,lin,ges}} = \frac{F_{\text{h,o,lin,ges}} - F_{\text{h,u,lin,ges}}}{w_{\text{h,korr,o,lin,ges}} - w_{\text{h,korr,u,lin,ges}}}$$
(3.93)

3-4.3.12 Auslesen wesentlicher Prüfgrößen

In diesem Abschnitt soll die Ermittlung bzw. Bestimmung der maßgebenden Prüfgrößen, wie z.B. der maximal aufnehmbaren Belastung, erläutert werden. Dies wurde benötigt um für die statistische Auswertung der Prüfungen die erforderliche Datenbank zu erstellen.

Für die Analyse der einzelnen Prüfungen wurde eine extra hierfür ausgearbeitete Auswertung erstellt. Dies erfolgte mithilfe des Programmes Excel. Die Auswertung kann vollkommen automatisch erfolgen, dabei sind lediglich einige Eingaben nötig. Die Abbildung 3-49 zeigt die Eingabemaske, welche für die Auswertung befüllt werden muss.

Daten einlesen		×
Pfad in dem sich Daten befinden eingeben		
Anzahl der einzulesenden Textdateien angeben	Abstand der Wegaufnehmer	
Nummer der einzulesenden Prüfserie eingeben		
Pfad in der Dateien abgelegt werden sollen angeben		
Auswertung für reines Herausziehen		Textdateien aus Verzeichnis auslesen
Auswertung für kombinierte Beanspruchung	🗌 Auswertung für 6 Wegmesser	
Auswertung für reine Abscherbeanspruchung	Auswertung für 4 Wegmesser	Anzahl der beschriebenen Zeilen ermitteln
Tabellenblattbezeichnung Textdateibezeichnung	Anzahl	der beschriebenen Zeilen
		,
		einlesen der Textdateien ausführen
		Diagramme bearbeiten
		,
		Werte in Zusammenfassung übernehmen
		Dateien exportieren und ablegen
		Dateien einlesen, auswerten und exportieren

Abbildung 3-49 Eingabemaske für Auswertungsfile

Dabei sind einzufüllen:

- Der Pfad in dem sich die auszuwertenden Dateien befinden
 - o Das Dateiformat in dem die Daten vorliegen muss ein .txt File sein
- Die Anzahl der einzulesenden Textdateien
 - Maximal 15 Textdateien können zum selben Zeitpunkt eingelesen werden
- Prüfseriennummer
- Abstand der vertikalen Wegaufnehmer
 - In mm auszufüllen
- Für welche Beanspruchungsart die Auswertung erfolgen soll
 - o reines Herausziehen
 - kombinierte Beanspruchung
 - Abscherbeanspruchung
- Die Anzahl der verwendeten Wegaufnehmer

Nachdem die wesentlichen Prüfparameter eingetragen sind, kann durch Betätigen der Schaltfläche "Dateien einlesen, auswerten und exportieren", die Auswertung gestartet werden. Dies benötigt je nach Anzahl der eingelesenen Versuche, einige Minuten bis ca. 2 h.

Dabei erfolgt die Auswertung der Hysterese mit Bestimmung der maßgebenden Punkte, wie z.B. Erstbelastungsstart, Erstbelastungssende, Entlastungsstart, Entlastungsende, Wiederbelastungsstart, Wiederbelastungsende und maximal geprüfte Belastung.

Des Weiteren werden maßgebende Kenngrößen anhand der Auswertung bestimmt, wie z.B. unterschiedlichste Steifigkeiten, welche bereits unter Abschnitt 3-4.3.11 beschrieben wurden. Die erstellten Diagramme bzw. Abbildungen des Versuches werden anschließend in dem angegebenen Verzeichnis als .pdf Dateien abgelegt.

3-4.4 BESTIMMUNG AUSGEWÄHLTER STATISTISCHER PARAMETER

Die Bestimmung statistisch relevanter Lage- bzw. Streuungsparameter wurde für alle Kenngrößen der Versuche durchgeführt. Dabei wurden die folgenden Lage- bzw. Streuungsparameter mithilfe der Software R (Version 3.6.2) bestimmt.

<u>Mittelwert</u>

Die Eigenschaften des Mittelwertes können nach Berglez [24] wie folgt beschrieben werden.

"Er kann nur bei quantitativen, nicht bei ordinalen oder gar bei nominalen Merkmalen gebildet werden." [24]

"Der Mittelwert \overline{x} ist jene Zahl, für welche die Summe der Abweichungen von den Daten verschwindet." [24]

"Der Mittelwert \overline{x} ist jene Zahl, für welche die Summe der quadratischen Abweichungen von den Daten minimal wird." [24]

Bestimmt wird der Mittelwert mittels der nachstehenden Formel:

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \tag{3.94}$$

Hierbei sind:

 \bar{x}Mittelwert oder Arithmetisches Mittel der beobachteten Daten n....Anzahl der beobachteten Daten x_i*i*-ter Beobachtungswert

<u>Median</u>

Der Zentralwert Z oder auch Median ergibt sich für beobachtete Daten zu jenem Wert, der sich nach aufsteigender Sortierung in der Mitte der Datenreihe befindet. Für eine gerade Anzahl an beobachteten Größen entspricht der Median dem Mittelwert aus den benachbarten Beobachtungsgrößen.

$$\tilde{x} = \begin{cases} \text{für } n = \text{gerade} \\ \text{für } n = \mathbb{D}\text{ngerade} \end{cases} \quad \frac{1}{2} \cdot \begin{pmatrix} x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \end{pmatrix} \\ x_{\frac{n+1}{2}} \end{cases}$$
(3.95)

Hierbei sind:

 \tilde{x}Median oder Zentralwert $x_{n/2}$n/2-te Beobachtungsgröße nach aufsteigender Sortierung $x_{n/2+1}$n/2+1-te Beobachtungsgröße nach aufsteigender Sortierung

<u>Quantile</u>

Der Median, das erste Quartil und das dritte Quartil sind spezielle Quantile. Das Quantil gibt dabei eine Wahrscheinlichkeit an, mit der sich die Daten unterhalb des Wertes des Quantiles befinden. So befinden sich zum Beispiel beim Median 50 % der Beobachtungswerte unterhalb des Medianwertes und 50 % oberhalb des Medianwertes. Selbes gilt für das erste Quartil, welches das 25 % Quantil darstellt, und das dritte Quartil, welches das 75 % Quantil darstellt. Die Vorgehensweise erfolgt dabei analog zur Vorgehensweise bei der Bestimmung des Medians. Ein weiteres Quantil, welches im modernen Ingenieurbau signifikante Relevanz besitzt, ist das 5 % Quantil.

Varianz s² bzw. Standardabweichung s

Ein weiterer wesentlicher Parameter, der zu bestimmen ist, ist die Varianz s². Die Varianz zählt zu den Streuungsparametern und gibt an, wie die Werte um den Mittelwert verteilt sind.

$$s^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
(3.96)

Hierbei sind:

Variationskoeffizient CoV

Der Variationskoeffizient CoV ist eine dimensionslose Größe zur Beschreibung der Streuung einer Verteilung um den Mittelwert.

$$CoV = \frac{s}{\bar{x}} \tag{3.97}$$

Interguartilabstand IQR

Der Interquartilabstand ist ein weiterer wesentlicher Streuungsparameter. Er ergibt sich aus dem dritten Quartil abzüglich des ersten Quartils. Der Interquartilabstand stellt dabei eine Bereichsangabe dar in der 50 % aller Beobachtungsgrößen zu liegen kommen.

$$IQR = x_{75} - x_{25} \tag{3.98}$$

3-4.4.2 Darstellung statistischer Kenngrößen

Für die Darstellung statistischer Lage- bzw. Streuungsparamter wird häufig der sogenannte Boxplot verwendet. Dabei werden sowohl die wesentlichsten Lageparameter wie Minimum, Maximum und Median als auch Streuungsparameter wie der Interquartilabstand veranschaulicht.

Der Boxplot besteht dabei nach Berglez [24] aus:

"Ein Box-Whisker Diagramm (oder auch Boxplot oder deutsch Kastengrafik) besteht aus einer vertikalen (oder horizontalen) Skala, welche die erreichten Werte der Ausprägungen umfasst, einem Rechteck, welches sich vom 1. zum 3. Quartil erstreckt, einem Teilstrich am Median und T-förmigen Fortsätzen zur minimalen und maximalen Ausprägung." [24]

Abbildung 3-50 zeigt dabei einen Box-plot mit Beschreibung der wesentlichsten Parameter die herausgelesen werden können.

Abbildung 3-50 Darstellung statistischer Kenngrößen mittels Boxplot

3-4.5 AUSREISSERBEREINIGUNG

Für experimentell ermittelte statistische Kenngrößen ist oftmals eine Ausreißerbereinigung durchzuführen, da durch diese Extremwerte die Lage- und Streuungsparameter unerwünscht verzerrt werden können. Dies hängt sehr stark von deren Empfindlichkeit gegenüber Extremwerten ab. Als Ausreißer werden jene Werte bezeichnet, welche sich außerhalb der sogenannten Whisker befinden.

Die grundsätzliche Vorgehensweise bei der Ermittlung, ob es sich bei den prüftechnisch ermittelten Werten um sogenannte Ausreißer handelt, war wie folgt:

Materialkenngrößen im Holzbau wird grundsätzlich unterstellt, dass diese Lognormalverteilt sind, d.h. die Kenngrößen müssen für eine Analyse in logarithmierte Werte übergeführt werden.

$$\hat{x} = \ln\left(x\right) \tag{3.99}$$

Dies wird für alle Kenngrößen durchgeführt, im Verlauf dieser Arbeit, waren die Parameter welche einer Ausreißerbereinigung unterzogen wurden, folgende:

- Die Rohdichte ρ₁₂
- Die maximal aufnehmbare Kraft der Verbindung F_{max}
- Die maximal aufnehmbare Kraft bis zu einer Grenzverformung von $15 \text{ mm } F_{15}$
- Die Schraubenzugtragfähigkeit *F*_{tens}
- Die Fließmomente der Schraube M_{y,pl}

Für die obenstehenden Kenngrößen wurden die wichtigsten statistischen Parameter bestimmt, welche bereits in Abschnitt 3-4.4 erläutert wurden. Mithilfe der Bestimmung des oberen und unteren Whisker, sh. hierzu Abbildung 3-50, kann nun eine Aussage bezüglich jedes Prüfwertes getroffen werden.

Die Anzahl an Prüfungen, welche nach der Ausreißerbereinigung in die statistische Auswertung eingegangen sind können dem 0entnommen werden.

KAPITEL 4: ERGEBENISSE UND DISKUSSION

4-1 ROHDICHTE UND HOLZFEUCHTIGKEIT

Die Ergebnisse für die bereinigten Daten der Rohdichte und Holzfeuchtigkeit werden in diesem Abschnitt aufgezeigt und erläutert. Dabei erfolgte die Bestimmung der Rohdichte wie in Abschnitt 3-4.2 vorgestellt. Die Holzfeuchte ist dabei anhand der Darrprobe, welche in Abschnitt 3-4.2 beschrieben wurde, bestimmt worden. Die Daten, die im Anschluss einer Ausreißreiserbereinigung hinsichtlich Extremwerten gemäß Abschnitt 3-4.5 in die statistische Auswertung eingegangen sind, können den Tabelle 4-1 bis Tabelle 4-4 entnommen werden. Die in Abschnitt 3-4.4 definierten, ausgewählten statistischen Kenngrößen sind ebenfalls den Tabelle 4-1 bis Tabelle 4-4 zu entnehmen.

Die Zuordnung der Daten der Tabelle zu den in Abbildung 4-1 dargestellten Verteilungen der Rohdichte kann dabei über die Prüfseriennummer erfolgen. Weiters können der Abbildung 4-1 die Anzahl der zur Bestimmung der Verteilung herangezogenen Versuchen entnommen werden. Ebenfalls enthalten sind die Informationen zu den Winkelkombinationen bestehend aus dem axial abweichenden Winkel zur Schraubenachse γ , dem Last-Faserwinkel α und dem Achs-Faserwinkel ε . Die Eindrehtiefen können der Abbildung 4-1 nur indirekt entnommen werden. Jedoch gliedert sich die Darstellung für alle aufgezeigten Achs-Faserwinkel ε in derselben Art und Weise: reine Ausziehbeanspruchung, kombinierte Beanspruchung mit axial abweichendem Winkel zur Schraubenachse $\gamma = 30^{\circ}$, kombinierte Beanspruchung mit axial abweichendem Winkel zur Schraubenachse $\gamma = 60^{\circ}$ und reine Abscherbeanspruchung. Die Trennung der einzelnen Belastungsrichtungen erfolgt dabei über einen vertikalen Trennstrich, in diesem Fall anhand der vertikalen roten Linien. Die Einschraubtiefen sind dabei für jede Belastungsart der Reihe nach aufsteigend sortiert, das heißt sie gliedern sich, wie folgt:

• Ausziehbeanspruchung:

 \circ $l_{\rm e} = 105 \, \rm mm$

- Axial abweichender Winkel zur Schraubenachse $\gamma = 30^{\circ}$:
 - $\circ l_e = 40 \text{ mm}$
 - $\circ l_{e} = 105 \text{ mm}$
 - \circ $l_{\rm e} = 165 \,\rm{mm}$
 - \circ $l_{\rm e} = 225 \,\rm mm$
- Axial abweichender Winkel zur Schraubenachse $\gamma = 60^{\circ}$:
 - \circ $l_{\rm e} = 40 \, \rm mm$
 - \circ $l_{\rm e} = 105 \, \rm mm$
 - \circ $l_{\rm e} = 165 \,\rm{mm}$
 - \circ $l_{\rm e} = 225 \,\rm{mm}$
- Abscherbeanspruchung:
 - $\circ l_{\rm e} = 40 \,\rm{mm}$
 - \circ $l_{\rm e} = 105 \, \rm mm$
 - \circ $l_{\rm e} = 165 \,\rm{mm}$
 - \circ $l_{\rm e} = 225 \, \rm mm$

Des Weiteren ist die globale mittlere Rohdichte für all jene Versuche ersichtlich, die in die statistische Betrachtung miteinbezogen wurden. Die Darstellung der Rohdichteverteilung erfolgt mit der in Abschnitt 3-4.4.2 vorgestellten Methode des Boxplots. Zusätzliche Parameter, welche der Boxplot-Darstellung

entnommen werden können, sind der Mittelwert $\rho_{12,mean}$ der Rohdichte für jede Prüfserie und der charakteristische Wert der Rohdichte $\rho_{12,0.05}$, bestimmt mittels empirischer Verteilungsfunktion.

Betrachtet man die Holzfeuchtigkeit u so kann über alle Versuche festgestellt werden, dass diese im Mittel 9,5 % ergibt. Die minimale Holzfeuchtigkeit ergibt sich zu 7,2 %, siehe hierzu Tabelle 4-4 Prüfserie Nr. 32, und die maximale Holzfeuchtigkeit zu 13,7 %, siehe hierzu Tabelle 4-3 Prüfserie Nr. 61. Die gewünschte Holzausgleichsfeuchte von $u_{req} = 12 \% \pm 2 \%$ konnte nicht ganz erreicht werden, was sich vermutlich auf den Konditionierungszeitraum zurückführen lässt. Aufgrund der Bestimmung der Rohdichte bezogen auf eine Holzausgleichsfeuchte von 12 % nach Gleichung (3.73), wurde im weiteren Verlauf auf eine Korrektur der Prüfergebnisse hinsichtlich der Holzausgleichsfeuchte von 12 % nicht angepasst.

Die Rohdichte zeigt, im Gegensatz zur Holzausgleichsfeuchte, eine sehr gute Übereinstimmung mit dem gewünschten Mittelwert von $\rho_{\text{mean,req}} = 420 \text{ kg/m}^3$. Die maximale Abweichung zur gewünschten mittleren Rohdichte zeigt sich bei Prüfserie 51, siehe hierzu Tabelle 4-1, mit einer mittleren Rohdichte von $\rho_{12,\text{mean}} = 447 \text{ kg/m}^3$ bzw. einer relativen Abweichung von 6,4 % vom gewünschten Wert.

Betrachtet man nun Abbildung 4-1 zeigt sich für einen Achs-Faserwinkel von 90° eine gute Übereinstimmung der Mittelwerte der Einzelserien zum Mittelwert über alle Serien. Für die Achs-Faserwinkel von 60° und 0° zeigt sich anhand der Verteilung, dass hier die Mittelwerte sehr gut mit der gewünschten Rohdichte von 420 kg/m³ korrelieren. Bei einem Achs-Faserwinkel von 30° wiederum, dass die Rohdichteverteilungen der einzelnen Serien geringfügig zu hoch angesiedelt sind. Dies liegt jedoch noch in einem Bereich der als akzeptabel anzusehen ist. Daher wird im weiteren Verlauf auf eine Korrektur hinsichtlich der Rohdichte verzichtet.

Abbildung 4-1 Rohdichteverteilung (oben links: Achs-Faserwinkel $\varepsilon = 90^{\circ}$; oben rechts: Achs-Faserwinkel $\varepsilon = 30^{\circ}$; unten links: Achs-Faserwinkel $\varepsilon = 60^{\circ}$; unten rechts: Achs-Faserwinkel $\varepsilon = 0^{\circ}$)

$\epsilon = 90$ °	n [-]	ρ _{med} [kg/m ³]	ρ _{mean} [kg/m³]	CoV[ρ] [%]	ρ _{min} [kg/m³]	ρ _{max} [kg/m³]	u _{med} [%]	u _{mean} [%]	u _{min} [%]	u _{max} [%]
Bii-(15)-08-105-00-99-00-90-jj	10	428	428	2,96%	411	455	9,7	9,5	7,9	10,5
Bii-(19)-08-040-30-00-30-90-jj	11	419	421	7,13%	377	462	8,1	8,2	7,6	8,8
Bii-(20)-08-105-30-00-30-90-jj	11	421	416	5,37%	381	456	8,9	8,8	8,5	9,2
Bii-(21)-08-165-30-00-30-90-jj	11	424	424	4,48%	394	466	8,6	8,7	8,3	9,2
Bii-(22)-08-225-30-00-30-90-jj	10	434	443	4,66%	423	485	8,9	8,8	8,3	9,2
Bii-(35)-08-040-60-00-60-90-jj	9	426	424	3,20%	405	453	9,0	9,4	8,6	12,0
Bii-(36)-08-105-60-00-60-90-jj	10	431	432	2,02%	417	447	9,9	10,0	9,4	10,7
Bii-(37)-08-165-60-00-60-90-jj	11	427	429	6,26%	383	484	9,7	9,6	7,6	10,4
Bii-(38)-08-225-60-00-60-90-jj	12	421	424	6,66%	385	474	9,6	9,4	7,7	10,5
Bii-(51)-08-040-90-00-90-90-jj	12	446	447	9,52%	381	502	10,1	9,9	8,9	10,6
Bii-(52)-08-105-90-00-90-90-jj	12	429	429	5,99%	390	475	10,3	10,4	9,2	11,6
Bii-(53)-08-165-90-00-90-90-jj	13	430	438	6,47%	400	500	10,4	10,1	8,0	11,5
Bii-(54)-08-225-90-00-90-90-jj	10	424	427	4,85%	395	460	10,2	10,2	9,7	10,7

Tabelle 4-1 statistische Parameter der Rohdichte und Holzfeuchtigkeit bei einem Achs-Faserwinkel von ε = 90 °

Tabelle 4-2 statistische Parameter der Rohdichte und Holzfeuchtigkeit bei einem Achs-Faserwinkel von ε = 30 °

$\varepsilon = 30^{\circ}$	n [-]	ρ _{med} [kg/m ³]	ρ _{mean} [kg/m³]	CoV[ρ] [%]	ρ _{min} [kg/m³]	ρ _{max} [kg/m³]	u _{med} [%]	u _{mean} [%]	u _{min} [%]	u _{max} [%]
Bii-(16)-08-105-00-99-00-30-jj	12	427	425	4,75%	396	462	10,6	10,3	8,4	12,1
Bii-(23)-08-040-30-60-30-30-jj	12	408	413	3,84%	391	441	8,4	8,4	7,8	8,9
Bii-(24)-08-105-30-60-30-30-jj	11	421	413	5,13%	373	445	8,7	8,7	8,0	9,0
Bii-(25)-08-165-30-60-30-30-jj	12	430	428	5,36%	397	468	9,6	9,5	8,7	9,9
Bii-(26)-08-225-30-60-30-30-jj	10	424	425	1,74%	412	439	9,3	9,3	9,0	9,7
Bii-(39)-08-040-60-60-60-30-jj	9	416	412	3,97%	382	432	9,4	9,4	9,1	9,8
Bii-(40)-08-105-60-60-60-30-jj	11	417	418	3,52%	399	439	9,3	9,3	8,3	10,3
Bii-(41)-08-165-60-60-60-30-jj	12	415	417	4,70%	381	451	9,9	9,9	9,2	10,5
Bii-(42)-08-225-60-60-60-30-jj	12	419	430	6,27%	406	490	10,1	10,0	9,2	10,5
Bii-(55)-08-040-90-60-90-30-jj	12	411	420	5,08%	397	464	9,8	9,8	9,6	10,4
Bii-(56)-08-105-90-60-90-30-jj	10	426	426	3,32%	401	443	10,1	9,8	8,5	10,7
Bii-(57)-08-165-90-60-90-30-jj	12	446	440	4,11%	409	468	9,8	9,7	8,4	10,8
Bii-(58)-08-225-90-60-90-30-jj	11	444	442	3,59%	414	466	10,5	10,5	9,3	12,5

$\epsilon = 60$ °	n [-]	ρ _{med} [kg/m ³]	ρ _{mean} [kg/m³]	CoV[ρ] [%]	ρ _{min} [kg/m³]	ρ _{max} [kg/m³]	u _{med} [%]	u _{mean} [%]	u _{min} [%]	u _{max} [%]
Bii-(17)-08-105-00-99-00-60-jj	12	418	422	5,71%	388	460	10,4	10,3	8,8	11,3
Bii-(27)-08-040-30-30-30-60-jj	11	424	418	6,08%	379	463	8,3	8,4	8,0	8,8
Bii-(28)-08-105-30-30-30-60-jj	13	424	435	7,77%	389	496	8,9	8,7	8,0	9,2
Bii-(29)-08-165-30-30-30-60-jj	11	435	442	5,29%	413	480	9,8	9,8	9,4	10,2
Bii-(30)-08-225-30-30-30-60-jj	13	432	434	4,24%	394	464	9,0	8,7	7,5	9,4
Bii-(43)-08-040-60-30-60-60-jj	11	424	416	7,21%	375	476	9,5	9,4	8,7	10,0
Bii-(44)-08-105-60-30-60-60-jj	12	419	422	3,21%	400	447	9,9	9,7	8,6	10,6
Bii-(45)-08-165-60-30-60-60-jj	11	442	436	3,14%	409	453	9,8	9,6	8,5	10,3
Bii-(46)-08-225-60-30-60-60-jj	11	436	440	3,12%	420	462	10,0	10,0	8,7	10,5
Bii-(59)-08-040-90-30-90-60-jj	12	436	440	5,60%	402	476	10,1	10,0	9,3	10,7
Bii-(60)-08-105-90-30-90-60-jj	10	427	430	4,23%	406	471	10,3	10,3	9,4	11,4
Bii-(61)-08-165-90-30-90-60-jj	12	428	432	4,72%	409	466	10,3	10,6	9,5	13,7
Bii-(62)-08-225-90-30-90-60-jj	12	435	442	5,09%	413	484	9,9	9,7	8,7	11,1

Tabelle 4-3 statistische Parameter der Rohdichte und Holzfeuchtigkeit bei einem Achs-Faserwinkel von ε = 60 °

Tabelle 4-4 statistische Parameter der Rohdichte und Holzfeuchtigkeit bei einem Achs-Faserwinkel von ε = 0 °

$\epsilon = 90^{\circ}$	n [-]	ρ _{med} [kg/m ³]	ρ _{mean} [kg/m³]	CoV[ρ] [%]	ρ _{min} [kg/m³]	ρ _{max} [kg/m³]	U _{med} [%]	u _{mean} [%]	u _{min} [%]	u _{max} [%]
Bii-(18)-08-105-00-99-00-90-jj	8	425	425	1,81%	411	434	10,3	10,4	8,3	12,0
Bii-(31)-08-040-30-90-30-00-jj	10	408	408	2,65%	389	424	8,4	8,3	7,7	8,7
Bii-(32)-08-105-30-90-30-00-jj	10	419	417	4,32%	379	437	8,8	8,6	7,2	9,2
Bii-(33)-08-165-30-90-30-00-jj	9	418	421	3,79%	398	449	9,7	9,8	9,2	10,3
Bii-(34)-08-225-30-90-30-00-jj	10	418	417	2,67%	398	438	9,0	8,9	7,3	9,4
Bii-(47)-08-040-60-90-60-00-jj	11	415	420	4,87%	390	460	9,1	9,1	8,1	10,7
Bii-(48)-08-105-60-90-60-00-jj	9	413	416	2,13%	404	434	9,9	9,7	8,2	10,7
Bii-(49)-08-165-60-90-60-00-jj	12	439	439	5,41%	394	471	10,1	10,0	8,8	10,9
Bii-(50)-08-225-60-90-60-00-jj	10	418	423	5,06%	404	471	9,7	9,7	8,6	10,3
Bii-(63)-08-040-90-90-90-00-jj	13	422	426	4,05%	403	455	9,9	9,9	8,1	12,6
Bii-(64)-08-105-90-90-90-00-jj	9	418	417	1,60%	404	426	10,0	9,9	9,0	10,3
Bii-(65)-08-165-90-90-90-00-jj	8	430	427	1,64%	414	434	10,0	9,4	7,6	10,6
Bii-(66)-08-225-90-90-90-00-jj	11	414	424	6,75%	387	484	10,1	9,9	8,4	11,5

4-2 SCHRAUBENPARAMETER

In Abbildung 4-2 sind die Schraubenparameter in Form eines Boxplots dargestellt, welche um die Darstellung des jeweiligen Mittelwertes und des 5%-Quantilwertes ergänzt wurden. Abzulesen sind sowohl die maximal aufnehmbare Zugkraft der Schrauben, aufgeteilt auf die verwendeten Schraubenlängen von 120 mm, 180 mm und 240 mm bzw. der Charge, welcher die zu prüfenden Schrauben entnommen wurden,

als auch die Varianten B und C der Fließmomentbestimmung, welche ebenfalls im Abschnitt 3-4.1.2 aufgezeigt erläutert wurden.

Anhand der Abbildungen lässt sich feststellen, dass die Schraubenzugtragfähigkeit mit zunehmender Länge abnimmt. Der Mittelwert über alle Schraubenlängen ergibt sich, wie in Abbildung 4-2 ersichtlich, zu 27106 N. Vergleicht man nun die charakteristischen Werte, welche in der europäisch technischen Zulassung ETA-12/0373 [5] angegeben sind, so wird klar, dass die Zugtragfähigkeiten im Vergleich zum Wert der Zulassung nach oben hin Abweichungen zeigen. So ergibt sich der minimale 5%-Quantilwert der Schraubenzugtragfähigkeit für die Schraubenlänge von 240 mm zu 25822 N, was eine Abweichung zum Zulassungswert von 24000 N von 7,5 % ergibt.

Für die Fließmomente zeigt sich ein ähnliches Bild wie für die Schraubenzugtragfähigkeiten. Die Fließmomente, welche versuchstechnisch ermittelt wurden, liegen für Schraubendurchmesser d = 8 mm zu hoch, anzumerken ist hierbei, dass die Fließmomente, welche in der ETA-12/0373 [5] verankert sind, anders ermittelt wurden. Aus Versuchen unterschiedlicher Arbeiten zeigt sich, dass die Werte für Schraubendurchmesser d = 8 mm im Bereich von 20 bis 30 N/m liegen sollten. Aus den hier durchgeführten Versuchen wurde das Fließmoment jedoch zu 38 N/m für Variante C und 36 N/m für Variante B bestimmt. Der Grund für die enormen Abweichungen von Variante B und C hinsichtlich des Fließmomentes ist jedoch unklar.

Die berechneten Fließmomente laut Variante A zeigen eine bessere Übereinstimmung mit den zu erwartenden Werten. Die Werte liegen im zu erwartenden Bereich und können der Tabelle 4-5 entnommen werden.

Die Werte der Ausreißer bereinigten Fließmomente, welche anhand von Versuchen bestimmt wurden, können den Tabelle 4-6 und Tabelle 4-7 für die jeweiligen Varianten entnommen werden.

	Länge [mm]	F _{tens,med} [N]	F _{tens,mean} [N]	F _{tens,max} [N]	F _{tens,min} [N]	F _{tens,05} [N]	М _{у,А} [N/m]
080 x 120/110 A0C 1A1 C1E - ii	120	27565	27540	28159	27018	27050	26,87
080 x 180/170 A0C 1A1 C1E - ii	180	26813	26746	27177	26386	26392	25,35
080 x 240/230 A0C 1A1 C1E - ii	240	26368	26361	26923	25682	25822	25,92

Tabelle 4-5 Statistische Parameter für Schraubenzugtragfähigkeit und berechnetes Fließmoment

Tabelle 4-6 Statistische Parameter f Fließmoment bestimmt anhand Variante B

	Länge [mm]	M _{y,B,med} [N/m]	M _{y,B,mean} [N/m]	M _{y,B,max} [N/m]	М _{у,В,тіп} [N/m]	М _{у,В,05} [N/m]	Charge [-]
080 x 120/110 A0C 1A1 C1E - ii	120	37,11	37,10	34,66	39,72	34,14	2
080 x 120/110 A0C 1A1 C1E - ii	120	36,39	36,56	36,17	37,29	36,15	1
080 x 180/170 A0C 1A1 C1E - ii	180	36,10	36,15	34,87	37,88	34,55	2
080 x 180/170 A0C 1A1 C1E - ii	180	38,48	38,30	37,99	38,48	37,93	1
080 x 240/230 A0C 1A1 C1E - ii	240	35,63	35,65	33,49	38,07	33,16	1

 Tabelle 4-7 Statistische Parameter f

 Fließmoment bestimmt anhand Variante C

Lä	änge	M _{y,C,med}	M _{y,C,mean}	M _{y,C,max}	М _{у,С,тіп}	М _{у,С,05}	Charge
[n	nm]	[Nm]	[N/m]	[N/m]	[N/m]	[N/m]	[-]

KAPITEL 4: ERGEBENISSE UND DISKUSSION Modellvergleich axiale Tragfähigkeit

080 x 120/110 A0C 1A1 C1E - ii	120	38,33	38,71	36,42	41,29	35,33	2
080 x 120/110 A0C 1A1 C1E - ii	120	37,63	37,71	36,39	39,21	36,33	1
080 x 180/170 A0C 1A1 C1E - ii	180	38,07	38,17	36,29	40,71	36,03	2
080 x 180/170 A0C 1A1 C1E - ii	180	39,20	39,31	38,53	40,41	38,42	1
080 x 240/230 A0C 1A1 C1E - ii	240	36,75	36,95	34,45	39,46	34,07	1

Abbildung 4-2 Ergebnisse der Schraubenprüfungen (links oben: Schraubzugtragfähigkeit F_{tens}; rechts oben: Flieβmomentbestimmung lt. Variante C M_{y,C}; links unten: Flieβmomentbestimmung lt. Variante B M_{y,B})

4-3 MODELLVERGLEICH AXIALE TRAGFÄHIGKEIT

Für den Modellvergleich der Ausziehversuche, das heißt die Prüfkonfiguration befindet sich in der Ausgangslage, sind die Modelle von Ringhofer [8] und der ÖNORM EN/B 1995-1-1 [3][4] mit den versuchstechnisch ermittelten Kräften verglichen worden. Der Vergleich beruht dabei auf den zu erwartenden Mittelwerten der jeweiligen Vergleichsmodelle. Der Legende können die Erläuterungen für

die unterschiedlichen Serien entnommen werden. Es können sowohl der Achs-Faserwinkel ε als auch die Eindrehtiefe l_e abgelesen werden.

Abbildung 4-3 Vergleich der Versuchsergebnisse mit den Modellvorhersagen für axial beanspruchte Holzbauschrauben (links: Modell Ringhofer [8]; rechts: Modell ÖNORM B 1995-1-1 [4])

Die Ermittlung der zu erwartenden Ausziehtragfähigkeiten erfolgte dabei für das Modell nach Ringhofer [8] wie in den Gleichungen 2.32 angegeben. Für das Modell, welches in der ÖNORM EN/B 1995-1-1 [3][4] angegeben ist, liegen keine Formeln für die Bestimmung des Mittelwertes vor. Daher wurde hierfür auf die Versuche zurückgegriffen, welche zum Bemessungskonzept für die ÖNORM EN/B 1995-1-1 [3][4] geführt haben. Diese Versuche wurden von Blaß et al. [10] durchgeführt. Die Gleichung, welche zur Bestimmung herangezogen wurde, ist nachstehend aufgeführt.

$$F_{ax} = \frac{0.6 \cdot \sqrt{d} \cdot l_{eff}^{0.9} \cdot \rho_{12}^{0.8}}{1.2 \cdot \cos(\varepsilon)^2 + \sin(\varepsilon)^2}$$
(4.1)

Der Vergleich mit dem Modell von Ringhofer [8] zeigt eine sehr gute Übereinstimmung mit der Ausgleichsgerade. Die Ausgleichsgerade stellt dabei jene Modellvorhersage dar, bei der die Prüfdaten mit der Modellvorhersage übereinstimmen. Das Bestimmtheitsmaß der ermittelten Regressionsgerade ergibt sich für dieses Modell zu 0,492. Lediglich die Versuche zur Ausziehtragfähigkeit, von im Hirnholz eingebrachten Verbindungsmitteln, weicht deutlicher von den versuchstechnisch ermittelten Werten ab. Die Kräfte werden bei dieser Konstellation der Eingangsparameter überschätzt.

Das Modell, welches in der ÖNORM EN/B 1995-1-1 [3][4], geregelt ist, zeigt bezüglich der Vorhersage der Tragfähigkeit ein deutlich schlechteres Verhalten. Es zeigt sich, dass die Werte für Hirnholzverschraubungen wie zuvor beim Modell von Ringhofer [8], überschätzt werden. Zusätzlich werden bei diesem Modell die Tragfähigkeiten von im Seitenholz eingebrachten Verbindungsmitteln mit Achs-Faserwinkeln $\varepsilon > 45^{\circ}$, unterschätzt.

Die Werte der versuchstechnisch ermittelten Ausziehtragfähigkeiten mit der Gegenüberstellung der Modelle kann den nachstehenden Tabellen entnommen werden.

Die Tabelle 4-8 zeigt dabei die statistischen Parameter für die Ausziehtragfähigkeiten der einzelnen Prüfserien.

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{ax,med} [N]	F _{ax,mean} [N]	f _{ax,mean} [N/mm]	F _{ax,min} [N]	F _{ax,max} [N]	F _{ax,05} [N]
15	9	105	15659	15657	6,51	14357	16805	14495
16	12	105	12564	12283	5,11	9787	14139	9819
17	12	105	14977	14887	6,19	12064	18336	12544
18	8	105	8142	8701	3,62	6385	11844	6891

Tabelle 4-8 Statistische Parameter der Ausziehversuche

Die Tabelle 4-9 bis Tabelle 4-12 zeigen die Gegenüberstellung der Versuchsdaten mit den Modellvorhersagen für die einzelnen Prüfserien. Ersichtlich sind sowohl die Vorhersage der aufnehmbaren Kraft der Verbindung als auch die Vorhersage der Ausziehfestigkeit. Die Ermittlung der Ausziehfestigkeit für ÖNORM EN/B 1995-1-1 [3][4] erfolgt dabei wie in Gleichung (2.92) angegeben.

$\epsilon = 90^{\circ}$	ρ ₁₂ [kg/m ³]	F _{ax,gepr} [N]	F _{ax,ɛ,Ringhofer} [N]	F _{ax,ε,EC5} [N]
B08-(15)-08-105-00-99-00-90-02	417	14357	13710	12826
B22-(15)-08-105-00-99-00-90-04	411	15440	13491	12676
B27-(15)-08-105-00-99-00-90-05	429	15659	14169	13137
B32-(15)-08-105-00-99-00-90-06	432	16465	14254	13194
B35-(15)-08-105-00-99-00-90-07	427	16574	14094	13086
B43-(15)-08-105-00-99-00-90-08	455	16805	15101	13760
B46-(15)-08-105-00-99-00-90-09	433	14953	14295	13221
B58-(15)-08-105-00-99-00-90-11	438	14701	14489	13352
B08-(15)-08-105-00-99-00-90-test	416	15961	13672	12800

Tabelle 4-9 Gegenüberstellung der Prüfdaten der Serie 15 mit den Modellvorhersagen

Tabelle 4-10 Gegenüberstellung der Prüfdaten der Serie 16 mit den Modellvorhersagen

$\varepsilon = 30^{\circ}$	ρ ₁₂ [kg/m ³]	F _{ax,gepr} [N]	F _{ax,ɛ,Ringhofer} [N]	F _{ax,ε,EC5} [N]
B02-(16)-08-105-00-99-00-30-01	462	13733	14024	12117
B11-(16)-08-105-00-99-00-30-02	430	12267	12959	11433
B14-(16)-08-105-00-99-00-30-03	428	12861	12887	11386
B28-(16)-08-105-00-99-00-30-05	400	10803	12000	10805
B31-(16)-08-105-00-99-00-30-06	396	9846	11843	10701
B37-(16)-08-105-00-99-00-30-07	437	13365	13196	11587
B40-(16)-08-105-00-99-00-30-08	415	12937	4844	11124
B48-(16)-08-105-00-99-00-30-09	401	9787	12017	10816
B54-(16)-08-105-00-99-00-30-10	434	14139	13103	11526
B59-(16)-08-105-00-99-00-30-11	450	12031	13638	11871
B11-(16)-08-105-00-99-00-30-test	427	13836	12857	11367
B48-(16)-08-105-00-99-00-30-test	414	11795	12457	11106

$\epsilon = 60^{\circ}$	ρ ₁₂ [kg/m ³]	F _{ax,gepr} [N]	F _{ax,ɛ,Ringhofer} [N]	F _{ax,ɛ,EC5} [N]
B02-(17)-08-105-00-99-00-60-01	414	12064	13597	12141
B10-(17)-08-105-00-99-00-60-02	388	14707	12679	11540
B14-(17)-08-105-00-99-00-60-03	445	16757	14743	12878
B18-(17)-08-105-00-99-00-60-04	392	13223	12812	11628
B24-(17)-08-105-00-99-00-60-05	419	14122	13812	12281
B32-(17)-08-105-00-99-00-60-06	458	18336	15209	13173
B38-(17)-08-105-00-99-00-60-07	428	15541	14130	12486
B43-(17)-08-105-00-99-00-60-08	400	13097	13126	11834
B45-(17)-08-105-00-99-00-60-09	430	15818	14192	12526
B51-(17)-08-105-00-99-00-60-10	460	16794	15300	13230
B57-(17)-08-105-00-99-00-60-11	417	15247	13718	12220
B02-(17)-08-105-00-99-00-60-test	407	12937	13351	11982

Tabelle 4-11 Gegenüberstellung der Prüfdaten der Serie 17 mit den Modellvorhersagen

Tabelle 4-12 Gegenüberstellung der Prüfdaten der Serie 18 mit den Modellvorhersagen

$\epsilon = 0^{\circ}$	ρ ₁₂ [kg/m ³]	F _{ax,gepr} [N]	F _{ax,ɛ,Ringhofer} [N]	F _{ax,e,EC5} [N]
B05-(18)-08-105-00-99-00-00-01	419	11844	10273	10743
B17-(18)-08-105-00-99-00-00-03	434	7921	10584	11048
B19-(18)-08-105-00-99-00-00-04	411	9803	10108	10581
B27-(18)-08-105-00-99-00-00-05	434	8282	10581	11045
B38-(18)-08-105-00-99-00-00-07	424	7830	10365	10833
B45-(18)-08-105-00-99-00-00-08	424	8003	10367	10835
B47-(18)-08-105-00-99-00-00-09	426	9537	10422	10890
B56-(18)-08-105-00-99-00-00-11	430	6385	10495	10961

4-4 MODELLVERGLEICH LATERALE TRAGFÄHIGKEIT

In diesem Abschnitt wird ein Vergleich des aktuell gültigen Bemessungskonzepts gemäß ÖNORM EN/B 1995-1-1 [3][4] mit den für rein lateral beanspruchte Holzbauschrauben gewonnen Prüfdaten vorgestellt. Dies inkludiert eine Variation des Reibbeiwertes (Vorfaktor im additiven Zusatz des Seileffekts), sowie des Versagensmechanismus. Dabei erfolgt eine Gegenüberstellung des berechneten Versagensmechanismus mit jenem der im Rahmen der durchgeführten Versuche anhand der deformierten Schraube bestimmt wurde (Abbildungen oben vs. Abbildungen unten). Die Prüfdaten, welche den Abbildungen zugrunde liegen, beziehen sich dabei auf jene Kraft welche bis zu einer Verformung von 15 mm maximal aufgetreten ist und der Berücksichtigung des Fließmomentes bestimmt nach Variante A. Des Weiteren wird die Schraubenzugtragfähigkeit als maximal aufnehmbare Belastung in axialer Richtung berücksichtigt.

Tabelle 4-13 zeigt dabei die Übersicht der Winkelvariation der einzelnen Prüfserien, welche lateral geprüft wurden.

Dem 0können weitere Vergleiche entnommen werden wie z.B. Modellvorhersagen ohne Berücksichtigung der Schraubenzugtragfähigkeit bei der Bestimmung des Seileffekts oder Gegenüberstellungen mit der maximal aufnehmbaren geprüften Kraft F_{max} des Verbindungsmittels.

Prüfserie [ID]	n [-]	l _e [mm]	<i>l</i> ef [mm]	3 [°]	α [°]
51	11	40	40	90	0
52	12	105	95,64	90	0
53	12	165	155,64	90	0
54	10	225	215,64	90	0
55	12	40	40	30	60
56	10	105	95,64	30	60
57	12	165	155,64	30	60
58	11	225	215,64	30	60
59	11	40	40	60	30
60	10	105	95,64	60	30
61	12	165	155,64	60	30
62	11	225	215,64	60	30
63	12	40	40	0	90
64	9	105	95,64	0	90
65	8	165	155,64	0	90
66	10	225	215,64	0	90

Tabelle 4-13 Variationsparameter Modellvergleich laterale Tragfähigkeit

4-4.1 ACHS-FASERWINKEL 90 °

Für einen Achs-Faserwinkel von 90 ° zeigt die Abbildung 4-4 den eingangs erläuterten Modellvergleich. Dabei wurden in der links oben angeordneten Grafik die Modellvorhersagen mit einem Vorfaktor zur Berücksichtigung des Seileffektes (im Weiteren auch Reibbeiwert) von 25 % und dem rechnerisch ermittelten Versagensmechanismus (im Weiteren VM) ausgewiesen. Zum Vergleich des Einflusses des Reibbeiwertes dient die Grafik rechts oben, welche die Modellergebnisse mit einem Reibbeiwert von 50 % beinhaltet.

Die beiden unten angeordneten Grafiken zeigen eine ähnliche Gegenüberstellung; lediglich die Gleichung zur Ermittlung der Tragfähigkeit gem. Johansen wurde hierbei nicht nach dem Minimum ausgewählt, sondern nach dem in der Prüfung beobachteten VM. Anzumerken ist, dass der ermittelte VM anhand der deformierten Schraube rein optisch erfolgt ist und die Ergebnisse eine subjektive Beurteilung des Verfassers widerspiegeln. Die Beurteilung erfolgte dabei anhand der geprüften Schraube, wenn kein Versagen des Verbindungsmittels vorlag, oder anhand der Form des deformierten Schraubenkanals, wenn ein Stahlbruch der Schraube aufgetreten ist. Speziell für letzteres war eine Beurteilung des Versagensmechanismus, insbesonders betreffend der Anzahl an Fließgelenken, schwer durchführbar. Das Fließmoment für die Bestimmung der Modellvorhersagen nach Johansen ist dabei nach Variante A (siehe

hierzu Abschnitt 3-4.1.2) bestimmt worden. Ebenfalls berücksichtigt wurde, dass der Anteil des Seileffektes die Schraubenzugtragfähigkeit F_{tens} nicht übersteigen kann.

Für die Abbildungen die den VM, der an der Schraube bestimmt wurde, darstellen, zeigt sich eine deutlich schlechtere Übereinstimmung der Regressionsgerade mit der Ausgleichsgerade, und somit mit den Versuchsergebnissen. Festzustellen ist hierbei, dass für die Versuche mit Einschraublängen von 165 mm und 225 mm der Versagensmechanismus deutlich zu jenem abweicht, der mittels des Vorhersagemodells bestimmt wurde.

Die in Abbildung 4-4 dargestellten Ergebnisse zeigen, dass sich die Vorhersage des Modells nur anhand der Einschraubtiefe unterscheidet. Dies ist auf einen Wechsel, des ermittelten VM nach den Gleichungen gem. Johansen, zurückzuführen. Dieser ergibt sich für Versuche ab einer Einschraubtiefe von 105 mm in Form einer Ausbildung von jeweils zwei Fließgelenken. Bei diesem Mechanismus werden lediglich das Fließmoment, die Lochleibungsfestigkeit und der Verbindungsmitteldurchmesser berücksichtigt. Aufgrund der Ermittlung des Fließmomentes für unterschiedliche Schraubentypen (verwendet für die unterschiedlichen Eindrehlängen) unterscheidet sich dieses nur bei den unterschiedlichen Einschraubtiefen, nicht aber in der jeweiligen Serie selbst. Der Durchmesser des Verbindungsmittels wurde als konstant für alle Versuche angenommen. Das bedeutet, dass der einzige Berechnungsunterschied innerhalb einer Serie in der Rohdichte des jeweiligen Prüfkörpers lag. Bei einer Betrachtung der Ergebnisse zeigt sich, dass anhand des Berechnungsmodelles nach Johansen der Einfluss der Rohdichte eine bedeutendere Rolle einnehmen könnte als aktuell im Bemessungskonzept verankert.

Für die Variation des Reibbeiwertes zeigt sich, dass der Ansatz eines Reibbeiwerts von 25 % als Vorfaktor des Seileffekt-Terms zu geringe Rechenergebnisse im Vergleich mit den Prüfdaten liefert. Die Vorhersage der aufnehmbaren Abscherkraft wird mittels dieses Reibbeiwertes geringfügig unterschätzt. Ein Reibbeiwert von 50 % hingegen liefert Ergebnisse, die die Tragfähigkeit geringfügig überschätzen.

Abbildung 4-4 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Die Daten, welche in die Erstellung der Abbildung eingeflossen sind, können der Tabelle 4-14 bis Tabelle 4-18 entnommen werden.

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
51	11	40	7080	7006	6294	7588	6384
52	12	105	11392	11672	9788	14104	9848
53	12	165	13299	13063	10848	15558	11254
54	10	225	14641	14614	13252	15815	13468

Tabelle 4-14 Statistische Parameter der Abscherversuche mit Achs-Faserwinkel 90 °

Anmerkungen: Die Übersicht der Variationsparameter mit Zuordnung der ID kann Tabelle 4-13 entnommen werden.

Tabelle 4-15 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 51

	<i>VN</i> [·	<i>1 P</i> ·]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B03-(51)-08-040-90-00-90-90-01	2FG/SB	e	7128	5792	7537	6081	7948
B07-(51)-08-040-90-00-90-90-02	2FG/SB	e	6878	5498	6834	5879	7747
B13-(51)-08-040-90-00-90-90-03	2FG/SB	e	6494	5596	7068	5948	7815
B19-(51)-08-040-90-00-90-90-04	2FG/SB	e	6842	6627	8495	6627	8495
B25-(51)-08-040-90-00-90-90-05	2FG/SB	e	6294	5686	7284	6009	7877
B36-(51)-08-040-90-00-90-90-07	2FG/SB	e	7207	6453	8321	6502	8370
B41-(51)-08-040-90-00-90-90-08	2FG/SB	e	7289	6078	7946	6268	8135
B47-(51)-08-040-90-00-90-90-09	2FG/SB	e	7588	6121	7989	6295	8163
B50-(51)-08-040-90-00-90-90-10	2FG/SB	e	7033	6602	8470	6602	8470
B41-(51)-08-040-90-00-90-90-test	2FG/SB	e	7310	6101	7969	6282	8150

Anmerkungen:

VM P.....beobachteter VM

 $F_{15.h}$geprüfte Kraft bei 15 mm Verformung

 $F_{\text{lat. p.25.M}}$..vorhergesagte Abschertragfähigkeit mit Reibbeiwert 25 % und min. VM

 $F_{\text{lat. p. 50. M}}$..vorhergesagte Abschertragfähigketi mit Reibbeiwert 50 % und min. VM

 $F_{\text{lat. p.25.P}}$..vorhergesagte Abschertragfähigkeit mit Reibbeiwert 25 % und beobachtetem VM

 $F_{\text{lat. p. 50.P}}$...vorhergesagte Abschertragfähigketi mit Reibbeiwert 50 % und beobachtetem VM

FGFließgelenk

SB.....Stahlbruch während Prüfung oder Ausbauversuch der Schraube

cBestimmungsgleichung Fließgelenktheorie nach Johansen

d.....Bestimmungsgleichung Fließgelenktheorie nach Johansen

eBestimmungsgleichung Fließgelenktheorie nach Johansen

	<i>VM</i> [-	<i>1 P</i> .]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B03-(52)-08-105-90-00-90-90-01	2FG/SB	e	9898	8732	13260	8732	13260
B07-(52)-08-105-90-00-90-90-02	2FG/SB	e	12292	8597	13125	8597	13125
B13-(52)-08-105-90-00-90-90-03	2FG/SB	e	11077	8885	13413	8885	13413
B19-(52)-08-105-90-00-90-90-04	2FG/SB	e	10869	8950	13478	8950	13478
B25-(52)-08-105-90-00-90-90-05	2FG/SB	e	9788	8690	13218	8690	13218
B33-(52)-08-105-90-00-90-90-06	2FG/SB	e	14104	9122	13651	9122	13651
B36-(52)-08-105-90-00-90-90-07	2FG/SB	e	11696	9079	13607	9079	13607
B41-(52)-08-105-90-00-90-90-08	2FG/SB	e	10877	8683	13212	8683	13212
B47-(52)-08-105-90-00-90-90-09	2FG/SB	e	12855	8863	13391	8863	13391
B50-(52)-08-105-90-00-90-90-10	2FG/SB	e	13577	8919	13448	8919	13448
B57-(52)-08-105-90-00-90-90-11	2FG/SB	e	11938	8818	13347	8818	13347
B41-(52)-08-105-90-00-90-90-test	2FG/SB	e	11088	8772	13300	8772	13300

Tabelle 4-16 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 52

Tabelle 4-17 Gegenüberstellung	g Prüfergebnisse vs.	Modellvorhersagen	für die Prüfserie 53
--------------------------------	----------------------	-------------------	----------------------

	VM [-	<i>t P</i>]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B03-(53)-08-165-90-00-90-90-01	1FG/SB	d	10848	10821	17508	18816	25502
B07-(53)-08-165-90-00-90-90-02	1FG/SB	d	13299	10703	17389	18141	24827
B13-(53)-08-165-90-00-90-90-03	1FG/SB	d	13916	10883	17569	19172	25858
B19-(53)-08-165-90-00-90-90-04	1FG/SB	d	13296	10927	17613	19431	26117
B25-(53)-08-165-90-00-90-90-05	1FG/SB	d	13754	10779	17465	18570	25256
B33-(53)-08-165-90-00-90-90-06	1FG/SB	d	15558	10916	17602	19365	26052
B36-(53)-08-165-90-00-90-90-07	1FG/SB	d	13726	11056	17743	20207	26893
B41-(53)-08-165-90-00-90-90-08	1FG/SB	d	11778	10876	17563	19133	25820
B47-(53)-08-165-90-00-90-90-09	1FG/SB	d	13589	10868	17554	19085	25771
B50-(53)-08-165-90-00-90-90-10	1FG/SB	d	13145	11094	17781	20439	27125
B57-(53)-08-165-90-00-90-90-11	1FG/SB	d	13639	11295	17982	21703	28390
B03-(53)-08-165-90-00-90-90-test	1FG/SB	d	11524	10778	17464	18565	25251
B36-(53)-08-165-90-00-90-90-test	1FG/SB	d	11749	11116	17803	20576	27263

Anmerkungen: Die Beschreibung der einzelnen Spalten kann Tabelle 4-15 entnommen werden.

	VM P [-]		F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B12-(54)-08-225-90-00-90-90-02	1FG/SB	d	14361	10791	17382	23013	29603
B15-(54)-08-225-90-00-90-90-03	1FG/SB	d	14723	10617	17207	21688	28278
B18-(54)-08-225-90-00-90-90-04	1FG/SB	d	15815	10766	17357	22818	29409
B25-(54)-08-225-90-00-90-90-05	1FG/SB	d	14559	10781	17371	22930	29520
B33-(54)-08-225-90-00-90-90-06	1FG/SB	d	13732	10834	17424	23343	29933
B37-(54)-08-225-90-00-90-90-07	1FG/SB	d	15481	10858	17448	23530	30120
B39-(54)-08-225-90-00-90-90-08	1FG/SB	d	15205	10693	17283	22260	28850
B45-(54)-08-225-90-00-90-90-09	1FG/SB	d	13252	10803	17394	23105	29696
B54-(54)-08-225-90-00-90-90-10	1FG/SB	d	15192	11017	17608	24810	31400
B58-(54)-08-225-90-00-90-90-11	1FG/SB	d	13817	11017	17607	24806	31397

Tabelle 4-18 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 54

4-4.2 ACHS-FASERWINKEL 60 °

Für die Darstellung der Abscherversuche bei einem Achs-Faserwinkel von $\varepsilon = 60^{\circ}$ wurde dasselbe Schema verwendet wie bei einem Achs-Faserwinkel von $\varepsilon = 90^{\circ}$. Die Variation erfolgte dabei wiederum für den Reibbeiwert (25 % vs. 50 %) und den VM (Minimum aus Modell vs. beobachtet).

Die Ergebnisse, die in Abbildung 4-5 dargestellt sind, zeigen ein ähnliches Bild wie beim Achs-Faserwinkel 90°. Für einen Reibbeiwert von 25 % und dem VM, der laut der Modellvorhersage bestimmt wird, zeigt sich, dass die Ergebnisse der Tragfähigkeiten, im speziellen für die Einschraublängen von 165 und 225 mm, geringfügig unterschätzt werden. Ein Reibbeiwert von 50 % führt hingegen zu einer deutlicheren Überschätzung der Tragfähigkeiten für diese Einschraublängen.

Für die Ergebnisdarstellung des VM, der anhand der deformierten Schraube bestimmt wurde, zeigt sich, dass der bei den Prüfkörpern beobachtete Versagensmechanismus für die Einschraublänge von 225 mm der Einzige ist, der abweichende Resultate zum VM der Modellvorhersage (Minimum) darstellt. Die Darstellung mit den min. VM zeigen dabei eine deutlich bessere Übereinstimmung mit den Versuchsdaten wie jene mit dem beobachteten VM. Die großen Abweichungen bei der Einschraublänge von 225 mm und dem beobachteten VM ergeben sich aufgrund der Bestimmungsgleichungen nach Johansen. Bei den Einschraubtiefen von 40 mm, 105 mm und 165 mm entspricht der beobachtete VM jeweils einem mit zwei Fließgelenken. Wie bereits bei einem Achs-Faserwinkel von 90 ° beschrieben ist der einzige Berechnungsunterschied, welcher in die Betrachtung eingeht, die Rohdichte. Für die Einschraublänge von 225 mm wurde der VM von einem Fließgelenk beobachtet. In die Berechnung des VM mit einem Fließgelenk findet ebenfalls die Einschraubtiefe Berücksichtigung, dadurch ergeben sich die deutlicheren Abweichungen zu den anderen Einschraubtiefen.

Wesentliche statistische Parameter sowie die Daten, welche in die Gegenüberstellungen eingeflossen sind, können der Tabelle 4-19 bis Tabelle 4-23 entnommen werden.

Abbildung 4-5 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 60^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
59	11	40	5910	5944	5040	7123	5100
60	10	105	10078	10345	8417	12135	8799
61	12	165	12409	12444	10690	15785	10889
62	11	225	12922	13358	11673	15949	11700

Tabelle 4-19 Statistische Parameter der Abscherversuche mit Achs-Faserwinkel 60 °

Anmerkungen: Die Übersicht der Variationsparameter mit Zuordnung der ID kann Tabelle 4-13 entnommen werden.

Tabelle 4-20 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 59

	<i>VN</i> [·	<i>1 P</i> ·]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B05-(59)-08-040-90-30-90-60-01	1FG	d	5775	5107	6119	5107	6883
B12-(59)-08-040-90-30-90-60-02	1FG	d	5657	5281	6534	5281	7057
B15-(59)-08-040-90-30-90-60-03	1FG	d	6630	4864	5542	4864	6640
B18-(59)-08-040-90-30-90-60-04	1FG	d	5741	4821	5439	4821	6597
B23-(59)-08-040-90-30-90-60-05	1FG	d	6044	4979	5815	4979	6755
B33-(59)-08-040-90-30-90-60-06	1FG	d	6352	5197	6335	5197	6973
B35-(59)-08-040-90-30-90-60-07	1FG/SB	d	6051	4940	5723	4940	6716
B41-(59)-08-040-90-30-90-60-08	1FG	d	7123	5282	6538	5282	7058
B49-(59)-08-040-90-30-90-60-09	1FG	d	5149	4763	5301	4763	6539
B52-(59)-08-040-90-30-90-60-10	1FG	d	5375	5107	6120	5107	6883
B58-(59)-08-040-90-30-90-60-11	1FG/SB	d	6398	5020	5913	5020	6796
B41-(59)-08-040-90-30-90-60-test	1FG	d	5040	4971	5796	4971	6747

Anmerkungen: Die Beschreibung der einzelnen Spalten kann Tabelle 4-15 entnommen werden.

	<i>VM P</i> [-]		F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B02-(60)-08-105-90-30-90-60-01	2FG/SB	e	8417	7902	12207	7902	12207
B10-(60)-08-105-90-30-90-60-02	2FG/SB	e	9730	7958	12263	7958	12263
B14-(60)-08-105-90-30-90-60-03	2FG/SB	e	12135	8059	12364	8059	12364
B18-(60)-08-105-90-30-90-60-04	2FG/SB	e	9274	7861	12166	7861	12166
B24-(60)-08-105-90-30-90-60-05	2FG/SB	e	9266	7962	12267	7962	12267
B32-(60)-08-105-90-30-90-60-06	2FG/SB	e	11355	8048	12354	8048	12354
B38-(60)-08-105-90-30-90-60-07	2FG/SB	e	11983	7948	12254	7948	12254
B43-(60)-08-105-90-30-90-60-08	2FG/SB	e	10426	7995	12300	7995	12300
B45-(60)-08-105-90-30-90-60-09	2FG/SB	e	11523	7989	12294	7989	12294
B51-(60)-08-105-90-30-90-60-10	2FG/SB	e	9338	8204	12509	8204	12509

Tabelle 4-21 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 60

Tabelle 4-22 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 61

	<i>VM P</i> [-]		F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B01-(61)-08-165-90-30-90-60-01	2FG/SB	e	12805	10169	16809	10169	16809
B13-(61)-08-165-90-30-90-60-02	2FG/SB	e	10690	10134	16775	10134	16775
B17-(61)-08-165-90-30-90-60-03	2FG/SB	e	11052	10165	16805	10165	16805
B20-(61)-08-165-90-30-90-60-04	2FG/SB	e	12590	10141	16782	10141	16782
B24-(61)-08-165-90-30-90-60-05	2FG/SB	e	12227	10217	16857	10217	16857
B29-(61)-08-165-90-30-90-60-06	2FG/SB	e	11185	10113	16753	10113	16753
B35-(61)-08-165-90-30-90-60-07	2FG/SB	e	15785	10226	16867	10226	16867
B42-(61)-08-165-90-30-90-60-08	2FG/SB	e	13306	10201	16841	10201	16841
B46-(61)-08-165-90-30-90-60-09	2FG/SB	e	11577	10245	16885	10245	16885
B54-(61)-08-165-90-30-90-60-10	2FG/SB	e	11173	10397	17038	10397	17038
B59-(61)-08-165-90-30-90-60-11	2FG/SB	e	13103	10406	17046	10406	17046
B54-(61)-08-165-90-30-90-60-test	2FG/SB	e	13830	10367	17008	10367	17008

Anmerkungen: Die Beschreibung der einzelnen Spalten kann Tabelle 4-15 entnommen werden.

	VM P [-]		F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B05-(62)-08-225-90-30-90-60-01	1FG/SB	d	14524	10139	16730	18355	24945
B12-(62)-08-225-90-30-90-60-02	1FG/SB	d	12922	10219	16810	18884	25475
B16-(62)-08-225-90-30-90-60-03	1FG/SB	d	12252	10120	16710	18228	24818
B21-(62)-08-225-90-30-90-60-04	1FG/SB	d	12590	10231	16821	18960	25551
B28-(62)-08-225-90-30-90-60-05	1FG/SB	d	14607	10230	16820	18957	25547
B30-(62)-08-225-90-30-90-60-06	1FG/SB	d	12835	10239	16829	19017	25607
B34-(62)-08-225-90-30-90-60-07	1FG/SB	d	11673	10347	16938	19755	26345
B40-(62)-08-225-90-30-90-60-08	1FG/SB	d	11726	10160	16750	18491	25081
B48-(62)-08-225-90-30-90-60-09	1FG/SB	d	14244	10385	16975	20017	26607
B54-(62)-08-225-90-30-90-60-10	1FG/SB	d	13615	10288	16878	19346	25936
B59-(62)-08-225-90-30-90-60-11	1FG/SB	d	15949	10487	17077	20739	27329

Tabelle 4-23 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 62

4-4.3 ACHS-FASERWINKEL 30 °

Der Modellvergleich der Abscherversuche bei einem Achs-Faserwinkel von 30 $^{\circ}$ ist, wie die bereits zuvor vorgestellten Modellvergleiche, für eine Variation des Vorfaktors zur Berücksichtigung des Seileffektes (25 % vs. 50 %) und des Versagensmechanismus (Minimum aus Modell vs. Beobachtung beim Prüfkörper) in Abbildung 4-6 dargestellt.

Anhand der dargestellten Versuchsdaten zeigt sich, dass für einen Achs-Faserwinkel von 30 ° die Modellvorhersage mit einem Vorfaktor zur Berücksichtigung des Seileffektes von 25 %, zu einem guten Ergebnis der Vorhersage der Tragfähigkeiten führt, während jene mit einem Vorfaktors zur Berücksichtigung des Seileffektes von 50 % die Tragfähigkeiten der Einschraublängen von 165 und 225 mm überschätzt.

Für den Versagensmechanismus, der anhand der deformierten Schraube bestimmt wurde, zeigt sich, dass die Versagensmodi für die Einschraublängen von 40 mm, 105 mm und 165 mm gute Übereinstimmungen mit dem Versagensmechanismus It. Modellvorhersage besitzen. Lediglich für die Einschraublänge von 225 mm ergibt sich eine Abweichung im Versagensmechanismus. Der beobachtete VM bei einer Einschraublänge von 225 mm zeigt dabei einen Rückgang auf ein Fließgelenk im Vergleich zur Einschraublänge von 165 mm. Es ist zu erkennen, dass der Seileffekt für diese Belastungssituation nicht voll ausgenützt werden kann, aufgrund des Fehlens plastischer Reserven im Querschnitt der Holzbauschraube. Anhand der Ergebnisse zeigt sich, dass die Modellvorhersage mit dem min. VM und einem Vorfaktor zur Berücksichtigung des Seileffektes von 25 % zu der besten Übereinstimmung der Modellvorhersage mit den Prüfergebnissen führt.

Wesentliche statistische Parameter sowie die Daten, welche in die Gegenüberstellungen eingeflossen sind, können der Tabelle 4-24 bis Tabelle 4-28 entnommen werden.

Abbildung 4-6 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 30^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Tabelle 4-24 Statistische	Parameter de	· Abscherversuche	mit Achs-Faserwi	nkel von 30 $^\circ$

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
55	12	40	3647	3732	3274	4637	3276
56	10	105	7189	7138	5972	8039	6073
57	12	165	9686	9672	8700	10857	8858
58	11	225	11013	11055	9742	12129	9959

Anmerkungen: Die Übersicht der Variationsparameter mit Zuordnung der ID kann Tabelle 4-13 entnommen werden.

	<i>VN</i> [·	<i>1 P</i> ·]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B01-(55)-08-040-90-60-90-30-01	1FG	d	3870	3384	3384	3637	5103
B08-(55)-08-040-90-60-90-30-02	1FG	d	3341	3685	3685	3767	5232
B16-(55)-08-040-90-60-90-30-03	1FG	d	4012	3526	3526	3699	5164
B21-(55)-08-040-90-60-90-30-04	1FG	d	3571	3849	3878	3849	5315
B29-(55)-08-040-90-60-90-30-06	1FG	d	3734	3380	3380	3636	5101
B43-(55)-08-040-90-60-90-30-08	1FG	d	3277	3518	3518	3695	5161
B45-(55)-08-040-90-60-90-30-09	1FG	d	4637	3863	3911	3863	5328
B53-(55)-08-040-90-60-90-30-10	1FG	d	3647	3540	3540	3705	5170
B56-(55)-08-040-90-60-90-30-11	1FG	d	3640	3943	4099	3943	5409
B01-(55)-08-040-90-60-90-30-test	1FG	d	4043	3484	3484	3681	5146
B08-(55)-08-040-90-60-90-30-test	1FG	d	3274	3505	3505	3689	5155

Tabelle 4-25 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 55

Tabelle 4-26 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 56

	<i>VM P</i> [-]		F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B09-(56)-08-105-90-60-90-30-02	1FG	d	7301	6393	8309	7333	10885
B13-(56)-08-105-90-60-90-30-03	1FG	d	6197	6547	9233	7716	11268
B18-(56)-08-105-90-60-90-30-04	1FG	d	7078	6486	8861	7562	11114
B23-(56)-08-105-90-60-90-30-05	1FG	d	7801	6443	8600	7453	11006
B30-(56)-08-105-90-60-90-30-06	1FG	d	7522	6510	9006	7622	11174
B39-(56)-08-105-90-60-90-30-07	1FG	d	6927	6474	8787	7531	11083
B44-(56)-08-105-90-60-90-30-08	1FG	d	7587	6459	8700	7495	11047
B46-(56)-08-105-90-60-90-30-09	1FG/SB	d	5972	6567	9358	7768	11320
B50-(56)-08-105-90-60-90-30-10	1FG	d	8039	6562	9326	7754	11307
B50-(56)-08-105-90-60-90-30-test	1FG	d	6957	6572	9388	7780	11333

Anmerkungen: Die Beschreibung der einzelnen Spalten kann Tabelle 4-15 entnommen werden.

	VM P [-]		F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B06-(57)-08-165-90-60-90-30-01	2FG/SB	e	10001	8435	13914	8435	13914
B12-(57)-08-165-90-60-90-30-02	2FG/SB	e	9167	8391	13870	8391	13870
B17-(57)-08-165-90-60-90-30-03	2FG/SB	e	10300	8438	13917	8438	13917
B21-(57)-08-165-90-60-90-30-04	2FG/SB	e	9692	8383	13862	8383	13862
B23-(57)-08-165-90-60-90-30-05	2FG/SB	e	10857	8316	13549	8316	13795
B31-(57)-08-165-90-60-90-30-06	2FG/SB	e	9147	8273	13140	8273	13752
B34-(57)-08-165-90-60-90-30-07	2FG/SB	e	9241	8513	13992	8513	13992
B42-(57)-08-165-90-60-90-30-08	2FG/SB	e	10187	8273	13136	8273	13752
B47-(57)-08-165-90-60-90-30-09	2FG/SB	e	10111	8422	13901	8422	13901
B52-(57)-08-165-90-60-90-30-10	2FG/SB	e	8987	8464	13943	8464	13943
B55-(57)-08-165-90-60-90-30-11	2FG/SB	e	9680	8428	13907	8428	13907
B17-(57)-08-165-90-60-90-30-test	2FG/SB	e	8700	8452	13931	8452	13931

Tabelle 4-27 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 57

	<i>VM</i> [-	<i>1 P</i> ·]	F _{15,h} [N]	<i>F</i> _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B10-(58)-08-225-90-60-90-30-02	1FG/SB	d	12129	9437	16027	14214	20805
B13-(58)-08-225-90-60-90-30-03	1FG/SB	d	10282	9589	16179	15034	21624
B26-(58)-08-225-90-60-90-30-05	1FG/SB	d	11136	9561	16152	14882	21473
B30-(58)-08-225-90-60-90-30-06	1FG/SB	d	10223	9530	16120	14713	21303
B41-(58)-08-225-90-60-90-30-08	1FG/SB	d	10889	9487	16077	14478	21069
B47-(58)-08-225-90-60-90-30-09	2FG	e	9742	9587	16177	9587	16177
B53-(58)-08-225-90-60-90-30-10	1FG/SB	d	11730	9637	16227	15302	21893
B56-(58)-08-225-90-60-90-30-11	1FG/SB	d	11496	9530	16120	14711	21301
B20-(58)-08-225-90-60-90-30-test	1FG/SB	d	10808	9480	16070	14443	21033
B47-(58)-08-225-90-60-90-30-test	1FG/SB	d	12113	9573	16163	14947	21537

Anmerkungen: Die Beschreibung der einzelnen Spalten kann Tabelle 4-15 entnommen werden.

4-4.4 ACHS-FASERWINKEL 0 °

Für die Ergebnisdarstellung der Abscherversuche mit im Hirnholz (faserparallel) eingebrachten Verbindungsmitteln erfolgte die Variation der darzustellenden Parameter wie bereits zuvor beschrieben für den Versagensmodus (Minimum aus Modell vs. beobachtet am Prüfkörper) und den Vorfaktor zur Berücksichtigung des Seileffektes (25 % vs. 50 %). Abbildung 4-7 zeigt den Modellvergleich für im Hirnholz eingebrachte Verbindungsmittel.

Anhand der links angeführten Grafiken zeigt sich, dass der Versagensmodus der beiden Varianten nicht variiert. Das bedeutet, der rechnerische Versagensmodus stimmt mit dem an der deformierten Schraube

festgestellten Versagensmodus überein. Des Weiteren zeigt sich, dass für einen Reibbeiwert von 25 % die Modellvorhersage außerordentlich gute Übereinstimmungen mit den Prüfdaten liefert. Die anhand von linearer Regression ermittelte Gerade, welche den Trend der versuchstechnisch ermittelten Daten wiederspiegelt, zeigt eine nahezu deckende Übereinstimmung mit der Ausgleichsgerade. Für Vorfaktoren zur Berücksichtigung des Seileffektes von 50 % hingegen werden die Ergebnisse der Tragfähigkeiten mittels den Modellvorhersagen signifikant überschätzt.

Wesentliche statistische Parameter sowie die Daten, welche in die Gegenüberstellungen eingeflossen sind, können der Tabelle 4-29 bis Tabelle 4-33 entnommen werden.

Abbildung 4-7 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 00^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Prüfserie [ID]	n [-]	l _e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
63	12	40	2795	2838	2575	3215	2617
64	9	105	5006	4837	3862	5508	3994
65	8	165	5972	6045	4661	7239	4913
66	10	225	7998	7682	5326	9158	6010

Tabelle 4-29 Statistische Parameter der Abscherversuche mit Achs-Faserwinkel von 0 $^\circ$

Anmerkungen: Die Übersicht der Variationsparameter mit Zuordnung der ID kann Tabelle 4-13 entnommen werden.

 Tabelle 4-30 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 63

	<i>VN</i> [·	<i>1 P</i> .]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B02-(63)-08-040-90-90-90-00-01	1FG	d	2813	3075	3075	3077	4115
B09-(63)-08-040-90-90-90-00-02	1FG	d	2979	3078	3078	3078	4116
B12-(63)-08-040-90-90-90-00-03	1FG	d	2575	3105	3139	3105	4143
B19-(63)-08-040-90-90-90-00-04	1FG	d	2721	3173	3297	3173	4211
B26-(63)-08-040-90-90-90-00-05	1FG	d	2882	3101	3132	3101	4139
B28-(63)-08-040-90-90-90-00-06	1FG	d	2652	2979	2979	3035	4073
B34-(63)-08-040-90-90-90-00-07	1FG	d	2765	3089	3104	3089	4127
B39-(63)-08-040-90-90-90-00-08	1FG	d	2748	3176	3305	3176	4214
B48-(63)-08-040-90-90-90-00-09	1FG	d	2776	2993	2993	3041	4079
B55-(63)-08-040-90-90-90-00-11	1FG	d	3215	3220	3408	3220	4258
B02-(63)-08-040-90-90-90-00-test	1FG	d	2902	3032	3032	3058	4096
B26-(63)-08-040-90-90-90-00-test	1FG	d	3027	3206	3375	3206	4244

Anmerkungen: Die Beschreibung der einzelnen Spalten kann Tabelle 4-15 entnommen werden.

	<i>VN</i> [·	<i>1 P</i> ·]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B02-(64)-08-105-90-90-90-00-01	2FG	e	4524	5184	7327	5184	7700
B14-(64)-08-105-90-90-90-00-03	2FG/SB	e	5464	5232	7594	5232	7749
B22-(64)-08-105-90-90-90-00-04	2FG	e	5006	5217	7512	5217	7734
B27-(64)-08-105-90-90-90-00-05	2FG	e	5367	5226	7557	5226	7742
B34-(64)-08-105-90-90-90-00-06	2FG	e	4451	5202	7429	5202	7719
B34-(64)-08-105-90-90-90-00-07	2FG	e	5157	5180	7306	5180	7697
B40-(64)-08-105-90-90-90-00-08	2FG	e	4192	5210	7469	5210	7726
B48-(64)-08-105-90-90-90-00-09	2FG	e	3862	5146	7118	5146	7662
B57-(64)-08-105-90-90-90-00-11	2FG/SB	e	5508	5198	7402	5198	7714

Tabelle 4-31 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 64

Tabelle 4-32 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 65

	VM [·	<i>1 P</i> ·]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B10-(65)-08-165-90-90-90-00-02	2FG/SB	e	6598	6475	10356	6475	10356
B17-(65)-08-165-90-90-90-00-03	2FG/SB	e	5510	6518	10399	6518	10399
B19-(65)-08-165-90-90-90-00-04	2FG/SB	e	5868	6550	10431	6550	10431
B27-(65)-08-165-90-90-90-00-05	2FG/SB	e	6077	6536	10416	6536	10416
B38-(65)-08-165-90-90-90-00-07	2FG/SB	e	5381	6535	10416	6535	10416
B45-(65)-08-165-90-90-90-00-08	2FG/SB	e	7029	6542	10423	6542	10423
B47-(65)-08-165-90-90-90-00-09	2FG	e	7239	6498	10378	6498	10378
B56-(65)-08-165-90-90-90-00-11	2FG/SB	e	4661	6552	10433	6552	10433

Anmerkungen: Die Beschreibung der einzelnen Spalten kann Tabelle 4-15 entnommen werden.

	VM [-	<i>1 P</i> ·]	F _{15,h} [N]	F _{lat,p,25,M} [N]	F _{lat,p,50,M} [N]	F _{lat,p,25,P} [N]	F _{lat,p,50,P} [N]
B06-(66)-08-225-90-90-90-00-01	2FG	e	7013	7759	13005	7759	13005
B11-(66)-08-225-90-90-90-00-02	2FG	e	5326	7867	13113	7867	13113
B15-(66)-08-225-90-90-90-00-03	2FG	e	8138	7929	13174	7929	13174
B22-(66)-08-225-90-90-90-00-04	2FG	e	9158	8011	13256	8011	13256
B22-(66)-08-225-90-90-90-00-05	2FG/SB	e	9041	7813	13058	7813	13058
B28-(66)-08-225-90-90-90-00-06	2FG	e	8403	7834	13080	7834	13080
B38-(66)-08-225-90-90-90-00-07	2FG/SB	e	6694	7905	13150	7905	13150
B39-(66)-08-225-90-90-90-00-08	2FG	e	7998	7861	13107	7861	13107
B48-(66)-08-225-90-90-90-00-09	2FG	e	8535	7842	13087	7842	13087
B53-(66)-08-225-90-90-90-00-10	2FG	e	7256	8136	13382	8136	13382
B58-(66)-08-225-90-90-90-00-11	2FG	e	6945	8000	13245	8000	13245

Tabelle 4-33 Gegenüberstellung Prüfergebnisse vs. Modellvorhersagen für die Prüfserie 66

4-4.5 FAZIT BEZÜGLICH DES MODELLVERGLEICHS

4-4.5.1 Einfluss des Reibbeiwerts als Vorfaktor des additiven Seileffekt-Terms

Aus den Gegenüberstellungen der Prüfergebnisse mit dem aktuell gültigen Bemessungskonzept des EC 5 wird klar, dass für Achs-Faserwinkel $\geq 60^{\circ}$ die Ergebnisse der Modellvorhersage mit einem Reibbeiwert von 25 % zu geringfügigen Unterschätzungen der Tragfähigkeiten und mit einem Reibbeiwert von 50 % zu geringfügigen Überschätzungen der Tragfähigkeiten führen. Für Achs-Faserwinkel von $\leq 30^{\circ}$ zeigt sich hingegen, dass der Reibbeiwert von 25 % zu sehr guten Übereinstimmungen der versuchstechnisch ermittelten Daten mit den Modellvorhersagen führt, während der Ansatz von 50 % in einer signifikanten Überschätzung der Prüfergebnisse resultiert.

Dies führt zur Erkenntnis, dass aufgrund der vorliegenden Daten eine Unterscheidung des Reibbeiwertes für unterschiedliche Achs-Faserwinkel durchaus eine Forschungsfrage ist, die im Rahmen weiterer Forschungsarbeiten untersucht werden kann. Zum gegenwärtigen Zeitpunkt zeigt sich allerdings, dass das derzeit gültige Modell, bei dem keine Unterscheidung hinsichtlich des Achs-Faserwinkels durchgeführt wird, zur Bestimmung der Abschertragfähigkeit als konservativ auf der sicheren Seite liegend eingestuft werden kann. Speziell für kleinere Achs-Faserwinkel zeigt das aktuell gültige Bemessungskonzept eine sehr gute Übereinstimmung mit den Prüfdaten.

4-4.5.2 Versagensmechanismus gemäß Berechnung vs. aus Beobachtung

Für die Variation des VM zeigt sich, dass die Prüfdaten anhand des beobachteten VM, speziell bei großen Einschraubtiefen, zu signifikanten Überschätzungen der Tragfähigkeit führen. Weiters ist festzuhalten, dass die beobachteten VM für die Abscherversuche fast ausschließlich am Schraubenkanal untersucht wurden. Aufgrund der doch schwierigen visuellen Begutachtung des Schraubenkanals und der damit einhergehenden Bestimmung des VM sind die Ergebnisse dieser Beobachtungen durchaus zu hinterfragen bzw. durch genauere Untersuchungen zu bestätigen.

Eine Erklärung für die Abweichungen bei den großen Einschraublängen (165 mm und 225 mm) könnte die Ausbildung der Fließgelenke selbst sein. Durch die Lage eines Fließgelenkes direkt am Stahlblech wird die axiale Tragfähigkeit stark vermindert, was zu einem geringeren Anteil des Seileffektes führt.

4-5 EINFLUSSPARAMETER AUF DIE TRAGFÄHIGKEIT

In diesem Abschnitt werden die Einflüsse der einzelnen Variationsparameter auf die Tragfähigkeit aufgezeigt. Hierfür wird jeweils nur ein Parameter variiert und die restlichen Einflussgrößen werden konstant gehalten. Dadurch soll es möglich sein Einflüsse von etwa dem Achs-Faserwinkel oder dem globalen Winkel der Prüfkonfiguration aufzuzeigen.

Die Betrachtung der Tragfähigkeiten erfolgt hierfür wiederum für jene maximale Prüfkraft, die bis zu einer Grenzverformung von 15 mm aufgetreten ist. Einflüsse der Variationsparameter auf die maximal geprüfte Kraft (bei Verformungen > 15 mm) können dem 0entnommen werden.

Serien bei denen ein Spaltversagen der Prüfkörper in signifikanter Anzahl aufgetreten ist, werden in den nachstehenden Abbildungen grau strichliert dargestellt. Die Berechnungsempfehlungen, welche bei der Diskussion der Ergebnisse angegeben werden, beziehen sich dabei auf die jeweiligen Mittelwerte der Prüfserien.

4-5.1 EINFLUSS DES GLOBALEN WINKELS

Der globale Winkel γ bezieht sich auf die Lage bzw. Verdrehung der Prüfkonfiguration zur Nulllage, welche eine reine Ausziehbeanspruchung darstellt. Die Abbildung 4-8 ist dabei wie folgt aufgebaut. Serien, welche sowohl dieselbe Einschraubtiefe als auch denselben Achs-Faserwinkel aufweisen sind in Gruppen zu jeweils drei Serien zusammengefasst. Dabei wird der globale Winkel jeweils aufsteigend dargestellt. Das bedeutet von kombinierter Beanspruchung mit $\gamma = 30^{\circ}$ zu reiner Abscherbeanspruchung mit $\gamma = 90^{\circ}$. Die unterschiedlichen Einschraubtiefen sind dabei durch vertikale Trennstriche zu unterschieden.

Achs-Faserwinkel 90 ° und 60 °

Für Einschraubtiefen von 40 mm zeigt sich ein Einfluss, welcher sich tragfähigkeitssteigernd mit zunehmendem globalem Winkel auswirkt. Für die Einschraubtiefe von 105 mm ist zu erkennen, dass die Tragfähigkeit mit zunehmendem globalem Winkel leicht abfällt. Der Einfluss ist dabei als nahezu linear zu beschreiben. Für größere Einschraubtiefen ist der Einfluss ähnlich zur Einschraubtiefe von 105 mm, die Tragfähigkeit fällt mit steigendem globalem Winkel ab. Der Einfluss ist jedoch deutlich ausgeprägter, wie noch bei der Einschraubtiefe von 105 mm. Jedoch ist zu erkennen, dass das Absinken der Tragfähigkeit wiederum nahezu linear erfolgt.

Achs-Faserwinkel 30 ° und 0 °

Für die geringste Einschraubtiefe von 40 mm ist zu erkennen, dass die Tragfähigkeit nahezu unbeeinflusst vom globalen Winkel der Prüfkonfiguration bleibt. Für die Einschraubtiefe von 105 mm zeigt sich, dass der Einfluss des globalen Winkels auf die Tragfähigkeit ähnlich zu jenem bei 40 mm nahezu konstant bleibt.

Für Einschraubtiefen von 165 mm zeigt sich ein überproportionaler Abfall zwischen einem globalen Winkel von 30 ° und 60 °. Für einen globalen Winkel von 90 ° zeigt sich, dass die Tragfähigkeit im Vergleich zu einem Winkel von 60 ° nur mehr geringfügig abfällt. Für eine Einschraubtiefe von 225 mm zeigt sich wiederum ein überproportional abfallender Einfluss zwischen den globalen Winkeln von 30 ° und 60 °. Das plötzliche Aufspalten des Prüfkörpers bei im Hirnholz eingebrachten Verbindungsmitteln tritt dabei mit zunehmender Einschraublänge auf.

Abbildung 4-8 Einfluss des globalen Winkels der Prüfkonfiguration auf die Tragfähigkeit, getrennt nach Abhängigkeit Achs-Faserwinkel

4-5.2 EINFLUSS DES ACHS-FASERWINKELS

Einer der wesentlichsten Variationsparameter ist der Achs-Faserwinkel ε . Anhand der Abbildung 4-9 soll der Einfluss auf die Tragfähigkeit für die jeweiligen Einschraubtiefen aufgezeigt werden. Dabei werden, wie zuvor beim globalen Winkel γ , alle Variationsparameter konstant gehalten, lediglich der Achsfaserwinkel wird variiert. Dabei ist der Achsfaserwinkel jeweils absteigend von $\varepsilon = 90^{\circ}$, Verschraubung in der Seitenholzfläche, bis zu $\varepsilon = 0^{\circ}$, Hirnholzverschraubung abgestuft. Die vertikalen Trennlinien ermöglichen eine Unterscheidung des vorherrschenden globalen Winkels γ . Die so entstehenden Bereiche zeigen jeweils vier Prüfserien bei denen sowohl die Einschraubtiefe als auch der globale Winkel der Prüfkonfiguration konstant gehalten werden.

Eindrehtiefe 225 mm

Der Einfluss des Achs-Faserwinkels auf die Tragfähigkeit bei kombinierter Beanspruchung mit sowohl 30° als auch mit 60° ist für Achsfaserwinkel $\geq 60^{\circ}$ nahezu nicht vorhanden. Dies ist auf den Versagensmechanismus, der während den Prüfungen aufgetreten ist, zurückzuführen, da bei diesen Konstellationen der Variationsparameter die maximale Tragfähigkeit der Prüfschraube erreicht wurde.

Für kleinere Achs-Faserwinkel (0 ° und 30 °) zeigt sich der Einfluss des Achs-Faserwinkels als nahezu linear bezüglich der Tragfähigkeit. Für die durchgeführten Abscherversuche ist ersichtlich, dass der Einfluss des Achs-Faserwinkels ebenfalls als linear beschrieben werden kann.

Eindrehtiefe 165 mm

Für Eindrehtiefen von 165 mm zeigt sich, dass der Einfluss des Achs-Faserwinkels für alle Serien nahezu ident ist, das bedeutet das sowohl die kombinierte Beanspruchung als auch die Abscherversuche zwischen einem Achs-Faserwinkel von 90 ° $\geq \epsilon \geq 60$ ° eine annähernd gleiche Tragfähigkeit aufweisen. Für kleinere Achs-Faserwinkel ist wiederum ein nahezu linearer Einfluss zu erkennen.

Eindrehtiefe 105 mm und 40 mm

Für Einschraubtiefen von 105 mm und 40 mm ist der Einfluss des Achs-Faserwinkels linear abfallend bei allen durchgeführten Versuchen. Das bedeutet, die Tragfähigkeit nimmt linear mit dem Achs-Faserwinkel ab.

Abbildung 4-9 Einfluss des Achs-Faserwinkels auf die Tragfähigkeit, getrennt nach Einschraubtiefe

4-6 MODELLVERGLEICH KOMBINIERTE BEANSPRUCHUNG

In diesem Abschnitt werden die Vergleiche von aktuell gültigen Regeln hinsichtlich der Bemessung für kombiniert beanspruchte Holzbauschrauben mit den Prüfergebnissen aufgezeigt. Dabei werden drei verschieden Modelle mit den Prüfdaten verglichen. Die Modelle unterscheiden sich dabei hinsichtlich der Interaktions-Hochzahlen. Die Interaktions-Hochzahlen werden dabei wie folgt festgelegt:

- Grüne Linie: Lineare Interaktion; Interaktions-Hochzahl 1,00
- Rote Linie: Quadratische Interaktion; Interaktions-Hochzahl 2,00
- Schwarze Linie: Interaktions-Hochzahl 1,50

Dabei sind die Abbildungen, welche dies veranschaulichen sollen, wie folgt aufgebaut:

Für die Bestimmung der axialen Tragfähigkeit der Einschraubtiefen von 40 mm, 165 mm und 225 mm erfolgte eine Berechnung der Tragfähigkeit, vgl. Abschnitt 3-1.3.6, Gleichung (3.3). Für Konstellationen, bei der diese Methode zu einer axialen Tragfähigkeit führte, die höher als die Zugtragfähigkeit der Schraube ist, wurde das Ergebnis der Zugtragfähigkeit der Schraube als axiale Tragfähigkeit eingesetzt. Diese ermittelten Tragfähigkeit und als grüne Sterne für die Aufrechnung der axialen Tragfähigkeit gekennzeichnet. Zudem ersichtlich sind die Versuchsdaten für die jeweiligen Einschraubtiefen, aufgeteilt nach deren Achs-Faserwinkel. Die dargestellten Ergebnisse beziehen sich dabei auf jene Kraft, die bis zu einer Grenzverformung von 15 mm maximal aufgenommen werden kann.

Die Ordinate zeigt dabei den Anteil der axialen Tragfähigkeit an und die Abszisse den Anteil der lateralen Tragfähigkeit. Die Aufteilung der Ergebnisse für kombiniert beanspruchte Verbindungsmittel erfolgte dabei je nach Belastungsrichtung auf Basis der sin- bzw. cos-Funktion des Winkels der Prüfkonfiguration γ .

Tabelle 4-34 zeigt dabei die Übersicht der Winkelvariation der einzelnen Prüfserien, welche kombiniert geprüft wurden.

Prüfserie [ID]	n [-]	l _e [mm]	l _{ef} [mm]	3 [°]	α [°]	γ [°]
19	11	40	40	90	00	30
20	11	105	95,64	90	00	30
21	11	165	155,64	90	00	30
22	10	225	215,64	90	00	30
23	9	40	40	30	60	30
24	11	105	95,64	30	60	30
25	11	165	155,64	30	60	30
26	9	225	215,64	30	60	30
27	12	40	40	60	30	30
28	13	105	95,64	60	30	30
29	11	165	155,64	60	30	30
30	13	225	215,64	60	30	30
31	9	40	40	00	90	30
32	9	105	95,64	00	90	30
33	6	165	155,64	00	90	30
34	10	225	215,64	00	90	30
35	9	40	40	90	00	60
36	10	105	95,64	90	00	60
37	11	165	155,64	90	00	60
38	12	225	215,64	90	00	60
39	10	40	40	30	60	60
40	11	105	95,64	30	60	60
41	12	165	155,64	30	60	60
42	10	225	215,64	30	60	60
43	11	40	40	60	30	60
44	11	105	95,64	60	30	60
45	11	165	155,64	60	30	60
46	11	225	215,64	60	30	60
47	11	40	40	00	90	60
48	8	105	95,64	00	90	60
49	11	165	155,64	00	90	60
50	9	225	215,64	00	90	60

 Tabelle 4-34 Variationsparameter Modellvergleich kombinierte Beanspruchung

4-6.1 EINDREHTIEFE 40 MM

Die in Abbildung 4-10 dargestellten Ergebnisse zeigen, dass für eine Einschraubtiefe von 40 mm eine quadratische Interaktion zu einer signifikanten Überschätzung der Tragfähigkeiten führt. Für die Interaktion mittels Hochzahl 1,50 zeigt sich speziell bei Achs-Faserwinkeln von 30 ° unter kombinierter Beanspruchung mit 60 ° eine gute Übereinstimmung mit den Prüfergebnissen. Für größere Achs-Faserwinkel bei kombinierter Beanspruchung mit 60 ° werden die Tragfähigkeiten mit der Interaktions-Hochzahl von 1,50 geringfügig überschätzt. Für Hirnholzverschraubung liefert die quadratische Interaktion speziell für kombinierte Beanspruchung mit 60 ° eine sehr gute Übereinstimmung. Bei kombinierter Beanspruchung mit 30 ° zeigt die lineare Interaktion die besten Übereinstimmungen mit den Prüfergebnissen.

Für die Eindrehtiefe von 40 mm zeigt sich deutlich, dass die Ergebnisse der linearen Interaktion – geringfügig auf der sicheren Seite liegend – die besten Übereinstimmungen mit den Versuchsergebnissen liefern.

Abbildung 4-10 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 40 mm in Abhängigkeit des Achs-Faserwinkels

Die statistischen Kenngrößen, welche in die Abbildung 4-8 eingeflossen sind, können den Tabelle 4-35 bis Tabelle 4-36 entnommen werden. Die Tabellen gliedern sich dabei in statistische Parameter zur axialen Tragfähigkeit unter kombinierter Beanspruchung und lateralen Tragfähigkeit unter kombinierter Beanspruchung. In Kombination ergeben sich so die Prüfdaten für die kombinierte Beanspruchung.

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{ax,med} [N]	F _{ax,mean} [N]	CoV[F _{15,ax}] [%]	F _{ax,min} [N]	F _{ax,max} [N]	F _{ax,05} [N]
19	11	40	4474	4514	7,00%	3920	4989	4066
23	9	40	3056	3051	7,05%	2685	3497	2766
27	11	40	3688	3678	12,95%	3026	4546	3139
31	9	40	2138	2098	11,43%	1672	2452	1766
35	9	40	2877	2912	9,64%	2529	3382	2548
39	9	40	1840	1795	8,12%	1571	1981	1585
43	11	40	2239	2353	17,09%	1863	3048	1900
47	11	40	1520	1505	11,96%	1244	1786	1246

Tabelle 4-35 Statistische Daten für axiale Tragfähigkeit bei einer Einschraubtiefe von 40 mm

Tabelle 4-36 Statistische Daten für laterale Tragfähigkeit bei einer Einschraubtiefe von 40 mm

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	CoV[F _{15,lat}] [%]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
19	11	40	2583	2606	4,04%	2263	2880	2347
23	9	40	1764	1762	4,07%	1550	2019	1597
27	11	40	2129	2124	7,47%	1747	2624	1812
31	9	40	1235	1211	6,60%	965	1415	1019
35	9	40	4984	5043	16,71%	4381	5857	4413
39	9	40	3187	3110	14,06%	2722	3430	2745
43	11	40	3879	4075	29,59%	3227	5279	3291
47	11	40	2633	2606	20,72%	2155	3093	2158

4-6.2 EINDREHTIEFE 105 MM

Für die Prüfserien, welche mit einer Eindrehtiefe von 105 mm geprüft wurden, sind die Ergebnisse, die sich aus der Auswertung zur kombinierten Beanspruchung ergeben, wie folgt zu interpretieren.

Die Prüfserien, die mit einem Achs-Faserwinkel von 60° und 90° geprüft wurden, zeigen, dass die Interaktion mit einer Hochzahl von 1,5 eine durchwegs gute Übereinstimmung mit den Mittelwerten der Prüfdaten ergibt.

Für die Prüfserie mit einem Achs-Faserwinkel von 30 $^{\circ}$ führt wiederum die lineare Interaktion zur besten Übereinstimmung mit den Prüfergebnissen.

Für die Prüfserie mit im Hirnholz eingebrachten Holzbauschrauben wurde bei einer kombinierten Beanspruchung mit $\gamma = 30^{\circ}$ ein Aufspalten der Prüfkörper während der Prüfung festgestellt, vgl. Abbildung

4-11. Dies geschah zumeist ohne Vorankündigung. Eine Erklärung für das plötzliche Versagen der Prüfkörper bei kombinierter Beanspruchung mit $\gamma = 30^{\circ}$ könnte die axiale Beanspruchung sein. Es zeigt sich anhand der Ergebnisse für größere Eindrehtiefen (165 mm und 225 mm), dass die Wahrscheinlichkeit eines Versagens sich mit zunehmender Eindrehtiefe erhöht. Dies würde bedeuten, dass mit zunehmender axialer Beanspruchung der Schraube ein Grenzwert erreicht wird der zum Querzugversagen des Prüfkörpers führt. Ein weiterer Aspekt, welcher diese Hypothese unterstützt sind die rein lateral durchgeführten Versuche bei denen kein Versagen des Prüfkörpers aufgetreten ist.

Serien, für die ein Versagen des Prüfkörpers in signifikanter Anzahl aufgetreten ist, sind in Abbildung 4-12 grau dargestellt. Wie in Abbildung 4-12 rechts unten zu sehen, ist das Versagen der Prüfkörper zum Teil unter jener Gerade, die die lineare Interaktion darstellt, aufgetreten.

Abbildung 4-11 Versagen des Prüfkörpers (links: in eingebautem Zustand; rechts: in ausgebautem Zustand)

Abbildung 4-12 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 105 mm in Abhängigkeit des Achs-Faserwinkels

Statistisch relevante Werte, welche in die Abbildung eingeflossen sind, können der Tabelle 4-37 für die Anteile der axialen Tragfähigkeit und Tabelle 4-38 für die Anteile der lateralen Tragfähigkeit entnommen werden.

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{ax,med} [N]	F _{ax,mean} [N]	CoV[F _{15,ax}] [%]	F _{ax,min} [N]	F _{ax,max} [N]	F _{ax,05} [N]
20	11	105	11097	11435	8,67%	10262	13127	10343
24	11	105	7176	6843	13,14%	5447	8017	5489
28	13	105	9652	9928	13,16%	8277	12492	8427
32	9	105	3971	3761	17,25%	2596	4596	2816
36	10	105	6021	5979	4,48%	5486	6429	5590
40	11	105	3358	3479	9,76%	3130	4163	3142
44	11	105	4869	4950	7,45%	4444	5765	4469
48	8	105	2352	2303	11,12%	1932	2815	1976

Tabelle 4-37 Statistische Daten für axiale Tragfähigkeit bei einer Einschraubtiefe von 40 mm

Tabelle 4-38 Statistische Daten für laterale Tragfähigkeit bei einer Einschraubtiefe von 40 mm

Prüfserie [ID]	n [-]	l _e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	CoV[F _{15,lat}] [%]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
20	11	105	6407	6602	5,01%	5925	7579	5972
24	11	105	4143	3951	7,58%	3145	4628	3169
28	13	105	5573	5732	7,60%	4779	7213	4865
32	9	105	2293	2171	9,96%	1499	2654	1626
36	10	105	10428	10356	7,77%	9501	11134	9682
40	11	105	5816	6025	16,91%	5420	7210	5442
44	11	105	8433	8573	12,90%	7696	9984	7741
48	8	105	4074	3988	19,27%	3347	4875	3422

4-6.3 EINDREHTIEFE 165 MM

Bei Prüfserien mit einer Eindrehtiefe von 165 mm zeigt sich, dass die quadratische Interaktion für Achs-Faserwinkel $\geq 60^{\circ}$ auf der sicheren Seite liegend durchaus gute Übereinstimmungen mit den Mittelwerten der jeweiligen Serien aufweist. Für den globalen Winkel der Prüfkonfiguration von 60° zeigt sich ein traglaststeigernder Einfluss, der zu einer Abweichung zur quadratischen Interaktion führt.

Für Serien mit einem Achs-Faserwinkel von 30 $^{\circ}$ stellt die Interaktion mit der Hochzahl 1,5 die beste Näherung mit den Prüfergebnissen dar. Die Mittelwerte werden dabei sehr gut abgebildet.

Für im Hirnholz eingebrachte Verbindungsmittel weist jene Serie mit $\gamma = 60^{\circ}$ eine signifikante Anzahl an Versuchen auf, bei der ein Spaltversagen des Prüfkörpers aufgetreten ist. Die Versagensform entspricht dabei wiederum einem plötzlichen Aufreißen des Prüfquerschnitts, wie es bereits in Abschnitt 4-6.2 erläutert wurde.

Abbildung 4-13 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 165 mm in Abhängigkeit des Achs-Faserwinkels

Die statistisch relevanten Werte, die zur Erstellung der Abbildung 4-13 benötigt worden sind, können der Tabelle 4-39 bis Tabelle 4-40 entnommen werden.

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{ax,med} [N]	F _{ax,mean} [N]	CoV[F _{15,ax}] [%]	F _{ax,min} [N]	F _{ax,max} [N]	F _{ax,05} [N]
21	11	165	17423	17397	7,28%	15769	19641	15838
25	11	165	11444	11810	11,38%	10060	14916	10316
29	11	165	16157	16745	11,42%	13583	19373	14206
33	6	165	7384	7453	7,65%	6933	8418	6937
37	11	165	8534	8577	6,04%	7580	9364	7848
41	12	165	5402	5237	17,40%	3470	6578	3872
45	11	165	7948	7780	7,17%	6749	8397	6879
49	11	165	2701	2783	18,10%	2280	4032	2299

Tabelle 4-39 Statistische Daten für axiale Tragfähigkeit bei einer Einschraubtiefe von 165 mm

Tabelle 4-40 Statistische Daten für laterale Tragfähigkeit bei einer Einschraubtiefe von 165 mm

Prüfserie [ID]	n [-]	l _e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	CoV[F _{15,lat}] [%]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
21	11	165	10059	10044	4,20%	9105	11340	9144
25	11	165	6607	6818	6,57%	5808	8612	5956
29	11	165	9329	9668	6,59%	7842	11185	8202
33	6	165	4263	4303	4,42%	4003	4860	4005
37	11	165	14781	14855	10,47%	13129	16219	13593
41	12	165	9357	9071	30,13%	6010	11393	6706
45	11	165	13765	13475	12,42%	11690	14544	11915
49	11	165	4678	4821	31,34%	3949	6984	3983

4-6.4 EINDREHTIEFE 225 MM

Für die Gegenüberstellung der Modellergebnisse mit Prüfdaten für Eindrehtiefen von 225 mm unter kombinierter Beanspruchung ist festzustellen, dass für Achs-Faserwinkel $\geq 30^{\circ}$ die quadratische Interaktion als auf der sicheren Seite liegend angesehen werden kann. Dabei ist speziell bei jenen Prüfserien mit Achs-Faserwinkel $0 < \varepsilon < 90^{\circ}$ ein traglaststeigernder Einfluss für kombinierte Beanspruchung mit $\gamma = 60^{\circ}$ zu erkennen.

Für Prüfserien mit im Hirnholz eingebrachten Holzbauschrauben zeigt sich ein ähnliches Bild (siehe Abbildung 4-14) wie zuvor. Die Serien mit kombinierter Beanspruchung zeigen wiederum einen signifikanten Anteil der Prüfkörper, welche während der Prüfung auf Aufspalten versagten.

Abbildung 4-14 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 225 mm in Abhängigkeit des Achs-Faserwinkels

Die Tabelle 4-41 bis Tabelle 4-42 zeigen die wesentlichen Lage- und Streuungsparameter, welche in die Abbildung 4-14 eingeflossen sind. Die Daten der Einzelversuche können wiederum dem ANHANG E entnommen werden.

Prüfserie [ID]	n [-]	<i>l</i> e [mm]	F _{ax,med} [N]	F _{ax,mean} [N]	CoV[F _{15,ax}] [%]	F _{ax,min} [N]	F _{ax,max} [N]	F _{ax,05} [N]
22	10	225	18171	18284	2,01%	17837	18871	17880
26	9	225	16791	16651	4,71%	14977	17343	15324
30	13	225	18107	18187	1,56%	17848	18791	17870
34	10	225	9519	10038	21,41%	7698	14204	7712
38	12	225	8578	8613	2,42%	8341	8974	8361
42	10	225	7535	7639	5,82%	7073	8597	7142
46	11	225	8652	8624	5,11%	7887	9245	7992
50	9	225	4200	4307	19,38%	2988	5484	3114

Tabelle 4-41 Statistische Daten für axiale Tragfähigkeit bei einer Einschraubtiefe von 225 mm

Tabelle 4-42 Statistische Daten für laterale Tragfähigkeit bei einer Einschraubtiefe von 225 mm

Prüfserie	n [-]	l _e [mm]	F _{lat,med} [N]	F _{lat,mean} [N]	CoV[F _{15,lat}] [%]	F _{lat,min} [N]	F _{lat,max} [N]	F _{lat,05} [N]
22	10	225	10491	10556	1,16%	10298	10895	10323
26	9	225	9695	9613	2,72%	8647	10013	8847
30	13	225	10454	10501	0,90%	10305	10849	10317
34	10	225	5496	5795	12,36%	4444	8201	4452
38	12	225	14858	14919	4,19%	14447	15543	14481
42	10	225	13051	13231	10,08%	12250	14890	12371
46	11	225	14986	14937	8,85%	13660	16012	13842
50	9	225	7274	7460	33,57%	5175	9498	5393

4-6.5 FAZIT BEZÜGLICH DES MODELLVERGLEICHS

Für kombiniert beanspruchte Holzbauschrauben ist anhand der Prüfergebnisse die Aussage zu treffen, dass für kleine Einschraubtiefen $l_e \leq 105$ mm die quadratische Interaktion bzw. die Interaktion mit Hochzahl 1,5 der Ergebnisse der axialen Tragfähigkeit und der lateralen Tragfähigkeit zu Ergebnissen führen, die auf der unsicheren Seite liegen, während eine lineare Interaktion beider Einzeltragfähigkeiten eine gute Übereinstimmung ergibt. Für die Einschraubtiefen $l_e > 105$ mm führt die Interaktion der Ergebnisse mittels Hochzahl 1,5 zu einer konservativen Unterschätzung bis zu einer guten Übereinstimmung.

Für Einschraubtiefen ab 225 mm kann die quadratische Interaktion angewendet werden, diese ist anhand der Prüfergebnisse als auf der sicheren Seite liegend anzusehen. Somit ist generell eine Zunahme der Hochzahl in der Interaktionsbeziehung mit steigender Eindrehlänge (Schlankheit der Schraube) bzw. Anzahl an Fließgelenken zu beobachten.

Bei kombiniert beanspruchten Holzbauschrauben, die im Hirnholz eingebracht werden, ist anhand der Ergebnisse zu erkennen, dass die Beanspruchung zu einem plötzlichen Versagen des Holzkörpers führen kann. Das Risiko eines plötzlichen Versagens nimmt dabei mit steigender Eindrehtiefe zu.

4-7 MODELLVERGLEICH DER AXIALEN STEIFIGKEIT

Nachfolgend wird ein Vergleich der anhand von Versuchen bestimmten, axialen Steifigkeiten mit jenen aus Modellvorhersagen durchgeführt. Die grundlegende Idee zu Beginn der Arbeit war es, sowohl Erst- als auch Wiederbelastungssteifigkeiten und dessen Verhältnis zu untersuchen. Aufgrund von Beobachtungen während der Auswertung, bei der ein unbekannter Effekt wesentlichen Einfluss auf die Erstbelastungssteifigkeiten hat, wurde eine visuelle Begutachtung aller Versuchsergebnisse durchgeführt und dabei jene Steifigkeiten gekennzeichnet, welche durch diesen Einfluss als zu hoch einzustufen sind. Der Einfluss dieses Effektes zeigt sich bei nahezu allen Prüfkörpern in Form eines sehr steilen Anstiegs der Kraft-Verformungslinie bis zu einem Schwellenwert von ca. 1500 – 2000 N und einem anschließend starken Abfall der Steifigkeit. Eine Erklärung für diesen Einfluss könnte durch die Planung der Prüfkonfiguration gegeben sein. Durch die Konstruktion mit massiven Stahlplatten wäre es möglich, dass durch das Überwinden eines bestimmten Kraftniveaus das Richten des Prüfkörpers bzw. der Schraube erst ab diesem Kraftniveau abgeschlossen ist. Anhand eines Vergleichs mit den Prüfergebnisse nach Laggner [17] zeigt sich jedoch, dass bei der Verwendung einer anderen Prüfkonfiguration der selbe Effekt auftritt, jedoch nicht mit derselben Ausprägung.

Des Weiteren sind die Steifigkeiten, bei denen der Prüfkörper während der Prüfdurchführung aufgespalten ist, aus der Auswertung entfernt bzw. ähnlich wie zuvor (vgl. Abschnitt 4-6) in den Abbildungen grau strichliert gekennzeichnet worden.

Zur Auswertung herangezogen wurde schlussendlich nur jene Steifigkeit, welche durch lineare Regression am gesamten Erstbelastungsast ermittelt wurde, vgl. Abschnitt 3-4.3.11. Bei der Auswertung der Einzelversuche konnte festgestellt werden, dass es bei Betrachtung von geringen Kraftunterschieden, wie es etwa bei der Steifigkeit zwischen 10 % und 40 % oder auch bei der linearen Regression des Erstbelastungsastes teilweise der Fall war, zu Verzerrungen der axialen Steifigkeit kommen kann, wenn die Verformungen sich im Bereich der Messungenauigkeit des Wegmesssystems befanden.

4-7.1 GLOBALER WINKEL 0 °

Für die Ausziehversuche ist der Modellvergleich für die unterschiedlichen Achs-Faserwinkel in Abbildung 4-15 aufgeführt. Die Abbildung zeigt den Vergleich mit unterschiedlichen Modellen, welche in Abschnitt 2-5 erläutert sind. Die Serien sind dabei durch unterschiedliche Symbole bzw. unterschiedliche Farben gekennzeichnet.

Modell gemäß ETA-12/0373 [5]

Das Modell der ETA-12/0373 [5] liefert aufgrund der Verankerung von lediglich der effektiven Gewindelänge im Holz und des Durchmessers eine sehr schlechte Übereinstimmung mit den versuchstechnisch ermittelten Werten. Da die effektive Gewindelänge im Holz und der Durchmesser für die durchgeführten Ausziehversuche ident sind, liefert die ETA-12/0373 [5] für alle durchgeführten Versuche dieselbe axiale Steifigkeit.

In der Abbildung ist jedoch zu erkennen, dass die Steifigkeiten für die unterschiedlichen Achs-Faserwinkel durchaus variieren. So liefern beispielsweise die Versuche mit Achs-Faserwinkel $\varepsilon = 30^{\circ}$ die niedrigsten Steifigkeitswerte und die Versuche mit Achs-Faserwinkel von $\varepsilon = 0^{\circ}$ die höchsten Steifigkeitswerte.

Modell gemäß Blaß et al. [10]

Das Modell, welches von Blaß et al. [10] entwickelt wurde, beinhaltet bereits eine Berücksichtigung der Rohdichte. Jedoch wird der Einfluss eines variierenden Achs-Faserwinkels nicht berücksichtigt. Dies ist auf die Begründung zurückzuführen, dass es Blaß et al. [10] nicht möglich war, eine geeignete Bestimmungsformel für die Steifigkeiten mit abweichendem Achs-Faserwinkel zu bestimmen.

Des Weiteren zeigt sich anhand der Abbildung, dass die ermittelten Steifigkeiten nach dem Modell von Blaß et al. [10] deutlich zu geringe Werte für nahezu alle Versuche liefert.

Modell gemäß Ringhofer et al. [18]

Das Modell von Ringhofer et al. [18] ist das einzige Modell, welches den Einfluss des Achs-Faserwinkels auch in der Modellvorhersage berücksichtigt. Zusätzlich wird der Einfluss der Rohdichte berücksichtigt. Anhand der Abbildung 4-15 wird jedoch klar, dass dieses Modell ebenfalls nur eine unzureichende Näherung zur Ermittlung der Steifigkeiten darstellt. Die vorhergesagten Steifigkeiten werden dabei im Vergleich zu den prüftechnisch ermittelten Steifigkeiten deutlich unterschätzt.

Modell Prüfkonfiguration Burtscher Light

Das Modell, welches hierfür verwendet wird, entstammt parallel zu dieser Arbeit aus versuchstechnisch bestimmten Daten, die einer Regressionsanalyse unterzogen wurden. Das Modell setzt sich somit, wie die zuvor beschriebenen, aus empirisch ermittelten Zusammenhängen zusammen. Zu erkennen ist, dass die versuchstechnisch ermittelten Steifigkeiten besser abgebildet werden wie zuvor, jedoch weiterhin eine durchaus signifikante Unterschätzung der Steifigkeiten zu sehen sind.

Abbildung 4-15 Modellvergleich axiale Steifigkeiten der Ausziehversuche (links oben: Modell ETA-12/0373 [5]; rechts oben: Modell Blaß et al. [10]; links unten: Modell Ringhofer et al. [18]; rechts unten: Modell Prüfkonfiguration Burtscher Light)

4-8 MODELLVERGLEICH DER LATERALEN STEIFIGKEIT

In diesem Abschnitt wird ein Modellvergleich der lateralen Steifigkeiten geführt. Dabei werden sowohl das Modell der aktuell gültigen ÖNORM EN/B 1995-1-1 [3][4] als auch der aktuell gültigen Fassung der SIA 165 [19] geführt. Für die SIA 265 [19] folgt eine Betrachtung hinsichtlich der Ermittlung für Stabdübel sowie eine Betrachtung hinsichtlich der Ermittlung für Nägel.

Die Ergebnisse sind in den nachstehenden Punkten dargestellt.

4-8.1 ÖNORM EN/B 1995-1-1 [3][4]

Der Modellvergleich beruht dabei auf den Ergebnissen der Einzelversuche und der ermittelten Steifigkeit für die Rohdichte des jeweiligen Versuchs.

4-8.1.1 Globaler Winkel 90 °

Die Betrachtung der lateralen Steifigkeit für die Abscherversuche zeigt, dass für alle geprüften Einschraubtiefen eine deutliche Überschätzung der lateralen Steifigkeit erfolgt. Der Faktor 2, welcher in die Variation von Holz-Holz Verbindungen im Vergleich zu Holz-Stahl Verbindungen eingeht, führt zu einer noch deutlicheren Überschätzung der Steifigkeiten. Würde auf diesen Faktor verzichtet werden, würden die Steifigkeiten zwar immer noch überschätzt werden jedoch nicht in dem Ausmaß wie für die normativ geregelte Bemessung für Stahl-Holz Verbindungen.

Da für die Ermittlung der Steifigkeit nach dem Bemessungskonzept der ÖNORM EN/B 1995-1-1 [3][4] lediglich die mittlere Rohdichte und der Durchmesser berücksichtigt werden und der Durchmesser für alle Versuche konstant ist, unterscheiden sich die Ergebnisse der lateralen Steifigkeit lediglich aufgrund der vorherrschenden Rohdichte. Die Betrachtung eines variierenden Achs-Faserwinkels wird in dem aktuellen Bemessungskonzept nicht berücksichtigt. Aufgrund der Versuchsergebnisse zeigt sich, dass die Ergebnisse der lateralen Steifigkeit zwar leicht variieren, jedoch alle versuchstechnisch ermittelten Steifigkeiten in einem Bereich zwischen 500 und 2000 N/mm liegen. Daraus ist zu schließen, dass der Einfluss des Achs-Faserwinkels auf die Steifigkeit nur gering ist.

Abbildung 4-16 Modellvergleich laterale Steifigkeit mit ÖNORM EN/B 1995-1-1 [3][4] für reine Abscherversuche, getrennt nach Achs-Faserwinkel

4-8.1.2 Globaler Winkel 60 °

Für globale Winkel der Prüfkonfiguration von $\gamma = 60^{\circ}$ zeigt sich, dass die Steifigkeiten im Vergleich zu den reinen Abscherversuchen nur geringfügig variieren. Die ermittelten Steifigkeiten liegen in einem Bereich zwischen 500 und 2000 N/mm. Daher ist auch die Modellvorhersage der ÖNORM EN/B 1995-1-1 [3][4] gleich zu bewerten wie zuvor. Die Steifigkeiten der Modellvorhersage liegen deutlich zu hoch. Würde auf den Faktor 2 verzichtet werden, würden die Steifigkeiten zwar weiterhin überschätzt, jedoch nicht mehr in diesem Ausmaß.

Abbildung 4-17 Modellvergleich laterale Steifigkeit mit ÖNORM EN/B 1995-1-1 [3][4] für reine Abscherversuche, getrennt nach Achs-Faserwinkel

4-8.1.3 Globaler Winkel 30 °

Für die kombiniert beanspruchten Verbindungsmittel mit globalem Winkel von 30 ° zeigt sich der Modellvergleich wie bereits bei den reinen Abscherversuchen als auch den kombiniert beanspruchten Verbindungsmitteln mit $\gamma = 60^{\circ}$. Die Modellvorhersage der Steifigkeiten liegt deutlich zu hoch.

Abbildung 4-18 Modellvergleich laterale Steifigkeit mit ÖNORM EN/B 1995-1-1 [3][4] für reine Abscherversuche, getrennt nach Achs-Faserwinkel

4-8.2 SIA 265

4-8.2.1 Bemessungskonzept für Nägel

Für das Bemessungskonzept analog zu Nägeln zeigt sich, dass die versuchstechnisch bestimmten, lateralen Steifigkeiten vom Berechnungsmodell überschätzt werden. Für globale Winkel von 90° und 60° ist zu erkennen, dass durch Berücksichtigung des Achs-Faserwinkels bei der Berechnung die Abstufung der lateralen Steifigkeit in etwa den versuchstechnisch ermittelten Steifigkeiten folgt.

4-8.2.2 Bemessungskonzept für Stabdübel

Das Bemessungskonzept analog zu Stabdübel zeigt ebenfalls, dass die Steifigkeiten durch Ermittlung mit dieser Methode überschätzt werden. Dies ist für alle Achs-Faserwinkel wie auch für alle globalen Winkel der Prüfkonfiguration zu erkennen.

Abbildung 4-20 Modellvergleich laterale Steifigkeit mit SIA 265 [19] (links oben: globaler Winkel der Prüfkonfiguration 30 °; rechts oben: globaler Winkel der Prüfkonfiguration 60 °; links unten: reine Abscherversuche)

KAPITEL 5: ZUSAMMENFASSUNG UND AUSBLICK

Die vorliegende Arbeit befasst sich mit der experimentellen Ermittlung der Tragfähigkeiten und der Steifigkeiten von kombiniert beanspruchten selbstbohrenden Holzschrauben. Zu diesem Zweck sind Modellvergleiche mit Ansätzen aus Forschungsarbeiten und normativen Regelungen geführt worden, um zu ermitteln, durch welches Modell sich die Tragfähigkeiten bzw. Steifigkeiten der einzelnen Belastungssituationen am besten beschreiben lassen.

Für die versuchstechnische Ermittlung von sowohl axialen als auch lateralen Kenngrößen hinsichtlich der Steifigkeit und auch der Tragfähigkeit ist eine speziell hierfür entworfenen Prüfkonfiguration entwickelt worden. Durch die Entwicklung einer geeigneten Prüfkonfiguration sowie einer Messmethode der Verformungen in die jeweilige Belastungsrichtung war es möglich, für kombiniert beanspruchte Holzbauschrauben eine Bestimmung der lateralen und axialen Kenngrößen durchzuführen.

Für die Gegenüberstellungen der Kenngrößen der Versuche mit aktuellen Bemessungskonzepten wurden sowohl die Ansätze von Normenwerken (hier die ÖNORM EN/B 1995-1-1 [3][4] und die SIA 265 [19]), als auch die Ansätze von Forschungsarbeiten, welche den aktuellen Stand des Wissensdarstellen sollen, miteinander verglichen.

Um einen Überblick über die Methoden von der Prüfkörperherstellung bis zur Bestimmung wesentlicher Kenngrößen zu erhalten, wurde versucht, in Abschnitt 3 die einzelnen Schritte wie auch wesentliche Festlegungen während der Durchführung der Prüfungen aufzuzeigen bzw. deren Bestimmung zu erläutern.

Des Weiteren sind in Abschnitt 3 die wesentlichsten Variationsparameter aufgezeigt worden. Darunter die Variation des Achs-Faserwinkels ϵ , des Last-Faserwinkels α (in dieser Arbeit als Winkel zwischen Faserorientierung des Grundmateriales Holz und der Richtung der einwirkenden Abscherkomponente) und des Winkels γ , unter der die Beanspruchung auf die zu prüfenden Schraube einwirkt. Dabei sind für alle genannten Winkel vier Abstufungen untersucht worden, diese sind {0, 30, 60, 90} °. Um den Einfluss einer variierenden Gewindelänge im Holz abzubilden, sind auch hier vier unterschiedliche Eindrehtiefen geprüft worden, welche eine Schlankheit von rund {5, 12, 20, 27} *d* betrugen.

5-1 FAZIT ZU DEN AUSZIEHVERSUCHEN

5-1.1 TRAGFÄHIGKEIT

Der Vergleich zwischen den versuchstechnisch bestimmten und den berechneten Größen wurde in Abbildung 4-3 geführt. Dabei konnte festgestellt werden, dass die axialen Tragfähigkeiten der Versuche durch das Modell, welches von Ringhofer [8] entwickelt wurde, am besten beschrieben werden können. Lediglich für die axialen Tragfähigkeiten der Hirnholzverschraubung liefert das Modell Werte, die deutlicher von den Versuchsergebnissen abweichen. Die Tragfähigkeit der Hirnholzverschraubungen wird mittels der Modellvorhersage überschätzt. Für die weiteren Achs-Faserwinkel zeigt das Modell sehr gute Übereinstimmungen mit den Versuchsergebnissen.

5-1.2 STEIFIGKEIT

Für den Modellvergleich der Steifigkeiten in axialer Richtung zeigt sich anhand der Versuchsergebnisse, das die Modelle von Ringhofer et al. [18], Blaß et al. [10] und auch das Modell Prüfkonfiguration Burtscher Light zu einer deutlichen Unterschätzung der tatsächlichen Steifigkeit führen. Lediglich das Modell der

ETA-12/0373 [5] liefert für die geprüfte Eindrehtiefe von 12*d* eine Näherungslösung für die Steifigkeiten von Achs-Faserwinkeln > 0°. Die Steifigkeiten von Hirnholzverschraubungen werden auch mittels dieses Modells deutlich unterschätzt. Daher kann durch kein Modell eine adäquate Beschreibung der Prüfdaten erfolgen.

5-2 FAZIT ZU DEN ABSCHERVERSUCHEN

5-2.1 TRAGFÄHIGKEIT

Für die durchgeführten Abscherversuche ist ebenfalls in Abschnitt 4 ein Modellvergleich zwischen den Versuchsergebnissen und dem Bemessungskonzept der ÖNORM EN/B 1995-1-1 [3][4] gezogen worden. Berücksichtigung dabei fanden das berechnete Fließmoment aus den Schraubenzugversuchen und jene Kraft, die bis zu einer Grenzverformung von 15 mm das Maximum darstellte. Anhand der geprüften Schrauben ist durch visuelle Begutachtung versucht worden, den tatsächlich aufgetretenen Versagensmechanismus festzustellen. Der Vergleich, der in Abschnitt 4-4 aufgeführt ist, zeigt die Gegenüberstellungen der Versuchsergebnisse mit dem berechneten Versagensmechanismus (Minimum aus allen gemäß heranzuziehenden Versagensmechanismen) und dem beobachteten [4] Versagensmechanismus, der anhand der geprüften Holzprobekörper und Schrauben im Nachhinein festgestellt wurde. Zudem erfolgte eine Variation des Einflusses des Seileffektes auf diese ermittelten Tragfähigkeiten im Sinne unterschiedlicher Vorfaktoren (Reibungsanteile) des additiven Johansen-Terms.

Festzustellen ist, dass für kleine Achs-Faserwinkel ε bis 30 ° die Tragfähigkeiten mittels des aktuellen Bemessungsmodells und dem Versagensmechanismus, der sich rechnerisch ergibt, sehr gut abgebildet werden können. Für größere Achs-Faserwinkel zeigt sich, dass eine Erhöhung des Anteils des Seileffektes zu deutlich besseren Übereinstimmungen der Versuchsergebnisse und der Modellvorhersage führt. Für die baupraktische Anwendung ergibt sich jedoch die Empfehlung für alle Fälle von einem Anteil des Seileffektes von 25 % auszugehen.

5-2.2 STEIFIGKEITEN

Anhand der Modellvergleiche zu den lateralen Steifigkeiten der Abscherversuche, welche in den Abbildungen durch den globalen Winkel $\gamma = 90^{\circ}$ zu erkennen sind, zeigt sich, dass alle Modellvorhersagen die Prüf- und Messergebnisse der lateralen Steifigkeit deutlich überschätzen. Um eine exaktere Abbildung der Steifigkeiten der Prüfergebnisse dieser Arbeit durchzuführen, müssten die Ergebnisse der Modellvorhersage gem. ÖNORM EN/B 1995-1-1 [3][4] in Bereichen von 25 % des aktuellen Bemessungskonzept zu liegen kommen. Für die SIA [19], welche bereits eine bessere Übereinstimmung liefert, müssten die Steifigkeiten etwa um den Faktor 2-3 reduziert werden, dies hängt vom verwendeten Bemessungskonzept (analog zu Nägel oder analog zu Stabdübel) ab.

5-3 FAZIT ZUR KOMBINIERTEN BEANSPRUCHUNG

5-3.1 TRAGFÄHIGKEIT

Die Modellvergleiche zeigen, dass die quadratische Interaktion der einzelnen Belastungsrichtungen nicht für alle durchgeführten Versuche zu einem befriedigenden Resultat führt. So sind beispielsweise Versuche mit kurzen Eindrehtiefen von 5 *d* durch eine lineare Interaktion der Belastungsrichtungen am besten zu beschreiben. Dies liefert zumindest für die Mittelwertvorhersage Ergebnisse, die als konservativ einzustufen sind. Es zeigt sich, dass für große Einschraubtiefen die quadratische Interaktion als geeignete Lösung zur Beschreibung der Prüfdaten angesehen werden kann. Für mittlere Einschraubtiefen stellt die Interaktion mit Hochzahl 1,5 die beste Näherungslösung dar. Für kleine Einschraubtiefen sollte auf eine lineare Interaktion zurückgegriffen werden.

Eindrehtiefen ab 12 *d* und einem Achs-Faserwinkel von $\varepsilon = 0^{\circ}$ (Hirnholzverschraubung) zeigte sich bei der Versuchsdurchführung, dass ein plötzliches Spaltversagen des Holzwerkstoffes eintreten kann.

Daher sollte von einer planmäßig kombinierten Beanspruchung von selbstbohrenden Holzschrauben im Hirnholz jedenfalls Abstand genommen werden.

5-3.2 STEIFIGKEIT

5-3.2.1 Axiale Steifigkeit

Die Versuchsergebnisse der axialen Steifigkeit unter kombinierter Belastung sind im Verlauf der Arbeit derart gekürzt worden, dass sich eine Aussage über das Verhalten dieser nicht treffen lässt.

5-3.2.2 Laterale Steifigkeit

Die Versuchsergebnisse der lateralen Steifigkeit zeigen deutlich, dass auch hier die verwendeten Modellansätze zu keinem zufriedenstellenden Resultat führen. Die Steifigkeiten werden ähnlich zu jenen bei den reinen Abscherversuchen zum Teil deutlich um den Faktor von 4 überschätzt.

5-4 FAZIT

Das Fazit zu der Bestimmung der Tragfähigkeit fällt für die Versuche dieser Arbeit durchwegs positiv aus. Die Ergebnisse der Versuche, speziell der kombinierten Beanspruchung, ermöglichen Aussagen über das Verhalten von unterschiedlichen Einschraubtiefen und unterschiedlichen Achs-Faserwinkeln. Wie bereits in Abschnitt 5-3.1 beschrieben, lassen sich für die kombinierte Beanspruchung Empfehlungen zur Anpassung der aktuell gültigen Bemessungsregeln geben.

Da im Verlauf der Arbeit auch eine große Anzahl an Versuchen zur Abschertragfähigkeit durchgeführt wurde, werden auch hier Empfehlungen für Anpassungen der gültigen Bemessungsregeln gegeben.

Hinsichtlich der Auswertungen für die Steifigkeit zeigte sich anhand der Versuchsergebnisse, dass in diesem Bereich deutlicher Forschungsaufwand notwendig ist. Die Ergebnisse dieser Arbeit zeigen für die laterale Steifigkeit, dass die aktuell gültigen Bemessungsregeln zu einer deutlich zu hohen Einschätzung der Steifigkeit führen.

5-5 AUSBLICK

Die Ergebnisse dieser Arbeit liefern einen ersten umfangreichen Einblick in die kombinierte Beanspruchung von Holzbauschrauben, eingesetzt in Stahlblech-Holz-Verbindungen. Weitere Untersuchungen hinsichtlich des Tragverhaltens solcher Verbindungen sind jedoch in Anbetracht der Ergebnisse, zu im Hirnholz eingebrachten Schrauben durchaus zu empfehlen. Des Weiteren kann ein Forschungsschwerpunkt in Hinblick auf weitere Achs-Faserwinkel, weiterer Einschraubtiefen bzw. weiterer Verbindungstypen festgestellt werden. Speziell sollten hierfür Achs-Faserwinkel geprüft werden, die sich zwischen 30 ° und 60 ° befinden. Mit weiteren Variationen der Einschraubtiefe kann der Einfluss des Achs-Faserwinkels besser abgeschätzt werden.

Bei der Steifigkeitsauswertung ist zu erkennen, dass hierfür enormer Forschungsaufwand nötig ist. Dabei müssen sowohl die Konzepte zur Bestimmung der axialen Steifigkeit als auch der lateralen Steifigkeit untersucht werden. Eine Untersuchung hinsichtlich der kombinierten Steifigkeit aus beiden Belastungsrichtungen setzt zwingend voraus, dass diese Steifigkeiten besser vorhergesagt werden können.

ANHANG A LITERATURVERZEICHNIS

- [1] Johansen K.W.; *Theory of Timber Connections*; 1949.
- [2] Ehlbeck J., Siebert W.; *Tragverhalten von Nagelverbindungen bei gleichzeitiger Beanspruchung auf Abscheren und Ausziehen*; Stuttgart: Fraunhofer IRB Verlag; 1984.
- [3] Austrian Standards Institute; *OENORM EN 1995-1-1 Bemessung und Konstruktion von Holzbauten: Allgemeines Allgemeine Regeln und Regeln für den Hochbau;* 01.06.2019.
- [4] Austrian Standards Institute; *OENORM B 1995-1-1 Bemessung und Konstruktion von Holzbauten: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau;* 01.06.2019.
- [5] Österreichisches Institut für Bautechnik (OIB); *ETA-12/0373: Schmid Schrauben RAPID*, *STARDRIVE und SP*; 03.11.2017.
- [6] Schickhofer G.; *Holzbau: Nachweisführung für Konstruktionen aus Holz;* Technische Universität Graz; 2008.
- [7] Austrian Standards Institute; *EN 14592: Holzbauwerke Stiftförmige Verbindungsmittel Anforderungen;* 15.07.2012.
- [8] Ringhofer A.; *Axially Loaded Self-Tapping Screws in Solid Timber and Laminated Timber Products* [Dissertation]: Technische Universität Graz; 2017.
- [9] Brandner R, Ringhofer A, Reichinger T, Hrsg.; *Performance of axially-loaded self-tapping screws in hardwood: Properties and design;* 2019;(Bd. 188).
- [10] Universität Karlsruhe, Hrsg.; *Tragfähigkeit von Verbindungen mit selbstbohrenden Holzschrauben mit Vollgewinde;*Karlsruhe: Universitätsverlag Karlsruhe; 2006;(Karlsruher Berichte zum Ingenieurholzbau; Bd. 4).
- [11] Gstettner M.; *Experimentelle Untersuchung des Tragverhaltens lateral beanspruchter, selbstbohrender Holzbauschrauben* [Diplomarbeit]: Technische Universität Graz; 2019.
- [12] Deutsche Institut für Bautechnik (DIBt); *ETA-11/0190: Würth Schrauben: Selbstbohrende Schrauben als Holzverbindungsmittel;* 23.07.2018.
- [13] Munse W.H., Cox H.L.; *The Static Strength of Rivets Subjected to Combined Tension and Shear*; 1956.
- [14] DeBonis A.L., Bodig J.; Nailed Wood Joints under Combined Loading; 1975.
- [15] McLain T.E., Carroll J.D.; *Combined Load Capacity of Threded Fastener-Wood Connections;* 1990.
- [16] Reyer E., Linzner P.; Tragfaehigkeit von Hirnholznaegeln und Hirnholzschrauben unter Ausziehbelastung Abscherbelastung und kombinierter Belastung zur Herstellung rationeller Holzverbindungen; Bochum: Ruhr-Universität Bochum Lehrstuhl für Baukonstruktion, Ingenieurholzbau und Bauphysik; 1993; (Bd. 4).
- [17] Laggner T.; *Prüftechnische Untersuchung kombiniert beanspruchter selbstbohrender Holzschrauben* [Diplomarbeit]: Technische Universität Graz; 2016.
- [18] Ringhofer, A., Brandner, R., Schickhofer G, Hrsg.; A Universal Approach for Withdrawal Properties of Self-Tapping Screws in Solid Timber and Laminated Timber Products; 2015.
- [19] Schweizerischer Ingenieur- und Architektenverein; SiA 265 Holzbau; 01.01.2012.
- [20] Austrian Standards Institute; ÖNORM EN 383: Holzbauwerke Prüfverfahren Bestimmung der Lochleibungsfestigkeit und Bettungswerte für stiftförmige Verbindungsmittel; 01.03.2007.

- [21] Austrian Standards Institute; ÖNORM EN 1382: Holzbauwerke Prüfverfahren Ausziehtragfähigkeit von Holzverbindungsmitteln; 15.05.2016.
- [22] Jockwer R, Steiger R., Frangi A., Hrsg.; *Design model for inclined screws under varying load to grain angles*; 2014.
- [23] Austrian Standards Institute; ÖNROM EN 409: Holzbauwerke Prüfverfahren Bestimmung des Fließmoments von stiftförmigen Verbindungsmitteln; 15.06.2009.
- [24] Berlgez P.; *Mathematik 3: Grundbegriffe der deskriptiven Statistik und der Wahrscheinlichkeitstheorie;* Technische Universität Graz; 2015.

ANHANG B PRÜFKONFIGURATION

B-1 Pläne Prüfkonfiguration

Planverzeichnis	Plannummer
Detailplan zu Pos.1 Steher	1
Detailplan zu Pos. 2 Prüfrad	2
Detailplan zu Pos. 3 Verbindungsplatte	3
Detailplan zu Pos. 4 Prüfkörperhalterung	4
Detailplan zu Pos. 5 Stahlplattenhalterung	5
Detailplan zu Pos. 6 Schraubenblech	6
Detailplan zu Pos. 7 Verbindung Holzkörper	7
Montageplan Prüfkonfiguration	8

Abb. Anhang B-1 Plannr. 1 Detailposition Steher

Abb. Anhang B-2 Plannr. 2 Detailposition Prüfrad

Abb. Anhang B-3 Plannr. 3 Detailposition Verbindungsplatte

Abb. Anhang B-4 Plannr. 4 Detailposition Prüfkörperhalterung

study research engineering test center

Abb. Anhang B-5 Plannr. 5 Detailposition Stahlplattenhalterung

Abb. Anhang B-6 Plannr. 6 Detailposition Schraubenblech

Abb. Anhang B-7 Plannr. 7 Detailposition Verbindung Holzkörper

Abb. Anhang B-8 Plannr. 8 Montageplan Prüfkonfiguration

ANHANG C PÜRFKÖRPERHERSTELLUNG

C-1 Pläne Probekörperherstellung

Planverzeichnis	Prüfserien Nr.	Plannummer
Übersichtsplan Probekörperherstellung	15-66	9
Laufzettel A1-1	51-53	10
Laufzettel A1-2	19, 20, 54	11
Laufzettel A2-1	18, 49, 65	12
Laufzettel A2-2	32, 33, 48, 64	13
Laufzettel A3-1	26, 58	14
Laufzettel A3-2	16,42	15
Laufzettel A4-1	29, 45	16
Laufzettel A4-2	62	17
Laufzettel B1	15, 21, 35, 36	18
Laufzettel B2	27, 43	19
Laufzettel B3	25, 57	20
Laufzettel B4-1	61	21
Laufzettel B4-2	17, 60	22
Laufzettel C1-1	22, 37	23
Laufzettel C1-2	38, 66	24
Laufzettel C1-3	34, 50	25
Laufzettel C2-1	31, 47, 63	26
Laufzettel C2-2	28, 44	27
Laufzettel C3-1	24, 41, 56	28
Laufzettel C3-2	23, 39, 40, 54	29
Laufzettel D1	59	30
Laufzettel D3	30, 46	31

Abb. Anhang C-1 Plannr. 9 Übersichtsplan Probekörperherstellung

Abb. Anhang C-2 Plannr. 10 Laufzettel A1-1 Prüfserien 51 bis 53

Abb. Anhang C-3 Plannr. 11 Laufzettel A1-2 Prüfserien 19, 20 und 54

Abb. Anhang C-4 Plannr. 12 Laufzettel A2-1 Prüfserien 18, 49 und 65

Abb. Anhang C-5 Plannr. 13 Laufzettel A2-2 Prüfserien 32,33, 48 und 64

Abb. Anhang C-6 Plannr. 14 Laufzettel A3-1Prüfserien 26 und 58

Abb. Anhang C-7 Plannr. 15 Laufzettel A3-2 Prüfserien 16 und 42

Abb. Anhang C-8 Plannr. 16 Laufzettel A4-1 Prüfserien 29 und 45

Abb. Anhang C-9 Plannr. 17 Laufzettel A4-2 Prüfserie 62

Abb. Anhang C-10 Plannr. 18 Laufzettel B1 Prüfserien 15, 21, 35 und 36

Abb. Anhang C-11 Plannr. 19 Laufzettel B2 Prüfserien 27 und 43

Abb. Anhang C-12 Plannr. 20 Laufzettel B3 Prüfserien 25 und 57

Abb. Anhang C-13 Plannr. 21 Laufzettel B4-1 Prüfserie 61

Abb. Anhang C-14 Plannr. 22 Laufzettel B4-2 Prüfserien 17 und 60

Abb. Anhang C-15 Plannr. 23 Laufzettel C1-1 Prüfserien 22 und 37

Abb. Anhang C-16 Plannr. 24 Laufzettel C1-2 Prüfserien 38 und 66

Abb. Anhang C-17 Plannr. 25 Laufzettel C1-3 Prüfserien 34 und 50

Abb. Anhang C-18 Plannr. 26 Laufzettel C2-1 Prüfserien 31, 47 und 63

Abb. Anhang C-19 Plannr. 27 Laufzettel C2-2 Prüfserien 28 und 44

Abb. Anhang C-20 Plannr. 28 Laufzettel C3-1 Prüfserien 24, 41 und 56

Abb. Anhang C-21 Plannr. 29 Laufzettel C3-2 Prüfserien 23, 39, 40 und 55

Abb. Anhang C-22 Plannr. 30 Laufzettel D1 Prüfserie 59

Abb. Anhang C-23 Plannr. 31 Laufzettel D3 Prüfserien 30 und 46

ANHANG D PRÜFPROTOKOLLE

D-1 Ausziehversuche

D-1.1 Prüfserie 15

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
1	B08-15-test	15961	13170,6	erster Testversuch zur Ermittlung der Prüfgeschwindigkeit, Lasche für Stahlblechhalterung liegt nicht auf Prüfkörper auf, Vorkraft 50N, Vorkraftgeschwindigkeit 10mm/min, Lasche verdreht im Anfangsbereich daher Wegaufnehmer unstetig, Prüfgeschwindigkeit 2,0mm/min, Fmax immer von Catman
2	B05-15-01	14179	Prüfgeschwir	ndigkeit 1,7mm/min, Harzgalle Seitenfläche,
3	B08-15-02 ²	14357	links und r einfädelbar w	echts 2 zusätzliche Halteschrauben gebohrt, da Prüfkörper nicht var, Anfangsschlupf ca. 15s, Prüfgeschwindigkeit angepasst 1,5mm/min
4	B14-15-03	8813	14658,7	Prüfgeschwindigkeit 1,4mm/min, Fehler bei Zwick Einstellung der Nulllage bereits teilweise aufreissen der Schraube
5	B22-15-04	15440	Riss horizo	ontal im Seitenholzfläche,
6	B27-15-05	15659	neues Fma Seitenflächer	x bzw. Hystereseanpassung sh. Zelle F20/21, Astbildung in den 1,
7	B32-15-06	16464	horizontaler Riss in Seitenholzflächen, Wegaufnehmer Nord sehr weit am Rand,	
8	B35-15-07	16574	Wegaufnehmer Nord weit am Rand, Astbildung in den Seitenflächen,	
9	B43-15-08	16805	horizontale	er Riss in Seitenholzfläche, Wegaufnehmer Nord weit am Rand,
10	B46-15-09	14953	horizontale	er Riss beidseitig in Seitenholzfläche, Harzgalle Seitenholzfläche Nord,
11	B50-15-10	14458	Harzgalle, Rissbildung Seitenholzfläche,	
12	B58-15-11	14701	Harzgallen	und Astbildung in Seitenholzfläche,

D-1.2 Prüfserie 16

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B02-16-01	13733	10097,4	Belastungsgeschwindigkeit 1,0mm/min, Wegaufnehmer Nord weit seitlich, Ast im Seitenholz,
3	B11-16-02 ²	12267	Diagonalri	ss über gesamt Querschnittshöhe,
4	B14-16-03	12861	Diagonalri	ss + Astbildung im Seitenholzfläche, Harzgallenbildung,
5	B21-16-04	16131	12953,7	Ast am Rand im Seitenholz, Diagonalriss über gesamte Querschnittshöhe, bzw Ast relativ mittig in Seitenholzfläche, neue Hysterese Werte, Verformung der Wegaufnehmer im Anfangsbereich zickzack artig, Hysterese nicht definierbar als Linie,
6	B28-16-05	10803	Verteilte A Anfangsschlu	sstbildung über gesamte Seitenholzfläche, leichte Diagonalrissbildung, 1pf im Bereich von 0-20s Lastniveau ca. 400N,
7	B31-16-06	9846	Verteilte Astbildung über gesamte Seitenholzfläche, Harzgalle im Seitenholz,	
8	B37-16-07	13365	Diagonalriss im unteren Bereich (nord), Diagonalriss über gesamt höhe (süd), Anfangsschlupf 15s Lastniveau ca. 400N,	
9	B40-16-08	12937	Diagonalriss und Harzgalle in Seitenholzfläche	
10	B48-16-09 ²	9787	Diagonalriss in Seitenholzfläche, leichte Astbildung	
12	B54-16-010	14139	Anfangsschlupf ca. 10s Lastniveau 150N,	
13	B59-16-11	12031	Diagonalriss, leichte Astbildung,	
1	B11-59-02 ²	13836	erster Test Vorkraftgesc von Catman,	versuch zur Ermittlung der Prüfgeschwindigkeit, Vorkraft 50N, hwindigkeit 10mm/min, Prüfgeschwindigkeit 1,0mm/min, Fmax immer Diagonalriss Seitenfläche, Astbildung Seitenholzfläche,
11	B48-16-09 ²	11795	Vergleichs Schraubenka	versuch, bezeichnet mit B48-16-test, Astbildung im Bereich des nals,

D-1.3 Prüfserie 17

lfd. Nr.	Probeköper-bezeichnung	${F}_{ m max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B02-17-01 ²	12064	13170,6	Prüfgeschwindigkeit 1.2mm/min,
3	B10-17-02 ²	14707	Weggesteuer verursacht er Aluwinkel ge Kernanschnit	t 1,0 mm/min, Vorkraft 75 N 20 mm/min; erste Beobachtung: 90° heblichen "Anfangsschlupf"; knistern, Wegaufnehmer KIT vom erutscht, Wegmesssystem TUG in der Luft, horizontaler Riss, t,
4	B14-17-03	16757	Diagonalri Blaufäule im	ss mittelbereich des Gewindeteils, hörbare Rissbildung während Prüfung, Randbereich des Prüfquerschnitts,
5	B18-17-04	13223	14509,3	neues Fmax,est , Diagonalriss, leichte Astbildung, hörbare Rissbildung während Prüfung,
6	B24-17-05	14122	Anfangsschlupf ca.10s, Messabbruch bei Catman verschlafen (7800N9	
7	B32-17-06 ²	18336	Anfangsschlupf 20s Lastniveau 500N, Diagonalriss, leichte Astbildung im Bereich des Schraubenkanals,	
8	B38-17-07 ²	15541	Anfangsschlupf ca. 14s Lastniveau 400N, leichte Astbildung im Schraubennahen Bereich,	
9	B43-17-08 ²	13097	Anfangsschlupf ca. 10s Lastniveau 400N, Diagonalriss im Prüfnahen Bereich,	
10	B45-17-09	15818	Diagonalriss,	
11	B51-17-10	16794	Anfangsschlupf ca. 10s Lastniveau 250N, Diagonalriss über halbe Querschnittsbreite, leichte Astbildung, Prüfkörperausbau vor beenden der Prüfung (Gespräch mit Raimund hat abgelenkt)	
12	B57-17-11	15247	lt. Gespräch mit Raimund Belastungsgeschwindigkeit zu schnell Maximum sollte nicht bei 250s liegen sondern bei 250s + Hysterese Schleifen, Prüfgeschwindigkeit 0,6mm/min,	
1	B02-17-01 ²	12937	erster Test Rissbildung i	versuch zur Ermittlung der Geschwindigkeit, 1.4mm/min, hörbare m Querschnitt, Vorkraft 50N, Vorkraftweg 10mm/min,
	B10-17-02 ²		nicht geprüft	
	B32-17-06 ²		nicht gepri	ift
	B38-17-07 ²		nicht gepri	ift, B43-17-08 ² nicht geprüft

D-1.4 Prüfserie 18

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
1	B04-18-01	11863	9219,4	erster Versuch angedrückt statt gezogen, 30 N Anfangskraft, Geschwindigkeit 1mm/min
2	B10-18-02	11455	Anfangskraft 25N, Markröhre und Trocknungsriss auf der Prüfseite	
3	B17-18-03	7921	Anfangskraft -21N, eventuell beim andrehen überdreht?, Trocknungsriss	
4	B19-18-04	9803	10413,0	Anfangskraft 28N, Geschwindigkeit 0.9mm/min
5	B27-18-05	8282	Anfangskr	aft 34N
6	B33-18-06	15894	Anfangskraft -13N, erheblicher Anfangsschlupf	
7	B38-18-07	7830	Anfangskraft 20N, Trocknungsriss Seitenfläche	
8	B45-18-08	8003	Anfangskraft 6N,	
9	B47-18-09	9537	Anfangskraft -57N, Trocknungsriss Unterseite, Harzgallen, Rissbildung bei erreichen von Fmax	
10	B55-18-010	7393	Anfangskraft 22N, Trocknungsriss Seitenfläche über gesamte höhe,	
11	B56-18-11	6385	Anfangskr Seitenfläche	aft 19N, Riss Unterseite über gesamte Querschnittsbreite, Harzgalle

D-2 Kombinierte Beanspruchung γ = 30 °

D-2.1 Prüfserie 19

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
1	B04-19-01	4526	6764,0	Belastungsgeschwindigkeit 3mm/min, Anfangskraft 50N, Anfangszustand 13:54, grosser Ast beidseitig im unbelasteten Bereich, Endzustand 13:59, Abbruch bei 75% Fmax,	
2	B10-19-02	5703	Fmax, est Anfangskraft Harzgalle ein fmax,	von erstem Versuch, Belastungsgeschwindigkeit 2,4mm/min, z-41N, Anfangszustand 14:05, Blech liegt nicht voll auf Prüfkörper auf, seitig im unbelasteten Bereich, Endzustand 14:10, Abbruch bei 75%	
3	B17-19-03	4955	Anfangskr Fmax, est vo Endzustand 1	Anfangskraft -45N, anfangszustand 14:20, Belastungsgeschwindigkeit 1,7mm/min, Fmax, est von ersten beiden Versuchen gemittelt, horizontaler Riss einseitig, Endzustand 14:26, Abbruch bei 75% Fmax,	
4	B18-19-04	5131	5061,3	neues Fmax est von ersten drei Versuchen, Belastungsgeschwindigkeit 2mm/min, Anfangskraft -9N, anfangszustand 14:32, Endzustand 14:38, Abbruch bei 75% fmax,	
5	B27-19-05	4862	Anfangskr Fmax,	aft -7N, Anfangszustand 14:42, Endzustand 14:48, Abbruch bei 75%	
6	B33-19-06	5166	Anfangskraft 7N, Anfangszustand 14:55, Endzustand 15:00, Abbruch bei 75% fmax,		
7	B38-19-07	5508	Anfangskraft 38N, Anfangszustand 15:09, Endzustand 15:15, Abbruch bei 75% Fmax,		
8	B45-19-08	5760	Anfangskraft -1N, Anfangszustand 15:21, Endzustand 15:26, abbruch bei 75% fmax,		
9	B47-19-09	5115	Anfangskraft 12N, Anfangszustand 15:30, grösserer Ast im unbelasteten Bereich einseitig, Endzustand 15:36, Abbruch bei 75% fmax,		
10	B55-19-10	5364	Anfangskraft 12N, Anfangszustand 15:40, Endzustand 15:45, Abbruch bei 75% Fmax,		
11	B56-19-11	5248	Anfangskr fmax,	aft -21N, Anfangszustand 15:50, Endzustand 15:56, Abbruch bei 75%	

D-2.2 Prüfserie 20

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	, , , , , , , , , , , , , , , , , , ,
1	B04-20-01	12426	14131,0	Anfangskraft, Belastungsgeschwindigkeit 1.8mm/min, Anfangskraft - 45N, Anfangszustand 17:07,
2	B12-20-02	12814	Anfangskraft -31N, Anfangszustand 17:20, Endzustand 17:27, Abbruch bei 75% Fmax,	
3	B15-20-03	12036	Belastungs Endzustand (geschwindigkeit 2mm/min, anfangskraft 62N, Anfangszustand 08:30, 8:38, Abbruch bei 75% Fmax,
4	B18-20-04	11850	12425,3	Anfangskraft 20N, Belastungsgeschwindigkeit 2,1mm/min, Anfangszustand 08:45, Abbruch bei 75% Fmax, Endzustand 08:51
5	B25-20-05	12982	Anfangskr Fmax,	aft -7N, Anfangszustand 08:56, Endzustand 09:03, Abbruch bei 75%
6	B33-20-06	15158	Anfnagskraft -21N, Anfangszustand 09:08, Endzustand 09:15, Abbruch bei 75% Fmax,	
7	B37-20-07	12577	Anfangskraft 4N, Anfangszustand 09:21, Ausbruch im unteren Bereich des Prüfkörpers sh. Fotos, Endzustand 09:27, Abbruch bei 75% Fmax,	
8	B39-20-08	13246	Anfangskraft -26N, Anfangszustand 09:32, Ast direkt neben Schraubenkanal einseitig sh. Foto, Abbruch bei 75% Fmax, , Endzustand 09:39,	
9	B45-20-09	14226	Anfangskraft -24N, Anfangszustand 09:45, Abbruch bei 75% Fmax, endzustand 09:51,	
10	B54-20-10	15124	Anfnagskraft -1N, Anfangszustand 09:57, Ast direkt neben Schraubenkanal einseitig, Endzustand 10:03, Abbruch ei 75% Fmax,	
11	B58-20-11	12806	Anfangskr sh fotos, End	aft 30N, Anfangszustand 10:08, Harzgalle einseitig, grosser Ast einseitig zustand 10:14, Abbruch bei 75% Fmax,

D-2.3 Prüfserie 21

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
1	B05-12-01	18893	19901,0	Belastungsgeschwindigkeit 2mm/min, Anfangskraft 47N, Anfangszustand 13:07, Harzgallen beidseitig, Endzustand 13:15, Abbruch bei 75% Fmax, komisches klopfen bei Prüfung von Zwick zu hören?,	
2	B08-21-02	18367	Fmax,est v 18N, anfangs Abbruch bei	von erstem Versuch, Belastungsgeschwindigkeit 2,8mm/min, Anfangskraft zustand 13:21, Ast im unbelasteten Bereich einseitig, Endzustand 13:28, 75% fmax,	
3	B14-21-03	20956	Fmax,est v Belastungsge geschnitten s Endzustand 1	Fmax,est von ersten beiden Versuchen gemittelt, Anfangskraft 12N, Belastungsgeschwindigkeit 3,3mm/min, Anfangszustand 13:34, Prüfkörper zu kurz geschnitten sh. Fotos Stahlblech liegt am unbelasteten rand auf Prüfgeschirr auf, Endzustand 13:39, Abbruch bei 75% fmax,	
4	B22-21-04	19918	19405,3	Anfangskraft 30N, anfangszustand 13:44, horizontaler Riss einseitig, Endzustand 13:50, Abbruch bei 75% fmax,	
5	B27-21-05	20118	Prüfkörper Anfangszusta Endzustand 1 Fmax,	wiederum zu kurz Stahlblech liegt auf Prüfgeschirr auf sh. Fotos and, Anfangskraft 4N, Anfangszustand 14:01, Harzgallen beidseitig, 4:07, Abbruch bei 75% fmax, Wegaufnehmer zu kurz nach erreichen von	
6	B32-21-06	22679	Anfangskraft -28N, Anfangszustand 14:12, Stahlblech liegt wiederum auf Prüfgeschirr auf, Harzgalle und kleiner Äste einseitig, horizontaler Riss +Äste einseitig, Endzustand 14:17, Stahlbruch,		
7	B35-21-07	21452	Anfangskraft 12N, anfangszustand 14:21, Äste über Seitenholzfläche verteilt einseitig, Prüfkörper Oberfläche nicht plan sh. Fotos, eine seite Stahlblech liegt auf Prüfgeschirr auf andere Seite frei verdrehbar, Endzustand 14:27, Abbruch bie 75% Fmax,		
8	B43-21-08	21448	Anfangskraft 69N, anfangszustand 14:32, Stahlblech liegt einseitig nicht auf Prüfkörper auf, Prüfkörper schief eingebaut, Endzustand 14:38, Abbruch bei 75% Fmax,		
9	B46-21-09	18605	Anfangskraft -37N, anfangszustand 14:48, Auflage auf Prüfgeschirr einseitig, horizontaler riss einseitig, Endzustand 14:54, Abbuch bei 75% Fmax,		
10	B50-21-10	18209	Anfangksraft -40N, anfangszustand 14:58, Stahlblech liegt wiederum auf Prüfgeschirr auf beidseitig, Endzustand 15:05, Abbruch bei 75% fmax, Wegaufnehmer zu kurz nach erreichen von Fmax,		
11	B58-21-11	20332	neue Charg Stahlbech lie Seitenholzflä 75% Fmax,	ge Schrauben 180mm, Anfangskraft -75N, Anfangszustand 15:09, gt wiederum auf Prüfgeschirr auf, mächtige Harzgallen in che jedoch ziemlich weit unten einseitig, Endzustand 15:14, Abbruch bei	
			gesamte Pr	rüfserie sehr ungenau geschnitten!!!!!	

D-2.4 Prüfserie 22

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
1	B04-22-01	21284	20815,0	Belastungsgeschwindigkeit 3,5mm/min, Anfangskraft 16N, Anfangszustand 14:18, Ast einseitig im unbelasteten Bereich, Fmax,est von vorherige Serie (30) übernommen, Endzustand 14:23, stahlbruch
2	B11-22-02	20788	Anfangskr	aft -28N, Anfangszustand 14:28, Endzustand 14:32, Stahlbruch,
3	B14-22-03	21469	Anfangskr Endzustand 1	aft 37N, Anfangszustand 14:44, leichter horizontaler Riss einseitig, 4:48, Stahlbruch,
4	B22-22-04	20596	21180,3	Anfangskraft 42N, Anfangszustand 14:55, horizontaler Riss über gesamte querschnittsbreite einseitig, Endzustand 15:00, Stahlbruch,
5	B23-22-05	21790	Anfangskraft -14N, Anfangszustand 15:04, horizontaler Riss beidseitig, Endzustand 15:09, Stahlbruch,	
6	B30-22-06	20799	Anfangskraft -15N, Anfangszustand 15:13, horizontaler Risse einseitig, Endzustand 15:17, Stahlbruch	
7	B38-22-07	20707	Anfangskraft -6N, Anfangszustand 15:22, Endzustand 15:26, Stahlbruch	
8	B41-22-08	21630	Anfangskraft 23N, anfangszustand 15:31, Endzustand 15:35, Stahlbruch,	
9	B49-22-09	21377	Anfangskraft 30N, anfangszustand 15:40, horizontaler Riss einseitig, Äste im Schraubenkanal beidseitig, Endzustand 15:44, Stahlbruch	
10	B50-22-10	20851	eventuell leichte Spaltung des Prüfkörpers beim eindrehen der Halteschrauben, Anfangskraft 3N, anfangszustand 15:49, horizontaler Riss einseitig, Endzustand 15:53, Stahlbruch	
11	B55-22-11	21113	Anfangskr Querschnittsl	aft 10N, anfangszustand 16:02, horizontaler Riss über gesamte preite, Endzustand 16:07, Stahlbruch

D-2.5 Prüfserie 23

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B01-23-01	3528	3582,0	Druck gegen Faser, fmax, est von erstem Testversuch, Anfangskraft - 35N, Anfangszustand 16:14, Endzustand 16:20, Abbruch bei 75% Fmax,
3	B16-23-03	3561	Druck geg Schraubenka bei 75% fma:	en Faser, Anfangskraft -37N, Anfangszustand 16:24, Diagonalriss durch nal beidseitig über gesamte Querschnittshöhe, Endzustand 16:30, Abbruch x,
4	B25-23-05	3477	Druck geg gesamte träge	en Faser, anfangskraft 27N, anfangszustand 16:36, Diagonalriss über erhöhe, Endzustand 16:41, Abbruch bei 75% fmax,
5	B35-23-07	4038	3522,0	Druck gegen Faser, anfangskraft -45N, Anfangszustand 17:00, Endzustand 17:05, abbruch bei 75% fmax,
6	B45-23-09	3335	Druck gegen Faser, anfangskraft 7N, anfangszustand 08:33, Ast im Schraubenkanal einseitig, Diagonalriss + Ast im unbelasteten Bereich einseitig, Endzustand 08:40, abbruch bei 75% fmax,	
7	B56-23-11	3604	Druck gegen Faser, anfangskraft 32N, anfangszustand 08:44, Endzustand 08:51, Abbruch bei 75% fmax,	
8	B08-23-02	2629	Druck mit Faser, Anfangskraft 9N, anfangszustand 08:55, grosser Ast im unbelasteten Bereich, Endzustand 08:59, abbruch bei 75% fmax, bei Herausnahme bemerkt das Schraube am Rand der Schlitzung angestanden ist,	
9	B21-23-04	3486	Druck mit Faser, Belastungsgeschwindigkeit 1,7mm/min, Anfangskraft -7N, Anfangszustand 09:06, grosser Ast im unbelasteten Bereich beidseitig, Endzustand 09:12, Abbruch bei 75% fmax,	
10	B29-23-06	2352	Druck mit Faser, Anfangskraft -9N, Anfangszustand 09:17, grosser Ast im Verdrehungsbereich der Schraube einseitig, Äste im unbelasteten Bereich einseitig, Endzustand 09:24, Abbruch bei 75% Fmax, bei Herausnahme bemerkt das Schraube am Rand der Schlitzung angestanden ist,	
11	B43-23-08	4770	Druck mit Faser, Anfangskraft 27N, Anfangszustand 09:28, Endzustand 09:33, Abbruch bei 75% fmax,	
12	B53-23-10	3100	Druck mit Faser, anfangskraft -29N, Anfangszustand 09:38, leichter Diagonalriss beidseitig, Endzustand 09:43, Abbruch bei 75% Fmax,	
1	B25-23-test	3582	erster Test Fmax, est 53 Anfangskraft	versuch, mit Schraube von B12-31-test getestet da Schraubenknappheit, 03N, Belastungsgeschwindigkeit 2mm/min, Druck gegen Faser, 20N, Anfangszustand 16:03, Endzustand16:08, Abbruch bei 75% fmax,
	B16-23-test		nicht gepri	ift

D-2.6 Prüfserie 24

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
1	B01-24-01	7101	11057,0	Druck gegen Faser, Belastungsgeschwindigkeit 1,6mm/min, Anfangszustand 10:30, Anfangskraft 53N, Endzustand 10:42, Abbruch bei 75% Fmax,
2	B13-24-03	6290	Druck geg Anfnagszusta Schraubenka	en Faser, neues Fmax, est, von erstem Versuch, Anfangskraft 65N, un 10:48, Diagonalriss über gesmate Querschnittshöhe durch nal sh Fotos, Abbruch bei 75% Fmax, Endzustand 10:56,
3	B23-24-05	8826	Druck gegen Faser, Anfangskraft 10N, Anfangszustand 11:03, Diagonalrisse beidseitig durch Schraubenkanal, hörbare Rissbildung während Prüfung Lastniveau ca. 7000N, Endzustand 11:12, Abbruch bei 75%Fmax ,, Catman zu spät abgebrochen,	
4	B39-24-07	8326	7405,7	Druck gegen Faser, Anfangskraft 23N, Anfangszustand 11:18, Endzustand 11:29, Abbruch bei 75% Fmax,
5	B46-24-09	6387	Druck gegen Faser, Anfangskraft -2N, Anfangszustand 11:38, Ast beidseitig sh. Fotos, Abbruch bei 75% fmax, Endzustand 11:46,	
6	B59-24-11	7016	Druck gegen Faser, anfangskraft 3N, Anfangszustand 11:51, Diagonalriss einseitig, hörbare Rissbildung während Prüfung ca. 6000N, aufreissen des querschnitts Fotos vorhanden 11:55, Abbruch bei 75% fmax, Endzustand 12:00,	
7	B09-24-02	9257	Druck mit Faser, Anfangskraft -2N, Anfangszustand 12:07, Ast im unbelasteten Bereich beidseitig, Endzustand 12:15, Jahrringversagen sh. Fotos ausgebauter Zustand,	
8	B18-24-04	8285	Druck mit Faser, anfangskraft 68N, Anfangszustand 12:20, Harzgalle einseitig sh Fotos, Endzustand 12:29, Abbruch bei 75% Fmax,	
9	B30-24-06	8737	Druck mit Faser, Anfangskraft 29N, Anfangszustand 13:05, Riss im belasteten Bereich einseitig, kleiner Ast im belasteten Bereich einseitig, Endzustand 13:12, Abbruch bei 75% fmax, Jahrringversagen sh. Fotos ausgebauter Zustand,	
10	B44-24-08	8765	Druck mit Faser, Anfangskraft 10N, anfangszustand 13:35, Diagonalriss einseitig, Abbruch bei 75% fmax, Endzustand 13:45, Jahrringversagen sh. Fotos ausgebauter Zustand,	
11	B50-24-10	7928	Druck mit hörbare Rissl	Faser, Anfangskraft 5N, Anfangszustand 13:52, Diagonalriss einseitig, bildung während Prüfung, Endzustand 14:01, Abbruch bei 75% Fmax,

D-2.7 Prüfserie 25

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B12-25-02	12206	14902,0	Fmax,est von erstem Versuch, Belastungsgeschwindigkeit Anfangskraft -41N, Druck mit Faser, Anfangszustand 16:05 + Diagonalriss im Querschnitt, Endzustand 16:11, Abbruch bei 75% Fmax,
3	B21-25-04	18640	Druck mit genullt, Anfa	Faser, Belastungsgeschwindigkeit 3mm/min, Anfangskraft, 34N, Zwick ngszustand 16:29, Endzustan d16:34, Abbruch bei 75% Fmax,
4	BB31-25-06	13214	Druck mit 16:46, Abbru	Faser, Anfangskraft 37N, Anfangszustand 16:40 + Harzgalle, Endzustand ch bei 75% Fmax,
5	B42-25-08	11616	14686,7	Druck mit Faser, Belastungsgeschwindigkeit 2.4mm/min, Anfangskraft 7N, Anfangszustand 16:51 + Diagonalriss durch gesamten Querschnitt, Endzustand 16:57, Abbruch bei 75% Fmax,
6	B52-25-10	17223	Druck mit des Schraube	Faser, Anfangskraft 15N, Anfagnszustand 17:02 + grosse Äste in nähe nkanals, Endzustand 17:08, Abbruch bei 75% Fmax,
7	B06-25-01	14214	Druck geg 17:20;Abbru	en Faser, Anfangskraft -50N, Anfangszustand 17:13, Endzustand ch bei 75% Fmax,
8	B17-25-03	12618	Druck gegen Faser, Anfangskraft 27N, Anfangszustand 17:24 + grosser Ast im Bereich des Wegaufnehmers, Endzustand 17:31, Abbruch bei 75% Fmax,	
9	B23-25-05	13718	Druck gegen Faser, Anfangskraft -51N, Anfangszustand 17:40 + Diagonalriss, Endzustand 17:47, Abbruch bei 75% Fmax,	
10	B34-25-07	13155	Druck gegen Faser, Anfangskraft -11N, Anfangszustand 17:54, Endzustand 18:01, Abbruch bei 75% Fmax,	
11	B47-25-09	12643	Druck gegen Faser, Anfangskraft 13N, Anfangszustand 18:06 + Diagonalriss, Endzustand 18:14, Abbruch bei 75% fmax,	
12	B55-25-11	14492	Druck gegen Faser, anfangskraft 31N, Anfangszustand 18:19, Endzustand 18:29, Abbruch bei 75% Fmax,	
1	B12-25-02 ²	14902	erster Test Faser, Belast 15:49, Endzu	versuch für Belastungsgeschwindigkeit, Fmax,est 16336N, Druck mit ungsgeschwindigkeit 5mm/min, Anfagnskraft -15N, Anfangszustand stand 15:56, Abbruch bei 75% Fmax,

D-2.8 Prüfserie 26

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B01-26-01	18744	19115,0	Druck gegen Faser, Fmax est von erstem Testversuch, Belastungsgeschwindigkeit 3,5mm/min, Anfangskraft 30N, Anfangszustand 08:59, Endzustand 09:04, Abbruch bei 75% Fmax, Wegaufnehmer horizontal zu kurz nach erreichen von Fmax,
3	B13-26-03	18296	Druck gegen Faser, Anfangskraft 27N, Anfangszustand 09:14, Diagonalriss über gesamte Querschnittshöhe beidseitig, hörbare Rissbildung während Prüfung bereits im Erstbelastungszustand, Endzustand 09:20, Wegaufnehmer zu kurz nach erreichen von Fmax, Abbruch bie 75% Fmax,	
4	B26-26-05	19389	Druck gegen Faser, Anfangskraft 4N, Anfangszustand Äste im Bereich des Aufleimers + kleinere Äste im Bereich des Schraubenkanals einseitig, Endzustand 09:33, Wegaufnehmer zu kurz nach erreichen von Fmax, Abbruch bei 75% fmax,	
5	B34-26-07	19389	18809,7	Druck gegen Faser, Belastungsgeschwindigkeit 3,8mm/min, Anfangskraft 39N, anfangszustand 09:39, vermehrte kleinere Äste in Seitenholzfläche beidseitig, Endzustand 09:45, Abbruch bei 75% Fmax, Catman zu spät abgebrochen, Wegaufnehmer zu kurz nach erreichen von Fmax,
6	B47-26-09	17294	Druck gegen Faser, anfangskraft 4N, Anfangszustand 09:51, Harzgalle beidseitig, Abbruch bie 75% fmax, Endzustand 09:57, Wegaufnehmer zu kurz nach erreichen von Fmax,	
7	B56-26-11	15232	Druck gegen Faser, anfangskraft -34N,, Anfangszustand 10:07, kleinere Äste in Seitenholzfläche einseitig, Wegaufnehmer zu kurz nach erreichen von Fmax, Endzustand 10:13, Abbruch bei 75% fmax,	
8	B10-26-02	19933	Druck mit Faser, Belastungsgeschwindigkeit 3.6mm/min, anfnangskraft 18N, anfangszustand 10:19, Diagonalriss einseitig, Stahlbruch, Endzustand 10:23,	
9	B20-26-04	20016	Druck mit Faser, Anfangskraft 0N, Anfangszustand 10:28, Endzustand 10:32, Stahlbruch	
10	B30-25-06	20026	Druck mit Faser, Belastungsgeschwindigkeit 3.3mm/min, Anfangskraft 2N, Anfangszustand 10:40, Diagonalrisse einseitig, Endzustand 10:44, stahlbruch,	
11	B41-26-08	19582	Druck mit Faser, Belastungsgeschwindigkeit 3,1mm/min, Anfangskraft 10N, anfangszustand 10:50, Endzsutand 10:54, Stahlbruch,	
12	B53-26-10	19559	Druck mit Faser, Anfangskraft 15N, Anfangszustand 10:58, Schädigung Seitenholzfläche einseitig, Endzustand 11:03, Stahlbruch,	
1	B26-26-test	19115	erster Testversuch Druck gegen Faser, Belastungsgeschwindigkeit 2mm/min, Anfangskraft 40N,Anfangszustand 08:43, Ast im unbelasteten Bereich einseitig, Äst im Bereich des Schraubenkanals einseitig, hörbare Rissbildung während Prüfung Lastniveau ca. 11000N, Fmax, est 22092N, Endzustand 08:51, Abbruch bei 75% Fmax,	
	B53-26-test		nicht gepri	ift
	B10-26-test		nicht gepri	ift

D-2.9 Prüfserie 27

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B06-27-01	3797	4317,0	Fmax,est von erstem Testversuch, Druck gegen Faser, Anfangskraft 2N, anfangszustand 10:07, kleiner Ast direkt neben Schraubenkanal, Endzustand 10:13, Abbruch bei 75% Fmax,
3	B17-27-03	4132	Druck geg Abbruch bei	en Faser, Anfangskraft 24N, anfangszustand 10:16, Endzustand 10:23, 75% Fmax,
4	B24-27-05	3494	Druck gegen Faser, Fmax,est von ersten beiden Versuchen gemittelt, Anfangskraft 17N, Anfangszustand 10:29, Diagonalriss einseitig, Endzustand 10:36, Abbruch bei 75% Fmax,	
5	B36-27-07	3761	3807,7	Druck gegen Faser, Fmax est nicht geändert da lediglich 60N unterschied zu vorherigen Hysterese Punkten, Anfangskraft 10N, Anfangszustand 10:40, Ast im unbelasteten Bereich beidseitig, Endzustand 10:47, Abbruch bei 75% Fmax,
6	B46-27-09	3755	Druck geg über gesamte	en Faser, Anfangskraft 2N, Anfangszustand 10:51, Diagonalriss beidseitig e querschnittshöhe, Endzustand 10:57, Abbruch bei 75% fmax,
7	B56-27-11	4258	Druck gegen Faser, anfangskraft -18N, anfangszustand 11:07, Endzustand 11:13, Abbruch bei 75% Fmax,	
8	B12-27-02	4687	Druck mit Faser, Anfangskraft 7N, Anfangszustand 11:19, starker Diagonalriss einseitig, Endzustand 11:27, Abbruch bei 75% Fmax, Jahrringversagen,	
9	B21-27-04	4276	Druck mit Faser, Anfangskraft -10N, Anfangszustand 11:32, Astanschnit im unbelasteten Bereich + Diagonalriss über gesamte Querschnittshöhe einseitig, Endzustand 11:38, Abbruch bei 75% fmax,	
10	B31-27-06	4994	Druck mit Faser, Anfangskraft 2N, Anfangszustand 11:42, vermehrt Äste in Seitenholzfläche einseitig, hörbare Rissbildung während Prüfung, Endzustand 11:48, Abbruch bei 75% Fmax, Jahrringversagen,	
11	B44-27-08	6080	Druck mit Endzustand 1	Faser, Anfangskraft -8N, Anfangszustand 11:55, Diagonalriss einseitig, 2:02, Abbruch bei 75% Fmax, Jahrringversagen,
12	B54-27-10	5249	Druck mit abbruch bei 7	Faser, Anfangskraft -39N, anfangszustand 12:06, Endzustand 12:11, 75% fmax,
	B06-27-test		nicht gepri	ift
1	B24-27-test	4317	erster Test Anfangskraft einseitig, End	versuch, Belastungsgeschwindigkeit 2mm/min, Fmax, est 6534N, 2N, anfangszustand 09:56, Diagonalriss über gesamte Querschnittshöhe Izustand 10:02, Abbruch bei 75% fmax,

D-2.10 Prüfserie 28

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
3	B03-28-01	12244	13664,0	Druck gegen Faser, Belastungsgeschwindigkeit 1.6mm/min, Anfangskraft -33N, Anfangszustand 13:42, hörbare Rissbildung während Prüfung Lastniveau ca. 9000N, Endzustand 13:52,
4	B16-28-03	9557	Druck geg 2mm/min, Ar	en Faser, neues Fmax, est sh. Unten , Belastungsgeschwindigkeit nfangszustand 14:02, Endzustand 14:09, Abbruch bei 75% Fmax,
5	B27-28-05	10890	Druck geg Anfangskraft	en Faser, Belastungsgeschwindigkeit 1.8mm/min, Anfangszustand 14:18, - 42N, Abbruch bei 75% Fmax, Endzustand 14:28,
6	B39-28-07	11145	12582,0	Druck gegen Faser, Anfangskraft 56N , anfangszustand 14:34, Äst im unbelasteten Bereich, Abbruch bei 75% Fmax, Endzustand 14:41,
7	B50-28-09	10246	Druck geg unbelasteten	en Faser, Anfangskraft 70N, Anfangszustand 14:52, Diagonalriss im Bereich einseitig, Endzustand 14:59, Abbruch bei 75% Fmax,
8	B59-28-11	9847	Druck gegen Faser, Anfangskraft -20N, , Anfangszustand 15:09, Diagonalriss über gesamte Prüfkörperbreite einseitig, wegaufnehmer Nord nur mit 1,5 Schrauben fixiert 2 Schraube eindrehen nicht möglich, Endzustand , Abbruch bei 75% Fmax,	
9	B09-28-02	10489	Druck mit Faser, Anfangszustand 15:35, Anfangskraft 62N, Äste über seitenfläche verteilt, Schraube wieder leicht herausgedreht daher Zick Zack linie ?, Endzustand 15:43,	
10	B20-28-04	11179	Druck mit Faser, Anfangskraft 17N, Anfangszustand 15:51, Diagonalriss über gesamte Querschnittsbreite Einseitig Ast einseitig, Endzustand 15:59, Abbruch bei 75% bei Fmax,	
11	B29-28-06	14425	Druck mit Faser, Schwer einzuschrauben Verdacht auf Ast im Schraubenkanal, Anfangskraft 40N, anfangszustand 16:04, Äste in seitenholzfläche, wieder komische Zick Zack Linie ?, Endzustand 16:13, Abbruch bei 75% Fmax,	
12	B44-28-08	12409	Druck mit gesamt Quers Abbruch bei	Faser, Anfangskraft 7N,, Anfnagszustand 16:21, Diagonalriss über schnittsbreite einseitig, leichte Astbildung andere Seite, Endzustand 16:28, 75% Fmax, Jahrringversagen
13	B52-28-10	11101	Druck mit Faser, Anfangskraft -35N, Anfangszustand 16:36, Ast im Schraubenkanal, endzustand 16:47, Abbruch bei 75% Fmax,	
1	B59-28-test	11270	erster Testversuch, Druck gegen Faser, Belastungsgeschwindigkeit 2.4mm/min, Fmax,est 13664N, Anfangszustand 11:55, Anfangskraft 63N, Vorkraft 75N, Hysterese komplett für den Arsch, Falsche Einstellung Zwick, Endzustand 12:05, Abbruch bei 75% Fmax,	
	B44-28-test		nicht gepri	ift da bereits Schraubenknappheit,
2	B09-28-test	14233	zweiter Te Anfangskraft Stahlblech ar	stversuch Druck mit Faser, Belastungsgeschwindigkeit 1.6 mm/min, 51N, Anfangszustand 12:40, sehr astig Prüfkörper liegt seitl. Nicht am a sh. Fotos 12:44, Abbruch bei 75% Fmax, Endzustand 12:54,

D-2.11 Prüfserie 29

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
1	B03-29-01	15684	15684,0	Druck gegen Faser, Anfangskraft 30N, Belastungsgeschwindigkeit 2.4mm/min, Anfangszustand 18:33, Fmax, est 20428N, Endzustand 18:40, Abbruch bei 75% Fmax,	
2	B15-29-03	20758	Druck gegen Faser, Fmax,est von erstem Versuch, Anfangskraft -68N, Anfangszustand 18:47, Endzustand 18:54, Abbruch bei 75% Fmax,		
3	B26-29-05	17296	Druck geg Abbruch bei	Druck gegen Faser, Anfangskraft -32N, Anfangszustand 18:58, Endzustand 19:05, Abbruch bei 75% fmax,	
4	B37-29-07	18657	17912,7	Druck gegen Faser, Anfangskraft 5N, Anfangszustand 08:56, Endzustand 09:03, Abbruch bei 75% Fmax,	
5	B49-29-09	17124	Druck gegen Faser, Anfangskraft 0N, Anfangszustand 09:07 + Diagonalriss im unbelasteten Bereich, Endzustand 09:15, Abbruch bei 75%Fmax,		
6	B58-29-11	18246	Druck gegen Faser, Anfangskraft 34N, Anfangszustand 09:20 + diagonalriss, Endzustand , Abruch bei 75% Fmax,		
7	B11-29-02	22370	Druck mit Faser, Anfangskraft -14N, Prüfschraube lässt sich nicht eindrehen sh. Foto, Anfangszustand 09:37, Endzustand 09:43, Stahlbruch		
8	B21-29-04	21244	Druck mit Faser, Anfangskraft 27N, Anfangszustand 09:48, Endzustand 09:54, Stahlbruch,		
9	B32-29-06	21554	Druck mit Faser, Belastungsgeschwindigkeit 2.8mm/min, Anfangskraft -64N, Anfangszustand 09:59, Endzustand 10:04, Stahlbruch, Fmax von testexpert abgeschrieben		
10	B42-29-08	18404	Druck mit Faser, Anfangskraft 32N, Anfangszustand 10:10 + Diagonalriss, Endzustand 10:16, Abbruch bei 75% fmax,		
11	B53-29-10	21488	Druck mit fixiert da zwo Stahlbruch	Faser, Anfangskraft 48N, Wegaufnehmer süd nur mit einer Schraube eite gebrochen beim eindrehen, Anfangszustand 10:22, Endzustand 10:28,	

D-2.12 Prüfserie 30

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B01-30-01	20745	20815,0	Druck gegen Faser, Fmax est von erstem testversuch, Anfangskraft -7N, Anfangszustand 11:32, Endzustand 11:36, Stahlbruch,
3	B17-30-03	21261	Druck geg beidseitig, Er	en Faser, Anfangskraft 20N, Anfangszustand 11:42, Diagonalriss ndzustand 11:47, stahlbruch,
4	B26-30-05	20609	Druck geg Anfangszusta 11:57, Stahlb	en Faser, Anfangskraft 37N, Belastungsgeschwindigkeit 3,5mm/min, and 11:52, Diagonalriss einseitig, kleinere Äste einseitig, Endzustand ruch,
5	B36-30-07	21161	20871,7	Druck gegen Faser, Fmax,est nicht geändert da lediglich 50N unterschied zu vorherigem, Anfangskraft 14N, Anfangszustand 12:03, Diagonalriss einseitig, Ast im Bereich des Schraubenkanals, Endzustand 12:07, Stahlbruch
6	B49-30-09	20908	Druck gegen Faser, Anfangskraft -25N, Anfangszustand 12:12, leichter Diagonalriss einseitig, Endzustand 12:17, Stahlbruch,	
7	B55-30-11	21241	Druck gegen Faser, anfangskraft -3N, Anfangszustand 12:22, Diagonalriss einseitig, Endzustand 12:26, Stahlbruch,	
9	B07-30-02	21698	Druck mit Faser, Anfangskraft 54N, Anfangszustand 13:30, diagonalriss + grössere Äste im Schraubenkanal einseitig, Endzustand 13:34, Stahlbruch,	
10	B20-30-04	20651	Druck mit Faser, Anfangskraft -32N, Anfangszustand 13:39, grosser Ast im unbelasteten Bereich, Endzustand 13:43, Stahlbruch,	
11	B32-30-06	20861	Druck mit Faser, Anfangskraft 32N, Anfangszustand 13:47, kleinere Äste über gesamte Seitenholzfläche verteilt, Endzsutand 13:51, Stahlbruch,	
12	B42-30-08	21377	Druck mit Faser, Anfangskraft 15N, Anfangszustand 13:56, Harzgallen beidseitig über Seitenholzfläche verteilt, Endzustand 14:00, Stahlbruch,	
13	B51-30-10	20683	Druck mit Faser, Anfangskraft -22N, Anfangszustand 14:06, Diagonalriss einseitig, Äste beidseitig, Ast direkt im Schraubenkanal Oberseite, Endzustand 14:11, Stahlbruch,	
1	B49-30-test	20815	erster Test Anfangszusta einseitig nich	versuch, Druck gegen Faser, Fmax est 24125N, Anfangskraft 0N, nd 11:18, Prüfung beriets einmal gestartet obwohl Wegaufnehmer t montiert bei ca 1400N abgebrochen, Endzustand 11:24, Stahlbruch
8	B20-30-test	21004	zweiter Te Anfangskraft einseitig, Enc	stversuch, Druck mit Faser, Belastungsgeschwindigkeit 3,5mm/min, -40N, Anfangszustand 13:20, vermehrte Äste beidseitig, Diagonalriss Izustand 13:26, Stahlbruch,

D-2.13 Prüfserie 31

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B02-31-01	2546	2030,0	Fmax, est von erstem testversuch, Belastungsgeschwindigkeit 1,6mm/min, Anfangskraft 34N, Anfangszustand 11:01, Wegaufnehmer Süd 5mm zu weit unten, Endzustand 11:07, Abbruch bei 75% fmax,
3	B09-31-02	2469	Anfangskr Endzustand 1	aft 26N, Anfangszustand 11:15, Wegaufnehmer beidseitig 5mm zu tief, 1:22, Abbruch bei 75% fmax,
4	B12-31-03	2293	Anfangskr einseitig, End	aft -13N, anfangszustand 11:28, vertikaler Riss im Schraubenkanal dzustand 11:33, Abbruch bei 75% fmax,
5	B19-31-04	2275	2436,0	Anfangskraft 34N, Anfangszustand 11:38, rissig einseitig, Rissbildung bei ca1600N Lastniveau, Endzustand 11:47, Abbruch bei 75% Fmax,
6	B26-31-05	2831	ab hier neu Anfangszusta	ue Charge Schrauben für 120mm Schrauben, Anfangskraft 23N, and 11:52, Endzustand 11:56, Abbruch bei 75% fmax,
7	B28-31-06	2201	Anfangskraft -33N, anfangszustand 12:00, vertikale Risse im Schraubenkanal einseitig, vermehrt kleinere Äste im Schraubenkanal einseitig, Endzustand 12:07, Abbruch bei 75% fmax,	
8	B34-31-07	2561	Anfangskraft 35N, anfangszustand 12:11, vertikaler Riss unterseite mittig, Endzustand 12:16, Abbruch bei 75% fmax,	
9	B39-31-08	2284	Anfangskraft 50N, Anfangszustand 12:20, Endzustand 12:26, abbruch bei 75% fmax,	
10	B48-31-09	1930	Prüfkörper zu kurz, Spaltung des Prüfkörpers bereits beim eindrehen der prüfschraube, Anfangskraft 0N, Anfangszustand 13:09, vertikaler Riss beidseitig direkt im Schraubenkanal, Endzustand 13:13, Abbruch bei 75% fmax,	
11	B52-31-10	2702	Anfangskraft -4N, anfangszustand 13:32, Endzustand 13:38, Abbruch bei 75%Fmax,	
12	B55-31-11	2687	Anfangskraft 33N, Anfangszustand 13:43, vertikaler Riss einseitig im Schraubenkanal, Endzustand 13:47, Abbruch bei 75% Fmax,	
1	B12-31-test	2030	erster Test anfangszusta Rissbildung Abbruch der Auswertung!	versuch, Belastungsgeschwindigkeit 1.2mm/min, Anfangskraft -34N, nd 10:25, vertikaler Riss direkt im Schraubenkanal einseitig, hörbare während prüfung, Hysterese Niveau von 1660N wird nicht erreicht, Prüfung direkt danach Hystereseschleifen gefahren, Test unbrauchbar für !!, Catman viel zu früh abgebrochen, Endzustand 10:34,
	B39-31-test		nicht gepri	ift da zu wenig Schrauben vorhanden,

D-2.14 Prüfserie 32

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
1	B02-32-01	3927	8324,0	Belastungsgeschwindigkeit 1,2mm/min, Anfangskraft 49N, Anfangszustand 14:12, Risse im Bereich des Schraubenkanals einseitig, hörbare Rissbildung + aufspalten des querschnitts, Endzustand 14:20, Abbruch bei 75% Fmax,
2	B07-32-02	7986	Fmax, est einseitig, Ast während Prüt	von erstem Versuch, Anfangskraft -43N, Anfangszustand 14:26, Riss beidseitig im unteren Bereich des Prüfkörpers, hörbare Rissbildung fung, Hysterese ziemlich sicher unbrauchbar, Endzustand 14:34,
3	B14-32-03	3632	Fmax est a 14:46, Harzg Prüfung, aufr Prüfung weg	us ersten zwei versuchen gemittelt, Anfangskraft 8N, Anfangszustand alle einseitig und vertikaler Riss beidseitig, hörbare Rissbildung während reissen des Querschnitts während Prüfung sh. Foto 14:49, Abbruch der en Lastabfall durch Rissbildung, Endzustand 14:51,
4	B22-32-04	4602	5181,7	Anfangskraft 45N, Anfangszustand 15:01, Riss im Schraubenkanal beidseitig, aufreissen des Qeruschnitts während prüfung Fotos vorhanden 15:04, Endzustand 15:09, Abbruch bei 75% fmax,
5	B27-32-05	4585	Anfangskraft 20N, Anfangszustand 15:15, Riss einseitig über gesamte querschnittshöhe, hörbare Rissbildung während Prüfung, Endzustand 15:23, Abbruch bei 75% Fmax,	
6	B34-32-06	4356	Anfangskraft 6N, Anfangszustand 15:28, Harzgalle einseitig, Endzustand 15:56, Abbruch bei Lastabfall,	
7	B34-32-07	3729	Anfangskraft 21N, Anfangszustand 16:07, Rissbildung während Prüfung, aufreissen des querschnitts 16:12, Endzustand 16:15, Abbruch bei 75% Fmax,	
8	B40-32-08	5072	Anfangskraft 2N, Anfangszustand 16:20, Harzgalle einseitig, hörbare Rissbildung während Prüfung, Endzustand 16:29, Abbruch bei 75% fmax,	
9	B48-32-09	2998	Anfangskraft 3N, Anfangszustand 16:33, sehr rissiger Querschnitt bereits Bruch des Querschnitts beim eindrehen der Halteschrauben Wegmesssystem, Rissbildung während Prüfung, Aufreissen Des Querschnitts 16:37, Endzustand 16:42, Abbruch bei 75% fmax,	
10	B52-32-10	4804	Anfangskraft -24N, anfangszustand 16:46, Harzgalle einseitig im unbelasteten Bereich, Endzustand 16:54, Abbruch bei 75% Fmax,	
11	B57-32-11	5307	Anfangskr	aft 6N, Anfangszustand 16:59, Endzustand 17:06, Abbruch bei 75% fmax,

D-2.15 Prüfserie 33

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
1	B02-33-01	5336	5336,0	Belastungsgeschwindigkeit 2.8mm/min, Anfangskraft -42N, Anfangszustand 11:07, Endzustand 11:13, Abbruch bei 75% Fmax,	
2	B07-33-02	8666	neues Fma Belastungsge Querschnitts	neues Fmax est von erstem Versuch 5336N, Anfangskraft-27N, Belastungsgeschwindigkeit 2mm/min, Anfangszustand d11:18 + rissig, aufreissen des Querschnitts dadurch Prüfabbruch, Endzustand 11:22,	
3	B14-33-03	10300	Anfangskr Endzustand 1	raft 1N, Anfangszustand 11:30, Belastungsgeschwindigkeit 1.5mm/min, 11:37, abbruch bei 75% Fmax,	
4	B22-33-04	8812	8100,7	Anfangskraft 5N, Anfangszustand 11:.43 + Riss im Bereich der Prüfschraube, Endzustand 11:50, Abbruch bei 75% Fmax,	
5	B27-33-05	8025	Anfangskraft , Belastungsgeschwindigkeit 1.7mm/min, Anfangskraft 48N, Anfangszustand 11:57, Endzustand 12:03, Abbruch bei 75% fmax,		
6	B34-33-06	8241	Anfangskraft 23N, Anfangszustand 12:46, Endzustand 12:52, Abbruch bei 75% Fmax,		
7	B34-33-07	6776	Anfnagskraft 0N, Anfangszustand 12:57, aufreissen des Querschnitts dadurch abbruch der Prüfung, Endzustand 13:02,		
8	B40-33-08	8829	Anfangskraft-10N, Harzgalle + Riss Bereich wegaufnehmer + Anfangszustand 13:06, Endzustand 13:12, Abbruch 75% Fmax,		
9	B48-33-09	6143	Anfangskraft -30N, Anfansgzustand + rissig im Bereich des Wegaufnehmers 13:16, Endzustand 13:23, Abbruch bei 75% Fmax,		
10	B51-33-10	8006	Anfangskr fmax,	Anfangskraft -29N, Anfangszustand 13:27, Endzustand 13:33, Abbruch bei 75% fmax,	
11	B57-33-11	9721	Anfangskr Fmax,	aft 6N, Anfangszustand 13:37, Endzustand 13:43, Abbruch bei 75%	

D-2.16 Prüfserie 34

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
1	B04-34-01	7409	15237,0	Belastungsgeschwindigkeit 1,2mm/min, Anfangskraft -6N, anfangszustand 16:16, hörbare Rissbildung während Prüfung, aufreissen des Querschnitts während Prüfung dadurch Abbruch weil Lastabfall 16:23, Endzustand 16:24,	
2	B09-34-01	8889	Fmax,est v 1,6mm/min, einseitig, hör Abbruch der vorgesehen d	Fmax,est von erstem Versuch übernommen , Belastungsgeschwindigkeit 1,6mm/min, Anfangskraft -45N, Anfangszustand 16:30, Äste im Schraubenkanal einseitig, hörbare Rissbildung während Prüfung, Aufspalten des querschnitts dadurch Abbruch der Prüfung, Endzustand 16:35, nicht so genau Dokumentation wie eigentlich vorgesehen da gerade Führung	
3	B16-34-03	13025	Fmax, est aus ersten beiden Versuchen gemittelt, Anfangskraft -30N, anfangszustand 16:55, aufreissen des querschnitts während Prüfung, Endzustand 17:02, Abbruch bei 75% Fmax,		
4	B22-34-04	11029	9774,3	Anfangskraft -12N, Anfangszustand 08:34, vertikaler Riss direkt im Schraubenkanal, hörbare Rissbildung während Prüfung, Endzustand 08:40, Abbruch der Prüfung aufgrund von aufreissen des querschnitts,	
5	B25-34-05	9382	Anfangskraft -2N, anfangszustand 08:44, Wegaufnehmer Nord nicht in Schraubenachse zu spät bemerkt, hörbare Rissbildung während Prüfung, aufspalten des querschnitts während prüfung dadurch Abbruch der Prüfung, endzustand 08:49,		
6	B28-34-06	8924	Anfangskraft -26N, anfangszustand 08:54, vertikaler Riss im Schraubenkanal einseitig, mehrere kleinere Äste über Seitenholzfläche verteilt einseitig, aufspalten des Querschnitts dadurch abbruch der Prüfung, Endzustand 09:00,		
7	B37-34-07	16401	Anfangskraft -40N, anfangszustand 09:04, vertikaler Riss nähe des Schraubenkanals einseitig, bereits Rissbildung während erstbelastungsphase, aufspalten des Querschnitts dadurch eventuell verkeilung im Prüfgeschirr?, Prüfung abgebrochen da bereits 6-7mm Aufspaltung des Holzes, Prüfung für auswertung vernachlässigen?, sh Fotos		
8	B40-34-08	10511	Anfangskraft 59N, anfangszustand 09:16, vertikaler Riss über gesamte querschnittshöhe einseitig, kleinere Äste im Schraubenkanal einseitig, aufspalten des Querschnitts während Prüfung 09:21, Endzustand 09:22, Abbruch der Prüfung durch aufreissen des querschnitts,		
9	B49-34-09	10954	Anfangskraft -14N, Anfangszustand 09:29, vertikaler Riss über gesamte Querschnittshöhe einseitig, hörbare Rissbildung während Prüfung, Endzustand 09:34, Abbruch der Prüfung durch Aufspaltung des Prüfkörpers,		
10	B51-34-10	14526	Prüfkörper grösserer As Prüfung, kein	r wesentlich zu kurz sh. Fotos, Anfangskraft -44N, Anfangszustand 09:40, t im unbelasteten Bereich beidseitig, hörbare Rissbildung während n aufreissen des Querschnitts, abbruch bei 75% Fmax, Endzustand 09:47,	
11	B57-34-11	12264	Anfangskr unbelasteten Vorankündig des querschn	aft 30N, anfangszustand 09:52, vertikaler Riss im Randbereich des Bereichs einseitig, Aufreissen des Querschnitts nahezu ohne ung, Endzustand 09:58, Abbruch der Prüfung aufgrund von Aufspaltung itts,	

D-3 Kombinierte Beanspruchung γ = 60 °

D-3.1 Prüfserie 35

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B05-35-01	5149	6301,0	Fmax von erstem Testversuch, Anfangskraft -50N, Anfangszustand 16:55, Endzustand 17:02
3	B08-35-02	5059	Anfangskr	aft 38N, Anfangszustand 17:08, Endzustand 17:16,
4	B14-35-03	5754	Anfangskr	aft -3N, Endzustand 08:36,
5	B22-35-04	6192	5320,7	Anfangskraft 32N, Anfangszustand 08:41, neues Fmaxest, Endzustand 08:47,
6	B27-35-05	5512	Anfangskraft 28N, Belastungsgeschwindigkeit 4.2mm/min, Anfangszustand 08:52, Endzustand 08:59	
7	B32-35-06	6763	Anfangskraft 42N, Anfangszustand 09:03, Endzustand 09:09,	
8	B35-35-07	6274	Anfangskraft 10N, Anfangszustand 09:14, Endzustand 09:21,	
9	B43-35-08 ²	5089	Anfangskraft -60N, Anfangszustand 09:30, Endzustand 09:36	
10	B46-35-09	6737	Anfangskraft 3N, Anfangszustand 09:44, Endzustand 09:51,	
11	B50-35-10	6738	Anfangskraft -47N, Anfangszustand 09:56, Endzustand 10:03	
12	B58-35-11	5578	Anfangskr	aft -4N, Anfangszustand 10:13, Endzustand 10:19,
1	B43-35-08 ²	6301	erster Test Belastungsge Endzustand 1	versuch für Belastungsgeschwindigkeit, Fmax est 7754N, schwindigkeit 4.4mm/min, Anfangskraft 32N, Anfangszustand 16:30, 6:37

D-3.2 Prüfserie 36

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B05-36-01	11284	13028,0	Belastungsgeschwindigkeit 4.7mm/min, Anfangskraft -12N, Wegaufnehmer Fotos vorhanden 11:01, Wegaufnehmer zu kurz, Prüfung bei fliessen unterhalb von 75% Fmax abgebrochen, Endzustand 11:09 Fotos vorhanden,
3	B08-36-02	10970	Belastungs vorhanden 1 Fmax abgebr	sgeschwindigketi 4.4mm/min, Anfangskraft -15N, Wegaufnehmer Fotos I:16, Wegaufnehmer zu kurz, Pürfung bei fliessen unterhalb von 75% ochen, Endzustand Fotos vorhanden 11:24,
4	B14-36-03	12099	Anfangskr Prüfung bei f vorhanden 1	aft 12N, Wegaufnehmer Fotso vorhanden 11:32, Wegaufnehmer zu kurz, liessen unterhalb von 75% Fmax abgebrochen, Endzustand Fotos 1:39,
5	B22-36-04	11812	11451,0	Anfangskraft 34N, Wegaufnehmer Fotos vorhandne 11:46, Wegaufnehmer zu kurz, Prüfung bei Latsabfall auf 75%Fmax abgebrochen, Endzustand Fotos vorhanden 11:54,
6	B27-36-05	11649	Anfangskraft 5N, Wegaufnehmer Fotos vorhandne 12:43, Wegaufnehmer zu kurz, Prüfung bei Lastabfall unter 75% Fmax abgebrochen, Endzustand 12:50 Fotos vorhanden,	
7	B32-36-06	12068	Anfangskraft -20N, Wegaufnehmer Fotos vorhanden 12:55, Endzustand 13:02 Fotos vorhanden, Prüfung bei Lastabfall unter 75% Fmax abgebrochen, Wegaufnehmer zu kurz,	
8	B35-36-07	12013	Anfangskraft -3N, Wegaufnehmer Fotos vorhanden 13:07, Endzustand 13.14 Fotos vorhanden, Wegaufnehmer zu kurz, Prüfung bei Lastabfall unter 75% Fmax abgebrochen,	
9	B43-36-08 ²	14082	Anfangskraft -59N, Wegaufnehmer Fotos vorhanden 13:19, Endzustand 13:27, Wegaufnehmer zu kurz, prüfung unter 75% Fmax abgebrochen,	
10	B46-36-09	12551	Anfangskraft -1N, Wegaufnehmer Fotos vorhanden 13:32, Foto Schraubenkopf 13:36 und 13:38, Wegaufnehmer zu kurz, Prüfung bei Lastabfall unter 75%Fmax abgebrochen, Endzustand Fotos vorhanden 13:39,	
11	B50-36-10	11434	Anfangskraft 24N, Wegaufnehmer Fotos vorhanden 13:44, Endzustand Fotos vorhanden 13:51, Wegaufnehmer zu kurz, Prüfung bei Lastabfall unter 75% Fmax abgebrochen,	
12	B58-36-11	12857	Anfangskr Wegaufnehm 14:10 vorhar	aft -25N, harzgalle im Randbereich des belasteten Bereichs + er Fotos vorhanden 14:03, Wegaufnehmer zu kurz, Fotos Endzustand den,
1	B43-36-08 ²	12124	erster Test 5mm/min, Fr 10:37, Prüfur vorhanden 10	versuch für Belastungsgeschwindigkeit, Belastungsgeschwindigkeit nax,est =13028N, Anfangskraft 10N, Fotos Wegaufnehmer vorhanden 1g bei fliessen unterhalb von 75%Fmax abgebrochen, Endzustand Fotos):53, Wegaufnehmer zu kurz,

D-3.3 Prüfserie 37

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch. Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
1	B04-37-01	16566	16566,0	Anfangskraft -11N, Wegaufnehmer Fotos vorhanden 11:50, Belastungsgeschwindigketi 5mm/min, Stahlbruch, Fotos Endzustand 11:59,
2	B11-37-02	18154	neues Fmax est von erstem Versuch, Anfangskraft -35N, Fotos Wegaufnehmer vorhanden 13:00, Endzustand fotos vorhanden 13:05, Stahlbruch,	
3	B14-37-03	17755	Anfangskraft -50N, Wegaufnehmer Fotos vorhanden 13:26, Stahlbruch, Endzustand Fotos vorhanden 13:30,	
4	B22-37-04	16097	17491,7	Anfangksraft -7N, Wegaufnehmer + horizontaler Riss Fotos vorhanden 13:37, Endzustand 13:42, Stahlbruch
5	B23-37-05	18379	Anfangskraft -19N, Wegaufnehmer 13:56, Endzustand Fotos vorhanden 14:01, Stahlbruch	
6	B30-37-06	17483	Anfangskraft -33N, Wegaufnehmer + Risse im unteren Bereich des Prüfkörpers über gesamte Breite verteilt Fotos vorhanden 14:15, Endzustand Fotos vorhanden 14:38, Sthalbruch	
7	B38-37-07	16523	Anfangskraft 22N, horizontaler Riss + grosser Ast in seitenholzfläche am unteren Rand der Schraube + Weegaufnehmer Fotos vorhanden 14:45, Endzustand 14:50, Stahlbruch	
8	B41-37-08	17260	Anfangskraft -29N, Astbildung seitenholzfläche + Wegaufnhemer Fotos vorhanden 14:57, Endzustand Fotos vorhanden 15:02, Stahlbruch,	
9	B49-37-09	18774	Anfangskraft -25N, grosser Ast im Seitenbereich des belasteten Bereichs + wegaufnehmer Fotos vorhanden 15:08, Endzustand 15:15, Stahlbruch,	
10	B50-37-10	17136	Anfangskraft -2N, horizontaler Riss + Wegaufnehmer Fotos vorhanden 15:21, Wegaufnehmer zu kurz, Endzustand 15:27,	
11	B55-37-11	15160	Anfangskr 15:35, Endzu	aft-13N, horizontaler Riss + Harzgalle + Wegaufnehmer Fotos vorhanden Istand Fotos vorhanden 15:49

D-3.4 Prüfserie 38

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	, , , , , , , , , , , , , , , , , , ,
2	B15-38-03	17481	17420,0	Anfangskraft -2N, horizontaler Riss + Wegaufnehmer Fotos vorhanden 16:34, Endzustand 16:39,
3	B11-38-02	17504	Anfangskr	aft - 8N, Harzgalle + Wegaufnehmer Fotos vorhanden 16:50,
4	B06-38-01 ²	16786	Anfangskr	aft 26N, Fotos Wegaufnehmer 08:40, Fotos Endzustand 08:45, Stahlbruch
5	B22-38-04	17825	17257,0	Anfangskraft - 12N, horizontaler Riss + Astbildung+ Wegaufnehmer Fotos vorhanden 08:54, Fotos Endzustand 08:58, Stahlbruch
6	B22-38-05	16902	Anfangskraft -30N, horizontaler Riss + Wegaufnehmer Fotos vorhanden 09:03, Endzustand Fotos vorhanden 09:08, Stahlbruch,	
7	B28-38-06	16682	Anfangskraft 30N, Ast direkt neben Schraubenkanal + horizontaler Riss + Wegaufnehmer Fotos vorhanden 09:14, Endzustand Fotos vorhanden 09:18, Stahlbruch	
8	B38-38-07	16976	Anfangskraft 57N, Wegaufnehmer Fotos vorhanden 09:23, Endzustand 09:27, Stahlbruch,	
9	B39-38-08	17814	Anfangskraft 50N, Astbildung im Randbereich des belasteten Bereichs+Randbereich des unbelasteten Bereichs + horizontaler Riss + Wegaufnehmer Fotos vorhanden 09:33,	
10	B48-38-09	16990	Anfangskraft -20N, leichte horizontal Risse + Wegaufnehmer Fotos vorhanden 09:44, falsch eingebaut daher Wegaufnehmer zu kurz für Fmax, Endzustand Fotos vorhanden 09:49, Stahlbruch,	
11	B53-38-10	17947	Anfangskraft 26N, Astbildung im unbelasteten Bereich+ Wegaufnehmer Fotos vorhanden 09:57, Endzustand Fotos vorhanden 10:01, Stahlbruch	
12	B58-63-11	17732	Anfangskr 10:07, Endzu	aft -23N, horizontale starke Risse + Wegaufnehmer Fotos vorhanden stand Fotos vorhanden 10:13, Stahlbruch
1	B06-38-01 ²	17322	erster Test Versuchen vo rechnerisches 47N, Wegaut	versuch für Belastungsgeschwindigkeit, neue Methode Fmax,est mit on Prüfserie 15 und prüfserie 54 quadratische Interaktion (sh. Zettel), s Fmax,est 17420N, 5mm/min Belastungsgeschwindigkeit, Anfangskraft inehmer Fotos vorhanden 16:23. Endzustand 16:29. Stahlbruch.

D-3.5 Prüfserie 39

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
2	B00-39-01	4167	3496,0	Fmax,est von erstem Testversuch (Zwickkraft), belastungsgeschwindigkeit 5mm/min, Anfangskraft -56N, Anfangszustand 14:17, Wegaufnehmer aus vor erreichen von Fmax, Catman zu spät abgebrochen, Endzustand 14:24	
3	B16-39-03	3958	Belastungs Bereich des v Fotos vorhan	sgeschwindigkeit 5.8mm/min, Anfangskraft -20N, Diagonalriss im wegaufnehmers + grosser Ast im belasteten Bereich + Wegaufnehmer den 14:30, Fmax im Bereich von Wegaufnehmern, Endzustand 14:35,	
4	B25-39-05 ²	3219	Anfangskr auf 0,4 Fmax	Anfangskraft -38N, Wegaufnehmer 14:40, bei allen bisherigen sehr rascher anstieg auf 0,4 Fmax daher Hysteres für Erstbelastung unbrauchbar?, Endzustand 14:46,	
5	B35-39-07	4310	3781,3	Anfangskraft -23N, Anfangszustand 14:59 Aufleimer abgebrochen, Endzustand 15:05 Abbruch der prüfung bei Lastabfall 75% Fmax (bei allen bisherigen)	
6	B45-39-09	4032	Anfangskraft 3N, Ast im Randbereich de belasteten Bereichs + Diagonalriss + Wegaufnehmer Fotos vorhanden 15:11, endzustand 15:17,		
7	B56-39-11	3815	Anfangskraft 25N, Anfangszustand 15:21, catman etwas zu spät abgebrochen, Endzustand 15:27,		
8	B08-39-02	3209	Anfangskraft -12N, Anfangszustand 15:34, Endzustand 15:40		
9	B21-39-04	3607	Anfangskraft -28N, Anfangszustand 15:45, Endzustand 15:50		
10	B29-39-06	3362	Belastungsgeschwindigkeit 5.4mm/min, Anfangskraft -21N, Anfangszustand 15:55, Endzustand 16:02		
11	B53-39-10	3806	Anfangskraft -86N; Anfangszustand + Diagonalriss + grosser Ast neben Prüfschraube + Wegaufnehmer Fotos vorhanden 16:08, Endzustand 16:14,		
12	B43-39-08	3931	Anfangskraft 2N, Anfangszustand 16:19, Endzustand 16:24,		
1	B25-39-05 ²	3496	erster Test 5107N, Belas Datenübertra endzustand 1	versuch für Belastungsgeschwindigkeit, Druck gegen Faser, Fmax, est stungsgeschwindigkeit 4mm/min, Wegaufnehmer 13:55, wieder Fehler bei gung Messung in catman quasi nicht vorhanden, Fmax von testexpert, 4:02,	
	B53-39-10 ²		nicht gepri	üft	

D-3.6 Prüfserie 40

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
1	B01-40-01	6259	6259,0	Druck gegen Faser, Fmax est aus Versuchen von Prüfserie 56 und 16 ermittelt 9168N, Belastungsgeschwindigkeit 4mm/min, Anfangskraft - 45N, Wegaufnehmer + Harzgallen 14:06, Endzustand 14:18, Wegaufnehmer zu kurz nach erreichen von Fmax,	
2	B16-40-03	6373	Druck geg 4.6mm/min, enormer Anf zu kurz nach	Druck gegen Fase, neues Fmax est von erstem Versuch, Belastungsgeschwindigkeit 4.6mm/min, sehr rissig + Wegaufnehmer Fotos vorhanden 14:23, Anfangskraft 23N, enormer Anfangsschlupf ca. 30s, Endzustand 14:40 Fotos vorhanden, Wegaufnehmer zu kurz nach erreichen von Fmax	
3	B25-40-05	6325	Druck gegen Fase, Anfangskraft -47N, Wegaufnhemer Fotos vorhanden 14:45, Endzustand 14:54,		
4	B35-40-07	7739	6319,0	Druck gegen Faser, Anfangskraft 50N, Wegaufnehmer Fotos vorhanden 14:59, Endzustand Fotos vorhanden 15:09, ,Wegaufnehmer zu kurz nach erreichen von Fmax,	
5	B45-40-09	7452	Druck gegen Faser, Anfnagskraft 0N, Wegaufnehmer + Ast im unbelasteten Bereich Fotos vorhanden 15:13, Wegaufnehmer zu kurz nach erreichen von Fmax, Endzustand 15:22 Fotos vorhanden,		
6	B56-40-11	6889	Druck gegen Faser, Anfangskraft-6N, Diagonalriss vom unbelasteten Bereich durch Wegaufnehmer + Wegaufnehmer Fotos vorhanden 15:28, Wegaufnehmer aus vor erreichen von Fmax, Endzustand 15:37,		
7	B08-40-02	6424	Druck mit Faser, Anfangskraft -22, Belastungsgeschwindigkeit 4.6mm/min, Diagonalriss + Wegaufnehmer Fotos vorhande 15:41, Endzustand 15:51,		
8	B21-40-04	8325	Druck mit Faser, Anfangskraft -30N, Riss im randbereich des belasteten bereichs+Wegaufnehmer Fotos vorhanden 08:38, Endzustand 08:44 Fotos vorhanden,		
9	B29-40-06	6715	Druck mit Faser, Belastungsgeschwindigkeit 4.4mm/min, Anfangskraft 10N, Diagonalriss im unbelasteten Bereich + Wegaufnehmer Fotos vorhanden 08:49, Endzustand 08:58,		
10	B43-40-08	7443	Druck mit Faser, Belastungsgeschwindigkeit 4mm/min, Anfangskraft 9N, Wegaufnehmer Fotos vorhanden 09:03,Endzustand 09:11 Fotos vorhanden,		
11	B53-40-10	6955	Druck mit Wegaufnehm Endzustand (Faser, Belastungsgeschwindigkeit 3.5mm/min, Diagonalriss durch er + Wegaufnehmer Fotos vorhanden 09:16, Anfangskraft -26N, 19:25 Fotos vorhanden,	

D-3.7 Prüfserie 41

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B01-41-01 ²	9317	9874,0	Druck gegen Faser, Anfangskraft 25N, Fmax est von erstem Testversuch, Belastungsgeschwindigkeit 4.2mm/min, Anfangszustand 12:34, Endzustand 12:42,, Abbruch bei 75% Fmax,
3	B13-41-03 ²	8998	Druck gegen Faser, Anfangskraft -51N, Anfangszustand + Diagonalriss beidseitig 12:48, Endzustand 12:57, Abbruch bei 75% Fmax,	
4	B23-41-05	11913	Druck gegen Faser, Anfangskraft 22N, anfangszustand 13:06, Endzustand 13:13, Abbruch bei 75% Fmax,	
5	B39-41-07	10711	10076,0	Druck gegen Faser, Anfangskraft 7N, Fmax noch nicht umgestellt, Anfangszustand 13:18, Endzustand 13:27, Abbruch bei 75% Fmax,
6	B46-41-09 ²	8476	Druck gegen Faser, Anfangskraft -8N, Anfangszustand 13:31, Endzustand 13:41, Abbruch bei 75% Fmax, eventuell fmax nicht aufgezeichnet da Wegaufnehmer zu kurz,	
7	B59-41-11	11275	Druck gegen Faser, Anfangskraft -22N, Anfangszustand 13:46, Endzustand 13:54, Abbruch bei 75% Fmax,	
8	B09-41-02 ²	12717	Druck mit Faser, Anfangskraft 30N, Anfangszustand 13:58, Fehlermeldung bei Catman Prüfung vor erreichen von Fmax abgebrochen, Abbruch bei 75% Fmax (testexpert automatisch), Endzustand 14:05, Famx von testexpert abgeschrieben,	
9	B18-41-04 ²	11123	Druck mit Faser, Anfangskraft -26N, Anfangzsustan d14:10, Endzsutand 14:17, Abbruch bei 75% Fmax,	
10	B30-41-06 ²	13156	Druck mit Faser, Anfangskraft -29N, Anfangszustand 14:37, Endzustand 14:45, Abbruch 75% Fmax,	
11	B44-41-08	12434	Druck mit Faser, Anfangskraft -13N, Anfangszustand + Diagonalriss + Harzgalle 14:49, Endzustand 14:46, Abbruch bei 75% Fmax,	
12	B50-41-10	11771	Druck mit Faser, Anfangskraft -10N, Anfangszustand 15:00 + Diagonalriss im unbelasteten Bereich, Endzustand 15:07, Abbruch bei 75% Fmax,	
1	B01-41-01 ²	9874	erster Test 12558N, Bel 11:36, Endzu	versuch für Belastungsgeschwindigkeit, Druck gegen Faser, Fmaxest astungsgeschwindigkeit 3.5mm/min, Anfangskraft 1N, Anfangszustand stand 11:46, Abbruch bei 75% Fmax,
	B09-41-02 ²		nicht geprüft	
	B13-41-03 ²		nicht gepri	ift
	B18-41-04 ²		nicht gepri	ift, B30-41-06 ² nicht geprüft, B46-41-09 ² nicht geprüft

D-3.8 Prüfserie 42

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
2	B11-42-02	16432	17505,0	Fmax, est von erstem Testversuch, Belastungsgeschwindigkeit 5.5mm/min, Anfangskraft 35N, Anfangszustand 10:56, Abbruch der Prüfung bei 75% Fmax, Endzustand 11:01,	
3	B21-42-04 ²	16673	Druck mit anfangszusta	Faser, Anfangskraft -16N, Harzgalle im Bereich des Wegaufnehmers + nd 11:08, Endzustand 11:13, Stahlbruch	
4	B31-42-06	15659	Druck mit Anfangszusta 75% Fmax, F	Druck mit Faser, Anfangskraft 39N, Belastungsgeschwindigkeit 5.8mm/min, Anfangszustand 11:18 + Harzgalle im Randbereich der belasteten Zone, Abbruch bei 75% Fmax, Endzustand 11:24,	
5	B40-42-08 ²	16683	16254,7	Druck mit Faser, neues Fmax,est, Anfangskraft -56N, Diagonalriss im Bereich des Wegaufnehmers + Harzgallen + Anfangszustand 11:33, Endzustand 11:38, Stahlbruch,	
6	B54-42-10	15877	Druck mit Faser, Anfangskraft -45N, Anfangszustand 12:28, Endzustand 12:32,		
7	B02-42-01	12761	Druck gegen Faser, Anfangskraft 1N, Anfangszustand + grosser Ast im Belasteten Bereich 12:43, Endzustand 12:49, Abbruch bei 75% Fmax		
8	B14-42-03	16513	Druck gegen Faser, Anfangskraft -70N, Anfangszustand 12:55, Endzustand 13:01, Abbruch bei 75 % Fmax,		
9	B28-42-05	15079	Druck gegen Faser, Anfangskraft 48N, Diagonalriss über gesamte querschnittsbreite + Anfangszustand 13:09, Endzustand 13:15, Abbruch bei 75% Fmax,		
10	B37-42-07	15558	Druck gegen Faser, Anfangskraft -10N, Diagonalriss durch gesamten Querschnitt + Anfangszustand 13:21, Endzustand 13:27, Abbruh bei 75% Fmax,		
11	B48-42-09	12418	Druck gegen Faser, anfangskraft -27N, Anfangszustand 13:37 + Diagonalriss durch gesamten Querschnitt beidseitig, Endzustand 13:43, Abbruch bei 75% Fmax,		
12	B59-42-11	17847	Druck gegen Faser, Anfangskraft 20N, Anfangszustand + starker diagonalriss + Ast im Schraubenkanal 13:48, Endzustand 13:54, Stahlbruch,		
1	B21-42-04 ²	17505	Druck mit 16353N, Bela 10:35 Prüfkö 1.5mm, Stahl	Faser erster Testversuch für Belastungsgeschwindigkeit, Fmax,est astungsgeschwindigkeit 5mm/min, Anfangskraft -6N, Anfangszustand rper und Prüfblech nicht ganz aufliegend im belasteten Bereich ca. lbruch, Endzustand 10:41	
	B40-42-08 ²		nicht gepri	ift	

D-3.9 Prüfserie 43

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B06-43-01	4445	4579,0	Fmax est von erstem Testversuch, Anfangskraft -47N, Ast in unmittelbarer nähe zum Schraubenkanal + Wegaufnehmer 16:49, Wegaufnehmer aus nach erreichen von Fmax, Endzustand 16:57,
3	B17-43-03 ²	4479	Anfangskr Wegaufeneh Fmax, Endzu	aft 36N, Diagonalriss vom unbelasteten Bereich in belasteten Berecih + mer Fotos vorhanden 17:01, Wegaufnehmer zu kurz nach erreichen von Istand 17:10,
4	B24-43-05	4571	Anfangskr bei 75%Fma	aft 17N, Wegaufnehmer Fotos vorhanden 10:27 + Diagonalriss, Abbruch x Lastabfall, Endzustand Fotos vorhanden 10:35,
5	B36-43-07	5377	4498,3	neues Fmax,est, Anfangskraft -33N Wegaufnehmer Fotos vorhanden 10:33 + Ast in Nähe des Schraubenkanals, Endzustand Fotos vorhanden 10:50
6	B46-43-09	4108	Anfangskraft -10N, Anfangszustand 10:57 + Diagonalrisse beidseitig im unbelasteten Bereich, Endzustand Fotos vorhanden 11:05, Prüfung bei 75% Lastabfall bei beiden Programmen abgebrochen,	
7	B56-43-11	3873	Zwick erneut genullt mit Stahlplatte Kraft 6N (vor nullen) :-), Anfangskraft -46N, Ast im Bereich des Prüfschraube + leichte Diagonalrisse im Bereich des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 11:16, Endzustand Fotos vorhanden 11:24,	
8	B12-43-02	3739	Druck mit Faser, Belastungsgeschwindigkeit 4mm/min, Anfangskraft 10N, Diagonalrisse + Rissig im Bereich des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 11:30, starker Lastabfall während Prüfung direkt im Anschluss Fotos vorhanden 11:34, Endzustand 11:38, Versagen des Jahrringes sh. Fotos ausgebauter Zustand	
9	B21-43-04	6096	Druck mit Faser, Anfangskraft -20N, Anfangszustand 12:38 + Diagonalriss im Bereich des Wegaufnehmers, Catman Fehler während Prüfung Prüfung von Programm abgebrochen Tesetxpert fertig geprüft, Fehlermeldung in Ordner von Catman, Endzustand 12:53,	
10	B31-43-06	6372	Druck mit Faser, Anfangskraft -25N, rissig im belasteten Bereich + Wegaufnehmer Fotos vorhanden 13:00, rissbildung während Prüfung, Endzustand 13:08,	
11	B44-43-08 ²	4478	Druck mit Faser, Belastungsgeschwindigkeit 2.8mm/min, Anfangskraft -20N, Diagonalriss durch gesamten Querschnitt + Wegaufnehmer Fotos vorhanden 13:14, Prüfung nach 600s bei ewigem fliessen abgebrochen, Endzustand 13:24,	
12	B54-43-10	6065	Druck mit Faser, Anfangskraft 29N, Wegaufnehmer Fotos vorhanden 13:37, Catman zu spät abgebrochen, Endzustand 13:47,	
1	B17-43-03 ²	4579	Druck geg Fmaxest 682 Schraubenka nach erreiche	en Faser erster Testversuch, Belastungsgeschwindigkeit 4mm/min, 3N, Anfangskraft -37N, Diagonalriss im unbelasteten Bereich + Ast im nal + Wegaufnehmer Fotos vorhanden 16:36, Wegaufnehmer zu kurz en von Fmax, Endzustand 16:44
	B44-43-08 ²		nicht gepri	ift da extreme Äste im Querschnitt,

D-3.10 Prüfserie 44

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
2	B03-44-01 ²	7730	9556,0	Druck gegen Faser, Fmax est von erstem Testversuch, Belastungsgeschwindigkeit 4mm/min, Wegaufnehmer Fotos vorhanden 17:23, Anfangskraft -23N, Endzustand 17:34 Fotos vorhanden, Prüfung bei Lastabfall 75% fmax abgebrochen,	
3	B16-44-03	8887	Druck geg Wegaufnehm abgebrochen,	en Faser, Anfangskraf 30N, sehr rissig im Bereich der Prüfschraube + ner Fotos vorhanden 17:39, Prüfung bei Lastabfall 75% Fmax , Endzustand Fotos vorhanden 17:49,	
4	B27-44-05	10065	Druck geg Bereich + We Wegaufnehm Prüfung bei I	Druck gegen Faser, Anfangskraft 33n; Diagonalriss + Astbildung im unbelasteten Bereich + Wegaufnehmer Fotos vorhanden 11:20, erheblicher Anfangsschlupf bis 20s, Wegaufnehmer zu kurz Fmax aufgezeichnet, Endzustand 11:32 Fotos vorhanden, Prüfung bei Lastabfall unter 75% fmax abgebrochen	
5	B39-44-07	9486	8894,0	Druck gegen Faser, Anfangskraft 39N, Wegaufnehmer Fotos vorhanden 11:37, catman erst ca. 10s später gestartet irgendwelche Ladeprobleme beim Computer, Wegaufnehmer zu kurz Fmax aufgezeichnet, Endzustand Fotos vorhanden 11:45 bzw. 11:46, Prüfung nach fliessen im Bereich von 500s Prüfzeit abgebrochen,	
6	B50-44-09	9230	Druck gegen Faser, Anfangskraft -15N , Wegaufnehmer + Diagonalrisse Fotos vorhanden 11:51, Wegaufnehmer zu kurz nach erreichen von Fmax, Prüfung unterhalb von 75% Fmax abgebrochen, Endzustand Fotos vorhanden 12:02,		
7	B59-44-11	8989	Druck gegen Faser, Anfangskraft -6N, Diagonalriss + Astbildung im Bereich des Schraubenkanals + Wegaufnehmer Fotos vorhanden 12:07, Wegaufnehmer zu kurz nach erreichen von Fmax, Endzustand keine fotos vorhanden,		
9	B09-44-02	10493	Druck mit Faser, Anfangskraft-57N, Astbildung + Wegaufnehmer Fotos vorhanden 12:49, Endzustand 12:56,		
10	B20-44-04	9737	Druck mit Faser, Anfangskraft 23; Diagonalriss + Wegaufnehmer Fotos vorhanden 13:01, Endzustand 13:08 Fotos vorhanden,		
11	B29-44-06	9722	Druck mit Faser, Anfangskraft 9N, starker diagonalriss + Wegaufnehmer Fotos vorhanden 13:12, Endzustand Fotos vorhanden 13:21,		
12	B44-44-08	11611	Druck mit Faser, Anfangskraft 5N, Rissbildung über gesamten Querschnitt + Astbildung ausgeprägt + Wegaufnehmer Fotos vorhanden 13:27, Endzustand 13:34,		
13	B52-44-10 ²	10198	Druck mit Faser, Anfangskraft 35N, leicht rissig + Wegaufnehmer Fotos vorhanden 13:39, Endzustand Fotos vorhanden 13:56,		
1	B03-44-01 ²	9556	erster Test 11918, Belas vorhanden 17 Endzustand F abgebrochen	versuch für Belastungsgeschwindigkeit, Druck gegen Faser, Fmax est tungsgeschwindigkeit 5mm/min, Anfangskraft 27N, Wegaufnehmer Fotos 7:09, Wegaufnehmer zu kurz jedoch nach erreichen von Fmax, Fotos vorhanden 17:18, Prüfung nach Lastabfall unter 75%Fmax	
8	B52-44-10 ²	10234	zweiter Te Belastungsge Fotos vorhan	stversuch für Belastungsgeschwindigkeit, Druck mit Faser, schwindigkeit 4mm/min, Anfangskraft 25N, Wegaufnehmer + Astbildung den 12:31, Endzustand Fotos vorhanden 12:38,	

D-3.11 Prüfserie 45

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B11-45-02	16842	15853,0	Anfangskraft 33N, Anfangszustand 17:15, Endzustand 17:19, Stahlbruch
3	B21-45-04	15258	Anfangskr direkt im Ans	aft 7N, Anfangszustand 17:25, Endzustand 17:32, Abbruh bei 75% Fmax schluss stahlbruch,
4	B32-45-06	16961	Anfangskr	aft 38N, Anfangszustand 08:47, Endzustand 08:52, Stahlbruch
5	B42-45-08	15572	16353,7	Anfangskraft -5N, Anfangszustand 08:58 + Diagonalriss im unbelasteten Bereich, Endzustand 09:29, Abbruch 75% Fmax,
6	B53-45-10 ²	15888	Anfangskr	aft 26N, Anfangszustand 09:40, Endzustand 09:45, stahlbruch
7	B03-45-01	13497	Anfangskraft -60N, Anfangszustand 10:03, Endzstand 10:12, Stahlbruch,	
8	B15-45-03	14019	Anfangskraft 30NN, Anfangszustand 10:40, Halteschrauben beim ersten Einbau vergessen (bereits gestartete Prüfung bei ca. 2000N wieder abgebrochen) erneut eingebaut, Endzustand 10:47, Abbruch bei 75%Fmax,	
9	B26-45-05	15895	Anfangskraft 21N, Anfangszustand 10:51 + Diagonalriss durch gesamten Querschnitt, Endzustand 10:56, Stahlbruch	
10	B37-45-07	16750	Anfangskraft 15N, Anfangszustand 10:59 + Äste im Bereich des Wegaufnehmers, Endzustand 11:06, Abbruch ei 75% Fmax,	
11	B49-45-09	16876	Anfangskraft -50N, Anfangszustand 11:13, Endzustand 11.20, Abbruch bei 75% Fmax,	
12	B58-45-11	15942	Anfangskr	aft -38N, Anfangszustand 11.25, Endzustand 11:30, Stahlbruch,
1	B53-45-10 ²	15373	erster Test 15853N , Bel 17:02, Endzu	versuch Druck mit Faser für Belastungsgeschwindigkeit, Fmax,est lastungsgeschwindigkeit 5mm/min, Anfangskraft -11N, Anfangszustand lstand 17:07, Stahlbruch,

D-3.12 Prüfserie 46

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	· · · · · · · · · · · · · · · · · · ·
2	B01-46-01	18350	17059,0	Druck gegen Faser, Belastungsgeschwindigkeit 6.2mm/min, Fmax est wie berechnet, Anfangskraft 30N, Äste im Bereich der Wegaufnehmung + Anfangszustand 14:13, Endzustand 14:18, Stahlbruch, Fmax von zwick abgeschrieben,
3	B17-46-03	18127	Druck geg Stahlbruch	en Faser, Anfangskraft 0N, Anfangszustand 14:23, Endzustand 14:28,
4	B26-46-05	18119	Druck geg Anfangszusta	en Faser, Belastungsgeschwindigkeit 6mm/min, Anfangskraft 26N, and 14:43, Endzustand 14:48, Stahlbruch
5	B36-46-07	18489	18198,7	Druck gegen Faser, Belastungsgeschwindigkeit 5.8mm/min, anfangskraft -25N, Anfangszustand + Diagonalriss durch gesamten Querschnitt 14:56, Endzustand 15:01, Stahlbruch
6	B49-46-09	18523	Druck gegen Faser, Anfangskraft -22N, Diagonalriss + Anfangszustand 15:07, endzustand 15:12, Stahlbruch	
7	B55-46-11	17875	druck gegen Faser, Anfangskraft 30N, Anfangszustand 15:21 + Diagonalriss durch gesamten Querschnitt, Endzustand 15:25, Stahlbruch	
8	B07-46-02	16736	Druck mit Faser, Anfangskraft 44N, Anfangszustand 15:36 + Diagonalriss durch gesamten Querschnitt, Endzustand 15:41, Stahlbruch	
9	B20-46-04	17207	Druck mit Faser, Anfangskraft 30N, Anfangszustand 16:04 + leichter diagonalriss, Endzustand 16:09, Stahlbruch, Ast direkt bei Schraube sh. Fotos,	
10	B32-46-06	16725	Druck gegen Faser (falsch eingebaut), Belastungsgeschwindigkeit 5.5mm/min, Anfangskraft -9N, Anfangszustand 16:17 + Diagonalriss, Endzustand 16:21, Stahlbruch,	
11	B42-46-08 ²	17926	Druck mit Faser, Anfangskraft -61N, Anfangszustand 16:25, Endzustand 16:30, Stahlbruch	
12	B51-46-10 ²	16977	Druck mit Faser, Anfangskraft 37N, Anfangszustand 16:34, Endzustand 16:39, Stahlbruch	
1	B55-46-11 ²	17691	Druck gegen Faser, erster Testversuch für Belastungsgeschwindigkeit, Belastungsgeschwindigkeit 5mm/min, Anfangskraft, Fmax,est 17059N, Anfangskraft 26N, Blech liegt bei Prüfstart nicht auf Prüfkörper auf sh. Fotos ca. 2mm, Anfangszustand 14:01, Wegaufnehmer zu kurz vor erreichen von Fmax, Stahlbruch, Endzustand 14:07,	
	B42-46-08 ²		nicht gepri	ift
	B51-46-10 ²		nicht gepri	ift

D-3.13 Prüfserie 47

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
2	B02-47-01	2497	3344,0	Fmax,est von erstem Versuch, Belastungsgeschwindigkeit 5.6mm/min, Anfangskraft -32N, Wegaufnehmer 13:45, Endzustand 13:50,	
3	B09-47-02	3514	Belastungs vorhanden 13	sgeschwindigkeit 5.4mm/min, Anfangskraft 22N, Wegaufnehmer Fotos 3:55, Endzustand 14:01,	
4	B12-47-03	2941	Anfangskr Endzustand 1	Anfangskraft -22N, Riss im Bereich des Wegaufnehmers, +Wegaufnehmer 14:08, Endzustand 14:13,	
5	B19-47-04	3243	2984,0	Anfangskraft -34N, Wegaufnehmer 15:12 Fotos vorhanden, Endzustand 15:18,	
6	B26-47-05	3050	Anfangskraft -31N, Wegaufnehmer 15:23, Endzustand 15:27, catman zu spät abgebrochen		
7	B28-47-06	2647	Anfangskraft -9N, Wegaufnehmer 15:32, Endzustand 15:38,		
8	B34-47-07	3647	Anfangskraft -6N, Wegaufnehmer 15:42, aufreissen des Querschnitts 15:46, Endzustand 15:48,		
9	B39-47-08	3091	Anfangskraft 10N, Wegaufnehmer 15:52, hörbare rissbildung im seitenholz nichts zu sehen, Endzustand 15:57,		
10	B48-47-09	2707	Anfangskraft 40N, leichte Risse im Bereich de sWegaufnehmers + Prüfkörper leicht zu kurz + Wegaufnehmer Fotos vorhanden 16:01, Endzustand 16:07,		
11	B52-47-10	3656	Anfangskraft -8N, grosser Ast im unteren Bereich des Prüfkörpers+ Wegaufnehmer 16:10, Endzustand 16:16,		
12	B55-47-11	3488	Anfangskr vorhanden 16	aft 22N, Riss im bereich des wegaufnehmers + Wegaufnehmer Fotos 5:21, Wegaufnehmer aus vor erreichen von Fmax, Endzustand 16:27,	
1	B26-47-05 ²	3344	erster Test Belastungsge Wegaufnehm erreichen vor	versuch für Belastungsgeschwindigkeit, Fmaxest 4301N, eschwindigkeit 5mm/min, Anfangskraft -42N, Riss im Randbereich des ners + Wegaufnehmer Fotos vorhanden 13:29, Wegaufnehmer aus nach n Fmax, Endzustand 13:37,	

D-3.14 Prüfserie 48

lfd. Nr.	Probeköper-bezeichnung	${F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
1	B02-48-01	4486	4486,0	Belastungsgeschwindigkeit 4mm/min, Fmaxest It Berechnung 6889N, Anfangskraft -54N, Rissbildung im Bereich des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 14:18, Wegaufnehmer aus vor erreichen von Fmax, Endzustand 14:29 fotos vorhanden, prüfung bei Lastabfall unter 75% Fmax abgebrochen,	
2	B07-48-02	6419	Belastung Anfangskraft während Prü vorhanden, F	Belastungsgeschwindigkeit 8mm/min, neues Fmax,est von erstem Versuch, Anfangskraft 13N, Wegaufnehmer Fotos vorhanden 14:53, hörbare Rissbildung während Prüfung, Wegaufnehmer aus vor erreichen von Fmax, Endzustand 15:00 fotos vorhanden, Prüfung bei Lastabfall unter 75% Fmax abgebrochen.	
3	B14-48-03	4948	Anfangskr während Prü bzw. 15:10, I Lastabfall un	aft 38N, Wegaufnehmer Fotos vorhanden 15:05, hörbare Rissbildung fung, aufreissen des Querschnitts während prüfung Foto vorhanden 15:07 Endzustand Fotos vorhanden 15:11, Wegaufnehmer zu kurz, Prüfung bei tter 75% Fmax abgebrochen,	
4	B22-48-04	4806	5284,3	Anfangskraft 2N, riss im Bereich des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 15:17, hörbare Rissbildung während der Prüfung, aufreissen des Querschnitts während Prüfung Fotos vorhanden 15:20 bzw. 15:22, Wegaufnehmer zu kurz vor erreichen von Fmax, Endzustand Fotos vorhanden 15:23, Prüfung catman zu spät abgebrochen,	
5	B27-48-05	5150	Anfangskraft 30N, Wegaufnehmer Fotos vorhanden 15:27, hörbare Rissbildung während Prüfung ca. 4500N, aufreissen des Querschnitt unterhalb der Wegmessung Foto vorhanden 15:30 zu Beginn der Prüfung bereits leichter Riss an dieser Stelle, Wegaufnehmer aus vor erreichen von Fmax, Endzustand Fotos vorhanden 15:32, Prüfung bei Lastabfall unter 75% Fmax abgebrochen,		
6	B34-48-06	4654	Anfangskraft 23N, Wegaufnehmer Fotos vorhanden 15:37, hörbare Rissbildung während Prüfung , aufreissen des Querschnitts während Prüfung 15:40 fotos vorhanden, Wegaufnehmer aus vor erreichen von Fmax, Endzustand Fotos vorhanden 15:44,		
7	B34-48-07	4890	Anfangskraft -42N, Wegaufnehmer 15:48, hörbare Rissbildung während Prüfung, aufspalten des Querschnitts während Prüfung 15:50 Fotos vorhanden, Wegaufnehmer aus vor erreichen von Fmax, Endzustand Fotos vorhanden 15:54, Prüfung bei Lastabfall unte 75% Fmax abgebrochen,		
8	B40-48-08	5093	Anfangskraft -50N, Wegaufnehmer Fotos vorhanden 15:58 leicht schiefe Prüfoberfläche, Wegaufnehmer zu kurz vor erreichen von Fmax aus, Endzustand Fotos vorhanden 16:05, Prüfung bei Lastabfall unter 75% Fmax abgebrochen,		
9	B48-48-09	5200	Anfangskraft 20N, Ast im unteren bereich des Schraubenkanals + Riss im Bereich des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 16:10, Aufreissen des Querschnitts während Prüfung Fotos vorhanden 16:13, Wegaufnehmer zu kurz vor erreichen von Fmax, Endzustand Fotos vorhanden 16:15, Prüfung bei Lastabfall unter 75%Fmax abgebrochen.		
10	B51-48-10	3561	Anfangskr Seitenholzflä Lastabfall du	raft 22N, Wegaufnehmer Fotos vorhanden 16:20, hörbare Rissbildung auf ichen nichts sichtbar, Prüfung im testexpert aufgrund von massivem urch Riss abgebrochen, Endzustand 16:23 Fotos vorhanden,	
11	B57-48-11	5339	Anfangskr während Prü bei Lastabfal	raft -30N, Wegaufnehmer Fotos vorhanden 16:30, hörbare Rissbildung fung, leichtes Aufreissen der Seitenholzflächen bei 5000N 16:32, Prüfung l unter 75% Fmax abgebrochen, Endzustand Fotos vorhanden 16:35,	

D-3.15 Prüfserie 49

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
2	B04-49-01	4696	5066,0	Fest von erstem Testversuch, Belastungsgeschwindigkeit 5mm/min, Anfangskraft -7N, Wegaufnehmer + leichte astbildung Fotos vorhanden 14:43, hörbare Rissbildung während Prüfung, Aufreissen des Querschnitts während Prüfung Fotos vorhanden 14:46, horizontale Wegaufnehmer zu kurz, Fotos Verdrehung vorhanden 14:51,	
3	B10-49-02	6229	Anfangskr vorhanden 1 Endverformu	Anfangskraft -13N, Riss im Bereich des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 15:09, Aufreissen des Querschnittes Foto vorhanden 15:11 bzw. 15:12, Endverformung 15:13 bzw. 15:16, Prüfung bei 75% Fmax abgebrochen,	
4	B17-49-03	4559	Anfangskr 15:29, Wega 25%fmax ab	aft -36N, Wegaufnehmer + Risse 15:26, Afureissen des Querschnittes ufnehmer zu kurz, Verdrehung ende Fotos vorhanden 15:34, Prüfung bei gebrochen,	
5	B19-49-04	4758	5161,3	Anfangskraft 18N, Wegaufnehmer fotos vorhanden 15:41, hörbare Rissbildung an Seitenholzflächen nichts erkennbar, Aufreissen des Querschnittes Foto vorhanden 15:44, Wegaufnehmer zu kurz, Prüfung bei 35% Fmax abgebrochen, Fotos Endzustand vorhanden 15:49,	
6	B27-49-05	11467	Belastungsgeschwindigkeit 4.7mm/min, Anfangskraft -20N, Wegaufnehmer Fotos vorhanden 16:05, Bruch des Prüfkörpers 16:10,		
7	B33-49-06	8065	Anfangskraft 39N, Wegaufnehmer 16:19, Aufreissen des Probekörpers 16:21 bzw. 16:22, Wegaufnehmer zu kurz, Endzustand 16:26,		
8	B38-49-07	5401	Anfangskraft 17N, Riss im Bereich des wegaufnehmers + Wegaufnehmer Fotos vorhanden 16:37, aufreissen de sQuerschnitts während Prüfung 16:39, Wegaufnehmer zu kurz, Fotos endzustand 16:43, Prüfung bei 75%Fmax abgebrochen, Prüfschrauben ab hier beschriftet,		
9	B45-49-08	5402	Anfangskraft -64N, Wegaufnehmer + Harzgallen 16:51, Querschnitt aufgerissen Foto vorhanden 16:54, Wegaufnehmer zu kurz, Fotos Endzustand 16:59, beim herausdrehen Schraube gebrochen,		
10	B47-49-09	5179	Anfangskraft -14N, Harzgallen + Wegaufnehmer Fotos vorhanden 17:07, Aufreissen des Querschnitts 17:08 Fot vorhanden bzw. 17:09, 17:10 andere Seite auch gerissen, Wegaufnehmer zu kurz, Fotos endzustand 17:13,		
11	B55-49-10	5948	Anfangskraft -20n, Riss im Beriech des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 17:19, aufreissen des querschnitts während Prüfung 17:22, Endzustand Fotos 17:24		
12	B56-49-11 ²	6046	Anfangskr Aufreissen de	aft 20N, leichte Astbildung + Wegaufnehmer Fotos Vorhanden 17:31, es Prüfkörpers Fotos vorhanden 17:34	
1	B56-49-11 ²	5066	erster Test Wegaufnehn Rissbildung	versuch, Belastungsgeschwindigkeit 5mm/min, Anfangskraft -10N, ner Fotos vorhanden 14:14, neues System ohne Tauchanker, hörbare während Prüfung, Falsches Fest,	

D-3.16 Prüfserie 50

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
1	B04-50-01	9505	10730,0	Belastungsgeschwindigkeit 4.5mm/min, Anfangskraft -9N, leichte Astbildung über querschnitt verteilt + Wegaufnehmer Fotos vorhanden 09:47, hörbare Rissbildung während Prüfung, aufreissen des querschnitts während Prüfung dadurch Lastabfall auf 65% Fmax Prüfungsabbruch 09:51, Endzustand 09:53 Fotos vorhanden, Prüfkörper beim herausnehmen verkeilt daher mit Zwick eventuell Schrauben zurück verformt (gilt für alle Prüfkörper),
2	B09-50-02	10678	Anfangskr 10:02, aufreis 10:07 nach er	aft -70N, Ast im Schraubenkanal + Wegaufnehmer Fotos vorhanden ssen des querschnitts 10:04 einseitig, andere Seite 10:05, erneutes Foto rreichen von Fmax, Catman zu spät abgebrochen, Endzustand 10:08,
3	B16-50-03	9092	Anfangskraft -4N, rissig über gesmat equershnittshöhe einseitig + Ast im unbelasteten Bereich + Wegaufnehmer Fotos vorhanden 10:14, hörbare Rissbildung Seitenholzflächen nicht wirklich sichtbar, aufreissen des Querschnitts 10:18 einseitig, Endzustand 10:20 Fotos vorhanden	
4	B22-50-04	8399	9758,3	Anfangskraft -74N, Riss im Bereich des Wegaufnehmers + Wegaufnehmer Fotos vorhanden 10:37, aufreissen des querschnitts 10:39 bzw. 10:41, Endzustand 10:42,
5	B00-50-05	10967	Anfangskraft -15N, Wegaufnehmer Fotos vorhanden 10:59, hörbare Rissbildung während Prüfung, aufreissen des querschnitts während Prüfung 11:02, Endzustand 11:05,	
6	B28-50-06	8128	Anfangskraft -49N, leichte Rissbildung im Bereich des Wegaufnehmers + wegaufnehmer Fotos vorhanden 11:12, aufreissen des Querschnitts Fotos vorhanden 11:16, Endzustand 11:17, beobachtung während prüfung sehr ungleichmässige horizontale Verformung,	
7	B37-50-07	14815	Anfangskraft -7N, Rissig + Wegaufnehmer Fotos vorhanden 11:23, Fotos bei ca. 13500N, 11:27, Endzustand 11:28,	
8	B40-50-08	8171	Anfangskraft 46N, Riis + harzgalle direkt neben Wegaufnehmer im belasteten Bereich + Wegaufnehmer Fotos vorhanden 11:35, hörbare Rissbildung während Prüfung im Seitenholz nicht wirklich sichtbar, aufreissen des Seitenholzes 11:39, Endzustand 11:40,	
9	B49-50-09	5976	Anfangskraft 39N, Rissbildung im Bereich des Schraubenkanals + Wegaufnehmer Fotos vorhanden 12:21, hörbare Rissbildung während Prüfung kurz nach erneutem erreichen von 0,4Fmaxest, aufreissen des Querschnitts 12:24, aufreissen des Querschnitts bewirkt verdrehung des Bleches 12:25, Endzustand 12:30,	
10	B51-50-10	6603	Anfangskr aufreissen de	aft 0N, leichte risse im unbelasteten Bereichs + Wegaufnehmer 12:46, s Querschnitss 12:49, catman zu spät abgebrochen, Endzustand 12:54,
11	B57-50-11	8176	Anfangskr Fotos vorhan abgebrochen	aft -15N, massiver Riss im unbelasteten Bereich + Wegaufnehmer 13:01 den, aufreissen des Querschnitts 13:05, Pürfung catman zu spät , Endzustand 13:07,

D-4 Abscherversuche

D-4.1 Prüfserie 51

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B07-51-02	8977	7500,0	Belastungsgeschwindigkeit 11mm/min, Anfangskraft -13, hörbare Rissbildung während Prüfung, horizontaler Riss über gesamten Querschnitt, Prüfkörper 0.5mm zu kurz, Wegaufnehmer horizontal zu kurz, Schraube beim herausdrehen abgebrochen, Schraube steht wieder am Kompensationsloch an, sh. Foto
3	B19-51-04	7783	Anfangskr Schraubenbr	aft 34N, leichte Astbildung, hörbare Rissbildung während Prüfung, uch,
4	B33-51-06	10325	Anfangskr Rissbildung beim Versuc	raft - 27N, horizontaler Riss über gesamte Querschnittsbreite, hörbare während Prüfung, aufgrund von Lastabfall abgebrochen (25%), Gebrochen h des herausdrehens,
5	B41-51-08 ²	7813	9028,3	Anfangskraft -42N, komisches braunes Zeug auf der Seite, leichte Astbildung + leichte Rissbildung in Seitenholzfläche, hörbare Rissbildung während Prüfung, Schraubenbruch,
6	B50-51-10	8537	Belastungs Probekörper	sgeschwindigkeit auf 9.5mm/min, Anfangskraft -3N, leicht zu kurzer (sh. Foto) 17:54,
7	B03-51-01	7981	Anfangskr	aft -34N, Astbildung in Seitenholzfläche, Stahlbruch
8	B13-51-03	8748	Anfangskraft -56N, länglicher Ast auf unbelasteter Seite, hörbare Rissbildung während Prüfung, Wegaufnehmer zu kurz vor erreichen von Fmax, Stahlbruch beim herausdrehen, von Zwick höchstlast abgeschrieben	
9	B25-51-05	7729	Anfangskr	aft -34N, Astbildung in Seitenholzfläche, beim herausdrehen abgebrochen
10	B36-51-07	7822	Anfangskr gesamte Que	aft -59N, Astbildung im unbelasteten Bereich, horizontaler Riss über rschnittbreite, beim herausdrehen abgebrochen,
11	B47-51-09	8672	Anfangskr	aft -46N, Harzgalle im unbelasteten Bereich, Stahlbruch
12	B57-51-11	8652	Anfangskr Schraubenka	aft -65N, massiver Riss (foto vorhanden), Ast seitlich direkt im nal, Stahlbruch?,
1	B41-51-08 ²	8301	erster Test Anfangskraft Rissbildung i Kompensatic	versuch zur Ermittlung der Belastungsgeschwindigkeit, 5.0mm/min, -11N, sehr astig in allen Bereichen, Hysterese sehr eigenartig, hörbare im Querschnitt, eventuell Schraube so verdreht dass sie bei der onsbohrung ansteht (sh. Foto),

D-4.2 Prüfserie 52

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B03-52-01	11106	4942,0	Anfangskraft -30N, harzgallen im unteren Bereich des Prüfkörpers, Ast direkt im Schraubenkanal, hörbare Rissbildung während Prüfung, Belastungsgeschwindigkeit 5.4mm/min, Wegaufnehmer aus vor erreichen der maximalen Last, Prüfung bei 570s abgebrochen, Bruch des Kopfes beim Versuch des herausdrehens,
3	B07-52-02	13080	Belastungs 50, Astbildur des Kopfes b	sgeschwindigkeit 5.7mm/min, horizontaler Wegaufnehmer getauscht auf 1g im unbelasteten Bereich, hörbare Rissbildung im Querschnitt, Bruch 1eim Versuch des herausdrehens
4	B13-52-03	12701	Anfangskr unteren Bere herausdrehen	aft -8N, Astbildung im unbelasteten Bereich, leichte Astbildung im ich des belasteten Bereichs, Bruch des Kopfes beim Versuch des s,
5	B19-52-04	10970	12295,7	neues Fest, Anfangskraft -103N, Harzgalle im unbelasteten Bereich, Ast am Rand des Prüfkörpers im belasteten Bereich, Belastungsgeschwindigkeit 7.2mm/min,
6	B25-52-05	10391	Belastungsgeschwindigkeit 6.8mm/min, Anfangskraft -101N, Stahlbruch,	
7	B33-52-06	14328	Anfangskraft -106N,	
8	B36-52-07	13929	Belastungsgeschwindigkeit 6.5mm/min, Anfangskraft -47N, Astbildung im unbelasteten Bereich, hörbare Rissbildung im querschnitt während Prüfung,	
9	B41-52-08 ²	11223	Anfangskraft -52N, Ast im unbelasteten Bereich, hörbare Rissbildung während Prüfung,	
10	B47-52-09	13214	Anfangskraft -8N, Harzgalle im Bereich der Prüfschraube,	
11	B50-52-10	14877	Anfangskraft 26N, horizontaler Riss, Ast im Bereich der Prüfschraube,	
12	B57-52-11	12156	Anfangskr	aft -48N,
1	B41-52-08 ²	11417	erster Test Belastungsge Astbildung in belasteten Be	versuch für Belastungsgeschwindigkeit, Vorkraft 50N, schwindigkeit 2.5mm/min, Fest, sh. Oben, Anfangskraft -50N, n unbelasteten Bereich,nahe am Schraubenkanal, Ast in Randzone des reichs, Weguafnehmer alle,

D-4.3 Prüfserie 53

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
3	B03-53-01	13767	13116,0	leichte Astbildung im Beriech der Prüfschraube, Prüfgeschwindigkeit 2mm/min, Vorkraft 50N, Anfangskraft -25N, Prüfkörper Unterseite nicht ganz plan, Wegaufnehmer zu kurz,
4	B07-53-02	14440	Prüfgeschv	vindigkeit 5.6mm/min, Ast im unbelasteten Bereich,
5	B13-53-03	13916	horizontale	er Riss im unteren Bereich,
6	B19-53-04	15138	14041,0	neues Fest, leichte Astbildung,
7	B25-53-05	14091	horizontale	er Riss über gesamte querschnittsbreite,
8	B33-53-06	15558	horizontaler Riss + leichte Astbildung, hörbare Rissbildung im Querschnitt,	
9	B36-53-07	14255		
10	B41-53-08	11778	Astbildung	g im unteren Bereich des Prüfkörpers, Anfangskraft -250N,
11	B47-53-09	13589	Anfangkraft -49N, Harzgallenbildung direkt bei Wegaufnehmer, horizontaler Riss im unteren Bereich des Prüfkörpers,	
12	B50-53-10	13590	Anfangskraft -78N, horizontaler Riss + Astbildung im unbelasteten Bereich, Astbildung nahe dem Schraubenkanal, hörbare Rissbildung während der Prüfung,	
13	B57-53-11	15154	Wegaufnehmer genau im Riss (foto vorhanden, Anfangskraft -69N, horizontaler Riss, hörbare Rissbildung im Querschnitt während Prüfung,	
1	B03-53-01 ²	13189	erster Testversuch zur Ermittlung der Geschwindigkeit und der maximalen Belastung, 2mm/min Belastungsgeschwindigkeit, Astbildung im unbelasteten Bereich, Anfangskraft -51N, fmax gewählt bei 3401, maximal Last von testexpert abgeschrieben evtl. Wegaufnehmer zu kurz nachschauen	
2	B36-53-07 ²	13886	zweiter Te	stversuch, neues Fmax sh oben, Vorkraft 50N, Anfangskraft -17N,

D-4.4 Prüfserie 54

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]	, , , , , , , , , , , , , , , , , , ,	
1	B04-54-01	15458	13408,0	erster Versuch, falsch gebohrt am Vortag , Anfangskraft -100N, Vorkraft 50n, Belastungsgeschwindigkeit 5.6mm/min,	
2	B12-53-02	14361	Belastungs Querschnittsl	sgeschwindigkeit 6.2 mm/min, horizontaler Riss über Gesamte breite, beidseitig, Anfangskraft -5N,	
3	B15-53-03	14758	Kraft genu Buchs im Be Anfangsschlu	llt auf Zwick vor Versuchsstart, Belastungsgeschwindigkeit 5.6mm/min, reich der Prüfschraube, Horizontalriss, Anfangskraft -16N, apf sehr kurios?,	
4	B18-53-04	16170	14859,0	neues Fmax,est, horizontaler Riss über nahezu gesmate Querschnittsbreite, Anfangskraft 7N, hörbare Rissbildung im Querschnitt während Prüfung,	
5	B25-53-05	15286	Anfangskraft -13N, horizontaler Riss und Harzgallen in Seitenholzfläche,		
6	B33-53-06	15247	horizontaler Riss über halbe Querschnittsbreite, Anfangskraft -5N,		
7	B37-53-07	16231	Anfangskraft 5N, Vorkraft 50N, horizontaler Riss, leichte Astbildung im unbelasteten Bereich, hörbare Rissbildung während der Prüfung,		
8	B39-53-08	15354	Anfangskraft -40N, Astbildung im unbelasteten Bereich,		
9	B45-53-09	15651	Anfangskraft -20N, leichte Astbildung in nähe des Schraubenkanals, horizontaler Riss,		
10	B54-53-10	16490	anfangskra Prüfung,	anfangskraft -22N, Keil vergessen zu entfernen, hörbare Rissbildung während Prüfung,	
11	B58-53-11	16289	Anfangskr Bereichs, hor	aft -33N, Harzgallen und Astbildung im Randbereich des belasteten izontaler Riss,	

D-4.5 Prüfserie 55

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	Druck accor Ency of you I Testyamuch
2	B00-55-01 ²	4943	5562,0	Druck gegen Faser, Fmax,est von 1.Testversuch, Belastungsgeschwindigkeit 10mm/min, Auffallend Stahlblech wird bei Montage nicht ganz an Prüfkörper angepresst, zu viel Umdrehungen Schraube dreht durch, hörbare Rissbildung während Prüfung, abheben des Bleches Foto vorhanden 15:34, hörbarer Riss bei ca 340s, Prüfung bei 50mm abgebrochen, bei allen Prüfkörpern rückverformung der Schraube da ansonsten der Ausbau nicht möglich wäre,
3	B16-55-03	5534	Druck geg Diagonalriss 50mm abgeb	en Faser, Anfangskraft 7N, Belastungsgeschwindigketi 11mm/min, Foto vorhanden 15:46, hörbare rissbildung während Prüfung, Prüfung bei rochen
4	B25-55-05	5772	Druck geg 15:59, hörbar abgebrochen	en Faser, Anfangskraft -3N, abhebender Stahlplatte Foto vorhanden re Rissbildung während Prüfung, Prüfung bei 50mm Verformung
5	B35-55-07	7481	5416,3	Druck gegen Faser, Belastungsgeschwindigkeit 12mm/min, Anfangskraft 19N, diagonalriss im Bereich des Aufleimers foto vorhanden 16:17, hörbare Rissbildung während Prüfung, Stahlplatte hebt von Prüfkörper ab Foto vorhanden 16:19, Prüfung bei 50mm Verformung abgebrochen,
6	B45-55-09	5430	Druck gegen Faser, Anfangskraft -49N, Diagonalriss im Bereich des Wegaufnehmers Foto vorhanden 16:35, abheben des Stahlblechs vom Prüfkörper Foto vorhanden 16:36, hörbare Rissbildung während prüfung, komisches klopfen hörbar am Ende der Prüfung,	
8	B56-55-11	4502	Druck gegen Faser, Anfangskraft 11N, Stahlblech hebt von Prüfkörper ab foto vorhanden 16:47, hörbare rissbildung während prüfung, Prüfung bei 50mm Verformung abgebrochen, Verschiebung der Stahlplatte Foto vorhanden 16:52	
9	B08-55-02 ²	4267	Druck mit Faser, Anfangskraft 8N, Rissbildung während Prüfung hörbar, Prüfung bei 50mm Verformung abgebrochen,	
10	B21-55-04	4646	Druck mit Faser, Anfangskraft -6N, Harzgalle + abheben des stahlblechs vom Prüfkörper Fotos vorhanden 17:21, Diagonalriss foto vorhanden 17:22, hörbare Rissbildung während Prüfung, Prüfung abgebrochen nachdem 35% Lastabfall erreicht wurde, abheben der Stahlplatte Foto vorhanden 17:26,	
11	B29-55-06	4212	Druck mit Faser, Anfangskraft -54N, Diagonalriss im unbelasteten Bereich Foto vorhanden 17:33, hörbare Rissbildung während Prüfung, abheben der Stahlplatte bei allen bisherigen Versuchen,	
12	B43-55-08	4201	Druck mit der Stahlplat	Faser, Anfangskraft -72N, Versuch abgebrochen bei 75% Fmax, abheben te Foto vorhanden 17:48,
13	B53-55-10	4326	Druck mit vorhanden 17 abgebrochen	Faser, Anfangskraft -83N, abheben der Stahlplatte von Prüfkörper Foto 7:56, hörbare Rissbildung während Prüfung, Prüfung bei 75% Lastabfall
1	B00-55-012	5562	erster Test Anfangskraft Bleches,	versuch für Belastungsgeschwindigkeit, Druck gegen Faser, 6mm/min, t -66N, Diagonalriss Foto vorhanden 14:55, 3963 Fmaxest, abheben des
7	B08-55-02 ²	4369	Druck mit Belastungsge abheben der	Faser, Testversuch ür Belastungsgeschwindigkeit, 12mm/min eschwindigkeit, Anfangskraft -46N, hörbare Rissbildung während Prüfung, Stahlplatte foto vorhanden 17:00,
	B25-55-05 ²		nicht gepri	üft

D-4.6 Prüfserie 56

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B01-56-01	8106	4942,0	Druck gegen Faser, Anfangskraft -1N, Belastungsgeschwindigkeit 8mm/min, hörbare Rissbildung während Prüfung, Wegaufnehmer aus vor erreichen von Fmax, Prüfung abgebrochen nach erreichen von Fmax,
3	B09-56-02	7318	Druck mit	Faser, Anfangskraft -8N,
4	B13-56-03	8947	Druck geg Diagonalriss,	en Faser Belastungsgeschwindigkeit 14mm/min, Anfangskraft -36N, Wegaufnehmer zu kurz,
5	B18-56-04	7193	8123,7	Druck mit Faser, Belastungsgeschwindigkeit 7mm/min, Anfangskraft 40N, Astbildung im unbelasteten Bereich,
6	B23-56-05	10779	Druck gegen Faser, Belastungsgeschwindigkeit 14mm/min, anfangskraft 70N, leicht Astbildung im belasteten Bereich, Diagonalriss direkt über Prüfschraube, Wegaufnehmer zu kurz,	
7	B30-56-06	7914	Druck mit Faser, Belastungsgeschwindigkeit, 6.8mm/min, Anfangskraft 12N, Diagonalriss im belasteten Bereich,	
8	B39-56-07	10641	Druck gegen Faser, Belastungsgeschwindigkeit 13.8mm/min, Anfangskraft 39N, Astbildung im Schraubennahen Bereich, hörbare Rissbildung im Querschnitt sh. Kraft Weg, Wegaufnehmer zu kurz,	
9	B44-56-08	7763	Druck mit Faser, Belastungsgeschwindigkeit 6.8mm/min, Anfangskraft 45N, Diagonalriss im unbelasteten Bereich, Diagonalriss im belasteten Bereich (Aufleimer), hörbare Rissbildung während Prüfung,	
10	B46-46-09	7863	Druck gegen Faser, Belastungsgeschwindigkeit 13,8mm/min, Anfangskraft 2N, Ast am Rand des belasteten Bereichs, Wegaufnehmer zu kurz (Foto vorhanden), Stahlbruch,	
11	B50-56-10 ²	8216	Druck mit Faser, Belastungsgeschwindigkeit 13.8mm/min, Anfangskraft -43N, vergessen Belastungsgeschwindigkeit abzuändern, Diagonalriss,	
12	B59-56-11	9206	Druck geg diagonalriss,	en Faser, Belastungsgeschwindigkeit 13,8mm/min, Anfangskraft -23N, leichte Astbildung im belasteten Bereich, Wegaufnehmer zu kurz,
1	B50-56-10 ²	8367	erster Test Belastungsge Querschnitt, Wegaufnehm	versuch für ermittlung der Belastungsgeschwindigkeit, schwindigkeit 4.5mm/min, Anfangskraft -29N, Diagonalriss im Harzgalle im unbelasteten Bereich, Astbildung im unbelasteten Bereich, er zu kurz. Druck gegen Faser

D-4.7 Prüfserie 57

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B06-57-01	13289	9905,0	Druck gegen Faser, Fmax von Testversuch, Anfangskraft 22N, Belastungsgeschwindigkeit 8.5mm/min, Astbildung Foto vorhanden 11:40,
3	B17-57-03 ²	11215	Druck geg vorhanden 11	en Faser, Anfangskraft -10N, Diagonalriss im unbelasteten Bereich Foto 1:54
4	B23-57-05	12384	Druck geg Astbildung F	en Faser, Anfangskraft 48N, Diagonalriss direkt bei Wegaufnehmer + otos vorhanden 12:05,
5	B34-57-07	10927	12296,0	Druck gegen Faser, Anfangskraft -39N, Ast direkt im Schraubenkanal+ grösserer Ast auf belasteter Seite Fotos vorhanden 12:15, bisher alle Stahlbruch,
6	B47-57-09	12583	Druck geg andere Seite	en Faser, Anfangskraft 54N, starker Diagonalriss Foto vorhanden 12:24 sieht komisch aus, Stahlbruch
7	B55-57-11	12014	Druck gegen Faser, Anfangskraft -16N, auffallend durch mehrmaliges drücken von der auf und ab Taste besseres Ollen möglich, Diagonalriss + Astgabel Fotos vorhanden 12:35, Stahlbruch,	
8	B12-57-02	9275	Druck mit Faser, Anfangskraft -5N, Belastungsgeschwindigkeit 8.5mm/min, Diagonalriss im Bereich des Wegaufnehmers + Astbildung im Bereich des Wegaufnehmers Foto vorhanden 12:49, Püfung bei 0,75*Fmax abgebrochen, Testxpert aus Versehen auch abgebrochen,	
9	B21-57-04	14252	Druck mit Faser, beim hineindrehen Ast getroffen, leichte Schiefstellung der Schraube, Belastungsgeschwindigkeit 6.7mm/min, Anfangskraft -50N, grosser Ast direkt im Schraubenkanal Foto vorhanden 13:02, hörbare Rissbildung während Prüfung, Stahlbruch,	
10	B31-57-06	9157	Druck mit Faser, Anfangskraft 40N, Diagonalriss+Harzgallen Fotos vorhanden 13:21, erreichen von Fmax bei 220s, Prüfung abgebrochen bei 75% von Fmax, beim herausdrehen abgebrochen,	
11	B42-57-08	10821	Druck mit Faser, Anfangskraft 7N, Diagonalriss + Harzgalle Fotos vorhanden 13:36, Stahlbruch	
12	B52-57-10	9268	Druck mit Faser, Anfangskraft -24N, enormer anfangsschlupf, Ast in Nähe des Schraubenkanals Foto vorhanden 13:49,	
1	B17-57-03 ²	9905	Druck geg Belastungsge Astbildung ir	en Faser, erster Testversuch zur Ermittlung der schwindigkeit, 7mm/min, Fest It Berechnung 13682, Anfangskraft -18N, n Bereich des Wegaufnehmers Foto vorhanden 10:43,

D-4.8 Prüfserie 58

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B10-58-02	14742	6734,0	Anfangskraft 35N, Belastungsgeschwindigkeit 8.2mm/min, Ast im Schraubennahen Bereich Foto vorhanden 14:30, Stahlbruch
3	B30-58-06	13841	neues Fma 27N, Diagon	x 15000 gewählt, Belastungsgeschwindigkeit 7.2mm/min, Anfangskraft alriss foto vorhanden 15:00, Stahlbruch,
4	B41-58-08	14517	Anfangskr Stahlbruch,	aft 4N, Äste im Bereich des Aufleimers Foto vorhanden 15:12,
5	B20-58-04 ²	14072	14366,7	Anfangskraft -52N, Diagonalriss im Bereich der Leimfuge Foto vorhanden 15:24, Astbildung im unbelasteten Bereich,
6	B53-58-10	13186	Anfangskraft 37N,	
8	B01-58-01	12719	Belastungsgeschwindigkeit 7.2mm/min, Anfangskraft -13N, Stahlbruch,	
9	B13-58-03	15625	Anfangskraft -45N, Diagonalriss Foto vorhanden 16:15 beidseitig, Stahlbruch	
10	B26-58-05	16708	Anfangskraft 44N, Diagonalrisse im Bereich des Aufleimers Foto vorhanden 16:29, Stahlbruch, Beobachtung für Druck gegen Faser bisherige Prüfkörper nicht so schöne Faserorientierung	
11	B34-58-07	15985	Messingblech Nord vor Prüfung in Position gebracht, Anfangskraft 44N, Faserorientierung sehr schön eng sh. Foto 16:43, Stahlbruch	
12	B47-58-09 ²	14784	Anfangskraft 54N, ausgeprägter Anfangsschlupf, Prüfung abgebrochen bei 50mm Verformung,	
13	B56-58-11	13760	Anfangskraft 44N, Prüfung abgebrochen weil 75% Lastabfall direkt im Anschluss Stahlbruch, Ast direkt im Bereich der Prüfschraube,	
1	B20-58-04 ²	15360	erster Test Belastungsge vorhanden 14	versuch für Belastungsgeschwindigkeit Druck mit Faser, schwindigkeit 6.8mm/min, Anfangskraft -100N, Diagonalriss Foto 1:16,
7	B47-58-09 ²	16783	zweiter Te Belastungsge vorhanden 15	stversuch für Belastungsgeschwindigkeit Druck gegen Faser, eschwindigkeit 12mm/min, Anfangskraft -55N, Diagonalriss Foto 5:46, Astbildung foto vorhanden 15:47, Stahlbruch,

D-4.9 Prüfserie 59

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung	
[-]	[-]	[N]	[N]		
2	B12-59-02	5991	5318,0	Druck mit Faser, Belastungsgeschwindigkeit 5.5mm/min, Fmax von erstem Testversuch, Anfangskraft 65N, Diagonalriss im belasteten Bereich + Wegaufnehmer Fotos vorhanden (Achtung 1 Foto vor Nummer fotografiert 13:57, bis erreichen von 4500N kein abheben des Stahlbleches erkennbar Foto vorhanden bei ca. 5000N 14:00, abheben des Stahlbleches erst nach Lastabfall Foto vorahnden 14:04, Prüfung abgebrochen bei 75% Fmax,	
3	B18-59-04	7090	Druck mit leichter Diag stahlbleches 14:20, Prüfu	Faser, Wegaufnehmer Nord und Süd 25,5mm, Anfangskraft -25N, Fotos onalriss + Wegaufnehmer vorhanden 14:16, 4000N kein abheben des Foto vorhanden 14:18, Foto vorhanden bei 250s Prüfzeit kein abheben ng bei 50mm Verformung abgebrochen,	
4	B33-59-06	7192	Druck mit Faser, Montage neu der Messingbleche (längere Schrauben), demontieren und neu montieren der Wegmesser (jedoch altes System 25mm Abstand), Anfangskraft 18N, Diagonalriss + Wegaufnehmer Fotos vorhanden 15:28, hörbare Rissbildung während Prüfung, leichtes abheben des Stahlbleches bei 6100N Foto vorhanden 15:32, Wegaufnehmer Süd phi Spitze bei der Montage abgebrochen, leichtes Verdrehen des Stahlbleches bei ca. 480s prüfzeit Foto vorhanden 15:36, Prüfung bei 50mm Verformung abgebrochen		
5	B41-59-08 ²	7123	6757,7	Druck mit Faser, neues Fmax,est, Belastungsgeschwindigkeit 7.5mm/min, Anfangskraft -75N, Astbildung im unbelasteten Bereich nähe zu Schraubenkanal + Wegauaufnehmer Fotos vorhanden 15:48, Zwick zeigt komisches ergebnis bei Traversenweg an (zuvor auch schon beobachtet), Prüfung bei 75% Fmax abgebrochen,	
6	B52-59-10	6077	Druck mit Faser, Belastungsgeschwindigkeit zurück auf 6.5mm/min, Anfangskraft - 2N, Ast unmittelbar im Schraubenkanal+Wegaufnehmer Fotos vorhanden 16:03, hörbarer Riss bei Kraftabfall, Prüfung bei 75% Fmax abgebrochen,		
7	B05-59-01	7362	Druck gegen Faser, Belastungsgeschwindigkeit 6.5mm/min, Anfangskraft -71N, Astbildung neben Schraubenkanal + Wegaufnehmer Fotos vorhanden 16:20, Zwick Traversenweg -1487mm?, Beobachtung mindestens 1.8fache Geschwindigkeit, hörbare Rissbildung während Prüfung,		
8	B15-59-03	7427	Druck gegen Faser, Belastungsgeschwindigkeit 11.6mm/min, Anfangskraft -9N, Diagonalriss durch schraubenkanal+Wegaufnehmer Fotos vorhanden 16:36, hörbarer Riss während Prüfung sh Prüfkurve,		
9	B23-59-05	7368	Druck gegen Faser, Anfangskraft 30N, leichter Diagonalriss direkt bei Wegaufnehmer+Foto Wegaufnehmer vorhanden 16:47, Prüfung bei 50mm Verformung abgebrochen,		
10	B35-59-07	7795	Druck gegen Faser, Anfangskraft -86N, Wegaufnehmer Foto vorhanden 16:58, hörbare Rissbildung während Prüfung, Messung abgebrochen da im catman 75% Fmax erreicht, direkt danach Stahlbruch der Schraube, Wegaufnehmer zu kurz eventuell Verformung massgebend gewesen,		
11	B49-59-09	6838	Druck geg Diagonalriss hörbare Riss	en Faser, Breiter geschlitzt als vorgesehen sh. Fotos, Anfangskraft 49N, durch unbelasteten Beriech+Wegaufnehmer Fotos vorhanden 17:18, bildung während Prüfung,	
12	B58-59-11	8229	Druck geg Wegaufnhen	en Faser, Anfangskraft -77N, Diagonalriss durch Schraubenkanal+ ner Fotos vorhanden 17:29, Stahlbruch,	
1	B41-59-08 ²	5318	Druck mit Anfangskraft Bereich + W Rissbildung Fmax kaum a Stahllasche,	Faser, erster Testversuch für Belastungsgeschwindigkeit, 5mm/min, t -70N, grosse Astbildung sowohl im belasteten als auch im unbelasteten egaufnehmer Fotos vorhanden 13:34, Fmax est, 4714N, hörbare während Prüfung, Beobachtung während Prüfung Stahlblech hebt bis ab nur leichte Verdrehung, nach überschreiten von Fmax abheben der Prüfung bei 75% Lastabfall abgebrochen,	

D-4.10 Prüfserie 60

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	, , , , , , , , , , , , , , , , , , , ,
2	B02-60-01	10215	10830,0	Druck gegen Faser, Belastungsgeschwindigkeit 7mm/min, Anfangskraft 0N, Wegaufnehmer Süd 25,5mm Wegaufnehmer Nord 25mm Fotos vorhanden, leichte Astbiludng im Bereich zwischen Wegaufnehmer Foto vorhanden 09:23, hörbare Rissbildung während Prüfung, Stahlbruch, ab hier Prüfungen mit 6 Wegaufnehmern,
3	B14-60-03	13332	Druck gege Wegaufnehm Fotos vorhan	en Faser, Anfangskraft 38N, Belastungsgeschwindigkeit 12mm/min, er Nord 25,5mm, Wegaufnehmer Süd 25mm, Diagonalriss + Astbildung den 09:43, Stahlbruch,
4	B24-60-05	9891	Druck geg Astbildung + vergessen ab;	en Faser, Anfangskraft -5N, Wegaufnehmer Nord und Süd 25mm, leichter Diagonalriss Fotos vorhanden 09:54, Belastungsgeschwindigkeit zuündern,
5	B38-60-07 ²	13792	11146,0	Druck gegen Faser, Belastungsgeschwindigkeit 10mm/min, Anfangskraft 33N, grössere Äste zwischen Wegaufnehmern + Diagonalriss über nahezu gesamt equerschnittsbreiteFotos vorhanden 10:06, Wegaufnehmer Nord 25mm Wegaufnehmer Süd 25mm, vergessen Fmax est anzupassen, leichte Schiefstellung der Stahlplatte, Messung bei 75% Lastabfall abgebrochen, beim herausdrehen Abbruch des Kopfes,
6	B45-60-09	12844	Druck gegen Faser, Belastungsgeschwindigkeit 9.5mm/min, neues Fmax, est, Anfangskraft -86N, Wegaufnhemer Nord und Süd 25mm, Ast im Bereich des Schraubenkanals + leichter Diagonalriss fotos vorhanden 10:20, Prüfung bei 75% Lastabfall abgebrochen, gebrochen beim herausdrehen	
7	B57-60-11	10141	Druck gegen Faser, Belastungsgeschwindigkeit 8.5mm/min, Anfangskraft 16N, Wegaufnehmer Nord und Süd 25mm, Astbildung Foto vorhanden, Wegaufnehmer Foto vorhanden 10:53, Stahlbruch	
8	B10-60-02	10367	Druck mit Faser, Belastungsgeschwindigkeit 8.5mm/min, Anfangskraft -27N, Wegaufnehmer Nord und Süd 25mm, Diagonalriss Fotos vorhanden 11:06, Abbruch bei 75% Fmax, gebrochen beim Herausdrehen	
9	B18-60-04	10031	Druck mit Faser, anfangskraft -59N, Diagonalriss + Wegaufnehmer Fot vorhanden 11:21, hörbare Rissbildung während Prüfung, Stahlbruch bei 50mm Verformung,	
10	B32-60-06	11661	Druck mit Faser, Anfangskraft -83N, Wegaufnehmer Nord 25,5mm, leichte Astbildung im unbelasteten Bereich + Diagonalriss durch Wegaufnehmung+Wegaufnehmer Fotos vorhanden 11:35, Stahlbruch	
11	B43-60-08	10854	Druck mit Faser, Belastungsgeschwindigkeit 7mm/min, Anfangskraft -1N, Diagonalriss im unbelasteten Bereich + Wegaufnehmer Fotos vorhanden 11:48, hörbare Rissbildung während Prüfung, Prüfung bei 75% Lastabfall abgebrochen,	
12	B51-60-10	10090	Druck mit Wegaufnehm Prüfung abge	Faser, Anfangskraft 50N, Ast direkt im Bereich des Wegaufnehmers+ er Fotos vorhanden 12:48, abgebrochen beim Versuch des herausdrehens, brochen bei 75% Fmax,
1	B38-60-07 ²	11949	Druck geg Fest 10830, A Prüfung bei 5	en Faser, erster Testversuch für Belastungsgeschwindigkeit 7mm/min, Anfangskraft 50N, Astbildung unbelasteter Bereich Foto vorhanden 14:23, 50mm abgebrochen, beim herausdrehen gebrochen,
	B57-60-11 ²		nicht gepri	ift

D-4.11 Prüfserie 61

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B54-61-10 ²	15656	15995,0	Fmax von Testversuch übernommen, Anfangskraft -67N, Harzgallen in Seitenholzfläche Foto vorhanden 08:33,
3	B13-61-02	15424	Anfangskr	aft -2N, Diagonalrisse + harzgalle Foto vorhanden 8:45,
4	B20-61-04	14600	Anfangskr Bereich des A	aft -46N, vermehrte Astbildung Foto vorhanden 08:56, Diagonalriss im Aufleimers 08:56,
5	B29-61-06	14063	15226,7	Anfangskraft 19N, Ast direkt im Schraubenkanal bei Wegmesssystem Foto vorhanden 09:09,
6	B42-61-08	16164	Anfangskraft -72N, Diagonalriss + Harzgalle + Astbildung Foto vorhanden 09:20, bei allen bisher Stahlbruch,	
7	B01-61-01	14146	Druck gegen Faser, Belastungsgeschwindigkeit 7mm/min, Anfangskraft -70N, hörbare Rissbildung während Prüfung,	
8	B17-61-03	13710	Druck gegen Faser, Anfangskraft -17N, Diagonalriss im Bereich des Aufleimers, leichter Diagonalriss Foto vorhanden 09:46,	
9	B24-61-05	14856	Druck gegen Faser, Anfangskraft 35N, leichter Diagonalriss + Astbildung Foto vorhanden 09:55,	
10	B35-61-07	15860	Druck gegen Faser, Anfangskraft 50N, Astbildung im Bereich des Wegmesssystems + Diagonalriss Foto vorhanden 10:05,	
11	B46-61-09	13236	Druck gegen Faser, Anfangskraft -50N, Diagonalriss 10:14, Phenomän des fliessens zum ersten mal beobachtet,	
12	B59-61-11	14843	Druck gegen Faser, Anfangskraft 7N, enormer Anfangsschlupf, Diagonalrisse + Astbildung Foto vorhanden 10:28,	
1	B54-61-10 ²	15995	Druck mit Fmax7366, A	Faser, erster Testversuch für Belastungsgeschwindigkeit 7.2mm/min, Anfangskraft -42N, Ast im Prüfbereich Fot vorhanden 17:50, Stahbruch,
			Beobachtu	ng für alle Prüfkörper: heben mit der zeit von Stahlblech Einlage ab

D-4.12 Prüfserie 62

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung
[-]	[-]	[N]	[N]	
2	B05-62-01	15254	6803,0	Druck gegen Faser, Belastungsgeschwindigkeit 12mm/min, Anfangskraft -38N, Astbildung im Schraubenkanal, hARZGALLE, Stahlbruch, Prüfkörper ca 2mm spiel (gilt für alle)
3	B16-62-03	15283	Druck geg (foto vorhand	en Faser, Belastungsgeschwindigkeit 7mm/min, Anfangskraft -3N, Riss len), Ast am Ende des Schraubenkanals, Stahlbruch
4	B28-62-05	15791	Druck geg Querschnitt v	en Faser, Anfangskraft -57N, Diagonalriss, Astbildung über gesamten verteilt (Foto), Stahlbruch
5	B34-62-07	16135	15442,7	Druck gegen Faser, Anfangskraft 12N, Belastungsgeschwindigkeit 6.8mm/min, 5s zu spät bei catman gestartet, leichte Astbildung am Rand des belasteten Bereichs, abheben des Prüfkörpers von Stahlplatte (Foto vorhanden) 11:42, Stahlbruch
6	B48-62-09 ²	17926	Druck gegen Faser, Anfangskraft 50N, Diagonalriss + astbildung (Foto vorhanden) 11:51, Prüfkörper hebt von Stahlblech ab (Foto vorhanden) 11:53,	
7	B59-62-11	16488	Druck gegen Faser, Anfangskraft 19N, leichte Astbildung im Bereich Seitenholzfläche, Stahlbruch	
8	B12-62-02	14776	Druck mit Faser, Anfangskraft -72N, Belastungsgeschwindigkeit 6.8mm/min, Diagonalrisse (foto vorhanden) 13:00, Stahlbruch	
9	B21-62-04	15722	Druck mit Faser, Anfangskraft -7N, leichte Astbildung, Stahlbruch	
10	B30-62-06	15003	Druck mit Faser, Anfangskraft -166N, Diagonalriss (foto vorhanden) 13:24, grösserer Ast im Bereich des Aufleimers,	
11	B40-62-08	16272	Druck mit Faser, Anfangskraft -4N, Diagonalriss (foto vorhanden) 13:38, Harzgalle im belasteten Bereich, hörbare Rissbildung während Prüfung,	
12	B54-62-10	13615	Druck mit	Faser, Anfangskraft 35N,
1	B48-62-09 ²	10910	Druck geg Belastungsge Vergessen te unbelasteten	en Faser, erster Testversuch zur Ermittlung der schwindigkeit, Belastungsgeschwindigkeit 11mm/min, Anfangskraft 5N, stexpert fortzusetzen nach erreichen der Vorkraft (40s), Astbildung im Bereich, leichte Diagonalrissbildung, Stahlbruch,

D-4.13 Prüfserie 63

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung							
[-]	[-]	[N]	[N]								
3	B02-63-01 ²	3782	4338,0	Belastungsgeschwindigkeit 12mm/min, Anfangskraft -35N, Wegaufnehmer Fotos vorhanden 15:45, hörbare Rissbildung während Prüfung,							
4	B09-63-02	4528	Anfangskr während Prü:	aft 25N, Foto Wegaufnehmer vorhanden 16:14, hörbare Rissbildung fung, Prüfung bei 48mm Verformung abgebrochen							
5	B12-63-03	2882	Anfangskr Fotos vorhan Prüfung bei c	aft 8N, leichter horizontaler Riss bei Wegaufnehmer + Wegaufnehmer den 16:36, Riss und Verschiebung des Prüfkörpers Foto vorhanden 16:38, a. 47mm abgeborchen,							
6	B19-63-04	4166	3730,7	neues Fmax, est, Anfangskraft -3N, leichte Harzgallen + Wegaufnehmer Fotos vorhanden 16:54, Prüfung bei 46mm abgebrochen,							
7	B26-63-05 ²	4789	Anfangskraft 16N, horizontaler Riss + Wegaufnehmer Fotos vorhanden 17:12, Prüfung bei 48mm Verformung abgebrochen,								
8	B28-63-06	4250	Belastungs Riss + Wega Verformung	sgeschwindigkeit angepasst 13mm/min, Anfangskraft -49N, horizontaler ufnehmer Fotos vorhanden 17:28, Fmax geschätzt, Abbruch bei 50mm (zu spät)							
9	B34-63-07	4293	Anfangskraft -66N, Wegaufnehmer Fotos vorhanden 17:47, Messung bei ca. 46mm abgebrochen, aufgrund der Messingplatten								
10	B39-63-08	5083	Anfangskr während Prü Prüfung bei 4	aft -8N, Wegaufnhemer Fotos vorhanden 08:42, hörbare rissbildung fung, leichtes abheben der Stahlplatte Foto vorhanden 08:45 ca. 4500N, l8mm Verformung abgebrochen,							
11	B48-63-09	4073	Anfangskr Verdrehung o	aft -23N, afuspalten des Holzes + Wegaufnehmer Fotos vorhanden 08:59, der Stahlplatte 09:00 ca. 3500N,							
12	B52-63-10	5048	Anfangskr Wegaufnehm abhebens Fot Schraube bei	aft -46N, paralleles abheben der stahlplatte 09:17 ca.1900N+ er Fotos vorhanden, hörbare Rissbildung während Prüfung, rückgang des o vorhanden 09:19, Prüfung bei 47mm Verformung abgebrochen, m herausdrehen gebrochen,							
13	B55-63-11	5712	Anfangskr Fotos vorhan	aft -46N, Wegaufnehmer + Verdrehung der Stahlplatte ca. 3000N 09:31 den, Prüfung bei 48.5mm abgebrochen,							
1	B02-63-01 ²	3850	erster Test Schraube Rat vorhanden 1 Wegmesssys Prüfung, fals an sh. Prüfku	versuch für Belastungsgeschwindigkeit, Fmax, est 5988N, Anfangskraft nd bereich belasteter Rand nicht eingedreht da nicht möglich Foto 1:52, Belastungsgeschwindigkeit 5mm/min, erster Test mit neuem tem sh Fotos 13:35, Anfangskraft -27N, hörbare Rissbildung während ches Fmax,est mit 105mm Einschraublänge gerechnet, Messingblech steht rve,							
2	B26-63-05 ²	4530	Zweiter Te Verformung vorhanden 15	estversuch, Belastungsgeschwindigkeit 11mm/min, Prüfabbruch bei 48mm da Messingteil ansonsten am Stahlblech ansteht, Fotos Wegaufnehmer 5:10 ca.,							
	B34-63-07 ²		nicht gepri	ift							

D-4.14 Prüfserie 64

lfd. Nr.	Probeköper-bezeichnung	F _{max}	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung							
[-]	[-]	[N]	[N]								
1	B02-64-01	6315	5542,0	Belastungsgeschwindigkeit 10mm/min, Anfangskraft 33N, Wegaufnehmer Süd aufgrund von riss (sh. Foto) nicht gerade montierbar daher zusätzlich Schraube seitlich zum halten der Lage, Wegaufnehmer Foto vorhanden 10:15, hörbare Rissbildung während Prüfung,							
2	B07-64-02	7620	Belastungs vorhanden 10 Verformung	sgeschwindigkeit 13mm/min, Anfangskraft -1N, Wegunfhemer fotos):37, hörbare Rissbildung während Prüfung, Prüfung bei 48mm abgebrochen,							
3	B14-64-03	5956	Anfangskr Prüfung bei ⁴ Herausdreher	aft 10N, horizontaler Riss+Wegaufnehmer Fotos vorhanden 11:00, 48mm Verformung abgebrochen,Schraube beim Versuch des ns gebrochen,							
4	B22-64-04	5968	6630,3	Anfangskraft -3N, horizontaler Riss direkt im Schraubenkanal+Wegaufnehmer Fotos vorhanden 11:16, hörbare Rissbildung während Prüfung, Prüfung bei 48mm Verformung abgebrochen,							
5	B27-64-05	6427	Anfangskr vorhanden 11	Anfangskraft -18N, grosser Ast im unbelasteten Bereich+ wegaufnehmer Fotos vorhanden 11:31,							
6	B34-64-06	6317	Anfangskraft 6N, Wegaufnehmer Foto vorhanden 12:33, hörbare Rissbildung während Prüfung 3200N ca, Schiefstellung der Stahlplatte bei ca 4600N Foto vorhanden 12:35, Aufreissen des gesamten Querschnitts während Prüfung 4500N Foto vorhanden 12:36, Abbruch der Prüfung bei 48mm Verformung (eventuell bisschen zu spät Foto vorhanden 12:37, gesamter Querschnitt gebrochen beim herausdrehen der Schrube								
7	B34-64-07	6500	Anfangskr hörbare Rissl Stahllasche c Prüfung zu sj Prüfkörpers l	aft 2N, Ast direkt im Schraubenkanal + Wegaufnehmer Foto vorhanden, bildung beim erreichne von ca 4300N Foto vorhanden 12:52, abheben der a 6000N foto vorhanden 12:53 bzw. 12:54, maximum geschätzt da pät abgebrochen Messingteil steht an Stahllasche an, Bruch des beim ausbauen,							
8	B40-64-08	6258	Anfangskr Schraubenka	af 16N, Wegaufnehmer Foto vorhanden 13:05, kleiner Ast direkt unter nal 13:05 Foto vorhanden, Prüfung bei 47mm Verformung abgebrochen,							
9	B48-64-09	5604	Anfangskr während Prüf Prüfung bei 4	aft 44N, Wegaufnehmer Fotos vorhanden 13:25, hörbare Rissbildung fung 3800N, Aufspalten des Holzes im Bereich des wegaufnehmers 13:27, 48mm abgebrochen,							
10	B51-64-10	6268	Anfangskr 13:45, Prüfu	aft 31N, Wegaufnehmer Fotos vorhanden 13:41, abheben der Stahllasche ng bei 48mm Verformung abgebrochen,							
11	B57-64-11	7208	Anfangskr herausdrehen	aft 18N, Wegaufnehmer Fotos vorhanden 13:58, Schraube beim abgebrochen,							

D-4.15 Prüfserie 65

lfd. Nr.	Probeköper-bezeichnung	$F_{\rm max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung							
[-]	[-]	[N]	[N]								
1	B04-65-01	7200	6473,0	Anfangskraft -1N, Belastungsgeschwindigkeit 7mm/min, Fotos Wegaufnehmer 09:25 vorhanden, Catman bei 75% Fmax abgebrochen anschliessend Schraubenbruch,							
2	B10-65-02	7293	Anfangskr Wegaufnehm Verdrehung o während Prü	aft -5N, Harzgallen+horizontaler Riss direkt bei Wegaufnehmung + ner Fotos vorhanden 09:44, hörbare Rissbildung während Prüfung, des Schraubenkopfes bei 6500N ca. 09:47, Aufreissen des querschnitts fung Foto vorhanden 09:47, Stahlbruch							
3	B17-65-03	6276	Belastungs 10:00, aufrei	sgeschwindigkeit 7.7mm/min, Anfangskraft -52N, Fotos Wegaufnehmer ssen des querschnitt bei 4800N ca. 10:03 beidseitig, Stahlbruch,							
4	B19-65-04	6275	6923,0	3,0 Belastungsgeschwindigkeit 8mm/min, neues Fest, Anfangskraft 48N, Wegaufnehmer Fotso vorhanden 10:21, Prüfung Catman bei 75% Fma abgebrochen anschliessend Schraubenbruch,							
5	B27-65-05	7023	Anfangskraft -47N, leichte Rissbildung im unteren Bereich des Wegaufnehmers+Wegaufnehmer Fotso vorhanden 10:45, hörbare Rissbildung während Prüfung Seitenholzflächen nicht wirklich sichtbar, Stahlbruch,								
6	B33-65-06	8602	Anfangskr 10:59, hörbar 6000N, Risst Prüfung 11:0	aft 4N, Ast im unbelasteten Bereich + Wegaufnehmer Fotos vorhanden re Rissbildung während Prüfung Seitenholzflächen nichts sichtbar ca. bildung bei Fmax Foto vorhande 11:03, Rissbildung nach beendigung der 4 Foto, STahlbruch,							
7	B38-65-07	6327	Anfangskr Wegaufnehm ca. 4500N, S	aft -8N, horizontaler Riss im Bereich des Wegaufnehmers + ner Fotos vorhanden 11:10, 11:12 weiters Foto von horizontalem Riss bei tahlbruch							
8	B45-65-08	7765	Anfangskr unteren Bere Wegaufnehm Seitenholzflä	aft -11N, leichte Rissbildung im Bereich des Wegaufnehmers und im ich des Prüfkörpers+grosser Ast im Randbereich des belasteten Bereichs+ ner Fotos vorhanden 11:24, hörbare Rissbildung während Prüfung ichen nichts sichtbar,							
9	B47-65-09	7998	Anfangskr Rissbildung 48mm Verfo	aft -13N, Harzgallen + Wegaufnehmer Fotos vorhanden 12:16, hörbare während Prüfung seitenholzflächen nichts zu sehen 7400N, Prüfung bei rmung abgebrochen,							
10	B55-65-10	7821	Anfangskr Wegaufnehm seitenholzflä	aft -13N, horizontaler Riss im Bereich des Wegaufnehmers + ner Fotos vorhanden 12:37, hörbare rissbildung während Prüfung in che nichts sichtbar,, Stahlbruch							
11	B56-65-11	6513	Anfangskr Auswertung,	aft -32N, vergessen Prüfschraube anzuziehen, Hysterese unbrauchbar für							

D-4.16 Prüfserie 66

lfd. Nr.	Probeköper-bezeichnung	${\pmb F}_{\max}$	F _{est}	Bruchursache/ohne Bruch, Schwindriss (SR), Anmerkung					
[-]	[-]	[N]	[N]						
1	B06-66-01	8411	17091,0	Bleastungsgeschwindigkeit 13mm/min, erstes Fmax,est 17091 (blödsinn) Anfangskraft 24N, Wegaufnehmer Fotos vorhanden 14:45,					
2	B11-66-02	9570	Fmax,est v 15:07, hörbar Rissbildung s abgebrochen	von erstem Versuch, Anfangskraft -34N, Wegaufnehmer Fotos vorhanden re Rissbildung während Prüfung, Belastungsgeschwindigkeit 8mm/min, 5900N oberflächlich nichts zu sehen, Prüfung bei 46mm Verformung					
3	B15-66-03	8621	Anfangskr vorhanden 15	aft 7N, horizontaler Riss im unbelasteten Bereich+Wegaufnehmer Fotos 5:32, 75% Fmax Versuch abgebrochen,					
4	B22-66-04	15676	8867,3	Belastungsgeschwindigkeit 7mm/min, Anfangskraft -47N, horizontaler Riss +Wegaufnehmer fotos vorhanden 15:49 bzw. 15:50, Prüfung bei 75% Famx abgebrochen, Schraubenkopf beim Ausbau abgebrochen, Tanne,					
5	B22-66-05	10374	Anfangskraft -29N, horizontaler Riss beidseitig+Wegaufnehmer Fotos vorhanden 16:08, Prüfung bei 75% Fmax abgebrochen,						
6	B28-66-06	8569	Anfangskraft -16N, horizontaler Riss + Wegaufnhemer Fotos vorhanden 16:24, Prüfung abgebrochen bei						
7	B38-66-07	7123	Anfangskr Verformung	aft 37N, Wegaufnehmer Fotos vorhanden 16:41, Prüfung bei 47mm abgebrochen,					
8	B48-66-09	8668	Anfangskr Abbruch der	aft -18N, horizontaler Riss + Wegaufnehmer Fotos vorhanden 17:04, Prüfung bei 75% Fmax,					
9	B39-66-08	10551	Anfangskr Wegaufnehm	aft -50N, horizontal Risse über gesamte Seitenholzfläche verteilt + her Fotos vorhanden 17:20, Prüfung bei 45mm Verformung abgebrochen,					
10	B53-66-10	9401	Anfangskr Fmax,	aft -11N, Wegaufnehmer Foto vorhanden 17:35, abgebrochen bei 75%					
11	B58-66-11	8526	Anfangskr	aft 23N, Fotos 17:54, Prüfung abgebrochen bei xx muss ich nachschauen					

ANHANG E EINZELVERSUCHSERGEBNISSE

E-1 Axiale Beanspruchung

Prüfkörper [ID]	ρ ₁₂ [kg/m³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser _{p12}	Ausreisser F ₁₅
B05-(15)-08-105-00-99-00-90-01	385	9,8	14179	14179	nein	ja	nein
B08-(15)-08-105-00-99-00-90-02	417	9,6	14357	14357	nein	nein	nein
B14-(15)-08-105-00-99-00-90-03	428	9,9	8813	8813	ja	nein	ja
B22-(15)-08-105-00-99-00-90-04	411	9,5	15440	15440	nein	nein	nein
B27-(15)-08-105-00-99-00-90-05	429	9,9	15659	15659	nein	nein	nein
B32-(15)-08-105-00-99-00-90-06	432	7,9	16465	16465	nein	nein	nein
B35-(15)-08-105-00-99-00-90-07	427	9,8	16574	16574	nein	nein	nein
B43-(15)-08-105-00-99-00-90-08	455	10,5	16805	16805	nein	nein	nein
B46-(15)-08-105-00-99-00-90-09	433	8,2	14953	14953	nein	nein	nein
B50-(15)-08-105-00-99-00-90-10	483	10,0	14458	14458	nein	ja	nein
B58-(15)-08-105-00-99-00-90-11	438	10,1	14701	14701	nein	nein	nein
B08-(15)-08-105-00-99-00-90-test	416	9,5	15961	15961	nein	nein	nein
B02-(16)-08-105-00-99-00-30-01	462	11,5	13733	13733	nein	nein	nein
B11-(16)-08-105-00-99-00-30-02	430	11,0	12267	12267	nein	nein	nein
B14-(16)-08-105-00-99-00-30-03	428	8,4	12861	12861	nein	nein	nein
B21-(16)-08-105-00-99-00-30-04	479	10,2	16131	16131	nein	ja	nein
B28-(16)-08-105-00-99-00-30-05	400	9,3	10803	10803	nein	nein	nein
B31-(16)-08-105-00-99-00-30-06	396	10,8	9846	9846	nein	nein	nein
B37-(16)-08-105-00-99-00-30-07	437	8,9	13365	13365	nein	nein	nein
B40-(16)-08-105-00-99-00-30-08	415	12,1	12937	12937	nein	nein	nein
B48-(16)-08-105-00-99-00-30-09	401	10,2	9787	9787	nein	nein	nein
B54-(16)-08-105-00-99-00-30-10	434	11,0	14139	14139	nein	nein	nein
B59-(16)-08-105-00-99-00-30-11	450	11,0	12031	12031	nein	nein	nein
B11-(16)-08-105-00-99-00-30-test	427	8,8	13836	13836	nein	nein	nein
B48-(16)-08-105-00-99-00-30-test	414	10,4	11795	11795	nein	nein	nein
B02-(17)-08-105-00-99-00-60-01	414	9,1	12064	12064	nein	nein	nein
B10-(17)-08-105-00-99-00-60-02	388	10,9	14707	14707	nein	nein	nein
B14-(17)-08-105-00-99-00-60-03	445	10,2	16757	16757	nein	nein	nein
B18-(17)-08-105-00-99-00-60-04	392	10,3	13223	13223	nein	nein	nein
B24-(17)-08-105-00-99-00-60-05	419	10,5	14122	14122	nein	nein	nein
B32-(17)-08-105-00-99-00-60-06	458	10,8	18336	18336	nein	nein	nein
B38-(17)-08-105-00-99-00-60-07	428	10,7	15541	15541	nein	nein	nein
B43-(17)-08-105-00-99-00-60-08	400	9,9	13097	13097	nein	nein	nein
B45-(17)-08-105-00-99-00-60-09	430	10,2	15818	15818	nein	nein	nein
B51-(17)-08-105-00-99-00-60-10	460	8,8	16794	16794	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B57-(17)-08-105-00-99-00-60-11	417	11,2	15247	15247	nein	nein	nein
B02-(17)-08-105-00-99-00-60-test	407	11,3	12937	12937	nein	nein	nein
B05-(18)-08-105-00-99-00-00-01	419	8,3	11844	11844	nein	nein	nein
B10-(18)-08-105-00-99-00-00-02	402	10,1	11455	11455	nein	ja	nein
B17-(18)-08-105-00-99-00-00-03	434	10,1	7921	7921	nein	nein	nein
B19-(18)-08-105-00-99-00-00-04	411	10,3	9803	9803	nein	nein	nein
B27-(18)-08-105-00-99-00-00-05	434	10,4	8282	8282	nein	nein	nein
B33-(18)-08-105-00-99-00-00-06	495	10,5	15894	15894	nein	ja	nein
B38-(18)-08-105-00-99-00-00-07	424	10,3	7830	7830	nein	nein	nein
B45-(18)-08-105-00-99-00-00-08	424	10,0	8003	8003	nein	nein	nein
B47-(18)-08-105-00-99-00-00-09	426	11,7	9537	9537	nein	nein	nein
B55-(18)-08-105-00-99-00-00-10	464	11,0	7393	7393	nein	ja	nein
B56-(18)-08-105-00-99-00-00-11	430	12,0	6385	6385	nein	nein	nein

Abb. Anhang E-2: Bjj-16-08-105-00-99-00-30-ii

Abb. Anhang E-3: Bjj-17-08-105-00-99-00-60-ii

Abb. Anhang E-4: Bjj-18-08-105-00-99-00-00-ii

5

Tab.Anhang E-2 Einzelversuchsergebnisse Steifigkeit rein axiale Beanspruchung

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	w _{h,e} [mm]
B05-(15)-08-105-00-99-00-90-01	23730	0	4270	0	0,160	0,000	8538	0	0,340	0,000
B08-(15)-08-105-00-99-00-90-02	21128	0	4331	0	0,220	0,000	9081	0	0,445	0,000
B14-(15)-08-105-00-99-00-90-03	10849	0	2660	0	0,120	0,000	5322	0	0,366	0,000
B22-(15)-08-105-00-99-00-90-04	21904	0	4647	0	0,238	0,000	9478	0	0,458	0,000
B27-(15)-08-105-00-99-00-90-05	21800	0	4710	0	0,185	0,000	10996	0	0,473	0,000
B32-(15)-08-105-00-99-00-90-06	18857	0	4943	0	0,207	0,000	9893	0	0,469	0,000
B35-(15)-08-105-00-99-00-90-07	19294	0	4991	0	0,268	0,000	10360	0	0,546	0,000
B43-(15)-08-105-00-99-00-90-08	19753	0	5062	0	0,235	0,000	10133	0	0,492	0,000
B46-(15)-08-105-00-99-00-90-09	19300	0	4516	0	0,188	0,000	9722	0	0,458	0,000
B50-(15)-08-105-00-99-00-90-10	19515	0	4346	0	0,228	0,000	9027	0	0,468	0,000
B58-(15)-08-105-00-99-00-90-11	19983	0	4436	0	0,128	0,000	8856	0	0,350	0,000
B08-(15)-08-105-00-99-00-90-test	20597	0	4817	0	0,120	0,000	9640	0	0,354	0,000
B02-(16)-08-105-00-99-00-30-01	19093	0	4133	0	0,186	0,000	8650	0	0,423	0,000
B11-(16)-08-105-00-99-00-30-02	20363	0	3698	0	0,140	0,000	7398	0	0,322	0,000
B14-(16)-08-105-00-99-00-30-03	17818	0	3870	0	0,156	0,000	8515	0	0,416	0,000
B21-(16)-08-105-00-99-00-30-04	31686	0	4846	0	0,017	0,000	9702	0	0,171	0,000
B28-(16)-08-105-00-99-00-30-05	14748	0	3253	0	0,133	0,000	7914	0	0,449	0,000
B31-(16)-08-105-00-99-00-30-06	13813	0	2956	0	0,190	0,000	7133	0	0,492	0,000
B37-(16)-08-105-00-99-00-30-07	21139	0	4029	0	0,087	0,000	8050	0	0,277	0,000
B40-(16)-08-105-00-99-00-30-08	18769	0	3895	0	0,138	0,000	8094	0	0,362	0,000
B48-(16)-08-105-00-99-00-30-09	15610	0	2939	0	0,074	0,000	6988	0	0,333	0,000
B54-(16)-08-105-00-99-00-30-10	18757	0	4246	0	0,172	0,000	8842	0	0,417	0,000
B59-(16)-08-105-00-99-00-30-11	22520	0	3613	0	0,078	0,000	7651	0	0,258	0,000
B11-(16)-08-105-00-99-00-30-test	26527	0	4169	0	0,052	0,000	8330	0	0,209	0,000
B48-(16)-08-105-00-99-00-30-test	20283	0	3541	0	0,093	0,000	7203	0	0,273	0,000
B02-(17)-08-105-00-99-00-60-01	14337	0	3631	0	0,143	0,000	7535	0	0,416	0,000
B10-(17)-08-105-00-99-00-60-02	18685	0	4440	0	0,106	0,000	8869	0	0,343	0,000
B14-(17)-08-105-00-99-00-60-03	20691	0	5053	0	0,169	0,000	10104	0	0,413	0,000
B18-(17)-08-105-00-99-00-60-04	16421	0	3989	0	0,128	0,000	8559	0	0,406	0,000
B24-(17)-08-105-00-99-00-60-05	17456	0	4251	0	0,124	0,000	9404	0	0,419	0,000
B32-(17)-08-105-00-99-00-60-06	21146	0	5503	0	0,185	0,000	11017	0	0,446	0,000
B38-(17)-08-105-00-99-00-60-07	17471	0	4679	0	0,153	0,000	9368	0	0,421	0,000
B43-(17)-08-105-00-99-00-60-08	16088	0	3956	0	0,177	0,000	8489	0	0,459	0,000
B45-(17)-08-105-00-99-00-60-09	18207	0	4768	0	0,141	0,000	9523	0	0,402	0,000
B51-(17)-08-105-00-99-00-60-10	20152	0	5042	0	0,127	0,000	10106	0	0,378	0,000
B57-(17)-08-105-00-99-00-60-11	19493	0	4588	0	0,162	0,000	9397	0	0,409	0,000
B02-(17)-08-105-00-99-00-60-test	15884	0	3905	0	0,151	0,000	8065	0	0,413	0,000
B05-(18)-08-105-00-99-00-00-01	34821	0	3567	0	0,028	0,000	7133	0	0,130	0,000
B10-(18)-08-105-00-99-00-00-02	28636	0	3453	0	0,070	0,000	7279	0	0,204	0,000
B17-(18)-08-105-00-99-00-00-03	26049	0	2382	0	0,031	0,000	5928	0	0,167	0,000

Prüfkörper [ID]	K _{ser,ax} [N/mm]	<i>K</i> ser,lat [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	^{Wh,e} [mm]
B19-(18)-08-105-00-99-00-00-04	19892	0	2952	0	0,172	0,000	6644	0	0,357	0,000
B27-(18)-08-105-00-99-00-00-05	25073	0	2487	0	0,013	0,000	6195	0	0,161	0,000
B33-(18)-08-105-00-99-00-00-06	27101	0	4776	0	0,692	0,000	9552	0	0,868	0,000
B38-(18)-08-105-00-99-00-00-07	50664	0	2365	0	0,024	0,000	4866	0	0,073	0,000
B45-(18)-08-105-00-99-00-00-08	19567	0	2412	0	0,106	0,000	5697	0	0,274	0,000
B47-(18)-08-105-00-99-00-00-09	30330	0	2862	0	0,072	0,000	6503	0	0,192	0,000
B55-(18)-08-105-00-99-00-00-10	20041	0	2237	0	0,036	0,000	5539	0	0,201	0,000
B56-(18)-08-105-00-99-00-00-11	21196	0	1929	0	0,049	0,000	3859	0	0,140	0,000

E-2 Laterale Beanspruchung

Tab.Anhang E-3 Einzelversuchsergebnisse Tragfähigkeit rein laterale Beanspruchung

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ ₁₂	Ausreisser F ₁₅
B04-(50)-08-225-60-90-60-00-01	405	10,3	9505	9505	nein	nein	nein
B09-(50)-08-225-60-90-60-00-02	404	9,7	10678	10678	nein	nein	nein
B16-(50)-08-225-60-90-60-00-03	407	9,5	9093	9093	nein	nein	nein
B22-(50)-08-225-60-90-60-00-04	420	9,3	8399	8399	nein	nein	nein
B25-(50)-08-225-60-90-60-00-05	424	9,8	10967	10967	nein	nein	nein
B28-(50)-08-225-60-90-60-00-06	415	8,6	8128	8128	nein	nein	nein
B37-(50)-08-225-60-90-60-00-07	445	9,7	14815	14162	ja	nein	ja
B40-(50)-08-225-60-90-60-00-08	411	9,9	8171	8171	nein	nein	nein
B49-(50)-08-225-60-90-60-00-09	471	9,7	5976	5976	nein	nein	nein
B51-(50)-08-225-60-90-60-00-10	429	10,1	6605	6605	nein	nein	nein
B57-(50)-08-225-60-90-60-00-11	526	10,5	8176	8176	nein	ja	nein
B03-(51)-08-040-90-00-90-90-01	413	10,0	7981	7128	nein	nein	nein
B07-(51)-08-040-90-00-90-90-02	381	9,4	8977	6878	nein	nein	nein
B13-(51)-08-040-90-00-90-90-03	392	10,3	8695	6494	nein	nein	nein
B19-(51)-08-040-90-00-90-90-04	502	9,7	7784	6842	nein	nein	nein
B25-(51)-08-040-90-00-90-90-05	401	10,2	7729	6294	nein	nein	nein
B33-(51)-08-040-90-00-90-90-06	491	9,5	10325	9078	ja	nein	ja
B36-(51)-08-040-90-00-90-90-07	481	10,5	7822	7207	nein	nein	nein
B41-(51)-08-040-90-00-90-90-08	443	10,2	7813	7289	nein	nein	nein
B47-(51)-08-040-90-00-90-90-09	447	10,6	8672	7588	nein	nein	nein
B50-(51)-08-040-90-00-90-90-10	498	10,2	8537	7033	nein	nein	nein
B57-(51)-08-040-90-00-90-90-11	466	8,9	8652	8400	nein	nein	ja
B41-(51)-08-040-90-00-90-90-test	445	9,6	8301	7310	nein	nein	nein
B03-(52)-08-105-90-00-90-90-01	411	9,7	11106	9898	nein	nein	nein
B07-(52)-08-105-90-00-90-90-02	390	10,3	13080	12292	nein	nein	nein
B13-(52)-08-105-90-00-90-90-03	436	10,4	12701	11077	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B19-(52)-08-105-90-00-90-90-04	446	10,8	10970	10869	nein	nein	nein
B25-(52)-08-105-90-00-90-90-05	405	10,4	10391	9788	nein	nein	nein
B33-(52)-08-105-90-00-90-90-06	475	10,3	14328	14104	nein	nein	nein
B36-(52)-08-105-90-00-90-90-07	467	11,6	13929	11696	nein	nein	nein
B41-(52)-08-105-90-00-90-90-08	404	10,3	11232	10877	nein	nein	nein
B47-(52)-08-105-90-00-90-90-09	432	11,1	13214	12855	nein	nein	nein
B50-(52)-08-105-90-00-90-90-10	441	10,3	14877	13577	nein	nein	nein
B57-(52)-08-105-90-00-90-90-11	425	9,2	12156	11938	nein	nein	nein
B41-(52)-08-105-90-00-90-90-test	418	9,8	11417	11088	nein	nein	nein
B03-(53)-08-165-90-00-90-90-01	420	10,4	13768	10848	nein	nein	nein
B07-(53)-08-165-90-00-90-90-02	400	10,1	14440	13299	nein	nein	nein
B13-(53)-08-165-90-00-90-90-03	430	10,5	13916	13916	nein	nein	nein
B19-(53)-08-165-90-00-90-90-04	437	9,3	15138	13296	nein	nein	nein
B25-(53)-08-165-90-00-90-90-05	413	10,4	14091	13754	nein	nein	nein
B33-(53)-08-165-90-00-90-90-06	435	9,8	15558	15558	nein	nein	nein
B36-(53)-08-165-90-00-90-90-07	459	11,4	14255	13726	nein	nein	nein
B41-(53)-08-165-90-00-90-90-08	429	8,0	11778	11778	ja	nein	nein
B47-(53)-08-165-90-00-90-90-09	427	9,4	13589	13589	nein	nein	nein
B50-(53)-08-165-90-00-90-90-10	465	10,5	13590	13145	nein	nein	nein
B57-(53)-08-165-90-00-90-90-11	500	10,7	15154	13639	nein	nein	nein
B03-(53)-08-165-90-00-90-90-test	413	9,8	13255	11524	nein	nein	nein
B36-(53)-08-165-90-00-90-90-test	469	11,5	13886	11749	nein	nein	nein
B04-(54)-08-225-90-00-90-90-01	382	10,0	15458	14682	nein	ja	nein
B12-(54)-08-225-90-00-90-90-02	423	10,5	14361	14361	nein	nein	nein
B15-(54)-08-225-90-00-90-90-03	395	9,9	14758	14723	nein	nein	nein
B18-(54)-08-225-90-00-90-90-04	419	10,2	16170	15815	nein	nein	nein
B25-(54)-08-225-90-00-90-90-05	421	10,5	15286	14559	nein	nein	nein
B33-(54)-08-225-90-00-90-90-06	430	10,1	15247	13732	nein	nein	nein
B37-(54)-08-225-90-00-90-90-07	434	10,1	16231	15481	nein	nein	nein
B39-(54)-08-225-90-00-90-90-08	407	10,7	15354	15205	nein	nein	nein
B45-(54)-08-225-90-00-90-90-09	425	10,1	15651	13252	nein	nein	nein
B54-(54)-08-225-90-00-90-90-10	460	9,7	16490	15192	nein	nein	nein
B58-(54)-08-225-90-00-90-90-11	460	10,4	16289	13817	nein	nein	nein
B01-(55)-08-040-90-60-90-30-01	397	9,8	4943	3870	nein	nein	nein
B08-(55)-08-040-90-60-90-30-02	426	9,6	4223	3341	nein	nein	nein
B16-(55)-08-040-90-60-90-30-03	411	10,0	5534	4012	nein	nein	nein
B21-(55)-08-040-90-60-90-30-04	443	9,7	4646	3571	nein	nein	nein
B29-(55)-08-040-90-60-90-30-06	397	9,8	4212	3734	nein	nein	nein
B35-(55)-08-040-90-60-90-30-07	424	9,8	7481	4999	nein	nein	ja
B43-(55)-08-040-90-60-90-30-08	410	10,4	4201	3277	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B45-(55)-08-040-90-60-90-30-09	446	9,6	5430	4637	nein	nein	nein
B53-(55)-08-040-90-60-90-30-10	412	9,7	4326	3647	nein	nein	nein
B56-(55)-08-040-90-60-90-30-11	464	10,0	4502	3640	nein	nein	nein
B01-(55)-08-040-90-60-90-30-test	407	9,8	5578	4043	nein	nein	nein
B08-(55)-08-040-90-60-90-30-test	409	9,9	4369	3274	nein	nein	nein
B01-(56)-08-105-90-60-90-30-01	364	10,3	8106	4985	nein	ja	ja
B09-(56)-08-105-90-60-90-30-02	401	10,6	7318	7301	nein	nein	nein
B13-(56)-08-105-90-60-90-30-03	437	8,5	8947	6197	nein	nein	nein
B18-(56)-08-105-90-60-90-30-04	423	9,2	7193	7078	nein	nein	nein
B23-(56)-08-105-90-60-90-30-05	413	10,1	10779	7801	nein	nein	nein
B30-(56)-08-105-90-60-90-30-06	428	9,8	7914	7522	nein	nein	nein
B39-(56)-08-105-90-60-90-30-07	420	10,3	10641	6927	nein	nein	nein
B44-(56)-08-105-90-60-90-30-08	417	10,7	7763	7587	nein	nein	nein
B46-(56)-08-105-90-60-90-30-09	442	10,0	7863	5972	nein	nein	nein
B50-(56)-08-105-90-60-90-30-10	441	10,1	8216	8039	nein	nein	nein
B59-(56)-08-105-90-60-90-30-11	505	10,1	9206	7429	nein	ja	nein
B50-(56)-08-105-90-60-90-30-test	443	8,8	8367	6957	nein	nein	nein
B06-(57)-08-165-90-60-90-30-01	448	9,6	13289	10001	nein	nein	nein
B12-(57)-08-165-90-60-90-30-02	438	10,5	9275	9167	nein	nein	nein
B17-(57)-08-165-90-60-90-30-03	449	9,3	11215	10300	nein	nein	nein
B21-(57)-08-165-90-60-90-30-04	436	9,9	14252	9692	nein	nein	nein
B23-(57)-08-165-90-60-90-30-05	420	8,4	12384	10857	nein	nein	nein
B31-(57)-08-165-90-60-90-30-06	410	10,5	9158	9147	nein	nein	nein
B34-(57)-08-165-90-60-90-30-07	468	9,4	10972	9241	nein	nein	nein
B42-(57)-08-165-90-60-90-30-08	409	8,6	10821	10187	nein	nein	nein
B47-(57)-08-165-90-60-90-30-09	445	9,0	12583	10111	nein	nein	nein
B52-(57)-08-165-90-60-90-30-10	456	10,8	9268	8987	nein	nein	nein
B55-(57)-08-165-90-60-90-30-11	447	9,9	12014	9680	nein	nein	nein
B17-(57)-08-165-90-60-90-30-test	453	10,1	9905	8700	nein	nein	nein
B01-(58)-08-225-90-60-90-30-01	384	10,3	12719	9564	nein	ja	nein
B10-(58)-08-225-90-60-90-30-02	414	10,5	14742	12129	nein	nein	nein
B13-(58)-08-225-90-60-90-30-03	451	10,0	15625	10282	nein	nein	nein
B20-(58)-08-225-90-60-90-30-04	498	10,3	14072	11193	nein	ja	nein
B26-(58)-08-225-90-60-90-30-05	444	9,3	16708	11136	nein	nein	nein
B30-(58)-08-225-90-60-90-30-06	437	9,6	13841	10223	nein	nein	nein
B34-(58)-08-225-90-60-90-30-07	466	9,4	15985	15360	nein	nein	ja
B41-(58)-08-225-90-60-90-30-08	426	10,5	14517	10889	nein	nein	nein
B47-(58)-08-225-90-60-90-30-09	450	11,0	14784	9742	nein	nein	nein
B53-(58)-08-225-90-60-90-30-10	463	11,0	13186	11730	nein	nein	nein
B56-(58)-08-225-90-60-90-30-11	437	12,5	13760	11496	nein	nein	nein

Prüfkörper [ID]	ρ12 [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser _{p12}	Ausreisser F ₁₅
B20-(58)-08-225-90-60-90-30-test	425	10,8	15360	10808	nein	nein	nein
B47-(58)-08-225-90-60-90-30-test	447	11,0	16783	12113	nein	nein	nein
B05-(59)-08-040-90-30-90-60-01	451	10,1	7362	5775	nein	nein	nein
B12-(59)-08-040-90-30-90-60-02	475	10,7	5991	5657	nein	nein	nein
B15-(59)-08-040-90-30-90-60-03	416	10,0	7427	6630	nein	nein	nein
B18-(59)-08-040-90-30-90-60-04	410	10,0	7090	5741	nein	nein	nein
B23-(59)-08-040-90-30-90-60-05	433	9,6	7368	6044	nein	nein	nein
B33-(59)-08-040-90-30-90-60-06	464	9,3	7192	6352	nein	nein	nein
B35-(59)-08-040-90-30-90-60-07	427	10,1	7795	6051	nein	nein	nein
B41-(59)-08-040-90-30-90-60-08	476	10,2	7123	7123	nein	nein	nein
B49-(59)-08-040-90-30-90-60-09	402	10,0	6839	5149	nein	nein	nein
B52-(59)-08-040-90-30-90-60-10	451	10,1	6077	5375	nein	nein	nein
B58-(59)-08-040-90-30-90-60-11	439	9,8	8229	6398	nein	nein	nein
B41-(59)-08-040-90-30-90-60-test	432	10,3	5318	5040	ja	nein	nein
B02-(60)-08-105-90-30-90-60-01	413	10,5	10215	8417	nein	nein	nein
B10-(60)-08-105-90-30-90-60-02	424	10,4	10367	9730	nein	nein	nein
B14-(60)-08-105-90-30-90-60-03	443	10,2	13332	12135	nein	nein	nein
B18-(60)-08-105-90-30-90-60-04	406	9,4	10031	9274	nein	nein	nein
B24-(60)-08-105-90-30-90-60-05	425	10,2	9891	9266	nein	nein	nein
B32-(60)-08-105-90-30-90-60-06	441	10,3	11661	11355	nein	nein	nein
B38-(60)-08-105-90-30-90-60-07	422	9,8	13792	11983	nein	nein	nein
B43-(60)-08-105-90-30-90-60-08	431	11,4	10854	10426	nein	nein	nein
B45-(60)-08-105-90-30-90-60-09	430	9,8	12844	11523	nein	nein	nein
B51-(60)-08-105-90-30-90-60-10	471	11,3	10090	9338	nein	nein	nein
B57-(60)-08-105-90-30-90-60-11	496	10,8	10141	9863	nein	ja	nein
B01-(61)-08-165-90-30-90-60-01	420	10,8	14146	12805	nein	nein	nein
B13-(61)-08-165-90-30-90-60-02	413	10,4	15424	10690	nein	nein	nein
B17-(61)-08-165-90-30-90-60-03	419	9,5	13710	11052	nein	nein	nein
B20-(61)-08-165-90-30-90-60-04	415	10,8	14600	12590	nein	nein	nein
B24-(61)-08-165-90-30-90-60-05	429	10,3	14856	12227	nein	nein	nein
B29-(61)-08-165-90-30-90-60-06	409	10,3	14063	11185	nein	nein	nein
B35-(61)-08-165-90-30-90-60-07	431	9,9	15860	15785	nein	nein	nein
B42-(61)-08-165-90-30-90-60-08	426	13,7	16164	13306	nein	nein	nein
B46-(61)-08-165-90-30-90-60-09	435	10,0	13236	11577	nein	nein	nein
B54-(61)-08-165-90-30-90-60-10	465	10,2	15656	11173	nein	nein	nein
B59-(61)-08-165-90-30-90-60-11	466	10,8	14843	13103	nein	nein	nein
B54-(61)-08-165-90-30-90-60-test	459	10,3	15995	13830	nein	nein	nein
B05-(62)-08-225-90-30-90-60-01	416	9,0	15254	14524	nein	nein	nein
B12-(62)-08-225-90-30-90-60-02	432	9,4	14776	12922	nein	nein	nein
B16-(62)-08-225-90-30-90-60-03	413	10,3	15283	12252	nein	nein	nein

Prüfkörper [ID]	ρ12 [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser _{p12}	Ausreisser F ₁₅
B21-(62)-08-225-90-30-90-60-04	434	10,2	15722	12590	nein	nein	nein
B28-(62)-08-225-90-30-90-60-05	434	9,2	15791	14607	nein	nein	nein
B30-(62)-08-225-90-30-90-60-06	435	8,7	15003	12835	nein	nein	nein
B34-(62)-08-225-90-30-90-60-07	456	10,1	16135	11673	nein	nein	nein
B40-(62)-08-225-90-30-90-60-08	420	11,1	16272	11726	nein	nein	nein
B48-(62)-08-225-90-30-90-60-09	464	8,8	17926	14244	nein	nein	nein
B54-(62)-08-225-90-30-90-60-10	445	10,3	13615	13615	nein	nein	nein
B59-(62)-08-225-90-30-90-60-11	484	10,0	16488	15949	nein	nein	nein
B48-(62)-08-225-90-30-90-60-test	468	9,8	10910	9411	ja	nein	ja
B02-(63)-08-040-90-90-90-00-01	419	10,1	3782	2813	nein	nein	nein
B09-(63)-08-040-90-90-90-00-02	420	10,2	4528	2979	nein	nein	nein
B12-(63)-08-040-90-90-90-00-03	426	8,1	2882	2575	ja	nein	nein
B19-(63)-08-040-90-90-90-00-04	443	12,6	4167	2721	nein	nein	nein
B26-(63)-08-040-90-90-90-00-05	425	10,3	4789	2882	nein	nein	nein
B28-(63)-08-040-90-90-90-00-06	409	9,1	5126	2652	nein	nein	nein
B34-(63)-08-040-90-90-90-00-07	422	9,6	4293	2765	nein	nein	nein
B39-(63)-08-040-90-90-90-00-08	444	9,9	5084	2748	nein	nein	nein
B48-(63)-08-040-90-90-90-00-09	410	9,4	4073	2776	nein	nein	nein
B52-(63)-08-040-90-90-90-00-10	403	8,9	5048	3535	nein	nein	ja
B55-(63)-08-040-90-90-90-00-11	455	9,6	5712	3215	nein	nein	nein
B02-(63)-08-040-90-90-90-00-test	414	10,2	4952	2902	nein	nein	nein
B26-(63)-08-040-90-90-90-00-test	452	10,1	4530	3027	nein	nein	nein
B02-(64)-08-105-90-90-90-00-01	413	9,4	6315	4524	nein	nein	nein
B07-(64)-08-105-90-90-90-00-02	386	8,3	7620	5771	nein	ja	nein
B14-(64)-08-105-90-90-90-00-03	426	10,0	5956	5464	nein	nein	nein
B22-(64)-08-105-90-90-90-00-04	422	9,9	5968	5006	nein	nein	nein
B27-(64)-08-105-90-90-90-00-05	424	10,0	6427	5367	nein	nein	nein
B34-(64)-08-105-90-90-90-00-06	418	10,1	6317	4451	nein	nein	nein
B34-(64)-08-105-90-90-90-00-07	412	10,1	7738	5157	nein	nein	nein
B40-(64)-08-105-90-90-90-00-08	420	10,3	6258	4192	nein	nein	nein
B48-(64)-08-105-90-90-90-00-09	404	9,0	5604	3862	nein	nein	nein
B51-(64)-08-105-90-90-90-00-10	441	10,7	6268	5190	nein	ja	nein
B57-(64)-08-105-90-90-90-00-11	417	10,3	7209	5508	nein	nein	nein
B04-(65)-08-165-90-90-90-00-01	390	10,1	7200	5911	nein	ja	nein
B10-(65)-08-165-90-90-90-00-02	414	9,9	7293	6598	nein	nein	nein
B17-(65)-08-165-90-90-90-00-03	425	10,0	6276	5510	nein	nein	nein
B19-(65)-08-165-90-90-90-00-04	434	10,0	6276	5868	nein	nein	nein
B27-(65)-08-165-90-90-90-00-05	430	8,4	7023	6077	nein	nein	nein
B33-(65)-08-165-90-90-90-00-06	458	9,9	8603	6885	nein	ja	nein
B38-(65)-08-165-90-90-90-00-07	430	10,1	6327	5381	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser _{p12}	Ausreisser F ₁₅
B45-(65)-08-165-90-90-90-00-08	432	7,6	7768	7029	nein	nein	nein
B47-(65)-08-165-90-90-90-00-09	420	10,6	7998	7239	nein	nein	nein
B55-(65)-08-165-90-90-90-00-10	465	10,5	7821	6885	nein	ja	nein
B56-(65)-08-165-90-90-90-00-11	434	8,7	6513	4661	nein	nein	nein
B06-(66)-08-225-90-90-90-00-01	387	10,2	8411	7013	nein	nein	nein
B11-(66)-08-225-90-90-90-00-02	414	11,5	9570	5326	nein	nein	nein
B15-(66)-08-225-90-90-90-00-03	430	10,3	8621	8138	nein	nein	nein
B22-(66)-08-225-90-90-90-00-04	451	9,5	15676	9158	ja	nein	nein
B22-(66)-08-225-90-90-90-00-05	400	9,1	10374	9041	nein	nein	nein
B28-(66)-08-225-90-90-90-00-06	406	9,2	8569	8403	nein	nein	nein
B38-(66)-08-225-90-90-90-00-07	423	10,6	7123	6694	nein	nein	nein
B39-(66)-08-225-90-90-90-00-08	412	8,4	8668	7998	nein	nein	nein
B48-(66)-08-225-90-90-90-00-09	407	10,1	10551	8535	nein	nein	nein
B53-(66)-08-225-90-90-90-00-10	484	10,8	9401	7256	nein	nein	nein
B58-(66)-08-225-90-90-90-00-11	448	9,4	8526	6945	nein	nein	nein

Abb. Anhang E-5: Bjj-51-08-040-90-00-90-90-ii

Abb. Anhang E-6: Bjj-52-08-105-90-00-90-90-ii

Abb. Anhang E-7: Bjj-53-08-165-90-00-90-90-ii

Abb. Anhang E-9: Bjj-55-08-040-90-60-90-30-ii

Abb. Anhang E-11: Bjj-57-08-165-90-60-90-30-ii

Abb. Anhang E-8: Bjj-54-08-225-90-00-90-90-ii

Abb. Anhang E-10: Bjj-56-08-105-90-60-90-30-ii

Abb. Anhang E-12: Bjj-58-08-225-90-60-90-30-ii

Abb. Anhang E-13: Bjj-59-08-040-90-30-90-60-ii

Abb. Anhang E-15: Bjj-61-08-165-90-30-90-60-ii

Abb. Anhang E-17: Bjj-63-08-040-90-90-90-00-ii

Abb. Anhang E-14: Bjj-60-08-105-90-30-90-60-ii

Abb. Anhang E-16: Bjj-62-08-225-90-30-90-60-ii

Abb. Anhang E-18: Bjj-64-08-105-90-90-90-00-ii

Abb. Anhang E-19: Bjj-65-08-165-90-90-90-00-ii

Abb. Anhang E-20: Bjj-66-08-225-90-90-90-00-ii

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	^{Wh,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	^{Wh,e} [mm]
B03-(51)-08-040-90-00-90-90-01	0	598	0	3544	-0,017	4,527	0	5985	-0,023	8,607
B07-(51)-08-040-90-00-90-90-02	0	352	0	4014	-0,007	5,825	0	6729	-0,010	13,540
B13-(51)-08-040-90-00-90-90-03	0	295	0	3904	0,052	6,328	0	6518	0,066	15,180
B19-(51)-08-040-90-00-90-90-04	0	730	0	2339	-0,004	2,994	0	5829	0,012	7,773
B25-(51)-08-040-90-00-90-90-05	0	390	0	3471	-0,010	5,954	0	5795	-0,014	11,915
B33-(51)-08-040-90-00-90-90-06	0	678	0	4633	0,001	4,739	0	7742	0,001	9,321
B36-(51)-08-040-90-00-90-90-07	0	698	0	3498	-0,001	3,734	0	5865	-0,002	7,127
B41-(51)-08-040-90-00-90-90-08	0	579	0	3350	0,019	5,751	0	5856	0,018	10,077
B47-(51)-08-040-90-00-90-90-09	0	500	0	3248	-0,017	4,542	0	6500	-0,032	11,050
B50-(51)-08-040-90-00-90-90-10	0	473	0	3828	0,017	5,393	0	6395	0,014	10,820
B57-(51)-08-040-90-00-90-90-11	0	899	0	2597	-0,009	2,466	0	6479	-0,011	6,782
B41-(51)-08-040-90-00-90-90-test	0	598	0	2496	0,008	2,907	0	6224	0,015	9,140
B03-(52)-08-105-90-00-90-90-01	0	735	0	3802	-0,009	5,431	0	8327	-0,033	11,585
B07-(52)-08-105-90-00-90-90-02	0	915	0	4001	-0,021	4,471	0	9799	-0,053	10,805
B13-(52)-08-105-90-00-90-90-03	0	811	0	3836	-0,032	5,225	0	9518	-0,078	12,230
B19-(52)-08-105-90-00-90-90-04	0	888	0	4897	-0,021	5,031	0	8227	-0,048	8,780
B25-(52)-08-105-90-00-90-90-05	0	715	0	4669	-0,011	5,837	0	7789	-0,034	10,200
B33-(52)-08-105-90-00-90-90-06	0	869	0	4310	0,005	3,932	0	10728	-0,051	11,315
B36-(52)-08-105-90-00-90-90-07	0	803	0	4183	0,013	5,641	0	10432	-0,102	13,420
B41-(52)-08-105-90-00-90-90-08	0	821	0	5030	-0,020	4,713	0	8414	-0,033	8,834
B47-(52)-08-105-90-00-90-90-09	0	1019	0	5908	-0,009	4,839	0	9907	-0,018	8,763
B50-(52)-08-105-90-00-90-90-10	0	795	0	5299	-0,006	3,907	0	11145	-0,028	11,260
B57-(52)-08-105-90-00-90-90-11	0	973	0	5428	-0,046	4,679	0	9101	-0,086	8,455
B41-(52)-08-105-90-00-90-90-test	0	825	0	5134	-0,014	4,512	0	8562	-0,023	8,670
B03-(53)-08-165-90-00-90-90-01	0	703	0	4131	-0,024	5,599	0	10320	-0,207	14,405
B07-(53)-08-165-90-00-90-90-02	0	919	0	4338	-0,008	4,921	0	10828	-0,051	11,980

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B13-(53)-08-165-90-00-90-90-03	0	982	0	4179	-0,022	3,267	0	10431	-0,078	9,631
B19-(53)-08-165-90-00-90-90-04	0	851	0	4551	-0,024	4,329	0	11349	-0,076	12,320
B25-(53)-08-165-90-00-90-90-05	0	878	0	4241	-0,018	3,311	0	10555	-0,057	10,500
B33-(53)-08-165-90-00-90-90-06	0	1176	0	4692	-0,021	3,147	0	11664	-0,065	9,077
B36-(53)-08-165-90-00-90-90-07	0	940	0	5244	-0,011	5,744	0	10687	-0,067	11,535
B41-(53)-08-165-90-00-90-90-08	0	798	0	3546	-0,084	4,763	0	8824	-0,216	11,380
B47-(53)-08-165-90-00-90-90-09	0	974	0	4880	-0,016	3,842	0	10181	-0,046	9,284
B50-(53)-08-165-90-00-90-90-10	0	849	0	4091	0,003	4,262	0	10185	-0,049	11,440
B57-(53)-08-165-90-00-90-90-11	0	943	0	4553	-0,006	5,406	0	11364	-0,032	12,625
B03-(53)-08-165-90-00-90-90-test	0	749	0	3978	-0,016	4,437	0	9941	-0,070	12,400
B36-(53)-08-165-90-00-90-90-test	0	760	0	4167	-0,032	4,841	0	10411	-0,108	13,055
B04-(54)-08-225-90-00-90-90-01	0	1021	0	4654	-0,060	4,264	0	11592	-0,158	11,060
B12-(54)-08-225-90-00-90-90-02	0	1224	0	5076	-0,052	3,764	0	10757	-0,132	8,404
B15-(54)-08-225-90-00-90-90-03	0	1021	0	4439	-0,049	4,245	0	11054	-0,129	10,725
B18-(54)-08-225-90-00-90-90-04	0	1020	0	4856	-0,037	3,765	0	12117	-0,144	10,885
B25-(54)-08-225-90-00-90-90-05	0	979	0	4591	-0,161	4,507	0	11458	-0,289	11,520
B33-(54)-08-225-90-00-90-90-06	0	951	0	4596	0,003	5,418	0	11424	-0,093	12,595
B37-(54)-08-225-90-00-90-90-07	0	1058	0	6151	-0,037	5,638	0	12164	-0,089	11,320
B39-(54)-08-225-90-00-90-90-08	0	1061	0	4607	-0,051	4,168	0	11510	-0,135	10,675
B45-(54)-08-225-90-00-90-90-09	0	872	0	4696	-0,028	5,311	0	11718	-0,148	13,360
B54-(54)-08-225-90-00-90-90-10	0	989	0	4959	-0,049	4,886	0	12358	-0,174	12,370
B58-(54)-08-225-90-00-90-90-11	0	980	0	4905	-0,089	5,690	0	12207	-0,169	13,140
B01-(55)-08-040-90-60-90-30-01	0	229	0	1487	0,127	4,462	0	3706	0,498	14,165
B08-(55)-08-040-90-60-90-30-02	0	224	0	1268	0,057	4,549	0	3199	0,061	13,180
B16-(55)-08-040-90-60-90-30-03	0	169	0	2482	0,062	6,615	0	4150	0,103	16,465
B21-(55)-08-040-90-60-90-30-04	0	321	0	1395	0,062	5,270	0	3480	-0,035	11,775
B29-(55)-08-040-90-60-90-30-06	0	380	0	1510	-0,004	3,222	0	3155	-0,062	7,556
B35-(55)-08-040-90-60-90-30-07	0	229	0	2715	0,014	5,047	0	5609	0,126	17,705
B43-(55)-08-040-90-60-90-30-08	0	220	0	1267	0,049	3,496	0	3150	0,002	12,035
B45-(55)-08-040-90-60-90-30-09	0	301	0	1632	0,028	2,993	0	4068	0,209	11,095
B53-(55)-08-040-90-60-90-30-10	0	314	0	1302	0,045	5,049	0	3242	-0,134	11,235
B56-(55)-08-040-90-60-90-30-11	0	174	0	2016	0,072	5,323	0	3373	0,232	13,100
B01-(55)-08-040-90-60-90-30-test	0	211	0	2504	0,066	7,791	0	4183	0,170	15,740
B08-(55)-08-040-90-60-90-30-test	0	183	0	1314	0,051	4,280	0	3274	-0,014	14,985
B01-(56)-08-105-90-60-90-30-01	0	221	0	3640	0,098	10,067	0	6075	0,013	21,080
B09-(56)-08-105-90-60-90-30-02	0	667	0	2198	-0,010	2,446	0	5476	-0,029	7,359
B13-(56)-08-105-90-60-90-30-03	0	196	0	4014	-0,006	5,711	0	6709	0,022	19,495
B18-(56)-08-105-90-60-90-30-04	0	646	0	2162	-0,013	2,858	0	5388	-0,039	7,850
B23-(56)-08-105-90-60-90-30-05	0	345	0	4824	-0,003	6,962	0	8078	0,000	16,385
B30-(56)-08-105-90-60-90-30-06	0	550	0	2383	0,001	2,962	0	5928	-0,010	9,411

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B39-(56)-08-105-90-60-90-30-07	0	257	0	4777	0,014	8,822	0	7976	0,022	21,265
B44-(56)-08-105-90-60-90-30-08	0	586	0	2332	-0,016	2,412	0	5821	-0,071	8,363
B46-(56)-08-105-90-60-90-30-09	0	241	0	3527	-0,009	4,431	0	5896	0,005	14,255
B50-(56)-08-105-90-60-90-30-10	0	753	0	2476	-0,023	3,810	0	6148	-0,057	8,688
B59-(56)-08-105-90-60-90-30-11	0	397	0	4118	-0,021	3,926	0	6898	-0,004	10,935
B50-(56)-08-105-90-60-90-30-test	0	426	0	3755	-0,009	4,728	0	6272	-0,004	10,635
B06-(57)-08-165-90-60-90-30-01	0	695	0	4062	-0,045	6,417	0	9955	-0,089	14,895
B12-(57)-08-165-90-60-90-30-02	0	715	0	2785	-0,039	4,506	0	6941	-0,094	10,321
B17-(57)-08-165-90-60-90-30-03	0	781	0	3373	-0,008	3,084	0	8404	-0,027	9,522
B21-(57)-08-165-90-60-90-30-04	0	605	0	4454	0,037	6,086	0	10684	-0,148	16,390
B23-(57)-08-165-90-60-90-30-05	0	763	0	3734	-0,005	5,208	0	9279	-0,038	12,475
B31-(57)-08-165-90-60-90-30-06	0	727	0	2754	-0,031	3,937	0	6859	-0,081	9,585
B34-(57)-08-165-90-60-90-30-07	0	627	0	3310	-0,024	4,782	0	8217	-0,096	12,605
B42-(57)-08-165-90-60-90-30-08	0	828	0	3253	-0,044	4,904	0	8108	-0,085	10,770
B47-(57)-08-165-90-60-90-30-09	0	628	0	3787	-0,006	4,429	0	9426	-0,032	13,405
B52-(57)-08-165-90-60-90-30-10	0	738	0	2786	-0,042	4,672	0	6942	-0,145	10,305
B55-(57)-08-165-90-60-90-30-11	0	698	0	3608	-0,022	5,948	0	9006	-0,066	13,680
B17-(57)-08-165-90-60-90-30-test	0	589	0	2976	-0,006	4,151	0	7424	-0,061	11,700
B01-(58)-08-225-90-60-90-30-01	0	703	0	3828	-0,038	6,829	0	9536	-0,117	14,945
B10-(58)-08-225-90-60-90-30-02	0	887	0	4427	-0,395	6,310	0	11032	-0,530	13,760
B13-(58)-08-225-90-60-90-30-03	0	698	0	4697	-0,041	7,106	0	11712	-0,088	17,160
B20-(58)-08-225-90-60-90-30-04	0	794	0	4237	-0,066	5,792	0	10545	-0,120	13,735
B26-(58)-08-225-90-60-90-30-05	0	765	0	5019	-0,100	7,134	0	12527	-0,168	16,945
B30-(58)-08-225-90-60-90-30-06	0	735	0	4166	-0,117	6,765	0	10376	-0,193	15,210
B34-(58)-08-225-90-60-90-30-07	0	1059	0	4797	-0,038	4,618	0	11986	-0,076	11,405
B41-(58)-08-225-90-60-90-30-08	0	719	0	4357	-0,075	5,894	0	10875	-0,154	14,955
B47-(58)-08-225-90-60-90-30-09	0	658	0	4439	-0,026	6,845	0	11072	-0,093	16,925
B53-(58)-08-225-90-60-90-30-10	0	860	0	3967	-0,075	4,779	0	9885	-0,128	11,655
B56-(58)-08-225-90-60-90-30-11	0	871	0	4142	-0,091	6,225	0	10315	-0,170	13,315
B20-(58)-08-225-90-60-90-30-test	0	816	0	4615	-0,192	7,567	0	11518	-0,259	16,025
B47-(58)-08-225-90-60-90-30-test	0	858	0	5040	-0,023	6,701	0	12586	-0,057	15,500
B05-(59)-08-040-90-30-90-60-01	0	272	0	3301	-0,027	5,539	0	5520	0,015	13,689
B12-(59)-08-040-90-30-90-60-02	0	506	0	1801	-0,001	2,889	0	4401	0,008	8,029
B15-(59)-08-040-90-30-90-60-03	0	461	0	3324	0,038	5,230	0	5565	0,060	10,096
B18-(59)-08-040-90-30-90-60-04	0	692	0	2134	0,004	3,294	0	4263	0,007	6,371
B23-(59)-08-040-90-30-90-60-05	0	815	0	2221	0,002	3,230	0	4432	0,082	5,942
B33-(59)-08-040-90-30-90-60-06	0	742	0	2392	-0,006	3,990	0	5328	-0,009	7,945
B35-(59)-08-040-90-30-90-60-07	0	423	0	2939	0,021	5,288	0	5286	0,135	10,837
B41-(59)-08-040-90-30-90-60-08	0	1440	0	2143	-0,015	4,385	0	4974	-0,019	6,352
B49-(59)-08-040-90-30-90-60-09	0	254	0	3059	0,050	6,750	0	5124	0,162	14,863

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	Fh,s [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	^{Wv,e} [mm]	Wh,e [mm]
B52-(59)-08-040-90-30-90-60-10	0	684	0	1839	-0,027	5,632	0	3663	-0,060	8,302
B58-(59)-08-040-90-30-90-60-11	0	334	0	3670	-0,003	6,456	0	6139	0,003	13,847
B41-(59)-08-040-90-30-90-60-test	0	498	0	1599	0,105	5,339	0	3621	0,058	9,395
B02-(60)-08-105-90-30-90-60-01	0	623	0	3072	0,004	3,077	0	6145	-0,010	8,007
B10-(60)-08-105-90-30-90-60-02	0	827	0	3112	0,002	4,842	0	6226	-0,009	8,608
B14-(60)-08-105-90-30-90-60-03	0	1281	0	4027	0,002	3,865	0	8029	-0,009	6,988
B18-(60)-08-105-90-30-90-60-04	0	898	0	3019	-0,012	3,136	0	7089	-0,041	7,666
B24-(60)-08-105-90-30-90-60-05	0	992	0	2977	-0,008	2,733	0	5969	-0,018	5,751
B32-(60)-08-105-90-30-90-60-06	0	1050	0	3507	-0,011	4,271	0	7016	-0,027	7,612
B38-(60)-08-105-90-30-90-60-07	0	824	0	6176	-0,024	4,159	0	10339	-0,044	9,214
B43-(60)-08-105-90-30-90-60-08	0	1213	0	3261	-0,026	4,739	0	6522	-0,064	7,427
B45-(60)-08-105-90-30-90-60-09	0	1304	0	3855	-0,009	3,651	0	7710	-0,023	6,608
B51-(60)-08-105-90-30-90-60-10	0	903	0	3027	-0,009	4,913	0	6532	-0,035	8,792
B57-(60)-08-105-90-30-90-60-11	0	1014	0	3054	-0,003	2,798	0	6366	-0,007	6,063
B01-(61)-08-165-90-30-90-60-01	0	850	0	4250	-0,080	4,380	0	10606	-0,260	11,855
B13-(61)-08-165-90-30-90-60-02	0	786	0	4645	-0,118	7,232	0	11566	-0,317	16,040
B17-(61)-08-165-90-30-90-60-03	0	757	0	4121	-0,079	5,797	0	10270	-0,192	13,915
B20-(61)-08-165-90-30-90-60-04	0	907	0	4385	-0,101	5,699	0	10938	-0,237	12,925
B24-(61)-08-165-90-30-90-60-05	0	752	0	4475	-0,016	4,360	0	11134	-0,155	13,210
B29-(61)-08-165-90-30-90-60-06	0	779	0	4233	-0,082	6,128	0	10540	-0,207	14,220
B35-(61)-08-165-90-30-90-60-07	0	1005	0	5138	-0,047	3,202	0	11888	-0,123	9,915
B42-(61)-08-165-90-30-90-60-08	0	968	0	4864	-0,091	6,261	0	12104	-0,291	13,740
B46-(61)-08-165-90-30-90-60-09	0	763	0	3990	-0,008	4,048	0	9924	-0,112	11,825
B54-(61)-08-165-90-30-90-60-10	0	872	0	4710	-0,117	7,599	0	11726	-0,272	15,645
B59-(61)-08-165-90-30-90-60-11	0	905	0	4459	-0,043	5,060	0	11118	-0,152	12,415
B54-(61)-08-165-90-30-90-60-test	0	1021	0	4815	-0,146	6,043	0	11976	-0,334	13,055
B05-(62)-08-225-90-30-90-60-01	0	1082	0	4606	-0,065	5,433	0	11402	-0,196	11,715
B12-(62)-08-225-90-30-90-60-02	0	932	0	4435	-0,192	5,746	0	11067	-0,354	12,865
B16-(62)-08-225-90-30-90-60-03	0	819	0	4587	-0,108	5,401	0	11452	-0,222	13,780
B21-(62)-08-225-90-30-90-60-04	0	971	0	4725	-0,102	6,853	0	11788	-0,228	14,125
B28-(62)-08-225-90-30-90-60-05	0	972	0	4749	-0,073	4,454	0	11838	-0,170	11,745
B30-(62)-08-225-90-30-90-60-06	0	905	0	4519	-0,180	5,814	0	11238	-0,403	13,240
B34-(62)-08-225-90-30-90-60-07	0	826	0	4849	-0,119	6,714	0	12098	-0,213	15,490
B40-(62)-08-225-90-30-90-60-08	0	861	0	4888	-0,115	7,072	0	12197	-0,275	15,565
B48-(62)-08-225-90-30-90-60-09	0	939	0	5388	-0,097	5,418	0	13435	-0,335	13,985
B54-(62)-08-225-90-30-90-60-10	0	1084	0	4085	-0,082	4,511	0	10209	-0,172	10,162
B59-(62)-08-225-90-30-90-60-11	0	1116	0	4950	-0,107	4,543	0	12354	-0,246	11,180
B48-(62)-08-225-90-30-90-60-test	0	663	0	4890	-0,016	4,301	0	8172	-0,025	9,253
B02-(63)-08-040-90-90-90-00-01	0	230	0	1195	0,005	5,243	0	2332	0,102	10,174
B09-(63)-08-040-90-90-90-00-02	0	229	0	1365	0,074	6,652	0	2728	0,115	12,602

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B12-(63)-08-040-90-90-90-00-03	0	259	0	867	0,016	6,056	0	1736	0,061	9,416
B19-(63)-08-040-90-90-90-00-04	0	253	0	1252	0,025	7,356	0	2506	0,047	12,305
B26-(63)-08-040-90-90-90-00-05	0	115	0	2151	0,031	8,761	0	3589	0,067	21,212
B28-(63)-08-040-90-90-90-00-06	0	66	0	2301	0,017	12,662	0	3843	0,119	36,016
B34-(63)-08-040-90-90-90-00-07	0	235	0	1300	-0,113	5,572	0	2589	-0,169	11,059
B39-(63)-08-040-90-90-90-00-08	0	77	0	2283	0,009	8,688	0	3809	0,066	28,406
B48-(63)-08-040-90-90-90-00-09	0	142	0	1824	0,166	8,484	0	3051	-0,173	17,135
B52-(63)-08-040-90-90-90-00-10	0	210	0	1558	0,143	4,270	0	3260	-0,111	12,392
B55-(63)-08-040-90-90-90-00-11	0	108	0	2365	0,073	6,618	0	4283	0,163	24,344
B02-(63)-08-040-90-90-90-00-test	0	154	0	1486	0,030	6,948	0	3024	0,146	16,934
B26-(63)-08-040-90-90-90-00-test	0	246	0	1363	-0,004	6,683	0	2727	0,004	12,222
B02-(64)-08-105-90-90-90-00-01	0	276	0	1904	0,001	3,923	0	3801	-0,002	10,792
B07-(64)-08-105-90-90-90-00-02	0	535	0	2321	-0,124	4,852	0	4622	-0,138	9,152
B14-(64)-08-105-90-90-90-00-03	0	421	0	1794	0,002	3,433	0	3583	-0,009	7,679
B22-(64)-08-105-90-90-90-00-04	0	377	0	1792	-0,015	3,849	0	4151	-0,060	10,106
B27-(64)-08-105-90-90-90-00-05	0	477	0	1941	0,025	5,588	0	4029	0,026	9,968
B34-(64)-08-105-90-90-90-00-06	0	290	0	1912	0,000	3,838	0	3995	0,001	11,011
B34-(64)-08-105-90-90-90-00-07	0	242	0	2982	-0,036	6,861	0	5399	0,045	16,852
B40-(64)-08-105-90-90-90-00-08	0	266	0	1879	0,033	4,876	0	3761	0,042	11,953
B48-(64)-08-105-90-90-90-00-09	0	240	0	1695	0,003	4,316	0	3799	0,012	13,068
B51-(64)-08-105-90-90-90-00-10	0	440	0	1891	0,007	2,432	0	4275	-0,005	7,851
B57-(64)-08-105-90-90-90-00-11	0	407	0	2163	0,007	5,588	0	4401	-0,009	11,085
B04-(65)-08-165-90-90-90-00-01	0	412	0	2165	0,008	5,021	0	5247	-0,036	12,501
B10-(65)-08-165-90-90-90-00-02	0	482	0	2190	0,013	4,283	0	5339	-0,061	10,817
B17-(65)-08-165-90-90-90-00-03	0	387	0	2149	0,024	4,922	0	4703	-0,069	11,516
B19-(65)-08-165-90-90-90-00-04	0	452	0	1889	0,018	3,335	0	4607	-0,071	9,348
B27-(65)-08-165-90-90-90-00-05	0	443	0	2113	0,012	5,889	0	4221	-0,144	10,644
B33-(65)-08-165-90-90-90-00-06	0	499	0	2588	0,083	5,912	0	5171	-0,055	11,091
B38-(65)-08-165-90-90-90-00-07	0	443	0	1903	0,005	6,234	0	4389	-0,086	11,851
B45-(65)-08-165-90-90-90-00-08	0	534	0	2343	-0,005	4,205	0	5603	-0,061	10,311
B47-(65)-08-165-90-90-90-00-09	0	603	0	2405	0,004	4,487	0	5955	-0,073	10,375
B55-(65)-08-165-90-90-90-00-10	0	509	0	2353	-0,024	4,514	0	5792	-0,170	11,272
B56-(65)-08-165-90-90-90-00-11	0	357	0	2318	0,112	8,545	0	4876	-0,681	15,718
B11-(66)-08-225-90-90-90-00-02	0	462	0	2874	-0,228	9,686	0	5875	-0,371	16,185
B15-(66)-08-225-90-90-90-00-03	0	604	0	2589	-0,073	5,361	0	6451	-0,160	11,757
B22-(66)-08-225-90-90-90-00-04	0	794	0	4715	-0,059	9,453	0	9684	-0,102	15,712
B22-(66)-08-225-90-90-90-00-05	0	714	0	3117	-0,256	6,379	0	7778	-0,346	12,906
B28-(66)-08-225-90-90-90-00-06	0	719	0	2584	-0,034	3,685	0	5894	-0,091	8,290
B38-(66)-08-225-90-90-90-00-07	0	567	0	2139	0,034	5,223	0	5332	-0,058	10,853
B39-(66)-08-225-90-90-90-00-08	0	617	0	2610	-0,012	5,109	0	6500	-0,064	11,411

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	<i>w</i> _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	Wh,e [mm]
B48-(66)-08-225-90-90-90-00-09	0	671	0	3171	0,011	6,550	0	7909	-0,077	13,609
B53-(66)-08-225-90-90-90-00-10	0	523	0	2829	-0,085	6,924	0	5658	-0,381	12,332
B58-(66)-08-225-90-90-90-00-11	0	516	0	2564	0,025	5,819	0	5219	-0,075	10,967

E-3 Kombinierte Beanspruchung

E-3.1 $\gamma = 30^{\circ}$

Tab.Anhang E-5 Einzelversuchsergebnisse Tragfähigkeit kombinierte Beanspruchung mit $\gamma = 30^{\circ}$

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F ₁₅ [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B04-(19)-08-040-30-00-30-90-01	382	7,6	4526	4526	nein	nein	nein
B12-(19)-08-040-30-00-30-90-02	462	8,1	5703	5703	nein	nein	nein
B15-(19)-08-040-30-00-30-90-03	377	8,0	4955	4955	nein	nein	nein
B18-(19)-08-040-30-00-30-90-04	405	8,6	5131	5131	nein	nein	nein
B25-(19)-08-040-30-00-30-90-05	418	8,8	4863	4863	nein	nein	nein
B33-(19)-08-040-30-00-30-90-06	390	8,1	5166	5166	nein	nein	nein
B37-(19)-08-040-30-00-30-90-07	447	8,7	5508	5508	nein	nein	nein
B39-(19)-08-040-30-00-30-90-08	419	7,9	5760	5760	nein	nein	nein
B45-(19)-08-040-30-00-30-90-09	429	8,5	5115	5115	nein	nein	nein
B54-(19)-08-040-30-00-30-90-10	459	8,0	5364	5364	nein	nein	nein
B58-(19)-08-040-30-00-30-90-11	441	8,4	5248	5248	nein	nein	nein
B04-(20)-08-105-30-00-30-90-01	381	8,5	12427	12427	nein	nein	nein
B12-(20)-08-105-30-00-30-90-02	429	9,0	12814	12814	nein	nein	nein
B15-(20)-08-105-30-00-30-90-03	388	8,7	12036	12036	nein	nein	nein
B18-(20)-08-105-30-00-30-90-04	388	8,9	11850	11850	nein	nein	nein
B25-(20)-08-105-30-00-30-90-05	421	9,1	12982	12982	nein	nein	nein
B33-(20)-08-105-30-00-30-90-06	418	8,9	15158	15158	nein	nein	nein
B37-(20)-08-105-30-00-30-90-07	427	8,7	12577	12577	nein	nein	nein
B39-(20)-08-105-30-00-30-90-08	407	9,2	13246	13246	nein	nein	nein
B45-(20)-08-105-30-00-30-90-09	426	8,7	14226	14226	nein	nein	nein
B54-(20)-08-105-30-00-30-90-10	456	8,7	15125	15125	nein	nein	nein
B58-(20)-08-105-30-00-30-90-11	430	8,9	12807	12807	nein	nein	nein
B05-(21)-08-165-30-00-30-90-01	394	8,6	18893	18893	nein	nein	nein
B08-(21)-08-165-30-00-30-90-02	410	8,7	18367	18367	nein	nein	nein
B14-(21)-08-165-30-00-30-90-03	428	8,6	20956	20956	nein	nein	nein
B22-(21)-08-165-30-00-30-90-04	416	8,5	19918	19918	nein	nein	nein
B27-(21)-08-165-30-00-30-90-05	412	8,6	20118	20118	nein	nein	nein
B32-(21)-08-165-30-00-30-90-06	435	8,3	22679	22679	nein	nein	nein
B35-(21)-08-165-30-00-30-90-07	424	9,0	21452	21452	nein	nein	nein

Prüfkörper [ID]	ρ12 [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B43-(21)-08-165-30-00-30-90-08	432	9,2	21448	21448	nein	nein	nein
B46-(21)-08-165-30-00-30-90-09	411	8,5	18605	18605	nein	nein	nein
B50-(21)-08-165-30-00-30-90-10	466	8,8	18209	18209	nein	nein	nein
B58-(21)-08-165-30-00-30-90-11	436	8,7	20332	20332	nein	nein	nein
B04-(22)-08-225-30-00-30-90-01	386	9,0	21184	21184	nein	ja	nein
B11-(22)-08-225-30-00-30-90-02	432	8,9	20788	20788	nein	nein	nein
B14-(22)-08-225-30-00-30-90-03	431	8,9	21469	21469	nein	nein	nein
B22-(22)-08-225-30-00-30-90-04	424	8,5	20596	20596	nein	nein	nein
B23-(22)-08-225-30-00-30-90-05	423	8,3	21790	21790	nein	nein	nein
B30-(22)-08-225-30-00-30-90-06	445	8,5	20799	20799	nein	nein	nein
B38-(22)-08-225-30-00-30-90-07	431	8,8	20707	20707	nein	nein	nein
B41-(22)-08-225-30-00-30-90-08	485	9,2	21630	21630	nein	nein	nein
B49-(22)-08-225-30-00-30-90-09	436	8,9	21377	21377	nein	nein	nein
B50-(22)-08-225-30-00-30-90-10	457	8,7	20851	20851	nein	nein	nein
B55-(22)-08-225-30-00-30-90-11	464	8,9	21113	21113	nein	nein	nein
B01-(23)-08-040-30-60-30-30-01	404	8,1	3528	3528	nein	nein	nein
B08-(23)-08-040-30-60-30-30-02	405	8,1	2629	2629	ja	nein	ja
B16-(23)-08-040-30-60-30-30-03	401	8,5	3561	3561	nein	nein	nein
B21-(23)-08-040-30-60-30-30-04	435	8,4	3486	3486	nein	nein	nein
B25-(23)-08-040-30-60-30-30-05	403	8,4	3477	3477	nein	nein	nein
B29-(23)-08-040-30-60-30-30-06	391	8,5	2352	2352	ja	nein	ja
B35-(23)-08-040-30-60-30-30-07	432	8,3	4038	4038	nein	nein	nein
B43-(23)-08-040-30-60-30-30-08	417	8,8	4770	4770	ja	nein	ja
B45-(23)-08-040-30-60-30-30-09	420	8,4	3335	3335	nein	nein	nein
B53-(23)-08-040-30-60-30-30-10	411	8,7	3100	3100	nein	nein	nein
B56-(23)-08-040-30-60-30-30-11	441	8,9	3604	3604	nein	nein	nein
B25-(23)-08-040-30-60-30-30-test	401	7,8	3582	3582	nein	nein	nein
B01-(24)-08-105-30-60-30-30-01	406	9,0	7102	7102	nein	nein	nein
B09-(24)-08-105-30-60-30-30-02	404	8,9	9257	9257	nein	nein	nein
B13-(24)-08-105-30-60-30-30-03	384	8,5	6290	6290	nein	nein	nein
B18-(24)-08-105-30-60-30-30-04	426	8,0	8286	8286	nein	nein	nein
B23-(24)-08-105-30-60-30-30-05	423	8,8	8826	8826	nein	nein	nein
B30-(24)-08-105-30-60-30-30-06	430	8,6	8737	8737	nein	nein	nein
B39-(24)-08-105-30-60-30-30-07	399	8,8	8326	8326	nein	nein	nein
B44-(24)-08-105-30-60-30-30-08	421	8,7	8765	8765	nein	nein	nein
B46-(24)-08-105-30-60-30-30-09	373	8,7	6387	6387	nein	nein	nein
B50-(24)-08-105-30-60-30-30-10	429	8,7	7928	7928	nein	nein	nein
B59-(24)-08-105-30-60-30-30-11	445	8,5	7017	7017	nein	nein	nein
B06-(25)-08-165-30-60-30-30-01	417	9,6	14214	14214	nein	nein	nein
B12-(25)-08-165-30-60-30-30-02	403	9,6	12207	12207	nein	nein	nein

Prüfkörper [ID]	ρ12 [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B17-(25)-08-165-30-60-30-30-03	430	9,5	12618	12618	nein	nein	nein
B21-(25)-08-165-30-60-30-30-04	441	8,7	18640	18640	ja	nein	ja
B23-(25)-08-165-30-60-30-30-05	431	9,3	13718	13718	nein	nein	nein
B31-(25)-08-165-30-60-30-30-06	400	9,5	13214	13214	nein	nein	nein
B34-(25)-08-165-30-60-30-30-07	431	9,0	13155	13155	nein	nein	nein
B42-(25)-08-165-30-60-30-30-08	414	9,6	11616	11616	nein	nein	nein
B47-(25)-08-165-30-60-30-30-09	433	9,7	12643	12643	nein	nein	nein
B52-(25)-08-165-30-60-30-30-10	465	9,6	17223	17223	nein	nein	nein
B55-(25)-08-165-30-60-30-30-11	468	9,9	14492	14492	nein	nein	nein
B12-(25)-08-165-30-60-30-30-test	397	9,6	14902	14902	nein	nein	nein
B01-(26)-08-225-30-60-30-30-01	360	8,5	18744	18744	nein	ja	nein
B10-(26)-08-225-30-60-30-30-02	412	9,1	19933	19933	nein	nein	nein
B13-(26)-08-225-30-60-30-30-03	428	9,6	18296	18296	nein	nein	nein
B20-(26)-08-225-30-60-30-30-04	421	9,3	20016	20016	nein	nein	nein
B26-(26)-08-225-30-60-30-30-05	424	9,4	19389	19389	nein	nein	nein
B30-(26)-08-225-30-60-30-30-06	430	9,0	20026	20026	nein	nein	nein
B34-(26)-08-225-30-60-30-30-07	429	9,4	19389	19389	nein	nein	nein
B41-(26)-08-225-30-60-30-30-08	420	9,0	19582	19582	nein	nein	nein
B47-(26)-08-225-30-60-30-30-09	420	9,7	17294	17294	nein	nein	nein
B53-(26)-08-225-30-60-30-30-10	467	9,2	19559	19559	nein	ja	nein
B56-(26)-08-225-30-60-30-30-11	439	9,2	15232	15232	ja	nein	ja
B26-(26)-08-225-30-60-30-30-test	423	9,2	19115	19115	nein	nein	nein
B06-(27)-08-040-30-30-30-60-01	379	8,4	3797	3797	nein	nein	nein
B12-(27)-08-040-30-30-30-60-02	426	8,1	4687	4687	nein	nein	nein
B17-(27)-08-040-30-30-30-60-03	427	8,1	4132	4132	nein	nein	nein
B21-(27)-08-040-30-30-30-60-04	409	8,3	4276	4276	nein	nein	nein
B24-(27)-08-040-30-30-30-60-05	398	8,5	3494	3494	nein	nein	nein
B31-(27)-08-040-30-30-30-60-06	463	8,2	4994	4994	nein	nein	nein
B36-(27)-08-040-30-30-30-60-07	452	8,7	3761	3761	nein	nein	nein
B44-(27)-08-040-30-30-30-60-08	447	8,2	6080	6080	ja	ja	ja
B46-(27)-08-040-30-30-30-60-09	384	8,0	3755	3755	nein	nein	nein
B54-(27)-08-040-30-30-30-60-10	424	8,8	5249	5249	nein	nein	nein
B56-(27)-08-040-30-30-30-60-11	427	8,7	4258	4258	nein	nein	nein
B24-(27)-08-040-30-30-30-60-test	408	8,1	4317	4317	nein	nein	nein
B03-(28)-08-105-30-30-30-60-01	476	8,3	12244	12244	nein	nein	nein
B09-(28)-08-105-30-30-30-60-02	400	8,9	10489	10489	nein	nein	nein
B16-(28)-08-105-30-30-30-60-03	397	8,9	9557	9557	nein	nein	nein
B20-(28)-08-105-30-30-30-60-04	389	8,2	11179	11179	nein	nein	nein
B27-(28)-08-105-30-30-30-60-05	424	9,1	10890	10890	nein	nein	nein
B29-(28)-08-105-30-30-30-60-06	452	8,6	14425	14425	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B39-(28)-08-105-30-30-30-60-07	411	9,2	11145	11145	nein	nein	nein
B44-(28)-08-105-30-30-30-60-08	418	8,7	12409	12409	nein	nein	nein
B50-(28)-08-105-30-30-30-60-09	452	9,0	10246	10246	nein	nein	nein
B52-(28)-08-105-30-30-30-60-10	420	8,9	11101	11101	nein	nein	nein
B59-(28)-08-105-30-30-30-60-11	458	8,9	9847	9847	nein	nein	nein
B09-(28)-08-105-30-30-30-60-test	496	8,0	14234	14234	nein	nein	nein
B59-(28)-08-105-30-30-30-60-test	460	8,1	11270	11270	nein	nein	nein
B03-(29)-08-165-30-30-30-60-01	416	9,4	15684	15684	nein	nein	nein
B11-(29)-08-165-30-30-30-60-02	478	10,2	22370	22370	nein	nein	nein
B15-(29)-08-165-30-30-30-60-03	433	9,4	20758	20758	nein	nein	nein
B21-(29)-08-165-30-30-30-60-04	448	9,6	21244	21244	nein	nein	nein
B26-(29)-08-165-30-30-30-60-05	435	9,7	17296	17296	nein	nein	nein
B32-(29)-08-165-30-30-30-60-06	453	10,0	21420	21420	nein	nein	nein
B37-(29)-08-165-30-30-30-60-07	428	9,7	18657	18657	nein	nein	nein
B42-(29)-08-165-30-30-30-60-08	413	10,1	18404	18404	nein	nein	nein
B49-(29)-08-165-30-30-30-60-09	420	9,8	17124	17124	nein	nein	nein
B53-(29)-08-165-30-30-30-60-10	480	10,2	21488	21488	nein	nein	nein
B58-(29)-08-165-30-30-30-60-11	453	9,8	18246	18246	nein	nein	nein
B01-(30)-08-225-30-30-30-60-01	417	9,1	20745	20745	nein	nein	nein
B07-(30)-08-225-30-30-30-60-02	394	7,5	21698	21698	nein	nein	nein
B17-(30)-08-225-30-30-30-60-03	444	8,1	21261	21261	nein	nein	nein
B20-(30)-08-225-30-30-30-60-04	419	9,0	20651	20651	nein	nein	nein
B26-(30)-08-225-30-30-30-60-05	432	9,2	20609	20609	nein	nein	nein
B32-(30)-08-225-30-30-30-60-06	455	9,1	20861	20861	nein	nein	nein
B36-(30)-08-225-30-30-30-60-07	447	9,4	21161	21161	nein	nein	nein
B42-(30)-08-225-30-30-30-60-08	429	9,1	21377	21377	nein	nein	nein
B49-(30)-08-225-30-30-30-60-09	440	8,7	20908	20908	nein	nein	nein
B51-(30)-08-225-30-30-30-60-10	422	8,1	20683	20683	nein	nein	nein
B55-(30)-08-225-30-30-30-60-11	464	7,9	21241	21241	nein	nein	nein
B20-(30)-08-225-30-30-30-60-test	430	8,2	21004	21004	nein	nein	nein
B49-(30)-08-225-30-30-30-60-test	442	9,2	20815	20815	nein	nein	nein
B02-(31)-08-040-30-90-30-00-01	414	8,1	2546	2546	nein	nein	nein
B09-(31)-08-040-30-90-30-00-02	389	8,6	2469	2469	nein	nein	nein
B12-(31)-08-040-30-90-30-00-03	395	8,0	1502	1502	ja	nein	ja
B19-(31)-08-040-30-90-30-00-04	400	8,5	2275	2275	nein	nein	nein
B26-(31)-08-040-30-90-30-00-05	424	8,3	2831	2831	nein	nein	nein
B28-(31)-08-040-30-90-30-00-06	417	8,3	2201	2201	nein	nein	nein
B34-(31)-08-040-30-90-30-00-07	408	8,5	2561	2561	nein	nein	nein
B39-(31)-08-040-30-90-30-00-08	408	8,7	2284	2284	nein	nein	nein
B48-(31)-08-040-30-90-30-00-09	418	8,4	1930	1930	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B52-(31)-08-040-30-90-30-00-10	408	7,7	2702	2702	nein	nein	nein
B55-(31)-08-040-30-90-30-00-11	450	8,0	2687	2687	nein	ja	nein
B07-(32)-08-105-30-90-30-00-02	420	9,2	7986	7986	ja	nein	ja
B14-(32)-08-105-30-90-30-00-03	434	8,8	3632	3632	nein	nein	nein
B22-(32)-08-105-30-90-30-00-04	398	8,7	4602	4602	nein	nein	nein
B27-(32)-08-105-30-90-30-00-05	434	7,5	4585	4585	nein	nein	nein
B34-(32)-08-105-30-90-30-00-06	418	8,6	4356	4356	nein	nein	nein
B34-(32)-08-105-30-90-30-00-07	417	8,8	3729	3729	nein	nein	nein
B40-(32)-08-105-30-90-30-00-08	405	9,1	5072	5072	nein	nein	nein
B48-(32)-08-105-30-90-30-00-09	379	7,2	2998	2998	nein	nein	nein
B51-(32)-08-105-30-90-30-00-10	437	8,9	4804	4804	nein	nein	nein
B57-(32)-08-105-30-90-30-00-11	424	8,9	5307	5307	nein	nein	nein
B07-(33)-08-165-30-90-30-00-02	377	9,7	8666	8666	nein	ja	nein
B14-(33)-08-165-30-90-30-00-03	437	9,7	10300	10300	ja	nein	ja
B22-(33)-08-165-30-90-30-00-04	413	9,6	8813	8813	nein	nein	nein
B27-(33)-08-165-30-90-30-00-05	432	9,6	8025	8025	nein	nein	nein
B34-(33)-08-165-30-90-30-00-06	422	9,5	8241	8241	nein	nein	nein
B34-(33)-08-165-30-90-30-00-07	407	9,9	6776	6776	ja	nein	ja
B40-(33)-08-165-30-90-30-00-08	414	10,2	8830	8830	nein	nein	nein
B48-(33)-08-165-30-90-30-00-09	398	9,2	6143	6143	ja	nein	ja
B51-(33)-08-165-30-90-30-00-10	449	10,3	8006	8006	nein	nein	nein
B57-(33)-08-165-30-90-30-00-11	418	10,1	9721	9721	nein	nein	nein
B09-(34)-08-225-30-90-30-00-02	409	9,4	8889	8889	nein	nein	nein
B16-(34)-08-225-30-90-30-00-03	409	9,0	13025	13025	nein	nein	nein
B22-(34)-08-225-30-90-30-00-04	416	8,7	11029	11029	nein	nein	nein
B25-(34)-08-225-30-90-30-00-05	426	9,3	9382	9382	nein	nein	nein
B28-(34)-08-225-30-90-30-00-06	410	7,3	8924	8924	nein	nein	nein
B37-(34)-08-225-30-90-30-00-07	425	8,8	16401	16401	nein	nein	nein
B40-(34)-08-225-30-90-30-00-08	420	9,0	10511	10511	nein	nein	nein
B49-(34)-08-225-30-90-30-00-09	398	9,0	10954	10954	nein	nein	nein
B51-(34)-08-225-30-90-30-00-10	438	8,9	14526	14526	nein	nein	nein
B57-(34)-08-225-30-90-30-00-11	419	9,2	12264	12264	nein	nein	nein

Abb. Anhang E-21: Bjj-19-08-040-30-00-30-90-ii

Abb. Anhang E-23: Bjj-21-08-165-30-00-30-90-ii

Abb. Anhang E-25: Bjj-23-08-040-30-60-30-30-ii

Abb. Anhang E-22: Bjj-20-08-105-30-00-30-90-ii

Abb. Anhang E-24: Bjj-22-08-225-30-00-30-90-ii

Abb. Anhang E-26: Bjj-24-08-105-30-60-30-30-ii

Abb. Anhang E-27: Bjj-25-08-165-30-60-30-30-ii

Abb. Anhang E-29: Bjj-27-08-040-30-30-30-60-ii

Abb. Anhang E-31: Bjj-29-08-165-30-30-30-60-ii

Abb. Anhang E-28: Bjj-26-08-225-30-60-30-30-ii

w [mm]

24000 20000

16000

8000

4000

0

0 2 4 6 8 10 12 14 16 18 20

Z 12000

Abb. Anhang E-30: Bjj-28-08-105-30-30-30-60-ii

Abb. Anhang E-32: Bjj-30-08-225-30-30-30-60-ii

Abb. Anhang E-33: Bjj-31-08-040-30-90-30-00-ii

Abb. Anhang E-35: Bjj-33-08-165-30-90-30-00-ii

Abb. Anhang E-34: Bjj-32-08-105-30-90-30-00-ii

Abb. Anhang E-36: Bjj-34-08-225-30-90-30-00-ii

Tab.Anhang E-6 Einzelversuchsergebnisse Steifigkeit kombinierte Beanspruchung mit $\gamma = 30^{\circ}$

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	<i>F</i> _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	^{Wh,e} [mm]
B04-(19)-08-040-30-00-30-90-01	9449	21517	1524	880	0,236	0,022	2932	1693	0,385	0,059
B12-(19)-08-040-30-00-30-90-02	7387	758	1687	974	0,084	0,118	3172	1831	0,285	1,250
B15-(19)-08-040-30-00-30-90-03	5785	752	1923	1110	0,154	0,034	3217	1857	0,378	1,028
B18-(19)-08-040-30-00-30-90-04	17648	6283	1344	776	0,076	0,021	2680	1547	0,152	0,144
B25-(19)-08-040-30-00-30-90-05	6968	1670	1278	738	0,179	0,106	2549	1472	0,362	0,546
B33-(19)-08-040-30-00-30-90-06	6919	1020	2007	1159	0,095	0,050	3351	1935	0,289	0,811
B37-(19)-08-040-30-00-30-90-07	10323	925	2144	1238	0,115	0,037	3575	2064	0,254	0,931
B39-(19)-08-040-30-00-30-90-08	7208	858	2155	1244	0,068	0,120	3653	2109	0,276	1,128
B45-(19)-08-040-30-00-30-90-09	13203	6665	1343	775	0,067	0,023	2673	1543	0,168	0,139
B54-(19)-08-040-30-00-30-90-10	7766	911	1411	814	0,103	0,057	2812	1624	0,284	0,946
B58-(19)-08-040-30-00-30-90-11	14435	1301	1367	789	0,034	0,036	2737	1580	0,129	0,644
B04-(20)-08-105-30-00-30-90-01	25587	1595	3235	1868	0,022	0,338	8064	4656	0,211	2,086

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B12-(20)-08-105-30-00-30-90-02	24948	1329	4808	2776	0,106	0,289	8323	4805	0,247	1,816
B15-(20)-08-105-30-00-30-90-03	24917	1248	3147	1817	0,056	0,172	6290	3632	0,183	1,626
B18-(20)-08-105-30-00-30-90-04	18977	965	3082	1779	0,058	0,468	7081	4088	0,269	2,861
B25-(20)-08-105-30-00-30-90-05	22919	1166	3862	2230	0,115	0,125	8419	4861	0,314	2,382
B33-(20)-08-105-30-00-30-90-06	21743	1262	3944	2277	0,144	0,992	9827	5674	0,414	3,684
B37-(20)-08-105-30-00-30-90-07	18519	1364	3326	1920	0,088	0,087	6598	3810	0,265	1,471
B39-(20)-08-105-30-00-30-90-08	22443	1252	3451	1992	0,096	0,437	6918	3994	0,251	2,036
B45-(20)-08-105-30-00-30-90-09	19529	1094	3713	2144	0,105	0,422	9232	5330	0,388	3,334
B54-(20)-08-105-30-00-30-90-10	28830	1352	3948	2280	0,054	0,397	9614	5551	0,251	2,816
B58-(20)-08-105-30-00-30-90-11	24484	1004	3343	1930	0,054	0,482	8316	4801	0,258	3,342
B05-(21)-08-165-30-00-30-90-01	12926	945	4910	2835	0,199	0,327	9826	5673	0,579	3,330
B08-(21)-08-165-30-00-30-90-02	14486	1061	4800	2771	0,226	0,676	9602	5544	0,557	3,289
B14-(21)-08-165-30-00-30-90-03	17751	1322	5445	3144	0,231	1,183	13148	7591	0,665	4,547
B22-(21)-08-165-30-00-30-90-04	14522	925	5186	2994	0,413	2,223	10364	5984	0,770	5,455
B27-(21)-08-165-30-00-30-90-05	19157	1218	5240	3025	0,239	1,128	10482	6052	0,513	3,612
B32-(21)-08-165-30-00-30-90-06	24710	1340	5920	3418	0,186	1,750	12103	6988	0,436	4,414
B35-(21)-08-165-30-00-30-90-07	18769	1300	5598	3232	0,267	0,841	11819	6824	0,598	3,605
B43-(21)-08-165-30-00-30-90-08	19063	1306	5595	3230	0,282	2,331	13756	7942	0,710	5,938
B46-(21)-08-165-30-00-30-90-09	19110	1169	4857	2804	0,177	1,301	12070	6969	0,554	4,865
B50-(21)-08-165-30-00-30-90-10	15055	1212	4734	2733	0,332	2,159	11185	6458	0,761	5,231
B58-(21)-08-165-30-00-30-90-11	16995	1199	5310	3066	0,322	2,211	11824	6827	0,705	5,347
B04-(22)-08-225-30-00-30-90-01	27419	1327	5524	3189	0,289	1,600	11838	6835	0,519	4,347
B11-(22)-08-225-30-00-30-90-02	24196	1373	5425	3132	0,210	1,246	10851	6265	0,435	3,528
B14-(22)-08-225-30-00-30-90-03	19646	1223	5592	3229	0,268	1,086	13591	7847	0,675	4,861
B22-(22)-08-225-30-00-30-90-04	19804	1275	5371	3101	0,190	1,322	12974	7491	0,574	4,764
B23-(22)-08-225-30-00-30-90-05	24231	1290	5669	3273	0,169	1,117	12370	7142	0,445	4,115
B30-(22)-08-225-30-00-30-90-06	26469	1546	5404	3120	0,128	1,039	10837	6257	0,333	3,067
B38-(22)-08-225-30-00-30-90-07	26085	1586	5404	3120	0,146	0,880	11099	6408	0,364	2,952
B41-(22)-08-225-30-00-30-90-08	21598	1493	5644	3258	0,233	1,327	11288	6517	0,495	3,509
B49-(22)-08-225-30-00-30-90-09	21356	1408	5555	3207	0,159	1,192	12753	7363	0,496	4,145
B50-(22)-08-225-30-00-30-90-10	18962	1338	5436	3139	0,256	1,336	12674	7318	0,637	4,459
B55-(22)-08-225-30-00-30-90-11	30251	1653	5501	3176	0,165	0,892	10995	6348	0,347	2,810
B01-(23)-08-040-30-60-30-30-01	2210	315	1222	706	0,068	0,088	2139	1235	0,483	1,769
B08-(23)-08-040-30-60-30-30-02	1224	209	953	550	0,155	0,058	1706	985	0,771	2,139
B16-(23)-08-040-30-60-30-30-03	1965	196	1387	801	0,098	1,037	2313	1335	0,569	3,763
B21-(23)-08-040-30-60-30-30-04	6728	3984	1039	600	0,180	0,000	1948	1125	0,315	0,132
B25-(23)-08-040-30-60-30-30-05	5172	681	1323	764	0,063	0,024	2228	1286	0,238	0,791
B29-(23)-08-040-30-60-30-30-06	1080	154	897	518	0,138	0,066	1525	880	0,720	2,426
B35-(23)-08-040-30-60-30-30-07	7812	531	1052	608	0,012	0,066	2413	1393	0,186	1,544
B43-(23)-08-040-30-60-30-30-08	12136	5134	1247	720	0,209	-0,026	2487	1436	0,311	0,114

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	Wh,e [mm]
B45-(23)-08-040-30-60-30-30-09	3758	388	876	506	0,020	0,124	1743	1006	0,251	1,413
B53-(23)-08-040-30-60-30-30-10	4705	481	938	542	0,041	0,025	1745	1007	0,212	0,992
B56-(23)-08-040-30-60-30-30-11	4139	378	951	549	0,039	0,053	1890	1091	0,266	1,490
B25-(23)-08-040-30-60-30-30-test	6436	570	1083	625	0,018	0,069	2016	1164	0,163	1,014
B01-(24)-08-105-30-60-30-30-01	14982	848	2026	1170	0,031	0,046	4604	2658	0,203	1,801
B09-(24)-08-105-30-60-30-30-02	28654	805	2407	1390	0,013	0,133	5953	3437	0,137	2,678
B13-(24)-08-105-30-60-30-30-03	18701	1132	2424	1400	0,033	0,051	4065	2347	0,121	0,888
B18-(24)-08-105-30-60-30-30-04	27307	842	2167	1251	0,007	0,092	5174	2987	0,117	2,153
B23-(24)-08-105-30-60-30-30-05	20321	741	2298	1327	0,013	0,145	5461	3153	0,168	2,610
B30-(24)-08-105-30-60-30-30-06	24048	744	2271	1311	0,003	0,127	5469	3157	0,136	2,607
B39-(24)-08-105-30-60-30-30-07	20642	1013	2171	1254	0,022	0,121	4341	2506	0,127	1,357
B44-(24)-08-105-30-60-30-30-08	50464	1382	3400	1963	0,016	0,042	5682	3280	0,061	0,994
B46-(24)-08-105-30-60-30-30-09	27468	902	2426	1401	0,022	0,267	4102	2368	0,083	1,340
B50-(24)-08-105-30-60-30-30-10	14907	868	2204	1272	0,026	0,049	5133	2964	0,223	1,997
B59-(24)-08-105-30-60-30-30-11	32320	1687	2718	1569	0,009	0,071	4545	2624	0,065	0,696
B06-(25)-08-165-30-60-30-30-01	20719	1054	3696	2134	0,176	1,074	9217	5322	0,442	4,098
B12-(25)-08-165-30-60-30-30-02	16535	993	3191	1842	0,118	1,102	6381	3684	0,311	2,957
B17-(25)-08-165-30-60-30-30-03	18940	1015	3286	1897	0,134	0,784	8191	4729	0,393	3,573
B21-(25)-08-165-30-60-30-30-04	26104	1348	4853	2802	0,105	0,446	9886	5708	0,298	2,601
B23-(25)-08-165-30-60-30-30-05	21015	1076	3567	2059	0,137	0,707	7284	4206	0,314	2,701
B31-(25)-08-165-30-60-30-30-06	23512	1126	3450	1992	0,109	0,429	7832	4522	0,295	2,676
B34-(25)-08-165-30-60-30-30-07	21659	931	3421	1975	0,122	1,079	8530	4925	0,358	4,246
B42-(25)-08-165-30-60-30-30-08	20178	1202	3025	1747	0,138	0,120	7540	4353	0,361	2,289
B47-(25)-08-165-30-60-30-30-09	16771	1026	3285	1897	0,152	0,418	7699	4445	0,415	2,901
B52-(25)-08-165-30-60-30-30-10	16608	859	4490	2593	0,246	1,431	11172	6450	0,648	5,920
B55-(25)-08-165-30-60-30-30-11	20022	988	3778	2181	0,157	1,093	8618	4976	0,398	3,923
B12-(25)-08-165-30-60-30-30-test	22409	1034	3874	2237	0,093	0,710	9656	5575	0,351	3,937
B01-(26)-08-225-30-60-30-30-01	14672	864	4892	2824	0,296	1,728	11402	6583	0,740	6,076
B10-(26)-08-225-30-60-30-30-02	27601	1110	5190	2997	0,223	1,874	10441	6028	0,413	4,604
B13-(26)-08-225-30-60-30-30-03	13725	768	4768	2753	0,237	2,453	11878	6858	0,755	7,800
B20-(26)-08-225-30-60-30-30-04	34896	1171	5219	3013	0,112	0,737	10443	6029	0,262	3,313
B26-(26)-08-225-30-60-30-30-05	12339	804	5053	2917	0,188	2,067	11713	6763	0,728	6,848
B30-(26)-08-225-30-60-30-30-06	31889	1174	5208	3007	0,094	1,605	10502	6064	0,260	4,209
B34-(26)-08-225-30-60-30-30-07	15132	818	5056	2919	0,240	2,893	10250	5918	0,583	6,560
B41-(26)-08-225-30-60-30-30-08	38332	1139	5125	2959	0,131	0,919	10980	6340	0,284	3,888
B47-(26)-08-225-30-60-30-30-09	14813	975	4507	2602	0,146	1,590	9010	5202	0,450	4,258
B53-(26)-08-225-30-60-30-30-10	26015	1215	5088	2938	0,232	1,410	10216	5898	0,429	3,847
B56-(26)-08-225-30-60-30-30-11	12628	941	3962	2287	0,151	0,422	7940	4584	0,466	2,864
B26-(26)-08-225-30-60-30-30-test	14317	952	4974	2872	0,180	2,312	12415	7168	0,700	6,825
B06-(27)-08-040-30-30-30-60-01	4611	451	992	572	0,061	0,216	1981	1144	0,275	1,482

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B12-(27)-08-040-30-30-30-60-02	6188	810	1227	708	0,112	0,049	2499	1443	0,318	0,956
B17-(27)-08-040-30-30-30-60-03	5456	709	1104	638	0,067	0,082	2178	1257	0,264	0,956
B21-(27)-08-040-30-30-30-60-04	7850	4713	1111	642	0,150	0,014	2227	1286	0,293	0,151
B24-(27)-08-040-30-30-30-60-05	4845	484	913	527	0,040	0,071	1824	1053	0,228	1,158
B31-(27)-08-040-30-30-30-60-06	5824	660	1304	753	0,087	0,151	2603	1503	0,310	1,288
B36-(27)-08-040-30-30-30-60-07	3885	512	1230	710	0,117	0,106	2294	1324	0,391	1,306
B44-(27)-08-040-30-30-30-60-08	5047	501	1583	914	0,162	0,216	3168	1829	0,476	2,040
B46-(27)-08-040-30-30-30-60-09	5734	464	1259	727	0,028	0,269	2235	1291	0,198	1,484
B54-(27)-08-040-30-30-30-60-10	6071	710	1371	792	0,042	0,246	2738	1581	0,267	1,358
B56-(27)-08-040-30-30-30-60-11	6087	575	1585	915	0,137	0,145	2694	1555	0,319	1,259
B24-(27)-08-040-30-30-30-60-test	5556	721	1466	846	0,156	0,107	2668	1540	0,372	1,069
B03-(28)-08-105-30-30-30-60-01	24368	1297	4425	2555	0,071	0,290	7612	4395	0,202	1,709
B09-(28)-08-105-30-30-30-60-02	20823	1339	3096	1788	0,039	0,183	5879	3394	0,173	1,383
B16-(28)-08-105-30-30-30-60-03	29328	1055	2509	1449	0,019	0,032	6201	3580	0,145	2,053
B20-(28)-08-105-30-30-30-60-04	32157	822	2910	1680	-0,001	0,453	7228	4173	0,134	3,488
B27-(28)-08-105-30-30-30-60-05	23497	1414	2854	1648	0,047	0,044	6646	3837	0,208	1,592
B29-(28)-08-105-30-30-30-60-06	19387	934	3758	2170	0,049	0,352	9068	5236	0,323	3,635
B39-(28)-08-105-30-30-30-60-07	22161	1077	2907	1678	0,046	0,063	7230	4174	0,241	2,381
B44-(28)-08-105-30-30-30-60-08	15538	953	3229	1864	0,116	1,110	8050	4648	0,426	4,031
B50-(28)-08-105-30-30-30-60-09	21284	1272	2675	1545	0,030	0,035	6638	3832	0,216	1,833
B52-(28)-08-105-30-30-30-60-10	21496	917	2893	1670	0,085	0,134	7202	4158	0,285	2,847
B59-(28)-08-105-30-30-30-60-11	23490	1172	2559	1478	0,032	0,034	6384	3686	0,194	1,918
B09-(28)-08-105-30-30-30-60-test	18054	901	3703	2138	0,102	1,173	9118	5265	0,402	4,643
B59-(28)-08-105-30-30-30-60-test	18602	1138	2931	1692	0,069	0,370	7305	4218	0,304	2,589
B03-(29)-08-165-30-30-30-60-01	20059	1362	4093	2363	0,136	0,439	9761	5636	0,418	2,841
B11-(29)-08-165-30-30-30-60-02	35334	1118	5818	3359	0,374	2,545	14510	8378	0,620	7,035
B15-(29)-08-165-30-30-30-60-03	25577	1605	5454	3149	0,209	1,263	10853	6266	0,420	3,206
B21-(29)-08-165-30-30-30-60-04	25196	1465	5530	3193	0,199	1,002	11073	6393	0,419	3,187
B26-(29)-08-165-30-30-30-60-05	16804	1224	4496	2596	0,203	1,005	9446	5454	0,498	3,339
B32-(29)-08-165-30-30-30-60-06	24506	1192	5569	3215	0,177	1,272	11146	6435	0,404	3,974
B37-(29)-08-165-30-30-30-60-07	21652	1261	4850	2800	0,132	0,602	10176	5875	0,378	3,040
B42-(29)-08-165-30-30-30-60-08	29319	1465	4790	2766	0,133	0,858	10963	6330	0,343	3,291
B49-(29)-08-165-30-30-30-60-09	19911	1229	4456	2572	0,191	1,149	10120	5843	0,476	3,809
B53-(29)-08-165-30-30-30-60-10	26555	1304	5595	3230	0,170	2,474	11550	6669	0,394	5,112
B58-(29)-08-165-30-30-30-60-11	23594	1417	4752	2743	0,179	0,994	9926	5731	0,398	3,102
B01-(30)-08-225-30-30-30-60-01	20515	1353	5393	3114	0,218	2,884	10792	6231	0,481	5,188
B07-(30)-08-225-30-30-30-60-02	23629	1056	5645	3259	0,212	1,309	12601	7275	0,507	5,113
B17-(30)-08-225-30-30-30-60-03	21344	1413	5546	3202	0,288	1,652	11089	6403	0,548	3,917
B20-(30)-08-225-30-30-30-60-04	21739	1132	5379	3106	0,201	1,689	10753	6209	0,448	4,432
B26-(30)-08-225-30-30-30-60-05	19463	1349	5371	3101	0,279	1,492	10745	6204	0,555	3,792

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	Wh,e [mm]
B32-(30)-08-225-30-30-30-60-06	34898	1523	5442	3142	0,204	0,782	11662	6733	0,382	3,140
B36-(30)-08-225-30-30-30-60-07	17915	1463	5522	3188	0,256	2,059	12365	7139	0,638	4,760
B42-(30)-08-225-30-30-30-60-08	24448	1116	5557	3209	0,253	1,920	12942	7472	0,555	5,741
B49-(30)-08-225-30-30-30-60-09	19674	1170	5448	3146	0,288	2,549	10895	6291	0,565	5,237
B51-(30)-08-225-30-30-30-60-10	15443	1002	5386	3110	0,319	2,166	13432	7755	0,840	6,804
B55-(30)-08-225-30-30-30-60-11	21159	1460	5538	3197	0,226	1,749	11080	6397	0,488	3,940
B20-(30)-08-225-30-30-30-60-test	19087	986	5477	3162	0,234	2,140	13637	7874	0,661	6,916
B49-(30)-08-225-30-30-30-60-test	14155	1167	5415	3127	0,274	1,084	10833	6255	0,657	3,764
B02-(31)-08-040-30-90-30-00-01	4969	163	831	480	0,600	1,130	1493	862	0,733	3,481
B09-(31)-08-040-30-90-30-00-02	7343	2726	645	372	0,067	0,027	1287	743	0,154	0,163
B19-(31)-08-040-30-90-30-00-04	4165	1883	594	343	0,056	-0,001	1186	685	0,199	0,181
B26-(31)-08-040-30-90-30-00-05	3316	243	1021	590	0,048	0,943	1838	1061	0,295	2,880
B28-(31)-08-040-30-90-30-00-06	2494	2303	574	331	0,070	0,017	1207	697	0,325	0,175
B34-(31)-08-040-30-90-30-00-07	3379	331	997	576	0,064	0,146	1663	960	0,262	1,307
B39-(31)-08-040-30-90-30-00-08	2017	297	879	507	0,081	-0,012	1475	852	0,377	1,147
B48-(31)-08-040-30-90-30-00-09	1372	131	724	418	0,109	1,006	1252	723	0,494	3,340
B52-(31)-08-040-30-90-30-00-10	2102	321	943	544	0,112	0,026	1681	971	0,463	1,354
B55-(31)-08-040-30-90-30-00-11	9837	570	795	459	0,016	0,071	1742	1006	0,113	1,031
B07-(32)-08-105-30-90-30-00-02	24764	947	2083	1202	0,041	0,170	4168	2407	0,125	1,442
B14-(32)-08-105-30-90-30-00-03	25019	8567	948	547	0,003	0,025	1951	1126	0,043	0,093
B22-(32)-08-105-30-90-30-00-04	53476	58147	1199	692	0,009	0,004	2400	1386	0,031	0,016
B27-(32)-08-105-30-90-30-00-05	22263	2763	1557	899	0,057	0,054	2754	1590	0,111	0,304
B34-(32)-08-105-30-90-30-00-06	13191	987	1474	851	0,072	0,069	2828	1633	0,175	0,861
B34-(32)-08-105-30-90-30-00-07	18254	-36785	1361	786	0,021	0,019	2333	1347	0,074	0,003
B40-(32)-08-105-30-90-30-00-08	17246	890	1499	865	0,065	0,053	3294	1902	0,169	1,217
B48-(32)-08-105-30-90-30-00-09	17658	38020	781	451	0,039	0,023	1695	978	0,090	0,037
B51-(32)-08-105-30-90-30-00-10	13700	909	1375	794	0,083	0,067	3119	1801	0,211	1,175
B57-(32)-08-105-30-90-30-00-11	18799	996	1382	798	0,090	0,184	3327	1921	0,193	1,311
B07-(33)-08-165-30-90-30-00-02	20847	1123	3038	1754	0,089	0,170	5625	3248	0,213	1,501
B14-(33)-08-165-30-90-30-00-03	21340	1270	2874	1659	0,064	0,168	6688	3862	0,243	1,903
B22-(33)-08-165-30-90-30-00-04	16343	1060	2762	1594	0,127	0,237	5311	3066	0,283	1,626
B27-(33)-08-165-30-90-30-00-05	21938	2100	3012	1739	0,077	0,056	5208	3007	0,177	0,660
B34-(33)-08-165-30-90-30-00-06	22877	988	2150	1242	0,040	0,195	4295	2479	0,134	1,448
B34-(33)-08-165-30-90-30-00-07	23188	824	1765	1019	0,042	0,589	4393	2536	0,155	2,431
B40-(33)-08-165-30-90-30-00-08	21147	1561	2491	1438	0,051	0,103	4785	2763	0,160	0,951
B48-(33)-08-165-30-90-30-00-09	17106	1176	1866	1077	0,026	0,067	3987	2302	0,150	1,108
B51-(33)-08-165-30-90-30-00-10	28161	1322	3109	1795	0,021	0,139	5196	3000	0,095	1,050
B57-(33)-08-165-30-90-30-00-11	26046	1051	2528	1460	0,005	0,146	6309	3643	0,151	2,224
B09-(34)-08-225-30-90-30-00-02	18234	989	2317	1338	0,117	0,389	4637	2677	0,244	1,743
B16-(34)-08-225-30-90-30-00-03	20422	1236	3392	1959	0,135	0,309	7201	4158	0,321	2,088

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B22-(34)-08-225-30-90-30-00-04	22357	1087	2873	1659	0,121	1,150	6656	3843	0,290	3,158
B25-(34)-08-225-30-90-30-00-05	24648	1178	2438	1407	0,078	0,124	6086	3514	0,226	1,912
B28-(34)-08-225-30-90-30-00-06	20771	980	2319	1339	0,056	0,768	4867	2810	0,178	2,269
B37-(34)-08-225-30-90-30-00-07	34167	1451	4265	2462	0,239	0,678	8553	4938	0,364	2,384
B40-(34)-08-225-30-90-30-00-08	15370	758	2734	1579	0,136	0,912	5685	3283	0,328	3,159
B49-(34)-08-225-30-90-30-00-09	19825	1121	3329	1922	0,088	0,111	7114	4107	0,279	2,059
B51-(34)-08-225-30-90-30-00-10	16878	1168	4014	2318	0,144	0,288	9434	5447	0,465	2,967
B57-(34)-08-225-30-90-30-00-11	14071	708	3190	1842	0,225	1,195	7633	4407	0,541	4,816

E-3.2 $\gamma = 60^{\circ}$

Tab.Anhang E-7 Einzelversuchsergebnisse Tragfähigkeit kombinierte Beanspruchung mit $\gamma = 60^{\circ}$

Prüfkörper [ID]	ρ12 [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B05-(35)-08-040-60-00-60-90-01	405	9,5	5150	5150	nein	nein	nein
B08-(35)-08-040-60-00-60-90-02	421	9,2	5059	5059	nein	nein	nein
B14-(35)-08-040-60-00-60-90-03	426	9,7	5755	5755	nein	nein	nein
B22-(35)-08-040-60-00-60-90-04	427	8,6	6192	6192	nein	nein	nein
B27-(35)-08-040-60-00-60-90-05	417	9,0	5512	5512	nein	nein	nein
B32-(35)-08-040-60-00-60-90-06	430	8,8	6763	6763	nein	nein	nein
B35-(35)-08-040-60-00-60-90-07	428	9,0	6274	6099	nein	nein	nein
B43-(35)-08-040-60-00-60-90-08	373	8,2	5089	5089	nein	ja	nein
B46-(35)-08-040-60-00-60-90-09	475	9,1	6737	6506	nein	ja	nein
B50-(35)-08-040-60-00-60-90-10	471	9,0	6738	6738	nein	ja	nein
B58-(35)-08-040-60-00-60-90-11	453	12,0	5578	5578	nein	nein	nein
B43-(35)-08-040-60-00-60-90-test	411	8,7	6301	6301	nein	nein	nein
B05-(36)-08-105-60-00-60-90-01	388	9,7	11284	11284	nein	ja	nein
B08-(36)-08-105-60-00-60-90-02	426	9,7	10971	10971	nein	nein	nein
B14-(36)-08-105-60-00-60-90-03	425	9,9	12100	12100	nein	nein	nein
B22-(36)-08-105-60-00-60-90-04	417	9,4	11812	11812	nein	nein	nein
B27-(36)-08-105-60-00-60-90-05	431	9,9	11649	11649	nein	nein	nein
B32-(36)-08-105-60-00-60-90-06	437	10,2	12069	12069	nein	nein	nein
B35-(36)-08-105-60-00-60-90-07	430	9,9	12014	12014	nein	nein	nein
B43-(36)-08-105-60-00-60-90-08	477	9,1	14082	14082	ja	ja	ja
B46-(36)-08-105-60-00-60-90-09	428	9,9	12551	12551	nein	nein	nein
B50-(36)-08-105-60-00-60-90-10	447	10,2	11434	11434	nein	nein	nein
B58-(36)-08-105-60-00-60-90-11	443	9,9	12857	12857	nein	nein	nein
B43-(36)-08-105-60-00-60-90-test	432	10,7	12124	12124	nein	nein	nein
B04-(37)-08-165-60-00-60-90-01	383	9,7	16566	16495	nein	nein	nein
B11-(37)-08-165-60-00-60-90-02	412	10,4	18154	18062	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B14-(37)-08-165-60-00-60-90-03	429	9,7	17755	17755	nein	nein	nein
B22-(37)-08-165-60-00-60-90-04	412	9,4	16907	16907	nein	nein	nein
B23-(37)-08-165-60-00-60-90-05	413	9,3	18379	18271	nein	nein	nein
B30-(37)-08-165-60-00-60-90-06	427	9,0	17483	17482	nein	nein	nein
B38-(37)-08-165-60-00-60-90-07	426	7,6	16523	16523	nein	nein	nein
B41-(37)-08-165-60-00-60-90-08	484	10,2	17260	17068	nein	nein	nein
B49-(37)-08-165-60-00-60-90-09	428	9,9	18774	18728	nein	nein	nein
B50-(37)-08-165-60-00-60-90-10	455	9,8	17136	16232	nein	nein	nein
B55-(37)-08-165-60-00-60-90-11	452	10,2	15160	15160	nein	nein	nein
B06-(38)-08-225-60-00-60-90-01	385	9,6	16786	16753	nein	nein	nein
B11-(38)-08-225-60-00-60-90-02	418	10,5	17504	17504	nein	nein	nein
B15-(38)-08-225-60-00-60-90-03	401	10,1	17481	17481	nein	nein	nein
B22-(38)-08-225-60-00-60-90-04	460	7,7	17825	17825	nein	nein	nein
B22-(38)-08-225-60-00-60-90-05	411	8,4	16902	16902	nein	nein	nein
B28-(38)-08-225-60-00-60-90-06	424	9,1	16682	16682	nein	nein	nein
B38-(38)-08-225-60-00-60-90-07	427	9,8	16976	16916	nein	nein	nein
B39-(38)-08-225-60-00-60-90-08	405	9,2	17814	16977	nein	nein	nein
B48-(38)-08-225-60-00-60-90-09	435	9,7	16990	16990	nein	nein	nein
B53-(38)-08-225-60-00-60-90-10	474	10,4	17947	17947	nein	nein	nein
B58-(38)-08-225-60-00-60-90-11	458	8,4	17732	17422	nein	nein	nein
B06-(38)-08-225-60-00-60-90-test	392	9,6	17322	17322	nein	nein	nein
B01-(39)-08-040-60-60-60-30-01	418	9,4	4167	3961	nein	nein	nein
B08-(39)-08-040-60-60-60-30-02	413	9,5	3210	3209	nein	nein	nein
B16-(39)-08-040-60-60-60-30-03	400	9,4	3958	3680	nein	nein	nein
B21-(39)-08-040-60-60-60-30-04	431	9,1	3607	3607	nein	nein	nein
B25-(39)-08-040-60-60-60-30-05	382	9,5	3219	3143	nein	nein	nein
B29-(39)-08-040-60-60-60-30-06	398	9,7	3362	3345	nein	nein	nein
B35-(39)-08-040-60-60-60-30-07	426	9,4	4311	4167	ja	ja	ja
B43-(39)-08-040-60-60-60-30-08	416	9,8	3931	3845	nein	nein	nein
B45-(39)-08-040-60-60-60-30-09	432	9,1	4033	3720	nein	nein	nein
B53-(39)-08-040-60-60-60-30-10	423	9,4	3806	3806	nein	nein	nein
B56-(39)-08-040-60-60-60-30-11	605	-79,3	3815	3753	nein	ja	nein
B01-(40)-08-105-60-60-60-30-01	406	9,5	6259	6259	nein	nein	nein
B08-(40)-08-105-60-60-60-30-02	421	8,7	6425	6425	nein	nein	nein
B16-(40)-08-105-60-60-60-30-03	401	9,4	6373	6352	nein	nein	nein
B21-(40)-08-105-60-60-60-30-04	428	9,3	8325	8325	nein	nein	nein
B25-(40)-08-105-60-60-60-30-05	399	9,3	6326	6309	nein	nein	nein
B29-(40)-08-105-60-60-60-30-06	416	9,6	6715	6715	nein	nein	nein
B35-(40)-08-105-60-60-60-30-07	432	9,7	7739	7680	nein	nein	nein
B43-(40)-08-105-60-60-60-30-08	403	10,3	7443	7443	nein	nein	nein

Prüfkörper [ID]	ρ12 [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B45-(40)-08-105-60-60-60-30-09	439	9,3	7452	7452	nein	nein	nein
B53-(40)-08-105-60-60-60-30-10	417	8,8	6956	6956	nein	nein	nein
B56-(40)-08-105-60-60-60-30-11	437	8,3	7091	6612	nein	nein	nein
B01-(41)-08-165-60-60-60-30-01	399	10,4	9317	9317	nein	nein	nein
B09-(41)-08-165-60-60-60-30-02	404	9,8	6940	6940	nein	nein	nein
B13-(41)-08-165-60-60-60-30-03	407	9,9	8998	8998	nein	nein	nein
B18-(41)-08-165-60-60-60-30-04	425	9,7	11123	11123	nein	nein	nein
B23-(41)-08-165-60-60-60-30-05	421	9,9	11913	11913	nein	nein	nein
B30-(41)-08-165-60-60-60-30-06	437	9,2	13156	13156	nein	nein	nein
B39-(41)-08-165-60-60-60-30-07	409	10,1	10712	10485	nein	nein	nein
B44-(41)-08-165-60-60-60-30-08	437	9,9	12434	12434	nein	nein	nein
B46-(41)-08-165-60-60-60-30-09	381	9,3	8477	8401	nein	nein	nein
B50-(41)-08-165-60-60-60-30-10	427	9,9	11771	11771	nein	nein	nein
B59-(41)-08-165-60-60-60-30-11	451	9,8	11275	11275	nein	nein	nein
B01-(41)-08-165-60-60-60-30-test	405	10,5	9874	9874	nein	nein	nein
B02-(42)-08-225-60-60-60-30-01	408	10,5	12761	12482	ja	nein	ja
B11-(42)-08-225-60-60-60-30-02	414	10,2	16432	15732	nein	nein	nein
B14-(42)-08-225-60-60-60-30-03	418	9,9	16513	15574	nein	nein	nein
B21-(42)-08-225-60-60-60-30-04	449	10,4	16673	14145	nein	nein	nein
B28-(42)-08-225-60-60-60-30-05	411	9,2	15080	15070	nein	nein	nein
B31-(42)-08-225-60-60-60-30-06	406	10,5	15659	14708	nein	nein	nein
B37-(42)-08-225-60-60-60-30-07	429	9,6	15558	14494	nein	nein	nein
B40-(42)-08-225-60-60-60-30-08	420	9,4	16683	15066	nein	nein	nein
B48-(42)-08-225-60-60-60-30-09	406	9,7	12418	12300	ja	nein	ja
B54-(42)-08-225-60-60-60-30-10	449	10,1	15877	15515	nein	nein	nein
B59-(42)-08-225-60-60-60-30-11	490	10,1	17847	17847	nein	nein	ja
B21-(42)-08-225-60-60-60-30-test	457	10,1	17505	17193	nein	nein	nein
B06-(43)-08-040-60-30-60-60-01	379	8,7	4445	4411	nein	nein	nein
B12-(43)-08-040-60-30-60-60-02	375	9,5	3739	3727	nein	nein	nein
B17-(43)-08-040-60-30-60-60-03	424	9,2	4479	4479	nein	nein	nein
B21-(43)-08-040-60-30-60-60-04	476	9,5	6096	6096	nein	nein	nein
B24-(43)-08-040-60-30-60-60-05	393	9,1	4571	4571	nein	nein	nein
B31-(43)-08-040-60-30-60-60-06	541	9,1	6373	6373	nein	ja	nein
B36-(43)-08-040-60-30-60-60-07	443	10,0	5377	5377	nein	nein	nein
B44-(43)-08-040-60-30-60-60-08	409	9,5	4478	4478	nein	nein	nein
B46-(43)-08-040-60-30-60-60-09	389	9,3	4108	4108	nein	nein	nein
B54-(43)-08-040-60-30-60-60-10	434	9,7	6065	6065	nein	nein	nein
B56-(43)-08-040-60-30-60-60-11	428	9,5	3874	3874	nein	nein	nein
B17-(43)-08-040-60-30-60-test	429	9,1	4579	4579	nein	nein	nein
B03-(44)-08-105-60-30-60-60-01	430	10,0	7730	7730	ja	nein	ja

Prüfkörper [ID]	ρ12 [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B09-(44)-08-105-60-30-60-60-02	400	9,7	10493	10493	nein	nein	nein
B16-(44)-08-105-60-30-60-60-03	418	9,7	8887	8887	nein	nein	nein
B20-(44)-08-105-60-30-60-60-04	411	10,0	9737	9737	nein	nein	nein
B27-(44)-08-105-60-30-60-60-05	439	10,2	10065	10065	nein	nein	nein
B29-(44)-08-105-60-30-60-06	411	8,6	9722	9722	nein	nein	nein
B39-(44)-08-105-60-30-60-60-07	414	10,6	9486	9486	nein	nein	nein
B44-(44)-08-105-60-30-60-60-08	424	8,8	11611	11529	nein	nein	nein
B50-(44)-08-105-60-30-60-60-09	465	9,7	9230	9230	nein	ja	nein
B52-(44)-08-105-60-30-60-60-10	432	10,0	10198	10198	nein	nein	nein
B59-(44)-08-105-60-30-60-60-11	447	10,2	8989	8989	nein	nein	nein
B03-(44)-08-105-60-30-60-60-test	412	9,7	9556	9556	nein	nein	nein
B52-(44)-08-105-60-30-60-60-test	420	8,8	10234	10234	nein	nein	nein
B03-(45)-08-165-60-30-60-60-01	409	9,4	13498	13498	nein	nein	nein
B11-(45)-08-165-60-30-60-60-02	422	9,2	16842	16496	nein	nein	nein
B15-(45)-08-165-60-30-60-60-03	418	9,8	14019	14019	nein	nein	nein
B21-(45)-08-165-60-30-60-60-04	432	9,8	15259	15203	nein	nein	nein
B26-(45)-08-165-60-30-60-05	442	8,5	15895	15895	nein	nein	nein
B32-(45)-08-165-60-30-60-06	444	10,1	16961	16631	nein	nein	nein
B37-(45)-08-165-60-30-60-60-07	443	9,8	16750	16640	nein	nein	nein
B42-(45)-08-165-60-30-60-60-08	436	10,0	15573	14752	nein	nein	nein
B49-(45)-08-165-60-30-60-60-09	450	10,3	16876	16794	nein	nein	nein
B53-(45)-08-165-60-30-60-60-10	453	8,6	15888	15289	nein	nein	nein
B58-(45)-08-165-60-30-60-60-11	446	9,7	15942	15942	nein	nein	nein
B53-(45)-08-165-60-30-60-60-test	479	10,3	15373	15373	nein	ja	nein
B01-(46)-08-225-60-30-60-60-01	426	10,5	18210	17661	nein	nein	nein
B07-(46)-08-225-60-30-60-60-02	420	8,7	16736	16736	nein	nein	nein
B17-(46)-08-225-60-30-60-60-03	448	9,6	18127	18127	nein	nein	nein
B20-(46)-08-225-60-30-60-60-04	436	10,2	17207	17207	nein	nein	nein
B26-(46)-08-225-60-30-60-05	430	10,4	18119	18119	nein	nein	nein
B32-(46)-08-225-60-30-60-06	460	10,0	16725	16725	nein	nein	nein
B36-(46)-08-225-60-30-60-60-07	448	9,7	18489	18489	nein	nein	nein
B42-(46)-08-225-60-30-60-60-08	448	10,4	17926	16241	nein	nein	nein
B49-(46)-08-225-60-30-60-60-09	431	10,0	18523	17402	nein	nein	nein
B51-(46)-08-225-60-30-60-60-10	435	10,5	16977	15773	nein	nein	nein
B55-(46)-08-225-60-30-60-60-11	499	10,2	17875	17875	nein	ja	nein
B55-(46)-08-225-60-30-60-60-test	462	10,0	17691	13828	nein	nein	ja
B02-(47)-08-040-60-90-60-00-01	415	9,1	2497	2497	nein	nein	nein
B09-(47)-08-040-60-90-60-00-02	483	9,0	3514	3312	nein	ja	nein
B12-(47)-08-040-60-90-60-00-03	390	8,1	2941	2882	nein	nein	nein
B19-(47)-08-040-60-90-60-00-04	411	10,7	3243	3090	nein	nein	nein

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B26-(47)-08-040-60-90-60-00-05	421	9,1	3050	3041	nein	nein	nein
B28-(47)-08-040-60-90-60-00-06	410	8,8	2647	2639	nein	nein	nein
B34-(47)-08-040-60-90-60-00-07	436	9,1	3647	3572	nein	nein	nein
B39-(47)-08-040-60-90-60-00-08	410	9,5	3091	3028	nein	nein	nein
B48-(47)-08-040-60-90-60-00-09	396	9,1	2707	2488	nein	nein	nein
B52-(47)-08-040-60-90-60-00-10	440	8,4	3656	3412	nein	nein	nein
B55-(47)-08-040-60-90-60-00-11	460	9,0	3488	3343	nein	nein	nein
B26-(47)-08-040-60-90-60-00-test	427	9,1	3344	3109	nein	nein	nein
B02-(48)-08-105-60-90-60-00-01	413	9,9	4486	3864	nein	nein	nein
B07-(48)-08-105-60-90-60-00-02	404	9,7	6419	5630	ja	nein	nein
B14-(48)-08-105-60-90-60-00-03	434	9,9	4948	4436	nein	nein	nein
B22-(48)-08-105-60-90-60-00-04	412	9,8	4806	4705	nein	nein	nein
B27-(48)-08-105-60-90-60-00-05	421	8,9	5150	4864	nein	nein	nein
B34-(48)-08-105-60-90-60-00-06	421	10,7	4654	4083	nein	nein	nein
B34-(48)-08-105-60-90-60-00-07	416	10,0	4890	4344	nein	nein	nein
B40-(48)-08-105-60-90-60-00-08	408	10,1	5093	4704	nein	nein	nein
B48-(48)-08-105-60-90-60-00-09	412	8,2	5201	4819	nein	nein	nein
B51-(48)-08-105-60-90-60-00-10	453	10,6	3562	3562	ja	ja	nein
B57-(48)-08-105-60-90-60-00-11	483	10,6	5339	5339	nein	ja	nein
B04-(49)-08-165-60-90-60-00-01	413	9,9	4696	4696	nein	nein	nein
B10-(49)-08-165-60-90-60-00-02	394	8,8	6229	6229	nein	nein	nein
B17-(49)-08-165-60-90-60-00-03	441	9,5	4559	4559	nein	nein	nein
B19-(49)-08-165-60-90-60-00-04	456	10,2	4758	4638	nein	nein	nein
B27-(49)-08-165-60-90-60-00-05	439	10,3	11467	11467	ja	nein	ja
B33-(49)-08-165-60-90-60-00-06	467	9,8	8065	8065	nein	nein	nein
B38-(49)-08-165-60-90-60-00-07	436	10,0	5401	5401	nein	nein	nein
B45-(49)-08-165-60-90-60-00-08	440	9,0	5402	5402	nein	nein	nein
B47-(49)-08-165-60-90-60-00-09	433	10,9	5179	5179	nein	nein	nein
B55-(49)-08-165-60-90-60-00-10	467	10,5	5949	5949	nein	nein	nein
B56-(49)-08-165-60-90-60-00-11	471	10,1	6046	6046	nein	nein	nein
B56-(49)-08-165-60-90-60-00-test	415	10,7	5066	5066	nein	nein	nein
B04-(50)-08-225-60-90-60-00-01	405	10,3	9505	9505	nein	nein	nein
B09-(50)-08-225-60-90-60-00-02	404	9,7	10678	10678	nein	nein	nein
B16-(50)-08-225-60-90-60-00-03	407	9,5	9093	9093	nein	nein	nein
B22-(50)-08-225-60-90-60-00-04	420	9,3	8399	8399	nein	nein	nein
B25-(50)-08-225-60-90-60-00-05	424	9,8	10967	10967	nein	nein	nein
B28-(50)-08-225-60-90-60-00-06	415	8,6	8128	8128	nein	nein	nein
B37-(50)-08-225-60-90-60-00-07	445	9,7	14815	14162	ja	nein	ja
B40-(50)-08-225-60-90-60-00-08	411	9,9	8171	8171	nein	nein	nein
B49-(50)-08-225-60-90-60-00-09	471	9,7	5976	5976	nein	nein	nein

lig	num	1	
study	research	engineering	test center

Prüfkörper [ID]	ρ ₁₂ [kg/m ³]	u [%]	F _{max} [N]	F15 [N]	Ausreisser F _{max}	Ausreisser ρ12	Ausreisser F ₁₅
B51-(50)-08-225-60-90-60-00-10	429	10,1	6605	6605	nein	nein	nein
B57-(50)-08-225-60-90-60-00-11	526	10,5	8176	8176	nein	ja	nein

Abb. Anhang E-37: Bjj-35-08-040-60-00-60-90-ii

Abb. Anhang E-38: Bjj-36-08-105-60-00-60-90-ii

Abb. Anhang E-39: Bjj-37-08-165-60-00-60-90-ii

2000 1600 1200 8000 4000 0 4 8 12 16 20 w [mm]

Abb. Anhang E-40: Bjj-38-08-225-60-00-60-90-ii

Abb. Anhang E-41: Bjj-39-08-040-60-60-60-30-ii

Abb. Anhang E-43: Bjj-41-08-165-60-60-60-30-ii

Abb. Anhang E-45: Bjj-43-08-040-60-30-60-60-ii

10000

8000

6000

4000

2000

F[N]

Abb. Anhang E-42: Bjj-40-08-105-60-60-60-30-ii

Abb. Anhang E-44: Bjj-42-08-225-60-60-60-30-ii

Abb. Anhang E-46: Bjj-44-08-105-60-30-60-60-ii

lignum

search engineering

test cente

Abb. Anhang E-47: Bjj-45-08-165-60-30-60-60-ii

Abb. Anhang E-49: Bjj-47-08-040-60-90-60-00-ii

Abb. Anhang E-51: Bjj-49-08-165-60-90-60-00-ii

Abb. Anhang E-48: Bjj-46-08-225-60-30-60-60-ii

Abb. Anhang E-50: Bjj-48-08-105-60-90-60-00-ii

Abb. Anhang E-52: Bjj-50-08-225-60-90-60-00-ii

Tab.Anhang E-8 Einzelversuchsergebnisse Steifigkeit kombinierte Beanspruchung mit γ = 60 °

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	<i>F</i> _{h,s} [N]	w _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	<i>F</i> _{h,e} [N]	w _{v,e} [mm]	w _{h,e} [mm]
B05-(35)-08-040-60-00-60-90-01	8487	537	774	1340	0,035	0,532	1547	2680	0,126	3,029
B08-(35)-08-040-60-00-60-90-02	6331	703	766	1326	0,009	0,212	1803	3124	0,173	2,769
B14-(35)-08-040-60-00-60-90-03	5146	534	868	1503	0,101	1,922	1732	3000	0,269	4,725
B22-(35)-08-040-60-00-60-90-04	6756	1186	1067	1849	0,121	1,876	2313	4007	0,305	3,695
B27-(35)-08-040-60-00-60-90-05	4531	552	830	1438	0,101	1,436	1664	2881	0,285	4,051
B32-(35)-08-040-60-00-60-90-06	7447	917	1040	1801	0,044	0,610	2530	4381	0,244	3,424
B35-(35)-08-040-60-00-60-90-07	6940	700	942	1632	0,068	0,924	2094	3627	0,234	3,777
B43-(35)-08-040-60-00-60-90-08	6260	645	766	1326	0,036	1,389	1905	3299	0,218	4,446
B46-(35)-08-040-60-00-60-90-09	8871	653	1027	1779	0,083	0,446	2046	3544	0,198	3,147
B50-(35)-08-040-60-00-60-90-10	17253	972	1015	1758	0,001	0,837	2030	3516	0,059	2,644
B58-(35)-08-040-60-00-60-90-11	7111	555	843	1460	0,004	0,198	1924	3332	0,156	3,573
B43-(35)-08-040-60-00-60-90-test	4086	717	949	1644	0,054	0,540	2359	4085	0,399	3,946
B05-(36)-08-105-60-00-60-90-01	39471	1237	1694	2935	0,029	2,796	3554	6156	0,077	5,400
B08-(36)-08-105-60-00-60-90-02	40197	899	1650	2858	0,013	2,174	4108	7115	0,074	6,909
B14-(36)-08-105-60-00-60-90-03	41230	1336	1820	3152	0,052	2,482	3640	6304	0,096	4,841
B22-(36)-08-105-60-00-60-90-04	30830	1104	1775	3074	0,053	2,010	4426	7666	0,139	6,171
B27-(36)-08-105-60-00-60-90-05	27457	1011	1749	3030	0,059	2,515	4364	7558	0,155	6,995
B32-(36)-08-105-60-00-60-90-06	39374	1267	1812	3139	0,049	2,867	3630	6287	0,095	5,353
B35-(36)-08-105-60-00-60-90-07	37066	1251	1809	3134	0,053	2,254	3615	6262	0,102	4,755
B43-(36)-08-105-60-00-60-90-08	37785	1604	2113	3659	0,068	2,783	4235	7334	0,124	5,075
B46-(36)-08-105-60-00-60-90-09	25022	1339	1989	3445	0,054	1,848	4704	8147	0,162	5,358
B50-(36)-08-105-60-00-60-90-10	49723	1181	2003	3470	0,015	1,920	4282	7416	0,061	5,261
B58-(36)-08-105-60-00-60-90-11	40839	1379	1934	3349	0,054	1,336	3953	6847	0,103	3,872
B43-(36)-08-105-60-00-60-90-test	27453	1214	1827	3164	0,051	2,490	4434	7680	0,146	6,209
B04-(37)-08-165-60-00-60-90-01	36318	946	2633	4560	0,080	2,566	6208	10752	0,178	9,114
B11-(37)-08-165-60-00-60-90-02	41986	1222	2727	4723	0,102	1,770	5454	9446	0,167	5,636
B14-(37)-08-165-60-00-60-90-03	51256	1326	2668	4620	0,076	2,120	5334	9238	0,128	5,603
B22-(37)-08-165-60-00-60-90-04	76082	1308	2545	4409	0,124	2,617	5083	8803	0,157	5,978
B23-(37)-08-165-60-00-60-90-05	125322	1144	2771	4800	0,128	3,157	5528	9575	0,150	7,329
B30-(37)-08-165-60-00-60-90-06	67002	1140	2625	4547	0,130	3,193	5254	9100	0,169	7,187
B38-(37)-08-165-60-00-60-90-07	48253	1296	2479	4294	0,114	2,734	4964	8598	0,165	6,054
B41-(37)-08-165-60-00-60-90-08	71936	1104	2595	4494	0,109	3,565	5705	9880	0,152	8,445
B49-(37)-08-165-60-00-60-90-09	68149	1307	2824	4892	0,117	2,338	5648	9782	0,159	6,081
B50-(37)-08-165-60-00-60-90-10	34611	1160	2576	4462	0,164	4,972	5149	8917	0,239	8,814
B55-(37)-08-165-60-00-60-90-11	53304	1332	2280	3950	0,108	2,394	4616	7994	0,152	5,429
B06-(38)-08-225-60-00-60-90-01	233042	1118	2527	4377	0,049	3,351	5053	8752	0,060	7,266
B11-(38)-08-225-60-00-60-90-02	68716	1044	2628	4552	0,060	2,459	6558	11359	0,117	8,979
B15-(38)-08-225-60-00-60-90-03	-85902	1102	2629	4553	0,120	3,454	5256	9104	0,090	7,582
B22-(38)-08-225-60-00-60-90-04	265441	1440	2684	4649	0,076	2,994	5362	9286	0,086	6,214
B22-(38)-08-225-60-00-60-90-05	467096	1253	2544	4406	0,133	2,763	5081	8800	0,139	6,268

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	Wh,e [mm]
B28-(38)-08-225-60-00-60-90-06	34250	1455	2507	4343	0,089	3,279	5018	8691	0,162	6,267
B38-(38)-08-225-60-00-60-90-07	-890526	1036	2548	4414	0,132	3,251	5098	8830	0,129	7,515
B39-(38)-08-225-60-00-60-90-08	-242707	1122	2684	4648	0,100	3,834	5360	9283	0,089	7,965
B48-(38)-08-225-60-00-60-90-09	130043	1222	2555	4426	0,122	3,787	5107	8846	0,142	7,403
B53-(38)-08-225-60-00-60-90-10	1881447	1096	2704	4684	0,092	2,838	6722	11642	0,094	9,189
B58-(38)-08-225-60-00-60-90-11	283065	983	2661	4608	0,125	3,510	6646	11511	0,139	10,532
B06-(38)-08-225-60-00-60-90-test	169872	1124	2609	4518	0,095	3,499	5333	9237	0,111	7,698
B01-(39)-08-040-60-60-60-30-01	944	208	936	1622	0,053	2,183	1562	2705	0,715	7,399
B08-(39)-08-040-60-60-60-30-02	3575	292	484	838	0,005	0,414	985	1707	0,146	3,389
B16-(39)-08-040-60-60-60-30-03	5520	496	713	1235	0,018	0,115	1312	2273	0,127	2,209
B21-(39)-08-040-60-60-60-30-04	1912	356	801	1388	0,016	0,204	1352	2342	0,304	2,882
B25-(39)-08-040-60-60-60-30-05	1235	149	509	881	0,006	0,461	994	1721	0,399	6,112
B29-(39)-08-040-60-60-60-30-06	5636	259	505	874	0,002	0,518	1011	1751	0,092	3,904
B35-(39)-08-040-60-60-60-30-07	1342	244	964	1670	0,002	0,293	1616	2798	0,487	4,913
B43-(39)-08-040-60-60-60-30-08	2781	375	878	1521	0,010	3,406	1471	2547	0,223	6,143
B45-(39)-08-040-60-60-60-30-09	1246	247	609	1054	0,008	0,197	1512	2618	0,732	6,527
B53-(39)-08-040-60-60-60-30-10	5440	601	663	1148	0,011	0,438	1424	2466	0,151	2,632
B56-(39)-08-040-60-60-60-30-11	936	192	857	1484	0,020	0,251	1430	2477	0,632	5,418
B01-(40)-08-105-60-60-60-30-01	27639	592	945	1636	0,012	0,132	2345	4062	0,063	4,228
B08-(40)-08-105-60-60-60-30-02	14847	502	968	1676	0,056	1,454	2165	3750	0,137	5,586
B16-(40)-08-105-60-60-60-30-03	12728	567	958	1658	0,036	0,594	2353	4076	0,145	4,861
B21-(40)-08-105-60-60-60-30-04	127597	714	1255	2174	0,047	2,099	2507	4341	0,057	5,133
B25-(40)-08-105-60-60-60-30-05	16377	549	949	1644	0,008	0,535	1900	3291	0,066	3,533
B29-(40)-08-105-60-60-60-30-06	32263	572	1009	1747	0,000	1,074	2169	3758	0,036	4,587
B35-(40)-08-105-60-60-60-30-07	26076	696	1165	2018	0,028	1,330	2361	4089	0,074	4,306
B43-(40)-08-105-60-60-60-30-08	305370	869	1119	1939	0,014	1,871	2241	3882	0,017	4,108
B45-(40)-08-105-60-60-60-30-09	38922	702	1124	1947	0,029	0,519	2247	3893	0,058	3,292
B53-(40)-08-105-60-60-60-30-10	74955	608	1045	1810	0,025	1,660	2092	3623	0,039	4,641
B56-(40)-08-105-60-60-60-30-11	7538	463	1066	1846	0,007	0,416	2658	4604	0,218	6,372
B01-(41)-08-165-60-60-60-30-01	18488	1057	1399	2423	0,036	0,480	2968	5141	0,121	3,052
B09-(41)-08-165-60-60-60-30-02	-134812	1130	1042	1804	0,020	0,715	2428	4205	0,010	2,839
B13-(41)-08-165-60-60-60-30-03	14586	752	1355	2346	0,047	0,680	2811	4868	0,147	4,034
B18-(41)-08-165-60-60-60-30-04	171762	955	1675	2901	0,048	1,338	3347	5797	0,057	4,372
B23-(41)-08-165-60-60-60-30-05	28665	848	1791	3102	0,080	1,519	3939	6823	0,155	5,907
B30-(41)-08-165-60-60-60-30-06	225327	880	1992	3450	0,041	2,713	4407	7634	0,052	7,468
B39-(41)-08-165-60-60-60-30-07	19266	1010	1607	2784	0,069	1,063	3215	5568	0,153	3,821
B44-(41)-08-165-60-60-60-30-08	157547	835	1866	3232	0,037	1,553	4575	7924	0,054	7,174
B46-(41)-08-165-60-60-60-30-09	15737	563	1274	2207	0,059	1,101	3178	5505	0,180	6,955
B50-(41)-08-165-60-60-60-30-10	-490184	853	1771	3067	0,020	1,575	3664	6346	0,016	5,421
B59-(41)-08-165-60-60-60-30-11	20351	862	1696	2938	0,080	1,436	3391	5873	0,163	4,839

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B01-(41)-08-165-60-60-60-30-test	13766	768	1485	2571	0,071	1,201	3701	6411	0,232	6,199
B02-(42)-08-225-60-60-60-30-01	27119	671	1920	3325	0,160	2,256	4779	8278	0,266	9,640
B11-(42)-08-225-60-60-60-30-02	-25533	858	2472	4281	0,015	2,919	6162	10672	-0,129	10,366
B14-(42)-08-225-60-60-60-30-03	31461	854	2480	4296	0,111	1,832	4957	8586	0,190	6,855
B21-(42)-08-225-60-60-60-30-04	58914	715	2508	4343	0,068	3,702	6249	10823	0,132	12,764
B28-(42)-08-225-60-60-60-30-05	73813	924	2266	3924	0,095	2,123	4860	8417	0,130	6,984
B31-(42)-08-225-60-60-60-30-06	558890	773	2354	4078	0,045	2,221	4873	8440	0,049	7,863
B37-(42)-08-225-60-60-60-30-07	35377	731	2337	4047	0,098	2,450	5828	10094	0,197	10,726
B40-(42)-08-225-60-60-60-30-08	-177786	805	2507	4342	0,055	3,530	5853	10138	0,036	10,726
B48-(42)-08-225-60-60-60-30-09	24249	747	1864	3228	0,132	2,274	4651	8057	0,247	8,737
B54-(42)-08-225-60-60-60-30-10	-75817	875	2383	4127	0,039	2,366	4771	8264	0,007	7,092
B59-(42)-08-225-60-60-60-30-11	-5205829	1048	2686	4653	0,093	2,166	6690	11587	0,092	8,786
B21-(42)-08-225-60-60-60-30-test	-29628	1005	2635	4564	0,046	2,454	5275	9137	-0,043	7,003
B06-(43)-08-040-60-30-60-60-01	3029	440	667	1156	0,100	2,278	1667	2887	0,430	6,215
B12-(43)-08-040-60-30-60-60-02	1657	262	736	1275	0,030	0,272	1351	2340	0,401	4,341
B17-(43)-08-040-60-30-60-60-03	2583	429	675	1169	0,054	1,142	1680	2909	0,443	5,203
B21-(43)-08-040-60-30-60-60-04	7648	1079	1159	2008	0,040	0,612	2282	3953	0,187	2,415
B24-(43)-08-040-60-30-60-60-05	1427	312	1028	1781	0,070	0,822	1714	2968	0,550	4,632
B31-(43)-08-040-60-30-60-60-06	19254	771	961	1665	0,018	1,030	2320	4019	0,088	4,082
B36-(43)-08-040-60-30-60-60-07	3579	472	1200	2078	0,019	0,328	2013	3486	0,247	3,308
B44-(43)-08-040-60-30-60-60-08	3288	469	971	1682	0,018	0,789	1644	2848	0,223	3,276
B46-(43)-08-040-60-30-60-60-09	1857	344	918	1591	0,044	0,206	1539	2665	0,378	3,331
B54-(43)-08-040-60-30-60-60-10	14138	755	913	1581	0,020	1,695	1828	3166	0,085	3,796
B56-(43)-08-040-60-30-60-60-11	1392	321	700	1212	0,022	0,187	1450	2512	0,561	4,236
B17-(43)-08-040-60-30-60-60-test	2789	427	690	1194	0,062	1,195	1717	2974	0,430	5,361
B03-(44)-08-105-60-30-60-60-01	17543	715	1162	2012	0,051	1,901	2323	4024	0,117	4,714
B09-(44)-08-105-60-30-60-60-02	51023	929	1575	2727	0,025	2,859	3844	6658	0,069	7,089
B16-(44)-08-105-60-30-60-60-03	40189	978	1336	2314	0,023	1,501	3330	5768	0,073	5,033
B20-(44)-08-105-60-30-60-60-04	58533	867	1462	2531	0,012	1,008	3648	6319	0,049	5,375
B27-(44)-08-105-60-30-60-60-05	12973	861	1514	2621	0,092	2,317	3772	6534	0,266	6,860
B29-(44)-08-105-60-30-60-60-06	21300	862	1968	3408	0,046	4,253	3645	6314	0,124	7,623
B39-(44)-08-105-60-30-60-60-07	22499	940	1424	2467	0,032	2,350	3554	6156	0,126	6,275
B44-(44)-08-105-60-30-60-60-08	67923	1017	1755	3040	0,015	3,612	3751	6497	0,044	7,012
B50-(44)-08-105-60-30-60-60-09	18612	844	1386	2400	0,048	2,456	3460	5993	0,160	6,713
B52-(44)-08-105-60-30-60-60-10	69078	987	1531	2652	0,007	3,057	3823	6622	0,040	7,079
B59-(44)-08-105-60-30-60-60-11	26805	805	1349	2337	0,031	1,555	2701	4679	0,081	4,463
B03-(44)-08-105-60-30-60-test	23896	896	1436	2488	0,044	2,739	3579	6199	0,134	6,879
B52-(44)-08-105-60-30-60-test	82413	873	1535	2659	0,004	2,514	3836	6645	0,032	7,080
B03-(45)-08-165-60-30-60-60-01	33322	1346	2028	3513	0,108	2,165	4215	7300	0,174	4,978
B11-(45)-08-165-60-30-60-60-02	-595053	1020	2531	4384	0,081	4,151	5062	8767	0,077	8,450

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	w _{h,s} [mm]	F _{v,e} [N]	F _{h,e} [N]	w _{v,e} [mm]	Wh,e [mm]
B15-(45)-08-165-60-30-60-60-03	26760	1031	2108	3651	0,116	2,561	4217	7304	0,195	6,106
B21-(45)-08-165-60-30-60-60-04	58011	991	2296	3978	0,106	3,660	5090	8816	0,154	8,543
B26-(45)-08-165-60-30-60-60-05	56176	937	2388	4136	0,048	2,001	5961	10324	0,112	8,605
B32-(45)-08-165-60-30-60-60-06	218802	1043	2552	4420	0,054	3,731	5101	8834	0,065	7,962
B37-(45)-08-165-60-30-60-60-07	43491	966	2514	4355	0,100	2,925	5031	8714	0,158	7,439
B42-(45)-08-165-60-30-60-60-08	128650	851	2338	4050	0,086	3,363	4895	8479	0,106	8,566
B49-(45)-08-165-60-30-60-60-09	31852	1134	2541	4402	0,140	1,622	5073	8787	0,219	5,488
B53-(45)-08-165-60-30-60-60-10	79510	833	2393	4145	0,091	3,351	5953	10310	0,135	10,748
B58-(45)-08-165-60-30-60-60-11	37595	1209	2399	4155	0,092	2,201	4791	8298	0,156	5,627
B53-(45)-08-165-60-30-60-test	-367500	935	2316	4011	0,012	3,130	5759	9974	0,002	9,504
B01-(46)-08-225-60-30-60-60-01	101384	993	2743	4751	0,147	2,246	5480	9491	0,174	7,021
B07-(46)-08-225-60-30-60-60-02	-353685	923	2521	4366	0,048	2,781	6272	10863	0,037	9,817
B17-(46)-08-225-60-30-60-60-03	41385	1193	2720	4711	0,143	2,160	5450	9439	0,209	6,122
B20-(46)-08-225-60-30-60-60-04	75285	2066	2592	4489	0,073	1,972	6444	11160	0,124	5,202
B26-(46)-08-225-60-30-60-60-05	48792	1164	2729	4726	0,096	1,881	5453	9444	0,152	5,936
B32-(46)-08-225-60-30-60-60-06	29174	1407	2520	4365	0,114	1,400	5036	8722	0,200	4,498
B36-(46)-08-225-60-30-60-60-07	53276	1142	2778	4812	0,111	1,982	5556	9623	0,163	6,195
B42-(46)-08-225-60-30-60-60-08	-169290	869	2693	4665	0,091	3,629	6137	10630	0,071	10,494
B49-(46)-08-225-60-30-60-60-09	95051	983	2789	4830	0,183	2,906	5568	9644	0,212	7,804
B51-(46)-08-225-60-30-60-60-10	-62731	814	2547	4412	0,073	3,399	6363	11021	0,013	11,515
B55-(46)-08-225-60-30-60-60-11	33213	1277	2682	4645	0,096	1,809	5375	9309	0,177	5,460
B55-(46)-08-225-60-30-60-test	-23576	732	2659	4605	0,597	5,333	5358	9280	0,483	11,723
B02-(47)-08-040-60-90-60-00-01	1303	271	376	652	0,348	3,938	936	1621	0,777	7,513
B09-(47)-08-040-60-90-60-00-02	623	188	736	1274	0,160	3,301	1318	2282	1,094	8,662
B12-(47)-08-040-60-90-60-00-03	996	210	526	910	0,091	4,836	1102	1909	0,669	9,597
B19-(47)-08-040-60-90-60-00-04	533	131	566	980	0,099	1,901	1053	1824	1,014	8,348
B26-(47)-08-040-60-90-60-00-05	2039	255	634	1099	0,028	3,183	1143	1981	0,277	6,642
B28-(47)-08-040-60-90-60-00-06	1552	247	511	885	0,465	3,452	992	1719	0,775	6,825
B34-(47)-08-040-60-90-60-00-07	3746	278	549	950	0,109	3,695	1366	2366	0,327	8,790
B39-(47)-08-040-60-90-60-00-08	4038	313	468	811	0,017	2,480	1002	1736	0,150	5,437
B48-(47)-08-040-60-90-60-00-09	963	151	408	706	0,135	2,585	815	1412	0,558	7,260
B52-(47)-08-040-60-90-60-00-10	2418	263	551	954	0,054	2,293	1198	2075	0,322	6,554
B55-(47)-08-040-60-90-60-00-11	1811	334	757	1312	0,130	4,296	1306	2263	0,433	7,141
B26-(47)-08-040-60-90-60-00-test	892	161	709	1229	0,029	1,451	1254	2172	0,639	7,313
B02-(48)-08-105-60-90-60-00-01	676	163	1008	1747	0,072	0,924	1682	2913	1,069	8,095
B07-(48)-08-105-60-90-60-00-02	29132	565	966	1673	0,039	1,590	2035	3525	0,076	4,869
B14-(48)-08-105-60-90-60-00-03	4031	274	744	1289	0,026	0,627	1854	3211	0,301	7,628
B22-(48)-08-105-60-90-60-00-04	23204	486	727	1259	0,040	1,015	1801	3119	0,086	4,842
B27-(48)-08-105-60-90-60-00-05	13676	471	780	1351	0,062	1,448	1774	3073	0,134	5,107
B34-(48)-08-105-60-90-60-00-06	1807	195	705	1221	0,052	0,926	1743	3019	0,627	10,142

Prüfkörper [ID]	K _{ser,ax} [N/mm]	K _{ser,lat} [N/mm]	F _{v,s} [N]	F _{h,s} [N]	w _{v,s} [mm]	Wh,s [mm]	F _{v,e} [N]	F _{h,e} [N]	Wv,e [mm]	Wh,e [mm]
B34-(48)-08-105-60-90-60-00-07	12213	451	737	1276	0,043	0,957	1560	2701	0,111	4,115
B40-(48)-08-105-60-90-60-00-08	15788	427	772	1336	0,051	0,553	1890	3273	0,122	5,092
B48-(48)-08-105-60-90-60-00-09	12021	411	781	1353	0,029	0,898	1886	3267	0,121	5,549
B51-(48)-08-105-60-90-60-00-10	18057	567	537	931	0,010	0,192	1331	2305	0,054	2,617
B57-(48)-08-105-60-90-60-00-11	20041	489	806	1396	0,024	0,791	1675	2901	0,067	3,871
B04-(49)-08-165-60-90-60-00-01	14620	528	707	1224	0,025	1,501	1757	3043	0,097	4,947
B10-(49)-08-165-60-90-60-00-02	36657	601	965	1671	0,023	1,550	2116	3665	0,055	4,867
B17-(49)-08-165-60-90-60-00-03	31085	587	686	1188	0,021	0,376	1703	2950	0,054	3,380
B19-(49)-08-165-60-90-60-00-04	9582	592	718	1244	0,031	0,310	1464	2536	0,109	2,492
B27-(49)-08-165-60-90-60-00-05	646438	826	1725	2988	0,026	2,485	3452	5980	0,028	6,107
B33-(49)-08-165-60-90-60-00-06	84842	681	1211	2098	0,042	1,955	3022	5235	0,064	6,563
B38-(49)-08-165-60-90-60-00-07	33562	530	814	1409	0,010	0,883	1889	3272	0,042	4,400
B45-(49)-08-165-60-90-60-00-08	25243	532	814	1410	0,078	2,055	2021	3501	0,126	5,987
B47-(49)-08-165-60-90-60-00-09	17069	665	779	1349	0,032	0,541	1911	3310	0,098	3,492
B55-(49)-08-165-60-90-60-00-10	-125378	705	898	1555	0,017	1,458	1996	3457	0,008	4,157
B56-(49)-08-165-60-90-60-00-11	20844	504	908	1573	0,028	0,791	2263	3919	0,093	5,444
B56-(49)-08-165-60-90-60-00-test	8635	424	762	1319	0,061	1,034	1799	3116	0,181	5,272
B04-(50)-08-225-60-90-60-00-01	31467	614	1428	2473	0,087	1,929	3402	5892	0,150	7,499
B09-(50)-08-225-60-90-60-00-02	159486	760	1604	2777	0,008	2,058	3987	6905	0,023	7,489
B16-(50)-08-225-60-90-60-00-03	26902	598	1369	2371	0,047	1,484	3374	5843	0,121	7,293
B22-(50)-08-225-60-90-60-00-04	-224326	840	1265	2191	0,039	1,996	3143	5443	0,031	5,869
B25-(50)-08-225-60-90-60-00-05	45289	625	1646	2850	0,040	2,213	4111	7120	0,094	9,047
B28-(50)-08-225-60-90-60-00-06	18340	734	1221	2115	0,026	1,257	3046	5276	0,125	5,565
B37-(50)-08-225-60-90-60-00-07	64272	806	2225	3853	0,046	2,974	4804	8321	0,087	8,517
B40-(50)-08-225-60-90-60-00-08	22325	600	1230	2130	0,025	0,450	2538	4396	0,084	4,229
B49-(50)-08-225-60-90-60-00-09	25710	803	901	1560	0,037	0,355	1899	3289	0,075	2,507
B51-(50)-08-225-60-90-60-00-10	31103	767	998	1729	0,070	0,673	2471	4281	0,117	3,997
B57-(50)-08-225-60-90-60-00-11	18714	642	1234	2137	0,069	0,608	3063	5305	0,166	5,545

ANHANG F GESAMMELTE ERGEBNISSE

F-1 Statistische Kenngrößen

F-1.1 Rohdichte und Holzfeuchtigkeit

Tah Anhano	F-1	Statistische	Kennorößen	der Holz	feuchtiokeit i	und Rohdichte
I uv. Annung	11	Sunsusche	Menngropen	uci 11014	<i>ι</i> σασπαχκοά i	ma nomannic

Prüfserie [ID]	n [-]	ρ _{med} [kg/m³]	ρ _{mean} [kg/m³]	CoV[ρ] [%]	ρ _{min} [kg/m³]	ρ _{max} [kg/m ³]	u _{med} [%]	u _{mean} [%]	u _{min} [%]	u _{max} [%]
15	10	428	428	2,96%	411	455	9,7	9,5	7,9	10,5
16	12	427	425	4,75%	396	462	10,6	10,3	8,4	12,1
17	12	418	422	5,71%	388	460	10,4	10,3	8,8	11,3
18	8	425	425	1,81%	411	434	10,3	10,4	8,3	12,0
19	11	419	421	7,13%	377	462	8,1	8,2	7,6	8,8
20	11	421	416	5,37%	381	456	8,9	8,8	8,5	9,2
21	11	424	424	4,48%	394	466	8,6	8,7	8,3	9,2
22	10	434	443	4,66%	423	485	8,9	8,8	8,3	9,2
23	12	408	413	3,84%	391	441	8,4	8,4	7,8	8,9
24	11	421	413	5,13%	373	445	8,7	8,7	8,0	9,0
25	12	430	428	5,36%	397	468	9,6	9,5	8,7	9,9
26	10	424	425	1,74%	412	439	9,3	9,3	9,0	9,7
27	11	424	418	6,08%	379	463	8,3	8,4	8,0	8,8
28	13	424	435	7,77%	389	496	8,9	8,7	8,0	9,2
29	11	435	442	5,29%	413	480	9,8	9,8	9,4	10,2
30	13	432	434	4,24%	394	464	9,0	8,7	7,5	9,4
31	10	408	408	2,65%	389	424	8,4	8,3	7,7	8,7
32	10	419	417	4,32%	379	437	8,8	8,6	7,2	9,2
33	9	418	421	3,79%	398	449	9,7	9,8	9,2	10,3
34	10	418	417	2,67%	398	438	9,0	8,9	7,3	9,4
35	9	426	424	3,20%	405	453	9,0	9,4	8,6	12,0
36	10	431	432	2,02%	417	447	9,9	10,0	9,4	10,7
37	11	427	429	6,26%	383	484	9,7	9,6	7,6	10,4
38	12	421	424	6,66%	385	474	9,6	9,4	7,7	10,5
39	9	416	412	3,97%	382	432	9,4	9,4	9,1	9,8
40	11	417	418	3,52%	399	439	9,3	9,3	8,3	10,3
41	12	415	417	4,70%	381	451	9,9	9,9	9,2	10,5
42	12	419	430	6,27%	406	490	10,1	10,0	9,2	10,5
43	11	424	416	7,21%	375	476	9,5	9,4	8,7	10,0
44	12	419	422	3,21%	400	447	9,9	9,7	8,6	10,6
45	11	442	436	3,14%	409	453	9,8	9,6	8,5	10,3
46	11	436	440	3,12%	420	462	10,0	10,0	8,7	10,5
47	11	415	420	4,87%	390	460	9,1	9,1	8,1	10,7

Prüfserie [ID]	n [-]	ρ _{med} [kg/m ³]	ρ _{mean} [kg/m³]	CoV[ρ] [%]	ρ _{min} [kg/m³]	ρ _{max} [kg/m ³]	U _{med} [%]	u _{mean} [%]	u _{min} [%]	u _{max} [%]
48	9	413	416	2,13%	404	434	9,9	9,7	8,2	10,7
49	12	439	439	5,41%	394	471	10,1	10,0	8,8	10,9
50	10	418	423	5,06%	404	471	9,7	9,7	8,6	10,3
51	12	446	447	9,52%	381	502	10,1	9,9	8,9	10,6
52	12	429	429	5,99%	390	475	10,3	10,4	9,2	11,6
53	13	430	438	6,47%	400	500	10,4	10,1	8,0	11,5
54	10	424	427	4,85%	395	460	10,2	10,2	9,7	10,7
55	12	411	420	5,08%	397	464	9,8	9,8	9,6	10,4
56	10	426	426	3,32%	401	443	10,1	9,8	8,5	10,7
57	12	446	440	4,11%	409	468	9,8	9,7	8,4	10,8
58	11	444	442	3,59%	414	466	10,5	10,5	9,3	12,5
59	12	436	440	5,60%	402	476	10,1	10,0	9,3	10,7
60	10	427	430	4,23%	406	471	10,3	10,3	9,4	11,4
61	12	428	432	4,72%	409	466	10,3	10,6	9,5	13,7
62	12	435	442	5,09%	413	484	9,9	9,7	8,7	11,1
63	13	422	426	4,05%	403	455	9,9	9,9	8,1	12,6
64	9	418	417	1,60%	404	426	10,0	9,9	9,0	10,3
65	8	430	427	1,64%	414	434	10,0	9,4	7,6	10,6
66	11	414	424	6,75%	387	484	10,1	9,9	8,4	11,5

F-1.2 Kraft F₁₅

Tab. Anhang F-2 Statistische Parameter maximal geprüfte Kraft F₁₅ bis zu einer Grenzverformung von 15 mm

Prüfserie [ID]	n [-]	F _{15,med} [N]	F _{15,mean} [N]	CoV[F ₁₅] [%]	F _{15,min} [N]	F _{15,max} [N]	F _{15,0,05} [N]
15	9	15659	15657	5,55%	14357	16805	14495
16	12	12564	12283	11,89%	9787	14139	9819
17	12	14977	14887	12,54%	12064	18336	12544
18	8	8142	8701	20,33%	6385	11844	6891
19	11	5166	5213	7,06%	4526	5760	4694
20	11	12814	13204	8,93%	11850	15158	11943
21	11	20118	20089	7,27%	18209	22679	18288
22	10	20982	21112	2,03%	20596	21790	20646
23	9	3528	3523	7,04%	3100	4038	3194
24	11	8286	7902	12,53%	6290	9257	6339
25	11	13214	13637	11,75%	11616	17223	11912
26	9	19389	19227	4,67%	17294	20026	17695
27	11	4258	4247	12,91%	3494	5249	3624
28	13	11145	11464	13,54%	9557	14425	9731
29	11	18657	19336	11,83%	15684	22370	16404

Prüfserie [ID]	n [-]	F15,med [N]	F15,mean [N]	CoV[F15] [%]	F _{15,min} [N]	F _{15,max} [N]	F15,0,05 [N]
30	13	20908	21001	1,56%	20609	21698	20634
31	9	2469	2422	11,22%	1930	2831	2039
32	9	4585	4343	16,34%	2998	5307	3252
33	6	8527	8606	7,72%	8006	9721	8011
34	10	10992	11590	22,58%	8889	16401	8905
35	9	5755	5823	9,76%	5059	6763	5095
36	10	12042	11958	4,45%	10971	12857	11179
37	11	17068	17153	6,07%	15160	18728	15696
38	12	17156	17227	2,43%	16682	17947	16721
39	9	3680	3591	7,92%	3143	3961	3169
40	11	6715	6957	10,11%	6259	8325	6284
41	12	10804	10474	16,86%	6940	13156	7744
42	9	15070	15277	5,90%	14145	17193	14285
43	11	4479	4706	17,95%	3727	6096	3800
44	11	9737	9900	7,57%	8887	11529	8938
45	11	15895	15560	7,02%	13498	16794	13759
46	10	17305	17248	5,09%	15773	18489	15984
47	11	3041	3009	11,84%	2488	3572	2492
48	9	4704	4606	10,89%	3864	5630	3952
49	11	5401	5566	18,65%	4559	8065	4599
50	9	8399	8614	19,87%	5976	10967	6228
51	10	7080	7006	5,53%	6294	7588	6384
52	12	11392	11672	11,86%	9788	14104	9848
53	13	13299	13063	9,52%	10848	15558	11254
54	10	14641	14614	5,68%	13252	15815	13468
55	11	3647	3732	11,05%	3274	4637	3276
56	10	7189	7138	9,22%	5972	8039	6073
57	12	9686	9672	6,60%	8700	10857	8858
58	10	11013	11055	7,43%	9742	12129	9959
59	12	5910	5944	10,43%	5040	7123	5100
60	10	10078	10345	13,12%	8417	12135	8799
61	12	12409	12444	11,76%	10690	15785	10889
62	11	12922	13358	10,46%	11673	15949	11700
63	12	2795	2838	6,29%	2575	3215	2617
64	9	5006	4837	11,96%	3862	5508	3994
65	8	5972	6045	14,67%	4661	7239	4913
66	11	7998	7682	14,41%	5326	9158	6010

F-1.3 Kraft Fmax

Tab. Anhang F-3 Statistische Parameter für die maximal geprüfte Kraft F_{max}

Prüfserie [ID]	n [-]	F _{max,med} [N]	F _{max,mean} [N]	CoV[F _{max}] [%]	F _{max,min} [N]	F _{max,max} [N]	F _{max,0,05} [N]
15	9	15659	15657	5,55%	14357	16805	14495
16	12	12564	12283	11,89%	9787	14139	9819
17	12	14977	14887	12,54%	12064	18336	12544
18	8	8142	8701	20,33%	6385	11844	6891
19	11	5166	5213	7,06%	4526	5760	4694
20	11	12814	13204	8,93%	11850	15158	11943
21	11	20118	20089	7,27%	18209	22679	18288
22	10	20982	21112	2,03%	20596	21790	20646
23	9	3528	3523	7,04%	3100	4038	3194
24	11	8286	7902	12,53%	6290	9257	6339
25	11	13214	13637	11,75%	11616	17223	11912
26	9	19389	19227	4,67%	17294	20026	17695
27	11	4258	4247	12,91%	3494	5249	3624
28	13	11145	11464	13,54%	9557	14425	9731
29	11	18657	19336	11,83%	15684	22370	16404
30	13	20908	21001	1,56%	20609	21698	20634
31	9	2469	2422	11,22%	1930	2831	2039
32	9	4585	4343	16,34%	2998	5307	3252
33	6	8527	8606	7,72%	8006	9721	8011
34	10	10992	11590	22,58%	8889	16401	8905
35	9	5755	5843	10,00%	5059	6763	5095
36	10	12042	11958	4,45%	10971	12857	11179
37	11	17260	17282	5,85%	15160	18774	15842
38	12	17402	17330	2,58%	16682	17947	16739
39	9	3806	3699	9,54%	3210	4167	3213
40	11	6956	7009	9,67%	6259	8325	6292
41	12	10918	10499	16,63%	6940	13156	7785
42	10	16473	16383	5,26%	15080	17847	15295
43	11	4479	4710	17,89%	3739	6096	3806
44	11	9737	9907	7,76%	8887	11611	8938
45	11	15895	15773	7,27%	13498	16961	13759
46	11	17926	17703	3,79%	16725	18523	16731
47	11	3091	3119	12,89%	2497	3656	2572
48	8	4919	4903	5,06%	4486	5201	4545
49	11	5401	5577	18,45%	4559	8065	4628
50	9	8399	8614	19,87%	5976	10967	6228
51	11	8301	8269	5,50%	7729	8977	7756
52	12	12429	12450	11,77%	10391	14877	10709

Prüfserie [ID]	n [-]	F _{max,med} [N]	F _{max,mean} [N]	CoV[F _{max}] [%]	F _{max,min} [N]	F _{max,max} [N]	F _{max,0,05} [N]
53	12	14004	14220	5,14%	13255	15558	13439
54	10	15503	15584	4,57%	14361	16490	14540
55	12	4574	4954	20,87%	4201	7481	4207
56	10	8065	8500	15,72%	7193	10779	7249
57	12	11094	11261	15,16%	9158	14252	9218
58	11	14784	15026	8,03%	13186	16783	13473
59	11	7192	7136	9,17%	5991	8229	6034
60	10	10611	11308	14,10%	9891	13792	9954
61	12	14850	14879	6,46%	13236	16164	13497
62	11	15722	15660	7,01%	13615	17926	14196
63	12	4660	4674	11,72%	3782	5712	3942
64	9	6315	6421	10,46%	5604	7738	5745
65	8	6768	6934	10,26%	6276	7998	6276
66	10	8644	8981	11,77%	7123	10551	7703

F-1.4 Steifigkeit

Für jene Prüfserien bei denen mehr als 4 Steifigkeiten für die unterschiedlichen Belastungsrichtungen in die Auswertung mit eingingen wurden die statistische Lage- und Streuungsparameter bestimmt. Für jene Prüfserien bei denen nur bis zu 4 Werte in die Auswertung mit eingingen, wurden die Abbildungen ohne Bestimmung der statistischen Parameter erstellt.

Axiale Steifigkeit:

Tab. Annang F-4 Statistische Parameter axiale Stelfigkeit Kser,

[ID]	n [-]	Kser,ax,med [N/mm]	K _{ser,ax,mean} [N/mm]	CoV[<i>K</i> ser,ax] [%]	K _{ser,ax,min} [N/mm]	K _{ser,ax,max} [N/mm]
15	10	22728	22438	10,86%	18403	27147
16	11	20329	21278	14,51%	15199	25239
17	9	21360	20151	17,72%	17604	28474
18	9	30906	26585	45,34%	20949	58989
19	9	30906	26585	45,34%	20949	58989
20	5	27176	28488	8,87%	24116	29716
21	11	18165	18878	19,34%	12926	23274
22	11	25014	25664	14,68%	19395	30922
25	11	21554	21531	14,46%	16582	26932
26	12	24683	19060	62,51%	13788	49758
27	6	7249	6694	23,39%	5830	9993
28	9	27933	27739	24,87%	16758	38064
29	9	25156	25575	14,95%	19451	30989
30	11	20247	21395	10,86%	16171	22909
34	6	19294	18220	29,85%	13831	27167

[ID]	n [-]	Kser,ax,med [N/mm]	K _{ser,ax,mean} [N/mm]	CoV[<i>K</i> ser,ax] [%]	K _{ser,ax,min} [N/mm]	K _{ser,ax,max} [N/mm]
36	6	43457	45792	12,93%	33808	48919
41	6	17588	17136	14,36%	15354	21980
44	6	27935	25403	59,29%	13050	55142
48	5	17922	17903	28,92%	11743	24818

Laterale Steifigkeit:

Tab. Anhang F-5 Statistische Parameter laterale Steifigkeit Kser,lat

[ID]	n [-]	Kser,lat,med [N/mm]	Kser,lat,mean [N/mm]	CoV[Kser,lat] [%]	K _{ser,ax,lat} [N/mm]	K _{ser,ax,lat} [N/mm]
20	5	1326	1337	15,09%	1056	1603
21	11	1315	1290	19,10%	932	1689
22	11	1541	1502	15,92%	1235	2069
25	11	1094	1081	6,17%	995	1212
26	12	1080	1118	17,41%	757	1366
28	11	1089	981	29,62%	725	1772
29	11	1448	1429	12,24%	1237	1730
30	13	1318	1308	15,54%	1021	1628
34	6	1078	934	38,75%	810	1755
35	7	630	634	12,58%	511	756
36	10	892	904	16,41%	665	1108
37	9	1200	1237	9,84%	1023	1399
38	12	1371	1393	19,65%	949	1808
40	11	623	630	9,94%	508	716
41	11	907	878	13,65%	722	1098
42	12	963	961	17,03%	775	1248
44	9	722	717	12,30%	591	884
45	10	1018	1038	12,72%	822	1231
46	11	1261	1184	19,62%	995	1618
48	7	601	596	7,07%	529	648
49	11	696	721	21,77%	450	924
50	10	753	757	6,56%	688	841
51	8	1068	1088	20,69%	779	1396
52	7	1177	1193	19,48%	794	1460
53	12	1260	1251	24,58%	727	1728
54	11	1501	1476	17,35%	1106	2016
55	11	426	424	19,85%	296	538
56	10	553	520	22,18%	437	816
57	11	790	771	15,61%	661	1012
58	12	887	860	17,98%	710	1173
60	6	837	846	21,02%	621	1080
61	10	985	981	10,53%	853	1160

[ID]	n [-]	K _{ser,lat,med} [N/mm]	K _{ser,lat,mean} [N/mm]	CoV[Kser,lat] [%]	K _{ser,ax,lat} [N/mm]	K _{ser,ax,lat} [N/mm]
62	8	1168	1113	13,96%	956	1395
64	10	382	379	17,24%	293	503
65	9	455	447	17,34%	336	595
66	6	580	573	4,46%	556	626

F-2 Kombinierte Beanspruchung

Abb. Anhang F-1 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 40 mm in Abhängigkeit des Achs-Faserwinkels

Abb. Anhang F-2 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 105 mm in Abhängigkeit des Achs-Faserwinkels

ŢU

Abb. Anhang F-3 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 165 mm in Abhängigkeit des Achs-Faserwinkels

Abb. Anhang F-4 Modellvergleich für die kombinierte Beanspruchung für Eindrehtiefen von 225 mm in Abhängigkeit des Achs-Faserwinkels

F-3 Laterale Tragfähigkeit

F-3.1 Fmax, Fließmoment Variante A und Berücksichtigung von Ftens

Abb. Anhang F-5 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 90^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-6 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-7 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 60^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-8 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.2 *F*_{max}, Fließmoment Variante B und Berücksichtigung von *F*_{tens}

Abb. Anhang F-9 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-10 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-11 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-12 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$

(links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.3 F_{max}, Fließmoment Variante C und Berücksichtigung von F_{tens}

Abb. Anhang F-13 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 90^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-14 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-15 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 63, $\epsilon = 0^{\circ}$, $l_{e} = 40 \text{ mm}$ * Psnr.: 64, $\epsilon = 0^{\circ}$, $l_{e} = 105 \text{ mm}$ • Psnr.: 65, $\epsilon = 0^{\circ}$, $l_{e} = 165 \text{ mm}$ \triangle Psnr.: 66, $\epsilon = 0^{\circ}$, $l_{e} = 225 \text{ mm}$

Abb. Anhang F-16 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.4 Fmax, Fließmoment Variante A und ohne Berücksichtigung von Ftens

Abb. Anhang F-17 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-18 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-19 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.5 Fmax, Fließmoment Variante B und ohne Berücksichtigung von Ftens

Abb. Anhang F-21 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 90^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)
20000

0.881

25000

Abb. Anhang F-22 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 $^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 55, ε = 30°, I_{e} = 40 mm * Psnr.: 56, ε = 30°, I_{e} = 105 mm • Psnr.: 57, ε = 30°, I_{e} = 165 mm Δ Psnr.: 58, ε = 30°, I_{e} = 225 mm

5000

С

0

5000

10000

 $\mathsf{F}_{\mathsf{lat},\mathsf{pred}}$

15000

20000

25000

5000

С

0

5000

10000

F_{lat,pred}

15000

20000

25000

Abb. Anhang F-23 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 63, $\epsilon = 0^{\circ}$, $l_{e} = 40 \text{ mm}$ * Psnr.: 64, $\epsilon = 0^{\circ}$, $l_{e} = 105 \text{ mm}$ • Psnr.: 65, $\epsilon = 0^{\circ}$, $l_{e} = 165 \text{ mm}$ \triangle Psnr.: 66, $\epsilon = 0^{\circ}$, $l_{e} = 225 \text{ mm}$

Abb. Anhang F-24 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.6 Fmax, Fließmoment Variante B und ohne Berücksichtigung von Ftens

Abb. Anhang F-25 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

VM It. Johansen 50% Reibung

y = 0.684 *x+ 2840.848 | R² = 0.889

Abb. Anhang F-26 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

25000

20000

15000

10000

5000

С

0

F_{lat,test}

Abb. Anhang F-27 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 63, $\epsilon = 0^{\circ}$, $l_{e} = 40 \text{ mm}$ * Psnr.: 64, $\epsilon = 0^{\circ}$, $l_{e} = 105 \text{ mm}$ • Psnr.: 65, $\epsilon = 0^{\circ}$, $l_{e} = 165 \text{ mm}$ \triangle Psnr.: 66, $\epsilon = 0^{\circ}$, $l_{e} = 225 \text{ mm}$

Abb. Anhang F-28 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.7 F₁₅, Fließmoment Variante B und Berücksichtigung von F_{tens}

Abb. Anhang F-29 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

 $\circ \quad \text{Psnr.: 55, } \epsilon = 30^\circ, \ \text{I}_e = 40 \ \text{mm} \quad \texttt{*} \ \text{Psnr.: 56, } \epsilon = 30^\circ, \ \text{I}_e = 105 \ \text{mm} \quad \bullet \quad \text{Psnr.: 57, } \epsilon = 30^\circ, \ \text{I}_e = 165 \ \text{mm} \quad \Delta \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 57, } \epsilon = 30^\circ, \ \text{I}_e = 165 \ \text{mm} \quad \Delta \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 57, } \epsilon = 30^\circ, \ \text{I}_e = 165 \ \text{mm} \quad \Delta \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 57, } \epsilon = 30^\circ, \ \text{I}_e = 165 \ \text{mm} \quad \Delta \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 57, } \epsilon = 30^\circ, \ \text{I}_e = 165 \ \text{mm} \quad \Delta \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 57, } \epsilon = 30^\circ, \ \text{I}_e = 165 \ \text{mm} \quad \Delta \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 57, } \epsilon = 30^\circ, \ \text{I}_e = 165 \ \text{mm} \quad \Delta \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 225 \ \text{mm} \quad \text{Psnr.: 58, } \epsilon = 30^\circ, \ \text{I}_e = 30^\circ, \ \text{Psnr.: 58, } \epsilon = 30^\circ, \$

Abb. Anhang F-30 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-31 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 63, $\varepsilon = 0^{\circ}$, $l_{e} = 40 \text{ mm}$ * Psnr.: 64, $\varepsilon = 0^{\circ}$, $l_{e} = 105 \text{ mm}$ • Psnr.: 65, $\varepsilon = 0^{\circ}$, $l_{e} = 165 \text{ mm} \triangle$ Psnr.: 66, $\varepsilon = 0^{\circ}$, $l_{e} = 225 \text{ mm}$

Abb. Anhang F-32 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.8 F₁₅, Fließmoment Variante C und Berücksichtigung von F_{tens}

Abb. Anhang F-33 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 55, ε = 30°, I_e = 40 mm * Psnr.: 56, ε = 30°, I_e = 105 mm • Psnr.: 57, ε = 30°, I_e = 165 mm \triangle Psnr.: 58, ε = 30°, I_e = 225 mm

Abb. Anhang F-34 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-35 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-36 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.9 F₁₅, Fließmoment Variante A und ohne Berücksichtigung von F_{tens}

Abb. Anhang F-37 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 55, ε = 30°, I_{e} = 40 mm * Psnr.: 56, ε = 30°, I_{e} = 105 mm • Psnr.: 57, ε = 30°, I_{e} = 165 mm Δ Psnr.: 58, ε = 30°, I_{e} = 225 mm

Abb. Anhang F-39 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-40 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.10 F₁₅, Fließmoment Variante B und ohne Berücksichtigung von F_{tens}

Abb. Anhang F-41 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 90^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 55, ε = 30°, I_e = 40 mm * Psnr.: 56, ε = 30°, I_e = 105 mm • Psnr.: 57, ε = 30°, I_e = 165 mm \triangle Psnr.: 58, ε = 30°, I_e = 225 mm

Abb. Anhang F-42 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-43 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-44 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.11 F₁₅, Fließmoment Variante C und ohne Berücksichtigung von F_{tens}

Abb. Anhang F-45 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 90 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

• Psnr.: 55, $\varepsilon = 30^\circ$, $I_e = 40$ mm * Psnr.: 56, $\varepsilon = 30^\circ$, $I_e = 105$ mm • Psnr.: 57, $\varepsilon = 30^\circ$, $I_e = 165$ mm \triangle Psnr.: 58, $\varepsilon = 30^\circ$, $I_e = 225$ mm

Abb. Anhang F-46 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 30 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-47 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel ε = 60 ° (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-48 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

Abb. Anhang F-49 Modellvergleich rein lateral beanspruchte Holzbauschrauben für Achs-Faserwinkel $\varepsilon = 0^{\circ}$ (links oben: min. VM mit Reibbeiwert von 25 %; rechts oben: min. VM mit Reibbeiwert von 50 %; links unten: beobachteter VM mit Reibbeiwert von 25 %; rechts unten: beobachteter VM mit Reibbeiwert von 50 %)

F-3.12 Ergebnisse Variation der Belastungsrichtung

Abb. Anhang F-50 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 23

Abb. Anhang F-51 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 24

Abb. Anhang F-52 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 25

Abb. Anhang F-53 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 26

Abb. Anhang F-54 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 27

Abb. Anhang F-55 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 28

Abb. Anhang F-56 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 29

Abb. Anhang F-57 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 30

Abb. Anhang F-58 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 39

Abb. Anhang F-59 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 40

Abb. Anhang F-60 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 41

Abb. Anhang F-61 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 42

Abb. Anhang F-62 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 43

Abb. Anhang F-63 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 44

Abb. Anhang F-64 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 45

Abb. Anhang F-65 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 46

Abb. Anhang F-66 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 55

Abb. Anhang F-67 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 56

Abb. Anhang F-68 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 57

Abb. Anhang F-69 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 58

Abb. Anhang F-70 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 59

Abb. Anhang F-71 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 60

Abb. Anhang F-72 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 61

Abb. Anhang F-73 Gegenüberstellung Variation der Belastungsrichtungen für Prüfserie 62

ANHANG G SCHRAUBENPRÜFUNGEN

G-1 Schraubenzugtragfähigkeit

Abb. Anhang G-1 Schraubenlänge l = 120 mm

Abb. Anhang G-2 Schraubenlänge l = 180 mm

Abb. Anhang G-3 Schraubenlänge l = 240 mm

Zusammenfassung Einzelversuchsergebnisse:

Tab. Anhang G-	1 Einzelversuchser	gebnisse Schrai	ıbenzugprüfungen
----------------	--------------------	-----------------	------------------

0			- 01						
Schraubenprüfung [ID]	F _{max}	U(F _{max})	F ₁₀	U(F10)	F40	U(F40)	FB	U(FB)	M _{y,A}
080x120/110 A0C 1A1 C1E -1	27600	3,31	2760	0,56	11040	0,92	22509	4,13	27483
080x120/110 A0C 1A1 C1E -2	27785	3,41	2779	0,76	11114	1,12	22297	4,22	25360
080x120/110 A0C 1A1 C1E -3	27018	2,69	2702	0,33	10807	0,68	22349	3,52	31165
080x120/110 A0C 1A1 C1E -4	27147	3,41	2715	0,86	10859	1,21	22075	4,23	24754
080x120/110 A0C 1A1 C1E -5	28159	3,82	2816	0,99	11264	1,41	23378	4,64	25113

Fortsetzung Tabelle nächste Seite

Schraubenprüfung [ID]	F _{max}	U(F _{max})	F ₁₀	U(F10)	F40	U(F40)	FB	U(F _B)	M _{y,A}
080x120/110 A0C 1A1 C1E -6	27531	3,10	2753	0,51	11012	0,89	22491	4,02	27320
080x180/170 A0C 1A1 C1E -1	26408	5,46	2641	0,99	10563	1,50	24420	5,97	24753
080x180/170 A0C 1A1 C1E -2	27177	4,94	2718	0,87	10871	1,37	25234	5,35	25700
080x180/170 A0C 1A1 C1E -3	26754	5,55	2675	0,95	10702	1,45	24766	6,07	25439
080x180/170 A0C 1A1 C1E -4	26386	4,86	2639	0,86	10554	1,39	24713	5,26	24706
080x180/170 A0C 1A1 C1E -5	26872	5,14	2687	1,01	10749	1,51	25542	5,45	24396
080x180/170 A0C 1A1 C1E -6	26877	4,63	2688	0,63	10751	1,16	25165	5,04	27097
080x240/230 A0C 1A1 C1E -1	26341	6,14	2634	0,68	10536	1,30	23952	6,88	27261
080x240/230 A0C 1A1 C1E -2	26241	6,30	2624	1,07	10496	1,71	21643	6,85	24522
080x240/230 A0C 1A1 C1E -3	26585	5,96	2659	0,90	10634	1,49	25408	6,34	25713
080x240/230 A0C 1A1 C1E -4	25682	5,94	2568	1,03	10273	1,66	23611	6,50	24518
080x240/230 A0C 1A1 C1E -5	26923	7,21	2692	1,30	10769	1,92	24417	7,77	25060
080x240/230 A0C 1A1 C1E -6	26396	6,31	2640	0,54	10558	1,18	24176	6,85	28437

Zusammenfassung nach Ausreißerbereinigung:

Tab. Anhang G-2 Statistische Parameter Schraubenzugtragfähigkeit

Schraubenprüfung [ID]	F _{tens,med} [N]	s ² (F) [N]	F _{tens,max} [N]	F _{tens,min} [N]	F _{tens,mean} [N]	F _{tens,0,05} [N]	COV(F) [%]	M _{y,A,mean} [Nmm]
080x120/110 A0C 1A1 C1E -ii	27565	174769	28159	27018	27540	27050	1,52%	26866
080x120/110 A0C 1A1 C1E -ii	26813	92500	27177	26386	26746	26392	1,14%	25348
080x120/110 A0C 1A1 C1E -ii	26368	168713	26923	25682	26361	25822	1,56%	25918

G-2 Fließmomentprüfungen

Abb. Anhang G-4 Schraubenlänget l = 120 m

Abb. Anhang G-5 Schraubenlänge l = 180 mm

Abb. Anhang G-6 Schraubenlänge l = 240 mm

Zusammenfassung Einzelversuchsergebnisse:

Tab. Anhang G-3 Einzelversuchsergebnisse Fließmomentprüfungen

Fließmomentprüfung [ID]	М _{у,С} [Nm]	Φpl,C [°]	М _{у,В} [Nm]	Φpl,B [°]	Фу,В [°]	Фе!,В [°]
My-120-01	37,850	11,46	37,448	15,50	5,01	10,50
My-120-02	38,053	15,38	35,715	15,58	5,08	10,50
My-120-03	41,289	14,16	39,719	15,61	5,12	10,50
My-120-04	38,606	12,37	37,143	15,65	5,15	10,50
My-120-05	38,002	11,70	37,078	15,57	5,07	10,50
My-120-06	39,945	12,05	39,133	15,62	5,12	10,50
My-120-07	35,326	12,25	34,139	15,51	5,02	10,50
My-120-08	40,107	9,52	36,608	15,53	5,03	10,50

Fortsetzung Tabelle nächste Seite

Fließmomentprüfung [ID]	<i>М</i> у,С [Nm]	ФрІ,С [°]	М _{у,В} [Nm]	ФрІ,В [°]	Фу,В [°]	Феl,В [°]
My-120-08	40,107	9,52	36,608	15,53	5,03	10,50
My-120-09	37,748	16,08	35,304	15,46	4,97	10,50
My-120-10	40,132	13,20	38,731	15,62	5,12	10,50
My-120-11	38,730	12,86	37,292	15,41	4,91	10,50
My-120-12	39,214	11,39	38,879	15,50	5,00	10,50
My-120-13	36,640	10,52	36,289	15,50	5,00	10,50
My-120-14	36,326	8,80	36,489	15,39	4,89	10,50
My-120-15	37,634	11,38	36,154	15,65	5,15	10,50
My-180-01	40,528	12,67	37,883	15,47	4,97	10,50
My-180-02	37,229	11,61	36,128	15,53	5,03	10,50
My-180-03	38,510	10,73	36,890	15,44	4,94	10,50
My-180-04	37,716	11,93	36,527	15,54	5,04	10,50
My-180-05	40,711	15,17	36,081	15,33	4,83	10,50
My-180-06	36,994	12,31	35,529	15,47	4,97	10,50
My-180-07	36,032	12,26	34,554	15,53	5,04	10,50
My-180-08	38,426	11,40	36,707	15,50	5,00	10,50
My-180-09	38,945	15,20	35,930	15,55	5,05	10,50
My-180-10	36,607	10,77	35,258	15,49	4,99	10,50
My-180-11	38,421	11,18	37,934	15,58	5,09	10,50
My-180-12	39,176	12,11	38,480	15,53	5,03	10,50
My-180-13	40,409	10,10	39,554	15,37	4,88	10,50
My-180-14	39,226	11,08	38,480	15,37	4,87	10,50
My-180-15	36,036	11,06	34,681	15,49	4,99	10,50

Zusammenfassung nach Ausreißerbereinigung:

Variante B:

Tab. Anhang G-4 Statistische Parameter Fließmoment Variante B

Fließmoment [ID]	Charge [-]	M _{y,B,med} [Nm]	M _{y,B,mean} [Nm]	s ² (M _{y,B}) [Nm]	M _{y,B,max} [Nm]	M _{y,B,min} [Nm]	M _{y,B,0,05} [Nm]	COV(M _y) [%]
My-120-2	2	37,111	37,102	3,103	39,719	34,139	34,663	4,75%
My-120-1	1	36,389	36,556	0,259	37,292	36,154	36,174	1,39%
My-180-2	2	36,104	36,149	0,865	37,883	34,554	34,871	2,57%
My-180-1	1	38,480	38,298	0,099	38,480	37,934	37,988	0,82%
My-240-1	1	35,629	35,651	2,461	38,065	33,155	33,491	4,40%

Variante C:

Tab. Anhang G-5 Statistische Parameter Fließmoment Variante C

Fließmoment [ID]	Charge [-]	M _{y,C,med} [Nm]	M _{y,C,mean} [Nm]	s ² (M _{y,C}) [Nm]	M _{y,C,max} [Nm]	M _{y,C,min} [Nm]	M _{y,C,0,05} [Nm]	COV(<i>M</i> _y) [%]
My-120-2	2	38,330	38,706	2,912	41,289	35,326	36,416	4,41%
My-120-1	1	37,634	37,709	1,592	39,214	36,326	36,389	3,35%
My-180-2	2	38,071	38,170	2,476	40,711	36,032	36,291	4,12%
My-180-1	1	39,201	39,308	0,674	40,409	38,421	38,534	2,09%
My-240-1	1	36,748	36,949	2,912	39,464	34,067	34,450	4,62%

Dies ist eine Veröffentlichung des

FACHBEREICHS INGENIEURBAUKUNST (IBK) AN DER TU GRAZ

Der Fachbereich Ingenieurbaukunst umfasst die dem konstruktiven Ingenieurbau nahe stehenden Institute für Baustatik, Betonbau, Stahlbau & Flächentragwerke, Holzbau & Holztechnologie, Materialprüfung & Baustofftechnologie, Baubetrieb & Bauwirtschaft, Hochbau & Industriebau, Bauinformatik und Allgemeine Mechanik der Fakultät für Bauingenieurwissenschaften an der Technischen Universität Graz.

Dem Fachbereich Ingenieurbaukunst ist das Bautechnikzentrum (BTZ) zugeordnet, welches als gemeinsame hochmoderne Laboreinrichtung zur Durchführung der experimentellen Forschung aller beteiligten Institute dient. Es umfasst die drei Laboreinheiten für konstruktiven Ingenieurbau, für Bauphysik und für Baustofftechnologie.

Der Fachbereich Ingenieurbaukunst kooperiert im gemeinsamen Forschungsschwerpunkt "Advanced Construction Technology". Dieser Forschungsschwerpunkt umfasst sowohl Grundlagen- als auch praxisorientierte Forschungs- und Entwicklungsprogramme.

Weitere Forschungs- und Entwicklungskooperationen bestehen mit anderen Instituten der Fakultät, insbesondere mit der Gruppe Geotechnik, sowie nationalen und internationalen Partnern aus Wissenschaft und Wirtschaft.

Die Lehrinhalte des Fachbereichs Ingenieurbaukunst sind aufeinander abgestimmt. Aus gemeinsam betreuten Projektarbeiten und gemeinsamen Prüfungen innerhalb der Fachmodule können alle Beteiligten einen optimalen Nutzen ziehen.

Durch den gemeinsamen, einheitlichen Auftritt in der Öffentlichkeit präsentiert sich der Fachbereich Ingenieurbaukunst als moderne Lehr- und Forschungsgemeinschaft, welche die Ziele und Visionen der TU Graz umsetzt.

Nummerierungssystematik der Schriftenreihe

S – Skripten, Vorlesungsunterlagen | F – Forschungsberichte

V – Vorträge, Tagungen | M – Masterarbeiten

Institutskennzahl:

- 1 Allgemeine Mechanik | 2 Baustatik | 3 Betonbau
- 4 Holzbau & Holztechnologie | 5 Stahlbau & Flächentragwerke
- 6 Materialprüfung & Baustofftechnologie | 7 Baubetrieb & Bauwirtschaft
- 8 Hochbau & Industriebau | 9 Bauinformatik

Fortlaufende Nummer pro Reihe und Institut / Jahreszahl