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Kurzfassung
Diese Masterarbeit entstand im Zuge des Forschungsprojekts "Evaluierung von Kommunikationstechnolo-

gien für den Betrieb von Unmanned Aerial Vehicles innerhalb und außerhalb des Sichtbereichs". Dieses

stellt einen Teil der Dissertation von Klaus Kainrath dar.

Die bisherige Gesetzgebung für den Betrieb von Unmanned Aerial Vehicles (UAVs) regelte die Bedingun-

gen auf nationalstaatlicher Ebene. Die 2021 inkraftgetretenen EASA-Regularien sollen diese Regelungen

EU-weit vereinheitlichen, wozu Kompromisse zwischen Betriebssicherheit und Wirtschaftlichkeit gefunden

werden müssen. Für Ersteres sind zuverlässige Datenlinks zwischen UAVs und deren Betreibern notwendig,

wozu sich die bestehende 4G-Netzinfrastruktur anbietet, insbesondere im Betrieb außerhalb des Sichtbere-

ichs (Beyond Visual Line of Sight oder BVLOS).

Die vorliegende Arbeit untersucht mit linearer Regression und künstlichen neuronalen Netzen zwei Tech-

nologien, die die Modellierung der relevanten Empfangsqualitätsparameter RSRP (Reference Signal Re-

ceived Power) und RSRQ (Reference Signal Received Quality) in Abhängigkeit der Position des UAV

ermöglichen sollen.

Hinsichtlich der linearen Regression wird ein Vergleich zu bestehenden Modellen, welche den Empfang

in Bodennähe modellieren, gezogen und eine Erweiterung, die diese Vorgehensweise für den Betrieb in

größeren Höhen geeignet machen soll, vorgeschlagen.

Mit dem Aufkommen immer größerer analysierbarer Datenmengen in den letzten Jahren und Jahrzehn-

ten begann auch der Siegeszug der künstlichen neuronalen Netze, deren Grundlagen bereits in den 1940er

Jahren erforscht wurden. In der heutigen Zeit sind sie definitiv eines der Hot Topics in Technik und Wis-

senschaft. Weniger bekannt ist hingegen, dass sich vor allem relativ simple Feedforward Neural Networks

sehr gut für Regressionsprobleme eignen, wozu oft auch relativ kleine Datenmengen genügen. Dies liegt

vor allem daran, dass die Approximation beliebiger Funktionen mit nur einer Schicht von versteckten kün-

stlichen Neuronen möglich ist. In dieser Arbeit wurde der Versuch unternommen, ein Modell für die Param-

eter RSRQ/RSRP in Abhängigkeit der Position des UAV mit relativ wenigen Schichten und Trainingsdaten

zu erschaffen.

Die Ergebnisse dieser Arbeit zeigen, dass eine ausreichende Verbindungsqualität im 4G-Netz, zumindest

in den niedrigeren Frequenzbändern, zu erwarten ist, auch wenn aufgrund der bodennahen Ausrichtung der

Sendeantennen in der Regel reflektierte Signale (non line of sight, NLOS) anstatt direkter Komponenten

(line of sight, LOS) empfangen werden. Wie sich diese Aspekte bei höheren Frequenzen und vor allem im

kommenden 5G-Netz verhalten, ist noch zu erforschen.

Die Ergebnisse der Modellierung mittels neuronaler Netze zeigen das Potential dieser Technologie, auch

wenn sich die Prädiktionsmöglichkeiten (noch) auf Bereiche in der Nähe von Messpunkten beschränken. In

der Zukunft könnten komplexere Strukturen trainiert werden, die auch andere Parameter als nur die Position

als Eingangsvariablen verwenden, um zum Beispiel Frühwarnsysteme für Funklöcher zu entwickeln.
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Abstract
This master thesis is a result of the research project "Evaluierung von Kommunikationstechnologien für den

Betrieb von Unmanned Aerial Vehicles innerhalb und außerhalb des Sichtbereichs"1. This project is a part

of the dissertation of Klaus Kainrath.

Previous legislation for Unmanned Aerial Vehicle (UAV) operation was based on national laws, which will

change as new EASA regulations come into effect 2021, which are unified across the entire EU. To find

proper legislation for this field, trade-offs between operational safety and economic viability must be found.

For the former aspect, reliable data links between UAVs and their operators are necessary, which may be

offered by the existing 4G net infrastructure, especially under beyond visual line of sight (BVLOS) condi-

tions.

With linear regression and artificial neural networks, this thesis aims to conduct investigations on tech-

nologies, which enable modelling of the relationship between the UAV’s position and the relevant reception

quality parameters RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Qual-

ity).

Regarding linear regression, a comparison to existing models, which are valid for signal reception in ground

proximity, is made. Furthermore, an extension that enables this approach for greater UAV heights is sug-

gested.

With the advent of ever increasing amounts of analyzable data in recent years and decades, the use of ar-

tificial neural networks, for which the basics were actually already developed in the 1940s, has become

more widespread. Today, they are definitely one of the hot topics in technology and science. What is less

known however is the fact that even relatively simple feedforward neural networks are well suited to solve

regression problems, for which often even small amounts of data suffice. This is for the most part true

because the approximation of arbitrary functions is possible with just one hidden layer of artificial neurons.

In this thesis, an attempt was made to create a model for the reception quality parameters RSRP/RSRQ as

a function of the UAV’s position with a relatively small amount of hidden layers and training data.

The results show that a sufficient reception quality is to be expected in the Long Term Evolution network,

at least in it’s lower frequency bands. This is true even though usually non line of sight (NLOS) signals are

received by the user equipment instead of line of sight (LOS) components due to the transmitter antennas

being oriented such that receivers in ground proximity are served. How these aspects are to be valued for

higher frequencies, and especially for the upcoming 5G network, is still to be investigated.

The results of the modelling via neural networks show the potential of this technology, even though the

prediction possibilities are confined to areas close to known measurement points, at least up until now.

Future research and development may lead to training of more complex structures, which also take param-

eters other than just the position as input variables. This could for example be used to build early warning

systems for dead zones.

1translates to "Evaluation of Communication Technologies for the Operation of Unmanned Aerial Vehicles within and beyond
Visual Line of Sight"
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1 Introduction
The first chapter serves as a short description of the aims of this thesis and the means that they were

tried to be reached with. Furthermore, the relevant parameters Reference Signal Received Power (RSRP),

Reference Signal Received Quality (RSRQ) and Received Signal Strength Indicator (RSSI) are described.

These determine the reception quality of a Long Term Evolution (LTE) wireless link.

1.1 Goals
The goals of this thesis were to find models which enable a prediction of the cellular reception quality

as a function of the user equipment’s relative position to the transmitter station. The emphasis was put

on measurements conducted in relatively high altitudes since the main goal of the project is to determine

to which degree unmanned aerial vehicles (UAVs) can be controlled via mobile radio and to help finding

proper legislation. There were two main investigations conducted:

Linear regression for RSRP/RSRQ
Linear regression was used to find a model for path loss as a function of the distance between transmitter

station and mobile device, based on RSRP measurements. Furthermore, a linear regression analysis for

RSRQ was conducted.

Prediction of RSRP and RSRQ via Machine Learning
Deep neural networks were used to model the relationship between the position of the mobile device

relative to the transmitter station and the RSRP and RSRQ parameters.

All measurements were conducted in rural areas since Austrian legislation regarding UAVs is very strict

when it comes to operation in urban areas. This has to be taken into account since there are significant

differences between rural and urban areas when it comes to wave propagation. The former usually enable

a visual line of sight connection, while the latter usually don’t (beyond visual line of sight - BVLOS). The

aim of this thesis is to contribute to enabling future economic use of UAVs, which are controlled via mobile

radio technologies like the fourth generation mobile radio technology LTE (Long Term Evolution).

1.2 Methods
The following section serves as a short overview of the two main methods for modelling: Linear regression

for mobile radio parameter (RSRP/RSRQ) prediction depending only on the range (and the elevation angle

between base station and user equipment) and neural networks for parameter prediction in 3D coordinates.

1.2.1 Linear regression

As already mentioned, the main modeling methods were linear regression and deep neural networks. The

former can only deliver meaningful results if the elevation and azimuth angles between base station (BS)

and user equipment (UE) are kept at a constant value since these heavily influence RSRP/RSRQ. Deep

neural networks on the other hand can become more intelligent models and take either Cartesian or polar
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Figure 1: One of the original flight datasets for linear regression, axes in meters

coordinates as input and map these to RSRP or RSRQ values. Thus, the input data needed for these ap-

proaches are different: While linear regression needs input values with fixed angle values, machine learning

profits from a wide variety of input data combinations to be able to learn better.

Figures 1 and 2 contain one of the flights and one of the corridors that were selected from that flight and

evaluated. ϕ denoted the azimuth angle and θ the elevation angle. The former is usually kept in an interval

of about 3 degrees to make sure that no useful data is deleted. The boundaries for the elevation angles are

changed in one degree steps, which still gives us enough data for linear regression in any given interval, as

can be seen in figure 2.

Calculating the linear regression y = k ·x+d with MATLABs integrated command (mean square error cost

function) leads to the result depicted in figure 3. It is clearly visible that linear regression enables a proper

modeling of path loss in this scenario. There is some variance around the best fitting line, which is mostly

due to multipath components interfering with the line of sight component destructively or constructively.

Path loss was calculated for multiple beams with the upper and lower limit of θ incremented both in one

degree steps and a fixed ϕ range. Then the average was calculated, weighted by the number of measure-

ments in any given beam to retrieve an estimate for the path loss. Figure 4 shows the result of one example

analysis. The marked data point has an elevation angle of 5.5°, which means that the beam actually includes

all measurements, for which θ ∈ (5°,6°).
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1.2.2 Neural networks

As already mentioned, neural networks profit from a wide variety of input data. Thus, a typical flight route

for training does not exhibit the form of a wall, but is rather chosen such that many different combinations

of radii and angles occur, see figure 5.
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Figure 5: A typical flight route for deep learning. Input data can now also be RSRQ.

The inner workings of artificial neural networks will be discussed in chapter four. Since MATLAB is not

the Author’s first choice for machine learning, these parts of the thesis are implemented in python, using

Googles Tensorflow library. For the regression task at hand, a relatively simple feedforward neural network

was used. Best performance was achieved with a depth of four layers, but also experiments with more layers

were conducted.
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1.3 Reception quality parameters
The following section describes the commonly used reception quality parameters RSRP, RSRQ and RSSI.

Due to the real world conditions that the measurements were conducted in, an actual measurement of the

link budget is not possible. However, the parameters serve as a viable approximation. RSRP is actually

used to estimate path loss in mobile radio devices. Under practical use conditions, the reception quality (i.e.

Bandwidth, "smoothness" of latency etc.) is mainly determined by the values of RSRP and RSRQ.

1.3.1 RSRP - Reference Signal Received Power

One of the most important reception parameters is the reference signal received power. The time-frequency

diagram in figure 6 shows two LTE resource blocks, which contain four reference signals each. They are

transmitted at a fixed power, which is often higher than other resource elements and are used to approximate

the path loss between transmitter and receiver. The reference signals transmit a complex value (useful for

channel estimation) that depends on their positioning within the resource block and the transmitting cell.

However, they have to be inserted at the first and third last OFDM symbol, with a frequency spacing of six

sub-carriers. The RSRP value is determined by the linear average of the received reference signal power

over N reference signals:

RSRP[W ] =
1
N

N

∑
n=1

Prs,n (1)

Figure 6: Depiction of two LTE resource blocks, i.e. one subframe. The yellow resource elements marked
with R are the reference signals [1].

Per definition [2], the reference point of the RSRP is the antenna connector of the user equipment. Further-

more, if antenna diversity is used, the reported RSRP value shall not be lower than the measured value of

any of the diversity branches.

The reference signal received power alone is no testimony to the received signal quality since these mea-

10



surements also pick up interference in the respective frequency ranges and need to be set in relation to the

received signal strength indicator (RSSI) to get the full picture.

1.3.2 RSSI - Received Signal Strength Indicator

The RSSI serves more or less as an overview of the power in the used spectrum by the channel, as it simply

measures the complete power contained in it [4]. Thus, it basically measures the noise floor, including

thermal noise in the receiver and interference from neighboring cells plus the useful power that is received.

If the transmission bandwidth is higher (i.e. more channels are used), a higher RSSI is to be expected as it

does not measure a power spectral density, but the total power. Thus, the number of resource blocks needs

to be considered when calculating the RSRP.

1.3.3 RSRQ - Reference Signal Received Quality

A very important aspect for practical reception quality is the reference signal received quality [5]. It con-

sists of the ratio between RSRP and RSSI, multiplied by the number of resource blocks used for RSRP

calculation N (depends on the bandwidth of the channel):

Channel Bandwidth = 1,4 MHz: 7 resource blocks (currently not used)

Channel Bandwidth = 5 MHz: 25 resource blocks (currently not used)

Channel Bandwidth = 10 MHz: 50 resource blocks (e.g. LTE 800)

Channel Bandwidth = 15 MHz: 75 resource blocks (e.g. LTE1800 in areas with GSM1800)

Channel Bandwidth = 20 MHz: 100 resource blocks (e.g.. LTE1800 and LTE 2600)

The actual RSRQ value is calculated as:

RSRQ = N · RSRP[W ]

RSSI[W ]
(2)

The values of RSRP and RSSI are put into the equation as Watt or mW-values. Since the RSRQ is a ratio

of powers, it has no dimension and is usually written logarithmically.

RSRQdB = 10 · log10(RSRQ) = 10 · log10

(
N · RSRP[W ]

RSSI[W ]

)
= 10 · log10(N)+RSRPdBm−RSSIdBm (3)

1.3.4 Reception quality estimates

As already mentioned previously, mainly RSRQ and RSRP influence the perceived reception quality, in-

fluencing bandwidth, latency and stability. A rule of thumb for RSRP is that values higher than -100 dBm

are decent and for values up to -113 dBm, the signal is dead. Below, a table including perceived reception

quality and respective parameter value ranges can be found. ([1], [5])
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Perceived connection quality RSRP range

excellent - no problems whatsoever -50 ... -65 dBm

good connection conditions -65 ... -80 dBm

not perfect, but good enough for stable connection -80 ... -95 dBm

acceptable conditions, short outages may occur -95 ... -105 dBm

very weak reception, measures must be taken -110 ... -125 dBm

extremely bad, probably no connection possible less than -125 dBm

For excellent connection properties, usually there has to be a line of sight connection. Theoretically, RSRQ

can exhibit any value. However, physical limitations lead to a range of

−3dB < RSRQ <−20dB (4)

Influence of noise and interference RSRQ range

optimum connection quality, no influence by interference -3 dB

interference exists but has no effect -4 ... -5 dB

interference has an influence on connection quality -6 ... -8 dB

connection quality notably influenced by interference -9 ... -11 dB

strong interference, very unstable connection -12 ... -15 dB

extreme interference, no connection possible -16 ... -20 dB
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2 Legal aspects
The following chapter addresses the legal difficulties that result from the operation of UAVs. First and

foremost, legislation has to take safety aspects into consideration since crashing drones may cause damage

to property of uninvolved people or - even worse - hurt them. Thus, UAVs need to be operated responsibly,

which can be more or less insured by means of proper legislation. Mind that the following chapter is written

in February of 2021 and regulations in this relatively new field may change rapidly.

The original plan was to introduce new regulations in July of 2020, but the implementation was postponed

to January of 2021. The section Former situation describes the former situation while New legal regulations

handles new laws that are enacted in 2021. Contrary to the former regulations from 2014, these will apply

throughout the entire EU and not just Austria, which is a significant advantage for consumers and businesses

as they will no longer need to inquire about legislation in every EU country they operate in.

2.1 Former situation
As already mentioned, UAV laws used to be determined by the individual member states of the EU. This

section describes the former situation in Austria, determined by the Luftfahrtgesetz or LFG from 2014 [6].

This law divided UAVs without cameras for non-commercial use into three categories. The first category

was split into three sub-categories for usage on model-plane airfields:

Klasse Spielzeug (Toy class)
A UAV was considered to be a toy if its maximum kinetic energy was lower than 79 Joule. The relevant

formula in this context was the well known relation

E =
m · v2

2
(5)

with m being the UAV’s mass and v being the maximum velocity that it can reach.

Klasse Flugmodell (Plane model class)
This class contains non-commercial UAVs without cameras with a weight up to 25kg, which are oper-

ated within a range of 500m around a designated airfield. People or things must not be endangered and

a line of sight connection must be guaranteed. This class needs no approval.

Klasse Flugmodell über 25kg (Plane model above 25kg class)
This class contains non-commercial UAVs without cameras with a weight between 25 and 150 kg. The

rules regarding maximum operating distance and LOS connection are the same as for UAVs up to 25kg.

This class needs an approval.

As soon as the UAV carried a camera or was intended to be used commercially, it was categorized as a

drone, see LFG §24 f and g. Drones were regulated, depending on the class that they belonged to. The

two possible classes were Klasse 1 uLFZ (legislation category 2) and Klasse 2 uLFZ (legislation category

3), with uLFZ essentially meaning UAV. Whether a UAV could be operated legally was determined by it’s

class and the population density in the area of operation.

Category 2 included UAVs with a maximum take off weight (MTOW) between 5 and 150kg, which could
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be operated comercially and further away than 500m from a designated airfield as long as visual line of

sight (VLOS) conditions were guaranteed.

Every flight that exceeds these limits was included in category 3, to which rules of manned aviation were

applied.

2.2 New legal regulations
In 2021, unified EU-wide rules were implemented [7]. Basically, UAVs (or rather, UAV flights) are now

subdivided into two categories, open and specific. For high-risk flights, classical aviation rules must be

obeyed. This extra category is called certified.

Open category
For open category flights, no takeoff approval is needed and the flights are subdivided into subcategories

A1, A2 and A3. In most cases, an operator registration is required though.

The main difference between subcategories is the maximum takeoff mass or MTOM, while the main com-

monality of open flights is that they must be conducted in visual line of sight and in altitudes less than 120

meters. For more deatils, see figure 7.

Figure 7: Comparison of the open flight category [7]

Specific category [8]
Should a flight not fulfill the restrictions of the open category, it falls under the specific category. In this

case, national authorities (Austro Control in Austria) must give their approval.

For operators, the first step in this case should be to see if the operation falls under a standard scenario,

which enables a quick approval. Should this not be the case, the standardized EASA risk assessment,
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called Specific Operational Risk Assessment (SORA), needs to be conducted. If many similar SORAs are

approved by the authorities, they may be used to form a standard scenario. As of today however, none of

these exist and usually, a lengthy risk assessment is necessary.

This category is relevant in the context of this thesis as it regulates the UAV used for measurement flights.
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3 Existing models for large scale fading and shadowing
One of the main goals of this thesis is to compare the models that result from the machine learning approach

to existing ones. Unfortunately, most previous research is focused on large scale fading within buildings or

urban areas. Since the test flights had to be conducted in rural areas, those models are pretty much useless

for comparison with the gathered flight data. One exception is the Stanford university interim (SUI) [10]

model, which can be used to model reception in rural areas with different degrees of vegetation.

This chapter offers a short explanation of fading and shadowing, followed by a comparison between the

models found in the thesis and the SUI model for large scale fading.

3.1 Theoretical introduction
This section serves to give a quick recap of the theory behind fading and shadowing. Furthermore, the

boundaries of what is investigated are defined: The goal of this thesis is to find a model for reception as a

function of the distance, such that the effect of large scale fading is the one that emphasis is put on.

The models explained in the following sections are only valid in far field. Since all measurements were

conducted in distances orders of magnitude larger than lambda, they can be assumed to be valid in the

context of this thesis.

3.1.1 Small scale fading

The first fading phenomenon that is tackled is the so called small scale fading, which describes fluctuations

in the received signal due to the arrival of multiple multipath components of the transmitted signal at the

transmitter. These will be slightly delayed in time and thus also be received at a different phase angle.

Furthermore, electromagnetic waves experience a phase jump of 180 degrees when being reflected by a

conductor, which leads to effects on the received power due to destructive or constructive interference.

Overall, there are three main effects of small scale fading (Rappaport, P.139):

Rapid changes in received power over distances in the order of magnitude of λ or over short time periods

due to destructive or constructive interference of signals arriving at the receiver.

Random frequency modulation since multipath components arrive from different angles, which means

that they experience different Doppler shifts if the receiver is moving.

Time dispersion due to the different ways covered by multipath components (echoes), which result in

different propagation delays of signals overlapping at the receiver.

It is important to note that the first and the third effect even occur if the receiver is stationary since surround-

ing objects may move, e.g. cars in a city. If the received fields combine in such a way that the received

power is close to zero, this is called a deep null. In reality, such a condition usually only persists for a

short period of time since either the mobile or objects that scatter are moving. However, if deep nulls are a

problem, this can be solved by using spatially diverse antennas and cross-polarization.

Since one channel (at a fixed point in time) has different small scale fading properties for different wave-

lengths (i.e. frequencies), the phenomenon can be described by means of a transfer function. This way
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Figure 8: Illustration of temporal large- and small-scale fading [13], analogous to spatial fading

of thinking of a channel becomes more relevant for signals with higher bandwidth since their frequency

components will be affected in a different way. The so called channel bandwidth or coherence bandwidth

describes a frequency range in which the channel has a transfer function that stays within certain bound-

aries. This does not mean that the channel has good transfer characteristics (i.e. low attenuation) within this

range. The transfer function only needs to be within said boundaries, since the transmitted signal would

otherwise be distorted.

This effect can be mitigated by frequency division multiplexing. This means that the transmission is divided

into multiple channels with bandwidths smaller than the coherence bandwidth, such that every subchannel

suffers from little distortion. Usually, such systems use error correcting codes to handle those subchannels

which fall onto deep nulls.

3.1.2 Large scale fading and shadowing

Other than the previously discussed small scale fading, large scale fading describes the macroscopic be-

havior of reception quality, usually over a range of hundreds of meters in case of mobile communication

systems. The usual approach to retrieve a model for this kind of fading is to conduct multiple measure-

ments at different points in space/time and average them to get rid of small scaling effects. For spatial

measurements, data is averaged over a so called measurement track, which usually ranges from 5λ to 40λ

(Rappaport, P.70). These averaged measurements are then plotted versus the distance, often on a log-log or

semilogarithmic scale.

In free space (no obstructions or other factors, which increase attenuation, like raindrops), large scale fad-

ing occurs due to the increasing surface of a given spatial angle for increasing radii. This fact is taken into

account by the well known Friis free space equation

Pr(d) =
PtGtGrλ

2

(4π)2d2L
(6)

where d is the distance between receiver and transmitter. Pr, Gr, Pt and Gt are the receiver and transmitter

power and gain, respectively. The parameter L takes miscellaneous losses into account. The denominator
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contains the expression for a spherical surface with radius d: A = 4πd2

It is useful to use double logarithmic plots when depicting path loss since the relation between d and

Pr (Pr ∼ d−2) then leads to a linear relationship with slope -2 on the plot. Furthermore, variations in

parameters simply lead to an offset on this kind of plot, see figures 9(a) and 9(b). Doubling a parameter

leads to a constant offset of 3dB, if it is multiplied by ten, the gain/attenuation is 10dB.

The slope of this log-log plot is called the path loss exponent n. It can be used to model different propagation

conditions like urban areas or a multi-storey office building. The following table shows some values of n

for different surroundings (Rappaport, P.104):

Environment Path loss exponent n

Free Space 2

Urban area cellular radio 2.7 to 3.5

Shadowed urban cellular radio 3 to 5

In building line-of-sight 1.6 to 1.8

Obstructed in building 4 to 6

Obstructed in factories 2 to 3

Another common way to describe these relationships is via the average path loss equation. It describes the

average attenuation that the signal experiences on it way from receiver to transmitter as a function of the

distance (Rappaport, P.102):

PL(d)[dB] = PL(d0)+10n · log10

(
d
d0

)
(7)

It it obvious that this model only describes the average behavior. In reality, different receivers will experi-

ence different reception qualities due to different degrees of cluttering, even if they are at the same distance

from the transmitter (see figure 10). This behavior can be modeled by so called log-normal shadowing:

The path loss at a given point in space is random and normally distributed around the average path loss for

the point’s radius on the log-log plot. Shadowing is thus modeled by a normal distribution on the logarithmic

plot (i.e. a normal distribution in dB).

PL(d)[dB] = PL(d)+Xσ = PL(d0)+10n · log10

(
d
d0

)
+Xσ (8)

Xσ (in dB!) is a zero-mean, normally distributed random variable with variance σ (also in dB).

Finally, it is to be mentioned that shadowing does not play a major in the context of this thesis, since the

focus is set on large scale fading and measurements are conducted in a rural are. Still, it is important to

know the basics of shadowing (and also small scale fading!) when dealing with reception quality data.
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Figure 9: Variations in parameters are easily depicted on a logarithmic scale
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Figure 10: The receiver behind the clutter will probably suffer from worse reception quality, even though
the radius is the same. This is not taken into account in the simple path loss equation (see equation 7).

Figure 11: Illustration of spatial fading and shadowing [14]

3.2 The Stanford University Interim (SUI) model
As already mentioned previously, the SUI model [10] is the one that the results of this thesis are compared

to. It can be used to model reception in rural (or suburban) areas with different degrees of vegetation or

mountainous terrain. The receiver antenna has to be below 2m, according to the model’s definition.
This condition is not fulfilled in this thesis!
A model with correction factors has been published, which is intended to be used for receiver heights up to

ten meters, which is of course still lower than typical UAV operation altitudes. Regardless, it is the model

that best suits the needs as there are no existing models for path loss in this frequency range that can be

used for the altitudes that UAVs operate in.

There are extensions to this model, which are used for urban areas, but for this thesis, the SUI model (also

called Erceg model) with correction factors is used. The basic path loss formula (without correction factors

for higher altitudes) is similar to equation 7:

PL = A+10γ · log10

(
d
d0

)
+ s (9)
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where

d > d0

A = 20 · log10

(
4πd0

λ

)

γ = a−b ·hb +
c
hb

d0 = 100m

10m < hb < 80m

8.2dB < s < 10.6dB

It takes the distance d, the wavelength λ , the base station height hb, the shadowing effect s and the terrain

parameters a, b and c into account. Since the UAV operates at a significant distance from ground, it is safe

to assume that s = 8.2dB.

As already mentioned, the model is suited to different degrees of vegetation. There are three categories:

Category A
Hilly terrain with moderate-to-heavy tree densities, which results in the maximum path loss.

Category B
Hilly environment but rare vegetation, or high vegetation but flat terrain. Intermediate path loss condi-

tion is typical of this category.

Category C
Mostly flat terrain with light tree densities. It corresponds to minimum path loss conditions.

The terrain that was used to conduct the test is quite flat, which justifies the use of category C. Furthermore,

it is safe to assume that the high operating altitudes lead to a more "Category-C-ish" behavior of the recep-

tion quality. The following table shows the parameters a, b and c for the different types of terrain:

Category A Category B Category C

a 4.6 4 3.6

b 0.0075 0.0065 0.005

c 12.6 17.1 20

21



3.3 The SUI model with correction factors
In this subsection, a correction factor for higher receiver antenna heights is introduced. This factor leads to

an additional additive term in the logarithmic expression for the path loss:

PL = A+10γ · log10

(
d
d0

)
+ s+∆PLh (10)

with

∆PLh =

−10.8log( h
2 ) for terrain type A and [sic!]

−20log( h
2 ) for terrain type C

(11)

It can be assumed that the upper case in equation 11 is valid for terrain type A and B, but the line can be

found at [2] as cited above. Since the terrain type at the test site is of category C anyway, the path loss

equation for receiver heights up to ten meters can be written as:

PL = A+10γ · log10

(
d
d0

)
+ s−20log(

h
2
) (12)

It has to be tested whether this model is applicable in the given scenario and which adaptations will need to

be conducted.

Basically, this model predicts a lower path loss that decreases with altitude. This makes sense near ground

as less cluttering can be expected for higher receiver altitudes. In case of a UAV flight however, this effect

can be assumed to be non-existent as there are no objects (except for maybe birds) that badly influence

reception in such high altitudes.

3.4 Proposed models
In the following section, the large scale fading models proposed by the author are presented. They were

thought up after a qualitative and quantitative analysis of reception parameter behavior.

An actual data fitting was conducted only for the path loss model. The proposed model for reception

parameters can rather be seen as a corollary, serving as a starting point for further investigation.

3.4.1 Proposed model for reception parameters

Since the factors that usually contribute to lower reception quality (like non-line of sight connection, dense

population of urban areas etc.) don’t play a role for the recorded flights (they were conducted in rural areas

and in high altitudes), it makes sense to look at another factor that plays a major role: The elevation angle

between UAV and base station.

Since the LTE network is designed to provide internet connection in ground proximity, antennas are de-

signed accordingly and direct as little power as possible towards higher altitudes, i.e. they have a very

pronounced main lobe around θ = 0°. Antenna patterns can be found at [11], pages 7 and 8.

This factor makes it useful to include the elevation angle θ into the model. Of course, reception is also pos-

sible in higher altitudes due to signals being reflected from the ground, but on average, reception parameters
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will exhibit lower values in these cases, see figures 12 and 13.
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Since RSRP measures the total power on certain sub-carriers, it is impacted stronger by higher altitudes.

This is due to the fact that other devices that emit electromagnetic waves in the same frequency region have

a stronger impact closer to the ground. However, the RSRQ value is also impacted significantly by higher

elevation angles, which leads to the conclusion that way less useful signal is picked up in these heights.

Due to these factors, it makes sense to look for a reception parameter model that includes the elevation

angle and not just the transmit power and the path loss, see equation 13 below. fRSRP(θ) is a function that

should fit the measurement data as well as possible. It is greatly influenced by the antenna pattern, but also

by the type of environment as reflected signals also contribute to reception quality.
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RSRP(d,θ) = RSRP(d0)− cRSRP · log10

(
d
d0

)
− fRSRP(θ) (13)

For the other parameters, analogous formulas can be found. The example in equation 14 below shows the

formula for RSRQ, which will need a different function fRSRQ(θ) to take the elevation into account.

RSRQ(d,θ) = RSRQ(d0)− cRSRQ · log10

(
d
d0

)
− fRSRQ(θ) (14)

The parameters cRSRP and cRSRQ determine the slope of the path loss on the log-log plot.

Even though the dependence on θ is clearly visible on figures 12 and 12, an anomaly can be observed for

very large elevation angles. This might be due to a reflecting surface like a car, that coincidentally reflected

the antenna signal in this manner.

3.4.2 Proposed model for reception path loss

Since the elevation angle is kept constant for path loss calculations, the path loss model does not take the

elevation into account. These considerations are a relatively new field, such that a valid starting point is a

model where PL(d0) and PL
(

log10

(
d
d0

))
is extracted from the given measurements and not predicted by

factors like antenna height etc.

Since the measurements were conducted in rural areas with little interference, the evolution of RSRP as a

function of the log distance serves as an approximation for the evolution of the path loss:

dPL(r)
dr

≈ dRSRP(r)
dr

(15)

The proposal in this thesis is a path loss model that follows the typical linear equation scheme

y = k · x+d (16)

with d representing the path loss at distance d0, i.e. PL(d0) and k · x representing the sloped line on the

log-log plot, i.e. cPL · log10

(
d
d0

)
.

Thus, the following model is proposed:

P(d)|dBW = P(d0)dBW −PL0|dB︸ ︷︷ ︸
PL(d0)−>d

−cPL · log10

(
d
d0

)
︸ ︷︷ ︸

PL(d)−>k·x

(17)

With PL(d0) determined by means of measurements, the constant term PL0|dB can be calculated if the log

transmit power P(d0)dBW is known. A prediction of PL0|dB is not yet possible as more measurements need

to be conducted.
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3.5 Model comparison
This section serves as a comparison between the mentioned models, detailing their differences.

3.5.1 The SUI model

For the basic SUI path loss model (see equation 9), there are basically two parameters: s and γ . The first

one gets added to the logarithmic equation, simply adding an offset on the logarithmic plot, corresponding

to a factor in actual path loss.

The second parameter γ takes the surrounding terrain and the base station height hb into account and leads

to different slopes on the log-log plot. For results, see figure 14.

3.5.2 The SUI model with correction factors

This extension simply adds a factor to the path loss equation for higher receiver altitudes, see equations

10 and 11. This correction factor leads to an offset in the path loss. Higher receiver antennas usually

lead to better reception as there is usually less cluttering in higher altitudes. A comparison for different

antenna heights can be found in figure 15. All comparisons were conducted with a shadowing parameter of

s = 10dB.

Figure 16 depicts the correction offset as a function of receiver antenna height. As one would expect, the

effect is most pronounced for hardly populated terrain since trees and buildings may very well be higher

than ten meters, leading to shadowing, even for higher receiver antennas.
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Figure 14: The SUI model predicts different path loss lopes for different kind of terrain categories and for
different base station antenna height. The second parameters s (shadowing effect parameter) is a constant
offset on the log-log plot (s = 10dB in this plot).
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Figure 15: Higher receiver antennas lead to less path loss. The comparison is done only between category
A and C since cat B behaves similarly to cat A.
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Figure 16: The correction factor/offset depends on the kind of terrain and on the receiver antenna height.

3.5.3 Proposed model for reception parameters

Since the used base station antennas have a strongly pronounced main lobe and hardly direct energy to

higher altitudes [11], a non line of sight (NLOS) connection is to be expected for elevation angles higher

than a certain threshold. fRSRP and fRSRQ in equations 13 and 14 must be chosen accordingly, for example

as a roll off cosine or a step function.

Roll off cosine
For a continuous transition from low-theta to high-theta reception conditions, a roll off cosine can be used.

The proposed model would then exhibit the form

RSRP(d,θ) =


RSRP(d0)+ cRSRP · log10

(
d
d0

)
+A if θ < α− β

2

RSRP(d0)+ cRSRP · log10

(
d
d0

)
+A · cos

(
θ−α+β/2

β
·π
)

if α− β

2 < θ < α + β

2

RSRP(d0)+ cRSRP · log10

(
d
d0

)
−A if θ > α + β

2

(18)

With α being the threshold and β being the transition width. A describes the amplitude, i.e. the impact

of the elevation angle. Using these two parameters, different transitions (smooth vs. abrupt, low vs. high

transition amplitude) can be modeled.

An analogous model can be used for RSRQ.
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Figure 17: Possible predictions of the roll off cosine model with parameters α = 14° and β = 6°. The
transition amplitude is set to 6dB.
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Figure 18: Possible predictions of the roll off cosine model with parameters α = 15° and β = 10°. The
transition amplitude is set to 9dB.
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Step function
Due to strong directional base station antenna characteristics, a step function should be considered. This

function is also useful to choose between two different control algorithms if the UAV is operating au-

tonomously since it only puts out two values.

RSRP(d,θ) =

RSRP(d0)+ cRSRP · log10

(
d
d0

)
+A if θ < α

RSRP(d0)+ cRSRP · log10

(
d
d0

)
−A if θ > α

(19)

Same as before, an analogous equation can be used to model RSRQ.
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Figure 19: Possible relation between RSRP and d for different elevation angles. The transition is very sharp
because a step function was used to model it.
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3.5.4 Proposed model for path loss

Other than reception parameters, path loss per definition describes the loss of received power as a function

of the distance. Thus, azimuth and elevation angles are kept constant (or rather, within defined constraints)

and the only argument for the path loss function is the distance between receiver and transmitter:

P(d)|dBW = P(d0)dBW −PL0|dB︸ ︷︷ ︸
PL(d0)−>d

−cPL · log10

(
d
d0

)
︸ ︷︷ ︸

PL(d)−>k·x

(20)

As already discussed, this equation leads to a linear function y = k · x+ d on a log-log plot. In order to

determine the offset and slope, the azimuth angle constraints were chosen such that only the "wall" that was

flown is selected. Then, the elevation angle was looped through in one degree steps, calculating slope and

offset in every iteration. The end result consists of the average values for k and d, weighted by the amount

of data points in every "corridor". These ideas are depicted in figures 20 and 21.

As already discussed, the path loss estimation is based on the RSRP. Furthermore, directional characteristics

of the receiver antenna were not taken into account. Thus, there measurements are not exact, but still lead

to plausible results. Furthermore, reception quality parameters were always in regions where no signal

interruptions are to be expected. This hints at safe operation, at least in the used frequency, which is at

800MHz. For higher frequencies, a more pronounced path loss is to be expected.

In figure 23, it becomes apparent that lower elevation angles tend to show a steeper decrease in RSRP. Thus,

even though the weighted mean predicts a proper signal reception for a distance up to 3 km, a margin of

safety should be used.

As a conclusion, it must be mentioned that the model at hand is not as elaborate as other models (like the

SUI model), but since the modeling of reception parameters in such altitudes is a new field, it serves as a

starting point for others, who further refine it.
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Figure 20: One of the so called "walls". The azimuth angle is restricted to a 3 degree interval, such that the
UAV’s way from the start (red point) and back is filtered out.
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Figure 21: One of the so called "corridors". Starting from the previously filtered wall, the elevation angle
was confined to a one degree interval.
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4 Theory of used Technologies
The following chapter contains an overview of the necessary theoretical backgrounds. For both technolo-

gies, the focus will be set on the aspects that are actually used in this work, i.e.:

The theory behind linear regression will be described to the necessary extent. This means that only sim-

ple linear regression will be elaborated. Simple linear regression means that the relationship between

one independent explanatory variable and one dependent response variable is described, as opposed to

multivariate regression, which maps multiple explanatory variables to one response variable.

In this thesis, the relationship between distance (independent) and RSRP (dependent) is investigated,

which means that multivariate regression will not be of interest.

Deep neural networks are structures with at least one hidden layer between input and output nodes. They

are useful if a relationship between variables is too complex for standard linear regression and for a wide

array of other tasks. For example, recursions within a deep neural network can be useful for time series

prediction tasks as they add a kind of memory to the network, see figure 24.

Since the scope of this thesis is the modeling of a multivariate relationship, such structures will not be

investigated. Instead, there will be a restriction to so called feedforward neural networks, which are

structures that pipe the input data towards the output over the hidden layers without any recursions or

other "unorthodox" methods.

In this thesis, they will be used to model the relationship between the UAV’s position (Cartesian or polar

coordinates, three input variables) and the RSRP/RSRQ values.

Figure 24: An example of a deep neural network with two hidden layers and a recurrent structure [15]

Both technologies stem from the field of machine learning. Linear regression is one of the more simple

approaches, while deep neural networks are way more complex (and powerful).
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4.1 Linear regression
In many (technical) applications, relationships between two variables can be described by means of a linear

relationship. This is desirable since this is the simplest kind relationship that variables can exhibit and be-

cause the theory behind linear algebra is well understood and usually extensively taught in any engineering

study program. Thus, it is often the case that nonlinear relations are approximated as linear ones in order to

be better able to handle them.

One such example is electromagnetic wave propagation in the far field: Since the power diminishes with
1
r2 , the relationship can be depicted as a linear function with a slope of -2 on a log-log-diagram.
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Figure 25: An ideal relationship versus possible measurements

Connecting these measurement dots with curved line segments would not make sense since it would not

represent the actually occurring behavior. Instead, the aim of linear regression is to find a straight line that

best fits the measurements.

This is done by means of linear algebra. The combination of measurements and their respective distances,

i.e. the relation between the independent variable x and the response variable y can be written in matrix

form:

yyy = XXXβββ + εεε (21)

where

yyy =


y1

y2
...

yM

 (22)

denotes the measurement vector. It contains M elements.
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XXX =


1 x11

1 x21
...

...

1 xM1

 (23)

XXX contains the explanatory variables, i.e. the distances and a column of ones. This column serves serves to

model the offset while the right column models the linear behavior. In the case of multivariate regression,

this matrix would contain more columns to take multiple explanatory variables into account.

βββ =

(
β0

β1

)
(24)

βββ is the so called parameter vector. Looking at equation 21, it becomes obvious that this vector is multiplied

with XXX . Thus, β0 denotes the constant term, also known as the intercept, while β1 denotes the slope. The

goal of linear regression is to compute βββ .

εεε denotes the error term, which models the deviation of the measurements from the linear model.

In general, if a graph of order N is to be described, there are M = N+1 points necessary to do so. Since the

performed regression is linear, N is equal to one. This leads to three possible scenarios:

M < N+1
The number of measurement points is too low. This means that the equation system is underdetermined

and there is at least one degree of freedom. This case is irrelevant for linear regression.

M = N+1
The equation system is exactly determined, there are no degrees of freedom. In this case, XXX is a square

matrix and thus invertible. The equation system can be solved by means of the following equation:

βββ = XXX−1(yyy− εεε) (25)

This relatively trivial case does not require linear regression.

M > N+1
The number of measurement points is larger than the order of the used polynomial plus one, see figure

25(b). This means that XXX is not invertible. In this case, a way has to be found to approximate the

relationship, taking into account all measurements.

The least squares cost function and the pseudoinverse

One very common way to choose the parameter vector βββ is to select the slope and the intercept such that

the sum of the squared errors between the regression line and the measurements is minimized. The squared

error is well suited as it results in positive values, independent of the sign of the individual error terms.

Furthermore, it stronger penalizes higher error values because of the quadratic relationship.

The sum of the squared errors is the so called least squares cost function JLS. It describes how bad the

model works and thus needs to be minimized.
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Figure 26: Illustration of the error term (green) in a linear regression

JLS = ||(yyy−XXXβββ )||2︸ ︷︷ ︸
square norm

= (yyy−XXXβββ )T (yyy−XXXβββ ) (26)

To do so, the gradient (vectorial derivative) with respect to βββ has to be taken and set to zero. Furthermore,

some identities were applied to perform the multiplication of the braces in equation 26.

∇βββ JLS(βββ
T XXXT XXXβββ −2yyyT XXXβββ + yyyT yyy) = 000 (27)

Computing the gradient leads to:

2XXXT XXXβββ −2XXXT yyy+000 = 000 (28)

2XXXT XXXβββ = 2XXXT yyy (29)

In the next step, equation 29 is multiplied with 1
2 (XXX

T XXX)−1 from the left. This leads to the least squares

solution βββ LS:

βββ LS = (XXXT XXX)−1XXXyyy (30)

Equation 30 is the so called Moore Penrose pseudo inverse. It approximates the solution of the equation

system such that the sum of the squared errors is minimized.
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4.2 Neural networks - architectural basics
As already described in the beginning of this chapter, deep neural networks are structures that consist of

multiple layers of artificial neurons. In this case, they serve to perform complex regression tasks.

In the following sections, the inner workings of neural networks are explained, beginning with the very

basic unit, the artificial neuron.

4.2.1 Artificial neurons

Artificial neurons consist of multiple inputs, which are weighted, summed up and used as input of the so

called activation function. This results in the neuron’s output.

Figure 27: Illustration of an artificial neuron [16]

The activation function must be nonlinear. A linear function would result in a linear combination of input

values, which does not transform the data in a useful way.

The bias is a special input of the neuron since it does not consist of a weighted input value. Rather, it is a

constant that is added to each neuron’s summation. Every neuron has it’s own bias. Like the weights, they

are parameters that need to be optimized.

4.2.2 Activation functions

Activation functions are nonlinear functions which determine the neuron’s output. They have a strong

influence on the network’s performance. It is very advantageous if they have a defined derivative, because

many learning algorithms need to derive them in order to work. Furthermore, they need to be monotonous.

These are a few relevant ones:

Hard limit
This activation function sets the output to zero (or -1) if the weighted input sum is below the defined

threshold. Otherwise, the output is set to one.

This function’s advantage is its simplicity. However, the derivative is always zero, except at the threshold,

where it is not defined.
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Figure 28: An example of a hard limit function

Hyperbolic tangent (tanh)
The hyperbolic tangent is also well suited to be used as an activation function. It is monotonous and has a

useful (i.e. large enough) derivative for a wide range of input values. However, if the input is far away from

zero, the gradient vanishes, which can become a problem in training. The hyperbolic tangent is defined as:

tanh(x) =
ex− e−x

ex + e−x (31)
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Figure 29: The hyperbolic tangent activation function
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Sigmoid
The sigmoid looks very similar to the tanh function, but has a parameter a, which influences its behavior.

It is very common and has good general properties, especially because the parameter a can be tuned to

counter the vanishing gradient problem.

siga(x) =
1

1+ e−ax (32)
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Figure 30: The sigmoid activation function with multiple values of the parameter a

Note that the sigmoid function maps the input to (0,1) as opposed to the tanh function, which maps to (-1,1).

Rectified linear unit (ReLU)
The rectified linear unit is a piecewise linear function, which puts out the input if it is positive and zero if it

is negative:

ReLU(x) = x+ = max(0,x) (33)

Up until 2011, activation functions like the aforementioned sigmoid function were most commonly used

in machine learning. In that year, it has been shown that the ReLU function actually performs better in

computer vision tasks than the tanh or sigmoid functions [17]. Ever since, this somewhat counterintuitive

function and it’s extension, the leaky ReLU, have become more or less standard for many deep learning

applications.

The obvious (see figure 31) disadvantage is that the function’s derivative is zero for negative input values,

which prevents learning if the occurring weighted input sums never reach a positive value. This is known

as the dying ReLU problem [18], which can be tackled by inducing a parameter alpha, which determines

the slope in the negative input region of the activation function. This approach is called the leaky ReLU

function.
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Figure 31: The ReLU activation function

Leaky ReLU
This extension enables the usage of the parameter α in order to also get a gradient in the negative input

region. It is usually a better choice than the common ReLU function and commonly used in this thesis.

LReLU(x) =

{
x ·α x < 0

x x≥ 0
(34)

As a side note, the derivative of (leaky) ReLU functions is not defined at x = 0. In practical applications,

this is rather a technicality, but it can be a nuisance for theoretical derivations.
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Figure 32: The leaky ReLU activation function (alpha = 0.1)
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4.2.3 Approximation of arbitrary functions with neurons and overfitting

Before deep learning is tackled, another very important aspect of neural networks with one layer needs to be

addressed: The "parallel" use of neurons enables an arbitrarily exact approximation of any given function

in a defined interval. This is based on a similar idea to a series expansion, like Fourier or Taylor series.

The target function is approximated by means of a superposition of differently scaled activation functions

like sigmoids or ReLUs. This means that the neural network has one input neuron, one hidden layer with

an arbitrary number of neurons and one output neuron. The main difference to series expansions is that the

parameters are not calculated via an analytical expression like

ak =
1
π

∫
π

−π

f (t) · cos(k · t)dt ∀k ≥ 0 (35)

bk =
1
π

∫
π

−π

f (t) · sin(k · t)dt ∀k ≥ 1 (36)

for the sine-cosine form of the Fourier series, but rather via learning algorithms, which iteratively improve

the approximation’s accuracy.

This works very well if the target function does not contain noise since the approximation will get better

if the number of neurons is increased arbitrarily, like this would be the case for a series expansion with an

ever increasing number of terms.

However, if the training data is noisy (as in practically all real world applications), this approach is limited

by overfitting. This means that the approximation is fit "too well" to noisy data, which makes the behavior

of the neural network less smooth and less able to generalize, like the following examples in figure 33 show

[5], where a function is approximated by a combination of sigmoids. On the other hand, if the number of

neurons is too low, underfitting occurs, see figure 33(a). Thus, there is a sweet spot that is to be found in

order to optimize performance. This is also true for other machine learning applications, like deep neural

networks.

Note that in the given example, the number of training data points is relatively low compared to the number

of testing data points (for more information see section on parameter training). This choice is by design

since the scope of this example is to show the effects of overfitting. If the dataset was split such that the

amount of training data is increased, the system would be less prone to overfitting. On the other hand, small

testing data sets lead to a higher evaluation variance, but if the number of available data points is small,

accepting this disadvantage should be considered.

43



(a) 2 hidden neurons lead to underfitting

(b) 5 hidden neurons work decently

(c) 50 hidden neurons lead to overfitting: The behavior becomes "wob-
bly" and represents the original function badly. This manifests in bad
predictions, like the spike at x = 0.3.

Figure 33: Over- and underfitting when approximating a noisy function with sigmoid neurons [5]. Note
that the blue points are training data points and the red crosses represent testing data, which are not taken
into account for training and serve to evaluate the network’s performance on "unseen" data.
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Figure 34: Simple neural network with one hidden layer and one input/output neuron. This architecture can
be used to approximate functions, but is useless for any kind of artificial intelligence.

4.2.4 Deep neural networks

The next step on the way to an artificially intelligent system is to add more layers of neurons, see figure

35. This means that the outputs of one layer are connected to the inputs of the next one, which extends the

network’s ability to learn. For most regression tasks, this is an overkill, but for the one at hand, it proved to

be a very solid approach, since the measurement values were not just composed of the path loss, but also by

factors like the Rx and Tx antenna patterns, interfering signals from other nearby transmitter stations etc.

Thus, some kind of "intelligence" is desirable.

One of the challenges of this approach is the huge amount of training parameters: Every line in figure 35

represents one parameter that is to be trained. It is obvious that more layers and neurons lead to an ever

increasing computational effort.

Another undesirable property of deep neural networks is the fact that humans are in most cases hardly

able to grasp what is going on in such a structure. This is a major difference to other signal processing

approaches, which are usually well understood and understandable. Thus, deep learning can be seen as an

art form, instead of an engineering discipline, because there is a lot of guessing and trial and error involved.

This becomes even more apparent for more complex structures since they need a lot of time for training,

which often makes parameter optimization strategies like grid searches unviable.

Another major challenge in deep learning is the fact that the iterative learning algorithms usually don’t

converge to global error minima and every training restart with different random starting parameters leads

to different network performance. These aspects will be tackled in the following section.
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Figure 35: Comparison between simple neural networks and deep neural networks. The example on the left
is similar to the one used in the previous chapter, except for the number of input and output neurons (5/4,
as opposed to 1/1) [19]

4.3 Parameter training
The following section will explain how weights are updated, differentiating between the different types

of gradient descent that exist. The whole part is based on [20]. As already mentioned, neural network

parameters, i.e. the weights of the connections between the neurons and the biases w, are trained by means

of an iterative algorithm that approaches the minimum error step by step (usually, it converges to a local

minimum). Figures 36 and 37 show graphical representations of gradients. After these, mathematical

derivations follow.
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Figure 36: Gradient of a one dimensional sine function. In machine learning applications, the gradient op-
eration is applied to multidimensional functions, sometimes reaching hundreds of thousands of dimensions.
In this thesis, the dimensionality is in the range of hundreds.
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(a) The three-dimensional surface plot of the simple function z =
sin(x)+ cos(y)

(b) The contour plot, which belongs to the above function

(c) The gradient field. The Arrows point towards the direction of the
steepest ascend and their size represents the steepness.

Figure 37: Explanation of the gradient of a two-dimensional scalar field (the two input variables x and y
are mapped to the scalar variable z). In machine learning applications, the cost function’s scalar field’s
dimensionality easily exceeds hundreds, since every weight/bias adds one dimension.
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The basis of gradient descent algorithms is the gradient of the cost function J with respect to the weights

and biases ∇w(J). It contains the partial derivative of the cost function with respect to every weight/bias:

∇w(J) =



∂J
∂w1
∂J

∂w2
...

∂J
∂wN
∂J
∂b1
∂J
∂b2
...

∂J
∂bN


(37)

This vector is multiplied with the step size µ to get the weight updates. Since the gradient points towards the

direction of the steepest ascent, it needs to be followed towards its negative direction for gradient descent.

wk+1 = wk−µ∇w(J) (38)



w1

w2
...

wN

b1

b2
...

bN


k+1

=



w1

w2
...

wN

b1

b2
...

bN


k

−µ



∂J
∂w1
∂J

∂w2
...

∂J
∂wN
∂J
∂b1
∂J
∂b2
...

∂J
∂bN


(39)

In this approach, the gradient is calculated for every example in the training data set. All of these gradients

are averaged, which results in the gradient that is used for for the weight update (equations 38 and 39). This

is called batch gradient descent. A full iteration over the entire training data set is called an epoch. Thus,

in batch gradient descent, one weight update is performed every epoch. This does not always have to be the

case, as can be seen in the next subsection.
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Types of gradient descent

There are three main types of gradient descent, which vary in the number of sample gradients that are

summed up to determine the update "direction", i.e. the batch size. Figures 38(a) through 38(f) show the

learning behavior for different batch sizes.

Batch gradient descent
As already mentioned, this approach uses the average of the gradients from every sample in the test data

set. Thus, one update step happens every epoch and the batch size is equal to the number of samples. This

leads to a smooth and monotonic convergence towards a minimum. Of course, a lot of computation has to

be done between every update step.

Stochastic gradient descent
This approach is the other extreme: After calculating the gradient for one sample, the weights are updated.

This means that for every epoch, the number of updates is equal to the number of samples in the dataset.

Of course, the convergence behavior will not be smooth. Actually, an update step may even lead to an

increasing cost function, moving away from the minimum. In the long run however, the cost function is

usually decreasing. This approach is useful for large datasets, which often occur in machine learning.

Mini Batch gradient descent
Of course, compromises between the two mentioned approaches can be found. Doing so is often the best

way to go and also applied in this thesis. It is advisable to use a power of two as batch size because the

learning algorithm can be optimized and sped up in this case. A significant advantage of smaller batch

sizes is that their "twitchy" behavior may lead to better results since the optimizer might jump out of it’s

trajectory to a bad local minimum.
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(a) Batch Size = 1 (b) Batch Size = 16

(c) Batch Size = 128 (d) Batch Size = 512

(e) Batch Size = 1024 (f) Batch Size = 8192

Figure 38: Comparison of learning procedures with different batch sizes. This figure serves as a qualitative
explanation aid for the effects of different batch sizes. When it comes to quantitative performance evalua-
tion, this is not a fair comparison since small batch sizes lead to more update steps within the 2000 Epochs
(and take way longer to be computed).
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4.4 Gradient determination or backpropagation
Determining the gradient of the cost function w.r.t. the entire weight/bias-vector in a deep neural network

is not trivial since the effects of every one of these values are strongly interconnected. This section serves

as a step-by-step summary of many ingredients of backpropagation, starting from a single neuron.

4.4.1 Gradient determination - single neuron

Up until now, the gradient of a neural network’s cost function was used in many calculations, without

going into details of its determination. In the case of multi-layer neural networks, there are actually a few

challenges in this calculation.

To start off, the gradient calculation for a single neuron with respect to its weight is described.

Figure 39: A single neuron and its necessary variables for gradient calculation

The first step is to set up the cost function J as the squared error, i.e. the difference between the neuron’s

actual output y and the target value t, with σ being the nonlinear neuron activation function.

J = (y(w)− t)2 = (σ(wx+b)− t)2 (40)

J = σ
2(wx+b)−2tσ(wx+b)+ t2 (41)

The next step is to take the derivative of J(w) with respect to w, also introducing the variable z = wx+b.

∂J
∂w

=
∂

∂w

σ
2(wx+b︸ ︷︷ ︸

z

)−2tσ(wx+b︸ ︷︷ ︸
z

)+ t2︸︷︷︸
0

 (42)

To further process this equation, the chain rule is applied:

∂J
∂w

=
∂ z
∂w
· ∂y

∂ z
· ∂J

∂y
(43)

Since y = σ(z), the equation can be rewritten as:

∂J
∂w

= x · ∂σ(z)
∂ z

·2(y− t) (44)
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4.4.2 Gradient determination - single layer parallel structure

In case of a single layer parallel structure, the output consists of the weighted sum of the neuron outputs.

Figure 40: A parallel structure with N = 2 neurons

Thus, the previously scalar weight is now a vector. Furthermore, a second weight vector (for the summation)

needs to be introduced.

This means that the column vector

w1 = [w(1)
1 w(1)

2 ... w(1)
N ]T (45)

denotes the weights at the inputs of the nonlinear activation function, while the summation weights are

described by

w2 = [w(2)
1 w(2)

2 ... w(2)
N ]T (46)

Since there are N neurons in the net, N neuron input scalars zn must exist. They are summarized as the row

vector

z = [z1 z2 ... zN ] (47)

The numbers in the upper braces denote the layer that the weight appears in. They are not exponents.

For the derivation of the cost function’s gradient, basically the same approach as before is used. If a vector

form is desired, the cost function J can now be written as:

J = (y− t)2 = (σ(z) ·w2− t)2 (48)
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With the replacement zn = w1,n · x+bn, the scalar summation form consists of

J =

(
N

∑
n=1

σ(w(1)
n · x+bn) ·w(2)

n − t

)2

(49)

Same as before, the chain rule (see equation 43) is applied in order to get an analytic expression for the

gradient of the cost function w.r.t the neuron input weights w1. This time however, some adaptations have

to be taken into account:

zn = w(1)
n · x+bn =⇒

∂ zn

∂w(1)
n

= x (50)

∂y
∂z

=
∂

∂z

N

∑
n=1

w(2)
n ·σ(zn) =

N

∑
n=1

w(2)
n

∂σ(zn)

∂ zn
(51)

With the equation for ∂J
∂y being the same as before, the resulting derivative becomes

∂J
∂w(1) =

N

∑
n=1

w(2)
n ·

∂σ(zn)

∂ zn
· x ·2(y− t) (52)

The derivative of the cost function with respect to the addition layer weights is equal to the respective inputs,

since they determine the sensitivity of the gradient towards weight changes:

∂J
∂w(2) = σ(z) (53)

4.4.3 Gradient determination - multi layer parallel structure

The next step on the way to understanding backpropagation calculus is to look at the derivatives of the cost

function for a multilayer structure like a deep neural network. Intuitively, it makes sense that weights that

appear in a later layer of the network (say w(3)
3 will influence the gradient’s sensitivity with respect to one

of the previous weights (say w(1)
1 ). This effect can also be observed in the previous structure, where ∂J

∂w(1)

is influenced by the weights of the addition layer, see equation 52.

Actually, this structure is not significantly more complex than the previous one. How the gradient for a

single layer is computed, is already known at this point. The main difference is that the expressions for

z(2)n , i.e. the summed inputs of the second layer neurons, have to take into account more terms, namely the

outputs of the previous layer ym and the weights wm,n that connect them to the neuron:

z(2)n =
N(1)

∑
m=1

ym ·wm,n +b(n)n (54)

In equation 54, N(1) denotes the number of neurons in the first layer.

If the gradient w.r.t w(2) is sought, the following expression can be used:

∂J
∂w(2) =

∂J
∂y(2)

∂y(2)

∂z(2)
∂z(2)

∂w(2) (55)
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Figure 41: A parallel structure with two layers. The number of neurons in the first layer is equal to the
number of neurons in the second layer: N1 = N2 = 2

The gradient w.r.t w(1) can be calculated by a further extension:

∂J
∂w(1) =

∂J
∂y(2)

∂y(2)

∂z(2)
∂z(2)

∂y(1)
∂y(1)

∂w(1) (56)

Looking at equations 55 and 56, it becomes apparent why the algorithm is called backpropagation.

Since the calculation of the gradients starts getting too laborious and it is not the main scope of this thesis,

these explanations are halted at this point. If the vector calculations are generalized such that an arbi-

trary number of layers and neurons in every layer can be chosen, the matrix form of the backpropagation

algorithm is reached. More on this topic can be found at [21].
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5 MATLAB scripts - linear regression
The linear regression part of the thesis was conducted in MATLAB since it is relatively easy to use and has

all the functionality needed for the tasks at hand. The following chapter discusses the most relevant code

snippets. Full codes can be found in the appendix; the basic terminology and approach is detailed in chapter

3.

The main scripts for linear regression are called Analysis.m and Automated_Analysis.m, with the first

one only conducting one linear regression analysis for one corridor and the second one iterating through

a defined range of elevation angles. Thus, the first script will be looked at primarily as it suffices for an

explanation of the concepts used in this part of the thesis.

5.1 Loading of flight data
The first step is loading the flight data. The relevant parameter, i.e. the file name, is set around line 40

because the beginning of the script was reserved for setting the corridor that the linear regression should be

performed for. This task is conducted by an automatically generated part of the script that loads the entries

of a csv-file.

39 %% Initialize variables.

40 filename = '.\DirnbachConverted\CSV\865116045125976_8_10_2020_12.5.6.azm.csv';

41 delimiter = ',';

42 startRow = 2;

The import script automatically generated by MATLAB ends at line 96. This code puts a data frame,

simply called Dataframe into the workspace, see figure 42. The elements of this data frame are then

easily accessed with lines like RSRP = Dataframe.rsrp1;. Positional information is stored by means

of geocoordinates, which need to be converted to Cartesian and polar coordinates, centered around the

transmitter station. The formulas used for this task are linear approximations for this transform.

97 %% Start of actual analysis script

98 % by Giancarlo Benincasa

99 % 11/2020

100 % Data from: 865116045125976_8_10_2020_12.5.6.azm.csv

101

102 % get RSRP and RSRQ

103 RSRP = Dataframe.rsrp1;

104 RSRQ = Dataframe.rsrq1;

105

106 % get postitional information (geocoordinates/height above sea level)

107 altitude = Dataframe.altitude;

108 latitude = Dataframe.latitude;

109 longitude = Dataframe.longitude;

110

111 %Transmitter Station coordinates
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112 LongitudeTx = 15.892169;

113 LatitudeTx = 46.830863;

114

115 % convert them to x,y,z

116 x = (longitude − LongitudeTx)*76000;

117 y = (latitude − LatitudeTx)*111000;

118 z = altitude−min(altitude);

119

120 % Coordinate transforms

121 [azimuth,elevation,r] = cart2sph(x,y,z);

122 azimuth = azimuth*180/pi;

123 elevation = elevation*180/pi;

124

125 % Polar coordinate matrix

126 X = [azimuth,elevation,z]';

The script plots the entire flight and performs a histogram analysis of the angles, see figure 43.

Figure 42: The automatically generated data frame
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Figure 43: The histogram angle analysis. This serves to determine in which angle intervals the wall can be
found.

5.2 Setting the corridor
As already mentioned, the script Analysis.m only analyzes one corridor. To choose possible angles, one

has to have a look at the histogram, see figure 43. Obviously, the wall was flown in an azimuth range from

about 73 to 76 degrees. The number of data points strongly diminishes for higher elevation angles, such

that a corridor between ten and eleven degrees is chosen for this explanation. Since the angular values get

tweaked a lot, they are defined right at the beginning of the script:

1 clc

2 clear all

3 close all

4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Data from: 865116045125976_8_10_2020_12.5.6.azm.csv

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9

10

11

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % ANALYSIS PARAMETERS

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 % Select "Corridor" between elevation_min and elevation_max

16 elevation_min = 10;

17 elevation_max = 11;
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18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19 % Select "Corridor" between azimuth_min and azimuth_max

20 % Better not change these, once properly selected

21 azimuth_min = 73;

22 azimuth_max = 76;

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

These settings are then used in the portion of the code that throws away all data points that are outside of

the defined region:

171 % throw away RSRP/RSRQ data that stems from > azimuth_max

172 t_sel = t;

173 azimuth_sel = azimuth;

174 elevation_sel = elevation;

175 r_sel = r;

176 x_sel = x;

177 y_sel = y;

178 z_sel = z;

179 t_sel(azimuth > azimuth_max) = [];

180 azimuth_sel(azimuth > azimuth_max) = [];

181 elevation_sel(azimuth > azimuth_max) = [];

182 r_sel(azimuth > azimuth_max) = [];

183 x_sel(azimuth > azimuth_max) = [];

184 y_sel(azimuth > azimuth_max) = [];

185 z_sel(azimuth > azimuth_max) = [];

186

187 % throw away < azimuth_min

188 t_sel(azimuth_sel < azimuth_min) = [];

189 elevation_sel(azimuth_sel < azimuth_min) = [];

190 r_sel(azimuth_sel < azimuth_min) = [];

191 x_sel(azimuth_sel < azimuth_min) = [];

192 y_sel(azimuth_sel < azimuth_min) = [];

193 z_sel(azimuth_sel < azimuth_min) = [];

194 azimuth_sel(azimuth_sel < azimuth_min) = [];

195

196

197 % throw away > elevation_max

198 t_sel(elevation_sel > elevation_max) = [];

199 azimuth_sel(elevation_sel > elevation_max) = [];

200 r_sel(elevation_sel > elevation_max) = [];

201 x_sel(elevation_sel > elevation_max) = [];

202 y_sel(elevation_sel > elevation_max) = [];

203 z_sel(elevation_sel > elevation_max) = [];

204 elevation_sel(elevation_sel > elevation_max) = [];

205

206 % throw away < elevation_min

207 t_sel(elevation_sel < elevation_min) = [];

208 azimuth_sel(elevation_sel < elevation_min) = [];

209 r_sel(elevation_sel < elevation_min) = [];

210 x_sel(elevation_sel < elevation_min) = [];

211 y_sel(elevation_sel < elevation_min) = [];
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212 z_sel(elevation_sel < elevation_min) = [];

213 elevation_sel(elevation_sel < elevation_min) = [];

At this point, the corridor is selected and preparations for linear regression are almost completed. The

variable r_sel contains all selected radii and t_sel all selected target (i.e. RSRP or RSRQ) values.

However, since linear behavior is expected on a log-log plot, the radii need to be transformed accordingly.

Letting the x-axis start at zero would not make any sense because zero on a linear scale corresponds to −∞

logarithmically. Thus, d0 is defined as 100 meters:

236 % TEST OF LOGLOG MODEL

237 r_sel_log = log10(r_sel/100); % d0 = 100m

The next step is the calculation of the linear regression by means of the Moore-Penrose pseudo inverse

(least squares cost function, see chapter 4.1). This is easily done in MATLAB by simply using a backslash,

see line 241:

239 % calculate linear regression

240 kd_mat = [ones(length(r_sel_log),1) r_sel_log];

241 kd = kd_mat\t_sel;

242 t_linreg = kd_mat*kd;

The matrix kd contains the calculated offset and slope of the linear regression function. t_linreg contains

values predicted by the regression for the selected radii.
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Figure 44: Linear regression (orange line) and measurements (blue circles) for the example at hand
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5.3 Automated analysis
Now that the basic principles of the script’s inner workings are explained, the last step is to have a look

at the automated analysis in the MATLAB file Automated_Analysis.m. The main difference is that the

corridors that are getting iterated through now need to be defined as vectors in the beginning of the script.

Furthermore, the target definition can also be found in an earlier line (28) of the script:

1 clc

2 clear all

3 close all

4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Data from: 865116045125976_8_10_2020_12.5.6.azm.csv

7 % can be changed though

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 % USE THIS SCRIPT TO ANALYZE RSRP FOR

12 % MULTIPLE ELEVATION ANGLES AT ONCE

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % ANALYSIS PARAMETERS

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % Select "Corridors" between elevation_min and elevation_max

19 elevation_min = 4:20;

20 elevation_max = 5:21;

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 % Select "Corridor" between azimuth_min and azimuth_max

23 % Better not change these, once properly selected

24 azimuth_min = 73;

25 azimuth_max = 76;

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 % set target (RSRP or RSRQ)

28 target = "RSRP"

Then, the script also filters out the necessary azimuth range. When it comes to filtering elevation angles,

there is a major difference, as this process is now conducted within a loop, calculating the regression in

every iteration.

234 for ii = 1:1:length(elevation_max)

235

236 t_sel = t_cleaned;

237 azimuth_sel = azimuth_cleaned;

238 elevation_sel = elevation_cleaned;

239 r_sel = r_cleaned;

240 x_sel = x_cleaned;

241 y_sel = y_cleaned;

242 z_sel = z_cleaned;
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243

244 % throw away > elevation_max

245 t_sel(elevation_sel > elevation_max(ii)) = [];

246 azimuth_sel(elevation_sel > elevation_max(ii)) = [];

247 r_sel(elevation_sel > elevation_max(ii)) = [];

248 x_sel(elevation_sel > elevation_max(ii)) = [];

249 y_sel(elevation_sel > elevation_max(ii)) = [];

250 z_sel(elevation_sel > elevation_max(ii)) = [];

251 elevation_sel(elevation_sel > elevation_max(ii)) = [];

252

253 % throw away < elevation_min

254 t_sel(elevation_sel < elevation_min(ii)) = [];

255 azimuth_sel(elevation_sel < elevation_min(ii)) = [];

256 r_sel(elevation_sel < elevation_min(ii)) = [];

257 x_sel(elevation_sel < elevation_min(ii)) = [];

258 y_sel(elevation_sel < elevation_min(ii)) = [];

259 z_sel(elevation_sel < elevation_min(ii)) = [];

260 elevation_sel(elevation_sel < elevation_min(ii)) = [];

261

262 % LOGLOG MODEL

263 r_sel = log10(r_sel/100);

264

265 % calculate linear regression

266 kd_mat = [ones(length(r_sel),1) r_sel];

267 kd = kd_mat\t_sel;

268 RSRP_linreg = kd_mat*kd;

269

270 % save data

271 kd_saved = [kd_saved kd];

272 angles_saved = [angles_saved (elevation_min(ii)+elevation_max(ii))/2];

273 nr_datapoints_saved = [nr_datapoints_saved length(r_sel)];

274

275 % plot regression and elevation angle

276 plot(100*10.^(r_sel),(kd(1)+r_sel*kd(2)),"LineWidth",1.2)

277 txt = num2str(elevation_max(ii));

278 text(100*10.^(r_sel(1)),(kd(1)+r_sel(1)*kd(2)),txt)

279

280 end

281

282

283 % calculate mean k and d values, weighted by number of datapoints

284 kmean = sum(kd_saved(2,:).*nr_datapoints_saved(:).')/sum(nr_datapoints_saved);

285 dmean = sum(kd_saved(1,:).*nr_datapoints_saved(:).')/sum(nr_datapoints_saved);

286 %plot weighted mean regression line

287 plot((min(r):max(r)),(dmean+log10((min(r):max(r))/100)*kmean),"LineWidth",4,"Color","red")

288 txt = "weighted mean";

289 text(123,−60,txt)

290 set(gca,'xscale','log')
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The script also plots the calculated linear regression in every iteration. In the end, the mean, weighted by

the number of data points, is calculated and plotted as a thick red line.
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Figure 45: Calculated linear regressions and their weighted mean

The results, i.e. the linear equation coefficients and the weighted means, are also summarized in a plot vs.

the elevation angles that they belong to (figure 46).
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Figure 46: Calculated linear regression parameters vs. elevation angle and their weighted means (dashed
lines)
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6 Python scripts - machine learning
In this chapter, the most important parts of the machine learning scripts are presented. This part of the thesis

was written in Python since it enables the use of Google’s Tensorflow library.

In this summary, larger portions of the code are left out than in chapter 5. This is due to the fact that most of

the work in Python actually consisted of data preparation and pre-processing. The entire Jupyter Notebooks

used in this thesis can be found in the appendix.

The data preparation regarding data transformation from geocoordinates to Cartesian/polar ones is done by

basically the same steps as in the MATLAB scripts. The following table shows the used libraries and their

respective purposes:

Library Purpose

pandas data analysis, CSV processing

NumPy array and matrix computations

math mathematical functions

TensorFlow, Keras machine learning, neural networks

Seaborn autmated statistical analysis

random random number generation

Matplotlib plotting of results

One of the most important factors influencing machine learning performance is the separation of measure-

ments into training and test data. This is done using a pseudo random separation with a defined seed to

enable reproducible results. Thus, there are two main python scripts (or rather, ipython notebooks) used in

this thesis: MA_v2.ipynb and MA_v3_optimizer.ipynb. The latter iterates through possible separation

seeds and lets the net learn for 2000 epochs. Results are then plotted and saved in a folder.

This approach enables the selection of a seed that leads to good results (a better local minimum is found)

and using this seed for longer learning in the MA_v2.ipynb script.

6.1 Preprocessing of data
After having imported the necessary libraries, i.e. pandas, numpy and math, and with the data import/-

transformation out of the way, the next step is to determine which transmitter station is connected to the

mobile at any given measurement point. This is necessary because - other than in the previous chapter - the

measurements contain connections to different transmitter stations and are not limited to just one.

This part is contained in both scripts. The line numbers correspond to those in MA_v2.ipynb.

79 # create dict of raw cell IDs

80 cellIDs = meas_df.RAWCELLID

81 IDnumber = 0 #number that is assigned to each unique cell ID, starting with zero

82 IDdict = {} #dictionary containing cell IDs and their respective numbers

83 for i in range(len(cellIDs)):

84 if not cellIDs[i] in IDdict:

64



85 IDdict[cellIDs[i]] = IDnumber

86 IDnumber = IDnumber + 1

87 IDnumberMax = IDnumber

88 print("ID dictionary:")

89 print(IDdict)

90

91 # create array of ID numbers

92 #IDnumberArray = np.zeros(len(cellIDs)) # np array

93 IDnumberArray = [] # python array

94 for i in range(len(cellIDs)):

95 #IDnumberArray[i] = int(IDdict[cellIDs[i]]) # np array

96 IDnumberArray.append(int(IDdict[cellIDs[i]])) # python array

97

98 # check for number of station appearances

99 stationCount = 0

100 for j in range(IDnumberMax):

101 for i in range(len(cellIDs)):

102 if IDnumberArray[i] == j:

103 stationCount = stationCount + 1

104 print("IDnumber "+str(j)+" appears "+str(stationCount)+" times.")

105 stationCount = 0

Figure 47 shows a possible output of the data preprocessing script. Since RSRP/RSRQ prediction makes

the most sense if all measurements are conducted such that the signal is received from only one transmitter

station, the script contains the option to perform this filtering:

130 # OPTIONAL: DUMP ALL DF ENTRIES EXCEPT FOR THOSE OF A CERTAIN TX STATION

131 id_sel = 0 # set to -1 if no ID should be selected

132 if id_sel != -1:

133 df = df[df['ID number'] == id_sel]

134 df = df.drop(columns=['ID number']) # ID number column no longer needed

135 print('\n ID number '+str(id_sel)+' selected. All other entries dumped. \n')

After these steps, the data is preprocessed and the actual neural network training can be conducted.
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Figure 47: One possible output of the data preprocessing script. Most measurements stem from connections
to the transmitter station with ID 0; all other measurements have been dumped.
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6.2 Finding a good data splitting seed
As already discussed, the seed used for random data splitting strongly influences the results. Thus, training

(with 2000 epochs as opposed to 10000 in actual training) is repeated in a loop with a starting seed of 0,

which is incremented in every iteration. Then, the training results (i.e. training loss and validation loss

behavior) are saved, which enables a manual selection of a decent seed. Two of these results are depicted

in figures 48(a) and 48(b).

This section also serves as an explanation of the machine learning script. Basically, the only difference be-

tween MA_v2.ipynb and MA_v3_optimizer.ipynb is the fact that the latter contains a loop that repeats

the training process. Thus, an explanation of this script suffices for an understanding of the code.

(a) Random seed 0 (b) Random seed 14

Figure 48: Different seeds lead to different loss functions as different local minima of the cost function are
approached (Prediction of RSRP, spherical coordinates).

The first major piece of code imports all necessary libraries, selects coordinates (spherical/Cartesian) and

target (RSRP/RSRQ) types and defines the parameters of the neural network, i.e. number of nodes in each

layer and the leaky ReLU activation function parameter alpha (Leaky ReLU was selected forr all layers as

it performs best).

1 """

2 Script 2: Machine Learning Model

3 A neural network with one hidden layer is used to model signal reception properties

4 """

5

6 import tensorflow as tf

7 import seaborn as sb

8 from random import randint

9

10 from tensorflow import keras

11 from tensorflow.keras import layers

12 from tensorflow.keras.layers import LeakyReLU
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13 from tensorflow.keras.layers import Dense as Dense

14 from tensorflow.keras.models import Sequential

15

16 import matplotlib.pyplot as plt

17

18

19

20

21 """

22 Input position type definition (cartesian or spherical)

23 """

24

25 #input_pos_type = 'cartesian' #cartesian oordinates seem to perform better

26 input_pos_type = 'spherical'

27

28

29 """

30 Target type definition (RSRP or RSRQ)

31 """

32

33 target_type = 'RSRP'

34 #target_type = 'RSRQ'

35

36

37

38 """

39 Network property definition and data splitting

40 """

41

42 #number of nodes in the hidden layer

43 n_nodes_hl1 = 25

44 n_nodes_hl2 = 10

45 n_nodes_hl3 = 8

46 n_nodes_hl4 = 6

47 n_nodes_hl5 = 0

48

49 # alpha for leaky relu

50 alpha_lrelu = 0.1

The next step is the looped training. It starts with the train/test split, which uses the loop’s index ii as

seed. Then, the norm function (normalizing of data such that µ = 0 and σ2 = 1 improves machine learning

performance) is defined and an optional statistical analysis may be put out. After the actual normalization
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(lines 84 and 85), either RSRQ or RSRP values are popped from the normed training data, i.e. the actual

target selection takes place.

The code block between lines 96 and 127 serves to choose either Cartesian or polar coordinates by deleting

the other coordinate type from the data frame.

Then, the model is defined, starting with a declaration of the sequential architecture, which means that

the hidden layers are simply put one after another without any recursion or any other advanced kind of

architecture. Lines 139 through 157 define the hidden leaky ReLU layers. In the last layer, the previous

outputs are simply summed up (line 159). After that, the actual training is started and the results are plotted

and saved. Since this code segment is already quite lengthy and the plotting/saving plot is generic, it is left

out for the most part. The only part that is relevant in the context of this thesis is the denormalization of the

data before plotting.

Validation and test splits (i.e. the portion of data that is put into validation/test sets and thus not usable for

learning) are set to very low values since the amount of data available is very small.

52 for ii in range(1000):

53 # split into test and training data

54 random_state = ii

55 train_dataset = df.sample(frac=0.99,random_state=random_state)

56 test_dataset = df.drop(train_dataset.index)

57

58

59

60 """

61 Function definitions

62 """

63

64 # calculate z-value -> normalize input data to [0,1]

65 def norm(x):

66 return (x - train_stats['mean']) / train_stats['std']

67

68

69

70 """

71 Data visualization - pre ML

72 """

73

74 #pairplot - comment to save time if not needed

75 #sb.pairplot(df,corner = True)

76

77

78

79 """
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80 Machine Learning - Data preparation

81 """

82

83 #normalize data such that mu = 0 and sigma^2 = 1 and drop NaN-values

84 normed_train_data = norm(train_dataset).dropna()

85 normed_test_data = norm(test_dataset).dropna()

86

87

88 #split off target values

89 if target_type == 'RSRP':

90 train_labels = normed_train_data.pop('RSRP')

91 test_labels = normed_test_data.pop('RSRP')

92 if target_type == 'RSRQ':

93 train_labels = normed_train_data.pop('RSRQ')

94 test_labels = normed_test_data.pop('RSRQ')

95

96 #remove input values according to input type choice

97 if input_pos_type == 'cartesian':

98 if target_type == 'RSRQ':

99 del normed_train_data['RSRP']

100 if target_type == 'RSRP':

101 del normed_train_data['RSRQ']

102 del normed_train_data['azimuth']

103 del normed_train_data['elevation']

104 del normed_train_data['radius']

105 if target_type == 'RSRQ':

106 del normed_test_data['RSRP']

107 if target_type == 'RSRP':

108 del normed_test_data['RSRQ']

109 del normed_test_data['azimuth']

110 del normed_test_data['elevation']

111 del normed_test_data['radius']

112

113 if input_pos_type == 'spherical':

114 if target_type == 'RSRQ':

115 del normed_train_data['RSRP']

116 if target_type == 'RSRP':

117 del normed_train_data['RSRQ']

118 del normed_train_data['x']

119 del normed_train_data['y']

120 del normed_train_data['z']
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121 if target_type == 'RSRQ':

122 del normed_test_data['RSRP']

123 if target_type == 'RSRP':

124 del normed_test_data['RSRQ']

125 del normed_test_data['x']

126 del normed_test_data['y']

127 del normed_test_data['z']

128

129

130

131

132 """

133 Machine Learning - Execution

134 """

135

136

137 # model for leaky relu activation function

138 model = keras.Sequential()

139 #first layer

140 model.add(Dense(n_nodes_hl1))

141 model.add(LeakyReLU(alpha=alpha_lrelu))

142 #second layer

143 if n_nodes_hl2 != 0:

144 model.add(Dense(n_nodes_hl2))

145 model.add(LeakyReLU(alpha=alpha_lrelu))

146 #third layer

147 if n_nodes_hl3 != 0:

148 model.add(Dense(n_nodes_hl3))

149 model.add(LeakyReLU(alpha=alpha_lrelu))

150 #fourth layer

151 if n_nodes_hl4 != 0:

152 model.add(Dense(n_nodes_hl4))

153 model.add(LeakyReLU(alpha=alpha_lrelu))

154 #fifth layer

155 if n_nodes_hl5 != 0:

156 model.add(Dense(n_nodes_hl5))

157 model.add(LeakyReLU(alpha=alpha_lrelu))

158 #addition layer

159 model.add(Dense(1))

160 model.compile(loss='mse',

161 optimizer='adam',
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162 )

163

164 print("training started with random state "+np.str(random_state))

165

166 # train the model TAKE CARE FOR BATCH SIZE!

167 EPOCHS = 2000

168 history = model.fit( normed_train_data, train_labels, epochs=EPOCHS, \

169 validation_split = 0.04, verbose=0, shuffle = True, \

170 batch_size = 1024)

171

172 #summarize the model (inspect it)

173 model.summary()

After letting the script iterate up to ii = 384, the folder with the results was overlooked manually in search

for a decent seed, which was found in number 127, see figure 51. This seed then serves as a starting point

for another learning process that is not capped at 2000 epochs and runs until 10000 or 20000 epochs are

completed. As a last remark, it has to be mentioned that these results are not exactly reproducible since the

shuffling between epochs is done randomly, without a defined seed, see line 169. However, this approach

works well for the problem at hand, as long as other parameters such as the batch size are kept constant.

Deactivating shuffling leads to worse performance and modifying the code provided by the library would

go too far at this point (although it would be possible if absolute reproducibility is needed).

Figure 49: Training two times with the same seed shows that training behavior is reproducible for the most
part.
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Figure 50: The folder with 385 learning curves

Figure 51: One example for a decently working seed (127).
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Figure 52: Training for 10000 epochs with seed 127. The neural net runs into overtraining after about 4000
epochs.

6.3 Choice of the batch size
As discussed in chapter 4, the batch size influences learning behavior. In some instances, a smaller batch

size may let the learning algorithm jump our of its trajectory towards a certain local minimum, which

improves or worsens the results. In the context of this thesis, no such behavior occurred in a significant

way2 such that a batch size of 1024 was chosen. This value offered a good trade-off between learning

duration, learning smoothness and resulting cost function. As for many aspects of machine learning, there

is no scientifically optimal choice. Rather, one chooses a value that usually works decently and rolls with

it.

As the figures 53(a) through 53(f) show, smaller batch sizes lead to a less smooth learning behavior, as one

would expect. Furthermore, the training takes way more time as the amount of weight adaptations increases

with decreasing batch sizes. This means that a comparison between 2000 epochs with a smaller batch size

and the same amount of epochs with a larger batch size is actually not fair and a smaller cost function is to

be expected for the smaller batches. They usually converge to the same value though.

2It can be observed though, for example in figure 53(a), at around epoch 1400, where the training cost function suddenly worsens
and the validation cost function suddenly improves. This hints at such a jump taking place.
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(a) Batch size = 1 (b) Batch size = 16

(c) Batch size = 128 (d) Batch size = 512

(e) Batch size = 1024 (f) Batch size = 8192

Figure 53: Training behavior for different batch sizes. Larger batch sizes tend to lead to a smoother learning
behavior.
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7 Discussion of results
This final chapter serves as a summary of the results and the findings of this thesis. Results for different

flights are plotted and discussed, such that a starting point for further research is created.

7.1 Linear regression
The goal of the linear regression was to find a linear relationship between the distance between transmitter

and receiver (the radius r) and the RSRP/RSRQ values on a log-log plot. In the following section, regression

results are listed up and discussed.

It has to be noted that the test flights for linear regression were conducted in a relatively low frequency

band, such that free space attenuation is lower than in more high frequency scenarios.

RSRP (Reference signal received power)

The following table contains regressions for all useful flights with their respective time, RSRP(d0) (i.e.

RSRP at 100m) and the slope on the log-log plot k. All values are the weighted averages.

Flight number Flight time RSRP(d0) k

1 12:05:06 -58dBm -26.76

2 12:26:56 -63dBm -20.99

3 12:45:11 -61dBm -22.82

4 12:05:06 -60dBm -23.71

As already elaborated in chapter three, no model for these exact circumstance exists today. However, values

for k are definitely in the plausible range, when compared to the predictions for similar circumstances, see

terrain category C behavior in chapter 3. Furthermore, some kind of variation from theoretical predictions

is to be expected because the actual path loss is not measured. Receiver and transmitter antenna patterns

hugely influence reception and it can be assumed that multipath propagation has had a big influence on

measurements. Actually, for many measurement points, a dominant line of sight component does presum-

ably not even exist.

It can be concluded that even though the values found in this thesis show somewhat of a spread, they are

still in a plausible range. Thus, linear regression remains a valid tool for modeling of large scale fading of

UAV reception parameters.

As discussed in chapter three, it has to be noted though that higher elevation angles tend to lead to worse

reception. Especially if the UAV is flown directly above a transmitter station, it is safe to assume that recep-

tion quality will suffer due to a stronger attenuation of non line of sight (NLOS) components that the user

equipment receives. In reality, other transmitter stations will then establish the connection, but this aspect

needs further research. Overall, the RSRP values were in a good range in all test flights though.
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RSRQ (Reference signal received quality)

The following table shows the findings for RSRQ values, with d being the offset on the log-log plot, i.e. the

RSRQ value at a distance of 100m:

Flight number Flight time d k

1 12:05:06 -5.9 -5

2 12:26:56 -8.7 -2.9

3 12:45:11 -8 -3.9

4 12:05:06 -4.4 -6.9

For these values, no comparison to another model is possible. Furthermore, they strongly depend on in-

fluences that cannot be controlled, i.e. interference from other devices/transmitter stations. Since these

disturbances may decrease with higher altitudes or higher distances from the transmitter, the slope may be

positive. This is depicted in figure 54.

10
2

10
3

Radius in meters

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

R
S

R
Q

Linear regressions for different elevation angles

5

6

7
8

9

10

11

12

13

14

15

1617
1819

20

21

Figure 54: Calculated linear regressions for RSRQ and their weighted mean. As opposed to RSRP, the
RSRQ value may increase with higher distances due to decreasing received interference.

7.2 Machine learning
Machine learning was used to build a neural network that is able to predict reception parameters for arbitrary

points in space. The exact approach is discussed in chapters 4 and 6. As shall be shown, this approach works

very decently as long as the UAV position, that RSRP/RSRQ should be predicted for, is not too far away

from known measurement points.

Figures 55 and 56 show a comparison between measured data points and neural network predictions. They
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look pretty similar, such that this results at least serves as a proof of concept. The larger circles in the

estimated value graph are test data. They were not seen before by the neural network, such that they hint at

the network’s ability to generalize.

It has to be noted that only measurements from one transmitter station were taken into account for machine

learning. Thus, a few data points are missing in figure 56.

Figure 55: Machine learning measurement data. This dataset is the biggest one available and was thus used
for all experiments as this approach strongly profits of higher amounts of data.

These results were achieved with a 25-10-8-6 network structure with leaky ReLU activation functions. This

kind of deeper structures enable a somewhat intelligent prediction of RSRP/RSRQ values. For example,

a neural network may implicitly take the transmitter signal’s angle of arrival on the receiver into account.

Of course, such assumptions are speculative in this case, but for computer vision applications, the inner

workings are well documented, for example by [22].

Further testing was conducted by means of a plausibility check, see figure 57, which puts an equally spaced

grid of positions into the network. Even though the network never puts out completely implausible values,

it becomes obvious that higher distances from measurement points that the network was trained on lead to

incorrect results. Thus, this approach is only valid in regions that are already known. Far extrapolations

don’t work. It has to be mentioned though that the used network is rather simple and with more effort and

more training data (from a wider variety of places/scenarios), a proper prediction of reception parameters

may be built.
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Figure 56: Predicted values by the trained neural network. Bigger circles are test data which the network
has not seen before. Two of these data points are marked with arrows.

Figure 57: Plausibility check. The kind of neural network used works well for nonlinear regression in
regions close to measurement points. Bigger distances lead to worse results/prediction failure.
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8 Conclusions and outlook
For both used techniques, linear regression and neural networks, this thesis is at least a proof of concept.

They both work for the task at hand, but the high complexity of this field means that there are a few caveats.

Linear regression cannot be applied in a straightforward way. Rather, the effect of the elevation angle be-

tween base station and user equipment must be taken into account. The proposed functions to model this

interconnection serve as a starting point for others, who can develop more precise models, based on these

discoveries. It has to be determined, which functions are useful for this kind of task and how to fit them

properly.

Artificial neural networks have been shown to be capable of predicting cellular reception quality param-

eters as long as proximity to known (i.e. learned) measurement points is given. Even relatively simple

feedforward neural networks, which simply take UAV coordinates as input suffice to accomplish this task.

Future development could for example lead to early warning systems, which predict dead zones in a UAVs

trajectory. To develop such systems, more data from many different scenarios will be needed. Furthermore,

it makes sense to add other input variables like population density in the area of operation and construct

more complex artificial intelligence, which is better suited for such critical tasks.

With 5G (and thus massive MIMO and beamforming) around the corner, investigations like the thesis at

hand need to be repeated for this new technology. Especially for steered beams, linear regression may even

be more useful for cellular reception quality parameter prediction. However, the higher frequencies will

lead to many new challenges, especially due to the higher free space attenuation. The shorter wavelengths

may also mean that the validity of the predicted 5G reception quality parameters (RSRP/RSRQ are relevant

only for 4G) values by neural networks are confined to smaller spaces around known points.
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Appendix A - MATLAB scripts

Analysis.m

1 clc

2 clear all

3 close all

4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Data from: 865116045125976_8_10_2020_12.5.6.azm.csv

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9

10

11

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % ANALYSIS PARAMETERS

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 % Select "Corridor" between elevation_min and elevation_max

16 elevation_min = 10;

17 elevation_max = 11;

18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19 % Select "Corridor" between azimuth_min and azimuth_max

20 % Better not change these, once properly selected

21 azimuth_min = 73;

22 azimuth_max = 76;

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24

25

26

27

28

29 %% Import data from text file.

30 % Script for importing data from the following text file:

31 %

32 % C:\Users\Gianni\Desktop\Uni\Masterarbeit\Neue ...

Fluege\DirnbachConverted\CSV\865116045125976_8_10_2020_12.5.6.azm.csv

33 %

34 % To extend the code to different selected data or a different text file,

35 % generate a function instead of a script.

36

37 % Auto−generated by MATLAB on 2020/11/07 14:46:54

38

39 %% Initialize variables.

40 filename = '.\DirnbachConverted\CSV\865116045125976_8_10_2020_12.5.6.azm.csv';

41 delimiter = ',';

42 startRow = 2;

43

44 %% Format for each line of text:
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45 % column1: text (%q)

46 % column2: double (%f)

47 % column3: double (%f)

48 % column4: double (%f)

49 % column5: double (%f)

50 % column6: double (%f)

51 % column7: double (%f)

52 % column8: double (%f)

53 % column9: double (%f)

54 % column10: double (%f)

55 % column11: double (%f)

56 % column12: double (%f)

57 % column13: double (%f)

58 % column14: double (%f)

59 % column15: double (%f)

60 % column16: double (%f)

61 % column17: double (%f)

62 % column18: double (%f)

63 % column19: double (%f)

64 % column20: double (%f)

65 % column21: double (%f)

66 % column22: double (%f)

67 % For more information, see the TEXTSCAN documentation.

68 formatSpec = '%q%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%[^\n\r]';

69

70 %% Open the text file.

71 fileID = fopen(filename,'r');

72

73 %% Read columns of data according to the format.

74 % This call is based on the structure of the file used to generate this

75 % code. If an error occurs for a different file, try regenerating the code

76 % from the Import Tool.

77 dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'TextType', ...

'string', 'EmptyValue', NaN, 'HeaderLines' ,startRow−1, 'ReturnOnError', ...

false, 'EndOfLine', '\r\n');

78

79 %% Close the text file.

80 fclose(fileID);

81

82 %% Post processing for unimportable data.

83 % No unimportable data rules were applied during the import, so no post

84 % processing code is included. To generate code which works for

85 % unimportable data, select unimportable cells in a file and regenerate the

86 % script.

87

88 %% Create output variable

89 Dataframe = table(dataArray{1:end−1}, 'VariableNames', ...

{'time','longitude','latitude','altitude','height','rsrp1','sinr1','pci1','cgi', ...

...

90 'rsrq1','pci2','rsrp2','sinr2','rsrq2','pci3','rsrp3','sinr3','rsrq3','pci4', ...

91 ,'rsrp4','sinr4','rsrq4'});

92
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93 %% Clear temporary variables

94 clearvars filename delimiter startRow formatSpec fileID dataArray ans;

95

96

97

98

99 %% Start of actual analysis script

100 % by Giancarlo Benincasa

101 % 11/2020

102 % Data from: 865116045125976_8_10_2020_12.5.6.azm.csv

103

104 % get RSRP and RSRQ

105 RSRP = Dataframe.rsrp1;

106 RSRQ = Dataframe.rsrq1;

107

108 % get postitional information (geocoordinates/height above sea level)

109 altitude = Dataframe.altitude;

110 latitude = Dataframe.latitude;

111 longitude = Dataframe.longitude;

112

113 %Transmitter Station coordinates

114 LongitudeTx = 15.892169;

115 LatitudeTx = 46.830863;

116

117 % convert them to x,y,z

118 x = (longitude − LongitudeTx)*76000;

119 y = (latitude − LatitudeTx)*111000;

120 z = altitude−min(altitude);

121

122 % Coordinate transforms

123 [azimuth,elevation,r] = cart2sph(x,y,z);

124 azimuth = azimuth*180/pi;

125 elevation = elevation*180/pi;

126

127 % Polar coordinate matrix

128 X = [azimuth,elevation,z]';

129

130

131 %% Path loss model

132

133 % set target (RSRP or RSRQ)

134 t = RSRP;

135

136

137

138 % 3−D−Flightplot with RSRP

139 fontsize = 18;

140 figure

141 hold on

142 %Route

143 plot3(x,y,z)

144 %Measurements
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145 size = 50;

146 color = t;

147 scatter3(x,y,z,size,color,'filled')

148 ax = gca;

149 ax.FontSize = fontsize;

150 c = colorbar;

151 c.Label.String = '\fontsize{18} RSRP';

152

153 %Start

154 size = 150;

155 scatter3(x(1),y(1),z(1),size,'red','filled')

156 %Transmitter position

157 size = 200;

158 scatter3(0,0,0,size,'blue','filled')

159 title('Flight route with RSRP; Measurement data',"FontSize",fontsize)

160 legend('\fontsize{18} Interpolation (linear)','\fontsize{18} ...

Measurements','\fontsize{18} Start','\fontsize{18} Transmitter station')

161 caxis([min(t) max(t)])

162

163 % Plot a histogram of angles to get values of phi and theta to analyze

164 figure

165 subplot(2,1,1)

166 histogram(azimuth)

167 xlabel("azimuth")

168 subplot(2,1,2)

169 histogram(elevation)

170 xlabel("elevation")

171 suptitle("Histogram of angles")

172

173 % throw away RSRP/RSRQ data that stems from > azimuth_max

174 t_sel = t;

175 azimuth_sel = azimuth;

176 elevation_sel = elevation;

177 r_sel = r;

178 x_sel = x;

179 y_sel = y;

180 z_sel = z;

181 t_sel(azimuth > azimuth_max) = [];

182 azimuth_sel(azimuth > azimuth_max) = [];

183 elevation_sel(azimuth > azimuth_max) = [];

184 r_sel(azimuth > azimuth_max) = [];

185 x_sel(azimuth > azimuth_max) = [];

186 y_sel(azimuth > azimuth_max) = [];

187 z_sel(azimuth > azimuth_max) = [];

188

189 % throw away < azimuth_min

190 t_sel(azimuth_sel < azimuth_min) = [];

191 elevation_sel(azimuth_sel < azimuth_min) = [];

192 r_sel(azimuth_sel < azimuth_min) = [];

193 x_sel(azimuth_sel < azimuth_min) = [];

194 y_sel(azimuth_sel < azimuth_min) = [];

195 z_sel(azimuth_sel < azimuth_min) = [];
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196 azimuth_sel(azimuth_sel < azimuth_min) = [];

197

198

199 % throw away > elevation_max

200 t_sel(elevation_sel > elevation_max) = [];

201 azimuth_sel(elevation_sel > elevation_max) = [];

202 r_sel(elevation_sel > elevation_max) = [];

203 x_sel(elevation_sel > elevation_max) = [];

204 y_sel(elevation_sel > elevation_max) = [];

205 z_sel(elevation_sel > elevation_max) = [];

206 elevation_sel(elevation_sel > elevation_max) = [];

207

208 % throw away < elevation_min

209 t_sel(elevation_sel < elevation_min) = [];

210 azimuth_sel(elevation_sel < elevation_min) = [];

211 r_sel(elevation_sel < elevation_min) = [];

212 x_sel(elevation_sel < elevation_min) = [];

213 y_sel(elevation_sel < elevation_min) = [];

214 z_sel(elevation_sel < elevation_min) = [];

215 elevation_sel(elevation_sel < elevation_min) = [];

216

217

218 % 3D plot selected flight data

219 % (change labels/titles manually to RSRQ if needed)

220 figure

221 hold on

222 %Measurements

223 size = 50;

224 color = t_sel;

225 scatter3(x_sel,y_sel,z_sel,size,color,'filled')

226 c = colorbar;

227 c.Label.String = 'RSRP';

228 %Start

229 size = 150;

230 scatter3(x(1),y(1),z(1),size,'red','filled')

231 %Transmitter position

232 size = 200;

233 scatter3(0,0,0,size,'blue','filled')

234 title('Selected RSRP values from flight route; Measurement data')

235 legend('Measurements','Start','Transmitter station')

236 caxis([min(t_sel) max(t_sel)])

237

238 % TEST OF LOGLOG MODEL

239 r_sel_log = log10(r_sel/100); % d0 = 100m

240

241 % calculate linear regression

242 kd_mat = [ones(length(r_sel_log),1) r_sel_log];

243 kd = kd_mat\t_sel;

244 t_linreg = kd_mat*kd;

245

246

247 % Plot relationship between radius and RSRP, only plot linear regression

87



248 % (change labels/titles manually to RSRQ if needed)

249 figure

250 hold on

251 scatter(100*10.^(r_sel_log),t_sel)

252 plot(100*10.^(r_sel_log),t_linreg,"LineWidth",2)

253 set(gca,'xscale','log')

254 legend("Measured data","Linear regression")

255 xlabel("radius in meters")

256 ylabel("RSRP in dBm")

257 grid on

258 title("Relationship between radius and RSRP, \theta in range (" + ...

num2str(elevation_min) + "degrees," + num2str(elevation_max) +"degrees )")

Automated_Analysis.m

1 clc

2 clear all

3 close all

4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Data from: 865116045125976_8_10_2020_12.5.6.azm.csv

7 % can be changed though

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 % USE THIS SCRIPT TO ANALYZE RSRP FOR

12 % MULTIPLE ELEVATION ANGLES AT ONCE

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % ANALYSIS PARAMETERS

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % Select "Corridors" between elevation_min and elevation_max

19 elevation_min = 4:20;

20 elevation_max = 5:21;

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 % Select "Corridor" between azimuth_min and azimuth_max

23 % Better not change these, once properly selected

24 azimuth_min = 59;

25 azimuth_max = 61;

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 % set target (RSRP or RSRQ)

28 target = "RSRP"

29

30

31

32

33

34 %% Import data from text file.
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35 % Script for importing data from the following text file:

36 %

37 % C:\Users\Gianni\Desktop\Uni\Masterarbeit\Neue ...

Fluege\DirnbachConverted\CSV\865116045125976_8_10_2020_12.5.6.azm.csv

38 %

39 % To extend the code to different selected data or a different text file,

40 % generate a function instead of a script.

41

42 % Auto−generated by MATLAB on 2020/11/07 14:46:54

43

44 %% Initialize variables.

45 %filename = '.\DirnbachConverted\CSV\865116045125976_8_10_2020_12.5.6.azm.csv';

46 %filename = '.\DirnbachConverted\CSV\865116045125976_8_10_2020_12.26.56.azm.csv';

47 filename = '.\DirnbachConverted\CSV\865116045125976_8_10_2020_12.45.11.azm.csv';

48 %filename = '.\DirnbachConverted\CSV\865116045125976_8_10_2020_13.58.28.azm.csv';

49 delimiter = ',';

50 startRow = 2;

51

52 %% Format for each line of text:

53 % column1: text (%q)

54 % column2: double (%f)

55 % column3: double (%f)

56 % column4: double (%f)

57 % column5: double (%f)

58 % column6: double (%f)

59 % column7: double (%f)

60 % column8: double (%f)

61 % column9: double (%f)

62 % column10: double (%f)

63 % column11: double (%f)

64 % column12: double (%f)

65 % column13: double (%f)

66 % column14: double (%f)

67 % column15: double (%f)

68 % column16: double (%f)

69 % column17: double (%f)

70 % column18: double (%f)

71 % column19: double (%f)

72 % column20: double (%f)

73 % column21: double (%f)

74 % column22: double (%f)

75 % For more information, see the TEXTSCAN documentation.

76 formatSpec = '%q%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%[^\n\r]';

77

78 %% Open the text file.

79 fileID = fopen(filename,'r');

80

81 %% Read columns of data according to the format.

82 % This call is based on the structure of the file used to generate this

83 % code. If an error occurs for a different file, try regenerating the code

84 % from the Import Tool.
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85 dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'TextType', ...

'string', 'EmptyValue', NaN, 'HeaderLines' ,startRow−1, 'ReturnOnError', ...

false, 'EndOfLine', '\r\n');

86

87 %% Close the text file.

88 fclose(fileID);

89

90 %% Post processing for unimportable data.

91 % No unimportable data rules were applied during the import, so no post

92 % processing code is included. To generate code which works for

93 % unimportable data, select unimportable cells in a file and regenerate the

94 % script.

95

96 %% Create output variable

97 Dataframe = table(dataArray{1:end−1}, 'VariableNames', ...

{'time','longitude','latitude','altitude','height','rsrp1','sinr1','pci1','cgi', ...

...

98 'rsrq1','pci2','rsrp2','sinr2','rsrq2','pci3','rsrp3','sinr3','rsrq3','pci4', ...

99 ,'rsrp4','sinr4','rsrq4'});

100

101 %% Clear temporary variables

102 clearvars filename delimiter startRow formatSpec fileID dataArray ans;

103

104

105

106

107 %% Start of actual analysis script

108 % by Giancarlo Benincasa

109 % 11/2020

110 % Data from: 865116045125976_8_10_2020_−.−.−.azm.csv

111

112 % get RSRP

113 RSRP = Dataframe.rsrp1;

114 RSRQ = Dataframe.rsrq1;

115

116 % set target

117 if target == "RSRP"

118 t = RSRP;

119 elseif target == "RSRQ"

120 t = RSRQ;

121 else

122 fprintf("Target must be RSRP or RSRQ. Defaulted to RSRP.")

123 t = RSRP

124 end

125

126 % get postitional information (geocoordinates/height above sea level)

127 altitude = Dataframe.altitude;

128 latitude = Dataframe.latitude;

129 longitude = Dataframe.longitude;

130

131 %Transmitter Station coordinates

132 LongitudeTx = 15.892169;
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133 LatitudeTx = 46.830863;

134

135 % convert them to x,y,z

136 x = (longitude − LongitudeTx)*76000;

137 y = (latitude − LatitudeTx)*111000;

138 z = altitude−min(altitude);

139

140 % Coordinate transforms

141 [azimuth,elevation,r] = cart2sph(x,y,z);

142 azimuth = azimuth*180/pi;

143 elevation = elevation*180/pi;

144

145 % Polar coordinate matrix

146 X = [azimuth,elevation,z]';

147

148

149 %% Path loss model

150

151

152 % 3−D−Flightplot with RSRP

153 figure

154 hold on

155 %Route

156 plot3(x,y,z)

157 %Measurements

158 size = 50;

159 color = t;

160 scatter3(x,y,z,size,color,'filled')

161 c = colorbar;

162 c.Label.String = 'RSRP';

163 %Start

164 size = 150;

165 scatter3(x(1),y(1),z(1),size,'red','filled')

166 %Transmitter position

167 size = 200;

168 scatter3(0,0,0,size,'blue','filled')

169 title('Flight route with RSRP; Measurement data')

170 legend('Interpolation (linear)','Measurements','Start','Transmitter station')

171 caxis([min(t) max(t)])

172

173 % Plot a histogram of angles to get values of phi and theta to analyze

174 figure

175 subplot(2,1,1)

176 histogram(azimuth,(1:2:100))

177 xlabel("azimuth")

178 subplot(2,1,2)

179 histogram(elevation,(1:2:100))

180 xlabel("elevation")

181 title("Histogram of angles")

182

183 % throw away RSRP data that stems from > azimuth_max

184 t_sel = t;
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185 azimuth_sel = azimuth;

186 elevation_sel = elevation;

187 r_sel = r;

188 x_sel = x;

189 y_sel = y;

190 z_sel = z;

191 t_sel(azimuth > azimuth_max) = [];

192 azimuth_sel(azimuth > azimuth_max) = [];

193 elevation_sel(azimuth > azimuth_max) = [];

194 r_sel(azimuth > azimuth_max) = [];

195 x_sel(azimuth > azimuth_max) = [];

196 y_sel(azimuth > azimuth_max) = [];

197 z_sel(azimuth > azimuth_max) = [];

198

199 % throw away < azimuth_min

200 t_sel(azimuth_sel < azimuth_min) = [];

201 elevation_sel(azimuth_sel < azimuth_min) = [];

202 r_sel(azimuth_sel < azimuth_min) = [];

203 x_sel(azimuth_sel < azimuth_min) = [];

204 y_sel(azimuth_sel < azimuth_min) = [];

205 z_sel(azimuth_sel < azimuth_min) = [];

206 azimuth_sel(azimuth_sel < azimuth_min) = [];

207

208 % save values to repeat analysis later

209 t_cleaned = t_sel;

210 elevation_cleaned = elevation_sel;

211 r_cleaned = r_sel;

212 x_cleaned = x_sel;

213 y_cleaned = y_sel;

214 z_cleaned = z_sel;

215 azimuth_cleaned = azimuth_sel;

216

217 % initialize matrices to save results in

218 kd_saved = [];

219 beta_saved = [];

220 angles_saved = [];

221 nr_datapoints_saved = [];

222

223 %% ANALYZE REGRESSION PARAMETERS

224

225 % This figure will be used to plot linreg results

226 figure(3)

227 hold on

228 title("Linear regressions for different elevation angles")

229 xlabel("Radius in meters")

230 if target == "RSRQ"

231 ylabel("RSRQ")

232 elseif target == "RSRP"

233 ylabel("RSRP in dBW")

234 end

235

236 % TAKE LOG OF POSITIONAL VARIABLES
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237 % r_cleaned = log(r_cleaned);

238 % x_cleaned = log(x_cleaned);

239 % y_cleaned = log(y_cleaned);

240 % z_cleaned = log(z_cleaned);

241 % r = log(r);

242

243 for ii = 1:1:length(elevation_max)

244

245 t_sel = t_cleaned;

246 azimuth_sel = azimuth_cleaned;

247 elevation_sel = elevation_cleaned;

248 r_sel = r_cleaned;

249 x_sel = x_cleaned;

250 y_sel = y_cleaned;

251 z_sel = z_cleaned;

252

253 % throw away > elevation_max

254 t_sel(elevation_sel > elevation_max(ii)) = [];

255 azimuth_sel(elevation_sel > elevation_max(ii)) = [];

256 r_sel(elevation_sel > elevation_max(ii)) = [];

257 x_sel(elevation_sel > elevation_max(ii)) = [];

258 y_sel(elevation_sel > elevation_max(ii)) = [];

259 z_sel(elevation_sel > elevation_max(ii)) = [];

260 elevation_sel(elevation_sel > elevation_max(ii)) = [];

261

262 % throw away < elevation_min

263 t_sel(elevation_sel < elevation_min(ii)) = [];

264 azimuth_sel(elevation_sel < elevation_min(ii)) = [];

265 r_sel(elevation_sel < elevation_min(ii)) = [];

266 x_sel(elevation_sel < elevation_min(ii)) = [];

267 y_sel(elevation_sel < elevation_min(ii)) = [];

268 z_sel(elevation_sel < elevation_min(ii)) = [];

269 elevation_sel(elevation_sel < elevation_min(ii)) = [];

270

271 % LOGLOG MODEL

272 r_sel = log10(r_sel/100);

273

274 % calculate linear regression

275 kd_mat = [ones(length(r_sel),1) r_sel];

276 kd = kd_mat\t_sel;

277 RSRP_linreg = kd_mat*kd;

278

279 % save data

280 kd_saved = [kd_saved kd];

281 angles_saved = [angles_saved (elevation_min(ii)+elevation_max(ii))/2];

282 nr_datapoints_saved = [nr_datapoints_saved length(r_sel)];

283

284 % plot regression and elevation angle

285 plot(100*10.^(r_sel),(kd(1)+r_sel*kd(2)),"LineWidth",1.2)

286 txt = num2str(elevation_max(ii));

287 text(100*10.^(r_sel(1)),(kd(1)+r_sel(1)*kd(2)),txt)

288
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289 end

290

291

292 % calculate mean k and d values, weighted by number of datapoints

293 kmean = sum(kd_saved(2,:).*nr_datapoints_saved(:).')/sum(nr_datapoints_saved);

294 dmean = sum(kd_saved(1,:).*nr_datapoints_saved(:).')/sum(nr_datapoints_saved);

295 %plot weighted mean regression line

296 plot((min(r):max(r)),(dmean+log10((min(r):max(r))/100)*kmean),"LineWidth",4,"Color","red")

297 txt = "weighted mean";

298 text(123,−60,txt)

299 set(gca,'xscale','log')

300

301 %% Plot of results

302 title_FS = 22; %font size

303 figure

304 subplot(2,1,1)

305 hold on

306 yyaxis left

307 plot(angles_saved, kd_saved(1,:),"LineWidth",2)

308 plot(angles_saved,ones(1,length(angles_saved))*dmean)

309 yyaxis right

310 plot(angles_saved, kd_saved(2,:),"LineWidth",2)

311 xlabel("elevation angle","FontSize",title_FS−2)

312 plot(angles_saved,ones(1,length(angles_saved))*kmean)

313 grid on

314 lgd = legend("d in dBm","weighted mean of d","k (log−log slope)","weighted mean ...

of k");

315 lgd.FontSize =18;

316 title("linear equation coefficients as a function of elevation ...

angle","FontSize",title_FS)

317 subplot(2,1,2)

318 plot(angles_saved,nr_datapoints_saved,"LineWidth",2)

319 title("Number of datapoints","FontSize",title_FS)

320 xlabel("elevation angle","FontSize",title_FS−2)

321 ylabel("# datapoints","FontSize",title_FS−2)

322 grid on
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Appendix B - Jupyter Notebooks

MA_v2.ipynb
Reading and preprocessing of data

1 """

2 Script 1: Reading and preprocessing of data from txt files

3

4 TO LOOK UP CELLS: go to http://www.opencellid.org

5 search for pirching an der raab

6 """

7

8 import pandas

9 import numpy as np

10 import math

11

12

13

14

15

16 """

17 Function definitions

18 """

19

20 def cart2sph(x, y, z):

21 hxy = np.hypot(x, y)

22 r = np.hypot(hxy, z)

23 el = np.arctan2(z, hxy)

24 az = np.arctan2(y, x)

25 return az, el, r

26

27

28

29 """

30 Get measurement data from csv file

31 """

32

33 #Measurement dataframe

34 meas_df = pandas.read_csv('Messdaten3.csv', sep=';')

35

36 #Connection values, use float to enable NaN
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37 #throw away first values later!

38 RSRP = pandas.Series(meas_df.Level,dtype='float32')

39 RSRQ = pandas.Series(meas_df.Qual,dtype='float32')

40

41

42

43 """

44 Process measurement data and prepare it for further usage

45 """

46

47 #Position Values

48 LongitudeMobile = meas_df.Longitude

49 LatitudeMobile = meas_df.Latitude

50 HeightMobile = meas_df.Height

51

52 #get rid of excess dots

53 LongitudeMobileArray = np.zeros(len(LongitudeMobile)-1)

54 for i in range(len(LongitudeMobile)-1):

55 test = LongitudeMobile[i+1]

56 newstr = test[:6] + test[7:]

57 LongitudeMobileArray[i] = float(newstr)

58 LatitudeMobileArray = np.zeros(len(LatitudeMobile)-1)

59 for i in range(len(LatitudeMobile)-1):

60 test = LatitudeMobile[i+1]

61 newstr = test[:6] + test[7:]

62 LatitudeMobileArray[i] = float(newstr)

63

64 #preprocess height

65 HeightMobileArray = np.zeros(len(HeightMobile)-1)

66 minheight = min(HeightMobile[1:]) # throw away first three values

67 for i in range(1,len(HeightMobile)):

68 h = HeightMobile[i]

69 HeightMobileArray[i-1] = float(h-minheight)

70 z = HeightMobileArray

71

72 #Conversion from coordinates to meters - mean is chosen as zero

73 x = (LongitudeMobileArray - np.mean(LongitudeMobileArray))*76000;

74 y = (LatitudeMobileArray - np.mean(LatitudeMobileArray))*111000;

75 #Factors obtained from website:

76 #https://rechneronline.de/geo-koordinaten/#entfernung

77
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78

79 # create dict of raw cell IDs

80 cellIDs = meas_df.RAWCELLID

81 IDnumber = 0 #number that is assigned to each unique cell ID, starting with zero

82 IDdict = {} #dictionary containing cell IDs and their respective numbers

83 for i in range(len(cellIDs)):

84 if not cellIDs[i] in IDdict:

85 IDdict[cellIDs[i]] = IDnumber

86 IDnumber = IDnumber + 1

87 IDnumberMax = IDnumber

88 print("ID dictionary:")

89 print(IDdict)

90

91 # create array of ID numbers

92 #IDnumberArray = np.zeros(len(cellIDs)) # np array

93 IDnumberArray = [] # python array

94 for i in range(len(cellIDs)):

95 #IDnumberArray[i] = int(IDdict[cellIDs[i]]) # np array

96 IDnumberArray.append(int(IDdict[cellIDs[i]])) # python array

97

98 # check for number of station appearances

99 stationCount = 0

100 for j in range(IDnumberMax):

101 for i in range(len(cellIDs)):

102 if IDnumberArray[i] == j:

103 stationCount = stationCount + 1

104 print("IDnumber "+str(j)+" appears "+str(stationCount)+" times.")

105 stationCount = 0

106

107

108 # Replace all connection values by NaN if 4G is not used

109 Tech = meas_df.NetworkTech; #4=LTE 3=HSPA

110 HSPA_indices = [ i for i in range(len(Tech)) if Tech[i] != '4G' ]

111 RSRP[HSPA_indices] = float('NaN');

112 RSRQ[HSPA_indices] = float('NaN');

113

114 # Replace missing values of RSRQ by NaN, convert to np.float32

115 minus_indices = [ i for i in range(len(RSRQ)) if RSRQ[i] == '-' ]

116 RSRQ[minus_indices] = float('NaN');

117 RSRQ = np.float32(RSRQ)

118 RSRP[minus_indices] = float('NaN');
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119 RSRP = np.float32(RSRP)

120

121 # Coordinate Transforms

122 [azimuth,elevation,r] = cart2sph(x,y,z)

123 azimuth = azimuth*180/math.pi

124 elevation = elevation*180/math.pi

125

126 # create data frame with relevant data, remove first entries of RSRP/RSRQ

127 data_dict = {'x':x,'y':y,'z':z,'azimuth':azimuth,'elevation':elevation,'radius':r,\

128 'RSRP':RSRP[1:],'RSRQ':RSRQ[1:],'ID number':IDnumberArray[1:]}

129 df = pandas.DataFrame(data=data_dict)

130

131 # OPTIONAL: DUMP ALL DF ENTRIES EXCEPT FOR THOSE OF A CERTAIN TX STATION

132 id_sel = 0 # set to -1 if no ID should be selected

133 if id_sel != -1:

134 df = df[df['ID number'] == id_sel]

135 df = df.drop(columns=['ID number']) # ID number column no longer needed

136 print('\n ID number '+str(id_sel)+' selected. All other entries dumped. \n')

137

138

139 # calculate statistical properties and show them

140 train_stats = df.describe()

141 train_stats = train_stats.transpose()

142 print(train_stats)

143

144 # update RSRP and RSRQ after deleting first entry

145 RSRP = data_dict['RSRP']

146 RSRQ = data_dict['RSRQ']

147

148 print("Reading and preprocessing of data done")

Machine learning model

1 """

2 Script 2: Machine Learning Model

3 A neural network with one hidden layer is used to model signal reception properties

4 """

5

6 import tensorflow as tf

7 import seaborn as sb

8 from random import randint

9
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10 from tensorflow import keras

11 from tensorflow.keras import layers

12 from tensorflow.keras.layers import LeakyReLU

13 from tensorflow.keras.layers import Dense as Dense

14 from tensorflow.keras.models import Sequential

15

16 import matplotlib.pyplot as plt

17

18

19

20

21 """

22 Input position type definition (cartesian or spherical)

23 """

24

25 #input_pos_type = 'cartesian' #cartesian coordinates seem to perform better

26 input_pos_type = 'spherical'

27

28

29 """

30 Target type definition (RSRP or RSRQ)

31 """

32

33 target_type = 'RSRP'

34 #target_type = 'RSRQ'

35

36

37

38 """

39 Network property definition and data splitting

40 """

41

42 #number of nodes in the hidden layer

43 n_nodes_hl1 = 25

44 n_nodes_hl2 = 10

45 n_nodes_hl3 = 8

46 n_nodes_hl4 = 6

47 n_nodes_hl5 = 0

48

49 # alpha for leaky relu

50 alpha_lrelu = 0.1
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51

52 # split into test and training data

53 #random_state = randint(0,1000)

54 random_state = 127 #127 works very well!

55 train_dataset = df.sample(frac=0.99,random_state=random_state)

56 test_dataset = df.drop(train_dataset.index)

57

58

59

60 """

61 Function definitions

62 """

63

64 # calculate z-value -> normalize input data to [0,1]

65 def norm(x):

66 return (x - train_stats['mean']) / train_stats['std']

67

68

69

70 """

71 Data visualization - pre ML

72 """

73

74 #pairplot - comment to save time if not needed

75 #sb.pairplot(df,corner = True)

76

77

78

79 """

80 Machine Learning - Data preparation

81 """

82

83 #normalize data such that mu = 0 and sigma^2 = 1 and drop NaN-values

84 normed_train_data = norm(train_dataset).dropna()

85 normed_test_data = norm(test_dataset).dropna()

86

87

88 #split off target values

89 if target_type == 'RSRP':

90 train_labels = normed_train_data.pop('RSRP')

91 test_labels = normed_test_data.pop('RSRP')
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92 if target_type == 'RSRQ':

93 train_labels = normed_train_data.pop('RSRQ')

94 test_labels = normed_test_data.pop('RSRQ')

95

96 #remove input values according to input type choice

97 if input_pos_type == 'cartesian':

98 if target_type == 'RSRQ':

99 del normed_train_data['RSRP']

100 if target_type == 'RSRP':

101 del normed_train_data['RSRQ']

102 del normed_train_data['azimuth']

103 del normed_train_data['elevation']

104 del normed_train_data['radius']

105 if target_type == 'RSRQ':

106 del normed_test_data['RSRP']

107 if target_type == 'RSRP':

108 del normed_test_data['RSRQ']

109 del normed_test_data['azimuth']

110 del normed_test_data['elevation']

111 del normed_test_data['radius']

112

113 if input_pos_type == 'spherical':

114 if target_type == 'RSRQ':

115 del normed_train_data['RSRP']

116 if target_type == 'RSRP':

117 del normed_train_data['RSRQ']

118 del normed_train_data['x']

119 del normed_train_data['y']

120 del normed_train_data['z']

121 if target_type == 'RSRQ':

122 del normed_test_data['RSRP']

123 if target_type == 'RSRP':

124 del normed_test_data['RSRQ']

125 del normed_test_data['x']

126 del normed_test_data['y']

127 del normed_test_data['z']

128

129

130

131

132 """
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133 Machine Learning - Execution

134 """

135

136

137 # model for leaky relu activation function

138 model = keras.Sequential()

139 #first layer

140 model.add(Dense(n_nodes_hl1))

141 model.add(LeakyReLU(alpha=alpha_lrelu))

142 #second layer

143 if n_nodes_hl2 != 0:

144 model.add(Dense(n_nodes_hl2))

145 model.add(LeakyReLU(alpha=alpha_lrelu))

146 #third layer

147 if n_nodes_hl3 != 0:

148 model.add(Dense(n_nodes_hl3))

149 model.add(LeakyReLU(alpha=alpha_lrelu))

150 #fourth layer

151 if n_nodes_hl4 != 0:

152 model.add(Dense(n_nodes_hl4))

153 model.add(LeakyReLU(alpha=alpha_lrelu))

154 #fifth layer

155 if n_nodes_hl5 != 0:

156 model.add(Dense(n_nodes_hl5))

157 model.add(LeakyReLU(alpha=alpha_lrelu))

158 #addition layer

159 model.add(Dense(1))

160 model.compile(loss='mse',

161 optimizer='adam',

162 )

163

164

165 # train the model TAKE CARE FOR BATCH SIZE!

166 EPOCHS = 10000

167 history = model.fit( normed_train_data, train_labels, epochs=EPOCHS, \

168 validation_split = 0.04, verbose=2, shuffle = True, \

169 batch_size = 1024)

170

171 #summarize the model (inspect it)

172 model.summary()

173
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174 print("random state "+np.str(random_state))

175 print("Training done")

176

177

178

179 # Visualize model history

180 plt.figure()

181 plt.plot(range(EPOCHS),history.history['val_loss'], label='Validation loss')

182 plt.plot(range(EPOCHS),history.history['loss'], label='Training loss')

183 plt.title('Training / validation loss values')

184 plt.ylabel('Loss value')

185 plt.xlabel('Epoch')

186 plt.legend(loc="upper left")

187 plt.show()

Plot and save model history

1 #save model history

2 plt.figure()

3 plt.plot(range(EPOCHS),history.history['val_loss'], label='Validation loss')

4 plt.plot(range(EPOCHS),history.history['loss'], label='Training loss')

5 plt.title('Training / validation loss values')

6 plt.ylabel('Loss value')

7 plt.xlabel('Epoch')

8 plt.legend(loc="upper left")

9 plt.savefig('./plots_v2/overleaf/'+np.str(target_type)+'_sel_lrelu_'+ \

10 np.str(n_nodes_hl1)+'_'+np.str(n_nodes_hl2)+'_'+np.str(n_nodes_hl3)+'_'+ \

11 np.str(n_nodes_hl4)+'_'+np.str(EPOCHS)+'epochs_'+np.str(input_pos_type)+ \

12 '_RS_'+np.str(random_state)+'.png',dpi = 300)

Plot of results

1 """

2 Script 3: Plot of results

3 """

4

5 import matplotlib as mpl

6 import matplotlib.pyplot as plt

7 from mpl_toolkits.mplot3d import Axes3D

8

9 import pandas as pd

10

11 # make the plot interactive
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12 %matplotlib notebook

13

14

15 """

16 Choose which values to plot

17 """

18

19 plot_RSRP = True

20 plot_RSRQ = False

21

22

23 """

24 Calculate Colorbar Limits

25 """

26

27 ## Calculate NN output values to determine colorbar limits

28

29 example_batch = normed_test_data.dropna()

30 example_result = model.predict(example_batch)

31

32 #denormalize data

33 if target_type == 'RSRP':

34 print('NN output')

35 NNout = example_result*train_stats['std']['RSRP']+train_stats['mean']['RSRP']

36

37 if target_type == 'RSRQ':

38 print('NN output')

39 NNout = example_result*train_stats['std']['RSRQ']+train_stats['mean']['RSRQ']

40

41 ## Calculate actual coorbar limits

42

43 if target_type == 'RSRP':

44 vmin_RSRP = min(min(RSRP),min(NNout))

45 vmax_RSRP = max(max(RSRP),max(NNout))

46 vmin_RSRQ = min(RSRQ)

47 vmax_RSRQ = max(RSRQ)

48

49 if target_type == 'RSRQ':

50 vmin_RSRQ = min(min(RSRQ),min(NNout))

51 vmax_RSRQ = max(max(RSRQ),max(NNout))

52 vmin_RSRP = min(RSRP)
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53 vmax_RSRP = max(RSRP)

54

55

56 """

57 Plot actual flights

58 """

59

60 # PLOT 1: MEASURED DATA - RSRP

61 if plot_RSRP == True:

62 #plot initialization

63 fig = plt.figure(dpi=150)

64 fig.suptitle('RSRP - Measured Data', fontsize=16)

65 ax = fig.add_subplot(111, projection='3d')

66 ax.set_xlabel('X')

67 ax.set_ylabel('Y')

68 ax.set_zlabel('Z')

69 #draw dots, colored according to RSRP

70 scat = ax.scatter(x,y,z,c=RSRP,s=5,vmin=vmin_RSRP,vmax=vmax_RSRP)

71 #transmitter position

72 ax.scatter(0,0,0,c='blue',s=100)

73 ax.text(0, 0, 0, "Transmitter/zero", color='blue')

74 #start position

75 ax.scatter(x[0],y[0],z[0],c='red',s=100)

76 ax.text(x[0],y[0],z[0], "Start", color='red')

77 #colorbar

78 cbar = fig.colorbar(scat,label = "RSRP")

79 #show plot

80 plt.show()

81

82

83 # PLOT 2: MEASURED DATA - RSRQ

84 if plot_RSRQ == True:

85 #plot initialization

86 fig = plt.figure(dpi=150)

87 fig.suptitle('RSRQ - Measured Data', fontsize=16)

88 ax = fig.add_subplot(111, projection='3d')

89 ax.set_xlabel('X')

90 ax.set_ylabel('Y')

91 ax.set_zlabel('Z')

92 #draw dots, colored according to RSRQ

93 scat = ax.scatter(x,y,z,c=RSRQ,s=5,vmin=vmin_RSRQ,vmax=vmax_RSRQ)
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94 #transmitter position

95 ax.scatter(0,0,0,c='blue',s=100)

96 ax.text(0, 0, 0, "Transmitter/zero", color='blue')

97 #start position

98 ax.scatter(x[0],y[0],z[0],c='red',s=100)

99 ax.text(x[0],y[0],z[0], "Start", color='red')

100 #colorbar

101 fig.colorbar(scat,label = "RSRQ")

102 #show plot

103 plt.show()

104

105

106

107 """

108 Plot neural network outputs

109 In the plots, NN output data that stems from test input data (i.e. data that the \

110 network has not "seen" yet) is plotted larger

111 """

112

113 #Calculation NN outputs

114 NNout_test_normed = model.predict(normed_test_data.dropna())

115 NNout_train_normed = model.predict(normed_train_data.dropna())

116

117 #denormalize data

118 NNout_test = NNout_test_normed*train_stats['std'][target_type]+ \

119 train_stats['mean'][target_type]

120 NNout_train = NNout_train_normed*train_stats['std'][target_type]+ \

121 train_stats['mean'][target_type]

122

123 #coordinates of test data

124 x_test = test_dataset.dropna()['x']

125 y_test = test_dataset.dropna()['y']

126 z_test = test_dataset.dropna()['z']

127

128 #coordinates of train data

129 x_train = train_dataset.dropna()['x']

130 y_train = train_dataset.dropna()['y']

131 z_train = train_dataset.dropna()['z']

132

133 #plot data

134 #plot initialization
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135 fig = plt.figure(dpi=150)

136 fig.suptitle(str(target_type)+' - Estimated Value by Neural Network', fontsize=16)

137 ax = fig.add_subplot(111, projection='3d')

138 ax.set_xlabel('X')

139 ax.set_ylabel('Y')

140 ax.set_zlabel('Z')

141 #draw dots, colored according to RSRP/RSRQ, test data is drawn bigger

142 if target_type == 'RSRP':

143 scat_test = ax.scatter(x_test,y_test,z_test,c=NNout_test.T[0],s=30,vmin=vmin_RSRP \

144 ,vmax=vmax_RSRP)

145 scat_train = ax.scatter(x_train,y_train,z_train,c=NNout_train.T[0],s=5 \

146 ,vmin=vmin_RSRP,vmax=vmax_RSRP)

147 if target_type == 'RSRQ':

148 scat_test = ax.scatter(x_test,y_test,z_test,c=NNout_test.T[0],s=30,vmin=vmin_RSRQ, \

149 vmax=vmax_RSRQ)

150 scat_train = ax.scatter(x_train,y_train,z_train,c=NNout_train.T[0],s=5, \

151 vmin=vmin_RSRQ,vmax=vmax_RSRQ)

152 #transmitter position

153 ax.scatter(0,0,0,c='blue',s=100)

154 ax.text(0, 0, 0, "Transmitter/zero", color='blue')

155 #start position

156 ax.scatter(x[0],y[0],z[0],c='red',s=100)

157 ax.text(x[0],y[0],z[0], "Start", color='red')

158 #colorbar

159 fig.colorbar(scat_test,label = str(target_type))

160 #show plot

161 plt.show()

Save model

1 #save model as json

2 #codes from

3 # https://machinelearningmastery.com/save-load-keras-deep-learning-models/

4

5 # serialize model to JSON

6 model_json = model.to_json()

7 with open("./models_v2/model_RSRP_sel_lrelu_25_10_8_6_10kepochs_BS1024.json", "w") \

8 as json_file:

9 json_file.write(model_json)

10 # serialize weights to HDF5

11 model.save_weights("./models_v2/model_RSRP_sel_lrelu_25_10_8_6_10kepochs_BS1024.h5")

12 print("Saved model to disk")

107



Load model

1 # load saved model

2 from tensorflow import keras

3 from tensorflow.keras.models import model_from_json

4

5 # load json and create model

6 json_file = open('./models_v2/model_RSRQ_sel_lrelu_25_10_8_6_10kepochs.json', 'r')

7 loaded_model_json = json_file.read()

8 json_file.close()

9 loaded_model = model_from_json(loaded_model_json)

10 # load weights into new model

11 loaded_model.load_weights("./models_v2/model_RSRQ_sel_lrelu_25_10_8_6_10kepochs.h5")

12 print("Loaded model from disk")

13

14 # choose correct values MANUALLY!

15 model = loaded_model

16 input_pos_type = 'cartesian'

17 target_type = 'RSRQ'

1 """

2 EXECUTE THIS SCRIPT AFTER LOADING A MODEL TO ENABLE PLOTTING OF FLIGHTS

3 """

4

5 import tensorflow as tf

6 import seaborn as sb

7

8 from tensorflow import keras

9 from tensorflow.keras import layers

10 from tensorflow.keras.layers import LeakyReLU

11 from tensorflow.keras.layers import Dense as Dense

12 from tensorflow.keras.models import Sequential

13

14 import matplotlib.pyplot as plt

15

16

17

18

19 """

20 Input position type definition (cartesian or spherical)

21 """

22

23 input_pos_type = 'cartesian' #cartesian oordinates seem to perform better
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24 #input_pos_type = 'spherical'

25

26

27 """

28 Target type definition (RSRP or RSRQ)

29 """

30

31 #target_type = 'RSRP'

32 target_type = 'RSRQ'

33

34

35

36 """

37 Network property definition and data splitting

38 """

39

40 #number of nodes in the hidden layer

41 n_nodes_hl1 = 25

42 n_nodes_hl2 = 10

43 n_nodes_hl3 = 8

44 n_nodes_hl4 = 6

45 n_nodes_hl5 = 0

46

47 # alpha for leaky relu

48 alpha_lrelu = 0.1

49

50 # split into test and training data

51 train_dataset = df.sample(frac=0.99,random_state=0)

52 test_dataset = df.drop(train_dataset.index)

53

54

55

56 """

57 Function definitions

58 """

59

60 # calculate z-value -> normalize input data to [0,1]

61 def norm(x):

62 return (x - train_stats['mean']) / train_stats['std']

63

64
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65

66 """

67 Data visualization - pre ML

68 """

69

70 #pairplot - comment to save time if not needed

71 #sb.pairplot(df,corner = True)

72

73

74

75 """

76 Machine Learning - Data preparation

77 """

78

79 #normalize data such that mu = 0 and sigma^2 = 1 and drop NaN-values

80 normed_train_data = norm(train_dataset).dropna()

81 normed_test_data = norm(test_dataset).dropna()

82

83

84 #split off target values

85 if target_type == 'RSRP':

86 train_labels = normed_train_data.pop('RSRP')

87 test_labels = normed_test_data.pop('RSRP')

88 if target_type == 'RSRQ':

89 train_labels = normed_train_data.pop('RSRQ')

90 test_labels = normed_test_data.pop('RSRQ')

91

92 #remove input values according to input type choice

93 if input_pos_type == 'cartesian':

94 if target_type == 'RSRQ':

95 del normed_train_data['RSRP']

96 if target_type == 'RSRP':

97 del normed_train_data['RSRQ']

98 del normed_train_data['azimuth']

99 del normed_train_data['elevation']

100 del normed_train_data['radius']

101 if target_type == 'RSRQ':

102 del normed_test_data['RSRP']

103 if target_type == 'RSRP':

104 del normed_test_data['RSRQ']

105 del normed_test_data['azimuth']
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106 del normed_test_data['elevation']

107 del normed_test_data['radius']

108

109 if input_pos_type == 'spherical':

110 if target_type == 'RSRQ':

111 del normed_train_data['RSRP']

112 if target_type == 'RSRP':

113 del normed_train_data['RSRQ']

114 del normed_train_data['x']

115 del normed_train_data['y']

116 del normed_train_data['z']

117 if target_type == 'RSRQ':

118 del normed_test_data['RSRP']

119 if target_type == 'RSRP':

120 del normed_test_data['RSRQ']

121 del normed_test_data['x']

122 del normed_test_data['y']

123 del normed_test_data['z']

124

125

126 # update RSRP and RSRQ after deleting first entry

127 RSRP = df['RSRP']

128 RSRQ = df['RSRQ']

129 x = df['x']

130 y = df['y']

131 z = df['z']

Plausibility check

1 """

2 Plot plausibility check

3 """

4

5 import matplotlib as mpl

6 import matplotlib.pyplot as plt

7 from mpl_toolkits.mplot3d import Axes3D

8

9

10 import pandas as pd

11

12 def cart2sph(x, y, z):

13 hxy = np.hypot(x, y)
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14 r = np.hypot(hxy, z)

15 el = np.arctan2(z, hxy)

16 az = np.arctan2(y, x)

17 return az, el, r

18

19 def norm(x):

20 return (x - plaus_coords_df_stats['mean']) / plaus_coords_df_stats['std']

21

22

23 plaus_coords = np.zeros((1,3))

24 plot_coords = np.zeros((1,3))

25

26 #calculate NN outputs for test grid

27 #plaus_coords = np.array([0,0,0])

28 for x in range(-350,350,50):

29 for y in range(-350,350,50):

30 for z in range(0,200,50):

31 if input_pos_type == 'spherical':

32 [azimuth,elevation,r] = cart2sph(x,y,z)

33 azimuth = azimuth*180/math.pi

34 elevation = elevation*180/math.pi

35 arr = np.array([azimuth,elevation,r])

36 if input_pos_type == 'cartesian':

37 arr = np.array([x,y,z])

38 plaus_coords = np.append(plaus_coords, [arr], axis = 0)

39 xyz = np.array([x,y,z])

40 plot_coords = np.append(plot_coords,[xyz], axis = 0)

41

42 plaus_coords_df = pd.DataFrame(data=plaus_coords, columns=["x/az", "y/el","z/r"])

43 plaus_coords_df_stats = plaus_coords_df.describe()

44 plaus_coords_df_stats = plaus_coords_df_stats.transpose()

45

46 plaus_coords_normed = norm(plaus_coords_df).dropna()

47

48

49 #Calculation NN outputs

50 NNout_plaus_normed = model.predict(plaus_coords_normed)

51

52 #denormalize data

53 NNout_plaus = NNout_plaus_normed*train_stats['std'][target_type]+ \

54 train_stats['mean'][target_type]
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55

56 ## Calculate colorbar limits

57 if target_type == 'RSRP':

58 vmin_RSRP = min(min(RSRP),min(NNout_plaus))

59 vmax_RSRP = max(max(RSRP),max(NNout_plaus))

60 vmin_RSRQ = min(RSRQ)

61 vmax_RSRQ = max(RSRQ)

62 if target_type == 'RSRQ':

63 vmin_RSRQ = min(min(RSRQ),min(NNout_plaus))

64 vmax_RSRQ = max(max(RSRQ),max(NNout_plaus))

65 vmin_RSRP = min(RSRP)

66 vmax_RSRP = max(RSRP)

67

68 #get coordinates from array

69 x_grid = plot_coords[:,0]

70 y_grid = plot_coords[:,1]

71 z_grid = plot_coords[:,2]

72

73 #plot initialization

74 fig = plt.figure(dpi = 200)

75 fig.suptitle(str(target_type)+' - Plausibility check', fontsize=16)

76 ax = fig.add_subplot(111, projection='3d')

77 ax.set_xlabel('X')

78 ax.set_ylabel('Y')

79 ax.set_zlabel('Z')

80 #draw dots, colored according to RSRP/RSRQ, test data is drawn bigger

81 if target_type == 'RSRP':

82 scat_plaus = ax.scatter(x_grid,y_grid,z_grid,c=NNout_plaus.T[0],s=10,\

83 vmin=vmin_RSRP,vmax=vmax_RSRP)

84 if target_type == 'RSRQ':

85 scat_plaus = ax.scatter(x_grid,y_grid,z_grid,c=NNout_plaus.T[0],s=10,\

86 vmin=vmin_RSRQ,vmax=vmax_RSRQ)

87 #transmitter position

88 ax.scatter(0,0,0,c='blue',s=100)

89 ax.text(0, 0, 0, "Zero", color='blue')

90 #colorbar

91 fig.colorbar(scat_plaus,label = str(target_type))

92 #show plot

93 plt.show()

Plot high resolution learning curve (for documentation purposes)

113



1 plt.figure(dpi=300)

2 plt.plot(range(EPOCHS),history.history['val_loss'], label='Validation loss')

3 plt.plot(range(EPOCHS),history.history['loss'], label='Training loss')

4 plt.title('Training / validation loss values')

5 plt.ylabel('Loss value')

6 plt.xlabel('Epoch')

7 plt.legend(loc="upper left")

8 plt.show()

MA_v3_optimizer.ipynb
Optimizer - data preprocessing

1 """

2 OPTIMIZER - USE THIS SCRIPT TO ITERATE THROUGH INITIALIZATION SEEEDS

3

4 Script 1: Reading and preprocessing of data from txt files

5

6 TO LOOK UP CELLS: go to http://www.opencellid.org

7 search for pirching an der raab

8 """

9

10 import pandas

11 import numpy as np

12 import math

13

14

15

16

17 """

18 Function definitions

19 """

20

21 def cart2sph(x, y, z):

22 hxy = np.hypot(x, y)

23 r = np.hypot(hxy, z)

24 el = np.arctan2(z, hxy)

25 az = np.arctan2(y, x)

26 return az, el, r

27

28

29
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30 """

31 Get measurement data from csv file

32 """

33

34 #Measurement dataframe

35 meas_df = pandas.read_csv('Messdaten3.csv', sep=';')

36

37 #Connection values, use float to enable NaN

38 #throw away first values later!

39 RSRP = pandas.Series(meas_df.Level,dtype='float32')

40 RSRQ = pandas.Series(meas_df.Qual,dtype='float32')

41

42

43

44 """

45 Process measurement data and prepare it for further usage

46 """

47

48 #Position Values

49 LongitudeMobile = meas_df.Longitude

50 LatitudeMobile = meas_df.Latitude

51 HeightMobile = meas_df.Height

52

53 #get rid of excess dots

54 LongitudeMobileArray = np.zeros(len(LongitudeMobile)-1)

55 for i in range(len(LongitudeMobile)-1):

56 test = LongitudeMobile[i+1]

57 newstr = test[:6] + test[7:]

58 LongitudeMobileArray[i] = float(newstr)

59 LatitudeMobileArray = np.zeros(len(LatitudeMobile)-1)

60 for i in range(len(LatitudeMobile)-1):

61 test = LatitudeMobile[i+1]

62 newstr = test[:6] + test[7:]

63 LatitudeMobileArray[i] = float(newstr)

64

65 #preprocess height

66 HeightMobileArray = np.zeros(len(HeightMobile)-1)

67 minheight = min(HeightMobile[1:]) # throw away first three values

68 for i in range(1,len(HeightMobile)):

69 h = HeightMobile[i]

70 HeightMobileArray[i-1] = float(h-minheight)
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71 z = HeightMobileArray

72

73 #Conversion from coordinates to meters - mean is chosen as zero

74 x = (LongitudeMobileArray - np.mean(LongitudeMobileArray))*76000;

75 y = (LatitudeMobileArray - np.mean(LatitudeMobileArray))*111000;

76 #Factors obtained from website:

77 #https://rechneronline.de/geo-koordinaten/#entfernung

78

79

80 # create dict of raw cell IDs

81 cellIDs = meas_df.RAWCELLID

82 IDnumber = 0 #number that is assigned to each unique cell ID, starting with zero

83 IDdict = {} #dictionary containing cell IDs and their respective numbers

84 for i in range(len(cellIDs)):

85 if not cellIDs[i] in IDdict:

86 IDdict[cellIDs[i]] = IDnumber

87 IDnumber = IDnumber + 1

88 IDnumberMax = IDnumber

89 print("ID dictionary:")

90 print(IDdict)

91

92 # create array of ID numbers

93 #IDnumberArray = np.zeros(len(cellIDs)) # np array

94 IDnumberArray = [] # python array

95 for i in range(len(cellIDs)):

96 #IDnumberArray[i] = int(IDdict[cellIDs[i]]) # np array

97 IDnumberArray.append(int(IDdict[cellIDs[i]])) # python array

98

99 # check for number of station appearances

100 stationCount = 0

101 for j in range(IDnumberMax):

102 for i in range(len(cellIDs)):

103 if IDnumberArray[i] == j:

104 stationCount = stationCount + 1

105 print("IDnumber "+str(j)+" appears "+str(stationCount)+" times.")

106 stationCount = 0

107

108

109 # Replace all connection values by NaN if 4G is not used

110 Tech = meas_df.NetworkTech; #4=LTE 3=HSPA

111 HSPA_indices = [ i for i in range(len(Tech)) if Tech[i] != '4G' ]
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112 RSRP[HSPA_indices] = float('NaN');

113 RSRQ[HSPA_indices] = float('NaN');

114

115 # Replace missing values of RSRQ by NaN, convert to np.float32

116 minus_indices = [ i for i in range(len(RSRQ)) if RSRQ[i] == '-' ]

117 RSRQ[minus_indices] = float('NaN');

118 RSRQ = np.float32(RSRQ)

119 RSRP[minus_indices] = float('NaN');

120 RSRP = np.float32(RSRP)

121

122 # Coordinate Transforms

123 [azimuth,elevation,r] = cart2sph(x,y,z)

124 azimuth = azimuth*180/math.pi

125 elevation = elevation*180/math.pi

126

127 # create data frame with relevant data, remove first entries of RSRP/RSRQ

128 data_dict = {'x':x,'y':y,'z':z,'azimuth':azimuth,'elevation':elevation,'radius':r,\

129 'RSRP':RSRP[1:],'RSRQ':RSRQ[1:],'ID number':IDnumberArray[1:]}

130 df = pandas.DataFrame(data=data_dict)

131

132 # OPTIONAL: DUMP ALL DF ENTRIES EXCEPT FOR THOSE OF A CERTAIN TX STATION

133 id_sel = 0 # set to -1 if no ID should be selected

134 if id_sel != -1:

135 df = df[df['ID number'] == id_sel]

136 df = df.drop(columns=['ID number']) # ID number column no longer needed

137 print('\n ID number '+str(id_sel)+' selected. All other entries dumped. \n')

138

139

140 # calculate statistical properties and show them

141 train_stats = df.describe()

142 train_stats = train_stats.transpose()

143 print(train_stats)

144

145 # update RSRP and RSRQ after deleting first entry

146 RSRP = data_dict['RSRP']

147 RSRQ = data_dict['RSRQ']

148

149 print("Reading and preprocessing of data done")

Optimizer - actual optimization
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1 """

2 Script 2: Machine Learning Model

3 A neural network with one hidden layer is used to model signal reception properties

4 """

5

6 import tensorflow as tf

7 import seaborn as sb

8 from random import randint

9

10 from tensorflow import keras

11 from tensorflow.keras import layers

12 from tensorflow.keras.layers import LeakyReLU

13 from tensorflow.keras.layers import Dense as Dense

14 from tensorflow.keras.models import Sequential

15

16 import matplotlib.pyplot as plt

17

18

19

20

21 """

22 Input position type definition (cartesian or spherical)

23 """

24

25 #input_pos_type = 'cartesian' #cartesian oordinates seem to perform better

26 input_pos_type = 'spherical'

27

28

29 """

30 Target type definition (RSRP or RSRQ)

31 """

32

33 target_type = 'RSRP'

34 #target_type = 'RSRQ'

35

36

37

38 """

39 Network property definition and data splitting

40 """

41
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42 #number of nodes in the hidden layer

43 n_nodes_hl1 = 25

44 n_nodes_hl2 = 10

45 n_nodes_hl3 = 8

46 n_nodes_hl4 = 6

47 n_nodes_hl5 = 0

48

49 # alpha for leaky relu

50 alpha_lrelu = 0.1

51

52 for ii in range(100):

53 # split into test and training data

54 random_state = ii

55 train_dataset = df.sample(frac=0.99,random_state=random_state)

56 test_dataset = df.drop(train_dataset.index)

57

58

59

60 """

61 Function definitions

62 """

63

64 # calculate z-value -> normalize input data to [0,1]

65 def norm(x):

66 return (x - train_stats['mean']) / train_stats['std']

67

68

69

70 """

71 Data visualization - pre ML

72 """

73

74 #pairplot - comment to save time if not needed

75 #sb.pairplot(df,corner = True)

76

77

78

79 """

80 Machine Learning - Data preparation

81 """

82
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83 #normalize data such that mu = 0 and sigma^2 = 1 and drop NaN-values

84 normed_train_data = norm(train_dataset).dropna()

85 normed_test_data = norm(test_dataset).dropna()

86

87

88 #split off target values

89 if target_type == 'RSRP':

90 train_labels = normed_train_data.pop('RSRP')

91 test_labels = normed_test_data.pop('RSRP')

92 if target_type == 'RSRQ':

93 train_labels = normed_train_data.pop('RSRQ')

94 test_labels = normed_test_data.pop('RSRQ')

95

96 #remove input values according to input type choice

97 if input_pos_type == 'cartesian':

98 if target_type == 'RSRQ':

99 del normed_train_data['RSRP']

100 if target_type == 'RSRP':

101 del normed_train_data['RSRQ']

102 del normed_train_data['azimuth']

103 del normed_train_data['elevation']

104 del normed_train_data['radius']

105 if target_type == 'RSRQ':

106 del normed_test_data['RSRP']

107 if target_type == 'RSRP':

108 del normed_test_data['RSRQ']

109 del normed_test_data['azimuth']

110 del normed_test_data['elevation']

111 del normed_test_data['radius']

112

113 if input_pos_type == 'spherical':

114 if target_type == 'RSRQ':

115 del normed_train_data['RSRP']

116 if target_type == 'RSRP':

117 del normed_train_data['RSRQ']

118 del normed_train_data['x']

119 del normed_train_data['y']

120 del normed_train_data['z']

121 if target_type == 'RSRQ':

122 del normed_test_data['RSRP']

123 if target_type == 'RSRP':
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124 del normed_test_data['RSRQ']

125 del normed_test_data['x']

126 del normed_test_data['y']

127 del normed_test_data['z']

128

129

130

131

132 """

133 Machine Learning - Execution

134 """

135

136

137 # model for leaky relu activation function

138 model = keras.Sequential()

139 #first layer

140 model.add(Dense(n_nodes_hl1))

141 model.add(LeakyReLU(alpha=0.1))

142 #second layer

143 if n_nodes_hl2 != 0:

144 model.add(Dense(n_nodes_hl2))

145 model.add(LeakyReLU(alpha=alpha_lrelu))

146 #third layer

147 if n_nodes_hl3 != 0:

148 model.add(Dense(n_nodes_hl3))

149 model.add(LeakyReLU(alpha=alpha_lrelu))

150 #fourth layer

151 if n_nodes_hl4 != 0:

152 model.add(Dense(n_nodes_hl4))

153 model.add(LeakyReLU(alpha=alpha_lrelu))

154 #fifth layer

155 if n_nodes_hl5 != 0:

156 model.add(Dense(n_nodes_hl5))

157 model.add(LeakyReLU(alpha=alpha_lrelu))

158 #addition layer

159 model.add(Dense(1))

160 model.compile(loss='mse',

161 optimizer='adam',

162 )

163

164 print("training started with random state "+np.str(random_state))
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165

166 # train the model TAKE CARE FOR BATCH SIZE!

167 EPOCHS = 2000

168 history = model.fit( normed_train_data, train_labels, epochs=EPOCHS, \

169 validation_split = 0.04, verbose=1, shuffle = True, batch_size = 1)

170

171 #summarize the model (inspect it)

172 model.summary()

173

174 plt.figure()

175 plt.plot(range(EPOCHS),history.history['val_loss'], label='Validation loss')

176 plt.plot(range(EPOCHS),history.history['loss'], label='Training loss')

177 plt.title('Training / validation loss values')

178 plt.ylabel('Loss value')

179 plt.xlabel('Epoch')

180 plt.legend(loc="upper left")

181 plt.savefig('./plots_v2/optimizer/REPROD2'+np.str(target_type)+'_sel_lrelu_'+\

182 np.str(n_nodes_hl1)+'_'+np.str(n_nodes_hl2)+'_'+np.str(n_nodes_hl3)+\

183 '_'+np.str(n_nodes_hl4)+'_'+np.str(EPOCHS)+'epochs_'+np.str(input_pos_type)+\

184 '_RS_'+np.str(random_state)+'.png',dpi = 300)

185 plt.show()

186

187

188

189

190

191

192 print("Training done")
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