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Abstract

The computation of ideal magnetohydrodynamic (MHD) equilibria plays an impor-
tant role in fusion research, since it allows to approximately describe the steady state
of magnetically confined plasmas. Ideal MHD describes a macroscopic single-fluid
magnetically confined plasma under the assumption of high collisionality, small ion
gyro-radius and small resistivity. The MHD equilibrium is then obtained in the
static case by solving the corresponding force balance equation ∇P = J ×B. Where
P is the pressure, J the current density and B the magnetic field. The Galerkin
Variational Equilibrium Code (GVEC) calculates three-dimensional MHD equilib-
rium configurations. In this work, alternative representations of the magnetic field
topology are introduced and examined. GVEC uses a gradient descent algorithm to
minimize the total energy functional for nested magnetic flux surfaces. This yields
the desired force balance. Under the assumption of closed nested flux surfaces, the
magnetic field can be written in flux coordinates that consist of the poloidal and
toroidal angles θ and ζ as well as the flux surface label s. The magnetic flux sur-
faces are then expressed via a mapping from the flux coordinates onto the real space
coordinates (X1,X2, ζ). For this mapping two alternative formulations are imple-
mented and analysed. The first is based on the NSTAB code [2] which introduces
a blending of the outermost flux surface to the magnetic axis via the introduction
of a generalised radius. As shown in the numerical results, this NSTAB mapping
exhibited convergence problems even for simple geometries in the near axis region
and, therefore, motivated the introduction of a new hybrid mapping, a hybridisation
between the original GVEC mapping and the NSTAB mapping. As a result the near
axis problematic of the NSTAB mapping was resolved. It was shown, that for the
hybrid mapping the boundary conditions have to be chosen carefully when solving
equilibria with a complex boundary shape. Additionally, the influence of the radial
and spectral resolution was investigated for the original GVEC mapping and the hy-
brid mapping using a test case with a simple elliptic boundary shape. Through this,
the convergence of the total energy with increasing resolution was demonstrated.
In comparison to the original GVEC mapping, the hybrid mapping proved more
sensible with regards to the resolution especially regarding the placement of the
magnetic axis.
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1. Introduction

In hope of finding a reliable alternative source of energy, thermonuclear fusion de-
vices have been of great interest since the last century. Due to the extreme phys-
ical conditions needed for the fusion reaction of deuterium and tritium, special
devices were developed to contain the necessary high temperature plasmas within
a controlled environment. One approach is magnetic confinement. From the vari-
ous geometries tested two toroidal confinement concepts seem to provide the most
promising results: The stellarator and the tokamak. Such fusion devices are of ex-
tremely high complexity and designing and building devices like the ITER tokamak
or the W7-X stellarator needs not only technical and mechanical ingenuity but also
computational and theoretical analysis.

Many computer codes dealing with various aspects of fusion plasmas and fusion
devices exist nowadays. One field of those codes deals with the solution of the so-
called magneto-hydrodynamic equations (MHD). Although, this theory works with
several assumptions and simplifications, MHD equilibrium and stability are neces-
sary requirements for designing fusion reactors. 1

This work, which was done in close cooperation with the Max-Planck Institute for
Plasma Physics via the support of Dr. Ing. Florian Hindenlang, evolves around the
Galerkin Variational Equilibrium Code (GVEC). GVEC is a new 3D MHD equi-
librium code developed by F.Hindenlang and O.Maj which is based on the ideas
of the established VMEC [10]. By minimizing the total energy functional, arising
from the ideal MHD theory, under the assumption of nested flux surfaces, equilib-
rium configurations of the magnetic field for magnetic confinement fusion devices
can be calculated. The minimisation itself is performed via gradient descent. The
underlying theory is heavily dependent on the description of the magnetic field in a
flux coordinate system, which form the natural coordinate system for toroidal fusion
devices. These coordinates are the poloidal and toroidal angles θ and ζ as well as
a radial coordinate labelling the magnetic flux surfaces s. In GVEC, magnetic flux
surfaces are then expressed via a mapping from the flux coordinates onto real space
coordinates generally denoted via (X1,X2, ζ). Usually, these real space coordinates
equal the cylindrical coordinates (R,Z,φ).

This mapping from flux- to real space coordinates is the main topic of this work.
In the paper by M.Taylor [2] about the NSTAB 3D MHD equilibrium code, an
alternative mapping to the one of GVEC is proposed. This NSTAB mapping uti-
lizes a blending of the outermost flux surface to the magnetic axis, where M.Taylor
[2] introduces a special approximate treatment of the near axis region via an axis
residue condition. Promising results due to this mapping concerning perturbation
calculations via NSTAB motivated this work. The goal is to implement and analyse
the alternative mapping within GVEC.

In the first part of the thesis, an introduction and derivation of the physical and

1see Freidberg 2014, 1 [7]
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mathematical theory concerning ideal MHD is given. Starting from a two fluid
model, the ideal MHD equations are derived and their validity regime is discussed.
Additionally, core concepts like the corresponding energy functional and flux sur-
faces are introduced. Furthermore, a detailed explanation of flux coordinate systems
and important concepts of the differential geometry algebra are presented.

The second part focuses on the description of the computer code itself. Further,
the newly implemented alternative mapping to describe the magnetic field topology
used in NSTAB [2] as well as a newly introduced hybrid mapping, a hybridisa-
tion between the original GVEC mapping and the NSTAB mapping, are described.
Moreover, the resulting changes in GVEC are explained and discussed.

The third part then presents the numerical results obtained with the different map-
pings. Via three test geometries of increasing complexity, comparisons between
results obtained with the original GVEC mapping and the two alternatives are per-
formed. In addition, the influence of different boundary conditions for the newly
introduced quantities are examined. Finally, dependencies on the radial and spectral
resolutions are investigated by examination of the total energy and the position of
the magnetic axis.
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2. Theory

This chapter introduces the fundamental concepts and theories necessary for the
formulation and understanding of the physical and mathematical framework.

The first section presents a derivation of the ideal magneto hydrodynamic (MHD)
equations, following closely the structure shown in the books by Bellan [5] and
Freidberg [7] but including detailed mathematical steps to allow for a consistent
formulation of these fundamental results within the thesis. Additionally, important
consequences of the formalism of ideal MHD are shown and a short summary of the
discussion on the validity of this theory, as written by Freidberg [7], is given.

The second section provides the necessary foundation for understanding the flux
coordinates needed in MHD equilibrium codes such as VMEC and GVEC, following
the detailed and extensive book by W.D.D’haeseleer et al. [4].

2.1. Ideal Magneto-Hydrodynamic Equations

The ideal magneto-hydrodynamic (MHD) equations and their relevance and validity
for fusion plasmas form the very basis of this thesis and minimisation codes like
GVEC. Therefore, a derivation and a discussion of the validity of those fundamental
relations shall be presented.

2.1.1. The Vlasov-Equation

To obtain a closed set of equations, describing a fusion plasma in the framework of
fluid mechanics one can derive the so-called ideal magneto hydrodynamic equations.
A common starting point for this derivation is by assuming a distribution function for
a plasma consisting of charged particles and the corresponding differential equation
as given by the so-called Vlasov equation

∂fσ
∂t

+∇x ⋅ (vfσ) +∇v ⋅ (
qσ
mσ

(E + v ×B) fσ) =∑
α

Cσα (fσ) , (2.1.1)

where σ is the index denoting the particle species, f represents the distribution
function, ∇x the Nabla operator for the spacial variable x, ∇v the Nabla operator
for the velocity variable v, E and B the electric and magnetic field and Cσ,α is the
rate of change of fσ due to collisions of particle species σ with particle species α.
Hereby, the collision operator Cσα (fσ) must obey the following constraints 2:

• The total number of particles must be conserved:

∫ Cσα (fσ)dv = 0. (2.1.2)

• The total momentum must be conserved for collisions between like particles
and for all particle collisions together 3:

2see Bellan 2008, 35 [5]
3Here, mσ denotes the mass of the corresponding species and the indices e and i stand for electrons

and ions.
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∫ mσvCσσ (fσ)dv = 0. (2.1.3)

∫ mevCei (fe)dv + ∫ mivCie (fi)dv = 0. (2.1.4)

• The total energy must be conserved for collisions between like particles and
for all particle collisions together:

∫ mσv
2Cσσ (fσ)dv = 0. (2.1.5)

∫ mev
2Cei (fe)dv + ∫ miv

2Cie (fi)dv = 0. (2.1.6)

With this setup it is now possible to take moments of the whole equation, i.e.
perform integrals over the whole velocity phase space with different weights of
v(∫ dv⋯, ∫ dvv⋯, ∫ dvv2⋯). For this purpose it is advisable to recall the general
definition for the number density nσ(x) and the mean velocity uσ(x) of a distribu-
tion function fσ(x,v):

nσ(x) = ∫ fσ(x,v)dv. (2.1.7)

uσ(x) = ∫
vfσ(x,v)dv
nσ(x)

. (2.1.8)

2.1.2. The Species Continuity Equation

If one now takes the first moment of (2.1.1) we have to deal with three different
terms on the left-hand side and the collsion term on the right:

∫

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂fσ
∂t

±
I

+∇x ⋅ (vfσ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

+∇v ⋅ (
qσ
mσ

(E + v ×B) fσ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

III

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

dv = ∫ ∑
α

Cσα (fσ)dv
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

. (2.1.9)

The time derivative for I can be pulled out of the integral and thus using (2.1.7) one
can write

I ∶ ∫
∂

∂t
fσdv = ∂

∂t ∫
fσdv = ∂nσ

∂t
. (2.1.10)

In a similar fashion, the spatial derivative in II does not affect the integration so
that by recalling (2.1.8) one can write

II ∶ ∫ ∇x ⋅ (vfσ)dv = ∇x ⋅ ∫ vfσdv = ∇x ⋅ (nσuσ) . (2.1.11)

For the third term, the Nabla operator can not be extracted from the integral. How-
ever, by collecting the terms for the Lorentz-force into one variable FL ∶= qσ

mσ
(E + v ×B)

and applying the divergence theorem (∫V ∇ ⋅ FdV = ∮S F ⋅ ndS) one can easily see,
that this part of the equation must vanish, since the probability of finding particles
at infinite velocities is zero. This is because the evaluation is done over the whole
phase space of v and thus, the surface has to be evaluated at v =∞:

III ∶ ∫ ∇v ⋅ (FLfσ)dv = ∮ FLfσ ⋅ dSv = 0. (2.1.12)
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For the collision term C, the summation is swapped with the integral and therefore
(2.1.2) can be used to see that

C ∶ ∫ ∑
α

Cσαfσdv =∑
α
∫ Cσαfσdv

(2.1.2)= 0. (2.1.13)

Hence, combining I, II, III and C one arrives at the species continuity equation:

∂nσ
∂t

+∇x ⋅ (nσuσ) = 0. (2.1.14)

2.1.3. The First Moment Equation

In a similar approach to Sec.2.1.2 one can perform calculations by taking the first
moment of the Vlasov-equation, i.e. multiplying by v an integrating over the whole
velocity phase space. Again, the three different terms plus the collision on the
right-hand side have to be treated:

∫ v

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂fσ
∂t

±
I

+∇x ⋅ (vfσ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

+∇v ⋅ (
qσ
mσ

(E + v ×B) fσ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

III

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

dv

= ∫ v∑
α

Cσα (fσ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

dv.

(2.1.15)

For the first term I, one can extract the time derivative since v and t are independent
variables. Taking (2.1.8) into account one is left with

I ∶ ∫ v
∂

∂t
fσdv = ∂

∂t ∫
vfσdv

(2.1.7)= ∂(nσuσ)
∂t

. (2.1.16)

Before considering the second term II it is useful to deal with one essential change
of variables:

w = v − uσ. (2.1.17)

This variable w is advantageous for,

dw = dv (2.1.18)

and

∫ wfσdw = ∫ vfσdv − ∫ uσfσdv
(2.1.7),(2.1.8)= nσuσ − nσuσ = 0. (2.1.19)

If one now extracts the spatial Nabla operator, which does not affect the variable
v, for the second term and performs the change of variables shown above, II can be
rewritten in the following way:

II ∶ ∫ v∇x ⋅ (vfσ)dv = ∇x ⋅ ∫ (w + uσ)(w + uσ)fσdw

= ∇x ⋅ ∫ (ww +wuσ +wuσ + uσuσ)fσdw

= ∇x ⋅ ∫ wwfσdw +∇x ⋅ (nσuσuσ) .

(2.1.20)
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In the last step, the two mixed terms were dropped because uσ is independent of w
and thus the integral vanishes due to (2.1.19).

For the third term, one can accomplish some simplification by making use of the
vector identity

∇ ⋅ (ab) = a ⋅ ∇b +∇a ⋅ b. (2.1.21)

Additionally, the divergence theorem may be applied once again leading to

III ∶ ∫ v∇v ⋅ (FLfσ)dv

= ∫

⎡⎢⎢⎢⎢⎢⎣
∇v ⋅ (vFLfσ) − (∇vv)

´¹¹¹¹¸¹¹¹¹¹¶
=1

⋅ (FLfσ)
⎤⎥⎥⎥⎥⎥⎦
dv

= ∮ vFLfσdSv
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

− qσ
mσ

[∫ Efσdv + ∫ (v ×B) fσdv]

= − qσ
mσ

nσ [E + uσ ×B] .

(2.1.22)

In the last step, the integration was performed using the fact, that neither E nor
B are velocity dependent. For the collision term, the integral does not vanish this
time. The contributions are gathered in the expression Rσα, denoting the frictional
drag force between the two species σ and α due to collisions:

C ∶ ∫ v∑
α

Cσα (fσ)
C

dv =∶ 1

mσ

Rσα. (2.1.23)

Thus, combining the four contributions and slightly rearranging the terms one ob-
tains an equation of the form

mσ [
∂ (nσuσ)

∂t
+∇x ⋅ (nσuσuσ)] = nσqσ (E + uσ ×B) −∇x ⋅

←→
Pσ −Rσα. (2.1.24)

Here, the definition for the pressure tensor
←→
Pσ was used:

←→
Pσ ∶=mσ ∫ wwfσdw =mσ ∫ (v − uσ) (v − uσ) fσdv. (2.1.25)

Where the isotropic contribution is given by

Pσ ∶= ∫ wxwxfσdw = ∫ wywyfσdw = ∫ wzwzfσdw

= mσ

3 ∫
w ⋅wfσdw

(2.1.26)

and the anisotropic contribution can be expressed via

Πσ =
←→
Pσ − Pσ

←→
I . (2.1.27)
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

However, for now an isotropic form of the pressure tensor will be assumed. Further
simplification can be achieved by expanding the derivatives on the left-hand side
and recalling the species continuity equation (2.1.14):

∂ (nσuσ)
∂t

+∇x ⋅ (nσuσuσ) = nσ
∂uσ
∂t

+ uσ
∂nσ
∂t

+ uσ [∇x ⋅ (nσuσ)] + (nσuσ) (∇x ⋅ uσ)

= nσ
∂uσ
∂t

+ uσ [
∂nσ
∂t

+∇x ⋅ (nσuσ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2.1.14)
= 0

+ (nσuσ) (∇x ⋅ uσ)

= nσ
duσ
dt

.

(2.1.28)

In the last step the definition of the convective derivative is introduced:

d

dt
= ∂

∂t
+ uσ ⋅ ∇x. (2.1.29)

Thence, the moment equation can be cast into a compact form reading

mσnσ
duσ
dt

= nσqσ (E + uσ ×B) −∇x ⋅
←→
Pσ −Rσα. (2.1.30)

2.1.4. The Second Moment Equation

Although it already becomes obvious that proceeding with taking higher moments
will not yield a closed set of equations due to the v ⋅ ∇xf term in the Vlasov equa-
tion, it is still advisable to perform some further calculations by taking the second
moment. If the weight is chosen as mσv2

2 one ends up with an expression for the
energy:

∫
mσv2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂fσ
∂t

±
I

+∇x ⋅ (vfσ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

+∇v ⋅ (
qσ
mσ

(E + v ×B) fσ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

III

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

dv

= ∫
mσv2

2
∑
α

Cσα (fσ)dv
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

.

(2.1.31)

Executing the same term separated procedure as before one can evaluate the first
one I via the change of variables given by (2.1.17)-(2.1.19):

I ∶ ∂
∂t ∫

mσv2

2
fσdv = ∂

∂t ∫
mσ (w + uσ)2

2
fσdv

= ∂

∂t ∫
1

2
mσ

⎛
⎜⎜⎜
⎝
w ⋅w + 2w ⋅ uσ

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
(2.1.19)

= 0

+uσ ⋅ uσ
⎞
⎟⎟⎟
⎠
fσdv

= ∂

∂t
(3Pσ

2
+ mσnσu2

σ

2
) .

(2.1.32)
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

For the second term II using the same substitution, new physical quantities can be
defined:

II ∶∇x ⋅ ∫
mσv2

2
vfσdv

= ∇x ⋅ ∫
mσ

2

⎛
⎜
⎝
w2w + 2 (uσ ⋅w)w + u2

σw
±
=0

+w2uσ + 2 (uσ ⋅w)uσ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+u2
σuσ

⎞
⎟
⎠
fσdw

= ∇x ⋅ (Qσ +
5

2
Pσuσ +

mσnσu2
σ

2
uσ) .

(2.1.33)

The terms with just a single w in the integration vanish as per definition, and the
new introduced quantity Qσ is called the heat flux with the definition

Qσ ∶= ∫
mσw2

2
wfσdw. (2.1.34)

For the acceleration term III an application of Stoke’s theorem for the E-field and
the (v ×B) term is necessary. To get III into a form where the theorem can be
applied one needs to consider the following:

{∇v ⋅ (v ×B)}i = εijk∂ivjBk = εijkδijBk = 0.

∇v ⋅ [
v2

2
(v ×B) fσ] = v ⋅ (v ×B) fσ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ v
2

2
fσ∇v ⋅ (v ×B)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+v
2

2
(v ×B)∇vfσ.

∇v ⋅
v2

2
E = v

2

2
∇v ⋅E + v ⋅E.

Using these relations one can therefore evaluate III as

III ∶ qσ ∫
v2

2
∇v ⋅ [(E + v ×B) fσ]dv

= qσ ∫
v2

2
∇v ⋅Efσdv + qσ ∫ ∇v ⋅ [

v2

2
(v ×B) fσ]dv

= qσ ∫ ∇v ⋅
v2

2
Efσdv − qσ ∫ v ⋅Efσdv + ∮

v2

2
(v ×B) fσ ⋅ dSv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= qσ ∮
v2

2
Efσ ⋅ dSv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

−qσ ∫ v ⋅Efσdv

= −qσnσuσ ⋅E.

(2.1.35)

It is worth noting, that the surface integrations again vanish due to the evaluation
of the distribution function at infinite velocities.

Recalling (2.1.5) allows one to recast and identify the collision contribution

∑
α
∫ mσ

v2

2
Cσαfσdv = ∫

α≠σ
mσ

v2

2
Cσαfσdv = −(∂W

∂t
)
Eασ

(2.1.36)

11/ 75



2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

as the energy transfer rate between the two different species α and σ. Recombining
everything from above with small rearrangements gives one

( ∂
∂t

mσnσu2
σ

2
+∇x ⋅

mσnσu2
σ

2
uσ) +

∂

∂t

3Pσ
2

+∇x ⋅ (Qσ +
5

2
Pσuσ)

= qσnσE ⋅ uσ − (∂W
∂t

)
Eασ

.

(2.1.37)

To achieve further simplification it is necessary to make use of some identities. The
first one is obtained by simply expanding derivatives,

∂

∂t

mσnσu2
σ

2
+∇x ⋅

mσnσu2
σ

2
uσ

= mσ

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nσ
∂u2

σ

∂t
+ u2

σ

∂nσ
∂t

+ u2
σ∇x ⋅ (nσuσ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2.1.14)

= 0

+ (nσuσ)∇xu
2
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= mσnσ
2

[∂u
2
σ

∂t
+ uσ ⋅ ∇xu

2
σ]

(2.1.29)= nσ
d

dt
(mσu2

σ

2
) .

(2.1.38)

For the second identity it is necessary to form the dot-product (2.1.30) with uσ. For
the left-hand side this yields

mσnσuσ ⋅
duσ
dt

=mσnσ
d

dt

u2
σ

2
,

since pulling the dot product into the derivative will just create a factor of two,
due to the partial differentiation. Adding now the right hand-side, still under the
assumption of an isotropic pressure tensor, gives the expression

mσnσ
d

dt

u2
σ

2
= nσqσuσ ⋅E − uσ ⋅ ∇xPσ − uσ ⋅Rσα. (2.1.39)

Using both identities, (2.1.38) and (2.1.39), for the second moment equation (2.1.37)
yields following simplification:

nσqσuσ ⋅E − uσ ⋅ ∇xPσ − uσ ⋅Rσα +
∂

∂t

3

2
Pσ +∇x ⋅ (Qσ +

5

2
Pσuσ)

= nσqσuσ ⋅E − (∂W
∂t

)
Eασ

∂

∂t

3

2
Pσ + (5

2
Pσ∇x ⋅ uσ +

5

2
uσ ⋅ ∇xPσ − uσ ⋅ ∇xPσ) =

3

2
( ∂
∂t
Pσ + uσ∇xPσ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=
dPσ
dt

+5

2
Pσ∇x ⋅ uσ

= −∇x ⋅Qσ + uσ ⋅Rσα − (∂W
∂t

)
Eασ

.

Hence, leaving behind just

3

2

dPσ
dt

+ 5

2
Pσ∇x ⋅ uσ = −∇x ⋅Qσ + uσ ⋅Rσα − (∂W

∂t
)
Eσα

. (2.1.40)
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

2.1.5. From the Two Fluid Equations to the Ideal MHD Equations

So far, two different fluids, one for ions and one for electrons, were treated within
the equations given by

∂nσ
∂t

+∇ ⋅ (nσuσ) = 0

mσnσ
duσ
dt

= nσqσ (E + uσ ×B) −∇ ⋅ Pσ −Rσα

3

2

dPσ
dt

+ 5

2
Pσ∇ ⋅ uσ = −∇ ⋅Qσ + uσ ⋅Rσα − (∂W

∂t
)
Eσα

∇×E = ∂B

∂t

∇×B = µ0 (qiniui − eneue) +
∂E

∂t

∇ ⋅E = 1

ε0
(qini − ene)

∇ ⋅B = 0.

(2.1.41)

Here the corresponding Maxwell equations for the system have been included. Since
no velocity derivatives are left, the subscript of the ∇ operator has been dropped.
Therefore it will from now on refer just to the spatial derivative. The system of equa-
tions in (2.1.41), however, does not yet provide the environment for a closed system.
Therefore, further simplifications are necessary. First of all, the high-frequency and
short-wavelength information will be removed from the model. Second, a reduction
to a single fluid picture is necessary. Third, a collision dominated regime will be
prescribed. Fourth, limitations with regards to the characteristic dimensions and
the macroscopic size will be applied.

As a starting point, the transformation to the the pre-Maxwell low-frequency equa-
tions is perfomed by letting ε0 → 0. Which implies, that both the net charge ε0E
and the displacement current ε0

∂E
∂t vanish. Hence, the alternate form of Gauss’s law

requires qini = ene. Therefore, both electrons and ions are chosen to carry just the
elemental charge e and thus, ni = ne = n. Further simplification is achieved by ignor-
ing the electron inertia by setting me = 0. Thus, electrons now have an infinitely fast
response time in the system, because of their small mass. Both these assumptions
valid for typical fusion plasmas.4

As a next step, the introduction of single fluid variables is at hand. Since the
influence of the electron mass me is being ignored, the mass density can be written
as

ρ =min. (2.1.42)

For the same reason, one can now define the fluid velocity via

v = ui, (2.1.43)

4see Freidberg 2014, 18-19 [7]
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

since the whole fluid momentum is embedded with the ions. Additionally, a current
density may be expressed through the difference between the flow velocities of the
ions and electrons so that

J = ne (ui − ue) . (2.1.44)

In the same fashion, an expression for the total pressure is given by the ion and
electron contributions:

P = Pi + Pe. (2.1.45)

With these single fluid variables, ρ,v,J and P , it is now possible to derive a single-
fluid set of equations from the two-fluid equations (2.1.41). By multiplying the ion
mass onto the continuity equation for the ions, the ideal MHD continuity equation
is obtained:

mi
∂n

∂t
+∇ ⋅ (nui) = 0

= ∂ρ
∂t

+∇ ⋅ (ρv) = 0.

(2.1.46)

Furthermore, multiplying both the electron and ion continuity equations with the
elementary charge e and then subtracting those equations yields

∂eni
∂t

+∇ ⋅ (eniui) −
∂ene
∂t

−∇ ⋅ (eneue) = ∇ ⋅ en(ui − ue)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=J

= 0

∇ ⋅ J = 0.

(2.1.47)

As a next step, the two momentum equations are added together:

min
±
=ρ

dv

dt
= ne (E + v ×B) −∇Pi − Rie

°
(2.1.4)
= −Rei

−ne (E + ue ×B) −∇ ⋅ Pe −Rei

=
⎡⎢⎢⎢⎢⎢⎣
ne (v − ue)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=J

×B

⎤⎥⎥⎥⎥⎥⎦
−∇ (Pi + Pe)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=P

.

This provides the momentum equation of ideal MHD:

ρ
dv

dt
− J ×B +∇P = 0. (2.1.48)

Rewriting the electron momentum equation in terms of the single fluid variables will
provide the foundation for Ohm’s law of the ideal MHD equations:

me

=̄0

ne
due
dt

= −nee (E + ue ×B) −∇Pe −Rei

neE = (J − uine) ×B −∇Pe −Rei

E + v ×B = 1

ne
[J ×B −∇Pe −Rei] .

(2.1.49)

For further progression it is necessary to consider the ideal MHD limits, that will
provide the closure of the system of equations. As mentioned before, the ideal MHD
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

equations aim to describe a macroscopic collision dominated plasma. If a system
is dominated by collisions or is rather collisionless is largely dependent on the the
evolution of the pressure tensor. In other words, one expects the pressure tensor P
to reduce to a scalar isotropic pressure P . This kind of behaviour occurs when the
distribution function rapidly reduces into a Maxwellian form. This assumption has
already been made, leading to (2.1.48).5

Focusing on the right hand side of (2.1.49) it is possible to relate the J × B term
to the Hall effect and the ∇Pe term with the electron diamagnetic drift. If those
terms are compared to the v ×B term on the left-hand side, it can be shown that,
if the ion gyro-radius rig is small in comparison to the macroscopic dimension of the
plasma a, they are negligible. In other words,

rig
a
≪ 1.

This also implies, that MHD frequencies are essentially lower than the ion gyro-
frequencies. 6

The remaining term Rei, which represents the momentum transfer due to friction
between electrons and ions, is dominated by electrical resistivity. It vanishes under
the assumption, that the macroscopic dimension is large enough so that the time
scale of the resistive diffusion is large enough compared to the typical MHD time
scale. The final assumptions concern the energy equation. To be able to neglect the
terms on the right-hand side of the energy equation one has to restrict the system
in such a way, that the energy equilibration time is short compared to the charac-
teristic time. However, the energy equilibration time has to be still much longer
than the momentum exchange time, which implies further restrictions in terms of
collisionality. These conditions may be satisfied by setting 7

Pi ≈ Pe =
P

2
. (2.1.50)

Therefore, greatly simplifying (2.1.40). Rewriting the continuity equation and using
it with the simplified energy equation for ions one obtains the adiabatic relation:

∂n

∂t
+∇ ⋅ (nui) =

∂n

∂t
+ n∇ ⋅ ui + ui ⋅ ∇n = 0

1

n

dn

dt
= −∇ ⋅ ui.

Here, again the definition for the convective derivative was used.

3

2

dP

dt
+ 5

2
P∇ ⋅ ui = 0

1

P

dP

dt
= −5

3
∇ ⋅ ui =

5

3®
=γ

1

n

dn

dt
.

5see Freidberg 2014, 22f [7]
6see Freidberg 2014, 24 [7]
7see Freidberg 2014, 27 [7]
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

Integrating the equation above provides

P

nγ
= const. (2.1.51)

Therefore, the set of ideal MHD equations is finally completed by the simplified
forms of the momentum equations for a single fluid and the low-frequency Maxwell
equations:

Continuity Equation ∶ ∂ρ
∂t

+∇ ⋅ (ρv) = 0

Momentum Equation ∶ ρdv
dt

− J ×B +∇P = 0

Adiabatic Energy Relation ∶ P

nγ
= const.

Ideal Ohm′s Law ∶ E + v ×B = 0

Ampere′s Law ∶ ∇ ×B = µ0J

Faraday′s Law ∶ ∇ ×E = −∂B

∂t
Divergence Constraint ∶ ∇ ⋅B = 0.

(2.1.52)

2.1.6. The Total Energy Functional

The next important physical quantity that is of interest is the total energy contained
in, e.g., a confined fusion plasma. To obtain an expression for this energy one may
start by building the dot product of v with the momentum equation:

v ⋅ ρdv
dt

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
I

= v ⋅ (J ×B)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

−v ⋅ ∇P
´¹¹¹¹¹¸¹¹¹¹¹¶

III

.

To now obtain the desired form, the three different terms will be treated separately.
For the first term I it will be necessary to make use of the mass continuity equation.
The goal is to cast it into a similar form ∂(⋯)

∂t + ∇(⋯). Therefore, one may take a
closer look at

∂(ρv2)
∂t

+∇ ⋅ (ρvv2) = v2∂ρ

∂t
+ ρ∂v

2

∂t
+ ρ∇ ⋅ (vv2) + vv2 ⋅ ∇ρ

= v2 [∂ρ
∂t

+ v ⋅ ∇ρ] + ρ∂v
2

∂t
+ ρ∇ ⋅ (vv2)

= v2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂ρ

∂t
+∇ ⋅ (vρ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

−ρ∇ ⋅ v

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ ρ∂v
2

∂t
+ ρv2∇ ⋅ v + vρ ⋅ ∇v2

= ρ∂v
2

∂t
+ vρ ⋅ ∇v2 = 2ρv ⋅ [∂v

∂t
+ v ⋅ (∇v)] = 2ρv ⋅ dv

dt
.

This allows one to recast I into the form of

I ∶ ρv ⋅ dv
dt

= 1

2

∂(ρv2)
∂t

+∇ ⋅ 1

2
(ρvv2) . (2.1.53)
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

The second term can be transformed by using Ampere’s law, Faraday’s law and the
ideal version of Ohm’s law:

v ⋅ (J ×B) = J ⋅ (B × v)
Ampere=
Ohm

1

µ0

E ⋅ (∇×B)

= 1

µ0

[B ⋅ (∇×E) −∇ ⋅ (E ×B)]

Faraday= 1

µ0

[−B⋅∂B

∂t
−∇ ⋅ (E ×B)] .

Hence, arriving at the form of

II ∶ v ⋅ (J ×B) = [ ∂
∂t

B2

2µ0

−∇ ⋅ ( 1

µ0

E ×B)] . (2.1.54)

The last term can be rewritten by using the adiabatic relation before the integration:

dP

dt
+ γP∇ ⋅ v = 0

∂P

∂t
+ v ⋅ ∇P + γ∇ ⋅ (Pv) − γv ⋅ ∇P = 0

∂P

∂t
+ γ∇ ⋅ (Pv) = −v ⋅ ∇P (1 − γ) .

So, an expression for the third term is found:

III ∶ v ⋅ ∇P = 1

γ − 1

∂P

∂t
+ γ

γ − 1
∇ ⋅ (Pv) . (2.1.55)

Combining the contributions from I to III and gathering the partial time derivatives
and the spacial variations yields the following expression:

∂

∂t
[1

2
ρv2 + P

γ − 1
+ B2

2µ0

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=w

+∇ ⋅ [1

2
ρv2v + 1

µ0

(E ×B + P

γ − 1
+ Pv)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=s

= 0
(2.1.56)

∂w

∂t
+∇ ⋅ s = 0. (2.1.57)

It is now possible to identify w as the total energy of the system which consists of the
kinetic, internal and magnetic energy contributions. The quantity s contains the net
flux of kinetic and internal energy as well as the mechanical work due to compression
of the plasma and the flux of electromagnetic energy. The equation above therefore
takes the form of a local conservation relation. To obtain the expression for the
global energy, consisting of kinetic, internal and magnetic energies, integration over
the whole volume of interest is necessary. Hence, the sum of those energies is given
by 8

W = ∫
V
(1

2
ρv2 + P

γ − 1
+ B2

2µ0

)dr. (2.1.58)

8see Freidberg 2014, 45-47 [7]
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2.1.7. Validity of Ideal MHD

During the derivation of the ideal MHD framework several mayor simplifications
and assumptions had to be made, to obtain a closed system of mathematically
quite convenient equations. Those assumptions can be summarized via three main
constrains for the plasma 9:

• high collisionality

• small ion gyro-radius

• small resistivity

For typical fusion plasmas both the small ion gyro-radius and the small resistivity
are well satisfied assumptions. Nevertheless, the requirement for high collisionality
is never satisfied to the degree necessary for ideal MHD to be valid. However, com-
parisons with experimental results show that plasma stability is often predicted by
ideal MHD, though the specific physics may strongly differ. The question of why
this is the case has several subtle reasons, some of which will be discussed in this
chapter.10 Hence, a further investigation of the errors occurring within the assump-
tions of ideal MHD is at hand.

First, it is worth noting that for the derivation of the continuity equation none
of the above mentioned assumptions have to be made and only effects like recombi-
nation, charge exchange, fuel depletion, ionization etc. would prevent a legitimate
description of the plasma through this equation. 11

Second, it is possible to show that the perpendicular motion to the magnetic field
in a collisionless plasma is fluid like. This implies that this motion is well described
by the ideal MHD momentum equation. The parallel motion, however, is treated
wrong most of the time. Anyhow, many plasma motions of interest are incom-
pressible since both expansion and compression are quite stable motions that would
prevent certain instabilities. As a consequence a isotropic pressure tensor occurs for
fast collisionless plasmas. This, again, means that the part treated wrong by ideal
MHD has no influence in those regimes. 12

Third, the adiabatic energy equation is wrong for typical fusion plasmas but un-
der the consideration of incompressible MHD instabilities provides the same result
as the more appropriate limit of a plasma with infinite parallel thermal conductiv-
ity. Again, one may work with an equation that is wrong, but in many realistic
situations it provides the same result as better approximations.13

9see Freidberg 2014, 28 [7] and Bellan 2008, 53 [5]
10see Freidberg 2014, 28-30 [7]
11see Freidberg 2014, 30 [7]
12see Freidberg 2014, 30f [7]
13see Freidberg 2014, 32 [7]
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Last, it can be shown, that ideal MHD treats the inductive part of the electric
field correctly but the electrostatic part incorrectly. Since the electric field is only
used within Faraday’s law, the error from the incorrect part does not matter. This
is, because an electrostatic field would be described by a potential Φ via ∇Φ and
therefore evaluating ∇×E would mathematically annihilate the error. This validates
again the neglect of the Hall effect and the electron diamagnetic drift, for both arise
from such an electrostatic potential. Nevertheless, resistivity which too is neglected
in the ideal Ohm’s law appears independently from a electrostatic vector potential.
Hence, it will give rise to a kind of motion that is described by the tearing and
reconnecting of magnetic field lines. The time scale of such motions is typically on
the order of 1 ms and therefore much larger than the MHD time scale. Nevertheless,
it provides a suitable upper limit for time periods on which ideal MHD is valid. 14

2.1.8. Frozen Flux Theorem

An important result of the ideal MHD equations, in particular the ideal version of
Ohm’s law, is, that the magnetic flux within any open surface area moving along
with the described plasma stays constant. In other words, the plasma contains flux
surfaces that are ”frozen” into it. To show this, one might consider a surface S
with the surface contour C which is penetrated by a magnetic field such that the
magnetic flux trough the surface is given by

Ψ = ∫
S

B ⋅ dS. (2.1.59)

B

S
C

Figure 1: Magnetic flux through the open surface S with the contour C.

Considering now the change in the flux due to the movement of the surface S, one
can write

dΨ

dt
= ∫

S

∂B

∂t
⋅ dS + ∫

S
B ⋅ ∂dS

∂t
. (2.1.60)

14see Freidberg 2014, 26,33 [7]
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2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

The first term on the right hand side of the above equation can be recast into a
more convenient form by using Faraday’s and Ohm’s law ((2.1.52)). For the second
term a geometric consideration is helpful (see Fig.2). The infinitesimal change of
the surface along the contour element dl due to the movement of the plasma with
the velocity u for the time interval ∆t can be expressed via the surface-vector of the
surface ∆S 15:

∆S = ∆t (u × dl) .

u

dl

Δs

Figure 2: Infinitesimal change of the surface S due to movement of the plasma with the
velocity u is given by the surface-vector ∆S = ∆t (u × dl).

Therefore, one might rewrite (2.1.60):

dΨ

dt
= ∫

S
∇× (u ×B) ⋅ dS + ∫

C
B ⋅ (u × dl) .

Applying Stoke’s theorem and rearranging the triple product yields

dΨ

dt
= ∫

C
(u ×B) ⋅ dl − ∫

C
(u ×B) ⋅ dl = 0.

Thus, showing that the magnetic flux is conserved for such a plasma since the surface
can be chosen arbitrarily, i.e. it may also be the cross section of the whole plasma:

dΨ

dt
= 0. (2.1.61)

An other interesting consideration is to form small flux tubes around a magnetic
field line, so that this field line is enclosed by a continuation of infinitesimal small
surfaces which move with the plasma for a period of ∆t at the velocity u. The cross
sections may deform but still contain the original plasma. Nevertheless, due to
(2.1.61) the magnetic flux does not change. Therefore, the magnetic field line has to
move with the fluid which yields that it too is ”frozen” into the plasma (see Fig.4).16

15see D’haeseleer et al. 1991, 53f [4]
16see Freidberg 2014, 51-54 [7]
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magnetic field line

Δt·u

flux tube

Figure 3: A thin flux tube containing a magnetic field line moves with the plasma for a time ∆t
at the velocity u. The field line is ”frozen” into the fluid.

The requirement of frozen magnetic field lines forms a strong restriction for the
plasma under consideration. This is because the magnetic field topology must be
conserved for any allowed physical motion within the framework of ideal MHD.
Transitions where the magnetic field lines break and reconnect are not allowed due
to this behaviour. During the derivation perfectly conducting plasma was assumed.
Introducing even a small resistivity could now have drastic effects for the plasma
stability for it would break the preserved magnetic topology constraint allowing
the inclusion of further kinds of motions. Thus, even lower energy states would be
available. Which leads to the conclusion, that the constrain of frozen magnetic field
lines provides a solid definition for the assumption of an ideal MHD plasma. 17

2.1.9. Flux Surfaces

If a surface is traced out by a series of magnetic field lines it is referred to as a
magnetic surface. If the surface is closed as well the name ”flux surface” is typically
used within the field of fusion physics. For typical toroidal fusion devices, such
surfaces usually exist as nested toroidal surfaces of constant pressure. This can be
seen by evaluating the dot product of the magnetic field B with the static (v = 0)
time independent ( ∂∂t = 0) MHD momentum equation 18:

B ⋅ (J ×B) = B ⋅ ∇P.

Due to the exchange rules for the triple product one can easily see that the left hand
side vanishes and thus obtains

B ⋅ ∇P = 0. (2.1.62)

17see Freidberg 2014, 51-54 [7]
18see D’haeseleer et al. 1991, 54f [4]
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Hence, it is seen, that the magnetic field lines lie on the constant pressure contour.
From Ampere’s law, a current continuity equation may be obtained by taking the
gradient:

∇ ⋅ (∇×B − µ0J) = 0

∇ ⋅ J = 0.
(2.1.63)

This current continuity in combination with the force balance (J ×B) = ∇P have
as a result the so called current closure condition which requires the closed loop
integral ∮ dl

B to be constant on rational surfaces 19, independently on which field
line one might start. Violation of this requirement, which is a result due to the ap-
proximations made for ideal MHD, may result in the formation of magnetic islands.
For axisymmetric devices this requirement is fulfilled, for non-axisymmetric devices
this is not true. However, for good confinement of the plasma, it is necessary, that
a suitable set of nested toroidal magnetic surfaces exists, whose cross-section in a
poloidal pane forms a set of smooth closed curves. 20

Since those flux surfaces are nested, a special name is given to the degenerate surface
of volume zero. It is called the magnetic axis. It forms the center around which the
flux surfaces are nested. However, it need not be circular but can take, e.g., even a
helical from like in some stellarators. Furthermore, it usually does differ from the
geometric center of toroidal devices. 21

magnetic axis

constant pressure contour

B B

Figure 4: Schematic illustration of different toroidal surfaces of constant pressure including the
degenerate surface which is the magnetic axis.

19Rational surfaces are surfaces which contain field lines that close upon themselves after one or
several transits in the fusion device. The name rational arises from the fact, that the ratio of
poloidal to toroidal transits of a field line on such surfaces is a rational number.

20see D’haeseleer et al. 1991, 65f [4]
21see Freidberg 2014, 62-66 [7]

22/ 75



2.1 Ideal Magneto-Hydrodynamic Equations R. Köberl

2.1.10. Surface Labels

So far, the flux surfaces have been naturally labelled by the pressure. However, this
is not the only label that can be used to distinguish between the surfaces. Actually,
any function that is one-dimensional and just pressure dependent would be fit to
serve as a label for the flux surfaces. 22

Calculating for example the polodial flux trough a given pressure contour follow-
ing (2.1.59) one can see, that it is just pressure dependent (see Fig.5). From a
physical point of view this makes sense, since the magnetic lines lie in the constant
pressure contours. 23

neighboring flux surfaces

toroidal surface element 

poloidal surface element

Figure 5: Poloidal and toroidal surface elements dSp and dSt between two neighboring flux
surfaces.

χ = χ(p) = ∫ B ⋅ dSp. (2.1.64)

Analogous to the poloidal flux given in equation (2.1.64) one might also evaluate
the toroidal flux:

Φ = Φ(p) = ∫ B ⋅ dSt. (2.1.65)

Both of these fluxes are commonly used to label the flux surfaces when performing
MHD calculations. 24

22see Freidberg 2014, 67 [7] and D’haeseleer et al. 1991, 79 [4]
23see Freidberg 2014, 66f [7]
24see Freidberg 2014, 67 [7]
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2.2. Flux Coordinates

An important concept for equilibrium calculations within the framework of the ideal
MHD equations is the one of flux coordinates. A common approach for treating
physical or mathematical problems is to transform into a coordinate system which
naturally describes the geometry of the problem itself, yielding drastic simplifica-
tions for calculations. Well known simple examples are, e.g., cylindrical or spherical
coordinates. For the treatment of complex magnetic configurations, as the ones
appearing in toroidal devices, it is common to perform calculations in a curvilinear
coordinate system in which the magnetic field B and/or J appear straight. Many
such systems exist and one can find an extensive treatment of the most important
ones in the book by D’haeseleer et al. [4]. Here, just a short summary of some
essential concepts is given and the coordinate system, which will be used within the
following chapters, is introduced.

2.2.1. General Curvilinear Coordinates

Considering a position vector R(x, y, z) in a 3D-space, it is possible to describe this
position uniquely by introducing three independent parameters u1, u2, u3 so that a
transformation from a Cartesian system to these three parameters R(u1, u2, u3) can
be written as

R(u1, u2, u3) ∶
x = x(u1, u2, u3)
y = y(u1, u2, u3)
z = z(u1, u2, u3).

(2.2.1)

If the Cartesian coordinates also have continuous partial derivatives with respect to
the new parameters u1, u2, u3 and the corresponding Jacobian is non-zero, then it is
possible to invert the transformation so that

u1 = u1(x, y, z)
u2 = u2(x, y, z)
u3 = u3(x, y, z).

(2.2.2)

If these considerations hold true, one has obtained a set of new coordinates. Within
this new coordinate system one might define coordinate surfaces and curves by
setting either one (surface) or two (curve) coordinates to a fixed value. However, to
describe a point P within the new system in a useful sense, it is necessary to create
a basis at the given point which so far is described by the position vector R. Such
a basis is obtained by forming tangent vectors to the coordinate curves at the point
P via the evaluation of

e1 =
∂R

∂u1
, e2 =

∂R

∂u2
, e3 =

∂R

∂u3
. (2.2.3)

These basis vectors, which are not of unit length, are referred to as the covariant
basis vectors. 25

25see D’haeseleer et al. 1991, 10-13 [4]
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z

x

y

u¹

u²

u³

e1

e2
e3

R

u¹ = const.

u³ = const.

u2 = const.

Figure 6: General curvilinear coordinate system with coordinates u1, u2 and u3 with respect to
the Cartesian system. The basis vectors e1, e2 and e3 tangent to the coordinate curves and the

coordinate surfaces are shown.

Additionally to the co-variant basis vectors, one can find a reciprocal set of basis
vectors called the contra-variant basis vectors. In contrast to the co-variant basis
vectors, they are not tangent vectors to coordinate curves but rather point in a
perpendicular direction with respect to the coordinate surfaces. A contra-variant
set of basis vectors is given by

∇ui = ei, (2.2.4)

where i can be 1,2 or 3. They are usually denoted via a superscript and fulfil the
relation

ei ⋅ ej = δij, (2.2.5)

where δij is the Kronecker delta which is zero if i ≠ j and one for i = j. As mentioned
above, the contra-variant basis vectors are reciprocal to the co-variant ones, allowing
for a straight forward change between the two bases, if the one set is already known:

∇ui =
ej × ek

ei ⋅ (ej × ek)
= ei.

∂R

∂ui
= ej × ek

ei ⋅ (ej × ek)
= ei.

(2.2.6)

The indices i,j and k must be chosen as circular permutations of 1,2 and 3.
An arbitrary vector D can now be expressed in either basis via its co- or contra-
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variant components which are given by

Di ≡ D ⋅ ei

Di ≡ D ⋅ ei.
(2.2.7)

Hence, the full vector may be written as

D ≡D1e1 +D2e2 +D3e3

D ≡D1e
1 +D2e

2 +D3e
3.

(2.2.8)

The Jacobian J of the transformation from Cartesian to the covariant curvilinear
coordinates can be written via

J = ∂R

∂u1
⋅ ∂R

∂u2
× ∂R

∂u3
= e1 ⋅ e2 × e3 (2.2.9)

and it can be shown with the help of (2.2.6), that the Jacobian of the transforma-
tion to the co-variant system is nothing else but the inverse of the contra-variant
Jacobian 26:

J = ∇u1 ⋅ ∇u2 ×∇u3 = e1 ⋅ e2 × e3 (2.2.6)= J −1. (2.2.10)

An other useful concept, especially when dealing with co- and contra-variant com-
ponents, are the metric coefficients gij and gij. They are defined via

gij = ei ⋅ ej =
∂R

∂ui
⋅ ∂R

∂uj
(2.2.11)

and
gij = ei ⋅ ej = ∇ui ⋅ ∇uj. (2.2.12)

and are symmetric, i.e. gij = gji and gij = gji. They allow to easily switch between
co- and contra-variant components of a vector:

Di =∑
j

gijD
j.

Di =∑
j

gijDj.
(2.2.13)

Furthermore, the metric coefficients allow the evaluation of a dot-product between
two vectors X and Y via

X ⋅Y =∑
ij

gijX
iY j =∑

ij

gijXiYj. (2.2.14)

The matrix consisting of the metric coefficients is called the metric tensor G = [gij].
The relation between the metric tensor and its determinant g with the Jacobian too
is quite useful and simple:

det (G) = g = (J )2. (2.2.15)

Also, the metric tensor for the co-variant system is nothing but the inverse of the
tensor for the contra-variant one:

G = [gij] = [gij]−1
. (2.2.16)

This yields, that the determinants are the same 27:

g = det (G) = det [gij]−1
. (2.2.17)

26see D’haeseleer et al. 1991, 23f [4]
27see D’haeseleer et al. 1991, 20-22 and 25 [4]
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2.2.2. Straight Field Line Coordinates

With the foundation provided by a general curvilinear coordinate system it is now
quite straight-forward to create a system which is tailored to the problems and ques-
tions arising with the theoretical treatment of fusion plasmas and in more specific
terms ideal MHD. The first coordinate which will be introduced is one, that is able
to act as a surface label. For the general considerations the coordinate will be la-
belled with r ≡ u1. Since toroidal and/or cylindrical systems are the main focus, it
is just natural to keep a poloidal and toroidal angle coordinate. Since the goal is to
simplify equations with respect to B and/or J, those angles will be generalized as
well. Therefore, one ends up with a polodial angle θ whose coordinate surfaces are
centred around the magnetic axis and take partial-cone like shapes. Analogously,
the flux coordinate version of a toroidal angle ζ has coordinate surfaces that touch
the major axis and cut the flux surfaces.

θ
θ

ζ

Figure 7: Coordinate curves for the general angle like coordinates θ and ζ in a toroidal system.

Considering the magnetic field B, one may write it in terms of its contra-variant
components:

B = Brer +Bθeθ +Bζeζ . (2.2.18)

Since the flux surface label has to fulfil the relation defining flux surfaces, one can
easily see that the contra-variant magnetic field component in the direction of the
flux label vanishes:

B ⋅ ∇r = 0→ Br = 0. (2.2.19)

Furthermore, it is possible to replace the co-variant basis vectors with the contra-
variant ones using (2.2.6) and replacing the denominator by the Jacobian J ((2.2.9))
or equivalently with

√
g ((2.2.15)). With this, the expression for the magnetic field

can be expanded:

B = Bθ√g (∇ζ ×∇r) +Bζ√g (∇r ×∇θ) . (2.2.20)

Applying now the divergence constrain ∇ ⋅ B = 0 one arrives at an equation that
suggest a dependence of Bθ and Bζ from a single function that will be referred to
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as ν ≡ ν(r, θ, ζ). A useful vector relation for this is

[∇× a∇b]i = εijk∂j(a∂kb) = εijk [(∂ja)(∂kb) + a∂j(∂kb)]
= [∇a ×∇b]i + a (∇×∇b)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

. (2.2.21)

Thus yielding,

∇ ⋅B = (∇Bθ√g) eθ√
g
+Bθ√g [∇ ⋅ (∇× ζ∇r)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+(∇Bζ√g)
eζ√
g
+Bζ√g [∇ ⋅ (∇× r∇θ)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= ∂

∂θ

√
gBθ + ∂

∂ζ

√
gBζ = 0.

(2.2.22)

The above equation can be satisfied if the dependencies of Bθ and Bζ are for example
expressed via

Bθ = − 1
√
g

∂ν

∂ζ

Bζ = 1
√
g

∂ν

∂θ
.

(2.2.23)

Therefore, (2.2.20) can be rewritten using the exchange identities for the cross-
product as

B = ∇r ×
⎛
⎜⎜⎜
⎝

∂ν

∂r
∇r

²
=0

+∂ν
∂ζ

∇ζ + ∂ν
∂θ

∇θ
⎞
⎟⎟⎟
⎠
= ∇r ×∇ν. (2.2.24)

The first term in the bracket can be added for it vanishes anyway due to the cross
product rules for the ∇-operator. Eq. (2.2.24) corresponds to a Clebsch form of the
coordinate system28. From the consideration, that the magnetic field as a physical
quantity needs to be single valued, one can deduce that the function ν must be
periodic in θ and ζ but has an arbitrary dependence on r. A general form for this
function ν can thus be expressed via a polynomial of the form 29

ν(r, θ, ζ) = C1(r)θ +C2(r)ζ + ν̃(r, θ, ζ). (2.2.25)

The parameters C1 and C2 are just as of now arbitrarily dependent on r and the
function ν̃ represents a periodic function in θ and ζ. Applying the identity (2.2.21)
onto the Clebsch form enables one to write the magnetic field derived from a vector
potential A as

B
(2.2.21)= ∇× r∇ν = ∇×A. (2.2.26)

28Clebsch coordinates are a set of coordinates which originate from fluid mechanics and describe
the system via functions that are constant along a stream line (stream functions). The stream
functions occurring in (2.2.24) would be r and ν.

29see D’haeseleer et al. 1991, 118 [4]
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The goal now is to identify the two r-dependent functions and find a suitable way
to deal with ν̃. To tackle this problem, one uses a form-invariant expression for the
toroidal and poloidal flux ((2.1.65) and (2.1.64)). Starting from the integral over a
flux surface volume V with the elementary volume element d3R,

∭
V

d3R B ⋅ ∇ζ =∭
V

d3R∇ ⋅ (Bζ), (2.2.27)

it is possible to apply Gauss’ theorem and split up the surface integral yielding

∭
V

d3R ∇⋅(Bζ) Gauss= ∯
S

ζB ⋅dS = ∬
Storus

ζB ⋅dS+∬
Sζ=2π

ζB ⋅dS+∬
Sζ=0

ζB ⋅dS. (2.2.28)

For the last step, the volume of the torus like flux surface was cut open at the ζ = 0
and equivalently the ζ = 2π surfaces. Therefore, the volume is described by these
three limiting surfaces.

torus surface

ζ = constant surface

ζ = const.

ζ 

B

major axis

Figure 8: Top view of the toroid like flux surface together with the ζ = 0 and the ζ = 2π plane.
The grey area indicates a constant ζ-surface limited by the torus surface Storus

Since the magnetic field B is always perpendicular to the the surface vector of the
torus surface it is possible to drop the first term. For the two other terms one has
to set ζ to either zero or 2π which just leaves

∭
V

d3R B ⋅ dS = 2π∬
Sζ=2π

B ⋅ dS. (2.2.29)
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Identifying the surface Sζ=2π as the surface area which previously was referred to as
Stor it is possible to arrive at the desired form of the toroidal flux:

Φ = 1

2π∭
V

B ⋅ ∇ζd3R. (2.2.30)

With analogous considerations the poloidal flux may be written as

χ = 1

2π∭
V

B ⋅ ∇θd3R. (2.2.31)

Considering the derivative of the toroidal flux with respect to the flux label,

Φ′ = dΦ

dr
= d

dr

1

2π∭
V

B ⋅ ∇ζ√g drdθdζ = 1

2π∬
S

B ⋅ ∇ζ√g dθdζ. (2.2.32)

Here, the infinitesimal volume element d3R was replaced by the corresponding ex-
pression within the new coordinate system

√
g drdθdζ. Since ∇ζ is nothing more

than a contra-variant basis vector it is possible to substitute B∇ζ with the contra-
variant component for the magnetic field as given by (2.2.23). Additionally, the
derivative of ν can be calculated with the general form of ν (2.2.25):

Φ′ = 1

2π ∫
2π

0
∫

2π

0
dθdζ

√
g

1
√
g

∂ν

∂θ
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
(2.2.23)

= 1

2π ∫
2π

0
∫

2π

0
dθdζ (C1(r) +

∂ν̃

∂θ
) = 2πC1(r).

(2.2.33)

The integration of ∂ν̃
∂θ vanishes since it is periodic in θ. The equivalent procedure

can be performed for the poloidal flux yielding

χ′ = −2πC2(r). (2.2.34)

Combining everything calculated so far, the following expression for the function ν
is obtained:

ν = 1

2π
(Φ′θ − χ′ζ) + ν̃(r, θ, ζ). (2.2.35)

The final question that has to be answered is how the periodic function ν̃ is handled.
One legitimate choice is to absorb it into one of the angular coordinates since they
can be shifted by any 2π-periodic function. For instance, including it within θ yields

θ∗ = θ + 2π
ν̃

Φ′

ζ∗ = ζ

ν(r, θ∗, ζ∗) = 1

2π
Φ′θ∗ − 1

2π
χ′ζ∗.

(2.2.36)

Therefore, an equation for a straight line in (θ, ζ) coordinates is obtained by setting
ν = constant:

Φ′θ∗ − χ′ζ = constant. (2.2.37)
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Consequently a suitable set of straight field line/ flux coordinates is obtained. Vari-
ations may occur due to the choice of the flux label and/or the treatment of the
potential like ν-function. 30

30see D’haeseleer et al. 1991, 116-122 [4]
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3. The Galerkin Variational Equilibrium Code (GVEC)

All of the previously discussed derivations, concepts and explanations were presented
to provide the theoretical foundation for the central focus of this thesis which evolves
around the equilibrium code GVEC.

GVEC allows the calculation of equilibrium configurations of the magnetic field
within the framework of ideal MHD. This is achieved by applying a minimization
algorithm onto the total energy functional WMHD. To allow for a proper under-
standing of the work done within this thesis and the alterations and expansions that
were performed within the code, a brief overview of the code documentation done
by F.Hindenlang and O.Maj [6] is given in this chapter. Additionally, the theo-
retical descriptions of the alternative mappings for the magnetic field topology are
introduced.

3.1. Coordinates and Magnetic Field Definition

Due to the convenient straight field line properties, calculations in GVEC are per-
formed in a special flux coordinate system of Clebsch-form which are referred to as
PEST-coordinates31. The flux label s is chosen such that

s ≡ r ∼
√

Φ(s). (3.1.1)

As a consequence, it is possible to write the toroidal flux Φ(s) as a function depend-
ing on the toroidal flux on the last flux surface via

Φ(s) = Φedges2⇒ Φ̂ = Φ(s)
Φedge

. (3.1.2)

This choice sets s = 0 at the magnetic axis and s = 1 on the outer most closed
flux surface. For the expression of the polodial flux, the definition of the so called
rotational transform ι is used:

ι (Φ̂(s)) = dχ
dΦ

= χ
′

Φ′
⇒ χ(s) = ∫

s

s̃
ι (Φ̂(s̃))Φ′(s̃)ds̃. (3.1.3)

The poloidal straight field line angle coordinate θ∗ is maintained in the form with a
potential term λ and a counter-clockwise poloidal angle θ ∈ [0,2π] so that

θ∗ = θ + λ. (3.1.4)

The third coordinate is given by a toroidal angle ζ:

ζ∗ = ζ ∈ [0,2π] . (3.1.5)

Hence, a defining vector potential may be written by recalling (2.2.26) via

A = Φ(s)∇θ∗ − χ(s)∇ζ = Φ(s)∇ (θ + λ) − χ(s)∇ζ. (3.1.6)

31In this system ζ = −φ, given a cylindrical coordinate system (R,φ,Z),
see Kruger and Greene Phys.Plasmas 26, 082506-8 [9]

32/ 75



3.2 The Energy Functional R. Köberl

From this vector potential, a magnetic field can be calculated:

B = ∇×A = Φ′∇s ×∇ (θ + λ) − χ′∇s ×∇ζ
= Φ′∇s × (∇θ + λθ̇∇θ + λζ̇∇ζ) − χ′∇s ×∇ζ
= Φ′ (1 + λθ̇)∇s ×∇θ + (Φ′λζ̇ − χ′)∇s ×∇ζ
= Φ′ (1 + λθ̇)∇s ×∇θ + (χ′ −Φ′λζ̇)∇ζ ×∇s.

Hereby, the chain rule ∇C(s) = C ′(s)∇s was used. The lower indices with θ̇ and
ζ̇ symbolize derivatives with respect to these coordinates. Recasting the cross-
products with the help of (2.2.6) and (2.2.10) in the form of co-variant basis vectors
allows for the identification of the contra-variant components. Again the flux label
component Bs vanishes as described in (2.2.19):

B = Bζeζ +Bθeθ = Φ′ (1 + λθ̇)
eζ
J
+ (χ′ −Φ′λζ̇)

eθ
J

(3.1.7)

Bθ = 1

J
(χ′ −Φ′λζ̇)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡bθ

Bζ = 1

J
Φ′ (1 + λθ̇)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡bζ

.

(3.1.8)

With the help of the metric coefficients the co-variant components are easily calcu-
lated (compare (2.2.13)):

Bs = gsθBθ + gsζBζ

Bθ = gθθBθ + gθζBζ

Bζ = gζθBθ + gζζBζ .

(3.1.9)

3.2. The Energy Functional

As mentioned before, GVEC calculates equilibrium configurations within the frame-
work of ideal MHD by minimizing the corresponding energy functional. Recall the
form of the total energy as given by (2.1.57). Assuming velocity v = 0, multiplying
by µ0 and expressing the B2 term via the dot product of B ⋅B using (2.2.14) gives
the energy-functional the form of

W = µ0W(v = 0) = ∫
V

⎛
⎝
µ0
P (s)
γ − 1

+ 1

2
∑
ξω

BξgξωB
ω
⎞
⎠
dr. (3.2.1)

Hereby, the indices ξ, ω ∈ (θ, ζ) represent the summation over the two angular coor-
dinates. The pressure profile P (s) is defined via the mass profile over the normalized
toroidal flux so that the adiabatic conservation of mass between neighboring flux
surfaces is fulfilled (compare (2.1.52)) 32:

P (s) ≡ P (Φ̂(s)) = m(Φ̂(s))
[V ′(s)]γ

. (3.2.2)

32see Hirshman and Whitson Phys.Fluids 1983, 3555 [10]
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In this context V ′(s) represents the radial derivative of the volume between two flux
surfaces obtained by integrating the Jacobian with respect to the angular coordi-
nates:

V ′(s) =
2π

∫
0

2π

∫
0

J dθdζ. (3.2.3)

This form implies that during the variation of the pressure P (s) only the V ′(s) term,
which is, in contrast to m(Φ̂(s)), dependent on the geometry of the flux surface,
varies. Using these definitions, the expression for the infinitesimal volume element
in the flux-coordinate system dr = J dsdθdζ and the previously derived form of the
contra-variant components of the B-field (3.1.8), a more explicit expansion of the
energy functional is possible:

W =
1

∫
0

⎛
⎝
µ0

1

γ − 1

m(Φ̂(s))
[V ′(s)]γ

V ′(s) +
2π

∫
0

2π

∫
0

1

2J ∑ξω
bξgξωb

ωdθdζ
⎞
⎠
ds. (3.2.4)

3.3. Coordinate Mapping and Variation of the Energy Functional

Given now a prescribed pressure profile as well as the toroidal flux and the form
of the rotational transform, an equilibrium configuration for the system contained
in W can be obtained. This is achieved by minimizing the energy functional with
respect to the geometry of the problem. In GVEC, only a ,fixed-boundary’ approach
is available, meaning that the geometry of the outermost flux surface (s = 1) is given
and remains fixed. In the free-boundary approach, not considered here, the outer-
most flux surface would be allowed to move while being coupled to an external coil
field. The independent variables influencing the variation of the energy are naturally
chosen to be the flux coordinates (s, θ, ζ). As a consequence, the inverse transforma-
tion from the flux coordinates to a real space system would introduce the real space
coordinates as dependent variables. A standard choice of these real space coordi-
nates would be for example cylindrical/torus coordinates (R(s, θ, ζ), Z(s, θ, ζ), φ)
which are again easily used to calculate Cartesian coordinates. GVEC, however,
provides a variety of different choices for this kind of mapping onto the real space.
Therefore, these dependent real space coordinates will be referred to as (X1,X2, ζ).
Still, in all applications shown in this work, only the cylindrical coordinate system
with (X1,X2, ζ)→ (R,Z,φ) will be used.
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X 1(R)

X 2(Z )

θ

ζ

s

ϕ

Figure 9: Cylindrical real space coordinates (R,φ,Z) ≡ (X1, ζ,X2
) and flux coordinates

(s, θ, ζ).33

In that sense, one works with coordinates so that a representation of Cartesian coor-
dinates (x, y, z) is given by a dependence onto the real space coordinates (X1,X2, ζ)
which again are dependent on the flux coordinates (s, θ, ζ). Therefore, it is possible
to write the Jacobian of the whole transformation J as a product of the Jacobian
from the transformation to real space coordinates

Jp ∶ (s, θ, ζ)→ (X1,X2, ζ) (3.3.1)

and the Jacobian from the transformation of the real space coordinates to the Carte-
sian system

Jh ∶ (X1,X2, ζ)→ (x, y, z). (3.3.2)

This might be easily proven by applying the chain and product rule while calculating
the derivatives of the Cartesian coordinates with respect to the flux coordinates and
henceforth the corresponding Jacobian. Note that in the case of the cylindrical
coordinate system Jh = R.

J = JhJp. (3.3.3)

The index p symbolizes poloidal since the Jacobian Jp, for which ∂sζ = 0 and ∂θζ = 0,
takes the following form:

Jp = ∂sX1∂θX
2∂ζζ − ∂θX1∂sX

2∂ζζ =X1
ṡX

2
θ̇
−X1

θ̇
X2
ṡ . (3.3.4)

So far no explicit dependence of the real space coordinates X1 and X2 was given.
In general, they will depend on some parameters coupling (s, θ, ζ). These param-
eters are degrees of freedom (DOFs) which can be tuned and twisted to prescribe
a different configuration onto the system. It can be shown, as discussed and ap-
plied by Hirshman and Whitson [10], that vanishing forces onto these coefficients

33This figure was kindly provided by F. Hindenlang
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provide a minimum in the energy functional and therefore an equilibrium configu-
ration. Hence, the evaluation of the variation of the energy functional with respect
to an (arbitrary) combined Fourier-spline coefficient η is at hand. Applying such a
variation onto the functional (3.2.4) yields

−dW
dη

= d

dη

1

∫
0

⎛
⎝
µ0

m (Φ̂(s))
1 − γ

(V ′(s))(1−γ)) − 1

2

2π

∫
0

2π

∫
0

1

2J ∑ξω
bξgξωb

ωdθdζ
⎞
⎠
ds

=
1

∫
0

⎛
⎝
µ0

m (Φ̂(s))
(V ′(s))γ

dV ′(s)
dη

− 1

2
∑
ij

⟪dLB(s)
dη

⟫
⎞
⎠
ds.

(3.3.5)

Since the mass profile m (Φ̂(s)) is prescribed, it is not affected by the variation. The
⟪⟫-brackets denote the integration over the two angle coordinates and are introduced
for the sake of readability. For the angular surface term V ′(s) only the Jacobian is
affected by the variation so that

dV ′(s)
dη

= ⟪dJ
dη

⟫ . (3.3.6)

The quantity LB(s) contains the variation of the magnetic field:

dLB(s)
dη

= 1

J
[bξbω

dgξω
dη

+ 2gξωb
ξ db

ω

dη
−
bξgξωbω

J
dJ
dη

] . (3.3.7)

Since one is free to choose the indices over the summation, it is possible to gather the
two variations of the bi and bj in the second term of the bracket. The variation of the
poloidal Jacobian Jp can be easily calculated by recalling (3.3.4). The Jacobian Jh,
however, depends on the mapping choice which connects the real space coordinates
to the Cartesian coordinates and thus, has to be left in the more general form:

dJ
dη

= Jh (X1
ṡ

dX2
θ̇

dη
−X2

ṡ

dX1
θ̇

dη
+X2

θ̇

dX1
ṡ

dη
−X1

θ̇

dX2
ṡ

dη
) +Jp∑

k

( ∂Jh
∂Xk

dXk

dη
) . (3.3.8)

Where k ∈ (1,2) since the derivative of the third real space coordinate ζ is zero,
i.e. dζ

dη = 0. For the components of the magnetic field, the variation too is straight
forward, since the only affected parameter is λ. With the definitions from (3.1.8) it
follows, assuming again the prescribed Φ(s) and ι(Φ̂(s)) profiles, that

dbθ

dη
= −Φ′(s)

dλζ̇
dη

,
dbζ

dη
= Φ′(s)

dλθ̇
dη

. (3.3.9)

The variation of the metric coefficients has to be treated with more care. Since the
mapping between the flux coordinates and the Cartesian system is done with the
help of the coordinates (X1,X2, ζ) one can write the overall metric coefficients gij
with the help of the metric tensor G for the transformation from q = (X1,X2, ζ) to
(x, y, z). For example, in the cylindrical coordinates

G =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 R2

⎤⎥⎥⎥⎥⎥⎦
. (3.3.10)
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In that sense, the metric coefficient gij can be expressed by use of the definition
(2.2.11) and the dot product relation (2.2.14):

gξω =
3

∑
k,l=1

∂qk

∂ξ
Gkl

∂ql

∂ω
. (3.3.11)

Now again applying the chain rule, the variation can be evaluated via

dgξω
dη

=
3

∑
k,l=1

⎡⎢⎢⎢⎢⎣
qk
ξ̇
Gkl

dqlω̇
dη

+ qlω̇Glk
dqk

ξ̇

dη
+

3

∑
a=1

(qk
ξ̇

∂Gkl
∂qa

qlω̇)
dqa

dη

⎤⎥⎥⎥⎥⎦
. (3.3.12)

The only unknown quantities left in these equations are the variations of X1,X2, λ
and the Jacobian Jh. However, Jh =

√
G is analytically known by the choice of

the mapping to physical space, for the cylindrical coordinates it is simply Jh =
R. Henceforth, one is left with the solution variables (X1,X2, λ) which will be
calculated via a descretization, explicitly introducing the DOFs and allowing the
minimisation of W . The minimisation procedure itself will be done via gradient
descent.

3.4. Discretization of the Solution Variables

The question what form X1,X2 and λ take and how they depend on the DOFs
remains. In GVEC all the solution variables are described using a tensor-product
ansatz where the radial and the angular dependencies are separated. Mind, radial
and angular refer in this case to the generalized concepts. In that sense, the ansatz
can be expressed as

Xk =Xk,[rad.](s)Xk,[ang.](θ, ζ)
λ = λ[rad.](s)λ[ang.](θ, ζ).

(3.4.1)

Since the angular coordinates are periodic, a description via a Fourier-Ansatz is
suitable. Hence, the angular contributions are expressed in a Fourier-series with the
basis functions

X
k,[ang.]
base (θ, ζ) = λ[ang.]

base (θ, ζ)
= Fmn(θ, ζ) = cos(mθ −NFPnζ) and/or sin(mθ −NFPnζ).

(3.4.2)

The quantity NFP indicates the number of toroidal field periods. The labels m and
n describe the mode numbers and thus will indicate the contributing modes. These
modes are chosen such that

m ∈ [0,mmax] n ∈ {
[0, nmax], m = 0
[−nmax, nmax] m ≠ 0

. (3.4.3)

The radial contribution is expressed via splines of a chosen degree px with maximum
continuity C(px−1).
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3.4.1. B-Splines

Given a set of control points D0, . . .Dn and a vector containing knots T = {t0, t1, . . . , tm}
with ti ∈ [0,1] it is possible to define a function C(t) via

C(t) =
n

∑
i=0

DiNi,p(t), (3.4.4)

where p = m − n − 1 is the definition of the degree and Ni,j are the basis functions
defined as 34

Ni,0 =
⎧⎪⎪⎨⎪⎪⎩

1 if ti ≤ t < ti+1 and t − i < ti+1

0 otherwise

Ni,j(t) =
t − ti
ti+j − ti

Ni,j−1(t) +
ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t).
(3.4.5)

Hence, C(t) is referred to as a B(asis)-spline function. These B-splines are used for
the discretization of the radial direction in the tensor-product ansatz.

3.5. Alternative Descriptions of the Magnetic Field Topology

Motivated by promising results with regards to the calculation of resonant pertur-
bations as shown in the the work by M.Taylor [2], alternative descriptions of the
magnetic field topology shall be introduced in this section.

3.5.1. NSTAB-Mapping

The basic idea behind this mapping, which is equivalent to the one used in the
NSTAB code by M.Taylor [2], is to express the, as of now, decoupled variables X1

and X2 via a linear coupling of the coordinate values at the magnetic axis (X i
a) and

the fixed boundary (X i
b). This coupling is done via the introduction of a generalized

radius α. However, α couples not only the central and outer most flux surface but
also the two coordinates X1 and X2, for it is used for both representations. In that
sense one obtains the mapping via35

X1 =X1
a(ζ) + α(s, θ, ζ) [X1

b (θ, ζ) −X1
a(ζ)]

X2 =X2
a(ζ) + α(s, θ, ζ) [X2

b (θ, ζ) −X2
a(ζ)] ,

(3.5.1)

where α(0, θ, ζ) = 0 and α(1, θ, ζ) = 1 provide the necessary limits. It is worth not-
ing, that the magnetic axis is independent of s and θ since it is a degenerate flux
surface of volume zero.

In the original GVEC the variables X1 and X2 are expressed via a tensor product
ansatz using Fourier- and spline basis functions. Therefore, the DOFs are defined
by the corresponding coefficients to these basis functions. With the new mapping,
the same basis functions are used to discretize the new solution variables X1

a ,X
2
a

34see E. Weisstein, B-Spline [3]
35In NSTAB [2] X1

a ≡ r0, X2
a ≡ z0, X1

b ≡ r1, X2
b ≡ z1 and α ≡ R
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and α. The treatment of the potential λ is left unchanged. Since GVEC works with
a fixed boundary, X1

b and X2
b are just prescribed, although they too are expressed

via a Fourier-basis. Consequently, one can write X1
a ,X

2
a and α via

X i
a(ζ) =∑

n

{X i
a}nFn(ζ) (3.5.2)

X i
b(θ, ζ) =X

k,[ang.]
b (θ, ζ) = ∑

m,n

{X i
b}mnFmn(θ, ζ) (3.5.3)

α(s, θ, ζ) = ∑
l,m,n

{α}lmnFmn(θ, ζ)Bl(s). (3.5.4)

Here, i denotes the coordinate, i.e. i ∈ [1,2]. Bl(s) symbolizes the l-th spline basis
function and Fn(ζ) ≡ Fm=0,n(ζ). The quantities in the curly brackets
({X i

a}n,{X i
b}mn,{α}lmn) are the combined coefficients from the Fourier- and spline

expansion, i.e. the DOFs.

As a result, important changes in the variation of the energy functional, i.e. the
forces onto the DOFs, have to be made. In the original mapping the derivatives of
X1 and X2 with respect to a DOF (d/dη) are given by just one (combined) basis
function. This is because, X1 and X2 are directly calculated via the tensor-product
ansatz. The basis function obtained via this derivative would then be considered
within the force calculation. With the new mapping, however, changes for the
derivatives with respect to the flux coordinates (s, θ, ζ) and the basis coefficients
have to be made. Especially important is the fact that now both X1 and X2 are
affected by the variation in the α-coefficients.
Henceforth, calculating the derivatives with respect to the flux coordinates yields

X i
ṡ = αṡ(X i

b −X i
a) (3.5.5)

X i
ζ̇
=X i

a,ζ̇
+ αζ̇(X i

b −X i
a) + α(X i

b,ζ̇
−X i

a,ζ̇
) (3.5.6)

X i
θ̇
= αθ̇(X i

b −X i
a) + αX i

b,θ̇
. (3.5.7)

Using these results, the necessary contributions to the force terms are obtained by
varying with respect to the combined Fourier-spline coefficients:

For X i
a

∂X i

∂{X i
a}n

= [1 − α]Fn(ζ) (3.5.8)

∂X i
ṡ

∂ {X i
a}n

= −αṡFn(ζ) (3.5.9)

∂X i
ζ̇

∂ {X i
a}n

= [1 − α]Fn,ζ̇(ζ) − αζ̇Fn(ζ) (3.5.10)
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∂X i
θ̇

∂ {X i
a}n

= −αθ̇Fn(ζ) (3.5.11)

and for α
∂X i

∂ {α}lmn
= [X i

b −X i
a]Fmn(θ, ζ)Bl(s) (3.5.12)

∂X i
ṡ

∂ {α}lmn
= [X i

b −X i
a]Fmn(θ, ζ)Bl,ṡ(s) (3.5.13)

∂X i
ζ̇

∂ {α}lmn
= [X i

b,ζ̇
−X i

a,ζ̇
]Fmn(θ, ζ)Bl(s) + [X i

b −X i
a]Fmn,ζ̇(θ, ζ)Bl(s) (3.5.14)

∂X i
θ̇

∂ {α}lmn
=X i

b,θ̇
Fmn(θ, ζ)Bl(s) − [X i

b −X i
a]Fmn,θ̇(θ, ζ)Bl(s). (3.5.15)

3.5.2. The Hybrid Mapping

Due to several problematic attributes of the NSTAB-mapping within the theoretical
set-up of GVEC, which will be discussed in detail in chapter 4, an additional slightly
altered version of the NSTAB-mapping was used:

X1 = X̂1
a(s, θ, ζ) + α(s, θ, ζ) [X1

b (θ, ζ) − X̂1
a(s, θ, ζ)]

X2 = X̂2
a(s, θ, ζ) + α(s, θ, ζ) [X2

b (θ, ζ) − X̂2
a(s, θ, ζ)] .

(3.5.16)

The difference to (3.5.1) is given by the extended dependencies of X i
a on (s, θ)

denoted via the quantity X̂ i
a:

X̂ i
a(s, θ, ζ) = ∑

l,m,n

{X̂ i
a}lmnFmn(θ, ζ)Bl(s). (3.5.17)

Again, Fmn and Bl are the corresponding basis functions and {X̂ i
a}lmn is the com-

bined coefficient.

This mapping effectively represents a hybridisation between the original GVEC-
and the NSTAB-mapping. The dependency of X̂ i

a on θ, which is completely op-
tional, is implemented in the code and could eventually allow for a stronger shift in
the hybridisation towards the original GVEC mapping. However, for the analysis
performed in this thesis, no use of this dependency was necessary. Furthermore, the
test cases discussed in Sec.4 are all axisymmetric and thus, a ζ-dependency is not
included. Therefore, only the m = n = 0 mode is used for X̂ i

a, yielding X̂ i
a = X̂ i

a(s).
Thus, the difference between the NSTAB mapping and (3.5.16) is given by the
additional s-dependency in X̂ i

a. Whereas the NSTAB mapping blends the outer
boundary to the magnetic axis, we have now a blending from the outer boundary
to the centres of the individual flux surfaces. In that sense X̂ i

a(s) represents the
positions of these centres and X̂ i

a(s = 0) represents the actual magnetic axis.
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Even though the basic representation is hardly changed, the introduction of the
new dependencies heavily affects the derivatives of the mapping. The derivatives
with respect to the new mapping variables are given by

X i
ṡ = (1 − α) X̂ i

a,ṡ + αṡ(X i
b − X̂ i

a) (3.5.18)

X i
ζ̇
= X̂ i

a,ζ̇
+ αζ̇(X i

b − X̂ i
a) + α(X i

b,ζ̇
− X̂ i

a,ζ̇
) (3.5.19)

X i
θ̇
= X̂ i

a,θ̇
+ αθ̇(X i

b − X̂ i
a) + α (X i

b,θ̇
− X̂ i

a,θ̇
) . (3.5.20)

In a similar fashion there are additional dependencies arising in the force terms:

For X i
a

∂X i

∂ {X̂ i
a}lmn

= [1 − α]Fmn(θ, ζ)Bl(s) (3.5.21)

∂X i
ṡ

∂ {X̂ i
a}lmn

= [1 − α]Fmn(θ, ζ)B′l(s) − αṡFmn(θ, ζ)Bl(s) (3.5.22)

∂X i
ζ̇

∂ {X̂ i
a}lmn

= [1 − α]Fmn,ζ̇(ζ)Bl(s) − αζ̇Fmn(ζ)Bl(s) (3.5.23)

∂X i
θ̇

∂ {X̂ i
a}lmn

= [1 − α]Fmn,θ̇(θ, ζ)Bl(s) − αθ̇Fmn(θ, ζ)Bl(s) (3.5.24)

and for α
∂X i

∂ {α}lmn
= [X i

b − X̂ i
a]Fmn(θ, ζ)Bl(s) (3.5.25)

∂X i
ṡ

∂ {α}lmn
= [X i

b − X̂ i
a]Fmn(θ, ζ)Bl,ṡ(s) −X i

a,ṡFmn(θ, ζ)Bl(s) (3.5.26)

∂X i
ζ̇

∂ {α}lmn
= [X i

b,ζ̇
− X̂ i

a,ζ̇
]Fmn(θ, ζ)Bl(s) + [X i

b − X̂ i
a]Fmn,ζ̇(θ, ζ)Bl(s) (3.5.27)

∂X i
θ̇

∂ {α}lmn
= [X i

b,θ̇
− X̂ i

a,θ̇
]Fmn(θ, ζ)Bl(s) − [X i

b − X̂ i
a]Fmn,θ̇(θ, ζ)Bl(s). (3.5.28)
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3.6. Code Structure

In Fig.10 a rough schematic of the basic code structure for GVEC is shown. For
a calculation the physical-, minimization- and visualization-parameters have to be
specified at the start via a parameter file that will be read into the code. Afterwards,
the initial configuration of the system is calculated from these parameters. As de-
scribed before, splines and Fourier-basis functions are used for the discretization.

Three main choices for the initialization can be made. Either the boundary con-
figuration and the magnetic axis position, given in the parameter file, are used to
calculate a starting configuration or a configuration from a previous calculation is
read into the code (restart). Additionally, GVEC can use VMEC data files as an
input. For the original mapping this allows a restart from a VMEC calculation.
Due to the different representations in the NSTAB- and hybrid mapping, only the
boundary and axis parameters from VMEC can be used there. In general, it is
worth noting that the initial configurations for the NSTAB and hybrid mapping are
obtained via a similar blending as in their underlying representation. As a result
all initial flux surfaces are scaled versions of the boundary flux surface, thus having
the same shape. In the original GVEC-mapping, however, an elliptical form of the
inner flux surfaces can be easily initialised.

The minimizing process itself relies on three main routines, the energy- and force-
variation/evaluation and the preconditioning scheme. Preconditioning is a useful
procedure to speed up convergence. For GVEC a preconditioning scheme similar to
the one presented by S.P.Hirshman and O.Bentancourt in [8] is used.

Finally, GVEC produces output files that can be used to visualize physical and
numerical quantities of interest. Furthermore, data files containing the information
for a restart are produced.
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(+) Parameter Start(+) Restart

(+) Preconditioning

(+) Forces

Energy

(+) Restart File (+) Visualization

Parameters

(+) VMEC Input

Basis Functions

Minimizer

Figure 10: Schematic code structure of GVEC. The blocks marked by (+) had to be adapted
for the alternative mappings.

3.6.1. Adaptations in the Preconditioner

For the hybrid mapping, which includes the s-dependent quantity X̂ i
a(s, ζ), an adap-

tation of the preconditioning scheme as used in the original GVEC mapping is pos-
sible. The basic idea is to calculate the highest derivatives of the Hessian-matrix,
which are the derivatives of the force terms, collect them and average over the two
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angles (θ, ζ). This results in a 1D radial preconditioner for each Fourier-mode. A
detailed derivation of this preconditioner may be found in [6] and [8].

For the hybrid mapping, alterations in the preconditioning matrix for the forces
on X1 and X2 had to be made, so that the new preconditioner deals with the forces
on X̂1

a , X̂
2
a and α.

The radial preconditioner matrix for the force onto X i is given by

KXi

kl = ∣σmn∣
1

∫
0

⎧⎪⎪⎨⎪⎪⎩

∂X
i,[rad.]
ṡ (s)
∂ηk

DXi

ss (s)
∂X

i,[rad.]
ṡ (s)
∂ηl

+ ∂X
i,[rad.](s)
∂ηk

(SXi(s) + [m2DXi

θθ (s) +mnDXi

θζ (s) + n2DXi

ζζ ])
∂X i,[rad.](s)

∂ηl

⎫⎪⎪⎬⎪⎪⎭
ds.

(3.6.1)

Where the index i ∈ [1,2] denotes the coordinate and the indices k, l indicate the
matrix element. The quantity ∣σmn∣ acts as the norm for the Fourier-mode-(mn).
The quantities denoted by DXi

ab , with a, b ∈ [s, θ, ζ], are diffusion coefficients:

DX1

ss (s) = ⟨DX1

ss ⟩
(θ,ζ)

= ⟨
bξgξωbω

J 2

1

J
(JhX2

θ̇
)2⟩

(θ,ζ)

(3.6.2)

SX1(s) = ⟨SX1⟩
(θ,ζ)

= ⟨
bξgξωbω

J 2

1

J
(Jp

∂J
∂q1

)
2

⟩
(θ,ζ)

(3.6.3)

DX1

θθ (s) = ⟨DX1

θθ ⟩
(θ,ζ)

= ⟨
bξgξωbω

J 2

1

J
(JhX2

ṡ )
2

+ Jhb
θ

J 2
(2X2

ṡ (bθqiθ̇ + b
ζqi
ζ̇
)Gi1 +JpbθG11) ⟩

(θ,ζ)

(3.6.4)

DX1

θζ (s) = ⟨DX1

θζ ⟩
(θ,ζ)

= ⟨Jhb
θ

J 2
(2X2

ṡ (bθqiṡ + bζqiζ̇)Gi1 +Jpb
θG11)⟩

(θ,ζ)

(3.6.5)

DX1

ζζ = ⟨DX1

ζζ ⟩
(θ,ζ)

= ⟨ 1

J
bζbζG11⟩

(θ,ζ)

(3.6.6)

DX2

ss (s) = ⟨DX2

ss ⟩
(θ,ζ)

= ⟨
bξgξωbω

J 2

1

J
(JhX1

θ̇
)2⟩

(θ,ζ)

(3.6.7)

SX2(s) = ⟨SX2⟩
(θ,ζ)

= ⟨
bξgξωbω

J 2

1

J
(Jp

∂J
∂q2

)
2

⟩
(θ,ζ)

(3.6.8)

DX2

θθ (s) = ⟨DX2

θθ ⟩
(θ,ζ)

= ⟨
bξgξωbω

J 2

1

J
(JhX1

ṡ )
2

+ Jhb
θ

J 2
(2X1

ṡ (bθqiθ̇ + b
ζqi
ζ̇
)Gi2 +JpbθG22) ⟩

(θ,ζ)

(3.6.9)
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DX2

θζ (s) = ⟨DX2

θζ ⟩
(θ,ζ)

= ⟨Jhb
θ

J 2
(2X1

ṡ (bθqiθ̇ + b
ζqi
ζ̇
)Gi2 +JpbθG22)⟩

(θ,ζ)

(3.6.10)

DX2

ζζ = ⟨DX2

ζζ ⟩
(θ,ζ)

= ⟨ 1

J
bζbζG22⟩

(θ,ζ)

. (3.6.11)

The brackets ⟨⋯⟩
(θ,ζ) symbolise the average over the angles (θ, ζ). The quantities in

fraktur-font (e.g., D) denote the coefficients before the averaging is performed.

Similar to the adaptations necessary for the forces, the evaluation of the deriva-
tives of X i with respect to the basis coefficients η are the ones that have to be
treated differently for the hybrid mapping. The changes in the D-coefficients and
S are already handled by the force evaluation routine. However, the quantities
∂
∂ηk
X i,[rad.] and ∂

∂ηk
X
i,[rad.]
ṡ introduce new dependencies that have to be multiplied

onto the other coefficients. Where in the original mapping these quantities provide
a selected radial basis functions, the hybrid mapping introduces additional factors
due to the blending function. With that in mind, one can write the preconditioner
matrices for the forces onto the hybrid solution variables X̂ i

a(s, ζ) as

K
X̂i
a

kl = ∣σmn∣
1

∫
0

⟨ ([1 − α]B′k(s) − αṡBk(s))DXi

ss ([1 − α]B′l(s) − αṡBl(s))

+ [1 − α]2Bk(s) (SXi + [m2DXi

θθ +mnDXi

θζ + n2DXi

ζζ ])Bl(s)⟩
(θ,ζ)

ds.

(3.6.12)

Where the index i ∈ [1,2] denotes the coordinate and the indices k, l indicate the
matrix element. B is again the corresponding selected B-spline function. In contrast
to the original mapping, the preconditioner matrix includes mixed products of the
basis function B and its derivative B′ .

For the preconditioning of the forces onto α, the coupling between X1 and X2

has to be considered again, resulting in the combined preconditioner matrix

Kα
kl = ∣σmn∣

1

∫
0

⟨ ([X1
b − X̂1

a]B′k(s) − X̂1
a,ṡBk)DX1

ss ([X1
b − X̂1

a]B′l(s) − X̂1
a,ṡBl)

+ ([X2
b − X̂2

a]B′k(s) − X̂2
a,ṡBk)DX2

ss ([X2
b − X̂2

a]B′l(s) − X̂2
a,ṡBl)

+ [X1
b − X̂1

a]
2
Bk(s) (SX1 + [m2DX1

θθ +mnDX1

θζ + n2DX1

ζζ ])Bl(s)

+ [X2
b − X̂2

a]
2
Bk(s) (SX2 + [m2DX2

θθ +mnDX2

θζ + n2DX2

ζζ ])Bl(s)⟩
(θ,ζ)

ds.

(3.6.13)
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R. Köberl

4. Numerical Results

In this chapter numerical results for different test cases and minimization parameters
are presented and discussed. Thereby, the focus lies on the differences between the
three mappings of the magnetic field topology.

4.1. Test Cases

This section presents a compact overview of the three test cases considered for the
analysis of the different mappings for the magnetic field topology. An overview of the
application of the individual cases can be found in tab.1. All the ζ = const. surfaces
shown in this section represent results obtained using the hybrid mapping with the
optimized minimisation configuration discussed later on in this chapter. Since all
cases are axisymmetric, only the n=0 component is simulated and no discussion of
the ζ dependency nor the use of additional Fourier modes in toroidal direction will
be given.

Tab. 1: Overview Test Cases

Name Initialisation Investigated Issues Section Mappings

elliptic tokamak
equilibrium axis
arbitrary axis

magnetic axis
radial resolution

4.2
4.4

original, NSTAB,
hybrid

TOKSY VMEC-input
X i
a boundary condition

near axis asymptotic
4.3.2
4.3.1

original, hybrid

TOKX arbitrary axis X i
a boundary condition 4.3.2 original, hybrid

4.1.1. Elliptic Tokamak

Figure 11: elliptic tokamak 3D outer boundary

The elliptic tokamak is the simplest test case used in this thesis. As the name
suggests the outer boundary is given by an elliptic doughnut form (comp.Fig.11).
Due to its highly symmetric form, the innermost up to the outermost flux surfaces are
all described by an elliptical form. Although this test case is rather far from realistic
geometries, it still provides insight into parameter-influences onto the minimization
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process. Due to its simplicity, accurate results for the equilibrium configuration are
expected. In Fig.12 the necessary physical quantities describing the test case are
plotted. Note, that quantities linear in the normalized toroidal flux will show a
quadratic dependency in s (Φ ∼ s2).

(a) ζ = const. plane (b) toroidal flux

(c) pressure-profile (d) iota-profile

Figure 12: Physical quantities prescribed for the elliptic tokamak test-case. In (a) one can see
the circular s = const. flux surface contours and the θ∗ = const. straight field line angle contours

for a ζ = const. surface. In (b) the profile of the toroidal flux Φ is plotted. In (c) and (d) the
corresponding pressure P and iota ι profiles in dependence of the flux surface label s are shown.
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4.1.2. D-Shaped Tokamak: TOKSY

Figure 13: TOKSY 3D outer boundary

The D-shaped tokamak case provides an intermediate complexity for testing the
influence of different minimization parameters. The outermost boundary already
differs from the innermost flux surfaces which again takes the form of a simple el-
lipse. For mappings of the magnetic field topology that rely on the blending between
the outer and inner flux surfaces, like the NSTAB- and hybrid mapping, such be-
haviour is of particular interest.

Furthermore, the input for this test case is provided by VMEC-data. The rotational
transform ι- and pressure-profiles are rather complex and described by high-order
polynomials. A visualization of this setup is give in Fig.14.
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(a) ζ = const. plane (b) toroidal flux

(c) pressure-profile (d) iota-profile

Figure 14: Physical quantities prescribed for the TOKSY test-case. In (a) one can see the
circular s = const. flux surface contours and the θ∗ = const. straight field line angle contours for a

ζ = const. surface. In (b) the profile of the toroidal flux Φ is plotted. In (c) and (d) the
corresponding pressure P and iota ι profiles in dependence of the flux surface label s are shown.

4.1.3. Tokamak with a Complex Boundary: TOKX

Figure 15: TOKX 3D outer boundary
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The TOKX-tokamak provides a rather complex test case, for its outer boundary
has to be parametrized by a high number of poloidal modes which are necessary to
describe a flux surface that is close to an X-point. This causes a significant change
of the form of the flux surfaces from the outer boundary towards the magnetic axis.
Again, for mappings like the NSTAB and hybrid one, which include the blending
function, this is of particular interest.

(a) ζ = const. plane (b) toroidal flux

(c) pressure-profile (d) iota-profile

Figure 16: Physical quantities prescribed for the TOKX test-case. In (a) one can see the
circular s = const. flux surface contours and the θ∗ = const. straight field line angle contours for a

ζ = const. surface. In (b) the profile of the toroidal flux Φ is plotted. In (c) and (d) the
corresponding pressure P and iota ι profiles in dependence of the flux surface label s are shown.
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4.2. Treatment of the Magnetic Axis

As mentioned before, the magnetic axis is the centre of the nested flux surfaces. It
is a surface of degenerate volume zero and thus one has to deal with the arising
singularity at s = 0 when using a polar coordinate system. 36

Implementation of the mapping as used in the NTSAB code 37 into GVEC proved
rather problematic with respect to the representation and positioning of the mag-
netic axis. This was already observed for the simple test case of the elliptic tokamak.
A comparison between the original GVEC mapping (OM ) and the alternative map-
ping as used within the NSTAB code 38 (NM ) showed that the position of the
magnetic axis was always delayed for the NM with respect to the OM for toroidal
configurations. It appears that the forces onto the axis are dominated by non-local
contributions from outer flux surfaces which prevents proper convergence (see Fig.18
and Fig.17). This non-local influences are especially evident, when the magnetic axis
is initialised at the converged position, obtained from previous calculations. For the
OM this initialisation results in a rapid convergence of the total energy and thus
an equilibrium configuration. In the NM, however, the non-local force contributions
onto X i

a result in an initial shift of the axis which then is reversed during further it-
erations. This shift prevents a convergence of the NM within reasonable calculation
times (see Fig.20). The reason for this behaviour might be found in the boundary
condition for the magnetic axis. As discussed by Hirshman and Whitson [10], it is
required that the radial variation of the (m=0,n)-mode of the X i-coordinate must
vanish at the axis when the flux label is proportional to the volume of the flux
surface 39:

lim
s→0

(∂X
i,0n

∂s
(s, θ, ζ)) = 0. (4.2.1)

This requirement is problematic since in the NM the radial derivative of X i is
dominated by the variation of the parameter α. The weight of (X i

b −X i
a) in general

is non-zero and the slope of α in the radial direction has to be non-zero as well for it
linearly increases from 0 to 1 in the radial direction. In the NSTAB code this problem
is circumvented by introducing an axis residue condition.40 This condition treats the
variation of the energy with respect to the DOFs of the axis by partial integration
in s and θ. Extracting the singularity contribution in a residual term, which treats
the volume s = 0 up to a close flux surface at s0 > s = 0, allows for proper treatment
of the outer regions and the calculation of the near axis region by imposing several
simplifications onto the residual contribution. For the implementation into GVEC,
this approach is unfit. Therefore, a slightly altered version of the NM is introduced,
the previously discussed hybrid mapping (HM ). To recapitulate, the basic idea is to
introduce a radial dependency in the X i

a parameter. As a result, the actual magnetic
axis is given by the X̂ i

a(s = 0) contribution and the radial blending between edge
and axis is now a blending between the edge and fictitious centres of the individual

36see Hirshman and Whitson Phys.Fluids 1983, 3557f [10] and Taylor Comp.Phys. 1994, 410 [2]
37see Taylor Comp.Phys. 1994 [2]
38see Taylor Comp.Phys. 1994, 409 [2]
39see Hirshman and Whitson Phys.Fluids 1983, 3558 [10]
40see Taylor Comp.Phys. 1994, 410f [2]
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flux surfaces. This maintains the coupling of the X1 and X2 coordinates as well as
the coupling of the edge to the central region, but also allows the fulfilment of the
asymptotic behaviour (4.2.1).

(a) initial 2 ⋅ 106 iterations (b) restart with refined grid

Figure 17: Total energy WMHD3D for the configuration of the elliptic tokamak. The initial
position for the magnetic axis was displaced in X1 and X2. The continuous blue lines show the
energy for the OM , the dashed orange lines the energy for the NM . In (a) the energy evolution

is shown for the initial 2 million iterations. In (b) the energy evolution is shown after the
calculation was restarted with a refined radial grid from a previous calculation were 4 million

iterations were performed.

(a) initial configuration (b) configuration after
6 ⋅ 106 iterations

(c) near-axis configuration after 6 ⋅ 106

iterations

Figure 18: A ζ = const. plane for the elliptic tokamak. The circular lines represent s = const.
surfaces the others represent θ = const. surfaces. The orange grid shows the configuration as

calculated with the NM . The blue grid shows the OM solution. A total of 6 million iterations
were performed for both variants of the mapping. The initial position of the magnetic axis was

displaced in both relevant coordinates (X1, X2). Although, the overall configuration as shown in
(b) is almost identical for both calculations, the near-axis region in (c) exhibits discrepancies

between the two solutions.
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(a) initial 2 ⋅ 106 iterations (b) grid refined 2 ⋅ 106 iterations

Figure 19: Total energy WMHD3D for the configuration of the elliptic tokamak. The initial
position for the magnetic axis is set to a previously calculated converged position. The

continuous blue line shows the energy for the OM . The dashed orange line the energy for the
NM . In (a) the energy evolution is shown for the total 2 million iterations. In (b) the final
iteration steps are shown to demonstrate the difference in energy due to the different axis

positions. Again, the energy of the NM is higher.

(a) initial configuration (b) 5 ⋅ 104 iterations (c) 2 ⋅ 106 iterations

Figure 20: A ζ = const. plane for the elliptic tokamak. The circular lines represent s = const.
surfaces the others represent θ = const. surfaces. The orange grid shows the configuration as

calculated with the NM . The blue grid shows the OM solution. A total of 2 million iterations
were performed for both variants of the mapping. The magnetic axis was initialised at a

previously calculated converged position. It can be seen, that for the NM the axis is initially
pulled away from the equilibrium position and then approaches it again with further iterations.

4.2.1. Improvements with the Hybrid Mapping

To validate the additionally introduced dependencies in the hybrid representation,
the elliptic tokamak configuration as in Sec.4.2 was used for testing the minimisa-
tion process. Especially the initialisation at the equilibrated position of the magnetic
axis is of interest. Again, a high number of iterations was performed to see whether
or not the axis and total energy converges onto the same position/value as in the
OM. Although, preconditioning with the previously described approach is possible
for the HM it was not used in these calculations for the sake of comparability to the
NM. Furthermore, for all calculations with the HM, X̂ i

a just includes the m = n = 0
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mode. The energy evolution with respect to the number of iterations can be found
in Fig.21. There, a comparison between the three different version for the mapping
of the magnetic field topology can be seen. The quite different energy evolutions
can be explained with the different initial configurations. Although, every calcula-
tion run was initialised with the same axis position and outer boundary, the overall
initialisation had to be different due to the different approaches for the mapping.
However, as can be observed, the final total energy of the hybrid mapping and the
the OM are in good agreement.

Similarly, it is observable that the magnetic axis now stays at the initialised equi-
librium position. In Fig.22 the corresponding visualisation results for the near-axis
region are shown for different iteration steps. Again, a good agreement between the
OM and the HM is present.

Due to this improvements and the complication to achieve satisfying equilibrium
configurations with the NM within GVEC, all further calculations and analysis are
performed with the HM.

(a) total 2 ⋅ 106 iterations (b) final iterations

Figure 21: Total energy WMHD3D for the configuration of an elliptic tokamak. The initial
position for the magnetic axis is set to a previously calculated converged position. The continuous
blue line shows the energy for the OM . The dashed orange line the energy for the NM and the

dashed-dotted green line the energy obtained via the hybrid mapping. In (a) the energy evolution
is shown for all 2 million iterations. In (b) the final iteration steps are shown to demonstrate the

good agreement between the hybrid mapping and the OM in comparison to the NM.
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(a) initial configuration (b) 5 ⋅ 104 iterations (c) 2 ⋅ 106 iterations

Figure 22: A ζ = const. plane for the elliptic tokamak. The circular lines represent s = const.
contours the others represent θ = const. contours. The orange grid shows the configuration as
calculated with the HM. The blue grid shows the OM solution. A total of 2 million iterations

were performed for both variants of the mapping. The magnetic axis was initialised at a
previously calculated converged position. The dependence of X̂i

a on s resolves the previous
problems with the non-local force contributions. After a suitable number of iterations, the results

for the HM and the OM are in good agreement.

An additional advantage of the HM is, as previously discussed, the straight forward
adaptation of the preconditioning scheme already used in the OM. To demonstrate
the acceleration of the convergence towards the equilibrium configuration due to
preconditioning, a comparison between a calculation with and without the precon-
ditioner was performed for the elliptic tokamak. The results are shown in Fig.23.
Clearly a drastic improvement of the energy convergence can be observed. Note,
that the iteration-axis in Fig.23 uses a logarithmic scale.

Figure 23: Comparison of the energy evolution for the elliptic tokamak test case between the
minimisation using the HM with and without the preconditioner. Drastic improvement in terms

of energy-convergence can be observed.

4.3. Influence of Boundary Conditions

An essential aspect of the hybrid mapping is, that boundary conditions (BC) with
respect to the outermost (prescribed) flux surface and the magnetic axis need to be
specified. This section focuses on the analysis of the influence of these BC onto the
minimisation process for the HM and the corresponding results.

55/ 75



4.3 Influence of Boundary Conditions R. Köberl

4.3.1. Improving Near Axis Asymptotic Behaviour

One important aspect is the asymptotic behaviour of the potential λ in the near
axis region. The requirement that has to be fulfilled for λ at all times is the per
definition arising periodicity. However, as discussed by Hirshman and Whitson [10],
the near axis asymptotic of λ can be approximated for the OM in such a way that
the derivatives of its Fourier amplitudes with respect to the angle θ vanish at the
magnetic axis.41

Calculations with the HM quickly showed, that this zero derivative of λ in θ did not
allow for the proper representation of the flux surfaces near the magnetic axis for
the TOKSY and TOKX case. The initialisation with the HM carries the form of
the outermost flux surface all the way towards the axis due to the blending. When
the same BC as in the OM for λ are used, this means that the parameter α has to
perform a decoupling between the modes from the boundary and the modes in the
near axis region. However, α itself vanishes at the axis, thus, no decoupling occurs
within reasonable iteration numbers.

In the book by F. Bauer et al. [1] where a version of the NM is used, no fur-
ther restriction of the potential term is given apart from the periodicity42 which is
simply realized by excluding the m = 0 mode of the Fourier expansion.

Therefore, several approaches for the BC on λ were tested in the TOKSY case
to explore their influence onto the near axis asymptotic. The first choice was natu-
rally the BC used within the OM, which are Dirichlet-BC. These set λ to zero at the
magnetic axis. Additionally, Neumann-BC, which require the derivative of λ with
respect to s to vanish near the axis, were applied. Finally, the choice of open BC,
following F. Bauer et al. [1], was used. To visualize the behaviour of λ towards the
axis, the 2D-flux coordinate space (s,θ) was used. The corresponding plots can be
seen in Fig.24.

It becomes quite obvious, that the original Dirichlet BC influence just a small area
close to the axis forcing λ to vanish. Since the asymptotic behaviour enforced
through this is a direct result of the mapping choice, it can clearly be said that this
approach is wrong. Especially because the flux surface shape close to the axis in
this case is stuck in the initialised state (see Fig.24b).

For the Neumann BC, non-zero values at the axis arise for λ, this already results in
the desired decoupling of modes such that the flux surfaces become ellipse-shaped
(see Fig.24d). Still, the requirement for a zero derivative in s of λ can not be math-
ematically supported.

Applying open BC seems to be the best choice in the case of the HM. The de-
sired decoupling and correct representation of the flux surfaces near the axis can

41see Hirshman and Whitson Phys.Fluids 1983, 3558 [10]
42see Bauer et al. A Computational Method in Plasma Physics 1978, 9 [1]

56/ 75



4.3 Influence of Boundary Conditions R. Köberl

be achieved (see Fig.24f), and no significant numerical errors due to the restriction-
less minimisation seem to occur. A comparison of the innermost flux surfaces for
the more complex TOKX case shows, that the same problematic occurs as in the
TOKSY case, but also, that the unrestricted evolution of λ improves the near axis
representation (see Fig.25). Nevertheless, achieving the decoupling from the com-
plex boundary shape seems to be more difficult in this case.

An explanation for the difference between the behaviour of λ in the OM and the
HM can be also given when considering the straight field line angle θ∗. Since this
quantity is composed of the angle θ plus the potential λ, the same equilibrium so-
lution can be obtained for a given geometry even if θ and λ are not the same for,
e.g., two different mappings. Only the sum of those two variables is of importance
and should yield the same result in the final equilibrium solution. Exactly this is
the case for the OM and the HM as can be seen in Fig.26. The θ contours are quite
different but the θ∗ contours are the same.

As a conclusion, one can see that the contribution of the potential term λ near
the axis is essential for the HM to achieve the correct ellipse-like shape expected
for the innermost flux surfaces. The decoupling from modes of the edge can not be
achieved by α alone.
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(a) Dirichlet BC: λ (b) Dirichlet BC: flux surfaces

(c) Neumann BC: λ (d) Neumann BC: flux surfaces

(e) open BC: λ (f) open BC: flux surfaces

Figure 24: Value of the potential λ on a ζ = const. surface and flux surfaces for s ∈ [0,10−2] for
the TOKSY test case using different BC for λ at the magnetic axis (s=0).
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(a) Dirichlet BC (b) open BC

Figure 25: Flux surfaces for the TOKX test case for s ∈ [0,10−2] using different BC for λ. The
decoupling from the edge can be improved but not fully achieved by the open BC in (b).

(a) θ − contours (b) θ∗ − contours

Figure 26: Comparison between the θ = const. (black and red) and θ∗ = θ + λ = const. (blue and
orange) contours for the TOKSY test case. The black and blue lines belong the the solution of

the OM and the red and orange ones to the solution of the HM.

4.3.2. X̂ i
a at the outermost flux surface

As discussed in Sec.4.2, the introduction of the hybrid mapping with variable X̂ i
a(s)

was done to allow for the correct asymptotic behaviour (4.2.1). Although the near
axis asymptotic is, thus, achievable, the question how X̂ i

a(s) has to behave at the
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outer most flux surface remains. While for the NSTAB mapping X i
a is just a con-

stant value for a ζ = const. surface and thus defined over the whole regime, X̂ i
a

shows some degree of contingency at the outermost flux surface. This is due to the
blending function (3.5.16) which cancels the contribution of X̂ i

a at s = 1. X̂ i
a can

take any value and will not influence the coordinate value X i(s = 1, θ, ζ). Hence,
the question whether some restrictions onto this variable are necessary at the outer-
most flux surface, since arbitrariness can prove rather problematic for minimisation
algorithms.

One approach is to force the X̂ i
a variable to take the value of the m = 0 mode

in θ of the boundary X i
b, i.e. prescribe Dirichlet BC. Since X̂ i

a was used without the
dependence on θ, such BC could enforce some consistency. The m = 0 mode in θ of
X i
b is the only contribution on a ζ = const.-surface that would survive an integration

over one period in θ. Under this consideration it could be a suitable restriction for
X̂ i
a.

For the elliptic tokamak and the TOKSY case, the Dirichlet BC resulted in a proper
representation of the equilibrium configuration. A comparison of the equilibrium
results with the OM and the HM for the TOKSY case can be seen in Fig.27. Cal-
culations performed for the TOKX case, however, showed that Dirichlet-type BC
for X̂ i

a(s = 1) are problematic for such an asymmetric geometry. In Fig.30 one can
observe that this results in oscillations for the θ∗ lines at the edge. This again causes
a breakdown of the mapping near the edge. Visualizing X̂ i

a(s) (see Fig.28) for both
the TOKSY and TOKX case confirms the result, that Dirichlet BC cause drastic
behaviour near the edge and thus, are unfit.

A Neumann BC would be less restrictive. Whilst this might enforce some degree
of smoothness towards the edge, no solid argumentation for such a restriction is at
hand. Comparing results between a Neumann BC and open BC at the s = 1 for X̂ i

a

shows, that the enforced zero-derivative in s only creates smoothness in a negligible
area but drastically affects the near edge dependence (see Fig.29). In the TOKSY
case no influence of the X̂ i

a(s = 1) BC onto the equilibrium configuration can be
observed. In the complex TOKX case, however, the open BC results in different
flux surface shapes and θ∗ = const.-contours near the edge when comparing the OM
solution to the HM solution (see Fig.31). Especially the region near the X-point is
affected by this discrepancy. The central region shows good agreement between the
two mappings. It is evident, that with the HM the influence of the outer boundary
is carried further inwards. However, due to its high complexity, the TOKX case may
need a significant increase in radial and/or angular resolution to achieve a robust
equilibrium for both the OM and the HM. Especially due to the rapid change of
the flux surface shape towards the X-point. Additionally, this increase in resolution
would result in much higher computation times.

In conclusion, an open BC for X̂ i
a at s = 1 seems to provide the best choice.
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Figure 27: Comparison between the equilibrium configuration obtained with the HM (orange)
and the OM (blue) for the TOKSY test case. A total of 106 iterations were performed. Both

mappings present the same equilibrium configuration. The only discrepancy is close to the
magnetic axis, but within the fluctuation range of its position. No influence of the Dirichlet BC

for X̂i
a is observable for the θ∗ = const.-lines

(a) TOKSY (b) TOKX

Figure 28: Influence of the BC at s = 1 on the radial dependency of X̂1
a(s), open BC (solid blue

line) and Dirichlet BC (dashed black line).
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Figure 29: Influence of the BC at s = 1 on the radial dependency of X̂1
a(s) for the TOKSY test

case, open BC (solid blue line) and Neumann BC (dashed black line).

(a) ζ = cons.-plane for the TOKX test
(b) Oscillations of the θ∗0const.-lines at the outer

boundary.

Figure 30: Configuration of the TOKX case using a Dirichlet BC for X̂i
a. The influence of the

BC is visible at the edge, where the θ∗ = const.-lines start to oscillate.
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(a) constant flux contours for a
ζ = cons.-plane

(b) constant flux- and θ∗-contours for a
ζ = cons.-plane

Figure 31: Comparison between the equilibrium configuration obtained with the OM (blue) and
the HM (orange) with open BC for X̂i

a. Differences are mainly present in the region near the
X-point and in the θ∗ = const. contours.

4.4. Radial and Spectral Resolution

A crucial aspect when using GVEC for equilibrium calculations is the appropriate
choice of radial and spectral resolution. The first is chosen via the radial grid-size
whereas the latter can be improved by using more modes in the angular directions.
Therefore, the equilibrium energy and the equilibrium axis position of the OM and
the HM were calculated for different radial grid-sizes and numbers of poloidal modes.
The test case used is the elliptic tokamak. The minimisation parameters were the
same for the two mappings to achieve a good comparability. For the solution vari-
ables this means that, e.g., the same number of modes was chosen. As an example,
if eight poloidal modes are used this means that for the OM X1, X2 and λ are con-
structed with these. For the hybrid mapping, however, α and λ would be described
via eight modes, not necessarily X1 and X2.

In Fig.32 the energies obtained with different resolutions are plotted. Each point
represents the energy value after 2 ⋅ 105 iterations. These iterations were performed
after restarting from the solution using a coarse equidistant radial grid of five ele-
ments. This initial calculation itself was performed for 4 ⋅ 105 iterations to ensure a
suitable equilibrium with the chosen parameters.

One of the obvious results is that the number of necessary poloidal modes is quite
high given the simplicity of the test case, since the outermost flux surface is de-
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scribed by only the m = 0 and m = 1 poloidal mode. However, no essential gain in
accuracy is given after a certain threshold, which can be seen when comparing the
calculations using eight and twelve poloidal modes. The HM appears to be more
sensitive to the mode number beneath m = 8.

For increasing radial grid size it can be observed, that the calculated energies con-
verge onto a common value. The number of radial grid-elements used here were 5,
12, 21, 42 and 60 with an equidistant grid in s.

Figure 32: Minimum total energy of the elliptic tokamak test case for the OM and the HM
using different radial grid-sizes NG and a different number of poloidal modes Nm.

Fig.33 shows the influence of the resolution onto the position of the magnetic axis.
Due to the symmetry of the test case, only X1

a(s = 0) is plotted, X2
a(s = 0) is always

zero.
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Figure 33: Position of the magnetic axis X1
a(s = 0) of the elliptic tokamak test case for the OM

and the HM using different radial grid-sizes NG and a different number of poloidal modes Nm.
The coordinate X2

a is always numerical zero in this case.

For the OM one can observe that the position of the magnetic axis converges quickly
onto the same position with increasing radial grid size and is almost independent of
the number of poloidal modes. For the HM the mode number again exposes a more
drastic influence beneath m = 8. Furthermore, it can be seen, that the position of
the magnetic axis converges at a larger number of radial grid elements for the HM.
Only above 21 grid elements the change in the axis position becomes comparatively
small. Whereas, for the OM this can already be said for about 12 radial grid
elements. Nevertheless, this test case suggests, that for an adequate representation
of the magnetic axis a surprisingly high spectral and radial resolution is required
for the HM. In the appendix A. one can find a visualization of the evolution of the
axis position with increasing iteration number for the different resolutions used in
Fig.33.
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5. Summary and Conclusion

Starting from the fundamental derivations for the framework of ideal MHD, the
theoretical setup for the 3D-MHD equilibrium code GVEC was introduced and ex-
plained. In Sec.2.1 a detailed derivation of the ideal MHD equations is given and
their validity regime is discussed. The necessary assumptions for ideal MHD can
be summarized with the constraints of high collisionality, small ion gyro-radius and
small resistivity for the described plasmas. Together with the low frequency Maxwell
equations, the ideal MHD equations form a closed system. MHD equilibria are cal-
culated by solving the force-balance equation ∇P = J ×B, where P is the pressure,
J the current density and B the magnetic field.

In Sec.2.2 the important concept of flux coordinates was discussed. In the core of a
magnetically confined plasma, assuming nested closed flux surfaces, they drastically
simplify the treatment of the corresponding equations by depicting the magnetic
field B and/or the current density J as straight lines. Flux coordinates usually
consist of a radial like flux label and two angular coordinates. For GVEC these are
(s, θ∗, ζ), where s is a flux label proportional to the square root of the toroidal flux,
θ∗ is the straight field line angle and ζ the toroidal angle. GVEC itself calculates
equilibrium configurations by minimizing the total ideal MHD-energy using a gra-
dient descent method. An additional important assumption implied in the code is
the existence of nested flux surfaces.

In this work, an alternative mapping of the magnetic field topology, based on the
NSTAB computer code [2], was implemented and tested for GVEC. This was done
in close cooperation with the Max-Planck Institute for Plasma Physics through
Dr. Ing. Florian Hindenlang. The geometry of the magnetic flux surfaces is expressed
by a mapping of the flux coordinates onto real space coordinates (X1,X2, ζ). The
idea behind the NSTAB mapping is to express X i via a blending function of the
outermost flux surface X i

b and the magnetic axis X i
a using a generalized radius α,

which couples the X1 and X2 coordinates. For the new variables the discretization
features of GVEC are kept, which use B-Splines in radial direction and Fourier-
modes in the periodic angular directions.

As demonstrated in the numerical results, this NSTAB mapping fails to solve a
simple elliptic tokamak case in the region of the magnetic axis. Therefore, an addi-
tional mapping, hybridising the original and the NSTAB mapping, was introduced,
by adding a radial dependency to X i

a (denoted by the variable X̂ i
a(s)), which solved

the problem of the axis region. The Hybrid mapping allowed to adapt the existing
preconditioning scheme leading to faster convergence.

The influence of different boundary conditions onto the final equilibrium solution
was analysed for the hybrid mapping using several test cases of increasing complex-
ity. Open boundary conditions for λ and the new variable X̂ i

a proved best, especially
for complex boundary shapes, where other choices may lead to a breakdown of the
mapping. In the original mapping of GVEC, the variable λ vanishes at the mag-
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netic axis, whereas for the hybrid mapping, the open BC was found to be important.
Since λ plays the role of a reparametrization of the angle θ, a non-vanishing BC al-
lowed to decouple the shape of the inner flux surfaces from the boundary shape, and
therefore allowing the expected elliptic shape in the near axis region. Nevertheless,
in the case of the complex boundary shape, a high number of iterations was still
required.

Finally, the influence of the radial and spectral resolution using the original and
the hybrid mapping were investigated. For both, the total energy converges onto a
very similar value with increasing spectral mode number and radial grid size. The
hybrid mapping is more sensible regarding the spectral resolution. The magnetic
axis too is placed similarly, although, the original mapping shows less sensitivity
with regards to the tested parameters.

No immediate improvement through the alternative mappings with regards to the
original one can be observed for the three tested cases. The NSTAB version heav-
ily relies on the special treatment of the near axis region and therefore is unfit for
GVEC. The hybrid mapping performs well for the simple and intermediate bound-
ary test cases and is comparable to the original mapping. For the test case with a
complex boundary shape, however, discrepancies between the original and the hy-
brid mapping occur. The underlying edge-centre blending of the hybrid mapping
becomes quite evident in this case and requires a careful choice of the boundary con-
ditions. A distinguishing feature allowing to classify the quality of the equilibrium
solution would be the local force balance, which is left for future work.

The question whether perturbations could be calculated more easily with the alter-
native description, which motivated this thesis, remains. However, it is questionable
if calculations with perturbed systems are even meaningful, unless a clear statement
for the higher or equivalent quality of the unperturbed equilibrium solution of the
hybrid mapping in comparison to the original one can be made.
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A. Convergence of the Magnetic Axis Position

In this appendix one can find a visualization of the position of the magnetic axis
over the iteration number for the three different test cases introduced in Sec.4. For
the hybrid mapping the suited boundary conditions discussed in Sec.4.3 were used.
The results presented in Fig.36 - 41 correspond to the individual points shown in
Fig.33.

Figure 34: Position of the magnetic axis X1
a over the iteration number for the TOKSY tokamak

test case using the original mapping (blue-solid) and the hybrid mapping (orange-dashed) for
NG = 30 radial grid elements and Nm = 11 poloidal Fourier modes.

(a) (b)

Figure 35: Position of the magnetic axis X1
a and X2

a over the iteration number for the TOKX
tokamak test case using the original mapping (blue-solid) and the hybrid mapping

(orange-dashed) for NG = 50 radial grid elements and Nm = 15 poloidal Fourier modes.
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(a) (b)

(c) (d)

(e)

Figure 36: Position of the magnetic axis X1
a over the iteration number for the elliptic tokamak

test case using the hybrid mapping with different radial resolutions and Nm = 4 poloidal Fourier
modes. NG is the number of radial grid elements.
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(a) (b)

(c) (d)

(e)

Figure 37: Position of the magnetic axis X1
a over the iteration number for the elliptic tokamak

test case using the hybrid mapping with different radial resolutions and Nm = 8 poloidal Fourier
modes. NG is the number of radial grid elements.
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(a) (b)

(c) (d)

(e)

Figure 38: Position of the magnetic axis X1
a over the iteration number for the elliptic tokamak

test case using the hybrid mapping with different radial resolutions and Nm = 12 poloidal Fourier
modes. NG is the number of radial grid elements.
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(a) (b)

(c) (d)

(e)

Figure 39: Position of the magnetic axis X1
a over the iteration number for the elliptic tokamak

test case using the original mapping with different radial resolutions and Nm = 4 poloidal Fourier
modes. NG is the number of radial grid elements.
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(a) (b)

(c) (d)

(e)

Figure 40: Position of the magnetic axis X1
a over the iteration number for the elliptic tokamak

test case using the original mapping with different radial resolutions and Nm = 8 poloidal Fourier
modes. NG is the number of radial grid elements.
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(a) (b)

(c) (d)

(e)

Figure 41: Position of the magnetic axis X1
a over the iteration number for the elliptic tokamak

test case using the original mapping with different radial resolutions and Nm = 12 poloidal
Fourier modes. NG is the number of radial grid elements.
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