
Fabian Scheipel, BSc

Pa�ern recognition on parametric wafer
maps using generative adversarial

networks

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submi�ed to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science

Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, May 2021

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Abstract

During manufacturing process in semiconductor industry, a large amount of data
is produced. Measurements can be visualized with so called wafer maps. Di�erent
problems in manufacturing process may cause a decrease in production yield. Very
o�en, pa�erns on the wafer map may indicate the problems in an early stage. A
malfunctioning production tool may therefore be indicated by a well-known pa�ern.
For standard pa�ern recognition tasks, a set of labelled data is needed in order
to train classi�cation architectures. �is master thesis proposes a method using
a generative adversarial network (GAN) called BigBiGAN, which creates a low
dimensional representation of the input wafer map. By applying di�erent clustering
methods, sets of similar wafer maps can be clustered without prior knowledge. If
the network is correctly parametrized, the data is properly pre-processed and the
clustering methods are well suited, it is possible to generate labelled data sets from
real world data of any size. �is approach is able to replace the manual creation of
data sets, which is a time consuming and error prone task.

iii

Contents

Abstract iii

1 Introduction 1

2 Background 3
2.1 Wafer map images . 3

2.1.1 Missing data . 4
2.1.2 Scaling and normalization 5
2.1.3 Additional pre-processing steps 7

2.2 Classical pa�ern recognition . 8
2.3 Feed forward neural networks (NNs) 9

2.3.1 Neurons . 10
2.3.2 Training a neural network 11

2.4 Convolutional neural networks (CNNs) 14
2.4.1 Convolution function . 14
2.4.2 Convolutional layers . 15

2.5 Generative adversarial networks (GANs) 17
2.5.1 BigBiGAN . 17

2.6 Variational auto encoders (VAEs) 20
2.7 Clustering algorithms . 21

2.7.1 Centroid based clustering 23
2.7.2 Density based clustering 23

v

Contents

2.7.3 Distribution based clustering 23
2.7.4 Hierarchical clustering . 24

3 Related work 25

4 Materials and method 27
4.1 Data . 27

4.1.1 Data sets . 27
4.1.2 Pre-processing . 29

4.2 Network . 31
4.2.1 BigBiGAN . 31
4.2.2 Training . 35
4.2.3 Noise modes . 37

4.3 Clustering . 38

5 Evaluation 39
5.1 Experiments . 39
5.2 Results . 40

5.2.1 Data set (A) . 40
5.2.2 Data set (B) . 55

5.3 Discussion . 65
5.4 Future work . 66

6 Conclusion 69

Bibliography 71

A Appendix 77

vi

1 Introduction

Semiconductor industry produce a large amount of data while manufacturing pro-
cess. �ere are several methods to use this mass of data, for example standard
statistical process control (SPC). �e main purpose of evaluating the data is to
increase the yield of the production. SPC provides several statistics of all di�erent
tests measured in the production cycle. Engineers on site need to use this inform-
ation to make further classi�cation. For example, if a test exceeds some limit or
shows a strange behavior, human eye needs to classify which problem might have
occurred. �erefore, SPC is mainly used for process stabilization and not directly
as a quality measurement.
�e aim of this work is, to create a tool based on machine learning algorithms, that
recognizes di�erent pa�erns on so called wafer maps. �erefore, it will be necessary

Figure 1.1: Schematic view of the process from data set to output labels. First step is, to pre-process
the given data set followed by training a generative adversarial network (GAN), the
encoder’s output delivers a feature representation which can be clustered into di�erent
groups. �is groups are used for labelling the input data.

1

1 Introduction

to �nd out, which pa�erns are usually seen on wafers. Another open question is,
how to handle pa�erns that have not been seen before but may also cause problems.
Next to semiconductor speci�c questions, common neural network (NN) issues
will arise, as missing data handling, training data composition, over-��ing and
under-��ing issues and many more.

2

2 Background

As wafer maps are two dimensional arrays of values with multiple channels, stand-
ard pa�ern recognition tasks as applied to images can be used. �e main di�erence
between wafer maps and images is, that there are regions on the wafer map image
that consists no data [1] [2] (e.g. not tested parts, regions outside the outlining
circle). Also, values on the wafer maps may be either parametric values, which
can be of any magnitude, labeled (binned) values which has no numeric quantity,
or binary (pass/fail) values. �is are the reasons, why pre-processing (see Figure
2.1) of the data is a major task for any pa�ern recognition task regarding wafer maps.

2.1 Wafer map images

In semiconductor industry, rectangular micro chips are processed on circular, so
called wafers. During and a�er production progress, each micro chip is tested by
various electronic or mechanical measurements. In order to visualize the test para-
meters, so called wafer maps are commonly used. Wafer mapsW ∈ Rm×n×p are
two dimensional maps of sizem×n of multidimensional pmeasurement values. As
there are also binary or labelled (binned) measurements, a mapping from Z→ R is
necessary in this cases. Each individual measurement matrixWpi ∈ Rm×n can be
treated as a gray scale image. In order to be able to transform a wafer map to the

3

2 Background

Figure 2.1: Full pre-process chain. Having original wafer measurements, some missing value replace-
ment is necessary. As measurements are of various scale, some scaling and normalization
method is required, to make the wafer map images comparable and usable. In order to
�t into �xed input sizes of e.g. convolutional neural networks (CNNs) the images need
to be resized accordingly.

image space, missing data replacements need to be considered. Wafer maps are in
circular shape and outside the circular boundary there are no measurement values.
Also chips may be skipped while testing or testing process as a whole is stopped
a�er a certain threshold of failing chips.

2.1.1 Missing data

As an image pixel always consists of values in the interval [0, 1], no missing data can
be visualized without a corresponding replacement. A replacement ρ(p) = f(p,q)

is a function which is de�ned ∀q ∈ ωp over a window ωp = {q : ‖p− q‖∞ ≤ r}
centered around a missing value pixel p with a radius r. �ere are multiple ways
of de�ning f and r.

• Chip value
If the missing chip value p is inside the circular boundary of a wafer map,
it can be useful to replace the value with a dynamic function f within the
window ωp (small r).

4

2.1 Wafer map images

A missing chip value can be de�ned as erroneous or average chip. Depending
on this de�nition, a function f can be chosen.
Examples:

– Erroneous: f(p,q) = max (W(q)) ∀q ∈ ωp

– Average: f(p,q) = m(W(q)) ∀q ∈ ωp, where m(W(q)) is the Median

value of the window.

• Background value
If a missing data value p is outside of the circular boundary of a wafer
map, it is not necessary to replace the value with a dynamic function f in
a narrow neighborhood. �erefore a function f across a globally de�ned
window (whole wafer map, r =∞) will be used.
Background missing values can be de�ned constantly in order to highlight
the background equally in each wafer map. Another approach would be, to
de�ne the background as an average chip.

• Additional note to average chips
�e method f can also be a static value across multiple wafer maps. An
example would be the median value of all measurement values of the same
parameter.

2.1.2 Scaling and normalization

Gray scale images I ∈ Rm×n
[0,1] are de�ned in the interval [0, 1], therefore a normal-

ization operation n : Rm×n → Rm×n
[0,1] is needed in order to transform wafer maps

to the image space. As wafer map measurements contain outliers, a data scaling
operation s : Rm×n → Rm×n is applied to the original measurements in order to
focus on statistically signi�cant results.

5

2 Background

(a) Full range wafer map Wpi with
corresponding histogram. �e col-
oring of the wafer map image is
based on the full range. Due to a
small amount of outliers, quantiza-
tion e�ects and limited color range
lead to a mainly blue wafer map im-
age. �erefore, no pa�erns are vis-
ible for the human eye. �is is also
visible in the histogram, having a
small peak at the beginning, fol-
lowed by no or very small counts
at the rest of the histogram

(b) Scaled wafer mapWσ
pi

with corres-
ponding histogram. �e coloring
of the wafer map image is based
on the meanWpi and a multiple k
of the standard deviation σ(Wpi).
As the outliers still have an ef-
fect on the coloring, not the whole
color space is used, but some pat-
terns can be seen. �e histogram
(e) shows, that lower values are not
good represented.

(c) Scaled wafer mapWIQR
pi with cor-

responding histogram. �e color-
ing of the wafer map is based on the
Interquartile range (IQR). As out-
liers are typically within the �rst or
the fourth quartile, the color range
can be used in a be�er way. Now
also pa�erns in the blue area can
be visualized be�er, which can be
seen at the histogram (f), which is
good balanced.

Figure 2.2: Di�erent scaling modes of wafer map images.

As shown in Figure 2.2, di�erent scaling modes can be applied. Figure 2.2a shows a
wafer map visualized with its full range and its equally scaled histogram. Compared
to Figures 2.2b and 2.2c, no pa�erns can be seen on the wafer map. �is is due to
the fact, that some values on the wafer map are outliers, which scales the signi�cant
values in an inappropriate way. �erefore, statistically meaningful scaling methods
needs to be applied as shown in Figures 2.2b and 2.2c. It can be seen, that if the
histogram is equally �lled, more detailed information can be visualized from the

6

2.1 Wafer map images

image. �is procedure is also called histogram equalization in image processing [3].
Figure 2.2b shows the scaling operation σk de�ned in Equation 2.1.

σk :Wσk
pi

(x) =

Wpi − kσ(Wpi), ifWpi(x) <Wpi − kσ(Wpi)

Wpi + kσ(Wpi), ifWpi(x) >Wpi + kσ(Wpi)

Wpi(x), otherwise

(2.1)

, whereWpi is the Arithmetic Mean and σ(Wpi) is the Standard Deviation [4] of the
wafer map values.

Figure 2.2c shows the scaling operation IQR de�ned in Equation 2.2.

IQR :WIQR
pi

(x) =

Q1(Wpi), ifWpi(x) < Q1(Wpi)

Q3(Wpi), ifWpi(x) > Q3(Wpi)

Wpi(x), otherwise

(2.2)

, where Q1(Wpi) is the First �artile and Q3(Wpi) is the �ird�artile of the wafer
map values. �e di�erence between Q3 and Q1 is called Interquartile Range (IQR)
[5].

In order to transform the data to the gray scale image space in the interval [0, 1]

a normalization operation is needed. �is can be achieved by the normalization
operation n :Wn

pi
=

Ws
pi
−min (Ws

pi
)

max (Ws
pi

)−min (Ws
pi

)
, which is applied on the scaled wafer map

imageWs
pi

, where s can be an arbitrary scaling operator (e.g. σ, or IQR).

As wafer map measurements contains noise, also noise cancellation can be ap-
plied.

2.1.3 Additional pre-processing steps

In order to be able to compare wafer maps that di�ers in size and to feed the images
to image processing algorithm or deep learning networks, some image scaling is

7

2 Background

required. �erefore, standard interpolation [6] modes from image processing can
be applied. Popular interpolation modes are Bilinear interpolation [7] or Nearest
neighbor interpolation [8].
�e last step of the wafer map image pre-processing chain is Noise cancellation.
As wafer map measurements are not ideal, noise cancellation can improve results
signi�cantly. �e Gaussian Filter[9] is used to eliminate normally distributed noise.
An optimization on the gaussian �lter is the Bilateral �lter. For local outlier �ltering,
the Median �lter can be used. �ese �ltering methods are standard methods in
classical image processing. As the pre-processing chain results in a gray scale wafer
image, standard image processing steps can be applied for pa�ern recognition as
well.

2.2 Classical pa�ern recognition

Figure 2.3: Schematic pa�ern recognition chain. For both, image and reference image, the same
process is done, starting with pre-processing in order to �t to the needs of the problem
(missing value replacement, scaling, normalization, resizing). A�er feature extraction,
image features can be compared using feature matching algorithms to get a classi�cation
result.

As shown in Figure 2.3, standard pa�ern recognition consists of three parts. �e
�rst part is the pre-processing. �is was already shown in 2.1. �e second step

8

2.3 Feed forward neural networks (NNs)

is the feature extraction step. In order to match a input image with a reference,
similarities between images need to be found. As images consist of pixel values
which represent color only, di�erences in illumination or orientation of the same
objects in input and reference image makes it hard to �nd similarities on pixel level.
�erefore, so called Feature matching[10] approaches are used. In order to match
features from one image with another, some Points of interest (POI) or Feature

Points (FP) needs to be detected. Depending on the algorithm used, FPs can for
example consist of edges, corners (e.g. FAST [11], Harris Corners [12] or blobs (e.g.
Di�erence of Gaussian (DoG) [13]). To be able to compare FPs between images, a
descriptive information for a FP is needed. �erefore, Feature Descriptors (FD) need
to be calculated for each FP. FDs are computed from a de�ned region around a FP.
Popular algorithms are e.g. SIFT [14] or BRIEF [15]. FDs result in a so called Feature

Vector (FV). For Feature matching, FVs are compared using some distance operator
(e.g. L2 norm [16]).

In the last recent years, neural networks (NNs) outperformed classical pa�ern
recognition techniques. For this thesis, convolutional neural networks (CNNs) are
described.

2.3 Feed forward neural networks (NNs)

NNs [17] are quintessential deep learning methods used for learning an approxim-
ation of a function f ∗. A NN maps an input x to an output y de�ned by a mapping
function f(x, θ). �e goal of training a NN is to �nd out the best matching para-
meters θ for the approximation. Usually, multiple functions f (0), f (1), to f (n) are
combined in a feed forward manner (see Figure 2.4), which means that no feedback
loops are included within the network. �e functions are commonly called layers.

9

2 Background

Figure 2.4: Feed forward network consisting of multiple mapping functions f without feedback
loops. �e set of mapping functions try to approximate the function f∗ which can be
achieved by training the function’s parameters θ.

NNs are also called multi layer perceptrons (MLPs). MLPs are combinations of single
layer perceptrons (SLPs) as shown in Figure 2.5. SLPs are also called Neurons.

2.3.1 Neurons

Each layer in a NN consists of a de�ned number of SLPs, where its inputs are
coming from the previous layer and the outputs are passed to the next layer.

�e characteristic of a SLP is, that the inputs from the previous layer are weighted

and biased before entering a non-linear activation function. �e approximation
function y = f ∗SLP (x) can then be computed using a vector dot product (y =

a(w>x + b)). �e weighting vector w and the bias value b are initially unknown
and need to be trained accordingly in order to �t the approximation function f ∗SLP .
�erefore, the trainable parameters are de�ned as θSLP = {w;b}.

Activation functions

As the original function f to approximate can be any kind of mathematical function,
also non-linear functions should be possible to approximate. As weighting and

10

2.3 Feed forward neural networks (NNs)

Figure 2.5: A single layer perceptron (SLP) weighs the components of an input vector x with the
weight w by a vector dot-product and adds a bias b. �e result is fed into a (piece-wise)
di�erentiable activation function a which results in an output scalar value y0

biasing are linear mathematical operations, only a linear regression [18] would
be capable without adding some non-linear activation function. �ere are various
activation functions as shown in Figure 2.6. Activation functions need to be (piece-
wise) di�erentiable, as neural networks are usually trained using gradient descent
[19] methods.

2.3.2 Training a neural network

In order to train a NN, a loss function L(y, ŷ) needs to be de�ned. L describes the
di�erence between the approximated output vector y and the desired ground truth
vector ŷ. A commonly used loss function is Mean Squared Error (MSE), which is
de�ned as LMSE(y, ŷ) = ‖y − ŷ‖2. Training a NN means, to minimize the loss
function L with respect to the network parameters θ.

11

2 Background

(a) Linear activation function with a
constant derivative for all input
values.

(b) Recti�ed Linear Unit (ReLU) which
is zero for negative input values
and a linear function for positive
input values. �e derivation is con-
stant for positive input values and
zero for negative ones.

(c) Sigmoid activation function
σ(x) = 1

1+exp−x . Its derivative

σ
′
(x) = σ(x)(1 − σ(x)) is

de�ned for all input values.

(d) �e step activation function is zero
for negative input values and one
for positive input values. Its deriv-
ation is zero for all values except
the input value zero. In this single
point the step functions’ derivation
is not de�ned.

(e) �e Leaky ReLU function is similar
to the ReLU function. �e di�er-
ence is, that also for negative input
values, a linear function is de�ned
with a lower slope. �e derivation
is a small constant for negative val-
ues and a higher constant for posit-
ive values.

(f) Hyperbolic tangent function tanh

is a trigonometric function de�ned
for all real input values. Its cor-
responding derivative is tanh′ =

1
cosh x2

which is globally de�ned.

Figure 2.6: Di�erent activation functions [20] including the corresponding derivatives.

12

2.3 Feed forward neural networks (NNs)

Backpropagation and optimization

Minimizing a loss function can be achieved by applying gradient based methods
[19]. �e principal concept of gradient methods is, to change the desired parameter
value in the direction of a local minimum. Local minima are de�ned as ∂y(θ0)

∂θ
= 0.

Derived from linear approximation, the gradient descent method can be applied as
θi+1 = θi − γ ∂L(y,ŷ)

∂θ
. γ is de�ned to be the Learning rate. �is value controls the

speed of learning. If it is chosen too high, it can happen that no local minimum can
be reached at all. If it is chosen to small, then training can be very slow. A major
criterion for training NNs is to choose learning rates properly.
As shown in the gradient descent calculation, y, as well as the loss function L
need to be di�erentiable with respect to the network parameters θ. Furthermore,
this requires also the activation functions to be di�erentiable with respect to θ.
Another observation is, that the weighting matrices and the bias vectors within θ
are distributed through the network in a feed forward way. Applying the gradients
using gradient descent, can therefore only achieved in an iterative manner. �is
procedure is called backpropagation [21].
It can be shown, that if every part of the network is partially di�erentiable, all
derivations of the loss functions with respect to each entry of θ can be calculated
iteratively from the back to the end. �is can then be used to apply gradient descent
in order to train the parameters.

Application of neural networks

�ere is a variety of applications for neural networks. �e general approach to
approximate some nonlinear function with a neural network can be applied in
di�erent ways. �e di�erent approaches are varying mainly in the usage of di�erent
components of the network. Variations are possible in choosing di�erent depths
of the network, di�erent activation functions, especially for output neurons or

13

2 Background

di�erent loss functions.
�e depth of a network is de�ned by its number of hidden layers and the corres-
ponding number of neurons per hidden layer. Hidden layers is a di�erent name
for intermediate layers between input and output neurons. As input and output
neurons are given from input and output vectors, the number of hidden neurons per
hidden layer can vary. Depending on the complexity of the function to approximate,
the depth of the networks can be chosen.
By choosing di�erent output activation functions, di�erent kinds of problems can
be addressed. For classi�cation tasks, some output representing a percentage is
used (e.g. Sigmoid). For regression tasks, a more linear activation function can be
chosen (e.g. ReLu). Also the de�nition of the loss functions depend on the function
a network is approximating. An example for classi�cation tasks is the cross entropy
loss function [22]. For regression tasks MSE can be chosen.
Besides variations of the simple feed forward neural networks, there are also some
advanced topologies like convolutional neural networks (CNNs). �ey are com-
monly used in grid like data sets like images or regular time intervals.

2.4 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) [23] are feed forward neural networks
replacing the matrix multiplication of a NN with a convolution function at least in
one of its layers.

2.4.1 Convolution function

As neural networks consists only of discrete components, the discrete convolution

function s is applied. In 1D it is de�ned as s(t) =
∑W−1

k=0 x̃[k]w[t − k], where x̃

consists of the input data x and padded zeros to match the convolving kernels w size

14

2.4 Convolutional neural networks (CNNs)

W . For image processing, the 2D version of the convolution function S is needed. It
is de�ned as S(i, j) =

∑M−1
m=0

∑N−1
n=0 X̃[i−m, j − n]K[m,n]. X̃ consists of an 2D

image array and zeros to match the 2D kernels K size (M ×N) while convolving.
Convolution can also be seen as a sliding window over the image. Usually, the kernel
size M ×N is much smaller than the input size. �e convolution function can also
be wri�en as a matrix multiplication, where the kernel matrix has a very special
characteristic called Toeplitz matrix [24]. A row of a Toeplitz matrix is de�ned to be
equal to the row above, shi�ed by one element. As the kernel K is usually of much
smaller dimension than the input size of X the Toeplitz matrix consists of mostly
zero values. Also the fact that rows have equal entries de�nes this matrix to be
very sparse. By writing the convolution as a matrix multiplication, the relationship
to the base NNs is shown.

2.4.2 Convolutional layers

A NN is de�ned to be a CNN if at least one of its layer consists of a convolutional
layer. For image processing, only the 2D variant of the convolution function is
required. A 2D convolutional layer consists of multiple kernel matrices K ∈ RM×N ,
where M ×N de�nes the kernel size.
As described in 2.4.1, instead of a normal matrix multiplication, the kernel matrices
are applied in a sliding window approach. As the kernel sizes are usually much
smaller than the actual input sizes, the number of trainable parameters, within the
network decrease signi�cantly. Smaller matrices also lead to faster training.
�e output of a convolutional layer consist of so called feature maps. �is comes
from traditional image processing, as the output of a trained networks convolutional
layer represent signi�cant shapes on spatial positions similar to edge detectors or
other feature points. For classi�cation tasks, CNNs need to abstract the information
from the input to a classi�cation label at the output. So convolutional layers at
the front of the network deliver more information at pixel level. Layers at the end

15

2 Background

of a network deliver more information at object level. �is can be achieved by
adding pooling layers to the network. Pooling layers reduce dimensionality with
the goal to add abstraction to a CNN by simply dropping information in a well-
de�ned way. Again, by application of a sliding window approach, the dimension
of an input gets decreased. One example is max-pooling. Here, only the largest
value within the pooling windows is used at the output. For information dropping,
multiple approaches can be used. Further examples would be average-pooling or
median-pooling.

Application on image data

For applying CNNs on image data to perform classi�cation tasks, most of the
networks used consist of multiple convolutional layers at the beginning, followed
by pooling layers. At the end of the networks, usually a dense NN is appended in
order to use the highly abstracted output of the last feature maps of the CNN for
classi�cation. As shown in Figure 2.3, classical image processing requires some
steps that are also used implicitly at CNNs for classi�cation tasks. As the classical
image processing pa�ern recognition chain, also pre-processing of input images
is required to �t the input size given by the CNN. Convolutional layers provide
multiple feature maps, which �ts to the Feature extraction part. �e dense layers at
the end of the network ful�ll the feature matching tasks. �e main di�erence is, that
the network itself has the knowledge of the reference image stored in its weights
which is a major advantage of CNNs in pa�ern recognition. By using inverse, so
called deconvolutional layers, CNNs can also be used for regression or generation
tasks. Generative adversarial networks make use of this approach.

16

2.5 Generative adversarial networks (GANs)

2.5 Generative adversarial networks (GANs)

Generative adversarial networks (GANs) are competitive NNs. Two or more net-
works are trying to compete their opponent networks by solving their task be�er
than the other. A simple example is DCGAN [25], which consists of two NNs. �e
�rst network is the so called generator, the second one is called the discriminator.
�e generator tries to imitate data from a given data set. �e task of the discrim-
inator is to �nd out whether the input data set is fake or not. �e result of this
approach is an fake data generator on the one hand and a fake data discriminator
on the other hand.
Both generator and discriminator loss depend on the foreign networks, which
lead to very dynamic learning curves. Also the networks are very sensitive to be
wrongly con�gured, which can lead to e�ects like Mode loss. Mode loss is a state of
a network, where always the same result is given, independent on the input. �is
is o�en due to having a discriminator, which always beats the generator. In such a
case, the best loss a generator can achieve is to generate a static output. �is is also
called vanishing gradient problem which is also well-known in other, non-dynamic
multi-layer con�gurations.
Stability for GANs can be achieved by applying stable loss functions like the Wasser-
stein loss [26]. �e network used for this thesis is a GAN consisting of three NNs,
called BigBiGAN.

2.5.1 BigBiGAN

�e BigBiGAN network is a generative adversarial network consisting of three
major blocks called encoder E , generator G and the discriminator D. �e inputs
of the network are a original data set x and a random vector z. Its outputs are a
feature representation ẑ of x and a fake data set x̂ generated from z. BigBiGAN is
usually used in order to generate fake images from a set of original images. It is

17

2 Background

more robust against common GAN problems like mode losses or vanishing gradient
issues than simpler networks like DCGAN.

�e aim of the encoder network, is to learn a feature representation ẑ of the original
input x. �e output of the encoder network is also called latent vector z. �e
generators goal is to create data x̂ from a (random) feature representation, which
is the inverse task of the encoder. Generator and encoder together are trying to
trick the discriminator to believe that the generated data is the original one. �e
discriminator gets either a pair of original data and latent vectors generated by the
encoder (x, ẑ) or the opposite combination of generated data by the generator and
the corresponding random latent vector (x̂, z). �e data distribution is de�ned as
x ∼ Px and the latent distribution is de�ned as z ∼ Pz . �e discriminator itself
consists of three neural networks F,H and J . �e F network is usually a CNN
with a fully connected layer as an output layer. It uses the original data x or the
generated ones x̂ as inputs and has a scalar vector output sx. �e H network is
usually a common NN which uses the latent representations z or ẑ as an input
and results in a vector output sz . �e network J uses both scalar vector outputs sx
and sz as an input and results in the joint score vector output sxz . �e three scores
sx, sz and sxz are then used to calculate the corresponding loss functions for all
networks. �e minimax objective of the BigBiGAN is de�ned in Equation 2.3.

min
GE

max
D
{Ex∼Px,z∼EΘ(x)[log(σ(D(x, z))] + Ez∼Pz ,x∼GΘ(z)[log(1− σ(D(x, z))]}

(2.3)

It can be shown, that the optimized minimax objective minimizes the Jensen-
Shannon divergence [28] between the joint distributions PxE and PGz match at the
global optimum. �is means, that if the network is ideally trained, the generator

18

2.5 Generative adversarial networks (GANs)

Figure 2.7: Graphical scheme of the BigBiGAN network [27]. It consists of a generator G and an
encoder E network. �e joint discriminator D computes the loss L from the encoder and
generator outputs as well as the corresponding random vectors used for the generator
and the original data source.

and the encoder generate the exact inverse outputs. So, if a original data point is
passed to the encoder, the generator re-creates the same original data point using
the latent vector output from the encoder. It is also worth mentioning, that the
loss function used for training the encoder and the generator only depends on the
discriminators outputs.

�e equations 2.4, 2.5 and 2.6 de�ne the outputs of the discriminators NN blocks. It
can be seen from the equations 2.8 - 2.11 that all loss functions are only dependent
on the discriminator output blocks and the data distributions Px and Pz . y de�nes
a label whether the input data of the discriminator is fake (-1) or real (+1). For
calculating the encoder and generator loss LEG(Px, Pz) the single sample loss
lEG(x, z, y) is used in a linear way. For computing the discriminator loss LD(Px, Pz)

the single sample loss lD(x, z, y) is calculated using the hinge function shown in
equation 2.7.

19

2 Background

sx(x) = FΘ(x) (2.4)

sz(z) = HΘ(x) (2.5)

sxz(x, z) = JΘ(FΘ(x), HΘ(z)) (2.6)

h(t) = max (0, 1− t) (2.7)

lEG(x, z, y) = y(sx(x) + sz(z) + sxz(x, z)),where y ∈ {−1,+1} (2.8)

LEG(Px, Pz) = Ex∼Px,ẑ∼EΘ(x)[lEG(x, ẑ,+1)] + Ez∼Pz ,x̂∼GΘ(z)[lEG(x̂, z,−1)] (2.9)

lD(x, z, y) = h(ysx(x)) + h(ysz(z)) + h(ysxz(x, z)),where y ∈ {−1,+1}
(2.10)

LD(Px, Pz) = Ex∼Px,ẑ∼EΘ(x)[lD(x, ẑ,+1)] + Ez∼Pz ,x̂∼GΘ(z)[lD(x̂, z,−1)]

(2.11)

It can be shown, that BigBiGAN is very stable according to vanishing gradient
problems and mode losses. It is able to deal with large scale input data and has
a good reconstruction result. �e se�ing of a competitive generator-encoder net-
work reminds to variational autoencoders (VAEs) which are described in the next
chapter.

2.6 Variational auto encoders (VAEs)

A variational autoencoder (VAE) consists of two deep learning networks trying
to learn a statistical representation of a data set. �e encoder part is trying to
output a lower dimensional representation as an feature vector which is called
latent vector z. �e distribution of all output values of the encoder network is also
called (stochastic) latent space. �e decoder part of the network uses the latent
vector z to reconstruct the corresponding original data sample. Independent on
the realization used, the loss functions are always calculated from the di�erence

20

2.7 Clustering algorithms

Figure 2.8: Graphical scheme of the VAE network. �e encoder outputs a lower dimensional repres-
entative (latent vector) z of the input data x. �e encoder uses z to generate a approxim-
ated version x̂ of the original data.

between the decoder output x̂ and the encoder input x. Once the VAE is fully
trained, the latent outputs of training data inputs can be used to extract pa�erns by
clustering algorithms. Networks as VAEs are also called competitive networks [29].
Other forms of competitive networks are for example generative adversarial neural

networks (GANs) [30] which are based on Turing Learning [31] approaches. �e main
di�erence between GANs and VAEs is in having di�erent loss function approaches.
As GANs are only using the information whether the discriminator has been tricked
or not, the VAEs are learning the di�erence between original and reconstructed data.
�is leads to VAEs having very good results at reconstructing data from the very
same distribution. As VAEs are learning how the data is represented, reconstruction
di�erences from data with a similar statistical distribution are lower compared to
GANs. If the training data is from a di�erent distribution, VAEs reconstruction
results are usually worse than with GANs.

2.7 Clustering algorithms

In order to be able to cluster the feature or latent vectors of network outputs,
some algorithms are used. In general, there are several di�erent types of clustering

21

2 Background

algorithm types [32], where this thesis is focussing on the four most commonly
used types [33] as shown in Figure 2.9.

(a) Example of centroid based clustering. Centroids (�lled
symbols) are located in the center of the corresponding
data clusters. Very e�cient and simple, but sensitive to
initial conditions and outliers.

(b) Example of density based clustering. Dense areas are
combined to clusters. Approach allows arbitrary shapes
and outliers are not assigned to clusters.

(c) Example of distribution based clustering based on gaus-
sian distribution. �is method assumes, that clusters are
composed of statistical distributions. Prior knowledge
about the data distribution is required.

(d) Example of hierarchical clustering. �is method creates
a tree of clusters, which �ts well for hierarchical data.

Figure 2.9: Illustration of di�erent clustering methods

22

2.7 Clustering algorithms

2.7.1 Centroid based clustering

Centroid based clustering is one of the most commonly used clustering type. As
shown in Figure 2.9a the data is split into a number of di�erent regions having a
centroid as a de�ning point in the center of the cluster. Centroid based clustering
algorithms are usually very e�cient and simple but tend to be sensitive against
initial conditions and outliers. Centroid based clustering algorithms work best, if
data has a circular shape as they are working mostly with euclidean distances. If
the clusters shapes are di�erent to circles, another type of clustering would be
recommended. �e major advantage of centroid based clustering methods, are, that
the computational cost is low in most cases. A popular algorithm is the K-means

[34]. Other techniques of the same type would be K-medoids, PAM, CLARA and
CLARANS. [32].

2.7.2 Density based clustering

Density based clustering uses the spatial density of a data set in order to assign
cluster labels. An illustration of density based methods is shown in Figure 2.9b. As
outliers have a very low density per de�nition, those data points are not assigned to
a cluster in this cases. Popular density based algorithms are DBSCAN, OPTICS and
Mean-shi� [32]. Density based clusterings are not restricted to shapes of the clusters
as well as to the number of clusters. �ere are also e�cient, linear algorithms for
density based clustering (e.g. DBSCAN).

2.7.3 Distribution based clustering

Distribution based clustering assumes, that each cluster in the data set belongs to a
di�erent statistical distribution as shown in Figure 2.9c. �is requires prior know-

23

2 Background

ledge about the data set. If this prior knowledge is not available, this clustering type
is not recommended. Figure 2.9c shows an example with a gaussian distribution.
In the center of each cluster the expected value is located, as the probability is the
highest. By moving from the center, the density and the corresponding probab-
ility decreases. Popular algorithms are DBCLASD or the Gaussian mixture model

algorithm (GMM) [32].

2.7.4 Hierarchical clustering

Hierarchical clustering algorithms are creating trees of clusters with common
properties as shown in Figure 2.9d. It �ts well for taxonomy typed data. Common
algorithms are Hierarchical agglomerative clustering (HAC), BIRCH, CURE, ROCK
and Chameleon [32].

24

3 Related work

�e main question of this master thesis is, which di�erent pa�erns can be found on a
set of real world wafer maps in semiconductor industry. �e most common approach
is, that engineers are looking at visualizations of wafer map measurements and are
able to see di�erent kind of shapes depending on the scaling and the color mapping
of the wafer map. As this restricts to common shapes human eyes are able to detect
and also depends highly on the data visualization, some more scienti�c approaches
been worked on. �e �rst a�empts was to use standard pa�ern recognition methods
in order to compare features from new wafer maps with well-known features from
reference wafer maps.

Many of this approaches have a common problem. �ey are in need of big sets of
labelled data in order to perform e.g. supervised classi�cation. �is is usually hard
manual human work. Furthermore, again only pa�erns the human eye can easily
see are handled in such hand-made data sets.

Wang and Chan [35] show in their paper on how to handle rotated pa�erns on
wafer maps using three di�erent approaches for three di�erent types of pa�erns.
Polar masks to extract features of concentric pa�erns and line and arc masks to
handle eccentric pa�erns like scratches. In order to get a good reference data set,
di�erent statistical approaches are needed to handle di�erent kinds of pa�erns.

Schrunner, Bluder, Zernig, Kaestner and Kern show in their paper on how to extract
pa�erns from wafer maps using Markov Random �elds [36]. It turned out, that for

25

3 Related work

speci�c types of wafer maps, the method works good but for e.g. steep or sharp
edges not.

Santos and Kern [37] showed in their paper that using VAEs, wafer map pa�erns
can be extracted without prior knowledge. �erefore, the latent vector of the
encoders output is fed to a clustering algorithm. �e assumption is, that the spatial
representation of the encoder output can be used to �nd similar pa�erns within a
data set. �is was the main idea of this thesis to try a similar approach using GANs
instead of VAEs.

A similar approach using a VAE was used by Shon, Batbaatar, Cho and Choi [38].
�e major di�erence is, that they are �ne tuning the encoder a�er the unsupervised,
autoencoder training step. �is leads to more stability on the labelled data set.

26

4 Materials and method

�is thesis handles the problem on how to extract pa�erns from semiconductor
wafer map measurements without having prior knowledge about the actual possible
pa�erns. �is requires multiple stages as shown in Figure 1.1.

4.1 Data

�e �rst, and actually the biggest implementational part of the project is the pre-
processing of the given data sets.

4.1.1 Data sets

For the experiments, three di�erent data sets has been used. �e �rst data set (A) is a
binary data set from real world data, consisting of 11,457 wafer maps collected from
46,393 lots in real-world fabrication [39]. It is called WM-811K and di�ers between
nine pa�ern labels. Figure 4.1 shows a representation for each label. �e data in this
data set is unbalanced, which means that some labels have a signi�cant bigger or
lower amount of samples. �erefore, some balancing method is applied beforehand.
In this case, a two-step approach was applied. �e �rst step is to calculate the
median c̄ of the counts cl of the labels l samples in the training data set. �e second
step is to pick only max(cl, c̄) examples for further usage. �e second data set (B)

27

4 Materials and method

is a simulated data set derived from real world data [40]. It consists of 1000 wafer
maps consisting of parametric �oating point values and �ve di�erent pa�ern labels.
Figure 4.2 shows a representation for each label. In order to make use of the data,
some pre-processing is required.

(a) Center (b) Donut (c) Edge-loc

(d) Edge-ring (e) Loc (f) Near-Full

(g) Random (h) Scratch (i) None

Figure 4.1: Data set (A). Labelled binary data set with 9 di�erent labels.

28

4.1 Data

(a) Ring (b) Spot (c) Trend

(d) Two-spots (e) Crescent

Figure 4.2: Data set (B). Labelled continous data set with 5 di�erent labels.

4.1.2 Pre-processing

As shown in Section 2.1, wafer maps are circular arrays of numerical, binary or
labeled values. In order to make them use within a NN, some pre-processing is
required depending on the type of data. Figure 2.1 shows the whole chain of pre-
processing.

Pre-processing of binary or labelled data

As binary or labelled data does not have a useful numerical value, a mapping
from Z → R is required beforehand. As the data set (A) consists of binary data

29

4 Materials and method

(PASS/FAIL) only the following mapping was applied.

Z→ R :

PASS → 0

FAIL→ 1

NOT − TESTED → 0.5

(4.1)

For mapping e.g. bin values, some priority mapping can be applied. �erefore, pass
bins can be e.g. mapped negatively, and fail bins positively. �e order of the bins
is dependent on the signi�cance of the failure. As this was not used within the
experiments, no detailed description is provided in this thesis.

Missing data, scaling and normalization

Missing data handling, as well as scaling and normalization steps are dependent
on the type of data used. If binary or labelled data is used, none of them is needed
in case the mapping is already done in an appropriate way. For all parametric
measurement values, all theory of Sections 2.1.1 and 2.1.2 is required. For missing
data handling, di�erent approaches has been tried. It turned out, that replacing
missing values with a global median, worked best in this cases.
As shown in Section 2.1.2, histogram equalization improves visualization of para-
metric values also for NNs. �erefore, the IQR scaling operation as shown in
Equation 2.2 has been applied. In order to �t into gray scale image space, the usual
normalization operation n :Wn

pi
=

WIQR
pi
−min (WIQR

pi
)

max (WIQR
pi

)−min (WIQR
pi

)
is applied to the data.

Additional pre-processing steps

As data from both data sets include noise, at the end of scaling and normalization,
a median �lter is applied. Also the size of the wafer map images is scaled to the

30

4.2 Network

input size of the BigBiGANs generator using bilinear interpolation.

4.2 Network

4.2.1 BigBiGAN

For this thesis, the BigBiGAN network is used for all experiments. As in the de�n-
ition of BigBiGAN there are some degrees of freedom on how to implement the
di�erent parts of the network. As a basis, a piece of code 1 has been used from
GitHub. It is also mentioned at Papers with Code 2. It is a framework coded in python
using TensorFlow.

Encoder architecture

As shown in Figure 4.3, the encoder network consists of multiple layers. As an
input, the encoder gets a set of size n images with the shape of (32× 32× 1). �e
�rst layer upsamples the input images to a shape of (64× 64× 1). �e next step
is a convolutional layer with a 32 kernels of size (7 × 7) with a stride of 2. �e
convolutional layer is followed by a max-pooling layer of size (3× 3) with a stride
of two. �is results in a (n× 15× 15× 32) tensor which is passed to the following
two bo�leneck residual blocks, known from the RevNet [41] architecture which is
special type of a residual neural network [42]. �e two blocks are continued with
an average-pooling layer of size (2×2). �e combination of two bo�leneck residual
blocks and an average pooling layer is repeated once again, followed by additional
two bo�leneck residual blocks. At the end of the RevNet parts, a tensor of size

1h�ps://github.com/LEGO999/BigBiGAN-TensorFlow2.0
2h�ps://paperswithcode.com/method/bigbigan

31

4 Materials and method

(n× 4× 4× 128) results, followed by a reduce-mean block. �is block averages
over the (4×4) dimensions which results in a (n×128) tensor. �e next two layers
are an aggregation of sublayers as shown in Figure 4.4. �ey are consisting of two
dense layers followed by a dropout [43] and a LeakyReLU output activation added
to a set of a single dense layers followed by a LeakyReLU output activation. �e
last layer of the network is a dense MLP with an output size with the length of the
latent vector ẑ.

Figure 4.3: Graphical scheme of the encoder network. Upsampling, followed by ConvLayer and
max-pooling. �ree repetitions of Bo�leneckRev layers as de�ned in the RevNet [41]
architecture and a combination of two DenseRev layers as shown in Figure 4.4 and a
MLP result in the latent vector ẑ

32

4.2 Network

Figure 4.4: Graphical scheme of the DenseRev block. Two combined paths of layers are added for
the �nal result. �e �rst path consists of two dense blocks with a dropout layer and a
LeakyReLU activation. �e second path consists only of one of this combinations.

Generator architecture

�e input for the generator is a set of n vectors of the size of the vector z. For
simplicity, this is noted as (n× z). Each vector is spli�ed into four parts of equal
size. In case that the vector size of z is two, the input vector is repeated once in order
to �t the size of four. �e �rst split, Split 0 is passed to the �rst layer, which consists
of a dense MLP layer wrapped by a Spectral Normalization layer [44]. As shown in
Figure 4.5, the layer results in a tensor of size (n× 4096) which gets reshaped to
size (n× 4× 4× 256). �e reshaped tensor is then passed to two ResBlock layers,
which are de�ned in the ResNet [42] architecture. �e �rst ResBlock layer uses the
input of the previous layer and the tensor of Split 1. Split 2 is then used with the
second ResBlock layer followed by an A�ention layer [45]. �e resulting tensor of

33

4 Materials and method

size (n× 16× 16× 128) is passed to another ResBlock layer, which is using the last
split, Split 3. A�er that, a BatchNormalization [46] with a ReLU output activation
follows. �e output layer is a transposed 2D convolutional layer, wrapped by a
Spectral Normalization layer. �e output of the generator is a image tensor of size
(n× 32× 32× 1).

Figure 4.5: Graphical scheme of the generator network. �e input vector z is spli�ed into four equally
sized parts. �e �rst part inputs into a MLP layer wrapped by a Spectral Normalization
layer [44]. �e reshaped output together with the other splits of the input is sequentially
applied in ResBlocks interrupted by an A�ention block. Batch Normalization with a
ReLU activation follow. �e last block consists of a Spectral Normalization wrapped
transposed 2D convolutional layer which results a generated image x̂.

34

4.2 Network

Discriminator architecture

As previously described, the discriminator of a BigBiGAN network consists of three
parts F, H and J. As shown in Figure 4.6, the F network uses the output of the
generator as an input and consists of a ResDown layer, which is described in the
ResNet architecture [42], followed by an A�ention layer [45]. �e resulting tensor
of size (n× 16× 16× 64) is passed in two subsequent ResDown layers, resulting
in a tensor of size (n × 4 × 4 × 256). A reduce-mean block, averages over the
(4× 4) dimensions in order to get n vectors of size 256, which can be passed to the
J network. An additional dense layer is provided, resulting in scalar score values sx
per sample used for the loss function.
�e H network uses the output of the encoder as an input, and consists of two
DenseRev blocks, which are aggregation of sublayers as shown in Figure 4.4. �e
output of the last DenseRev block has a size of (n× 64) and is also passed to the J
network. An additional dense layer is provided, resulting in scalar score values sz
per sample used for the loss function.
�e J network uses the concatenated outputs of the F and the H network as an
input. �ree subsequent DenseRev blocks and a �nal MLP dense block result in
scalar scores value per sample sxz

4.2.2 Training

�e BigBiGAN paper provides loss functions for all di�erent networks as shown in
Equations 2.10 and 2.8. �erefore, the loss functions are only dependent on the score
values sx, sz and sxz and the fake or original information y. In order to perform
training, some parameters need to be de�ned. For all following experiments the
Adam [47] optimizer has been used. It requires some regularization parameters
β1 and β2 listed in Table 4.1. �e values has been chosen by an trial and error
approach. As each types of GANs are very sensitive to training and optimization

35

4 Materials and method

Figure 4.6: �e F network is handling the output of the generator. It consists of three ResDown blocks
interrupted once by an A�ention block. By a reduce-mean operation, the resulting (4×4)

part of the output tensor is reduced to a vector of size 256, this vector is furthermore
used in the J network. By a �nal MLP, a single scalar value sx per sample results. �e H
block handles the output of the encoder. It consists of two DenseRev blocks, where its
output vectors are passed to the J network. Again, a MLP reduces the vector output to a
single scalar score value sz per sample. �e J network combines both vector outputs of
the F and H network, by three DenseRev blocks followed by a standard MLP to result in
a scalar score value sxz per sample. All three score values are used for computing the
loss functions.

36

4.2 Network

parametrizations, many iterations were necessary. �e BigBiGAN paper proposes
to use di�erent optimizer parametrizations for encoder, generator and discriminator.
At this experiments, the very same parametrizations performed best. �e ratio of
upgrading weights REG de�nes, how o�en the discriminator weights are updated
until the encoder and generator weights are updated during training. In this case,
the discriminator is updated twice until the generator and encoder parts are updated.
�is leads to a more stable training.

Parameter Variable Value
Learning rate for encoder and generator lEG 2 · 10−4

Learning rate for discriminator lD 2 · 10−4

Regularizer parameters for encoder and generator β1
EG , β2

EG 0.5, 0.99

Regularizer parameters for discriminator β1
EG , β2

EG 0.5, 0.99

Ratio of upgrading weights REG 2
Training batch size B 256
Number of epochs E 1000

Table 4.1: Parameters required for training and optimization of the encoder, generator and discrim-
inator networks within the BigBiGAN architecture.

4.2.3 Noise modes

�e distribution of the fake input noise of the generator Pz can be chosen arbitrarily.
For the experiments two distributions has been de�ned. �e �rst distribution is the
uniform distribution Pz = UN(0, 1), z ∈ R, whereN is the dimension of the vector.
�e main idea of using the uniform distribution instead of a normal distribution
N as proposed in the BigBiGAN paper is, that U(0, 1) �lls more space within the
latent space, which makes it easier for the clustering algorithms to cluster.
�e second distribution is a random one-hot distribution based on the uniform
distribution. A sample z is de�ned as an all zero vector having one nonzero entry

37

4 Materials and method

at random position i. In this case i is the random vector, de�ned by the uniform
distribution Pi = U(0, N), i ∈ Z. �e aim of the second distribution is, to provide
a latent space, which intrinsically de�nes classi�cation clusters.

4.3 Clustering

For clustering, three di�erent methods are used for comparison. �e �rst method
is the centroid based algorithm K-means. It has a linear runtime and is therefore
a fast approach. �e main drawback is, that the number of clusters need do be
de�ned beforehand. It is based on the euclidean distance from a centroid, which
only allows compact shapes of the clusters. �e second method is the density
based algorithm DBSCAN. It is also a linear approach. If correctly parametrized,
arbitrary shapes of the clusters are possible. �e main drawback of the method is,
that parametrization is hard and strongly dependent on the data. �e last method is
a hierarchical clustering algorithm called Hierarchical agglomerative clustering. It
orders data points hierarchically by similarity. �e actual clusters can be extracted
by cu�ing the graph on a certain position. It is a very powerful, but non-linear
approach. Also parametrization is hard.

38

5 Evaluation

5.1 Experiments

For the experiments, the BigBiGAN network is always trained with the given
training and optimization parameters shown in Table 4.1. �e experiments di�er
in data set, clustering method and noise mode. In order to compare the results, a
cluster-performance metric Cp(z, C, L) is introduced as shown in Equation 5.1.
�e vector z is the latent vector. C(z) returns the clusters for the input vector. L(c)

returns the given labels from the original data set for each data point.

Cp(z, C, L) =
1

|C|
∑

c∈C(z)

maxcount(L(c))

|c|
(5.1)

�e metric uses the count of the most available original label maxcount within
each cluster c divided by its length |c|. �e maxcount function returns the count
of the original label that appears most in the cluster. An ideal cluster consists only
of one type of original label. In this case the metric results with 1. �e result is the
arithmetic mean of the individual cluster performances. �is gives the opportunity
to compare di�erent cluster algorithms with each other.
�ere are three types of variations within the experiments. �ere are two di�erent
data sets, three di�erent clustering methods and two di�erent noise modes.

39

5 Evaluation

5.2 Results

5.2.1 Data set (A)

�e evaluations of the cluster performance is done by using a test data set of 1024
wafers. No wafer of this set has been used during training before.

2D U(0, 1) noise mode

Figure 5.1 shows the cluster performance over 1000 epochs for three di�erent
clustering algorithms using 2D uniformly distributed input vectors. Both HAC and
DBSCAN perform be�er than K-means. Compared to data set B, the performance
results is about 30% worse for all clustering types. It also shows, that clustering
performs similar throughout all epochs.

Figure 5.1: Cluster performance on three di�erent clustering modes applied on the same latent
outputs over 1000 epochs. Noise mode is the 2D uniform distribution.

�e reconstruction loss in Figure 5.2 shows a steadily decreasing loss function for
all cases. Only for the one-hot noise mode, it increases a�er around 150 epochs and
results in a constant curve.

40

5.2 Results

Figure 5.2: Reconstruction loss. �e red curve uses the 2D uniform noise mode, the blue curve uses
the 8D uniform noise mode and the light blue curve uses the 12D one-hot noise mode.

Figure 5.3 shows the cluster results per row for the K-means clustering algorithm.
In this example, the output of epoch 0 is chosen, which shows already a good
clustering at the �rst view.

41

5 Evaluation

Figure 5.3: Wafer clusters using K-means clustering algorithm at epoch 0. Each row represents a
sample of max 10 wafer map images of a cluster.

42

5.2 Results

Figures 5.4 and Figure 5.5 show the cluster results per row for the DBSCAN and the
HAC clustering algorithms. From human perspective, the clustering works good
on a high level view.

Figure 5.4: Wafer clusters using DBSCAN clustering algorithm at epoch 100. Each row represents a
sample of max 10 wafer map images of a cluster.

43

5 Evaluation

Figure 5.5: Wafer clusters using HAC clustering algorithm at epoch 590. Each row represents a
sample of max 10 wafer map images of a cluster.

44

5.2 Results

For all three clustering algorithms, the result is good at a high level view. Wafer
map images with a higher density of black or white pixels at di�erent regions
are clustered, but �ne shapes as scratches or surrounding ring shapes are hard to
distinguish. Figure 5.6 shows the output latent space of the 2D encoder results with
the corresponding clustering labels indicated by color.

Figure 5.6: Latent space at epoch 1000 using the 2D uniform noise mode.

8D U(0, 1) noise mode

Figure 5.7 shows the cluster performance over 1000 epochs for three di�erent
clustering algorithms using 8D uniformly distributed input vectors. HAC performs
be�er than DBSCAN and K-means. DBSCAN performs bad a�er around 300 epochs,
which is an example for the hardness of DBSCAN parametrization.

45

5 Evaluation

Figure 5.7: Cluster performance on three di�erent clustering modes applied on the same latent
outputs over 1000 epochs. Noise mode is the 8D uniform distribution.

Figures 5.8, 5.9 and 5.10 show up to 10 cluster representations per row. From a
human perspective, high level clustering works good for all algorithms.

46

5.2 Results

Figure 5.8: Wafer clusters using K-means clustering algorithm at epoch 170. Each row represents a
sample of max 10 wafer map images of a cluster.

47

5 Evaluation

Figure 5.9: Wafer clusters using DBSCAN clustering algorithm at epoch 10. Each row represents a
sample of max 10 wafer map images of a cluster.

48

5.2 Results

Figure 5.10: Wafer clusters using HAC clustering algorithm at epoch 740. Each row represents a
sample of max 10 wafer map images of a cluster.

49

5 Evaluation

One-hot noise mode

Figure 5.11 shows the cluster performance over 1000 epochs for three di�erent
clustering algorithms using 12D one-hot distributed input vectors. HAC performs
be�er than DBSCAN and K-means. �e clustering result for HAC is comparable to
the result of data set B.

Figure 5.11: Cluster performance on three di�erent clustering modes applied on the same latent
outputs over 1000 epochs. Noise mode is 12D one-hot.

Figure 5.12 shows the generator output for all possible one-hot vectors. For this
data set, the representations cannot be su�ciently used.

50

5.2 Results

Figure 5.12: Intrinsic class representations of all possible one-hot vectors at epoch 30.

Figures 5.13, 5.14 and 5.15 show up to 10 cluster representations per row. From a
human perspective, high level clustering works good for all algorithms.

51

5 Evaluation

Figure 5.13: Wafer clusters using K-means clustering algorithm using 12D one-hot mode at epoch 0.
Each row represents a sample of up to 10 wafer map images of a cluster.

52

5.2 Results

Figure 5.14: Wafer clusters using DBSCAN clustering algorithm using 12D one-hot mode at epoch
80. Each row represents a sample of up to 10 wafer map images of a cluster.

53

5 Evaluation

Figure 5.15: Wafer clusters using HAC clustering algorithm using 12D one-hot mode at epoch 80.
Each row represents a sample of up to 10 wafer map images of a cluster.

54

5.2 Results

5.2.2 Data set (B)

�e evaluations of the cluster performance is done by using a test data set of 1024
wafers. No wafer of this set has been used during training before.

2D U(0, 1) noise mode

Figure 5.16 shows, that if the clustering methods are performed on the same latent
space at uniform noise mode, HAC performs best, followed by DBSCAN and K-
means.

Figure 5.16: Cluster performance on three di�erent clustering modes applied on the same latent
outputs over 1000 epochs. Noise mode is the 2D uniform distribution.

�e reconstruction loss is de�ned as the MSE between original image x and the
generated image from the encoded latent vector G(E(x)). Figure 5.17 shows that
the reconstruction loss decreases steadily.

55

5 Evaluation

Figure 5.17: Reconstruction loss. �e pink curve uses the 2D uniform noise mode, the green curve
uses the 12D one-hot noise mode. �e uniform noise mode steadily decreases, the
one-hot mode starts to slightly increase a�er about 600 epochs.

�e detailed clusterings in Figures 5.18, 5.19 and 5.20 show cluster representations
per row. Most rows are of unique pa�erns with some exceptions.

56

5.2 Results

Figure 5.18: Wafer clusters using K-means clustering algorithm using 2D uniform noise mode. Each
row represents a sample of max 10 wafer map images of a cluster.

57

5 Evaluation

Figure 5.19: Wafer clusters using DBSCAN clustering algorithm using 2D uniform noise mode. Each
row represents a sample of max 10 wafer map images of a cluster.

58

5.2 Results

Figure 5.20: Wafer clusters using HAC clustering algorithm using 2D uniform noise mode. Each
row represents a sample of max 10 wafer map images of a cluster.

59

5 Evaluation

Figure 5.21 shows the output latent space of the 2D encoder results with the
corresponding clustering labels indicated by color.

Figure 5.21: Latent space at epoch 1000 using the 2D uniform noise mode.

One-hot noise mode

For the one-hot noise mode, it can be shown that the resulting latent space is hard
to cluster for DBSCAN. K-means and HAC perform good as shown in Figure 5.22.

Figure 5.22: Cluster performance on three di�erent clustering modes applied on the same latent
outputs over 1000 epochs. Noise mode is 12D one-hot.

Figure 5.23 shows, that even without a clustering method, the intrinsic representa-
tion of all variants of the one-hot vectors can be used for extracting pa�erns.

60

5.2 Results

Figure 5.23: Intrinsic class representations of all possible one-hot vectors.

Compared to the uniform noise mode, DBSCAN produces only two clusters at
epoch 1000 as shown in Figure 5.26. Both K-means and HAC in Figures 5.25 and
5.24 show good results from human perspective in clustering.

61

5 Evaluation

Figure 5.24: Wafer clusters using K-means clustering algorithm using 12D one-hot mode. Each row
represents a sample of up to 10 wafer map images of a cluster.

62

5.2 Results

Figure 5.25: Wafer clusters using DBSCAN clustering algorithm using 12D one-hot mode. Each row
represents a sample of up to 10 wafer map images of a cluster.

63

5 Evaluation

Figure 5.26: Wafer clusters using HAC clustering algorithm using 12D one-hot mode. Each row
represents a sample of up to 10 wafer map images of a cluster.

64

5.3 Discussion

5.3 Discussion

�e experiments show, that the presented approach of using the encoder outputs
of a BigBiGAN to extract pa�erns of a data set is possible. As for any type of NN
and especially for generative ones, parametrization and data pre-processing is the
crucial part of the work. �e experiments presented in the previous section are the
result of a long trial and error phase with di�erent sizes of the latent space, di�erent
learning rates and optimizations within the given code framework. �e result is
reasonable, although it is highly dependent on the data set and the clustering
algorithm used. Due to its simplicity and clearly de�ned pa�erns, data set B worked
very good with all clustering methods provided. Although data set A consists of
only binary data, the pa�erns provided are not as clearly visible as with data set
B. �is can also be seen at the latent output at Figure 5.21, which shows some
more dense parts which appear to be the correct clusters, but also a variety of
random spots which cannot be clustered accordingly. �is is also the reason why
all clustering methods worked worse at data set A. Experiments also show that
if data is not properly pre-processed or if the learning process is done for too
many epochs, also BigBiGAN tend to produce equal outputs for any kind of input.
�is phenomenon is called mode loss [26]. During experiments with data set A,
also a di�erent dimensionality of the latent space is shown. It can be shown, that
increasing the complexity by increasing the dimensionality can improve the results
depending on the data set and the clustering algorithm. �e improvement is not
signi�cant and not steadily increasing.
Comparing the clustering algorithms, it can be seen that the algorithms where
no �xed number of clusters are given tend to produce more clusters than in the
actual reference data set. Although, this is mostly depending on the parameters
of the algorithm, data also has an impact. As for example shown in Figure 5.19, in
row number 9 there are some gradient shaped wafer maps with a vertical gradient
direction. In the original data set labels, all gradient typed wafer maps are labelled

65

5 Evaluation

with the same label. As CNN based classi�ers are not rotation invariant, wafers with
a di�erent gradient direction get clustered in a di�erent cluster. �is phenomenon,
that di�erent cluster results with the same original label happens throughout the
experiments. As long as most clusters contain unique labels, the result is good. As
a last step of real world pa�ern extraction, clusters need to be manually merged
together for creating a new labelled data set.
In the VAE approach by Santos and Kern [37] also data set B was used. �ey found,
that a traditional approach by using a PCA [48] followed by unsupervised clustering
cannot distinguish between the ring pa�ern and the two-spot pa�ern. Similar to
the results of the VAE approach, the BigBiGAN approach also �ts well for all
di�erent kinds of pa�erns. So the capabilities of BigBiGAN is comparable to the
VAE approach. �e similarity between the results of the VAE and the BigBiGAN
approach is obvious, as BigBiGANs discriminator is designed to make the network
behave like an autoencoder in a global optimum state [27]. �e main problem of
BigBiGAN is, that the parametrization is really hard. If the training takes too many
epochs, mode loss is a big problem and therefore also the separation quality is
a�ected. If the training takes too few epochs, the encoder may not be able to separate
the clusters accordingly. As BigBiGANs training is very dynamic, approaches like
early stopping [49] are hard to implement. Within the experiments, all runs are
made for 1000 epochs. Depending on the size of the latent/random vectors, the
runtime with a NVIDIA GeForce RTX 2070 graphics card is between 2-3 hours for
both data sets. �e evaluation of single wafer maps are made within seconds.

5.4 Future work

As the experiments with data set B did not work as expected, some modi�cations
can be used. �e �rst part would be to evaluate only the training data, to make
sure if the method works properly there. Also pre-processing could be improved

66

5.4 Future work

by �ltering, as for example edge enhancement or be�er noise �ltering. �e second
improvement could be made by creating a multi-level approach. �e �rst part is the
same as done in this experiments. �e second part is, to use the clustered results
as new reference data sets and run the same approach again on each of the new
data sets. As the �rst part is good at high level clustering, the second part tries to
cluster the details.
Also training BigBiGANs itself is a hard topic. As the learning curves are very
dynamic, some non-dynamic metric is needed in order to use it with the early
stopping approach. Early stopping stops training, if the metric does not change for
a well-de�ned time range. One approach would be, to use the reconstruction loss
as this non-dynamic metric.
�e main usage for the proposed method is to create labelled data sets for further
classi�cation tasks. As the latent space itself provides a low level representation,
this method could also be extended for direct classi�cation at the latent space. �e
2D latent space results could also be directly provided to the product engineers in
order to make their own assumptions on the latent vectors position.

67

6 Conclusion

In this master thesis an approach has been proposed where the encoder outputs
of the BigBiGAN network are used to cluster wafer map images into a set of
labels. �e experiments showed, that using BigBiGANs encoder to generate a low
dimensional representative of some input data, clustering on the resulting latent
space is an opportunity for extracting pa�erns for classi�cation. Choosing the
proper clustering method and its parametrizations is a crucial part for ge�ing good
results. Success is also very highly dependent on the data set used. �e experiments
also showed, that if pa�erns are clearly visible and easy to distinguish, the pa�ern
extraction approach works be�er than with more complex data. �is also showed,
that pre-processing data in a proper way is the most important step for extracting
pa�erns using this approach. It can be also shown, that using a one-hot driven
random latent vector, classi�cation results can be intrinsically achieved from the
BigBiGAN network. In this experiments, the results were not fully satisfying but
this can be part of a future work.

69

Bibliography

[1] Jin Zhou, Bulent Ayhan, Chiman Kwan, and Trac Tran. ATR performance
improvement using images with corrupted or missing pixels. In Mohammad S.
Alam, editor, Pa�ern Recognition and Tracking XXIX, volume 10649, pages 112
– 121. International Society for Optics and Photonics, SPIE, 2018.

[2] Christopher K. I. Williams, Charlie Nash, and Alfredo Nazábal. Autoencoders
and probabilistic inference with missing data: An exact solution for the factor
analysis case, 2018.

[3] Richard Szeliski. Computer Vision: Algorithms and Applications - Histogram

Equalization, pages 106–110. Springer London, 2010.

[4] Alex C. Michalos, editor. Encyclopedia of�ality of Life andWell-Being Research

- Normal Distribution, pages 4374–4374. Springer Netherlands, Dordrecht,
2014.

[5] Yadolah Dodge. �e Concise Encyclopedia of Statistics - Interquartile Range,
pages 266–267. Springer New York, New York, NY, 2008.

[6] Richard Szeliski. Computer Vision: Algorithms and Applications - Interpolation,
pages 127–130. Springer London, 2010.

[7] Earl J. Kirkland. Bilinear Interpolation, pages 261–263. Springer US, Boston,
MA, 2010.

71

Bibliography

[8] Olivier Rukundo and Hanqiang Cao. Nearest neighbor value interpolation.
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND AP-

PLICATIONS, 3(4):6, 2012.

[9] Richard Szeliski. Computer Vision: Algorithms and Applications - Linear �ltering,
pages 98–108. Springer London, 2010.

[10] Richard Szeliski. Computer Vision: Algorithms and Applications - Feature

detection and matching, pages 181–234. Springer London, 2010.

[11] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, Computer

Vision – ECCV 2006, pages 430–443, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[12] Chris Harris and Mike Stephens. A combined corner and edge detector. In In

Proc. of Fourth Alvey Vision Conference, pages 147–151, 1988.

[13] Alan Bundy and Lincoln Wallen. Di�erence of Gaussians, pages 30–30. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1984.

[14] D.G. Lowe. Object recognition from local scale-invariant features. In Proceed-

ings of the Seventh IEEE International Conference on Computer Vision, volume 2,
pages 1150–1157 vol.2, 1999.

[15] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In Kostas Daniilidis, Petros
Maragos, and Nikos Paragios, editors, Computer Vision – ECCV 2010, pages
778–792, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[16] Stan Z. Li and Anil Jain, editors. L2 norm, pages 883–883. Springer US, Boston,
MA, 2009.

72

Bibliography

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[18] Norbert M. Seel, editor. Linear Regression, pages 2052–2052. Springer US,
Boston, MA, 2012.

[19] Marc D. Binder, Nobutaka Hirokawa, and Uwe Windhorst, editors. Gradient
Descent, pages 1765–1766. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[20] A. Kızrak. Comparison of activation functions for deep neural networks.
https://tinyurl.com/ftekar63, 2019.

[21] Philippe de Wilde. Backpropagation, pages 35–51. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996.

[22] Alexander Semenov, Vladimir Boginski, and Eduardo L. Pasiliao. Neural net-
works with multidimensional cross-entropy loss functions. In Andrea Tagarelli
and Hanghang Tong, editors, Computational Data and Social Networks, pages
57–62, Cham, 2019. Springer International Publishing.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[24] M. Mursaleen. Toeplitz Matrices, pages 1–11. Springer International Publishing,
Cham, 2014.

[25] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks, 2016.

[26] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya-Polo, and
Tomaso Poggio. Learning with a wasserstein loss, 2015.

73

http://www.deeplearningbook.org
https://tinyurl.com/ftekar63
http://www.deeplearningbook.org

Bibliography

[27] Je� Donahue and Karen Simonyan. Large scale adversarial representation
learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garne�, editors, Advances in Neural Information Processing Systems 32,
pages 10541–10551. Curran Associates, Inc., 2019.

[28] �omas M. Su�er, Imant Daunhawer, and Julia E. Vogt. Multimodal generative
learning utilizing jensen-shannon-divergence, 2020.

[29] Wei Li, Melvin Gauci, and Roderich Gross. A coevolutionary approach to
learn animal behavior through controlled interaction. In Proceedings of the

15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13,
pages 223–230, New York, NY, USA, 2013. ACM.

[30] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

27, pages 2672–2680. Curran Associates, Inc., 2014.

[31] Wei Li, Melvin Gauci, and Roderich Groß. Turing learning: a metric-free ap-
proach to inferring behavior and its application to swarms. Swarm Intelligence,
10(3):211–243, Sep 2016.

[32] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering al-
gorithms. Annals of Data Science, 2, 08 2015.

[33] Clustering algorithms. https://developers.
google.com/machine-learning/clustering/
clustering-algorithms, 2020.

[34] J. B. Mac�een. Some methods for classi�cation and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors, Proc. of the ��h Berkeley

74

https://developers.google.com/machine-learning/clustering/clustering-algorithms
https://developers.google.com/machine-learning/clustering/clustering-algorithms
https://developers.google.com/machine-learning/clustering/clustering-algorithms

Bibliography

Symposium on Mathematical Statistics and Probability, volume 1, pages 281–
297. University of California Press, 1967.

[35] R. Wang and N. Chen. Wafer map defect pa�ern recognition using rotation-
invariant features. IEEE Transactions on Semiconductor Manufacturing,
32(4):596–604, 2019.

[36] S. Schrunner, O. Bluder, A. Zernig, A. Kaestner, and R. Kern. Markov random
�elds for pa�ern extraction in analog wafer test data. In 2017 Seventh Inter-

national Conference on Image Processing �eory, Tools and Applications (IPTA),
pages 1–6, Nov 2017.

[37] Tiago Teixeira dos Santos and Roman Kern. Understanding wafer pa�erns
in semiconductor production with variational auto-encoders. In Proc. 26th

European Symp. on Arti�cial Neural Networks, Computational Intelligence and

Machine Learning (ESANN), 2018.

[38] H. S. Shon, E. Batbaatar, W. S. Cho, and S. G. Choi. Unsupervised pre-training
of imbalanced data for identi�cation of wafer map defect pa�erns. IEEE Access,
9:52352–52363, 2021.

[39] Wm-811k wafer map. https://www.kaggle.com/qingyi/
wm811k-wafer-map. Accessed: 2019-09-27.

[40] Martin Pleschberger, Michael Scheiber, and Stefan Schrunner. Simulated
Analog Wafer Test Data for Pa�ern Recognition, January 2019.

[41] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. �e
reversible residual network: Backpropagation without storing activations,
2017.

75

https://www.kaggle.com/qingyi/wm811k-wafer-map
https://www.kaggle.com/qingyi/wm811k-wafer-map

Bibliography

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pa�ern Recognition (CVPR), pages 770–778, 2016.

[43] Nitish Srivastava, Geo�rey E. Hinton, A. Krizhevsky, Ilya Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural networks from
over��ing. J. Mach. Learn. Res., 15:1929–1958, 2014.

[44] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spec-
tral normalization for generative adversarial networks, 2018.

[45] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. Draw: A recurrent neural network for image generation, 2015.

[46] Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shi�, 2015.

[47] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017.

[48] Stan Z. Li and Anil Jain, editors. Principal Component Analysis, pages 1091–
1091. Springer US, Boston, MA, 2009.

[49] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory
and neural networks architectures. Neural Computation, 7:219–269, 1995.

76

A Appendix

Figure A.1: Generator and encoder losses using data set A. (red - uniform 2D noise mode, blue -
uniform 8D noise mode, light blue - 12D one-hot noise mode).

Figure A.2: Discriminator losses using data set A. (red - uniform 2D noise mode, blue - uniform 8D
noise mode, light blue - 12D one-hot noise mode).

77

A Appendix

Figure A.3: Generator and encoder losses using data set B. (pink - uniform 2D noise mode, green -
12D one-hot noise mode).

Figure A.4: Discriminator losses using data set B. (pink - uniform 2D noise mode, green - 12D
one-hot noise mode).

78

Figure A.5: Generated wafer maps of data set A using 2D uniform noise mode a�er 1000 epochs.

79

A Appendix

Figure A.6: Generated wafer maps of data set A using 8D uniform noise mode a�er 1000 epochs.

80

Figure A.7: Generated wafer maps of data set A using 12D one-hot noise mode a�er 1000 epochs.

81

A Appendix

Figure A.8: Generated wafer maps of data set B using 2D uniform noise mode a�er 1000 epochs.

82

Figure A.9: Generated wafer maps of data set B using 12D one.hot noise mode a�er 1000 epochs.

83

	Abstract
	Introduction
	Background
	Wafer map images
	Missing data
	Scaling and normalization
	Additional pre-processing steps

	Classical pattern recognition
	Feed forward neural networks (NNs)
	Neurons
	Training a neural network

	Convolutional neural networks (CNNs)
	Convolution function
	Convolutional layers

	Generative adversarial networks (GANs)
	BigBiGAN

	Variational auto encoders (VAEs)
	Clustering algorithms
	Centroid based clustering
	Density based clustering
	Distribution based clustering
	Hierarchical clustering

	Related work
	Materials and method
	Data
	Data sets
	Pre-processing

	Network
	BigBiGAN
	Training
	Noise modes

	Clustering

	Evaluation
	Experiments
	Results
	Data set (A)
	Data set (B)

	Discussion
	Future work

	Conclusion
	Bibliography
	Appendix

