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Abstract

Keywords: RNA-seq, differential gene expression analysis, prostate adenocarcinoma, canine cell
lines

Prostate cancer can affect both humans and animals, but the dog is the only other large mammal
that spontaneously develop prostate cancer with aging. The dog is an adequate animal model of
aggressive human prostate cancer, because of the similar anatomy of the prostate and pathological
resemblances to men. Research into the molecular mechanisms of prostate cancer is facilitated
by the use of in vitro model systems and therefore, in recent years many cell lines have been
established from primary tissue sources. Cell lines are not only used for understanding molecular
mechanisms in tumor progression, but also for designing new therapeutic strategies. However, cell
lines can also differ from primary tumors in biologically significant ways and not every cell line
may be a suitable model for their tumor type. Finding and interpreting the differences (DEGs)
between canine prostate cell lines and canine prostate primary tumor tissues is the main goal in
this thesis to find out if the cell lines are a suitable model for their tissue samples.
Therefore an RNA-sequencing (RNA-seq) analysis as well as a differential gene expression analysis
was performed to identify genes or molecular pathways that are differentially expressed. In the
first part of this thesis a RNA-seq pipeline was constructed for pre-processing the sequencing data
as well as mapping to the reference transcriptome. This pipeline uses some of the most widely used
tools in the field of RNA-seq analysis. The second part consists of the differential gene expression
analysis by providing a complete computational workflow. The used data set is obtained by the
group of Prof. Dr. Ingo Nolte from the Tierklinik Hannover and consists of canine prostate
cancer cell lines and tissues. Pathways that were down-regulated in cell lines compared to tumor
tissue included cell communication, immune processes, cell adhesion molecules and ECM-receptor
interaction. Up-regulated pathways were generally associated with cellular growth and DNA repair.
The results provide insights into the expression differences between cell lines and tissues. The strong
changes which were observed should be considered when using cell lines as models for tissues. It is
important to understand that differences exist for designing and interpreting experimental studies.
Thus, the choice of an appropriate cell line for a specific project depends mainly on the goal and
context of the study and the suitability of cell lines should be carefully validated before use.
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1 Introduction

Besides cardiovascular diseases, cancer is the second leading cause of death. According to World
Health Organization (WHO) there are over 1.8 million deaths and 3.90 million cases of cancer in
Europe each year [1]. In light of this, it is of paramount importance to analyze cancer cells and
cancerous tissue samples to understand the genetic processes behind it. Latest technologies and
scientific advancements make it possible to better understand the genetics in the body, however
many things are yet to be investigated and explored. In this thesis the main focus lies on creating
a pipeline for RNA-seq analysis and finding the differentially expressed genes between cancer cell
lines and cancerous tissue samples.

1.1 Cancer

Cancer is a disease, where cells grow and spread uncontrollably in the body [4]. This growth
can be triggered either due to genetic factors or external influences [4]. The most important
differentiation in cancer genetics is between benign and malignant tumors, an abnormal mass of
tissue where cells grow and divide uncontrollably [135]. Benign tumors are non-cancerous, they can
be easily demarcated from the surrounding tissue, they grow slowly and the structure of the tumor
cells differ only little from the original cells [5]. A malignant tumor instead grows very quickly
and aggressively invades surrounding tissues [5]. Malignant tumors often spread throughout the
body along nerves or blood vessels and can be transported to other tissues of the body via the
bloodstream [2]. These tumor cells again propagate and grow into a new tumor. Such types of
tumors are called metastases [2]. Only malignant tumors are referred to as cancer and they can
reappear after they have been removed [6]. However, what makes cancer so dangerous is their
property to metastasize, which is the cause of 90% of all deaths regarding cancer, according to
Gundem et al. [7]. Malignant and benign tumors are classified according to the type of tissue and
the infested organ where it first was detected [3]. According to the National Cancer Institute [3]
there are hundreds of different cancer types which can occur, but 90 percent of all cancer types
fall into some main categories:

• Carcinoma

• Sarcoma

• Myeloma

• Leukemia

• Lymphoma

• Mixed Types

At least about 90 percent of all human cancer types are carcinomas, which are malignancies of
epithelial cells [2]. Such epithelial tissues are common throughout the body like in the skin, gas-
trointestinal tract, prostate, liver, kidneys, urinary bladder and many more [8].

Carcinomas are divided into:

• Basal cell carcinoma
According to Lanoue et al. [9] it is the most commonly occurring cancer in the world.
Metastasis is extremely rare and originates from cells of the hair follicle, from epidermal
stem cells or from cells of the interfollicular epidermis [10].

• Squamous cell carcinoma
It is the second most common form of skin cancer and appears really often in sun-damaged
skin [11].
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• Transitional cell carcinoma
It originates from the transitional epithelial cells of the urinary system, e.g. kidneys, bladder
or accessory organs and is the most common bladder cancer in the United States [12]. Tran-
sitional cell carcinoma develops from the urothelium, which lines the renal pelvis, ureter and
urinary bladder [13]. TCC of the renal pelvis or ureter is a relatively rare disease (less than
1%) in contrast to the urinary bladder (90%), as Ozsahin et al. [14] reported.

• Adenocarcinoma
It originates in glandular cells, which can be found in tissues and organs which are able to
produce secretion, mucus, digestive juices or seminal fluids [15]. Adenocarcinomas can occur
in many parts of the body, for example in the breast, lung, prostate, gastrointestinal tract
like colon, pancreas, stomach or esophagus and also make 70 % of cancer of unknown origin
[16].

The main focus of this master thesis is on the adenocarcinoma and transitional cell carcinoma,
related to the prostate.

1.1.1 Human prostate Cancer

Almost all prostate cancer types are adenocarcinomas and are globally the most often noncutaneous
cancer in men [19]. The prostate is a gland found only in men where parts of the seminal fluid is
produced. Prostate cancer is especially frequent in developed countries [19]. The causes of prostate
cancer development are largely unknown, however age as well as genetics are high risk factors [16].
There are three stages in which human prostate cancer develops [86]:

1. Intraepithelial neoplasia:
It is a pre-malignant form of prostate cancer, a hyperplasia, i.e. an overgrowth of tissue, of
luminal cells [20]. Luminal cells coat the lumen and produce human prostate specific antigen
(PSA) and androgen receptor (AR) [21]. Also an increasing loss of basal cells appears, leading
many to speculate that luminal cells can be the cell source for prostate cancer and therefore
driving force for tumor progression [21].

2. Androgen-dependent adenocarcinoma:
Initial phase of prostatic cancer cells are androgen-dependent and they need androgen to
proliferate [22]. Usually androgenes are removed to stop proliferation, which is often used in
therapeutic approaches regarding prostate cancer [22]. A complete loss of basal cells is also
associated with this stage [86].

3. Androgen-independent adenocarcinoma:
After the early stage, many adenocarcinomas become more aggressive and thus resistant to
hormone deprivation, which means that the carcinoma becomes androgen-independent. [23].
Unfortunately, the processes and reasons that control the transition to androgen-independent
prostate cancer are not known yet[23].

In contrast to other types of cancer, prostate cancer has a low mutation rate, as well as few
chromosomal losses or gains [24]. The most commonly focal loss is observed at the phosphatase
and tensin homolog (PTEN ) gene [24]. Advances in molecular biology allow a detailed investigation
of the genomic events regarding prostate cancer development and emergence [26]. Prostate cancer
is divided into two molecular groups [26]:

• ETS rearrangements and features of chemoplexy:
About 50% of prostate cancers show gene fusions involving ETS transcription factors, whereby
chromosomal rearrangements can create a TMPRSS2-ERG gene [25]. This fusion protein
contributes to prostate oncogenesis activating a transcriptional program by upregulating the
expression of enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2 ), SRY-box
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transcription factor 9 (SOX9 ), MYC proto-oncogenes (MYC ) and repression of NK3 home-
obox 1 (NKX3-1 ) expression [86].

• Absence of ETS rearrangements
If no ETS transcription factors are involved, often mutation of the speckle type BTB/POZ
gene (SPOP) or deletion of the cadherin 1 (CDH1 ) gene occur, whereby SPOP expression
is often downregulated in prostate carcionomas [27].

The development of prostate cancer leads to certain mutations and deregulation of relevant tran-
scription factors [31]. According to Labbe et al. [31], some studies revealed that the loss of the NK3
Homeobox 1 gene (NKX3-1 ) is a tumor-initiating event that ruptures normal prostate epithelial
differentiation and can trigger or promote further oncogenic events [31]. Tan et al. [32], reported
about that the NKX3-1 gene promotes the survival of prostate cancer cells because it regulates
the AR transcriptional network in such a way that it benefits the cancer cells [32]. It is a tumor
suppressor for prostate cancer, but the functional loss of that gene results in a downregulation of
other genes that are essential for the prostate, like SPOP, TP53, FOXA1, and PTEN [26, 86]. Sun
et al. [30] has reported that the phosphatase and tensin homolog gene (PTEN ) is the top com-
mon mutated genes in prostate cancer, which is a multi-functional tumor suppressor and regulates
cell proliferation [30]. Kurfurstova et al. [91] observed a downregulation of NAD(P)H quinone
dehydrogenase 1 (NQO1 ) together with loss of PTEN in an advanced prostate cancer stage which
implies that NQO1 may have a tumor suppressive role and may promotes tumor growth [91]. In
a healthy prostate, mouse double minute 2 homolog gen (MDM2 ) prevents the transcriptional
activity of tumor protein p53 gene (TP53 ) and regulates DNA repair, apoptosis as well as cell
cycle [86]. By disrupting these processes, mutations can accumulate in a cell increasing the risk of
developing prostate cancer [86].
Cancer-Prostate Cancer Foundation Dream Team [28], also confirmed that the common recurrent
gene alterations in prostate cancer included androgen receptor (AR) mutation (62.7%), TP53
mutation or deletion (53.3%), PTEN deletion (40.7%), RB1 loss (8.6%), BRCA1 or BRCA2
mutation or deletion (14.6%) and CDK12 mutation (4.7%) [28].
A frequently observed down-regulated gene in prostate cancer is cytochrome P450 family 1 sub-
family A member 1 (CYP1A1 ) [90]. This phase I enzyme can activate various compounds, which
can subsequently lead to carcinogenesis [90]. Interestingly, collagen type I alpha 2 chain (COL1A2 )
gene has been reported to be overexpressed in metastatic prostate tumors [89]. This could be due
to the fact that ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5 ) down-regulation
cause morphologic and growth pattern changes and that they could be prevented by collagen [89].

1.1.2 Canine prostate cancer

The dog is the only large mammal that suffers spontaneously from prostate cancer with aging [35].
It is an adequate animal model because of the similar anatomy and pathological resemblances to
men [92]. Therefore, canine carcinomas are a natural model for human cancer [92]. Transitional
cell carcinoma (TCC) and prostate cell carcinoma (PAC) are the most predominantly diagnosed
canine prostatic carcinomas [36]. PAC and TCC in dogs show highly invasive growth and present
an aggressive behaviour as well as a poor prognosis [36]. The TCC resembles human invasive
bladder cancer and metastatic tumors of closely neighboring organs [33]. The occurance of canine
prostate carcinomas is rare, but both species, mens and dogs have similar histopathology and
metastatic behaviour [33]. The canine prostate cancer share many characteristics with humans,
for example similar morphology, presence of Prostatic Intraepithelial Neoplasia (PIN), Proliferative
Inflammatory Atrophy (PIA), bone and lymph node metastasis [37, 38]. Keeping in mind, that the
prostate cancer in dogs is androgen independent [37]. Canine prostate cancer shows alterations in
C-MYC,TP53 and MDM2 expression and these discoveries pointed out that the genetic behaviour
is similar in both species, dogs and humans [92]. According to Fonseca-Alves et al. [96] genetic
and biological processes of canine and human prostate cancer are similar because there are studies
in which both species show the loss of NKX3-1 expression as well as increased C-MYC expression.
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In canine prostate cancer a loss of androgen receptor (AR), NK3 homeobox 1 (NKX3.1 ) and
phosphatase and tensin homolog (PTEN ) expression occur [97]. Prostate carcinomas in dogs can
develop from luminal, ductal, and urothelial cells [98]. Deregulation of cancer-related proteins like
MDM2, PTEN, TP53, catenin beta 1 (CTNNB1) and cadherin 1 (CDH1) are common occurrences
in dog and human prostate cancer [98].
The expression of prostaglandin-endoperoxide synthase 2 (PTGS2 or COX-2 ) has been docu-
mented in canine prostate cancer as well as in human prostate cancer [99]. The connection between
COX-2 expression in dogs and the histologic type of tumor as well as the presence of inflammation
is widely unknown and only a little is known about the mechanisms regulating the expression of
COX-2 [99]. However, Henry F. L’Eplattenier et al. reported that oncogenes, growth factors,
cytokines, endotoxin and phorbol esters can up-regulate the expression of COX-2 [99].
A noticeable difference between man and dog prostate cancer is the role of androgens [39]. In
men the development and function of sex organs as well as the development of prostate cancer
is dependent of androgens [97]. In contrast, the androgen receptor is present in normal canine
prostatic tissue and is important for normal canine sex organ maintenance and function in dogs
[39]. Contrary to humans, dogs have a rarely expression of the androgen receptor (AR) [97]. Due
to the fact that castration does not decrease the incidence of prostate cancer and androgen receptor
expression is not present in dogs, it is quite possible that androgens does not play an important
role in the pathogenesis of canine prostate cancer as Chen-Li Lai et al. reported [39].
A marker which is often used in men is the prostate specific membrane antigen (PSMA) , but
former studies reported that PSMA was not expressed in canine prostate cancer but recent work
has shown the opposite [97].

1.1.3 Prostate cell lines

”Cancer cell lines represent useful tools to investigate tumorigenesis and to establish new ther-
apeutic approaches. For research in rare but severe tumor entities like canine prostate cancer,
cell lines are even more valuable, as access to tissue samples and primary cultures is limited. In
general, cell lines are established from tumor-burdened individuals.” (Packeiser et al. 2020 S.2) [42].

Cell lines are in vitro models which are used in medical research, especially in cancer research
[43]. Cell lines can simulate the molecular reaction of a whole organism and provide a source of
biological material [43]. Furthermore, under specific conditions cell lines retain a lot of genetic
properties of the original cancer [88]. Cell lines also differ from primary tumors, which means the
original or first tumor in the body, in biologically significant ways and not every cell line can be a
adequate model for their tumor type [88]. Thus, finding differences between cell lines and primary
tumor tissues is of great importance to assess if the cell line is a good model or not [44].
The advantages of cell lines are their inexpensiveness, easy growth, disposability and suitability
for high-throughput screening [45]. However, cancer cell lines do not represent the heterogeneity
of primary tumors and acquire specific properties during in vitro growth [45].
Cell lines are also of great importance in canine prostate cancer research but are currently limited
to a rather small number [57]. All the seven used canine cell lines in this thesis show significant
immunohistological differences compared to the respective canine tumor tissue samples [42]. This
is due to the fact that the cell lines have undergone own variances induced by subculturing [42].

Overall seven different cell lines were used in this study and were described and characterized from
Eva Maria Packeiser et al. [42] for the first time:

• Adcarc 1258
Represents a multi-resistant canine male prostate adenocarcinoma cell line

• Adcarc 0846
A prostate adenocarcinoma derived cell line that showed a significantly increased CLDN-1
expression.
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• Adcarc 1508
A prostate adenocarcinoma cell line which tended to show a down-regulation of miR-141 and
miR-375.

• Metadcarc 1511.2
A male metastasis-derived cell line of adenocarcinoma which is resistant to apoptotic effects
induced by doxorubicin.

• Metadcarc 1511.3
A male metastasis-derived cell line of adenocarcinoma and resistant to apoptotic effects
induced by doxorubicin.

• TCC 1509
Represents an extremely rare case of canine TCC existence in prostate tissue.

• TCC 1506
A cell line from female bladder tissue which is classified as TCC after pathohistological
examination of the initial tissues.

1.2 Gene expression analysis

The analysis and interpretation of transcriptomic data are the most complex issues scientists
deal with [69]. It requires a high quality differential gene expression analysis, which means the
identification of the differentially expressed genes between multiple sample groups or experimental
conditions [46]. Gene expression is a regulated process in which the cell is able to react to its
environment [48]. Moreover, gene expression is involved in the procedure of transferring genetic
information from DNA fragments to RNA molecules further to build proteins [48]. In order to get
better insights into the world of cellular reactions at a definite point in time, gene expressions are
researched. By studying gene expression, i.e. in which cells under which environmental conditions
a gene is active, the gene functions can be derived [69].
To find differentially expressed genes in terms of two or more experimental groups a computational
analysis is necessary. Such a gene expression analysis is an essential technique for cancer research,
discovering new drugs and treatment options [69]. With the increasing popularity and application
of this analysis, several tools and methods have been developed [49]. The most commonly used
methods to measure gene expression are Northern blotting, quantitative polymerase chain reaction
(qPCR), DNA microarray and RNA-Seq [56]. In this study the used method for finding the
differential expressed genes is RNA-seq.

1.3 RNA-sequencing

RNA-sequencing (RNA-seq) was first established in 2008 and from that moment on RNA-seq data
has grown exponentially [50]. RNA-seq can discover and quantify complex biological processes,
find expressed genes, analyse RNA–protein bindings, determine sequence variations, characterize
transcriptomes or identify transcripts [40].
In an RNA experiment RNA is obtained from a tissue or cell and a classic workflow of a RNA-seq
experiment consists of several steps (Figure 1). The experiment includes isolation of RNA from a
cell or tissue sample, the library construction, the sequencing and the bioinformatic analysis [53].
Initially, the isolation and purification of the cellular RNAs is done [54]. The isolated RNAs have to
be treated with DNase to remove contamination by genomic DNA [54]. Then purity and quantity
checks are implemented to ensure the quality of the isolated RNAs [52]. In the library construction
step the aim is to convert RNAs into a library of complementary DNAs (cDNAs) fragments and
adapters because of the cDNAs superior chemical stability for further sequencing [51]. Due to the
specific sequencing length of each platform, the DNA has to be split into fragments [55].
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Figure 1: The classic RNA-seq workflow [52]. Such an experiment starts with the isolation
of RNA from a specific cell or tissue and the constructed RNA-seq library is sequenced. After
sequencing, a computational analysis is required.

The aim in sequencing is to receive the nucleic acid sequence from the cDNA library [52]. Each
molecule is sequenced with a high-throughput sequencing technology to produce millions of short
sequence reads [55]. With these it is possible to analyze the transcriptome in a high qualitative
way [55]. There are two methods of sequencing:

• single-end sequencing

• paired-end sequencing

DNA fragments can be sequenced either on one end, called single-end sequencing, or both ends,
called paired-end sequencing (Figure 2). The paired-end sequences have the benefit of increasing the
randomisation of fragments and it could be, that short fragments overlap, which means additional
information in comparison with single-end sequences [52].

Figure 2: Single-end sequencing and paired-end sequencing. Paired-end sequencing allows
sequencing of both ends of the DNA fragment and single-end means sequencing only one end.

High-throughput sequencing technologies can produce millions of short sequence reads and it is
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therefore possible to analyze the transcriptome in a quantitative way using RNA-seq [52].

1.3.1 Processing RNA-seq data

After the sequencing, the RNA-seq data has to be processed (Figure 3). Initially a quality check of
the input data should be performed in order to look at the overall quality of the millions of reads
[58]. In the next pre-processing step, the quality of the reads have to be improved, hence removing
low-quality bases and artifacts such as adapter or library construction sequences from raw reads,
called trimming is done [52]. This step can consist of several steps like quality trimming, adapter
trimming and removing experimental artefacts [58]. After the alignment of the pre-processed
reads to a reference genome, the differential expressed genes can be calculated and listed with a
differential gene expression analysis. For all these steps, several tools and software was developed.

Figure 3: Processing RNA-seq data. Initially pre-processing of the raw reads is important,
including the quality control and trimming step. Furthermore, the reads have to be aligned to the
reference genome. Furthermore a differential gene expression (DGE) analysis is required to find
the differential expressed genes.

However, each of these steps use different bioinformatic tools and it is very common to implement
a pipeline including all those steps and tools. An in-house RNA-seq pipeline allows full control of
the version of tools used, having only a few restrictions on input data types and also allowing to
reproduce every single step [59].

1.3.2 RNA-seq pipeline tools

Due to the multitude of different applications and analysis scenarios of RNA-Seq, there is no
optimal pipeline for every application. The selection of analysis strategies and software tools
regarding RNA-seq depend on the organism to be examined and the respective research goal [101].
RNA-seq pipelines can be distinguished by methods, software, different annotations, run-time
parameter values and normalization methods [101]. When RNA-seq is used in a differential gene
expression analysis project the reads have to go through several steps (Figure 3) [52]. In order to
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execute all these steps automatically or partially automatically, so-called workflow management
systems are widely used [100]. To ensure reproducibility and reusability worfklow engines help
to automate pipelines [100]. Workflow management systems like Biopipe [102], Galaxy [103],
GeneProf [104] or PegaSys [105] are characterized by the easy-to-use graphical user interface [61].
GXP Make [108] is quite simliar to Snakemake [73], which is inspired by the build system GNU
Make [60, 110]. For all of these, the workflow consists of numerous rules with input and output
files [60]. The syntax of Snakemake is close to the pseudocode of the Python language [100]. One
significant advantage of Snakemake over e.g. PegaSys is the cooperation with any installed tool,
software or obtainable web service with clear-defined input and output files, thus it is more flexible
[61]. After all, Snakemake is one of the first systems which supports file name inference with several
named wildcards in rules [61].
The most time-consuming step in such a workflow is the alignment to the reference genome [100].
Alternatively, a pseudo alignment to a transcriptome is performed, which recently gained in pop-
ularity because of the higher speed and accuracy [100].
There are many appropriate tools available for each step of a RNA-seq pipeline, but there is
no gold standard regarding the optimal RNA-seq analysis pipeline. A big number of RNA-seq
pipelines were developed because of the wide range of applications that RNA-seq has. Researchers
use different RNA-seq pipelines depending on the research goal. Known pipelines like RNAflow
[75] or the pipeline provided by the nf-core community (nf-core/rnaseq) uses Nexflow as workflow
management system. RNAflow pipeline focuses on easy installation, execution and reproducibility
and provide reasonable results with a minimal set of input parameters usable also for non-experts
[75]. The pipeline OneStopRNAseq [76] offers a web application and the back-end is implemented
within the Snakemake framework [76].The desired type of analysis and data required by the user,
can be selected or changed in the analysis path.
Another common pipeline is VIPER [77], where the underlying framework enables easy and ef-
ficient rerunning of the analysis. Further feature is the graphical summary report that allows
quick summarization of experimental results. Furthermore, the integrated batch-correction, Virus
detection and Immunology modules are unique in this pipeline compared to others [77].
The QuickRNASeq [78] pipeline is designed for simplicity and visual interactivity and is applied
for large-scale RNA-seq analysis of complex data sets [78].
The structure and procedures of those different pipelines are often similar, mostly different tools
are used for the respective steps.

1.3.3 Pre-processing tools

In order to create a quality report in the beginning or after the mapping step several tools like
FastQC [74], which is the standard tool and HTQC [111] were developed. A pretty typical tool
for bioinformatic pipelines is MultiQC [81], it is used to combine all reports into one large report.
Another tool for quality control and reports is NGSQC [112].
For removing low-quality reads and trim adaptor sequences software tools such as Trimmomatic
[82], FASTX-Toolkit [113] and rCorrector [114] are popular [69].

1.3.4 Alignment Tools

One of the most popular aligners for RNA-seq reads is HISAT [115], a extremely efficient software
for aligning reads from RNA sequencing experiments. For detecting non-canonical splice junctions,
a aligner such as STAR [83] or GEM [116] are used because of their enormous accuracy. Pertea
et al. [62] emphasized that HISAT is one of the fastest aligners among the rest. But according to
Baruzzo et al. [63] STAR gives better performance than HISAT on human data sets, consisting
of a higher percentage of correct aligned reads and a higher precision rate on a simulated human
data set [63].
The length and type of reads, strandedness of the RNA-seq library and the length of sequenced
fragments are crucial variables to define which aligner fits best[69]. Due to the fact that the reads



1 INTRODUCTION 9

are short and a high accuracy is needed, the used aligner is STAR.
For generating a quality report after aligning the reads Qualimap [117] or samtools [118] can be
used.

1.3.5 Differential gene expression analysis tools

A number of tools using the negative binomial model such as edgeR [119], DESeq2 [127] or bay-
Seq [120] have been developed in order to identify the genes that are differentially expressed [69].
Other tools like NOIseq [121] or SAMseq [122] adopt non-parametric techniques [69]. However, a
big difference in such differential gene expression tools is that some can only perform a pair-wise
comparison, but others can perform multiple comparisons including covariates and analyzing time-
series data like limma-voom [125], DESeq [126], DESeq2 [127], and maSigPro [128, 69].
Normalization methods which ignore highly expressed features or highly variables are TMM [129],
DESeq [126] or PoissonSeq [130].
In this further analysis the tool DESeq2 is used, a method for identification of differentially ex-
pressed genes of count data. DESeq2 uses a negative binomial distribution and this model is
defined as [127]:

Yit = NB∼ (µit, φt)

µit = si · qit

log(qit) = Xi · βt

Where Xi is the design matrix, µit the fitted mean and a gene-wise dispersion parameter φt.
βt is a vector with the coefficients, giving the log2 fold-changes for gene i for each column of the
model matrix X [127]. qit is proportional to the true concentration of fragments and by normalizing
the the raw counts, the scaling factors (sit) are calculated [64]. By calculating a median fold change
between samples for all genes with positive expression, compared to a geometric mean Yi

R, the
scaling factor is estimated [64]:

s̃i =
Yit
Y r
i

Y R
i = (

m∏
i=1

Y R
i )1/m

m = total number of samples
DESeq2 model needs to estimate the coefficients βt and the dispersion parameter φt from the
mean model [127]. The estimation process consists of three steps, beginning with a transcript-wise
dispersion estimation , involving fitting a negative binomial generalized linear model (GLM) to the
count data [64]. This GLM utilizes a dispersion that is estimated by method-of moments and is
needed to obtain a fitted mean µit for every transcript [64]. Due to the fact that genomic studies
are often very complex, linear models are used [127]. DESeq2 will test if a model parameter differs
significantly from zero using a Wald test, dividing the estimated log fold change by its standard
error [127].
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1.4 Aims and Objectives

The aim of these master thesis is to construct a pipeline to pre-process RNA-seq data and perform
a differential gene expression analysis of a canine prostate cancer dataset generated by the group
of Prof. Dr. Ingo Nolte from the Tierklinik Hannover. Finding the differentially expressed genes
between canine tissues and cell lines of different patients with either a diagnosis of an prostate
adenocarcinoma or a transitional cell carcinoma is the purpose.
Particularly, this master thesis has the following objectives:

1. Pre-process the RNA-seq data

2. Analyze an RNA-seq dataset consisting of canine cancer samples and perform a differential
gene expression analysis

3. Interpret results and compare with findings in the literature
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2 Materials and Methods

Many methods and software have been developed recently to pre-process the raw data and to find
out the differentially expressed genes in the course of RNA-seq.

2.1 Data

The data used in this master thesis was obtained by the group of Prof. Dr. Ingo Nolte from the
Tierklinik Hannover [41] and consists of overall 14 used data samples. Isolation of total RNA and
library preparation of those sample are described by Eva-Maria Packeiser as follows:
”For cell line Adcarc1258 and tissue samples P1 and P3, sequencing data of previously published ex-
periments were included (Gene Expression Omnibus database accession identifier [65] GSE122916,
samples PT-1 for P1 and PT-6 for P3). For cell line Adcarc1258, sequencing data of triplicates
that served as solvent control (0.15 % V/V DMSO) were used from a previous study (data sub-
mitted for publication). Apart from the DMSO treatment of Adcarc1258, all cell pellets including
those from previous studies were treated equally concerning sampling, storage, RNA isolation, li-
brary preparation and sequencing, as were the tissue samples. RNA from cell pellets was isolated
using the RNeasy Mini Kit (Qiagen, Hilden, Germany), in accordance with manufacturer’s pro-
tocols. For tissue samples, the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) was utilized
as previously described [65]. RNA was quantified photometrically on a take 3 plate in a Synergy2
plate reader (BioTek, Bad Friedrichshall, Germany). Samples with RNA integrity numbers  L5.2
measured with RNA 6000 Nano LabChip on an Agilent Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, USA) were further processed for library preparation using the NEBNext Ultra RNA
preparation kit (New England Biolabs, Ipswich, USA). Tissue sample P3 was excluded due to low
RNA integrity numbers in three independent trials of RNA-isolation. Single read sequencing was
conducted on an Illumina NextSeq500 platform (Illumina, San Diego, USA) with a read length of
75bp.”(Eva Maria Packeiser, 2019)

In the used dataset six canine PAC cell lines and tissue samples as well as two canine TCC cell
lines and tissue samples from a total of six patients (dogs) were used (Table 1). For each patient
a tissue sample as well as a cell line were used because of the aim to find differentially expressed
genes between each cell line type to its tissue of origin while controlling for differences across
patients. The cell lines were profiled by immunophenotype in comparison to respective original
tumor tissues, which were taken from neoplastic sections [42].
From patient no.4 two cell lines and two tissue samples of lymph notes metastasis were obtained.
Cell lines such as Metadcarc1511.2 and Metadcarc1511.3 offer the excellent option to analyse the
cellular characteristic regarding PAC metastasis because the cell lines were derived from metastasis
and from primary tumor of the same patient [42].
Patient 5 is missing on the list due to the patient’s owner denying the animals necropsy [42].

The Ensembl annotation (Release 101) (Hunt et al. 2018) for canis lupus familiaris and the DNA
(Release 101) (Hunt et al. 2018) (assembly CanFam3.1) from the Ensembl FTP server, were
downloaded in GTF format and in FASTA format, respectively [66].

2.2 Software

The execution and implementation of the pipeline was done on a machine with 64 CPU cores
running the Linux (x86 64) operating system. The generated pipeline for RNA-Seq analysis consists
of several software (Table 2). Furthermore RStudio (v.1.3) [85] was used for running R Scripts
(v.3.6.3) for differential gene expression analysis and visualization.
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Table 1: Used canine data set with overall 14 different samples. The whole data set consists
of six different patients (dogs) with at least one cell line and a tissue sample. The diagnosis of these
patients are either trasitional cell carcinoma (TCC), prostate adenocarcinoma (PAC) or prostate
adenocarcinoma metastasis in lymph nodes.

Patient Sample ID Sample type Diagnosis Original Tissue Sequencing method

P1 P1 Tissue PAC Prostate paired-end
P1 Adcarc1258 Cell line PAC Prostate paired-end
P2 P2 Tissue PAC Prostate single-end
P2 Adcarc0846 Cell line PAC Prostate single-end
P3 P3 Tissue PAC Prostate paired-end
P3 Adcarc1508 Cell line PAC Prostate single-end
P4 Ln4.2 Tissue PAC metasthasis Lymph nodes single-end
P4 Metadcarc1511.2 Cell line PAC metasthasis Lymph nodes single-end
P4 Ln4.3 Tissue PAC metasthasis Lymph nodes single-end
P4 Metadcarc1511.3 Cell line PAC metasthasis Lymph nodes single-end
P6 P6.1 Tissue TCC Prostate single-end
P6 TCC1509 Cell line TCC Prostate single-end
P7 B7 Tissue TCC Bladder single-end
P7 TCC1506 Cell line TCC Bladder single-end

Table 2: Used Software in the RNA-seq pipeline. For the pipeline five different tools are
used and their version and availability are listed.

Software Version Availability

Snakemake [73] 5.10.0 https://snakemake.readthedocs.io/en/stable/getting started/
FastQC [74] 0.11.9 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimmomatic [82] 0.39 http://www.usadellab.org/cms/?page=trimmomatic
STAR [83] 2.7.6a https://github.com/alexdobin/STAR

Anaconda [72] 1.7.2 https://www.anaconda.com/

2.2.1 Snakemake

Snakemake (v.5.10.0), a workflow management system, useful for creating reproducible and scal-
able data analysis [73]. The so-called Snakefile is a simple text-file which is compiled and executed
with the Snakemake compiler from shell [73]. A Snakefile consists of several rules, including input
files, output files and the corresponding shell commands:

r u l e name o f r u l e :
input :

”path/to/sample/ . f a s t q . gz”
output :

”path/to/output/sample . f a s t q . gz”
s h e l l :

” s h e l l command { input } {output}”

Rules can be executed in parallel for saving time and increasing efficiency. The recommended
installation of Snakemake happens via Anaconda (v.1.7.2), which is an open source distribution of
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the programming languages R and Python for data science applications [72].

2.2.2 FastQC

The used tool for checking the quality of the raw data is FastQC (v0.11.9) [74]. It generates a
*.html report for each sample containing a modular set of analysis, which give a quick overview to
assess the data [80]. A standard report consists of several analysis and statistics like:

1. General Statistics

2. Sequence Counts

3. Sequence Quality Histograms

4. Sequence Quality Scores

5. Base Sequence Content

6. Sequence GC Content

7. Per Base N Content

8. Sequence Length Distribution

9. Sequence Duplication Levels

2.2.3 Trimmomatic

Trimmomatic (v.0.39) [82] is a command line tool for trimming and croping the raw reads in
FASTQ format. This tool performs quality trimming if the quality is poor at the beginning or at
the end of each read and removes too short reads. Again, single-end reads and paired-end reads
have to be treated differently. For single-end reads one input file and one output file is defined.
For paired-end reads two input files and two output files are specified. The trimming step can be
removed from the pipeline if the quality of the data is really good, thus no quality trimming has
to be done.

2.2.4 STAR

The used tool for mapping the RNA-seq data was STAR (v.2.7.6a)[83], ‘Spliced Transcripts Align-
ment to a Reference’, an ultra fast universal RNA-seq aligner [83]. The main goal was to discover
the origin location of each read on a given reference. Alignment is divided into two major steps:

1. Generate genome index: first the reference genome must be indexed so that reads may be
quickly aligned.

2. Align reads to reference genome

In the first step the reference genome sequences in FASTA format as well as the annotation files
were used to generate genome indexes, allowing a quick retrieval of the positions in the reference
genome. When the positions is established, the reads can be mapped to the reference genome.
Again, distinguishing between single-end and paired-end reads was necessary, based on the different
number of FASTQ files.
After mapping several output files were generated [83]:

1. ReadsPerGene.out.tab:
in this file the counted number of reads per gene while mapping is reported and a read is
counted if it overlaps one gene.
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2. SJ.out.tab:
those files include high confidence collapsed splice junctions, which means each splicing is
counted and summerized in SJ.out.tab.

3. Log.progress.out:
the current job progress statistics are reported. Statistics such as percentage of mapped reads
or the number of processed reads are updated in one minute intervals.

4. Log.out:
it is the main log file with a lot of information if mapping has completed successfully. Log.out-
files are mostly used when there are issues with the alignment or for troubleshooting and
debugging.

5. Log.final.out:
After alignment to a reference is completed, a summary of mapping statistics is generated.
Such statistics are very useful for quality control and contain the number of input reads, the
number of uniquely mapped reads, the number of splices, the mismatch rate per base, the
percentage of unmapped reads and much more. For each read such statistics were calculated
and summarized over all reads, considering STAR counts a paired-end read as one read.

6. Aligned.sortedByCoord.out.bam:
For saving time, STAR can output alignments directly in binary BAM format instead of
SAM format. BAM files can be unsorted or sorted by coordinates, which is required by
many downstream applications. Aligned paired-end reads as well as multiple alignments of
a read are always adjacent.

2.3 Differential gene expression analysis

After pre-processing steps of the raw FASTQ-files a count matrix was obtained with all samples
and corresponding number of sequence fragments assigned to each gene in csv-format. The counts
of the reads should be un-normalized. The whole gene expression analysis was created in R with
the DESeq2 (v.1.30.0) [127] package from Bioconductor (v.3.10), providing methods for finding
expressed genes by use of negative binomial models. Additionally, a samples file, a table with
sample information and conditions to compare, is required to map a treatment condition to each
sample. In this analysis the main focus was on finding differentially expressed genes between cell
lines and tissues for each diagnosis (PAC, TCC and PAC metastasis). Thus, three analysis were
implemented for the three types of diagnosis to find the differentially expressed genes.
This analysis started with the count matrix, the samples table and the design formula in order
to use the DESeqDataSetFromMatrix() method to create the DESeq2 object. The design formula
indicates how to model the samples, in this case the effect of cell lines and tissue samples for each
patient:

design =∼ Patient + Sample type

The design formula means that DESeq2 will test the effect of the sample type (the last factor),
controlling for the effect of patients (the first factor), so that the algorithm returns the fold-change
result only from the effect of sample type.

Before runing DESeq2, it is essential to choose an appropriate reference level, a baseline level of a
factor. This can be done by the relevel- function in DESeq2. In this particular case the reference
was the tissue. Prefiltering, which means removing rows in which there are very few reads should
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be done. In this script a minimal pre-filtering is performed to keep only rows that have at least
one read total.
When generating the DESeq2 object, first, a internal normalization of the matrix is performed,
which means calculating the geometric mean for each gene across all samples [127]. DESeq2 uses
shrinkage estimation for dispersions and fold-changes, hence the dispersion value is estimated for
each gene using a model fit process [127]. For fitting, a negative binomial generalized linear model
is used for each gene and for significance testing the Wald test is used [127]. Count outliers are
automatically detected and removed from the analysis. To get the final results table, the results
function from DESeq2 was used providing a DESeq2 results object, which is a simple subclass of a
data frame. This data frame contains the columns: baseMean, log2FoldChange, lfcSE, stat, pvalue
and padj for each gene. The lfcSE represents the standard error of the log2 fold-change, which
means how much a quantity changes between two conditions. For instance a log2 fold-change of 2.5
signifies that the gene’s expression is increased by a multiplicative factor of 22.5. The base mean
is the mean of normalized counts of all samples and is used only for estimating the dispersion of
each gene. The stats column describes the difference between a chi-squared distribution and the
deviance of the full model to the reduced model, generating the P -value [67]. This parameter
indicates the probability that a fold-change can be seen by the null hypothesis [67]. The adjusted
P -value (padj) is the smallest significance level in which a certain comparison will be indicated
statistically significant.
Only genes with an adjusted P -value below 0.05 and an absolute log2 fold-change value greater
than one were acknowledged as differentially expressed.

Furthermore, the only annotation in the results table of the differentially expressed genes is the
Ensembl Gene ID, which is not very informative. There are a lot of ways to add annotations,
like gene names, transcript types or chromosome names. The package which was used for adding
annotations is an R package called biomaRt (v.2.46.0) [133]. The Biomart database which was
used is the Canis lupus familiaris gene ensembl (CanFam3.1). The information e.g columns which
are added to the results table is the gene name and the transcript type.

2.4 Visualization

All the resulting graphs and plots of the analysis were created in R with RStudio.[85] For visual-
ization the packages DEGreport (v.1.26.0) [94] and ggplot2(v.3.3.2) [95] were used.

2.5 Functional enrichment analysis

To gain greater biological insight of the differentially expressed genes a gene ontology (GO) func-
tional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was performed using the R package ClusterProfiler [134]. This tool compares
a list of differentially expressed genes to a reference set, to assess the significance of enrichment
for previously annotated and defined processes [145]. It aims to understand which pathways the
differentially expressed genes are implicated in and the Gene Ontology (GO) categories describe
the cellular component (CC), molecular function (MF) and the biological process (BP). Determine
whether there is enrichment of known biological functions, pathways or networks.
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3 Results

This chapter describes the constructed pipeline for pre-processing RNA-seq data and a gene ex-
pression analysis of canine prostate cancer samples.

3.1 RNA-seq pipeline

The implemented RNA-seq pipeline contains all the listed steps (Figure 4), starting with the raw
reads and finishing with the count matrix, a table containing the number of mapped reads for all
samples with the corresponding genes.

Figure 4: Workflow of the RNA-seq pre-processing pipeline. Starting with the raw data,
some quality checks are performed. Trimmomatic performs quality trimming if the quality is poor
at the beginning or at the end of each read and removes too short reads. With the popular STAR
[83] aligner the reads are mapped to a reference genome and counted how many reads are mapped
to a specific gene. The final output of the pipeline is a table containing the number of reads in
each sequencing library mapped to each gene. This table is further referred to as ”count matrix”.

3.1.1 Configuration

A configuration file is available to set the parameters of the analysis and the user can change
storage paths, name files, parameters and options only in this file without adjusting the pipeline
(appendix).

3.1.2 Quality control

The raw reads are stored in FASTQ format and before analysing, some quality checks have to be
done, to ensure no biases or problems in the data. Checking hundreds of sample reports can be
enormously time consuming, therefore the tool MultiQC (v1.9) is used [81]. It merges the quality
reports of each sample from FastQC tool into a single report. Due to the fact that single-end
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libraries consists of one FASTQ file and paired-end libraries of two files, as a result they have to
be analysed separately.
The mean quality score (Figure 5) of all single-end sequences is a quick overview of the range of
quality across all samples, in which the y-axis shows the quality score and the x-axis the position
(bp). The green area signifies very good quality, a phred score between 28-40, the orange one
reasonable quality, a phred score between 20-28 and the red area means poor quality, a phred score
between 0-20.
A phred quality score indicates the probability of the base being called correctly and the scores
generally range from 0 to 40 with higher scores indicating greater confidence in the call, here an
average phred score of 35 (Figure 6) was established.

Figure 5: Mean quality score of single-end reads of the canine data set. The used tool
for checking the quality is FastQC and for merging all quality reports in one plot MultiQC is used.
For each single-end library there is one green line in the mean quality score plot.

Figure 6: Mean quality score of paired-end reads. The used tool for checking the quality
is FastQC and for merging all quality reports in one plot MultiQC is used. For each paired-end
library there is one green line in the mean quality score plot.

Each file contains between 18 - 30 million sequences, the median across all single-end files is 25,9
million sequences and across all paired-end files it is 22,75 million sequences.
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3.1.3 Mapping to the reference genome

One of the most important metric in alignment is the percentage of the reads that have been
uniquely mapped to the reference transcriptome (Table 3).

Table 3: Results after mapping step. The number and percentage of uniquely mapped reads
to the reference genome for each sample

Patient
Sample

type
Average

read length
Uniquely mapped

reads in %
Uniquely mapped

reads

P1 Tissue 149 92,12% 21,976,280
P1 Cell line 149 88,25% 59,631,632
P2 Tissue 75 88,28% 20,511,330
P2 Cell line 75 88,42% 50,973,287
P3 Tissue 149 91,15% 20,385,207
P3 Cell line 75 89,26% 71,949,494
P4 Tissue 75 87,06% 19,810,641
P4 Cell line 75 89,82% 70,317,952
P4 Tissue 75 87,84% 19,847,040
P4 Cell line 75 89,58% 69,178,384
P6 Tissue 75 88,60% 25,793,133
P6 Cell line 75 89,60% 68,014,141
P7 Tissue 75 88,22% 20,858,108
P7 Cell line 75 89,34% 67,871,610

The mean in percentage of all reads which have been aligned to the reference genome is 89,11%
and the median is 89,03%. The high amount of mapped reads points to successful trimming and
alignment steps as well as data generation.

3.1.4 Counting the reads mapped to each gene

With the –quantMode GeneCounts command from STAR in the pipeline, a file called ReadsPer-
Gene.out.tab is generated for each sample, counting how many reads are mapped to a specific gene
(Figure 7). If one, only one read overlaps (1nt or more) one gene, it is counted.

Figure 7: Excerpt of reads per gene file. This file, generated from STAR, contains of four
columns with the different strandedness options and the gene ids.

This file consists of 4 columns with the different strandedness options listed in the STAR Manual
[84]. The strandedness is dependent upon the cDNA library construction method, hence a stranded
RNA-seq library involves information on which strand the messenger RNA (mRNA) originated,
while in unstranded RNA-seq libraries the information is lost:
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1. column 1: gene ID

2. column 2: number of mapped reads for unstranded RNA-seq

3. column 3: number of mapped reads for the 1st read strand aligned with RNA

4. column 4: number of mapped reads for the 2nd read strand aligned with RNA [84]

The first four rows consist of:

1. N unmapped: the number of reads which are unmapped to the genome

2. N multimapping: the number of reads which are multimapping to the genome

3. N noFeature: the number of reads which are mapped to the genome but do not belong to a
feature

4. N ambiguous: the number of reads which belong to more than one feature

Selecting the correct strandedness for the specific data is important, otherwise incorrect results
can arise in further analysis. The used data set comprises unstranded reads, hence column two.
An R Script can be found in the appendix where the particular read counts of each sample are
merged to one file.

3.1.5 Count matrix

For this data set, the count matrix consists of 30,424 genes (rows) and 14 samples (columns).
25,140 (82,63%) of 30,424 genes have values other than zero for at least one sample. In all, 19,947
genes are protein-coding genes, where 18,843 protein-coding genes have values other than zero.
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3.2 Gene expression analysis

3.2.1 Overview of the data set

The whole dataset consisted of fourteen samples:, seven cell lines and seven tissue samples from
overall six different patients. The principal component analysis (PCA) is a statistical procedure
that can be used to reduce the dimensions of a data set and computes a description of the data
set with a reduced number of variables. PCA plot is useful for visualizing the overall effect of
experimental covariates and batch effects. In the PCA plot the differences between the cell lines
and tissues can be seen (Figure 8). For this study, the tissue samples grouped together like the
cell line samples. The differences between the two groups of samples inidcate that the expression
profiles of the two groups are dissimilar.

Figure 8: PCA plot of the data set with 14 samples. Each point represents a sample, either
a tissue sample (red) or a cell line sample (blue) with the respective diagnosis and patient. Similar
samples are usually seen grouped close together.

In the data set patients with three different diagnosis (PAC, TCC and PAC metastasis) can be
found. Finding differentially expressed genes between cell lines and tissue samples was done seper-
ately for each diagnosis. As a result, three differential gene expression analysis were performed
and for each the same methods and steps were executed:

1. Before running the analysis, filtering of the data was done for all samples by excluding genes
which have no values other than zero.

2. DEGs were identified between cell lines and tissue samples using the threshold for adjusted
P -value smaller than 0.05 and log2 fold-change greater than or equal to one.

3. Up- and downregulated genes were identified.

4. Hierachical clustering

5. GO functional enrichment analysis

6. KEGG pathway enrichment analysis
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3.2.2 PAC

To detect important alterations of a cell line compared to the relevant tissue sample a differential
gene expression analysis was performed for the diagnosis PAC. Three tissue samples and three
cell lines corresponding to three patients were included in this analysis. Overall, 22,979 genes
were quantified with one or more reads/fragments/ in each of the six samples. Before running
the analysis, filtering of the data was done by excluding genes which have not values other than
zero. Thus, the filtered count matrix regarding the samples with diagnosis PAC consisted of overall
22,979 genes.
Using the threshold of 0.05 for adjusted P -value and log2 fold-change greater than or equal to one,
2,690 genes were found to be significantly differentially expressed including 129 up-regulated genes
and 2,561 (95.2%) down-regulated genes (Table 4, Figure 9). In this comparison 2,535 differentially
expressed genes (94,23%) were protein-coding genes. In the following evaluations and statistics,
only differentially expressed protein-coding genes were considered.
The most up-regulated gene regarding the highest log2 fold-change of the canine data samples with
diagnosis PAC was the CYP1A1 gene (Table 5), while the most down-regulated gene regarding
the lowest log2 fold-change C1QC gene was found (Table 6).

Table 4: Number and percentage of differentially expressed genes for patients with
diagnosis PAC. A total of 2,690 genes were found to be differentially expressed between the cell
line and the tissue samples, including 129 up-regulated genes and 2,561 down-regulated genes.

Genes number percent of all DEGs

Up-regulated 129 4.8%
Down-regulated 2561 95.2%

Overall 2690 100%

Figure 9: MA plot of all genes of patients with diagnosis PAC. A positive log2 fold-change
means a gene is up-regulated in a cell line compared with the tissue sample, a negative log2 fold-
change implies a gene is down-regulated of the cell line relative to the tissue sample. The blue dots
show differentially expressed genes, grey dots indicate not differentially expressed genes.
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Table 5: Ten up-regulated genes of the cell lines compared to the tissue samples in descending
order of the log2 fold-change.

Gene log2 fold-change adj. P -value

CYP1A1 7.81 8.18× 10−8

FGF21 6.47 5.15× 10−7

IGFL3 6.04 6.18× 10−4

NQO1 5.62 7.22× 10−6

CFAP77 4.92 1.60× 10−3

TFF1 4.90 3.14× 10−4

CFAP65 4.71 1.75× 10−3

C15H4orf45 4.53 9.53× 10−4

FADS6 4.51 1.01× 10−2

TRIB3 4.02 1.20× 10−6

Table 6: Ten down-regulated genes of the cell lines compared to the tissue samples in descending
order of the log2 fold-change.

Gene log2 fold-change adj. P -value

C1QC -17.14 2.41× 10−37

LAMA4 -17.07 3.34× 10−29

COL1A1 -16.58 5.97× 10−55

BPI -16.21 1.62× 10−27

C1S -16.17 2.34× 10−11

SMPDL3A -16.17 1.65× 10−27

C1QB -16.14 1.65× 10−27

THY1 -15.82 1.46× 10−25

COL6A3 -15.81 3.66× 10−52

MMP2 -15.69 5.84× 10−31

Most of the adjusted P -values of all differentially expressed genes are less than 0.001. High bars at
adjusted P -value smaller than 0.05 with a steep slop to baseline P -value levels are also a function
of either uniformity of the data or a large sample size or both (Figure 10).

Figure 10: Histogram of the adjusted P -value < 0.05 of all differentially expressed genes
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In the PCA plot of the samples with diagnosis PAC the differences between the cell lines and
tissues can be seen (Figure 11). The cell lines were grouped together as well as the tissue samples
grouped toward the positive end of the plot denoting similar inter-sample correlation.

Figure 11: PCA plot of differentially expressed genes between tissues and cell lines
from patients with diagnosis PAC.

Similar to PCA, clustering is also a method used to identify strong patterns in a data set. The
correlation of gene expression for all pairwise combinations of samples is shown in a heatmap.
All differentially expressed genes were analyzed by hierarchical cluster analysis based on their
expression profiles (Figure 12). This heatmap showed that cell line samples as well as tissue
samples cluster together, which suggests that they were similar (Figure 12).
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Figure 12: Heatmap of the six samples and differentially expressed genes between cell
lines and tissue samples with diagnosis PAC. A hierarchical clustering on the regularized log
(rlog) transformed expression matrix subsetted by all differentially expressed genes was performed.
The aim of the rlog transformation is to remove the dependence of the variance on the mean. The
hierarchical tree indicates seperation between cell line and tissue samples based on the normalized
gene expression values. Each column represents a cell line or tissue sample from a specific patient
(P1, P2 or P3) and each row represents a gene. Differences in expression were shown in different
colors and negative numbers indicate down-regulation and a positive number means up-regulation.

To better understand which pathways the differentially expressed genes are implicated in a GO
functional enrichment analysis was performed (Figure 13, 14, 15). The results showed that a total
of 2535 differentially expressed genes were annotated into 758 GO terms, including 669 biological
processes, 20 cellular components, and 69 molecular function annotations. Functional enrichment
results suggested the differentially expressed genes were relevant to the biological processes of
immune response, regulation of immune system process and defense response (Table 7). Enriched
GO terms under the molecular functions with the smallest adjusted P -value were Transmembrane
signaling receptor activity, immune receptor activity and cytokine binding (Table 7). The enriched
GO terms regarding cellular components with the smallest adjusted P -value were extracellular
matrix, cell surface and external side of plasma membrane (Table 7).

To know the signal pathways where the genes were distributed, a KEGG pathway enrichment
analysis was performed and 80 enriched pathways were found, including cell adhesion, cytokine-
cytokine receptor interaction and calcium signaling pathway, in order of increasing adjusted P -value
(Figure 16).
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Table 7: Functional enrichment analysis representing five GO terms of each category
(CC, MF, BP) of differentially expressed genes in the cell lines ordered by the adjusted
P-value.

ID Description Gene ratio adjusted P-value Count

Cellular components (CC)

GO:0031012 Extracellular matrix 92/1259 3.72 × 10−33 92

GO:0009986 Cell surface 134/1259 4.92 × 10−33 134

GO:0009897 External side of plasma membran 87/1259 7.23 × 10−33 87

GO:0098552 Side of membran 99/1259 1.19 × 10−24 99

GO:0062023 Collagen-containing extracellular matrix 56/1259 9.65 × 10−24 56

Molecular functions (MF)

GO:0004888 Transmembrane signaling receptor activity 152/1189 1.76 × 10−17 152

GO:0140375 Immune receptor activity 44/1289 1.34 × 10−15 44

GO:0019955 Cytokine binding 43/1289 6.10 × 10−14 43

GO:0004896 Cytokine receptor activity 38/1189 2.11 × 10−12 38

GO:0005539 Glycosaminoglycan binding 36/1189 2.67 × 10−10 36

Biological Processes (BP)

GO:0006955 Immune response 201/1151 7.37 × 10−44 201

GO:0002682 Regulation of immune system process 180/1151 5.74 × 10−33 180

GO:0006952 Defense response 177/1151 2.96 × 10−31 117

GO:0001775 Cell activation 136/1151 5.16 × 10−27 136

GO:0022610 Biological adhesion 174/1151 2.96 × 10−26 174

Figure 13: Enriched GO terms of the differentially expressed genes of diagnoses PAC
ordered by the number of counts. This plot represents the enriched cellular components.
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Figure 14: Enriched GO terms of the differentially expressed genes of diagnoses PAC
ordered by the number of counts. This plot represents the enriched molecular functions.



Figure 15: Enriched GO terms of the differentially expressed genes of diagnoses PAC
ordered by the number of counts. This plot represents the enriched biological processes.



Figure 16: KEGG pathway enrichment analysis of the differentially expressed genes
of diagnosis PAC. The thirty enriched pathways ordered by increasing adjusted P -value are
mentioned.
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3.2.3 TCC

The second comparison was between cell lines and tissue samples from patients with the diagnosis
TCC. Overall there are two patients with a cell line and a tissue sample regarding TCC, hence four
samples were used. The filtered count matrix regarding the samples with diagnosis TCC consisted
of overall 22,075 genes. Overall, 723 genes were found as significantly differential expressed, indi-
cating 67 up-regulated (9.3%) genes and 656 down-regulated (91%) genes of the cell lines compared
to the tissues (Table 7, Figure 17). In this comparison 705 differentially expressed genes (97.5%)
were protein-coding genes. In the following evaluations and statistics, only differentially expressed
protein-coding genes were considered. The gene SPINK5 was found to be a up-regulated gene
with the highest log2 fold-change and the C1QC gene was found to be a down-regulated gene with
the lowest log2 fold-change (Table 8 and 9).

Table 8: Number and percentage of differentially expressed genes for patients with
diagnosis TCC. A total of 723 genes were found to be differentially expressed of the cell line
comparing to the tissue samples, including 67 up-regulated genes and 656 down-regulated genes

Genes number percent

Up-regulated 67 9.3%
Down-regulated 656 91%

Overall 723 100%

Figure 17: MA plot of all genes of patients with diagnosis TCC. A positive log2 fold-change
means a gene is up-regulated in a cell line compared with the tissue sample, a negative log 2 fold-
change implies a gene is down-regulated of the cell line relative to the tissue sample. The blue dots
show differentially expressed genes, grey dots indicate not differentially expressed genes.

In the histogram most of the adjusted P -values of all differentially expressed genes of patients with
diagnosis TCC were less than 0.001. There is a sharp spike near zero that drops off into a somewhat
uniform distribution, which indicates that some significant differences were found between cell line
and tissue samples (Figure 18) .
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Figure 18: Histogram of the adjusted P -values from differentially expressed genes with diagnosis
TCC

Table 9: Ten up-regulated differentially expressed genes of the cell lines compared to the tissue
samples for diagnosis TCC ordered by log2 fold-change.

Gene log2 fold-change adj. P -value

SPINK5 8.82 1.14× 10−15

FGF21 8.32 1.24× 10−8

FDCSP 6.91 1.66× 10−2

CA4 6.87 1.34× 10−14

GABBR2 5.84 1.40× 10−7

GPC3 5.60 5.39× 10−7

KRTDAP 5.60 3.31× 10−3

CYP2A13 5.51 8.20× 10−3

DNM3 5.23 2.50× 10−3

PSAT1 5.15 4.20× 10−9

Table 10: Ten down-regulated differentially expressed genes of the cell lines compared to the tissue
samples for diagnosis TCC ordered by log2 fold-change.

Gene log2 fold-change adj. P -value

C1QC -15.15 1.34× 10−2

C1QB -14.83 1.45× 10−2

TNFSF11 -14.36 1.99× 10−2

C1QA -14.27 2.96× 10−2

DLA-DRA -13.68 8.30× 10−30

DLA-DQA1 -13.53 5.40× 10−26

RGS1 -12.99 1.27× 10−13

VCAM1 -12.70 2.01× 10−11

DLA-79 -12.60 9.40× 10−11

CD34 -12.55 1.40× 10−10
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All differentially expressed genes were analyzed by hierarchical cluster analysis based on their
expression profiles (Figure 19), indicated a similarity of cell line samples and tissue samples due
to the clustering.

Figure 19: Heatmap of the differentially expressed genes between cell line and tissue
samples regarding diagnosis TCC. Each column represents a cell line or tissue sample from a
specific patient(P6 or P7) and each row represents a gene. Differences in expression were shown
in different colors and negative numbers indicate down-regulation and a positive number means
up-regulation.

To further explore the biological functions of the 705 differentially expressed genes a GO functional
enrichment analysis was performed. The results showed that a total of 705 differentially expressed
genes were annotated into 343 GO terms, including 289 biological processes, 17 cellular compo-
nents, and 37 molecular function annotations. Functional enrichment results demonstrated the
differentially expressed genes were relevant to the biological processes of defense response, immune
response, as well as biological and cell adhesion (Table 11). The main functional terms of molecular
function were calcium ion binding, signal receptor activator activity and receptor regulator activity
(Figure 21, 22). Integral component plasma membran, extracellular matrix and cell surface were
significantly enriched in cellular components (Figure 20).
To know the signal pathways where the genes were distributed, a KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway enrichment analysis was performed and overall 44 enriched path-
ways were found, including cell adhesion molecules, PI3K signaling pathway and ECM-receptor
interaction (Figure 23).
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Table 11: Functional enrichment analysis representing five GO terms of each category
(CC, MF, BP) ordered by tje adjusted P-value of all differentially expressed genes in
the cell lines of diagnosis TCC.

ID Description Gene ratio adjusted P-value Count

Cellular components (CC)

GO:0031012 extracellular matrix 39/360 3.97 × 10−17 39

GO:0062023 collagen-containing extracellular matrix 26/360 1.12 × 10−13 26

GO:0005581 collagen trimer 17/360 1.12 × 10−13 17

GO:0009986 cell surface 36/360 1.21 × 10−6 36

GO:0098644 complex collagen trimers 6/360 1.17 × 10−5 6

Molecular functions (MF)

GO:0005509 calcium ion binding 35/332 6.97 × 10−5 35

GO:0061135 endopeptidase regulator activity 15/332 6.97 × 10−5 15

GO:0005201 Extracellular matrix 9/332 6.97 × 10−5 9

GO:0004866 Endopeptidase inhibitor activity 14/332 1.07 × 10−4 14

GO:0030414 Peptidase inhibitor activity 14/332 1.25 × 10−4 14

Biological Processes (BP)

GO:0006952 Defense response 64/320 2.64 × 10−14 64

GO:0006955 Immune response 64/320 5.11 × 10−14 64

GO:0032101 Regulation of response to external stimulus 47/320 2.28 × 10−11 47

GO:0002684 Positive regulation of immune system process 45/320 3.51 × 10−11 45

GO:0022610 Biological adhesion 59/320 7.19 × 10−11 59

Figure 20: Enriched GO terms of the differentially expressed genes of diagnoses TCC
ordered by the number of counts.This plot represents the enriched cellular components.



Figure 21: Enriched GO terms of the differentially expressed genes of diagnoses TCC
ordered by the number of counts.This plot represents the enriched molecular functions.
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Figure 22: Enriched GO terms of the differentially expressed genes of diagnoses TCC
ordered by the number of counts.This plot represents the enriched biological processes.

Figure 23: KEGG pathway enrichment analysis for the differentially expressed genes of diagnosis
TCC ordered by the adjusted P -value.
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3.2.4 PAC metastasis

The third comparison was between cell lines and tissues with the diagnosis PAC metastasis. Four
samples, two cell lines and two tissues, from the same patient with the diagnosis PAC metastasis
of the canine cancer data set were used. The filtered count matrix regarding the samples with
diagnosis PAC metastasis consisted of overall 22,321 genes. Summarizing, 5,658 were found as
differentially expressed with 1,783 up-regulated and 3873 down-regulated genes of the cell line
compared to the tissue samples (Table 10). For further analysis, only the 5,330 differentially ex-
pressed genes with transcript type protein-coding were used. As well as the other two previous
analyses, there were more down-regulated genes than up-regulated genes in the cell lines com-
pared to the tissues (Figure 24). The up-regulated gene with the highest log2 fold-change and
down-regulated genes of the canine data samples with diagnosis PAC metastasis were arranged in
descending fold-change (Table 11 and 12).

Table 12: Number and percentage of differentially expressed genes for patients with
diagnosis PAC metastasis. A total of 5,656 genes were found to be differentially expressed
between the cell line and the tissue samples, including 1,783 up-regulated genes and 3873 down-
regulated genes.

Genes number percent

Up-regulated 1783 32%
Down-regulated 3873 68%

Overall 5656 100%

Figure 24: MA plot of all genes of patients with diagnosis PAC metastasis. The blue
dots show differentially expressed genes, grey dots show not differentially expressed genes.

Furthermore, the differentially expressed genes were analyzed by hierarchical cluster analysis where
genes with similar expression profiles clustered (Figure 29). This result suggested a similarity
between cell line samples as well as tissue samples.
Another GO functional enrichment analysis was performed, to explore the differentially expressed
genes concerning their biologial, molecular and cellular function. The results showed that 5,330
differentially expressed genes were annotated into 703 GO terms, including 643 biological processes,
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Table 13: Ten down-regulated differentially expressed genes of the cell lines compared to the tissue
samples for diagnosis PAC metastasis ordered by log2 fold-change

Gene log2 fold-change adj. P -value

DACT2 -23.92 3.45× 10−6

IGHM -19.57 5.32× 10−14

IGKC -18.81 1.19× 10−10

DCN -18.62 2.04× 10−6

SFRP2 -17.59 4.38× 10−7

EFEMP1 -17.47 1.69× 10−6

MMP2 -17.17 9.50× 10−12

COL1A1 -17.04 4.18× 10−30

SPARC -16.72 2.45× 10−27

Q1QC -16.43 2.69× 10−25

Table 14: Ten up-regulated differentially expressed genes of the cell lines compared to the tissue
samples for diagnosis PAC metastasis ordered by log2 fold-change.

Gene log2 fold-change adj. P -value

SALL3 8.35 1.91× 10−7

TFF1 7.58 1.35× 10−8

RAB3C 7.54 2.27× 10−3

PLPPR4 7.47 4.95× 10−2

FGF21 7.48 2.20× 10−23

GDPD4 7.03 1.01× 10−3

WNT7A 6.96 1.58× 10−38

COL10A1 6.63 4.45× 10−7

A3GALT2 6.62 6.48× 10−39

SCNN1G 6.60 1.85× 10−11

Figure 25: The clustered heatmap of all differentially expressed genes in cell line and
tissue samples with diagnosis PAC metastasis. A separation can be observed between those
two groups. Higher expression is shown in yellow, lower expression in red.
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16 cellular components and 44 molecular functions (Table 15). As in the analysis of diagnosis PAC,
the main biological processes were immune and defense response, as well as biological adhesion.
Also similarities between the diagnosis PAC and PAC metastasis were found regarding molecular
functions (Figure 26, 27). Cytokine binding as well as cytokine receptor activity is significant in
both. Ordered by number of counts, again, immune response, biological adhesion and cell adhesion
were found as enriched terms concerning biological processes (Figure 28).

Table 15: Functional enrichment analysis representing five GO terms of each category
(CC, MF, BP) of differentially expressed genes in the cell lines of diagnosis PAC
metastasis ordered by the adjusted P-value.

ID Description Gene ratio adjusted P-value Count

Cellular components (CC)

GO:0009986 Cell surface 187/2624 1.73 × 10−26 187

GO:0009897 External side of plasma membrane 106/2624 6.26 × 10−23 106

GO:0098552 Side of membrane 134/2624 8.35 × 10−19 134

GO:0031012 Extracellular matrix 93/2624 2.63 × 10−11 93

GO:0062023 Collagen-containing extracellular matrix 56/2624 3.80 × 10−9 56

Molecular functions (MF)

GO:0140375 Immune receptor activity 61/2451 2.43 × 10−17 61

GO:0004896 Cytokine receptor activity 55/2451 3.55 × 10−15 55

GO:0019955 Cytokine binding 58/2451 9.90 × 10−13 58

GO:0005539 Glycosaminoglycan binding 48/2451 8.32 × 10−9 48

GO:0005126 Cytokine receptor binding 66/2451 2.56 × 10−6 66

Biological Processes (BP)

GO:0006955 Immune response 276/2396 4.67 × 10−29 276

GO:0022610 Biological adhesion 261/2396 2.56 × 10−20 261

GO:0006952 Defense response 249/2396 4.23 × 10−20 249

GO:0007155 Cell adhesion 257/2396 7.67 × 10−20 257

GO:0006954 Inflammatory response 146/2396 1.76 × 10−18 146

To know the signal pathways where the genes were distributed, a KEGG pathway enrichment
analysis was performed and overall 117 enriched pathways were found. The most enriched KEGG
pathway terms in which the differentially expressed genes in the cell lines were significantly enriched
were cytokine receptor activity, cell adhesion molecules and ECM-receptor interaction (Figure 29).
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Figure 26: Enriched GO terms of the differentially expressed genes of diagnoses PAC
metastasis ordered by the number of counts.This plot represents the enriched cellular com-
ponents.



Figure 27: Enriched GO terms of the differentially expressed genes of diagnoses PAC
metastasis ordered by the number of counts.This plot represents the enriched molecular
functions.
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Figure 28: Enriched GO terms of the differentially expressed genes of diagnoses PAC
metastasis ordered by the number of counts.This plot represents the enriched biological
processes.

Figure 29: KEGG pathway enrichment analysis for differentially express genes with diagnosis PAC
metastasis ordered by adjsuted P -value.
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3.2.5 Comparison of the three diagnoses

To find out how many of the differentially expressed genes were specific to each diagnosis, the
overlap between all differentially expressed genes in TCC, PAC and PAC metastasis. 82 genes
were included exclusively in TCC, 382 genes were included exclusively in PAC and 3105 genes
were included exclusively in PAC metastasis (Figure 30. Interestingly, 479 genes were common in
all three groups, and even 1638 genes between the groups PAC and PAC metastasis (Figure30.

Figure 30: The upset plot of differentially expressed genes of all diagnosis. Intersection
of DEGs, where each column corresponds to a diagnosis or set of diagnosis (the dots connected
by lines below the x-axis) containing the same DEGs. The number of genes in each group can be
found above the bars with the diagnosis on the left.

The GO functional enrichment analysis was performed for only the DEGs which were expressed
in all three diagnosis. The results showed that the differentially expressed genes were annotated
into 270 GO terms, including 236 biological processes, 8 cellular components and 26 molecular
functions (Table 16).
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Table 16: Functional enrichment analysis representing GO terms of each category (CC,
MF, BP) of differentially expressed genes in the cell lines which appear in each diag-
nosis.

ID Description

Cellular components (CC)

GO:0009986 Cell surface
GO:0009897 External side of plasma membrane
GO:0098552 Side of membrane
GO:0031012 Extracellular matrix
GO:0062023 Collagen-containing extracellular matrix

Molecular functions (MF)

GO:0140375 Immune receptor activity
GO:0004896 Cytokine receptor activity
GO:0050839 Cell adhesion molecule binding
GO:0004888 Transmembrane signaling receptor activity
GO:0005126 Cytokine receptor binding
GO:0005125 Collagen binding
GO:0030545 Signaling receptor regulator activity
GO:0008009 Chemokine activity

Biological Processes (BP)

GO:0006955 Immune response
GO:0022610 Biological adhesion
GO:0006952 Defense response
GO:0007155 Cell adhesion
GO:0002682 Regulation of immune system process
GO:0001775 Cell activation
GO:0002252 Immune effector process
GO:0001816 Cytokine production
GO:0006954 Inflammatory response



4 DISCUSSION 45

4 Discussion

4.1 RNA-seq pipeline

In last few years RNA-seq has become the standard method for gene expression analysis and
rapidly emerged as a replacement for microarray because of the higher sensitivity and dynamic
range as well as lower technical fluctuations. The first aim of the master thesis was to construct
a bioinformatic pipeline for RNA-seq data. The power of the pipeline is based on reproducibility
and the inclusion of all important steps concerning RNA-seq. It allows the user to perform a full
RNA-seq analysis starting from raw FASTQ-files sequencing data to a count matrix of the mapped
reads, ready for differential gene expression analysis. Designed to be run easily and requiring only
little configuration, the efficacy of the pipeline was validated on real sequencing data from the
Tierklinik Hannover from dogs with prostatic cancer. The pipeline is portable and can be used
for individual canine data analysis, if other species or genomes want to be used, the files can be
changed.
In recent years there was a considerable effort of developing RNA-Seq tools and software. The im-
mense number of obtainable tools has made the choice of a solid and stable computational pipeline
difficult. The pipeline presented in this thesis is only using five tools and is characterized by sim-
plicity. To assess sequencing data and decide about additional analyses or data processing the
standard tool FastQC is used. The quality control tool FastQC returns two files for each samples,
in this case 28 output files. It would be a burden to go through all the files for each sample, there-
fore the MultiQC tool was used to summarize all these output files to only one file. Poor quality
of raw sequencing reads could be detected from this step. The removal of poor quality sequences
is performed when trimming is desired. However, the user can specify the options for trimming
with the tool Trimmomatic, but it is recommended to keep the numbers of removed bp as small as
possible because the gene expression estimates can be changed by shorter reads. The user can also
apply own thresholds or parameters regarding Trimmomatic, but this requires general knowledge
about the trimming options. The same goes for the alignment step with STAR. Additional param-
eters can be added, but the default parameters are optimized and mostly sufficient for RNA-seq
data sets. As mentioned in chapter 3.1.4, after the mapping step, the ReadsPerGene.out.tab files
were generated for each sample consisting of 4 different columns with the different strandedness
options. Here it is important that the user knows if the data is stranded or unstranded. The
correct column of strandedness can be changed easily in the enclosed R script.

The limitations of the pipeline are the specific requirement for the input data. The pipeline is able
to handle both, single-end and paired-end reads from RNA-seq dataset. Before using the pipeline,
the user should be aware of which data is applied, because single-end and paired-end libraries can
not be used at the same time. First, single-end and paired-end libraries must be saved in two
separate folders and then the pipeline for the specific sequencing method can be used.
RNA-seq gives a better understanding of the cell transcriptome which has a big benefit in genetic
research. In the next future, massive analysis of transcriptomes will become a routine not just in
cancer research.
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4.2 Differential gene expression analysis

The aim of the second part of the master thesis was to identify the genes that are differentially
expressed between the canine cell lines and their tissues of origin, for each of the three diagnosis,
using the count matrix from the RNA-seq pipeline.
When performing PCA, there was a clear clustering of samples from cell lines and tissues. However,
performing differential gene expression analysis on each of the three diagnoses using a log2 fold-
change equal or greater than one and an adjusted P -value smaller than 0.05 revealed specific
patterns of gene expression.
The majority of all found differentially expressed genes were down-regulated compared to the
tissue samples in all diagnoses. Down-regulated genes in all three diagnoses were the complement
component 1q C1Q genes, which belong to Tumor Necrosis Factor super familiy. C1q can perform
a lot of immune and non-immune functions and is able to induce apoptosis and growth supression
of prostate cells [139]. According to Hong et al. C1q sustains the activation of tumor suppressor
WOX1, which is needed for blocking cancer cell proliferation [139].
Another highly down-regulated gene was the group of collagens (COL1A1, COL6AB, COL1OA1 ),
which have been reported to be over-expressed in metastatic prostate tumors [136, 137]. Collagen
represents an obstacle to migration and facilitates the invasion and proliferation of cells [140]. Ac-
cording to Shuaishuai Xu et al. collagen is the major component of the tumor microenvironment
and can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine ki-
nase receptors, and some signaling pathways [141]. Furthermore collagens appear to be a tumor
immunity regulator, a metastasis promoter as well as increasing tumor tissue stiffness [141]. This
observed down-regulation of collagens in the cell lines could be due to the fact that the cell lines
did not grow in the tumor microenvironment but in vitro.
Dapper homolog (DACT) 2, a member of DACT gene family, was also down-regulated in PAC
metastasis cell lines. Shibao Li et al. suggested that DACT-2 may be a potential tumor suppressor
gene involved in the occurrence and development of tumors [142]. Shibao Li et al. observed
a down-regulation of DACT-2 in the cell lines too and claimed that this gene was frequently
silenced by its promoter hypermethylation in prostate cancer, implying that the transcriptional
silencing of DACT-2 may be one of the essential factors in the progression of prostate cancer [142].
The expression of this gene can be associated with promoter methylation, inferring that DNA
methylation is the main regulatory mechanism of DACT2 inactivation [142].
Matrix metalloproteinase 2 (MMP2), a member of the MMP gene family, is known as a endcoder
of the zinc-dependent enzymes capable of cleaving components of the extracellular matrix (ECM)
and the molecules involved in signal transduction [138]. Here, in all analysis MMP2 was down-
regulated in cell lines compared to the specific tissue samples. Kun Liu et al. [138] reported the
crucial role of the MMP2 gene in the pathogenesis of the initiation, invasion, and metastasis of
various tumors, such as lung and prostate cancer. It has been suggested that the MMP2 gene
is associated with the affection of cell growth, the production of cell junction proteins, such as
collagens, and the pathogenesis of metastasis and invasion [138].
Less genes were significantly up-regulated in cell lines across the tissues analyzed. Interestingly,
the fibroblast growth factor 21 (FGF21 ) gene was up-regulated in all diagnoses. The FGF21 gene
is an important part of glucose regulations, lipid metabolism as well as cell growth. Overexpressing
FGF21 promote cell growth and migration considerable [143]. Therefore, that increasing FGF21
expression in prostate cancer tissue or increasing circulating FGF21 level can have an important
impact on the proliferation and apoptosis of prostate cancer cells, and may become a new target
for a specific treatment [143].

Furthermore, a Gene Ontology analysis on the differentially expressed genes was performed and
the gene sets involved in immune processes and response. In cellular processes often the extra-
cellular matrix is involved, which is often more collagen-rich and of increased stiffness. Altering
extracellular matrix can support cancer growth and metastasis. As cell adhesion is related to
cancer metastasis, we also found that it is significant in the analysis of PAC metastasis. Genes,
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regarding cell adhesion molecules and membrane signaling proteins were down-regulated in cell
lines compared with tissue sample.
However, gene sets were also involved in cell-cycle related pathways, which are continuously up-
regulated in cell lines, perhaps reflecting in vitro culturing conditions. Characteristic cell culture
medium is replete with cytokines, metabolites and growth factors with the difference that tissue
cells in the body have to compete for.

In recent years, prostate cancer research has benefited greatly from the establishment and use of cell
lines and their drug-resistant sub-lines. Also a growing effect regading isolating and establishing
animal cell lines appeared.
However, all herein characterized cell lines also displayed some immunohistochemical differences to
the respective tumor tissue which indicates that they have undergone individual changes through
subculturing [34].
The results lead to conclude that the canine cell lines are dissimilar to the tissue samples and
might be a limited tool for understanding canine prostate cancer biology, but it is important
to understand that differences exist always using cell line models, since cell lines are not grown
in a complex micro environment as tumor cells in vivo. The effects of the microenvironment are
determined by myofibroblasts and some key cells of the immune system, which are likely the leading
causes of expression differences, but studying these effects can allow an assessment of their relative
importance for different drug responses [144]. Furthermore, cytokines should be studied when using
cell lines because they can be the effectors of the tumor environment [144]. Thus, the choice of an
cell line for a specific study depends mainly on the target and context of the project. It depends on
factors like particular genomic alterations of interest as well as growth characteristics, for example
maximal molecular similarity to tissue samples is desirable investigating drug sensitivity. Here,
the cell lines only mirror a few of the molecular properties of primary tumors.
But the advantages of such cell lines are highly controlled conditions, homogeneity, discovery of
molecular mechanisms, reproducibility as well as understanding the pathogenesis of prostate cancer
[146].
The main limitations of cancer cell culture is the selection of phenotypic and genotypic cells during
adaptation to in vitro conditions [146]. Furthermore the accumulation of mutations in cells over
time in culture, a homogeneous population of cells as well as the isolation of cells from the tumor
microenvironment are limiting factors [146].
Due to often similar interactions between cell lines and tissue samples, in vitro cancer models have
gained a worldwide acceptance for a lot of therapeutic and diagnostic applications. Nonetheless,
cancer cell line models have been, and will continue to be, the model for cancer studies, because
cell lines with known genetic alterations will be also helpful in screening the efficacy of drugs with
a particular genetic background. Thus, the present study can provide the basis for further research
on prostate cancer and drug research.





5 CONCLUSION 49

5 Conclusion

The generation of cancer cell line models is currently still challenging, nevertheless, it has preclinical
relevance, as cell lines have benefits for drug development and its usage. Due to the increasing use
of sequencing technologies more information for each disease can be provided. Here, cell lines will
be important translating all the sequenced data into new therapies and diagnostic tests. The best
selection of the culture conditions and the best mimic of the microenvironment in vivo will be a
catalyst to obtain new drugs and therapies for diseases.
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A Appendix

###################################################

# Configuration file for pipelines

###################################################

#This is the config uration file for using the pipeline:

READSPATH: /path/to/raw_reads

OUTPUTPATH: /output/path

SINGLEENDPATH: /path/to/single_end/files

PAIREDENDPATH: /path/to/paired_end/files

OUTPUTPATHFASTQC: /path/to/store/fastqc/report

OUTPUTPATHTRIM: /path/to/store/trimmed/files

ANNOTATIONFILE: /path/to/annotation/file

RSCRIPTPATH: /path/to/Rscript

STARINDEX: path/to/starindex

GTFFILE: path/to/gtf_file

COUNTMATRIX: path/to/store/countmatrix

OUTPUTSTAR: path/to/store/star/output

STAR: /path/toSTAR/STAR -2.7.6a/bin/Linux_x86 _64/ STAR

TRIMMOMATIC: path/totrimmomatic/trimmomatic -0.39 -1/ share

/trimmomatic -0.39 -1/ trimmomatic.jar
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###################################################

# Snakemake pipeline for RNA -Seq (SINGLE -END reads)

###################################################

import os

import numpy as np

from os.path import join , basename , dirname

import glob

config file: ’config.yaml’

input_path = config["READSPATH"]

output_path = config["OUTPUTPATH"]

single_end_path = config["SINGLEENDPATH"]

output_path_fastqc = config["OUTPUTPATHFASTQC"]

output_path_trim = config["OUTPUTPATHTRIM"]

trimmomatic = config["TRIMMOMATIC"]

merge_script_path = config["RSCRIPTPATH"]

STAR_INDEX = config["STARINDEX"]

gtf_file = config["GTFFILE"]

annotation_file = config["ANNOTATIONFILE"]

STAR = config["STAR"]

count_matrix_path = config["COUNTMATRIX"]

output_star = config["OUTPUTSTAR"]

SAMPLES_SE = []

SAMPLES_SE_fastq = []

SAMPLES_SE_fastq = os.list dir(single_end_path)

for i in SAMPLES_SE_fastq:

SAMPLES_SE = list(map(lambda i: i[: -9], SAMPLES_SE_fastq ))

rule qualityControl:

input:

single_end_path + "/{ sample }.fastq.gz".format(sample=sample) for

sample in SAMPLES_SE

output:

expand(output_path_fastqc + "/{ sample }.html", sample=SAMPLES_SE),

expand(output_path_fastqc + "/{ sample }.zip", sample=SAMPLES_SE)

shell:

./ fastqc {input} -o {output}

rule multiqc:

input:

expand(output_path_fastqc + "/{ sample }_ fastqc.html", sample=SAMPLES_SE)

output:

report = output_path_fastqc + "/report_multiqc.html"

params:

path = output_path_fastqc

shell:

multiqc -o {params.path} {input}

rule trim:
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input:

single_end_path + "/{ sample }.fastq.gz".format(sample=sample)

for sample in SAMPLES_SE

output:

out = expand(output_path_trim + "/{ sample }_ trimmed.fastq", sample=SAMPLES_SE)

shell:

trimmomatic SE -threads {6} -phred33 {input} - baseout {out}

ILLUMINACLIP:TruSeq3 -SE.fa :2:30:10

LEADING :3 TRAILING :3 SLIDINGWINDOW :4:15 MINLEN :50

rule create_index:

input:

fasta = annotation_file

gtf = gtf_file

output:

STAR_INDEX

shell:

STAR

--runThreadN 16 \

--runMode genomeGenerate \

--genomeDir {STAR_INDEX} \

--genomeFastaFiles {input.fasta }\

--sjdbGTFfile {input.gtf}\

--sjdbOverhang 100

rule mapping:

input:

R1 = output_path_trim + "/{ sample }_ trimmed.fastq".format(sample=sample)

for sample in SAMPLES_SE

index = STAR_INDEX

output:

output_star + "/{ sample }.bam"

shell:

STAR

--runThreadN 10 \

--genomeDir {input.index} \

--readFilesIn {input.R1}\

--outSAMtype BAM Unsorted\

-- quantMode GeneCounts

rule merge:

input:

script = merge_script_path

output:

data = count_matrix_path

shell:

"Rscript {input.script} --out {output.data}"
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####################################################

# Snakemake pipeline for RNA -Seq (PAIRED -END reads)

####################################################

import os

import numpy as np

from os.path import join , basename , dirname

import glob

config file: ’config.yaml’

input_path = config["READSPATH"]

output_path = config["OUTPUTPATH"]

paired_end_path = config["PAIREDENDPATH"]

output_path_fastqc = config["OUTPUTPATHFASTQC"]

output_path_trim = config["OUTPUTPATHTRIM"]

trimmomatic = config["TRIMMOMATIC"]

merge_script_path = config["RSCRIPTPATH"]

STAR_INDEX = config["STARINDEX"]

gtf_path = ["GTFPATH"]

annotation_path = ["ANNOTATIONPATH"]

STAR = ["STAR"]

count_matrix_path = ["COUNTMATRIX"]

output_star = ["OUTPUTSTAR"]

SAMPLES_PE = []

SAMPLES_PE_fastq = []

SAMPLES_PE_fastq = os.list dir("/home/himmem/data1/merged/paired_end")

for i in SAMPLES_PE_fastq:

SAMPLES_PE = list(map(lambda i: i[: -12], SAMPLES_PE_fastq ))

SAMPLES_PE = list(dict.from keys(SAMPLES_PE))

rule qualityControl:

input:

R1 = paired_end_path + "/{ sample }_R1.fastq.gz" ,.format(sample=sample)

for sample in SAMPLES_PE ,

R2 = paired_end_path + "/{ sample }_R2.fastq.gz".format(sample=sample)

for sample in SAMPLES_PE

output:

expand(output_path_fastqc + "/{ sample }_R1.html", sample=SAMPLES_PE),

expand(output_path_fastqc + "/{ sample }_R1.zip", sample=SAMPLES_PE),

expand(output_path_fastqc + "/{ sample }_R2.html", sample=SAMPLES_PE),

expand(output_path_fastqc + "/{ sample }_R2.zip", sample=SAMPLES_PE)

shell:

"""

./ fastqc {input.R1} -o {outout} &&

./ fastqc {input.R2} -o {output}"

"""

rule multiqc:

input:

expand(output_path_fastqc + "/{ sample }_ fastqc.html", sample=SAMPLES_PE)

output:

report = output_path_fastqc + "/report_multiqc.html"

params:
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path = output_path_fastqc

shell:

"multiqc {params.path} --filename {output.report}"

rule trim:

input:

R1 = paired_end_path + "/{ sample }_R1.fastq.gz".format(sample=sample)

for sample in SAMPLES_PE ,

R2 = paired_end_path + "/{ sample }_R2.fastq.gz".format(sample=sample)

for sample in SAMPLES_PE

output:

output_path_trim + "/{ sample }.fastq",

output_path_trim + "/{ sample }.fastq"

shell:

"""

trimmomatic PE -threads {12} -phred33 {input.R1} {input.R2} {output}

ILLUMINACLIP:TruSeq3 -PE.fa :2:30:10:2: keepBothReads

LEADING :3 TRAILING :3 MINLEN :50

"""

rule create_index:

input:

fasta = annotation_file

gtf = gtf_file

output: STAR_INDEX

shell:

/home/himmem/data1/tools/STAR -2.7.6a/bin/Linux_x86 _64/ STAR

--runThreadN 16 \

--runMode genomeGenerate \

--genomeDir {STAR_INDEX} \

--genomeFastaFiles {input.fasta }\

--sjdbGTFfile {input.gtf}\

--sjdbOverhang 100

rule mapping:

input:

R1 = paird_end_path + "/{ sample }.fastq.gz".format(sample=sample)

for sample in SAMPLES_PE

R2 = paired_end_path + "/{ sample }.fastq.gz".format(sample=sample)

for sample in SAMPLES_PE

index = STAR_INDEX

output:

output_star + "/{ sample }.bam"

shell:

STAR

--runThreadN 10 \

--genomeDir {input.index} \

--readFilesIn {input.R1} {input.R2}\

--outSAMtype BAM Unsorted\

-- quantMode GeneCounts

rule merge:

input:

script = merge_script_path

output:
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data = count_matrix_path

shell:

"Rscript {input.script} \

--out {output.data}"
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# R script for merging all ReadsPerGene.out.tab files to one count matrix

## STAR count file format is

#column 1: gene ID

#column 2: counts for unstranded RNA -seq

#column 3: counts for the 1st read strand aligned with RNA

#column 4: counts for the 2nd read strand aligned with RNA

library(tools)

library(dplyr)

first_read <- read.table("output_star/ReadsPerGene.out.tab")

first_read [3:4] <- list(NULL)

first_read <- first_read[-c(1,2,3,4), ]

# name of the target file

target_file_name <- "ReadsPerGene.out.tab"

# enter path of the main folder

path_target <- "output_star"

sub_folders <- list.files(path = path_target)

for (folder in sub_folders) {

path_sub_folder <- file.path(path_target ,folder)

target_file <- file.path(path_sub_folder ,target_file_name)

if (file.exists(target_file)) {

print("file found")

print(folder)

read <- read.table(target_file)

read <- read[-c(1,2,3,4), ]

read [3:4] <- list(NULL)

names(read )[2] <- folder

first_read <- inner_join(first_read , read , by= "V1")

#print(first_read)

} else {

print("cant find file")

}

}

first_read [2] <- list(NULL)

head(first_read)

names(first_read )[1] <- "Ensembl_gene_id"

ncol(first_read)

#write.csv(first_read , "counts_read.csv", row.names=FALSE)

write.csv(first_read , "counts_read_with_rownames.csv")




