
Markus Novak, BSc

Machine Learning based Air Path Control for
Diesel Engines

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn. Markus Reichhartinger

Institute of Automation and Control
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Martin Horn

Graz, April 2021



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature



Abstract

Designing control systems for complex non-linear problems like the air-path of a diesel
engine is a challenging and time-consuming task. The vision behind this thesis is to
investigate whether an easy-to-use and cost-effective solution for this problem by means
of machine-learning-based methods can be provided. Therefore, the problem setting
of an air-path control for diesel engines is analyzed and machine learning techniques
in the context of controller design are discussed with a special focus on reinforcement
learning. Within this framework, a new technique was developed to build data-driven
reinforcement learning controllers, that learn an optimal control strategy on their own
by interaction with a provided simulation model. The learning capabilities of these con-
trollers, as well as several design choices, were evaluated on a small selected benchmark
problem for two specific use-cases. Finally, the developed methodology was applied to
a provided highly accurate diesel engine simulation model and compared to an existing
control strategy consisting of gain-scheduled PID-controllers. The presented results can
be regarded as a proof of concept of data-driven approaches in the field of engine control
and provide a solid basis for further research projects.

iii



Kurzfassung

Der Entwurf von Regelungssystemen für komplexe nichtlineare Probleme, wie die Luftp-
fadregelung eines Dieselmotors, ist eine anspruchsvolle und zeitintensive Aufgabe. Die
Vision hinter dieser Arbeit ist es, zu untersuchen, ob eine einfach zu handhabende und
kostengünstige Lösung für dieses Problem mittels maschineller Lernmethoden bereit-
gestellt werden kann. Dazu wird die Problemstellung einer Luftpfadregelung für Diesel-
motoren analysiert und maschinelle Lernverfahren im Kontext des Reglerentwurfs mit
speziellem Fokus auf Reinforcement Learning untersucht. In diesem Rahmen wurde eine
neue Technik entwickelt, um datengetriebene Regler mittels Reinforcement Learning
zu erzeugen, die durch Interaktion mit einem bereitgestellten Simulationsmodell selb-
ständig eine “optimale” Regelstrategie erlernen. Die Lernfähigkeiten dieser Regler sowie
verschiedene Designentscheidungen wurden an einem Benchmark-Problem für zwei spez-
ifische Anwendungsfälle evaluiert. Schließlich wurde die entwickelte Methodik mit einem
bereitgestellten hochgenauem Dieselmotor-Simulationsmodell umgesetzt und mit einer
bestehenden Regelstrategie, bestehend aus PID-Reglern mit arbeitspunkt-abhängiger
Parametersteuerung (Gain Scheduling), verglichen. Obwohl die Ergebnisse nicht per-
fekt sind, dienen sie als valider Konzeptnachweis für den gewählten datengetriebenen
Ansatz und bieten eine solide Grundlage für weitere Forschungsprojekte.

iv



Acknowledgements

This master’s thesis was conducted at AVL List GmbH in Graz, Austria from August
2020 to April 2021.

At this point I would like to thank Dirk Denger and Alois Danninger for the opportunity
to write this thesis. Special thanks goes to my supervisors Debora Maria Short Sotero
and Bernhard Breitegger for the excellent guidance and technical support over the whole
time. I would also like to thank Christina Schwarz, Michael Steger and the whole Systems
Engineering Laboratory team at AVL for many interesting discussions and inputs.

For the technical support and many helpful comments on this text I would like to thank
my supervisor Assoc.Prof. Dipl.-Ing.Dr.techn. Markus Reichhartinger at the Institute of
Automation and Control at the Graz University of Technology.

Finally, my biggest thankfulness goes to my family and to my girlfriend Carmen for their
emotional support during the process of writing this thesis.

v



Contents

Abstract iii

1 Introduction 1
1.1 Air Path in Diesel Engines . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Diesel Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Air Path Components . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Current Control Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Characteristic values . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Controller structure . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Changes in the control structure . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theory 11
2.1 Machine Learning Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 RL Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Tabular Solution Methods . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 23

3 Data-Driven Controller Design 30
3.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Use Case 1: Self-Learning Feedback Controller . . . . . . . . . . . 30
3.1.2 Use Case 2: Parameter-Learning Agent . . . . . . . . . . . . . . . 31

3.2 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Environment Interpreter . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 RL Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Setup Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Training and Evaluation 45
4.1 Training with Engine Model . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.2 Training time problems . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



Contents

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Policy Implementation . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Stationary and Transient Test Cycles . . . . . . . . . . . . . . . . 53

4.3 Results with first use-case . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Algorithm and hyper-parameter variations . . . . . . . . . . . . . 54
4.3.2 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Results with second use-case . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusion and Outlook 62
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65

vii



List of Figures

1.1 Air-path components in a typical diesel engine . . . . . . . . . . . . . . . 3
1.2 Block diagram of an exemplary gain-scheduled PID-controller. . . . . . . 7
1.3 Planned changes in the control software. . . . . . . . . . . . . . . . . . . 9

2.1 Example of a multi-layer neural network with backpropagation . . . . . . 14
2.2 Reinforcement learning agent–environment interaction . . . . . . . . . . . 16
2.3 Actor-critic policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Setup to train RL agents with a simulation model through an environment
interpreter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Simulink model of the benchmark problem. . . . . . . . . . . . . . . . . . 36
3.3 Comparison of reward functions for training on benchmark problem. . . . 38
3.4 Learning curve comparison for first use-case with reward 1 on benchmark

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Learning curve comparison for first use-case with reward 2 on benchmark

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Evaluation of first use-case with reward 1 on benchmark problem. . . . . 42
3.7 Learning curve comparison for second use-case with reward 1 on bench-

mark problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Evaluation of second use-case with reward 1 on benchmark problem. . . . 44

4.1 Example of randomly generated input signals for one training episode. . . 49
4.2 Implementation of the policy network in Simulink for evaluation. . . . . . 52
4.3 Input signals to the engine model according to the World Harmonized

Stationary Cylce (WHSC). . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Input signals to the engine model according to the World Harmonized

Transient Cylce (WHTC). . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Training results of RL controller on WHSC test. . . . . . . . . . . . . . . 57
4.6 Training results of RL controller on full WHTC test. . . . . . . . . . . . 58
4.7 Lambda training results of RL controller on excerpt of WHTC test. . . . 59
4.8 Boost pressure training results of RL controller on excerpt of WHTC test. 59
4.9 Statistical evaluation of lambda training results on WHTC test. . . . . . 60

viii



List of Tables

4.1 Set of modified SAC hyper-parameters in training . . . . . . . . . . . . . 47
4.2 Set of modified TD3 hyper-parameters in training . . . . . . . . . . . . . 48
4.3 Results of algorithm and hyper-parameter variations when training in the

setting of the first use-case. . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Results of algorithm and hyper-parameter variations when training in the

setting of the second use-case. . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



1 Introduction

There exist several state-of-the-art approaches to design control systems for complex
non-linear problems like the air-path of a diesel engine. Methods that have proven to
work well include classical approaches with (multiple) PID-controllers or model-based
approaches in which the proprieties of the physical system are modeled to calculate opti-
mal controller responses (for instance Model Predictive Control, see [1] or [2]). However,
the process of accurately modeling a technical system so that it can be executed on stan-
dard electronic engine control units (ECUs) typically is challenging and time-consuming.
Approaches with PID controllers on the other hand are hard to calibrate and in both
cases experienced engineers are required to either design or tune the system by hand.

The vision behind this thesis is to use machine-learning-based methods to build a data-
driven control system that saves time in development and calibration. In the last years,
machine learning has proven to be effective in many areas (see Chapter 2.1). In this
thesis, existing machine learning techniques in the context of controller design are inves-
tigated with special focus on reinforcement learning. The concrete goal is to develop a
methodology for building controllers that learn the “best” control strategy on their own
and are still able to run on engine control units.

For training the machine learning models and evaluating their performance, an accu-
rately calibrated simulation model of a heavy-duty diesel engine with an existing state-
of-the-art air-path control system was provided by AVL List for this thesis.

In this chapter, a brief introduction to diesel engines and the main components of a
diesel engine air-path is provided. Furthermore, the structure and working principle of
an existing air-path control system is explained, so that it can be defined which parts of
the software should be replaced in the data-driven control approach.

1.1 Air Path in Diesel Engines

This introductory section starts by giving some theoretic knowledge about diesel engines
as well as an explanation of the main parts of a typical diesel engine air-path.

1



1 Introduction 1.1 Air Path in Diesel Engines

1.1.1 Diesel Engines

The diesel engine1 is an internal-combustion engine with self ignition. It works by
mixing highly compressed air and fuel inside a combustion chamber. Due to the high
temperatures of the compressed air, the injected diesel fuel ignites on its own without
the need for an additional ignition source. Therefore, heat is used to release chemical
energy contained in the fuel and convert it into mechanical energy [3, p. 16].

To this day, it is the most widely used combustion engine due to its comparatively high
degree of efficiency and resulting fuel economy. Large and slow-running engines reach
real efficiency values of more than 50% [3, p. 17].
Diesel engines are used in fixed-installations, for instance driving power generators, and
in mobile applications, such as passenger cars, commercial vehicles, construction and
agriculture machinery as well as locomotives and ships. Although a decrease in diesel
engine powered cars is observable over the last years, in 2019 diesel engines were still
used in 42.3% of all passenger cars and 97.8% of all medium and heavy commercial
vehicles in the European Union [4].

1.1.2 Air Path Components

The combustion of diesel fuel requires oxygen, which is taken from the air coming from
the engine air intake. A general rule for the combustion process is, that the more oxygen
is available, the greater the amount of fuel that can be injected to deliver the required
load demands. This means that there is a direct relationship between the amount of air
in the cylinder and the maximum possible engine power output [5, p. 46].

Due to this relationship, diesel engines are particularly suited to to be charged by means
of a turbocharger, which is fitted to most modern engines. Charging means that the
air is already pre-compressed before it enters the cylinders. This not only increases
the power output and improves the engine efficiency, but also reduces pollutants in the
exhaust gas [3, p. 16].

To additionally reduce NOX emissions2 from passenger cars and commercial vehicles,
a portion of the exhaust gas is fed back to the engine intake manifold. This is called
exhaust gas recirculation (EGR) [3, p. 16].

Figure 1.1 shows the components of a typical air-path for diesel engines and the air flow
within it. Air comes in through an air intake filter (1), which prevents any particles
or dust from entering the engine and protects the sensitive air-mass sensors that follow
later. In the intake also sensors for the ambient air temperature tamb and pressure pamb
are situated. The air is then compressed in the compressor-part of the turbocharger
(2). Due to the compression, the air also heats up, which has a negative effect on the

1Named after Rudolf Diesel (1858 to 1913)
2NOX is used as a short term for nitrogen oxide (NO) and nitrogen dioxide (NO2).

2



1 Introduction 1.1 Air Path in Diesel Engines

Figure 1.1: Air-path in a typical heavy-duty diesel engine with turbocharger and
exhaust-gas recirculation.

maximum air-charge that fits into the cylinder. Therefore, an intercooler (3) is positioned
after the turbocharger that is cooled either by ambient air or a separate coolant circuit.
After the intake cooler, sensors for the intake temperature tin and air-mass flow ṁin are
placed. A position controlled throttle valve (4) follows to restrict the air flow from the
intake if needed. Before the air enters the intake manifold of the engine, sensors are
situated to measure the intake manifold temperature tim and pressure pim. Inside the
engine (5), diesel fuel is injected and the combustion process takes place. A part of the
resulting exhaust gas is cooled and fed back through a position controlled EGR valve
(6). Due to the cooling, a greater reduction of emissions can be achieved. However, the
main part of the exhaust gas either goes through the turbine-part of the turbocharger,
or is by-passed via the so called waste-gate (7). Afterwards, a lambda-sensor is placed to
measure the remaining oxygen in the exhaust-gas stream. Finally, the the exhaust gas
is cleaned by an exhaust after-treatment system (8) to reduce harmful emissions before
leaving through the tail-pipe.

The main components of an air-path system are further described in the following para-
graphs.

Turbocharger As already seen in part (2) of Figure 1.1, a turbocharger is actually a
combination of two turbo elements: A radial compressor that compresses the intake air

3



1 Introduction 1.1 Air Path in Diesel Engines

and a turbine that is driven by the flow of exhaust gas and is coupled to the compressor
by a shaft.

In older diesel engines3, a large amount of energy was lost by simply expelling the
hot and pressurized exhaust gas from the engine. Therefore, it makes sense to utilize
some of that energy to generate pressure in the intake path and thus increasing the
amount of air. By charging the intake air before it enters the cylinders, more oxygen
is available for combustion, which results in a higher maximum torque and therefore a
greater power output from the same engine, or the same power output from a smaller
engine (downsizing) [5, p. 47].

The design of turbochargers is explained in [5, pp. 49–50]. Diesel engines that do not
run under steady-state conditions, especially cars and commercial vehicles, need to be
able to generate high torque even at low engine speeds. Therefore, turbochargers are
designed for low exhaust-gas flow-rates. To prevent the turbocharger from damaging
itself or overloading the engine at higher flow rates, the pressure that is generated (also
called boost pressure) has to be controlled. There are two main turbo charger designs
to achieve this:

• A wastegate turbocharger works by diverting a part of the exhaust-gas flow past
the turbine by a bypass valve, the so called “wastegate”. As a result, the exhaust-
gas back pressure is decreased and excessive turbocharger speeds are avoided.
The wastegate is closed at low engine speeds to direct the entire exhaust-gas flow
through the turbine.

• Another possibility to control the turbocharger performance is by means ofVariable
Turbine Geometry (VTG). Thereby, adjustable deflector blades change the flow
cross section of the turbine by changing the size of the gap through which the
exhaust gas can flow. Only a small flow cross section is allowed at low engine
speeds or loads, such that a high velocity of the exhaust-gas flow is reached and
the turbine turns at a higher speed. A larger flow cross-section results in a lower
flow velocity of the exhaust-gas stream and as a result the turbocharger turns more
slowly. This way, the boost pressure is limited at high engine speeds or loads.

The engine simulation model provided by AVL for this thesis supports both versions of
turbochargers, in order to simulate different engine setups. However, in this thesis only
the wastegate-version will be used since the technique and also the model is simpler and
therefore can be simulated more efficiently.

Exhaust Gas Recirculation An effective internal engine measure to lower NOX emis-
sions in diesel engines is to recirculate a part of the exhaust-gas flow into the combustion
chamber through an additional line and a control valve (seen in part (6) of Figure 1.1).

3Actually, Rudolf Diesel (1896), already considered the precompression of intake air to improve per-
formance, but it took until the 1970s until turbocharges became widespread in cars [5, p. 47].

4



1 Introduction 1.2 Current Control Concept

The main reasons why this lead to a reduction of NOX are described in [6, p. 196].
First of all, the recirculation naturally leads to a reduction of the exhaust-gas mass flow
that leaves through the tail-pipe. Additionally, high local temperatures and high partial
oxygen pressures are required to form NOX during the combustion process and both can
be lowered by mixing in exhaust-gas. Due to the following higher rate of inert gases, the
rate of combustion and the generation of high peak temperatures is reduced. However, by
reducing the oxygen content in the combustion process, the amount of smoke increases,
which limits the quantity of how much exhaust-gas can be recirculated.

The EGR volume depends on the angle position of the EGR valve as well as the pressure
difference between the point where the exhaust-gas is taken (before the turbine) and the
point it is mixed in (before the engine intake manifold). As a result, the turbocharger
does not only control the intake manifold pressure but also has an influence on the EGR
rate. Due to this influence, it is sometimes necessary to restrict the gas flow on the
intake-manifold side, especially when the engine load is low, to achieve desirably high
EGR rates. In most heavy-duty engines, and also the AVL engine simulation model,
this is done by a throttle valve (seen in part (4) of Figure 1.1). However, since the
purpose of this throttle valve is to additional influence the intake manifold pressure, a
cross interaction with the turbocharger control exists.

1.2 Current Control Concept

This section explains the current state-of-the-art control concept for the air-path of
a heavy-duty diesel engine with exhaust-gas recirculation and a turbocharger, as it is
implemented in the AVL simulation model that was provided for this thesis. This helps
to understand the physical relationships in the system and the software changes that
can be made by the use of machine learning techniques.

When speaking about control strategies, a general concept of controlling the air-path
actuators either via closed or open loop is meant. The strategy should control all involved
actuators simultaneously in order to reach low engine emissions at transient engine
operation, while ideally not interfering with the performance and torque response of
the engine. This requires a modular structure, so that individual functions do not
have a direct influence on the overlying engine management system. Such a system
typically works by receiving a desired torque from the driver via the accelerator pedal,
which is added to the torque requirements of various internal systems (for instance
alternator or air conditioner) and the total torque demand on the engine is then given
to the fuel-injection and air-path control [7, p. 249]. These control systems then work
together to provide sufficient fuel and air to the engine to meet the total torque demand,
while also taking into account possible trade-offs due to engine emissions limits and fuel
consumption.

5



1 Introduction 1.2 Current Control Concept

1.2.1 Characteristic values

To meet the discussed requirements, characteristic values are defined based on the phys-
ical relationships of the engine to form control variables. Based on the torque demands
and measured sensor data, demand values for these control variables are calculated and
controllers are implemented to follow these demand values.

Boost pressure As already discussed in Section 1.1.2, the characteristic value for con-
trolling the turbocharger is the pressure in the intake manifold of the engine pim, also
called boost pressure. The optimum boost pressure is a function of engine speed, in-
jected fuel quantity, surrounding air pressure as well as coolant and fuel temperatures
[7, p. 252]. Deviations of the measured boost pressure to these demands are then com-
pensated by controlled opening or closing of the wastegate valve.

Lambda For air-path and injection management systems, the excess-air factor λ of the
engine can be used as a characteristic value. In [6, p. 184] it is defined as the ratio of
intake-air mass to the air mass required for stoichiometric combustion, hence

λ = mAir

mFuel · rst
, (1.1)

where mAir and mFuel are the respective masses of air and fuel in the cylinder and rst is
the stoichiometric ratio that describes the mass of air in kg that is required to completely
burn 1 kg of fuel (approximately 14.5 for diesel fuel). This means that if the excess-air
factor is:

• λ = 1, the intake-air mass is equal to the air mass theoretically required to burn
all of the fuel injected,

• λ < 1, there is too less intake-air mass to burn all the fuel (called rich mixture)
and

• λ > 1, there is more intake-air mass than theoretically needed (called lean mix-
ture).

Unlike the boost pressure in the intake manifold, lambda is usually not measured directly
but is calculated as in Equation (1.1) by measuring the mass of air and injected fuel.
The lambda oxygen sensor in the exhaust pipe (seen in Figure 1.1) measures the residual
oxygen content in the exhaust gas and is only used as a plausibility check and correction
for the calculated lambda.

Typical lambda levels for turbocharged diesel engines are within a range of λ = 1.15
to λ = 2.0 [6, p. 184]. In this range, a closed loop control of lambda can be done.
However, if the mass of injected fuel gets very low (for example when the engine is
idling), according to Equation (1.1) lambda suddenly approaches very high values, due
to the small load. In such cases, a closed loop control is no longer possible and a switch

6



1 Introduction 1.2 Current Control Concept

to an open loop control mode has to be made. The actuators to control lambda are the
EGR valve and intake throttle valve (seen in parts (4) and (6) of Figure 1.1). The EGR
valve is mainly responsible for adjusting deviations between measured (or calculated)
lambda value and demand value, but if the EGR valve is already fully open, the mass
of fresh air and therefore also lambda can be further decreased by closing the intake
throttle valve. Thereby the rate of recirculated gas is increased.

1.2.2 Controller structure

Apart from the fact that lambda control happens with two controllers, one for each
actuator, the controller structure for boost pressure and lambda control are nearly iden-
tical. The controllers consists of two main parts, a pre-control map for an open-loop
signal and a gain-scheduled PID controller with anti wind-up measures for a closed-loop
signal. Therefore, an exemplary controller for all three actuator signals is illustrated in
figure 1.2.

Figure 1.2: Block diagram of an exemplary gain-scheduled PID-controller.

The respective demand values are calculated via maps, based on the currently injected
fuel mass-flow ṁinj and engine speed neng and are corrected on the basis of measured
temperatures and pressures in the air-intake as well as ambient air conditions. From this
demand signal, the corresponding feedback value (measured boost pressure or calculated
lambda) is subtracted and the resulting error signal is used as input for a gain-scheduled
PID-controller. The PID-gain-parameters Kp, Ki and Kd also come from maps that
are based on the current engine speed neng, the injected fuel mass-flow ṁinj and other
parameters that are used as for fine-tuning and corrections. Similarly, a pre-control
signal for the actuator position is determined via a map. This position demand can

7



1 Introduction 1.2 Current Control Concept

be used either in open-loop operation modes or as a pre-control value for closed-loop
control, where it is added to the output of the PID controller. Also, due to a limitation
of the valve-positions that can only be open between 0 and 100%, anti wind-up measures
have to be taken for the PID controller, so that it does not overshoot too much because
of the integral term winding up for large setpoint changes.

Dynamic limitation Following the open- and closed-loop signal generation, the actu-
ator demand values are already limited to be within 0 to 100% of the maximum valve-
position (in case of the open-loop signal due to calibration, in case of the closed-loop
signal due to a limitation-block). However, there can be situations like rapid drops in
lambda due to acceleration, which would lead to high emissions, or special operation con-
ditions (for instance engine start or motoring mode) that require a dynamic limitation
of the minimum or maximum valve positions. For example, the minimum position of the
EGR valve could be restricted to prevent smoke generation. These dynamic limitations
are done after the control signal generation, and are fed back to the PID controller as
“anti wind-up” signals.

Arbitration Before a output signal can be given out by the control software, it needs
to decide whether the open-loop or closed-loop signal should be used. This is done
by an arbitration that normally uses the closed-loop signal but also detects operating
conditions that require open-loop control (for instance motoring mode where no fuel is
injected) and switches the output signal accordingly.

1.2.3 Calibration

The control concept heavily depends on the correct calibration of all controller maps
that can be seen in Figure 1.2. Typically, this is done for a set of steady-state engine
operation points that are defined by a given engine speed and torque demand. This
means that in multiple experiments the operation point of the engine is held constant
for some time, followed by a step to some other operation point. The engine parameters,
for instance the values in the maps, are then calibrated based on these step experiments.
This method can be seen as a point-wise linearization of the non-linear engine behaviour
around the selected operation points. The signals that define an engine operation point
are those who have the biggest impact on the system behaviour. In Figure 1.2 it can
be seen that the engine speed has direct influence on all controller maps and the total
torque demand (also called load of the engine) is closely correlated with the injected fuel
mass, which is also a direct input to all air-path control maps.

However, due to the fact that the actuators for lambda control also influence the boost
pressure and the actuator for boost pressure control also has an influence on lambda, the
calibration process for the controller parameters is challenging and very time consuming.

8



1 Introduction 1.3 Changes in the control structure

AVL has developed processes that allow the consideration of such cross-coupling influ-
ences in multi-variable control problems. But even with specialized calibration processes
it takes a lot of time and effort of experienced commissioning engineers to find a “good”
calibration on engine test-beds.

1.3 Changes in the control structure

As already stated in the introduction, the aim of this thesis is to develop a controller
structure that can learn an optimal control strategy on its own in a data-driven approach.
Therefore, the general concept of the existing controller structure is adopted with some
changes.

Figure 1.3: Planned changes in the control software.

The existing structure of the control software is built in multiple layers, as it can be seen
on the left side of Figure 1.3. It starts with an interface that clearly defines the inputs
to the system for other software parts. After that, an air-input calculation follows where
common important values, for example the current EGR rate and lambda value, are
calculated. Then, the actual controller structures for intake boost pressure and lambda
control are placed, followed by a common dynamic actuator limitation and arbitration,
as described before in Section 1.2.2.

For the new structure, large parts of the existing layout can be incorporated. The right
side of Figure 1.3 shows the proposed structure of the control software. Main requirement
is to replace the two separate controller structures into a single “data-driven control”
block. The characteristic values of the control problem should stay the same, so the goal

9



1 Introduction 1.3 Changes in the control structure

of the new controller will also be to follow a given boost pressure and lambda demand.
These demand values can be taken from the existing demand value calculation maps.

Strategies to build such a data-driven control will be discussed in the following chap-
ters.

10



2 Theory

In this chapter an overview of the theoretical aspects of this thesis is given. The main
aspects of machine learning are described and it is discussed why reinforcement learning
is particularly useful for the given problem setting. Following this, some of the concrete
algorithms that are used in this work are discussed.

2.1 Machine Learning Basics

Since the beginning of programmable computers, people have been wondering if these
machines could one day become more intelligent than humans. The field of trying to
build such systems is called Artificial Intelligence (AI). There have been some notable
practical advances in building intelligent systems over the last years. For example, in
2015 Mnih et al. built an algorithm that was able to play classic Atari games on a level
of a professional human games tester [8], in 2016 the AlphaGo program was able to beat
the human world champion in Go [9] and in 2019 the OpenAI Five system defeated a
team of human world champions at the competitive e-sports game Dota 2 [10]. The
similarity between all these achievements is that they all use Machine Learning (more
precisely deep reinforcement learning which is a combination of classical reinforcement
learning with function approximation methods from supervised learning). Nevertheless,
the ultimate goal of a truly intelligent system, that is not limited to a single task or even
behaves like a human, still seems like a long way to go.

According to Murphy [11, p. 1] machine learning can be defined as:

[. . . ] a set of methods that can automatically detect patterns in data, and
then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty.

This automatic pattern detection and decision making is becoming increasingly impor-
tant because we are living in an era of so called big data. What is meant by this term is
that the amount of available data in all sorts of applications has been increasing drasti-
cally in the last two decades. For example, a billion hours of video material is viewed on
YouTube each day 1 and the Amazon Marketplace lists over 350 million products 2. But
not only in media and retail large amounts of data are processed, also in the automotive

1Source: https://www.youtube.com/intl/de/about/press/ (accessed April 24, 2021)
2Source: https://www.nchannel.com/blog/amazon-statistics/ (accessed April 24, 2021)

11

 https://www.youtube.com/intl/de/about/press/
https://www.nchannel.com/blog/amazon-statistics/


2 Theory 2.1 Machine Learning Basics

sector the availability of data has heavily increased due to the use of on-board-diagnostic
(OBD) systems [12].

Machine learning algorithms can be further classified by the task that they are perform-
ing, for example classification, regression, anomaly detection, missing value predictions
and many more. Another common way of classification is to categorize by the kind of
data that is used. The two main classes of algorithms therefore are:

• Unsupervised Learning
• Supervised Learning.

In unsupervised learning, according to Murphy [11, p. 2], the goal is to discover some
kind of structure or pattern in a given data-set D = {xi}i=1...N consisting of N data-
points xi. Therefore, in contrast to supervised learning, only the data points are given
to the algorithms without any additional inputs in the form of labels.

In supervised learning, also according to Murphy [11, p. 2], the goal is to learn a (non-
linear) mapping from inputs x to some target values y, also called labels. All input-target
data pairs used for training are called the training-set D = {(xi, ti)}i=1...N . Each training
input xi can be a multi-dimensional vector representing for example an image, a sentence
or a time series. In this case they are called input features. The targets or labels can
either be a categorical variable ti ∈ {1, . . . , C} (such as cat or dog) or a a real-valued
scalar ti ∈ R. When ti is categorical, the problem is known as classification or pattern
recognition. Classification algorithms try to fit the data in a way that, based on the
values of the input features, the desired class label can be predicted as the output. When
ti is real-valued, the problem is known as regression. The main purpose of regression
algorithms is to produce an accurate real-valued estimate based on the given input
features.

Although it seems as if the distinction between supervised and unsupervised learning
is sufficient, there is another class of algorithms that do not work with a fixed data-
set. Instead, they interact with an environment in a closed feedback loop. This area of
machine learning is called

• Reinforcement Learning.

In the following sections the basics of supervised learning and reinforcement learning are
described in some more detail, so that in the following chapter the deep reinforcement
learning algorithms can be better understood.

2.1.1 Supervised Learning

Due to its successes in computer-vision and speech-recognition as well as in many other
domains, supervised learning, especially deep learning, is probably the most commonly

12



2 Theory 2.1 Machine Learning Basics

used form of machine learning today. As already described, the goal is to learn a gen-
eralized model of some (non-linear) input-target mapping. An application, for instance,
could be to correctly label images into some category, such as cats or a dogs.

In [13], an exemplary training step of a supervised learning algorithm is described. The
algorithm takes the inputs xi and computes outputs yi depending on the task. In case
of a regression task, one output could be a vector of real numbers. In case of a classi-
fication, the output will be a vector of probabilities, one for each category in the task.
After training, new images could then be classified by the probability that the algorithm
computes for each class.
At the beginning of the training procedure the classification is probably wrong. There-
fore, the error between the output and the desired labeling can be computed via an
objective function J = J(xi, ti). The used objective function varies between different
tasks and algorithms. One common approach for regression tasks is the mean squared
error ∑N

i=1 ||yi − ti||2 between outputs yi and correct labels ti. Using this error, the
adjustable parameters of the model can then be modified to improve the accuracy of the
model. The parameters θ of the model, often also called weights w, are real numbers
that define the input–output relation of the model. In a modern deep-learning system,
there may be hundreds of millions of adjustable weights and labeled examples to train
with [13].

In most cases, the adjustment of the parameters is done via an error gradient. This
gradient indicates the amount of error that would follow from a tiny change of the
parameters. If the parameter vector is modified into the opposite direction of the gradient
vector, then this is know as gradient descent. In practice, a method called stochastic
gradient descent (SGD) is widely used. It works by taking only a few examples of the
input vector for the error calculation and then computing the average gradient over
those examples. By using many small sets of examples from the training set, a noisy
estimate of the real gradient is taken, therefore the process is called stochastic. With this
technique, a good set of parameters can be found surprisingly quickly when compared
with more complicated optimization techniques.

After training, a test set is used to measure the performance of the system on a different
set of examples. This is done to test the ability of the model to generalize, which means
to produce reasonable answers on new inputs that were never seen during training.

Deep Learning A main challenge and also source of error when using classical machine-
learning methods is the choice of the used input features. Often, they have to be chosen
very carefully by hand because of their high influence on the performance of the system.
It requires profound domain expertise to be able to design a feature extractor that
transforms raw data into a useful representation or feature vector, such that the learning
system can detect or classify the desired patterns.
According to [13], the main advantage of deep learning is that these features are not
designed by human engineers but instead are learned automatically from the data using a

13



2 Theory 2.1 Machine Learning Basics

Figure 2.1: Example of computations in a multi-layer neural network with backpropa-
gation. Simplified version of figure found in [13].

general-purpose learning procedure. Deep-learning methods are so called representation-
learning methods with multiple levels of representation. They consist of simple non-
linear modules that each transform their input to a slightly more abstract level. If
several such transformations are applied, very complex functions can be learned.

Murphy describes in [11, p. 995] that the idea of using deep models with multiple levels
of representation actually comes from observations of the brains of humans and other
mammals. There, also several levels of processing can be seen and it is believed that
each level is learning features or representations at increasing levels of abstraction. In
the standard model of the visual cortex for instance it is described that the brain first
detects edges, then corners and contours, then surfaces and object parts, then whole
objects, and so on.

Neural Networks Most deep learning applications today use feed-forward neural net-
work architectures. A simple example can be seen in Figure 2.1. A typical network
consists of a fixed-size input layer with as many neurons as the input vector (for exam-
ple pixels of an image) and a fixed-size output layer (for example as many neurons as
categories in a classification task). In between input and output layer there are so called
hidden layers with an arbitrary number of neurons. They can be seen as a distortion of
the input in a non-linear way.

Figure 2.1 is a simplified example taken from [13]. Part (a) shows a forward-pass of an
exemplary network. Each neuron in the network computes a weighted sum of their inputs
from the previous layer and passes the result through a non-linear function. Therefore,
these networks are called feed-forward. The most applied non-linear function today is the
rectified linear unit (ReLU), which is a simple half-wave rectifier f(z) = max(z, 0). Other
commonly used non-linearities in the past, such as the hyperbolic tangent f(z) = tanh(z)
and the sigmoid function f(z) = 1/(1+exp(−z)), were smoother functions but the ReLU
has proven to typically learn much faster in networks with many layers [13].
A backward-pass of the same example network is shown in Figure 2.1 (b). The error
derivatives are calculated and propagated back through the network, so the equations

14



2 Theory 2.1 Machine Learning Basics

should be read from the bottom up. Calculating the error derivative at the output
layer means differentiating the objective function. In this example, it is assumed that
the objective function for output k is 0.5(yk − tk)2, where tk is the target value. This
gives yk − tk as the error gradient. Through the chain rule for derivatives the error with
respect to the output of a neuron ∂E/∂zk is then converted into the error with respect to
the input ∂E/∂yk by multiplying with the gradient of f(z). At the next layer, the error
with respect to the output of each neuron ∂E/∂zj is calculated by a weighted sum of the
error derivatives with respect to the total inputs to the units in the layer below. Then
again, applying the chain rule for derivatives gives the error derivative with respect
to the input of the neuron ∂E/∂yj and so on. Through this backpropagation of the
error gradients, the network weights can be adjusted and the network is trained. Using
stochastic gradient descent, it turns out that the training of multi-layer architectures
can be done relatively easy.

2.1.2 Reinforcement Learning

This section describes the key principles and basic terminology of Reinforcement Learn-
ing (RL) so that the methodology and algorithms that are being used in the practical
part of this thesis can be better understood.

In contrast to the machine learning techniques seen so far, RL does not work with a
fixed data-set. Instead, it is characterized by a continuous interaction of an agent with
its environment.
The agent in this context is a learning and decision making entity, another term for it
could be controller. The environment is a representation of the world that the agent
lives in and interacts with, another term could be controlled system or plant.
Sutton and Barto describe the interaction between agent and environment in [14, pp. 1–
4]. In each step, the agents sees a (possibly partial) observation of the state of the
environment and it can influence the environment by a set of actions. The ultimate
goal of an agent is to find an optimal mapping between the observations that it receives
and the actions that it produces, such that a numerical reward signal is maximized.
The agent is thereby not told which actions to take, but instead must discover which
actions give the most reward by trying them. In some cases, the actions might also
affect subsequent rewards. This trial-and-error search and the delayed rewards are the
two most important distinguishing features of reinforcement learning [14, p. 4].

Formally, the problem setting can be described as a finite Markov Decision Process
(MDP). It is the mathematically idealized form of the RL problem. This formalism here
comes from [14, pp. 47–48]. There, Sutton and Barto look at the interaction between
an agent and its environment in discrete time steps, t = 0, 1, 2, 3, . . .. At each step t,
the agent receives a depiction of the environments state St ∈ S and selects an according
action At ∈ A. In the next time step, as an effect of its action, the agent receives a
numerical reward Rt+1 ∈ R and a new state depiction St+1.

15



2 Theory 2.1 Machine Learning Basics

Figure 2.2: The agent–environment interaction in a Markov decision process. Figure
taken out of [14, p. 48]

Due to the fact that the set of states, actions and rewards (S,A,R) are finite, Rt and
St can be defined as random variables with discrete probability distributions dependent
only on the previous state and action. This means, that for the random variables s′ ∈ S
and r ∈ R, a probability of those values exist at time t, given the values of the previous
state and action:

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (2.1)

for all s′, s ∈ S, r ∈ R, and a ∈ A(s). This function p : S × R × S × A → [0, 1], an
ordinary deterministic function of four arguments, is called the dynamics of the system
[14, p. 48].

Figure 2.2 shows a graphical representation of the agent-environment interaction. It
reassembles a closed-loop control system with exception of the additional scalar reward
signal. In fact, from a control perspective it can be shown that reinforcement learning
can be seen as direct adaptive optimal control, as it was done in a paper from Sutton,
Barto and Williams [15].

States and Observations The state s of an environment is a full description of the
current situation that the system is in at a given moment. An observation o is a partial
description of this state and some information might be missing. If an agent is able to
observe the complete state of the environment, this environment is called fully observ-
able. If the agent only can see a partial observation, the environment is called partially
observable.

Almost all states and observations can be represented by some real-valued number,
vector, matrix or higher order tensor. The observation about a systems state can be
either continuous or discrete in time. A continuous representation better fits most real-
world processes but in order to process it with a computational unit, it has to be in
discrete time. Therefore, RL theory generally only focuses on discrete time states and
observations. It should be noted that in most literature on RL the notation sometimes
wrongly puts the symbol for state, s, where it should be the symbol for observation, o.
For instance, the action of an agent is often conditioned on the state of the environment,

16



2 Theory 2.1 Machine Learning Basics

when in reality, the agent does not have access to the state but only to its current
observation of the state. However, this thesis tries to follow standard conventions for
notation.

Action spaces Depending on the concrete environment, different actions might be
possible for the agent to take. The set of all valid actions in a given environment is often
called the action space.

In contrast to states and observations, where only discrete values are allowed, RL theory
differentiates actions into discrete action spaces, where only a finite number of moves are
allowed and continuous action spaces, where actions can be real-valued vectors. Some
families of RL-algorithms can only be directly applied to either discrete or continuous
action spaces. For application on the other case these algorithms would often have to
be substantially reworked.

Policies A policy is a set of rules used by an agent to determine what actions to take.
One could also think of it as a mapping from the perceived states of the environment to
the actions to be taken when in those states [14, p. 6].

There are deterministic policies, which are normally denoted as µ, i.e.,

at = µ(st) (2.2)

and there are stochastic policies, formally denoted by π,

at ∼ π(·|st). (2.3)

The notation in (2.3) expresses that, in the stochastic case, the policy does not directly
give back the action to take but instead outputs the probability of an agent selecting a
certain action in a given state.

In case the state and action spaces of a problem are multi-dimensional or so large that it
gets computationally challenging to work with them, function approximation methods
are used to obtain a generalized policy using a parameterized form. The parameters of
such a policy are often denoted by θ or φ, and then written as a subscript on the policy
symbol to highlight the connection:

at = µθ(st) (2.4)
at ∼ πθ(·|st). (2.5)

17



2 Theory 2.1 Machine Learning Basics

Reward and Return The main goal of a RL agent is to take actions that maximize
the total amount of reward that it receives from its environment. Therefore, the reward
is a way to communicate to the agent what should be achieved. It should be noted that
the reward should only tell the agent what to achieve and not how to do it, this is a
common source of error in the application of RL.

More precisely, the agent seeks to maximize the expected return, where the return, de-
noted Gt, is a specific function of sequence of rewards Rt received. In the simplest case
the return is the sum of the rewards, i.e.,

Gt = Rt+1 +Rt+2 +Rt+3 + . . .+RT , (2.6)

where T is the last time step [14, p. 54].

Another kind of return is the infinite-horizon discounted return,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1, (2.7)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate [14, p. 55].

The intuition behind this discount parameter is, that rewards received earlier will be
worth more than rewards received later. This assumption also makes sense in real life,
for instance 1e received now is worth more than 1e received several years in the future
because of inflation. Mathematically it also makes sense to discount future rewards since
an infinite-horizon sum of rewards may not converge to a finite value without a discount
factor.

Value Functions For an agent, it is often useful to know the value of a state or state-
action pair, to be able to find an optimal action. With the term “value”, the expected
return is meant that comes from starting in this particular state or state-action pair and
then following a particular policy forever after. Value functions are used in some way in
almost every RL-algorithm.

The state-value function vπ for policy π and state s can be defined as in [14, p. 58],

vπ(s) = Eπ [Gt | St = s] = Eπ
[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s

]
, for all s ∈ S. (2.8)

Similarly, in [14, p. 58] the action-value function qπ for state s and action a following
policy π is defined as

qπ(s, a) = Eπ [Gt | St = s, At = a] = Eπ
[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s, At = a

]
. (2.9)

18



2 Theory 2.2 RL Algorithms

Value functions and rewards do have some similarities. However, a reward tells what
is “good” is an immediate sense while a value function tells what is “good” in the long
run.

To know how “good” an action is in a relative sense, which means how much better it
is than others on average, the so called advantage is computed. The advantage function
advπ(s, a) of a policy π describes how much better it is to take the action a in state s,
over a randomly selected action according to π(·|s). Formally, it is defined as

advπ(s, a) = qπ(s, a)− vπ(s) . (2.10)

Optimal Value and Policy The optimal policy π∗ in [14, p. 62] is simply defined as the
policy producing the maximum return. Because value functions compute an estimate of
the expected return, they can be used for an ordering over policies. According to [14,
p. 63], there might be more than one optimal policy but they share the same optimal
value function,

v∗(s) = max
π

vπ(s) , for all s ∈ S, (2.11)

q∗(s, a) = max
π

qπ(s, a) , for all s ∈ S and a ∈ A(s) . (2.12)

Bellman Equations To compute value functions, the Bellman equation is commonly
applied. It works by relating the value of the current state with the value of future
states. In [14, p. 59], the Bellman equation for the state-value function,

vπ(s) = Eπ [Gt | St = s]
= Eπ [Rt+1 + γGt+1 | St = s]
=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r | s, a) [r + γEπ [Gt+1 | St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r | s, a) [r + γvπ(s′)] , for all s ∈ S ,

(2.13)

is defined. The last line of (2.13) can again be read as an expected value. For all three
variables a, s′ and r, their probability is computed, weighted by the quantity in brackets
and then summed up over all possibilities. This recursive relationship is a fundamental
property of value functions and the basis of many RL algorithms [14, p. 59].

2.2 RL Algorithms

After the basics of machine- and reinforcement learning have been discussed in the
previous section, this section should give an overview of some of the main model-free
reinforcement learning algorithms. Of course this list is not exhaustive but instead the

19



2 Theory 2.2 RL Algorithms

algorithms used in this thesis (and the ones they are based on) are described.
The overview starts with some simple algorithms that work as long as the state and
action spaces of the problem are small enough so that approximate value functions can
be stored in arrays or tables. These algorithms are called tabular solution methods.
Afterwards, algorithms are discussed that use function approximation to obtain a pa-
rameterized policy to handle problems with larger state and action spaces. As it turns
out, feed-forward neural networks are very good function approximators and the usage
of multi-layer neural networks in reinforcement learning opened a new field called Deep
Reinforcement Learning (Deep RL).

2.2.1 Tabular Solution Methods

Dynamic Programming Although the aim of this section is to discuss model-free al-
gorithms, lets assume for a moment that the dynamics of the system p(s′, r | s, a) are
fully known. In this theoretical setting, the Bellman equation (2.13), can be used to
iteratively evaluate the state-value function vπ and improve the policy π. This is known
as Dynamic Programming (DP).

In [14, pp. 74–78], the process of dynamic programming is described in more detail.
Computing the state-value function is called Policy Evaluation and it directly applies
the bellman equation to compute a new policy estimate based on the current one. This
new value function tells us how good it is to follow the current policy from state s. To
know how good it is to follow a different action a 6= π(s) can be computed by applying
the bellman equation to the action-value function qπ. If this action-value is greater then
the state-value from before, it means it is better to always choose a in state s than it
would be to follow π all the time. Consequently, the policy can be improved in this
state. Unsurprisingly, this process is called Policy Improvement and is a special case
of a general result called the policy improvement theorem (see [14, p. 75] for the full
proof).

Following these two processes iteratively, better policies can be found by computing
better value functions.

π0
evaluation−−−−−→ vπ0

improve−−−−→ π1
evaluation−−−−−→ vπ1

improve−−−−→ . . .
improve−−−−→ π∗

evaluation−−−−−→ v∗

This sequence must finally converge to an optimal policy and optimal value function in
a finite number of iterations [14, p. 80].

Monte-Carlo Methods A simple idea to learn about the expected return without mod-
eling the environmental dynamics is to use experience from several episodes and compute
the mean over the observations. This approach of approximating the expected return is
called Monte-Carlo (MC) methods. It requires no prior knowledge of the environments
dynamics, but the sampled episodes S1, A1, R2, . . . , ST must be complete.

20



2 Theory 2.2 RL Algorithms

A Monte Carlo estimation of the state-value function vπ(s) is described in [14, p. 97].
The state s here is always the starting node. Several episodes are rolled out from this
state until their termination state, the return Gt = ∑T−t−1

k=0 γkRt+k+1 is computed for
each episode and the mean of all returns is the desired estimate. If the number of
episodes is sufficiently large, this estimate converges towards the true expected value.

To estimate state-action values qπ(s, a), basically the same procedure is followed. In this
case however, visits to the state–action pair are averaged instead of pure state visits.
According to [14, p. 97], a state–action pair (s, a) is said to be visited in an episode if
the state s is visited and action a is taken in it.

In order to use this method to approximate an optimal policy, the same policy iteration
pattern is used as in dynamic programming. Policy evaluation is done as described
so far. Many episodes are experienced, with the approximate action-value function
approaching the true function asymptotically. Policy improvement is done by making
the policy greedy. By definition in [14, p. 97], this means that the policy deterministically
chooses the action with the maximal action-value,

π(s) = argmax
a

q(s, a) . (2.14)

Temporal Difference Learning The combination of Monte Carlo (MC) and dynamic
programming (DP) ideas is called Temporal-Difference (TD) learning. It is model-free
and learns from episodes of experience, like MC, but is also able to update estimates
partially without waiting for the final outcome, like DP. This partial estimation is also
called “bootstrapping”.

The key idea is described in [14, p. 120]. An estimate V of the state-value function
vπ is computed and updated towards an estimated return Rt+1 + γV (St+1), called “TD
target”.

V (St)← (1− α)V (St) + αGt

V (St)← V (St) + α(Gt − V (St))
V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))

(2.15)

The extent of the update is controlled by the hyper-parameter α, called learning rate.
Similarly, the action-value can be estimated. According to [14, p. 129] it can be computed
as, i.e.,

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) . (2.16)

“SARSA”: On-policy TD control When using the temporal difference approach dis-
cussed above to directly learn an optimal policy, this is called on-policy TD control. The
corresponding algorithm is called “SARSA” with reference to the sequence of states, ac-
tions and rewards used in (2.16) that make up a transition from one state–action pair
to the next and is used in the update of the Q-value [14, p. 129].

21



2 Theory 2.2 RL Algorithms

The idea to build an on-policy control algorithm with this estimation comes from [14,
p. 129] and is straightforward. The same policy iteration pattern is followed again that
was already discussed for DP and MC. First, an initial Q-table Q(s, a), for all s ∈ S and
a ∈ A(s), is set up arbitrarily. Except for the final state, in which Q(terminal, ·) = 0.
For each episode of learning, an initial action a is chosen from the policy π, based on
the Q-table, greedily (2.14). Then, for each step of the episode the action a is taken,
the reward r and next state s′ is observed and the next action a′ is chosen from the
policy. Afterwards, with the full set of (s, a, r, s′, a′), a new Q-Value for the state-action
pair (s, a) is estimated according to (2.16) and stored in the Q-table. Finally, the state
s′ becomes the new state s and the action a′ the next chosen action a and the process
repeats until the end of the episode.
If all state–action pairs are visited for an infinite number of times, the algorithm con-
verges to an optimal policy and action-value function with probability 1 [14, p. 129].

Q-Learning: Off-policy TD control Another way to update the Q-Value in temporal
difference learning was proposed in [16] and is known as Q-Learning. The main difference
to the SARSA algorithm from before is that the learned action-value function Q is
updated independently of the policy being followed. The Q-Learning update rule in [14,
p. 131] is formulated as

Q(St, At)← Q(St, At) + α(Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)) . (2.17)

As it can be seen in (2.17), the “TD target” is not built using the next state and action
from the current policy, but instead by maximizing over all possible actions in the next
state. Apart from that, the algorithm works exactly like SARSA.

The used policy still has an effect in the algorithm. It determines which state–action
pairs are visited and updated. If all pairs continue to be updated, this algorithm has the
advantage that the learned action-value function Q directly approximates the optimal
action-value function q∗ [14, p. 131].

Exploration-Exploitation Dilemma In all the algorithms discussed so far, a central
problem of reinforcement learning has been concealed so far. It is known as the exploration-
exploitation dilemma and describes the problem that without exploring all possible states
of a RL-problem, it is not possible to fully get to know the environment. The algorithms
seen so far rely on exploration because they only converge to the optimal policy π∗ and
action-value function q∗ if all state-action pairs are regularly visited. On the other hand,
following the policy iteration pattern, they greedily take advantage of the information of
the states already visited, discouraging further exploration. This is called exploitation.

There are different ways to balance between exploration and exploitation. In MC meth-
ods, Q-learning and many on-policy algorithms, the exploration is commonly imple-
mented by following a ε-greedy policy. It takes the best action most of the time, but

22



2 Theory 2.2 RL Algorithms

with a probability of ε, a non-optimal random action is taken, thus encouraging explo-
ration occasionally.

2.2.2 Deep Reinforcement Learning

A problem with the tabular solution methods seen so far is that theoretically the Q-
Table Q(s, a) can be memorized for all state-action pairs, but in practice if the state
and action spaces are large, it quickly becomes computationally infeasible to work with.
Therefore, function approximation (for instance machine learning models) are used to
obtain approximated Q-values. If a function with parameters θ (for example the weights
and biases of a neural network) are used to calculate Q-values, the resulting action-value
function can be written as Q(s, a;θ).

Deep Q-Network (DQN) When combining the Q-learning algorithm with a nonlinear
action-value function approximation it may suffer from instability and divergence issues.
Mnih et al. [17] [8] designed Deep Q-Networks (DQNs) to circumvent these problems
by introducing two mechanisms to stabilize the training procedure:

• Experience Replay: Tuples of experienced episode steps et = (St, At, Rt, St + 1)
are stored in a so called replay memory Dt = {e1, . . . , et} until a sufficient amount
of experience was collected. Then, during the Q-learning update step, samples of
experience are drawn randomly from the replay memory to train a neural network.
The random sampling of episode steps removes correlations in the observation
sequences and improves the data efficiency by re-using experienced steps. After
some time if the replay memory is full, new experience tuples replace the oldest
ones in the memory.

• Target Networks: Instead of optimizing the Q-values against constantly chang-
ing targets, as it is the case in the Q-learning algorithm, a second so called target
network is kept to obtain the TD-targets. This target network is updated periodi-
cally only every C steps (with C as a new hyper-parameter) by cloning the network
weights from the real Q-network. During normal updates of the Q-network the
target-network keeps frozen. This modification makes the training more stable as
it overcomes short-term oscillations.

Policy Gradient Methods In the algorithms described above (SARSA, Q-Learning,
DQN), the goal was always to learn the action-value function of a problem and then
select actions accordingly with a greedy policy, as seen in (2.14). The difference in policy
gradient methods is, that they aim to learn a parameterized policy π(a|s;θ) directly
without the detour via a value function. According to [14, p. 321], the policy is retrieved

23



2 Theory 2.2 RL Algorithms

by gradient ascent toward the direction of the gradient of a objective function J(θ) with
respect to the policy parameters, i.e.,

θt+1 = θt + α∇θJ(θ) . (2.18)

The form of the objective function J(θ) is defined differently in many algorithms and also
in [14] no common form is given, but a distinction between an episodic and continuing
case is made. However, the idea is always to define it as an expected value of the return
given the current policy J(θ) = E[Gt|πθ] and then try to find the best parameters θ for
the policy π(a|s;θ) to produce the highest return. Due to the objective function being
maximized it is sometimes also called performance function.

An advantage in parameterizing the policy instead of the action-value function (like in
DQNs) may be achieved if the policy is a simpler function to approximate [14, p. 323].
However, this depends entirely on the problem. For some problems, it may be simpler
to learn the action-value function and therefore it makes more sense to approximate it
instead of the policy. In another problem setting, it may be the other way round and
its makes more sense to approximate the policy directly.

Policy Gradient Theorem The tricky part in policy gradient methods is to determine
the gradient ∇θJ(θ). The problem is described in [14, pp. 324–326]. Simply put,
no matter the choice of J(θ), the gradient always depends on both the selected actions
(directly determined by π(a|s;θ)) and the distribution of states in which those selections
are made. Unfortunately, the effect of the policy on the state distribution is a function of
the environment, which is generally unknown. Fortunately, the policy gradient theorem
provides a nice reformulation of the derivative of the objective function to not include
the derivative of the state distribution anymore. The theorem and its proof can be found
in [14, p. 325]. This simplifies the gradient computation ∇θJ(θ) a lot.

When using the policy gradient theorem to reformulate the gradient ∇θJ(θ), an update-
rule for the parameters θ can be formulated as:

θt+1 = θt + α Gt
∇θπ(At|St;θt)
π(a|s;θ) . (2.19)

This update-rule is the basis of the REINFORCE algorithm [18] and also makes sense
intuitively. Each update consists of the product of the return of an episode Gt and
a vector which is the gradient of the probability of taking an action divided by the
probability of taking that action [14, p. 327]. This makes sense because the gradient
corresponds to the direction in parameter space of the probability to take the action At.
Multiplying this vector with the return Gt causes the parameters to move in a direction
with actions of high return. Dividing by the action probability also makes sense because
it causes a normalization of the frequency with which actions are taken.

To reduce the variance of the policy parameter update and thus increase the performance
of the algorithm, the policy gradient theorem can be further generalized to include a

24



2 Theory 2.2 RL Algorithms

Figure 2.3: Example of the use of a neural network for a actor-critic policy.

comparison of the return to an arbitrary baseline function b(s). According to [14, p. 329]
it can then be written as:

θt+1 = θt + α (Gt − b(St))
∇θπ(At|St;θt)
π(a|s;θ) . (2.20)

A common choice for the baseline is an estimate of a value function, V (s,w) orQ(s, a,w),
where w is an additionally learned weight vector.

Actor-Critic Methods In case also a value function is learned in addition to the policy,
these methods are often called actor–critic methods.

• Actor: Updates the policy parameters θ, in the direction suggested by the critic.

• Critic: Updates value function parameters w. Depending on the algorithm it
could be action-value Q(a|s;w) or state-value V (s;w) parameters.

Figure 2.3 shows an example of how a neural network could be used for function ap-
proximation in an actor-critic policy. In this case, the same network is used for the
approximation of the mapping from observations coming from the environment to both
the possible actions and a state-value function estimate. The action outputs and the
value function output share all hidden layers of the network (θ and w are the same
except for the weights and biases of the output layer). However, there is also the pos-
sibility that they only share some hidden layers or that two entirely different networks
are used for the approximation of actions and value estimate.

Deterministic Policy Gradient (DPG) All methods and algorithms discussed so far
work with stochastic policies. However, Silver et al. [19] proposed a Deterministic Policy
Gradient (DPG) algorithm to estimate the policy gradient more efficiently. The method

25



2 Theory 2.2 RL Algorithms

works for RL problems with continuous action spaces and is an off-policy actor-critic
algorithm.

According to [19], the deterministic policy gradient is the expected gradient of the action-
value function. Therefore, they formulated the Deterministic Policy Gradient Theorem,
which can be seen as special case of the stochastic one. The gradient is computed
by integration over the state space while in the stochastic case, the policy gradient
integrates over both state and action spaces. Therefore, the deterministic policy gradient
can be estimated more efficiently than its stochastic counterpart. The authors also
showed in empirical results that their algorithm outperforms stochastic policy gradient
on several problems, including a high-dimensional bandit, standard RL benchmark tasks
of a mountain car and a pendulum as well as controlling an octopus arm with a high-
dimensional action space. However, the function approximation in the experiments was
done with tile-coding (see [14, p. 217]) and linear function approximators.

Deep Deterministic Policy Gradient (DDPG) By extending the deterministic policy
gradient approach and combining it with methods from deep-q-networks, Lillicrap et
al. [20] proposed the Deep Deterministic Policy Gradient (DDPG) algorithm. It was
developed to be a actor-critic, off-policy, model-free algorithm, which can be used in
continuous environments and with continuous action spaces.

The algorithm is explained in [20] and works by using the actor-critic setup from DPG,
so that the policy can be estimated directly due to the deterministic policy µθ (proofed
by the deterministic policy gradient theorem in [19]). In general, both actor and critic
are approximated by neural networks. The learned value function is an action-value
function Q(s, a), which acts as a critic. However, the learning process is stabilized by
using experience replay and an idea similar to a target network, called “soft target”.
Instead of copying the weights directly as in DQN, the soft target network updates its
weights θ′ slowly to track the learned networks weights θ according to θ′ ← τθ+(1−τ)θ′
with τ � 1. This way, the target network values are constrained to change slowly.
Additionally, in order to have better exploration, an exploration policy µ′ was introduced
by adding noise sampled from a noise process to the actor policy: µ′(s) = µθ(s) + N .
To proof the effectiveness of the algorithm, more than 20 simulated physics tasks of
varying difficulty were solved with the same learning algorithm, network architecture
and hyper-parameters. The obtained policies with DDPG were comparable with those
of a planning algorithm with full access to the underlying physical model and could be
found with 20 times fewer steps of experience than DQN. The paper also contains links
to videos for illustration.

Trust Region Policy Optimization (TRPO) In traditional policy gradient algorithm
updates, old and new policies are kept close in parameter space. But even a small
difference in the parameters can lead to large differences in the performance, which
means that a few “bad” updates can ruin the policy gradient sample efficiency. Due to

26



2 Theory 2.2 RL Algorithms

this, it is dangerous to use large step sizes with the policy gradient algorithms discussed
so far.

To avoid this problem, Schulman et al. [21] introduced an algorithm with an iterative
procedure to monotonically improve performance by taking the largest step possible,
while satisfying a special constraint on how close the new and old policies are allowed to
be. The constraint is formulated in terms of a Kullback–Leibler (KL) divergence [22],
DKL, which simply put is a measure of a distance between two probability distributions.
TRPO aims to maximize the objective function J(θ) subject to a trust region constraint
which enforces the distance between old and new policies to be within a small parameter
δ. According to [21], this can be written in terms of expectations:

Es∼ρθold
[DKL(πθold(·|s) ‖ πθ(·|s)] ≤ δ (2.21)

where the notation Es∼ρθold
[. . .] indicates that states are sampled from the state dis-

tribution with the old parameters θold. The authors also showed that policy iteration,
policy gradient, and natural policy gradient (not dicussed here, see [23]) are special cases
of TRPO. In experiments, the algorithm performed well on simulated robotic tasks of
swimming, hopping, and walking, as well as playing Atari games in a framework directly
from raw images.

Proximal Policy Optimization (PPO) An improved version of TRPO called Proximal
Policy Optimization (PPO) was published by Schulman et al. [24] in 2017. It is mo-
tivated by the same question of how to take the biggest possible improvement step on
a policy, without stepping “too” far and accidentally causing performance to collapse.
In TRPO, the problem was solved with a complex second-order method, while PPO
simplifies it by using a clipped objective function to keep the new policy close to the
old one. This method is also significantly simpler to implement while achieving similar
performance in experiments.

According to [24], if the probability ratio between the old and new policy is defined as:

r(θ) = πθ(a|s)
πθold(a|s) , (2.22)

then PPO imposes a constraint on the objective function by forcing r(θ) to stay within
an interval around 1, specifically [1− ε, 1 + ε], where ε is a hyper-parameter:

JCLIP(θ) = E
[
min

(
r(θ)Âθold , clip(r(θ), 1− ε, 1 + ε)Âθold

)]
(2.23)

The term Âθold is an estimate of the advantage (see (2.10)) calculated with the old
parameters. The function clip(r(θ), 1− ε, 1 + ε) clips the probability ratio to be no more
than 1 + ε and no less than 1 − ε. By taking the minimum between the original value
and the clipped version, the objective function of PPO therefore loses the motivation to
increase the policy update too much for better rewards. Test cases showed that PPO
was able to achieve much better performance compared to TRPO after training for the
same time on various continuous control tasks and matching performance on playing
Atari games with image inputs.

27



2 Theory 2.2 RL Algorithms

Soft Actor-Critic (SAC) In 2018, Haarnoja et al. [25] introduced a new off-policy
actor-critic algorithm, called Soft Actor-Critic (SAC), with the goal to improve the
sample efficiency and minimize the need for hyper-parameter tuning, so that it can be
used to learn real-world robotic tasks. A major difference to the RL algorithms discussed
previously, is that it is trained to maximize a trade-off between expected return and
entropy, a measure of randomness in the policy. This maximum entropy reinforcement
learning framework was already used in a precedent algorithm called Soft Q-Learning
(SQL) [26] and improved for SAC.

In this framework, according to [25], the policy is trained with the objective to maximize
the expected return and the entropy at the same time:

J(θ) = E(st,at)∼ρπθ
[r(st, at) + αH(πθ(·|st))] , (2.24)

where H(·) is the entropy measure. The trade-off is controlled by the non-negative tem-
perature parameter α. The authors showed that this objective can be seen as an entropy
constrained maximization of the expected return. Therefore, the temperature param-
eter can be learned automatically instead of being treated as a hyper-parameter. The
goal of developing an algorithm for real-world systems was demonstrated by successful
training of a set of robot tasks in only a handful of hours, demonstrating the improved
sample efficiency. The algorithm was also able to outperform other popular deep RL
algorithms, DDPG, TD3 and PPO on standard benchmark tasks in simulated physical
environments.

Twin-Delayed Deep Deterministic (TD3) A commonly known problem in value-
function-based algorithms is an overestimation of the value function. This means that
the value of some states is estimated higher than it really is. The problem thereby is that
the resulting error can propagate and accumulate over several iterations and negatively
affects the policy. This can also happen in policy gradient methods if a value function
is estimated, for instance in an actor-critic setting. In DDPG, the overestimation of
Q-values may even lead to the policy breaking down because it only exploits the errors
in the Q-function. To address this issue, in 2018 Fujimoto et al. [27] introduced the
Twin Delayed Deep Deterministic (TD3) algorithm by applying a couple of tricks on
DDPG to prevent overestimation.

In particular, in [27] three crucial tricks were introduced:

• Clipped Double-Q Learning: Instead of learning only one Q-function, in TD3 the
action selection and Q-value estimation are made by two networks separately. The
smaller of the two Q-values is then used to form the targets in the bellman-error
loss function. This minimum leads to an underestimation bias which is harder to
propagate over training iterations.

• “Delayed” Policy Updates: TD3 updates the policy less frequently than the Q-
function. The paper recommends one policy update for every two Q-function

28



2 Theory 2.2 RL Algorithms

updates. A similar approach is used in the DQN where the target network is only
updated periodically to obtain a stable objective.

• Target Policy Smoothing: A small amount of clipped random noise is added to
the selected action, to make it harder for the policy to exploit Q-function errors.
Due to the noise, the value estimation is smoothed, which makes it harder for the
policy to exploit Q-function errors.

To evaluate the algorithm, its performance on a set of standard continuous control
benchmark tasks was measured in simulated physical environments. TD3 was able to
match or outperform all other algorithms in comparison (DDPG, TRPO, PPO, SAC
and others) in both final performance and learning speed across all tasks.

29



3 Data-Driven Controller Design

After discussing the theory of machine learning with a focus on deep RL algorithms, in
this chapter the methodology of how to build a data-driven controller with this technol-
ogy is discussed. The setup and components needed to build a self-learning system are
explained and an evaluation of the methodology on a small selected benchmark example
is shown.

3.1 Use Cases

After some literature research for related work about the use of reinforcement learning
in a process control context, and after discussion with my supervisors at the industrial
partner of this thesis, two main approaches were selected for further investigation.

3.1.1 Use Case 1: Self-Learning Feedback Controller

The first use case consists of the straightforward approach of building a controller by
giving the reinforcement learning agent access to all relevant actuators of the system
as actions and having a feedback of the controlled process variables as an input to the
controller. The learned policy of the agent can then be used as a control law after
training.

This use-case is described in some more detail in [28], where Hafner and Riedmiller in-
troduced a RL algorithm for process control that uses neural networks for approximation
of a Q-function, called Neural-Fitted Q-Iteration with Continuous Actions (NFQCA).
They were able to achieve good results in different feedback process control tasks us-
ing this setup, which serves as a motivation for this thesis. However, instead of the
NFQCA algorithm from Hafner and Riedmiller, modern state-of-the-art policy gradient
algorithms are used, that are proven to have better sample efficiencies and are more
stable during the training process.

30



3 Data-Driven Controller Design 3.2 Learning Setup

3.1.2 Use Case 2: Parameter-Learning Agent

The second use case that is investigated in this thesis is the use of RL agents to learn
optimal parameters for PID controllers at each time-step. Due to their effectiveness
and ease of implementation, PID controllers are widespread and also the current control
concept for the diesel engine air-path controller in the model received from AVL relies
on them (see Chapter 1.2). However, the search for a good set of parameters can be a
time consuming procedure even for experienced commissioning engineers and therefore
this use-case has evolved, where the idea is to automatically learn parameters with a
RL agent. The learned policy of the agent can then be used to predict optimal gain
parameters for the existing PID-controllers for each time-step.

The idea is similar to the PID-tuning method introduced by Wang et al. in [29]. There,
the authors used an actor-critic RL algorithm with a Radial-Basis-Function (RBF)
neural network to approximate the policy. The inputs to the agent were chosen as
x = [ε, ∆ε, ∆2ε], where ε is the error between feedback and demand value and the
second and third state correspond to the first and second numerical derivative of this
error. The actions are u = [Ki, Kp, Kd], the integral, proportional, and derivative gain
factors in the discrete PID-controller formulation. Wang et al. achieved good results
with this setting on a simulated nonlinear system with parameter disturbances, which
serves also a motivation for this thesis. As discussed in the first use-case, however,
modern state-of-the-art policy gradient algorithms are used instead of actor-critic RBF
networks.

3.2 Learning Setup

Due to the try-and-error nature of reinforcement learning, it is generally preferable
to execute the learning process in a simulation setup. All model-free agents initially
know nothing about the environment they interact with, hence the real physical systems
could be damaged in the initial phase of learning if the agent has unrestricted access to
actuators and tries actions randomly. But even if the actions are somehow constrained,
the typical training time of RL agents to learn suitable policies is long. This problem is
also known as data inefficiency. For example, DQN required days of continuous play to
become skilled at Atari games [8] and AlphaGo had to be trained for tens of thousands
of games to be competitive against humans [9]. Therefore, training RL agents on real
hardware is often infeasible without accurate simulation models. Luckily, for this thesis
an accurately calibrated simulation model of a diesel engine is provided by AVL.

Figure 3.1 shows the principle learning setup used in this thesis. For training a rein-
forcement learning agent, a step-wise interaction of the agent with the environment has
to be provided, so that the current state and reward signals can be received and an
according action can be given out. The environment consists of the existing air-path
control software that is executed together with the diesel engine simulation model in

31



3 Data-Driven Controller Design 3.2 Learning Setup

Figure 3.1: Setup to train RL agents with a simulation model through an environment
interpreter.

Simulink1. The handling of the simulation is done by an environment interpreter that
consists of a set of scripts to start and pause the simulation as well as to build the current
state vector and reward signal. The training of the agent is then done in Python2 due
to the large collection of suitable libraries that are available. Because of this, it is also
a current standard in RL research.

In the following sections, the setup is further described on the basis of the individual
components.

3.2.1 Environment

As already described in the first chapter, the industrial partner provided an accurately
calibrated simulation model of a heavy-duty diesel engine with an existing air-path
control system for the training purpose of this thesis. The existing control software
is described in more detail in Section 1.2. However, to enable the training process,
the existing controller had to be by-passed. Therefore, a switch was implemented in
Simulink to either use the control signals coming from the existing controller or to read
in the signals coming from the RL agent from the Matlab3 workspace. The selected
signals are then forwarded to the diesel engine simulation model.

1Simulink is a proprietary graphical programming environment for the design and simulation of dy-
namical systems. See: https://www.mathworks.com/products/simulink.html

2Python is an open-source, general-purpose programming language. See: https://www.python.org/
3Matlab is a proprietary programming language and numeric computing environment developed by

MathWorks. See: https://www.mathworks.com/products/matlab.html

32

https://www.mathworks.com/products/simulink.html
 https://www.python.org/
 https://www.mathworks.com/products/matlab.html


3 Data-Driven Controller Design 3.2 Learning Setup

The engine simulation model was designed by experienced engineers at AVL with the
main purpose of accurately simulating the engine emissions. Consequently, the engine
dynamics and the combustion process are also modeled very precisely. The accuracy
of the model has been repeatedly confirmed by measurements on real engine test-beds,
which means that the model sufficiently represents a real diesel engine air-path for the
purposes of this thesis.

As input to the engine model, an external speed and torque demand can be applied that
define the load profile of the engine. This way, either own experiments can be defined
or the engine’s response to standardized emission test cycles can be simulated.

3.2.2 Environment Interpreter

In order to execute the environment model in a way that is needed for RL training,
it had to be prepared to be controlled by an external agent, which is in charge of the
learning process. The agent needs to be able to execute one time-step of the environment
and receive a current state vector and reward signal. After the learning step is done
and an action is selected, the agent also needs a way to pass this action back to the
environment.

For the communication between the agent, that is executed in Python, and the environ-
ment, that is executed in Simulink, the Matlab-engine-API4 was used as an interface.
It supports the start of a Matlab-engine from Python that can be used to call built-in
Matlab functions and also user-scripts.

The main challenge hereby was the question of how to implement the Matlab scripts for
the constant interruptions of the environment model, that are necessary to execute it
step by step. Under normal conditions, Simulink models are executed continuously via
the sim()-command from some initial state until a specified simulation time is reached.
Since any initial state can be chosen and the terminal state of the simulation is known,
the first approach was to use repeated calls of sim() while using the returned termi-
nation state as the next initial state. The provided simulation time then becomes the
discretization time of the model. Although this approach works, due to the size and
complexity of the model the execution becomes very slow and is therefore not useful for
RL training. The main reason for this is that the sim()-command compiles the model
on every call. This results in an unnecessary model re-compilation after every discrete
time step, which is obviously unwanted.

The approach used instead uses Matlab command line functions to control the Simulink
execution together with an assertion-block in Simulink that is triggered with the desired
discretization time. Using the functions,

• set_param(’model_name’,’SimulationCommand’,’start’)

4See: https://www.mathworks.com/help/matlab/matlab-engine-for-python.html

33

https://www.mathworks.com/help/matlab/matlab-engine-for-python.html


3 Data-Driven Controller Design 3.2 Learning Setup

• set_param(’model_name’,’SimulationCommand’,’pause’)

• set_param(’model_name’,’SimulationCommand’,’stop’)

which are equivalent to clicking the play, pause and stop buttons in Simulink respectively,
the model execution behaviour can be controlled. If the pause command is placed inside
a periodically triggered assertion-block, the model pauses automatically at discrete time
steps and can be restarted again from a script with the start command. This approach is
still a lot slower than a continuous execution of the model, but at least the unnecessary
re-compiles at each time step are avoided.

Based on this approach, the following scripts for controlling the model execution were
created:

• init_airpath.m: Initializes the Simulink engine model and air-path control sys-
tem and enables the periodically triggered assertion-block.

• start_airpath.m: Starts the simulation.

• wait_airpath.m: Waits until the assertion is triggered in the simulation and builds
the current state vector by reading out the corresponding values from the paused
model.

• step_airpath.m: Resets the triggering mechanism in the model and continues the
simulation again if the total simulation time has not been reached, otherwise the
simulation is terminated and a “done”-variable is set to indicate this.

3.2.3 RL Agent

The training of the reinforcement learning agent is done in Python, due to the availability
of useful libraries for neural networks and reinforcement learning. After comparing
several available and commonly used baseline algorithm implementations, the stable-
baselines package [30] was selected for large parts of the training process in this thesis.
It provides implementations of a set of state-of-the-art deep RL algorithms with a simple
interface to train and evaluate different agents. Among others, all algorithms described
in Section 2.2.2 are available in this package. The implementations are tested, well
documented and offer an unified structure for all algorithms that are based on an actor-
critic setup. This is very helpful for integrating the training results back into the original
Simulink model, because it means that only a single policy has to be implemented for
all actor-critic algorithms.

As a back-end for training and evaluation of the neural networks, that are used in
the deep RL policies, the stable-baselines package relies on the open-source Tensorflow
package [31], created by Google Research. This is also an advantage for the integration
of the training results back into the original model, due to the clear structure of the
networks and the ease with which the network parameters of the trained neural networks
can be exported.

34



3 Data-Driven Controller Design 3.3 Setup Evaluation

In order to use the provided simulation model as a training environment, the environment
interpreter scripts also had to be called from Python, in a way that different algorithms
can work with them. For this purpose, the stable-baselines package supports the creation
of custom environments as long as they follow the OpenAI Gym [32] interface. The
OpenAI Gym is an open-source collection of standardized RL problems, mainly used
for benchmarks and comparing new algorithms, and also provides an open interface
to create new custom problems. Therefore, a class was created that inherits from the
abstract Gym interface and implements a set of methods:

• __init__(self): Initializes the environment by defining the action and observa-
tion spaces, starts the Matlab-engine and calls init_airpath.m to initialize the
simulation model.

• step(self, action): Takes a step in the environment by applying the given ac-
tion. Therefore, the wait_airpath.m script is called to ensure that the Simulink
model has finished the previous step. The current state vector can then be read-out
from the Matlab workspace and a reward for this step is calculated. Different ap-
proaches for the reward design were tested out in Section 3.3.1. After the state and
reward for a step are defined, the given action is written to the Matlab workspace,
from where the Simulink model fetches it, and the simulation is continued by
calling the step_airpath.m script. The step-method is also responsible for moni-
toring the end of an episode. This is done by reading out the done-variable from
the Matlab workspace, which is set by the environment interpreter scripts if one
experiment is finished. The method ends by returning the current observation,
reward, done-variable and an optional info-variable.

• reset(self): After the termination of one experiment, also called episode, the
environment needs to be reset. This is done by resetting the corresponding Python
variables and calling the start_airpath.m script to start a new experiment.

• close(self): Closes the environment in a defined manner by terminating simu-
lations that might be running and stops the Matlab-engine.

3.3 Setup Evaluation

In order to evaluate the learning setup presented in this chapter, an evaluation on a
small exemplary benchmark problem in the same setting was done. It also shows that in
principle a learning process is achievable with both introduced use-cases before moving
on to the more complex and error-prone air-path simulation model.

35



3 Data-Driven Controller Design 3.3 Setup Evaluation

3.3.1 Problem definition

The exemplary benchmark problem chosen for the evaluation of the setup is a relatively
simple, one-dimensional non-linear problem of controlling the water-level at a desired
value inside a container, for example a water-tank, with a constant outflow and a con-
trollable inflow of water. The system equations are,

ẋ = − a
A

√
x+ b

A
u,

y = x,
(3.1)

where the state variable x > 0, that is also the output y of the system, corresponds to
the height of water in the tank and the input u is the voltage applied to a pump. The
water enters the tank with cross-section area A at the top with a rate b proportional to
the applied voltage and leaves through an opening in the tank base that is proportional
with rate a to the square root of the water height. The presence of the square root
results in a non-linear plant.

Figure 3.2: Simulink model of the benchmark problem of a water-tank control for the
evaluation of the learning setup.

This choice for the problem was arbitrary, because the practical aspects are not really
important for this evaluation, the only requirement was that the problem can be easily
modeled in the same setting as the considered main problem of this thesis. That is,
a Simulink model for the description of the problems dynamics exists and the learn-
ing process is done via the stable-baselines package in Python. Therefore, a simple
simulation model in Simulink was created that can be seen in Figure 3.2. The model
implements the dynamics given in (3.1) and discretizes the system with a discretization-
time of Td = 100 ms. As already discussed in Section 2.1.2, RL algorithms only work
with discrete observations. After the model was defined, an environment interpreter was
created in the same way as described before in Section 3.2.2 and an environment class
in Python was defined as described in Section 3.2.3, such that training with algorithms
out of the stable-baselines package is possible.

36



3 Data-Driven Controller Design 3.3 Setup Evaluation

Reward design Probably the most important design choice when training an agent via
reinforcement learning is the selection or construction of a suitable reward function for
the given problem. Some environments already have an intrinsic reward, for instance in
[8] where an agent was trained to play classic Atari games. These games naturally give
a score that can be used as a reward. In other cases, it may be necessary to carefully
engineer shaped rewards in order for the agent to be able to explore high dimensional
problems. Another option is to use sparse rewards as in [33], where the agent only
receives a reward when the state is within a small tolerance of a goal state. With this
setting, the authors where able to learn difficult robotic control tasks.

In the setting of this thesis, where the goal is to set up a feedback loop, the difference
between the demanded setpoint and its corresponding variable to be controlled can be
seen as a naturally given reward signal. Consequently, all reward functions that are
tested here are based on this error e(t) = yr(t)− y(t). However, different possibilities of
how to construct a reward function from this signal are investigated. Figure 3.3 gives a
visual representation of the different reward functions.

• The first reward function under investigation simply uses the negative squared error
between demand value and feedback value. The square function both prevents
positive rewards and penalizes higher deviations quadratically. However, compared
to other reward functions, small errors are penalized less.

r1(t) = −e2(t) (3.2)

• As a second reward function, the negative absolute error between demand value
and feedback value was chosen because it again prevents positive rewards but
penalizes all deviations linearly.

r2(t) = −|e(t)| (3.3)

• The third reward function uses sparse rewards in a form that a small penalty
is given in every time step that the error is outside a tolerance ε. Additionally,
a penalty is given if the error in this time step is larger than the error in the
last discrete time step. This approach was used in [29], from which the second
investigated use-case in this thesis originates from.

r3(t) = 0.6 ra(t) + 0.4 rb(t)

ra(t) =
0 |e(t)| ≤ ε

−0.5 otherwise
, rb(t) =

0 |e(t)| ≤ |e(t− 1)|
−0.5 otherwise

(3.4)

• The fourth and last reward function under investigation comes from [28], where
also a self-learning feedback controller was trained, much like in the first use-case
of this thesis. Here, a shaped reward function is used to obtain a smooth and

37



3 Data-Driven Controller Design 3.3 Setup Evaluation

differentiable cost function, in hope to achieve a more precise control law than
with a sparse formulation,

r4(t) = −0.5 tanh2
(
|e(t)| tanh−1

(√
0.95
ε

))
. (3.5)

-1 -0.5 0 0.5 1

error

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

re
w

a
rd

r
1
(t) = -e(t)2

r
2
(t) = -|e(t)|

r
3
(t) = -0.5 if |e(t)| outside , otherwise 0

r
4
(t) = -0.5 tanh2(|e(t)| tanh-1( 0.95 / ))

Figure 3.3: Illustration of the different reward functions that are compared on the ex-
emplary water-tank problem. Note that for the sparse reward r3(t) only the
non-time-dependant first part of the formulation in (3.4) is shown in this
figure.

Input generation A point that has not been discussed so far is the definition of the
inputs to the simulation model during training. In the discussed setting of this thesis, the
agent has no influence on the desired reference values (in case of the air-path the lambda
and boost pressure demand, in case of the benchmark problem the desired water-level)
but only controls deviations from a given setpoint. Due to this fact, the choice of the
reference function during the training process can have a significant influence on the
resulting policies.

In both discussed use-cases, the agent always controls the deviation between desired and
actual values in a feedback loop. Therefore, the learning process should contain as many
different deviations as possible during training, so that the learned policy is as general
and versatile as it can be. To achieve this, several step functions with varying setpoints
are used as reference functions for the demand value. However, there are still multiple
options for the design of episodes:

• One option would be to define an episode as a single step function with a randomly
chosen setpoint. Throughout the training, the agent then experiences different

38



3 Data-Driven Controller Design 3.3 Setup Evaluation

deviations and could learn to react to them. However, an issue of this option is that
the best possible reward that the agent could achieve differs from experiment to
experiment. Small setpoint values and therefore small deviations between desired
and actual signal can be compensated much quicker that larger differences and
therefore naturally lead to higher rewards.

• Another option would be to define an episode as a series of multiple steps with ran-
domly varying setpoints. This way, an averaging effect over the whole experiment
occurs and the best achievable episode rewards are more evenly distributed.

Algorithms As already discussed in the description of the two use-cases that are con-
sidered in this thesis, the aim in both of them is to use modern state-of-the-art policy
gradient algorithms, because they provide better sample efficiencies and are more stable
during the training process, compared to older RL algorithms. In Section 2.2.2 about
deep RL, several such algorithms were explained and now they are compared on this
small benchmark problem.

The particular algorithms under consideration are DDPG (Deep Deterministic Policy
Gradient) and some improved versions, namely PPO (Proximal Policy Optimization),
TD3 (Twin-Delayed Deep Deterministic) and SAC (Soft Actor-Critic). For the evalu-
ation, they are run with their standard hyper-parameter-sets as defined in the stable-
baselines package [30]. This is because all algorithms under consideration are proven to
be able to solve simple continuous control problems with their initial hyper-parameter-
settings and the selected benchmark problem of a water-tank control would probably
fall into this difficulty category. With an additional hyper-parameter tuning for all al-
gorithms, better results could probably be achieved, but since the aim of this training is
not to find the best control strategy possible but rather to compare different algorithms,
rewards and input-generation settings, a further hyper-parameter optimization is not
purposeful.

3.3.2 Evaluation results

Reward and algorithm comparison The first evaluation aims at comparing the four
selected policy gradient algorithms with the four defined reward settings. Therefore,
the input generation is set to the first option of training with single step functions with
randomly chosen setpoints for a duration of 5 seconds. The initial state of the simulation
is always an empty water-tank and training is done for 1000 episodes, so 1000 different
experiments with varying setpoints are seen by the agent during one training process.

At first, training in the setting of the first use-case (see Section 3.1.1) is done, so the
agent has direct control over the actuators, which for this benchmark problem is the
voltage applied to the water-pump.

39



3 Data-Driven Controller Design 3.3 Setup Evaluation

Figure 3.4: Comparison of learning curves of the four selected algorithms with reward 1
on the exemplary water-tank control problem. Training in the setting of the
first use-case with single random step functions as input.

Figure 3.4 shows the learning curves of the four selected algorithms when they are
trained with reward function r1(t) as in Equation (3.2). Each blue dot in a scatter plot
symbolizes the accumulated reward over one episode of training. It can be seen that all
four algorithms are able to improve their received reward over time, which means that
the policy they learn minimizes the error between the desired and actual water-height in
the tank. Also, after some time the episode rewards do not get better anymore, which
means that they converged into some maximum. This does, however, not say anything
about the quality of the learned policies because the maximums could only be local.
The policies performances are discussed later. What can be seen from this comparison
is, that the TD3 algorithm is able to learn an optimal policy the fastest, followed by
the SAC algorithm. The DDPG and PPO algorithms take a few hundred episodes more
training time with this reward and hyper-parameter setting.

In Figure 3.5, the learning curves in the same setting are shown but this time the
algorithms are trained with reward function r2(t) as in Equation (3.3). The TD3 and
SAC algorithms again are able to improve their received episode rewards over time and
converge into some maximum, but this time both need a few hundred episodes of training
more. This could be due to random nature of the experiments and algorithms or a effect
of the reward function, since large deviations are not penalized as much as with the
quadratic reward function r1(t). However, the DDPG and PPO algorithms do not reach
the same episode reward level as TD3 and SAC and also do not seem to improve over
time at all using this reward setting and number of training episodes.

40



3 Data-Driven Controller Design 3.3 Setup Evaluation

Figure 3.5: Comparison of learning curves of the four selected algorithms with reward 2
on the exemplary water-tank control problem. Training in the setting of the
first use-case with single random step functions as input.

A similar learning behaviour as for the DDPG and PPO algorithm in Figure 3.5 can be
seen for all algorithms with reward functions r3(t) and r4(t). These settings do not lead
to a recognizable improvement of the episode rewards over time. Neither with the sparse
reward setting (3.4) nor with the shaped reward of setting (3.5) the algorithms show
significant improvement over the course of training with 1000 episodes. This may be due
to the constant negative reward that is given outside some region ε around zero error,
which makes it harder for the algorithms to determine a direction for improvement. The
reward settings r1(t) and r2(t) both give a negative reward that is proportional (either
quadratically or linearly) to the error at all times and therefore large deviations are
penalized more than small ones.

The evaluation of the reward settings however is not complete without also looking at
the performance of the learned policies. Therefore, Figure 3.6 shows the result of 3
experiments with the final trained agents. On the left, a trained TD3 agent and on the
right a trained SAC agent in the setting of the first use case is shown, which means
that they can directly apply the control action u to the tank-model. The TD3 and
SAC agents were selected because they showed the most promising learning curves in
Figure 3.4. The 3 experiments consist of filling the tank to 10%, 50% and 90%. In the
respective upper parts of the figure, the setpoints and resulting water-heights and in
the lower parts the applied control actions are shown. It can be seen that both agents
were able to learn appropriate control actions with this setting, so that the demanded
setpoints can be reached. However, the figure also shows that the learned control actions

41



3 Data-Driven Controller Design 3.3 Setup Evaluation

do seem to contain some noise, even though this evaluation was done with deterministic
policies (so the stochastic part of the policies needed for exploration during training
was deactivated). By training with more episodes or by doing further hyper-parameter
optimization of the algorithms, this noise could probably be reduced and the performance
could be enhanced. But since the goal of this evaluation is only to show that learning
an acceptable control strategy is possible in this setting, this result is sufficient.

Figure 3.6: Evaluation of the learned policies of TD3 and SAC algorithms, trained with
reward 1 on the exemplary water-tank control problem in the first use-case
setting.

Second use-case evaluation So far, only the first use-case of giving the RL agent
direct control over the control action u was evaluated, but of course also the second
use-case of learning optimal PID parameters (see Section 3.1.2) should be investigated.
Therefore, the training was done similar to before, so 1000 episodes with single random
step function experiments were executed with the four selected algorithms and the four
defined reward settings.

Figure 3.7 shows the learning curves of the four selected algorithms trained in the setting
of the second use-case with reward function r1(t). For the TD3 and SAC algorithms the
results are similar to the first use-case. They are able to improve their received episode
rewards over time and seem to converge within the 1000 trained episodes. The DDPG
algorithm however shows some dips in the learning curve but can increase the episode

42



3 Data-Driven Controller Design 3.3 Setup Evaluation

Figure 3.7: Comparison of learning curves of the four selected algorithms with reward 1
on the exemplary water-tank control problem. Training in the setting of the
second use-case with single random step functions as input.

reward again afterwards. The PPO algorithm shows no observable improvement over
time with this overall setting.

The more interesting part of the second use-case evaluation is looking at the performance
of the learned policies. Thus, Figure 3.8 shows the results of a 50% filling experiment
with the final trained TD3 and SAC agents. This time only one filling experiment is
shown because in the lower parts of the figure the learned discrete PID-controller gains
Kp, Ki and Kd are plotted over time. They show rather large and noisy variations in
the first two seconds of all experiments, so only the 50% experiment for each algorithm
is plotted, but the 10% and 90% results are very similar. With the learned parameters,
the controllers are able to reach the demanded setpoint, despite slight oscillations at
the beginning of both experiments, due to the noisy variations in the learned gain-
parameters. This could be a consequence of insufficient training time or a wrong choice
of algorithm hyper-parameters for this problem. But as already discussed earlier, the
goal of this evaluation was only to show that learning acceptable parameters is possible
in this setting, which could be proven. In direct comparison to the results of the first
use-case, however, the deviations from the desired setpoint value are larger with the
same standard-algorithm settings.

Input generation evaluation As a last evaluation with this benchmark water-tank
control problem, the influence of the two discussed options for generating training ex-
periments is looked at. In all evaluations so far, the training episodes were defined as

43



3 Data-Driven Controller Design 3.3 Setup Evaluation

Figure 3.8: Evaluation of the learned policies of TD3 and SAC algorithms, trained with
reward 1 on the exemplary water-tank control problem in the second use-case
setting.

single step functions with random setpoints and a duration of 5 seconds. With the cho-
sen discretization time Td of 100ms, this means that the RL agents could observe 50
timesteps of experience before a learning update, as the algorithms update their policy
parameters after every episode. A concern that existed with this option was, that due
to the random setpoints the best possible reward that an agent could achieve differs
from episode to episode and therefore the policy updates could become unstable. In the
evaluations seen so far, however, this does not seem to be an issue.

Nevertheless, a second option of experiment design was tried out, because it could have
increased the learning performance. In this version, an episode is defined as a set of
multiple consecutive step functions with varying setpoints. In particular, for this eval-
uation 10 steps with random setpoints within the tank limits were chosen with a total
experiment duration of 50 seconds. This leads to a total of 500 timesteps of experience
before a learning update occurs and more importantly the maximum achievable reward
per experiment is more evenly distributed.

All evaluations seen so far were re-run with this second option for 500 episodes of training
time. The resulting learning curves were comparable to the results seen so far and also
the resulting policies behaved similarly with only slight deviations. After all, this means
that only a reduction of episodes could be achieved at the cost of longer experiments.

44



4 Training and Evaluation

After the validation of the developed learning strategy on an exemplary benchmark
problem, the next step was to use the provided simulation model of a heavy-duty diesel
engine and train it with different settings, algorithms and hyper-parameters. In this
chapter, the setup of this training as well as the evaluation method is described and
afterwards the results are evaluated. However, due to the complexity of the engine
simulation model, problems with the training time emerged that are also discussed.

4.1 Training with Engine Model

In this section, the general training setup is explained in more detail by describing the
inputs to the RL agent, the design of reward and training episodes as well as the used
algorithms and hyper-parameters. Also, the aforementioned problems with the training
time are explained and counter-measures are discussed.

4.1.1 Setup

State Description As seen in the description of the currently used control system in
Section 1.2, the characteristic values of the air-path control problem are the pressure
pim in the engine intake manifold, also called boost pressure, as well as the excess-
air factor λ of the engine. Because the corresponding demand values for these control
variables can be taken from the existing calculation maps (as described in Section 1.3),
the deviations between the given boost pressure and lambda demands and the currently
measured or calculated values (∆pim(t) and ∆λ(t)) are used as the inputs of the RL
observation vector. Due to the use of the feedback-values of the control variables in the
input vector, the control loop is closed and the resulting agent can be considered as a
control algorithm.

The second and third inputs to the RL observation vector were chosen as the current
engine speed neng and injected fuel mass-flow ṁinj to the engine. They were selected due
to the fact that they are the main signals used to define the engine operation point in
the current map-based controller structure. The input vector could be further enhanced
by including different measured temperatures and pressures in the air intake, but since
the ambient conditions in the simulation model are held constant during training it

45



4 Training and Evaluation 4.1 Training with Engine Model

would bring no additional information. In another approach, with a goal of obtaining
a more robust policy, it would make sense to include also other signals and vary the
ambient temperature and pressure settings during training. This training approach,
however, focuses only on the feasibility of learning a “good” control strategy with the
given simulation model.

To account for the dynamic limitation in certain operation conditions of the engine,
additional inputs to the RL observation vector were given as the difference between the
last action output and the limited real output signals. So if these signals are different
from zero, the RL agent knows that the output signals were limited in some form. The
thought of giving this information to the agent is similar to the current anti wind-up
method used for the PID-controllers. The difference to classical anti wind-up is, that no
active counter-measures are taken, but the agent has to learn the best response to such
situations on its own.

Reward design The reward design for training with the large engine simulation model
was chosen to be kept rather simple. An evaluation of different rewards was already
done on the benchmark water-tank control problem in Section 3.3.2. It showed that
using a simpler reward design of the negative squared or absolute error worked better
than using more complicated sparse or shaped reward functions. Therefore, the best
working design of using the negative squared error between demand value and feedback
value is also the basis for the training with the engine air-path model. However, in this
setting not only one but two control variables exist that should follow a given demand
value, which leads to an extended reward formulation,

r(t) = −1
2

(∆λ(t)
λmax

)2

+
(

∆pim(t)
pmax

)2
 . (4.1)

Due to the differences in the value ranges of both control variables, they are additionally
normalized by dividing through the largest allowable values, that is λmax and pmax
respectively. This way, the normalized squared differences can be added without favoring
one of the two control variables.

Algorithms and Hyper-Parameters The algorithms that performed best within a rea-
sonable amount of experiments in the evaluation of the benchmark problem before were
the SAC and TD3 algorithms. This result is also in line with the assessment of the devel-
opers of the stable-baseline package, who provide some recommendations as well as tips
and tricks for dealing with various algorithms in their documentation1. For problems
with continuous actions, where only a single training process is possible concurrently,
SAC and TD3 are listed as current state-of-the-art algorithms. Therefore, and in order
to keep the amount of different training settings to a reasonable amount due to the

1See: https://stable-baselines.readthedocs.io/en/master/guide/rl_tips.html (accessed
April 24, 2021)

46

https://stable-baselines.readthedocs.io/en/master/guide/rl_tips.html


4 Training and Evaluation 4.1 Training with Engine Model

Set ID Layer norm Learning rate Buffer sizes Gamma
SAC-HP0 False 3e-4 normal 0.99
SAC-HP1 False decay(3e-4) normal 0.99
SAC-HP2 False 3e-4 large 0.99
SAC-HP3 False decay(3e-4) large 0.99
SAC-HP4 False decay(3e-4) large 0.98
SAC-HP5 True 3e-4 normal 0.99
SAC-HP6 True decay(3e-4) normal 0.99
SAC-HP7 True 3e-4 large 0.99
SAC-HP8 True decay(3e-4) large 0.99
SAC-HP9 True decay(3e-4) large 0.98

Table 4.1: Set of modified SAC hyper-parameters in training

training time issues explained later in this section, only those two algorithms are used
for training with the large engine air-path simulation model.

Unlike in the previous evaluation with the exemplary problem, the goal of this training
is to actually try and find the best control strategy possible. For that reason, sets with
different hyper-parameters were defined to see how much influence a change of these
training parameters has on the final performance of the learned policies.

A great help with the choice of the hyper-parameter sets was the RL Baselines Zoo
[34], which is a collection of trained RL agents with tuned hyper-parameters on different
benchmark example problems. Because for both selected algorithms the best hyper-
parameters on different problems with varying complexity are documented, different
well working parameter-sets could be identified that are worth a try. Also, a lot of
unnecessary parameter variations could be ruled out by using the tuned hyper-parameter
documentation. For instance, the documentation of the SAC algorithm shows that the
best results on all problems were always achieved with the initial policy network layout
(two hidden layers of 64 neurons each).

The selected sets of hyper-parameters that are evaluated with the SAC algorithm are
shown in Table 4.1. The first column shows a “Set-ID”, that is used to refer to experi-
ments more easily. The second column describes if layer normalization (see [35]) is used
to normalize the layer outputs of the policy neural network. The entries in the “learning
rate” column tell if either the given rate was used directly or a decay(x) function is ap-
plied, that linearly decreases the given rate until the end of the experiment. The “buffer
sizes” column tells if either the “normal” setting, with initial sizes for the replay buffer
and initial batch size for gradient updates, or a “large” setting, with a buffer size of
100.000 (2 times the initial value) and a batch size of 256 (4 times the initial value) was
used. Finally, the last column shows the used discount factor “gamma” for the expected
reward formulation. The first hyper-parameter set SAC-HP0 corresponds to the use of
only initial algorithm parameters.

47



4 Training and Evaluation 4.1 Training with Engine Model

Set ID Layer size Learning rate Action noise Buffer sizes
TD3-HP0 (64, 64) 3e-4 None normal
TD3-HP1 (64, 64) 1e-3 N (0, 0.1) normal
TD3-HP2 (64, 64) 1e-3 N (0, 0.1) large
TD3-HP3 (64, 64) 1e-3 N (0, 0.2) large
TD3-HP4 (128, 128) 1e-3 None normal
TD3-HP5 (128, 128) 1e-3 N (0, 0.1) normal
TD3-HP6 (128, 128) 1e-3 N (0, 0.1) large
TD3-HP7 (128, 128) 1e-3 N (0, 0.2) large
TD3-HP8 (400, 300) 1e-3 None normal
TD3-HP9 (400, 300) 1e-3 N (0, 0.1) normal
TD3-HP10 (400, 300) 1e-3 N (0, 0.1) large
TD3-HP11 (400, 300) 1e-3 N (0, 0.2) large

Table 4.2: Set of modified TD3 hyper-parameters in training

Similarly, Table 4.2 shows the selected sets of hyper-parameters that are evaluated with
the TD3 algorithm. Here, in contrast to the SAC parameters, also the network layout
is changed by varying the number of neurons in the two hidden layers. This is shown
by the values in the “layer size” column. The TD3 parameter documentation shows
that all slightly more complicated problems work better with a higher learning rate of
1e-3 instead of the initial 3e-4. For this reason, apart from the initial TD3-HP0 set,
all variations use this setting, which can be seen in the “learning rate” column. The
TD3 algorithm also works better when noise is added to the selected actions in order
to enhance the exploration. The added noise can be seen in the “action noise” column,
where N (0, σ2) refers to a normal distribution with zero mean and a variance of σ2.
The entries in the “buffer sizes” column have the same meaning as in the SAC hyper-
parameter table described before.

Experiment Input Generation The recompilation of the simulation model at the start
of each new episode is partly responsible for the long training time with the large engine
model. Therefore, it is desirable to reduce the amount of episodes needed for training,
as long as the training process is not harmed. An insight of the evaluation with the
benchmark water-tank control problem in Section 3.3.2 was, that such a reduction of
training episodes can be achieved at the cost of longer experiments, but the learning
curves were still comparable. Therefore, it makes sense to train the large engine model
with longer episodes consisting of multiple steps of the engine operation point instead
of just using single step experiments.

The operation point of the engine is mainly defined by two external input signals to
the simulation, the demanded engine speed and torque. To define a training episode,
random operation points are generated, consisting of random speed and torque demands
within fixed limits. These points are held for a duration of 4 seconds before a transition

48



4 Training and Evaluation 4.1 Training with Engine Model

to a new random point. In total, 4 such operation points are generated per episode
with a total duration of 32 seconds. Figure 4.1 shows an example of a random training
episode.

Figure 4.1: Example of the generated inputs to the engine model that define one training
episode. It contains four randomly generated engine operation points define
by a engine speed and toque demand.

The design of experiment inputs also had to take into account that certain engine con-
ditions can lead to non-controllable states of the engine, after which the existing control
software arbitration switches to an open-loop control mode. Such switches are of course
undesirable during training because in these cases the inferred actions of the RL agent
are not used and the agent has no influence on the system behaviour anymore. As a
consequence, the external input signals were limited in a way that no non-controllable
states are reached during training. These limitations include that a certain minimal
engine speed and torque is required at all times (the engine is not idling) and rapid
accelerations are limited.

4.1.2 Training time problems

The provided engine simulation model was designed and calibrated by engineers at AVL
and serves as an accurate representation of a real diesel engines behaviour. As a result of
the provided model accuracy, the simulation model is also correspondingly complex and
therefore computationally expensive to run. Combined with the fact that reinforcement

49



4 Training and Evaluation 4.1 Training with Engine Model

learning has a poor data efficiency and multiple hundreds or thousands of experiments
are needed to learn an appropriate policy (as seen before in Section 3.3.2), this can lead
to unreasonably long training times in this setting.

Training time analysis To get a better idea of the causes for the long training time
with the engine model, a short analysis of the issues and their causes is provided here.
Of course, the main issue is the aforementioned size and complexity of the diesel engine
simulation model, but other factors like the behaviour of Simulink also play a role.
As already discussed in the considerations about the experiment inputs, Simulink re-
compiles the model at the start of each new training episode. On the small benchmark
problem this was less of an issue but the large engine simulation model needs about 50.4
seconds for one model compilation alone (measured using the tic- and toc-commands
in Matlab). These re-compilations are in fact unnecessary because structurally nothing
changes in the model from one episode to another. Preventing them could reduce the
overall training time a lot, but due to the proprietary nature of Matlab and Simulink,
this behaviour could not be changed.

Another factor for the long training time is the constant pausing and continuation of
the Simulink model due to the training setup needed for RL training. It leads to an
execution time of about 1.35 seconds for just one 100ms time-step in the environment
(again measured in Matlab). One whole experiment of 32 seconds therefore needs about
482 s (including the compilation time at the beginning) just for the step-wise model
execution of one episode, without the training time of the RL algorithm factored in. For
comparison, if the same model is executed continuously (for example with the sim()-
command in Matlab), it finishes in about 145 s.

Measurements in Python showed that the whole training time for one episode on average
is about 610 seconds (on a standard office PC), which includes model compilation, step-
wise execution and RL training updates. This shows that also the learning algorithms
need some time to update their policies, whereby training the actor and critic neural
networks presumably is the main time-consuming task. For this reason, many off-policy
algorithms (for example PPO) are able to be trained with multiple environments that
generate experience in parallel while the policy updates happen in a separate process.
Due to the high computational requirements imposed by the simulation model, however,
parallel training is not possible with the provided hardware.

Model Simplification To somehow reduce the long training times that are needed with
the large air-path model, the structure of the model itself was further analysed. The
whole diesel engine simulation model actually consists of two main simulations models,
one for the internal engine dynamics and one for the exhaust-gas after-treatment system
(EAS), to be able to accurately model the engine and tailpipe emissions. Since the EAS
has little influence on the rest of the engine air-path, this gave rise to the idea to simply
remove this part of the simulation. The influence of this system on the rest of the engine

50



4 Training and Evaluation 4.2 Evaluation

air-path is, that a certain back-pressure is generated depending on the loading of the
different catalysts and filters. When removing the model, the corresponding temperature
and pressure signals that exist as a feedback to the engine dynamics model were simply
set to ambient conditions. As a result, the simulation time for one 100ms time-step of
the model in Matlab improved to about 0.75 seconds and the whole training time for
one episode in Python fell to about 350 seconds, which corresponds to almost a halving
of the execution time with the full model.

To evaluate the qualitative effects of the removed EAS on the characteristic variables
of the air-path control, several experiments with the full and the simplified model were
done. A comparison of the simulated air-excess ratio λ, the intake manifold pressure pim
and temperature tim, as well as the output actuator positions of the existing controller
showed, that the relative errors of all simulated signals with the simplified model were
within ±5% of the original signal. This small loss of accuracy can be justified by the
large time savings during training. Also, the following evaluations are always done with
the full, non-simplified model including the exhaust-gas after-treatment system and the
simplified model is just used for training.

4.2 Evaluation

In this section, the necessary steps to evaluate the trained RL agents are described and
an overview of the test cycles that are are used for the evaluation is given.

It should be noted that the evaluation only happens on the provided simulation model
of a heavy-duty diesel engine. Although this accurately calibrated model represents a
“good” representation of a diesel engine and the full model without simplifications is
used, the results on a real diesel engine could still be slightly different.

Since the RL agents are trained only in simulation, their performance on the real system
can vary depending on the mismatch between the real and simulated process. In liter-
ature, this problem is known as simulation-to-reality gap. There are several approaches
to close this gap, for instance pre-training the policy in simulation and then fine-tuning
it on the real hardware. Another approach could be domain randomization, which is
a technique where certain parameters of the simulated model are randomized, so that
the agent interacts with many different simulation models and thereby learns a more
general policy. A successful example of this technique was shown for example in [36],
where the authors were able to transfer a policy, that was trained solely in randomized
simulations, to a complex robotic hand and perform complex dexterous movements with
it.

However, in this thesis an evaluation of the learned policies on a real diesel engine
was not possible due to time and budget reasons. As a result, approaches to handle
the simulation-to-reality gap are not further discussed here but could be an interesting
subject of future research projects.

51



4 Training and Evaluation 4.2 Evaluation

4.2.1 Policy Implementation

To be able to better evaluate the trained agents, their final policies had to be imple-
mented in the original Simulink model, in order to test the learned strategies with new
unseen experiments. This sole execution of a trained neural network without learning is
called inference. It is done to be able to run any sorts of evaluation experiments and not
just test with the same kind of episodes used in training. It was also a requirement of
this thesis that the final trained RL controller is able to run inside the original Simulink
model, so that the trained policy is universally applicable.

Figure 4.2: Implementation of the policy network in Simulink for better evaluation. The
input signals apart from the discussed input vector correspond to the trained
network weights exported from Python. The three output signals correspond
to the actuator positions of the EGR, throttle and waste-gate valves.

Figure 4.2 shows the implementation of the policy network in Simulink as a Matlab-
function-block. The SAC and TD3 algorithms that are used for training are both actor-
critic methods, which means that one neural network is used for the approximation of
the policy and one network (or more) approximates a value function. For this evaluation
part, only the policy network is of interest. To run a trained neural network in inference,
it is sufficient to know the layout of the network and the final trained weights and biases.
Since training is done with different network layouts with varying layer sizes and layer
normalization active or not, a Matlab-function-block was used for the implementation
in Simulink. This way, multiple variants of network layouts can be realized with a single
block. The weights of the trained policy network can be exported from Python and are
used in Simulink via the Matlab workspace.

52



4 Training and Evaluation 4.2 Evaluation

4.2.2 Stationary and Transient Test Cycles

For the evaluation of the different algorithms and hyper-parameters, their performance
is measured on two standard engine test cycles. These test-cycles, called World Har-
monized Stationary Cycle (WHSC) and World Harmonized Transient Cycle (WHTC)
were defined in the the Global Technical Regulation (GTR) No. 4 [37] developed by
the United Nations Economic Commission for Europe (UNECE). They were created as
a unifying test procedure for heavy-duty engines covering typical driving conditions in
the EU, USA, Japan and Australia.

The WHSC test is a steady-state engine test schedule that consists of different modes
with different engine speed and torque demands. A graphical view of these modes is
shown in Figure 4.3. The time from 0 to about 200 seconds at the beginning of the test
serve as a pre-conditioning of the engine in idle mode. During this time typically no
closed-loop control of the desired variables for the air-path is possible.

Figure 4.3: Input signals to the engine model according to the World Harmonized Sta-
tionary Cylce (WHSC).

The WHTC also contains several motoring segments. A graphical view of the engine
speed and torque demand values over time is shown in Figure 4.4. It can be seen that it
is a lot more dynamic than the WHSC test. The motoring segments are defined by zero
torque demand and minimum engine speed. During these times, a closed-loop control of
the the air-path is not possible, which means that several switches between open- and
closed-loop happen during the test cycle.

53



4 Training and Evaluation 4.3 Results with first use-case

Figure 4.4: Input signals to the engine model according to the World Harmonized Tran-
sient Cylce (WHTC).

4.3 Results with first use-case

In this section, the results of evaluating different training variants with the diesel engine
simulation model are discussed. First, a comparison of different algorithms and hyper-
parameters in the setting of the first use-case is shown, followed by a more detailed
examination of the best results. The existing hand-tuned air-path controller in the
provided model serves as a reference for comparing all learned strategies in this section.

4.3.1 Algorithm and hyper-parameter variations

All variations were trained for 1000 episodes in the training setup explained in Sec-
tion 4.1. The training time for each episode with the simplified model was about 350
seconds on average, which accumulates to roughly 97 hours of training for each hyper-
parameter variant. Most, but not all variants showed a converging behaviour in their
learning curves during this time. However, to obtain a fair comparison, all variants were
trained with the same number of episodes whether they converged or not.

Error measures As a main measure to compare different setting, the mean absolute
error (MAE) between the desired demand signals and the actual simulated values of the
controlled variables is used. It is a commonly used measure to compare controller results

54



4 Training and Evaluation 4.3 Results with first use-case

Stationary Test Transient Test
Lambda Boost pressure Lambda Boost pressure

Set ID MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Reference 0.08 0.212 37.92 129.39 0.180 0.319 148.00 225.05
SAC-HP0 0.538 0.726 224.33 258.96 0.514 0.742 211.56 258.43
SAC-HP1 0.387 0.503 192.06 275.47 0.322 0.449 195.56 261.33
SAC-HP2 0.226 0.319 126.07 174.63 0.242 0.385 175.58 235.16
SAC-HP3 0.453 0.628 215.76 221.34 0.438 0.522 202.89 245.71
SAC-HP4 0.363 0.443 233.16 342.87 0.343 0.441 217.37 286.20
SAC-HP5 0.431 0.501 245.59 308.43 0.583 0.766 233.96 288.14
SAC-HP6 0.521 0.684 142.50 209.27 0.504 0.698 184.81 252.10
SAC-HP7 0.341 0.494 249.93 359.96 0.268 0.383 199.39 274.48
SAC-HP8 0.262 0.366 150.19 190.95 0.256 0.376 188.69 241,02
SAC-HP9 0.535 0.716 256.56 311.29 0.513 0.726 217.65 263.50
TD3-HP0 0.688 0.799 389.23 453.81 0.639 0.827 296.19 358.45
TD3-HP1 0.350 0.432 237.13 346.28 0.320 0.422 190.15 257.26
TD3-HP2 0.402 0.498 240.86 333.75 0.355 0.491 206.27 274.64
TD3-HP3 0.436 0.613 197.51 239.88 0.487 0.681 200.20 260.50
TD3-HP4 0.538 0.726 224.48 259.08 0.514 0.742 211.60 258.47
TD3-HP5 0.357 0.441 239.97 345.38 0.342 0.442 221.20 291.20
TD3-HP6 0.341 0.425 209.76 316.97 0.331 0.432 205.31 280.84
TD3-HP7 0.352 0.434 225.53 329.22 0.339 0.438 217.83 285.56
TD3-HP8 0.365 0.454 249.09 336.28 0.350 0.447 221.72 286.08
TD3-HP9 0.361 0.483 218.76 332.79 0.351 0.483 217.18 276.23
TD3-HP10 0.538 0.726 224.51 259.14 0.514 0.742 211.56 258.40
TD3-HP11 0.324 0.416 209.38 332.74 0.355 0.472 202.08 276.76

Table 4.3: Results of algorithm and hyper-parameter variations when training in the
setting of the first use-case.

because all deviations from the demands signal are proportionally weighted. Another
option to compare the results is the root-mean-square-error (RMSE), where each error
is weighted proportional to the square of the error size. Therefore, larger errors and
overshoots have more impact. Since the two measures provide different information,
both values are given in Table 4.3 to enable a better evaluation.

Result discussion Table 4.3 shows the results of the training evaluations with different
hyper-parameters for both algorithms, trained in the setting of the first use-case. All
variants are evaluated with both test cycles and the results for lambda and boost pressure
control are given separately. The first column shows the set-IDs of the used hyper-
parameter setting (that were defined in Tables 4.1 and 4.2). The first row additionally
shows the results of the reference controller, that was explained in detail in Section 1.2.

55



4 Training and Evaluation 4.3 Results with first use-case

It can be seen that none of the trained variants achieves lower error measures than the
reference controller, neither on the lambda nor on the boost pressure control. The best
training results overall could be achieved with the SAC-HP2 set, that uses the SAC
algorithm with a fixed learning rate of 3e-4, the default policy network layout without
layer normalization, the initial reward-discount-factor γ = 0.99 and the “large” setting
for the replay buffer and batch size. On the stationary WHSC test, the MAE of all
trained RL controllers is even several times higher. This already is an indication that
the RL controllers have problems holding stationary points accurately. On the dynamic
WHTC test, however, the error measures of some trained variants come close to the
reference results. This means that the RL controllers are able to follow given demand
signals even in transient conditions.

When comparing the results of the different hyper-parameter sets for the SAC and TD3
algorithm independently, it can be seen that all used parameter-modifications worked
better than the initial settings SAC-HP0 and TD3-HP0. This is likely due to the fact that
hyper-parameters were only changed if they also led to improvements in the benchmark-
problem-collections of the RL Baselines Zoo (see [34]). Some observations for future
hyper-parameters choices are visible from a more detailed look at the results in Table 4.3.
If settings with only one different hyper-parameter are compared, that are otherwise
identical, it can be seen, for instance, that larger replay buffers and batch sizes are
beneficial when training with the SAC algorithm. Or, when training with the TD3
algorithm, adding a small action noise with a variance σ2 = 0.1 always yields better
results. But other than that, no clear structure due to the choice of the hyper-parameters
is noticeable. In reinforcement learning, the best parameter setting always depends on
the specific problem. This shows that many variations with different algorithms and
hyper-parameters are necessary to find good results and justifies the amount of training
time that was spend on this variation.

4.3.2 Qualitative results

In addition to comparing the training results with different settings through several
numerical error measures, a qualitative analysis of the best results was also carried out.
For this purpose, the performance of the trained RL controller with the best hyper-
parameter set SAC-HP2 was compared to the reference controller on the stationary and
transient tests in more detail.

Steady-state case The evaluation of the best training results on the steady-state
WHSC test are shown in Figure 4.5. Only the period of time in which closed-loop
control was possible is shown. It can be seen that the RL controller can follow the given
demand signals for lambda and boost pressure, but is not stationary accurate. The
reference controller on the other hand can follow both demand signals nearly perfectly.
It should be noted, however, that the reference controller was hand-tuned on similar

56



4 Training and Evaluation 4.3 Results with first use-case

Figure 4.5: Comparison of trained RL controller with hyper-parameter set SAC-HP2
against reference controller on the WHSC test. The time scale excludes the
pre- and post-conditioning phases of the engine where closed-loop control is
inactive.

engine operation points. Interestingly, the RL controller performs better in some oper-
ation points than it does in others. For instance, during about 360 and 385 seconds,
the control performance of the RL controller is even better that the reference controller.
However, in other operation points, for example between 325 and 360 or between 385
and 420 seconds, there is a large difference in the controlled lambda of the RL controller
and the demand value. Such operation points with a high lambda demand are char-
acterised by a low engine speed and torque demand. A possible explanation for this
behavior could be, that operation points with low engine speed and torque demand were
underrepresented during the training process. As explained in Section 4.1, the training
episodes contain randomly generated operation points and most combinations of engine
speed and torque do not cause such high lambda requirements.

Transient case The evaluation of the best training results on the transient WHTC test
are shown in Figure 4.6. It can be seen that the results with the RL controller look very
similar in comparison to the reference controller and both are able to follow the given
demand signals for lambda and boost pressure for most parts of the test cycle. However,
due to the long duration of the test with 1800 seconds, details are not visible. Also,
the test contains several motoring segments where a closed-loop control is not possible
and therefore open-loop control is used. To better see when this happens and to have a
more detailed view, Figures 4.7 and 4.8 show excerpts from the WHTC test evaluation
between 785 and 845 seconds.

57



4 Training and Evaluation 4.3 Results with first use-case

200 400 600 800 1000 1200 1400 1600 1800

time in seconds

5

10

15

20

a
ir
-e

x
c
e
s
s
 r

a
ti
o
 l
a
m

b
d
a

Lambda during WHTC

lambda demand

reference controller

RL controller

200 400 600 800 1000 1200 1400 1600 1800

time in seconds

1000

1500

2000

2500

3000

b
o
o
s
t 
p
re

s
s
u
re

 i
n
 m

b
a
r

Boost pressure during WHTC boost pressure demand

reference controller

RL controller

Figure 4.6: Comparison of trained RL controller with hyper-parameter set SAC-HP2
against reference controller on the full WHTC test.

The upper part of Figure 4.7 shows a more detailed comparison of the lambda control
results with the trained RL controller and the reference controller. In the lower part,
the time periods with disabled close-loop control are marked. For the comparison, these
times in open-loop mode should be ignored since the RL controller had no influence on
the system. During the times with active RL control, however, it can be seen that de-
manded lambda signal can be followed surprisingly well, even compared to the reference
controller.

Figure 4.8 similarly shows a more detailed view of the results for the boost pressure
control. Here, as well, it can be seen that the performance of the RL controller can
follow the demanded boost pressure signal nearly as good as the reference controller.

However, these figures just show excerpts from the whole transient test case. In order to
have a more meaningful comparison, an additional statistical evaluation of the relative
errors between demand signals and simulated control values was done. Due to the
frequent switches between open- and closed-loop control modes during the transient
WHTC test, this statistical analysis only considers the times with active closed-loop
control. The results of this statistical evaluation for the control variable lambda can be
seen in Figure 4.9.

The upper part of Figure 4.9 shows the relative errors between the demanded and sim-
ulated lambda values generated by the RL controller, for the times with active closed-
loop control. The lower part of the figure shows an estimation of the probability density

58



4 Training and Evaluation 4.3 Results with first use-case

Figure 4.7: Detailed comparison of lambda control between trained RL controller with
hyper-parameter set SAC-HP2 and reference controller on excerpt from
WHTC test.

Figure 4.8: Detailed comparison of boost pressure control between trained RL controller
with hyper-parameter set SAC-HP2 and reference controller on excerpt from
WHTC test.

59



4 Training and Evaluation 4.3 Results with first use-case

function (PDF) for the relative errors of the reference controller and the trained RL
controller. When only looking at the relative errors, a lot of high spikes are visible due
to overshooting or undershooting of the demand signal. However, the PDF of the errors
shows that most relative errors actually are within a range of ±10% compared to the
demand value. To be more precise, 76.9% of all relative lambda errors of the RL con-
troller and 84.1% of the relative errors of the reference controller fall within this ±10%
interval. Although these are good results for the RL controller, the reference controller
still performs better. It can also be seen from the shape of the PDFs, that most of the
reference controller errors are in a narrow band around zero and then spread out in a
bell shape, while most errors of the RL controller are near −10%. Therefore, is can be
concluded that the results with this trained RL controller are acceptable for a transient
test cycle, but the reference controller still performs better.

Figure 4.9: Statistical evaluation of lambda control results of trained RL controller with
hyper-parameter set SAC-HP2 and reference controller on WHTC test. Only
times with active closed-loop control were considered.

The statistical analysis of the errors for the boost pressure control has shown the same
behaviour. Here, 69.8% of all relative boost pressure errors of the RL controller are
within a ±10% interval, while the reference controller achieves 71.5%, but in a much
more bell-shaped form.

60



4 Training and Evaluation 4.4 Results with second use-case

4.4 Results with second use-case

This section shows the evaluation results of training with the diesel engine simulation
model in the setting of the second use-case. Therefore, again a comparison of different
algorithms and hyper-parameters trained for 1000 episodes was done. However, for this
evaluation, the number of trained variants was reduced due to the long training time of
each setting and the less promising approach. The evaluations on the small benchmark
problem in Section 3.3.2 already showed that training in the setting of the second use-
case was not as successful as in the first use-case setting. As a result, Table 4.4 only
shows the initial settings of both algorithms and the respective best settings of the
evaluation done before.

Stationary Test Transient Test
Lambda Boost pressure Lambda Boost pressure

Set ID MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Reference 0.08 0.212 37.92 129.39 0.180 0.319 148.00 225.05
SAC-HP0 0.665 0.780 368.24 437.02 0.616 0.816 296.95 363.48
SAC-HP2 0.392 0.457 251.71 323.87 0.426 0.539 223.58 258.17
TD3-HP0 0.675 0.785 376.23 421.53 0.621 0.795 289.92 348.37
TD3-HP1 0.405 0.522 261.37 366.78 0.491 0.563 230.18 301.26
TD3-HP6 0.349 0.451 242.53 296.64 0.387 0.462 210.13 257.46

Table 4.4: Results of algorithm and hyper-parameter variations when training in the
setting of the second use-case.

For the SAC algorithm, the best results in the first use-case had been achieved with
the hyper-parameter set SAC-HP2. Therefore, the initial algorithm setting SAC-HP0
as well as the best setting from before, SAC-HP2, are also evaluated in the setting of
the second use-case here. However, the results in Table 4.4 show that for both settings,
the performance in the second setting is worse than the previously seen results. This is
true for all error metrics and both the stationary and transient test cycle. For the TD3
algorithm, in the first use-case evaluation the best results on the stationary test cycle
were achieved with the hyper-parameter set TD3-HP6, while the best results on the
transient test cycle resulted from the TD3-HP1 set. Here, in the setting of the second
use-case, the TD3-HP6 set consistently gives the best results, also when compared to
the SAC algorithm. However, when compared to the first use-case, this result would
only be considered mediocre.

In the end, as already seen before in the evaluation with the small benchmark problem,
it can be concluded that the approach of the second use-case to learn time-varying PID-
parameters instead of the actual actuator signals, does not deliver control strategies with
a comparable performance to the first use-case if the same setting and training times
are used.

61



5 Conclusion and Outlook

This chapter gives a conclusion of the thesis by reviewing the results of building a self-
learning data-driven controller via deep reinforcement learning, applied to the air-path
of diesel engines. Finally, the current problems of the RL methodology are discussed
and an outlook on possible future improvements is given.

5.1 Conclusion

Due to the complex non-linear problem that an air-path control for diesel engines repre-
sents, the design of a properly performing engine control strategy is a challenging task.
The existing control system that was part of the provided diesel engine simulation model
is able to produce satisfactory results through a gain-scheduled PID approach that needs
extensive calibration. The main objective of this thesis was to avoid this effort by build-
ing a self-learning controller that is able to figure out a “good” control strategy on its
own in a data-driven way.

Therefore, the provided diesel engine simulation model was used as an environment
to train several deep RL agents in multiple variants. This approach to build a self-
learning system, as well as several training aspects, were evaluated on a small exemplary
benchmark problem with promising results. It could be shown that with the presented
approach, acceptable learning outcomes can be achieved.

However, the model size and complexity of the diesel engine simulation model resulted in
long training times. As a consequence, compromises regarding the amount of different
training variants and training time of each variant had to be made. In general, it is
favourable to have an accurate and complex simulation model to train with, because it
better reflects the real system and therefore less mismatch between the simulated and
real process exists. This is helpful when the learned results are transferred to a real
system, due to the small simulation-to-reality gap. On the other hand, large simulation
models are harder to train with, due to the higher computing requirements and long
training times that result from their complexity. The easiest solution for this problem
would be to scale up the learning process by training with multiple parallel processes, for
example on a computing cluster. Unfortunately, this was not possible in this thesis but
should be considered for future projects. Typically, more training also leads to better
results when using deep RL.

62



5 Conclusion and Outlook 5.2 Outlook

If the results obtained by training with the engine simulation model are compared with
the existing control strategy, which is used as a reference, it can be seen that none
of the learned variants could achieve a better control performance. Evaluation on a
steady-state test cycle showed that the RL controller can follow a given setpoint signal
but is not stationary accurate, which leads to a worse performance in comparison to
the reference controller. On a transient test cycle, however, the achieved performance
of the RL controller was similar to the reference controller. Since the transient test
cycle provides a better representation of real driving conditions, these good results can
somewhat compensate for the poor results in the steady-state case.

Overall, the results in this thesis serve as a proof of concept that learning a “good”
control strategy in a data-driven approach is possible in principle. Although the results
were not perfect, they provide a solid basis for further research projects.

5.2 Outlook

Despite the promising results in this thesis and several successes of deep RL in areas
like playing games [8][9][10], the methodology still has a lot of flaws. Several examples
of why deep RL is hard and does not work well on many problems yet are given for
instance in [38]. There, it is argued that deep RL so far only works “well” in settings
where it is easy and cheap to generate experience, for instance games. Unfortunately,
for most real-world settings this is not true and other methods like optimization-based
control work better and more reliable than deep RL.

However, an advantage of the RL approach is that, theoretically, it is applicable to any
kind of control problem, even if very little information about the problem is available.
This makes it a very flexible, but also error-prone method, because no prior information
about the problem is used or can be used. All model-free RL algorithms have to learn
about their specific problem setting from scratch. For that reason they naturally suffer
from the exploration-exploitation dilemma (explained in Section 2.2.1) and have a very
poor sample efficiency.

Model-based reinforcement learning could help to improve the sample efficiency but the
problem with this methodology seems to be that learning good models and a good policy
at the same time is challenging. However, lot of research is still done in this area and
recent approaches come close to the performance of the current state-of-the-art model-
free deep RL algorithms [39]. Some approaches even deliver better results under certain
conditions [40].

Another interesting technique for future research projects could be offline reinforcement
learning. The idea thereby is to use large amounts of previously collected interaction
data to train a policy completely offline, instead of relying on step-wise interaction with
a real environment. In problem settings similar to this thesis, this could solve several
issues because the learning process could be decoupled from the large and complex

63



5 Conclusion and Outlook 5.2 Outlook

simulation model. A good overview of the general concept of offline RL and its current
limitations is given in [41]. A huge challenge when learning from offline data is the
so called distribution mismatch between any dataset with logged interactions and real
actions, because it becomes unclear which reward should be provided if a different action
is taken than in the collected data. However, despite these problems, optimistic results
could be achieved with offline RL so far [42] and recent research shows that a combination
of previously collected demonstration data and online experience seems to be a promising
and practical way to learn policies [43].

64



Bibliography
[1] E. R. Gelso and J. Dahl, “Air-path control of a heavy-duty egr-vgt diesel engine,”

IFAC-PapersOnLine, vol. 49, no. 11, pp. 589–595, 2016, 8th IFAC Symposium on
Advances in Automotive Control AAC 2016. doi: https://doi.org/10.1016/j.
ifacol.2016.08.086.

[2] B. Kekik and M. Akar, “Model predictive control of diesel engine air path with
actuator delays,” IFAC-PapersOnLine, vol. 52, no. 18, pp. 150–155, 2019, 15th
IFAC Workshop on Time Delay Systems TDS 2019. doi: https://doi.org/10.
1016/j.ifacol.2019.12.222.

[3] H. Grieshabe and T. Raatz, “Basic principles of the diesel engine,” in Diesel En-
gine Management: Systems and Components, K. Reif, Ed. Springer Fachmedien
Wiesbaden, 2014, pp. 16–33. doi: 10.1007/978-3-658-03981-3_3.

[4] “ACEA report vehicles in use Europe,” European Automobile Manufacturers As-
sociation (ACEA), Tech. Rep., Jan. 2021. [Online]. Available: https : / / www .
acea.be/uploads/publications/report-vehicles-in-use-europe-january-
2021.pdf.

[5] J. Ullmann and T. Allgeier, “Cylinder-charge control systems,” in Diesel Engine
Management: Systems and Components, K. Reif, Ed. Springer Fachmedien Wies-
baden, 2014, pp. 46–59. doi: 10.1007/978-3-658-03981-3_5.

[6] J. O. Stein, “Minimizing emissions inside of the engine,” in Diesel Engine Man-
agement: Systems and Components, K. Reif, Ed. Springer Fachmedien Wiesbaden,
2014, pp. 178–199. doi: 10.1007/978-3-658-03981-3_18.

[7] F. Landhäußer, M. Heinzelmann, A. Michalske, M. L. Susaeta, M. Grosser, J.
Feger, L.-M. Fink, W. Gerwing, K. Grabmaier, B. Illg, J. Kurz, R. Mayer, D.
Ottenbacher, A. Werner, J. Wiesner, and M. Walther, “Electronic diesel control
(EDC),” in Diesel Engine Management: Systems and Components, K. Reif, Ed.
Springer Fachmedien Wiesbaden, 2014, pp. 220–271. doi: 10.1007/978-3-658-
03981-3_20.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis, “Human-level control through deep reinforcement learning,” Nature, vol. 518,
pp. 529–533, Feb. 2015. doi: 10.1038/nature14236.

65

https://www.acea.be/uploads/publications/report-vehicles-in-use-europe-january-2021.pdf
https://www.acea.be/uploads/publications/report-vehicles-in-use-europe-january-2021.pdf
https://www.acea.be/uploads/publications/report-vehicles-in-use-europe-january-2021.pdf


Bibliography

[9] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484–489, Jan. 2016. doi: 10.1038/nature16961.

[10] OpenAI, : C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J.
Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter,
J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang, Dota 2 with
large scale deep reinforcement learning, 2019. arXiv: 1912.06680 [cs.LG].

[11] K. P. Murphy, Machine Learning: a Probabilistic Perspective. MIT Press, 2012,
https://www.cs.ubc.ca/~murphyk/MLbook/.

[12] F. Posada and A. Bandivadekar, “Global overview of on-board diagnostic (obd)
systems for heavy-duty vehicles,” Int. Counc. Clean Transp. http://www. theicct.
org/sites/default/files/publications/ICCT__Overview__OBD-HDVs__20150209.
pdf, 2015.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–
44, May 2015. doi: 10.1038/nature14539.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, 2018, http://incompleteideas.net/book/the-book.html.

[15] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is direct
adaptive optimal control,” IEEE Control Systems Magazine, vol. 12, no. 2, pp. 19–
22, 1992. doi: 10.1109/37.126844.

[16] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine Learning, vol. 8,
pp. 279–292, May 1992. doi: 10.1007/BF00992698.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, Playing atari with deep reinforcement learning, 2013. arXiv: 1312.5602
[cs.LG].

[18] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, 1992. doi: 10.
1007/BF00992696.

[19] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deter-
ministic policy gradient algorithms,” in Proceedings of the 31st International Con-
ference on International Conference on Machine Learning - Volume 32, ser. ICML’14,
Beijing, China: JMLR.org, 2014, I–387–I–395. doi: 10.5555/3044805.3044850.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning.,” in ICLR
(Poster), 2016. [Online]. Available: http://arxiv.org/abs/1509.02971.

[21] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust region policy
optimization, 2017. arXiv: 1502.05477 [cs.LG].

66

https://www.cs.ubc.ca/~murphyk/MLbook/
http://incompleteideas.net/book/the-book.html
http://arxiv.org/abs/1509.02971


Bibliography

[22] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951. doi: 10.1214/aoms/
1177729694.

[23] S. Kakade, “A natural policy gradient,” Advances in Neural Information Process-
ing Systems, vol. 14, pp. 1531–1538, Jan. 2001.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy
optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

[25] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor, 2018. arXiv:
1801.01290 [cs.LG].

[26] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, Reinforcement learning with deep
energy-based policies, 2017. arXiv: 1702.08165 [cs.LG].

[27] S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error
in actor-critic methods, 2018. arXiv: 1802.09477 [cs.AI].

[28] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback control: Chal-
lenges and benchmarks from technical process control,” Machine Learning, vol. 84,
pp. 137–169, Jul. 2011. doi: 10.1007/s10994-011-5235-x.

[29] X.-S. Wang, Y.-H. Cheng, and S. Wei, “A proposal of adaptive pid controller based
on reinforcement learning,” Journal of China University of Mining and Technology,
vol. 17, no. 1, pp. 40–44, 2007.

[30] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu, Stable baselines, https://github.com/hill-a/stable-baselines,
2018.

[31] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow:
Large-scale machine learning on heterogeneous systems, Software available from
tensorflow.org, 2015. [Online]. Available: https://www.tensorflow.org/.

[32] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, Openai gym, 2016. eprint: arXiv:1606.01540.

[33] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T.
Rothörl, T. Lampe, and M. Riedmiller, Leveraging demonstrations for deep rein-
forcement learning on robotics problems with sparse rewards, 2018. arXiv: 1707.
08817 [cs.AI].

67

https://github.com/hill-a/stable-baselines
https://www.tensorflow.org/


Bibliography

[34] A. Raffin, RL baselines zoo, https://github.com/araffin/rl-baselines-zoo,
2018.

[35] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, 2016. arXiv: 1607.
06450 [stat.ML].

[36] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor,
J. Tobin, P. Welinder, L. Weng, and W. Zaremba, Learning dexterous in-hand
manipulation, 2019. arXiv: 1808.00177 [cs.LG].

[37] UNECE, Global Technical Regulation No.4 (WHDC), 1998. [Online]. Available:
https : / / www . unece . org / fileadmin / DAM / trans / main / wp29 / wp29wgs /
wp29gen/wp29registry/ECE-TRANS-180a4e.pdf.

[38] A. Irpan, Deep reinforcement learning doesn’t work yet, https://www.alexirpan.
com/2018/02/14/rl-hard.html, 2018.

[39] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang,
P. Abbeel, and J. Ba, Benchmarking model-based reinforcement learning, 2019.
arXiv: 1907.02057 [cs.LG].

[40] M. Janner, J. Fu, M. Zhang, and S. Levine, When to trust your model: Model-based
policy optimization, 2019. arXiv: 1906.08253 [cs.LG].

[41] S. Levine, A. Kumar, G. Tucker, and J. Fu, Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems, 2020. arXiv: 2005.01643 [cs.LG].

[42] R. Agarwal, D. Schuurmans, and M. Norouzi, An optimistic perspective on offline
reinforcement learning, 2020. arXiv: 1907.04543 [cs.LG].

[43] A. Nair, M. Dalal, A. Gupta, and S. Levine, Accelerating online reinforcement
learning with offline datasets, 2021. arXiv: 2006.09359 [cs.LG].

68

https://github.com/araffin/rl-baselines-zoo
https://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29wgs/wp29gen/wp29registry/ECE-TRANS-180a4e.pdf
https://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29wgs/wp29gen/wp29registry/ECE-TRANS-180a4e.pdf
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

	Abstract
	Introduction
	Air Path in Diesel Engines
	Diesel Engines
	Air Path Components

	Current Control Concept
	Characteristic values
	Controller structure
	Calibration

	Changes in the control structure

	Theory
	Machine Learning Basics
	Supervised Learning
	Reinforcement Learning

	RL Algorithms
	Tabular Solution Methods
	Deep Reinforcement Learning


	Data-Driven Controller Design
	Use Cases
	Use Case 1: Self-Learning Feedback Controller
	Use Case 2: Parameter-Learning Agent

	Learning Setup
	Environment
	Environment Interpreter
	RL Agent

	Setup Evaluation
	Problem definition
	Evaluation results


	Training and Evaluation
	Training with Engine Model
	Setup
	Training time problems

	Evaluation
	Policy Implementation
	Stationary and Transient Test Cycles

	Results with first use-case
	Algorithm and hyper-parameter variations
	Qualitative results

	Results with second use-case

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

