
Thomas Schuster, BSc

Speculative Dereferencing of Registers

MASTER’S THESIS

to achieve the university degree of

Dipl. Ing.

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisors

Martin Schwarzl, Dipl.-Ing. BSc

Daniel Gruss, Ass.Prof. Priv.-Doz. Dipl.-Ing. Dr.techn. BSc

Institute of Applied Information Processing and Communications

Graz, March, 2021

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Abstract

Many modern operating systems’ kernels hide information about virtual to physical
mapping information from user programs. This is due to security reasons, as virtual
to physical mapping information enabling an attacker to bypass vital kernel security
measures, for example, kernel address layout randomization (KASLR) and enabling
hardware-fault attacks such as Rowhammer. As this information is therefore usually
hidden, an attacker has to use techniques such as the address-translation attack to learn
which virtual address is mapped to which physical address, using missing privilege checks
of software prefetch instructions. In order to prevent these types of attacks, KAISER
(KTPI) was introduced, adding a stricter separation between the kernel address space
and the user address space.

In this thesis, we will show that KAISER never entirely prevented address-translation
attacks. This is due to prefetch instruction not being the real cause of leakage. We
will first analyze the original address-translation attack and uncover the real root cause
of the prefetching effect. Based on this analysis, we will show that Spectre gadgets in
the kernel code of syscall and interrupt handlers are the real causes of leakage. Thus,
speculative execution leads to speculative dereferencing of unclear general-purpose reg-
isters in kernel space. Furthermore, we will locate one such gadget causing leakage in
the Linux syscall handler of the sched yield syscall. We will analyze the influence of
various software and hardware Spectre countermeasures on this speculative dereferenc-
ing attack. Furthermore, we will show that even modern Linux kernel versions and Intel
CPUs are susceptible. We will conduct the attack on various systems, using different
CPUs (Intel, ARM, and AMD), kernel versions, and Linux distributions. Furthermore,
we demonstrate several attacks based on this discovery. First, we will build a covert
channel that does not depend on shared memory. Second, we will show that an at-
tacker with sufficient address space can directly leak values from user programs, kernel
space, and even SGX. The content of this thesis will be presented as a talk at Financial
Cryptography and Data Security 2021.

Keywords: operating systems, transient execution, branch prediction, CPU cache

iii

Kurzfassung

Aus sicherheitstechnischen Gründen verstecken viele moderne Betriebssystem Informa-
tion über den Zusammenhang von virtuellen und physikalischen Adressen von Anwen-
derprogrammen. Informationen über diesen Zusammenhang ermöglicht es Angreifern,
wichtige Kernel-Sicherheitsmechanismen, wie zum Beispiel KASLR zu umgehen und At-
tacken wie Rowhammer zu ermöglichen. Angreifer müssen daher auf Techniken wie die
Address-Translation-Attacke zurückgreifen, die mithilfe Software-Prefetch-Instruktionen
ermöglicht, den Zusammenhang zwischen virtuellen Adressen und physikalischen Adressen
zu lernen. Um solche Attacken zu verhindern, wurde die KAISER-Technik (KPTI)
entwickelt, die für eine striktere Aufteilung zwischen dem Adressraum für Anwender-
programmen und dem vom Kernel genutzten Adressraum sorgt. In dieser Masterar-
beit zeigen wir jedoch, dass KAISER nie wirklich Address-Translation-Attacken verhin-
dert hat, da, statt wie zunächst angenommen, Software-Prefetch-Instruktionen nicht
die eigentliche Lücke war, die die Attacke ermöglicht hat. Stattdessen werden wir
zeigen, dass spekulativ ausgeführter Kernel Code, auch Spectre Gadgets genannt, in
den Systemaufruf und Interrupt Handler des Linux Kernel die Grundlage der Address-
Translation-Attacke war. Dabei werden frei verwendbare Register im Kernel spekulativ
dereferenziert, die noch Informationen von Anwenderprogrammen beinhalten. Wir wer-
den ein solches Spectre Gadget im Handler des sched yield Systemaufrufes lokalisieren.
Basierend auf dieser Erkenntnis werden wir testen, wie sich bereits existierende Gegen-
maßnamen gegen Spectre auf diese Attacke auswirken und werden zeigen, dass selbst
aktuelle Intel CPUs und aktuelle Linux-Kernel-Versionen betroffen sind. Dabei werden
wir die Attacke auf den verschiedensten Systemen mit unterschiedlichen Linux-Kernel-
Versionen, Linux-Distributionen und CPU-Typen (Intel, AMD und ARM) laufen lassen.
Des Weiteren werden wir zwei praktische Attacken vorstellen. Zuerst werden wir einen
verdeckten Kanal (Covert-Channel) entwerfen, und ihn mit anderen versteckten Kanälen
vergleichen. Weiters werden wir zeigen, dass, wenn einem Angreifer genug Adressraum
zu Verfügung steht, er in der Lage ist, Variablen direkt aus Nutzerprogrammen, Ker-
nel oder sogar SGX zu lernen. Der Inhalt dieser Masterarbeit wird bei der Financial
Cryptography and Data Security 2021 als Talk präsentiert.

Keywords: Betriebssysteme, Transient Execution, Branch Prediction, CPU-cache

iv

Acknowledgements

I want to thank my advisors Martin Schwarzl and Daniel Gruss, for their constant
support, meaningful discussions, tips, and feedback for this thesis.

Furthermore, I want to thank my friends and family for keeping me motivated and
supporting me during my studies. Especially, I want to thank my partner for supporting
me and proofreading my English writing.

Thomas Schuster

v

Contents

1 Introduction 1
1.1 Structure of this document . 2

2 Background 3
2.1 Virtual Address Space . 3
2.2 CPU Caches . 6
2.3 Cache Attacks . 8
2.4 KAISER (KPTI) . 12
2.5 Transient Execution . 13
2.6 Transient Execution Attacks . 16
2.7 Transient Execution Defense . 21
2.8 Covert Channels . 26

3 Speculative Dereferencing Analysis 29
3.1 Address-Translation Attack . 29
3.2 Locating the leakage source . 32
3.3 Kernel Spectre Gadgets . 35
3.4 Speculative Dereferencing using Spectre 37

4 Improving the number of fetches 40
4.1 Measuring the leakage . 40
4.2 Improving the leakage . 49

5 Attack Case Studies 51
5.1 Covert Channel . 51
5.2 Dereference Trap (Value Leak) . 56

6 Additional Work 61
6.1 Speculative Dereferencing in Virtual Machines 61
6.2 Speculative Dereferencing inside SGX enclaves 62
6.3 Speculative Dereferencing in Javascript . 62

7 Conclusion 64

vi

Chapter 1

Introduction

Information about physical addresses and how they are mapped to virtual addresses
are usually made unavailable to user programs by an operating systems’ kernel [30,
31, 80]. This is due to security reasons, as information about physical addresses and
virtual addresses enables an attacker to bypass vital kernel security measures, includ-
ing KASLR [19, 30]. Kernel address space layout randomization (KASLR) is used by
an operating system in order to make kernel addresses unpredictable, hardening the
exploitation of kernel bugs [19, 30, 31, 39, 96]. Additionally, an attacker can utilize
knowledge about physical addresses to run hardware-fault attacks such as Rowham-
mer [8, 48, 64, 86, 95, 115], which enables an attacker to leak confidential information by
inducing bit flips in RAM [30].

To harden the operating system’s kernel against these types of attacks, information about
the mapping of virtual addresses and physical addresses is hidden to user programs [30,
31,94]. Therefore, in order to learn this information, an attacker first has to leak it [31,
94]. For that purpose Gruss et al. [31], in 2016, introduced the address-translation
attack. The address-translation attack enables an attacker to find the physical address
to any arbitrary virtual address by allowing fetching of arbitrary kernel addresses into
the cache [31]. The attack thus exploits missing privilege checks of software prefetch
instruction [31]. In order to prevent these types of attacks, in 2017, Gruss et al. [30]
presented the KAISER technique, which introduces a stricter separation between the
kernel address space and user address space, thus harding prefetching kernel addresses
via a user program [30]. However, KAISER never fully prevented prefetch attacks such
as the address-translation attack.

In this master thesis, we will show that the original analysis of the address-translation
attack was erroneous. Thus, we will analyze the root cause of the prefetching ef-
fect [13,31,65]. We will show that missing privilege flags of software prefetch instruction
are not causing the kernel addresses to be fetched into the cache [31]. Instead, specu-
lative execution [13,65, 72] in the kernel leads to speculative dereferencing of user-space
addresses stored in general-purpose registers [94]. Many possible sources of speculative

1

dereferencing might exit in kernel code. However, this thesis’s focus will be on Spectre
gadgets located in syscall handles and interrupt routines [13, 65, 94]. We will locate an
actual Spectre-BTB [13,65] gadget in the syscall handler of the sched yield syscall that
can be triggered to fetch arbitrary addresses stored in registers.

Based on these findings, we will show that KAISER never fully mitigated address-
translation attacks [30,31]. We will analyze how various software and hardware Spectre
countermeasures influence the attack and show that the attack can even be conducted
on current Linux kernel versions and the most recent Intel CPUs [5,13,30,43–45,57–59,
78, 85, 87, 92, 107, 110, 113, 118]. The attack will be conducted on various systems using
various syscalls, and the number of cache fetches caused by speculative dereferencing will
be recorded. Intel CPUs, as well as ARM CPUs and AMD CPUs, will be tested [94].
Based on this data, we will optimize the rate of cache fetches for practical attacks.

Finally, we will conduct two practical attacks. First, we will construct a speculative
dereferencing based covert channel in order to compare its performance to a covert
channel based on other hardware vulnerabilities [11, 25, 32, 37, 69, 73, 76, 77, 79, 83, 88,
97, 114, 117, 119]. Furthermore, we will present dereference trap, a technique that can
be utilized to leak data directly from registers using speculative dereferencing. In this
manner, attacks using this technique do not need any further encoding steps and can
leak data from user programs, from kernel space, and even from SGX [94].

1.1 Structure of this document

In Chapter 2, we will provide background information necessary for this thesis. We will
examine CPU caches, cache side-channel attacks, and transient execution. The back-
ground chapter will be followed by the systematic analysis of speculative dereferencing
in Chapter 3. We will analyze the address-translation attack by Gruss et al. [30] and
locate a Spectre-BTB gadget [13,65] causing leakage in a syscall handler. In Chapter 4,
we will evaluate speculative dereferencing on various systems and using various syscalls.
Based on this information, we will optimize the number of fetches during a specula-
tive dereferencing attack. Two case studies will be conducted in Chapter 5. We will
build and benchmark a cache-based covert channel [32, 37, 73, 76, 77, 83, 88, 114, 117], as
well as introducing the Dereference Trap technique. In Chapter 6, we will give a short
overview of additional work and experiments conducted by Schwarzl et al. [94] based on
this thesis’s findings. Finally, we will summarize the thesis in Chapter 7.

2

Chapter 2

Background

In this chapter, we will give an overview of relevant topics. Therefore, we will provide an
introduction to address translation, kernel protection mechanisms, CPU caches, cache
attacks, and transient execution. Furthermore, we will discuss three major transient
execution attacks, namely Meltdown, Spectre, and Foreshadow.

2.1 Virtual Address Space

Virtual addressing is a crucial part of memory isolation in modern operating systems.
For many modern architectures, the operating system assigns each process its own virtual
address space that can not be accessed by other processes [104]. Furthermore, virtual
memory prevents direct access to physical memory by user-space processes. When a
virtual address is accessed, address translation is used to find the corresponding physical
address. Address translation uses multi-level page tables, which are isolated between
different processes by the operating system’s kernel. The translation between virtual
and physical addresses is usually performed by the memory management unit (MMU),
which is often a part of the CPU.

To protect the kernel from access by user-space processes, the virtual address space of a
user process is further divided into two sections, as illustrated in Figure 2.1 [104]. The
user address space is mapped as user-accessible and can be accessed by the process at
any time [104]. The kernel address space, however, is only accessible for a process when
the CPU with the privileged bit set, for example, during the execution of a syscall. This
separation is a cornerstone of kernel security, which is based on preventing illegitimate
access to kernel information from user-space. However, in recent years more and more
attacks have shown that these security measures can be bypassed by, for example, using
hardware side-channel attacks [30,31].

3

Kernel Space

Interrupt Routines

User Space

Virtual Memory Physical Memory

Figure 2.1: The virtual address space of a process. [104]

...

Direct-Physical Map

Kernel-Space

Non-Canonical

User-Space

Virtual Memory Physical Memory

Figure 2.2: On Linux and OSX, physical memory is mapped twice, once
as a kernel or a user page and once as a 1:1 mapping [61,71].

4

In Linux and OS X, there often exists a direct memory mapping of all physical memory
in the kernels’ virtual address space [61, 71], as illustrated by Figure 2.2. On Windows,
memory pools residing in the kernel address space include a huge fraction of directly
mapped physical memory [72]. Due to the vast amount of available virtual address
space for 64bit systems, enough virtual addresses are available to map a machine’s entire
physical memory [61]. Mapping all physical memory directly enables more comfortable
and quicker access to physical memory for a kernel driver or the kernel itself [71]. In some
operating systems like Linux, information about virtual-to-physical address mappings is
available [62]. However, the mapping information can usually not be access by non-
privileged programs in order to prevent attacks [98]. In 2016 Gruss et al. [31] proposed
a prefetch side-channel attack that can be used to obtain the physical address for any
mapped virtual address in user-space.

2.1.1 Kernel Protection Mechanisms

There exist a variety of memory safety violations like buffer overflows, enabling control-
flow hijacking attacks [103]. Attackers usually exploit these memory safety violations
to attack user-space applications [103]. However, control-flow hijacking attacks are not
limited to programs running in user-space but can also be used for attacking the kernel
of an operating system [38]. Therefore, modern operating systems use a multitude of
hardware and software security mechanisms to protect the kernel from malicious user-
space applications [31,80].

For hardware countermeasures against code injection attacks, most modern CPUs sup-
port supervisor mode execution protection (SMEP) and supervisor mode access protec-
tion (SMAP) [80]. SMEP is used to prevent the execution of code residing in user-space
memory in privileged mode [80]. This countermeasure prevents an attacker from tricking
the kernel into executing malicious code while running in kernel mode. SMAP, on the
other hand, prevents data access to user-space memory in privileged mode [80].

However, while these countermeasures prevent attackers from tricking the kernel into
executing malicious code or accessing malicious data, they do not prevent the kernel
against code-reuse attacks like Return-Oriented Programming (ROP) [10,15,38, 51,89].
In a code-reuse attack, the attacker searches for existing code gadgets in already exe-
cutable memory regions [89]. The address of these code gadgets is then injected into the
stack and chained together to execute malicious code [89]. The code gadgets often consist
of a number of useful instructions combined with a return instruction [89]. By injecting
the address of the next gadget into the stack, multiple gadgets can be combined to run
nearly arbitrary code [89]. While these gadgets are often found in user-space libraries,
code-reuse attacks can also be used to attack the kernel, bypassing countermeasures like
SMEP and SMAP [38].

To harden the execution of code-reuse attacks, various countermeasures were intro-

5

duced [3, 17, 31, 68, 103]. These countermeasures include Control-Flow Integrity pro-
tection (CFI) [3, 68]. CFI uses techniques like shadow stacks [17] or stack canaries [18]
in order to prevent an attacker from redirecting the flow of a program’s execution. Fur-
thermore, address space layout randomization (ASLR) [31,103] can be used in order to
harden a system against code-reuse attacks. When using ASLR, the virtual memory lay-
out is randomized for every process started [31,103]. There exists coarse-grained ASLR
and fine-grained ASLR. Coarse-grained ASLR randomizes the location of memory re-
gions on process start [31,103]. These memory regions include the code, heap, data, and
stack regions [31, 103]. Additionally, in order to prevent ROP-like attacks, the memory
locations of libraries are randomized [31,103]. Coarse-grained ASLR prevents an attacker
from predicting the memory location of possible code gadgets needed for ROP, as well as
the memory location of already injected code and malicious data [31, 103]. When using
fine-grained ASLR, however, even the memory locations for functions and variables are
randomized. Fine-grained ASLR, however, usually has a negative performance impact
and is therefore rarely used [31,103].

While ASLR is widely used for protecting user-space processes from code injection at-
tacks, many operating systems additionally utilize kernel address space layout random-
ization (KASLR) to protect the kernel from ROP attacks [19, 31]. On Linux, KASLR
randomizes the kernel virtual address space at boot time [19]. This randomization in-
cludes the area where the kernel image is loaded [19]. As this randomizes the address
of possible code gadgets in the Linux kernel and kernel libraries, KASLR protects the
kernel against ROP attacks [19,31].

2.2 CPU Caches

Access time to physical memory is high [35]. Thus, small and fast memory is used
as a buffer to store recently-used data expecting it to be reaccessed in the near future.
Caching frequently accessed memory locations, therefore, leads to significant time-saving.
A cache is organized in multiple cache sets with n cache lines each, called an n-way cache.
The size of one cache line is typically 64 bytes. In modern processors, caches are usually
n-way set-associative, where n is the number of cache lines per cache set, as Figure 2.3
illustrates. Which of the sets is used depends on the address accessed. To find out if the
data is cached in a set, the tag part of the address is then compared to the tags of all
the cache lines in the set. Besides regular caches, special caches such as the translation-
lookaside buffer exist. This buffer stores recent traversed page table entries for faster
CPU access.

In x86 and other modern architectures usually multiple cache levels are used, as Figure
2.4 illustrates [35]. These levels typically differ in size and speed [35]. The smallest cache
is usually the fastest. In such multi-level cache designs, usually, cache inclusion policies
are used [99]. The cache levels can either be inclusive, exclusive, or non-inclusive/non-

6

line 3, way 1

line 2, way 0

line 4, way 0

line 0, way 0

Tag Set Offset

Compare

line 1, way 1

line 0, way 0

line 7, way 1

line 6, way 0

line 5, way 1

Set 1

Set 2

Set 3

Set 4

Address

Figure 2.3: 2-way set-associative cache with 8 cache lines in 4 sets, 2 lines
per set. On access, the set is chosen, and the tags of the lines are compared
with the tag of the address. The same memory location is always cached in
the same cache set. [35]

exclusive (NINE). In the case of two inclusive caches, each entry of the lower-level cache
is additionally added to the higher-level cache. Eviction, however, only additionally
removes the entry from lower-level caches. In an exclusive policy, the higher-level cache
is only filled with entries previously evicted from the lower-level cache. A NINE policy
is similar to an inclusive cache, however, eviction only removes the entry from one cache
level.

In modern processors, usually 3 cache levels are used, denoted L1, L2, and L3 [46]:

• Level 1 Cache [46]: There exists one level 1 cache per CPU core. The level 1 cache
is the fastest yet smallest cache. It is usually separated into a data cache and an
instruction cache. It is only accessed by virtual addresses, not physical addresses.

• Level 2 Cache [46]: As with the level 1 cache, every CPU core has its own level 2
cache, which is exclusive to the level 1 cache. The level 2 cache is bigger compared
to the level 1 cache; however, access is slower. Furthermore, it is not separated
into a data cache and an instruction cache.

• Level 3 Cache (LLC) [46]: The level 3 cache, or Last Level Cache, is the biggest
yet slowest cache. It is shared between all CPU cores and split up in slices. Fur-
thermore, it contains all the data from all level 1 and level 2 caches, making it
a shared exclusive cache [99]. On AMD CPUs, however, a NINE policy is often
used [99].

7

L1 Data L1 Code

Core 1

L2

L1 Data L1 Code

L2

L1 Data L1 Code

L2

LLC (L3) slice 0 LLC (L3) slice 1 LLC (L3) slice 2

Core 2 Core 3

Figure 2.4: Illustration of the level 1, level 2, and level 3 cache on a multi-
core processor [46].

When accessing data, a cache hit or cache miss can occur [35]. In the case of a cache
hit, the data resides in one of the cache levels and can be accessed quickly. In the case of
a cache miss, data will be loaded from slow physical memory and saved into the cache,
overwriting a previous cache line entry chosen by a replacement policy like Least Recently
Used (LRU). Therefore, cache entries can be evicted by accessing a certain amount
of data with addresses leading to the same cache line. Alternatively, the unprivileged
cflush instruction [21] can flush the cache entry for the data at a given address. Flushing
data will evict it from all cache levels.

A program can provide a hint to the processor on which data to fetch and put into
the cache using software prefetching instructions [4, 41]. The program can use these
instructions to tell the processor to cache an address prior to usage. Intel and AMD CPUs
have multiple instructions for software prefetching, including prefetcht0, prefetcht1,
prefetcht2, and prefetchnta [4, 41]. The result of these instructions, however, is
uncertain, as processors might ignore these hints [46].

2.3 Cache Attacks

Cache attacks are side-channel attacks that allow an attacker to collect information
about a victim’s programs’ behavior by determining which data is used and cached
during execution [32, 37, 50, 66]. Hu [37] first mentioned the idea of leaking information
cross-process using the cache in 1992. Kocher [66] and Kelsey et al. [50] in 1996 and
2000 describe the theoretical usage of cache timing attacks in cryptoanalysis to attack

8

cryptosystems implementations of, among others, DES, RSA, DSS, and Diffie-Hellmann.
Cache Attacks exploit the difference in the fast access time of cached data compared to
the long access time of uncached data [82, 106]. They can therefore be classified as
timing side-channel attacks [82,106]. Practical cache timing attacks were first discussed
by Page [82] and Tsunoo et al. [106] in 2002 and 2003 to attack DES implementations.
In 2004 the first attack on AES was published [6]. Percival [83] suggested an attack that
determines which cache sets are occupied by a victim program by measuring access time
to cache ways. Based on this, Osvik et al. [81] and Tromer et al. [105] suggested various
attack techniques on AES.

In the last two decades, several techniques were introduced that allow an attacker to uti-
lize the cache to collect information about a victim [32,34,81,120]. The most important
techniques are:

• Evict+Time [81]: This technique was introduced by Osvik et al. [81] in 2006 and
consists of three steps in order to learn which cache sets are accessed by a program.
At first, the victim program is executed and the execution time is measured [81].
Second, the attacker evicts a certain cache set from the cache by accessing certain
addresses [81]. Finally, the victim program is timed again. If the execution time
increases, the attacker learns that the evicted cache set was probably accessed by
the victim [81].

• Prime+Probe [81]: First, an attacker occupies several cache sets and runs the
victim program (Prime) [81]. Second, the attacker probes which cache sets are still
occupied and learns information about which data was accessed by the victim [81].
This information can be learned by observing a slow access time for evicted cache
sets in comparison to fast access times for cache sets not accessed by the victim.
Osvik et al. [81] proposed this technique in 2006.

• Flush+Reload [34, 120]: This technique was presented by Gullasch et al. in
2011 [34] and Yarom and Falkner in 2014 [120]. It utilizes the cflush instruction
and shared memory in order to determine which addresses were accessed by the
victim [120]. We will discuss this technique in more detail in the next section [120].

• Flush+Flush [32]: Flush+Flush is a stealthy cache attack technique introduced
by Gruss et al. in 2016 [32]. The technique is similar to Flush+Reload [34, 120],
however it solely uses the cflush instruction, as the execution time of cflush is
faster for cached data compared to uncached data.

2.3.1 Flush+Reload

Flush+Reload is a cache-based side-channel attack that utilizes the fact that memory
shared between two processes is cached in the same cache sets [34,120]. The idea behind
Flush+Reload was first proposed by Gullasch et al. [34], attacking AES on the L1 cache

9

Attacker

Cache

Victim

Shared Data

Shared Data Shared Data

(a) Obtain shared memory between at-
tacker and victim [120].

Attacker

Cache

Victim

flushShared Data

Shared Data

(b) Attacker flushes cache line of shared
data [120].

Attacker

Cache

Victim

Shared Data

Shared Data Shared Data

(c) Victim access the shared data and loads
it into the cache [120].

Attacker

Cache

Victim

timeShared Data

Shared Data Shared Data

(d) Attacker measures access time to
shared data [120].

Figure 2.5: A Flush+Reload attack illustrated. After measuring the access
time, the attacker learns if the shared data was accessed [34,120].

utilizing shared memory. Yarom and Falkner [120] improved this idea and introduced
the Flush+Reload technique targeting the L3 cache in 2014.

Flush+Reload consists of four steps, as illustrated in Figure 2.5 [120]:

1. Obtain a shared memory region with a victim program [120].

2. Choose an address from the shared memory region and flush the cache line from
the cache using the cflush instruction [120].

3. Wait for the victim process to run [120].

4. Measure the access time to the shared memory address [120].

A shared memory region between an attacker and a victim can be obtained in multiple
ways [102]. Dedicated shared memory, shared binaries, shared libraries, and, if activated,
memory optimizing algorithms like page deduplication can provide an attacker with a
shared memory region [102].

10

By measuring the access time, one can infer whether the victim program accessed the
shared memory region under attack [120]. In the case of a cache hit, we can observe a fast
access time [120]. In the case of a cache miss, the access time is significantly longer [120].
This difference enables an attacker to search for memory regions accessed by arbitrary
algorithms [120]. Yarom and Falkner [120] presented an attack using Flush+Reload that
extracts parts of the private key of the RSA implementation in GnuPGP.

Flush+Reload is considered a low noise cache side-channel attack [120], making it feasible
for a broad range of applications. Gruss et al. [32] showed that the probability of false
positives using the Flush+Reload technique is very low. In their experiments, they were
able to observe an accuracy between 96% and up to nearly 100% for correctly monitoring
keystrokes [32].

2.3.2 Cache Template Attacks

The Cache Template Attacks is a two-phase cache attack technique introduced by Gruss
et al. [33] in 2015. It is a generic attack, enabling an attacker to automatically conduct
cache-based attacks on any program [33]. Information about Program versions or system-
specific information is not required by a Cache Template Attack [33]. Furthermore,
remote systems can be attacked without prior offline measurements. The technique uses
Flush+Reload [120] as an underlying attack [33].

Cache Template Attacks are conducted in two phases [33]. At first, a profiling tool
determines and collects information about the connection between secret information
and certain memory areas being accessed and cached [33]. This secret information can,
for example, be keystrokes or private keys used in cryptographic primitives [33]. In the
second phase, the exploration phase, the attacker then deduces details about the secret
information by observing the cache [33]. As an example, Gruss et al. [33] showed an
attack detecting keystrokes on specific keys using a Cache Template Attack.

Gruss et al. [33] provide a collection of public domain tools to perform Cache Template
Attacks [27]. These tools can be used on Windows and Linux [27]. It contains programs
for profiling and exploitation, as well as a calibration tool and a C header file providing
functions for Flush+Reload [27]. The calibration tool can be used to obtain a histogram
of multiple cache hit and cache miss time measurements on the current system [27].
Figure 2.6 shows a visualization of the calibration tool histogram. The histogram can
be used to learn the optimal threshold to differentiate between a cache hit and a cache
miss [27,33]. The optimal threshold is the highest timing of a cache hit to minimize false
negatives [27, 33]. However, the threshold has to be lower than the lowest timing of all
cache misses to prevent false-positive results [27,33].

11

0 50 100 150 200 250 300 350 400
100

101

102

103

104

105

106

Timing

N
u
m
b
er

o
f
H
it
s/
M
is
se
s

hit
miss

Figure 2.6: This diagram is a visualization of the histogram provided by
the Cache Template Attack calibration tool [33]. The optimal threshold in
this example would be around 250. High access time for cache hits might be
caused by scheduling.

2.4 KAISER (KPTI)

The KAISER technique [29, 30] strengthens kernel security and prevents many side-
channel attacks by enforcing strict isolation between user-space and kernel-space. By
using this technique, almost no kernel pages are mapped while a user process is running
in user mode [30]. The kernel uses two separate sets of page tables, one for user-space
and one for kernel-space [30]. The full set of page tables includes all user-space and
kernel-space mappings and is only used while the CPU runs in kernel mode [30]. The
second set of page tables is restricted to user-space addresses and only a small number
of kernel-space addresses, as illustrated in Figure 2.7 [30]. These kernel-space addresses
contain information needed for entering and exiting syscall, interrupt, and exception
routines [30].

Kernel features based on the KAISER technique [29, 30] were implemented under the
name Kernel Page-Table Isolation (KPTI) [16] for Linux, on MAC as Double Map [47],
and Kernel Virtual Address Shadowing (KVAS) [49] for Windows as a mitigation for the
Meltdown attack. KPTI might have a negative impact on performance [13, 26, 29]. For
processors with PCID support, overheads were reported as negligible (0-2.6%), while for
systems without PCID, in the worst-case, overhead went all the way up to 800% while
executing a considerable number of syscalls [13, 26,29].

12

Kernel Space

Interrupt Routines

User Space

Virtual Memory Physical Memory

(a) Virtual address space before KAISER.
Kernel-space is mapped, however only acces-
sible in kernel mode.

Kernel Space

Interrupt Routines

User Space

Virtual Memory Physical Memory

(b) Virtual address space after KAISER.
Only small parts of kernel memory are
mapped in user mode, for example, interrupt
and exception routines.

Figure 2.7: The virtual address space of a process before and after applying
the KAISER patch. [104]

2.5 Transient Execution

Many modern CPUs do not work with the instruction set directly [23]. Instructions are
further split up and translated into micro-operations (µOPs) by newer processors [23].
These µOPs can, for example, be reading from memory into a register, execute calcula-
tions using data in registers, and writing from registers into memory [23]. Instructions
that only use registers like ADD RAX, RBX are translated into only one µOP [23]. For
ADD [MEM1], RBX, the processor will generate three µOPs, read into a register, execute
addition, and write back into memory [23].

Spreading an introduction onto one or more µOPs enables the processor to use out-of-
order execution [23]. Out-of-order execution improves the performance of the processor
by minimizing the number of otherwise wasted instruction cycles [23]. This performance
improvement is achieved using the time a processor has to wait for an instruction to com-
plete, for example, while loading data from memory [23]. While the processor is waiting
for the delayed instruction to complete, following instructions with already available in-
puts are antedated [23]. However, this is only possible if there is no dependency between
the delayed and the following instructions [23].

Figure 2.8a shows an example of assembler code [23]. The mov eax, [mem1] will split up
into fetching the value [mem1] and moving it into eax [23]. As imul eax, 5 is dependent
on the not yet available new value for eax, it can not be antedated [23]. However, add
eax, [mem2] will be split up into fetching and adding the value to eax [23]. As loading
[mem2] is not dependent on the value from [mem1], the processor can start fetching

13

1 mov eax , [mem1]

2 imul eax , 5

3 add eax , [mem2]

4 push eax

(a) Simple assembler code example.

1 load: [mem1]

2 mov: [mem1] into eax

3 mul: eax with 5

4 load: [mem2]

5 add: [mem2] to eax

6 sub: 4 from esp

7 mov: eax into [esp]

(b) Code split up into example µOPs.

Figure 2.8: Code example for instructions being split up into µOPs [23].
Code adapted from The microarchitecture of Intel, AMD, and VIA CPUs
by Agner Fog [23].

[mem2] prior to the availability of [mem1] [23]. Furthermore, subtracting from the esp

for the push instruction can be executed out of order, as no other µOP is dependent on
the stack pointer [23].

Branch prediction is a technique that tries to predict which path will be used after a
conditional jump [23]. By determining which path will be used for conditional branches
and where the branch is going for unconditional and conditional branches, the proces-
sor can fetch instruction from memory prior to their actual usage [23]. For example,
the Intel processors’ branch prediction unit uses multiple different branch prediction
structures [46]:

• Branch Target Buffer (BTB) [20, 65, 70]: The BTB is a cache-like structure that
saves information about previously taken branches [20]. The information usually
includes the target of the jump and whether the branch was taken or not [20].
This buffer is then used by a branch target predictor to predict the target of a
conditional or unconditional branch without the need to decode and compute the
real target address [20].

• Branch History Buffer (BHB) [7,65]: The BHB is a table that stores branch instruc-
tions and a bit that indicates whether this branch was recently taken or not [7,65].
A branch predictor can use this information to speculatively execute the branch
that will probably be taken based on the information saved in the BHB [7, 65].
In the case of a correct prediction, the processor has already executed the branch
instruction [7, 65]. Otherwise, the processor has to flush the wrongly executed
instructions out of the pipeline and execute the correct branch [7, 65].

• Pattern History Table (PHT) [23, 65]: The PHT improves the prediction based
on the BHB by saving the history of a branch being taken in two bits instead
of one [23]. Additionally, the PHT saves four counters, indexed by the two bit
history [23]. Every time a certain 2-bit history leads to a branch taken, the cor-

14

responding counter is incremented [23]. This enables a branch predictor to detect
patterns and correctly predict branches based on multiple previous executions [23].

• Return Stack Buffer (RSB) [23,67,75]: RSBs are small and fast buffers that store
return address of recently executed call instructions [23]. Every time a call or return
instruction is executed, the return address is pushed onto a stack or popped from
the stack [23]. RSB utilizes the fact that call instructions and return instructions
are often executed in pairs [23]. On return, the processor can predict the presumed
return address by taking it from the RSB [23]. This circumvents the loading time
needed to access the main memory to get the return pointer from the stack [23].

Modern processors utilize speculative execution to further optimize performance [23].
This optimization is used as a countermeasure in order to tackle the problem of the
growing gap between processor speed and memory access speed [23]. In speculative ex-
ecution, a predictor assumes which path will be executed or which value will be loaded
and speculatively continues execution [23]. The prediction mechanism can base this as-
sumption using either control-flow prediction or data-flow prediction [23]. In the case
of a correct prediction, the processor can use the result of the already executed instruc-
tions [23]. However, in the case of a wrong prediction, the result of the speculatively ex-
ecuted instruction has to be discarded [23]. Furthermore, the pipeline has to be flushed,
and the correct path has to be executed [23]. As these discarded instructions are ex-
ecuted in a transient way (transient instructions [65, 72]), this is also called transient
execution [13, 65].

Cause?

Spectre-type Meltdown-type

Spectre-PHT Spectre-STL Meltdown-GP Meltdown-AC

Meltdown-MCA Meltdown-USMeltdown-PSpectre-BTB Spectre-RSB

Figure 2.9: Classification tree of transient execution attacks [13,28]. Split
up into Meltdown-type and Spectre-type attacks [13, 28]. Based on a graph
by Canella et al. [13, 28].

15

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

Figure 2.10: Toy example of the Meltdown attack [72]. A kernel address
is dereferenced, and the result is used to index an array [72]. Due to spec-
ulative execution, the indexed part of the array might be prefeched before
the memory access permission check can detect invalid access to a kernel
address [72].

2.6 Transient Execution Attacks

Transient execution enables the processor to optimize performance [13,65]. On the other
hand, however, it can be used by an attacker to leak secret information [13, 65]. When
using out-of-order execution, as a side effect, the microarchitectural state of the processor
is changed [13,65]. These changes, for example, cached memory, are not reverted in the
case of a wrongly executed branch, enabling an attacker to learn sensitive information
by exploiting this side effect [13, 65]. Instructions that are out-of-order executed and
produce such side effects are called transient instructions [72].

Attacks that exploit side effects of transient execution are called transient execution
attacks [13, 65, 72]. Transient execution attacks can be separated into two groups [13],
Spectre-type attacks [65], and Meltdown-type attacks [72]. The first group is Spectre-
type attacks, which exploit misprediction of control flow or data flow [13, 28], caused,
for example, by branch prediction. The second group is Meltdown-type attacks which
exploit transient execution on an instruction that will raise a CPU exception [13, 28].
While Spectre-type attacks affect Intel, ARM, and AMD processors, Meltdown-type
attacks can not be executed on AMD processors [72]. An overview of the classification
of some known transient execution attacks is illustrated in figure 2.9. The first attacks
utilizing transient execution were found in 2017 and published later in 2018 [65, 72]. In
the following, we will explain several transient execution attacks in more detail.

2.6.1 Meltdown

The original Meltdown attack (also referred to as Meltdown-US-L1 [13]) was published
by Lipp et al. [72] in the first quarter of 2018. Meltdown exploits a race condition
between memory access and memory access permission check [72]. When a program
accesses a memory location, the CPU will usually check the user/supervisor attribute
of a pagetable [72, 104]. This attribute indicates if a page was mapped and can only be
accessed by the kernel [104]. If a user program attempts to access virtual addresses that

16

point to a kernel-owned virtual memory page, an exception is raised, and the accessing
program is terminated [104]. Meltdown exploits the fact that, when utilizing out-of-order
execution, the microarchitectural state can be modified, regardless of the exception being
raised by the processor when accessing a kernel address [72].

The attack consists of three steps [72]:

1. Reading the secret [72]: An attacker loads the virtual address of a memory location
into a register [72]. The content of the memory location is then used as an index to
access an array in user-space, as described in the next step [72]. During loading, the
CPU will translate the virtual address into a physical address [72]. Furthermore,
the processor will check the permission bit in the pagetable and raise an execution
in the case of illegal access [72]. The instruction sequence reading the secret and
accessing the array must therefore be implemented in a way that it becomes a
transient instruction sequence that will be executed out-of-order [72].

2. Transmitting the secret [72]: A sufficient-sized array is allocated in order to trans-
mit the secret, working as a lookup table [72]. First, it is ensured that no part of
the array is cached [72]. Second, the array is accessed at an offset based on the
secret value read in step one [72]. Due to transient execution, a race condition
between the CPU exception raised and the access to the array will occur [72]. This
might lead to the array being cached at the secret-based offset [72].

3. Receiving the secret [72]: The attacker now utilizes the cache-based side-channel
attack Flush+Reload [120] in order to learn which offset at the array was being
cached [72]. Using this offset, an attacker is now able to deduce the secret read in
step one, regardless of the fact that the virtual address only accessible in kernel
mode [72].

A toy example code for this can be seen in Figure 2.10. In this example, the dereferenced
address is a kernel address. The array might be speculatively accessed before a page-
fault can occur [72]. In this case, the array will be cached at the value of data times
4096, revealing the content of data by using cache attacks [72].

Meltdown enables an attacker to read the entire physical memory [72]. The attack
described above can be repeated for multiple different memory locations, dumping the
entirety of the kernel memory [72]. Linux and OS X usually have the entire physical
memory mapped in the kernel virtual address space [61, 71], while Windows typically
maps a large fraction of the physical memory in the kernel address space in the form of
memory pools [72]. Therefore, physical memory content will most likely be part of the
resulting kernel memory dump [72].

17

1 if (x < array1_size)

2 y = array2[array1[x] * 4096];

Figure 2.11: Toy example of the Spectre attack [65].

2.6.2 Spectre

The original Spectre attack was published by Kocher et al. [65] together with Melt-
down [72] in the first quarter of 2018. Spectre attacks use speculative execution to trick
the processor into executing an instruction sequence that would not be executed during
a strictly serialized program run [65]. First, an attacker has to mistrain a prediction
mechanism of the processor, for example, a branch predictor [65]. Second, an instruc-
tion set containing a non-reachable branch in which confidential information is used will
be executed [65]. Due to the mistraining of the prediction mechanism, the processor will
speculatively execute the branch, normally not being reached [65]. As this leaves changes
in the microarchitectural state, side-channel attacks can be used to extract confidential
information [65].

A toy example for one of the first Spectre attacks, known as Spectre-PHT or Spectre
v1, can be seen in Figure 2.11 [13, 65]. Due to branch prediction, the access to array1

might be executed before x was validated in the branch condition, enabling x to be out
of bounds [65]. array2 will be cached at the value of array1[x] times 4096, revealing
the content of array1[x] by using cache attacks [65].

Spectre can exploit multiple possible prediction mechanism [13,28]:

• Spectre-PHT [13, 65]: One of the versions of the Spectre attack described in the
first Spectre paper by Kocher et al. [65]. In this attack, the Pattern History Table
(PHT) and the Branch History Buffer (BHB) are mistrained in order to mispredict
the outcome of a conditional branch [65].

• Spectre-BTB [13, 65]: This version of the Spectre attack mistrains the Branch
Target Buffer (BTB) in order to wrongly predict the destination address of a
conditional branch [65]. Compared to Spectre-PHT an attacker can speculatively
execute arbitrary instructions sets [65]. The attack is therefore not restricted
to a certain conditional branch contained in the executing path like in Spectre-
PHT [65].

• Spectre-RSB [13,67,75]: Spectre-RSB, also known as ret2spec, is a version of Spec-
tre that exploits the Return Stack Buffer (RSB) [67,75]. By mistraining the Return
Stack Buffer, arbitrary code across processes can be speculatively executed [67,75].

• Spectre-STL [13,36]: Store To Load (STL) dependencies require a memory location
to be free of pending store instructions before being loaded [13, 36]. However, the

18

processor might speculatively predict which memory loads can already be executed
speculatively [13, 36]. In Spectre-STL, an attacker can mistrain this prediction
mechanism and speculatively bypass store instructions [13,36].

For mistraining the prediction mechanisms, Canella et al. [13] describe four mistraining
strategies:

1. Executing the victim branch in the victim process (sameaddress-space in-place) [13]

2. Executing a congruent branch in the victim process (sameaddress-space out-of-
place) [13]

3. Executing a shadow branch in a different process (crossaddress-space in-place) [13]

4. Executing a congruent branch in a different process (crossaddress-space out-of-
place) [13]

Additionally to the above-mentioned cache-based side-channel Spectre attacks, various
Spectre variants using other side channels were found [9,93]. For example, SMoTherSpec-
tre [9] utilizes the port-contention of simultaneous multithreading (SMT) architectures
(multiple logical cores share one physical core) as a side-channel [9]. Two hardware
threads running on the same physical core contend for the same ports, where each port
is responsible for a specific type of execution (e.g., loads or stores) [9]. This leads to
a measurable slowdown, enabling an attacker to learn information about the execution
sequence run by the victim running on the same physical core [9]. This is done by the
attacker using an instruction sequence utilizing the same ports as the victim [9]. Spectre
can then be used in order to make the victim execute certain instruction sequences,
e.g., using the BTB [9]. NetSpectre by Schwarz et al. [93], on the other hand, uses
the execution time difference of AVX2 instructions to enable remote Spectre attacks,
called an AVX side-channel. On the victim machine, a Spectre-PHT gadget, as well
as a so-called transmit gadget, have to be present [93]. The transmit gadget performs
activities based on the microarchitectural state changed by the Spectre gadget, leading
to different execution times and, therefore, measurable network latency [93].

2.6.3 Foreshadow

Foreshadow, also known as Meltdown-P-L1 [13], is a Meltdown-type attack [109, 112].
Contrary to the previously described Meltdown variant, Foreshadow is not aimed at
bypassing the memory protection provided by the Supervisor/User attribute of a page
table [109, 112]. Instead, Foreshadow utilizes page-faults while accessing unmapped
pages, pages with the present bit cleared, or the reserved bit set [109, 112]. When
accessing such an unmapped page, the processor immediately aborts address translation,
referred to as a terminal fault [109, 112]. However, Foreshadow uses the fact that when
accessing an unmapped page, in parallel to the address translation, the processor checks

19

whether the memory location of the physical address of the faulting page table entry is
cached in the L1 cache [109,112]. In the case of a cache hit, the data will be immediately
used by transient instructions before the processor raises a page-fault, modifying the
microarchitectural state [109, 112]. As with Meltdown-US-L1, cache-based side-channel
attacks can then be used in order to extract data from the microarchitectural state
change [13,109,112].

Foreshadow was originally used to extract data out of Intel SGX enclaves [41, 109].
However, it can further be used to bypass operating system protection or hypervisor
protection [112]. An attacker can use Foreshadow in order to extract any physical
memory cached in the L1 cache from within a guest virtual machine [112]. This includes
memory belonging to other guest virtual machines on the same system as well as memory
owned by the hypervisor [112].

2.6.4 MDS Attacks

In this section, we will discuss Meltdown-type attacks utilizing Microarchitectural Data
Sampling (MDS) side-channels [40, 93]. Therefore, we discuss three such attacks: Fall-
out [12], RIDL [110], and ZombieLoad [92].

Fallout

Fallout is a Meltdown-type attack utilizing the Microarchitectural Store Buffers Data
Sampling vulnerability, which can be used as an MDS side-channel [12]. Store buffers are
used by the CPU pipeline in order to reduce latency for data storage when storing any
type of data [12]. When loading data, however, these buffers have to be searched for the
loading address in the case of yet unwritten addresses and are directly read in the case
of matching addresses, called store-to-load forwarding [12]. Fallout enables an unprivi-
leged attacker to leak data from these store buffers, using the so-called Wire Transient
Forwarding (WTF) shortcut [12]. The WTF shortcut leaks values from memory writes
by using faulting load instructions, abusing store-to-load forwarding [12].

Fallout has been shown to be able to break Kernel Address Space Layout Randomization
(KASLR), even recovering address space information from Javascript [12]. Additionally,
sensitive data written into memory by the kernel was able to be leaked [12]. Fallout is
not affected by recently introduced Meltdown hardware mitigations, showing that even
recent processor generations are affected [12].

20

Rogue In-Flight Data Load (RIDL)

The Rogue In-Flight Data Load (RIDL) attack is a Meltdown-type attack exploiting mul-
tiple MDS vulnerabilities [110]. These vulnerabilities include Microarchitectural Load
Port Data Sampling, exploiting the CPU’s load ports, and Microarchitectural Fill Buffer
Data Sampling, exploiting the CPU’s line-fill buffer (LFB) [110]. These CPU buffers are
being used by the CPU while loading and storing data from and into memory [110].
As an example, the LFB is used by the CPU in order to optimize outstanding memory
requests by speculatively loading data into the buffer [110]. The RIDL attack can be
used in order to leak sensitive data from other applications running on the same Intel
processor [110]. These include the operating system’s kernel, VMs (for example, in the
cloud), or Intel SGX enclaves [110]. For example, arbitrary kernel memory can be leaked
by speculatively loading data previously stored in the LFB by mistraining [110].

ZombieLoad

ZombieLoad is a Meltdown-type attack utilizing the fill buffer structure of modern
CPUs [92]. ZombieLoad exploits a vulnerability usually referred to as Microarchitectural
Fill Buffer Data Sampling (MFBDS) [40] by Intel. The fill buffer is a buffer allocated
and used to gather data in the case of a miss on the first level data cache [92]. The
buffer holds data used in load operations or data returned by memory operations to be
written into the L1 data cache [92]. Once data is written into the cache, the fill buffer
entry is deallocated to be reused by future memory operations on the same physical
core [93]. Under certain conditions, the stale data of previous memory operations may
be speculatively forwarded during memory operations, causing a fault, referred to as a
zombie load [92]. As with other Meltdown-type attacks, the speculative loaded value
can then be recovered from the microarchitectural state using established techniques,
e.g., cache-based side-channel attacks [92].

ZombieLoad allows leaking data across all privilege boundaries [92]. This includes leak-
ing data from other user processes, the kernel, Intel SGX, and virtual machines [92].
However, compared to other Meltdown-type attacks, ZombieLoad gives an attacker less
control over which data is leaked, as only the least-significant 6 bits of the virtual address
can be used to address data in the fill-buffer entry [92].

2.7 Transient Execution Defense

In this section, we will give a short overview on some proposed hardware and software
defenses for various Spectre and Meltdown-type attacks. Based on the classification by

21

Canella et al. [13], we will consider Meltdown and Spectre as two separate problems
with different causes. Mitigations for Spectre-type attacks can be split up into three
categories [13]:

1. Prevent covert channels: Defense approaches that make the usage of certain covert
channels infeasible (e.g., by reducing accuracy) or that mitigate certain covert
channels entirely [13].

2. Prevent speculation: Abort or mitigate speculative execution in the case of data
possibly being accessible during transient executions [13].

3. Isolate secret data: Make secret data unreachable to potential attackers [13].

Mitigations for Meltdown-type attacks can be split up into two categories [13]:

1. Protect data from attacks on a microarchitectural level: Make architecturally in-
accessible data inaccessible on a microarchitectural level as well [13].

2. Prevent faults: Prevent faults by making them valid accesses without leaking secret
data [13].

2.7.1 Spectre Defense: Prevent covert channels

Transient execution attacks usually utilize a covert channel in order to learn information
from microarchitectural changes [13]. Preventing covert channel approaches or reducing
their accuracy can be used to prevent Spectre-type attacks [13]. Possible hardware
countermeasures would use a separate speculative buffer instead of the data cache for all
speculatively executed loads, proposed by Yan et al. [118] as InvisiSpec. In the case of a
correct prediction, the content is copied into the cache, visible to the rest of the system.
In the case of a wrong prediction, the content of the buffer is invalidated [118].

Other hardware-based countermeasures use shadow hardware structures (SafeSpec) [63]
or prevent the usage of data loaded during transient execution by subsequent instruc-
tions [65]. One example of software countermeasures would be reducing a covert chan-
nel’s accuracy by removing access to an accurate timer [13].

2.7.2 Spectre Defense: Prevent speculation

An effective way of preventing Spectre-type attacks would be deactivating speculative
execution altogether [13, 65]. However, as the performance loss would be too high,
deactivating speculation while working with sensitive data is an option [13].

In order to prevent Spectre-BTB (also known as Spectre v2), Intel and AMD introduced
several related hardware countermeasures [5, 13, 45]. These countermeasures include

22

1 jmp *%rax

(a) Before Retpoline

1 call load_label

2 capture_ret_spec:

3 pause;

4 jmp capture_ret_spec

5 load_label:

6 mov %rax , (%rsp)

7 RET

(b) After Retpoline

Figure 2.12: Retpoline exchanges the jump instruction of (a) to the se-
quence seen in (b). First, there is a direct call to load label [107]. The
RSB entry after that call leads to capture ret spec. In load label, the
target is pushed onto the stack and returned to using ret, while specula-
tive execution based on the RSB is trapped inside the capture ret spec

loop [107].

barriers like the Indirect Branch Predictor Barrier (IBPB) that flushes the BTB [58,
87]. IBPB prevents code executed before the barrier to affect the prediction of the
code executed after the barrier [58, 87]. Related to IBPB, Indirect Branch Restricted
Speculation (IBRS) flushes the BTB on kernel entry to prevent speculative execution in
the kernel by mistraining in user-space [58,87]. Single Thread Indirect Branch Predictors
(STIBP), on the other hand, prevent branch prediction-based mistraining caused by
sibling CPU threads using hyperthreading [58,87].

retpoline is a software countermeasure introduced by Google for Spectre-BTB (e.g.,
Spectre v2) as well as Spectre-RSB (e.g., ret2spec) attacks [13, 43, 78, 107]. With
retpoline, the target of indirect branches is pushed onto the stack and returned to
using the ret instruction, as shown in Figure 2.12b [43, 107]. This prevents specula-
tive attacks based on indirect branch prediction, as prediction of ret only relies on the
RSB [43, 107]. Moreover, retpoline adds an entry to the RSB, leading to an endless
loop when speculative predicting the ret instruction [43,107]. Performance overhead for
retopline was reported between 5–10% on servers [14,78].

RSB stuffing is a software countermeasure by Intel available for Skylake and newer
architectures, mitigating Spectre-RSB (e.g., ret2spec) [13,43]. When using RSB stuffing,
the RSB is filled with the address of a harmless function, for example, during a context
switch into the kernel [13,43]. This countermeasure prevents speculative execution based
on the RSB, for example, to avoid the execution of unwanted user-space code in kernel
mode [13,43].

Software-based countermeasures also include the lfence instruction [5,44] for Intel and
AMD processors. It prevents the execution of code after the lfence instruction unless
all prior instructions are completed, for example, mitigating Spectre-PHT and Spectre-

23

BTB [13,78].

For Spectre-STL, Mcilroy et al. [78] conclude mitigation can not be effectively achieved
in software [28]. This is due to years of work that would theoretically be required in
order to mitigate attack vectors for Spectre-STL, including the redesign of compiler
optimization and applying possible software countermeasures to a huge amount of code-
bases [78]. Moreover, architectural changes would be required in order to prevent reads
on speculative writes [78].

2.7.3 Spectre Defense: Isolate secret data

One example of this category is site isolation proposed by Google for Google Chrome
and Chromium [85]. Site isolation ensures that every site is rendered in its own process,
minimizing the amount of data that can be gathered using speculative side-channel
attacks [85]. However, enabling site isolation might cause a memory overhead of up to
13%, depending on the number of open tabs [85].

2.7.4 Meltdown Defense: Protect data from attacks on a microarchi-
tectural level

Meltdown-type attacks use transient execution to access architecturally inaccessible val-
ues. By preventing access to unauthorized values by design, directly in silicon, Meltdown
attacks can be mitigated [13]. While AMD enforced this design in all available proces-
sors [5], only recent Intel processors with RDCL NO support have Meltdown hardware
mitigations [45]. For some versions of Meltdown, Intel released microcode updates [44]
mitigating attacks.

An example of a software-based Meltdown defense is the KAISER technique, which
was explained in Section 2.4 [29, 30]. As Meltdown-US attacks require the secret to
being mapped, KAISER prevents attacks on kernel memory locations. Countermea-
sures based on KAISER were implemented on Linux as Kernel Page-Table Isolation
(KPTI) [16], on MAC as Double Map [47], and Windows as Kernel Virtual Address
Shadowing (KVAS) [49].

2.7.5 Meltdown Defense: Prevent faults

Faults are crucial for Meltdown-type attacks, as they utilize the delayed exception han-
dling of the CPU [13]. Therefore, preventing faults will mitigate Meltdown-type at-
tacks. One example of this approach is the countermeasure against Meltdown-NM [101].

24

Meltdown-NM is a Meltdown-type attack targeting the content of the Floating Point
Unit (FPU) registers from other processes by exploiting the delay of the “device-not-
available” exception [101]. This exception is raised while accessing the FPU the first
time after a context switch, leading to the previous FPU state being saved and the FPU
being made available to the current process [101]. The countermeasure proposed for
preventing Meltdown-NM prevents the ”device-not-available” exception by making the
FPU available during a context switch [74]. The countermeasure was implemented in
Linux [74].

2.7.6 Transient Execution Defense on Linux

Linux implements several of the above-mentioned Meltdown and Spectre countermea-
sures [58,60]. Additionally, many of these countermeasures can be controlled by several
kernel boot parameters [58, 60]. This enables a user to disable or enable certain coun-
termeasures [58,60]:

• nopti - Disables Page-Table Isolation (PTI), proposed as KAISER by Gruss et
al. [30, 57]. By introducing two separate kernel- and user-space page tables, PTI
prevents leaking of kernel memory by user-space applications [30,57].

• nospectre v1 - Deactivates Linux kernel countermeasures against Spectre-PHT
(Spectre Variant 1) [13, 28, 65]. The countermeasures include barriers (e.g., the
LFENCE instruction) for code that is possibly vulnerable to Spectre-PHT type
attacks [58]. LFENCE barriers prevent transient execution and therefore prevent
bounds-check bypass [58]. For Linux, barriers are placed in kernel entry code for
interrupts and exceptions, as well as kernel code working with user-space mem-
ory [58].

• nospectre v2 - Disables the Linux kernel countermeasures against Spectre-BTB
(Spectre Variant 2 [13, 28, 65]). Other countermeasures include Indirect Branch
Restricted Speculation (IBRS), resetting trained BTB predictions on kernel en-
try, protecting the kernel from user-space mistraining [58, 87]. Another counter-
measure, Indirect Branch Predictor Barrier (IBPB), prevents branch predictions
from earlier executions using barriers [58, 87]. Furthermore, Single Thread In-
direct Branch Predictors (STIBP), which prevents branch prediction mistraining
when using hyperthreading between two sibling CPU threads, is deactivated by
this nospectre v2 [58, 87]. The last two countermeasures included for this kernel
boot parameter are retpoline, a software countermeasure that replaces indirect
branches like jmp *%rax with return trampoline code that traps transient execu-
tion, and RSB filling [43]. RSB filling fills the RSB with an address to trampoline
code in order to prevent speculative execution on return [43].

• spectre v2 user=off - Similar to nospectre v2, however, this kernel boot pa-

25

rameter deactivates retpoline, STIBP, and IBPB for code compiled and run in
user-space [58].

• spec store bypass disable=off - Disables kernel countermeasures against Spectre-
STL (Spectre variant 4) [13,28,36], for example, Speculative Store Bypass Disable
(SSBD). SSBD prevents speculative loads while stores are still in progress, pre-
venting speculative loading of already invalid data [45].

• l1tf=off - Disables kernel countermeasures against L1TF, also known as Fore-
shadow and Meltdown-P-L1. [13,28,109,112], including flushing the L1 data cache
on VMENTER [54].

• mds=off - Disables mitigations against Micro-architectural Data Sampling (MDS)
attacks [55]. Examples of MDS attacks are Fallout and RIDL [12, 110]. The
countermeasures include clearing the CPU buffers affected by MDS on user-space
or a VM entry [55].

• tsx async abort=off - Disables countermeasures against the TSX Async Abort
(TAA) vulnerability. Attacks exploiting this vulnerability include the ZombieLoad
and RIDL attacks [92, 110]. The countermeasures included for this kernel param-
eter include clearing the affected CPU buffers on ring transition [59].

• kvm.nx huge pages=off - Disables countermeasures for iTLB multihit-based at-
tacks, including marking huge pages as non-executable when used by KVM [53].

• dis ucode ldr - In contrast to the previous kernel boot parameter, dis ucode ldr

disables dynamic loading of microcode updates provided by the CPU vendors [113].
Microcode updates are not loaded by the corresponding loader on system start [113].
As many of the above-mentioned transient execution defenses depend on microcode
updates, this parameter deactivates many countermeasures [113].

2.8 Covert Channels

Covert channels are used to allow communication between processes that should typically
not be allowed to communicate with each other [79]. They do not use the legitimate
data transfer mechanisms of a system [79]. Therefore, they can usually not be detected
by the security mechanism of a system. Covert channels were first defined by Butler
W. Lampson [69] in 1973 as a communication channel that is not intended to transfer
information. As with other communication channels, a covert channel usually includes
a sender and a receiver [79]. These, for example, can be two malicious processes secretly
communicating with each other using a shared physical resource [119]. Shared resources
that can be used for building a covert channel include file system objects [69], input
devices [97], network stacks/channels [11,25] and caches [32,37,73,76,77,83,88,114,117].

26

2.8.1 Cache Covert Channels

Cache covert channels can be used to let two processes, a sender and a receiver, commu-
nicate over the CPU cache [37]. This enables the communication between two isolated
processes, not indended to communicate by the system [88]. As cache covert channels are
usually noisy, some error detection and correction should be applied [77]. In the follow-
ing, we will explain a simple 1-bit cache-based covert channel, using the Prime+Probe
technique [76], illustrated in Figure 2.13:

1. Both the sender and the receiver agree on the cache sets used by the covert chan-
nel [76].

2. A timing protocol has to be used in order to coordinate writing by the sender and
reading by the receiver [76].

3. The receiver fills the cache set [76]. (Prime)

4. If the sender wants to send a 1, the cache set is filled with data by the sender [76].
Filling the cache set evicts the data of the receiver out of the cache [76].

5. The receiver then probes the cache set [76]. If more cache hits than misses occur,
the receiver deduces a 0 [76]. If more cache misses are recorded, the receiver
assumes a 1 [76]. (Probe)

6. The receiver fills up the cache again, waiting for the sender to send the next bit [76].
(Prime)

Cache covert channels were first mentioned in 1992 by Hu [37], theoretically describing
the transmission of data over a covert channel via cache. In 2005 Percival [83] intro-
duced the first Prime+Probe-based cache covert channel on the L1 cache. Percival [83]
estimated a capacity of 400 kilobytes per second using an “appropriate error-correcting
code”. Wang et al. [111] showed the possibility of cache covert channel between two vir-
tual machines, despite state-of-the-art security measures. Ristenpart et al. [88] presented
the first cache-based covert channels in a cloud environment in 2009. The reported band-
width was approximately 0.2 bits per second between two virtual machines running on
the same physical CPU on the Amazon EC2 cloud service [88]. Xu et al. [117] enhanced
the cache covert channel approach by Ristenpart et al. [88], switching from the L1 cache
to the L2 cache. They reported a capacity of 215 bits per second [117]. As these attacks
utilize the L1 cache or L2 cache, sender and receiver were required to run on the same
core [117].

The first cross-core covert channel was introduced by Wu et al. [114], using Prime+Probe.
Different from previous cache covert channel approaches, the covert channel by Wu et
al. [114] was built on the last-level cache instead of the L1 cache. Switching to the last
level cache allows the sender and receiver of the covert channel to run on different cores,
as long as they share the same CPU [114]. In 2015 Maurice et al. [76] improved the
method proposed by Ristenpart et al. [88] by switching to the last-level cache, still using

27

Sender Receiver

3. Receiver checks if data is still cached

1. Receiver fills cache

way-0 way-1 ... way-n

set-i

set-i

set-i

set-i

2. Sender evicts data, sending a 1

4. Data is evicted -> 1 is read and the cache refilled

(a) The sender sends a 1 by evicting data
from the agreed cache set.

Sender Receiver

3. Receiver checks if data is still cached

1. Receiver fills cache

way-0 way-1 ... way-n

set-i

set-i

set-i

set-i

2. Sender does not evict data, sending a 0

4. Data is still cached and therefore a 0 is read

(b) The sender does not evict data and there-
fore sends a 0.

Figure 2.13: Illustration of a 1-bit covert channel using the Prime+Probe
technique [77]. Sender and receiver agree on using a certain cache set i for
communication.

Prime+Probe. They achieved a capacity of 1291 bits per second on a native setup and
751 bits per second between virtual machines [76]. In the same year, Lui et al. [73]
showed that LLC-based covert channels could reach a capacity of up to 1000 kilobits
per second using the Prime+Probe technique. In 2016, Gruss et al. [32] demonstrated
the first covert channel utilizing the Flush+Reload and Flush+Flush techniques. The
reported capacity for cross-core transmissions was 496 kilobyte per second [32]. However,
the usage of Flush+Reload or Flush+Flush assumes shared memory between the sender
and the receiver [32]. Later, Maurice et al. [77] presented an error-free Prime+Probe
covert channel used to build an SSH connection between two virtual machines on Amazon
EC2. The capacity achieved exceeded 360 kilobits per second [77].

Preventing cache covert channels can be achieved by preventing underlying cache side-
channel attacks [77]. As cache side-channel attacks depend on an accurate timer, re-
moving timing mechanisms or making them coarser are considered countermeasures [77].
Many countermeasures are based on adding noise, making it more difficult to achieve
robust covert channels [24,90,121].

28

Chapter 3

Speculative Dereferencing
Analysis

In this chapter, we will give an overview on speculative dereferencing and will analyze
its properties. Therefore, we will first discuss and analyze the address-translation attack
first introduced by Gruss et al. [31] in 2016. We will discuss the original attack expla-
nation and show why the original attack description is erroneous. We will show that
instead of the prefetch instruction [22] cited in the original paper [31], Spectre gadgets
in the kernel are the root cause of the leakage. We will therefore call this speculative
dereferencing. Based on these findings, we will locate an actual Spectre-BTB gadget in
the kernel and identify it as the primary source of leakage on our test system. Based
on this, we will discuss kernel Spectre gadgets in general and discuss preconditions for
speculative execution.

For additional analysis on speculative dereferencing, we would refer to Speculative Deref-
erencing: Reviving Foreshadow by Schwarzl et al. [94], which was based on the findings
of this thesis.

3.1 Address-Translation Attack

The address-translation attack by Gruss et al. [31] can be used by an attacker to find
the direct-physical address p for an arbitrary virtual address p. As operating systems
like Linux have a direct mapping of all physical addresses in the kernel virtual memory
space [61], the address-translation attack can help an attacker to learn which virtual
address is mapped to which physical address [31]. Furthermore, the attack can be used
by an attacker to check if the virtual addresses p and a different virtual address q map
to the same physical address p [31]. Information gathered by this attack, for example,

29

1 for (size_t i = 0; i < NUMBER_OF_TRIES; i++) {

2 // Step 1

3 flush(virtual addr);

4 // Step 2

5 for (size_t i = 0; i < 3; i++) {

6 prefetch(direct_phys_map_addr);

7 sched_yield ()

8 }

9 // Step 3

10 access_time = reload(virtual addr);

11 if(access_time < CACHE_HIT_THRESHOLD) {

12 print("Cache hit");

13 else

14 print("Cache miss");

15 }

Figure 3.1: Example code for the 3 steps of an address-translation at-
tack [31]. The prefetch step is repeated several times in order to increase
the chance of the address being cached [31].

enables an attacker to bypass kernel and CPU security mechanisms like SMAP, SMEP,
and KASLR [31].

In the original description of the address-translation attack, the attack works in 3 steps,
based on a Flush+Reload attack [31]:

1. Flush user-space address p using the x86 CLFLUSH instruction [31].

2. Prefetch the inaccessible kernel-space address p [31].

3. Reload p and check if the data was cached by measuring the access time [31].

The attack assumes knowledge of the user-space virtual address p and the corresponding
kernel-space virtual address of the direct mapping p [31]. Alternatively, an attacker can
guess the direct mapping address p [31]. Figure 3.1 shows a small code example for the
above-mentioned 3 steps of the address translation attack.

If the user-space address p and the kernel-space address p share the same physical
address, step 2 will lead to the shared physical address of these two addresses being
cached [31]. Thus, reload in step 3 will lead to a fast access time and, therefore, a cache
hit with a high probability [31]. Usually, these 3 steps are repeated several times in order
to maximize the possibility of detecting a cache hit [31].

The address-translation attack and the learning physical address information learned
through it enable an attacker to defeat SMAP, SMEP, and KASLR [31,51]. Additionally,

30

1 ;%r14 contains the

direct -physical

address

2 callq 1080 <

sched_yield@plt >

3 prefetchnta (%r14)

4 prefetcht2 (%r14)

5 callq 1080 <

sched_yield@plt >

6 prefetchnta (%r14)

7 prefetcht2 (%r14)

8 callq 1080 <

sched_yield@plt >

9 prefetchnta (%r14)

10 prefetcht2 (%r14)

(a) Disassembly of the prefetching loop of
the original address-translation attack.

1 ;%r14 contains the

direct -physical

address

2 callq 1080 <

sched_yield@plt >

3 nop

4 nop

5 callq 1080 <

sched_yield@plt >

6 nop

7 nop

8 callq 1080 <

sched_yield@plt >

9 nop

10 nop

(b) Disassembly of the prefetching loop
with replaced prefetch instructions.

Figure 3.2: The assembler code of the prefetching component of the
prefetch address-translation attack showed in Figure 3.1 [94]. Version (a)
shows the original disassembly. In version (b), the prefetch instructions
were replaced by nop [94].

Rowhammer attacks [64, 95] and side-channel attacks [77, 84] are re-enabled, reopening
various attack vectors. Additionally, Gruss et al. [31] introduced the translation-level at-
tack using the prefetch instruction for breaking KASLR by learning virtual address in-
formation [39,96]. In order to prevent the attack, the KAISER technique was introduced
by Gruss et al. in 2007 [29, 30]. This mitigation was later implemented as KTPI [16]
for Linux and KVAS [49] for Windows, theoretically making address-translation attacks
impossible. However, due to an erroneous assumption in the original attack description,
address-translation attacks are still possible with KAISER mitigations activated.

Gruss et al. [31] erroneously assumed the leakage was due to missing privilege checks of
the prefetch instruction [22], therefore fetching arbitrary normally inaccessible privi-
leged memory into the CPU cache. However, replacing the prefetch instructions with
nops still shows leakage up to 10 cache fetches per second for a machine using an Intel
i7-6500U running Linux Mint 19, kernel version 4.15.0-52-generic. On an i7-8700K
running Ubuntu 18.10, kernel version 4.16.0-55, approximately 60 cache fetches per
second were measured [94]. This shows that replacing the prefetch instructions from
the prefetching loop with nop, as shown in Figure 3.2a, does not prevent the address-
translation attack. We can therefore conclude, the leakage is not caused by missing
privilege checks of the prefetch instructions.

31

1 while (1)

2 {

3 set_registers(address);

4 sched_yield ();

5 }

Figure 3.3: First proof-of-concept code showing prefetching of addresses
stored in registers. set registers fills all general-purpose registers with the
given address.

3.2 Locating the leakage source

In Section 3.1, we were able to show that the prefetch instructions are not the source
of leakage used by the address-translation attack. However, we were able to observe that
writing a kernel address into general-purpose registers sometimes leads to this address
being cached, measuring up to 8 cache fetches a second, without explicitly accessing the
chosen address. Additionally, we detected that newer Linux kernel versions do not show
this behavior on our first testing system, running an Intel i7-6500U (Linux Mint 18, ker-
nel version 4.18.0) with all Meltdown and Spectre related countermeasures deactivated.
Figure 3.3 shows one of the first PoC program where this behavior was observed. The
PoC first writes a kernel address into all available general-purpose registers, followed
by a call to the sched yield syscall. First, we assumed the cause was some unknown
optimization technology, prefetching registers. However, no indication for such an opti-
mization mechanism was found in the Intel documentation.

We detected that a commit making small changes to the do syscall 64 general Linux
syscall handler function almost eliminated cache hits on the attacked address [1]. First,
we observed that, on our Intel i7-6500U system (Linux Mint 18), the number of cache
fetches drastically decreases between the two major Linux kernel versions v4.16 and
v4.17. While on kernel versions v4.16, usually up to 8 fetches per second were measured,
v4.17 reduced the number of cache fetches down to about 1 fetch every 5 seconds. To
narrow down possible code sections causing the prefetching, git bisect was used in
order to detect commits that significantly reduce the number of cache fetches. The most
significant drop in cache fetches was measured for a commit that changes the number of
arguments of the do syscall 64 function, now directly passing the syscall number [1]
additionally to the register data structure. Therefore, we were able to conclude that the
leakage is caused somewhere in the syscall handler function and therefore caused by the
sched yield syscall in our proof-of-concept program, seen in Figure 3.3.

Putting the lfence instruction right before the actual syscall handler inside the
do syscall 64 function reduces the number of cache fetches on our Intel i7-6500U sys-
tem (kernel versions v4.16) from on average 8 cache fetches per second down to one

32

cache fetch per second. Therefore, we assumed that the leakage is likely to be caused
by speculative execution. The instruction trace of the do syscall 64 and following
functions further strengthens this assumption, as they show several indirect jump in-
structions as seen in Figure 3.4 for do syscall 64. Additionally, not all registers are
cleared on entering the kernel, still containing the kernel address previously filled into
all general-purpose registers (see Figure 3.3).

We were able to trace one source of leakage, a Spectre-BTB gadget located in the syscall
handler of sched yield syscall. An indirect call current->sched class->yield task

in the sys sched yield syscall handler mispredicts into the put prev task fair func-
tion of the Linux scheduler. In this function, an uncleared and not overwritten regis-
ter %rsi is dereferenced, accessing the victim’s direct-physical map address [94]. We
will call this behavior speculative dereferencing. Our updated test system, running
an Intel i7-6500U (now on Linux Mint 19) and Linux kernel version 4.16, showed
around 21 fetches per minute. By putting the lfence instruction at the beginning
of the put prev task fair function, as seen in Figure 3.5, the number of fetches were
be reduced by 50%, measuring 10 fetches per minute. As no indirect jumps exist in
put prev task fair and the function access registers that cause leakage on the used
system, it is likely one source of leakage. For more information, Schwarzl et al. [94]
describe in detail how the gadget was detected.

As the leakage was only reduced by 50% and considering the number of indirect jumps
existing in the Linux kernel [58], we assume multiple possible gadgets located in other
essential parts of the Linux kernel. These essential parts may include interrupt routines,
syscall handler, and the scheduler.

33

1 0xffffffff810014a0: push rbp

2 0xffffffff810014a1: mov rdx ,gs:0 x14d00

3 0xffffffff810014aa: mov rbp ,rsp

4 0xffffffff810014ad: push r12

5 0xffffffff810014af: push rbx

6 0xffffffff810014b0: mov rbx ,rdi

7 0xffffffff810014b3: mov r8 ,[rdi+0x78]

8 0xffffffff810014b7: sti

9 0xffffffff810014b8: data16 xchg ax,ax

10 0xffffffff810014bb: data16 xchg ax,ax

11 0xffffffff810014be: mov rax ,[rdx]

12 0xffffffff810014c1: test eax ,0 x100801c1

13 0xffffffff810014c6: jne 0xffffffff81001577

14 0xffffffff810014cc: cmp r8 ,0x14c

15 0xffffffff810014d3: ja 0xffffffff8100150b

16 0xffffffff810014d5: cmp r8 ,0x14d

17 0xffffffff810014dc: sbb rax ,rax

18 0xffffffff810014df: and r8,rax

19 0xffffffff810014e2: mov rcx ,[rbx+0x38]

20 0xffffffff810014e6: mov rdx ,[rbx+0x60]

21 0xffffffff810014ea: mov rax ,[r8*8-0 x7e5ffec0]

22 0xffffffff810014f2: mov rsi ,[rbx+0x68]

23 0xffffffff810014f6: mov rdi ,[rbx+0x70]

24 0xffffffff810014fa: mov r9 ,[rbx+0x40]

25 0xffffffff810014fe: mov r8 ,[rbx+0x48]

26 0xffffffff81001502: call 0xffffffff81803000

27 ...

28 0xffffffff81803000: jmp rax

29 ...

Figure 3.4: This figure shows a part of the instruction trace of the
do syscall 64 function in the Linux kernel. The trace was recorded on
a virtual machine running a Linux v4.16.18 kernel. First, the stack is pre-
pared. After interrupts are enabled in line 8, line 12 and 13 checks if syscall
tracing is activated. If not, line 14 and 15 test if the given syscall number
is assigned to a valid syscall. Finally, the registers are prepared according
to Figure 3.1, and x86 indirect thunk rax is called in line 26. As retpo-
line is deactivated in this case, x86 indirect thunk rax just consists of
a jump to rax, where rax contains the address of the corresponding syscall
handler for the called system call.

34

1 static void put_prev_task_fair(struct rq *rq , struct

task_struct *prev)

2 {

3 asm volatile("lfence\n");

4 struct sched_entity *se = &prev ->se;

5 struct cfs_rq *cfs_rq;

6

7 for_each_sched_entity(se) {

8 cfs_rq = cfs_rq_of(se);

9 put_prev_entity(cfs_rq , se);

10 }

11 }

Figure 3.5: This figure shows the put prev task fair function used by
the scheduler of the Linux kernel. In this function, the uncleared %rsi is
dereferenced, as Schwarzl et al. [94] show. The lfence at the beginning of
the functions prevents speculative execution.

3.3 Kernel Spectre Gadgets

The Spectre-BTB gadget found in Section 3.2 is located in one of the many syscall han-
dlers of the Linux kernel. Additional to the detected Spectre-BTB gadget, we assume
multiple possible gadgets in various syscall handlers and interrupt handlers, as we were
able to observe a higher number of cache fetches by inducing a large number of inter-
rupts and context switches during the attack. Any prefetch gadget that can be used for
address-translation attacks can be exploited, including PHT, BTB, or RSB gadgets [94].
Figure 3.6 shows how, in general, direct-physical map addresses can be speculatively
dereferenced and fetched into the cache. A syscall or interrupt happens after filling the
general-purpose registers with our targeted direct-physical address. During the execu-
tion of the syscall handler or interrupt handler, an indirect jump speculatively executes
a function dereferencing a normally unused and therefore uncleared register. As the
register still contains the targeted direct-physical address, the address is fetched into the
cache, which can be detected using, e.g., Flush+Reload.

For example, when calling a syscall on an x86 64 Linux system from user-space, the
process will enter the kernel at the entry SYSCALL 64 function. The entry SYSCALL 64

function will prepare the stack and registers for calling the corresponding syscall handler
for the called syscall. This preparation includes pushing several general-purpose registers
onto the stack, except rbx, rbp, r12, and r15. After that, the general Linux syscall
handler do syscall 64 is called. In this syscall handler, the given syscall number is
retrieved from the stack and used to index the corresponding syscall handler function

35

Direct Phsyical Map address

Direct Phsyical Map address

Direct Phsyical Map address

Direct Phsyical Map address

Direct Phsyical Map address

rax

rbx

.

.

r15

1. Fill all registers with the Direct
Physical Map address

Direct Phsyical Map addressr14

misprediction

indirect jump

Kernel

Syscall/Interrupt handler

2. Interrupt/Syscall

Direct Phsyical Map address

.

3. address gets cached
mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

Kernel Function Real Handler

cache line

Figure 3.6: This figure shows how direct-physical map (DPM) addresses
stored in registers are speculatively dereferenced inside the Linux kernel
syscall handlers using, e.g., Spectre-BTB gadgets. The cached DPM can
then be detected using, e.g., Flush+Reload.

contained in the Linux syscall page table sys call table. The assembler code for
this behavior can be seen in Figure 3.4. During the execution of the general syscall
handler do syscall 64 as well as many specific syscall handlers (e.g., sys sched yield),
indirect jumps may be executed. Due to speculative execution, these indirect jumps
might speculatively execute the wrong kernel function, dereferencing normally unused
registers containing the targeted direct-physical map address.

Which registers are prefetched by the gadget vary across different kernel versions and
systems. On a system running Ubuntu 18.10 with a kernel version of 4.18.0-17, we
observed cache fetches when the address was stored in registers r12, r13, or r14. On a
Linux Mint 19.1 system running kernel version 4.15.0-99-generic, registers rdi and
rdx caused the leakage. Debian 8 with kernel version 4.19.28-2 and Kali Linux with
5.3.9-1kali1 needed the address stored in registers r9 and r10 [94]. To cover all
possible register combinations, we recommend storing the victim address into nearly all
available general-purpose registers.

36

Register Description

rax system call number
rcx return address to user-space
r11 register flags
rdi first argument
rsi second argument
rdx third argument
r10 fourth argument
r8 fifth argument
r9 sixth argument

Table 3.1: List of registers used when calling a system call [2]. In contrast
to the usual x86 64 calling convention, r10 is used for the fourth argument
instead of rcx.

3.4 Speculative Dereferencing using Spectre

By writing arbitrary virtual addresses into CPU registers prior to calling syscalls or
causing interrupts, these addresses were able to be speculative dereferenced and fetched
into the cache by Spectre gadgets located in the syscall handler and interrupt handler
of the Linux kernel. User-space addresses, as well as normally inaccessible kernel-space
virtual addresses, can be used, depending on which transient execution mitigations are
activated. This opens several possible attack vectors, including covert channel or the
above-mentioned address-translation attack. Figure 3.7 shows a toy example code for
speculative dereferencing. The program is basically separated into 5 steps, based on a
Flush+Reload cache attack:

1. Flush the target virtual user-space address out of the cache.

2. Optional: Mistrain the Branch Target Buffer (BTB) by calling a syscall that uses
certain registers.

3. Fill all available general-purpose CPU registers with either the user-space address
or the corresponding kernel direct mapping address of the target.

4. Call a syscall.

5. Reload the virtual user-space address. If the access time was below a certain system
depending threshold, the address was cached. Otherwise, a cache miss occurred.

Certain preconditions have to be met in order to successfully execute the attack. First,
as we found a Spectre-BTB gadget as the main cause of leakage on our system, the
nospectre v2 kernel boot parameter for Linux has to be set. The nospectre v2 pa-
rameter deactivates several kernel countermeasures against Spectre-BTB, also known as
Spectre variant 2. These include, among others, Indirect Branch Restricted Speculation

37

1 for (size_t i = 0; i < NUMBER_OF_TRIES; i++) {

2 // Step 1

3 flush(virtual address);

4 // Step 2 (optional)

5 syscall ()

6 // Step 3

7 fillRegisters(virtual address or kernel address);

8 // Step 4

9 syscall ();

10 // Step 5

11 access_time = reload(virtual address);

12 if(access_time < CACHE_HIT_THRESHOLD) {

13 print("Cache hit");

14 else

15 print("Cache miss");

16 }

Figure 3.7: A toy example of the Register Prefetch PoC. The example
uses a Flush+Reload cache attack to verify the address in the register was
fetched and therefore cached. fillRegisters fills the CPU registers rax,
rbx, rcx, rdx, rsi, rdi, and r8 up to r15 with the given address. In step
2, optionally, an additional syscall can be called for mistraining the Branch
Target Buffer (BTB).

38

(IBRS), Indirect Branch Predictor Barrier (IBPB), and retpoline. As the Spectre-BTB
gadgets are located in kernel-space, in order to prefetch user-space addresses, SMAP has
to be deactivated using the nosmap kernel parameter. Deactivating KPTI using the
nopti kernel parameter further improves the number of cache fetches, as we will evalu-
ate in Chapter 4. If using kernel addresses, the attacker has to find the corresponding
kernel direct-physical mapping address of the target user-space address.

Schwarzl et al. [94] showed that speculative dereferencing was the underlying root cause
for Meltdown being able to leak data from the L3 (LLC) cache. Based on this informa-
tion, they were able to mount a slightly modified Foreshadow (also Meltdown-P-L1 or
L1TF) attack utilizing the L3 cache instead of the L1 cache [94]. This modification en-
ables an attacker to circumvent common Foreshadow mitigations, for example, clearing
the L1 data cache on VMENTER [94]. Foreshadow-L3 will be discussed in more detail in
Chapter 6 [94].

Additionally, Schwarzl et al. [94] showed that improved Spectre hardware mitigations
introduced in Ice Lake processors that supposedly replace the costly retpoline coun-
termeasure do not affect speculative dereferencing. Therefore, they concluded that, in
order to mitigate the attack, retpoline should stay enabled. However, on older kernel
versions, even activating retpoline does not fully eliminate leakage [94]. There, full
activating full Spectre-BTB mitigations would be recommended [94].

39

Chapter 4

Improving the number of fetches

In this chapter, we will evaluate how speculative dereferencing works under various
conditions. Therefore, we will first measure the number of cache fetches influenced by
a variety of syscalls on various systems. In the end, we will conclude our findings and
evaluate how the number of cache fetches can be improved.

4.1 Measuring the leakage

In this section, we will first evaluate if mistraining using various syscalls improves the
leakage rate. Second, we will take a look at how various syscalls improve or reduce
the number of cache fetches. Furthermore, we will analyze if the leakage varies across
systems and kernel versions. In the end, we will measure how using different kernel
parameters influence the result.

4.1.1 syscalls

As described in Chapter 3, register prefetching using Spectre-BTB consists of 5 steps.
First, the virtual address is flushed out of the cache, for example, using the cflush

instruction. Optionally, a syscall can be called for mistraining the BTB for the second
step. Next, all available general-purpose CPU registers are filled with the kernel direct
mapping address of the target. In step 4, a syscall is called while registers are filled with
our target address. Finally, we check if our address was cached, e.g., using Flush+Reload.
Figure 3.7 shows a PoC code for this attack.

The syscall for step 4 of our speculative dereferencing attack highly influences the re-
sulting leakage. As our attack exploits existing Spectre-BTB gadgets in the kernel, at

40

least one of these gadgets has to be reached during the execution of the syscall routine
in kernel-space. However, as we estimate a huge number of possible gadgets in syscall
and interrupt kernel routines, it is not feasible to search for an exhaustive list of possible
gadgets that are reached by various syscalls. Furthermore, the position of these gad-
gets in the execution trace is essential, as the filled registers could be overwritten while
executing kernel code.

Due to missing automation tools and the scale of the Linux kernel, an exhaustive search
for all kernel gadgets potentially used for speculative dereferencing was not feasible.
Therefore, we decided to use our PoC as described in Figure 3.7 to build a framework
that measures the number of cache fetches for arbitrary syscalls. Based on this frame-
work, we decided to test the leakage of 18 common syscalls in order to find suitable
candidates for speculative dereferencing. The evaluated system was using an Intel i7-
8700k using an Ubuntu 18.04 with the Linux kernel version of 4.4.153-generic. On the
system, Spectre v2 countermeasures were deactivated by using the nospectre v2 kernel
parameter. Additionally, for the experiment, KPTI was deactivated using the nopti

parameter. For the mistraining step (Step 2 in our PoC), we used the stat syscall.
Furthermore, we set a static CPU frequency by setting the CPU governor to “perfor-
mance” [52] and pinned the program to a CPU core in order to produce more reliable
results. The experiment used 1, 000 samples per syscall, and each syscall was tested 4
times. The number of cache fetches was then calculated using the average number of
hits per 1, 000 tries for each of the 4 rounds.

Table 4.1 shows the result of this experiment. The number of average cache fetches
greatly differs between the syscall used. The highest amount of average hits was achieved
using the sched yield syscall, with an average of 374.25 cache fetches (STD: 151.495
cache fetches) for 1, 000 tries. On the other hand, the least working tested syscall was
getpriority, with an average of 15.75 cache fetches (STD: 1.785 cache fetches) in 1, 000
tries. Compared to the second-best syscall, sched yield caused a leak for about 38%
of all tries, while the second-best syscall only averaged at about 25%. Furthermore, it
is notable that none of the tested syscalls were immune to our attack. However, as only
18 out of more than 290 syscalls were tested, other existing syscalls might show higher
amounts of cache fetches.

4.1.2 Mistraining using syscalls

Mistraining the BTB is an important part of running a Spectre-BTB attack [65]. By
mistraining the BTB, an attacker is able to redirect indirect branch instructions, allowing
sensitive information to be leaked by erroneous speculative execution [65]. However, as
the Spectre gadgets are located in the Linux kernel for register prefetching, we are not
able to directly mistrain from user-space. Therefore, we decided to mistrain the BTB
by using extra syscalls to speculative dereference uncleared registers.

41

Syscall Average cache fetches on 1, 000 tries

sched yield 374.25
getpid 246.25
stat 243.25
setxattr 224.50
mmap 175.75
ioperm 158.50
geteuid 158.50
access 154.25
getpgid 128.75
getsid 128.50
nanosleep 127.00
fadvise 111.50
ioctl 99.75
read 98.00
write 92.00
close 19.00
fsync 17.25
getpriority 15.75

Table 4.1: A list of the best performing syscalls used for speculative deref-
erencing after filling registers, with PTI and Spectre v2 countermeasures
deactivated. The result is presented in the average number of true positive
cache fetches for a sample size of 1, 000. The evaluated system was run-
ning on an Intel i7-8700K using Ubuntu 18.04 with the Linux kernel version
4.4.143-generic

42

By using extra syscalls before setting the registers for mistraining (see step 2 in the
PoC code in Figure 3.7), we can influence the number of cache fetches. This is due
to the BTB being mistrained into erroneously redirecting speculative execution to code
areas, dereferencing registers not cleared of the following syscall. To analyze this effect,
we, therefore, tried to mistrain our PoC with 291 different syscalls out of 313 currently
available syscalls on a 64bit x86 Linux system [108].

In order to measure the influence of using a syscall for mistraining, we measured the
number of true positive cache fetches for a sample size of 200, 000. Therefore, we adapted
our PoC, as described in Figure 3.7, to use one of the above-mentioned syscalls in Step
2. For comparison, we additionally measured the PoC using no mistraining under the
same conditions. The PoC is then run with the yield syscall in Step 4 for each of the
mistraining syscalls in Step 2. We then measured the number of true positive cache
fetches. The adapted PoC is shown in Figure 4.1, where a python script automati-
cally inserts the current syscall at the #INSERT POINT line. After filling the registers
and calling sched yield three times in order to trigger the speculative dereferencing,
Flush+Reload is used in order to detect a cache hit, as explained in Figure 2.5. Nearly
all 291 syscalls are tested using their standard library implementation (e.g., setuid(0)),
as well as using the syscall interface for indirect system calls (e.g., syscall(105,0),
where 105 is the syscall number). We decided to skip some blocking syscalls like pause

in order to minimize the overall execution time of the experiment. Additionally, syscalls
terminating the program like exit were skipped. All in all, the experiment was repeated
10 times.

Table 4.2 shows the results of the experiment in the form of the average number of true
positive cache fetches over 10 repetitions for 200, 000 tries each. The experiment was
conducted on a system utilizing an Intel i7-8700K running Ubuntu 18.04 with the Linux
kernel version 4.4.143-generic. In order to keep the table short, only the 20 best
performing syscalls are shown. Running the experiment, we were able to show that the
readv syscall, having an average of 13, 766 cache fetches (STD: 8, 940.183 cache fetches),
showed the highest number of cache fetches per 200, 000 tries. In comparison, omitting
the mistraining syscall altogether, on average, 142 cache fetches (STD: 64.131 cache
fetches) per 200, 000 samples were measured. While more than 50 syscalls improved
the number of cache fetches, the majority of syscalls showed a negative influence on
the number of cache fetches. For many syscalls, using the indirect system call method
(syscall) significantly improved the leakage measured, however for some syscalls like
readv, the opposite was measured.

All in all, we were able to prove that using an extra syscall for mistraining the BTB can
positively influence the rate of cache fetches for the register prefetch attack. The high-
est amount of cache fetches was achieved by utilizing the readv syscall for mistraining,
whereby sched yield was used after filling the registers. Analyzing the syscalls achiev-
ing high numbers of cache fetches, at least one pointer argument as the second or third
parameter seems to be required in order to use the syscall for successfully mistraining
the BTB.

43

1 for(int i = 0; i < 200000;i++)

2 {

3 #INSERT POINT

4

5 asm volatile("mov %%rax , %%rbx\n"

6 "mov %%rax , %%rcx\n"

7 "mov %%rax , %%rdx\n"

8 "mov %%rax , %%rsi\n"

9 "mov %%rax , %%rdi\n"

10 "mov %%rax , %%r8\n"

11 "mov %%rax , %%r9\n"

12 "mov %%rax , %%r10\n"

13 "mov %%rax , %%r11\n"

14 "mov %%rax , %%r12\n"

15 "mov %%rax , %%r13\n"

16 "mov %%rax , %%r14\n"

17 "mov %%rax , %%r15\n"

18 :: "a"(phys) : "memory","%rbx","%rcx","%rdx","%rdi

","%rsi","%r8","%r9","%r10","%r11","%r12","%r13

","%r14","%r15");

19

20 sched_yield ();

21 sched_yield ();

22 sched_yield ();

23

24 if(flushandreload(virt) < CACHE_HIT_MAX)

25 {

26 counter ++;

27 }

28 }

Figure 4.1: Implementation of the adapted PoC. At #INSERT POINT, one
of the 291 tested syscalls will be added automatically using a python script.
The experiment is repeated 200, 000 times and the number of cache fetches
is measured using Flush+Reload, as described in Figure 2.5.

44

Syscall Parameters Avg. cache fetches

readv readv(0,NULL,0) 13, 766.3
getcwd syscall(79,NULL,0) 7, 344.7
getcwd getcwd(NULL,0) 6, 646.9
readv syscall(19,0,NULL,0) 5, 541.4
mount syscall(165,s cbuf,...,(void*)s cbuf) 4, 831.6
getpeername syscall(52,0,NULL,NULL) 4, 600
getcwd syscall(79,s cbuf,s ulong) 4, 365.8
bind syscall(49,0,NULL,0) 3, 680.6
getcwd getcwd(s cbuf,s ulong) 3, 619.3
getpeername syscall(52,s fd,&s ssockaddr,&s int) 3, 589.3
connect syscall(42,s fd,&s ssockaddr,s int) 2, 951.2
getpeername getpeername(0,NULL,NULL) 2, 822.4
connect syscall(42,0,NULL,0) 2, 776.4
getsockname syscall(51,0,NULL,NULL) 2, 623.4
connect connect(0,NULL,0) 2, 541.5
bind bind(s fd,&s ssockaddr,s int) 2, 489.3
getpeername getpeername(s fd,&s ssockaddr,&s int) 2, 348.9
bind syscall(49,s fd,&s ssockaddr,s int) 2, 268.8
connect connect(s fd,&s ssockaddr,s int) 1, 995.1

Table 4.2: The 20 best performing syscalls for mistraining the BTB using
sched yield after filling registers. The result is presented in the average
number of true positive cache fetches for a sample size of 200, 000. The
evaluated system was running on an Intel i7-8700K using Ubuntu 18.04 with
the Linux kernel version 4.4.143-generic

45

4.1.3 Difference between systems

As CPU hardware vulnerabilities like Spectre highly depend on the CPU architecture
used [13, 65], the system itself can highly influence the leakage rate. Additionally, as
the exploited Spectre-BTB gadgets used during speculative dereferencing are located in
the kernel, the kernel version used by the system might be crucial to achieving a high
rate of cache fetches. Therefore, in this section, we compare 4 systems using different
CPU architectures and kernel versions. Furthermore, each system is tested with various
syscalls for mistraining as well as syscalls used after filling registers. Table 4.3 shows a
full list of systems evaluated in this experiment, including their CPU, CPU architecture,
operating system, and kernel version.

Similar to previous experiments, we measured the performance on all systems using our
PoC as described in Figure 3.7. We used either no mistraining or mistraining using the
sendto, geteuid, or stat syscall in Step 2. These syscalls were chosen as each of the
syscall requires a different number of parameters, additionally testing the influence of
parameters on the attack. For the syscall called after filling the registers, we used about
20 different syscalls for Step 4, including yield, fadvise, and stat. However, due to
space constraints, only 17 syscalls are shown in Table 4.4. The experiment is repeated
several times, each time using a sample size of 1, 000 for each mistraining syscall and
syscall combination. While on the evaluated Intel and AMD systems, the nospectre v2

kernel parameter was used, the ARM CPU did not support mitigations for Spectre-BTB,
and therefore the deactivation of any mitigations was not required.

As seen in Figure 4.4, our speculative dereferencing attack was able to be successfully
executed on all tested systems. Two systems showed a significant amount of cache
fetches compared to the remaining evaluated systems. The first one was using an Intel
i7-8700K and showed an average of 445.82 cache fetches (STD: 387.675 cache fetches)
per 1, 000 tries using the stat syscall for mistraining. The other system, using an AMD
Threadripper 1920X and mistraining using stat, showed on average 456.76 cache fetches
(STD: 277.831 cache fetches). The lowest number of cache fetches was measured on the
Intel 6500U ceiling at 28 cache fetches average (STD: 36.979 cache fetches) using sendto

mistraining.

Compared to no mistraining, the Intel system achieved 31% more cache fetches us-
ing stat mistraining, whereas AMD cache fetches increased by about 72%. On other
systems, other syscalls worked better. For example, getuid for the Intel 6500U only
increased the number of cache fetches by less than 10%. On the ARM system, sendto
showed the highest increase. All in all, using mistraining showed a significant increase
in cache fetches on all evaluated systems.

On different systems, calling different syscalls after filling the registers seems to cause
more cache fetches. While on the Intel 8700K system using stat led to cache fetches in
nearly 100% of the tries, on the other evaluated system, it only showed an average amount
of cache fetches. On the ARM Cortex-A75 system, nanosleep showed the highest number

46

of cache fetches, whereas, on the AMD system, the best syscall is highly dependent on
the mistraining syscall. In general, the yield syscall showed an above-average number of
cache fetches on all systems, mostly when skipping mistraining before filling the registers.

All in all, the experiment showed that the number of cache fetches rate highly depends
on the system used. Although the Skylake, as well as the Coffee Lake system, nearly
used the same kernel version, on the Coffee Lake system, 6 times more cache fetches
were be recorded. We are unsure what exactly causes this difference. However, many
factors might influence the number of cache fetches, including the CPU frequency, kernel
version, or Linux distribution. Furthermore, which combination of mistraining syscall
and syscall after filling the registers produces the highest number of cache fetches differs
on every system evaluated. However, using sched yield without mistraining generally
produced an above-average number of cache fetches on all systems tested.

CPU Architecture Operating System Kernel Version

Intel i7-6500U Skylake Linux Mint 19 4.15.0-52-generic

Intel i7-8700K Coffee Lake Ubuntu 18.04 4.15.0-55-generic

ARM Cortex-A57 ARMv8-A Ubuntu 16.04.6 4.4.38-tegra

AMD Threadripper 1920X Zen Core Ubuntu 17.10 4.13.0-46-generic

Table 4.3: Evaluated systems with their CPUs, CPU architecture, operat-
ing systems, and kernel versions used by the operating system.

syscall ↓ 6500U 8700K Threadripper 1920X Cortex-A57

mistraining → n/A sendto geteuid stat n/A sendto getuid stat n/A sendto getuid stat n/A sendto geteuid stat

yield 242 5 279 8 845 24 10 403 986 360 470 530 621 292 323 466
close 0 10 0 0 129 277 23 372 330 92 566 310 253 400 231 31
getpriority 0 0 17 0 0 0 1 3 54 175 266 416 503 207 357 83
fadvise 105 96 24 0 8 1 229 334 70 6 77 136 292 107 382 207
stat 49 2 119 106 999 999 990 993 342 55 648 279 105 209 35 362
mmap 59 0 85 1 513 78 356 1 121 46 161 177 36 423 108 62
ioctl 3 0 0 0 592 308 340 871 79 490 738 749 453 425 927 120
access 9 74 85 13 589 0 11 126 357 211 648 271 359 309 223 193
nanosleep 57 71 11 0 159 72 925 983 357 616 812 813 847 707 579 635
getpid 44 4 44 0 18 11 416 4 100 2 192 661 1 0 0 1
fsync 1 0 15 63 59 425 890 845 201 87 570 744 297 460 87 62
geteuid 43 1 1 2 5 825 2 4 5 272 531 457 42 235 152 5
getpgid 6 0 91 140 3 588 64 649 115 524 347 870 49 201 10 23
getsid 0 53 51 0 7 452 560 812 594 114 714 892 125 100 29 10
setxattr 28 113 9 194 999 1000 999 989 126 71 5 47 116 409 268 6
write 15 21 12 19 839 52 192 51 619 61 360 359 418 296 329 64
read 139 26 33 122 5 119 396 139 47 10 12 54 408 651 584 132

Average 47.06 28.00 51.53 39.29 339.35 307.71 376.71 445.82 264.88 187.76 418.65 456.76 289.71 319.47 272.00 144.82

Table 4.4: Evaluation of 4 systems using CPUs by various manufactures
using various syscalls for mistraining and after filling registers. The cells
show the number of cache fetches for 1, 000 tries. In the last row, the average
number of cache fetches for each mistraining syscall is calculated.

,

47

4.1.4 Kernel Parameters

As mentioned in Chapter 3, the Linux Spectre-BTB mitigations have to be deactivated
in order to successfully speculative dereference an address. This is due to countermea-
sures like retpoline disabling Spectre-BTB by trapping speculative execution of indirect
calls. In order to deactivate these mitigations, Linux supports multiple kernel parame-
ters [58, 60]. Spectre variant 2 mitigations can be deactivated using the nospectre v2

parameter. This kernel parameter includes countermeasures like Indirect Branch Re-
stricted Speculation (IBRS), Indirect Branch Prediction Barrier (IBPB), retpoline,
and RSB filling.

However, these are only some of the many CPU vulnerability mitigations available for
Linux. All in all, more than 10 different kernel parameters are available, enabling
the user to activate or deactivate a couple of dozen mitigations [58], as described in
chapter 2. These include mitigations against different variants of Spectre as well as
Micro-architectural Data Sampling for attacks like Fallout and RIDL. As many of these
countermeasures might influence our attack, we decided to deactivate all possible coun-
termeasures one by one and evaluate our PoC, as we did in previous experiments. The
stat was used for mistraining with sched yield triggering the speculative dereferenc-
ing after filling the registers. The sample size for one round was 10, 000, 000, and the
experiment was repeated 4 times. The evaluated system was running an Intel i7-6500U
using Linux Mint 19 with the Linux kernel version 4.15.0-52-generic.

Parameter Avg. cache fetches on 10, 000, 000 tries

no parameter 62.35
nopti 99.93
nospectre v1 69.26
spectre v2 user=off 57.06
spec store bypass disable=off 67.42
l1tf=off 61.84
mds=off 53.32
tsx async abort=off 59.13
kvm.nx huge pages=off 62.92

Table 4.5: Average number of cache fetches for 10, 000, 000 tries using
different Meltdown and Spectre mitigation kernel parameters [58, 60]. For
mistraining, stat was used with sched yield being used after filling the
registers. The nospectre v2 flag is always set, as turning of Specter vari-
ant 2 mitigations is a requirement for speculative dereferencing to work, as
described in section 3.1. The system used was running on an Intel i7-6500U
using Linux Mint 19 with the Linux kernel version 4.15.0-52-generic

As Table 4.5 shows, out of all tested kernel boot parameters benchmarked, only nopti

showed significant improvement on our tested system. While only using the nospectre v2

48

flags averaged at about 62.35 cache fetches (STD: 13.412 cache fetches) on 10, 000, 000
tries, additionally deactivating KPTI using the nopti parameter improved the number
of cache fetches to an average of 99.93 cache fetches (STD: 14.842 cache fetches) out of
10,000,000 tries. On the other hand, combining the rest of the tested kernel parameters
with nospectre v2 only showed a minimal difference, averaging between 53 and 69 cache
fetches (STD: 13-15 cache fetches).

As described in Chapter 2, the nopti kernel parameter deactivates Kernel page-table
isolation (KPTI), also known as KAISER [30,57]. KPTI prevents Meltdown-type attacks
by unmapping the kernel-space during execution in user-space. Only small parts of kernel
memory, for example, kernel entry points from user-space, are always mapped. However,
as we suspect most of our Spectre-BTB gadgets in kernel-space, there is a high chance
that activating KPTI reduces our chance of speculative dereferencing. This is due to
limiting speculative execution from inside kernel-space, as otherwise our gadgets would
be mapped. With KPTI deactivated, however, this limitation is not present, enabling a
wider range for speculative execution.

4.2 Improving the leakage

In this section, we conclude our findings from the last chapter in order to define methods
to increase the number of cache fetches caused by speculative dereferencing of addresses
in registers. We, therefore, looked at the POC described in chapter 3 (see Figure 3.7) and
apply the software-based attack optimization strategies discovered in our experiments.
Additionally, we looked at system and hardware influences on our attack. We were
testing various CPU manufactures and types as well as multiple Linux distributions
with different Linux kernels. Furthermore, we tested the influence of Linux command
line parameters on cache fetches caused by our attack.

We showed that the number of cache fetches varies depending on the syscall used for
mistraining and syscalls used after filling the registers. We showed that for mistraining,
the readv showed promising results on the evaluated system. The number of cache
fetches was increased from about 142 cache fetches without mistraining to up to 13, 766
cache fetches on average for 20, 000 tries when calling readv prior to filling the registers.
Alternatively, the getcwd syscall showed promising results, averaging up to 7, 344 cache
fetches. However, we were also able to exhibit that mistraining might negatively influence
the number of cache fetches, depending on the system and syscall called after filling the
registers.

For syscalls called after filling the registers, sched yield showed the highest number of
cache fetches on the evaluated system. We could measure about 374 cache fetches out
of 1, 000 tries for sched yield, followed by the getpid syscall averaging at 246 cache
fetches. Additionally, calling the syscall multiple times after filling the registers seemed

49

to overall stabilize the number of cache fetches. However, as the list of syscalls tested
was not exhaustive, future experiments might find a more suitable syscall, especially on
different systems.

We were able to show that our attack can be conducted on Intel, AMD, and ARM CPUs,
as long as they are susceptible to Spectre-BTB type attacks. However, we showed
that although two systems use the same Linux kernel version, the number of cache
fetches can differ by a large margin. Additionally, we showed that the leakage caused
by syscalls used in speculative dereferencing differs depending on the system. On some
systems, calling stat after filling registers showed the highest amount of cache fetches.
On other systems, only a minimal number of cache fetches were recorded. However,
some syscalls, for example, calling sched yield after filling the CPU registers, showed
an above-average number of cache fetches on all evaluated systems, as long as Spectre-
BTB countermeasures are deactivated.

As our attack depends on Spectre-BTB gadgets located in kernel code, the susceptibility
of the system to Spectre-BTB type attacks is mandatory for the attack to work. There-
fore, the nospectre v2 Linux kernel boot parameter has to be set in order to deactivate
countermeasures against Spectre v2, also known as Spectre-BTB. Additionally to this
mandatory kernel parameter, deactivating KPTI using the nopti kernel boot parameter
showed an increase in cache fetches of up to 60%.

All in all, which syscalls to use for mistraining as well as which syscalls to call after filling
the registers depends on the system on which the attack is conducted. Additionally,
the amount of cache fetches itself highly varies between systems. However, calling the
sched yield syscall after filling registers generally resulted in a high amount of cache
fetches, especially when called multiple times. For mistraining, readv showed promising
results, even though this may differ from system to system. Moreover, in general, the
overall number of cache fetches highly differs between systems, even though they are
running identical kernel versions. Finally, deactivating KPTI on Linux using the nopti

kernel boot parameter showed an increase in cache fetches of up to 60%.

50

Chapter 5

Attack Case Studies

Based on our findings described in Chapter 4, we decided to implement several exper-
iments based on speculative dereferencing using kernel Spectre gadgets. Therefore, in
this chapter, we will describe and analyze two experiments conducted using our new
attack. First, we will build a covert channel, as described in Chapter 3. We will explain
the architecture of the covert channel, as well as how speculative dereferencing can be
utilized for this purpose. Furthermore, the speed of the covert channel will be measured.
Second, we will show how we can not only leak data residing in memory but any variable
or value used by a program. Therefore, we will first explain our experiment setup and
preconditions. Furthermore, we will discuss how the program works and examine some
results.

5.1 Covert Channel

In this section, we will discuss the covert channel we constructed using speculative deref-
erencing. First of all, the concept of a covert channel will be described. Based on that,
we will explain how speculative dereferencing can be utilized in order to construct a
cache-based covert channel. Finally, we will compare the performance of the specu-
lative dereferencing-based covert channel to covert channel exploiting other hardware
vulnerabilities.

5.1.1 Description

Covert channels are communication channels between processes, usually not allowed
to communicate with each other according to system specifications [69, 79]. Usually,

51

they often use unusual mechanisms originally not designed for data transfer. Therefore,
covert channels are often hard to detect by a system’s security mechanisms. Additionally,
covert channels can be used for capacity evaluation for information leakage [84,114]. We
will use the built covert channel for evaluation and compare our attack to other similar
side-channel attacks. The covert channel sets an upper bound for the rate of leakage of
potential attacks utilizing speculative dereferencing.

As with other channels used for communicating, covert channels usually consist of a
sender and a receiver, for example, two malicious programs. Covert channels often se-
cretly communicate using shared physical resources [119], e.g., input devices [97], network
channels [11, 25], and CPU caches [32, 37, 73, 76, 77, 83, 88, 114, 117]. Our covert channel
using speculative dereferencing will be constructed as a cache-based covert channel.

Cache based covert channels allow communication between two processes running on a
shared CPU [32,37,73,76,77,83,88,114,117]. Our covert channel utilizes the Flush+Reload
technique as described in Chapter 2 for the receiving process, combined with the specula-
tive dereferencing attack described in Chapter 3 for the sending process. Both processes
run on the same logical core. The sender and receiver agree on a memory region used
for the communication by sharing the identity address of that physical page mapped
by the receiver. The channel uses 1 bit for communication and synchronizes using time
frames based on the systems time stamp counter (TSC) register. Compared to other
covert channels [31,32] using Flush+Reload, our covert channel does not require shared
memory or shared libraries.

The sender loads the payload and splits it up into bits, leading with a 1 to signal the start
of the communication. For each bit equal to 1, the sender uses speculative dereferencing
on the shared identity address in order to get the cache line of the memory region cached.
In the case of a 0, no speculative dereferencing is used for this time frame. Each bit is
sent for a previously agreed time frame based on the system’s TSC register to provide
synchronization with the receiver process. A pseudo-code version of the sender is shown
in Figure 5.1. In order to improve the communication, the sender can wait for the
start of a new time frame before transmitting the leading 1 bit at the beginning of the
communication.

The receiver, on the other hand, uses the Flush+Reload technique to wait for cache hits.
The memory region of the monitored address is mapped by the receiver process, which
shares its identity address with the sending process. To differentiate between a 1 bit
and 0 bit, the receiver counts the number of cache hits occurring during one time frame.
If this number exceeds a certain threshold, it will be counted as 1. Otherwise, the bit
will be recorded as 0. The threshold filters out any noise created by false-positive hits.
The receiver will start recording the communication after receiving the preceding 1 bit.
In the end, all the bits are combined to form the transmitted payload. A pseudo-code
example of this routine is shown in the listing of Figure 5.2.

52

1 f unc t i on send () {
2 // Load Payload and convert to bits , pretending a 1 as a start bit

3 payload = getPayloadInBits () ;
4
5 // Set identity address to agreed on memory region

6 // Used by speculative dereferencing

7 pre f e t ch addr = id en t i t y add r ;
8
9 // Get start of next time frame using the systems TSC register.

10 // Each time frame has a length of "TIME_FRAME"

11 time = rdt s c () ;
12 next = time + (TIME FRAME − (time % TIME FRAME)) ;
13
14 // Each bit is transmitted for the duration of one time frame

15 i = 0 ;
16 while (1)
17 {
18 // Speculative dereferencing if payload bit is 1

19 if (payload [i] == 1)
20 {
21 pr e f e t ch () ;
22 }
23
24 // Check if next timeframe is reached

25 cur rent = rd t s c () ;
26 if (cur rent >= next)
27 {
28 // Increase counter , stop when finished

29 i++;
30 if (i == PAYLOAD BIT SIZE)
31 break ;
32
33 // Set start of next time frame

34 next = current + (TIME AREA − (cur rent % TIME AREA)) ;
35 }
36 }
37 }

Figure 5.1: Pseudo-code of the sender code routine used for the covert
channel. The identity address is the kernel address of the physical page,
as described in Figure 2.2. The prefetch function is defined as described in
Figure 3.3.

53

1 f unc t i on r e c e i v e r ()
2 {
3 // Map some memory and calculate the identity address

4 // This identity address is then shared with the sending process

5 addr = mapMemory() ;
6 i d en t i t y add r = getIdent i tyAddr (addr)
7
8 // Get start of next time frame using the systems TSC register.

9 // Each time frame has a length of "TIME_FRAME"

10 time = rd t s c () ;
11 next = time + (TIME FRAME − (time % TIME FRAME)) ;
12
13 data in [PAYLOAD BIT SIZE] = {0}
14 i = 0 ;
15 while (1)
16 {
17 // Use Flush+Reload to listen for cache hits on the address.

18 de l t a = f lu shandre l oad (addr) ;
19 if (d e l t a < CACHETHRESHOLD)
20 {
21 // If cache hit is found , count up the hit counter for this bit

22 data in [i] = data in [i] + 1 ;
23 }
24
25 // Check if next timeframe is reached

26 s i z e t cur r ent = rd t s c () ;
27 if (cur rent >= next)
28 {
29 // As soon as we get the first hit, start reading bits

30 if (da ta in [0] >= MIN HITS)
31 {
32 // Increase i for every passed time frame , stop when finished

33 counter++;
34 if (counter == PAYLOAD BIT SIZE)
35 break ;
36 }
37 next = current + (TIME AREA − (cur rent % TIME AREA)) ;
38 }
39 }
40
41 // Set bits where the number of hits exceeded the threshold.

42 // Combine bits to form the final payload.

43 payload = combineCheckThreshold (data in , MIN HITS) ;
44 writePayload (payload) ;
45 }

Figure 5.2: Pseudo-code of the receiver code routine used for the covert
channel. The identity address is the kernel address of the physical page, as
described in Figure 2.2. Flush+Reload is defined as described in Figure 2.5.

54

5.1.2 Result

We evaluated the covert channel on a test system using an Intel i7-6500U, running Linux
Mint 19 with the kernel version 4.15.0-52-generic. A random message of 1280 bytes
was transmitted between two processes running on the same system, on unique CPU
cores. In order to improve the leakage, in addition to the required deactivation of the
Spectre v2 countermeasures using nospectre v2, KPTI was deactivated using the nopti
Linux boot parameter. Further, no mistraining was used as well as the pthread yield()

after filling the registers.

In our test setup, randomly generated messages of 1, 280 bytes were transmitted between
a sending process and a receiving process. Both processes are the implementations
of communication partners, as shown in Figure 5.1 and Figure 5.2. We repeated the
experiment 50 times, generating a new random message every iteration. Additionally,
during all transmissions, additional interrupts were caused by using the Linux ls tool.
These interrupts were used due to our observation of an increase in leakage, proportional
to the number of interrupts the evaluated system handles.

All in all, we were able to show a transmission rate of up to 30 bit/s (STD: 0.00618 bit/s)
for a 1, 280 byte payload. However, at this transmission rate, the average error rate of the
covert channel was up to 1% (STD: 0.8%). By increasing the time frames used for each
bit, we were able to lower the error rate in the cost of transmission speed. By doubling the
time frame, we were able to reduce the average error rate down to an acceptable 0.01%
(STD: 0.0078%) while achieving a transmission rate of up to 15 bit/s (STD: 0.00521
bit/s). To lower the error rate to 0% (STD: 0.0001%) in the majority of transmissions,
the transmission rate had to be reduced down to 6 bit/s (STD: 0.00119 bit/s). All in
all, the measured transmission rate of the speculative dereferencing-based covert channel
is overall lower than for other cache-based covert channels that do not require shared
memory. While Maurice et al. [77] presented an optimized and error-free covert channel
achieving up to 45 kb/s, other covert channels showed similar transmission rates and
similar error rates to our speculative dereferencing-based covert channel [32,37,73,76,77,
83,88,114,117]. Many cache-based covert channels showed transmission rates between 10
bit/s and 100 bit/s, with error rates between 1% and 6% [32,37,73,76,77,83,88,114,117].

In order to achieve a higher transmission rate, error-correction methods can be used
instead of increasing the time frame [77] in order to achieve error-free transmission.
Furthermore, as we showed in Table 4.4 in Chapter 4, the rate of leakage heavily depends
on the system evaluated. Therefore, the transmission rate can be increased by running
the covert channel on a different test system.

55

5.2 Dereference Trap (Value Leak)

In this section, we will discuss our Dereference Trap experiment. Using the Dereference
Trap, we are able to leak actual data using speculative dereferencing. We first discuss
our experiment setup and preconditions. As a next step, we will explain the attack we
want to conduct in detail. Furthermore, we will examine the implementation and why
the attack works. Finally, we will examine the output of an execution and the results
we gathered.

5.2.1 Description

As mentioned in previous chapters and experiments, speculative dereferencing can be
utilized to dereference arbitrary user-space and kernel-space addresses. However, in this
experiment, we will show that additional to addresses, an attacker can leak nearly any
arbitrary value or variable used in the program using Dereference Trap. We can use
the Dereference Trap to leak values from user-space, kernel-space, and even SGX, as
Schwarzl et al. [94] showed.

Dereference Trap works by ensuring that as much virtual address space as possible is
mapped by the application. Using speculative dereferencing on a secret contained in a
register, the corresponding virtual address of the application will be cached. However,
as the virtual address space is huge, mapping a unique physical page to each virtual page
to check each address with e.g., Flush+Reload is infeasible [91]. Therefore, we decided
to only use 2 pages, each page mapping to one half of the targeted address area. For
example, for 32 bit secrets, each half has 210 mappings per physical page [94]. Each half
is then scanned using Flush+Reload for each of the 64 cache lines of the page. When
cache fetches in one half are detected, this half is split up further. Moreover, the two
physical maps are unmapped and mapped to the new split up address area. This process
is repeated until only one page is left. Finally, we learn that the value of the secret is
within the address boundaries of the page. However, certain preconditions have to be
fulfilled.

First, as we utilize Spectre gadgets residing inside the kernel, the value we want to leak
has to be filled into CPU registers prior to calling a syscall. Additionally, a value can
only be leaked if the targeted value is high enough, as it has to fall into the region
of mappable virtual address space. As the majority of leaks experienced on our test
system were generated by a Spectre-BTB gadget, the nospectre v2 parameter has to
be set as the Linux Spectre v2 countermeasures prevent Spectre-BTB. Additionally, as
in our experiment, we use user-space addresses, SMAP has to be deactivated using the
nosmap kernel parameter. Moreover, we use the nopti kernel command line parameter
to deactivate KPTI, as KPTI significantly reduces the number of cache fetches on our

56

test system. In order to successfully conduct the attack on user-space addresses, at least
the nospectre v2 and nosmap parameters are mandatory.

In order to map the memory regions, the first parameter of the mmap syscall [56] and
shared memory mapping are utilized. Shared memory is a memory that can be accessed,
mapped, and changed by multiple processes. On Linux, this is realized by creating shared
memory objects on the file system that can be mapped using mmap. The first parameter
of mmap, on the other hand, enables the caller to hint the kernel as to which address
in the virtual address space the memory should be mapped. However, the kernel is
not required to map the memory at the given address. This can be due to the given
address being lower than a system set threshold (/proc/sys/vm/mmap min addr) [56] or
the kernel not being able to map contiguous memory for the given size from the given
address onwards. However, in the case of a successful mmap for the desired address region,
an attacker can locate the value to be leaked.

Due to our precondition of the value residing in registers while calling a syscall, the
address equal to the value will be cached using speculative dereferencing. Therefore,
by using Flush+Reload on the allocated memory region that contains the value as an
address, a cache hit can be observed at this address. In order to learn the leaked
value more efficiently, we utilized divide and conquer. Therefore, we first divide the
targeted address region into two parts. Each part is mapped to a separate shared
memory object. Flush+Reload is then used on all cache lines (64 bytes) of every page
(4096 bytes) for both memory halves. Cache hits on the address equal to the targeted
value and sometimes hits on nearby addresses are detected. The half where cache hits
were detected is then further divided and scanned for cache hits. This is continued until
only one page causing page hits remains. The start and end addresses of this page act
as a boundary for the targeted value. Figure 5.3 shows this method for a memory area
consisting of 16 pages.

Figure 5.4 shows the pseudo-code for the attack described in Figure 5.3. First, we assume
an address range that we suspect to contain the targeted value. Second, memory is
mapped for the assumed address range. In the next step, each cache line of 64 bytes of
every 4096-byte page is checked using Flush+Reload, tracing cache hits. This step is
repeated multiple times. Mapped memory is split up in the middle and checked for hits
separately. These hits are accumulated for each half. After checking all cache lines, the
memory half showing more cache hits is chosen as the new assumed address range in the
final step. These steps are repeated until only one page is left, defining the boundary of
the leaked value.

5.2.2 Result

Figure 5.5 shows the result of a value leaking attack using speculative dereferencing.
For the conducted experiment, the value area was estimated between 0x50000000 and

57

16 pages

8 pages

4 pages4 pages

2 pages

0x50000 0x5ffff

Value:

0x54000 0x54fff

0x50000 0x57fff

0x57fff

0x55fff0x54000

0x54000

8 pages

2 pages

0x54945

Figure 5.3: Visualization of finding the target value (0x54945) using decide
and conquer. The estimated boundaries for the target value are 0x050000

and 0x5ffff. Used as an address region, the resulting memory can be
mapped on 16 pages. At every step, using divide and conquer, the half
resulting in cache hits are chosen. In the end, one page remains, setting the
boundary of the target value between 0x54000 and 0x54fff.

58

1 // Target value is assumed between addr_start and addr_end

2 range = addr end − add r s t a r t ;
3 // Loop until only one page left

4 while (range > PAGE SIZE)
5 {
6 // Map the memory area

7 nr mappings = (area / PAGE SIZE) ;
8 mappings [nr mappings] ;
9 map(mappings , nr mappings) ;

10
11 // Flush+Reload on each half of the mapping , record cache hits

12 ha l f [2] = {0} ;
13 for (i = 0 ; i < nr mappings /2 ; i++) {
14 for (j = 0 ; j < NUMBER OF CACHELINES; j++) {
15 addr = mappings [i] + j ∗ CACHE LINE SIZE ;
16 for (k = 0 ; k < NR TRIES ; k++) {
17 if (f l u s h r e l o a d (addr) < CACHE HIT MAX) {
18 ha l f [0]++;
19 }
20 f l u sh page (mappings [i]) ;
21 }
22 }
23 }
24 for (i = nr mappings /2 ; i < nr mappings ; i++) {
25 for (j = 0 ; j < NUMBER OF CACHELINES; j++) {
26 addr = mappings [i] + j ∗ CACHE LINE SIZE ;
27 for (k = 0 ; k < TRIES ; k++) {
28 if (f l u s h r e l o a d (addr) < CACHE HIT MAX) {
29 ha l f [1]++;
30 }
31 f l u sh page (mappings [i]) ;
32 }
33 }
34 }
35
36 // Check which half recorded more hits

37 if (h a l f [0] > ha l f [1])
38 addr end = add r s t a r t + area / 2 ;
39 else

40 add r s t a r t = add r s t a r t + area / 2 ;
41
42 // Unmap and calculate new address range

43 unmap(mappings) ;
44 range = addr end − add r s t a r t ;
45 }

Figure 5.4: Pseudo-code for Figure 5.3. After mapping the memory, each
half of the address area is checked for cache hits using Flush+Reload. In
the end, the half with the most cache hits is chosen as the new possible
address area. After unmapping the memory, the loop is repeated with the
new, reduced address range.

59

1 Attack value 0x50004945

2 0x50000000 - 0x5000ffff , 16 mappings

3 Hit in first half (3/0)

4 0x50000000 - 0x50007fff , 8 mappings

5 Hit in second half (0/1)

6 0x50004000 - 0x50007fff , 4 mappings

7 Hit in first half (3/0)

8 0x50004000 - 0x50005fff , 2 mappings

9 Hit in first half (1/0)

10 Variable in area from 0x50004000 to 0x50005000.

Figure 5.5: Result of a Test run of an implementation based on the pseudo-
code in Figure 5.4. As in the illustration of the value leak in Figure 5.3, the
estimated value and, therefore, address area consists of 16 pages. Each
iteration was repeated 8 ∗ 1024 times.

0x5000ffff, mapping 16 pages of shared memory. For this experiment, the target value
was set to 0x50004945 in order to follow the illustration seen in Figure 5.3. Moreover,
both prefetching the value using speculative dereferencing and checking for cache hits
in the mapped memory are conducted in the same process. The PoC is based on the
pseudo-code seen in Figure 5.4. For this experiment run, every Flush+Reload done on
any cache line is repeated 8 ∗ 1024 times, increasing the chance of detecting cache hits
on the cost of execution time.

As the estimated value region can be covered by an address region of only 16 pages,
the experiment can be finished in only 4 iterations. Each iteration further decreases
the possible value boundaries. As the attacked value is set to 0x50004945, the first
iteration showed cache hits in the first half of the address region between 0x50000000

and 0x5000ffff, setting the upper boundary to 0x50007fff. For the second iteration,
only 8 pages have to be mapped. Cache hits were detected in the second half of the
address area, setting the lower boundary to 0x50004000. After two additional iterations,
only one page showing cache hits remains, setting the final limits for the value (set at
0x50004945) between 0x50004000 and 0x50005000. All in all, the experiment showed
an execution time of around 15 seconds on an Intel i7-6500U, running Linux Mint 19
with the kernel version 4.15.0-52-generic.

60

Chapter 6

Additional Work

In this chapter, we will discuss additional work and experiments that were conducted
based on the findings of this thesis. In the following sections, we will look at the work
presented in Speculative Dereferencing of Registers: Reviving Foreshadow by Schwarzl
et al. [94]. First, we will discuss how speculative dereferencing can be used in virtual
machines, reenabling Foreshadow type attacks despite recommended Foreshadow mit-
igations being activated. Next, we will examine how speculative dereferencing can be
used to leak from SGX registers. Finally, we will mention a Javascript-based speculative
dereferencing attack presented by Schwarzl et al. [94].

6.1 Speculative Dereferencing in Virtual Machines

Schwarzl et al. [94] showed that speculative dereferencing could successfully be used to
mount an end-to-end attack from a KVM virtual-machine guest on a Linux host. Pos-
sible Spectre gadgets located in interrupt or hypercall routines may be used in order
to fetch arbitrary host memory from a virtual-machine guest, in the case of the CPU
misspeculating into one of these gadgets [94]. This fetched memory can then be retrieved
using Foreshadow [94]. Therefore, Schwarzl et al. [94] conclude that, by using specu-
lative dereferencing, circumvention of recommended Foreshadow countermeasures [54]
is possible as long as Specter-BTB mitigations are deactivated and gadgets can be ex-
ploited in the interrupt handler or the hypercall routines of the host [94]. Additionally to
KVM, kernel prefetching gadgets in combination with Foreshadow can also be exploited
on Xen [94,100,116].

Schwarzl et al. [94] presented a successful end-to-end Foreshadow attack based on spec-
ulative dereferencing, abusing a Spectre-BTB gadget in interrupt routines of the Linux
host. The Linux guest was virtualized utilizing qemu using KVM as a backend [94].
Foreshadow mitigations were activated; however, Spectre-BTB mitigations were incom-

61

plete [94]. During the attack, the guest repeatedly fills registers with a host’s direct-
physical-map address followed by a sched yield syscall [94]. On the host, the cached
address was then detected using Flush+Reload [94,120].

Schwarzl et al. [94] recorded up to 25 fetches per minute for this speculative dereferencing-
based Foreshadow attack using interrupts. However, even though speculative dereferenc-
ing using hypercalls is theoretically possible, no gadgets in the KVM hypercall routines
were able to be detected and exploited [94]. All in all, Schwarzl et al. [94] concluded
that recommended Foreshadow mitigations are not sufficient for preventing Foreshadow
when no full Spectre-BTB protection is activated.

6.2 Speculative Dereferencing inside SGX enclaves

Intel Software Guard Extensions (SGX) are security-related instructions added on top of
the x86 architecture, enabling the creation of so-called enclaves [41, 42]. These enclaves
can be utilized to run trusted code and contain sensitive data. Access to these enclaves
is restricted on a hardware level, even protecting the enclave content from access by
compromised operating systems and hypervisors. Data inside the enclave is only acces-
sible from the enclave code within. However, the enclave has access to the full virtual
memory of the host application.

In order to leak data from SGX enclaves using speculative dereferencing, Schwarzl et
al. [94] defined the Dereference Trap method. Possible Spectre-BTB gadgets inside an
enclave’s code are utilized to fetch arbitrary memory mapped by the enclave. The secret
can then be detected by an attacker checking the virtual address space of the system
for possible cache hits. In order to do this efficiently, divide and conquer, similar to
the value leak attack of Chapter 5 can be used. Schwarzl et al. [94] reported that, by
using Dereference Trap, the attack successfully recovered a 32-bit value stored in a 64-bit
register in under 16 minutes.

6.3 Speculative Dereferencing in Javascript

While the previous attacks require native running code, Schwarzl et al. [94] presented an
attack leaking physical addresses within a JavaScript Context. By using WebAssembly,
an attacker can fill 64-bit registers with an attacker-controlled value or address. With this
attack it is possible to leak the direct-physical-map address of any arbitrary JavaScript
variable [94]. In order to achieve this, first, the direct-physical-map address is guessed
and fetched using speculative execution. If Evict+Reload on the target variable yields
a cache hit, the guessed direct-physical-map address was correct. As system calls can

62

not directly be called using Javascript, in order to trigger speculative dereferencing, the
code is continuously interrupted, e.g., using disk I/O operations.

While this attack works fine on stand-alone Javascript engines like v8 with up to 20
speculative fetches a second, using a real unmodified Firefox browser reduces this number
to a maximum of 1 fetch per minute [94]. Schwarzl et al. [94] explained this by not all
registers being used by the browser. Furthermore, some registers can be used by the
browser, overwriting the direct-physical-map address of the targeted variable.

63

Chapter 7

Conclusion

In this thesis, we showed that the original analysis of the address-translation attack was
erroneous [31]. We analyzed the attack and showed that instead of prefetch instructions,
speculative execution in kernel code causes the prefetching effect utilized in address-
translation attacks [13,65,72]. Spectre gadgets in the syscall and interrupt routines of the
Linux kernel lead to speculative dereferencing of user-filled general-purpose registers [65].
We were able to locate one Spectre-BTB [13] gadget causing cache fetches in the syscall
handler of the sched yield syscall [94].

Based on these findings, we showed that even on current Linux kernel versions and
activated address-translation attack countermeasures like KAISER, speculative derefer-
encing is possible [30, 31]. We run the attack on various systems using different Linux
distributions, various kernel versions, and various CPU generations. We measured the
number of cache fetches of each run and compared the different test systems. Addition-
ally, we evaluated the influence of various transient execution countermeasures on our
attack. Finally, we compared the performance of various syscalls used for speculative
dereferencing in order to optimize the number of cache fetches.

We conducted two case studies. We constructed a speculative dereferencing-based covert
channel and compared the performance to other cache-based covert channels [32, 37,
73, 76, 77, 83, 88, 114, 117]. Furthermore, we presented the dereference trap technique,
allowing an attacker to directly leak data from registers using speculative dereferencing.
No encoding steps are needed to leak data from user programs, the kernel, or even SGX.

We showed additional experiments conducted by Schwarzl et al. [94], which are based
on the findings of this thesis. We talked about how speculative dereferencing enables
Foreshadow despite activated mitigations [94]. Additionally, we covered the usage of
the dereference trap to leak data from SGX enclaves [94]. Finally, we talked about the
possibility of running speculative dereferencing-based attacks in Javascript [94].

64

List of Figures

2.1 The virtual address space of a process. [104] 4
2.2 On Linux and OSX, physical memory is mapped twice, once as a kernel

or a user page and once as a 1:1 mapping [61,71]. 4
2.3 2-way set-associative cache with 8 cache lines in 4 sets, 2 lines per set.

On access, the set is chosen, and the tags of the lines are compared with
the tag of the address. The same memory location is always cached in
the same cache set. [35] . 7

2.4 Illustration of the level 1, level 2, and level 3 cache on a multi-core pro-
cessor [46]. 8

2.5 A Flush+Reload attack illustrated. After measuring the access time, the
attacker learns if the shared data was accessed [34,120]. 10

2.6 This diagram is a visualization of the histogram provided by the Cache
Template Attack calibration tool [33]. The optimal threshold in this ex-
ample would be around 250. High access time for cache hits might be
caused by scheduling. 12

2.7 The virtual address space of a process before and after applying the
KAISER patch. [104] . 13

2.8 Code example for instructions being split up into µOPs [23]. Code adapted
from The microarchitecture of Intel, AMD, and VIA CPUs by Agner
Fog [23]. 14

2.9 Classification tree of transient execution attacks [13, 28]. Split up into
Meltdown-type and Spectre-type attacks [13, 28]. Based on a graph by
Canella et al. [13, 28]. 15

2.10 Toy example of the Meltdown attack [72]. A kernel address is derefer-
enced, and the result is used to index an array [72]. Due to speculative
execution, the indexed part of the array might be prefeched before the
memory access permission check can detect invalid access to a kernel ad-
dress [72]. 16

2.11 Toy example of the Spectre attack [65]. 18

65

2.12 Retpoline exchanges the jump instruction of (a) to the sequence seen in
(b). First, there is a direct call to load label [107]. The RSB entry after
that call leads to capture ret spec. In load label, the target is pushed
onto the stack and returned to using ret, while speculative execution
based on the RSB is trapped inside the capture ret spec loop [107]. . . 23

2.13 Illustration of a 1-bit covert channel using the Prime+Probe technique [77].
Sender and receiver agree on using a certain cache set i for communication. 28

3.1 Example code for the 3 steps of an address-translation attack [31]. The
prefetch step is repeated several times in order to increase the chance of
the address being cached [31]. 30

3.2 The assembler code of the prefetching component of the prefetch address-
translation attack showed in Figure 3.1 [94]. Version (a) shows the original
disassembly. In version (b), the prefetch instructions were replaced by
nop [94]. 31

3.3 First proof-of-concept code showing prefetching of addresses stored in
registers. set registers fills all general-purpose registers with the given
address. 32

3.4 This figure shows a part of the instruction trace of the do syscall 64

function in the Linux kernel. The trace was recorded on a virtual machine
running a Linux v4.16.18 kernel. First, the stack is prepared. After
interrupts are enabled in line 8, line 12 and 13 checks if syscall tracing is
activated. If not, line 14 and 15 test if the given syscall number is assigned
to a valid syscall. Finally, the registers are prepared according to Figure
3.1, and x86 indirect thunk rax is called in line 26. As retpoline
is deactivated in this case, x86 indirect thunk rax just consists of a
jump to rax, where rax contains the address of the corresponding syscall
handler for the called system call. 34

3.5 This figure shows the put prev task fair function used by the scheduler
of the Linux kernel. In this function, the uncleared %rsi is dereferenced,
as Schwarzl et al. [94] show. The lfence at the beginning of the functions
prevents speculative execution. 35

3.6 This figure shows how direct-physical map (DPM) addresses stored in
registers are speculatively dereferenced inside the Linux kernel syscall
handlers using, e.g., Spectre-BTB gadgets. The cached DPM can then
be detected using, e.g., Flush+Reload. 36

3.7 A toy example of the Register Prefetch PoC. The example uses a Flush+Reload
cache attack to verify the address in the register was fetched and therefore
cached. fillRegisters fills the CPU registers rax, rbx, rcx, rdx, rsi,
rdi, and r8 up to r15 with the given address. In step 2, optionally, an
additional syscall can be called for mistraining the Branch Target Buffer
(BTB). 38

66

4.1 Implementation of the adapted PoC. At #INSERT POINT, one of the 291
tested syscalls will be added automatically using a python script. The
experiment is repeated 200, 000 times and the number of cache fetches is
measured using Flush+Reload, as described in Figure 2.5. 44

5.1 Pseudo-code of the sender code routine used for the covert channel. The
identity address is the kernel address of the physical page, as described in
Figure 2.2. The prefetch function is defined as described in Figure 3.3. . . 53

5.2 Pseudo-code of the receiver code routine used for the covert channel. The
identity address is the kernel address of the physical page, as described in
Figure 2.2. Flush+Reload is defined as described in Figure 2.5. 54

5.3 Visualization of finding the target value (0x54945) using decide and con-
quer. The estimated boundaries for the target value are 0x050000 and
0x5ffff. Used as an address region, the resulting memory can be mapped
on 16 pages. At every step, using divide and conquer, the half resulting in
cache hits are chosen. In the end, one page remains, setting the boundary
of the target value between 0x54000 and 0x54fff. 58

5.4 Pseudo-code for Figure 5.3. After mapping the memory, each half of the
address area is checked for cache hits using Flush+Reload. In the end,
the half with the most cache hits is chosen as the new possible address
area. After unmapping the memory, the loop is repeated with the new,
reduced address range. 59

5.5 Result of a Test run of an implementation based on the pseudo-code in
Figure 5.4. As in the illustration of the value leak in Figure 5.3, the
estimated value and, therefore, address area consists of 16 pages. Each
iteration was repeated 8 ∗ 1024 times. 60

67

List of Tables

3.1 List of registers used when calling a system call [2]. In contrast to the usual
x86 64 calling convention, r10 is used for the fourth argument instead of
rcx. 37

4.1 A list of the best performing syscalls used for speculative dereferencing
after filling registers, with PTI and Spectre v2 countermeasures deacti-
vated. The result is presented in the average number of true positive cache
fetches for a sample size of 1, 000. The evaluated system was running
on an Intel i7-8700K using Ubuntu 18.04 with the Linux kernel version
4.4.143-generic . 42

4.2 The 20 best performing syscalls for mistraining the BTB using sched yield

after filling registers. The result is presented in the average number of true
positive cache fetches for a sample size of 200, 000. The evaluated system
was running on an Intel i7-8700K using Ubuntu 18.04 with the Linux
kernel version 4.4.143-generic . 45

4.3 Evaluated systems with their CPUs, CPU architecture, operating systems,
and kernel versions used by the operating system. 47

4.4 Evaluation of 4 systems using CPUs by various manufactures using various
syscalls for mistraining and after filling registers. The cells show the
number of cache fetches for 1, 000 tries. In the last row, the average
number of cache fetches for each mistraining syscall is calculated. 47

4.5 Average number of cache fetches for 10, 000, 000 tries using different Melt-
down and Spectre mitigation kernel parameters [58,60]. For mistraining,
stat was used with sched yield being used after filling the registers. The
nospectre v2 flag is always set, as turning of Specter variant 2 mitiga-
tions is a requirement for speculative dereferencing to work, as described
in section 3.1. The system used was running on an Intel i7-6500U using
Linux Mint 19 with the Linux kernel version 4.15.0-52-generic 48

68

Bibliography

[1] 0xax. Ingo Molnar. https://git.kernel.org/pub/scm/linux/kernel/git/

tip/tip.git/commit/?id=dfe64506c01e57159a4c550fe537c13a317ff01b,
2018. Accessed: Thu, 15 August 2020 15:45:00 +0100.

[2] 0xax. Linux Inside. https://0xax.gitbooks.io/linux-insides/content/,
2020. Accessed: Thu, 14 August 2020 15:00:00 +0100.

[3] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-Flow In-
tegrity. In CCS (2005).

[4] AMD. Software Optimization Guide for AMD Family 17h Proces-
sors. https://developer.amd.com/wordpress/media/2013/12/55723_SOG_

Fam_17h_Processors_3.00.pdf, 2017. Accessed: Tue, 29 October 2019 18:25:00
+0100.

[5] AMD. Software techniques for managing speculation on AMD processors, Re-
vision 7.10.18. https://developer.amd.com/wp-content/resources/90343-B_

SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf, 2018.
Accessed: Thu, 08 January 2020 17:45:00 +0100.

[6] Bernstein, D. J. Cache-Timing Attacks on AES, 2005.

[7] Bhattacharya, S., Maurice, C.-m.-t.-n., Bhasin, S., and Mukhopadhyay,
D. Template Attack on Blinded Scalar Multiplication with Asynchronous perf-ioctl
Calls. Cryptology ePrint Archive, Report 2017/968 (2017).

[8] Bhattacharya, S., and Mukhopadhyay, D. Curious Case of Rowhammer:
Flipping Secret Exponent Bits Using Timing Analysis. In CHES (2016).

[9] Bhattacharyya, A., Sandulescu, A., Neugschwandt ner, M., Sorniotti,
A., Falsafi, B., Payer, M., and Kurmus, A. SMoTherSpectre: exploiting
speculative execution through port contention. In CCS (2019).

[10] Bosman, E., and Bos, H. Framing signals - A return to portable shellcode. In
S&P (2014).

69

https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=dfe64506c01e57159a4c550fe537c13a317ff01b
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=dfe64506c01e57159a4c550fe537c13a317ff01b
https://0xax.gitbooks.io/linux-insides/content/
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf
https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf

[11] Cabuk, S., Brodley, C. E., and Shields, C. IP Covert Timing Channels:
Design and Detection. In CCS’04 (2004).

[12] Canella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M., Minkin, M.,
Moghimi, D., Piessens, F., Schwarz, M., Sunar, B., Van Bulck, J., and
Yarom, Y. Fallout: Leaking Data on Meltdown-resistant CPUs. In CCS (2019).

[13] Canella, C., Van Bulck, J., Schwarz, M., Lipp, M., von Berg, B., Ort-
ner, P., Piessens, F., Evtyushkin, D., and Gruss, D. A Systematic Evalua-
tion of Transient Execution Attacks and Defenses. In USENIX Security Symposium
(2019). Extended classification tree and PoCs at https://transient.fail/.

[14] Carruth, C. Introduce the ”retpoline” x86 mitigation technique for variant
2. https://reviews.llvm.org/D41723, 2018. Accessed: Thu, 14 January 2020
20:30:00 +0100.

[15] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H.,
and Winandy, M. Return-oriented programming without returns. In CCS
(2010).

[16] Corbet, J. The current state of kernel page-table isolation. https://lwn.net/

Articles/741878/, 2017. Accessed: Sun, 20 October 2019 17:40:00 +0100.

[17] Delshadtehrani, L., Eldridge, S., Canakci, S., Egele, M., and Joshi,
A. Nile: A programmable monitoring coprocessor. IEEE Computer Architecture
Letters (2017).

[18] Dowd, M., McDonald, J., and Schuh, J. The Art of Software Security As-
sessment: Identifying and Preventing Software Vulnerabilities. Addison-Wesley
Professional, 2006.

[19] Edge, J. Kernel address space layout randomization. https://lwn.net/

Articles/569635/, 2013. Accessed: Thu, 06 August 2020 15:30:00 +0100.

[20] Evtyushkin, D., Ponomarev, D., and Abu-Ghazaleh, N. Jump over aslr:
Attacking branch predictors to bypass aslr. In MICRO (2016).

[21] felixcloutier.com. CLFLUSH — Flush Cache Line. https://www.

felixcloutier.com/x86/clflush, 2019. Accessed: Tue, 29 October 2019
17:45:00 +0100.

[22] felixcloutier.com. PREFETCHh — Prefetch Data Into Caches. https://

www.felixcloutier.com/x86/prefetchh, 2019. Accessed: Tue, 07 August 2020
18:45:00 +0100.

[23] Fog, A. The microarchitecture of Intel, AMD and VIA CPUs: An optimiza-
tion guide for assembly programmers and compiler makers. https://www.agner.
org/optimize/microarchitecture.pdf, 2019. Accessed: Sun, 12 November 2019
20:00:00 +0100.

70

https://reviews.llvm.org/D41723
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://www.felixcloutier.com/x86/clflush
https://www.felixcloutier.com/x86/clflush
https://www.felixcloutier.com/x86/prefetchh
https://www.felixcloutier.com/x86/prefetchh
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

[24] Fuchs, A., and Lee, R. B. Disruptive Prefetching: Impact on Side-Channel
Attacks and Cache Designs. In Proceedings of the 8th ACM International Systems
and Storage Conference (SYSTOR’15) (2015).

[25] Gianvecchio, S., Wang, H., Wijesekera, D., and Jajodia, S. Model-based
covert timing channels: Automated modeling and evasion. In Proceedings of the
11th International Symposium on Recent Advances in Intrusion Detection (2008).

[26] Gregg, B. KPTI/KAISER Meltdown Initial Performance Re-
gressions. http://www.brendangregg.com/blog/2018-02-09/

kpti-kaiser-meltdown-performance.html, 2018. Accessed: Thu, 14 Jan-
uary 2020 20:10:00 +0100.

[27] Gruss, D. Cache Template Attacks. https://github.com/IAIK/cache_

template_attacks. Accessed: Thu, 11 November 2019 18:40:00 +0100.

[28] Gruss, D., and Canella, C. Transient Fail. https://transient.fail/. Ac-
cessed: Thu, 13 December 2019 18:00:00 +0100.

[29] Gruss, D., Hansen, D., and Gregg, B. Kernel Isolation: From an Academic
Idea to an Efficient Patch for Every Computer. USENIX ;login (2018).

[30] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., and Man-
gard, S. KASLR is Dead: Long Live KASLR. In ESSoS (2017).

[31] Gruss, D., Maurice, C., Fogh, A., Lipp, M., and Mangard, S. Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In CCS (2016).

[32] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. Flush+Flush: A
Fast and Stealthy Cache Attack. In DIMVA (2016).

[33] Gruss, D., Spreitzer, R., and Mangard, S. Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches. In USENIX Security Symposium
(2015).

[34] Gullasch, D., Bangerter, E., and Krenn, S. Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice. In S&P (2011).

[35] Hennessy, J. L., and Patterson, D. A. Computer architecture: a quantitative
approach. Elsevier, 2011.

[36] Horn, J. speculative execution, variant 4: speculative store bypass. https://

bugs.chromium.org/p/project-zero/issues/detail?id=1528. Accessed: Thu,
16 December 2019 18:30:00 +0100.

[37] Hu, W.-M. Lattice Scheduling and Covert Channels. In S&P’92 (1992).

[38] Hund, R., Holz, T., and Freiling, F. C. Return-oriented rootkits: Bypassing
kernel code integrity protection mechanisms. In USENIX Security Symposium
(2009).

71

http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://github.com/IAIK/cache_template_attacks
https://github.com/IAIK/cache_template_attacks
https://transient.fail/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

[39] Hund, R., Willems, C., and Holz, T. Practical Timing Side Channel Attacks
against Kernel Space ASLR. In S&P (2013).

[40] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sampling.
https://software.intel.com/security-software-guidance/insights/

deep-dive-intel-analysis-microarchitectural-data-sampling. Accessed:
Thu, 07 January 2020 17:45:00 +0100.

[41] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Man-
ual. https://software.intel.com/sites/default/files/managed/39/c5/

325462-sdm-vol-1-2abcd-3abcd.pdf, 2014. Accessed: Tue, 29 October 2019
18:20:00 +0100.

[42] Intel. Intel® Software Guard Extensions Programming Reference,Rev. 2.
(2014). https://software.intel.com/sites/default/files/managed/48/88/

329298-002.pdf, 2014. Accessed: Tue, 16 December 2020 17:00:00 +0100.

[43] Intel. Deep Dive: Retpoline: A Branch Target Injection Mitiga-
tion. https://software.intel.com/security-software-guidance/insights/

deep-dive-retpoline-branch-target-injection-mitigation, 2018. Ac-
cessed: Thu, 10 January 2020 17:00:00 +0100.

[44] Intel. Intel Analysis of Speculative Execution Side Channels, Revision
1.0. https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/

Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018. Ac-
cessed: Thu, 10 January 2020 17:00:00 +0100.

[45] Intel. Speculative Execution Side Channel Mitiga-
tions, Revision 3.0. https://software.intel.com/

security-software-guidance/api-app/sites/default/files/

336996-Speculative-Execution-Side-Channel-Mitigations.pdf, 2018.
Accessed: Thu, 08 January 2020 17:45:00 +0100.

[46] Intel. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual. https://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf, 2019. Ac-
cessed: Tue, 14 November 2019 15:10:00 +0100.

[47] Ionescu, A. Twitter: Apple Double Map. https://twitter.com/aionescu/

status/948609809540046849, 2017. Accessed: Thu, 14 January 2020 17:30:00
+0100.

[48] Islam, S., Moghimi, A., Bruhns, I., Krebbel, M., Gulmezoglu, B., Eisen-
barth, T., and Sunar, B. Spoiler: Speculative load hazards boost rowhammer
and cache attacks, 2019.

[49] Johnson, K. KVA Shadow: Mitigating Meltdown on
Windows. https://msrc-blog.microsoft.com/2018/03/23/

72

https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/948609809540046849
https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

kva-shadow-mitigating-meltdown-on-windows/, 2018. Accessed: Sun, 20
October 2019 17:40:00 +0100.

[50] Kelsey, J., Schneier, B., Wagner, D., and Hall, C. Side Channel Crypt-
analysis of Product Ciphers. Journal of Computer Security 8, 2/3 (2000), 141–158.

[51] Kemerlis, V. P., Polychronakis, M., and Keromytis, A. D. ret2dir: Re-
thinking kernel isolation. In USENIX Security Symposium (2014).

[52] kernel development community, T. CPU frequency and voltage scaling
code in the Linux(TM) kernel. https://www.kernel.org/doc/Documentation/

cpu-freq/governors.txt. Accessed: Thu, 01 Februar 2020 19:55:00 +0100.

[53] kernel development community, T. iTLB multihit. https://www.kernel.

org/doc/html/latest/admin-guide/hw-vuln/multihit.html. Accessed: Thu,
22 May 2020 19:55:00 +0100.

[54] kernel development community, T. L1TF - L1 Terminal Fault. https:

//www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html. Ac-
cessed: Thu, 22 May 2020 19:14:00 +0100.

[55] kernel development community, T. MDS - Microarchitectural Data Sam-
pling. https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/

mds.html. Accessed: Thu, 22 May 2020 19:14:00 +0100.

[56] kernel development community, T. mmap(2) — Linux manual page. https:
//man7.org/linux/man-pages/man2/mmap.2.html. Accessed: Thu, 09 December
2020 19:35:00 +0100.

[57] kernel development community, T. Page Table Isolation (PTI). https:

//www.kernel.org/doc/html/latest/x86/pti.html. Accessed: Thu, 18 May
2020 19:15:00 +0100.

[58] kernel development community, T. Spectre Side Channels. https://

www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html. Ac-
cessed: Thu, 21 May 2020 16:40:00 +0100.

[59] kernel development community, T. TAA - TSX Asynchronous
Abort. https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/

tsx_async_abort.html. Accessed: Thu, 22 May 2020 19:51:00 +0100.

[60] kernel.org. Linux Kernel Parameters. https://www.kernel.org/doc/

Documentation/admin-guide/kernel-parameters.txt. Accessed: Thu, 18 May
2020 19:30:00 +0100.

[61] kernel.org. Complete virtual memory map with 4-level page tables. https:

//www.kernel.org/doc/Documentation/x86/x86_64/mm.txt, 2009. Accessed:
Sun, 20 October 2019 17:50:00 +0100.

73

https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://msrc-blog.microsoft.com/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/multihit.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/multihit.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

[62] kernel.org. pagemap, from the userspace perspective. https://www.kernel.

org/doc/Documentation/vm/pagemap.txt, 2009. Accessed: Sun, 27 October
2019 18:10:00 +0100.

[63] Khasawneh, K. N., Koruyeh, E. M., Song, C., Evtyushkin, D., Pono-
marev, D., and Abu-Ghazaleh, N. SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation.

[64] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D., Wilkerson,
C., Lai, K., and Mutlu, O. Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors. In ISCA (2014).

[65] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W.,
Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and
Yarom, Y. Spectre Attacks: Exploiting Speculative Execution. In S&P (2019).

[66] Kocher, P. C. Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS,
and Other Systems. In CRYPTO (1996).

[67] Koruyeh, E. M., Khasawneh, K., Song, C., and Abu-Ghazaleh, N. Spec-
tre Returns! Speculation Attacks using the Return Stack Buffer. In WOOT (2018).

[68] Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., and
Song, D. Code-Pointer Integrity. In OSDI (2014).

[69] Lampson, B. W. A note on the confinement problem. Communications of the
ACM 16, 10 (1973), 613–615.

[70] Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., and Peinado, M. Infer-
ring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing. In
USENIX Security Symposium (2017).

[71] Levin, J. Mac OS X and iOS Internals: To the Apple’s Core (Wrox Programmer
to Programmer), 2012.

[72] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A.,
Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Ham-
burg, M. Meltdown: Reading Kernel Memory from User Space. In USENIX
Security Symposium (2018).

[73] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. Last-Level Cache
Side-Channel Attacks are Practical. In S&P (2015).

[74] Lutomirski, A. x86/fpu: Hard-disable lazy FPU mode. https://lore.kernel.
org/patchwork/patch/953648/, 2018. Accessed: Thu, 14 January 2020 20:10:00
+0100.

[75] Maisuradze, G., and Rossow, C. ret2spec: Speculative Execution Using Re-
turn Stack Buffers. In CCS (2018).

74

https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://lore.kernel.org/patchwork/patch/953648/
https://lore.kernel.org/patchwork/patch/953648/

[76] Maurice, C., Neumann, C., Heen, O., and Francillon, A. C5: Cross-Cores
Cache Covert Channel. In DIMVA (2015).

[77] Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Al-
berto Boano, C., Mangard, S., and Römer, K. Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud. In NDSS (2017).

[78] Mcilroy, R., Sevcik, J., Tebbi, T., Titzer, B. L., and Verwaest, T.
Spectre is here to stay: An analysis of side-channels and speculative execution,
2019.

[79] Millen, J. 20 years of covert channel modeling and analysis.

[80] Mulnix, D. L. Intel® Xeon® Processor D Product Family Technical
Overview. https://software.intel.com/content/www/us/en/develop/

articles/intel-xeon-processor-d-product-family-technical-overview.

html#_Toc419802869, 2015. Accessed: Wed, 05 August 2020 17:30:00 +0100.

[81] Osvik, D. A., Shamir, A., and Tromer, E. Cache Attacks and Countermea-
sures: the Case of AES. In CT-RSA (2006).

[82] Page, D. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.

[83] Percival, C. Cache missing for fun and profit. In BSDCan (2005).

[84] Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S.
DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX Se-
curity Symposium (2016).

[85] Projects, T. C. Site Isolation. https://www.chromium.org/Home/

chromium-security/site-isolation, 2018. Accessed: Thu, 08 January 2020
17:30:00 +0100.

[86] Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., and Bos,
H. Flip feng shui: Hammering a needle in the software stack. In USENIX Security
Symposium (2016).

[87] Redhat. Controlling the Performance Impact of Microcode and Security Patches
for CVE-2017-5754 CVE-2017-5715 and CVE-2017-5753 using Red Hat Enter-
prise Linux Tunables. https://access.redhat.com/articles/3311301, 2020.
Accessed: Thu, 21 May 2020 21:14:00 +0100.

[88] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey, You, Get
Off of My Cloud: Exploring Information Leakage in Third-Party Compute Clouds.
In CCS (2009).

[89] Roemer, R., Buchanan, E., Shacham, H., and Savage, S. Return-oriented
programming: Systems, languages, and applications. ACM Transactions on In-
formation and System Security - TISSEC (2012).

75

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-d-product-family-technical-overview.html#_Toc419802869
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-d-product-family-technical-overview.html#_Toc419802869
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-d-product-family-technical-overview.html#_Toc419802869
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://access.redhat.com/articles/3311301

[90] Schmidt, W., Hanspach, M., and Keller, J. A case study on covert channel
establishment via software caches in high-assurance computing systems.

[91] Schwarz, M., Gruss, D., Lipp, M., Clémentine, M., Schuster, T., Fogh,
A., and Mangard, S. Automated Detection, Exploitation, and Elimination of
Double-Fetch Bugs using Modern CPU Features.

[92] Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J.,
Prescher, T., and Gruss, D. ZombieLoad: Cross-Privilege-Boundary Data
Sampling. In CCS (2019).

[93] Schwarz, M., Schwarzl, M., Lipp, M., and Gruss, D. NetSpectre: Read
Arbitrary Memory over Network. 2019.

[94] Schwarzl, M., Schuster, T., Schwarz, M., and Gruss, D. Speculative
dereferencing of registers: Reviving foreshadow, 2020.

[95] Seaborn, M., and Dullien, T. Exploiting the DRAM rowhammer bug to
gain kernel privileges. https://googleprojectzero.blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html, 2015. Accessed: Thu, 05
March 2021 22:30:00 +0100.

[96] Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., and Boneh,
D. On the effectiveness of address-space randomization. In CCS (2004).

[97] Shah, G., Molina, A., and Blaze, M. Keyboards and covert channels. In
Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15
(2006).

[98] Shutemov, K. A. pagemap: do not leak physical addresses to non-privileged
userspace. https://git.kernel.org/cgit/linux/kernel/git/torvalds/

linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce, 2015.
Accessed: Sun, 27 October 2019 18:15:00 +0100.

[99] Solihin, Y. Fundamentals of Parallel Multicore Architecture. Chapman & Hal-
l/CRC, 2015.

[100] Stecklina, J. An demonstrator for the L1TF/Foreshadow vulnerability (2019).
https://github.com/blitz/l1tf-demo. Accessed: Thu, 09 December 2020
19:35:00 +0100.

[101] Stecklina, J., and Prescher, T. LazyFP: Leaking FPU Register State using
Microarchitectural Side-Channels. arXiv:1806.07480 (2018).

[102] Suzaki, K., Iijima, K., Yagi, T., and Artho, C. Memory Deduplication as a
Threat to the Guest OS. In EuroSys (2011).

[103] Szekeres, L., Payer, M., Wei, T., and Song, D. SoK: Eternal War in
Memory. In S&P (2013).

76

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://github.com/blitz/l1tf-demo

[104] Tanenbaum, A. S., and Bos, H. Modern Operating Systems, 4th ed. Prentice
Hall Press, USA, 2014.

[105] Tromer, E., Osvik, D. A., and Shamir, A. Efficient Cache Attacks on AES,
and Countermeasures. Journal of Cryptology 23, 1 (July 2010), 37–71.

[106] Tsunoo, Y., Saito, T., and Suzaki, T. Cryptanalysis of DES implemented on
computers with cache. In CHES (2003).

[107] Turner, P. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886, 2018. Ac-
cessed: Thu, 08 January 2020 17:30:00 +0100.

[108] Valsorda, F. Searchable Linux Syscall Table for x86 and x86 64. https:

//filippo.io/linux-syscall-table/, 2020. Accessed: Thu, 23 Oktober 2020
13:45:00 +0100.

[109] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens,
F., Silberstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. Fore-
shadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In USENIX Security Symposium (2018).

[110] van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G.,
Razavi, K., Bos, H., and Giuffrida, C. RIDL: Rogue In-flight Data Load. In
S&P (2019).

[111] Wang, Z., and Lee, R. B. Covert and Side Channels due to Processor Archi-
tecture. In ACSAC (2006).

[112] Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens,
F., Silberstein, M., Strackx, R., Wenisch, T. F., and Yarom, Y.
Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-
of-Order Execution, 2018.

[113] Wiki, D. Microcode. https://wiki.debian.org/Microcode. Accessed: Thu, 10
November 2020 18:45:00 +0100.

[114] Wu, Z., Xu, Z., and Wang, H. Whispers in the Hyper-space: High-speed
Covert Channel Attacks in the Cloud. In USENIX Security Symposium (2012).

[115] Xiao, Y., Zhang, X., Zhang, Y., and Teodorescu, R. One bit flips, one
cloud flops: Cross-vm row hammer attacks and privilege escalation. In USENIX
Security Symposium (2016).

[116] Xiao, Y., Zhang, Y., and Teodorescu, R. Speechminer: A framework for
investigating and measuring speculative execution vulnerabilities, 2019.

[117] Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., and Schlicht-
ing, R. An exploration of L2 cache covert channels in virtualized environments.
In CCSW’11 (2011).

77

https://support.google.com/faqs/answer/7625886
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://wiki.debian.org/Microcode

[118] Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C. W., and
Torrellas, J. InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy. In MICRO (2018).

[119] Yan, M., Shalabi, Y., and Torrellas, J. Replayconfusion: Detecting cache-
based covert channel attacks using record and replay.

[120] Yarom, Y., and Falkner, K. Flush+Reload: a High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In USENIX Security Symposium (2014).

[121] Zhang, Y., and Reiter, M. Düppel: retrofitting commodity operating systems
to mitigate cache side channels in the cloud. In CCS’13 (2013).

78

	Introduction
	Structure of this document

	Background
	Virtual Address Space
	CPU Caches
	Cache Attacks
	KAISER (KPTI)
	Transient Execution
	Transient Execution Attacks
	Transient Execution Defense
	Covert Channels

	Speculative Dereferencing Analysis
	Address-Translation Attack
	Locating the leakage source
	Kernel Spectre Gadgets
	Speculative Dereferencing using Spectre

	Improving the number of fetches
	Measuring the leakage
	Improving the leakage

	Attack Case Studies
	Covert Channel
	Dereference Trap (Value Leak)

	Additional Work
	Speculative Dereferencing in Virtual Machines
	Speculative Dereferencing inside SGX enclaves
	Speculative Dereferencing in Javascript

	Conclusion

