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Abstract

This thesis will take a thorough look at the generalized dynamic factor model.

Under this model the observable vector process {Xt} is split into two non-

observable vector processes {χt} and {ξt}, the common and the idiosyncratic

component. The common component is driven by an underlying q-dimensional

white noise vector process {ut} which is common to all components of {χt}.
Compared to other models in the area of dynamic factor models, this model

allows for correlation of the idiosyncratic component across time and sections

and is based on an infinite number of sections, making it suitable for analyzing

high-dimensional vector processes. This thesis focuses on two main results,

namely the characterization of the generalized dynamic factor model via the

eigenvalues of the spectral density corresponding to the observable vector pro-

cess and the consistent estimation of the common component in the population

case as well as in the sample case.
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List of Acronyms and Symbols

N = {1, 2, . . .}
A complex conjugate of matrix A ∈ Cq×r

A′ transpose of matrix A ∈ Cq×r

Aij entry in the i-th row and the j-th column of matrix A ∈ Cq×r

pi or (p)i i-th entry of vector p ∈ Cq

Re(X) real part of X ∈ C
Im(X) imaginary part of X ∈ C
Iq identity matrix of dimension q × q
A > 0 matrix A is positive definite

A ≥ 0 matrix A is semi-positive definite

N (µ,Γ) normal distribution with mean µ and covariance Γ

P = (Ω,F ,P) probability space on Ω with σ-algebra F and probability

function P

L2(P ,C) linear space of all complex-valued, zero-mean, measurable

and square-integrable with respect to the Lebesgue measure

random variables on (Ω,F ,P)

span(Q) for Q ⊂ L2(P ,C) minimum closed linear subspace of L2(P ,C)

containing Q

x ⊥ y x and y are orthogonal to one another

Z ∼ D random variable Z follows distribution D
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1 Introduction and Motivation

Over the past few decades more and more data sets are being collected and

therefore their analysis is becoming increasingly important. A dominant class

of such data sets consists of the multivariate time series, i.e. information across

time and sections, such as, for example, the returns of different shares. There

are good tools and models to analyze the isolated univariate time series, how-

ever the components of the time series are intercorrelated and comprise infor-

mation that would go to waste if the components of the time series would be

investigated on their own. We now take a look at same concepts for modelling

such structures and discuss their weaknesses. A very powerful model is the

following.

The n-dimensional stationary zero-mean vector process {Xt} follows a vector

autoregressive model of order p, short VAR(p), if

Xt =

p∑
j=1

ΦjXt−j + εt,

where Φj is an (n× n)-matrix for j ∈ {1, . . . , p} and {εt} is an n-dimensional

white noise vector process, i.e. E(εt) = 0,Var(εt) = Γ,Cov(εt, εt−j) = 0 for any

t ∈ Z and any j ∈ Z \ {0}, [1, p.27]. There are good methods to analyze

process {Xt} under such a model, i.e. the Φj’s can be estimated via the Yule-

Walker equations. However, this approach becomes impractical for large n,

since the parameters to estimate also grow quadratically with respect to n.

A better suited approach would be the use of factors. Recall that a static
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1 Introduction and Motivation

q-factor model for an n-dimensional random variable X with E(X) = 0 and

Var(X) = Γ, where q < n holds if X can be written as

X = AZ + ε,

where Z = (z1, . . . , zq)
′ is an unobservable q-dimensional zero-mean random

vector with Var(Z) = Iq, A is a constant (n × q)-matrix and ε is an n-

dimensional zero-mean random variable with a diagonal covariance matrix such

that E(Zε′) = 0, [2, p.353f].

In 1977 Sargent and Sims introduced the so-called index model. This model

can be seen as an extension of the factor model from the random variable

case to the vector process case. Likewise, this model relies on an unobservable

stationary common q-dimensional vector process {Zt} in the following way

Xt = A(L)Zt + εt,

where A(L) =
∑∞

k=−∞AkL
k is one-sided, i.e. Ak = 0 for k < 0 and where

zit1 ⊥ εjt2 for any t1, t2 ∈ Z and any i, j ∈ {1, . . . , n} as well as εit1 ⊥ εjt2
for any t1, t2 ∈ Z, i, j ∈ {1, . . . , n} with i 6= j and εit1 ⊥ εit2 for i ∈
{1, . . . , n}, t1, t2 ∈ Z and t1 6= t2, according to [3]. The orthogonality of

{εt} at any lead and lag is a serious restriction, which will be dropped in the

generalized dynamic factor model; together with furthermore allowing for in-

finitely many sections this model ”generalizes” the index model. The main

goal of this thesis is to introduce and discuss results concerning the general-

ized dynamic factor model proposed by Forni, Lippi, Hallin and Reichlin in [4]

and [5].
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2 Preliminaries

The following chapter is a preparatory one. Fundamental definitions surfacing

when it comes to time series analysis such as stationarity, covariance function,

spectral density are recalled and their properties discussed. Then, the dynamic

eigenvalues and their corresponding dynamic eigenvectors are introduced. Fur-

thermore, the resulting dynamic principal components are defined and their

use is motivated. Lastly, results and theorems with importance for subsequent

chapters are given.

2.1 Multivariate time series

Definition 2.1. An n-variate stochastic process is a family of n-dimensional

random vectors {Xt : t ∈ T}, where Xt = (x1t, . . . , xnt)
′ and xit is defined on a

common probability space (Ω,F ,P) for i ∈ {1, . . . , n} and t ∈ T . See [6, p.8].

Remark. A typical choice for T are the integers Z, in this thesis too. From

now on only {Xt : t ∈ Z} is considered. The term (n-variate stochastic) vector

process will be used interchangeably with the term multivariate time series.

Furthermore, {Xt : t ∈ T} will be abbreviated as {Xt}. See [6, p.8f].

Suppose now that second order moments for the vector process {Xt} exist, i.e

E(x2it) <∞ for all i ∈ {1, . . . , n}, t ∈ Z. The second order properties are then

specified by the mean vector

µt = E(Xt) = (E(x1t), . . . ,E(xnt))
′ = (µ1t, . . . , µnt)

′,

3



2 Preliminaries

and the covariances

Γ(t+ h, t) = E((Xt+h − µt+h)(Xt − µt)′) = Γij(t+ h, t)ni,j=1,

see [6, p.402f].

Even though in practice real valued time series are primarily investigated, it

makes sense to develop the theory more generally by including the complex

numbers. In particular this makes sense when it comes to the Fourier trans-

formation in which we inevitably have to leave the field of real numbers.

Definition 2.2. If second order moments exist for the stochastic vector process

{Xt}, it is said to be (weakly) stationary if

• E(Xt) = m, ∀t ∈ Z,

• Γ(t+ h, t) = Γ(s+ h, s) =: ΓX(h), ∀s, t, h ∈ Z.

The latter function is also called covariance (matrix) function of process {Xt},
see [6, p.12,402f].

Definition 2.3. The n-dimensional vector process {Zt : t ∈ Z} is said to be

white noise with mean 0 and covariance matrix Γ0 if {Zt} is stationary with

mean 0 and covariance function

ΓZ(h) =

Γ0 h = 0,

0 h 6= 0.

See [6, p.404].

Definition 2.4. Let the covariance matrix function ΓX(h) of process {Xt}
be such that

∑∞
h=−∞ |ΓXij (h)| < ∞ for all i, j ∈ {1, ..., n}, then ΓX(h) has a

spectral density matrix function, or short spectral density, ΣX(θ) which is given

by

ΣX(θ) :=
1

2π

∞∑
h=−∞

e−iθhΓX(h), θ ∈ [−π, π].

See [6, p.405].
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2 Preliminaries

Remark. It is easy to see that ΓX(h) can be expressed in terms of ΣX(θ) as

ΓX(h) =

∫ π

−π
eiθhΣX(θ)dθ.

For further information see [7, p.24].

Definition 2.5. Let {X1
t }, {X2

t } be two vector processes of dimensions p1 and

p2. The processes {X1
t } and {X2

t } are said to be costationary if the combined

process {(X1′
t X

2′
t )′} is again stationary.

Remark. If processes {X1
t }, {X2

t } are costationary, {X1
t } and {X2

t } are sta-

tionary.

Definition 2.6. Let {X1
t } and {X2

t } be two vector processes with mean 0

and covariance functions Γ1(h) resp. Γ2(h) satisfying
∑∞

h=−∞ |Γkij(h)| < ∞
for k ∈ {1, 2} and i, j ∈ {1, . . . , n}. Furthermore let {X1

t } and {X2
t } be

costationary. Then the cross-spectrum ΣX1X2(θ) between {X1
t } and {X2

t } is

given by

ΣX1X2(θ) =
1

2π

∞∑
h=−∞

e−iθhE(X1
t+hX

2
t
′).

Definitions are prompted by and based on [8, p.657f].

An important class of transformations for time series form the so-called linear

filters. They can be seen as some sort of extension of a linear map, which takes

into consideration the dynamics of the time series.

Definition 2.7. Let sequence (ψj)j∈Z consisting of (k × n)-matrices be such

that it transforms an n-dimensional input series {Xt} into a k-dimensional

output series {Yt} by

Yt =
∞∑

j=−∞

ψjXt−j =: ψ(L)Xt.

Then {Yt} is said to be obtained by filtering {Xt} with (ψj)j∈Z. See [6, p.152ff].

5



2 Preliminaries

Remark. Under the assumption that (ψj)j∈Z is absolutely summable and

E(x2it) < ∞ for any i ∈ {1, . . . , n}, t ∈ Z, Yt is the mean square limit of∑n
j=−n ψjXt−j as n goes to infinity. However, if {Xt} is a white noise vec-

tor process, the assumption of the absolute summability of (ψj)j∈Z can be

replaced by the slightly weaker assumption of square summability of the ma-

trices (ψj)j∈Z. Information on the univariate case which can be easily extended

to the multivariate case can be found in [6, p.83f]. The therein discussed ar-

guments can be modified for the square summability and the white noise case.

An extremely important property concerning filters fulfilling the appropriate

summability condition for convergence of the output series {Yt} is the fact that

a stationary process is still stationary after filtering. Details can be found in

[6, p.83f].

An important group of filters are the filters associated with a function.

Definition 2.8. Let f(θ) = (f1(θ), . . . , fn(θ)) ∈ Ln2 ([−π, π],C) be a row vector

and consider its Fourier expansion

f(θ) =
∞∑

k=−∞

fke
−ikθ,

with row vector fk = 1
2π

∫ π
−π f(θ)eikθdθ ∈ Cn. The square summable (1 × n)-

dimensional filter

f(L) :=
∞∑

k=−∞

fkL
k

is the filter associated with function f(θ). Furthermore, we have for the com-

plex conjugate f(θ)′ the decompositon

f(θ)′ =
∞∑

k=−∞

fk
′eikθ.

The corresponding filter will be defined as
∞∑

k=−∞

fk
′L−k =: f(L)′.

See [4, p.5f].
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2 Preliminaries

In the definition above we have derived a filter from a function. Conversely,

we can construct a function from a filter.

Definition 2.9. Let a(L) =
∑∞

k=−∞ akL
k be a square summable (1 × n)-

dimensional filter, we define

a◦(θ) = a(e−iθ) =
∞∑

k=−∞

ake
−ikθ

in Ln2 ([−π, π],C) to be the function associated with filter a(L), see [4, p.5f].

These definitions can be easily carried over to matrix functions and filters

consisting of matrices.

Before continuing we introduce the following notation for an n-dimensional

vector f(θ),

|f(θ)|2 =
n∑
i=1

|fi(θ)|2.

The following lemma will show that the square summability of an n-dimesional

filter is in fact equivalent to the associated function being in Ln2 ([−π, π],C) as

seen in [4, p.4f].

Lemma 2.1. With norm and inner product on Ln2 ([−π, π],C) given by

‖f‖ =

√√√√ 1

2π

∫ π

−π

n∑
i=1

|fi(θ)|2dθ, 〈f, g〉 =
1

2π

∫ π

−π

n∑
i=1

fi(θ)gi(θ)dθ,

it holds that
∞∑

k=−∞

|fk|2 =
1

2π

∫ π

−π

n∑
i=1

|fi(θ)|2dθ = ‖f‖2.

Proof. W.l.o.g assume n = 1, then

|f(θ)|2 =
∞∑

k=−∞

fke
−ikθ

∞∑
l=−∞

fle
ilθ

7



2 Preliminaries

and hence

‖f‖2 =
1

2π

∫ π

−π
|f(θ)|2dθ =

1

2π

∫ π

−π

∞∑
k=−∞

fke
−ikθ

∞∑
l=−∞

fle
ilθdθ =

∞∑
k=−∞

|fk|2.

Next, we want to investigate the relationship between the spectral density of

a process and the spectral density of a filtered version. As we have remarked

above, depending on the process {Xt} there can be a weaker summability

condition applied in order for a stationary mean square limit to exist. This

will also be taken in consideration in the next lemma, which is based on [1,

p.5f].

Lemma 2.2. Let {Xt} be an n-dimensional vector process with covariance

function ΓX(h) and spectral density ΣX(θ). Let a(L) be a square summable

n-dimensional filter with associated function a◦(θ) = a(e−iθ) in case {Xt} is

white noise and let a(L) be absolutely summable otherwise. Define a new

process {Zt} by Zt = a(L)Xt. Then its spectral density matrix ΣZ(θ) is given

by

ΣZ(θ) = a(e−iθ)ΣX(θ)a(eiθ)′ = a◦(θ)ΣX(θ)a◦(θ)′.

Proof. Let (ak)k∈Z be the coefficients of filter a(L). Then for the covariance

function ΓZ(h) of the process {Zt} it holds that

ΓZ(h) = Cov(a(L)Xt+h, a(L)Xt) = Cov
( ∞∑
k=−∞

akXt+h−k,
∞∑

k=−∞

akXt−k
)

=
∞∑

k=−∞

∞∑
l=−∞

akCov(Xt+h−k, Xt−l)al
′ =

∞∑
k=−∞

∞∑
l=−∞

akΓ
X(h− k + l)al

′.

By definition, it holds that

ΣZ(θ) =
1

2π

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

akΓ
X(h− k + l)al

′e−ihθ,

8



2 Preliminaries

which is by an index shift the same as

1

2π

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

akΓ
X(h)al

′e−i(h+k−l)θ.

Finally we have that

1

2π

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

ake
−ikθΓX(h)al

′eilθe−ihθ =
1

2π

∞∑
h=−∞

a◦(θ)ΓX(h)a◦(θ)′e−ihθ,

which is again by definition of the spectral density

a◦(θ)ΣX(θ)a◦(θ)′.

Remark. Analogously it can be proven that for filters a(L) and b(L) the

cross-spectrum between a(L)Xt and b(L)Xt is given by a◦(θ)ΣX(θ)b◦(θ)′.

2.2 Principal components

Linear filters are commonly used to transform a stationary time series into

another stationary time series. In the following section we will investigate a

specific filter which is linked with approximating a stationary time series by a

filtered version of itself, namely the filter associated with its principal compo-

nents.

Assume {Xt} is a stationary n-dimensional vector process with E(Xt) = 0

and covariance function ΓX(h) having absolutely summable entries in order

for the spectral density ΣX(θ) to exist.

The objective here is to find a stationary q-dimensional time series {ξt} with

q < n such that this time series contains ”as much information as possible”

9



2 Preliminaries

about the original {Xt}, i.e. find sequences (Bj)j∈Z and (Cj)j∈Z of (q×n) resp.

(n× q)-matrices, generating the following series

ξt =
∞∑

j=−∞

BjXt−j = B(L)Xt

and

X∗t =
∞∑

j=−∞

Cjξt−j = C(L)ξt = C(L)B(L)Xt

such that

E|Xt −X∗t |2

is minimized. Since the rank of the covariance matrix corresponding to vector

process {X∗t } cannot exceed q, this filtering is also referred to as rank reduction

of {Xt}. See also [7, p.337ff]. Before determining filters B(L) and C(L), we

take a look at the static case, i.e. we consider a single n-dimensional random

vector X. The following result is well known from multivariate statistics and

is taken from [7, p.339f].

Theorem 2.1. Let X be an n-dimensional random vector with mean 0 and

covariance matrix Γ. Then

E|X − CBX|2

for C resp. B an (n× q) resp. (q × n)-matrix is minimized by

B = (p′1, . . . , p
′
q)
′, C = B′,

where p1, . . . , pq are the eigenvectors seen as row vectors to the corresponding

eigenvalues λ1, . . . , λq of covariance matrix Γ in descending order. The vector

pjX is called the j-th principal component of the random vector X.

An analogous result can be deduced for a time series, now taking into account

the time dynamics. First, we introduce some essential definitions.

10



2 Preliminaries

Definition 2.10. Let {Xt} be an n-dimensional zero-mean stationary process

with covariance function ΓX(h) and spectral density ΣX(θ). For i ∈ {1, ..., n}
define the function

λXi : [−π, π] −→ R,

where λXi (θ) is the i-th eigenvalue of ΣX(θ), θ ∈ [−π, π], in descending order.

The functions λXi , i ∈ {1, ..., n} are called the dynamic eigenvalues of ΣX . The

n functions pi : [−π, π]→ Cn as row vectors for i ∈ {1, . . . , n} fullfilling

• |pi(θ)| = 1, ∀θ ∈ [−π, π],

• pi(θ)pj(θ)
′ = 0, i 6= j, ∀θ[−π, π],

• pi(θ)Σ
X(θ) = λi(θ)pi(θ), ∀θ ∈ [−π, π].

are called the dynamic eigenvectors of ΣX . See [5, p.542].

Remark. Note that the eigenvector pj(θ) can and will be chosen such that

pj(θ) is continuous for j ∈ {1, . . . , n}.

Theorem 2.2. Let {Xt} be an n-dimensional zero mean stationary vector

process having an absolutely summable covariance function ΓX(h) and spectral

density ΣX(θ). Then (Bj)j∈Z and (Cj)j∈Z which minimize

E|Xt − C(L)B(L)Xt|2

are given by

Bk =
1

2π

∫ π

−π
B◦(θ)eikθdθ

Ck =
1

2π

∫ π

−π
C◦(θ)eikθdθ

where B◦(θ) = (p1(θ)
′, . . . , pq(θ)

′)′ and C◦(θ) = B◦(θ)′ with pi(θ) being the

eigenvector corresponding to the i-th largest eigenvalue of ΣX(θ). The theorem

can be found in [7, p.344].

11



2 Preliminaries

Proof. We have

E|Xt − C(L)B(L)Xt|2 =

E((Xt − C(L)B(L)Xt)
′(Xt − C(L)B(L)Xt)) =

E(tr((Iq − C(L)B(L))′Xt
′Xt(Iq − C(L)B(L)))) =

tr(E((Iq − C(L)B(L))XtXt
′(Iq − C(L)B(L))′)) =

tr(

∫ π

−π
(Iq − C◦(θ)B◦(θ))ΣX(θ)(Iq − C◦(θ)B◦(θ))′dθ) =∫ π

−π
tr((Iq − C◦(θ)B◦(θ))ΣX(θ)(Iq − C◦(θ)B◦(θ))′)dθ,

which follows from basic properties of the trace and the fact that by the re-

lationship between the spectral density and the covariance function for some

process A(L)Xt = Zt we have

E(A(L)XtXt
′A(L)′) = ΓZ(0) =

∫ π

−π
ΣZ(θ)dθ =

∫ π

−π
A◦(θ)ΣX(θ)A◦(θ)′,

with application of Lemma 2.2. Hence by the above observations it suffices

to minimize tr((Iq − A◦(θ))ΣX(θ)(Iq − A◦(θ))′) for fixed θ, where A◦(θ) =

C◦(θ)B◦(θ) is a matrix of rank q. The integrand can be rewritten with con-

vention (ΣX(θ))1/2 = Σ1/2(θ) as

tr
((

Σ1/2(θ)− A◦(θ)Σ1/2(θ)
)(

Σ1/2(θ)− A◦(θ)Σ1/2(θ)
)′)
.

Define for fixed θ, M := Σ1/2(θ) − A◦(θ)Σ1/2(θ). Notice that the trace here

is the sum of the eigenvalues of MM ′. Thus minimizing the trace of MM ′

involves minimizing its eigenvalues. Set W = A◦(θ)Σ1/2(θ) and denote by λ̃i(θ)

the i-th largest eigenvalue of MM ′ and by λi(θ) the i-th largest eigenvalue of

ΣX(θ). Then by Courant-Fisher, Lemma 7.1 from the Appendix, it holds that

λ̃k = inf
D (k−1)×n
matrix

sup
Dy=0
y∈Cn

y′MM ′y

y′y
≥ inf

D (k−1)×n
matrix

sup
Dy=0
W ′y=0
y∈Cn

y′MM ′y

y′y

≥ inf
D (k−1)×n
matrix

sup
Dy=0
W ′y=0
y∈Cn

y′Σ1/2(θ)Σ1/2(θ)′y

y′y
≥ inf

D (k+q−1)×n
matrix

sup
Dy=0
y∈Cn

y′ΣX(θ)y

y′y
= λk+q.

12



2 Preliminaries

If one can show that A◦(θ) can be chosen such that λ̃k equals λk+q for k ∈
{1, . . . , n− q}, the trace is minimized. We propose

A◦(θ) =

q∑
j=1

pj(θ)
′pj(θ)

and since Σ1/2(θ) can be written as

Σ1/2(θ) =
n∑
j=1

λ
1/2
j (θ)pj(θ)

′pj(θ),

it follows that (Σ1/2(θ)− A◦(θ)Σ1/2(θ)) equals

n∑
j=1

λ
1/2
j (θ)pj(θ)

′pj(θ)−
q∑
j=1

pj(θ)
′pj(θ)

n∑
j=1

λ
1/2
j (θ)pj(θ)

′pj(θ) =

n∑
j=1

λ
1/2
j (θ)pj(θ)

′pj(θ)−
q∑
j=1

λ
1/2
j (θ)pj(θ)

′pj(θ) =
n∑

j=q+1

λ
1/2
j (θ)pj(θ)

′pj(θ).

And finally tr(MM ′) equals

( n∑
j=q+1

λ
1/2
j (θ)pj(θ)′pj(θ)

)′( n∑
j=q+1

λ
1/2
j (θ)pj(θ)

′pj(θ)
)

=
n∑

j=q+1

λj(θ),

which proves that the eigenvalues λ̃k have been minimized by function A◦(θ) =∑q
j=1 pj(θ)

′pj(θ), where B◦(θ) = (p1(θ)
′, . . . , pq(θ)

′)′ and C◦(θ) = B◦(θ)′. The

proof is based on [7, p.399] and [7, p.455].

Definition 2.11. Let {Xt} be an n-dimensional vector process having spec-

tral density ΣX(θ). Then {pj(θ) : j ∈ {1, . . . , n}} forms the set of dynamic

eigenvectors. And {p
j
(L)Xt : j ∈ {1, . . . , n}}, where p

j
(L) is the filter associ-

ated with the dynamic eigenvector pj(θ), is called the set of dynamic principal

components of {Xt}, according to [4, p.6].

Remark. In general the filters p
j
(L) are two-sided, i.e. they depend on values

that occur later in time, which poses a serious problem in practice. Further

13



2 Preliminaries

notice that the spectral density of the j-th principal component Wt = p
j
(L)Xt

is by Lemma 2.2,

ΣW (θ) = pj(θ)Σ
X(θ)pj(θ)

′ = λXj (θ).

Furthermore notice that for the vector process {Yt} consisting of all n principal

components, i.e.

Yt =

p1(L)Xt

...

p
n
(L)Xt

 =

p1(L)
...

p
n
(L)

Xt,

the spectral density is given by

ΣY (θ) =

p1(θ)...

pn(θ)

ΣX(θ)(p1(θ)
′, . . . , (pn(θ)′) = diag(λX1 (θ), . . . , λXn (θ)).

Since the spectral density is a diagonal matrix, so is the covariance matrix

function for any lag h. This means that the principal components are pairwise

uncorrelated.

2.3 General definitions and theoretical results

Before delving into the generalized dynamic factor model, we recall important

general definitions and some basic theoretical results that are fundamental for

defining and proving facts about the generalized dynamic factor model.

Definition 2.12. Denote by L the Lebesgue measure on R. We say, a function

f : R→ R is essentially bounded if there exist M ∈ R and subset N ⊂ R such

that |f(θ)| ≤M for all θ ∈ R \N and L(N) = 0. See [4, p.8].

An important tool for the upcoming proofs is the dominated convergence the-

orem.

14



2 Preliminaries

Theorem 2.3. Let (fn)n∈N be a sequence of integrable functions defined on

[−π, π] such that

• lim
n→∞

fn(θ) = f(θ) for almost all θ ∈ [−π, π],

• |fn(θ)| ≤ g(θ) for almost all θ ∈ [−π, π] and any n ∈ N for an integrable

and non-negative function g.

Then f is integrable and

lim
n→∞

∫ π

−π
fn(θ)dθ =

∫ π

−π
f(θ)dθ.

The proof can be found in [9, p.270ff].

Theorem 2.4. Let (fn)n∈N be a sequence of integrable functions defined on

[−π, π]. Let f be an integrable function defined on [−π, π]. Suppose that

either

lim
n→∞

∫ π

−π
|fn(θ)− f(θ)|2dθ = 0

or

lim
n→∞

∫ π

−π
|fn(θ)− f(θ)|dθ = 0

hold. Then there exists an increasing sequence (sn)n∈N such that for almost

all θ in [−π, π]

lim
n→∞

fsn(θ) = f(θ).

The theorem is taken from [4, p.8].
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3 Introduction of the Generalized

Dynamic Factor Model

In the following chapter we will define the generalized dynamic factor model

for infinite dimensional vector process {Xt} in an appropriately chosen set-

ting. This model splits the observable {Xt} into two non-observable infinite

dimensional stationary vector processes {χt} and {ξt}, called the common

and idiosyncratic component. Furthermore we will propose a sequence of

estimators that converge in mean square to the common component χit for

any t ∈ Z, i ∈ N. The common component χit is driven by an underlying

q-dimensional orthogonal vector process {ut} which is ”common” to all sec-

tions. So to say, the common component follows a fixed structure, whereas the

idiosyncratic component can be seen as some error added to the common com-

ponent. Hence, estimating the common component gives us a better insight

into how the vector process {Xt} behaves.

3.1 Setting and preparation

Now we extend the notion of n-dimensional stationary vector processes to in-

finite dimensional stationary time series {Xt}. Let vector process {Xt} be

given by {(x1t, x2t . . . )′ : t ∈ Z}, where xit ∈ L2(P ,C) for all i ∈ N, t ∈ Z.

Additionally, assume that the n-dimensional time series {Xn
t : t ∈ Z} =

{(x1t, . . . , xnt)′ : t ∈ Z} is stationary for all n ∈ N. In particular, we are

16



3 Introduction of the Generalized Dynamic Factor Model

interested in investigating the n-dimensional time series {Xn
t } for growing n.

To this end we assume that the spectral density matrix of {Xn
t }, denoted by

ΣX
n (θ), exists for all n ∈ N. Furthermore denote by pni(θ) the dynamic eigen-

vector for the corresponding i-th largest dynamic eigenvalue λXni(θ) of ΣX
n (θ).

The filter associated with eigenvector pni(θ) is denoted by p
ni

(L). Consis-

tently the covariance function of {Xn
t } is denoted by ΓXn (h). Moreover, define

X = {xit : i ∈ N, t ∈ Z} and X = span({xit : i ∈ N, t ∈ Z}). Compare with [4].

Remark. The assumption on the existence of ΣX
n (θ) implies together with

the fact that components xit are twice integrable for i ∈ {1, . . . , n}, t ∈ Z
that ΣX

n (θ) = 1
2π

∫ π
−π e

−iθhΓXn (h) is again Lebesgue measurable. The function

that maps to the eigenvalues is measurable and the λXni(θ)’s are continuous

functions of the entries of ΣX
n (θ). Hence the eigenvalues λXni(θ) for all n ∈ N

and i ≤ n are Lebesgue measurable in [−π, π]. Furthermore, the n dynamic

eigenvectors pni(θ) corresponding to λni(θ) for vector process {Xn
t } according

to Definition 2.10 exist and are measurable. The proof can be found in the

appendix of [4, p.24].

Lemma 3.1. Let {Xn
t } be a sequence of vector processes resulting from an

infinite dimensional stationary vector process {Xt}. For fixed i with i ≤ n

the dynamic eigenvalues λXni(θ) are non-decreasing functions in n for any θ ∈
[−π, π]. See [4, p.4].

Proof. As above described, let λXni(θ) be the i-th largest eigenvalue of ΣX
n (θ)

and let λXn+1,i(θ) be the i-th largest eigenvalue of ΣX
n+1(θ). Notice that the

(n × n)-submatrix consisting of the first n rows and the first n columns of

ΣX
n+1(θ) coincides with ΣX

n (θ). We apply the characterization of eigenvalues

according to Courant-Fisher (Lemma 7.1). Let i = 1.

λn+1,1(θ) = max
y∈Cn+1

y′ΣX
n+1(θ)y

y′y
≥ max

yn+1=0
y∈Cn+1

y′ΣX
n+1(θ)y

y′y
= max

y∈Cn
y′ΣX

n (θ)y

y′y
= λn1(θ).

17
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Now let i > 1.

λn+1,i(θ) = min
D (i−1)×(n+1)

matrix

max
Dy=0
y∈Cn+1

y′ΣX
n+1(θ)y

y′y

≥ min
D (i−1)×(n+1)

matrix

max
yn+1=0
Dy=0
y∈Cn+1

y′ΣX
n+1(θ)y

y′y

= min
D (i−1)×n

matrix

max
Dy=0
y∈Cn+1

y′ΣX
n (θ)y

y′y
= λni(θ).

This implies that lim
n→∞

λXni(θ) is well-defined for all i ≤ n and θ in [−π, π]. This

allows for the following definition

λXi (θ) := lim
n→∞

λXni(θ) = sup
n∈N

λXni(θ),

according to [4, p.4].

Before we can finally introduce the generalized dynamic factor model we need

further essential definitions related to filters and infinite dimensional vector

processes.

Definition 3.1. Let (sn)n∈N be a sequence of positive integers and let (an(L))n∈N
be a sequence of (1× sn)-dimensional filters with associated function a◦n(θ) =

(a◦n1(θ), . . . , a
◦
nsn(θ)) ∈ Lsn2 ([−π, π],C). The sequence (an(L))n∈N is called dy-

namic averaging sequence, short DAS, if

lim
n→∞
‖a◦n‖2 = lim

n→∞

1

2π

∫ π

−π
|a◦n(θ)|2dθ = lim

n→∞

1

2π

∫ π

−π

sn∑
i=1

|a◦ni(θ)|2dθ = 0.

See [4, p.6].

Definition 3.2. Let {Xt} be an infinite dimensional stationary time series.

Then {Xt} is called idiosyncratic if lim
n→∞

an(L)Xsn
t = 0 in mean square, i.e.

lim
n→∞
‖an(L)Xsn

t ‖2 = 0, for all dynamic averaging sequences (an(L))n∈N with

(1× sn)-dimensional filters. See [4, p.7].
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Remark. Applying the filters to Xsn
t can be seen as ”averaging” Xt simulta-

neously over time and dimension via a function a◦n(θ). Also, it can be easily

seen that functions a◦n(θ) can be constructed such that the application of an(L)

corresponds to averaging in the traditional sense.

Example 3.1. To illustrate the application of dynamic averaging sequences,

we consider the infinite dimensional vector process {Xt} with xit ⊥ xj,t−k for

any i, j ∈ N, t, k ∈ Z with i 6= j, xit ⊥ xi,t−k for any i ∈ N, t, k ∈ Z with k 6= 0

and ‖xit‖ = 1 for any t ∈ Z, i ∈ N. Futhermore consider functions (a◦n(θ))n∈N
given by

a◦n(θ) =
1

2πn
(1, . . . , 1).

The coefficients of the corresponding filter an(L) are then given by

an,k =

∫ π

−π

1

2πn
(1 . . . 1)eikθdθ =

 1
n
(1, . . . , 1) k = 0

0 k 6= 0.

Then by

lim
n→∞
‖a◦n‖2 = lim

n→∞

∫ π

−π
|a◦n(θ)|2dθ = lim

n→∞

∫ π

−π

1

(2π)2n
dθ = lim

n→∞

1

2πn
= 0,

an(L) is a dynamic averaging sequence with sn = n. Furthermore

lim
n→∞
‖an(L)Xn

t ‖2 = lim
n→∞
‖ 1

n

n∑
i=1

xit‖2 = lim
n→∞

1

n2

n∑
i=1

‖xit‖2 = lim
n→∞

1

n
= 0.

However, this does not prove the idiosyncrasy of {Xt} since this property has

to be proven for any dynamic averaging sequence.

The following characterisation of idiosyncrasy can be helpful when verifying

that an infinite dimensional stationary vector process is in fact idiosyncratic,

since the focus shifts from the dynamic averaging sequences to the first eigen-

value λX1 (θ) of the spectral density matrix corresponding to vector process

{Xt}.

19



3 Introduction of the Generalized Dynamic Factor Model

Theorem 3.1. Let {Xt} be an infinite dimensional stationary vector process

with spectral densities ΣX
n (θ) for corresponding vector process {Xn

t }. Then

λX1 (θ) is essentially bounded if and only if {Xt} is idiosyncratic. See [4, p.8f].

Proof. Firstly, assume λX1 (θ) is essentially bounded. Let the sequence (an(L))n∈N
of (1×sn)-dimensional filters be an arbitrary DAS. Consider the new univariate

process denoted by Zn
t = an(L)Xsn

t . Then by Lemma 2.2, it holds that

ΓZ
n

(0) =

∫ π

−π
ΣZ
n (θ)dθ =

∫ π

−π
a◦n(θ)ΣX

sn(θ)a◦n(θ)′dθ

≤
∫ π

−π
λXsn1(θ)|a

◦
n(θ)|2dθ ≤

∫ π

−π
λX1 (θ)|a◦n(θ)|2dθ.

Since λX1 (θ) is essentially bounded and lim
n→∞
‖a◦n‖2 = 0, we have∫ π

−π
λX1 (θ)|a◦n(θ)|2dθ −−−→

n→∞
0.

Since the variance of Zn
t converges to zero, Zn

t converges in mean square to

zero, fulfilling the definition of idiosyncrasy.

Conversely, assume that λX1 (θ) is not essentially bounded. Then for any n ∈ N
there exists sn ∈ N such that for Mn = {θ : λXsn1(θ) ≥ n},

νn = L(Mn) > 0.

Define function bn : [−π, π]→ R as

bn(θ) =

 1√
νn

λXsn1(θ) ≥ n

0 otherwise

Then it follows that

Bn :=

∫ π

−π
λXsn1(θ)bn(θ)2dθ =

∫
Mn

λXsn1(θ)bn(θ)2dθ

=

∫
Mn

λXsn1(θ)
1
νn
dθ ≥ n

νn

∫
Mn

dθ = n.
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Then the filter sequence

an(L) :=
bn(L)√
Bn

p
sn1

(L),

where psn1(θ) is the eigenvector corresponding to λXsn1(θ) is a DAS, because

‖a◦n‖2 =

∥∥∥∥ bn√
Bn

psn1

∥∥∥∥2 =

∥∥∥∥ bn√
Bn

∥∥∥∥2 =
1

2πBn

∫ π

−π
bn(θ)2dθ =

1

2πBn

≤ 1

2πn
−→ 0

as n goes to infinity. But on the other hand we have that

‖an(L)Xsn
t ‖2 =

∫ π

−π

bn(θ)2

Bn

psn1(θ)Σ
X
sn(θ)psn1(θ)

′dθ =

∫ π

−π

bn(θ)2

Bn

λXsn1(θ)dθ = 1.

Since an(L)Xsn
t does not converge in mean square to 0, {Xt} is not idiosyn-

cratic which concludes the proof by contraposition. The proof is based on [4,

p.8f].

Example 3.2. Continuing our example above with infinite dimensional sta-

tionary vector process {Xt} where xit ⊥ xj,t−k for any i, j ∈ N, t, k ∈ Z with

i 6= j, xit ⊥ xi,t−k for any i ∈ N, t, k ∈ Z with k 6= 0 and ‖xit‖ = 1 for any

t ∈ Z, i ∈ N, it is easily seen that the covariance function fulfills ΓXn (0) = In
and ΓXn (h) = 0 for h 6= 0. This further implies that ΣX

n (θ) = 1
2π
In whose

biggest eigenvalue is 1
2π

for all n ∈ N. Thus λX1 (θ) is essentially bounded and

{Xt} is idiosyncratic.

We are now able to introduce the generalized dynamic factor model.

Definition 3.3. Let q > 1 be a natural number. We say the infinite dimen-

sional stationary time series {Xt} follows a generalized dynamic factor model

with q common factors or alternatively {Xt} is a q-dynamic factor sequence,

if there exist

• a q-dimensional white-noise vector process

{ut} = {(u1t, . . . , uqt)′ : t ∈ Z},

21



3 Introduction of the Generalized Dynamic Factor Model

with the identity as spectral density, (which implies by the relationship

between spectral density and covariance function that Γu(h) = 2πIq and

Γu(h) = 0 for h 6= 0) and such that uit is element of L2(P ,C) for any

i ∈ N and any t ∈ Z,

• an infinite dimensional stationary vector process

{ξt} = {(ξ1t, ξ2t, . . . )′ : t ∈ Z}

such that ξit and uj,t−k are orthogonal for any i, j ∈ N and any t, k ∈ Z

fulfilling the following properties:

1) xit can be written as

xit = χit + ξit

where

χit =

q∑
j=1

bij(L)ujt =: Bi(L)ut

for any i ∈ N and some associated function B◦i (θ) ∈ L
q
2([−π, π],C);

2) {ξt} is idiosyncratic;

3) the infinite dimensional time series {χt} = {(χ1t, χ2t, . . . )′ : t ∈ Z}
with spectral densities Σχ

n(θ) satisfies λχq (θ) = ∞ for almost all θ in

[−π, π].

The components {χt} and {ξt}, which the process {Xt} is split into, are called

common and idiosyncratic component. The definition is introduced in [4, p.9f].

The underlying q-dimensional white noise process {ut} generates the compo-

nents of the common component {χt} which determines {Xt} up to some error

which is represented by the idiosyncratic vector process {ξt}. Also note that

we in general do not assume Bi(L) to be one-sided. This only becomes impor-

tant if one seeks to estimate the vector process {ut} and as well as to come up

with an actual interpretation of this process. For the purpose of estimating

the common component, we do not care about the filters being two-sided.
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Remark. Property 2) of Definition 3.3 can be replaced by λξ1(θ) is essentially

bounded by Theorem 3.1.

Given that {Xt} follows a generalized dynamic factor model with q factors it

is possible to deduce interesting properties concerning the eigenvalues of the

spectral densities of the processes {Xn
t } which enable the estimation of q.

Lemma 3.2. Let {Xn
t } be resulting from an infinite dimensional stationary

vector process {Xt} with spectral densities ΣX
n (θ) for any n ∈ N. If {Xt}

follows a generalized dynamic factor model with q factors then the following

holds:

(I) λXq+1(θ) is essentially bounded,

(II) λXq (θ) =∞ a.e. in [−π, π].

See [4, p.10ff].

Proof. Since {Xt} follows a generalized dynamic factor model with q factors,

ξit and uj,t−k are orthogonal for any i, j ∈ N, t, k ∈ Z. Thus, the spectral

density matrix of ΣX
n (θ) can be split into the sum

ΣX
n (θ) = Σχ

n(θ) + Σξ
n(θ).

Applying Lemma 7.2 from the appendix to the above equation yields

λXnq(θ) ≥ λχnq(θ),

implying (II). Again by Lemma 7.2,

λXn,q+1(θ) ≤ λχn,q+1(θ) + λξn1(θ) = λξn1(θ)

holds, where the last equality comes from the fact that by definition Σχ
n(θ) has

rank q. Taking the limits, we have

λXq+1(θ) ≤ λξ1(θ).

Since λξ1(θ) is essentially bounded, so is λXq+1(θ) which implies (I). The proof

is based on [4, p.10ff].
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For the sake of simplicity we will now introduce according to [4] some helpful

notation. In the following we will use the convention for the matrix product

AB, where A is a d1 × d2 and B a d3 × d4 matrix with d2 < d3, that A has

been enlarged by d3 − d2 columns of zeros.

Let n ≥ q. Denote by Pn(θ) the (q×n)-matrix consisting of the first q dynamic

eigenvectors of {Xt}

Pn(θ) =
(
pXn1(θ)

′, . . . , pXnq(θ)
′)′ ,

and by Qn(θ) the ((n − q) × n)-matrix consisting of the last n − q dynamic

eigenvectors,

Qn(θ) =
(
pXn,q+1(θ)

′, . . . , pXnn(θ)′
)′
.

Furthermore denote by Λn(θ) the (q×q) diagonal matrix whose diagonal entries

are the first q dynamic eigenvalues of {Xt} in descending order

Λn(θ) =


λXn1(θ) 0 . . . 0

0 λXn2(θ)
. . .

...
...

. . . . . . 0

0 . . . 0 λXnq(θ)

 .
Analogously denote by Φn(θ) the (n− q)× (n− q) diagonal matrix having the

last n− q eigenvalues on the diagonal

Φn(θ) =


λXn,q+1(θ) 0 . . . 0

0 λXn,q+2(θ)
. . .

...
...

. . . . . . 0

0 . . . 0 λXnn(θ)

 .
By the above notation ΣX

n (θ) decomposes into

ΣX
n (θ) = Pn(θ)′Λn(θ)Pn(θ) +Qn(θ)′Φn(θ)Qn(θ) (3.1)

and In(θ) can be written as

In(θ) = Pn(θ)′Pn(θ) +Qn(θ)′Qn(θ). (3.2)
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Remark 3.1. For our further investigations it can be assumed without loss

of generality that for any n ∈ N and any j ≤ n and θ ∈ [−π, π], λXnj(θ) ≥ 1

holds.

The aim of the following two pages is to derive properties of the principal

components of {Xn
t } and to even relate it to the principal components of

{Xm
t }. These observations are based on [4].

Due to the above assumption, Λ−1n (θ) is bounded. Hence, we may define a

q-dimensional vector process {ψnt }, for n ∈ N, by

ψnt = (ψn1t, . . . , ψ
n
qt)
′ = Λ−1/2n (L)P n(L)Xn

t . (3.3)

This vector process {ψnt } consists of the first q normalized principal compo-

nents of {Xn
t } and is orthogonal white noise with unit spectral density, since

by Lemma 2.2 and equation (3.1) we have

Σψ
n(θ) = Λ−1/2n (θ)Pn(θ)ΣX

n (θ)Pn(θ)′Λ−1/2n (θ)

= Λ−1/2n (θ)Pn(θ)Pn(θ)′Λn(θ)Pn(θ)Pn(θ)′Λ−1/2n (θ) = Iq
(3.4)

and furthermore

Γψn(h) =

∫ π

−π
eihθΣψ

n(θ)dθ = Iq

∫ π

−π
e−ihθdθ =

2πIq, h = 0,

0, h 6= 0.

Notice that the components of the vector process {ψnt }, i.e. the normalized

principal components of {Xn
t } are pairwise orthogonal at any lead and lag.

They also have unit spectral density making them an eligible candidate to

project other processes onto them, i.e. onto span({ψnjt : j ∈ {1, ..., q}, t ∈
Z}). We now want to take a closer look at the projection of {Xn

t } onto the

normalized principal components collected in the process {ψnt }. With the use

of equation (3.2) we get

Xn
t = P n(L)′P n(L)Xn

t +Q
n
(L)′Q

n
(L)Xn

t .
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Recall that P n(L)′ is the filter associated with function Pn(θ)′ and relates

to filter Pn(L) =
∑∞

k=−∞ PnkL
k via P n(L)′ =

∑∞
k=−∞ Pnk

′L−k. Furthermore

plugging in the definition of ψnt from equation (3.3) yields

Xn
t = P n(L)′Λ1/2

n (L)ψnt +Q
n
(L)′Q

n
(L)Xn

t . (3.5)

Since

Cov
(
P n(L)′P n(L)Xn

t+h, Qn
(L)′Q

n
(L)Xn

t

)
=∫ π

−π
eihθPn(θ)′Pn(θ)ΣX

n (θ)Qn(θ)Qn(θ)′dθ = 0,

the summands of (3.5) are orthogonal at any lead and lag. So, P n(L)′Λ−1/2n (L)ψnt
is the projection of Xn

t onto span({ψnjt : j ∈ {1, ..., q}, t ∈ Z}). Notice again

that P n(L)′Λ−1/2n (L)ψnt = P n(L)′P n(L)Xn
t is the filter that retains as much in-

formation about {Xn
t } as possible under the constraint that its spectral density

has rank q. This has already been discussed in Section 2.2 and in Theorem 2.2.

Since it will become important in the upcoming section, we further want to

project {ψmt } onto span({ψnjt : j ∈ {1, ..., q}, t ∈ Z}) for n > m. To obtain this

projection of

ψmt = Λ−1/2m (L)Pm(L)Xm
t

onto span({ψnjt : j ∈ {1, ..., q}, t ∈ Z}), one just applies Λ−1/2m (L)Pm(L) from

the left to both sides of (3.5). This yields

ψmt = T (L)ψnt + S(L)Xn
t , (3.6)

with

T (θ) = Λ−1/2m (θ)Pm(θ)Pn(θ)′Λ1/2
n (θ)

and

S(θ) = Λ−1/2m (θ)Pm(θ)Qn(θ)′Qn(θ).
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3.2 Recovering the common component in the

population case

In this section we will deal with the question of how to recover the common

component χit of the corresponding observable xit of the infinite dimensional

stationary vector process {Xt}. We propose a sequence of univariate processes

({χit,n})n∈N based on the first q principal components of {Xn
t } and prove its

convergence to χit in mean square for t ∈ Z, i ∈ N. This also forms the basis for

recovering the common component in the sample case, where an appropriate

estimator χ̂it,n of χit,n will be proposed.

Consider sequence

χit,n = (P n(L)′P n(L)Xn
t )i = (P n(L)′Λ1/2

n (L)ψnt )i.

As we have previously argued in equation (3.5) and onward

χit,n = Projspan({ψnjt:j∈{1,...,q},t∈Z})(xit).

We know χit is driven by an underlying q-dimensional white noise vector pro-

cess {ut}. By the properties λχq (θ) =∞ a.e. in [−π, π] and λξ1(θ) being essen-

tially bounded, we can see that the covariance of the idiosnycratic component

of {Xt} is limited contrary to the covariance of the common component. So

intuitively it makes sense to project χit onto the space spanned by the first

q principal components as they retain the most possible ”information” under

the constraint that the spectral density has rank q. In order to show the con-

vergence of χit,n to χit we need to show first of all that the space we project

xit onto, i.e. span({ψnjt : j ∈ {1, . . . , q}, t ∈ Z}), converges. For that reason we

introduce the following definition.

Definition 3.4. Let ({vnt })n∈N be a sequence of q-dimensional orthogonal

white noise vector processes with unit spectral density and vnt ∈ Lq2(P ,C)

for t ∈ Z, n ∈ N. Suppose that {vnt } and {vmt } are costationary for all
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n,m ∈ N. Consider the orthogonal projection of vmt onto the space span({vnjt :

j ∈ {1, . . . , q}, t ∈ Z}),
vmt = Amn(L)vnt + ρmnt .

Here the filter Amn(L) functions as projection coefficients, i.e. coefficient Amnk
projects vmt onto span({vnj,t−k : j ∈ {1, . . . , q}}) and ρmnt is the residual process.

Denote the spectral density of ρmnt by Σρmn(θ). If

lim
m,n→∞

tr(Σρmn(θ)) = 0

for almost all θ in [−π, π] holds, we say, the sequence ({vnt })n∈N with cor-

responding spaces span({vnjt : j ∈ {1, . . . , q}, t ∈ Z}) generates a Cauchy

sequence of spaces. See also [4, p.18].

Remark. Intuitively, the definition of the Cauchy sequence of spaces can be

understood the same way as basic Cauchy sequences. As n and m go to

infinity the spaces become more and more similar. This means that space

span({vnjt : j ∈ {1, . . . , q}, t ∈ Z}) eventually converges to some space.

Remark. This filter Amn(L) representing the projection behaviour exists due

to the fact that {vmt } is stationary and orthogonal at any lead and lag for

any m ∈ N. Notice that coefficient Amnk is by basic properties of projections

Cov(ψmt+h, ψ
n
t ) and this is by stationarity independent of t. Hence this filter

Amn(L) represents the projection of vmt onto span({vnjt : j ∈ {1, ..., q}, t ∈
Z}) for any t ∈ Z. Furthermore notice that since {vnt } and {vmt } are in

Lq2(P ,C) also Amn(L)vnt and ρmnt are in Lq2(P ,C) making filter Amn(L) also

square summable.

We will show that the sequence of q-dimensional vector processes consisting

of the q normalized principal components of {Xn
t }, ({ψnt })n∈N, generates such

a Cauchy sequence of spaces. Before we are able to do that, we need the

following result.

Lemma 3.3. Let {Xt} be an infinite dimensional stationary vector process

with spectral densities ΣX
n (θ) of corresponding vector processes {Xn

t } for any
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n ∈ N. Let C(θ) be a (q × q)-matrix with entries cij(θ) ∈ L2([−π, π],C) and

C(θ)C(θ)′ = Iq for any θ ∈ [−π, π]. Note that

C(L)ψmt = D(L)ψnt +R(L)Xn
t

with

D(θ) = C(θ)Λ−1/2m (θ)Pm(θ)Pn(θ)′Λ1/2
n (θ)

and

R(θ) = C(θ)Λ−1/2m (θ)Pm(θ)Qn(θ)′Qn(θ),

based on equation (3.6) where occuring matrices Λn(θ),Λm(θ), Pn(θ), Pn(θ),

Qn(θ) and upcoming matrix Φn(θ) are as defined at the end of Section 3.1.

Then for the first eigenvalue, call it ρ(θ), of the spectral density matrix of

R(L)Xn
t , it holds that:

ρ(θ) ≤
λXn,q+1(θ)

λXmq(θ)
. (3.7)

See [4, p.14].

Proof. Since for any x ∈ Cn

x′
(
λXn,q+1(θ)Qn(θ)′Qn(θ)−Qn(θ)′Φn(θ)Qn(θ)

)
x =

λXn,q+1(θ)(Qn(θ)x)′(Qn(θ)x)− (Qn(θ)x)′Φn(θ)(Qn(θ)x) =
n∑
i=1

(λXn,q+1(θ)|(Qn(θ)x)i|2 − λXn,q+i(θ)|(Qn(θ)x)i|2) ≥ 0,

it holds that

λXn,q+1(θ)Qn(θ)′Qn(θ)−Qn(θ)′Φn(θ)Qn(θ) ≥ 0,

and since In −Qn(θ)′Qn(θ) ≥ 0 by equation (3.2) we have

λXn,q+1(θ)In −Qn(θ)′Φn(θ)Qn(θ) ≥ 0.
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Multiplying C(θ)Λ
−1/2
m (θ)Pm(θ) from the left and Pm(θ)′Λ

−1/2
m (θ)C(θ)′ from

the right yields

λXn,q+1(θ)C(θ)Λ−1m (θ)C(θ)′ −R(θ)Qn(θ)′Φn(θ)Qn(θ)R(θ)′ ≥ 0.

Because Qn(θ)′Φn(θ)Qn(θ) = ΣX
n (θ) − Pn(θ)′Λn(θ)Pn(θ) holds by (3.1) and

R(θ)Pn(θ)′ = 0, we have that the above equality is equivalent to

λXn,q+1(θ)C(θ)Λ−1m (θ)C(θ)′ −R(θ)ΣX
n (θ)R(θ)′ ≥ 0.

Using Lemma 7.2 finally yields (3.7). The proof follows [4, p.14].

With the lemma above, it is possible to show that ({ψnt })n∈N generates a

Cauchy sequence of spaces.

Lemma 3.4. The sequence of processes ({ψnt })n∈N, where {ψnt } consists of

the q normalized dynamic prinicpal components of process {Xn
t } which results

from an infinite dimensional stationary vector process {Xt} generates a Cauchy

sequence of spaces if λXq (θ) = ∞ a.e. in [−π, π] and λXq+1(θ) is essentially

bounded. See [4, p.19f].

Remark. Assumptions λXq (θ) = ∞ a.e. in [−π, π] and essential boundedness

of λXq+1(θ) are fulfilled if {Xt} follows a generalized dynamic factor model by

Lemma 3.2.

Proof. Let n > m. Notice that {ψmt } and {ψnt } are costationary as filtered

processes stemming from the same stationary process. Consider the orthogonal

projection of ψmt onto span({ψnjt : j ∈ {1, ..., q}, t ∈ Z})

ψmt = T (L)ψnt + ρmnt

where

T (θ) = Λ−1/2m (θ)Pm(θ)Pn(θ)′Λ−1/2n (θ)

and

ρmnt = Λ−1/2m (L)Pm(L)Q
n
(L)′Q

n
(L)Xn

t .
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By application of Lemma 3.3 with C(θ) = Iq we have that the first eigenvalue

ρ(θ) of the spectral density Σρmn(θ) of the corresponding vector process fulfills

ρ(θ) ≤
λXn,q+1(θ)

λXmq(θ)
−−−−→
m,n→∞

0, a.e. in [−π, π],

due to λXmq(θ)→∞ as m goes to infinity and essential boundedness of λXq+1(θ).

Since {ψmt } and {ψnt } are costationary,

Γmn(h) := E(ψmt+hψ
n
t
′)

does not depend on t and the orthogonal projection filter of process {ψmt } can

be written as

T (L) = Amn(L) =
∞∑

h=−∞

Γmn(h)Lh.

As

Γnm(h) := E(ψnt+hψ
m
t
′) = E(ψmt ψ

n
t+h
′)′ = Γmn(−h)′,

we have

Anm(L) =
∞∑

h=−∞

Γnm(h)Lh =
∞∑

h=−∞

Γmn(h)′L−h = T ′(L−1) =: T (L)′.

Conversely, ψnt can be decomposed into

ψnt = T (L)′ψmt + ρnmt .

Taking the spectral densities of the projection equations for {ψmt } and {ψnt }
above, we obtain

Iq = T (θ)T (θ)′ + Σρmn(θ) = T (θ)′T (θ) + Σρnm(θ).

Since traces of T (θ)T (θ)′ and T (θ)′T (θ) are equal, also

tr(Σρmn(θ)) = tr(Σρnm(θ)).

This implies that also

tr(Σρnm(θ)) −→ 0,

as n and m go to infinity for almost all θ in [−π, π], which yields the claim.

The proof is based on [4, p.19f].
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The following lemma ensures that the sequence of projections of a costationary

process onto the space spanned by an orthogonal white noise vector process

with unit spectral density that generates a Cauchy sequence of spaces converges

in mean square. This is a fundamental result in proving convergence of χit,n
to χit.

Lemma 3.5. Let ({vnt })n∈N be a sequence of q-dimensional orthogonal white

noise vector processes with unit spectral density and vnt ∈ Lq2(P ,C) for all

n ∈ N, that generates a Cauchy sequence of spaces. Let {zt} be a univariate

process with zt ∈ L2(P ,C) and spectral density Σz(θ). Suppose {vnt } and

{zt} are costationary for any n ∈ N. Consider the projection Zn
t of zt onto

span({vnjt : j ∈ {1, . . . , q}, t ∈ Z}). Then there exists an element Zt ∈ L2(P ,C)

such that

Zn
t = Projspan({vnjt:j∈{1,...,q},t∈Z})(zt) −−−→n→∞

Zt,

where the convergence is in mean square. See [4, p.18f].

Proof. Process {zt} can be decomposed into the following two orthogonal pro-

jections:

zt = Zn
t + rnt = cn(L)vnt + rnt

zt = Zm
t + rmt = cm(L)vmt + rmt ,

where cn(L) and cm(L) are square summable (1 × q)-dimensional filters and

rnt , r
m
t ∈ L2(P ,C) due to vnt and vmt being in L2(P ,C). We will now investigate

the spectral density ΣZn−Zm(θ) of the corresponding vector process

Zn
t − Zm

t = cn(L)vnt − cm(L)vmt = rmt − rnt ,

which is also the cross spectrum between cn(L)vnt − cm(L)vmt and rmt − rnt . By

definition this cross spectrum is

1

2π

∞∑
h=−∞

e−iθhCov(cn(L)vnt+h − cm(L)vmt+h, r
m
t − rnt ) =

1

2π

∞∑
h=−∞

e−iθh
(
Cov(cn(L)vnt+h, r

m
t ) + Cov(cm(L)vmt+h, r

n
t )
)
,

(3.8)
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where the last equation comes from the orthogonality of cm(L)vmt and rmt resp.

cn(L)vnt and rnt . Because vmt+h = Amn(L)vnt+h + ρmnt , where Amn(L) and ρmnt
are as in Definition 3.4, it holds that

Cov(cm(L)vmt+h, r
n
t ) = Cov(cm(L)(Amn(L)vnt+h+ρ

mn
t ), rnt ) = Cov(cm(L)ρmnt , rnt ),

and analogously

Cov(cn(L)vnt+h, r
m
t ) = Cov(cn(L)ρnmt , rmt ).

Since

Σz(θ) = c◦m(θ)c◦m(θ)′ + Σrm(θ),

Σrm(θ) and the absolute value of entries in c◦m(θ) are bounded by Σz(θ). Be-

cause ({vnt })n∈N generates a Cauchy sequence of spaces, it holds that Σρmn(θ)→
0 for almost all θ in [−π, π] as n and m go to infinity, which implies by the

just observed boundedness that

1

2π

∞∑
h=−∞

e−iθhCov(cm(L)ρmnt+h, r
n
t ) −−−−→

n,m→∞
0

for almost all θ in [−π, π]. An analogous argumentation yields

1

2π

∞∑
h=−∞

e−iθhCov(cn(L)ρnmt+h, r
m
t ) −−−−→

n,m→∞
0,

for almost all θ in [−π, π], which in total yields

ΣZn−Zm(θ) −−−−→
n,m→∞

0,

for almost all θ in [−π, π]. Since ΣZn(θ) and ΣZm(θ) are bounded by Σz(θ),

the dominated convergence theorem (Theorem 2.3) can be applied, and yields

E((Zn
t − Zm

t )2) = Var(Zn
t − Zm

t ) =

∫ π

−π
ΣZn−Zm(θ)dθ −−−−→

n,m→∞
0.

Hence it was proven that (Zn
t )n∈N is a Cauchy sequence. Since L2(P ,C) is a

Hilbert space, there exists a limit Zt ∈ L2(P ,C). The proof is based on [4,

p.19].
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We are now finally able to prove the convergence of χit,n to χit.

Theorem 3.2. Let {Xt} be an infinite dimensional stationary vector process

that follows a generalized dynamic factor model with q factors. Then the

sequence χit,n = (P n(L)′P n(L)Xn
t )i converges in mean square to χit for any

i ∈ N, t ∈ Z. See [5, p.543].

Proof. Since ({ψnt })n∈N generates a Cauchy sequence of spaces (Lemma 3.4)

and {xit} and {ψnt } are costationary for any n ∈ N and fixed i, Lemma 3.5

can be applied. Hence, there exists χ∗it such that

χit,n = Projspan({ψnjt:j∈{1,...,q},t∈Z})(xit) −−−→n→∞
χ∗it

in mean square. If we can prove that

span({ψnjt : j ∈ {1, . . . , q}, t ∈ Z}) −−−→
n→∞

span({ujt : j ∈ {1, . . . , q}, t ∈ Z}),

then χit = χ∗it, since {ut} and {ξt} are orthogonal at any lead and lag. Pro-

cesses {ψnt } and {ut} are costationary for any n ∈ N, hence E(ψnt+hut
′) =:

Γψ
nu(h) does not depend on t and the orthogonal projection of ψnt onto span({ujt :

j ∈ {1, . . . , q}, t ∈ Z}) is given by

ψnt = An(L)ut + ρnt ,

where

An(L) =
∞∑

h=−∞

Γψ
nu(h)Lh.

Analogously since Γuψ
n
(h) := E(ut+hψnt−h

′) = Γψnu(−h)′, the orthogonal pro-

jection of ut onto span({ψnjt : j ∈ {1, . . . , q}, t ∈ Z}) is given by

ut = An(L)′ψnt + εt,

where

An(L)′ =
∞∑

h=−∞

Γψnu(h)′L−h.
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Furthermore, ψnt has the following decompositions

ψnt = Λ−1/2n (L)P n(L)Xn
t = Λ−1/2n (L)P n(L)(χnt + ξnt ) = An(L)ut + ρnt .

It follows from the above equation and the fact that {ut} and {ξt} are orthog-

onal that

ρnt = Λ−1/2n (L)P n(L)ξnt

and hence that the spectral density Σρ
n(θ) can be decomposed as

Σρ
n(θ) = Λ−1/2n (θ)Pn(θ)Σξ

n(θ)Pn(θ)′Λ−1/2n (θ).

For the i-th entry on the diagonal we obtain

(Σρ
n(θ))ii ≤ λξn1(θ)(λ

X
ni(θ))

−1|pXni(θ)|2 ≤
λξ1(θ)

λXni(θ)
−−−→
n→∞

0

for almost all θ in [−π, π] and all i ∈ {1, . . . , q} due to the essential boundedness

of λξ1(θ) and the fact that λXni(θ) → ∞ as n → ∞ for i ∈ {1, ..., q} and for

almost all θ in [−π, π], (Lemma 3.2) . Also, by the assumption that λXni(θ) ≥ 1

for i ≤ n, θ ∈ [−π, π], there exists K ∈ R such that for almost all θ in [−π, π]

(Σρ
n(θ))ii ≤ K. Thus, by the application of Theorem 2.3,∫ π

−π
(Σρ

n(θ))iidθ −−−→
n→∞

0

holds for all i ∈ {1, ..., q}. Mean square convergence follows. Notice that

tr(Σρ
n(θ)) corresponds to the sum of the eigenvalues of Σρ

n(θ). Hence, also

the eigenvalues converge to zero in mean square and thus the whole spectral

density matrix Σρ
n(θ). Moreover, as {ψnt } and {ut} are white noise processes,

we obtain the following spectral density equations

Iq = A◦n(θ)A◦n(θ)′ + Σρ
n(θ) = A◦n(θ)′A◦n(θ) + Σε

n(θ).

Because tr(A◦n(θ)A◦n(θ)′) = tr(A◦n(θ)′A◦n(θ)), also tr(Σρ
n(θ)) = tr(Σε

n(θ)), which

converges to zero in mean square. Hence we have proven, that the space

span({ψnjt : j ∈ {1, . . . , q}, t ∈ Z}) converges to the space span({ujt : j ∈
{1, . . . , q}, t ∈ Z}), which concludes this proof. The proof is based on [5,

p.552].
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Remark 3.2. We assumed in Remark 3.1 w.l.o.g. that for n ∈ N, j ≤ n and

θ ∈ [−π, π], it holds that λXnj(θ) ≥ 1. We will now discuss the validity of this

assumption in order for Theorem 3.2 to hold. The probability space P can

be embedded into a larger probability space such that it can be assumed that

there exists a infinite dimensional white noise process {ζt : t ∈ Z} having unit

spectral density with ζit1 ⊥ xjt2 for any i, j ∈ N and any t1, t2 ∈ Z. Define the

new process {x̂it : t ∈ Z} as x̂it = xit + ζit. Then ΣX̂
n (θ) = ΣX

n (θ) + In and

hence also λX̂nj(θ) = λXnj(θ) + 1 with pX̂nj(θ) = pXnj(θ) for j ∈ {1, . . . , n}, n ∈ N.

Notice that πni(L)P n(L), where πni(L) denotes the i-th row of Pn(L)′, is a

DAS. (For more details check step vi) of the proof of Theorem 4.1). Hence, it

holds that

‖πni(L)P n(θ)ζnt ‖2 =

∫ π

−π
πni(θ)Pn(θ)InPn(θ)′πni(θ)

′dθ −−−→
n→∞

0.

And hence since by Theorem 3.2, lim
n→∞

χit,n = lim
n→∞

πni(L)P n(L)X̂n
t = χit, also

lim
n→∞

πni(L)P n(L)X̂n
t = lim

n→∞
πni(L)P n(L)Xn

t = χit.

See [5, p.551].
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We have seen in Chapter 3, specifically in Lemma 3.2, that under the assump-

tion that an infinite dimensional stationary vector process {Xt} follows a gen-

eralized dynamic factor model with q factors, we can deduce some properties

about the dynamic eigenvalues of the spectral density ΣX
n (θ) of the observ-

able vector processes {Xn
t }. As already mentioned these properties can help

in practice to determine a suitable q. In this section we will prove that these

properties are not only necessary but also sufficient for a generalized dynamic

factor model with q factors to hold for an infinite dimensional stationary vector

process {Xt}. This makes the property concerning the dynamic eigenvalues

of the spectral densities a characterization for the generalized dynamic fac-

tor model. In the proof of this characterization we will need the following

definition.

Definition 4.1. Let yt ∈ X. If there exists a DAS (an(L))n∈N of (1 × sn)-

dimensional filters such that

lim
n→∞

an(L)Xsn
t = yt,

in mean square, then yt is called an aggregate. The set of all aggregates is

denoted by G(X). See [4, p.6].

Remark. The aggregation space G(X) is a closed subspace of X. A proof can

be found in [4, p.7].

Theorem 4.1. Let {Xt} be an infinite dimensional stationary vector process.

Then {Xt} follows a generalized dynamic factor model with q factors if and

only if the following holds:
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(I) λXq+1(θ) is essentially bounded,

(II) λXq (θ) =∞ a.e. in [−π, π].

The theorem is taken from [4, p.10].

Proof. This proof follows the outline of the proof found in [4, p.11f].

The ”only if” part is exactly Lemma 3.2. Proving the ”if” part takes some

effort, thus we will divide this part into two major steps, say I and II, which

will also be divided into smaller steps to make the idea of the proof clearer.

Step I (i-iv) consists of showing that there exists a q-dimensional white noise

vector process {zt} with unit spectral density in G(X). In step II (v-vi) we

show that the residual process {βt} of the componentwise projection of {Xt}
onto G(X) is idiosyncratic.

Here we list the details of these steps.

i) Define orthogonal white noise vector process {C(L)ψmt } with unit spec-

tral density, whose entries are linear combinations of the first q dynamic

principal components of {Xm
t } and project it onto the space spanned by

the first q principal components of {Xn
t } where n > m.

ii) Based on the above vector processes, construct for a set M ⊂ [−π, π]

with positive measure a converging white noise vector process sequence

({vkt })k∈N whose limit {vt} has the identity as spectral density a.e. on M

and 0 outside of it.

iii) Based on {vt} construct a white noise vector process {zt} such that its

spectral density is the identity a.e. on [−π, π] and 0 else.

iv) Prove that process {zt} spans G(X).

v) Show that the sequence of projections of xit onto the first q dynamic

principal components of {Xn
t } converges in mean square to the projection

of xit onto G(X).
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vi) Show that the residual of the componentwise projection of xit onto G(X),

{βt}, is idiosyncratic.

W.l.o.g. we can assume that for any n ∈ N, j ≤ n and θ ∈ [−π, π] : λXnj(θ) ≥ 1

(see remark at the end of this proof). We will now briefly recap definitions

introduced in Chapter 3. Let pnj(θ) be the eigenvectors as rows corresponding

to eigenvalues λnj(θ) of ΣX
n (θ) for j ∈ {1, . . . , n}. Pn(θ) is the (q × n)-matrix

having pnj(θ) as the j-th row. Let Λn(θ) be the (q× q) diagonal matrix having

λXnj(θ) on the j-th diagonal entry for j ∈ {1, . . . , q}. Analogously let Qn(θ) be

the ((n−q)×n)-matrix having pn,q+j(θ) on the j-th row for j ∈ {1, . . . , n−q}.
And let Φn(θ) be the (n − q) × (n − q) diagonal matrix with λXn,q+j(θ) as the

j-th diagonal entry for j ∈ {1, . . . , n − q}. And lastly we have white noise

vector process {ψnt } with ψnt = Λ−1/2n (L)P n(L)Xn
t with unit spectral density.

Ad i): Let C(θ) be a (q × q)-matrix such that cij(θ) ∈ L2([−π, π],C) is essen-

tially bounded in modulus for i, j ∈ {1, . . . , n} and such that C(θ)C(θ)′ = Iq
for any θ ∈ [−π, π]. Then the covariance matrix of C(L)ψmt is bounded com-

ponentwise, since∫ π

−π
C(θ)Σψ

n(θ)C(θ)′dθ =

∫ π

−π
C(θ)IqC(θ)′dθ <∞,

componentwise. As previously discussed the orthogonal projection of C(L)ψmt
onto the space spannend by the first q dynamic principal components of {Xn

t },
i.e. span({ψnjt : j ∈ {1, ..., q}, t ∈ Z}) is according to equation (3.6) given as

C(L)ψmt = D(L)ψnt +R(L)Xn
t ,

where

D(θ) = C(θ)Λ−1/2m (θ)Pm(θ)Pn(θ)′Λ1/2
n (θ),

and

R(θ) = C(θ)Λ−1/2m (θ)Pm(θ)Qn(θ)′Qn(θ).

Ad ii): Now we start constructing a convergent white noise vector process se-

quence on a setM ⊂ [−π, π] with L(M) > 0. Due to assumptions, λXq+1(θ) ≤ w
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a.e. in [−π, π] for some w ∈ R and λXq (θ) =∞ a.e. in [−π, π], there exists set

M with L(M) > 0 such that for all θ ∈ M and all n ∈ N, λXn,q+1(θ) < W for

some W ∈ R and λXnq(θ) ≥ αn with (αn)n∈N some real positive non-decreasing

sequence with lim
n→∞

αn =∞. Furthermore define the set

KM ={F (θ) : (q × q)-matrix, fij(θ) ∈ L2([−π, π],C) ∀i ∀j,
F (θ) = 0 for θ /∈M, F (θ)F (θ)′ = Iq for θ ∈M}.

As we are considering C(L)ψmt as orthogonal projection D(L)ψnt + R(L)Xn
t ,

its spectral density can be decomposed as

Iq = D(θ)D(θ)′ +R(θ)ΣX
n (θ)R(θ)′. (4.1)

For the first eigenvalue ρ(θ) of R(θ)ΣX
n (θ)R(θ)′ it holds due to Lemma 3.3 that

ρ(θ) ≤
λXn,q+1(θ)

λXmq(θ)
<
W

αm
, ∀ θ ∈M,

where the second inequality follows from the assumption at the beginning of

step ii). Denote by δj(θ) the eigenvalues of D(θ)D(θ)′ in descending order. By

Lemma 7.2 and equation (4.1) the following holds:

1 ≤ δq(θ) + ρ(θ) < δq(θ) + W
αm
.

Choose m∗ such that
W

αm∗
< 1,

in order to have

δq(θ) > 1− W
αm∗

> 0, ∀ θ ∈M, ∀ m ≥ m∗.

Denote by ∆(θ) the diagonal matrix having the eigenvalue δj(θ) at the j-th

diagonal entry, i.e.

∆(θ) =


δ1(θ) 0 . . . 0

0 δ2(θ)
. . .

...
...

. . . . . . 0

0 . . . 0 δq(θ)

 .
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The above inequality, δq(θ) > 0, implies 1/δj(θ) is bounded for j ∈ {1, . . . , q}
making ∆−1/2(θ) well-defined. Let H(θ) be a measurable (q × q)-matrix in M

satisfying

a) H(θ)H(θ)′ = Iq, ∀ θ ∈M ,

b) H(θ)∆(θ)H(θ) = D(θ)D(θ)′, ∀ θ ∈M .

Define F (θ) by

F (θ) =

H(θ)∆−1/2(θ)H(θ)′D(θ), θ ∈M,

0, θ /∈M.
(4.2)

As the product of L2 functions is again in L2 and

F (θ)F (θ)′ = H(θ)∆−1/2(θ)H(θ)′D(θ)D(θ)′H(θ)∆−1/2(θ)H(θ)′

= H(θ)∆−1/2(θ)H(θ)′H(θ)∆(θ)H(θ)′H(θ)∆−1/2(θ)H(θ)′ = Iq,

F (θ) is an element of KM .

After this preparatory work we are finally able to construct a q-dimensional

vector process {vt} such that vjt is an aggregate for j ∈ {1, ..., q} , t ∈ Z and

such that the spectral density matrix of {vt} is Iq for θ ∈ M and 0 outside of

it. Choose an element F1(θ) from KM , set τ to be 1
23π

and s1 to be mτ , where

mτ is chosen such that

2
W

αmτ
< τ.

Then define the following filter

G1(L) = F 1(L)Λ−1/2s1
(L)P s1

(L),

and the corresponding filtered vector process {v1t } via

v1t = G1(L)Xs1
t = F 1(L)ψs1t ,

The spectral density Σv1(θ) of {v1t } is then due to Σψ
s1

(θ) = Iq given by

Σv1(θ) = F1(θ)Σ
ψ
s1

(θ)F1(θ)
′ = F1(θ)F1(θ)

′ =

Iq, θ ∈M,

0, θ /∈M.
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Continue by setting τ = 1
25π

and choosing s2 = mτ > s1 such that again

2
W

αmτ
< τ.

Then calculate

D(L) = F 1(L)Λ−1/2s1
(L)P s1

(L)P s2
(L)′Λ1/2

s2
(L)

and according to (4.2) with suitable matrix H(θ) determine

F 2(L) =

H(L)∆−1/2(L)H(L)′D(L), θ ∈M,

0, θ /∈M.

Then again set

G2(L) = F 2(L)Λ−1/2s2
(L)P s2

(L),

with corresponding vector process {v2t } via

v2t = G2(L)Xs2
t = F 2(L)ψs2t ,

and spectral density

Σv2(θ) =

Iq, θ ∈M,

0, θ /∈M.

Lemma 7.3 applied to the vector process {v1t − v2t } yields that the first eigen-

value of its spectral density Σv1−v2(θ), say η1(θ), satisfies

η1(θ) <
1

23π
, θ ∈M,

so that by Courant-Fisher, (Lemma 7.1),

‖v1jt − v2jt‖2 =

∫ π

−π
(Σv1−v2(θ))jjdθ ≤

∫ π

−π
η1(θ)dθ <

∫ π

−π

1
23π
dθ = 1

4
,

for j ∈ {1, . . . , q}. By iteration, set τ to be 1
22k+1π

and choose sk = mτ > sk−1
such that 2 W

αmτ
< τ . Again determine

D(L) = F k−1(L)Λ−1/2sk−1
(L)P sk−1

(L)P sk
(L)′Λ1/2

sk
(L),
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and with suitable H(θ) determine

F k(L) =

H(L)∆−1/2(L)H(L)′D(L), θ ∈M,

0, θ /∈M,

yielding filter

Gk(L) = F k(L)Λ−1/2sk
(L)P sk

(L),

and vector process {vkt } via

vkt = Gk(L)Xsk
t = F k(L)ψskt ,

with

Σvk(θ) =

Iq, θ ∈M,

0, θ /∈M.

Again by Lemma 7.3 the first eigenvalue of the spectral density of vector

process {vk−1t − vkt }, denoted by ηk−1(θ), satisfies

ηk−1(θ) <
1

22k−1π
, θ ∈M,

such that again by the same argumentation as above we have

‖vk−1jt − vkjt‖2 < 1
22k−2 , j ∈ {1, . . . , q}.

Moreover we have

‖vkjt − vk+hjt ‖ ≤
h∑
i=1

‖vk+i−1jt − vk+ijt ‖ <
h∑
i=1

1

2k+i−1
=

k+h−1∑
i=0

1

2i
−

k−1∑
i=0

1

2i

=
1− 1

2k+h

1
2

−
1− 1

2k

1
2

=
1

2k−1
− 1

2k+h−1
<

1

2k−1
,

which by

lim
k→∞
‖vkjt − vk+hjt ‖ = 0,
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4 The Characterization Theorem

implies that (vkjt)k∈N are Cauchy sequences in X for all j ∈ {1, ..., q}, t ∈ Z.

Because X is closed, there exists limit vjt for all j ∈ {1, . . . , q}, t ∈ Z. In order

to show that the vjt’s are truly aggregates it is left to show that the sequence

of filters (Gk(L))k∈N is a dynamic averaging sequence. Due to Fk(θ) ∈ KM ,

the biggest eigenvalue of

Fk(θ)Λ
−1/2
sk

(θ)Psk(θ)Psk(θ)
′Λ−1/2sk

(θ)Fk(θ)
′ = Fk(θ)Λ

−1
sk

(θ)Fk(θ)
′

is
1

λXskq(θ)
.

Hence, it holds that

‖G◦k‖2 = ‖FkΛ−1/2sk
Psk‖2 =

1

2π

∫ π

−π

1

λXskq(θ)
dθ −−−→

k→∞
0,

since 1/λXskq(θ) converges to zero a.e. in [−π, π] and is bounded by 1 by the

assumption made at the beginning of the proof and thus allows for the applica-

tion of Theorem 2.3, which yields the above convergence result. The spectral

density of the limit process {vt} is

Σv(θ) =

Iq, θ ∈M,

0, θ /∈M.

by application of Lemma 7.4.

Ad iii): We are now extending the above result of finding a white noise vec-

tor process with unit spectral density on subset M of [−π, π] to the whole of

[−π, π]. Let Π ⊂ [−π, π] with L([–π, π] \Π) = 0 be such that for some V ∈ R,

λXn,q+1(θ) ≤ V for n ∈ N and θ ∈ Π, and such that λXq (θ) = ∞ for θ ∈ Π.

Furthermore define

l1,1 = min{l ∈ N : L({θ ∈ Π : λXlq (θ) > 1}) ≥ π}

and

M1,1 = {θ ∈ Π : λXl1,1q(θ) > 1}.
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4 The Characterization Theorem

Successively, lr,1 and Mr,1 for r ∈ N are defined as

lr,1 = min{l ∈ N : L({θ ∈Mr−1,1 : λXlq (θ) > r}) ≥ π}

and

Mr,1 = {θ ∈Mr−1,1 : λXlr1q(θ) > r}.

Because λXq (θ) =∞ for θ ∈ Π, the set

M1 =
∞⋂
r=1

Mr,1

satisfies L(M1) ≥ π. With notation Nk−1 =
k−1⋃
i=1

Mi, define Mk successively

as

Mk =
∞⋂
r=1

Mr,k,

where

M1,k = {θ ∈ Π \ Nk−1 : λXl1,kq(θ) > 1}

with

l1,k = min{l ∈ N : L({θ ∈ Π \ Nk−1 : λXlq (θ) > 1}) ≥ L(Π \ Nk−1)/2}

and

Mr,k = {θ ∈Mr,k−1 : λXlr,kq(θ) > r}

with

lr,k = min{l ∈ N : L({θ ∈Mr,k−1 : λXlq (θ) > 1}) ≥ L(Π \ Nk−1)/2}.

By definition the sets are disjoint and the infinite union of the Mk’s yields

Π. Apply now step ii) to the set Mk with suitable sequence (αn)n∈N in order

to receive a q-dimensional vector process {wkt } = {(wk1t wk2t . . . wkqt)
′} whose

components are aggregates and whose spectral density is the identity on Mk

and zero outside of Mk. Define the new process {zt} as

zt =
∞∑
k=1

wkt .
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Since, as mentioned above, the Mk’s are disjoint the spectral density is the

identity a.e. in [−π, π] and 0 else, which concludes that {zt} is a q-dimensional

orthogonal white noise process with unit spectral density a.e. in [−π, π].

Ad iv): In this step we will prove that span({zit : i ∈ {1, . . . , q}, t ∈ Z})
is G(X). For this purpose consider arbitrary aggregate yt. This aggregate can

be decomposed as

yt = Projspan({zit:i∈{1,...,q},t∈Z})(yt) + εt,

where Projspan({zit:i∈{1,...,q},t∈Z})(yt) and εt are orthogonal at any lead and lag.

The claim follows if it can be shown that εt is zero. Therefore consider the

(q + 1)-dimensional vector process {vt} := {(z′t εt)′} with spectral density

Σv(θ) =

[
Iq 0

0 Σε(θ)

]
,

where Σε(θ) is the spectral density of {εt}. Since zjt ∈ G(X) and G(X) is

closed, also Projspan({zit:i∈{1,...,q},t∈Z})(yt) ∈ G(X) and hence also εt ∈ G(X).

This means that there exist dynamic averaging sequences (anj(L))n∈N for j ∈
{1, . . . , q + 1} such that

lim
n→∞

anj(L)Xsn
t = zjt, j ∈ {1, ..., q},

in mean square and

lim
n→∞

an,q+1(L)Xsn
t = εt,

in mean square, where we assume w.l.o.g. that (sn)n∈N is the same sequence

for all DAS (some anj(L) can be augmented by zeros). By the definition of

dynamic averaging sequences,

lim
n→∞

∫ π

−π
|a◦nj(θ)|2 = 0, ∀ j ∈ {1, ..., q + 1},

which implies by Theorem 2.4 that there exists a subsequence (nk)k∈N such

that lim
k→∞

a◦nkj(θ) = 0, a.e. in [−π, π]. Thus w.l.o.g. we can assume that

lim
n→∞

a◦nj(θ) = 0, a.e. in [−π, π].

46



4 The Characterization Theorem

Now consider the following vector process {ant } with

ant := (an1(L)Xsn
t an2(L)Xsn

t · · · an,q+1(L)Xsn
t )

and spectral density Σa
n(θ) and lim

n→∞
ant = vt in mean square. Since all processes

{anj(L)Xsn
t } are costationary for j ∈ {1, . . . , q+1}, there exists by application

of Lemma 7.4 a subsequence (nk)k∈N such that lim
k→∞

Σa
nk

(θ) = Σv(θ) a.e. in

[−π, π]. Thus again w.l.o.g. we can assume that

lim
n→∞

Σa
n(θ) = Σv(θ), a.e. in [−π, π].

We now try to further decompose Σa
n(θ). For this reason we project a◦nj(θ)

for j ∈ {1, . . . , q + 1} onto the space spanned by the first q dynamic principal

components of {Xsn
t }. Let fnj(θ) = a◦nj(θ)Psn(θ)′ denote the coefficients of

this projection and rnj(θ) the residual. Then,

a◦nj(θ) = fnj(θ)Psn(θ) + rnj(θ).

This implies further the orthogonal decomposition

anj(L)Xsn
t = f

nj
(L)P sn(L)Xsn

t + rnj(L)Xsn
t .

By defining the processes {fnt } and {rnt } as

fnt = (f
n1

(L)P sn(L)Xsn
t · · · f

n,q+1
(L)P sn(L)Xsn

t ),

and

rnt = (rn1(L)Xsn
t · · · rn,q+1(L)Xsn

t ),

with spectral densities Σf
n(θ) and Σr

n(θ), we obtain the following decomposition

of Σa
n(θ):

Σa
n(θ) = Σf

n(θ) + Σr
n(θ).

Notice that since Psn(θ) has rank q and Σf
n(θ) is a ((q + 1)× (q + 1))-matrix,

Σf
n(θ) is singular. Since |a◦nj(θ)| = |fnj(θ)| + |rnj(θ)| and lim

n→∞
a◦nj(θ) = 0

a.e. in [−π, π] for j ∈ {1, . . . , q + 1}, also lim
n→∞

rnj(θ) = 0 a.e. in [−π, π] for
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j ∈ {1, . . . , q + 1}. Also, the residual rnj(θ) for j ∈ {1, . . . , q + 1} is orthgonal

to the first q dynamic eigenvectors psni(θ), i ∈ {1, . . . , q}, which implies by the

decomposition of ΣX
sn(θ),

rnj(θ)Σ
X
sn(θ)rnj(θ)

′ ≤ λXsn,q+1(θ)|rnj(θ)|2 −−−→
n→∞

0, (4.3)

where the limit result follows from the essential boundedness of λXq+1(θ) and

the above discussed convergence result for rnj(θ). The convergence result (4.3)

implies that Σr
n(θ) converges to zero a.e. in [−π, π]. These observations further

imply that

lim
n→∞

det Σa
n(θ) = lim

n→∞
det(Σf

n(θ) + Σr
n(θ)) = 0, a.e. in [−π, π].

Therefore we have that

Σε(θ) = det Σv(θ) = 0, a.e. in [−π, π],

which concludes that εt = 0.

Ad v): In steps i)-iv) we have proven that there exists a q-dimensional or-

thogonal vector process {zt} with unit spectral density, which spans G(X).

This means that there exists c◦i (θ) ∈ L
q
2([−π, π],C) for any i ∈ N such that

ProjG(X)(xit) = ci(L)zt =: γit.

Now the components of Xn
t can be written as

xit = ci(L)zt + βit. (4.4)

To conclude the proof one needs to show that the infinite dimensional vector

process {βt} = {(β1t β2t . . . ) : t ∈ Z} is idiosyncratic. For that reason define

γit,n := πni(L)Λ1/2
n (L)ψnt ,

where πni(L) denotes the i-th row of P n(L)′ and

βit,n = xit − γit,n.

48



4 The Characterization Theorem

We will now proceed by showing that

lim
n→∞

βit,n = βit

in mean square for any i ∈ N and any t ∈ Z. As ({ψnt })n∈N generates a Cauchy

sequence of spaces by Lemma 3.4 and costationarity between {xit} and {ψnt }
is fulfilled, there exists by Lemma 3.5 {γ∗it} such that

lim
n→∞

πni(L)Λ1/2
n (L)ψnt = γ∗it

in mean square and thus also

lim
n→∞

βit,n = β∗it = xit − γ∗it

in mean square for any i ∈ N and any t ∈ Z. Since by construction βit,n and

γit,n are orthogonal at any lead and lag, also β∗it and γ∗it are orthogonal at any

lead and lag by Lemma 7.4. If we can show that γ∗it is an aggregate, then

γ∗it = γit := ProjG(X)(xit) and hence also β∗it = βit. By definition of aggregates

and the fact that

γit,n = πni(L)Λ1/2
n (L)ψnt = πni(L)P n(L)Xn

t ,

we have to show that πni(L)P n(L) is a dynamic averaging sequence, i.e.

lim
n→∞
‖πniPn‖ = lim

n→∞
‖πni‖ = 0. Firstly, notice that the spectral density of γit,n,

which we denote by Σγi
n (θ), is bounded by (ΣX

n (θ))ii by orthogonality of {γit,n}
and {βit,n}. This (ΣX

n (θ))ii does not depend on n. Secondly, notice that for

spectral density Σγi
n (θ) it holds that,

Σγi
n (θ) = πni(θ)Λ

1/2
n (θ)Λ1/2

n (θ)πni(θ)
′ = πni(θ)Λn(θ)πni(θ)

′ ≥ λXnq(θ)|πni(θ)|2.

Taking both results together we have

λXnq(θ)|πni(θ)|2 ≤ Σγi
n (θ) ≤ (ΣX

n (θ))ii,

and since lim
n→∞

λXnq(θ) =∞, a.e. in [−π, π], also

|πni(θ)|2 ≤
(ΣX

n (θ))ii
λXnq(θ)

−−−→
n→∞

0, a.e. in [−π, π].
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Furthermore, by the assumption that λXnq(θ) ≥ 1 for any n ∈ N, |πni(θ)|2 is

bounded, which allows for application of the dominated convergence theorem,

(Theorem 2.3), which yields

‖πni‖2 =
1

2π

∫ π

−π
|πni(θ)|2dθ −−−→

n→∞
0.

Hence γ∗it is an aggregate and βit,n converges to βit in mean square.

Ad vi): To conclude the proof we will show that {βt} is idiosyncratic by using

Theorem 3.1. Let m ∈ N be fixed. Denote by Σβ
m(θ) the spectral density of

process {βmt },
βmt = (β1t β2t · · · βmt)′.

It will be shown that the first eigenvalue of Σβ
m(θ), denoted by λβm1(θ), is

bounded from above by supn∈N λ
X
n,q+1(θ) = λXq+1(θ) for any θ in [−π, π]. For

n ≥ m let {βm,nt } be the m-dimensional vector process

βm,nt = (β1t,n β2t,n · · · βmt,n)′,

with spectral density Σβn
m (θ). Denote by λβnm1(θ) the first eigenvalue of Σβn

m (θ).

From step v) we know that βit,n converges to βit in mean square for all i ∈
{1, . . . ,m}, t ∈ Z and by Lemma 7.4 there exists a subsequence of integers

(nk)k∈N such that

lim
k→∞

Σ
βnk
m (θ) = Σβ

m(θ),

for almost all θ in [−π, π]. Hence w.l.o.g. we can assume that

lim
n→∞

Σβn
m (θ) = Σβ

m(θ),

for almost all θ in [−π, π]. By continuity of the eigenvalues we have that

lim
n→∞

λβnm1(θ) = λβm1(θ),

a.e. in [−π, π]. Notice that since

Xn
t = γn,nt + βn,nt ,
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where process {γn,nt } with γn,nt = (γ1t,n, . . . , γnt,n)′ has spectral density

Σγn
n (θ) = Pn(θ)′Λn(θ)Pn(θ),

the spectral density ΣX
n (θ) decomposes into

ΣX
n (θ) = Pn(θ)′Λn(θ)Pn(θ) +Qn(θ)′Φn(θ)Qn(θ) = Σγn

n (θ) + Σβn
n (θ).

Hence we have

Σβn
n (θ) = Qn(θ)′Φn(θ)Qn(θ),

which means that the first eigenvalue λβnn1(θ) of Σβn
n (θ) is λXn,q+1(θ). By mono-

tonicity of the eigenvalues we have for n ≥ m and θ in [−π, π] that

λβnm1(θ) ≤ λβnn1(θ) = λXn,q+1(θ).

Taking limits on both sides yields

λβm1(θ) ≤ λXq+1(θ)

for arbitrary m, so that

sup
m∈N

λβm1(θ) =: λβ1 (θ) ≤ λXq+1(θ)

holds. Since λXq+1(θ) is essentially bounded, so is λβ1 (θ), implying the idiosyn-

cracy of {βt}. This concludes the whole proof.

Remark 4.1. In the proof we assumed w.l.o.g. for n ∈ N, j ≤ n and θ ∈
[−π, π] that λXnj(θ) ≥ 1. Now, we will argue why that assumption is valid. As

in Remark 3.2, we can define a new process{X̂t} via x̂it = xit + ζit, where {ζt}
is orthogonal white noise with unit spectral density such that ζit1 ⊥ xjt2 for

any i, j ∈ N and any t1, t2 ∈ Z. Notice that ΣX̂
n (θ) = ΣX

n (θ) + In and hence

also λX̂ni(θ) = λXni(θ) + 1. It is thus easily seen that if (I) + (II) hold for {Xt},
then they also hold for {X̂t} and vice versa. By Theorem 4.1, {X̂t} has a

representation as x̂it = χ̂it + ξ̂it, where χ̂it = ProjG(X̂)(x̂it). The definition of ζt

implies that χ̂it = ProjG(X)(xit), and hence also xit = ProjG(X)(xit) + (ξ̂it− ζit).
Since by definition ζit is orthogonal to X, ξ̂t − ζt is idiosyncratic and hence

Xt follows a generalized dynamic factor model with q factors as well. This is

based on [4, p.11f].
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5 Consistent Estimator for the

Common Component

As we have seen in Chapter 3, specifically in Theorem 3.2, the i-th common

component {χit} can be asymptotically recovered from the process defined by

πni(L)P n(L)Xn
t , where πni(L) denotes the i-th row of P n(L)′, for an infinite

dimensional stationary time series {Xt} that follows a generalized dynamic

factor model with q factors. As is often the problem in practice, the population

spectral densities ΣX
n (θ) for {Xn

t } resulting from {Xt} are not known and

have to be estimated. We will propose in the following an estimator of the

common component based on observations {xn1 , . . . , xnT}, denoted by χ̂it, which

is consistent. Firstly recall the notion of consistency.

Definition 5.1. A sequence of estimators (ŴT )T∈N based on T observations

{x1, . . . , xT} is said to be consistent for the true parameter W if

ŴT
P−→ W,

as T →∞, i.e., for arbitrary ε > 0:

lim
T→∞

P (|ŴT −W | > ε) = 0.

See [10, p.54].

52



5 Consistent Estimator for the Common Component

5.1 Consistent estimator for the spectral density

For the theory of the following section we assume that the T observations

{x1, . . . , xT} are realizations of an n-dimensional stationary vector process

{Xt}. For now we fix n, so subscript n is dropped in this section. First of

all we will propose an estimator of the spectral density ΣX(θ) which is solely

based on the coefficients of the discrete Fourier transform. This estimator will

be called the periodogram of {x1, . . . , xT}.
The vectors

ek = 1√
T

(eiθk , . . . , eiT θk)′,

with fundamental frequencies θk = 2πk
n

, where k ∈ FT := {−bT−1
2
c, . . . , bT

2
c}

form an orthonormal basis of Cn. More information and proofs can be found

in [6, p.331f]. Hence xt can be written as

xt =
∑
k∈FT

〈xt, ek〉ek.

By taking all observations together as x = (x1, . . . , xT )′ and denoting by x̃i the

i-th column of x for i ∈ {1, . . . , n}, we have that

x = (x̃1, . . . , x̃n) =
∑
k∈FT

(〈x̃1, ek〉ek, . . . , 〈x̃n, ek〉ek)

=
∑
k∈FT

ek(〈x̃1, ek〉, . . . , 〈x̃n, ek〉).

Hence for the discrete Fourier transform consisting of the coefficient

(〈x̃1, ek〉, . . . , 〈x̃n, ek〉)′ corrsponding to ek, denoted by J (θk), further holds

(〈x̃1, ek〉, . . . , 〈x̃n, ek〉)′ = ( 1√
T

T∑
t=1

(x̃1)te
−itθk , . . . , 1√

T

T∑
t=1

(x̃n)te
−itθk)′

= 1√
T

T∑
t=1

xte
−itθk = J (θk).

See [6, p.443].
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This prompts the definition of the periodogram, which acts as an estimator

for the spectral density of the underlying stationary vector process {Xt} from

which {x1, . . . , xT} is assumed to be sampled.

Definition 5.2. Assume that observations {x1, . . . , xT} are the realizations

of an n-dimensional stationary vector process. Let gT (θ) be the fundamental

frequency θk closest to θ ∈ [0, π] (if there are two, gT (θ) is the smaller one).

Then we define the periodogram at frequency θ ∈ [0, π] by

IT (θ) = J (gT (θ))J (gT (θ))′ = J (θk)J (θk)
′,

and by

IT (θ) = IT (−θ),

at θ ∈ [−π, 0). See also [6, p.443].

Remark. Similar to the relationship between population spectral density ΣX(θ)

and population covariance function ΓX(h) for an n-dimensional stationary vec-

tor process {Xt} via

ΣX(θ) =
1

2π

∞∑
h=−∞

e−iθhΓX(h),

there exists a relationship between the periodogram of the T observations

{x1, . . . xT} of the underlying n-dimensional stationary process {Xt} and the

estimated covariance function Γ̂X(h) = 1
T

∑T−h
t=1 (xt+h − xmean)(xt − xmean)′ for

h ≥ 0 and Γ̂X(−h) = Γ̂X(h)′ via

I(θk) =


∑
|h|<T e

−iθkhΓ̂X(h) θk 6= 0

T xmeanxmean
′ θk = 0

for any fundamental frequency θk, where xmean = 1
T

∑T
t=1 xt. Further informa-

tion can be found in [6, p.443f].

A satisfactory estimator for the spectral density is required to be consistent. As

the following theorem will show, the periodogram is not a consistent estimator.
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5 Consistent Estimator for the Common Component

Prior to that we introduce the notion of the (asymptotic) complex multivariate

normal distribution.

Definition 5.3. Let Y = Re(Y )+i Im(Y ) be an n-dimensional complex valued

random vector with mean µ = µ1 + iµ2 and covariance matrix Γ = Γ1 + iΓ2

satisfying Γ′ = Γ and Γ ≥ 0. The random vector Y is said to follow a complex

normal distribution with mean µ and covariance Γ, short Nc(µ,Γ), if[
Re(Y )

Im(Y )

]
∼ N

([µ1

µ2

]
,
1

2

[
Γ1 −Γ2

Γ2 Γ1

])
,

where N denotes the real-valued normal distribution. See [6, p.444].

Theorem 5.1. Assume the n-dimensional stationary vector process {Xt} with

spectral density ΣX(θ) can be expressed as

Xt =
∞∑

k=−∞

CkZt−k,

where {Zt} is an n-dimensional white noise vector process with mean 0 and

covariance function ΓZ(h) with ΓZ(0) > 0 and ΓZ(h) = 0 for h 6= 0 and where

coefficients of the matrices (Ck)k∈Z ⊂ Rn×n satisfy
∑∞

k=−∞ |(Ck)ij||k|1/2 <

∞ for all i, j ∈ {1, . . . , n}. Furthermore, suppose that E((Zt)
4
i ) < ∞ for

i ∈ {1, . . . , n}. Let IT (θ) be the periodogram based on the T observations

{x1, . . . , xT} for θ ∈ [−π, π]. Then the following holds:

(i) For arbitrary frequencies 0 < ω1 < . . . < ωm < π the corresponding ma-

trices IT (ω1), . . . , IT (ωm) converge jointly in distribution to independent

random matrices where the l-th matrix is distributed as WlWl
′ where

Wl ∼ Nc(0, 2πΣX(ωl)).

(ii) For fundamental frequencies θk = 2πk
T

and θl = 2πl
T

where l, k ∈
{−bT−1

2
c, . . . , bT

2
c} and θk 6= θl, we have

Cov((IT (θk))pq, (IT (θl))rs) −−−→
T→∞

0, for p, q, r, s ∈ {1, . . . , n}.
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5 Consistent Estimator for the Common Component

(iii) For fundamental frequency θk = 2πk
T

with k ∈ {−bT−1
2
c, . . . , bT

2
c} we

have that

| lim
T→∞

Cov((IT (θk))pq, (IT (θk))rs)| ≤ f, for p, q, r, s ∈ {1, . . . , n}

and for some f ∈ R. See [6, p.446].

Proof. The proof for the univariate case [6, p.347-350] can be extended to the

multivariate case, see [11, p.248f] and [6, p.444-446].

As part i) above shows, the limit of IT (θ) for some θ ∈ (0, π) is still random

and therefore (IT (θ))T∈N cannot be a consistent estimator for the spectral

density. However, since by part ii) the periodograms of different frequencies are

asymptotically uncorrelated and by part iii) the covariance matrix is bounded,

there exists the prospect of constructing a consistent estimator for the spectral

density ΣX(θ) by averaging the periodogram locally around a frequency. See

[6, p.350].

Definition 5.4. Let IT (θ) for θ ∈ [−π, π] be the periodogram associated

with the T observations of underlying n-dimensional stationary vector pro-

cess {Xt} which has the structure Xt =
∑∞

k=−∞CkZt−k where {Zt} is an

n-dimensional white noise with mean zero and covariance matrix Γ and where

matrices (Ck)k∈Z satisfy
∑∞

k=−∞ |(Ck)ij||k|1/2 < ∞ for all i, j ∈ {1, . . . , n}.
Let (WT (k))T∈Z be a sequence of real diagonal weight matrices of dimension

(n× n) such that

• (WT (k)) ≥ 0 componentwise for any k ∈ Z,

• WT (−k) = WT (k),

• WT (k) = 0, if |k| > mT for some mT ∈ N fulfilling lim
T→∞

mT = ∞ and

lim
T→∞

mT/T = 0,

•
∑
|k|≤mT

WT (k) = In,
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5 Consistent Estimator for the Common Component

• lim
T→∞

∑
|k|≤mT

WT (k)2 = 0,

then the estimator of the form

Σ̂X
T (θ) =

1

2π

∑
|k|≤mT

WT (k)IT (gT (θ) + θk),

where θk is a fundamental frequency is called a periodogram smoothing estima-

tor for the spectral density ΣX(θ). In case of gT (θ)+θk /∈ [−π, π], IT (gT (θ)+θk)

is the value of IT (θ) for θ ∈ [−π, π] given that IT (θ) has period 2π. The defi-

nition is based on [6, p.350f,446f].

This periodogram smoothing estimator is compared to the traditional peri-

odogram consistent, which is a consequence of the following theorem.

Theorem 5.2. Let {Xt} be an n-dimensional stationary vector process with

Xt =
∑∞

k=−∞CkZt−k, where {Zt} is an n-dimensional white noise vector pro-

cess with mean 0 and covariance matrix Γ and where matrices (Ck)k∈Z satisfy∑∞
k=−∞ |(Ck)ij||k|1/2 < ∞ for all i, j ∈ {1, . . . , n}. Furthermore, let Σ̂X

T (θ) be

a periodogram smoothing estimator of the spectral density ΣX(θ) based on the

T observations {x1, . . . , xT}. Then the following holds:

lim
T→∞

E(Σ̂X
T (θ)) = ΣX(θ).

Proof. The proof for the univariate case can be found in [6, p.351ff] and can

be extended to the multivariate case, see [6, 447f].

We now take a look at the asymptotic covariance of the estimator Σ̂X
T (θ) to

get following important result.

Lemma 5.1. Let {Xt} be an n-dimensional stationary vector process with

Xt =
∑∞

k=−∞CkZt−k, where {Zt} is an n-dimensional white noise vector pro-

cess with mean 0 and covariance matrix Γ and where matrices (Ck)k∈Z satisfy∑∞
k=−∞ |(Ck)ij||k|1/2 < ∞ for all i, j ∈ {1, . . . , n}. Furthermore, let Σ̂X

T (θ) be

a periodogram smoothing estimator of the spectral density ΣX(θ) based on the

T observations {x1, . . . , xT}. Then Σ̂X
T (θ) is a consistent estimator for ΣX(θ).
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5 Consistent Estimator for the Common Component

Proof. Consider

(Σ̂X
T (θ))pq =

1

2π

∑
k∈Z

(WT (k))pp(IT (gT (θ) + θk))pq,

(Σ̂X
T (θ))rs =

1

2π

∑
j∈Z

(WT (j))rr(IT (gT (θ) + θj))rs.

Then we have for Cov((Σ̂X
T (θ))pq, (Σ̂

X
T (θ))rs) the following:

1

(2π)2

∑
k∈Z

∑
j∈Z

(WT (k))pp(WT (j))rrCov((IT (gT (θ) + θk))pq, (IT (gT (θ) + θj))rs) =

1

(2π)2

∑
k∈Z

∑
j∈Z
j 6=k

(WT (k))pp(WT (j))rrCov((IT (gT (θ) + θk))pq, (IT (gT (θ) + θj))rs)+

1

(2π)2

∑
k∈Z

(WT (k))ppWT (k)rrCov((IT (gT (θ) + θk))pq, (IT (gT (θ) + θk))rs) −−−→
T→∞

0.

The covariance of the first summands goes to zero by Theorem 5.1 (ii) and the

boundedness of the weights. Note that gT (θ) + θk is a fundamental frequency.

The second summand goes to zero by the boundedness of the covariances

according to Theorem 5.1 (iii) and the fact that (WT (k))pp(WT (k))rr converges

to zero by the last assumption on the weight sequence (WT (k))T∈N. Since this

holds for all p, q, r, s ∈ {1, . . . , n}, the variance of estimator Σ̂X
T (θ) goes to zero,

hence Σ̂X
T (θ) is a consistent estimator.

5.2 Proposition of estimator for the common

component

We now return to infinite dimensional stationary vector process {Xt} with

spectral densities ΣX
n (θ) corresponding to the n-dimensional stationary vector

process {Xn
t } based on {Xt}. Assume {Xt} follows a generalized dynamic

factor model with q factors. Based on the previous section and its results we
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impose further assumptions, additional to the ones imposed at the beginning

of Chapter 3, on the vector process {Xt}. Assume {Xn
t } can be represented

as

Xn
t =

∞∑
k=−∞

Cn
kZ

n
t−k,

where {Zn
t } is an n-dimensional white noise vector process with mean 0 and co-

variance matrix Γ and where coefficients of (Cn
k )k∈Z ⊂ Rn×n satisfy∑∞

k=−∞ |(Cn
k )ij||k|1/2 < ∞ for all i, j ∈ {1, . . . , n} and all n ∈ N. Note

that components of Cn
k and Zn

t−k can change dependent on n. Furthermore

let {xn1 , . . . , xnT} be T observations of the underlying n-dimensional stationary

vector process {Xn
t }. Denote by Σ̂X

n,T (θ) a periodogram-smoothing estima-

tor for the spectral density ΣX
n (θ) based on the T observations {xn1 , . . . , xnT}.

As we have seen before, for any n ∈ N, any θ ∈ [−π, π], any ε > 0 and

i, j ∈ {1, . . . , n}:

lim
T→∞

P(|(Σ̂X
n,T (θ))ij − (ΣX

n (θ))ij| > ε) = 0.

Note that Σ̂X
n+1,T (θ) is the periodogram smoothing estimator of {xn+1

1 , . . . , xn+1
T }

where xn+1
i was extended by an n + 1-th component and where weight matri-

ces WT (k) are extended in a hierarchical manner. In this setting Σ̂X
n,T (θ) and

Σ̂X
n+1,T (θ) coincide in the first n rows and the first n columns.

For fixed n denote by λXn,T,i(θ) the i-th largest dynamic eigenvalue of estimator

Σ̂X
n,T (θ) and by pXn,T,i(θ) the corresponding i-th dynamic eigenvector. Both,

dynamic eigenvalues and dynamic eigenvectors are chosen to be continuous

functions in θ on [−π, π], and enable consistent estimation of λXni(θ) and pXni(θ),

i.e. for any ε > 0:

lim
T→∞

P(|λXn,T,i(θ)− λXni(θ)| > ε) = 0,

and

lim
T→∞

P(|pXn,T,i(θ)− pXni(θ)| > ε) = 0.
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5 Consistent Estimator for the Common Component

In Chapter 3 (Theorem 3.2) we have established that πni(L)P n(L)Xn
t con-

verges in mean square to χit as n grows for t ∈ Z and i ≤ n. Recall that

P n(L) is the filter corresponding to the (q × n)-matrix Pn(θ) which consists

of the first q dynamic eigenvectors as rows and that πni(L) is the i-th row

of P n(L)′. The convergence in mean square implies that πni(L)P n(L)Xn
t is a

consistent estimator for χit.

Analogously to filter πni(L)P n(L), we can get an estimated filter version,

An,T,i(L), by replacing all occurrences of pXni(θ) in πni(θ)Pn(θ) by the esti-

mated version pXn,T,i(θ) based on T observations {xn1 , . . . , xnT}. By consistency

of the empirical dynamic eigenvalues pXn,T,i(θ) for any θ ∈ [−π, π], consistency

of the filters can be established, i.e. for any ε > 0:

lim
T→∞

P( sup
θ∈[−π,π]

|An,T,i(θ)− πni(θ)Pn(θ)| > ε) = 0. (5.1)

Note that we do not need to worry about possible sign differences between the

eigenvectors in An,T,i(θ) and πni(θ)Pn(θ) since these signs cancel out due to

multiplication of the eigenvectors. However,

An,T,i(L)Xn
t =

∞∑
k=−∞

An,T,i,kX
n
t−k,

where An,T,i,k denotes the k-th coefficient of the filter An,T,i(L) cannot readily

be computed since Xn
t is not available for t < 0 and t ≥ T , hence the infinite

sum is truncated dependent on t, i.e.

Atrunc,t
n,T,i (L)Xn

t =

M2(t,T )∑
k=M1(t,T )

An,T,i,kX
n
t−k,

where |M1(t, T )| and |M2(t, T )| go to infinity as T goes to infinity. In view

of this necessary truncation and the accompanying loss of variance, we will

focus on the essential observations in {xn1 , . . . , xnT} which are classified as those

values t = tT satisfying

0 < b1 ≤ lim inf
T→∞

tT
T
≤ lim sup

T→∞

tT
T
≤ b2 < 1
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for some b1, b2 ∈ R. See [5, p.545f].

The next theorem provides the empirical equivalent of Theorem 3.2 and es-

tablishes consistency for the estimator of the common component.

Theorem 5.3. Let {Xt} be an infinite dimensional stationary vector pro-

cess that follows a dynamic factor model with q factors. Let underlying n-

dimensional vector process {Xn
t } for any n ∈ N satisfy

Xn
t =

∞∑
k=−∞

Cn
kZ

n
t−k,

where {Zn
t } is an n-dimensional zero-mean white noise vector process and

(Cn
k )k∈Z ⊂ Rn×n fulfilling

∑∞
k=−∞ |(Cn

k )ij||k|1/2 < ∞ for any i, j ∈ {1, . . . , n}.
Let {xn1 , . . . , xnT} be T observations of {Xn

t }. Furthermore let Atrunc,t
n,T,i (L) be

truncated as

Atrunc,t
n,T,i (L) =

min{t−1,B(T )}∑
k=max{T−1,−B(T )}

An,T,i,kL
k,

with lim
T→∞

B(T ) =∞ and lim sup
T→∞

B3(T )/T <∞.

Then, for any ε > 0, any η > 0 there exists Nε,η ∈ N such that for all n ≥ Nε,η

there exists Tn,ε,η ∈ N such that for all T ≥ Tn,ε,η and all t = tT satisying

0 < b1 ≤ lim inf
T→∞

tT
T
≤ lim sup

T→∞

tT
T
≤ b2 < 1,

for some b1, b2 ∈ R, the following holds:

P(|Atrunc,t
n,T,i (L)Xn

t − χit| > ε) ≤ η.

See [5, p.545].

Proof. The proof is based on [5, p.545ff]. Define bT1 := db1T e and bT2 := bb2T c
and denote by Rn,i,k the k-th coefficient of filter πni(L)P n(L). Furthermore by

lim sup
T→∞

B3(T )
T

<∞ it can be assumed that T is large enough such that

B(T ) < min{bT1 , T − bT2 , (bT2 − bT1 )/2},
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which simplifies the filter Atrunc,t
n,T,i (L) for values t in {bT1 , . . . , bT2 } to

Atrunc,t
n,T,i (L) =

B(T )∑
k=−B(T )

An,T,i,kL
k.

We now start bounding the following probability as follows:

P(|Atrunc,t
n,T,i (L)Xn

t − χit| > ε) =

P(|Atrunc,t
n,T,i (L)Xn

t − πni(L)P n(L)Xn
t + πni(L)P n(L)Xn

t − χit| > ε) ≤

P(|Atrunc,t
n,T,i (L)Xn

t − πni(L)Pn(L)Xn
t |+ |πni(L)Pn(L)Xn

t − χit| > ε) ≤

P(|Atrunc,t
n,T,i (L)Xn

t − πni(L)P n(L)Xn
t | > ε

2
) + P(|πni(L)P n(L)Xn

t − χit| > ε
2
).

This is because if |Atrunc,t
n,T,i (L)Xn

t −πni(L)P n(L)Xn
t |+|πni(L)P n(L)Xn

t −χit| > ε,

either |Atrunc,t
n,T,i (L)Xn

t − πni(L)P n(L)Xn
t | > ε

2
or |πni(L)P n(L)Xn

t − χit| > ε
2
.

By Theorem 3.2 it holds for the second summand that there exists Nε,η ∈ N
such that for any n ≥ Nε,η,

P(|πni(L)P n(L)Xn
t − χit| > ε

2
) ≤ η

2
.

The probability of the first summand can be further bounded, analogously to

above, as follows

P(|Atrunc,t
n,T,i (L)Xn

t − πni(L)P n(L)Xn
t | > ε

2
) =

P
(∣∣∣ B(T )∑

k=−B(T )

An,T,i,kX
n
t−k −

∞∑
k=−∞

Rn,i,kX
n
t−k

∣∣∣ > ε
2

)
=

P
(∣∣∣ B(T )∑

k=−B(T )

An,T,i,kX
n
t−k −

B(T )∑
k=−B(T )

Rn,i,kX
n
t−k−

−B(T )−1∑
k=−∞

Rn,i,kX
n
t−k −

∞∑
k=B(T )+1

Rn,i,kX
n
t−k

∣∣∣ > ε
2

)
≤
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P
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣ > ε
4

)
+

P
(∣∣∣ −B(T )−1∑

k=−∞

Rn,i,kX
n
t−k −

∞∑
k=B(T )+1

Rn,i,kX
n
t−k

∣∣∣ > ε
4

)
=: S1

T,n + S2
T,n.

Firstly, we know that ‖πni‖2 = ‖πniPn‖2 =
∑∞

k=−∞ |Rn,i,k|2 < ∞ by Lemma

2.1 and the fact that πni(θ) ∈ Lq2([−π, π],C). Hence by choosing T sufficiently

large S2
T,n can be made arbitrarily small, i.e. there exists T 1

n,ε,η such that for

T ≥ T 1
n,ε,η, S

2
T,n <

η
4
. Secondly, we have for S1

T,n

S1
T,n = P

(∣∣∣ B(T )∑
k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣ > ε
4

)
=

P
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣ > ε
4
∧ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ ≤ δ

)
+

P
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣ > ε
4
∧ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ > δ

)
≤

P
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣ > ε
4
∧ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ ≤ δ

)
+

P
(

sup
θ∈[−π,π]

|An,T,i(θ)− πni(θ)Pn(θ)| > δ
)
.

Then we can find due to (5.1) T 2
n,δ,η ∈ N such that for T ≥ T 2

n,δ,η,

P
(

sup
θ∈[−π,π]

|An,T,i(θ)− πni(θ)Pn(θ)| > δ
)
≤ η

8
.

Recall that P(A ∩ B) = P(A|B)P(B) ≤ P(A|B). And hence for the first
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summand it holds that

P
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣ > ε
4
∧ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ ≤ δ

)
≤

P
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣ > ε
4

∣∣∣ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ ≤ δ

)
≤

16

ε2
E
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣2∣∣∣ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ ≤ δ

)
,

where the last inequality is a consequence of the application of Chebyshev’s

inequality. Another difficulty poses the dependency of An,T,i,k and Xn
t as well

as the fact that joint distributions for (An,T,i,k, X
n
t ) differ over the time do-

main. However, focusing on values t = tT satisfying, 0 < b1 ≤ lim inf
T→∞

tT
T
≤

lim sup
T→∞

tT
T
≤ b2 < 1, makes it possible to bound the above expectation for

these values tT . In particular this means, there exists T 3
n,δ,η,ε such that for any

T ≥ T 3
n,δ,η,ε and all s, t ∈ {bT1 , . . . , bT2 },∣∣∣∣E(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣2∣∣∣ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ ≤ δ

)
−

E
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
s−k

∣∣∣2∣∣∣ sup
θ∈[−π,π]

∣∣An,T,i(θ)− πni(θ)Pn(θ)
∣∣ ≤ δ

)∣∣∣∣ ≤ ε2η

256

We denote the event { sup
θ∈[−π,π]

|An,T,i(θ) − πni(θ)Pn(θ)| ≤ δ} by Fn,T,δ,i. Hence

we get by averaging the following,

E
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣2∣∣∣Fn,T,δ,i) ≤
1

bT2 − bT1

bT2∑
t=bT1

E
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣2∣∣∣Fn,T,δ,i)+
ε2η

256
.
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By expanding the squared modulus and pulling in the sum and the fraction,

the above sum of expectations is equivalent to the conditional expectation of

B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

1

bT2 − bT1

bT2∑
t=bT1

(An,T,i,k −Rn,i,k)X
n
t−kX

n
t−l
′(An,T,i,l −Rn,i,l)

′.

We will now further dissect this sum. Let l ≥ k and set t̃ = t− k

1

bT2 − bT1

bT2∑
t=bT1

Xn
t−kX

n
t−l
′ =

1

bT2 − bT1

( bT1 +B(T )
+k−1∑
t=bT1

Xn
t−kX

n
t−l
′ +

bT2 −B(T )∑
t̃=bT1 +B(T )

Xn
t̃ X

n
t̃−(l−k)

′ +

bT2∑
t=bT2 −B(T )

+k+1

Xn
t−kX

n
t−l
′

)
,

which is denoted by κ1n,T,k,l + Γ∗n,T (l − k) + κ3n,T,k,l. Analogously this sum can

be decomposed for l < k and t∗ = t− l as,

1

bT2 − bT1

( bT1 +B(T )
+l−1∑
t=bT1

Xn
t−kX

n
t−l
′ +

bT2 −B(T )∑
t∗=bT1 +B(T )

Xn
t∗+(l−k)X

n
t∗
′ +

bT2∑
t=bT2 −B(T )

+l+1

Xn
t−kX

n
t−l
′

)
,

again denoting the individual sums by κ1n,T,k,l, Γ∗n,T (l − k) and κ3n,T,k,l. With

this notation we have

1

bT2 − bT1

bT2∑
t=bT1

E
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣2∣∣∣Fn,T,δ,i) =

E
( B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

(An,T,i,k −Rn,i,k)κ
1
n,T,k,l(An,T,i,l −Rn,i,l)

′
∣∣∣Fn,T,δ,i)+

E
( B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

(An,T,i,k −Rn,i,k)Γ
∗
n,T (l − k)(An,T,i,l −Rn,i,l)

′
∣∣∣Fn,T,δ,i)+
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E
( B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

(An,T,i,k −Rn,i,k)κ
3
n,T,k,l(An,T,i,l −Rn,i,l)

′
∣∣∣Fn,T,δ,i)

=: En,δ,T,1 + En,δ,T,2 + En,δ,T,3.

Before we investigate the three expectations individually, we make the follow-

ing observations. Recall that for a real random variable X,

E(X|Fn,T,δ,i) =
E(1Fn,T,δ,iX)

P(Fn,T,δ,i)
≤ E(|X|)

P(Fn,T,δ,i)
, (5.2)

where 1Fn,T,δ,i is the indicator function. Furhermore, notice that

sup
θ∈[−π,π]

|An,T,i(θ)− πni(θ)Pn(θ)| ≤ δ

implies

‖An,T,i − πniPn‖2 =
1

2π

∫ π

−π
|An,T,i(θ)− πni(θ)Pn(θ)|2 ≤ δ2.

Furthermore by findings from Chapter 2 we have that for l ∈ Z and m ∈
{1, . . . , n}

δ2 ≥ ‖An,T,i − πniPn‖2 =
∞∑

k=−∞

|An,T,i,k −Rn,T,k|2

≥ |An,T,i,l −Rn,T,l|2 ≥ |(An,T,i,l −Rn,T,l)m|2.
(5.3)

Let T 4
n,δ ∈ N be such that by (5.1) for T ≥ T 4

n,δ

P( sup
θ∈[−π,π]

|An,T,i(θ)− πni(θ)Pn(θ)| ≤ δ) ≤ 1
2
.

Then for l ≥ k and T ≥ T 4
n,δ it holds that
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En,δ,T,1 ≤
1

bT2 − bT1
E
( B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

n∑
v=1

n∑
w=1

|(An,T,i,k −Rn,i,k)v|×

bT1 +B(T )
+k−1∑
t=bT1

|xv,t−kxw,t−l||(An,T,i,l −Rn,i,l)w|
∣∣∣Fn,T,δ,i)

≤ 2δ2

b2T − b1T

B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

n∑
i=1

n∑
j=1

bT1 +B(T )
+k−1∑
t=bT1

E(|xi,t−kxj,t−l|)

≤ 2δ2

b2T − b1T
(2B(T ) + 1)2n22B(T ) max

1≤i≤n
E(|xit|2) = O(δ2B(T )3/T ).

Completely analogous this bound holds if sum
∑bT1 +B(T )+k−1

t=bT1
is replaced by∑bT1 +B(T )+l−1

t=bT1
for l < k. Also analogously, this bound can be derived for

En,T,δ,3. Due to lim sup
T→∞

B(T )3/T < ∞ and the above bound, there exist cn

and T 5
n,δ with T 5

n,δ ≥ T 4
n,δ such that for any T ≥ T 5

n,δ,

En,T,δ,1 + En,T,δ,3 ≤ cnδ
2.

So we are left to take a closer look at En,T,δ,2. Recall that

Γ∗n,T (l − k) =
1

bT2 − bT1

bT2 −B(T )∑
t=bT1 +B(T )

Xn
t X

n
t−(l−k)

′,

is a covariance on (bT2 − bT1 − 2B(T )) observations with associated empirical

spectral density Σ̂∗n,T (θ) and dynamic eigenvalues λ∗n,T,j(θ) for j ∈ {1, . . . , n}.
Then we have for T ≥ T 4

n,δ that

En,T,δ,2 = E
( B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

(An,T,i,k−Rn,i,k)Γ
∗
n,T (l−k)(An,T,i,l −Rn,i,l)

′
∣∣∣Fn,T,δ,i),

is equivalent to

E
( B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

(An,T,i,k−Rn,i,k)

∫ π

−π
eiθ(l−k)Σ̂∗n,T (θ)dθ(An,T,i,l −Rn,i,l)

′
∣∣∣Fn,T,δ,i),
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by the relationship between spectral density Σ̂∗n,T (θ) and the covariance func-

tion Γ∗n,T (h). Furthermore En,T,δ,2 is by rearranging the terms above equivalent

to

E
( B(T )∑
k=−B(T )

B(T )∑
l=−B(T )

∫ π

−π
eiθ(l−k)(An,T,i,k−Rn,i,k)Σ̂

∗
n,T (θ)(An,T,i,l −Rn,i,l)

′dθ
∣∣∣Fn,T,δ,i).

Observe that since Σ̂∗n,T (θ) ≥ 0 holds, aΣ̂∗n,T (θ)b′ ≤ λ∗n,T,1(θ)|a||b| for row

vectors a, b ∈ Cn. Furthermore, due to
∫ π
−π e

iθkdθ = 0 for any k 6= 0 and

λ∗n,T,1(θ) ≥ 0, Re(
∫ π
−π e

ikθλ∗n,T,i(θ)) ≤ 0 and Im(
∫ π
−π e

ikθλ∗n,T,i(θ)) ≤ 0 for any

k 6= 0. Hence summands containing eiθk with k 6= 0 can be neglected, i.e. the

above expression can be bounded in the following way

En,T,δ,2 ≤ E
( B(T )∑
k=−B(T )

∫ π

−π
λ∗n,T,1(θ)|An,T,i,k −Rn,i,k|2dθ

∣∣∣Fn,T,δ,i)

≤ E
( B(T )∑
k=−B(T )

∣∣∣An,T,i,k −Rn,i,k|2
∫ π

−π
λ∗n,T,1(θ)dθ

∣∣∣Fn,T,δ,i)
≤ 2δ2E

(∫ π

−π
λ∗n,T,1(θ)dθ

)
,

due to (5.2) and
∑B(T )

k=−B(T ) |An,T,i,k−Rn,i,k|2 ≤ δ2 under Fn,T,δ,i by (5.3). More-

over, λ∗n,T,1(θ) ≤ tr(Σ̂∗n,T (θ)) and hence

E
(∫ π

−π
λ∗n,T,1(θ)dθ

)
≤ E

(∫ π

−π
tr(Σ̂∗n,T (θ))dθ

)
= E

(
tr
( ∫ π

−π
Σ̂∗n,T (θ)dθ

))
= E(tr(Γ∗n,T (0))) =

1

bT2 − bT1
E
(

tr
( bT2 −B(T )∑
t=bT1 +B(T )

Xn
t X

n
t
′))

=
1

bT2 − bT1
E
( bT2 −B(T )∑
t=bT1 +B(T )

Xn
t
′Xn

t

)

=
bT2 − bT1 − 2B(T ) + 1

bT2 − bT1
tr(ΓXn (0)) < tr(ΓXn (0)).
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Hence, we have

En,T,δ,2 ≤ 2δ2tr(ΓXn (0)),

for T ≥ T 4
n,δ, which in turn yields for T ≥ max{T 3

n,δ,η,ε, T
5
n,δ} and

δ =
ε2η

256(cn + 2tr(ΓXn (0)))
,

that

E
(∣∣∣ B(T )∑

k=−B(T )

(An,T,i,k −Rn,i,k)X
n
t−k

∣∣∣2∣∣∣ sup
θ∈[−π,π]

|An,T,i(θ)− πni(θ)Pn(θ)| ≤ δ
)

≤ En,δ,T,1 + En,δ,T,2 + En,δ,T,3 +
ε2η

256

≤ (cn + 2tr(ΓXn (0)))
ε2η

256(cn + 2tr(ΓXn (0)))
+
ε2η

256
=
ε2η

128
.

Furthermore, tracking the line of estimation, it can be concluded for T ≥
max{T 1

n,δ,η, T
2
n,δ,η, T

3
n,δ,η,ε, T

5
n,δ} and n ≥ Nε,η that

P(|Atrunc,t
n,T,i (L)Xn

t − χit| > ε)

≤ η

2
+ S1

T,n + S2
T,n

≤ η

2
+
η

8
+

16

ε2
( ε2η

256
+ En,T,δ,1 + En,T,δ,2 + En,T,δ,3

)
+
η

4

≤ η

2
+
η

4
+
η

8
+

16

ε2
ε2η

128
= η

This concludes the proof.
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6 Estimation of the Common

Component in Practice

As a concluding chapter we briefly want to take a look at some empirical

results based on Theorem 5.3 in Chapter 5 to get some insights into how

well this approach with the periodogram smoothing estimator Σ̂X
n,T (θ) works

in practice. In particular, we are interested in how well the estimator works

compared to just taking the observations as estimator. To measure this we

compute the estimated common component for generated data, repeat this

simulation a 100 times and compute the following quantities,

MSEC =
1

100 · n · (T − 2B(T ))

100∑
l=1

n∑
i=1

t−B(T )∑
t=B(T )+1

(χi,t,l − χ̂i,t,l)2

and

MSEO =
1

100 · n · (T − 2B(T ))

100∑
l=1

n∑
i=1

t−B(T )∑
t=B(T )+1

(χi,t,l − xi,t,l)
2,

where the additional subscipt l indicates the experiment in which the value

surfaces. In order to investigate the behaviour of the estimator as the number

of observations T and the number of sections n increase, we perform the experi-

ment for every combination of T = (20, 50, 100, 150) and n = (20, 50, 100, 150).

To construct as a first step a 1-factor model, we generate the common compo-

nent componentwise as AR(1) processes that are always loaded with the same

error process {ut} and whose parameters φi are such that |φi| < 1, i.e.

χit = φiχi,t−1 + ut,
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which can be rewritten with notation Φi(z) = 1− φiz as

χit =
1

Φi(L)
ut.

The occurring processes and coefficients are generated as follows:

ut ∼WN(0, 25),

ξit ∼WN(0, 25),

φi
iid∼ Unif([−0.9, 0.9]).

Furthermore the weight matrices WT (k) were set to be diag(1
3
, . . . , 1

3
) for k ∈

{−1, 0, 1}.

n/T 20 50 100 150

20 43.82 23.54 24.02 21.69

50 24.46 21.19 20.48 19.96

100 23.53 20.81 20.14 20.65

150 23.14 20.59 19.77 19.24

Table 6.1: MSEC

Notice that since ξit ∼ WN(0, 25), MSEO is approximately 25 throughout all

n and all T . The table captures quite nicely that MSEC decreases as n or T

is increased. Furthermore notice that MSEC is for almost all n, T considered

smaller than 25, making the estimated common component a better estimator

than the actual observation.

The discussed behaviour can also be seen in the pictures below. The blue line

representing the estimated common component seems to approximate the red

line better than the observations indicated by the green line, when looking at

the 75-th section throughout the time dimension and also when looking across

sections at time 75.
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6 Estimation of the Common Component in Practice

Figure 6.1: common component, estimated common component and observa-

tions of section 75 across time (left) and at time 75 across sections

(right)

As a next step we want to investigate if the approach works as well for a

2-factor model. To that end we generate the common component as the sum

of two AR(1) processes which are respectively always loaded with the same

errors {u1t} and {u2t}, i.e.

χit =
1

Φi1(L)
u1t +

1

Φi2(L)
u2t,

where Φij(z) = 1 − φij(z) for j ∈ {1, 2}, i ∈ {1, . . . , n}. Quite analogous as

above, we generate the involved parameters and processes as

uit ∼WN(0, 25)

ξit ∼WN(0, 25),

φij
iid∼ Unif([−0.8, 0.8])

Here, the weight matrices WT (k) were set to be diag( 1
21
, . . . , 1

21
) for k ∈

{−10, . . . , 10} in order to get useful results.
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n/T 20 50 100 150

20 46.88 53.29 57.17 59.60

50 46.66 72.58 52.27 53.77

100 41.93 46.56 50.74 52.47

150 47.66 47.17 50.55 52.56

Table 6.2: MSEC

The MSEO lies between 61 and 68, so in general the estimated common com-

ponent is able to reduce the mean squared distance when taking the estimated

common component compared to taking the observations as estimator. How-

ever, these results should be taken with care.

Figure 6.2: common component, estimated common component and observa-

tions of cross section 75 across time (left) and at time 75 across

sections (right)

We can see in the picture above on the left that the estimated common compo-

nent grasps the behaviour of the common component quite well. In the picture
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6 Estimation of the Common Component in Practice

on the right we can see that compared to the green line the blue line seems

to be closer to the red line, however, it feels precipitated to claim that the

estimated common component represents the common component. Unfortu-

nately pictures as on the right are the rule rather than the exception. Despite

the estimated common component being ”closer” to the common component

in general, it does not reflect the behaviour of the common component well,

unlike the 1-factor model. There the estimated common component in addi-

tion to performing well, did represent the behaviour of the common component

quite nicely for a broad number of sections.
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7 Appendix

Lemma 7.1 (Courant-Fischer). Let A be a Hermitian (n× n)− matrix with

eigenvalues λ1 ≥ ... ≥ λn. Then the eigenvalue λi for i ∈ {1, ..., n} can be

represented as follows:

λi = min
D (i−1)×n

matrix

max
Dx=0
x∈Cn

x′Ax

x′x

Proof. See [12, p.113ff].

Lemma 7.2. Let A and B be (m×m)-matrices that are Hermitian and non-

negative. Let C = A + B and denote by λAi , λBi and λCi the i-th largest

eigenvalues of A, resp. B, resp. C. Then the following holds:

λCi ≤ λAi + λB1 , λCi ≤ λA1 + λBi ,

λCi ≥ λAi , λCi ≥ λBi .

See [4, p.24].

Proof. By the above theorem the following holds:

λCi = min
D (i−1)×n

matrix

max
Dx=0
x∈Cn

x′Cx

x′x
≤ min

D (i−1)×n
matrix

(
max
Dx=0
x∈Cn

x′Ax

x′x
+ max

Dx=0
x∈Cn

x′Bx

x′x

)
≤ min

D (i−1)×n
matrix

max
Dx=0
x∈Cn

x′Ax

x′x
+ max

x∈Cn
x′Bx

x′x
= λAi + λB1 ;
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the other inequality follows the same way. The third and the fourth inequality

are trivial as well:

λCi = min
D (i−1)×n

matrix

max
x∈Cn
Dx=0

x′Cx

x′x
= min

D (i−1)×n
matrix

max
x∈Cn
Dx=0

(x′Ax
x′x

+
x′Bx

x′x

)
≥ min

D (i−1)×n
matrix

max
x∈Cn
Dx=0

x′Ax

x′x
= λAi .

Lemma 7.3. Let {Xt} be an infinite dimensional stationary time series with

spectral densities ΣX
n (θ) for corresponding vector processes {Xn

t } resulting

from {Xt} for any n ∈ N. Assume the setting to be as in step ii) of the proof

of Theorem 4.1 with F (θ), KM ,set M and (αn)n∈N as described there. Consider

D(θ) = C(θ)Λ
−1/2
m (θ)Pm(θ)Pn(θ)′Λ

1/2
n , R(θ) = C(θ)Λ

−1/2
m (θ)Pm(θ)Qn(θ)′Qn(θ),

where C(θ) ∈ KM . Assume moreover that λXnq(θ) ≥ αn. Then for given

τ ∈ (0, 2) there exists mτ ∈ N such that W/αmτ < 1 and for n > m ≥ mτ the

eigenvalues of the spectral density of

C(L)ψmt − F (L)ψnt

are bounded by τ for all θ ∈M . See [4, p.14f].

Proof. As can be easily checked we have by (3.6) that

C(L)ψmt − F (L)ψnt = R(L)Xn
t + (D(L)− F (L))ψnt .

We recall that the spectral density of C(L)ψnt is

Iq = D(θ)D(θ)′ +R(θ)ΣX
n (θ)R(θ)′.

Hence the spectral density of C(L)ψmt − F (L)ψnt is due to the orthogonality
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of R(L)Xn
t and ψnt given by

R(θ)ΣX
n (θ)R(θ)′ +D(θ)D(θ)′ −D(θ)F (θ)′ − F (θ)D(θ)′ + F (θ)F (θ)′ =

Iq −D(θ)F (θ)′ − F (θ)D(θ)′ + F (θ)F (θ)′ =

2Iq −D(θ)F (θ)′ − F (θ)D(θ)′ =

2Iq −D(θ)D(θ)′H(θ)∆−1/2(θ)H(θ)′ −H(θ)∆−1/2(θ)H(θ)′D(θ)D(θ)′ =

2Iq − 2H(θ)∆1/2(θ)H(θ)′ =

2H(θ)
(
Iq −∆1/2(θ)

)
H(θ)′.

It can be easily deduced from the equation above, that the largest eigenvalue

is

2− 2
√
δq(θ)

Furthermore the following holds

2− 2
√
δq(θ) ≤ 2(1− δj(θ)) ≤ 2(1− (1− W

αm
)) = 2 W

αm

where the last term should be smaller than τ . Hence choose mτ such that

2
W

αmτ
< min{2, τ}.

and we are done. This proof is based on [4, p.14f].

Lemma 7.4. Let {X1
t } and {X2

t } be costationary processes with cross spec-

trum ΣX1X2
(θ) and let {X1

nt} and {X2
nt} be costationary processes for n ∈ N

with cross spectrum ΣX1
nX

2
n(θ). Let furthermore the following hold:

lim
n→∞
‖X1

nt −X1
t ‖ = 0 and lim

n→∞
‖X2

nt −X2
t ‖ = 0.

Then there exists a subsequence (nk)k∈N in N such that

lim
k→∞

ΣX1
nk
X2
nk (θ) = ΣX1X2

(θ), a.e. in [−π, π].

See [4, p.15].

Proof. The proof can be found in [4, p.25].
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