
Michael Rossmann, BSc

Facility Access Regulation inside an
Academic Makerspace

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Patrick Herstätter

Institut für Innovation und Industrie Management
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Christian Ramsauer

Graz, Mai 2021



Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii



Abstract

Makerspaces are places where diverse groups of people come together for
sharing knowledge, learning, but also for prototyping and realizing projects.
Having so many different user groups in a makerspace also raises certain
issues. Not everyone should have access to all resources in a makerspace.
Specific areas in a makerspace should only be accessible to authorized user
groups. This thesis focuses on the challenge of managing access regulation
in an academic makerspace on the example of the Schumpeter Laboratory
for Innovation (SLFI). Different access regulation technologies and systems
are currently in use within the SLFI. However, each of these technologies
must be managed individually, creating additional effort for administrators.
The goal of this thesis is to reduce this additional effort for administrators
by creating a platform that allows them to centrally manage all different
technologies. To create such a central platform, all relevant systems within
the SLFI are analyzed. Based on this analysis, various concepts are developed
and evaluated. Finally, the concept that best fits the requirements is to be
realized within the SLFI.

iii



Contents

Abstract iii

1 Introduction 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 3
2.1 The Internet of Things . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The Web of Things . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 CRUD Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Application Programming Interface . . . . . . . . . . . . . . . 8

2.5 Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Difference between API and WS . . . . . . . . . . . . . 9

2.6 Simple Object Access Protocol . . . . . . . . . . . . . . . . . . . 10

2.7 Representational State Transfer . . . . . . . . . . . . . . . . . . 11

2.8 OpenAPI Specification . . . . . . . . . . . . . . . . . . . . . . . 15

2.8.1 Swagger UI . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Content Management Systems . . . . . . . . . . . . . . . . . . 15

2.9.1 WordPress . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9.2 Custom WordPress Plugins . . . . . . . . . . . . . . . . 17

2.9.3 WordPress REST API . . . . . . . . . . . . . . . . . . . . 17

3 Analysis 19
3.1 Schumpeter Laboratory for Innovation . . . . . . . . . . . . . 20

3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Current System Architecture . . . . . . . . . . . . . . . 22

3.2.2 Desired System Architecture . . . . . . . . . . . . . . . 24

3.3 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 System Types . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



Contents

3.3.2 Data Carriers . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 Primion Access Control System . . . . . . . . . . . . . 28

3.3.4 How is the Primion System used inside the SLFI? . . . 29

3.3.5 ZID Access Control Management . . . . . . . . . . . . 31

3.3.6 Primion System Limitation and Possibilities . . . . . . 33

3.3.7 Primion Summary . . . . . . . . . . . . . . . . . . . . . 35

3.3.8 Gantner Access Control System . . . . . . . . . . . . . 35

3.3.9 How is the Gantner System used inside the SLFI? . . . 35

3.3.10 Gantner System Limitation and Possibilities . . . . . . 37

3.3.11 Gantner Summary . . . . . . . . . . . . . . . . . . . . . 39

3.3.12 Hoffmann Group Access Control System . . . . . . . . 39

3.3.13 GARANT Electronic Lock System (G-ELS) . . . . . . . 39

3.3.14 Hoffmann System Limitation and Possibilities . . . . . 44

3.3.15 Hoffmann Summary . . . . . . . . . . . . . . . . . . . . 44

3.3.16 SLFI WordPress System . . . . . . . . . . . . . . . . . . 45

3.3.17 SLFI Card Reader . . . . . . . . . . . . . . . . . . . . . . 45

3.3.18 Systems Summary . . . . . . . . . . . . . . . . . . . . . 46

4 Concepts 48
4.1 System Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Hoffmann G-ELS Adaptation . . . . . . . . . . . . . . . . . . . 49

4.3 Concept Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Concept I . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Concept II . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Concept III . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Concept Decision . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Results 62
5.1 Concept Architecture . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 WordPress System . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 WordPress Database . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Custom WordPress plugin . . . . . . . . . . . . . . . . 70

5.1.4 Python flask . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.5 Gantner GAT Relaxx . . . . . . . . . . . . . . . . . . . . 72

5.1.6 Python CSV Module . . . . . . . . . . . . . . . . . . . . 76

5.1.7 Python JSON Module . . . . . . . . . . . . . . . . . . . 76

v



Contents

5.2 Development Environment Setup . . . . . . . . . . . . . . . . . 77

5.2.1 XAMPP WordPress Setup . . . . . . . . . . . . . . . . . 80

5.3 Setting up the Python web application . . . . . . . . . . . . . . 83

5.3.1 WordPress - Middleware - Gantner Interaction . . . . . 83

5.3.2 WordPress - Middleware - Primion Interaction . . . . . 93

5.3.3 WordPress - Middleware - Hoffmann Interaction . . . 94

5.4 Setting up the WordPress plugin . . . . . . . . . . . . . . . . . 94

5.4.1 Manage Gantner Resources . . . . . . . . . . . . . . . . 98

5.4.2 Manage Primion Resources . . . . . . . . . . . . . . . . 103

5.4.3 Manage Hoffmann Resources . . . . . . . . . . . . . . . 107

6 Conclusion 110

Bibliography 115

vi



List of Figures

2.1 Application Design using RESTful principles. Own represen-
tation based on [Wil07] . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Internet of Things and Web of Things Comparison. Own
representation based on [Gui16] . . . . . . . . . . . . . . . . . 7

2.3 An application that is using multiple APIs. Own representa-
tion based on [Red11] . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 SOAP architecture. Own representation based on [HK11] . . 10

2.5 REST architecture. Own representation based on [Rel19] . . . 12

3.1 Schumpeter Laboratory for Innovation Layout . . . . . . . . . 19

3.2 Schumpeter Laboratory for Innovation Areas . . . . . . . . . . 21

3.3 SLFI Current System Architecture . . . . . . . . . . . . . . . . 23

3.4 SLFI Desired System Architecture . . . . . . . . . . . . . . . . 25

3.5 Simplified own representation of a smart card data carrier
containing multiple applications. . . . . . . . . . . . . . . . . . 27

3.6 Primion Prime Key Technology, Own representation based
on [Tec20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Primion PKT master reader, [Pri21] . . . . . . . . . . . . . . . . 31

3.8 Primion PKT offline reader, [Pri21] . . . . . . . . . . . . . . . . 31

3.9 Primion PKT offline electronic door, [Pri21] . . . . . . . . . . . 31

3.10 ZID Access Control Management . . . . . . . . . . . . . . . . . 32

3.11 Overview of Primion Locks in the SLFI . . . . . . . . . . . . . 34

3.12 Gantner Technology, Own representation based on [Gmb20] . 36

3.13 SLFI Gantner System Overview . . . . . . . . . . . . . . . . . . 38

3.14 Android App Setup with Master Card. Own representation
based on [Gro21a] . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.15 Register a lock in the Android App. Own representation
based on [Gro21a] . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



List of Figures

3.16 Register a TAG in the Android App. Own representation
based on [Gro21a] . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.17 Assign multiple TAGs to one Lock. Own representation based
on [Gro21a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.18 Synchronize changes with the lock. Own representation based
on [Gro21a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.19 Overview of Hoffmann locks in the SLFI . . . . . . . . . . . . 43

4.1 Concept I: A custom WordPress plugin. The Gantner system
is accessed by REST endpoints. The plugin creates a CSV file
that can be imported into the Primion system. The plugin
provides a data endpoint for the mobile application from
Hoffmann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Concept II: A custom WordPress plugin. The Hoffmann sys-
tem is integrated into the Primion system. . . . . . . . . . . . 55

4.3 Concept III: Gantner and Hoffmann integration into Primion
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Overview of the core components that are used in concept I. . 65

5.2 The WordPress dashboard is the control panel for the admin-
istrators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 The WordPress database structure and the relations between
the tables. This figure is fully adopted from [Wor21a] . . . . . 69

5.4 Plugins folder structure in WordPress. . . . . . . . . . . . . . . 70

5.5 Gantner REST API endpoints. . . . . . . . . . . . . . . . . . . . 73

5.6 The main window of the GAT Relaxx desktop client. . . . . . 75

5.7 An example Primion CSV file. . . . . . . . . . . . . . . . . . . . 76

5.8 XAMPP control panel. . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 PHPMyAdmin dashboard used to create new databases. . . . 82

5.10 Local WordPress installation running on http://localhost. . . . . 82

5.11 Simplified sequence diagram of the interaction between Word-
Press, middleware and the access control systems. . . . . . . . 83

5.12 Gantner authentication sequence. . . . . . . . . . . . . . . . . . 84

5.13 Several different REST endpoints are used to create the state
that is sent back to WordPress. . . . . . . . . . . . . . . . . . . 86

5.14 Updating Gantner authorizations . . . . . . . . . . . . . . . . . 90

5.15 Delete or update a Gantner authorization . . . . . . . . . . . . 92

viii



List of Figures

5.16 Middleware providing the Primion authorizations in CSV
format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.17 Middleware REST endpoint that is providing the Hoffmann
authorizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.18 The main menu extended with the Resources options. . . . . . 95

5.19 Custom WordPress shortcode used to load the dynamic content
for the Gantner resources. . . . . . . . . . . . . . . . . . . . . . 96

5.20 Overview of the front-end interaction . . . . . . . . . . . . . . 97

5.21 The left side represents an example organisation view cre-
ated within the GAT Relaxx desktop client application. The
Gantner state represented as HTML output on the Gantner
Resources page is shown on the right side. . . . . . . . . . . . . 98

5.22 Locker group holding 12 lockers. . . . . . . . . . . . . . . . . . 99

5.23 Plugin representation of the example locker group. . . . . . . 100

5.24 Gantner authorizations administration with the plugin. . . . . 101

5.25 Assign three user authorizations to the selected locker group. 102

5.26 Updated locker information . . . . . . . . . . . . . . . . . . . . 103

5.27 The simulated Primion state loaded from the WordPress
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.28 Assign new authorizations to the selected Primion resource. . 105

5.29 The CSV file will be created and updated by the middleware.
The file contains all Primion authorizations that are stored in
the WordPress database. . . . . . . . . . . . . . . . . . . . . . . 106

5.30 Assign new authorizations to the selected Hoffmann resource. 107

5.31 The simulated Hoffmann state loaded from the WordPress
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.32 The REST endpoint provided by the middleware to get the
Hoffmann state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 The implemented concept I. The red triangles indicate where
additional work is needed. . . . . . . . . . . . . . . . . . . . . . 113

ix



1 Introduction

Makerspaces are shared workplaces that can be used by members for
prototyping, but also realizing projects of any kind. Makerspaces that are
equipped with similar types of maker tools including laser cutters, CNC
milling machines, 3D printers, and more are called FabLabs or Techshops.
These places have in common that they are communal and are designed
for sharing information, learning, and collaborating. Makerspaces can be
used by any member of any age reaching from kids to students and adults
as well as potential partners of the industry. However, having a variety of
user groups that are constantly changing does also raise challenges. These
challenges include access regulation to certain facilities for example. Not
everyone should be able to use a CNC milling machine without a proper
training session. A wardrobe on the other side should be usable by anyone.
And even here, certain lockers in the wardrobe might be wanted to stay
reserved for in-house staff. [Mak]

1.1 Problem Description

Depending on the makerspace there might be areas that should only be
accessible for certain user groups. Areas with expensive high-tech equip-
ment should only be used by trained staff whereas the wardrobe can be
used by everyone for example. Constantly switching user groups inside a
makerspace requires a proper setup for access regulation. This thesis focuses
on the challenge of managing access regulation in an academic makerspace
on the example of the Schumpeter Laboratory for Innovation (SLFI) that
uses multiple different software solutions. Using different software solutions
for access control management causes additional overhead and problems.
Administrators need to operate on multiple programs. Keeping track of

1



1 Introduction

the access rights can get confusing because there is no uniform overview.
The effort of access regulation administration in makerspaces with highly
fluctuating user groups should therefore be reduced to a minimum within
this thesis.

1.2 Aim of this Thesis

The primary goal of this thesis is to find out how to:

• Simplify the access control management to different areas of an aca-
demic makerspace for highly fluctuating user groups on the example
of the SLFI.

Combining the important and most used functionalities of the different
software solutions into one central platform makes the administration more
transparent and reduces the overall complexity. Often, only a subset of the
provided functionality of every single application is needed.

To provide a uniform platform it is necessary to:

• Identify potential interfaces to combine heterogeneous software solu-
tions for access control.

To understand how the relevant information can be made available on one
common platform, this thesis is giving an overview of modern approaches
in the theory chapter 2. Chapter 3 analyses all relevant systems that are
used in the academic makerspace. Relevant systems include the different
software solutions for access management as well as other systems that are
currently used and are important to fulfill the goal of this thesis. Based on
the analysis, different concepts are developed in chapter 4. The concepts
show how the different software solutions can be made accessible through
one common platform. The results in chapter 5 show the implementation of
the most prominent concept.

2



2 Theory

This chapter explains how the internet has evolved over the past years to
provide a common platform for applications that are used today. The most
important components include Application Programming Interfaces (APIs,
section 2.4) and Web Services (WS, section 2.5). This chapter describes the
prominent approaches and patterns that are used today.

2.1 The Internet of Things

Over the past decades, the internet has become more than the collection of
multimedia pages. The immense progress in embedded devices brought
a new form of objects into the world: Smart Things. A Smart Thing is
a digitally enhanced physical object with one or more of the following
attributes: [GT16], [Mad15]

• Sensors (temperature, location, light, etc.),
• Actuators (displays etc.),
• Processing (able to run programs and logic),
• Network/Communication interfaces (wired or wireless).

Smart Things range from machines and home appliances to wireless sensor
and actuator networks as well as tagged everyday objects. [GT16]

Guinard et al. [GT16] define the term IoT as: “The Internet of Things is a
system of physical objects that can be discovered, monitored, controlled,
or interacted with by electronic devices that communicate over various
networking interfaces and eventually can be connected to the wider inter-
net.”

3



2 Theory

Things must not be directly connected to the internet itself. The term internet
in IoT means that the services and data from a Thing can be accessed by
the already existing infrastructure of the internet. [GT16]

The IoT follows the approach of using the web as a transport system. The
idea is to use Hypertext Transfer Protocol (HTTP) as the transport protocol
for Application Programming Interface (API, section 2.4) calls that can be
used through a Web Service (WS, section 2.5). WS allows applications to
communicate. Software applications that are written in different languages
and running on different platforms can use WS to exchange data over the
computer network such as the internet.
In the IoT approach, API calls are completely hiding the resources that are
handled by the application. This approach is the exact opposite of a web
architecture. In a web architecture, the operations on resources that are
identified by Uniform Resource Identifiers (URIs) are modeled as HTTP
interactions (section 2.2).
WS revolving around the Simple Object Access Protocol (SOAP) and Web
Service Description Language (WSDL) technologies are the most prominent
examples (section 2.6). Applications can be extended to the web by applying
the extensions of the web API-oriented SOAP design. The transport-oriented
approach is anchored in the world of building tightly coupled distributed
systems. The problem is that only peers that support a set of technologies
can use these systems. [Wil07]

With so many Smart Things trying to communicate with one another in
different ways, it is challenging to build one uniform communication plat-
form in which all Smart Things can speak to each other effectively. The
big drawback of IoT is that there is no universal protocol or standard that
can work across the many networking interfaces available. In the IoT, many
incompatible protocols co-exist that makes the integration of devices ex-
tremely complex and often not possible. Today, the IoT is a collection of
isolated intranets that can not be connected. The limitations of the IoT can
be seen when devices from various manufacturers should be integrated into
a single application. [GT16]

The Web of Things (WoT) follows a different approach. Instead of creating
another WS protocol, the WoT is using a platform that already exists, the

4



2 Theory

World Wide Web (WWW). The approach of the WoT is to integrate Smart
Things into the web. [Gui11]

2.2 The Web of Things

While the IoT establishes the transport capabilities that allow Smart Things
to interact with the physical world, the WoT proposes a different approach.
The WoT aims to integrate Smart Things into one single application, the
web. By integrating Smart Things into the web, they use the same standards
and techniques as traditional websites. This leads to the big advantage that
Smart Things can be reused in different contexts and applications, especially
when they are designed using RESTful principles. Figure 2.1 demonstrates
how a RESTful design of resources allows multiple applications to interact
with the same set of resources without the need for API-based interactions
between the applications. [Gui11], [Wil07]

Application I

Application II

Scenario I

Scenario II

Resources

Sensors

Actuators

Locations

Figure 2.1: Application Design using RESTful principles. Own representation based on
[Wil07]

5



2 Theory

The goal is to make Smart Things available through the fundamental mech-
anisms of the web. These fundamentals include: [Wil07]

• Uniform Resource Identifier (URI),
• Hypertext Transfer Protocol (HTTP),
• Hypertext Markup Language (HTML).

Uniform Resource Identifier: A URI is a globally scoped string of characters
to identify resources. In the WoT the URI enables web clients to interact
with the resource. [BFM05]

Hypertext Transfer Protocol: The main protocol for interacting with re-
sources in a lightweight and loosely coupled way. HTTP provides the
following main methods to interact with resources: [Wil07], [FR14]

• GET: retrieve a resource,
• POST: create a new resource,
• PUT: update an existing resource,
• DELETE: remove a resource.

Hypertext Markup Language: The used markup language to view resources
in a human-readable form. XML is another important resource representa-
tion language mainly used for machine-readable resource formats. [BC95],
[Wil07], [J3S02]

The next section explains the Representational State Transfer (REST) design
and how it fits into the concept of WoT. Figure 2.2 demonstrates the major
difference between the explained concepts IoT and WoT.

2.3 CRUD Operations

CRUD (Create, Read, Update and Delete) are the elemental functions to
implement a persistent storage management system. In relational databases,
the four CRUD operations refer to the SQL commands INSERT, SELECT,
UPDATE and DELETE. Depending on the system users might use different
CRUD operations.
Looking at an online store for example. Users can create an account, update

6



2 Theory

Protocol A

Protocol B

Protocol C

Protocol D

Smart Things

Internet of Things

Web of Things

Application

Figure 2.2: Internet of Things and Web of Things Comparison. Own representation based
on [Gui16]

7



2 Theory

or delete their user information. In contrast, an operations manager might
create product records, update or delete them if necessary.
A common way of creating good APIs is to follow a certain design pattern.
CRUD is one of those design patterns and it is working well with APIs and
WS. [Alt17]

2.4 Application Programming Interface

Application Programming Interfaces (APIs) allow applications of different
types and implementations to communicate and exchange data with each
other. APIs allow applications to leverage each other’s data and functionality
through a standardized and documented interface. Working with APIs is
ubiquitous in the modern software development process. Modern appli-
cations are built on top of many APIs where some of these can depend
on further APIs. Figure 2.3 illustrates an example application that directly
depends on two APIs(1-2) where one of those APIs depend on a further
API(3). [Red11]

The example application could be an image viewer where one API is used
for loading images, and that same API is built upon a lower-level API for
data compression and decompression. [Red11]

2.5 Web Service

Today’s software applications are written in various languages. A Web Ser-
vice (WS) allows these applications to communicate with each other over the
internet. A WS provides resource-oriented interfaces to a database server
that can be used by web clients (Figure 2.5).

Many technologies make this communication possible. However, when it
comes to compatibility and security, two modern web API paradigms have
been established: SOAP and REST. SOAP is a service-oriented architecture
(SOA) whereas REST is a resource-oriented architecture (ROA). Both have

8



2 Theory

Library I

API

Library II

API

Library III

API

Application
Code

Figure 2.3: An application that is using multiple APIs. Own representation based on
[Red11]

in common that they make an applications business logic or data available
over a network. REST services represent about 70% of today’s public APIs.
[Rel19]

2.5.1 Difference between API and WS

The two terms are not mutually exclusive. Every WS is an API since it
exposes the data or functionality of an application, but not every API is a
WS.

• WS require a network, while APIs can be online or offline.
• APIs can use any design style or protocol. WS use established protocols

and standards (REST, SOAP).

The design concept of CRUD operations can also be applied to the World
Wide Web (WWW) and its underlying HTTP protocol and is a very common
pattern when creating web APIs. Data is made available through URLs

9



2 Theory

and can be accessed by the different HTTP methods GET, POST, PUT
and DELETE that refer to the aforementioned CRUD operations. [Bus19],
[Alt17]

2.6 Simple Object Access Protocol

Simple Object Access Protocol (SOAP) is a web service communication
protocol. The protocol specifies guidelines that define how messages are
sent over the network. The Extensible Markup Language (XML) is used
to exchange data. XML is a markup language. A markup language is a
set of codes that are used to structure the contents of digital documents.
SOAP uses transport protocols (HTTP, SMTP, etc.) to ensure data transport.
[Rel19]

Register

ServerClient SOAP
request/

response(info)

WSDL
publish

WSDL
find

Figure 2.4: SOAP architecture. Own representation based on [HK11]

Figure 2.4 shows the SOAP web service architecture that consists of the
three components: service requester, service provider, and service registry.
Compared to REST, which is exposing the data of an application, SOAP
exposes the functionality or logic of an application as a service.
The service requester is any type of software module or application that
requires a service. The service provider accepts and executes the request
from the service requester. WSDL is the XML file that describes the service.
The service provider pushes the service description into the service registry.

10



2 Theory

The service requester finds the service description in the registry and can
start to use the service. [HK11],

SOAP is also including and supporting other technologies and protocols
such as WS-Security. WS-Security is a standard that specifies how security
features are implemented in a WS to protect them from external attacks. In
general, SOAP web services are more resource-intensive than REST services.
SOAP services need more bandwidth and have lower performance com-
pared to REST services. But there are areas where SOAP is preferred over
REST. SOAP is used in applications that need higher security standards and
have complex interactions (financial services, telecommunications services,
etc.).
A comparison between REST and SOAP is illustrated in table 2.1. [TG16]

2.7 Representational State Transfer

Representational State Transfer (REST) is an architecture style that is de-
signed to create loosely coupled applications over HTTP. RESTful appli-
cations make sure that important data of an application are represented
as URI-identified resources. The main interaction methods with resources
are the aforementioned HTTP methods GET, POST, PUT and DELETE. All
interactions with a client through a server are stateless. This allows high
scalability since the server does not have to maintain session states with
clients. A full RESTful architectural design is defined by six constraints:
[Fie00]

• Uniform Interface
• Client-Server architecture
• Stateless
• Cacheable
• Layered System
• Code on demand (optional)

Uniform Interface: The central difference between REST architectural style
and other styles is the importance of providing uniform interfaces between

11



2 Theory

iOS Client

Web Client

Android Client

REST API Server Database Server

Figure 2.5: REST architecture. Own representation based on [Rel19]

components. A resource in a system has one logical URI, and that should
provide a way to fetch and manipulate data. The most common HTTP
functions in RESTful services to fetch and manipulate data are: GET, POST,
DELETE, PUT. [Fie00], [Cos+14]

Client-Server architecture: REST applications should have a client-server
architecture. A client should only request resources and should not be
concerned about data storage. A server should be responsible for storing
application data along with all the business logic required to interact with
it. Business logic tasks include e.g. user authentication, authorization, and
data validation. A server should not be concerned about the user interface.
By decoupling the client and the server from each other they can evolve
independently. The user interface can be transferred across multiple appli-
cations while scalability can be improved by simplifying server components.
[Fie00], [Cos+14]

Stateless: Every request from the client must contain all the information
that the server might need to properly execute it. The client can not take
advantage of any stored session context on the server. Maintaining the
session state is kept entirely on the client-side. [Fie00]

Cacheable: The data within a response to a request can be labeled as
cachable or not cachable. If a response is cachable, the client can reuse
this data for later, equivalent requests. Client-side caching can be used

12



2 Theory

to improve performance by reducing the average latency of interactions.
[Fie00]

Layered System: A client can not tell if he is directly connected to the server
that returns the resources in response to a request. Authentication can be
implemented on server A, APIs can be deployed on server B and the actual
resource data can be stored on server C for example. A client can not tell
whether it is connected directly to the end server or an intermediate server.
[Fie00]

Code on demand (Optional): This optional constraint describes that a client
can also request executable code from the server. [Fie00]

13



2 Theory

SO
A

P
R

ES
T

M
ea

ni
ng

SO
A

P
st

an
ds

fo
r

Si
m

pl
e

O
bj

ec
t

A
cc

es
s

Pr
ot

oc
ol

R
ES

T
st

an
ds

fo
r

R
ep

re
se

nt
at

io
na

lS
ta

te
Tr

an
sf

er

D
es

ig
n

SO
A

P
is

a
pr

ot
oc

ol
w

it
h

st
an

da
rd

s
an

d
sp

ec
ifi

ca
ti

on
s.

SO
A

P
in

cl
ud

es
a

W
SD

L
fil

e
th

at
pr

ov
id

es
th

e
cl

ie
nt

w
it

h
th

e
ne

ce
ss

ar
y

in
fo

rm
at

io
n

ab
ou

t
th

e
av

ai
la

bl
e

w
eb

se
rv

ic
es

R
ES

T
is

an
ar

ch
it

ec
tu

al
st

yl
e.

A
w

eb
se

rv
ic

e
ca

n
be

co
ns

id
er

ed
R

ES
Tf

ul
if

it
fo

llo
w

s
th

e
co

ns
tr

ai
nt

s:
-

U
ni

fo
rm

In
te

rf
ac

e
-

C
lie

nt
-S

er
ve

r
A

rc
hi

te
ct

ur
e

-
St

at
el

es
s

-
C

ac
he

ab
le

-
La

ye
re

d
Sy

st
em

-
C

od
e

on
de

m
an

d
(o

pt
io

na
l)

M
es

sa
ge

Tr
an

sf
er

Tr
an

sp
or

t
pr

ot
oc

ol
s,

e.
g.

:H
TT

P,
SM

TP
an

d
m

or
e

H
TT

P
on

ly
M

es
sa

ge
Fo

rm
at

X
M

L
on

ly
M

an
y

fo
rm

at
s,

e.
g.

:J
SO

N
,Y

A
M

L
an

d
m

or
e

Pr
oc

ed
ur

e
Fu

nc
ti

on
-d

ri
ve

n.
D

at
a

is
m

ad
e

av
ai

la
bl

e
as

a
se

rv
ic

e
D

at
a-

dr
iv

en
.D

at
a

is
m

ad
e

av
ai

la
bl

e
as

re
so

ur
ce

St
at

ef
ul

ne
ss

St
at

el
es

s
by

de
fa

ul
t.

SO
A

P
A

PI
s

ca
n

be
m

ad
e

st
at

ef
ul

St
at

el
es

s
C

ac
hi

ng
D

oe
s

no
t

su
pp

or
t

ca
ch

in
g

fo
r

A
PI

ca
lls

.
A

PI
ca

lls
ca

n
be

ca
ch

ed
Se

cu
ri

ty
Su

pp
or

ts
st

an
da

rd
s,

e.
g:

W
S-

Se
cu

ri
ty

H
TT

PS
an

d
SS

L

Pe
rf

or
m

an
ce

SO
A

P
ha

s
m

or
e

ov
er

lo
ad

an
d

re
qu

ir
es

m
or

e
ba

nd
w

it
h

an
d

re
so

ur
ce

s
R

eq
ue

st
s

ar
e

lig
ht

w
ei

gh
t

an
d

do
no

t
re

qu
ir

e
m

uc
h

ba
nd

w
it

h
an

d
re

so
ur

ce
s

A
dv

an
ta

ge
s

-
St

an
da

rd
iz

ed
-

H
ig

h
Se

cu
ri

ty
-

H
ar

de
r

to
de

ve
lo

p

-
Fl

ex
ib

ili
ty

-
Sc

al
ab

ili
ty

-
D

ev
el

op
er

fr
ie

nd
ly

(e
as

ie
r

to
de

ve
lo

p
th

an
SO

A
P)

D
is

ad
va

nt
ag

e
-

Le
ss

pe
rf

or
m

an
ce

-
C

om
pl

ex
-

Le
ss

fle
xi

bl
e

-
La

ck
of

st
an

da
rd

s
-

H
ar

de
r

de
ve

lo
pm

en
t

of
se

rv
ic

es
w

it
h

so
ph

is
ti

ca
te

d
re

qu
ir

em
en

ts

Ta
bl

e
2

.1
:C

om
pa

ri
so

n
SO

A
P

an
d

R
ES

T.
[H

R
1

8
],

[M
on

2
0

]

14



2 Theory

2.8 OpenAPI Specification

Many different API documentation standards have been proposed to make
it easier for developers to create and work with APIs. The OpenAPI Specifi-
cation (OAS) is the most prominent standard for developing REST-based
WS. The standard describes an API in JSON or YAML markup language.
Humans and machines are able to understand the capabilities of a service
without the need to access the source code or documentation. OpenAPI
documents describe which resources are available in the REST API and
what operations can be called on those resources. The document also spec-
ifies a list of parameters that can be used to perform an operation on a
resource as well as the type of those parameters and if they are optional
or not. OpenAPI is providing additional tools for developers and testers to
make API development more enjoyable. Swagger UI is one of them. [Ini20],
[KK18], [Sur16], [Sof20]

2.8.1 Swagger UI

Swagger UI is an open software tool that allows anyone to visually inter-
act with the APIs resources on an HTML page. The HTML page will be
automatically generated from the OpenAPI specification file. This tool is
very convenient for developers to test if the APIs are working correctly.
Developers can use the built-in testing functions to simulate client requests
and inspect the resulting outputs of the operations [Sof20].

2.9 Content Management Systems

A Content Management System (CMS) is a server program that focuses on
managing and providing content. In contrast to traditional websites where
content is mixed with HTML elements, a CMS is separating content from
the structural and technical basis of the system. Most CMS are organized
in a Model View Controller (MVC) concept. This concept enables flexible
updates of content but also layout and design since the content layer is

15



2 Theory

separated from the presentation layer. Content creators can focus on publish-
ing content without the need for technical background knowledge. [Ste16],
[PRP11]

Most CMS also provide a built-in user management system. Users of the
system can be assigned to different roles. Each role is defined by a set
of capabilities. Content creators are assigned to the role editor whereas
consumers of the content are assigned to the role visitor for example. Ad-
ministrators can extend the functionality of the system by installing plug-ins
that can go live immediately. [Ste16]

A CMS comes up with many advantages compared to traditional created
web sites. The following list will highlight the most important features of a
CMS: [Ste16]

• Fast and easy setup for a web presentation
• Existing content can be updated/deleted fast and easy
• Different content can be provided to different users depending on

their language or role for example
• Content can be created without programming skills
• System functionality can be extended by installing plug-ins
• Numerous free-to-use plug-ins available that accomplish a wide variety

of tasks
• Creating and using customized plug-ins
• Corporate design through the whole system
• Free to use design templates are available that can be integrated

without a huge effort
• MVC concept that is separating content, design, and program code
• Separation of the website into an area for visitors (frontend) and an

administrative area (backend) that are both accessible via the same
address

There are a lot of different CMS available on the market. The next section
provides an overview of WordPress which is one of the most prominent
CMS on the market.

16



2 Theory

2.9.1 WordPress

WordPress was initially designed as a Weblog Publishing System (WPS)
which evolved into one of the most used CMS on the web. WordPress is an
open-source project that is released under the General Public License (GPL).
Users are free to modify and distribute the software however their needs
call for. Some key arguments for choosing WordPress are: [Ste16]

• Easy installation: WordPress is often advertised with the famous five
minute installation process

• Open-Source software: Commercial use of WordPress without restric-
tions

• Using themes: A huge selection of free-to-use design themes are
available to customize the design of WordPress

• Using plug-ins: A huge selection of free-to-use plug-ins are available
to extend the functionality of WordPress

• Documentation: A large community has formed over the past years
that makes a lot of documentation available.

2.9.2 Custom WordPress Plugins

A WordPress plugin is a standalone set of code that extends the functionality
of WordPress. New features can be added to any part of the existing website,
including the administration area. Custom plugins can be created that are
communicating with the WordPress environment using the API that is
provided by WordPress. This API is ideal for internal processes that do
not leave the WordPress environment. Creating plugins that are integrating
external software systems into WordPress can be achieved by using the
WordPress REST API that was introduced in 2016. [Uza16]

2.9.3 WordPress REST API

The WordPress REST API enables developers to interact with third-party
applications that are outside of the WordPress environment. These appli-
cations might be coded in a different programming language and might

17



2 Theory

also run on a different machine. A custom WordPress plugin can use the
REST API to load content from external services dynamically to extend
the functionality of WordPress. Enabling cross-platform communication in
WordPress helps developers to built new and more useful applications in
WordPress. [Uza16]

18



3 Analysis

This chapter is analyzing the different systems that may be used inside an
academic makerspace on the example of the SLFI. A layout of the Schum-
peter Labor für Innovation (SLFI) is illustrated in figure 3.1. The SLFI is
using two offline and one online system for access administration (section
3.3.1). Gantner is an online system that is explained in section 3.3.8. Primion
and Hoffmann are offline solutions that are analyzed in section 3.3.3 and
3.3.12. The SLFI uses a WordPress system for content creation and other
administrational tasks. This system is explained in section 2.9.
In the situation analysis (section 3.2) the current system architecture and
the future system architecture are illustrated. The current system architec-
ture shows how the systems are currently being used. The future system
architecture shows how the systems should be used in the future.

By the end of this section, all necessary information to identify potential
interfaces is available. This information includes the possibilities and limita-
tions of the systems that are used to develop various concepts in chapter
4.

Figure 3.1: Schumpeter Laboratory for Innovation Layout

19



3 Analysis

3.1 Schumpeter Laboratory for Innovation

The SLFI provides a platform to connect students, researchers, start-ups,
and established industrial companies. The different user groups can use the
SLFI for learning, prototyping, and exchanging ideas. The SLFI offers access
to modern infrastructure with modern production machines. Students have
the opportunity to participate in practically oriented courses such as design
thinking and rapid prototyping. In this course, students will be encour-
aged to use the high-performance production facilities and infrastructure of
the SLFI to build prototypes based on their acquired technical skills. [Inn20b]

Having so many different user groups in the SLFI also raises challenges. Not
everyone should have access to the expansive equipment. Only members
with proper training may use the machines. The wardrobe, however, can be
used by anyone. Depending on the user group, they should only have access
to certain premises and storage options. The accesses to the premises and
storage facilities within the SLFI are equipped with electronic locks from
various manufacturers. Each manufacturer has its specification of how the
electronic locks must be operated. In order to offer users the best possible
stay at the SLFI, these electronic locks should be as uncomplicated to use as
possible. Users should be able to use the different locks with a uniform data
carrier. Administrators should be able to manage the various locks on a
uniform platform. To provide such a unified platform, this section analyzes
all relevant systems in more detail.

The SLFI is organized in several different premises (figure 3.2) and include:

1. FabLab I
2. FabLab II
3. Lobby
4. Office Rooms
5. Tesla Conference Room
6. Schumpeter Conference Room
7. Design Lab
8. Wardrobe
9. Terrace

20



3 Analysis

12

3

4 56

7

8

9

Figure 3.2: Schumpeter Laboratory for Innovation Areas

FabLab I/II

FabLab I and II are equipped with modern production machines such as
laser cutters, waterjet cutters, CNC-milling machines, 3D printers and scan-
ners, a PCB printer, and electronic workstations. These areas are designed
for rapid prototyping. [Inn20a], [Inn20b]

Lobby and Office Rooms

Apart from the reception area, the lobby is designed to relax and share
knowledge. The office rooms will only be used by the employees of the
institute. [Inn20b]

Conference Rooms

The meeting rooms are equipped with touchscreen monitors and video
conferencing material to support online meetings. [Inn20b]

Design Lab

The Design Lab is the biggest area of the SLFI. This multifunctional area
can accommodate up to 120 people and is used for various events including
panel discussions, workshops, and lectures. Equipped with state-of-the-art

21



3 Analysis

technique (4K LED video wall, sound, video conferencing material), the
Design Lab is also used for non-university events such as conferences and
product presentations. [Inn20b]

Wardrobe

The wardrobe provides storage options for all guests, members, and em-
ployees of the SLFI. The wardrobe offers 85 lockers in different sizes to store
personal equipment. [WSR20]

3.2 System Overview

This section illustrates the current system architecture and the future system
architecture that should be achieved. The current system architecture with
all the important systems is summarized in figure 3.3. The desired future
system architecture is shown in figure 3.4.

3.2.1 Current System Architecture

The current system architecture shows all the relevant systems that are
described in the system analysis and how they are interacting in the SLFI.

The computer in the reception area of the SLFI is the only device that
has access to the Gantner system. The Gantner system is managed by the
GAT Relaxx Desktop Client that is installed on the computer. The client is
communicating with the GAT Relaxx Service as shown in figure 3.12. This
service is running on an external server managed by the ZID. The server is
accessed by the computer with a preconfigured static IP address.
The Primion system is managed by the ZID. There is no direct API that
allows interaction with that system. TUGOnline provides a GUI that allows
access administration for authorized personnel as shown in figure 3.10.

22



3 Analysis

Hoffmann Group
System

Computer
Reception Area

TUG
Online Gantner Desktop

Application

ZID
Server

Primion
System

Gantner
System

SLFI WordPress
System

ZID
Server

ZID
Server

External Devices SLFI Environment

ZID Environment

Figure 3.3: SLFI Current System Architecture

23



3 Analysis

The Hoffmann Group system is not connected at all and provides no acces-
sible interfaces.
The WordPress system is responsible for publishing content (e.g.: upcom-
ing events), hosting the website (https://fablab.tugraz.at/), and other
administrational tasks. Various projects in the past have extended the func-
tionality of this system. The WordPress system is hosted on a ZID server.
This server is accessible with the File Transfer Protocol (FTP). New data can
be uploaded to this server without any external restrictions.
Figure 3.3 shows that all systems are not well connected with each other.
The Primion system can only be accessed within the TUGOnline website.
GAT Relaxx Desktop Client is used to manage Gantner lockers and can only
be used by the central computer of the institute. The Hoffmann system is
not accessible with any interfaces.

3.2.2 Desired System Architecture

The future state shows how the different software solutions should be
made accessible by using one common platform. This platform should
communicate with all other systems and can be accessed by external devices
that do not reside inside the SLFI. This makes it possible to administrate
the different systems more flexibly.

24

https://fablab.tugraz.at/


3 Analysis

Hoffmann Group
System

Computer
Reception Area

ZID
Server

Primion
System

Gantner
System

SLFI WordPress
System

ZID
Server

ZID
Server

External Devices

ZID Environment

SLFI Environment

Uniform
 Platform

Figure 3.4: SLFI Desired System Architecture

25



3 Analysis

3.3 System Analysis

In a universal place such as the SLFI, organization and management is
an important factor. Access rights are required to enter the building and
the SLFI. In-house training sessions are mandatory to use the high-quality
equipment in FabLab I and II. Participating in training sessions is only
possible after registration. Offering all the services of the SLFI does therefore
need a proper level of organization and management. The management
decided to integrate new hardware and software solutions. The next sections
explain the most important systems that are used in the SLFI.

3.3.1 System Types

Two types of access control solutions are used in the SLFI: online and offline
solutions. Access rights in an online system are stored in a database. The
locks have access to the database and can read out the access rights directly.
Gantner (section 3.3.8) is an online solution and is used for storage options
in the wardrobe, lobby, and reception area of the SLFI.
Offline solutions follow the Data on Card approach. Access rights are written
and stored directly on the data carrier. The locks are not connected (wired)
to the system. Instead, they function autonomously and are powered by
a battery. The locks read the access rights from the data carrier and will
remain locked or unlocked accordingly. Primion (section 3.3.3) and Hoff-
mann (section 3.3.12) are two offline solutions. Primion is used by the ZID
to manage authorizations on the campus of TU Graz. Hoffmann is used for
storage options inside FabLab I and II. [Ass21]

3.3.2 Data Carriers

The students and employees at TU Graz are using MIFARE Classic and
MIFARE DESFire EV1 smart cards. MIFARE is a product line of contactless
smart cards provided by NXP Semiconductors. This product line includes
various products that differ in security, memory capacity, functionality, and

26



3 Analysis

price. Multiple different applications can be stored on a MIFARE smart
card. Applications include access control, school and campus cards, public
transportation, and more. As explained in section 3.3.3, the ZID of the TU
Graz provides the infrastructure to use MIFARE smart cards for access
regulation. [WSR20], [Sem21]

Applications are stored and managed in sectors on a MIFARE smart card.
The number of applications that can be stored depends on the available
sectors on the smart card. Higher memory capacity provides more sectors.
A MIFARE DESFire EV1 smart card can hold up to 28 different applications.
New applications must be registered on the smart card. NXP offers an
official registration form for new applications. Developers of a new applica-
tion are responsible to determine if the NXP products are suitable for their
product, as well as for future third-party customers. Developers are also
self-responsible for the correct design, implementation, and operation of the
new application. [Sem]

A
p

p
li

ca
ti

o
n

s

Smart Card UID

Application 1

Application 2

Application 3

Application n

Figure 3.5: Simplified own representation of a smart card data carrier containing multiple
applications.

The UID of the smart card is readable and can be used for Gantner autho-
rizations as explained in section 3.3.8. Manufacturers of offline locks are
responsible for ensuring that the locks can read the data correctly from
a smart card. This raises the problem that different manufacturers have
different solutions for interacting with the data carrier. The OSS Standard

27



3 Analysis

Offline provides a solution for this problem as described in this section.
[Sem21]

OSS Standard Offline

Offline solutions have one common problem. Manufacturers have their own
approaches to write access rights to a smart card. Locks of different brands
can not interpret and read the access rights from the card. The organization
OSS Association provides a common standard to face this problem. The
OSS Standard Offline defines how information is written on the card and
read from it. This common standard allows locks of different brands to read
and interpret the access rights from the card. There are already software
solutions available that support this standard, including Primion. [Ass21]

3.3.3 Primion Access Control System

Primion is providing a wide variety of access control solutions that can reach
from simple locking systems to highly complex security systems. Complete
buildings, specific areas, or individual doors can be protected. Therefore,
Primion offers a wide range of in-house hardware and software products.
The Graz University Computer Center (ZID) is using Primion solutions to
regulate access to buildings. Access regulation of almost every building that
belongs to the campus, including the SLFI, will be managed by primion
solutions. [Tec20]

Prime Key Technology

The prime key technology (PKT) provided by Primion is an offline solution
for access control regulations. Sensible areas are equipped with mecha-
tronic components such as digital cylinders. These components require
no additional equipment or wiring. Central points of access to a building
are equipped with online readers (master readers) that are connected to
a control unit. All components and access rights will be configured and
managed with custom software. Users need to update their identification

28



3 Analysis

medium (chip, card) at the online readers regularly to get their access rights.
The mechatronic components can then be opened with the updated identifi-
cation medium. Figure 3.6 shows the PKT concept. [Tec20]

3.3.4 How is the Primion System used inside the SLFI?

The ZID of the TU Graz is using Primions PKT solution to manage access
control on the campus. The SLFI is located on the third floor of a building
on the TU Graz campus. A PKT master reader (figure 3.7) is placed in front
of the main entrance of the building. The master reader is connected (wired)
to a control unit and is used to update the access authorizations on the data
carriers. The TU Graz uses the contactless smart card products MIFARE
Classic and MIFARE DESFire EV1 that are provided by NXP Semiconduc-
tors. The main entrance of the building is equipped with a mechatronic lock.
The lock opens if a valid authorization is stored on the data carrier. [Tec20],
[WSR20], [Sem21]

The entrance to the SLFI on the third floor and the elevator inside the build-
ing are equipped with PKT offline readers (figure 3.8). These readers are
capable of reading access rights from a data carrier. The door to the SLFI can
be opened if a valid authorization is stored on the data card. Getting access
to the SLFI by using the elevator is also requiring a valid authorization on
the data carrier. [WSR20]

Electronic offline door locks (figure 3.9) are used inside the SLFI. The door
locks support the standards MIFARE Classic and MIFARE DESFire EV1

and are equipped with long-lasting battery packs. The door lock can be
opened if a valid authorization is stored on the data carrier. Figure 3.11

shows the mechatronic door locks that are installed inside the SLFI. [WSR20]

29



3 Analysis

Primion Software

Wired Connection (LAN, WAN)

Primion Control Unit

Master Card Reader/Writer

Wireless Communication

Identification medium (chip, card etc.)

Mechatronic Devices
and Readers

O
n
lin

e 
La

ye
r

V
ir
tu

al
 N

et
w

or
ki

n
g

O
ff

lin
e 

La
ye

r

Wireless Communication

Figure 3.6: Primion Prime Key Technology, Own representation based on [Tec20]

30



3 Analysis

Figure 3.7: Primion PKT master reader, [Pri21]

Figure 3.8: Primion PKT offline reader, [Pri21]

Figure 3.9: Primion PKT offline electronic door, [Pri21]

3.3.5 ZID Access Control Management

Access management on the premises of the TU Graz is performed regularly.
Primions custom software solution is not directly accessible for everyone.
A customized graphical user interface (GUI) is provided by the Campus
Online Management software (TUGOnline). Authorized individuals of the
TU Graz are granted rights to use this interface to manage access controls.
Relevant information will be provided through this interface and send to
the Primion software. Once per day all newly added authorizations will
be imported into the Primion software. A CSV import is used to get the

31



3 Analysis

data from TUGOnline into Primions management software. Figure 3.10

summarizes this procedure.

Primion Resources

The aforementioned Primion offline readers and door locks are represented
as resources in the Primion software. TUGOnline allows managing this re-
sources in a human-readable form. A CSV entry is created whenever a
person gets access to a specific room or area. The CSV entry holds informa-
tion about:

• The person such as name, data carrier unique identification number
• The mapped resource name that represents the room or area the

person gets access to
• The period of validity of the authorization

Authorized personnel

TUGOnline

TUGOnline
 database

Primion Software

TU Graz Buildings &
Premises

Primion
Database

Access Authorizations

Example Format

Student ID;Student Name;RoomID;ValidFrom;ValidUntil

1231111;Max Mustermann;SLFI-R101;2020-01-01;2020-12-01

1231111;Max Mustermann;SLFI-R102;2020-01-01;2020-12-01

1231111;Max Mustermann;SLFI-R103;2020-01-01;2020-12-01

1232222;Erika Musterfrau;SLFI-R104;2020-01-01;2020-12-01

1232222;Erika Musterfrau;SLFI-R105;2020-01-01;2020-12-01

1232222;Erika Musterfrau;SLFI-R106;2020-01-01;2020-12-01

TU Graz Domain ZID Domain

Figure 3.10: ZID Access Control Management

32



3 Analysis

3.3.6 Primion System Limitation and Possibilities

The Primion system is used by the ZID to manage resources all over the
campus including the SLFI. The major limitation of this system is that
there are no APIs available that allow direct interaction with the Primion
software. The ZID is running this system encapsulated from the rest of
the campus. The TUGOnline platform must be used to manage Primion
resources. Another huge limitation is data security. The ZID is not allowed
to give third-party applications access to any user information. This would
violate the legal requirements specified in the General Data Protection Reg-
ulation (GDPR). The ZID also ensures that all authorization updates are
secure. Fake entries could lead to giving unauthorized persons access to
premises they should not have access to. Therefore, the ZID is keeping the
authorization management in a secure environment that is encapsulated
from any third-party application. Direct communication with the Primion
software is not possible. [WSR20]

Although there are no APIs available that allow direct communication with
the Primion software, a CSV import can be used to manage authorizations.
This approach was also discussed directly with the responsible persons
from the ZID. A simplified representation of the data flow of the Primion
system is summarized in figure 3.6. The most promising approach to access
this system is a CSV import. A CSV import is already being used by the
ZID. The Primion system is getting updated daily with CSV data to manage
the user authorizations on the campus.

33



3 Analysis

M
e
ch

a
tr

o
n

ic
 L

o
ck

M
e
ch

a
tr

o
n

ic
 L

o
ck

M
e
ch

a
tr

o
n

ic
 L

o
ck

M
e
ch

a
tr

o
n

ic
 L

o
ck

P
ri

m
io

n
 C

a
rd

 R
e
a
d

e
r

M
e
ch

a
tr

o
n

ic
 L

o
ck

M
e
ch

a
tr

o
n

ic
 L

o
ck

s

F
a
b

L
a
b

2
F
a
b

L
a
b

1
D

e
si

g
n

 L
a
b

D
e
si

g
n

 L
a
b

T
e
sl

a
 M

e
e
ti

n
g

 R
o

o
m

S
ch

u
m

p
e
te

r 
M

e
e
ti

n
g

 R
o

o
m

S
L
F
I 

E
n

tr
a
n

ce
E

le
v
a
to

r

M
e
ch

a
tr

o
n

ic
 L

o
ck

Fi
gu

re
3
.1

1
:O

ve
rv

ie
w

of
Pr

im
io

n
Lo

ck
s

in
th

e
SL

FI

34



3 Analysis

3.3.7 Primion Summary

To summarize the most important points:

• The Primion system is managed by the ZID
• Authorized individuals can grant access permissions within TUGOnline
• Student cards are used as data carriers (MIFARE Classic and MIFARE

DESFire EV1)
• The ZID is not allowed to grant access to user information (name, card

id)
• No APIs are available to access the Primion software
• CSV imports are used to update authorizations

3.3.8 Gantner Access Control System

Similar to Primion, Gantner is another big company providing locking
solutions in various sectors including access control, cabinet locking systems,
and accounting systems. The locks are compatible with various data carriers
including bracelets, key rings, or employee identity cards. The uniform
identifier of a data carrier will be used to assign a locker to a person. All
lockers are directly connected to a management service provided by Gantner.
Online solutions have the advantage of managing the lockers in real-time
compared to systems that are not wired. Gantner is providing their own
in-house software solution to manage the lockers. The management software
can either be used as a standalone application on a working station or using
a web interface.
A complete system description of the locker management solution from
Gantner is shown in figure 3.12. [Gmb20]

3.3.9 How is the Gantner System used inside the SLFI?

The SLFI uses the Gantner system to manage lockers in the wardrobe and
lobby area. A total of 85 lockers are used in the wardrobe area. These lockers
provide storage options for guests of the SLFI. A total of 12 lockers are used
in the lobby area. Six of the lockers in the lobby area are used for projects.

35



3 Analysis

GAT Relaxx
Service

GAT Relaxx
Datenbank

GAT Relaxx WEB
User Interface

Website

Webserver (IIS)

Controller and Cabinet Locks
(LAN connection)

Server

TCP/IP

Representation of the GAT Relaxx
WEB User Interface

TCP/IP

Workstation 2

GAT Relaxx Desktop
Client

Workstation 1

TCP/IP

Figure 3.12: Gantner Technology, Own representation based on [Gmb20]

36



3 Analysis

Guests who are working on long-term projects can use these lockers for
stowing. The other half of the lockers in the lobby area are used by the recep-
tion. To manage all those lockers the SLFI is using the GAT Relaxx desktop
client. This client is installed on the working station in the reception area.
The Gantner server (GAT Relaxx service, database, etc.) is managed and
operated by the ZID. The working station in the reception area is accessing
the services of Gantner with a preconfigured static IP address. Figure 3.13

shows the Gantner locks that are used in the SLFI. [Gmb20], [WSR20]

3.3.10 Gantner System Limitation and Possibilities

The computer in the reception area is the only device that has access
to the Gantner services. Gantner is providing additional interfaces. One
interface is TCP-based network communication. Another way to interact
with the system is to use the web interface. The web interface provides REST
endpoints that can be used by software developers. The REST endpoints
allow interaction with common authorization management tasks. These
tasks include reading, creating, updating, and deleting authorizations in the
Gantner system. Gantner is also supporting CSV imports.
Minor limitations are that the REST API is still in development. This means
that some information about the lockers and authorizations is currently
not available. Another limitation is the hardware configuration. Adding
additional Gantner lockers to the SLFI still requires the GAT Relaxx client
software to configure the new hardware components. The new lockers can
be managed with the REST API endpoints after the configuration.

37



3 Analysis

G
a
n

tn
e
r 

L
o

ck
s

G
a
n

tn
e
r 

L
o

ck
s

L
o

b
b

y
 A

re
a

W
a
rd

ro
b

e
 A

re
a

G
A

T
 R

e
la

x
x
 D

e
sk

to
p

C
li
e
n

t

G
A

T
 R

e
la

x
x

S
e
rv

ic
e

G
A

T
 R

e
la

x
x

D
a
te

n
b

a
n

k

G
A

T
 R

e
la

x
x
 W

E
B

U
s
e
r 

In
te

rf
a
ce

W
e
b

s
it

e

W
e
b

s
e
rv

e
r 

(I
IS

)

S
e
rv

e
r

T
C

P
/

IP

A
cc

e
ss

 w
it

h
 p

re
co

n
fi

g
u

re
d

st
a
ti

c 
IP

 a
d

d
re

ss

G
a
n

tn
e
r 

L
o

ck
s

R
e
ce

p
ti

o
n

 A
re

a

R
e
ce

p
ti

o
n

 A
re

a

Fi
gu

re
3
.1

3
:S

LF
I

G
an

tn
er

Sy
st

em
O

ve
rv

ie
w

38



3 Analysis

3.3.11 Gantner Summary

To summarize the most important points:

• GAT Relaxx desktop client software is installed on the computer in
the reception area

• GAT Relaxx desktop client must be used for hardware configuration
• Multiple APIs available: TCP-based network communication and REST

API endpoints
• Student cards can be used as data carriers (MIFARE Classic and

MIFARE DESFire EV1)
• CSV import is possible

3.3.12 Hoffmann Group Access Control System

Hoffmann Group is a provider of a wide range of factory equipment includ-
ing electronic locks. The SLFI is planning to use the GARANT Electronic
Lock System (G-ELS). G-ELS locks are installed in the various storage
options inside FabLab I and FabLab II (Figure 3.19). [Gro21a]

3.3.13 GARANT Electronic Lock System (G-ELS)

The G-ELS system is an offline system that can be used in two different
modes: [Gro21b]

• PIN mode
• TAG mode

PIN Mode

First, the lock must be initialized with the master card. The lock can then
be configured in this mode. The configuration requires to specify a four or
six-digit pin code. The lock can then be manually opened and closed with
the pin code.

39



3 Analysis

TAG Mode

In this mode, the configuration will be done with an Android app. The app
is developed by Hoffmann and can be downloaded for free. The TAG mode
can be summarized as followed:

Android App Setup: In order to enable the TAG mode it is necessary to
initialize the master card with the Android app. The initialization will be
done using the NFC interface of the mobile device.

Admin/Master
Card

NFC

Hoffmann Group
Android App

Figure 3.14: Android App Setup with Master Card. Own representation based on [Gro21a]

Lock Setup: After successful initialization, locks and users can be registered
in the Android app. The NFC interface will be used by holding the mobile
device close to the lock.

NFC

Hoffmann Group
Android App

Lock 1

Lock 2

Lock n Lock 1

Hoffmann Group
G-ELS

App Database

Registered Lock 1

Figure 3.15: Register a lock in the Android App. Own representation based on [Gro21a]

User Setup: Users are also registered with the NFC interface. Holding the
mobile device close to the identification device (tag) will register a user in

40



3 Analysis

the app. Tags are using the MIFARE DESFire technology. Therefore it is also
possible to use the TU Graz card as an identification device (tag).

NFC

Hoffmann Group
Android App

Hoffmann Group
TAG

App Database

TAG 1

TAG 2

TAG n
TAG 1 Registered TAG 1

Figure 3.16: Register a TAG in the Android App. Own representation based on [Gro21a]

Assign User to a lock: Locker and user management will be done in the
Android app. Users can be assigned to available locks in the app. Additional
lock-specific configurations can also be performed in the app.

Hoffmann Group
Android App

App Database

Lock 1 TAG 1

TAG 2

Assign TAG 1 to Lock 1

Assign TAG 2 to Lock 1

Figure 3.17: Assign multiple TAGs to one Lock. Own representation based on [Gro21a]

41



3 Analysis

Synchronization: To apply the changes to a lock it must be synchronized.
This will be done again with the NFC interface. All lock-related changes
will be synchronized by holding the mobile device close to the lock. After
successful synchronization, the lock will be able to use.

Hoffmann Group
Android App

App Database

Lock 1 TAG 1

TAG 2

Assign TAG 1 to Lock 1

Assign TAG 2 to Lock 1

NFCLock 1

Hoffmann Group
G-ELS

Synchronize/Update
Changes

Figure 3.18: Synchronize changes with the lock. Own representation based on [Gro21a]

All locks are operating using battery power. The lifetime of the batteries is
about 3 years when using the TAG mode and about 1,5 years when using
the PIN mode.

42



3 Analysis

H
o

ff
m

a
n

n
 G

ro
u

p
 S

y
st

e
m

F
a
b

L
a
b

 I
/

II

H
o

ff
m

a
n

n
 G

ro
u

p
A

n
d

ro
id

 A
p

p A
p

p
 D

a
ta

b
a
se

L
o

ck
 1

T
A

G
 1

N
F
C

L
o

ck
 n

H
o

ff
m

a
n

n
 G

ro
u

p
G

-E
L
S

N
F
C

H
o

ff
m

a
n

n
 G

ro
u

p
T
A

G

T
A

G
 1

Fi
gu

re
3

.1
9

:O
ve

rv
ie

w
of

H
of

fm
an

n
lo

ck
s

in
th

e
SL

FI

43



3 Analysis

3.3.14 Hoffmann System Limitation and Possibilities

One major limitation of this system is that Hoffmann locks can only be
managed with the mobile Android application. This app does not provide
any APIs. First, it was only possible to manage the locks with data carriers
(tokens) that are also provided by Hoffmann. This limitation was solved by
upgrading the Hoffmann locks in expansion phase I (section 4.2). The locks
can now be managed with data carriers that support the MIFARE Classic
and MIFARE DESFire EV1 standards. Another limitation is that the locks
of the Hoffmann system do not support the Data on Card technology. This
upgrade needs additional external programming effort. This upgrade would
create the possibility to integrate the Hoffmann system into the Primion
system. Additional resources need to be created by the ZID. These resources
can then be administrated inside TUGOnline as described in figure 3.10.
Providing an interface directly to the mobile application would also allow
the integration of the system. A third-party application would be able to
update the authorization status on the mobile app. A direct interface to the
mobile application would be an additional requirement to expansion phase
I. This additional requirement is feasible according to an interview with
responsible persons from Hoffmann.

3.3.15 Hoffmann Summary

To summarize the most important points:

• G-ELS locks can only be managed with the mobile application pro-
vided by Hoffmann

• The mobile application does not provide any APIs
• G-ELS locks do not support the Data on Card technology
• Custom Hoffmann tokens must be used as data carriers
• Upgrading the locks to support Data on Card allows the integration

into the Primion system

44



3 Analysis

3.3.16 SLFI WordPress System

A WordPress system is used for content management at the SLFI. Con-
tent management includes hosting the SLFI home page (https://fablab.
tugraz.at/), adding information about upcoming events, custom user man-
agement, and much more. Content about new events is uploaded regularly.
These events include open days, training sessions, makerthons and more. To
be able to register for these events a user must have an account. WordPress
provides a custom user management system as mentioned in section 2.9. The
SLFI is using this system for its custom user management. People can sign
up and create an account at https://fablab.tugraz.at/. With an account
users can register for training sessions (e.g.: basic training). These training
sessions are needed to get access to the tools and equipment in the FabLabs.

As explained in section 2.9, WordPress provides a lot of different ways to
extend the system. A powerful tool for developers is the provided REST
API (see 2.9.3). The REST API allows developers to integrate third-party
applications into WordPress.

3.3.17 SLFI Card Reader

A card reader is located in the SLFI. The card reader can read the IDs of
data carriers including MIFARE Classic and MIFARE DESFire EV1 data
cards. The reader displays the IDs in hexadecimal format. Depending on
the system a decimal format might be used for managing authorizations.
The transformation from hexadecimal format to decimal format needs to be
performed if needed. There is currently no option to automatically store the
data carrier IDs into the WordPress system. Additionally, there is no option
available to map a card ID to a user.

45

https://fablab.tugraz.at/
https://fablab.tugraz.at/
https://fablab.tugraz.at/


3 Analysis

3.3.18 Systems Summary

The following table 3.1 summarizes the key factors of the three systems.
These key factors were taken into account for the concept development. In
addition to the key factors of every management system, the SLFI WordPress
system (see 3.3.16) and the SLFI card reader (see 3.3.17) are also important
components to consider. The WordPress system is already providing a
central platform for content management in the SLFI. The card reader can
read student card IDs (MIFARE Classic and MIFARE DESFire EV1).

46



3 Analysis

G
an

tn
er

Pr
im

io
n

H
of

fm
an

n
Sy

st
em

Ty
pe

on
lin

e
of

fli
ne

of
fli

ne
Su

pp
or

te
d

da
ta

ca
rr

ie
rs

va
ri

ou
s

in
cl

u
d

in
g

M
IF

A
R

E
C

la
ss

ic
an

d
M

IF
A

R
E

D
E

SF
ir

e
EV

1
ca

rd
s

M
IF

A
R

E
C

la
ss

ic
an

d
M

IF
A

R
E

D
E

SF
ir

e
EV

1
ca

rd
s

cu
st

om
to

ke
ns

,M
I-

FA
R

E
C

la
ss

ic
an

d
M

IF
A

R
E

D
E

SF
ir

e
EV

1
ca

rd
s

C
ur

re
nt

M
an

ag
em

en
t

To
ol

G
A

T
R

el
ax

x
D

es
kt

op
C

lie
nt

TU
G

O
nl

in
e

H
of

fm
an

n
cu

st
om

A
nd

ro
id

ap
pl

ic
at

io
n

A
pp

li
ca

ti
on

Pr
og

ra
m

-
m

in
g

In
te

rf
ac

e
T

C
P

-b
as

ed
ne

tw
or

k
co

m
m

u
ni

ca
ti

on
an

d
R

ES
T

en
dp

oi
nt

s

no
ne

no
ne

A
lt

er
na

ti
ve

In
te

rf
ac

e
C

SV
im

p
or

t
su

p
-

po
rt

ed
C

SV
im

po
rt

no
ne

Fu
tu

re
ex

pa
ns

io
ns

R
E

ST
A

P
I

is
be

in
g

co
ns

ta
nt

ly
ex

te
nd

ed
C

SV
m

er
ge

an
d

im
-

p
or

t.
A

d
d

in
g

ne
w

re
so

u
rc

es
fo

r
ex

te
r-

na
ls

ys
te

m
s.

A
P

I
fo

r
m

ob
ile

ap
-

p
lic

at
io

n.
E

xp
an

si
on

ph
as

e
II

(s
ee

4
.2

)

Ta
bl

e
3

.1
:K

ey
fa

ct
or

s
of

al
la

cc
es

s
re

gu
la

ti
on

sy
st

em
s

th
at

ar
e

us
ed

fo
r

th
e

co
nc

ep
t

de
ve

lo
pm

en
t.

47



4 Concepts

This chapter explains the developed concepts that meet the defined require-
ments. The defined requirements are:

• a central platform for administrators to manage the different locking
systems

• a uniform data carrier that can be used to operate the various locking
systems

The concepts were developed based on the system analysis described in
section 3.3. The Hoffmann expansions (phase I and II) explained in section
4.2 are also included in the concept development process. Concept I and II
explains how the already used WordPress platform can be used to fulfill
the goal of a central administration platform. Concept III shows how the
systems could be managed within the existing TUGOnline platform. The
last part of this chapter explains the decision for one of the concepts.

4.1 System Boundaries

For all concepts, it is required that a uniform data carrier is used through
all systems to manage authorizations. The uniform data carriers are the
MIFARE Classic and MIFARE DESFire EV1 university ID cards that are
used by students and employees (section 3.3.2). All concepts are developed
to work with these university ID cards. The concepts assume that relevant
student card ID information is available for authorization management.
Therefore, the concepts do not provide a solution on how a card ID should
be assigned to a system user. The concepts suggest possible approaches to
make the card ID information available.

48



4 Concepts

4.2 Hoffmann G-ELS Adaptation

Two adaptations were planned to use the G-ELS locks in the FabLabs:

• Expansion phase I: Upgrade the locks to work with data carriers that
support the standards MIFARE Classic and MIFARE DESFire EV1

• Expansion phase II: Upgrade the locks to read access rights from a
data carrier (support Data on Card technology)

Expansion phase I is already completed. Data carriers that support the
standards MIFARE Classic and MIFARE DESFire EV1 can be used as tags
(see section 3.16). The remaining steps: assigning the tags to the locks (see
3.17) and synchronizing the changes (see 3.18) must still be performed.
The locks can be opened with valid authorizations on the data carrier after
synchronizing the status on the Android app with all locks.

Expansion phase II is not completed yet. This phase focuses on upgrading
the locks to work with the Data on Card technology (section 3.3.2). The locks
should be able to read access rights directly from the data carrier. Reading
access rights from a data carrier would allow this system to be integrated
into the Primion software. New Primion resources must be created that
represent the Hoffmann locks. These newly created resources can then be
managed within the TUGOnline platform the same way Primion resources
are managed. Creating new resources for the Hoffmann system is confirmed
by the responsible persons from the ZID. Detailed integration steps of
the Hoffmann system into the ZID environment are to be discussed after
completion of expansion phase II.

4.3 Concept Analysis

Concepts I and II are based on extending the running WordPress application.
WordPress is frequently used by the employees of the SLFI. Announcements
to upcoming events and bookings for training sessions are administrated
on this platform. Extending the existing WordPress application meets the
requirement of a single access point for all three applications. Concept I

49



4 Concepts

and II describe a WordPress extension that takes into account the limi-
tations and possibilities of the systems described in section 3.3. Another
approach is to integrate the systems into the ZID domain. Concept III de-
scribes the procedure of integrating Hoffmann and Gantner into the ZID
environment.

• Concept I: WordPress integration: Gantner REST API integration. CSV
export for Primion. Providing REST API for Hoffmann

• Concept II: WordPress integration: Gantner REST API integration.
CSV export for Primion and Hoffmann

• Concept III: ZID integration: Integrate Gantner and Hoffmann system
into ZID environment

4.3.1 Concept I

The WordPress REST API (section 2.9.3) makes it possible to integrate third-
party applications into the WordPress environment. Custom plugins are
already used in the SLFI. Registering for training sessions as well as a
ticketing system are plugins that were created in the past. Built-in plugins to
create content for the website are also used. Upcoming events (makerthons
etc.) are published with the built-in functionality of WordPress. Figure 4.1
illustrates how the three systems can be integrated into a custom WordPress
plugin.

The Gantner system (section 3.3.8) provides REST API endpoints that can
be used by third-party applications. These endpoints include the creation,
deletion, and modification of access rights. Because Gantner is an online
system, authorization updates will be performed immediately.

The two offline solutions Primion and Hoffmann do not provide any APIs.
Primion is using a CSV import to update the access rights (section 3.10).
Even though there are currently no APIs available, the plugin can create a
CSV file that can be imported.

50



4 Concepts

To import the CSV file in the Primion system the following specifications
must be clarified with the responsible persons from the ZID:

• CSV file transfer
• CSV file format

A secure file transfer must be established. It must be ensured that no
unauthorized entity can modify the CSV file. In addition, the process of
transferring the file to the ZID must be automated.
The format of the CSV file needs to be specified. This includes all data that
needs to be present in the CSV file for a valid import operation.
The ZID is importing the CSV file once a day. Updates on the authorizations
are not performed immediately. The data carrier must be updated regularly
on a master reader.
The existing WordPress database can be extended to simulate information
about the Primion authorizations. Authorizations for all Primion compo-
nents used in the SLFI can be mapped in the WordPress database. The
Primion authorizations can then be provided as a CSV file that can be
imported by the ZID.

The completed expansion phase I of Hoffmann allows MIFARE Classic and
MIFARE DESFire EV1 cards to be used as data carriers. The existing Word-
Press database can be extended to simulate information about the Hoffmann
authorizations. This information can be retrieved from a provided REST
endpoint and imported into the mobile application from Hoffmann. The
Hoffmann system administers the access rights using their custom mobile
application (section 3.3.12). The plugin provides a REST endpoint to update
access rights in the mobile application. An API to the mobile application
allows updating the authorizations from a third-party application. Providing
an API to the mobile application is feasible according to an interview with
responsible persons from Hoffmann and needs to be further specified.
Using an API to update the user authorizations in the mobile application
still requires the synchronization step explained in figure 3.18.

The existing user management system of WordPress can be extended. Card
IDs from students and employees can be read with the card reader (section
3.3.17). The existing WordPress database table wp users can be extended by
an additional card id entry. This entry stores and connects the data carrier
information to a user and can be used for managing authorizations.

51



4 Concepts

Only authorized staff should have access to the central management system.
The available WordPress roles and capabilities (section 2.9) can be used to
ensure that specific content is only shown to specific users. New capabilities
can be created and assigned to a role. Only users with this new capability
can use the central authorization management system.

Pros Cons
Already used WordPress system

can be used as the central platform
for managing all three locking

systems

Primion CSV format and file
transfer must be provided

MIFARE Classic and MIFARE
DESFire EV1 cards as a uniform

authentication medium

Hoffmann mobile application API
must be provided

Gantner fully integrated Hoffmann lock synchronization is
still required

Primion partly integrated
Hoffmann partly integrated

Table 4.1: Pros and Cons of concept I

52



4 Concepts

HoffmannPrimionGantner

SLFI WordPress

New Plugin

WordPress
DatabaseInstalled

Plugins

Figure 4.1: Concept I: A custom WordPress plugin. The Gantner system is accessed by
REST endpoints. The plugin creates a CSV file that can be imported into the
Primion system. The plugin provides a data endpoint for the mobile application
from Hoffmann.

53



4 Concepts

4.3.2 Concept II

Concept II (figure 4.2) is similar to Concept I. This concept is also creating
a custom WordPress plugin to integrate the systems into WordPress. This
concept shows how the three systems can be managed with a completed
expansion phase II from Hoffmann. As explained in section 4.2 two major
adaptations must be finished:

• Hoffmann locks must support the Data on Card technology
• Hoffmann system must be integrated into the Primion system

Hoffmann needs to finish expansion phase II as explained in section 4.2
and make sure that the locks can read authorizations from university ID
cards (MIFARE Classic and MIFARE DESFire EV1). The Hoffmann system
can then be integrated into the Primion system. This integration requires
additional external work from the ZID. The ZID needs to create Primion
resources for the Hoffmann system. These resources can then be managed
the same way Primion resources are managed. Hoffmann locks could be
administered as explained in figure 3.10. An API for the combined offline
systems is not available. To integrate the offline systems only one CSV file
needs to be generated. The CSV file contains information about the Primion
and Hoffmann authorizations and can be imported by the ZID.

The extensions to the WordPress database for the Primion and Hoffmann
authorizations are the same as described in concept I. The extensions to
the existing user management system of WordPress are also the same as
explained in concept I.
A major advantage of this concept is that the mobile application from Hoff-
mann no longer needs to be used. The TAG mode explained in section 3.3.13

is not required anymore.

54



4 Concepts

SLFI WordPress

New Plugin

WordPress
DatabaseInstalled

Plugins

Gantner

Primion

Hoffmann

Figure 4.2: Concept II: A custom WordPress plugin. The Hoffmann system is integrated
into the Primion system.

55



4 Concepts

Pros Cons
Already used WordPress system

can be used as the central platform
for managing all three locking

systems

Primion/Hoffmann CSV format
and file transfer must be provided

MIFARE Classic and MIFARE
DESFire EV1 cards as a uniform

authentication medium

ZID needs to integrate the
Hoffmann system into the Primion

system
Gantner fully integrated Hoffmann expansion phase II must

be completed
Primion partly integrated Hoffmann expansion phase II is

cost-intensive and will not be
finished soon

Hoffmann partly integrated
Hoffmann mobile application is no

longer needed

Table 4.2: Pros and Cons of concept II

56



4 Concepts

4.3.3 Concept III

Concept III (figure 4.3) shows how Gantner and Hoffmann can be integrated
into the Primion system. The requirements for the Hoffmann system are
already explained in Concept II.
The Gantner system is also supporting CSV import. Gantner could be admin-
istrated inside the TUGOnline as described in figure 3.10. The requirement
is to develop a customized GUI for the Gantner system that can be used by
authorized members of the TU Graz. Concept III shows the adaptation of
the ZID access control management including the integration of the Gantner
and Hoffmann system.

Pros Cons
TUGOnline as the central

managing platform for all three
systems

The central platform is not
available within the already used

WordPress system
Gantner fully integrated The ZID needs to develop the

integration of the Gantner system
into the TUGOnline platform

Primion fully integrated No clarification if it is legally
possible to outsource the Gantner
system. The Gantner product is

licensed to the IIM institute
Hoffmann fully integrated Possibly high costs

Hoffmann mobile application is no
longer needed

Possibly long development time

MIFARE Classic and MIFARE
DESFire EV1 cards as a uniform

authentication medium

ZID needs to integrate the
Hoffmann system into the Primion

system

Table 4.3: Pros and Cons of concept III

This concept fulfills the requirement of a central management platform. The
TUGOnline is already used to manage Primion resources. The Hoffmann
system can be integrated into Primion as described in concept II. The
Gantner system would be maintained and managed by the ZID and can
co-exist beside the Primion system.

57



4 Concepts

TUGOnline

GUI
Gantner

GUI
Primion & Hoffmann

Authorized
Staff

Gantner CSV
Import File

Primion & Hoffmann
Import File

Gantner
Application

Primion
Application

Figure 4.3: Concept III: Gantner and Hoffmann integration into Primion system

58



4 Concepts

4.4 Concept Decision

All concepts fulfill the defined requirements. Table 4.4 shows the cons of
each concept that was considered for the concept decision.
Concept III shows a solution that could also benefit premises outside the
makerspace. External institutions of the TU Graz can upgrade their storage
options with lockers from Gantner and Hoffmann and manage them within
TUGOnline. This concept needs further feasibility checks. The Gantner sys-
tem is owned by the IIM institute. The possibility of outsourcing the Gantner
solution to the ZID must be decided by the management. The Hoffmann
locks must be upgraded to support the Data on Card technology. Only then
the locks can technically be integrated into the Primion system by the ZID.
The main reason to not choose this concept is the lack of information. It is
not clarified if the ZID would allow this approach. It is unsure how much
time Hoffmann will need to upgrade their locks to support the Data on Card
technology. There is no information about outsourcing the in-house Gantner
solution to the ZID. It is unclear what additional costs would be incurred
and how long the development time would be.

Concept I and II are very similar. Both concepts build on extending the
already used WordPress platform. WordPress is the central platform for all
systems. The key difference is that concept II requires the Hoffmann system
to be integrated into Primion. To manage the Primion and Hoffmann locks
only one CSV file is generated by the plugin. This file can then be imported
by the ZID. Concept I is providing a CSV file for the Primion system and a
REST endpoint for the Hoffmann system. The REST endpoint contains all
necessary information in JSON format. This endpoint can be used to update
the authorizations stored in the database of the mobile application from
Hoffmann.

59



4 Concepts

Upgrading the Hoffmann locks to support the Data on Card technology
is expensive and definitely will take more time to be finally completed.
Concept I is therefore the better approach. The mobile app of Hoffmann
is currently not able to use an external interface to load information and
update their locks. Providing such an interface is far less costly than the
expansion phase II. Furthermore, providing the information in a CSV format
as described in concept II requires relatively little effort.

60



4 Concepts

C
on

ce
pt

I
C

on
ce

pt
II

C
on

ce
pt

II
I

P
ri

m
io

n
C

SV
fo

rm
at

an
d

fi
le

tr
an

sf
er

m
us

t
be

pr
ov

id
ed

P
ri

m
io

n
an

d
H

of
fm

an
n

C
SV

fo
rm

at
an

d
fil

e
tr

an
sf

er
m

us
t

be
pr

ov
id

ed

T
he

ce
nt

ra
lp

la
tf

or
m

is
no

t
av

ai
la

bl
e

w
it

hi
n

th
e

al
re

ad
y

us
ed

W
or

dP
re

ss
sy

st
em

H
of

fm
an

n
m

ob
ile

ap
p

lic
at

io
n

A
PI

m
us

t
be

pr
ov

id
ed

Z
ID

ne
ed

s
to

in
te

gr
at

e
th

e
H

of
f-

m
an

n
sy

st
em

in
to

th
e

P
ri

m
io

n
sy

st
em

T
he

Z
ID

ne
ed

s
to

d
ev

el
op

th
e

in
te

gr
at

io
n

of
th

e
G

an
tn

er
sy

s-
te

m
in

to
th

e
T

U
G

O
nl

in
e

p
la

t-
fo

rm
H

of
fm

an
n

lo
ck

sy
nc

hr
on

iz
at

io
n

is
st

ill
re

qu
ir

ed
H

of
fm

an
n

ex
p

an
si

on
p

ha
se

II
m

us
t

be
co

m
pl

et
ed

Z
ID

ne
ed

s
to

in
te

gr
at

e
th

e
H

of
f-

m
an

n
sy

st
em

in
to

th
e

P
ri

m
io

n
sy

st
em

H
of

fm
an

n
ex

p
an

si
on

p
ha

se
II

is
co

st
-i

nt
en

si
ve

an
d

w
ill

no
t

be
fin

is
he

d
so

on

N
o

cl
ar

ifi
ca

ti
on

if
it

is
le

ga
lly

p
os

si
bl

e
to

ou
ts

ou
rc

e
th

e
G

an
t-

ne
r

sy
st

em
.T

he
G

an
tn

er
p

ro
d

-
u

ct
is

lic
en

se
d

to
th

e
II

M
in

st
i-

tu
te

P
os

si
bl

e
lo

ng
d

ev
el

op
m

en
t

ti
m

e
an

d
ad

di
ti

on
al

hi
gh

co
st

s

Ta
bl

e
4

.4
:T

he
co

ns
of

th
e

de
ve

lo
pe

d
co

nc
ep

ts
su

m
m

ar
iz

ed
.

61



5 Results

This chapter describes the implementation of concept I. Figure 5.1 highlights
the core components that are used in the concept. Section 5.1 explains the
architecture of the concept. The structure of the custom WordPress plugin
is also explained in this section.
Section 5.1.1 explains the relevant parts of WordPress that were used in
the concept development. Section 5.1.2 describes the WordPress database
structure and the tables that were used. The installation process for a custom
WordPress plugin will be explained in section 5.1.3. Section 5.1.4 explains
the Python flask framework that was used to develop the middleware. The
relation between the Gantner GAT Relaxx system and the Gantner REST
API endpoints will be described in section 5.1.5. The Python CSV module is
explained in section 5.1.6. The JSON data format used for data exchange
between the systems will be explained in section 5.1.7.
Section 5.2 describes the setup of the local development environment. All
tools and technologies that were used to develop the concept will be ex-
plained in this section. The development of the middleware is described in
section 5.3. The user interaction with the custom plugin will be explained
in section 5.4.

5.1 Concept Architecture

The concept architecture can be divided into three layers:

• Frontend: Responsible for how the user interacts with the user inter-
face.

• Backend: Deals with business logic, data storage, and processing.
• Middleware: Communication layer between the front- and backend.

62



5 Results

The frontend layer is responsible for the data representation. User requests
are handled by the server. The server response includes all information that
is displayed to the user. Information about the access control systems is
provided by the middleware. The server requests this information from the
middleware by using the provided REST API endpoints. With the response
of the middleware, the server dynamically builds the content that is pre-
sented to the user.

The middleware is the bridge between the front- and backend. Server re-
quests are processed by this layer. Requests can include any of the CRUD
operations that are explained in section 2.3. All the required information is
gathered here to execute the operations. This layer is also communicating
with the backend systems. Authentication to these systems is also handled
by this layer.

The backend layer consists of the access control systems: Gantner, Primion
and Hoffmann. The backend layer is responsible for executing the requests
from the middleware. As explained in section 4.3.1, REST API endpoints
are used for the Gantner system. The remaining systems provide no APIs.
The middleware creates a CSV file for the Primion system. The Hoffmann
system can request the updated authorizations from the middleware. The
middleware provides a REST API endpoint to get this data.

Figure 5.1 shows the core components that are used in the concept:

• WordPress system
• WordPress database
• Custom WordPress plugin
• Python flask server
• Gantner swagger UI
• Primion CSV file
• Hoffmann JSON data

63



5 Results

Plugin Architecture

Figure 5.1 shows that the plugin is divided into two parts. The first part is
the custom WordPress plugin that is explained in section 5.1.3. This plugin
is an extension to the existing WordPress system and operates on the server.
The second part is the Python web server. The server is a standalone appli-
cation that handles the communication between WordPress and the access
control systems.

It is also possible to access the different locking systems directly from
WordPress. Addressing the individual systems directly from WordPress can
lead to problems for future extensions. If WordPress is replaced by another
management system in the future, not only the graphical user interface but
also the complete logic for accessing the individual locking systems must
be reprogrammed. To prevent this situation, the GUI and the programming
logic responsible for addressing the individual locking systems are separated
from each other. Only the GUI needs to be re-implemented. The GUI and
the programming logic for accessing different systems can therefore be
developed separately. The chosen software architecture should enable future
changes and extensions to be implemented efficiently.

64



5 Results

HoffmannPrimionGantner

M
id

d
le

w
a
re

W
o

rd
p

re
ss

 E
n

v
ir

o
n

m
e
n

t

WordPress
System

WordPress
Database

WordPress
Plugin

Python-Flask
Server

Swagger
UI

HTML Page WordPress
Dashboard

Figure 5.1: Overview of the core components that are used in concept I.

65



5 Results

5.1.1 WordPress System

Section 2.9.1 gives a brief overview of the WordPress system. This section
explains the important parts that are used in the concept in more detail.
The WordPress system consists of a lot of different files that ensure that the
system is running correctly. Modification of these files is dangerous and can
lead to a software fault or cause the whole system to crash. The following
folders contain the core files of WordPress: [Sto21]

• wp-admin
• wp-content
• wp-includes

wp-admin

This folder contains all the files that are required for the WordPress dash-
board to function correctly. The dashboard (figure 5.2) allows administrators
to create new content, perform updates, install new themes, and much more.
[Sto21]

Figure 5.2: The WordPress dashboard is the control panel for the administrators.

66



5 Results

The three most important options that are used for developing the concept
are:

• Pages
• Plugins
• Users

In WordPress, pages, and blogs are used to provide content. Creating blog
entries are time-dependent and appear in reverse chronological order on a
WordPress home page. Pages are used to create timeless information that
is always relevant (e.g.: About page). WordPress templates can be used to
create a new page without the need for coding. [Wor21b]

The dashboard option Plugins shows all the plugins that are stored in the
wp-content\plugins folder. The plugins can be activated, deactivated, up-
dated and deleted by the administrator.

The Users option allows administrators to manage the user accounts. Word-
Press provides their custom role system. Every user in WordPress is assigned
to at least one role. Every role has a set of capabilities that specify what a
user is allowed to do on the system. The default roles are: Subscriber, Con-
tributor, Author, Editor and Administrator. WordPress allows the creation
of new roles and capabilities that can be assigned to users.

wp-content

This folder contains all the plugins, themes, upgrades and uploads that have
been used in the WordPress system. The Plugins option of the dashboard
shows all plugins that are located in this folder. The custom plugin that was
developed (figure 5.1) is also stored in this directory.

wp-includes

Besides the wp-admin folder, this directory contains all the remaining files
that are important for the system to run properly. The most important file

67



5 Results

in this directory is the functions.php file. It is considered the main WordPress
API. [Sto21]

5.1.2 WordPress Database

A new WordPress installation requires a database that is holding all the
relevant information. WordPress only supports the database types: MySQL
version 5 or greater, or any version of MariaDB. When creating a custom
plugin it might become relevant to interact with this database. WordPress is
therefore providing the wpdb class to make this interaction easier. This class
should be used to interact with the database without the need of raw SQL
statements.
Figure 5.3 illustrates the WordPress database and the relations between
the tables. The wp users and wp usermeta are the two important tables for
the concept development. The wp users table contains relevant information
about the users (e.g.: user login name). Additional information about a user
is stored in the wp usermeta table (e.g.: roles and capabilities). [Wor21a],
[Wor21h]

68



5 Results

Figure 5.3: The WordPress database structure and the relations between the tables. This
figure is fully adopted from [Wor21a]

69



5 Results

5.1.3 Custom WordPress plugin

To create a new plugin it is necessary to create a new folder inside wp-
content\plugins subdirectory. This new folder contains all plugin related
files. The folder must have a unique name to prevent conflicts with the
other plugins. It is a common practice to put a .php file inside the plugin
directory that is also named after the plugin. This file is the main function
of the plugin and should contain a plugin header comment. The comment
is a PHP block that contains metadata about the plugin (e.g.: name, author,
license, and more). The plugin will be listed in the Plugins option in the
WordPress dashboard. Figure 5.4 summarizes this procedure. [Wor21c]

Figure 5.4: Plugins folder structure in WordPress.

WordPress Hooks

Hooks allow to tap into WordPress at specific points and change the de-
fault functionality. WordPress has two types of hooks: Actions and Filters.
Actions are used to change or add new functionality. Filters are used to mod-
ify content before it is displayed to the user. There are three basic hooks for

70



5 Results

plugin development: register activation hook(), register deactivation hook()
and register uninstall hook(). Activation and deactivation of a plugin trigger
the register activation hook() and register deactivation hook() respectively.
The register uninstall hook() allows specifying clean-up functions that are
executed when a plugin gets deleted. [Wor21c]

5.1.4 Python flask

Flask is a Python web framework that is used for developing web applica-
tions. Web frameworks make development easier and faster by providing
common patterns (e.g.: HTTP operations) in the web development process.
Only a few lines of code are needed to set up a running web application.
[Mak21a], [Mak21b]

from f l a s k import Flask
s imple web appl icat ion = Flask ( name )

@simple web applicat ion . route ( ’/ ’ )
def hel lo world ( ) :

return ’ Hello World ! ’

i f name == ’ main ’ :
s imple web appl icat ion . run ( )

Listing 5.1: Set-up of a simple web application with Python flask. Own representation
based on [Mak21a]

The few lines of code start the web application on the local port 5000 and
display the text Hello World!. [Mak21a]

71



5 Results

Flask-RESTPlus

Flask-RESTPlus is an extension of the Flask web framework. This exten-
sion is adding support for building RESTful APIs efficiently. It provides a
collection of tools and decorators to develop and describe API endpoints.
It also enables proper documentation of the APIs by using swagger 2.8.1.
[Hau21]

Requests Module

The requests module is an HTTP python library. It provides a simple to use
API that abstracts the complexity of creating HTTP requests. [Doc21]

5.1.5 Gantner GAT Relaxx

A brief overview of the Gantner system and how it is used in the SLFI
is described in section 3.3.8. A complete GAT Relaxx system overview is
shown in figure 3.12. The GAT Relaxx server is installed as a Windows
service that runs in the background. The server has no user interface and is
responsible for the communication with the locker system. The GAT Relaxx
client is a desktop application that is used to configure and manage all the
lockers in the system. Figure 5.6 shows the main dashboard of the GAT
Relaxx desktop client.

• Area 1: Modify or add new areas and/or locker groups. Locker groups
can be assigned to areas. Lockers are assigned to locker groups.

• Area 2: Visual representation of all areas and locker groups.
• Area 3: Visual representation of all lockers.
• Area 4: Switch between different views: Lockers, Authorizations and

more.
• Area 5: Additional information about a locker is shown here. A locker

must be selected in Area 3.

72



5 Results

The GAT Relaxx client provides a lot more functions such as the hardware
configuration of the lockers to the controllers, database configuration, locker
history protocol, and more. The Gantner REST API is the most important
extension of Gantner that is used for concept development.

GAT Relaxx API

Gantner summarizes the most common locker management tasks and makes
them available by using the GAT Relaxx API. These REST API endpoints
can be used by third-party applications. The endpoints are specified and
visualized with Swagger (figure 5.5).

Figure 5.5: Gantner REST API endpoints.

Authentication

The REST API endpoints can only be used after successful authentica-
tion. OpenAPI specifies different authentication schemes to protect the API

73



5 Results

endpoints. Gantner is using the bearer HTTP authentication scheme. This
scheme can also be called a token authentication scheme and can be de-
scribed as ”grant access to the bearer of this token”. The token is a cryptic
string of characters. The string is generated by the server in response to a
successful client login request. [Sof21]

74



5 Results

1

2

3

4

5

Fi
gu

re
5
.6

:T
he

m
ai

n
w

in
do

w
of

th
e

G
A

T
R

el
ax

x
de

sk
to

p
cl

ie
nt

.

75



5 Results

5.1.6 Python CSV Module

The Primion system provides no APIs as explained in section 3.3.3. Autho-
rizations are updated by importing data in CSV (Comma Separated Values)
format. CSV is a very common import and export format for spreadsheets
and databases and is standardized in RFC 4180. The first line can be used as
an optional header line. The header line describes the fields of the records
in the file. It should also have the same amount of fields as the records.
Records are located on separate lines, delimited by a line break.
The Python csv module provides classes to read and write data in CSV
format. It also allows developers to create their own CSV format. [Lib21],
[Sha05]

Figure 5.7: An example Primion CSV file.

5.1.7 Python JSON Module

JSON (JavaScript Object Notation) is a text-based format to serialize struc-
tured data and is specified in the RFC 8259. JSON is one of the most used
data formats to transmit and receive data between a server and a web appli-
cation. JSON supports primitive types such as strings and numbers as well
as nested arrays and objects. The syntax rules of JSON can be summarized
as:

• Data is represented as key/value pairs and is separated by commas
• Curly brackets hold objects, square brackets hold arrays

Python supports the JSON data format natively. A built-in module called
json allows to encode and decode JSON data. [Bra17], [ORG21]

76



5 Results

1 {
2 "Authorizations": [

3 {
4 "FirstName": "Michael",

5 "LastName": "Rossmann",

6 "ValidFrom": "2021-01-01",

7 "ValidUntil": "2021-01-30"

8 },
9 {

10 "FirstName": "Max",

11 "LastName": "Mustermann",

12 "ValidFrom": "2021-01-01",

13 "ValidUntil": "2021-01-15"

14 }
15 ],

16 "Lock": "Hoffmann Locker 3D Printer",

17 "Lock Number": "1",

18 "Lock ID": "983c5b8f-f760-4968-8f9c-4030040ec85f"

19 }
Listing 5.2: Example JSON file containing authorizations for a Hoffmann lock.

5.2 Development Environment Setup

For the realization of the concept many different areas needed to be covered
as described in the concept architecture 5.1. Setting up a local environment
for the plugin development has many benefits. The most important one is
testing. Local development and testing ensure that nothing breaks on the
live version of WordPress.
This section explains the technologies and tools (table 5.1) that were used to
develop the concept.

77



5 Results

XAMPP

WordPress needs three components to run: A server-side programming
language (e.g.: PHP), a web server (e.g.: Apache) and a database manage-
ment system (e.g.: MySQL). One option is to install all these components
separately. Another option is to install XAMPP. It provides the complete
environment that WordPress needs to function and is available on their
official website (https://www.apachefriends.org/index.html). [Ste16]

WordPress

Section 2.9 gives a general overview of WordPress. WordPress version
5.2.9 was used for the concept development. A list of all releases can
be found here: https://wordpress.org/download/releases/. The Word-
Press theme that was used for development and testing is GeneratePress.
It is a lightweight theme with a focus on performance. The theme can
be downloaded here: https://de.wordpress.org/themes/generatepress/.
[Org21b], [Gen21]

Python

Python is an object-oriented, high-level programming language. Its simple
and easy-to-learn code syntax does not only highlight the readability but
does also reduce the maintenance of Python applications. A wide range of
packages and modules in the most diverse areas are supported and enhance
this programming language. This makes Python very attractive for rapid
prototyping, as well as for use as a scripting language to connect existing
applications or components. [Org21a]

PHP

PHP is a server-side programming and scripting language. It can be em-
bedded into HTML code to build dynamic and interactive websites. HTML
output is generated on the server and sent back as a response to a client

78

https://www.apachefriends.org/index.html
https://wordpress.org/download/releases/
https://de.wordpress.org/themes/generatepress/


5 Results

request. WordPress is explicitly using PHP as the server-side programming
language. [Ste16], [al21]

JavaScript and AJAX

JavaScript is a client-side programming and scripting language. It is a very
important extension to HTML and provides the client-side logic of a web
application. This logic allows building more dynamic websites. Code can be
included in HTML that interacts with the user. For example, a script that is
validating user input or creates HTML content dynamically.
AJAX (Asynchronous JavaScript and XML) is a technology to improve
the responsiveness of interactive web applications. Content of web pages
can be updated asynchronously. Data is exchanged with the server in the
background. This allows updating only specific parts of a web page without
the need to reload the whole page. Users can interact in almost real-time
with web applications. [Inf21], [Ste16]

PyCharm

PyCharm is a development tool for building Python applications provided
by JetBrains. It was used to develop the middleware application explained
in the concept architecture 5.1. PyCharm can be downloaded here: https:
//www.jetbrains.com/de-de/pycharm/. [Jet21]

PhpStorm

This development tool is also provided by JetBrains. It was used for devel-
oping the front-end of the concept including the custom WordPress plugin
described in the concept architecture 5.1. PhpStorm can be downloaded
here: https://www.jetbrains.com/de-de/phpstorm/. [Jet21]

79

https://www.jetbrains.com/de-de/pycharm/
https://www.jetbrains.com/de-de/pycharm/
https://www.jetbrains.com/de-de/phpstorm/


5 Results

GAT Relaxx

The following components were installed for the local development:

• SQL Database
• SQL Server Management Studio
• Relaxx Server
• Relaxx Client
• Relaxx REST API

GAT Relaxx requires a database. If there is no pre-installed database, Mi-
crosoft SQL Server Express can be installed with the installation wizard of
GAT Relaxx. SQL Server Management Studio was installed for managing
the database.
Relaxx Server is the main component for the configuration and management
of the locker system. It runs as a background Windows service.
Relaxx Client is the graphical user interface 5.6 that is used for configuring
the locker system.
To be able to use the Gantner REST API the following components must be
installed:

• .NET Core Runtime & Hosting Bundle
• Microsoft Internet Information Service (IIS)

The hosting bundle is needed to run .NET Core applications. The IIS is an
optional feature of the Windows operating system. It is a web server that
allows hosting ASP.NET web applications. [Mic21b], [Mic21c], [Mic21d],
[Mic21a]

5.2.1 XAMPP WordPress Setup

Setting up a working local WordPress system can be done with XAMPP
in a few steps. XAMPP needs to be installed with the components MySQL
and PHPMyAdmin. Figure 5.8 shows the XAMPP control panel with the
running components. The downloaded WordPress files need to be placed
into the htdocs folder that is located in the XAMPP installation directory. If

80



5 Results

Technology/Tool Name Version

XAMPP 3.2.4
WordPress 5.2.9

Python 3.7.4
PHP 7.3.8

PyCharm (Community Edition) 2019.1.3
PhpStorm 2019.2.1

GAT Relaxx 4.0.1

Table 5.1: All tools and their versions that were used for developing the concept.

there is no existing database a new one can be created with the admin panel
of PHPMyAdmin (figure 5.9).

Figure 5.8: XAMPP control panel.

WordPress is accessible on the local machine at http://localhost (figure 5.10).
After the completion of the installation the XAMPP control panel is used to
turn the local WordPress instance off and on.

81



5 Results

Figure 5.9: PHPMyAdmin dashboard used to create new databases.

Figure 5.10: Local WordPress installation running on http://localhost.

82



5 Results

5.3 Setting up the Python web application

This section demonstrates the development of the middleware. It is a Python
web application that works between WordPress and the access control
systems. The web application is built with the Python flask web framework
as described in section 5.1.4. The flask app was extended to provide REST
API endpoints for the WordPress and Hoffmann system. The endpoints are
created with the Python Flask-RESTPlus module 5.1.4. To communicate with
the REST endpoints from WordPress and Gantner the requests module 5.1.4
is used.

5.3.1 WordPress - Middleware - Gantner Interaction

Figure 5.11 shows a simplified sequence diagram of the interaction between
WordPress, middleware, and the Gantner system. The middleware receives
requests from the WordPress system. The requests are checked first. The
check makes sure that:

• The target system can be reached
• All data is available for further execution

WordPress
System Middleware

Gantner
REST API

Request

Check

Execute

Response

Prepare Response

Response

Authentication Request

Authentication Response

Figure 5.11: Simplified sequence diagram of the interaction between WordPress, middle-
ware and the access control systems.

83



5 Results

Gantner is the only system that provides an API. The REST endpoints from
Gantner can be used by the middleware after successful authentication 5.1.5.
The data provided by WordPress must be complete for execution. An error
message is sent back to WordPress otherwise. After a successful check, the
request will be executed. The following commands can be executed:

• Authentication
• Gantner State
• Update Gantner Authorizations
• Update Gantner Authorization

Authentication

Resources can only be used after a successful authorization. Gantner is
using the bearer HTTP authentication scheme. The Gantner administrator
credentials username and password are sent to the /api/user/login api endpoint
with an HTTP post request. A bearer token is created by the Gantner system
if the credentials are correct. An error message is sent back otherwise. The
token is a cryptic string that is sent back to the requester. The token needs
to be included in all further requests.

Middleware

Further Requests

Gantner
REST API

Authentication Request

Check Request

Authentication Response

Figure 5.12: Gantner authentication sequence.

84



5 Results

Gantner State

The WordPress GUI is visualizing the complete Gantner state. This is
achieved by getting all the necessary information from the REST endpoints.
The information needed to visualize the state includes:

• All locker areas, sub-areas, and locker groups
• All lockers
• All authorizations

Gantner provides no endpoint that represents the complete state. This
endpoint is created by the middleware. Table 5.2 shows that several different
Gantner endpoints are used to create the state.

REST endpoint Returns
/api/locker area Areas, sub-areas and locker groups
/api/locker List of lockers
/api/locker authorization/get all Locker authorizations excluding user information
/api/authorization Authorization including user information

Table 5.2: The REST endpoints that are used to create the Gantner state.

The state is returned to WordPress in JSON format as described in section
5.1.7. The state is represented in a tree structure. The locker groups represent
the root of this structure. Each locker group contains a list of lockers and
each locker contains a list of authorizations. Figure 5.3 shows the structure
in JSON format.

85



5 Results

WordPress
System Middleware

Gantner
REST API

Request Gantner State

Check

Request Locker Areas

Response Locker Areas

Prepare Response

Response

Authentication Request

Authentication Response

Request Lockers

Response Lockers

Request Locker Authorizations

Response Locker Authorizations

Request User Authorizations

Response User Authorizations

Figure 5.13: Several different REST endpoints are used to create the state that is sent back
to WordPress.

86



5 Results

1 {
2 "lockerGroups:" [

3 {
4 "name": "",

5 "id": "",

6 "lockers": [

7 {
8 "id": "",

9 "lockerGroupId": "",

10 "lockerGroupName": "",

11 "lockerNumber": "",

12 "authorizations": [

13 {
14 "firstName": "",

15 "lastName": "",

16 "cardUID": "",

17 "validFrom": "",

18 "validUntil": ""

19 }
20 ]

21 }
22 ]

23 }
24 ]

25 }
Listing 5.3: JSON structure containing all fields for WordPress to represent the Gantner

state

87



5 Results

Update Gantner Authorizations

This endpoint can be used by WordPress to create new or update existing
user authorizations. The WordPress request includes all information needed
for the update in the Gantner system. The JSON format of the request is
shown in figure 5.4.

1 {
2 "persons:" [

3 {
4 "first_name": "",

5 "last_name": "",

6 "card_id": ""

7 }
8 ],

9 "locker_area": "",

10 "locker_number": "",

11 "start_date": "",

12 "end_date": ""

13 }
Listing 5.4: JSON structure containing all fields for WordPress to update Gantner

authorizations

The Gantner endpoint used for the update is /api/authorization. A simplified
JSON format of the most important fields is shown in figure 5.5. Gant-
ner authorizations contain a list of users. Each user holds a list of locker
authorizations.

The middleware gets all authorizations from Gantner with an HTTP GET
request. An existing user authorization in the Gantner system is needed
for an update. A new user authorization object must be created if it does
not exist. The middleware is creating a new Gantner user authorization
object if needed. The required authorization fields are updated otherwise.
Updating or creating a new authorization is performed with an HTTP POST
request.

88



5 Results

1 [

2 {
3 "cardUID": "",

4 "firstName": "",

5 "lastName": "",

6 "lockerAuthorizations": [

7 {
8 "validFrom": "",

9 "validUntil": "",

10 "lockerNumber": "",

11 "lockerGroupName": "",

12 "lockerGroupRecordId": "",

13 "isDeleted": "",

14 "isModified": ""

15 }
16 ]

17 }
18 ]

Listing 5.5: Simplified JSON structure of the Gantner endpoint for updating user
authorizations

89



5 Results

WordPress
System Middleware

Gantner
REST API

Request Update Gantner Authorizations

Check

Prepare Response

Response

Authentication Request

Authentication Response

Update Authorizations

Update Authorization Request

Update Authorization Response

Create New Authorization Request

Create New Authorization Response

Get Authorizations

Get Authorizations Request

Get Authorizations Response

Figure 5.14: Updating Gantner authorizations

90



5 Results

Update Gantner Authorization

This endpoint can be used to delete an authorization or to update the date
attribute. The Gantner endpoint used for this operation is /api/authorization.
The isDeleted and isModified fields of the Gantner authorization object (figure
5.5) must be used. The WordPress request includes all information needed
to delete or update the Gantner authorization. The JSON format of the
request is shown in figure 5.6.

1 {
2 "person": {
3 "first_name": "",

4 "last_name": "",

5 "card_id": ""

6 },
7 "start_date": "",

8 "end_date": "",

9 "locker_area": "",

10 "locker_number": "",

11 "isModified": "",

12 "isDeleted": ""

13 }
Listing 5.6: JSON structure containing all fields for WordPress to delete or update a Gantner

authorization

The middleware gets all authorizations from Gantner with an HTTP GET
request. The Gantner authorization will be deleted if the isDeleted field
in the WordPress request is set to true. The validFrom and validTo fields
of the Gantner authorization will be updated if the isModified field in the
WordPress request is set to true. The delete and update operation for an
Gantner authorization is performed with an HTTP POST request.

91



5 Results

WordPress
System Middleware

Gantner
REST API

Request Delete/Update Gantner Authorization

Check

Prepare Response

Response

Authentication Request

Authentication Response

Delete Authorization

Get Authorizations Request

Get Authorizations Response

Delete Authorization Request

Delete Authorization Response

Update Authorization

Get Authorizations Request

Get Authorizations Response

Update Authorization Request

Update Authorization Response

Figure 5.15: Delete or update a Gantner authorization

92



5 Results

5.3.2 WordPress - Middleware - Primion Interaction

Figure 5.16 shows a sequence diagram of the interaction between WordPress
and the middleware. The WordPress system requests the middleware to
create a CSV file with the updated Primon authorizations. The middleware
checks the request and saves the updated authorizations in a CSV file. To
create the CSV file the csv Python module is used. A success message is
sent back to WordPress if everything worked fine. An error message is sent
otherwise.

WordPress
System Middleware

Local
Directory

Request Primion Authorizations

Check Request

Response Primion Authorizations

Save CSV File

Create CSV
File

Response Save CSV File

Prepare Response

Figure 5.16: Middleware providing the Primion authorizations in CSV format.

93



5 Results

5.3.3 WordPress - Middleware - Hoffmann Interaction

Figure 5.17 shows a sequence diagram of the interaction between WordPress,
middleware and the Hoffmann system. The middleware provides a REST
endpoint for the Hoffmann system. This endpoint requests all Hoffmann
authorizations from WordPress. The authorizations are provided by the
middleware endpoint in JSON format.

WordPress
System Middleware

Hoffmann
System

Request Hoffmann Authorizations

Request Hoffmann Authorizations

Check Request

Response Hoffmann Authorizations

Response Hoffmann Authorizations

Provide Hoffmann
Authorizations

Figure 5.17: Middleware REST endpoint that is providing the Hoffmann authorizations.

5.4 Setting up the WordPress plugin

The custom plugin adds new functionality to the menu bar on the main
WordPress page. The menu bar is extended with the Resources option. The
Resources menu contains the following sub-menus:

• Gantner Resources
• Primion Resources
• Hoffmann Resources

94



5 Results

The sub-menu pages were created by using the WordPress administrator
dashboard (figure 5.2). WordPress shortcodes are used to create custom con-
tent on the pages. A shortcode is a piece of code that can be embedded into
WordPress pages. Custom functions can be created by developers to load
dynamic content (e.g.: content from external sites). Shortcodes are written
inside two square brackets as shown in figure 5.19. [Wor21g]

Figure 5.18: The main menu extended with the Resources options.

The functions that are executed by the shortcodes are implemented in the
custom plugin. Activating the plugin performs the following actions:

• Load scripts
• Create custom shortcodes
• Create REST endpoints

Load scripts The plugin uses external libraries that are needed to create
dynamic content (e.g.: style sheets, date picker). External resources must
be registered before they can be used by the plugin. WordPress Action
hooks (section 5.1.3) are used to register scripts. The proper hook name is
wp enqueue scripts. [Wor21e]

Create custom shortcodes The callback functions for the created shortcodes
on the resource pages are registered by the plugin. WordPress provides the
add shortcode() function to register a shortcode. [Wor21f]

95



5 Results

Create REST endpoints The REST endpoints that are used to communicate
with external sites (middleware) are registered by the plugin. WordPress
Action hooks (section 5.1.3) are used to register REST endpoints. The proper
hook name is rest api init. [Wor21d]

Figure 5.19: Custom WordPress shortcode used to load the dynamic content for the Gantner
resources.

The Resources pages load the content that is displayed to the user dynami-
cally. A JavaScript event is triggered when the page gets loaded. This event
uses the AJAX technology and performs an HTTP request to the REST
APIs provided by WordPress. The server executes the requests and sends
back a server response to the AJAX call. The response data is processed
and displayed to the user. Figure 5.20 shows an overview of the front-end
interaction of the concept.

WordPress User Management

The Resources extension is only available for authorized users. Authorized
users are assigned the capability to administrate the Gantner, Primion and
Hoffmann resources. The capabilities were created within the WordPress
administrator dashboard 5.2. The User Role Editor plugin was used to create
new capabilities. The capabilities are prefixed with iim name of capability.
The shortcodes embedded into the Resources pages are only loaded if the user
has the required capability. [Gar21]

96



5 Results

R
E

S
T
 E

n
d

p
o

in
t

R
E

S
T
 E

n
d

p
o

in
t

H
T
T
P

 R
e
q

u
e
st

M
id

d
le

w
a
re

H
T
T
P

 R
e
q

u
e
st

H
T
T
P

 R
e
sp

o
n

se

W
o

rd
P

re
ss

D
a
ta

b
a
se

B
ro

w
se

r

U
se

r 
In

te
rf

a
ce

A
JA

X
 S

y
st

e
m

(i
n

Ja
v
a
S

cr
ip

t)

H
T
M

L
 a

n
d

C
S

S
Ja

v
a
S

cr
ip

t
C

a
ll

H
T
T
P

 R
e
sp

o
n

se

Fi
gu

re
5
.2

0
:O

ve
rv

ie
w

of
th

e
fr

on
t-

en
d

in
te

ra
ct

io
n

97



5 Results

5.4.1 Manage Gantner Resources

Authorized users can administrate the authorizations for the Gantner sys-
tem within the Gantner Resources sub-menu 5.18. The page uses the REST
endpoint provided by WordPress to request the Gantner state as shown in
figure 5.20. WordPress requests the Gantner state information from the mid-
dleware as explained in section 5.3.1. The response is processed and shown
to the user. Figure 5.21 shows the created HTML output that represents the
Gantner state.

Figure 5.21: The left side represents an example organisation view created within the GAT
Relaxx desktop client application. The Gantner state represented as HTML
output on the Gantner Resources page is shown on the right side.

98



5 Results

Figure 5.22 shows an example locker group. This locker group holds 12

lockers without any authorizations.

Figure 5.22: Locker group holding 12 lockers.

Figure 5.23 shows how the custom plugin presents the example locker group
for administrators. The Show Lockers event expands the view and shows all
lockers that are assigned to the locker group. Lockers can also be expanded
to manage user authorizations. On the right side of each locker, a number is
displayed. This number shows the amount of authorizations that a locker
holds.

A click on Manage Authorizations allows administrators to assign new user
authorizations to the selected locker. An event is triggered that gets all
users from the WordPress database. Users that have an authorization for the
selected locker will not be shown.
A modal form allows assigning one or more users to the selected locker. The
modal displays the first name, last name, card identification number and
the state of the users. New authorizations will be assigned by:

• Switching the state of one or more users
• Selecting the start date and end date

99



5 Results

Figure 5.23: Plugin representation of the example locker group.

100



5 Results

One or more users can be assigned to a locker at once by switching the
state flag to on. The start date and end date for the authorization(s) must
be selected. A date picker is used to configure the date information. By
clicking the save button an event is triggered. This event sends the date
to the corresponding WordPress REST endpoint. WordPress forwards the
request to the middleware. The middleware updates the user authorizations
as explained in section 5.3.1.

Figure 5.24: Gantner authorizations administration with the plugin.

Figure 5.25 shows how three users are assigned to locker one in the selected

101



5 Results

locker group Projekte Private Locker. After saving the authorizations the user
interface will be updated with the new information.

Figure 5.25: Assign three user authorizations to the selected locker group.

The newly added user authorizations are shown in figure 5.26. The locker
contains three authorizations which are indicated by the number on the right
side of the locker information. Authorizations can be deleted by clicking
on the trash icon. This triggers an event that will be sent to the associated
WordPress REST endpoint. The update will be performed by the middle-
ware as explained in section 5.3.1. Updating the validity can be managed
by clicking on the start or end date of the authorization. New dates can be
selected with the date picker. Selecting a new date triggers an event to the
corresponding WordPress REST endpoint. The update will be executed by
the middleware as explained in section 5.3.1.

102



5 Results

Figure 5.26: Updated locker information

5.4.2 Manage Primion Resources

The Primion authorizations can be managed within the Primion Resources
sub-menu 5.18. The page uses a REST endpoint provided by WordPress to
request the Primion state. The simulated state is loaded from the WordPress
database and displayed as shown in figure 5.27. The state simulates the
Primion locks: Main Building Entrance, SLFI Entrance, Elevator, Schumpeter
Meeting Room, Tesla Meeting Room, Design Lab Door I, Design Lab Door II,
FabLab I and FabLab II that are used in the SLFI as shown in figure 3.11.

The Show Authorizations event expands the view (figure 5.28) and shows all
active authorizations for the selected resource. The Manage Authorizations
event allows administrators to assign new authorizations. Allocating new
authorizations is performed the same way as assigning Gantner resources
explained in section 5.4.1.

By saving new authorizations an event is triggered. This event sends the
data to a REST endpoint provided by WordPress. WordPress creates the
new authorizations in the WordPress database. By clicking the trash icon the
selected authorization will be deleted. An event is triggered that sends the

103



5 Results

Figure 5.27: The simulated Primion state loaded from the WordPress database.

104



5 Results

Figure 5.28: Assign new authorizations to the selected Primion resource.

information to the WordPress server. WordPress deletes the authorization
from the database. Updating the Time Period information of an authoriza-
tion also triggers an event that will be handled by WordPress. An update
operation is performed on the selected user authorization.

Primion CSV File

Changes that are applied to the Primion authorizations are handled by
WordPress. When the changes are applied to the database, WordPress is
also requesting the middleware to update the Primion CSV file. The file is
created and updated by the middleware. WordPress sends the Primion state
information to the provided REST endpoint. The Python csv module is used
to update the CSV file. The default file path for the CSV file is the custom
plugin folder. Figure 5.29 shows an example CSV file. The Primion state
contains four authorizations for two different users. The CSV file represents
this information in CSV format.

105



5 Results

Figure 5.29: The CSV file will be created and updated by the middleware. The file contains
all Primion authorizations that are stored in the WordPress database.

106



5 Results

5.4.3 Manage Hoffmann Resources

Hoffmann authorizations can be managed within the Hoffmann Resources
sub-menu 5.18. A REST endpoint provided by WordPress is used to gather
the required information. WordPress loads the simulated data from the
database and displays the hoffmann state as shown in figure 5.31. The
resources: Workstation I, Workstation II, 3D Printer, Laser Cutter and CNC
Milling Machines are used to simulate the locks in FabLab I and FabLab II as
shown in figure 3.19.

The Show Authorizations event expands the view (figure 5.30) and shows
all active authorizations for the selected resource. New authorizations can
be assigned with Manage Authorizations. Allocating new authorizations is
handled the same way as assigning Gantner or Primion resources explained
in section 5.4.1. The saved authorizations are sent to a WordPress REST end-
point. WordPress saves the new authorizations in the database. Updating
the Time Period information and deleting an authorization is also handled by
WordPress. The information is sent to provided REST endpoints. WordPress
performs the update or delete operation respectively.

Figure 5.30: Assign new authorizations to the selected Hoffmann resource.

107



5 Results

Figure 5.31: The simulated Hoffmann state loaded from the WordPress database.

108



5 Results

Hoffmann State Endpoint

The simulated Hoffmann locks and authorizations are stored in the Word-
Press database. This information can be gathered from a REST endpoint
provided by WordPress. The front end is using this endpoint to display the
state to the administrators. The middleware is also using this endpoint to get
the Hoffmann state information. A REST endpoint is provided that displays
the Hoffmann state in JSON format 5.2. This endpoint can be used by the
Hoffmann mobile app to update and synchronize the locks as explained in
section 3.3.13.

Figure 5.32: The REST endpoint provided by the middleware to get the Hoffmann state.

109



6 Conclusion

This master thesis showed how a central administration platform for elec-
tronic locking systems from different manufacturers can be implemented.
Two important requirements were specified:

• a central platform for administrators to manage the different locking
systems

• a uniform data carrier that can be used to operate the various locking
systems

Both requirements can be fulfilled with the developed solution. The already
used in-house WordPress system was extended to serve as a central admin-
istration platform for the different locking systems Gantner, Primion, and
Hoffmann. MIFARE Classic and MIFARE DESFire EV1 cards can be used
as a uniform data carrier for all systems. Table 6.1 summarizes what the
system can do and what is still needed.

The extended WordPress system provides a unified GUI for the adminis-
trators of the SLFI to manage the different electronic locking systems. The
Gantner system was successfully integrated. This system can be adminis-
tered using the provided REST endpoints. The two offline solutions Primion
and Hoffmann still require additional external work. Figure 6.1 shows the
concept that was implemented in the SLFI. The red triangles indicate where
additional work is needed.

Hoffmann is still working on expansion phase II that would allow the locks
to read authorizations from MIFARE Classic and MIFARE DESFire EV1

cards. This expansion of Hoffmann will continue indefinitely and will in-
volve additional costs.

110



6 Conclusion

Expansion phase I is already completed. This extension allows MIFARE
Classic and MIFARE DESFire EV1 data cards to be used as access tags
instead of the custom Hoffmann tags. The existing WordPress database was
extended to simulate information about the Hoffmann authorizations. This
information can be retrieved from a provided REST endpoint and imported
into the mobile application from Hoffmann. To be able to import the changes
into the mobile application, an interface must be provided. According to
the responsible persons at Hoffmann, it is possible to provide such an inter-
face. A possible interface for the mobile application from Hoffmann as an
additional extension to the expansion phase one can be implemented more
quickly is less expensive and requires less effort. This extension will have to
be specified in more detail in the future.

The existing WordPress database was extended to simulate information
about the Primion authorizations. Information about Primion authoriza-
tions is provided as a CSV file that can be imported by the ZID. The exact
format of the CSV file has to be specified more precisely in the future. Only
then it is possible to import the CSV file correctly into the Primion system.
Additionally, it must be defined how the CSV file should be sent to the ZID.
Currently, the CSV file is stored directly in the running environment of the
WordPress system.

Real Environment

The plugin is installed on the server running the live version of WordPress of
the SLFI. The middleware is also installed on this server. Necessary settings
for the middleware, which allow communication with the Ganter REST
endpoints, were configured with responsible persons of the ZID.

111



6 Conclusion

Future Systems

The solution described in this thesis can be used as a framework for integrat-
ing other systems in the future. The programming logic to integrate a new
system can be programmed in the middleware using the Python program-
ming language. The graphical representation can be programmed within
the custom WordPress plugin. The flexibility of custom WordPress plugins
also allows fast prototyping. The custom plugin can be easily deactivated,
extended, and tested in a secure test environment. The software architecture
chosen in this project should facilitate future integrations in the SLFI.

The implemented solution
provides

The implemented solution still
requires

Central platform to administer the
various electronic locking systems.

Primion CSV format specification

Provides the option of using
MIFARE Classic and MIFARE

DESFIRE EV1 cards as uniform
data carrier.

Primion CSV file transfer
specification

Fully integrated Gantner system Hoffmann mobile application API
Partly integrated Primion system.

A CSV file will be created that can
be imported by Primion

Partly integrated Hoffmann system.
Authorization updates for the

Hoffmann system will be provided
by a REST endpoint. This endpoint

can be used by Hoffmann to
update the authorizations stored in

the mobile application database

Table 6.1: Summary of what the system can do and what is still needed.

112



6 Conclusion

Figure 6.1: The implemented concept I. The red triangles indicate where additional work is
needed.

113



Appendix

114



Bibliography

[al21] Mehdi Achour et al. PHP Manual. 2021. url: https://www.php.
net/manual/de/index.php (visited on 04/05/2021) (cit. on
p. 79).

[Alt17] Alexandra Altvater. What are CRUD Operations: How CRUD
Operations Work, Examples, Tutorials & More. 2017. url: https://
stackify.com/what-are-crud-operations/#wpautbox_about

(visited on 03/09/2021) (cit. on pp. 8, 10).

[Ass21] OSS Association. OSS-Association e.V (Open Security Standards
Association). 2021. url: https://www.oss-association.com/
(cit. on pp. 26, 28).

[BC95] Tim Berners-Lee and Daniel W. Connolly. Hypertext Markup
Language - 2.0. RFC 1866. Nov. 1995. doi: 10.17487/RFC1866.
url: https://rfc-editor.org/rfc/rfc1866.txt (cit. on p. 6).

[BFM05] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform
Resource Identifier (URI): Generic Syntax. 2005. url: http://rfc.
net/rfc3986.html (cit. on p. 6).

[Bra17] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC 8259. Dec. 2017. doi: 10 . 17487 / RFC8259. url:
https://rfc-editor.org/rfc/rfc8259.txt (cit. on p. 76).

[Bus19] Thomas Bush. What Is The Difference Between Web Services and
APIs? 2019. url: https://nordicapis.com/what- is- the-
difference- between- web- services- and- apis/ (visited on
03/09/2021) (cit. on p. 10).

[Cos+14] B. Costa et al. “Evaluating a Representational State Transfer
(REST) Architecture: What is the Impact of REST in My Archi-
tecture?” In: 2014 IEEE/IFIP Conference on Software Architecture.
2014, pp. 105–114 (cit. on p. 12).

115

https://www.php.net/manual/de/index.php
https://www.php.net/manual/de/index.php
https://stackify.com/what-are-crud-operations/#wpautbox_about
https://stackify.com/what-are-crud-operations/#wpautbox_about
https://www.oss-association.com/
https://doi.org/10.17487/RFC1866
https://rfc-editor.org/rfc/rfc1866.txt
http://rfc.net/rfc3986.html
http://rfc.net/rfc3986.html
https://doi.org/10.17487/RFC8259
https://rfc-editor.org/rfc/rfc8259.txt
https://nordicapis.com/what-is-the-difference-between-web-services-and-apis/
https://nordicapis.com/what-is-the-difference-between-web-services-and-apis/


Bibliography

[Doc21] Python Docs. Python Requests. 2021. url: https://docs.python-
requests.org/en/master/ (visited on 04/05/2021) (cit. on
p. 72).

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. 2000 (cit. on pp. 11–13).

[FR14] Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231. June 2014. doi: 10.
17487/RFC7231. url: https://rfc-editor.org/rfc/rfc7231.
txt (cit. on p. 6).

[Gar21] Vladimir Garagulya. User Role Editor. 2021. url: https : / /

de.wordpress.org/plugins/user-role-editor/ (visited on
04/05/2021) (cit. on p. 96).

[Gen21] GeneratePress. GeneratePress Theme. 2021. url: https://generatepress.
com/ (visited on 04/05/2021) (cit. on p. 78).

[Gmb20] GANTNER Electronic GmbH. GANTNER Electronic GmbH. 2020

(accessed November 19, 2020). url: https://www.gantner.com/
de/ (cit. on pp. 35–37).

[Gro21a] Hoffmann Group. Hoffmann Group. 2021. url: https://www.
hoffmann-group.com/DE/de/hom/ (visited on 03/10/2021) (cit.
on pp. 39–42).

[Gro21b] Hoffmann Group. GARANT Elektronisches Schloss G-ELS. 2020

(accessed March 10, 2021). url: https://www.hoffmann-group.
com/medias/sys_master/images/images/hfb/hd1/9276494151710/

BA-GARANT-Elektronisches-Schloss-G-ELS-05656IN.pdf?

attachment=true (cit. on p. 39).

[GT16] D. Guinard and V. Trifa. Building the Web of Things: With examples
in Node.js and Raspberry Pi. Manning Publications, 2016. isbn:
9781617292682. url: https://books.google.at/books?id=
Q1b2jwEACAAJ (cit. on pp. 3, 4).

[Gui11] Dominique Guinard. “A Web of Things Application Architecture
– Integrating the Real-World into the Web.” PhD thesis. Zurich,
Switzerland: ETH Zurich, Aug. 2011 (cit. on p. 5).

116

https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/
https://doi.org/10.17487/RFC7231
https://doi.org/10.17487/RFC7231
https://rfc-editor.org/rfc/rfc7231.txt
https://rfc-editor.org/rfc/rfc7231.txt
https://de.wordpress.org/plugins/user-role-editor/
https://de.wordpress.org/plugins/user-role-editor/
https://generatepress.com/
https://generatepress.com/
https://www.gantner.com/de/
https://www.gantner.com/de/
https://www.hoffmann-group.com/DE/de/hom/
https://www.hoffmann-group.com/DE/de/hom/
https://www.hoffmann-group.com/medias/sys_master/images/images/hfb/hd1/9276494151710/BA-GARANT-Elektronisches-Schloss-G-ELS-05656IN.pdf?attachment=true
https://www.hoffmann-group.com/medias/sys_master/images/images/hfb/hd1/9276494151710/BA-GARANT-Elektronisches-Schloss-G-ELS-05656IN.pdf?attachment=true
https://www.hoffmann-group.com/medias/sys_master/images/images/hfb/hd1/9276494151710/BA-GARANT-Elektronisches-Schloss-G-ELS-05656IN.pdf?attachment=true
https://www.hoffmann-group.com/medias/sys_master/images/images/hfb/hd1/9276494151710/BA-GARANT-Elektronisches-Schloss-G-ELS-05656IN.pdf?attachment=true
https://books.google.at/books?id=Q1b2jwEACAAJ
https://books.google.at/books?id=Q1b2jwEACAAJ


Bibliography

[Gui16] Dominique Guinard. Web of Things vs Internet of Things: 1/2. 2016.
url: https://webofthings.org/2016/01/23/wot-vs-iot-12/
(visited on 03/10/2021) (cit. on p. 7).

[Hau21] Axel Haustant. Flask-RESTPlus. 2021. url: https : / / flask -

restplus.readthedocs.io/en/stable/ (visited on 04/05/2021)
(cit. on p. 72).

[HK11] Festim Halili and Merita Kasa Halili. “Analysis and comparison
of web service architectural styles, and business benefits of their
use.” In: June 2011 (cit. on pp. 10, 11).

[HR18] Festim Halili and Erenis Ramadani. “Web Services: A Compar-
ison of Soap and Rest Services.” In: Modern Applied Science 12

(Feb. 2018), p. 175. doi: 10.5539/mas.v12n3p175 (cit. on p. 14).

[Inf21] JavaScript Info. An Introduction to JavaScript. 2021. url: https:
//javascript.info/intro (visited on 04/05/2021) (cit. on
p. 79).

[Ini20] OpenAPI Initiative. OpenAPI Specification. 2020. url: https :

//www.openapis.org/ (cit. on p. 15).

[Inn20a] Institut für Innovation und Industrie Management. FabLab. 2020

(accessed November 19, 2020). url: https://fablab.tugraz.
at/ (cit. on p. 21).

[Inn20b] Institut für Innovation und Industrie Management. Schumpeter
Labor für Innovation. 2020 (accessed November 19, 2020). url:
https : / / www . tugraz . at / institute / iim / infrastruktur /

schumpeter-labor-fuer-innovation/ (cit. on pp. 20–22).

[J3S02] Joseph M. Reagle Jr., Donald E. Eastlake 3rd, and David Solo.
(Extensible Markup Language) XML-Signature Syntax and Process-
ing. RFC 3275. Mar. 2002. doi: 10.17487/RFC3275. url: https:
//rfc-editor.org/rfc/rfc3275.txt (cit. on p. 6).

[Jet21] Jetbrains. JetBrains development tools. 2021. url: https://www.
jetbrains.com (visited on 04/05/2021) (cit. on p. 79).

[KK18] István Koren and Ralf Klamma. “The Exploitation of OpenAPI
Documentation for the Generation of Web Frontends.” In: Apr.
2018, pp. 781–787. doi: 10.1145/3184558.3188740 (cit. on p. 15).

117

https://webofthings.org/2016/01/23/wot-vs-iot-12/
https://flask-restplus.readthedocs.io/en/stable/
https://flask-restplus.readthedocs.io/en/stable/
https://doi.org/10.5539/mas.v12n3p175
https://javascript.info/intro
https://javascript.info/intro
https://www.openapis.org/
https://www.openapis.org/
https://fablab.tugraz.at/
https://fablab.tugraz.at/
https://www.tugraz.at/institute/iim/infrastruktur/schumpeter-labor-fuer-innovation/
https://www.tugraz.at/institute/iim/infrastruktur/schumpeter-labor-fuer-innovation/
https://doi.org/10.17487/RFC3275
https://rfc-editor.org/rfc/rfc3275.txt
https://rfc-editor.org/rfc/rfc3275.txt
https://www.jetbrains.com
https://www.jetbrains.com
https://doi.org/10.1145/3184558.3188740


Bibliography

[Lib21] Python Standard Library. CSV File Reading and Writing. 2021.
url: https://docs.python.org/3/library/csv.html (visited
on 04/05/2021) (cit. on p. 76).

[Mad15] Somayya Madakam. Internet of Things: Smart Things. 2015. doi:
10.7763/IJFCC.2015.V4.395 (cit. on p. 3).

[Mak] Makerspaces.com. What is a Makerspace? https://www.makerspaces.

com/what-is-a-makerspace. Accessed: 2021-03-02 (cit. on p. 1).

[Mak21a] Matt Makai. Flask. 2021. url: https://www.fullstackpython.
com/flask.html (visited on 04/05/2021) (cit. on p. 71).

[Mak21b] Matt Makai. Web Frameworks. 2021. url: https://www.fullstackpython.
com/web- frameworks.html (visited on 04/05/2021) (cit. on
p. 71).

[Mic21a] Microsoft. .NET Core Hosting Bundle. 2021. url: https://dotnet.
microsoft.com/download/dotnet (visited on 04/05/2021) (cit.
on p. 80).

[Mic21b] Microsoft. IIS. 2021. url: https://www.iis.net/ (visited on
04/05/2021) (cit. on p. 80).

[Mic21c] Microsoft. Microsoft SQL Server. 2021. url: https://www.microsoft.
com/de-de/sql-server/sql-server-downloads (visited on
04/05/2021) (cit. on p. 80).

[Mic21d] Microsoft. Microsoft SQL Server Management Studio. 2021. url:
https://docs.microsoft.com/en-us/sql/ssms/ (visited on
04/05/2021) (cit. on p. 80).

[Mon20] Anna Monus. SOAP vs REST vs JSON - a 2020 comparison. 2020.
url: https://raygun.com/blog/soap- vs- rest- vs- json/
(visited on 03/10/2021) (cit. on p. 14).

[ORG21] JSON ORG. Einführung in JSON. 2021. url: https://www.json.
org/json-de.html (visited on 04/05/2021) (cit. on p. 76).

[Org21a] Python Org. Python Executive Summary. 2021. url: https://
www.python.org/doc/essays/blurb/ (visited on 04/05/2021)
(cit. on p. 78).

[Org21b] WordPress Org. Releases. 2021. url: https://wordpress.org/
download/releases/ (visited on 04/05/2021) (cit. on p. 78).

118

https://docs.python.org/3/library/csv.html
https://doi.org/10.7763/IJFCC.2015.V4.395
https://www.makerspaces.com/what-is-a-makerspace
https://www.makerspaces.com/what-is-a-makerspace
https://www.fullstackpython.com/flask.html
https://www.fullstackpython.com/flask.html
https://www.fullstackpython.com/web-frameworks.html
https://www.fullstackpython.com/web-frameworks.html
https://dotnet.microsoft.com/download/dotnet
https://dotnet.microsoft.com/download/dotnet
https://www.iis.net/
https://www.microsoft.com/de-de/sql-server/sql-server-downloads
https://www.microsoft.com/de-de/sql-server/sql-server-downloads
https://docs.microsoft.com/en-us/sql/ssms/
https://raygun.com/blog/soap-vs-rest-vs-json/
https://www.json.org/json-de.html
https://www.json.org/json-de.html
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://wordpress.org/download/releases/
https://wordpress.org/download/releases/


Bibliography

[Pri21] Primion. Komponenten der Zutrittskontrolle von primion. 2021. url:
https://www.primion.de/de/loesungen/zutrittskontrolle/

weitere-komponenten-der-zutrittskontrolle/ (cit. on p. 31).

[PRP11] Savan Patel, V. Rathod, and Jigna Prajapati. “”Performance Anal-
ysis of Content Management Systems Joomla, Drupal and Word-
Press”.” In: International Journal of Computer Applications 21 (May
2011), pp. 39–43. doi: 10.5120/2496-3373 (cit. on p. 16).

[Red11] Martin Reddy. API Design for C++. 1st. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011. isbn: 9780123850034

(cit. on pp. 8, 9).

[Rel19] K. Relan. Building REST APIs with Flask: Create Python Web Ser-
vices with MySQL. Apress, 2019. isbn: 9781484250235. url: https:
//books.google.at/books?id=wM9GzQEACAAJ (cit. on pp. 9, 10,
12).

[Sem] NXP Semiconductors. MIFARE Application Directory (MAD).
https://www.nxp.com/docs/en/application-note/AN10787.

pdf. Accessed: 2021-05-05 (cit. on p. 27).

[Sem21] NXP Semiconductors. Mifare Products. 2021. url: https://www.
nxp.com/products/rfid-nfc/mifare-hf:MC_53422 (visited on
05/01/2021) (cit. on pp. 27–29).

[Sha05] Yakov Shafranovich. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. RFC 4180. Oct. 2005. doi: 10.17487/
RFC4180. url: https://rfc-editor.org/rfc/rfc4180.txt (cit.
on p. 76).

[Sof20] SmartBear Software. Swagger UI. 2020. url: https://swagger.
io/tools/swagger-ui/ (cit. on p. 15).

[Sof21] SmartBear Software. Authentication and Authorization. 2021. url:
https://swagger.io/docs/specification/authentication/

(visited on 04/05/2021) (cit. on p. 74).

[Ste16] Ralph Steyer. WordPress. Springer Vieweg, 2016. isbn: 978-3-658-
12830-2 (cit. on pp. 16, 17, 78, 79).

119

https://www.primion.de/de/loesungen/zutrittskontrolle/weitere-komponenten-der-zutrittskontrolle/
https://www.primion.de/de/loesungen/zutrittskontrolle/weitere-komponenten-der-zutrittskontrolle/
https://doi.org/10.5120/2496-3373
https://books.google.at/books?id=wM9GzQEACAAJ
https://books.google.at/books?id=wM9GzQEACAAJ
https://www.nxp.com/docs/en/application-note/AN10787.pdf
https://www.nxp.com/docs/en/application-note/AN10787.pdf
https://www.nxp.com/products/rfid-nfc/mifare-hf:MC_53422
https://www.nxp.com/products/rfid-nfc/mifare-hf:MC_53422
https://doi.org/10.17487/RFC4180
https://doi.org/10.17487/RFC4180
https://rfc-editor.org/rfc/rfc4180.txt
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://swagger.io/docs/specification/authentication/


Bibliography

[Sto21] Sasa Stojanovic. Understanding the WordPress File and Directory
Structure. 2021. url: https://qodeinteractive.com/magazine/
wordpress-file-structure/ (visited on 04/05/2021) (cit. on
pp. 66, 68).

[Sur16] Vijay Surwase. “REST API Modeling Languages - A Developer’s
Perspective.” In: International Journal For Science Technology And
Engineering 2 (2016), pp. 634–637 (cit. on p. 15).

[Tec20] primion Technology GmbH. primion Technology GmbH. 2020 (ac-
cessed November 19, 2020). url: https://www.primion.de/de/
(cit. on pp. 28–30).

[TG16] Juris Tihomirovs and Janis Grabis. “Comparison of SOAP and
REST Based Web Services Using Software Evaluation Metrics.”
In: Information Technology and Management Science 19 (Dec. 2016).
doi: 10.1515/itms-2016-0017 (cit. on p. 11).

[Uza16] Sufyan bin Uzayr. Learning WordPress REST API. Packt Publish-
ing, 2016. isbn: 1786469243 (cit. on pp. 17, 18).

[Wil07] E Wilde. Putting Things to REST. 2007. url: https://escholarship.
org/uc/item/1786t1dm (cit. on pp. 4–6).

[Wor21a] WordPress.org. Database Description. 2021. url: https://codex.
wordpress.org/Database_Description (visited on 04/05/2021)
(cit. on pp. 68, 69).

[Wor21b] WordPress.org. Pages. 2021. url: https : / / wordpress . org /

support/article/pages/ (visited on 04/05/2021) (cit. on p. 67).

[Wor21c] WordPress.org. Plugin Basics. 2021. url: https://developer.
wordpress.org/plugins/plugin-basics/ (visited on 04/05/2021)
(cit. on pp. 70, 71).

[Wor21d] WordPress.org. Wordpress Register Custom REST Endpoint. 2021.
url: https://developer.wordpress.org/rest-api/extending-
the-rest-api/adding-custom-endpoints/ (visited on 04/05/2021)
(cit. on p. 96).

[Wor21e] WordPress.org. Wordpress Register Script. 2021. url: https://
developer.wordpress.org/reference/functions/wp_enqueue_

script/ (visited on 04/05/2021) (cit. on p. 95).

120

https://qodeinteractive.com/magazine/wordpress-file-structure/
https://qodeinteractive.com/magazine/wordpress-file-structure/
https://www.primion.de/de/
https://doi.org/10.1515/itms-2016-0017
https://escholarship.org/uc/item/1786t1dm
https://escholarship.org/uc/item/1786t1dm
https://codex.wordpress.org/Database_Description
https://codex.wordpress.org/Database_Description
https://wordpress.org/support/article/pages/
https://wordpress.org/support/article/pages/
https://developer.wordpress.org/plugins/plugin-basics/
https://developer.wordpress.org/plugins/plugin-basics/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/


Bibliography

[Wor21f] WordPress.org. Wordpress Register Shortcodes. 2021. url: https:
/ / developer . wordpress . org / reference / functions / add _

shortcode/ (visited on 04/05/2021) (cit. on p. 95).

[Wor21g] WordPress.org. Wordpress Shortcodes. 2021. url: https://codex.
wordpress.org/Shortcode_API (visited on 04/05/2021) (cit. on
p. 95).

[Wor21h] WordPress.org. wpdb. 2021. url: https://developer.wordpress.
org/reference/classes/wpdb/ (visited on 04/05/2021) (cit. on
p. 68).

[WSR20] Thomas Wildbolz, Hans P. Schnöll, and Christian Ramsauer.
“Managing Access to Space, Tools, and Machines at the Schum-
peter Laboratory for Innovation.” In: IJAMM (Mar. 8, 2020).
https://ijamm.pubpub.org/pub/wm62oq82. url: https : / /

ijamm.pubpub.org/pub/wm62oq82 (cit. on pp. 22, 27, 29, 33,
37).

121

https://developer.wordpress.org/reference/functions/add_shortcode/
https://developer.wordpress.org/reference/functions/add_shortcode/
https://developer.wordpress.org/reference/functions/add_shortcode/
https://codex.wordpress.org/Shortcode_API
https://codex.wordpress.org/Shortcode_API
https://developer.wordpress.org/reference/classes/wpdb/
https://developer.wordpress.org/reference/classes/wpdb/
https://ijamm.pubpub.org/pub/wm62oq82
https://ijamm.pubpub.org/pub/wm62oq82

	Abstract
	Introduction
	Problem Description
	Aim of this Thesis

	Theory
	The Internet of Things
	The Web of Things
	CRUD Operations
	Application Programming Interface
	Web Service
	Difference between API and WS

	Simple Object Access Protocol
	Representational State Transfer
	OpenAPI Specification
	Swagger UI

	Content Management Systems
	WordPress
	Custom WordPress Plugins
	WordPress REST API


	Analysis
	Schumpeter Laboratory for Innovation
	System Overview
	Current System Architecture
	Desired System Architecture

	System Analysis
	System Types
	Data Carriers
	Primion Access Control System
	How is the Primion System used inside the SLFI?
	ZID Access Control Management
	Primion System Limitation and Possibilities
	Primion Summary
	Gantner Access Control System
	How is the Gantner System used inside the SLFI?
	Gantner System Limitation and Possibilities
	Gantner Summary
	Hoffmann Group Access Control System
	GARANT Electronic Lock System (G-ELS)
	Hoffmann System Limitation and Possibilities
	Hoffmann Summary
	SLFI WordPress System
	SLFI Card Reader
	Systems Summary


	Concepts
	System Boundaries
	Hoffmann G-ELS Adaptation
	Concept Analysis
	Concept I
	Concept II
	Concept III

	Concept Decision

	Results
	Concept Architecture
	WordPress System
	WordPress Database
	Custom WordPress plugin
	Python flask
	Gantner GAT Relaxx
	Python CSV Module
	Python JSON Module

	Development Environment Setup
	XAMPP WordPress Setup

	Setting up the Python web application
	WordPress - Middleware - Gantner Interaction
	WordPress - Middleware - Primion Interaction
	WordPress - Middleware - Hoffmann Interaction

	Setting up the WordPress plugin
	Manage Gantner Resources
	Manage Primion Resources
	Manage Hoffmann Resources


	Conclusion
	Bibliography

