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Abstract
The topic of this thesis is multi-physical modeling and parameter identification of a
lithium-ion cell as commonly used in automotive applications and mobile appliances, as
well as parameter uncertainties on the basis of measurements with the aim of improving
operation strategies and a cell’s efficiency.
Lithium-ion cells have become ubiquitous in our everyday life as a means to store
electrical energy in mobile applications, but electric cars pose greater challenges. Their
popularity has led to increased research focus on efficient control strategies and cell
design to improve ecological sustainability and reduce environmental impact.
This work provides an effective methodology to find parameters including their validity
ranges to describe cells (and subsequently batteries) better in order to enable the use
of high quality models for operation control design.
Literature solves similar tasks, the present work combines four established methods to
deliver the best possible results:
First, simulation models with increasing level of detail enable to reproduce and predict
the behaviour of battery cells in response to electric excitation, providing a basis for
subsequent identification methods. The use of simulation models is paramount, as
even precisely manufactured cells do not permit to accurately perform mathematical
operations on their resulting measurement data. The type of simulation model used
results in a large number of parameters (up to 50) that define the model behaviour.
To gather intelligence about every model parameter’s significance, screening methods
yield further insight into the relative ranking. As a second step, parameter screening
using the Morris-one-at-a-time method provides a ranking of model parameters while
efficiently utilizing available computation resources. While this screening yields a
merely qualitative result, it outperforms other global sensitivity analysis methods, such
as variance decomposition based ones, in terms of runtime (10-100x speedup). In
contrast to even faster other one-at-a-time methods it also takes non-linearities and
combined effects into account. This information leads to a reduced model or parameter
subset to focus identification on.
Depending on the model complexity, direct parameter identification methods are usually
infeasible, as they require too many simulations to be run and subsequently take too
much time (several days to weeks). Space mapping has proven to be a suitable method
for accelerating the optimization process in this context. This surrogate-based technique
effectively reduces the number of required simulations. A full cell model using semi-
empirical RC-models and a Doyle-Fuller-Newman model could be identified successfully.
The rigorous derivation of an adjoint model for the fast and precise gradient calculation
improves the run-time reduction further. Yet, the developed method could not be
applied to the full range of available measurements.
As an alternative, fast model implementations together with a new hybrid optimization
method allow for determining the full parameter set of two complex models, within an
hour or a day, respectively. This is a significant advance over the three-week period for
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0 Abstract

a complete parameter set that had been previously reported in the literature.
Finally, an adaptive Markov chain Monte Carlo method with early or delayed rejection
for uncertainty quantification provides a means to sample from the posterior parameter
values assuming a standard deviation of the measured cell voltage of 15 mV. This
computationally expensive step further enriches the estimated parameter sets by the
posterior probability density with a relatively small number of random samples.
While the space mapping approach shows a significant speed-up, a very fast model
implementation clearly outperforms the former during parameter identification as well
as during uncertainty quantification in terms of computational speed and effectivity.

Keywords: Lithium-Ion, Battery, Optimization, Space Mapping, Uncertainty quan-
tification, Markov-Chain Monte-Carlo Simulation
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Zusammenfassung
Thema dieser Arbeit sind die multiphysikalische Modellierung und Parameteridentifika-
tion von Lithium-Ionen-Zellen, wie sie in Fahrzeugen und mobilen Geräten verwendet
werden, sowie Parameterunsicherheiten mit dem Ziel, Betriebsstrategien und die Effizi-
enz zu verbessern.
Lithium-Ionen-Zellen sind in unserem Leben allgegenwärtig, um elektrische Energie in
mobilen Geräten zu speichern, Elektroautos stellen aber höchste Anforderungen. Ihre
Beliebtheit führt zu intensiver Forschung an effizienten Regelstrategien und Zelldesign
für mehr Nachhaltigkeit und geringere Umweltbelastung.
Diese Arbeit demonstriert eine effektive Methode, um Parameter einschließlich ihrer
Gültigkeitsbereiche zu finden, um Zellen (und damit Batterien) besser beschreiben zu
können und die Verwendung hochwertiger Modelle für das Design von Betriebsstrategien
zu ermöglichen.
Die Literatur behandelt oft ähnliche Themen; die vorliegende Arbeit kombiniert vier
etablierte Methoden, um bestmögliche Ergebnisse zu erzielen:
Simulationsmodelle mit zunehmendem Detaillierungsgrad ermöglichen die Wiedergabe
und Prädiktion von Zellverhalten als Reaktion auf elektrische Anregung und bilden so
die Basis für nachfolgende Identifizierungsmethoden. Die Verwendung von Modellen ist
nötig, da selbst präzise hergestellte Zellen keine genauen mathematischen Operatio-
nen an den resultierenden Messdaten erlauben. Der Modelltyp führt zu einer großen
Parameterzahl (bis zu 50), die das Modellverhalten definiert.
Screening-Methoden liefern weitere Einblicke in die Reihung der Parameter nach ihrer
Bedeutung. Die “Morris-One-at-a-Time”-Methode liefert unter effizienter Nutzung der
verfügbaren Rechenressourcen lediglich ein qualitatives Ergebnis. Dabei übertrifft es
andere globale Sensitivitätsanalysemethoden, wie z. B. Varianzzerlegung, in Bezug
auf die Laufzeit (10-100-fache Beschleunigung). Im Gegensatz zu noch schnelleren
“one-at-a-Time”-Methoden werden auch Nichtlinearitäten und kombinierte Effekte
berücksichtigt. Dies führt zu einem reduzierten Modell bzw. einer Parameteruntermenge
zur Identifikation.
Direkte Parameteridentifikationsmethoden sind für komplexe Modelle normalerweise
nicht durchführbar, da sehr viele Simulationen ausgeführt werden müssen und zu
viel Zeit (Tage bis Wochen) benötigt wird. “Space Mapping” hat sich in diesem
Zusammenhang als geeignete Methode zur Beschleunigung der Optimierung bewährt.
Diese Ersatzmodelltechnik reduziert effektiv die Anzahl der erforderlichen Simulationen.
Ein Zellmodell mit semi-empirischen “RC”-Modellen sowie ein “Doyle-Fuller-Newman”-
Modell konnten erfolgreich identifiziert werden. Die Ableitung eines adjungierten
Modells zur schnellen, präzisen Gradientenberechnung reduziert die Laufzeit weiter.
Die entwickelte Methode konnte jedoch nicht auf eine umfassende Messung angewendet
werden.
Alternativ ermöglichen schnelle Modellimplementierungen sowie eine neue hybride
Optimierungsmethode die Bestimmung des vollständigen Parametersatzes zweier kom-
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0 Zusammenfassung

plexer Modelle innerhalb einer Stunde bzw. eines Tages. Dies ist ein signifikanter
Fortschritt gegenüber des in der Literatur berichteten Zeitraums von drei Wochen für
einen vollständigen Parametersatz.
Schließlich ermöglicht ein adaptives “Markov-Ketten-Monte-Carlo”-Verfahren mit früher
oder verzögerter Zurückweisung zur Unsicherheits-Quantifizierung das Abtasten der
a-posteriori Verteilung der Parameterwerte unter Annahme einer Standardabweichung
der Zellspannung von 15 mV. Dieser rechenintensive Schritt erweitert die geschätzten
Parametersätze um Wahrscheinlichkeitsdichten bei einer relativ geringen Zahl an
Zufallsstichproben.
Während der “Space-Mapping”-Ansatz eine signifikante Beschleunigung bewirkt, über-
trifft eine sehr schnelle Modellimplementierung diese sowohl bei der Parameteridentifika-
tion als auch bei der Unsicherheits-Quantifizierung in Bezug auf Rechengeschwindigkeit
und Effektivität deutlich.

Schlagwörter: Lithium-Ionen, Batterie, Optimierung, Space Mapping, Unsicherheits-
Quantifizierung, Markov-Ketten Monte-Carlo Simulation
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1
Introduction
Countries’ representatives gathered at the Paris Climate Conference (COP21) in 2015
agreed to increase their efforts to limit climate change. Almost one quarter of current
global energy-related and climate change causing greenhouse gas (GHG) emissions are
contributed by the growing transport sector. According to the International Energy
Agency, limiting effects will require at least 20 % of all road transport vehicles globally
to be electrically driven by 2030 (United Nations Framework Convention on Climate
Change, 2015).
The automotive industry’s choice to store energy in electric vehicles is the lithium-ion
battery. Utilizing the battery types used in consumer appliances as a starting point,
the batteries have been further improved to fulfill the automotive requirements. In
addition, over the last decades also in other areas applications of Li-Ion (Li+) cells
have drastically increased. With the continuous implementation of the Li+ cells in
household appliances, automotive, aerospace and defense industries, accurate modeling
and simulation of them is paramount: modeling and simulation enables engineers to
vary all design and material parameters in a cell at a very low cost while observing the
results almost instantly. For a battery manufacturer, simulations aid in the efficient
design of new products, and for a device manufacturer, simulations support their
engineering efforts with respect to covering critical operation states (Nyman et al.,
2018).

1.1. The Electrochemical Cell

Figure 1.1 by Chawla et al. (2019) shows the fundamental structure and function of a
rechargeable Li+ cell or “Battery Cell”, commonly shortened to “Battery”, where the
latter technically is but an ensemble of at least two or more battery cells.
A cell comprises three major components:

1. the positive electrode — intercalates and deintercalates ions and features elec-
tron conductivity.

2. the negative electrode — offers similar possibilities as the positive electrode,
but at a lower potential.
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1 Introduction

3. the electrolyte — a liquid or solid transport medium that enables charge transfer
between the electrodes by means of ions.

By electrochemical oxidation and reduction – “redox” – reactions occurring at the two
electrodes, chemical energy is set free and electrons are transferred from one active
material to the other through an external electric circuit. The electrolyte between the
electrodes serves as ionic conductor but is an electronic isolator. For safety reasons, to
prevent electrodes from a electronic short-circuit, the “separator” foil – a permeable
membrane – separates both electrodes from one another. During discharge, the anode

Figure 1.1.: Basic working principle of a Li+ battery (Chawla et al., 2019)

is oxidized, Li+ deintercalate and migrate through the separator and the cathode is
reduced, Li+ intercalate there. At the same time, electrons freed at the anode travel
through the external circuit and combine with ions at the cathode again. During charge
we apply external power and force Li+ and electrons to migrate in reverse direction
(Linden & Reddy, 2002).
Depending on the application, in the automotive domain in particular, a “Module”
comprise of a number of cells, which can be connected in series or in parallel. In
addition to the cells, a module also contains structural parts, measurement and other
simple electric devices. The most dominant rationale to build modules is legal voltage
limits and ease of handling, as voltages above 60 V DC require special precautionary
measures for further manipulation and processing (Fischer, 2013).
One or more modules combined with the remainder of sensors and controls constitute a
battery “Pack”. In order to operate in a safe range and to control operation in general,
a Battery Management System (BMS) accompanies a pack and thus makes it a full
battery “system”. The BMS reads all sensors available from module or pack level to
determine all cell voltages, several temperatures, currents at important points and
handles the connection and disconnection of the battery system (Plett, 2016).

1.1.1. Related Terminology and Quantities

In this section, we provide a very brief summary to the essential terminology in the
context of batteries, that are important for cell specifications, and which will be used
throughout the remainder of this work. Unless stated otherwise, all terms are used
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1.1 The Electrochemical Cell

to describe characteristics of both, a single battery cell and an entire battery system
(Leuthner, 2013; Canova, 2016).
Capacity is the amount of electrical charge that may be retrieved from a power source
under specific discharge conditions. The capacity depends on, first and foremost, the
type and amount of active materials in the cell, the discharge current, the discharge
cut-off voltage, and temperature. The unit of capacity is A s, a cell’s capacity is usually
rated in A h.
C-Rate describes the rate of charge or discharge current in normalized form and is
commonly accepted in the field of battery engineers. The general expression is “C/xx”,
where the number xx indicates the number of hours to completely discharge the battery
at a constant current. So C/20 is the current to be drawn at which the battery voltage
will span the complete range within 20 hours, C/1 is the current at which the process
will take 1 hour; for higher currents, e.g. “C/1”, “C/0.5”, “C/0.3333”, one would usually
write “1 C”, “2 C”, “3 C”, respectively. “1 C” corresponds numerically to the battery
nominal capacity. The C-Rate’s unit is h−1.
State of Charge (SoC) is a dimensionless value describing the amount of usable
charge in the battery at a given point in time and usually expressed as a percentage of
the rated capacity – similar to a fuel gauge in a car.
Energy of a cell is calculated according to the product of a capacity and average or
nominal discharge voltage. The unit is W s, a cell’s energy capacity is usually rated in
W h.
Specific Energy relates energy to the mass of the battery and has unit W s kg−1.
Energy Density relates energy to the geometric volume of the battery and has unit
W s m−3.
Power is the product of current and voltage, e.g. during discharge. It has the unit W.
State of Health (SoH) is a measure of the usable life of a battery cell, i.e. how long
the battery will last before it needs to be replaced. Batteries usually slowly degrade
both in terms of capacity and power. Battery useful life usually prescribed as point at
which the energy (and/or power) capacity has degraded by 20 %.
Efficiency of a Li+cell is very high, mostly around 95 %. It is defined as the fraction
of released energy during discharge compared to the previously stored energy during
charge.
Terminal voltage is the voltage that exists between the battery terminals when a
load is applied. The terminal voltage varies with the operating conditions of the battery.
Its unit is V.
Open Circuit Voltage (OCV) is the difference in potential between the terminals
of a cell when the battery is fully rested, i.e. the battery has been subjected to an open
circuit for a substantial period of time. The Open Circuit Voltage (OCV) generally
depends on the battery charge level and temperature. The unit of the OCV is V.
Internal Resistance indicates an overall resistance within the battery, generally
different for charging and discharging, also dependent on the battery charge level. As
the internal resistance increases, the battery efficiency decreases and thermal stability
is reduced as more of the charging energy is converted into heat. Its unit is Ω.

3



1 Introduction

1.2. Problem statement and Motivation

Accurate modeling and analysis of a battery usually involves the internal states of its
cells and modules to be known. These internal states may include abstract quantities,
e.g. State of Charge (SoC) and State of Health (SoH), and physical quantities, e.g.
potentials, temperature and concentrations. Only very few of these quantities can be
measured directly through experimentation; this sparsely available information aids in
deducing most of the abstract quantities. For model-based deducing parameters the
material properties of a cell are of utmost importance.
This gives rise to the traditional parameter estimation problem. Parameter estimation
techniques can be non-intrusive and non-destructive depending on whether the model
response can be obtained non-intrusively and non-destructively. Hence, the main
question to be answered in this work may be stated as follows: Given only the voltage,
how can the material properties and model parameters of the Lithium-Ion cell model be
estimated?
In practice, for some models one can use standard optimization routines implemented
in computational software packages. In the Li-cell modeling case, it is more often highly
adapted optimization software. However, since all available data contains measurement
errors, the estimated unknowns remain to some degree uncertain.
A natural question then arises: if measurement noise corrupting the data follows
some statistical distribution, what is the distribution of the possible solutions after the
estimation procedure?

1.2.1. State of the Art

Typical high-fidelity simulation models are based on the equations described by Doyle–
Fuller–Newman model (DFN) (Newman & Thomas-Alyea, 2004). The DFN is a
homogenized system of Partial Differential Equations (PDEs), that typically comprise of
more than 50 parameters, a vast majority of which cannot be determined experimentally.
This model may be simplified further to a Single–Particle model (SPM) by assuming no
electrolyte effects or spatially resolved effects, e.g. varying concentrations in particles
within the same electrode. Although this is known to result in less accuracy in general,
it is still possible to achieve very high model accuracy by taking the SPM’s limitations
into account, e.g. currents below 1 C, i.e. the equivalent of a full discharge in more
than one hour (Santhanagopalan et al., 2006; Ning & Popov, 2004). Estimating the
models parameters based on non-intrusive measurements is a very demanding task and
significant effort has been spent on devising algorithms for the identification.
Besides the mechanistic models – DFN and SPM –, a more phenomenological approach
is represented by the large class of equivalent circuit models or “RC-models”. Computa-
tion of electrode and electrolyte kinetics are limited w.r.t. their interpretability, yet RC
models are a balanced trade-off between computational speed, required resources and
accuracy (F. Pichler & Cifrain, 2014). Although parametrization of RC models is typi-
cally done in frequency domain by performing electrochemical impedance spectroscopy,
as introduced by Boukamp (1986), we perform parametrization in time domain, similar

4



1.2 Problem statement and Motivation

to related work in the following paragraphs.
Hu et al. (2012) adopted a Particle Swarm Optimization (PSO)-based global opti-
mization approach. The objective function for the model parameter optimization was
defined for model accuracy, measured by the average Root-Mean-Square Error (RMSE)
between the test datasets and the output from the optimized models. The optimization
was configured to 10 000 iterations, which was considered infeasible for the problem in
this work.
Kumar & Bauer (2010) use Multiobjective Genetic Optimization Algorithm (MOGA)
to fit a first-order RC-model to data-sheet data. In this case, the parameters of the
RC-model are expressed as polynomials of SoC, charge and discharge rates.
In this work, we present a novel approach to parameter identification in coupled 3D cell
models. We apply the space mapping based surrogate optimization approach originally
devised by Bandler et al. (1994) to a Finite Element Method (FEM) based electric
3D model of a lithium cell, using coupled 0D second-order RC models to model the
electrochemical characteristics.
Schmidt et al. (2010) successfully identified 33 DFN parameters using a pattern search
algorithm. By utilizing the Fisher information matrix, they devised an automatic
model subset selection procedure to focus on identifiable parameters. Speltino et
al. (2009) performed parameter identification in a SPM to identify nine parameters.
Santhanagopalan et al. (2007) used the Levenberg-Marquardt algorithm to identify five
parameters in the DFN and the SPM under constant charge and discharge conditions.
Forman et al. (2012) performed parameter identification of 88 parameters using a
genetic algorithm. To date, this is the latest attempt in estimating a significant
number of parameters in the DFN. Recently, Jin et al. (2018) also performed sensitivity
analysis to identify the five most sensitive parameters. They then used Levenberg-
Marquardt algorithm to estimate the values of these five parameters. A parallel genetic
algorithm was used by Zhang (2013) to identify 29 parameters in the pseudo-two-
dimensional (P2D) model. They reported a computing time of 22.3 hours to identify
the 29 parameters. Bizeray et al. (2019) identified three parameters in their single
particle model. They also identified the independent parameters that can be uniquely,
simultaneously estimated in the single particle model. Uddin et al. (2016) estimated a
total of three parameters in the DFN model using the differential evolution algorithm.
Previous works cited above have reported solution times ranging from 22 hours up
to three weeks. Recently, Reddy et al. (2019) used a hybrid optimization approach
to estimate a full set of 44 parameters in the DFN case within 14 hours up to 0.28 %
relative error. This work drastically accelerates the parameter estimation of several
parameters in the SPMs and DFNs, by making use of several minimization algorithms
and continuously switches between them to accelerate convergence and avoid local
minima.
First results of the Markov Chain Monte Carlo (MCMC) methodology in the context
of Bayesian Inference for Li+-cell parameter estimation for five parameters under
aging influence have been reported by Ramadesigan et al. (2011). In the context of
DFN models, they compare Bayesian inference with traditional Gauss-Newton based
optimizers for parameter estimation.
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1 Introduction

Scharrer, Haario, & Watzenig (2014) first presented a thorough analysis of uncertainty
quantification of a dynamic pulse profile for a synthetic fitting problem, more generally
known as “inverse crime” (Wirgin, 2004).
Tagade et al. (2016) presented a Bayesian calibration framework for estimation of the
DFN parameters. In the absence of holistic physical understanding, their framework
also quantifies structural uncertainty in the calibrated model to test the validity of new
physical phenomena before incorporation in the model, e.g. temperature dependence of
lithium plating formation at low temperature.
In this work, we focus on the evaluation of the methodology developed by Scharrer,
Haario, & Watzenig (2014) in the context of real measurement data, while providing
further improvements. The MCMC sampling developed originally by Metropolis et
al. (1953); Hastings (1970) is used for numerical implementation of the proposed
framework.
To further improve the acceptance rate of the algorithm and enhance the efficiency of
the algorithm, we adopt the Single Component Metropolis- Hastings scheme, presented
in the original paper by Metropolis et al. (1953). In Addition, we extend this approach
by iteratively adapting the proposal kernel as we proceed in the Markov chain, as
introduced by Haario et al. (1999, 2001) and test several stages of proposals as proposed
by Haario et al. (2006).

1.3. Significance of the Work/Contribution

This section presents the outline of the thesis and lists contributions and novelties of
each chapter in more detail.

Chapter 2 presents a purpose driven framework for modeling of a single cell or a
surrogate of a full battery pack on the basis of modeling the effects using a semi-empirical
Ansatz down to very detailed electro-chemical modeling taking into account mechanistic
effects on a very detailed level or even dual scale inside the cell. Section 2.3 extends
the general idea of semi-empirical modelling to the 3D-case of full-cell modelling with
spatial resolution. Section 2.4.2 deals with the numerical solution scheme to solve the
system of non-linear PDEs that resemble the DFN. Section 2.5 is about simplification of
the very detailed electro-chemical system by linearization and covers the mathematical
steps to the reformulation.
The most significant achievements in Chapter 2 are

• Stating a model framework to describe the electrical behavior of Li+ batteries
• Empirical models
• A use case to Model Predictive Control (MPC) in the context of route planning
• Electrochemical models
• Numerical treatment of a system of non-linear PDEs
• Surrogate modeling by linearization of a FEM based PDE system
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Chapter 3 deals with the computational techniques to solve the parameter estimation
problem and Uncertainty Quantification (UQ). The methods are applicable to the
models described earlier in Chapter 2, sometimes interchangeably. Almost all methods
presented are not restricted to battery modeling specifically and may as well be used
in a general system modeling context. Individual sections may be worked through
in sequence to gain insight to models, parameters and uncertainties of parameters.
Section 3.1 presents an approach identify the importance of parameters. This parameter
screening technique for “parameter importance ranking” may be used to identify
parameters to be included in a subset for optimization or estimation, e.g. in the case of
computationally infeasible optimization problems caused by the number of parameters.
In contrast to the standard direct optimization, we present the application of the
“spacemapping”-technique in Sections 3.2.1 and 3.2.2.
The last part of the chapter comprises of – hybrid – stochastic optimization methods to
identify parameters, including the Bayesian methodology for UQ. Section 3.4 recalls the
basics of Bayesian inversion theory along with formulations and algorithms to improve
the robustness and computational efficiency of the algorithms.
Major outcomes are

• Adopting the spacemapping technique to 3D-extended empirical models
• Rigorous derivation of the optimal control scheme for spacemapped non-linear

systems of PDEs
• Numerical treatment of the optimization problem
• Derivation of the adjoint model of system of parabolic PDEs
• Single objective hybrid optimization of a cell model
• Bayesian calibration of a cell model
• Workflow for treating a highly non-linear system

Chapter 4 is titled “Results” and combines the results of the previously defined
models in Chapter 2 with the algorithms, screening and solution schemes of Chapter 3.
Details for the computational solutions are provided along with a discussion of the
presented results.
Valuable contributions of the chapter may be summarized as

• Ranking of model parameters w.r.t. their importance for parameter estimation.
• Accelerated optimization of the parameters for various purposes
• A Bayesian analysis of the forward map
• Analysis of the statistical efficiency of the results
• Robustness of the results w.r.t. the variability of the parameters

1.4. Publications

The author has published the following reviewed journal publications and invited
book chapters in the field of battery modeling, surrogate-based and hybrid stochastic
optimization, and Bayesian UQ. Figure 1.2 depicts the relations between publications
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8



1.4 Publications

and this thesis graphically. The list below also provides a brief overview of each
publication:

• (Scharrer, Haario, & Watzenig, 2014) – this invited book chapter titled “Bayesian
Inference for Lithium-Ion Cell Parameter Estimation” deals with an overview
of Bayesian parameter estimation. After a brief introduction to the model,
parameter selection and modeling of the prior is presented. Finally, results are
presented of a synthetic fitting problem solved by a parallel adaptive Markov
chain Monte Carlo method. We validate the approach and compare it to realistic
noisy data and a separated method.
This book chapter contributed to this thesis in Section 3.4 and results in 4.7.1.

• (Scharrer, Pichler, Cifrain, & Watzenig, 2014b) – This is the journal version of
(Scharrer, Pichler, et al., 2014a). In this article the authors present an approach
to estimate parameters in a very efficient way by using a single equivalent circuit
model as a surrogate model for a complex 3D model on measurement data.
The results of the surrogate model are periodically linked back to the original
complex model via the so called space mapping method. The authors validate
the approach and compare it to the original problem. As a remarkable result, the
authors report the achieved reduction of computational cost by approximately
87 %, which equals a speed up factor of 8. Using high and low fidelity semi-
empirical models combined with space mapping is new in the field of electrical
modeling of lithium-ion cells. This approach saves much time in parametrization
of coupled models while maintaining high quality results for geometrical and
thermal optimization of lithium-ion cells.
This article contributed to this thesis in sections 2.2, 2.3, 3.2.2 and results in
Section 4.4.

• (Reddy, Scharrer, Pichler, Watzenig, & Dulikravich, 2019) – This paper aims
to solve the parameter identification problem to estimate the parameters in
electrochemical models of the Li+ battery. The parameter estimation framework
is applied to the DFN containing a total of 44 parameters. The DFN is fit to
experimental data obtained through the cycling of Li-ion cells. The parameter
estimation is performed by minimizing the least-squares difference between
the experimentally measured and numerically computed voltage curves. The
minimization is performed using a state-of-the-art hybridminimization algorithm.
The DFN model parameter estimation is performed within 14 h, which is a
significant improvement over previous works. Very remarkably, the mean absolute
error for the converged parameters is less than 7 mV.
This article was the main result of collaboration with Sohail Reddy and Professor
George S. Dulikravich from Florida International University and it contributes
to Section 2.4.2. It is the source of Section 3.3, and the results presented
in Section 4.6. The pre-existing “Multiple Objective Hybrid Optimization”
framework was adopted for the battery cell parameter estimation problem and
applied to two models as joint work.

• (Scharrer, Pichler, & Watzenig, 2021) – This work presents an approach to
quantify the uncertainty imposed on the parameters with respect to measurement
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errors by using the Markov chain Monte-Carlo sampling methodology. The
authors adopt the previously existing methods of Delayed Rejection Adaptive
Metropolis and implement it efficiently in a parallel computing framework. Results
demonstrate how to efficiently perform statistical inference on high -fidelity models.
Furthermore, they enable the assessment of previously performed optimization
results on Lithium-Ion cell models.
This forthcoming article – at the time of this writing designated for publishing
in the “Journal of Inverse Problems in Science and Engineering” (IPSE) –
contributed to Section 2.4.1, 3.4 and results in Section 4.7.1.

1.4.1. Other Publications

Besides the reviewed journal publications mentioned above, several other papers related
to the thesis have been published and presentations have been given as a result of
the work of the author during his time being a Junior and Senior Researcher at the
Department of Electrics/Electronis and Software at the VIRTUAL VEHICLE Research
Center. The following list provides a brief overview of those publications again with a
short summary:

• (Scharrer, Cifrain, & Prochazka, 2011) – This poster presents a new way of
implementing the Impedance Spectroscopy (IS) – a very common method for
determining the states of electrochemical systems – in the context of the DFN.
Simulations of IS spectra are usually based on equivalent-circuit models closely
related to measured data. These circuit models often lead to unclear and
ambivalent results. To overcome this problem this work concentrates on IS
simulation with a PDE based electrochemical model with special focus on lithium-
ion cells.

• (Scharrer, Suhr, & Watzenig, 2012) – In this conference paper, for the first time
we present the surrogate model optimization approach based on space mapping to
reduce computation time. This technique is applied to the parameter estimation
problem of an electrochemical cell model by linking a coarse linearized model to
the accurate model. We present results of two synthetic fitting problems solved
directly and by our surrogate optimization method to validate the approach. As
a remarkable result 15 % reduction of computation time for the one dimensional
case and 25 % for the two dimensional case were obtained. We discuss a simple
measure that doubles the achieved reduction to 48 % for the latter.

• (Scharrer, Suhr, & Watzenig, 2013) – In this conference paper we present the
space mapping algorithm adapted to specific properties of a linearized surrogate
model. Additionally, gradients of a cost function are calculated utilizing an
adjoint model. This technique is applied to the parameter estimation problem of
an electrochemical cell. We present results of a synthetic fitting problem solved
by our surrogate optimization method. We validate the approach and compare it
to using finite differences to approximate derivative information. As a remarkable
result, 80 % reduction of computation time for the three dimensional case is
obtained.

10



1.4 Publications

This conference paper contributed largely to the general description of the
electrochemical model in Section 2.4.2 and its simplification by linearization
in Section 2.5. Further, it contributed to the derivation of the space mapping
algorithm in Section 3.2.1 and results in Section 4.5. Additionaly, this paper
contributed the results of the sensitivity analysis presented in Section 4.2.

• (Scharrer, Pichler, Cifrain, & Watzenig, 2014a) – In this conference paper we
present an approach to estimate parameters in a very efficient way by using a
single equivalent circuit model as a surrogate model on measurement data. This
is the original source of the above journal article (Scharrer, Pichler, et al., 2014b).
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2
Modeling of the Lithium Ion Battery
The relationship between the variables of a system and the measurable responses of
the system to it are described by a mathematical model. Solving such a mathematical
model, i.e. the mathematical description of the reaction to the same input is referred
to as a forward problem or forward model.
This chapter starts out with a general formulation of a “forward model” in Section 2.1.
Section 2.2 presents the so-called “semi-empirical” modeling approach on the basis of
resistor-capacitor-networks. Introducing spatially resolved resistor-capacitor-networks,
Section 2.3 gives a very brief introduction into simple multi-scale modeling and intro-
duces the notion of “micro”- and “macro”-models.
Eventually, this chapter closes with the introduction of electro-chemical models in
Section 2.4, i.e. the simplified SPM and the more complex DFN, where the latter is a
multi-scale model again. Due to the complexity of the DFN, Section 2.5 introduces a
simplification of the DFN by rigorously deriving a linearized variant of the model.
Section 2.6 summarizes the chapter of the models presented throughout this chapter.
To yield model predictions of high accuracy, however, models must be correctly formu-
lated and calibrated, which is presented in Chapter 3.

2.1. Forward Model in General

In general, we describe a – potentially non-linear – model as

(2.1)y = f(x, θ),

where y is the model output, f(x, θ) is the model with design variables x and unknown
parameters θ.
The formulation of the model f is typically based on the first principles of physics and
chemistry. Solving the forward problem stated by f may require advanced numerical
methods, e.g. FEM solution techniques, as well as a large amount of computational
power, depending on the complexity and degree of detail of the model.
The properties of electrochemical cells span an enormous range of effects in
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2 Modeling of the Lithium Ion Battery

• spatial dimension – angstroms at the molecular level up to several dozen cen-
timeters at the cell level, as well as

• temporary dimension – from nanoseconds at the molecular level to total cell
aging, i.e. changes in capacity or dynamic performance in the range of several
years or decades.

In general, modeling is characterized by the fact that certain properties and visible
and possibly measurable behaviors are replicated on the basis of effects or simulated
on the basis of mechanistic principles. In the area of battery modeling, we differentiate
between very simple models, which are only supposed to represent the fill level, and
the somewhat more complex semi-empirical models, which, in addition to simulating
the quasi-stationary behavioral patterns, are also supposed to simulate the short-term,
dynamic characteristics. The non-linear relationship between the SoC of the cell and
the output voltage quickly becomes apparent, in contrast to the linear behavior that
can be observed with simple capacitors.
Known principles of electrochemical models according to Randles (1947) are used
to simulate the electrical and electro-thermal dynamics in so called “semi-empirical
models”, consisting of variations of resistors and capacitors. Semi-empirical models,
due to their simplicity, are particularly suitable for carrying out very fast simulations
very efficiently. For very accurate replication of the output to input relationships that
characterize a simple cell a more sophisticated multi-physical – e.g. electro-chemical –
model is required, such as suggested by Newman & Thomas-Alyea (2004).

2.2. Semi-empirical modeling

These simple models can be used particularly well to be coupled with simple thermal
models (point masses, lumped models). For this purpose, the currents across the inner
resistance or further ohmic resistances are used in particular to characterize the amount
of heat generated.
Semi-empirical models comprise a class of equivalent circuit models with an arbitrary
number of simple linear elements – resistances, capacitors and inductances – and
possibly non-linear elements – Warburg impedances and constant phase elements – of
a specific structure. Since there is no spatial distribution of quantities involved in these
modeling approaches, they may be referred to as “0D” models that usually result in
Ordinary Differential Equations (ODEs) of the order of the number of energy storage
elements involved.
In this work, we focus on the former, including a “zero order” RC-model in Section 2.2.1
and a “second order” RC-model in Section 2.2.2. The 2nd order RC-model is later
extended to a 3D spatially resolved model in Section 2.3.

2.2.1. Simple Equivalent Circuit Models

The most straight-forward way to model a non-ideal voltage source in general, such as
a battery, is to define an ideal voltage source, with its output varying depending on the
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2.2 Semi-empirical modeling

SoC, and an inner resistance in series – see Figure 2.1. This neglects the short-term
dynamics of a battery cell, with exception to the immediate voltage drop that follows
any change of the input, i.e. current. Although this is a very crude approach to
modeling a battery, it is yet very useful in the context of MPC, as used by Scharrer,
Messner, & Szymanski (2014); Scharrer et al. (2016).

Ri

uOCV (t)

i(t)

ucell(t)

Figure 2.1.: Schematic drawing of a simple equivalent circuit model.

In order to enable the necessary variability for the implementation of vehicle models,
simple equivalent circuit models used as a place holder for an entire battery in MPC for
driving dynamics related optimization, as in the quasi-static system modeling approach
facing in backward direction introduced by Guzzella & Amstutz (2005); Guzzella &
Sciarretta (2007). For the MPC problem of a specific vehicle velocity demand and
gradient of the road, the necessary propulsion force can be derived as described by
Scharrer, Messner, & Szymanski (2014).
The battery in this model determines the actual SoC based on the demanded electrical
power PBT using maps. Here, a discrimination in charging and discharging operation
is necessary. The parameter set of the battery model involves

• the total capacity Qmax,
• the map of internal resistance Ri(SoC, dir) as a function of the SoC and the

direction dir ∈ {+,−} of the current,
• efficiencies η(dir) in either direction,
• an OCV lookup table UOCV(SoC) as a function of the SoC and
• the maximum current Imax(dir) in either direction.

The battery voltage is calculated based on UOCV(SoC) at the current SoC

(2.2)UBT = UOCV(SoC)

Out of the battery voltage UBT, the demanded power PBT and the losses at the internal
resistance Ri, the battery current IBT can be calculated. Since only the real part of
this calculation is from interest, the complex part is eliminated here.

(2.3)IBT = ηBT ·
UBT −

√
U2

BT − 4RBTPBT

2RBT

The current IBT causes a change in the SoC in the current time step. Considering the
initial SoC0, the current SoC value can be calculated

(2.4)SoC = −IBTTs

Qmax
+ SoC0.
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2 Modeling of the Lithium Ion Battery

This relationship represents a simple explicitly integrated ODE determining the current
SoC as dynamic parameter within the vehicle model. Battery overload happens if
Imax is exceeded or if the power demand PBT leads to a voltage drop higher than the
battery voltage UBT. In both cases error information is passed on to the superordinate
simulation model or optimization system to interrupt the simulation or disregard the
results, respectively, see Figure 2.2 for a system overview.

v

dv

m

v

dv

m

Vehicle

wWhl

dwWhl

TWhl

Transmission

wMot

dwMot

TMot

PBAT soc

Battery

Speed profile

Motor/Gen.

PAux

Auxiliaries

wWheel

dwWheel

TWheel

wWhl

dwMot

TMot

PMGU

Figure 2.2.: Structural overview of the models used for model predictive control (Scharrer
et al., 2016)

2.2.2. Equivalent Circuit RC-Models

Equivalent circuit battery models have been studied in literature very well (Greenleaf
et al., 2013; Dong et al., 2011; Buller et al., 2005). Usually, they are resistor-capacitor
(RC) based models of only a few elements, i.e. 1st, 2nd or 3rd-order RC models are used
to describe the dynamic behavior of batteries (Hu et al., 2012). RC models give useful
results for the task of phenomenologically describing a cell’s or battery’s behavior while
requiring only little computational effort. However, it is not possible to deduce spatially
resolved information from such 0D-models, such as the distribution of current density.
This approach is later extended to a more complex 3D FEM model in Section 2.3.
The coarse battery model used in this section is a commonly used (F. Pichler & Cifrain,
2014) equivalent-circuit model as shown in Figure 2.3. In this model, a voltage source
yields the OCV as a function of the SoC of the battery.
By definition, the OCV is equal to the terminal voltage of the cell when no current is
flowing and the voltage has reached a steady-state point at a specific SoC. The open
circuit voltage of the battery can be measured by several methods (Petzl & Danzer,
2013). A resistor R0 in series to the voltage source replicates the ohmic resistance of the
non-ideal voltage source. The dynamic parts of the voltage response are simulated by
RC circuits which are parametrized by ohmic resistors Ri parallel to electric capacitors
Ci. Depending on the battery, usually two or three equivalent circuits are used in
literature (Hu et al., 2012).
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R2R1

Ri

uOCV(t)

i(t)

ucell(t)C2C1

Figure 2.3.: Schematic drawing of a simple equivalent circuit model.

In this work, two RC elements are chosen. Due to simplicity and the fact that the SoC
is not varied significantly, the OCV is set to the initial measurement voltage and held
constant.
The difference between the battery tabs – the cathodic potential φc and the anodic
potential φa – constitutes the battery voltage. The voltage loop in the circuit is
described by

(2.5)φc − φa = U0 + U1 + U2 + UOCV,
= icellR0 + U1 + U2 + UOCV,

where icell is the current applied to the cell. The dynamic behavior of the i-th RC
circuit is deduced by Kirchhoff’s law:

(2.6)

icell = iRi + iCi

= Ui/Ri + ∂UC

∂t

= Ui/Ri + C
∂U

∂t
+ ∂C

∂t
U,

which eventually yields the ODE

(2.7)RiCi
∂U

∂t
= −

(
Ri
∂Ci

∂t
+ 1)

)
Ui + Riicell,

where ignoring the time derivative of the capacitor is a commonly made mistake in
fully parametrized RC models, where the parameters change in time.
With respect to the fitting process, the parameters are assumed to be constant over
the time of a single measurement profile, which is not altering the temperature or the
state of charge of the battery significantly.
So, the final model equations are

(2.8a)φc − φa = iR0 + U1 + U2 + UOCV,

(2.8b)RiCi
∂U

∂t
= −Ui +Riiapp, i = 1, 2,
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where the term τi = RiCi is commonly referred to as the “time constant” of the i-th RC
circuit, which, in combination with the resistor, can be used as an alternative parameter
set for the circuit. This is very popular because of the intuitive meaning of the time
constant. The inner resistance R0 can be simply calculated from the immediate voltage
jump ∆U when a current I is driven through the battery by R0 = ∆U/I, or fitted
to the measurement in order to minimize the residual, where the latter is the chosen
approach in this work.
Altogether, the parameter tuple (R0, R1, R2, τ1, τ2) are subject to the parameter fitting
method discussed in Section 3.2.2.

2.3. Extended 3D case

We propose the coupling of equivalent circuits into a high-resolution FEM simulation
to model the electric behavior of a lithium-ion pouch cell.
In such a cell, the cell sandwiches formed by layers of aluminium current collector,
anode, separator, cathode and copper current collector are stacked on each other in
an anti-periodic manner, i.e. cathode and anode always facing towards each other.
The stacked block ΩX thereby consists of several dozens of thin layers. This block is
the macroscopic model domain and will be treated as a homogeneous domain that is
discretized by 3D FEM as shown in Figure 2.4.
The macroscopic cell behavior is described by a set of PDEs that are derived by
homogenization.
There exist various ways of homogenization, several of which are often leading to the
same homogenized equations. This work is following the idea of the “Heterogeneous-
Multiscale-Method” (Weinan et al., 2007) that has already been used for batteries by
Kim et al. (2011) and will be sketched very vaguely, in a rather intuitive way here.
For the macroscopic electrical behavior of the battery the surface current density i that
is flowing at the current collectors – aluminum and copper layer –, is transformed to a
volumetric current source by multiplying it with the electrode surface area per volume
AAl/Cu. The surface current density i has to be calculated by a microscopic model as a
function of the cathodic and anodic voltages (φc, φa) in every macroscopic point. Thus,
the inner part of the cell sandwich – anode, separator and cathode – may be replaced
by an arbitrary model that replicates this dependency.
The PDE describing the electrical potentials φc and φa in the current collector domains,
i.e. the aluminum and copper layers ΩAl and ΩCu is a spatially distributed formulation
of Ohm’s law given by

(2.9a)−∇σCu∇φa = 0, , in ΩCu

(2.9b)σCu∇φa = i, at ΓCu−CS

(2.9c)−∇σAl∇φc = 0, in ΩAl

(2.9d)σAl∇φc = −i, at ΓAl−CS,

where σAl and σCu are electric conductivities of the respective materials and the
boundaries ΓAl and ΓCu are the interfaces between the current collector foils and the
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2.3 Extended 3D case

Figure 2.4.: Schematic overview of the models used for RC-modelling. The microscopic
model (bottom line) is used as the coarse model.

electrodes.
The homogenization of this equations (Kim et al., 2011) yields the potential pair
equations

(2.10a)−∇σAl,eff∇φ̂c = AAl/Cui, in ΩX

(2.10b)−∇σCu,eff∇φ̂a = −AAl/Cui, in ΩX ,

where σAl,eff and σCu,eff are tensors that describe anisotropic effective conductivities of
the homogenized current collectors and the hat on the potentials denotes macroscopic
homogenized variables.
In general, the calculation of the effective conductivities is a non-trivial problem that
requires the solution of an extra PDE on the microscopic domain called the “cell
problem” (Hornung, 1996).
In this case, the simple structure of the micro problem, i.e. stacked layers, yields zero
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2 Modeling of the Lithium Ion Battery

conductivity in the out-of-plane direction perpendicular to the layer planes, as there is
no direct connection between the aluminium and copper layers.
The effective in-plane conductivity is calculated by scaling the specific conductivities
σi of material i by its volume fraction vi in a unit cell, as they act like a parallel circuit
of conductors.
Assuming that the cell’s stacked layers are positioned parallel to the xy-plane, this
yields a conductivity tensor of

(2.11)σi,eff =


σi · vi 0 0

0 σi · vi 0
0 0 0

 .
The microscopic model that yields the dependency i = i(φAl, φCu) is chosen to be RC-
models of second-order – see Section 2.2.2. This is a trade-off between fast evaluation
and accurately capturing dynamic behavior of the cell response.
Thus, in every macroscopic point x in the 3D model domain ΩX the equations (2.8)
are solved for the current i depending on the macroscopic potential pair (φc, φa). This
current is implicitly coupled to the macroscopic equations as the source term.
The equations are implemented and solved with the finite element toolbox ELMER
(Lyly et al., 1999), in which a user-defined solver was implemented. It allows to solve
for the vector field (φA, φc, U1, U2, i) depending on the overall current icell that is used
as the boundary condition at the current collector tabs.
The fitting parameters (R0, R1, R2, τ1, τ2) are assumed to be constant over the ho-
mogenized jelly roll. Therefore, the spatially distributed 3D model described in this
section has the same number of fitting parameters as the coarse 0D model described in
Section 2.2.2, which is a necessary condition for the space mapping algorithm described
in Section 3.2.2.

2.4. Electro-Chemical modeling

A general introduction to the basic functioning principle and the fundamental com-
ponents of a Li+cell has been given in Section 1.1. In this section, a more detailed
explanation of the physical and chemical transport mechanism is given.
Section 2.4.1 outlines the basic concept of the reduced order model at the level of a
single representative particle per electrode, while neglecting any other spatially resolved
quantities.
Section 2.4.2 explains the detailed, spatially resolved model of Li+cells on the basis of
the rigorous work of Doyle, Fuller, & Newman (1993).

2.4.1. Single Particle Model

A simple electro-chemical model is represented by the class of SPMs by assuming no
electrolyte effects or spatially resolved effects, e.g. varying concentrations in particles
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Figure 2.5.: SPM Problem Domain: The spatial domains are defined as Ωs,a and Ωs,c ⊂ R2,
and Ra, Rc ∈ R.

within the same electrode. Although this is known to result in less accuracy in general,
it is still possible to achieve very high model accuracy by taking the SPM’s limitations
into account, e.g. currents below 1 C, i.e. the equivalent of a full discharge in more
than one hour (Newman & Thomas-Alyea, 2004; Santhanagopalan et al., 2006; Ning &
Popov, 2004).
In this model approach, a SPM is considered as derived by F. Pichler (2018).
Each electrode is represented by a single spherical particle as the limiting factor,
whereas all dynamic limitations imposed by the liquid phase are considered negligible
except for Ohmic resistance. Figure 2.5 shows the simplified and idealized structure.
The main model equation results in

(2.12)∂cs,i

∂t
− 1
r2

∂

∂r

(
Ds,ir

2∂cs,i

∂r

)
= 0, in Qs,i ··= Ωs,i × [0, T ],

where cs,i denotes the concentration of lithium inside the solid, r is the sphere’s radial
dimension and Ds is the solid diffusion coefficient in electrode i, with Ωs,i = [0, Rs,i].
Assuming all electrolyte quantities constant allows us to set the boundary condition to

Ds,i(c)∂cs,i = jBV,i (ϕs,i, UOCP(cs,i))

= i0(cs,i)
(

exp(α F

RT
ηs,i(cs,i))− exp(−(1− α) F

RT
ηs,i(cs,i))

)
, on Γs,i

(2.13)

where the over-potential ηs,i is defined as

(2.14)ηs,i = ϕs,i − UOCP(cs,i).

ϕs,i denotes the electrode potential and UOCP(cs,i) is the open circuit potential of the
electrode at a given lithium concentration cs,i. The model of UOCP(cs,i) utilized in this
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2 Modeling of the Lithium Ion Battery

work is based on the Redlich-Kister expansion as introduced by Karthikeyan et al.
(2008):

(2.15)UOCP(ξ) = E0 + F

RT
ln
(

(1− ξ)
ξ

)
+ F

RT

n∑
k=0

Ak

(
(2ξ − 1)− 2ξk (1− ξ)

(2ξ − 1)k−1

)

where ξ = cs/ctotal is a measure for the lithiation state of an intercalation electrode.
Using the definition of UOCP(ξ), F. Pichler (2018) derived the exchange current density
on the basis of activity functions derived from transition theory:

(2.16)i0(ξs) = kBV exp
(
F

RT

(
(ξs − α)UOCP(ξs)−

∫ ξs

0
UOCP(x)dx

))

Again, the assumed constant behavior of the electrolyte quantities permits us to state
the conservation of electric charge and current as

(2.17)jBV,i = Iapp

F Ae,i

,

where Iapp is the applied current to the cell and Ae denotes the electrode cross section
area. In addition, we capture the effect of electrolyte losses by an ohmic resistance RI ,
such that we may state the cell voltage ucell as the algebraic condition

(2.18)ucell = Iapp Rs + ηc + ηa

where the cell electrodes’ over-potentials ηi = ϕs,i − UOCP(cs,i) are used to simplify the
notation.
The output of the SPM is one of two possible steps:

• Evolution of the terminal cell voltage V (t, Iapp; θ) = ucell for a given current
profile Iapp and a parameter set θ.

• Evolution of the cell current I(t, ucell; θ) = Iapp for a fixed cell voltage ucell, which
is set to match the previous steps final ucell.

The governing equations and boundary conditions for the SPM are numerically imple-
mented using full implicit scheme on the basis of FEM with adaptive time step sizes
and the possibility to freeze the time grid to results from a previous evaluation.

2.4.2. Doyle-Fuller-Newman Model

In order to describe the internal dynamic processes in a lithium–ion cell mathematically,
an electrochemical model has been realized following the widely used DFN approach
(Newman & Thomas-Alyea, 2004). This model can be stated as a system of coupled
non–linear partial differential equations in one dimension. A lithium–ion cell with two
porous intercalation electrodes (cathode in Ωc and anode in Ωa) and an electronically
isolating separator in Ωs in between is considered. For homogenization purpose each
electrode is assumed to consist of two phases. The solid phase is assumed to be spherical
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Figure 2.6.: Problem Domain: The spatial domains are defined as Ω = Ωa ∪Ωs ∪Ωc ⊂ R,
Ω′ = Ωa∪Ωc, Λa = Ωa× [0, Ra] ⊂ R2, Λc = Ωc× [0, Rc] ⊂ R2, Λ = Λa∪Λc and Ra, Rc ∈ R.

particles in both cathode (in Λc) and anode (in Λa), which line up continuously in x
direction. The liquid phase modeled in each electrode is electrolyte. In the separator
Ωs we only consider electrolyte, as the solid phase in the separator does not participate
in the reactions.
The definitions of the spatial domains may be summarized as:

(2.19a)

Ωa = [a, b] ⊂ R
Ωs = (b, c) ⊂ R
Ωc = [c, d] ⊂ R
Ω = Ωa ∪ Ωs ∪ Ωc

Ω′ = Ωa ∪ Ωc


, where a < b < c < d

and
(2.19b)Λa = Ωa × [Ra,0, Ra] ⊂ R2, where Ra,0 < Ra

(2.19c)Λc = Ωc × [Rc,0, Rc] ⊂ R2, where Rc,0 < Rc

(2.19d)Λ = Λa ∪ Λc

with boundaries {Γa,Γb,Γc,Γd,ΓR,a,0,ΓR,a,ΓR,c,0,ΓR,c} – as depicted in Figure 2.6 giving
a schematic view of the modeled domain. For a final time T > 0 we define the space
time cylinders Q1 ··= Ω×(0, T ) , Q′

1 ··= Ω′×(0, T ) , Qa ··= Λa×(0, T ) , Qc ··= Λc×(0, T )
and their respective boundaries Σa ··= Γa × (0, T ) , Σd ··= Γd × (0, T ) , Σa,d ··= Σa ∪ Σd,
Σb,c ··= Γb ∪ Γc × (0, T ) , ΣR,i ··= ΓR,i × (0, T ) , and ΣR,i,0 ··= ΓR,i,0 × (0, T ).
We consider the elliptic-parabolic system similar to the definition in of potential and
concentration equations for liquid and solid materials: The governing equations of the
one–dimensional cell model considered are defined by system (2.20).

(2.20a)−∇ · (σs∇ϕs) = −Aij
∗
BVin Q′

1

(2.20b)−∇ ·
(
κ`(c`)∇ϕ` + RT

zF
κ`(c`)t+`

1
c`

∇c`

)
= Aij

∗
BVin Q1
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2 Modeling of the Lithium Ion Battery

(2.20c)∂ (ε`c`)
∂t

−∇ ·
(
D`

(
∇c` + zF

RT
µ`c`∇ϕ`

))
= Ai

zF
j∗

BVin Q1

(2.20d)∂cs

∂t
− 1
r2

∂

∂r

(
Dsr

2∂cs

∂r

)
= 0in Q2

In the liquid phase the variables are potentials ϕ` and concentrations c`. In the solid
phase the variables are split again into potentials ϕs and cathode concentrations csc as
well as anode concentrations csa. The unknowns are more precisely defined as

(2.21a)ϕ` ··= ϕ` (x, t) , (x, t) ∈ Q1

(2.21b)ϕs ··= ϕs (x, t) , (x, t) ∈ Q′
1

(2.21c)c` ··= c` (x, t) , (x, t) ∈ Q1

(2.21d)csa ··= csa (x, r, t) , (x, r, t) ∈ Qa

(2.21e)csc ··= csc (x, r, t) , (x, r, t) ∈ Qc

To shorten the notation, we combine the system variables in an unknowns vector u ··=
(ϕsa, ϕsc, ϕ`, c`, csa, csc). The system variables are defined as time and space dependent
u(x, t) at times t ∈ [0, T ], T ∈ R and at space points x ∈ R and (x, r) ∈ R2, respectively.
A comprehensive overview of symbols is given in nomenclature in Chapter A.3.
Since diffusivity and conductivity must be effective values, they are modeled by taking
the porosity into account:

(2.22a)σs ··= σ̂sε
bruggs
s ,

(2.22b)κ` ··= κ̂`ε
brugg`
` ,

(2.22c)Ds ··= D̂sε
bruggs
s ,

(2.22d)D` ··= D̂`ε
brugg`
`

The Butler–Volmer expression (2.23) couples the system equations (2.20).

(2.23a)j∗
BV =

{
zFk

(
exp

(
αzF η
RT

)
− exp

(
−(1−α)zF η

RT

))
+ Cdl

∂(ϕs−ϕ`)
∂t

in Q′

0 else
(2.23b)η = ϕs − ϕ` − UOCV(cs)

Homogenous Neumann conditions are applied at the boundaries except for the outer
boundaries of potentials ϕs and concentrations cs in solid phase:

(2.24a)ϕs = 0, on Σa ··= Γa × [0, T ]
(2.24b)−σs∇ϕs = −i (t) , on Σc ··= Γc × [0, T ]

(2.24c)−Ds
∂cs

∂r
= 1
zF

j∗
BV, on ΣRo ··= ΓRo,a ∪ ΓRo,c × [0, T ]

For (x, t) in Q1 and (x, r, t) in Qa ∪Qc we define the mixed boundary conditions for:
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2.4 Electro-Chemical modeling

(2.25a)−α1 (c`;µ) ∂xϕ` (a, t) = −α1 (c`;µ) ∂xϕ` (d, t) = 0
−α1

(
c`

(
b−, t

)
;µ
(
b−
))
∂xϕ`

(
b−, t

)
+ α2

(
c`

(
b−, t

)
;µ
(
b−
))
c−1

`

(
b−, t

)
∂xc`

(
b−, t

)
= −α1

(
c`

(
b+, t

)
;µ
(
b+
))
∂xϕ`

(
b+, t

)
+ α2

(
c`

(
b+, t

)
;µ
(
b+
))
c−1

`

(
b+, t

)
∂xc`

(
b+, t

)
(2.25b)

−α1
(
c`

(
c−, t

)
;µ
(
c−
))
∂xϕ`

(
c−, t

)
+ α2

(
c`

(
c−, t

)
;µ
(
c−
))
c−1

`

(
c−, t

)
∂xc`

(
c−, t

)
= −α1

(
c`

(
c+, t

)
;µ
(
c+
))
∂xϕ`

(
c+, t

)
+ α2

(
c`

(
c+, t

)
;µ
(
c+
))
c−1

`

(
c+, t

)
∂xc`

(
c+, t

)
(2.25c)
(2.25d)−α4 (µ) ∂xϕs (b, t) = −α4 (µ) ∂xϕs (c, t) = 0
(2.25e)−α4 (µ) ∂xϕs (a, t) = −α4 (µ) ∂xϕs (d, t) = −I(t)

or
(2.25f)ϕs (d, t) = U(t)
(2.25f)−α5 (c`;µ) ∂xc` (a, t) = −α5 (c`;µ) ∂xc` (d, t) = 0

−α5
(
c`

(
b−, t

)
;µ
(
b−
))

∂xc`

(
b−, t

)
− α6

(
c`

(
b−, t

)
;µ
(
b−
))

c`

(
b−, t

)
∂xϕ`

(
b−, t

)
= −α5

(
c`

(
b+, t

)
;µ
(
b+
))

∂xc`

(
b+, t

)
− α6

(
c`

(
b+, t

)
;µ
(
b+
))

c`

(
b+, t

)
∂xϕ`

(
b+, t

)
(2.25g)

−α5
(
c`

(
c−, t

)
;µ
(
c−
))

∂xc`

(
c−, t

)
− α6

(
c`

(
c−, t

)
;µ
(
c−
))

c`

(
c−, t

)
∂xϕ`

(
c−, t

)
= −α5

(
c`

(
c+, t

)
;µ
(
c+
))

∂xc`

(
c+, t

)
− α6

(
c`

(
c+, t

)
;µ
(
c+
))

c`

(
c+, t

)
∂xϕ`

(
c+, t

)
(2.25h)
(2.25i)−α8(csa;µ) ∂rcsa(x,Ra, t) = α14(µ) j(c`, cs, ϕ`, ϕs;µ) + α3(µ)α14(µ) ∂t(ϕs − ϕ`)
(2.25j)−α8 (csa;µ) ∂rcsa (x,Ra,0, t) = 0
(2.25k)−α8(csc;µ) ∂rcsc(x,Rc, t) = α14(µ) j(c`, cs, ϕ`, ϕs;µ) + α3(µ)α14(µ) ∂t(ϕs − ϕ`)
(2.25l)−α8 (csc;µ) ∂rcsc (x,Rc,0, t) = 0

In addition, the concentrations are restricted by the following initial conditions:

(2.26a)c` (x, t = 0) = c`,0, in Ω
(2.26b)cs (x, r, t = 0) = cs,0, in Λ

The potentials are initialized at rest by the condition j (x, 0) = 0 consistently. where
(2.24a) is defined to provide uniqueness of the system. Obviously, conditions on the
outer boundaries – (2.25a) and (2.25f) – can be fulfilled providing that the system

−α1 (c`;µ) ∂xϕ` (a, t)−α2 (c`;µ) c` (a, t)−1 ∂xc` (a, t) = 0 (2.27a)
−α6 (c`;µ) c` (a, t) ∂xϕ` (a, t)− α5 (c`;µ) ∂xc` (a, t) = 0 (2.27b)

is regular on both Γa and Γc, respectively.
We set V1 = H1 (Ω) , V2 = {φ ∈ H1 (Ω′) |φ (a) = 0} , Vi = {(φ, ψ) ∈ H1 (Λi)} and V =
V1 × V2 × V1 × Va × Vc. For convenience we combine the unknows (2.21) in u =
(ϕ`, ϕs, c`, csa, csc) ∈ V and call it a weak solution to (2.20), if
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2 Modeling of the Lithium Ion Battery

(2.28a)
∫

Ω

(
α1 (u;µ) ∂xϕ` + α2 (u;µ) c−1

` ∂xc`

)
∂xφ

− (j (u;µ) + α3 (µ) ∂t (ϕs − ϕ`)) φ dx = 0, ∀φ ∈ V1

(2.28b)
∫

Ω
(α4 (µ) ∂xϕs ∂xφ+ (j (u;µ) + α3 (µ) ∂t (ϕs − ϕ`)) φ) dx− I φ (Γc) = 0,
∀φ ∈ V2

(2.28c)
∫

Ω
ε`i ∂tc` φ+ (α5 (u;µ) ∂xc` + α6 (u;µ) c` ∂xϕ`) ∂xφ

− α7 (µ) (j (u;µ) + α3 (µ) ∂t (ϕs − ϕ`)) φ dx = 0, ∀φ ∈ V1

(2.28d)

∫∫
Λa

(∂tcsa φψ + α8 (u;µ) ∂rcsa ∂rψ φ) r2dr

+R2
a α14 (µ) (j (u;µ)+α3 (µ) ∂t (ϕs−ϕ`))ψ (ΓR,a)φ dx= 0, ∀ (φ, ψ) ∈ Va

(2.28e)

∫∫
Λc

(∂tcsc φψ + α8 (u;µ) ∂rcsc ∂rψ φ) r2dr

+R2
c α14 (µ) (j (u;µ)+α3 (µ) ∂t (ϕs−ϕ`))ψ (ΓR,c)φ dx= 0, ∀ (φ, ψ) ∈ Vc

Without further discussion, we assume that for any µ ∈Mad the system (2.28) has a
unique solution u (µ). In this case we can define the solution operator F :Mad → V ,
where u = F (µ) is the weak solution to (2.20) for a given µ ∈Mad.
Depending on the mode of operation we state quantities of interest as either cell voltage

(2.29a)U(t) = ϕs(d, t)− ϕs(a, t), t ∈ (0, T )

or cell current

(2.29b)I(t) = α4(µ)∂xϕs(a, t) = α4(µ)∂xϕs(d, t)
=
∫

Ωa

j dx = −
∫

Ωc

j dx, t ∈ (0, T ).

By Mad ⊂ Rm we introduce the set of admissible parameters. For further clarity, for a
given instance µ ∈Mad we state µ:

(2.30)
µ =

{
αA, αK , ε`,a, ε`,s, ε`,c, τ`,a, τ`,s, τ`,c, εs,a, εs,c, σa, σc, Ais,a, Ais,c, Cdl,a,

Cdl,c, Ds,a, Ds,c, ka (ϑ) , kc (ϑ) , RI , T, c`,0 (x) , csa,0 (x, r) , csc,0 (x, r) ,
t+` , κ`,A, κ`,B, κ`,C , ARK,a,0, . . . , ARK,a,15, ARK,c,0, . . . , ARK,c,15,

}
where “parameter functions” are to be approximated by polynomials or piecewise
polynomial functions. The solution of this system of four non-linearly coupled partial
differential equations is done by application of the Finite Element Method with linear
test functions for spatial discretization and Backwards Euler Method for time integration.
The non-linearity is solved by a damped Newton method. Figure 2.7 shows the states
of the full finite element system over time for one parameter set in all unknowns. Only
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Figure 2.7.: 3D plots of the state u over space and time for the full finite element solution.
Initial values and three quarters of the points in time were removed for visibility reasons.
The dashed thick line on the top right picture marks the cell voltage results of initial f (p0)
observed in Figure 4.8.

the solid voltage on one border ϕs,c|Γc is used as observed quantity in (3.6). All other
information of a real cell would not easily be accessible to measurements without
destruction or redesign of the cell.

2.5. Simplification by Linearization

Solution of an optimization problem as described in Chapter 3 is a rather difficult and
computationally time consuming task due to the constraining semi linear system (2.20).
In this section, we introduce a simplified linear parabolic system of PDEs as a coarse
model, which provides a much easier and faster solution, but with a loss in accuracy
and limitations in usability. Then, in Section 3.2.1 we combine the two models by
applying the space mapping approach for surrogate optimization.
Following the approach of Mancini & Volkwein (2011), for a given parameter set
µ̂ ∈Mad and a given solution û we want to build a simplified model, i.e. a coarse model,
out of system (2.20), i.e. the fine model, that shows the same or similar behavior in
local vicinity to the fine model w.r.t. the parameters and operation modes. Therefore,
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2 Modeling of the Lithium Ion Battery

we introduce a simplified new system:

(2.31a)−∂x (α1 (û; µ̂) ∂xϕ` + α2 (û; µ̂) ∂xc`)− α3 (µ̂) ∂t (ϕs − ϕ`)− j = 0,
(2.31b)−∂x (α4 (µ̂) ∂xϕs) + α3 (µ̂) ∂t (ϕs − ϕ`) + j = 0,

(2.31c)ε`i ∂tc` − ∂x (α5 (û; µ̂) ∂xc` + α6 (û; µ̂) ∂xϕ`)
− α7 (µ̂) α3 (µ̂) ∂t (ϕs − ϕ`)− α7 (µ̂) j = 0,

(2.31d)∂tcsa − r−2 ∂r

(
α8 (û; µ̂) r2 ∂rcsa

)
= 0,

(2.31e)∂tcsc − r−2 ∂r

(
α8 (û; µ̂) r2 ∂rcsc

)
= 0,

where boundary conditions (2.24) and initial conditions (2.26) apply analogously, but
boundary conditions differ in their corresponding subequations as follows:

(2.32a)−α1
(
û
(
b−, t

)
; µ̂
(
b−
))
∂xϕ`

(
b−, t

)
+ α2

(
û
(
b−, t

)
; µ̂
(
b−
))

∂xc`

(
b−, t

)
= −α1

(
û
(
b+, t

)
; µ̂
(
b+
))
∂xϕ`

(
b+, t

)
+ α2

(
û
(
b+, t

)
; µ̂
(
b+
))

∂xc`

(
b+, t

)
(2.32b)−α1

(
û
(
c−, t

)
; µ̂
(
c−
))
∂xϕ`

(
c−, t

)
+ α2

(
û
(
c−, t

)
; µ̂
(
c−
))

∂xc`

(
c−, t

)
= −α1

(
û
(
c+, t

)
; µ̂
(
c+
))
∂xϕ`

(
c+, t

)
+ α2

(
û
(
c+, t

)
; µ̂
(
c+
))

∂xc`

(
c+, t

)
(2.32c)−α5

(
û
(
b−, t

)
; µ̂
(
b−
))

∂xc`

(
b−, t

)
− α6

(
û
(
b−, t

)
; µ̂
(
b−
))

∂xϕ`

(
b−, t

)
= −α5

(
û
(
b+, t

)
; µ̂
(
b+
))

∂xc`

(
b+, t

)
− α6

(
û
(
b+, t

)
; µ̂
(
b+
))

∂xϕ`

(
b+, t

)
(2.32d)−α5

(
û
(
c−, t

)
; µ̂
(
c−
))

∂xc`

(
c−, t

)
− α6

(
û
(
c−, t

)
; µ̂
(
c−
))

∂xϕ`

(
c−, t

)
= −α5

(
û
(
c+, t

)
; µ̂
(
c+
))

∂xc`

(
c+, t

)
− α6

(
û
(
c+, t

)
; µ̂
(
c+
))

∂xϕ`

(
c+, t

)
(2.32e)−α8 (ĉsa; µ̂) ∂rcsa (x,Ra, t) = α14 (µ̂) j + α3 (µ̂) α14 (µ̂) ∂t (ϕs − ϕ`)
(2.32f)−α8 (ĉsc; µ̂) ∂rcsc (x,Rc, t) = α14 (µ̂) j + α3 (µ̂) α14 (µ̂) ∂t (ϕs − ϕ`)

For linearization, the non-linear coupling is expanded in a Taylor series and immediately
stopped after the linear term – thus neglecting the error term of second order:

(2.33)j (u;µ) ≈ j (û; µ̂) + ∂uj (û; µ̂)T (v − û) + ∂µj (û; µ̂)T (λ− µ̂)

where v = (ϕ`, ϕs, c`, csa, csc)T and λ ∈ Lad. By Lad ⊂ Rl we introduce the set
of admissible parameters for the linearized system. Components of the derivatives
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∂uj (û; µ̂) = (∂ϕ`
∂ϕs ∂c`

∂csa ∂csc) j (û; µ̂) can be written as:

(2.34a)∂ϕ`
j (û; µ̂) = −α9 (µ̂) α10 (û; µ̂) α11 (µ̂) exp (α11 η (û; µ̂))

+ α9 (µ̂) α12 (û; µ̂) α13 (µ̂) exp (α13 η (û; µ̂))
(2.34b)∂ϕsj (û; µ̂) = −∂ϕ`

j (û; µ̂)

(2.34c)∂c`
j (û; µ̂) = α9 (µ̂) ∂c`

α10 (û; µ̂) exp (α11 η (û; µ̂))
− α9 (µ̂) ∂c`

α12 (û; µ̂) exp (α13 η (û; µ̂))
∂csi

j(û; µ̂) = α9(µ̂)ψ(ΓR,i) (∂csi
α10(û; µ̂)− α10(û; µ̂)α11(µ̂) ∂csi

U(û)) exp(α11 η(û; µ̂))
− α9(µ̂)ψ(ΓR,i) (∂csi

α12(û; µ̂)− α12(û; µ̂)α13(µ̂) ∂csi
U(û)) exp(α11 η(û; µ̂))

(2.34d)

and components of ∂µj (û; µ̂) = (∂Ais
∂k ∂αA

∂αK
∂Ucoeff

) j (û; µ̂) can be written as:

∂Ais
j (û; µ̂) = zF k (T )α10 (û; µ̂) exp (α11 η (û; µ̂))− α12 (û; µ̂) exp (α13 η (û; µ̂))

(2.35a)
(2.35b)∂kj(û; µ̂) = zF Aisα10(û; µ̂) exp(α11 η(û; µ̂))− α12(û; µ̂) exp(α13 η(û; µ̂))

(2.35c)∂αA
j (û; µ̂) = zF

RT
α9 (µ̂) α10 (û; µ̂) (η (û; µ̂) ) exp (α11 η (û; µ̂))

(2.35d)∂αK
j (û; µ̂) = − zF

RT
α9 (µ̂) α12 (û; µ̂) (η (û; µ̂) ) exp (α13 η (û; µ̂))

(2.35e)∂Ucoeff
j (û; µ̂) = ∂Ucoeff

U (v) ∂ϕ`
j (û; µ̂)

where α10 and α12 are considered constant for now.
For solving (2.31) we utilize the weak form:

(2.36a)
∫

Ω

(
α1 (û; µ̂) ∂xϕ` + α2 (û; µ̂) ∂xc`

)
∂xφ

−
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3 (µ̂) ∂t (ϕs − ϕ`)

)
φ dx = 0, ∀φ ∈ V1

(2.36b)
∫

Ω
α4(µ̂)∂xϕs ∂xφ+ (∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3(µ̂)∂t(ϕs − ϕ`))φ dx− I φ(Γc)

= 0, ∀φ ∈ V2

(2.36c)
∫

Ω
ε`i ∂tc` φ+

(
α5 (û; µ̂) ∂xc` + α6 (û; µ̂) ∂xϕ`

)
∂xφ

− α7 (µ̂)
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3 (µ̂) ∂t (ϕs − ϕ`)

)
φ dx = 0, ∀φ ∈ V1

(2.36d)

∫∫
Λa

(
∂tcsa φψ + α8 (û; µ̂) ∂rcsa ∂rψ φ

)
r2dr

+R2
a α14 (µ̂)

(
∂uĵ

T v+ ∂µĵ
T λ+ ĵc +α3 (µ) ∂t (ϕs−ϕ`)

)
ψ (ΓR,a)φ dx = 0,

∀ (φ, ψ) ∈ Va
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2 Modeling of the Lithium Ion Battery

(2.36e)

∫∫
Λc

(
∂tcsc φψ + α8 (û; µ̂) ∂rcsc ∂rψ φ

)
r2dr

+R2
c α14 (µ̂)

(
∂uĵ

T v+ ∂µĵ
T λ+ ĵc +α3 (µ̂) ∂t (ϕs−ϕ`)

)
ψ (ΓR,c)φ dx = 0,

∀ (φ, ψ) ∈ Vc

where ĵ refers to j (û; µ̂) and ĵc = ĵ − ∂uĵ
T û − ∂µĵ

T µ̂ for convenience. Again, for a
given instance λ ∈ Lad we call v a weak solution to (2.31) if (2.36) holds. We assume
that for any λ ∈ Lad the system (2.36) has a unique solution v (λ) so we can define
another solution operator C : Lad → V , where v = C (λ) is the weak solution to (2.31)
for a given λ ∈ Lad.
Now we define the parameter dependent operator c ··= (c1(y), c2(y), c3(y), c4(y), c5(y),
c6(y), c7(y), c8(y)) as follows:

〈c1(y), φ1〉L2
(

0,T ;V ′
1
)

,L2(0,T ;V1) =
∫∫
Q1

(
α1∂xϕ` + α2∂xc`

)
∂xφ1

−
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3∂t (ϕs − ϕ`)

)
φ1 dxdt

(2.37a)

〈c2(y), φ2〉L2
(

0,T ;V ′
2
)

,L2(0,T ;V2) =
∫∫
Q′

1

α4∂xϕs ∂xφ2

+
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3∂t (ϕs − ϕ`)

)
φ2 dxdt

−
∫∫
Σd

I φ2 ds(x)dt

(2.37b)

(2.37c)
〈c3(y), φ3〉L2

(
0,T ;V ′

1
)

,L2(0,T ;V1) =
∫∫
Q1

ε`i ∂tc` φ3 +
(
α5 ∂xc` + α6 ∂xϕ`

)
∂xφ3

− α7
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3∂t (ϕs − ϕ`)

)
φ3 dxdt
(2.37d)〈c4(y), φ4〉H = 〈c`(0)− c`,0, φ4〉H

(2.37e)

〈c5(y), φ5〉L2(0,T ;V ′
a),L2(0,T ;Va) =

∫∫∫
Qa

(∂tcsa φ5 + α8∂rcsa ∂rφ5) r2drdxdt

+
∫∫∫
Σa

α14
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc

+ α3 ∂t (ϕs − ϕ`)
)
φ5 r

2ds(r)dxdt
(2.37f)〈c6(y), φ6〉H = 〈csa(0)− csa,0, φ6〉H
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(2.37g)

〈c7(y), φ7〉L2(0,T ;V ′
c ),L2(0,T ;Vc) =

∫∫∫
Qc

(∂tcsc φ7 + α8∂rcsc ∂rφ7) r2drdxdt

+
∫∫∫
Σc

α14
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc

+ α3 ∂t (ϕs − ϕ`)
)
φ7 r

2ds(r)dxdt
(2.37h)〈c8(y), φ8〉H = 〈csc(0)− csc,0, φ8〉H

for y = (v, λ). Using the abstract formulation of (2.37), we note that 〈c (v, λ) , φ〉 = 0
results in v (λ) for a given λ which is a weak solution to (2.31).

2.6. Summary

In this chapter, various approaches to model Li+cells and batteries were presented.
After discussing the idea of a generalized forward model, semi-empirical models were
introduced as a simple but effective means to describe the behavior of a cell at a useful
level of detail. An example application of a minimal, simple equivalent circuit models
was presented in the context of a MPC system for semi-autonomous driving.
The 0D RC-models where then extended to a 3D case were they serve as an intermediate
model in a thermoelectric model of a pouch cell.
Eventually, very detailed microscopic electro-chemical models were presented in the form
of the famous DFN and a reduced form thereof, i.e. SPMs. Details for numeric solution
of the non-linear PDE-system of the DFN were given and a means of simplification by
linearization was presented.
Throughout the chapter, a general notation for common quantities was introduced that
allows for a more comprehensible notation in this and successive chapters. Results of
the models are presented in Chapter 4.
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3
Parameter Identification
The aim of measurements is to retrieve information about the system of interest. In the
scope of this work, Li+ cells in particular do not allow to directly measure quantities of
interest. Rather, the measured data depends, in some way, on the quantities of interest.
Thus, these quantities are contained in some way in the measurements.
The reverse process of retrieving the data from the measurements, i.e. the problem
of trying to reconstruct the quantities that we actually want is called an inverse
problem. Loosely speaking, an inverse problem is where we observe an effect and want
to determine the cause.
A very specific type of inverse problem is parameter estimation. Parameter estimation
is not about reconstruction of a continuous input signal, but rather calibration of
a mathematical model using measured data with respect to information about the
internal parameters.
To recall and extend the generalized model formulation in (2.1), we consider a non–linear
model

(3.1)y = f(x, θ) + ε,

where in this case y are the obtained measurements, f(x, θ) is the model’s solution and
the measurement error is denoted by ε.
In this chapter, we discuss several approaches to acquire as much information about
the internals of f(x, θ) as possible while lowering the effort to do so. We start out with
Sensitivity Analysis in Section 3.1, which proves to be a valuable tool to gain a first
sense of the importance of the parameters of the model.
The most widely spread approach for estimating parameters is to adjusting them
to match their resulting model output with observations of the equivalent quantity
from measurements using the Least Squares (LSQ) criterion or the even more general
continuous formulation of a mathematical norm, such as the L2-Norm. The latter
may in turn be approximated by the former to some degree, more closely described
in Section 3.2. Section 3.2.1 introduces the “space mapping” technique to optimize a
complex fine model on the basis of a coarse model by utilizing a linearization of the
former. Section 3.2.2 provides a brief summary of a simplified version of the technique
for a spatially resolved multi-scale model by using a simple 0D model as a surrogate
for parameter estimation.
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Section 3.3 shows a solution to the parameter estimation problem using a different
paradigm, i.e. stochastic optimization techniques.
Eventually, Section 3.4 introduces a different approach to stochastic parameter optimiza-
tion on the basis of the Bayesian methodology, which is used to estimate distributions
of parameter uncertainties.
While all sections of this chapter provide details about the algorithms used for each of
their tasks, implementation details, parameters and results are presented in Chapter 4.

3.1. Sensitivity Analysis

(Saltelli et al., 2004) Sensitivity Analysis (SA) is the study of how the vari-
ation in the output of a model (numerical or otherwise) can be apportioned,
qualitatively or quantitatively, to different sources of variation, and of how
the given model depends upon the information fed into it.

Analysis of the forward model usually requires large computing times, e.g. investigation
of its properties, plausibility, scalability, parameter uncertainties and influences as well
as validity range.
These studies require up to 50 parameters to be tested. Many internal parameters
are difficult to access or not directly measurable. Parameter estimation techniques
focus on non-invasive methods only, i.e. without the need to destructively open the cell.
These methods estimate parameters by matching predicted cell model output voltages
for a given current profile to experimental measurements. To get better insight into
the model behavior, a modified “Morris–one–at–a–time” (MOAT) Sensitivity Analysis
(SA) parameter screening (Saltelli et al., 2004) was conducted.
The aim of a SA for a mathematical model is to:

• qualitatively identify the input factors that are important for the calibration,
• find interactions between the input factors – if there are any –,
• reduce the dimensions of the input factor space – if possible –, and
• ensure that the model is not ill conditioned.

A general approach to SA may be stated as follows:

Model assumption Before even starting with SA, the expected experimental be-
havior has to be described, i.e. a model describing a measurable or observable target
has to be defined.

Input Space Design Ranges and probability distributions have to be assigned to
variable input factors. This may be a very difficult task due to little knowledge at the
beginning of the analysis.

Design of Experiments An execution plan comprising varying settings of the input
factors has to be created and carried out for the experiments.
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3.1 Sensitivity Analysis

Design Execution The previously devised plan has to be executed, i.e. for a com-
putational experiment, the model has to be executed, and the experimental output
has to be collected and analyzed. This creates output distributions for the response of
interest.

Effect Analysis Eventually, the qualitative or quantitative effects of each input
factor w.r.t. the output have to be estimated. This should provide further insight to
calibrate the model w.r.t. a specific target or iterate the approach by utilizing the
knowledge gained and formulating a detailed prior.
SA methods can be grouped into three classes:

• screening,
• local methods and
• global methods.

For the purpose of this thesis, the focus is on screening and global methods.
For a computationally expensive model with a large number of input factors, screening
methods may be used to qualitatively rank the input factors by importance w.r.t. their
contribution to output variability. Local methods usually focus on so-called “local
sensitivities”

(3.2)Sµ ··=
∂J

∂µ
,

where J defines a target function in dependence of the parameters µ. This gives very
detailed insight into variance structures, but is very limited to a local vicinity around
some working point µ∗ for non-linear models.
In global sensitivity analysis, the uncertainty of the output is quantitatively apportioned
to the input factors. To turn (3.2) into a global measure, estimating (3.2) on a grid of
values covering as much of the parameter space as possible.
The method is based on elementary effects

(3.3)di (x) = [f (p1, p2, . . . , pi−1, pi + ∆, pi+1, . . . , pk)− f (p)] /∆

of model responses f (p) for a given parameter set p sampled along random trajectories
in design space P . The distribution of effects associated with the ith input parameter is
denoted by Fi. From this distribution we can deduct qualitative information regarding
“overall” influence – by large mean values µi of Fi (di) – and high dependency on the
input – by large spread σi of Fi –, i.e. high interaction between parameters or high
non–linearity, respectively.
The experimental design matrix X comprises r orientation matrices B

(3.4)X =



B∗
1

...
B∗

h...
B∗

r

 ,
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that can be written as

(3.5)B∗
h = (Jk+1,1x

∗ + (∆/2)[(2B − Jk+1,k)D∗ + Jk+1,k])P ∗,

where Jm,n is a m× n-matrix of ones, B is a strictly lower triangular matrix of ones,
D∗ is a diagonal matrix with diagonal elements randomly chosen as +1 or −1 and P ∗

is a k × k-permutation-matrix
These orientation matrices may be interpreted as random trajectories of k steps through
the k-dimensional input factor space starting at random points. For each of input
factor by r (k + 1) experiments, this yields r random samples di of elementary effects.
For these random samples di the mean value µi and the standard deviation σi are
calculated.
Since the monotonicity of the model can not be presumed, it is important to incorporate
the absolute value of the measure µ∗ of Fi (|di|) instead of µ – elementary effects could
cancel each other out otherwise, see the work of Saltelli et al. (2004).
The mean values µ∗

i and standard deviations σi indicate factors that have
• little effect, indicated by small µ∗

i and σi,
• linear and additive effects, indicated by small σi or
• non-linear effects or strong interaction with other factors, indicated by high µ∗

i

and σi.
Thus, these simple statistical factors provide very intuitive interpretation of the “overall”
measure. They can be ranked by means of their elementary effects, at only the cost
of model evaluations, which may be executed without any cross-interaction in an
“embarrassingly parallel” way utilizing all available parallel computing infrastructure.
One disadvantage of Morris’ method is, that individual interactions among the input
factors cannot be estimated. Further, results may vary significantly for poor choice of
r or if too many of the experiments fail.

3.2. Deterministic Parameter Identification

In this section we consider the optimal control problem of matching the cell voltage
ucell(t) to a measured profile ûcell by determining an optimal parameter set µ∗ and a
corresponding solution u∗, where X ··= V ×Mad and (u∗, µ∗) ∈ X. For this purpose
we setup a cost functional J : X → R to be minimized given by

(3.6)J (x) ··=
1
2

∫ T

0
(ucell − ûcell)2 dt+ 1

2

m∑
i=1

χi

(
µi − µ0

i

)2

for x = (u, µ) subject to the equality constraints of the fine model in (2.28) and to the
inequality box constraints

(3.7)µa ≤ µ ≤ µb,

where µa and µb are tuples of scalar values, χi is a regularization parameter and µ0 is
a nominal or initial parameter set satisfying µa ≤ µ0 ≤ µb.
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Using the non-linear solution operator F we introduce the reduced cost functional for
(3.6):

(3.8)Ĵ (µ) ··= J (F (µ) , µ) , for µ ∈Mad,

and the reduced problem
(3.9)min

s.t. µ∈Mad
Ĵ (µ)

In the simplest form, we approximate the problem (3.9) by minimizing the – weighted –
sum of squares, implicitly setting all χi = 0:

(3.10)Ĵ(θ) ≈
n∑

i=1
wi (yi − f (xi, θ))2 .

Let us consider a linear model with p variables,
(3.11)f(x, θ) = θ0 + θ1x1 + . . .+ θpxp,

with n noisy measurement points y = (y0, y1, . . . , yn−1) at xi = (xi,0, xi,1, . . . , xi,n−1).
For easier notation and reading, we rewrite the model in matrix notation

(3.12)y = Xθ + ε,

where X is often referred to as design matrix. The design matrix contains the measured
values for the control variables along with a column of ones that represents the intercept
term θ0.
It is easy to derive a direct formula for the LSQ estimator that minimizes

(3.13)J̃ (θ) = |y−Xθ|22 .

Solving this system equal or close to zero leaves us with the normal equation if we
extend both terms with the transposed design matrix

(3.14)XT Xθ = XT y.

Eventually, we transform this into the solution for θ utilizing the so-called pseudo-inverse
(XT X)−1

(3.15)θ∗ =
(
XT X

)−1
XT y.

Since (XT X) always yields a square matrix, as long as X constitutes a positive definite
square matrix or a rectangular matrix with more rows than columns, equation (3.15)
may also lead to a result in the case of overdetermined systems, such as in the case of
more data points than parameters.
In practice, for most models, such as the fast models used for MPC in Section 2.2.1
or the slightly more elaborate ones presented in Section 2.2.2, one can use standard
optimization routines implemented in computational software packages. In this work we
mainly used implementations of matlab software from “MathWorks MATLAB” (1992)
including nonlinear least-squares fitting “lsqnonlin” and constrained minimization
“fmincon”. Furthermore we made use of the implementation of “scipy.optimize.leastsq”
of “scipy” scientific python based software by Virtanen et al. (2019).
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3.2.1. Surrogate Modeling using Space Mapping

For a given reference parameter set µ̂ ∈Mad and a resulting solution û(µ̂) = (ϕ`(µ̂),
ϕs(µ̂), c`(µ̂), csa(µ̂), csc(µ̂)) to the weak form in (2.28), we want to define a space
mapping S :Mad → Lad to determine a parameter set λ that minimizes the difference
between the coarse model and the fine model.
To more generally formulate the following problems, we introduce a projection of the
unknowns v to the cell voltage

(3.16)f (v) ··= ϕs (t) , on Γd, ∀t ∈ (0, T ),

Using the projection of (3.16), we rewrite the cost functional of (3.6) using the solution
v of the coarse model:

(3.17)JSur (z) = 1
2

∫ T

0
(f (v)− ϕ̂s)2 dt+ 1

2

m∑
i=1

χi (µi − µ̂i)2, µ ∈Mad,

for z = (v, µ), subject to the box constraints µa ≤ µ ≤ µb.
Again, we introduce the reduced cost functional corresponding to (3.17) by using the
solution operator C (λ) as follows:

(3.18)ĴSur (µ) = 1
2

∫ T

0
(f (C (S (µ)))− ϕ̂s)2 dt+ 1

2

m∑
i=1

χi (µi − µ̂i)2, µ ∈Mad,

Using the mapping function S (µ) and the parameter dependent operator (2.37), we
define the corresponding Lagrangian to (3.17) as follows:

(3.19)L (z, λ, p, ξ) ··= JSur (z) + 〈c (v, λ) , p〉V ′,V +
l∑

i=1
(λi − S (µi)) ξi

Without further discussion we assume, that there exist Lagrange multipliers p̄ ∈ V and
ξ ∈ Rl that permit a unique solution z̄ ∈ V ×Mad and λ̄ ∈ Lad satisfying

(3.20a)∇µL
(
z̄, λ̄, p̄, ξ̄

)
(µ− µ̄) ≥ 0, ∀µ ∈Mad

(3.20b)∇vL
(
z̄, λ̄, p̄, ξ̄

)
ṽ = 0, ∀ṽ ∈ V

(3.20c)∇λL
(
z̄, λ̄, p̄, ξ̄

)
λ = 0, ∀λ ∈ Lad

Following the Lagrange formalism depicted in detail in Section A.3, from (3.20b) we
obtain the adjoint system as summarized in (3.21):
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(3.21a)
−α3

(
∂p1

∂t
− ∂p3

∂t
+ α7

∂p5

∂t
− α14

∂p7

∂t

)
− ∂

∂x

(
α1
∂p1

∂x
+ α6

∂p5

∂x

)

− ∂ĵ

∂ϕ`

(p1 − p3 + α7p5 − α14p7) = 0, on Q1

(3.21b)
α3

(
∂p1

∂t
− ∂p3

∂t
+ α7

∂p5

∂t
− α14

∂p7

∂t

)
− ∂

∂x

(
α4
∂p3

∂x

)

− ∂ĵ

∂ϕs

(p1 − p3 + α7 p5 − α14p7) = 0, on Q′
1

(3.21c)−ε`i
∂p5

∂t
− ∂

∂x

(
α2
∂p1

∂x
+ α5

∂p5

∂x

)
− ∂ĵ

∂c`

(p1 − p3 + α7 p5 − α14p7)

= 0, on Q1

(3.21d)−∂p7

∂t
− 1
r2

∂

∂r

(
r2α8

∂

∂r
p7

)
= 0, on Q

(3.21e)α1
∂p1

∂ν
= α2

∂p1

∂ν
= 0, on Σad

(3.21f)−α4
∂p3

∂ν
=
ϕ̄s − ϕ̂s

0
on Σd

else

(3.21g)α5
∂p5

∂ν
= α6

∂p5

∂ν
= 0, on Σad

(3.21h)−α8
∂p7

∂ν
=


∂ĵ
∂csi

(p1 − p3 + α7 p5 − α14p7)
0

on ΣR

on ΣR,0

(3.21i)p1(T )− p3(T ) = 0, on Ω′

(3.21j)p5(T ) = 0, on Ω
(3.21k)p7(T ) = 0, on Λ

From (3.20c) follows

(3.22)
l∑

i =1
ξ̄i λi −

∫∫
Q′

1

− ∂ĵ
∂µ

T

λ
(
p̄1 − p̄3 + α7 p̄5 − α14 p̄7 R

2
)

dxdt = 0, ∀λ ∈ Lad

which implies

(3.23)ξ̄i = −
∫∫
Q′

1

∂ĵ

∂µi

(
p̄1 − p̄3 + α7 p̄5 − α14 p̄7 R

2
)

dxdt
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Finally, from (3.20a) we obtain

(3.24)

m∑
i =1

(χi (µ̄i − µ̂i) (µi − µ̄i))−
l∑

i =1

(
S ′ (µ̄i) (µi − µ̄i) ξ̄i

)

=
l∑

i=1

(
χi (µ̄i − µ̂i)− S ′ (µ̄i)? ξ̄i

)
(µi − µ̄i) ≥ 0, ∀µ ∈Mad,

where S ′ (µ̄i)? is the adjoint operator to S ′ (µ̄i).
It follows that the gradient Ĵ ′

Sur of the reduced cost functional (3.18) is given by:

(3.25)∂ĴSur (µ)
∂µi

= χi (µi − µ̂i)− S ′ (µi)? ξi.

Since the computation of S ′ (µi) is a very difficult task, we utilize Broyden’s formula
described by Broyden (1965) to compute a local Jacobian Matrix B which we will use
to replace the derivative of the mapping function S ′ (µi) and its adjoint S ′ (µi)?.
Evaluation of the mapping function S (µ) itself can be performed by finding the
minimum of the cost function

(3.26)JSM (y) ··=
1
2

∫ T

0

(
f
(
C
(
λ̃
))
− f (F (µ̂))

)2
dt+ 1

2

l∑
i =1

%i

(
λ̃i − µ̂i

)2

for y = (v, λ) subject to the equality constraints of the coarse model in (2.36) and
subject to the inequality box constraints

(3.27)λa ≤ λ ≤ λb,

where λa and λb are tuples of positive scalar values with, %i is a regularization parameter
and µ̂ is the target parameter of the fine model parameter space Mad satisfying
µa ≤ µ̂ ≤ µb.
Using the linear solution operator C we again introduce the reduced cost functional for
(3.26):

(3.28)ĴSM (λ) ··= J (C (λ) , λ) , for λ ∈ Lad,

and solution of the reduced problem will in turn result in the evaluation of the mapping
function S (µ̂):

(3.29)λ = S (µ̂) = arg min
λ̃ ∈Lad

ĴSM
(
λ̃
)
.

Now we can state the algorithm used to solve the surrogate optimization problem as
depicted in Algorithm 1.
By separating the surrogate optimization approach from the computation of the
mapping, we can utilize more sophisticated existing optimization procedures, e.g.
Gauss-Newton based ones, to improve the convergence behavior of the algorithm. For
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Algorithm 1 Gradient-projection based surrogate optimization using space mapping
Input: Choose initial µ0 ∈ Mad satisfying µa ≤ µ0 ≤ µb; set ζ = 10−4, k = 0, and

B0 = I.
1: Determine u0 (µ) from (2.28) with µ = µ0.
2: Evaluate J (u0, µ0) from (3.6).
3: Set the working point of the linearized system (û0, µ̂0) = (u0, µ0).
4: Compute λ0 ← S (µ0) by (3.29). . λ0 ← µ0
5: repeat
6: Determine vk (λk; ûk, µ̂k) from (2.36).
7: Evaluate ĴSur (µk) from (3.18).
8: Compute pk from (3.21) with λ = λk, v = vk.
9: Evaluate the approximate gradient (3.25) Ĵ ′

Sur (µk) = Iχ (µ− µ̂)−B?
k (µ) ξ .

10: Determine a step length parameter τk > 0 such that

ĴSur (µk (τk)) ≤ ĴSur (µk)− ζ

τk

‖µk (τk)− µk‖2
2 ,

where µk (τ) = R
{
µk − τ Ĵ ′

Sur (µk)
}
∈Mad.

11: Set µk+1 ← µk (τk).
12: Determine uk+1 (µ) from (2.28) with µ = µk+1.
13: Evaluate J (uk+1, µk+1) from (3.6).
14: Shift the working point of the linearized system to (ûk+1, µ̂k+1) = (uk+1, µk+1).
15: Compute λ′

k ← S (µk) by (3.29).
16: Compute λk+1 ← S (µk+1) by (3.29). . λk+1 ← µk+1
17: Update Jacobian of the mapping using Broyden’s formula

Bk+1 ← Bk + Sδ −Bkµδ

‖µδ‖2
2

µT
δ ,

with µδ = µk+1 − µk and Sδ = λk+1 − λ′
k.

18: Set k ← k + 1.
19: until a certain stopping criterium is fulfilled

. lines 4 and 16 simplify to a direct assignment ← in the case of linearization

the surrogate optimization we introduce the following approximation of the mapping
function S (µ):

(3.30)S (µ) ≈ S̄ (µ) ··= B (µ− µ̂) + λ̂

Using the expression of (3.30) instead of (3.29) forces us to rewrite the surrogate
optimization problem (3.18) to

(3.31)ˆ̄JSur (µ) = 1
2

∫ T

0

(
f
(
C
(
S̄ (µ)

))
− ϕ̂s

)2
dt+ 1

2

m∑
i=1

χi (µi − µ̂i)2, µ ∈Mad,

Using the linearization of (3.30), the algorithm is strongly related to Bakr et al. (2001)
and was adopted to the battery optimization problem by Scharrer, Pichler, & Suhr
(2012); Scharrer, Suhr, & Watzenig (2012).
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Using a linearized version of the fine model as the coarse model results in the additional
step of shifting the working point. Taking care of this additional step, the algorithm
can be stated as shown in Algorithm 2.

Algorithm 2 Gauss-Newton based Surrogate optimization using space mapping S
Input: Choose initial µ0 ∈Mad satisfying µa ≤ µ0 ≤ µb; set k = 0, and B0 = I.

1: Determine u0 (µ) from (2.28) with µ = µ0.
2: Evaluate J (u0, µ0) from (3.6).
3: Set the working point of the linearized system (û0, µ̂0) = (u0, µ0).
4: Compute λ0 ← S (µ0) by (3.29). . λ0 ← µ0
5: repeat
6: Define mapping function according to (3.30)

S̄k (µ) ··= Bk (µ− µk) + λk

7: Compute µ∗
k+1 for the sub-problem using (3.31):

µ∗
k+1 ← arg min

µ∈Mad

ˆ̄JSur (µ)

8: Set µk+1 ← µ∗
k+1.

9: Determine uk+1 (µ) from (2.28) with µ = µk+1.
10: Evaluate J (uk+1, µk+1) from (3.6).
11: Shift the working point of the linearized system to (ûk+1, µ̂k+1) = (uk+1, µk+1).
12: Compute λ′

k ← S (µk) by (3.29).
13: Compute λk+1 ← S (µk+1) by (3.29). . λk+1 ← µk+1
14: Update Jacobian of the mapping using Broyden’s formula

Bk+1 ← Bk + Sδ −Bkµδ

‖µδ‖2
2

µT
δ ,

with µδ = µk+1 − µk and Sδ = λk+1 − λ′
k.

15: Set k ← k + 1.
16: until a certain stopping criterium is fulfilled

. lines 4 and 13 simplify to a direct assignment ← in the case of linearization

Following the ideas of Bakr et al. (1998) and Hintermüller & Vicente (2005), the
approach presented in Algorithm 2 can be further globalized and extended by means of
the trust–region technique and modification of the Broyden update, as minimization by
using the surrogate is our primary goal rather than perfectly solving the space mapping
(3.29). To be able to implement the trust–region technique, we rewrite the reduced
cost functional (3.18) by making it dependent on λ directly in addition to µ as follows:

Ĵ∗
Sur (λ (µ) , µ) = 1

2

∫ T

0
(f (C (λ (µ)))− ϕ̂s)2 dt+ 1

2

m∑
i =1

χi (µi − µ̂i)2, µ ∈Mad, λ ∈ Lad

(3.32)

On the basis of Algorithm 2 we can incorporate this ideas as depicted in Algorithm 3.
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3.2 Deterministic Parameter Identification

Algorithm 3 Trust-Region based Surrogate optimization using space mapping S
Input: Choose initial µ0 ∈Mad satisfying µa ≤ µ0 ≤ µb; Choose γ1, γ2, η1 ∈ (0, 1); set

k = 0, B0 = I and ∆0 = 1.
1: Determine u0 (µ) from (2.28) with µ = µ0.
2: Evaluate J (u0, µ0) from (3.6).
3: Set the working point of the linearized system (û0, µ̂0) = (u0, µ0).
4: Compute λ0 ← S (µ0) by (3.29). . λ0 ← µ0
5: repeat
6: Define mapping function according to (3.30)

S̄k (µ) ··= Bk (µ− µk) + λk

7: Compute µ∗
k+1 for the sub-problem using (3.31):

µ∗
k+1 ← arg min

µ∈Mad

ˆ̄JSur (µ) , s.t.
∥∥∥µ∗

k+1 − µk

∥∥∥ ≤ ∆k

8: Determine uk+1 (µ) from (2.28) with µ = µ∗
k+1.

9: Evaluate J
(
uk+1, µ

∗
k+1

)
from (3.6).

10: Shift the working point of the linearized system to (ûk+1, µ̂k+1) =
(
uk+1, µ

∗
k+1

)
.

11: Compute λ′
k ← S (µk) by (3.29).

12: Compute λk+1 ← S
(
µ∗

k+1

)
by (3.29). . λk+1 ← µ∗

k+1
13: Determine ratio between actual and predicted reduction

ρk =
ared

(
µk, µ

∗
k+1

)
pred

(
µk, µ∗

k+1

) =
Ĵ∗

Sur (λ′
k, µk)− Ĵ∗

Sur

(
λk+1, µ

∗
k+1

)
ˆ̄JSur (µk)− ˆ̄JSur

(
µ∗

k+1

)
14: if ρk ≥ η1 then
15: Set µk+1 ← µ∗

k+1.
16: Grow trust–region ∆k+1 ← ∆k

γ2
17: Update Jacobian of the mapping using Broyden’s formula

Bk+1 ← Bk + S̃δ −Bkµδ

‖µδ‖2
2

µT
δ ,

where S̃δ = Sδ + σk
∆Ĵ∗

Sur−
(

Ĵ ′
Sur
)T

Sδ∥∥Ĵ ′
Sur
∥∥2

2

Ĵ ′
Sur, Sδ = λk+1 − λ′

k, µδ = µk+1 − µk

and ∆Ĵ∗
Sur = Ĵ∗

Sur

(
λk+1, µ

∗
k+1

)
− Ĵ∗

Sur (λ′
k, µk)

18: else
19: Keep µk+1 ← µk

20: Shrink trust–region ∆k+1 ← γ1∆k

21: Keep Bk+1 ← Bk

22: Shift back the working point of the linearized system (ûk+1, µ̂k+1) = (uk, µk).
23: end if
24: Set k ← k + 1.
25: until a certain stopping criterium is fulfilled

. lines 4 and 12 simplify to a direct assignment ← in the case of linearization
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3.2.2. Space Mapping for RC-Models

The system described in the Section 2.3 contains many parameters which cannot be
measured directly. To formulate the parameter estimation problem in a general way,
we merge the parameter set of interest into the parameter vector p ∈ Pad ⊂ Rm, where
Pad is defined as the admissible parameter set. The basis optimization problem is
introduced as

(3.33)p∗ = arg min
p∈Pad

H (f (p)) ,

where an optimal set of parameters p∗ ∈ Pad is sought, which minimizes a merit function
H of a model response f (p) depending on the parameters p.
Since we focus on parameter estimation based on cell voltages, we set H to compute
the difference with respect to a predescribed function ŷ. We rewrite (3.33) to

(3.34)p∗ = arg min
p∈Pad

‖wi (y(ti; p)− ŷ(ti))‖2
2

where we want to minimize the difference between measured cell voltages ŷ and
computed voltages f (p) = y (·; p) = ϕs|Γc

− ϕs|Γa
at predefined times ti. Variations in

time step sizes are taken into account by the weights wi.
Classical optimization using this objective function yields unacceptable response times,
since not only the solution of the system defined in Section 2.3 has to be computed, but
additionally the derivative of the objective function with respect to every parameter
in our set of interest p has to be estimated. Since this might be intractable for non–
linear PDE constraint problems, we revert to numerical gradient estimation by finite
differences. As execution time of a single simulation on current hardware may require
several minutes to hours – depending on the prescribed input profile – direct evaluation
of (3.34) is to be avoided where possible.

3.3. Hybrid Stochastic Parameter Identification

The traditional approach to solve the parameter identification problem involves mini-
mizing the difference between the measured response and predicted response. If the
cell voltage curve obtained through experimental measurement is ûcell(t) and the cell
voltage curve obtained by solving the mathematical model for a given parameter set
µ is ucell(t;µ), then the correct parameter set µ∗ can be estimated by solving the
optimization problem given by

(3.35)
µ∗ = arg min

µ∈Mad
Ĵ (µ)

= 1
2

∫ T

0
(ucell(t;µ)− ûcell(t))2 dt

The minimization algorithm subsequently updates the parameter set µ to minimize the
error norm. It should be mentioned that each computation of that error norm requires
the solution of the mathematical model using the given parameter set µ. For this
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3.3 Hybrid Stochastic Parameter Identification

reason, an algorithm that can efficiently minimize the error with few number of model
evaluations is very appealing, such as in Section 3.2. This minimization algorithm
must be robust and should be able to avoid local minima. Due to the computational
efforts and time necessary in order to solve the mathematical models of both, the SPM
and DFN, and due to the non-linearity of the cost-function space, efficiency is another
fundamental requirement to the optimization algorithm.
The “No-Free-Lunch-Theorems” state that

(Wolpert & Macready, 1997) If an algorithm performs well on a certain
class of problems then it necessarily pays for that with degraded performance
on the set of all remaining problems.

Conversely, this means that a combination of several optimization algorithms with po-
tentially adversarial properties and fitness w.r.t. problem classes increases the robustness
of the holistic algorithm over many problem classes.
For this reason, a recently developed hybrid optimizer is used to solve the above
optimization problem, the “Single Objective Hybrid Optimizer (SOHO)” algorithm. The
Single Objective Hybrid Optimizer (SOHO) algorithm is capable of combining several
different algorithms from deterministic and stochastic optimization domains. The three
algorithms used in this work are the single objective variants of the Non-dominant
Sorting Genetic Algorithm III (NSGA-III) by Deb & Jain (2014), Non-dominant
Sorting Differential Evolution (NSDE) by Robič & Filipič (2005) and Multiobjective
Evolutionary Algorithm based on Dominance and Decomposition (MOEA-DD) by Li
et al. (2015), since all three of them are commonly known as robust and performing
satisfyingly.
The top-level optimization switching strategy works as described below: One of the
three previously stated algorithms is selected to initialize the SOHO. The algorithm is
operating in iterations until the target objective value, i.e. the error norm, stagnates
and does not reduce any further. If the objective value stagnates, a different algorithm
is selected randomly from the remaining two. This random selection of algorithms adds
a stochastic nature to search process and avoids user bias. Figure 3.1 shows the three
algorithms and the switching scheme.

NSDE

MOEA-DDNSGA-III

Figure 3.1.: Algorithms and switching between the algorithms in the SOHO suite.

This hybridization allows SOHO to avoid or escape local minima and increases the
convergence rate to the global minimum.

NSGA-III uses simulated binary crossover (Deb & Agrawal, 1995) and polynomial
mutation (Deb, 2001) to perform recombination. The parent parameters to be mated
are selected randomly from the entire population set.
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NSDE uses the “rand/1/bin” (Robič & Filipič, 2005) mutation to perform the
recombination where the parents to be mated are randomly selected from population
set of unique members.

MOEA-DD also uses the same recombination operators as the NSGA-III algorithm,
but selects its parents randomly from the N best members.
As previously mentioned, the parameter estimation problem is solved by minimizing
the L2-norm of the difference between the calculated and measured voltage curves.
The calculated curve is obtained by solving the mathematical model – SPM or DFN,
respectively – while the measured voltage curve has been obtained experimentally –
see Section 4.1.
It is worth noting that the so-called “inverse crime” (Wirgin, 2004) is avoided in this
work since the two voltage curves are obtained using different methods and due to the
inherent measurement errors present in the experimentally obtained voltage curve.

3.4. Bayesian methodology

After having optimized parameters as discussed in the preceding sections, there always
remains an error between the model results and measurements. All real data is subject
to noise and measurement errors, the estimated unknowns according to the above
sections are to some degree uncertain.
Noisy data is not the only source of uncertainty in modeling. It may be more challenging
to estimate the impact of model bias due to insufficient understanding of the phenomena
under study, or just the numerical approximation errors we may have to make to
minimize the CPU requirements.
A recent development of the last decades regarding computational models, particularly
in the computational science and engineering community, is the focus on UQ methods
to estimate model error statistics to describe uncertainties.

3.4.1. Linear Model Error Statistics

For linear models, such as the ones described in (3.11) in Section 3.2 the statistics of
parameter estimation or the so-called uncertainty can be determined with ease. To
obtain the statistics for the estimate, we can compute the covariance matrix Cov(θ∗).
Under the assumption that the measurement noise is independent and identically
distributed (iid), i.e. ε iid∼ D {0, σ2} of some distribution D, the covariance matrix
for the measurement is given as Cov(y) = σ2I, where I is the identity matrix. The
parameter uncertainty is then characterized by the covariance

(3.36)Cov(θ̂) = σ2(XT X)−1.

The diagonal of the covariance matrix contains the variances of the estimated parameters.
If we further assume that the measurement errors are Gaussian, we can also conclude
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3.4 Bayesian methodology

that the distribution of θ∗ is Gaussian, with the covariance matrix as stated by the
expressions above.
For non-linear models, no such closed expression is available. In this case, we need to
use numerical methods and approximations. The standard strategy in these cases is
to linearize the non-linear model and employ the linear theory as stated above. This
requires the computation of model parameters’ derivatives. The first order derivatives
can be assembled into a matrix – the Jacobian J with its elements

(3.37)[J]ip = ∂f (xi; θ)
∂θp

|θ=θ∗ ,

where θ∗ denotes the linearization point of θ at each measurement point xi. The
Jacobian J has a similar function to the design matrix X in the linear case. This means
approximative error analysis for non-linear models – assuming iid Gaussian errors with
measurement error variance σ2 –, is given by the covariance matrix

(3.38)Cov(θ∗) = σ2(JT J)−1.

The measurement error σ2 can be estimated using repeated measurements. Replicated
measurements are rarely available. In this case, the measurement noise can be estimated
using the residuals of the fit, using the “perfect model” assumption that residuals ≈
measurement error. An estimate for the measurement error can be obtained using the
Mean Square Error (MSE):

(3.39)σ2 ≈ MSE = RSS/(n− p),

where Residual Sum of Squares (RSS) is the fitted value of the least squares function, n
is the number of measurements and p is the number of parameters in θ. In other words,
the measurement error variance is computed as the average of the squared residuals,
adjusted to the actual Degrees of Freedom (DOF), i.e. the number of measurement
points reduced by the number of estimated parameters.

3.4.2. General Model Error Statistics

In the case of non-linear models, error estimates of linearized models are valid only
in the case of parameter distributions being close to Gaussian distributions due to
maximizing the likelihood equals minimizing the sum of the squares of the residuals.
However, this cannot be guaranteed. Non-linear model structures usually result in
parameter distributions that are far from the results of the linearized versions.
This section introduces a method that – even in the presence of strong non-linearity –
enables to explore the true distributions. This exploration is conducted by sampling
from the target distributions using the MCMC method devised by Metropolis et al.
(1953); Hastings (1970) in spite of not knowing these distributions in advance.
Instead of changing the data, MCMC methods take the uncertainty of data into account
by accepting parameters that produce model predictions that fit the data within the
noise level of measurements.
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The Bayesian approach of MCMC treats the unknown vector of parameters θ as a
random variable sampled from a distribution. This manifests itself in θ being changed
rather than repeated measurement of the same experiment, which is an infeasible task
in the context of batteries and their long-term dynamics and aging effects. In addition,
prior knowledge may be included naturally in the estimation process.
Again, we consider the non-linear model yi = f(xi; θ) + εi, where we assume the errors
εi

iid∼ N (0, σ2). The vector θ comprises the unknowns to be estimated by the measured
data values yi.
Assuming θ∗ is known and a perfect, unbiased model f(x; θ∗), measured values yi follow
the normal distribution centered around f(xi,θ

∗). As the errors εi were assumed to be
independent, the distributions of the different measurements yi, i = 0, . . . , n− 1 are
independent, and the joint distribution for the measurement vector y = (y0, . . . , yn−1)
is obtained as the product of distributions:

(3.40)
p (y|θ) =

n−1∏
i=0

1√
2πσ2

exp
(
−(yi − f(x; θ))2

2σ2

)

= 1
(2πσ2)n/2 exp

(
−

n−1∑
i=0

(yi − f (x; θ))2

2σ2

)
,

where p (y|θ) is the conditional probability of y given θ and referred to as likelihood
function. For numerical reasons, we use log-transform and state the log-likelihood
function as

(3.41)
logLH(θ) = p (y|θ)

= −n2 log 2πσ2 −
n−1∑
i=0

(yi − f (x; θ))2

2σ2 ,

Using the likelihood function, the Bayes formula can be written as a generalization of
the conditional probability in basic probability calculus, as

(3.42)π (θ|y) = p (y|θ)π(θ)
p(y) = p (y|θ) π(θ)∫

p(y|θ)π(θ)dθ .

In (3.42) we face the problem of computing the integral expression for the so-called
evidence p(y) of the output, i.e. the normalizing constant, which may be an infeasible
task in the case of physical models.

3.4.3. Metropolis Random Walk

The most famous MCMC algorithm is the random walk Metropolis algorithm developed
by Metropolis et al. (1953). Despite its simplicity, the Metropolis algorithm is very
effective: it works by generating candidate parameter values from a proposal distribution
and then either accepts or rejects the value proposal according to a simple rule.
Algorithm 4 shows the Metropolis algorithm in pseudo-code.
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Algorithm 4 The random walk Metropolis algorithm (Metropolis et al., 1953)
Input: Choose initial µ0 ∈Mad satisfying µa ≤ µ0 ≤ µb

1: repeat
2: Choose a new candidate proposal θ̂ from a suitable proposal distribution q(.|µn),

possibly depending on the previous point of the chain.
3: Accept the candidate with probability

(3.43)α
(
θn, θ̂

)
= min

1, π(θ̂)
π(θn)

 .
4: if accept then
5: add the new candidate point to the chain.
6: else
7: repeat the previous point in the chain.
8: end if
9: Set n← n+ 1.

10: until a certain stopping criterium is fulfilled, e.g. n = Niter
Output: a chain of parameter tuples θ drawn from π (θ|y)

Instead of estimating the computationally infeasible integral from (3.42), only ratios of π
between successive points in the parameter space are required to succeed in Algorithm 4.
In addition, it is also possible to specify a non-informative prior distribution and still
obtain a solution, i.e. providing a flat prior bound by box-constraints may already be
sufficient.
We use a Gaussian proposal kernel to propose successive values in the Markov chain.
The distribution used for the proposal kernel is fundamental to the performance of the
entire chain. The key performance criterion is the so-called “mixing” of the chain, i.e.
how well the chain spreads across the entire parameter space. Since in Algorithm 4 the
proposal is centered around the previous state, this is referred to as a “random walk”
algorithm. The kernel distribution is usually chosen as Gaussian. The covariance of
such kernels may be set by trial and error, but to improve, i.e. shorten, the burn-in
phase of the MCMC algorithm, we utilize the covariance from linear theory, i.e. for a
linear model y = Jθ + ε with errors ε iid∼ N (0, σ2I) follows (3.38), so we initialize the
proposal covariance to:

(3.44)C(0) = Cov(θ̂) ≈ σ2
(
JTJ

)−1
.

This holds true for residuals equal to zero or very small residuals. Furthermore, we can
use the residuals to estimate the variance σ2 in (3.44):

(3.45)σ2 ≈ σ2
MSE =

∑n
i=1 (ucell(t; θ)− ucell(t))2

n− p
,

where p is the number of parameters in θ.
Since J in (3.44) is hard to compute analytically correct, we use finite differencing and
concurrent computing to quickly estimate the gradient of ucell(t; θ) with respect to θ
and adopt it into the Jacobian J .
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3.4.4. Adaptive Metropolis

One of the fundamental problems of the random-walk MCMC algorithm is the choice
of the underlying distribution for the proposal kernel, so that the algorithm converges
as quickly as possible. On the one hand, this could be set by choosing the parameters
of the Gaussian distribution, as shown in Section 3.4.3. However, the Adaptive MCMC
method has emerged as a better choice. The Adaptive MCMC method is based on the
previous history of the Markov chain, i.e. the previously migrated list of parameter
tuples. Of course, this type of adaptivity is prone to the stochastic process losing
its Markov properties, since each instance in the Markov chain no longer depends
exclusively on its predecessor, but on a longer range of the previous history.
The adaptivity is based on the adaptation of the covariance matrix of a Gaussian
distribution, i.e. the extent and orientation of the distribution in the parameter space
adapt to the environment of the target distribution.
Adaptive Metropolis (AM) algorithms were introduced by Haario et al. (2001). Growing
parts of the chain are used for the adjustment. As a result, the chain’s Markov property
is generally lost and the chain’s ergodicity can no longer be easily ensured, however, in
the case of a growing window size to determine the proposal distribution, statements
can be made and proven regarding the ergodicity (Haario et al., 2001).
For the AM method, Algorithm 4 only needs to be extended by a few simple steps.
After the “acceptance” step 3, there are ideally two further steps:

• Calculate C(i+1)

• Calculate R such that C(i+1) = RTR

For Ci + 1 we use an adaptation from the entire chain:

(3.46)C(i+1) = sdCov(θ0, . . . , θt), if n > n0

where n0 represents the “initialization time” of adaptivity. That is, as long as n ≤ n0 we
use the initial covariance C0, as shown in equation (3.44). The constant sd is a scaling
variable that depends on the dimension of the parameter space. The rule of thumb
for the scaling size is sd = 2.42

d
as stated by Gelman et al. (1996). This should ideally

optimize the mixing property of the random walk algorithm if Gaussian distributions
are used for likelihood and proposal distribution (Haario et al., 2001).
“Thinning” can be used to prevent excessive volatility in the proposal widths. This
means that the adjustment is only made for all nU iterations and is retained in between.
To calculate the covariance, all samples of the chain are required in the standard
formula (3.46). Since MCMC methods typically result in very long chains, all values
would have to be kept in memory for this and taken into account during the update.
In order to make these calculations more efficient in terms of memory and speed, the
calculation of the covariance is carried out via accumulated values and the recurrent
relation introduced by Welford (1962).
First part of the algorithm starts at iteration n0 and estimates the covariance as
stated in (3.46). Furthermore, we calculate the chain’s average value θ̄

(i+1) and the
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accumulative sum of squares of differences M (i+1).

(3.47a)θ̄
(i+1) = 1

i+ 1

i∑
t=0

θ(t)

(3.47b)C(i+1) = Cov
(
θ(0), . . . ,θ(Nc)

)
(3.47c)M (i+1) = (i)C(i+1).

For every update of the chain after the initialization phase, i.e. after appending a new
set θ(i+1), we need to update the running average θ̄

(i+1) and the running sum of squares
of differences M (i+1)

(3.48a)θ̄
(i+1) = i θ̄(t) + θ(t+1)

t+ 1

(3.48b)M (i+1) = M (i) +
(

θ(t+1) − θ̄
(i+1)

)(
θ(t+1) − θ̄

(i+1)
)T

.

For every adaption update of the proposal kernel, i.e. in the case of thinning for
every i− n0 ≡ 0 (mod nU), the covariance matrix may be quickly estimated by simply
computing

(3.49)C(i+1) ← M (i+1)

i
.

Thus, any overhead time from increasing memory consumption of storing the entire
Markov chain may be avoided and the AM algorithm may be executed with no significant
influence on the performance even in the case of fast model evaluation.

3.4.5. Parallelism

In his article, Solonen et al. (2012) showed how an effective parallelization of the
MCMC algorithm can be implemented for complex, computationally expensive models.
Instead of a single, long chain, several adaptive chains are processed in parallel. In
order not to lose the Markov property of each individual chain, it is obviously not
easily possible to exchange values between the individual chains. Craiu et al. (2009)
has shown a simple and effective way that improves the mixing properties of the chains
in order to increase each individual chain’s efficiency. Information about the entirety of
all parameter chains collected so far is gathered at a central point and the information
required for improved adaptivity of each individual chain is returned. This means that
instead of calculating each individual chain separately from another, the covariance is
no longer updated for the individual chain as described in equations (3.46) and (3.49),
but at a central point. Figure 3.2 shows the working principle for an example of three
parallel chains.
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Figure 3.2.: Adaptive Metropolis algorithm workflow. Here, three chains are shown as an
example of how the proposal kernel covariance is adapted using the results from all chains.
Proposed samples are denoted by θ̂i of chain i. The global update step successively applies
information provided of concurrent execution in random sequence of arrival. Here, a simple
1→ 2→ 3 sequence is shown as an example.

3.4.6. Single Component Adaptive Metropolis

Whereas the algorithms in the sections above describe the update of all parameters
at once, this may not always be an ideal strategy. Even in the original article by
Metropolis et al. (1953), the chain is updated one component of θ at a time. This
means, each iteration of the algorithm is rather split up into p sub-iterations of updating
each parameter in θ individually. It is important to note that the Markov chain is
not branched by this approach, i.e. each of the sub-iterations takes into account the
result of the preceding sub-iteration rather than the previous full iteration. While
this slows down the sampling process and reduces computational efficiency due to p
model evaluations per iteration versus a single model evaluation per iteration, the
Single Component (SC) approach has the advantage that for higher numbers of p,
the proposal distributions remain simple while not being affected by possible highly
complex covariance structures and correlations between parameters. Furthermore, this
leads to better mixing in terms of movements in the parameter space due to higher
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3.4 Bayesian methodology

acceptance rates, while proposals covering the entire parameter set θ have a very low
probability of being accepted.
After the initialization step, the single component algorithm walks through all p
parameters of the previous sample θ(i−1) and modifies one component by drawing a
new proposal θ̂j from the one-dimensional Gaussian proposal kernel distribution

(3.50)q
(
·|θ(i−1)

)
∼ N

(
θ(i−1), sdC

(i)
j,j

)
,

where C(i)
j,j indicates the respective diagonal entry of the current chain’s covariance

and the dimension dependent scaling parameter sd = 2.42

nd
, which is 2.42 for the single

component case (=one dimensional).
For the next step, we accept the proposal with probability

(3.51)α
(
θ(i−1), θ̂j

)
= 1 ∧

π
(
θ̂j

)
π
(
θ(i−1)

) ,
and on rejection we repeat the point θ(i−1) as θ(i) in the chain. In the higher dimensional
parameter sets case of the cell model, we notice very low acceptance rates due to high
correlation between parameters.
All methods that consider parameters individually and not in their entirety are prone to
poor mixing behavior if the parameters are strongly correlated. This is to be expected
because the correlations cannot be represented by simple one-dimensional proposal
distributions, where movements in the parameter space can only take place along the
main axes.
One solution to this problem is a rotation of the parameter space, which could be
easily accomplished using the “Principal Component Analysis (PCA)” of the Markov
chain, which results in transformed new main axes as a linear combination of the
existing dimensions. Another advantage of the Principal Component Analysis (PCA)
would be the possibility of reducing the number of dimensions and work in a sub-space,
which would further improve the performance of the algorithm in any case, since the
algorithm would mainly make significant changes in this way.

3.4.7. Single Component Adaptive Metropolis with Delayed Rejection

To further improve the acceptance rate and the efficiency of the algorithm, we apply the
concept of Delayed Rejection (DR) as introduced by Tierney & Mira (1999): Instead
of directly rejecting a failed proposal, we propose a new parameter set θ̂

(1)
j based on

the rejected parameter set and perform a new acceptance check. Obviously, this new
check is subject to a modified acceptance probability rate

(3.52)α
(

θ(i−1), θ̂j, θ̂
(1)
j

)
= 1 ∧

π
(

θ̂
(1)
j

)
q
(

θ(i−1)|θ̂j, θ̂
1
j

) [
1− α

(
θ̂

1
j , θ̂j

)]
π
(
θ(i−1)

)
q
(

θ̂
1
j |θ̂j,θ

(i−1)
) [

1− α
(
θ(i−1), θ̂j

)] ,
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which accounts for the previous rejection and the modification of the new proposal. In
the case of another rejection, this may be iterated for k stages until we reach acceptance
or continue with the next step, i.e. processing the remaining parameters of the set.
Due to the virtually infinite availability of computational power, we propose to perform
the computation of the stages in parallel for the wall-clock time cost of a single compu-
tation and decide about the acceptance on the basis of (3.51) and (3.52) afterwards.
DR was later on combined with AM by Haario et al. (1999, 2001) into the Delayed
Rejection Adaptive Metropolis (DRAM) algorithm (Haario et al., 2006). For the
original AM, possibly after an initialization period, we periodically update the proposal
covariance C(i) centered at the current position of the Markov chain, i.e. at θ(i), and
set it to

(3.53)C(i) =
C

(0)

sdCov
(
θ(0), . . . ,θ(i−1)

) n ≤ n0

n > n0
.

We use the proposal covariance C(i) for the first proposal in each iteration. On rejection,
we modify all subsequent proposal covariances C(i),k for stage k as

(3.54)C(i),k = γkC
(i)

Since the evaluation of (3.52) and subsequent decision about acceptance may be
postponed downstream, we propose to perform the computation of all proposals and
according model responses for each stage – including the initial evaluation – at the same
time using parallel computing. This way, we can make use of available computation
resources and cut down the previously reported 2.6-2.9 fold increase of computation
times using DRAM Haario et al. (2006) back to close to 1. Effectively, this translates
to performing the computation of all stages of a single step within a single chain
in parallel for the wall-clock time cost of a single computation. The decision about
the acceptance of the proposals on the basis of (3.51) and (3.52) may then be made
afterwards in an insignificant amount of time.
The complete algorithm incorporating the concepts of

• Adaptivity,
• Single Component proposal sampling,
• Delayed Rejection, and
• Parallelism

is depicted in Algorithm 5.

3.5. Summary

This chapter presents methods of a general workflow to
• gain insight into parameter importance
• identify parameters using fast deterministic surrogate methods
• identify parameters using effective global stochastic optimization
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3.5 Summary

• quantify uncertainties using the Bayesian methodology
for complex, non-linear models, such as Lithium Ion cells and batteries.
The SA methods presented in Section 3.1 provide a brief introduction to a well
established method, originally devised by Morris (1991) and further enhanced by
Saltelli et al. (2004).
The results of the SA are fundamental to Section 3.2.1, where a novel approach of
surrogate modeling is presented with the aim of optimizing a complex model by means
of a surrogate coarse model. The main purpose of the space mapping is to accelerate
the inversion. Two examples are presented, including

• the electro-chemical model from Section 2.4.2 and
• the extended 3D-RC-model from Section 2.3.

Further, we exploit the properties of linear models and re-formulate the algorithms for
space mapping taking into account the shifting of the linearization point.
After discussing the idea of the “No-Free-Lunch-Theorems” (Wolpert & Macready,
1997), an introduction to the SOHO algorithm is given. Rather than improving the
solution speed, the focus of the SOHO algorithm is to improve the effectivity of the
optimization by avoiding getting stuck in local minima.
Finally, the Bayesian methodology for UQ is presented in detail. Several enhancements
to the original algorithm by Metropolis et al. (1953) are presented:

• Adaptive Metropolis (AM)
• exploiting parallelism for mixing
• SCAM
• DRSCAM exploiting parallelism for DR.

The DRSCAM offers a possibility to speed up Bayesian inversion methods for a higher
dimensional parameter space.
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Algorithm 5 SCAM-DR
Input: Choose initial θ0 ∈Mad, choose Niter

1: Set θ(0) via optimization, one of Section 3
2: Set σ2 (3.45)
3: Compute Jacobian J

4: Set C ← σ2
(
JTJ

)−1
(3.44)

5: Set sample index i← 0
6: while i ≤ Niter do
7: for j ∈ {1, . . . , p} do
8: Advance sample index i← i+ 1
9: for k ∈ {0, . . . , K} do

10: Sample z ∼ N (0, 1)
11: Set ˆθj,k ← θ(i−1) + ej

√
γksdC

(i)
j,j · z

12: Calculate logLH
(
θ̂j,k

)
(3.41)

13: Calculate acceptance αk

(
θ(i−1), θ̂j,0, . . . , θ̂j,k

)
(3.52)

14: Sample uα ∼ U [0, 1]
15: Select winning stage
16: if αk ≥ 1 or uα < αk then
17: add the new candidate point to the chain.

θ(i) ← θ̂j,k

18: Exit For k loop
19: else
20: repeat the previous point in the chain.

θ(i) ← θ(i−1)

21: end if
22: end for
23: Update Covariance
24: if i = n0 then
25: Set θ̄

(i+1) ← 1
Nc+1

∑Nc
t=0 θ(t)

26: Set C(i+1) ← Cov
(
θ(0), . . . ,θ(Nc)

)
27: Set M (i+1) ← (i− 1)C(i+1)

28: else if i− n0 ≡ 0 (mod nU) then
29: C(i+1) ← M(i+1)

i−1
30: else
31: Set C(i+1) ← C(i)

32: end if
33: end for
34: end while
Output: a chain of parameter tuples θ drawn from π (θ|y)
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4
Results
4.1. Measurement

At the VIRTUAL VEHICLE Research Center, a large database of measurements has
been generated, on the basis of which the aging properties of cells were examined by
Berger (2018); Hrvanovic (2018); Laubichler (2018); A. Pichler (2018). Since most
of this work is focused on deducing parameters and models from real measurement
data, many measurements were collected from these projects and partly designed and
processed in the work cited above. All tests were executed using an Arbin BT-2000
battery testing system and Memmert incubators with Peltier cooling (model IPP600)
for maintaining the temperature at 25 ◦C by forced air cooling.
Throughout this work, mainly voltage data obtained from cycling commercial Panasonic
NCR18650B cells is used.

Estimate 80 % capacity by applying three times ≈80 % SoC discharge and charge
operations between 15 % and 95 % SoC, utilizing OCV points previously acquired for
these SoCs

• Each cell is first charged at C/3 rate (C-Rate = 3.35 A) until the voltage reaches
4.113 V followed by a

• constant voltage charge at 4.113 V until the current tapered down to 160 mA
(≈C/20 rate), then

• discharged at C/3 rate until 3.498 V again followed by a
• constant voltage discharge at 3.498 V for 40 minutes or until the current dropped

to 160 mA, respectively.
This is repeated three times for settling transients and obtaining reproducible results.

Estimate 100 % capacity afterwards by two full capacity estimation cycles according
to the data-sheet:

• the cell is charged at C/2 rate until 4.2 V,
• constant voltage charged at 4.2 V until the current dropped to C/50 rate and
• discharged at 1 C rate until 2.5 V.

Again, this is repeated twice for settling transients and obtaining reproducible results.
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Estimate dynamic behavior — each cell is then charged to 95 % again and
• discharged to a specific SoC level (85 %, 75 %, 65 %, 55 %, 45 %, 35 % or 25 %)
• At each level a set of current pulses are applied such that the dynamic behaviour

of the cell is excited as much as possible in the voltage.
– The pulse sequence subsequently applies C/5, 1.25C and 1.35C pulses in

charge (+) and discharge (-) direction for 10s,
– followed by 15 minutes rest after each pulse

• The pulse sequence ends with a combined 5s-pulse sequence of +C/5, +C/5,
-C/5, -C/5, -1.35 C, +1 C with 5 s rest in-between and a

• discrete stair profile of 0.2 C, 0.35 C, 0.5 C, 0.75 C, 1.25 C for 10 s per level
Figure 4.1 shows the entire procedure on one cell as an example.
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Figure 4.1.: Reference Test Protocol (RTP) example measurement. The top row shows
the cell identifier (2_015) and the cycling program file name. The second row states the
average temperature measured, peak discharge current (PDC) as C-rate, time averaged
estimated SoC, and the maximum estimated SoC operation window (DSOC). The upper
graph displays voltage over time (in hours) and the upper (red) and lower (green) voltage
limits of the stationary operation window, which may be exceeded temporarily down to 2.5 V,
as is the case for the 100 % discharge cycles. The lower graph shows Temperature (left axis,
blue) and an estimate for the SoC (right axis, orange) over time. Dashed boxes and the
bottom-most labels depict the individual phases of the characterization procedure.
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4.2 Sensitivity of parameters
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Figure 4.2.: Results of the “Morris one at a time” global sensitivity analysis

4.2. Sensitivity of parameters

As input factors to the screening need not necessarily resemble parameters of the model,
it was possible to combine dependent parameters pairwise, i.e. the electrolyte volume
fractions ε` and solid volume fractions εs in anode and cathode where merged into two
factors representing the sum of fractions ε`+s and their ratio ε`:s, such that they may
not exceed their physical limits.
Figure 4.2 and Table 4.1 show the qualitative ranking order result of the screening
experiment for several parameters of interest. It is thus reasonable to assume, that
parameter changes for some parameters show minimal effects on the output, e.g. σs.
Because of the high non-linearity and interaction between parameters indicated by high
mean and high spread, ka and cs,c,0 are most likely having high impact on the output.

4.3. Deterministic Optimization for Simple Equivalent Circuit
Models

Using the model structure presented in Section 2.2.1, there was a requirement to
calibrate the simplistic battery model towards measurements, as there was only very
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Table 4.1.: Global sensitivity analysis results ordered descending by (log (µ/µmax))2 +
(log (σ/σmax))2

Rank Variable
1. ka

2. cs,c,0
3. brugg`

4. ε`+s,a

5. α
6. ε`+s,c

7. kc

8. c`,0
9. ε`:s,a

10. ε`:s,c

11. Ds,a

12. Ds,c

13. ε`,s

14. bruggs

15. µ`

16. D`

17. t+`
18. σs,c

19. σs,a

little information about individual cells available, whereas no complete characterization
of the battery pack was available due to its prototypical nature. We defined a simple
model function iBT(µ, t) incorporating the entire model structure depicted in Figure 2.2.
The function was designed to match available measurements îBT(t = k · 4T ) at
equidistant time points k · 4T , which were available from an onboard measurment
recording system.
The parameter tuple µ was chosen to incorporate transform parameters of existing
characteristic curves in the QSS-Toolbox of Guzzella & Amstutz (2005).

(4.1a)R̃i(SoC) = Ri(SoC) + µRi

(4.1b)ŨOCV(SoC) = UOCV(SoC) · µOCV k + µOCV d

The entire problem was quickly setup in MATLAB by “MathWorks MATLAB” (1992)
and yielded satisfying results after few iterations. The total function evaluation counted
up to 32, which translates to less than one hour of computation time on modern work
stations.
Considering the deviation from measurements, we define the normalized Root-Mean-
Square Error (nRSME) as:

(4.2)nRMSE (y(s), ŷ(s)) ··=
1

ŷmax − ŷmin

√√√√∫ smax
smin (y(σ)− ŷ(σ))2 dσ

smax − smin
,
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4.3 Deterministic Optimization for Simple Equivalent Circuit Models

with y being the simulated entity, ŷ the corresponding measured entity and s being the
distance. The optimized test track simulation results yield – using nRMSE (·(s), ·̂(s)):

• nRMSE(TEM)=8.14 %,
• nRMSE(IBT)=8.14 %,
• nRMSE(PEM)=12.33 %,
• nRMSE(PEG)=40.42 %,

where TEM is the motor torque – in both motor and generator mode –, IBT is the
battery pack current, PEM is the motor power, and PEG is the generator power.
Figures 4.3, 4.4 and 4.5 show the results obtained in more detail resolved in time.
The deviations in the charge profile are estimated to be caused by deviations in the
measured road gradient profile from the real situation, thus under-estimating the
required torque in a few situations and over-estimating the gain from recuperation.
However, a deviation of approximately 2 % absolute SoC for the final point after a total
discharge of approximately 20 %, i.e. from 75 % to 54 %, was considered reasonable and
useful for further processing, as depicted by Scharrer, Messner, & Szymanski (2014).
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Figure 4.3.: Model current simulation results versus real electric car based measurements
on the test track (Scharrer et al., 2016)
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Figure 4.4.: Model charge simulation results versus real electric car based measurements
on the test track (Scharrer et al., 2016)
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Figure 4.5.: Model power simulation results versus real electric car based measurements
on the test track (Scharrer et al., 2016)
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4.4. Space Mapping for RC-Models

In accordance with Figure 2.4 in Section 3.2.1, we consider the complex Pouch cell
3D FEM-model the fine model for the space mapping approach. We restrict the
coarse model to a plain 0D second-order RC model, which evaluates very fast for
the same number of parameters, neglecting the spatial distribution of the fine model.
However, the 3D model requires additional material parameters, which are summarized
in Table 4.2.

Table 4.2.: The fixed simulation parameters

σAl vAl σCu vCu AAl/Cu

59.1× 106 3.13 % 37.7× 106 7.05 % 8× 103

The optimization system is evaluated on measurement data acquired by applying short
pulses to a pouch cell at three temperatures. Then, the speed up attained is compared
to the direct fitting procedure without using the surrogate for the same measurements.
The proposed optimization algorithm is applied to the model in order to fit its voltage
output to three different measurement curves. These curves are the voltage answers to
1 C current pulses of 25 s at three different temperatures: 10 ◦C, 25 ◦C, and 40 ◦C.
Starting from the same initial guesses for the parameters and having the same stopping
criteria in the optimization algorithm the space mapping algorithm is approx. eight
times superior to the classic least-squares algorithm w.r.t. to computation times while
yielding the same range of fitting error. For the least-squares algorithm the 3D model
had to run for 64, 68 and 82 times for the three respective cases. The numbers got
reduced to 6, 8 and 9 runs in the space mapping algorithm with additional 388, 637
and 622 runs of the fast surrogate model. Table 4.3 summarizes the detailed numbers
and relevant times.
Comparing the results of the coarse and fine model shows very little difference, as
depicted in Figure 4.6 for a simple 25 ◦C pulse case.
The pulses at 10 ◦C, 25 ◦C, and 40 ◦C of the reference cell measurement along with
the simulated pulse responses of the best results of direct and surrogate parameter
estimation are shown in Figure 4.7. It can be seen, that the results almost coincide,
both yielding very accurate results. This is also confirmed by the resulting residuals of
the L2-norm, as shown in Table 4.4.
The fact that the microscopic model in the homogenized 3D model is reflecting the
coarse model, is considered to be a big advantage.
The similarity of the model parameters is very beneficial to the space mapping algorithm
in that the mapping between the parameter spaces is close to identity, thus reducing
the amount of iterations necessary to adjust the space mapping. As an example the
Broyden matrix, i.e. the approximation of the linearized space mapping, for the 40 ◦C
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case is

B =



1.00 2.14× 10−11 2.55× 10−7 8.41× 10−11 4.72× 10−8

1.01× 10−11 1.00 1.87× 10−7 3.55× 10−10 −4.51× 10−8

1.06× 10−7 2.86× 10−7 1.00 9.97× 10−7 1.39× 10−4

−6.68× 10−11 −4.13× 10−11 −5.52× 10−6 1.00 −3.21× 10−7

1.07× 10−7 −3.55× 10−7 9.17× 10−2 −9.20× 10−5 9.72× 10−1


in the last iteration. As long as the dimensions of the battery cell taken for measurements
are small, this similarity to identity of the Broyden-matrix stay intact for arbitrary
microscopic battery models. Having a microscopic model at hand, that is parametrized
in the proposed manner, allows for virtual up-scaling and prototyping of batteries in a
fast and effective way.

Table 4.3.: Resulting timing and Speed up

Python leastsq Space mapping
Optimization Fine Fine Coarse

0 1 2 3
Runs 64 + 68 + 82 6 + 8 + 9 388 + 637 + 622

Time [s] 22293.0 2226.37 518.28
Avg. Time per run [s] 104.17 96.79 0.31

Speedup factor 8.12

Table 4.4.: L2-Residuals of the optimization

Measurement 10 ◦C 25 ◦C 40 ◦C
Direct 8.00× 10−4 3.51× 10−4 2.00× 10−4

Surrogate 7.19× 10−4 2.86× 10−4 1.78× 10−4
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Figure 4.6.: Comparison of the measurement curve and final voltages of coarse c (b∗) and
fine f(p∗) model response after identification of the parameter set of interest p. Measure-
ments and final curves of the fine model are very close.
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Figure 4.7.: Comparison of the measurement curve and final voltages of direct f̃ (p̃∗)
and surrogate f (p∗) model response after identification of the parameter set of interest p.
Measurements and final curves of the model optimization are very close, results from direct
and surrogate optimization almost coincide. This is confirmed by the residual L2-norm
shown in Table 4.4
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4.5. Space Mapping for Electro-Chemical Models

After implementing the linearized model as a surrogate for optimization, we defined a
parameter estimation task for validation of the algorithm. In this section, we present
the result of a synthetic parameter estimation task, where parameters of a simulation
are recovered starting from another point in parameter space.
Because of long computation times of the constraining non-linear forward problem
(2.20), direct optimization of (4.3) is very time consuming, i.e. minutes up to hours
depending on the input profile.
Additionally, it is not clear, that the Nemytskii operator Φ : u (·) → j∗

BV (u (·)) is
Fréchet-differentiable, which is a pre-condition to derive necessary optimality conditions.
Because the problem is a non-convex optimization problem, it would even be necessary
to derive sufficient optimality conditions of second order, too.
Since it may be advisable not to optimize all parameters at once, we introduce the
parameter vector p ∈ Pad ··= {p ∈ Rm|pa ≤ p ≤ pb}, where Pad is referred to as
admissible parameter set.
We define f (p) ··= ϕs (x, t; p) as the solution of the fine model for a parameter set p.
By p̄ we refer to the optimal parameters minimizing the cost function defined as:

(4.3)J (p) ··=
1
2

∫∫
Σc

(f (p)− ϕ̂s (t))2 ds(x)dt

subject to p ∈ Pad and the equality constraints of model (2.20). Since in Section 4.2
it is shown that parameters reaction rate kc, initial Li+-concentration in the solid in
cathode cs,c,0 and the symmetry factor α are most significant, we set p ··= (kc, cs,c,0, α)T

throughout the rest of this section. It is also confirmed by Santhanagopalan et al.
(2007) that these parameters are showing highest impact on the results.
Simulation platform was an Intel Core i7 processor at 2.7 GHz 64 Bit equipped with
4 GB RAM running python 2.7 and Matlab 2012b on Windows 7. Implementation
of the fine, coarse and adjoint model was done in python using the python scientific
library “SciPy” (Virtanen et al., 2019). All optimization problems in this section were
solved using the “active-set” algorithm of Matlab’s “fmincon” (“MathWorks MATLAB”,
1992).
Estimating p was done by an optimization problem as defined in (3.33). The target cell
voltage ϕ̂s and test voltage ϕs (p) were generated by simulating a 100 s short charge
pulse of C/2 rate load starting from 50 % SoC.
The reference value was set to p̄ = (1× 10−7 mol m−2 s−1, 8567 mol m−3, 0.5), the overall
optimization starting point was set to p0 = (7× 10−8 mol m−2 s−1, 8000 mol m−3, 0.35).
The limits of admissible parameters were equally set to

(4.4a)pa = (1× 10−8 mol m−2 s−1, 5000 mol m−3, 0.25)

and
(4.4b)pb = (1× 10−6 mol m−2 s−1, 12 000 mol m−3, 0.75)
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4.5 Space Mapping for Electro-Chemical Models

for both the fine Pad and coarse Bad parameter spaces.
Considering the optimization algorithm we applied an additional scaling

(4.5)p̃← (p− pa) (pb − pa)−1 .

To avoid estimating parameters of a model by using exactly the same model, we
chose different spatial discretization to obtain a cell voltage curve ϕ̃s, see Table 4.5.
In addition, we applied Gaussian white noise of zero mean and very high standard
deviation σ = 0.5 mV to obtain the target cell voltage curve ϕ̂s (ti) = ϕ̃s (ti) + e (ti) at
discrete time points ti.

Table 4.5.: Comparison of Degrees of Freedom (DOF) between the target model and the
inverted models – coarse, adjoint and fine – used for parameter estimation.

Region Target model Inverted models
Ωa 90× 3 26× 3
Ωs 40× 2 9× 2
Ωc 200× 3 26× 3
Λa 100× 90 31× 26
Λc 100× 200 31× 26

Total DOF 29950 1786

The stopping criterion of Algorithm 2 was set to test the absolute the function value

(4.6)J (pi) < εa = 10−4.

Stopping criteria of the sub problems in steps 7 and 10 where set to test the absolute
function value

(4.7)J· (·) < εa = 10−10

and the norm of the step size

(4.8)‖δp‖ < εδ = 10−8.

A comparison of resulting voltage curves can be found in Figure 4.8. Note, that the final
values of f (p∗

F D) could only be reached by lowering the upper boundary of cs,c,0 from
12 000 mol m−3 to 9000 mol m−3. The residuals and iteration numbers of the adjoint
based and finite differences based algorithm are presented in Table 4.6. The average
simulation time of the non-linear model was 12.9 s± 2.118 s. Average simulation times
of the linearized model was 4.2 s± 0.238 s, which results in a speed up factor of about
three.
In a first attempt, the average simulation time of the adjoint model was 14.5 s± 6.627 s.
The high value and standard deviation of the latter can be explained by the bad
conditioning of the systems to be solved. Although the system in Section 2.5 and (3.21)
in Section 3.2.1 are similar, the changes in the coupling and the boundary conditions
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seem to have a very high impact on the solution quality. Whereas the linear and
non-linear systems can be solved by direct LU-decomposition, the adjoint system had
to be changed to iterative preconditioned stabilized bi–conjugate gradient solver with a
very low residual tolerance of 1× 10−10 to reduce numerical oscillation. But compared
to the finite difference based optimization, the number of linear system evaluations
during adjoint based optimization could be reduced from 249 to 83 while introducing
additional 33 evaluations of the adjoint system. This still results in a reduction of run
time from 1145 s down to 915 s, i.e. by ≈ 20 %.
After applying techniques from non-dimensionalization and scaling to the models,
i.e. the non-linear fine system, the linear coarse system and the linear adjoint one
– see Section A.1 –, the average simulation time of the adjoint model dropped to
4.89 s± 0.22 s. In addition, the number of evaluations could be further reduced to 74,
while the number of adjoint system evaluations reduced to 31. This effort also led to
significant drop in linear model evaluation time to 3.11 s± 0.24 s. The total execution
time of the algorithm dropped to 458 s, which is a reduction of ≈40 %.
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Figure 4.8.: Comparison of the initial voltage curve, synthetic target voltages and final
voltages after estimation of the parameter set of interest p. Target curve and final curves
of finite differences based approach and adjoint based approach are very close - see residuals
in Table 4.6.

68



4.6 Hybrid Stochastic Optimization

Table 4.6.: Results of the adjoint based (adj) and finite differences (fd) based space mapping
iterations

iter
i

ci
s,c,0 ki

c αi Runtime residuum surrogate
iterations

mapping
iterations

adj_0 8000 7 · 10−8 0.35 19 s 7.81 · 10−2 − −
adj_1 8062 1.02 · 10−7 0.48 311 s 4.26 · 10−3 10 7
adj_2 8090 1.01 · 10−7 0.49 671 s 3.28 · 10−3 7 3
adj_3 8094 9.66 · 10−8 0.49 915 s 2.77 · 10−5 6 4
fd_0 8000 7 · 10−8 0.35 16 s 7.81 · 10−2 − −
fd_1 7861 1.18 · 10−7 0.5 298 s 4.09 · 10−3 9 10
fd_2 7826 1.16 · 10−7 0.51 761 s 2.76 · 10−3 7 3
fd_3 7843 1.11 · 10−7 0.51 1145 s 2.39 · 10−5 7 3

4.6. Hybrid Stochastic Optimization

The minimization described in this section is performed using the SOHO algorithm as
presented in Section 3.3. The SOHO algorithm’s search for the parameters is targeting
the values that best minimizes this L2-norm (3.35).
This was performed for both, the DFN and the SPM on the basis of a high-performance
implementation devised by F. Pichler (2018). The parameters to be optimized as
well as their lower and upper bounds specified for each of the parameters in each
of the two models are given in Table 4.7. It should be mentioned that the bounds
on each variable are conservative and very wide. This is to mimic the lack of prior
knowledge about the parameters. The initial values of each parameter were randomly
selected using the algorithm by Sobol (1967). All optimization efforts in this section
were initialized with the NSDE algorithm. Due to the large admissible range for most
parameters, the optimization algorithm should first efficiently search a large parameter
space “exploration” but then must focus its search on a smaller region “exploitation”
where there is a better chance of finding the global minimum.
Forman et al. (2012) tried to fulfill these conflicting objectives by dividing the opti-
mization problem into a global optimization run followed by local optimization run.
Solving two separate optimization problems individually, apparently increases the
computational cost and time.
The SOHO algorithm makes efficient use of the recombination operators to solve both
optimization modes in the same procedure.
The crossover (Deb & Agrawal, 1995) and mutation distribution indices (Deb, 2001),
ηcrossover and ηmutation, respectively, control the proximity of the new candidate solution
to its parents. A higher value of each index leads to a solution that is closer to its
parents. The balancing between global exploration and local exploitation is controlled
by adjusting the distribution indices as a function of generations. Each distribution
index is linearly increased from a value of 1 to 50 throughout the generations. This
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Table 4.7.: Parameter ranges used to define the SPM and the DFN for SOHO and their
admissible range

SPM DFN
Average computing time 2.04 s 62.7 s

# Parameter Symbol min max min max
1 Electrode Area AE – – 0 2
2 Cathode Tortuosity τc – – 0 1
3 Anode Tortuosity τa – – 0 1
4 Separator Tortuosity τs – – 0 1
5 Separator Porosity εs – – 0 1
6 Separator Resistance Rs 0 1 0 1
7 Anode initial SoC ξa,0 0 1 0 1
8 Cathode Particle Radius rc 10−8 10−5 10−8 10−5

9 Anode Particle Radius ra 10−8 10−5 10−8 10−5

10 Cathode Diffusion Coefficient Dc 0 1 0 1
11 Anode Diffusion Coefficient Da 0 1 0 1
12 Cathode Reaction Rate kc −20 100 −20 100
13 Anode Reaction Rate ka −20 100 −20 100
14 Cathode Active Mass mc 0 0.051 0 0.051
15 Anode Active Mass ma 0 0.033 0 0.033

16–30 Cathode ith RK Coefficients Ac,i −8 8 −8 8
31–44 Anode ith RK Coefficients Aa,i −8 8 −8 8

leads to a more global search at the beginning which then gradually turns into a local
search.
The SOHO algorithm was run for a total of 1000 generations, although in all cases, the
minimum was found in less than 500 generations. The SOHO algorithm is parallelized in
a master-slave arrangement. The master node performs all optimization computation –
recombination, selection, etc. – while each slave node solves the mathematical model. A
total of 100 parallel runs, i.e. 100 slave nodes, are used throughout the work described
in this section.
It should be mentioned that the solution of the SPM and the DFN model was terminated
if either

• the time step became less than 1× 10−6 s or
• the maximum allowable working time was exceeded.

The maximum allowable time was set as approx. twice the average computing time –
see Table 4.7. This greatly reduces computing time as runs with infeasible parameter
combinations that lead to extremely small time steps or diverging solution steps are
preemptively stopped from blocking the entire population from advancing.
These termination criteria add an additional degree of non-linearity and discontinuity
to the cost function space. It also adds several “flat” regions where the gradient is zero.
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4.6 Hybrid Stochastic Optimization

For this reason, a gradient based method will find it very difficult to converge to the
correct values of the model parameters. The SOHO algorithm is not affected by any of
these function space modifications.

4.6.1. SOHO for SPM

The parameter estimation to fit the voltage curve given in Figure 4.1 is first performed
using the simpler SPM. A total of 39 parameters defined the SPM model. Figure 4.9
shows the measured voltage and the estimated voltage obtained using the converged
values of the 39 parameters.
Apparently, the two voltage curves are very similar. Figure 4.9 shows that charge and
discharge peaks from the two curves coincide well. The converged result shown in
Figure 4.9 was obtained after 160 000 function evaluations or 1600 iterations of the
optimization. Remarkably, even the simpler electro-chemical model is able to accurately
represent the experimental results.
It should be mentioned that the estimated set of parameters is able to accurately
match experimental data for the entire time from zero to 212 202 s, i.e. close to 2.5
days. Figure 4.9 also shows that the estimated SPM can simulate both slow charging
and discharging cycles as well as rapid dynamic pulsing. As previously mentioned,
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Figure 4.9.: Measured and estimated voltage response obtained using the converged SPM.

the hybrid characteristic of the SOHO algorithm increases the convergence rate of
the parameter estimation. Figure 4.10 shows the convergence history for the single
particle model estimation problem. The residual drastically decreases within the first
200 iterations, i.e. 20 000 model evaluations. Investigating the best set of parameters
at any point along the convergence history gives an insight into the error distribution.
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The histograms in the sub-figures show such error probability distributions at three
different locations. It can be seen that even parameter sets in the early regions of the
convergence history (Case 1) have majority of the errors within 50 mV. In the best
case (Case 3), the majority of the errors are within 25 mV. This shows that the SOHO
algorithm can identify robust parameter sets that produce satisfactory results in a
few number of model evaluations. The error statistic and the convergence information
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Figure 4.10.: Parameter estimation residual convergence of the SPM showing: top) the
convergence history of the SOHO algorithm, Cases 1, 2 & 3 show the error probability
distributions of each example case detail.

of the three selected cases are shown in Table 4.8. It shows that even in Case 1, the
average error is within an acceptable margin. In the case of minimum residual (Case
3), it can be seen that the single particle model estimation was performed in less that
one hour with very good accuracy.

4.6.2. SOHO for DFN

Previous results show that the SPM is able to accurately model the battery response.
For certain cases, the SPM might not be able to accurately represent the Li+cell
dynamics and a more complete model, such as the DFN, might be required. For this
reason, the parameter estimation problem is also solved with the DFN model.
The DFN was defined using a total of 44 parameters. Figure 4.11 shows the estimated
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4.6 Hybrid Stochastic Optimization

Table 4.8.: Error statistics of the three cases selected cases in the SPM parameter estimation
problem

Case 1 Case 2 Case 3
Evaluations to convergence 133 396 1158
Approximate time to convergence [s] 404 1203 3520
Mean absolute error [mV] 24.78 15.02 9.61
Standard deviation of absolute error [mV] 22.55 12.07 8.04

voltage and measured voltage using the 44 converged parameters. Like in the SPM
model, it can be seen that the results of the DFN model are similar to those measured.
Again, the charge and discharge peaks coincide well for the entire time range. Figure 4.12
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Figure 4.11.: Measured and estimated voltage response obtained using the converged DFN.

shows the convergence history for the DFN estimation problem. Here, the residual is
seen to sharply decrease within the first 100 iterations. This can be attributed to the
better representation of the physical model by the DFN over the SPM. The sub-figures
at the bottom show such error probability distributions at three different locations
along the convergence history. It can be seen that even parameter sets in the early
regions of the convergence history (Case 1) already show the majority of the errors
within 50 mV, with a significant number of them centered close to the 0 mV region.
In Case 3, the majority of the errors are within 25 mV. Comparing Figure 4.11 and
Figure 4.9 shows that the results of the DFN model show a higher probability near
0mV region. Again, this may be attributed to the better suitability of the DFN to
capture the electro-chemical dynamics.
The error statistic and the convergence information of the three selected cases of the
Newman model are shown in Table 4.9. Comparing Table 4.8 and Table 4.9 show
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Figure 4.12.: Parameter estimation residual convergence of the DFN showing: top) the
convergence history of the SOHO algorithm, Cases 1, 2 & 3 show the error probability
distributions of each example case detail.

that all three cases for the DFN result in a lower average error and lower standard
deviation. Table 4.9 shows that the computing time of the DFN is approximately 30
times larger than the computing time for the SPM. Despite this, the SOHO algorithm
is able to estimate the parameters in the DFN in less than one day. This is a significant
improvement in convergence time over the previous studies, which took approximately
three weeks to obtain converged results. It should be mentioned that the computing
time for the DFN used by Forman et al. (2012) (63 seconds) is similar to the DFN
used in this work.

Table 4.9.: Error statistics of the three cases selected cases in the DFN parameter estimation
problem

Case 1 Case 2 Case 3
Evaluations to convergence 87 211 835
Approximate time to convergence [s] 5455 13330 52354
Mean absolute error [mV] 18.91 15.82 6.47
Standard deviation of absolute error [mV] 24.49 10.95 7.16
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4.6 Hybrid Stochastic Optimization

4.6.3. Sensitivities of the results

In previous works, e.g. by Forman et al. (2012) and Jin et al. (2018), sensitivity analysis
has been used to identify a subset of parameters that influence the model response the
most. The parameter identification is then performed only on this subset. Due to the
non-linearity and discontinuity of the solution space, the sensitivity analysis in this
section is limited to the converged local region.
The local sensitivity is deduced using the local scaled sensitivity coefficients, S where

(4.9)Sµ ··=
∂J

∂µ
,

is the sensitivity of the cost function J to parameter µ. The sensitivity of the RSS
with respect to each parameter µ is calculated.
Figure 4.13 show the absolute value of the scaled sensitivity coefficients in the SPM
and DFN models, respectively. It can be seen that the SPM is most sensitive to the
OCV offset for the cathode as it directly impacts the offset of the entire solution
of the model. Comparing the sensitivities in Figure 4.13 top and bottom, it can be
seen that the solution of the DFN is significantly more sensitive than the SPM model.
The trends, however, are similar between the two models. Again, the higher order
Redlich-Kister coefficients are of the more sensitive terms. The DFN model is most
sensitive to cathode reaction rate and cathode active mass, in this order, which directly
coincides with the results presented in Section 4.2.
Again, it should be mentioned that the sensitivity analysis in this section is locally
based and that other regions of the parameter space most likely will indicate different
levels of sensitivity to each parameter.

0
20
40
60
80

100

Se
ns

iti
vi

ty SPM

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

Parameter µ

Se
ns

iti
vi

ty DFN

Figure 4.13.: Local sensitivity coefficients around the converged parameters of the SPM
and DFN.
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4.7. Uncertainty Quantification

This section contains two studies using the discussed approaches from Section 3.4.
Section 4.7.1 introduces the topic of dynamic pulse based parameter estimation of an
implementation of the DFN. This approach takes advantage of the parameter structure
and focuses on the five most important dynamic parameters of the model. Several
tweaks are applied to improve computational and statistical efficiency, i.e. parallel
Adaptive Metropolis – see Section 3.4.5 – and “early stopping” of model evaluations
as soon as it becomes clear that the results would be rejected. As a proof of concept,
this approach did not include physical measurement data but rather synthetic data
generated from the same model beforehand, including artificial noise to simulate
measurement deviations.
Then, Section 4.7.2 contains the results of the “Single Component Adaptive Metropolis
with Delayed Rejection” SCAM-DR investigation of a SPM. While this approach did
not make use of parallel chains, it makes use of available parallel computation power
in terms of concurrent model evaluation for delayed rejection. In addition, results
presented are produced on the basis of a fast implementation of the SPM by F. Pichler
(2018) and measurement data, as presented in Section 4.3.
Each section includes the required details about the respective problem setting and
any specific implementation details.

4.7.1. UQ for DFN

UQ using MCMC requires a very generic set of steps:
1. Modeling of the Prior
2. Posterior Sampling
3. Investigating the statistical efficiency
4. Evaluation of measures taken to improve computation time

All items of this set are presented in their respective sub-section further out this section.
The model used in this section is the same as presented in Section 2.4.2

4.7.1.1. Modeling of the Prior

For the sake of brevity, we assume the static influence, e.g. OCV and initial concen-
trations, to be completely separable from dynamic influence, e.g. diffusion and kinetic
rates – as confirmed by e.g. Speltino et al. (2009). They describe identifying parameters
of a SPM of battery dynamics in two steps: In the first step, the equilibrium potential
function of the cathode is identified from OCV measurements, assuming an equilibrium
potential function of the anode from the relevant literature. The second step involves
performing dynamic tests to estimate the remaining model parameters.
For estimating the data, we define a minimalistic input program i(t) that we apply to
both measurement and simulation, as shown in Table 4.10.
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Table 4.10.: Input program applied: A discharge pulse from 55 % state of charge (SOC)
to ≈ 45 %

step Description
0 Initialize the cell to 55 % SOC
1 Discharge at 5 C constant current for 72 s to ≈ 45 % SOC
2 Rest at zero current for 600 s

We arrive at measurements y = {yi} at time points ti, which are related to the
change of the cell voltage. We introduce the reduced parameter vector θ ∈ P ··=
{θ ∈ Rm|θa ≤ θ ≤ θb}. For a parameter set θ, simulation yields f(tj ; θ) at time points
tj ≤ T , which are controlled by an adaptive time stepping algorithm, that aims to give
local “close–to–linear” behavior for internal states w.r.t. time .
We assume that the observed voltages do not coincide exactly with the true ones of the
battery at measured points, but rather that they are subject to Gaussian noise with
variance σ2 – see the observation model in (3.12) in Section 3.2.
Since we do not know much about the parameter set, we choose the parameters in θ,
as depicted in Table 4.11. Since the magnitudes of the parameters span a wide range,
we introduce θ̃ as the transformed parameter vector with logarithmic scaling applied.
Since early tests revealed high correlation between ka and kc, we introduced a combined
factor of ka:c ··= ka/kc instead of ka. For the transformed parameters, we assume an
uninformative, flat prior. For the update, we use a random walk proposal kernel using
Gaussian distribution initialized to R0 = 0.001θ̃0. The measurement noise deviation
and noise in (3.40) were set at σ = 10−3V, which is considered a realistic value.

Table 4.11.: Reduced parameter set under test: The table shows initial values θ0, lower
bounds θa, upper bounds θb, the applied scaling and the target values of the parameters.

Name Initial
value θ0

Lower
bounds θa

Upper
bounds θb

Scaling
θ̃(θ) Target θ̄

Ds,c 4.0× 10−16 10−18 10−13 log10(θ × 1018) 4.0× 10−17

Ds,a 4.5× 10−14 10−15 10−9 log10(θ × 1015) 4.5× 10−13

D` 6.0× 10−10 10−15 10−8 log10(θ × 1015) 4.0× 10−11

µ` 1.0× 10−5 10−12 1 log10(θ) 0.1
kc 9.0× 10−5 10−9 10−2 log10(θ × 109) 9.0× 10−4

ka/kc 5.0 10−2 102 log10(θ × 102) 1

4.7.1.2. Posterior Variability of Parameters

Due to the high stiffness of the model, the first run of a sampling chain is performed
for parameters θ0 using adaptive time step sizes. The resulting time points tj are saved
for later reuse in subsequent model evaluations.
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The sampling is performed similar to the way proposed by Solonen et al. (2012).
It is done in parallel independent chains using Metropolis with adaptive proposal
distributions q(θ̂|θn) ∼ N (θn, R

2
n). The proposal deviation is set Rn = R0 for n <

20 and for n ≥ 20, it is updated to Rn = chol(Cov(θstart, . . . ,θchainsn)) + εΣ. The
computation of the Covariance across all available samples starting from some index
“start” is performed in a dedicated server, which is the only connection between the
chains. To increase adaptivity, “start” grows from 0 by 0.49 per new parameter set per
chain. To ensure that Rn does not vanish, we add εΣ = 0.001R0. Because of the “flat”
prior and symmetric proposals, the acceptance α becomes

(4.10)α
(
θn, θ̂

)
= min

1, π(θ̂)
π(θn)

 .
To further speed up computation, the idea of “Early Rejection (ER)” was adopted,
which was first applied by Beskos et al. (2006) and Papaspiliopoulos & Roberts (2008).
First, a random number e ∈ (0, 1) is chosen. Simulation is then executed stepwise, and
in every time step tj

e <
j∏

k=1

L(yk|f(tk; θk+1))
L(yk|f(tk; θk)) (4.11)

is evaluated, and the simulation is aborted as soon as the condition is violated.
As target value y, we chose a simulated measurement by running the model at the target
parameters θ̄. To avoid “inverse crime”, the reference model f̄

(
θ̄
)

was evaluated at
different points in time ti 6= tj than the model f (θ).
Three tests were performed to evaluate the sampling algorithm:

• Parallel simulation without noise – The simulation was performed in six parallel
chains. The start parameters were set to θ0. All chains were stopped at the
same time after they had reached a little more than 20000 evaluations. The first
10000 samples per chain were discarded as a “burn–in” period to allow π (i.e. the
distribution of the Markov chain) to reach equilibrium distribution.

• Parallel simulation with noise – The start parameters were set to θ̄, random
Gaussian noise was applied to the target voltage with standard deviation σ =
10−3V. The simulation was performed in five parallel chains. The simulation was
aborted after all chains had reached a little more than 2500 evaluations. The
first 1000 samples per chain were discarded as a “burn–in” period.

• Individual simulation with noise – Although settings were the same as for the
parallel simulation with noise, this simulation was performed in three chains with
no connection.

Figure 4.14 shows the results of the input profile i (t) as defined in Table 4.10 and the
results for the target, as well as the best evaluation of the simulation without noise. The
two voltage curves almost coincide by visual inspection. This is also confirmed by the
L2-norm evaluating to 4.9296× 10−4, which is computed by projecting the simulation
curve linearly onto the target curve’s time points and executing the trapezoidal rule of
the squared differences at these points. The statistics of the estimated parameters and
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Figure 4.14.: Comparison of the synthetic target voltages and final voltages after estimation
of the parameter set of interest θ

Table 4.12.: Results of the uncertainties: Abbreviations are: #A Parallel chains without
noise, #B Parallel chains with noise, #C,#D,#E individual chains with noise, Ref Target
parameters θ̄

D̃s,c D̃s,a D̃` µ̃` k̃c k̃a:c

#A 1.601±0.002 2.662±0.019 4.604±0.016 −1.025±0.063 5.957±0.075 1.994±0.078
#B 1.603±0.002 2.666±0.018 4.592±0.015 −0.969±0.056 6.044±0.093 1.908±0.096
#C 1.603±0.002 2.662±0.016 4.603±0.005 −1.003±0.003 5.960±0.008 1.996±0.008
#D 1.603±0.002 2.665±0.017 4.590±0.015 −0.962±0.058 6.038±0.08 1.915±0.082
#E 1.605±0.002 2.648±0.011 4.598±0.015 −1.001±0.057 6.025±0.09 1.928±0.093
Ref 1.602±0 2.653±0 4.602±0 −1.000±0 5.954±0 2.000±0

uncertainties are displayed in Table 4.12.
Figure 4.15 shows the posterior distributions of the parameters. Although the noiseless
test was expected to show very little standard deviation, it is remarkable that the error
made by interpolation of the values at time points from tj to ti seems to dominate the
results. Furthermore, it is evident, that the individual chains do not to sample from
the entire distribution, as the statistics show very little deviation from the starting
point. This can also be seen in the scatter plots in Figure 4.16. Samples of the parallel
chains cover large areas in the plots, whereas samples of the individual chain cover a
slightly smaller part only and in a more dense fashion.
Figure 4.16 also reveals the strong dependence between D` and µ`, and kc and ka,
respectively. These strong correlations and the shape of the posterior distributions also
indicate the logarithmic scaling and selection of ka:c instead of ka. Direct sampling of
all factors without the transformation and combination applied would have lead to
statistical and computational inefficiency.
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Table 4.13.: Results of the Integrated Autocorrelation Times τ

MCMC τ -D̃s,c τ -D̃s,a τ -D̃` τ -µ̃` τ -k̃c τ -k̃a:c

#A-1 51.3 56.6 46.7 45.5 55.5 55.7
#A-2 67.1 49.4 52.7 55.3 48.6 48.8
#A-3 65.8 49.4 54.2 56.9 45.7 46.3
#A-4 67.5 44.6 53.7 48.2 55.6 56
#A-5 77.8 53.5 63.8 63 62.3 62.7
#A-6 45.1 45.4 60.4 60.3 53.6 53.8
#B-1 30.9 39.4 49.5 50 33.5 33.3
#B-2 35.4 41.8 45.2 54 55 54.6
#B-3 40 37.1 43.2 43.5 44.3 44.4
#B-4 40.7 28.4 41.2 40 31.9 32.2
#B-5 41.8 35.3 47.7 53.8 36.4 35.5
#C 26.1 21.3 28.6 25.5 19.5 18.9
#D 26.8 31.9 39.2 45.3 33.7 34.6
#E 30.5 54.4 49.2 53.5 26.1 26.3

4.7.1.3. Statistical efficiency

To assess the statistical efficiency, we use the measure of integrated autocorrelation
time (iACT). The iACT gives the number of updates of the MCMC algorithm to give
one effective independent sample. It was estimated for the posterior distributions by
estimating the autocorrelation functions (ACFs) for all parameters. Ideally, the ACF
for a stationary time series with little or no serial dependence reach zero quickly for
increasing lag. Since the example ACFs in Figure 4.17 exhibit similar behavior, we
conclude that only little serial dependence is present in the chains. To finally compute
the iACT from the ACF, we utilize the method proposed by Geyer (1992). This method
makes use of the pairwise summation of the ACF at consecutive lags and thus yields
useful overestimates of the iACT – see Table 4.13. The number of updates to give
one effective independent sample τ ranges between 19 and 78. The effective sample
numbers of the implemented MCMC algorithms vary between 1.3 % and 5 % of the real
sample numbers. This makes the algorithms useful, but still slow, as a single sample
evaluation takes a long time.

4.7.1.4. Computational issues

In (4.11), we described the applied reduction of work load during the sample evaluation.
ER had a very high impact on the parallel chains without noise. Due to the nature
of the model, it is possible to stop many evaluations at a very early stage because of
extreme deviations in the output or numerical issues that may arise, since not every
possible parameter combination is feasible. The effective work load could be reduced
by 67.7 %, i.e. three times as many samples could be evaluated than using the regular
approach.
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4.7.2. UQ for SPM

The division in this section follows the same system as in the previous section. In
contrast to the previous section, results presented here are produced on the basis of
a very fast implementation of the SPM by F. Pichler (2018). The measurement data
presented Section 4.1 was used as a realistic target for the algorithms.
It is worth to note that this section may be considered the logical successor to Sec-
tion 4.6.1.

4.7.2.1. Modeling of the Prior

The SPM in this section is uniquely identified by 44 parameters, which are listed in
Table 4.14 along with their respective boundaries. The parameters to be investigated
are:

• the inner resistance,
• diffusion coefficients (anode and cathode),
• reaction rates (anode and cathode), and
• active mass (anode and cathode),
• the initial lithiation of the anode, as well as
• the offset of the UOCP-curve in the cathode.

A total of 15 terms in the Redlich-Kister expansion are used to define the UOCP-curves
in each electrode, i.e. both anode and cathode. The first RK-coefficient in the anode
Aa,0 is but always set to zero due to linear dependency to Ac,0. Furthermore, particle
radii, material densities and specific capacities are held constant at all times, as they
are considered material related constants. This parameter set is subject to parameter
estimation, for further uncertainty quantification, we restrict the set of parameters
by not including higher order RK-coefficients. Thus, the total number of parameters
is 39 for the parameter estimation step at the beginning and 9 for the subsequent
uncertainty quantification subject to box constraints, i.e. 28 RK-coefficients are retained
at their previously estimated values. Both radius parameters were fixed to the result
of the preceding optimization step, as the effect seen on the resulting voltage cannot
be attributed separately to diffusion and radius. The starting point for the sampling
algorithm is taken from the identification framework.
For better numerical treatment and restriction, as well as taking into account the
interdependence of parameters, we apply a transform θ̃ (·) on the parameters θ on
the basis of knowledge gained in Section 4.7.1.1. Due to the wide range of possible
magnitudes of diffusion coefficients and kinetic rates in literature – 8 to 14 orders
of magnitude, respectively –, we apply logarithmic scaling to these parameters from
the framework point of view. The remainder of the parameters was scaled by their
estimated characteristic value.

(4.12)

θ1 = D̃c = log Dc

R2
c10−6
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Table 4.14.: SPM Model parameter values and ranges used to define the UQ

Parameter Symbol Value

Cathode Diffusion Coefficient Dc/rc ∈ (10−6, 10−3)
Anode Diffusion Coefficient Da/ra ∈ (10−6, 10−3)

Anode initial SoC ξa,0 ∈ (0.9, 1.0)
Inner Resistance Rs ∈ (0.03, 0.07)

Cathode Active Mass mc ∈ (0.02, 0.052)
Anode Active Mass ma ∈ (0.01, 0.034)

Cathode Reaction Rate log kc ∈ (−20,−1)
Anode Reaction Rate log ka ∈ (−23, 10)
Cathode OCV offset Ac,0 ∈ (3, 4)

Cathode Particle Radius rc 1.08118042 · 10−6

Anode Particle Radius ra 10−7

Cathode active material density ρc 4450
Anode active material density ρa 2260

Cathode specific capacity Cc 278.9052
Anode specific capacity Ca 371.9112

Cathode 1st RK Coefficient Ac,1 −6.21419312054 · 10−1

Cathode 2nd RK Coefficient Ac,2 −4.30301784249 · 10−2

Cathode 3rd RK Coefficient Ac,3 −1.22016011635 · 10−1

Cathode 4th RK Coefficient Ac,4 −3.08693161534 · 10−2

Cathode 5th RK Coefficient Ac,5 −4.58298788314 · 10−1

Cathode 6th RK Coefficient Ac,6 1.22050353718 · 10−2

Cathode 7th RK Coefficient Ac,7 −5.72484625463 · 10−1

Cathode 8th RK Coefficient Ac,8 1.33488740252 · 10−1

Cathode 9th RK Coefficient Ac,9 −1.73067297349 · 10−1

Cathode 10th RK Coefficient Ac,10 1.04461741237 · 10−1

Cathode 11th RK Coefficient Ac,11 6.08053240235 · 10−1

Cathode 12th RK Coefficient Ac,12 −1.18509766977
Cathode 13th RK Coefficient Ac,13 −5.76553869814 · 10−2

Cathode 14th RK Coefficient Ac,14 2.26556461121 · 10−2

Anode OCV offset Aa,0 0
Anode 1st RK Coefficient Aa,1 −2.18795896469 · 10−1

Anode 2nd RK Coefficient Aa,2 1.54704347227 · 10−2

Anode 3rd RK Coefficient Aa,3 −2.09151367314 · 10−3

Anode 4th RK Coefficient Aa,4 −1.30135546857 · 10−1

Anode 5th RK Coefficient Aa,5 −3.42650622958 · 10−2

Anode 6th RK Coefficient Aa,6 8.28638329842 · 10−1

Anode 7th RK Coefficient Aa,7 −2.38642439510 · 10−1

Anode 8th RK Coefficient Aa,8 −2.24879248192
Anode 9th RK Coefficient Aa,9 1.43322197461
Anode 10th RK Coefficient Aa,10 2.41299229653
Anode 11th RK Coefficient Aa,11 −9.80092577782 · 10−1

Anode 12th RK Coefficient Aa,12 −2.25153043555
Anode 13th RK Coefficient Aa,13 −1.15378028002 · 10−2

Anode 14th RK Coefficient Aa,14 1.24600653963
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θ2 = D̃a = log Da

R2
a10−6

θ3 = ξ̃a,0 = ξa,0

0.95

θ4 = R̃s = Rs

0.05
θ5 = m̃c = mc

0.036
θ6 = m̃a = ma

0.022
θ7 = k̃c = log kc + 10.5
θ8 = k̃a:c = log ka − log kc

θ9 = Ãc,0 = Ac,0

3.5

The prior uncertainty in these parameters is given as an uninformative flat prior in
the transformed parameter space in a maximum possible bounding box, as shown in
Table 4.14. The measurement uncertainty is specified as σ = 0.015 V, which exceeds the
equipment uncertainty of 0.02 % FSR, translating to approximately σe = 0.000 29 V.
For the test example, 4 731 957 samples were drawn from the posterior distribution
using effective sampling after a burn-in period of 3600 samples, i.e. after four adaptation
steps of the proposal distribution. Figure 4.18 shows the evolution of the log-likelihood
function of the entire chain. There is no sign of a change in the trend of the likelihood,
equilibrium is reached.
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Figure 4.18.: Results of the log-Likelihood of the sampled MCMC simulations (after
burn-in).

For every sample, 15 evaluations of the model are performed in parallel selecting γk

according to (3.54). We freely choose γk = 2k for k ∈ {0, 4, 3, . . . ,−9,−10} to enable
wider spread of proposed samples.
The sampling is performed with an adaptive proposal distribution of Variance C(0)

j,j for
900 samples and updated every 900 samples afterwards.
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4.7.2.2. Posterior Variability of Parameters

MCMC sampling does not explore the entire posterior, therefore, to the best of our
knowledge, assuming to have found the global optimum after applying the hybrid
optimization method of Reddy et al. (2019) and sample from the distribution in its
vicinity.
Figure 4.19 shows the sampled probability distributions of the marginal distribution
per parameter in θ from the sampled posterior. The sampled posterior distributions
show significant shapes compared to the uninformative (flat) prior. As expected due to
the uninformative prior, the maximum values (modes) of the PDFs in Figure 4.19, i.e.
the maximum a posteriori values, coincide well with the previous optimization results
presented in Section 4.6.1, i.e. the maximum likelihood up to scale. The mismatch of
the mode and the optimization result of the parameter k̃a:c and the wide spread of the
distribution, although cut at the upper boundary of the box constraints, indicate its
insignificance on the model output.
Although the procedure from the optimization step in Section 4.6.1 resulted in a single
usable parameter set, it is remarkable that there exists strong correlation between
several parameters, e.g. between ξ̃a,0, Ãc,0, m̃a,c and m̃a,a there exists a reasonable
relationship, as each of these parameters offsets the output cell voltage in a very similar
way. Figure 4.20 partially confirms this by showing a rotated ellipsoidal distribution
in the scatterplots of ξ̃a,0 versus m̃a,c, m̃a,a and Ãc,0, respectively, and other pairwise
combinations among this set of four parameters. Furthermore, Figure 4.20 shows a
very strong correlation between R̃s and k̃c. Both parameters contribute to the full cell’s
overpotential depending on the applied current Iapp, as can be seen from equations
(2.13), (2.16), (2.17) and (2.18). Eventually, we report the results of the estimated
values and their respective 95 %-confidence intervals in Table 4.15, taking into account
the iACT presented in the next section.

4.7.2.3. Statistical efficiency

To assess the statistical efficiency, we use the measure of iACT. The iACT yields
the number of successive updates of the MCMC algorithm that yield one effective
independent sample. It is estimated for the posterior distributions by estimating the
ACF for all parameters. Ideally, the ACFs for a stationary time series with little
or no serial dependence reach zero quickly for increasing lag. We present the ACFs
in Figure 4.21 for a maximum lag of 800. Since the functions exhibit the expected
dropping behavior, we conclude that strong serial dependence is present in the chain,
but this may be reduced by skipping the number of samples resulting from computing
the iACT from the ACF.
To finally compute the iACT from the ACF, we utilize the method proposed by Geyer
(1992) again. This method makes use of the pairwise summation of the ACF at
consecutive lags and thus yields useful overestimates of the iACT. The number of
updates to yield independent samples from the chain ranges between 16 and 760. The
effective sample numbers of the implemented MCMC algorithms vary between 0.03 %
and 0.7 % of the sampling iteration numbers. This makes the algorithms useable, but
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very costly in terms of computation time. Despite the small number of independent
samples, Table 4.15 shows a very tight region of confidence for each parameter that is
well below 0.5 % of each respective parameter.
The algorithm was evaluated on an Intel Xeon CPU E5-2630 v3 at 2.40 GHz with 15
parallel evaluations for the DR part leading to a single sample in the chain. All samples
in the chain resulted in an average model evaluation time of 0.36 s on the basis of the
implementation in F. Pichler (2018).

Table 4.15.: SPM sample results and 95 % confidence intervals

Parameter Initial
Value

Resulting
Mean 95 % Interval

Cathode Diffusion Coeff. D̃s,c 2.201828 2.2019 ±1.054 · 10−4

Anode Diffusion Coeff. D̃s,a 1.914624 1.9144 ±1.102 · 10−4

Anode initial SoC ξ̃a,0 0.989519 0.98954 ±2.028 · 10−5

Inner Resistance R̃s 0.711943 0.71386 ±4.782 · 10−4

Cathode Active Mass m̃c 0.597076 0.59709 ±7.961 · 10−5

Anode Active Mass m̃a 0.652706 0.65283 ±1.904 · 10−4

Cathode Reaction Rate k̃c −2.9707 −2.957 ±2.394 · 10−3

Anode Reaction Rate k̃a:c 11 6.6442 ±1.377 · 10−2

Cathode OCV offset Ãc,0 1.05888 1.05888 ±1.981 · 10−5
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Figure 4.21.: Estimated Autocorrelation Function (ACF) for the MCMC simulations (The
95 % confidence intervals from the estimated asymptotic variance are superimposed with
shaded patterns).
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5
Conclusion
In this work, approaches for efficient and effective modeling of complex coupled systems
of PDEs, their parameter identification and Bayesian uncertainty quantification are
presented and demonstrated using the example of a variety of automotive lithium-ion
cell models. These subject areas are also reflected in the title of the work itself.
Overall, this thesis provides contributions to

• Numerical techniques,
• Sensitivity analysis,
• Optimization algorithms,
• Uncertainty Quantification.

The fundamentals of mathematical modeling of Lithium-Ion cells, which provides the
foundations of this thesis, are presented in Chapter 2. The field of mathematical
modeling of batteries is a rather recent and very active research field. There exist
a range of semi-empirical models that very well manage to capture the behavior of
a cell on the basis of only few abstract parameters. More sophisticated models, as
introduced by Doyle et al. (1993), provide a very attractive trade-off of complexity and
mechanistic understanding of fundamental processes in a cell. The attractiveness of
the approach lies in the great insight that these models provide and the perspective of
incorporating aging effects and manufacturing influences, which results in a wide range
of not-yet-standardized model formulations. Five model variants are presented, which
provide fast evaluation for each of their respective purpose. These models are used in
the later part of the thesis combined with the developed optimization methods.
The major new part of Chapter 3, the surrogate modeling of the previously defined
models is described and the space mapping for optimization of each pair of coarse and
fine models is discussed. The rigorous formulation of the optimization problem of the
non-linear electro-chemical model is derived by utilizing the linearized model. This
work shows the application of the space mapping approach to speed up estimation of
the parameters. This happens through substituting model evaluations by the response
of a fast surrogate model, i.e. a linearized version of the battery model. Afterwards, the
obtained parameters are mapped back from the tangent space into the original model’s
parameter space by an iteratively refined mapping function. The use of the linearized
version as a coarse model and the adapted space mapping algorithm have been stated.
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Further, a consistent formulation of the adjoint model is derived to solve the problem
of missing gradients of the optimization problem in a single model evaluation.
Using modern High-Performance Computing implementations of the electro-chemical
models permit optimization using stochastic algorithms. In this approach, the problem
of false convergence in local minima is mitigated by commonly known global optimiza-
tion techniques. Thus, the recently developed SOHO algorithm loosens the dependency
on parameter starting point locations and manages to establish sensible results in
reasonable time.
Finally, Chapter 3 presents a Bayesian inference framework, where all parameters
are treated as random variables. Several MCMC algorithms are presented, which
provide enhancements over the original Metropolis algorithm w.r.t. statistical efficiency,
computational speed and applicability. In addition, implementation details are given
to bootstrap the algorithms and additional considerations w.r.t. the application.
All of the algorithms devised in this chapter are tested in the last part of Chapter 4
and improvements in terms of efficiency and results could be achieved.
Chapter 4 combines the models of Chapter 2 with the computational optimization
techniques developed in Chapter 3. Results of a SA are presented, followed by results
of applying the space mapping technique to optimize parameters on the basis of the
SA results. Two variants of the previously presented MCMC algorithms are presented
with regard to one variant of the electro-chemical models each.
As a first outcome, SA results from applying the MOAT global parameter screening
yield knowledge about the parameter sensitivities of a complex electro-chemical model.
Based on the results, three parameters are selected for validation of the space mapping
algorithm. The validation of the algorithm happens through applying it on a synthetic
fitting problem in three dimensions, where parameters of a simulation are recovered
starting from a different point in the parameter space. The gradient estimation of the
optimization sub-problems is compared between finite differences and using the adjoint
system. In addition, further numerical treatment of the adjoint system is presented to
facilitate and speed up the solution of the overarching problem.
In addition, successful application of the space mapping algorithm to FEM-based electric
3D model of a lithium cell using coupled 0D second-order RC models is presented. This
is done by substituting model evaluations by the response of a fast surrogate model,
i.e. a single second-order RC model. The obtained parameters are mapped into the
original model’s parameter space by an iteratively refined mapping function. Results
of the algorithm compared to the straight forward direct approach applied to three
pulse measurements at different temperatures are given. Comparison results indicate
a remarkable reduction in computational effort of approximately 87 %, i.e. a speed
up factor of 8, while maintaining very high accuracy of the results. Surrogate-based
optimization with space mapping has proven to be of great help in the parameter
identification process, bearing in mind that for typical battery models not only three
different temperatures are chosen in order to parametrize the equivalent-circuits.
The second part demonstrates the efficient solution of the parameter identification
problem to match the voltage obtained from both, the SPM and the DFN, and from
experimental measurements. A total of 39 and 44 parameters are used to define the
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SPM and DFN, respectively. The minimization of the error between computed and
measured voltage is performed using an efficient Single Objective Hybrid Optimizer
(SOHO) algorithm. The parameters of the SPM are identified within one hour while
the parameters of the DFN are identified within one day. Both models yield an average
error and standard deviation below 10 mV, which is a remarkable result. A posteriori
sensitivity analysis is performed on the converged parameters of both models and the
degree of sensitivity of each parameter identified.
The last part of Chapter 4 shows the applicability of parameter estimation and
uncertainty quantification of lithium-ion cells by Bayesian model inversion using the
MCMC sampling approach. In this context, estimating dynamic parameters and
their uncertainties in the DFN is focused. Modeling of the prior and the set-up of
the algorithm is done in a very general way, applicable to a wide range of complex
models. Due to the complexity of the model, a parallelized approach was devised and
implemented, including “Early Stopping” as an additional means of reducing computing
times. The results of applying the algorithm against synthetic measurements were
compared and the statistical efficiency was presented by investigating the iACT.
The analysis of the statistics and the iACT indicate a sharp distribution and a higher
statistical efficiency for individual chains. Only the scatter plots reveal the inferior
sample coverage of the posterior in the individual chain case. This highlights the
advantage of using parallel chains.
A more realistic example was presented in the last section. This section demonstrates
the applicability of the MCMC sampling approach on the basis of real measurement
data. Due to the complexity of the model, the approach implements “Delayed Rejection”
in parallel and “adaptivity” as a means of improving the statistical and computational
efficiency.
Output of this framework is the parameters of the lithium-ion cell model with quantified
uncertainties. Marginal distribution and 2D-scatter plots are given to report the
results of the sampling. The statistical efficiency is reported by investigating the
integrated auto-correlation time. The proposed approach is shown to be appropriate
for investigating the dynamic properties of lithium-ion cells in the presence of noise.

5.1. Outlook

Even though this thesis contributes a number of new views, results and techniques to
the field, there emerges a wide range of prospective future work.
Modeling of Lithium-Ion cells is an ongoing and very active field of research. Recent
advances have been made to combine results of even more detailed models on the
basis of Molecular Dynamics (MD) and Density Functional Theory (DFT) to model
interphase and transport effects on a molecular level. On the other hand, long term
aging effects are subject to research projects with the aim to establish a single model
formulation that incorporates them along with short-term dynamics. Hence, the most
crucial open problem, that requires further work, is to harmonize the models and
establish one standardized formulation that incorporates the mentioned effects.
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Remaining tasks for further investigation in the context of Chapter 2 may be summarized
as

• Model reduction and performance improvements of electro-chemical models to
be incorporated in MPC.

• Other model reduction techniques of systems of PDEs to devise a faster coarse
model

• Incorporation of proper thermal dynamic behavior into the model
• Incorporation of mechanical stresses
• Transform into frequency domain

There exist various ways of model reduction, such as the Direct Realization Algorithm
(DRA), Proper Orthogonal Decomposition (POD) and Machine Learning (ML), that
seem promising tools to cut down computational requirements, that would possibly
enable implementation of the more complex models in the context of MPC in embedded
systems. Also, after making some first steps with POD, this appears to be very well
suited for use in the context of space mapping in combination with an adjoint model,
as the latter may also be represented by a transform of the POD system.
On the other hand, increasing the complexity of the model apparently is unavoidable,
as the incorporation of proper thermo-dynamic behavior is a key cornerstone to enable
accurate aging mechanics in simulation.
As frequency domain based IS is a very established tool to estimate parameters for
semi-empirical RC-models, it is reasonable to assume that a similar approach could be
followed for electro-chemical models as well. In particular, the complex impedance that
is acquired for a IS offers a unique mapping between model results and measurements,
as there exists a clear Euclidean distance measure in the complex plane, as opposed to
the simple sum of squared differences in the time domain case.
With respect to the sensitivity analysis, the following points seem sensible future tasks:

• Radial enhanced sampling for uniformity,
• Full variance decomposition for global sensitivity analysis.

Although sensitivity analysis has been performed already, Radial enhanced sampling for
uniformity (ReSU) appears to be a very promising technique to perform the parameter
ranking task by reducing the required number of model evaluations even further. This
would provide an interesting result for validation of the MOAT-result or possibly
even improve it. On the other hand, full variance decomposition could serve the same
purpose by utilizing the virtually unlimited amounts of available cloud-computing power
with very high reliability. In addition to the validation, this could also yield results
regarding the correlation of (quasi-)stationary and dynamic effects and influences.
Another issue for improving the MCMC methods is given by

• Asymptotically exact MCMC
• Approximation and sampling using the tensor train decomposition.
• Full parameter investigation

Similar to the space mapping approach in the deterministic case, replacing the forward
model with a surrogate decouples the required number of model evaluations from the
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length of the MCMC chain, and thus could vastly reduce the overall cost of inference
(Conrad, 2014).
In a similar sense, tensor train decomposition seems to be a very promising recent
development, that builds on constructing a tensor-train approximation to the target
probability density function, which effectively provide a low-rank surrogate. First results
show, that the tensor-train method outperforms the DRAM by orders-of-magnitude
(Dolgov et al., 2018).
A very detailed sampling result has already been achieved, nevertheless a result w.r.t.
the full parameter set is still pending. However, additional work has to be performed
to investigate the correlation between (quasi-)stationary and dynamic effects and
influences, such as the OCV and the total active mass of lithium.
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A
Appendix
A.1. Scaling of the System

Due to problems with solving the adjoint system described in Section 3.2.1, it became
clear that the “dual” nature of the adjoint system in a numerical sense led to a “mix-up”
of all system variables in their respective domains. In other words, while the original
system described as an operator in (2.37) shows only little connection between variables,
mainly connected by the linearized Butler-Volmer derivative ∂uĵ, the adjoint system
in (3.21) shows a tight interaction between all adjoint variables pi in every equation.
Thus, small values in the 1D-domains are added to and subtracted from very high
values in the 2D-domains of particle concentrations, due to their high sensitivities,
and numerical quantization noise is amplified throughout the computations leading
to divergent solutions. Switching from direct to iterative solvers could mitigate the
effects, but to further avoid this behavior, several improvements to the original system
have been devised and adopted in the linear and the adjoint system.
We start by defining independent variables in space and time – x, r, t, respectively –
and transform their associated derivatives. Choosing xc as a scaling factor in spatial
dimensions, this results in:

(A.1a)x̂ = x

xc

⇒ x = xcx̂

(A.1b)∂

∂x
= 1
xc

∂

∂x̂
= 1
xc

∇̂, to ease reading

(A.1c)r̂ = r

xc

⇒ r = xcr̂

(A.1d)∂

∂r
= 1
xc

∂

∂r̂

By choosing a single, spatial scale factor of xc rather than introducing separate factors,
e.g. rc for r, we may define a single scaling factor for time t, also depending on space,
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as known from literature (Langtangen & Pedersen, 2016).

(A.2a)t̂ = t
x2

c

Dref

⇒ t = x2
c

Dref
t̂

(A.2b)∂

∂t
= Dref

x2
c

∂

∂t̂

Further, we introduce a reference value for scaling material parameters:

(A.3a)D̂s = Ds

Dref

(A.3b)σ̂s,i = σs,i

σref

(A.3c)κ̂ = κ

κref

Note, that the parameters for σs depend on the electrode i such that it can compensate
for different values in each domain.
Eventually, we introduce scaling for the concentrations cs and c`, as part of the
dependent variables.

(A.4a)ĉs = cs

cref

(A.4b)ĉ` = c`

cref

Again, there is a common reference shared between solid and liquid concentrations to
simplify derivation and implementation.
Substituting each occurrence in the original system (2.20) leads to:

(A.5a)−∇̂ ·
(
σ̂s,i∇̂ϕs

)
= − x2

c

σref,i
Aij

∗
BV, in Q̂′

1

(A.5b)−∇̂ ·
(
κ̂`(ĉ`cref)∇̂ϕ` + RT

zF
κ̂`(ĉ`cref)t+`

1
ĉ`

∇̂ĉ`

)
= x2

c

κref,i
Aij

∗
BV, in Q̂1

(A.5c)∂ (ε`ĉ`)
∂t̂

− ∇̂ ·
(
D̂`

(
∇̂ĉ` + zF

RT
µ`ĉ`∇̂ϕ`

))
= x2

c

Dref

Ai

zF
j∗

BV, in Q̂1

(A.5d)∂ĉs

∂t̂
− 1
r̂2

∂

∂r̂

(
D̂sr̂

2∂ĉs

∂r̂

)
= 0, in Q̂2

subject to boundary conditions:

(A.6a)ϕ̂s = 0, on Σa ··= Γa × [0, T ]

(A.6b)−σ̂s∇̂ϕs = −xc

σref
i (t) , on Σ̂c ··= Γ̂c × [0, T ]

(A.6c)−D̂s
∂ĉs

∂r̂
= −xc

crefDref

1
zF

j∗
BV, on Σ̂Ro ··= Γ̂Ro,a ∪ Γ̂Ro,c × [0, T ]
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A.2. Discretization of the Linear System

To spatially discretize the system, we start by replacing the test functions φ and ψ in
(2.36) by compact test functions φi and ψk

(A.7a)
∫

Ω

(
α1 (û; µ̂) ∂xϕ` + α2 (û; µ̂) ∂xc`

)
∂xφi

−
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3 (µ̂) ∂t (ϕs − ϕ`)

)
φi dx = 0,

(A.7b)
∫

Ω
α4 (µ̂) ∂xϕs ∂xφi +

(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3 (µ̂) ∂t (ϕs − ϕ`)

)
φi dx

− I φi (Γc) = 0,

(A.7c)
∫

Ω
ε`i ∂tc` φi +

(
α5 (û; µ̂) ∂xc` + α6 (û; µ̂) ∂xϕ`

)
∂xφi

− α7 (µ̂)
(
∂uĵ

T v + ∂µĵ
T λ+ ĵc + α3 (µ̂) ∂t (ϕs − ϕ`)

)
φi dx = 0,

(A.7d)

∫∫
Λa

(
∂tcsa φi ψk + α8 (û; µ̂) ∂rcsa ∂rψk φi

)
r2dr

+R2
a α14 (µ̂)

(
∂uĵ

T v+∂µĵ
T λ+ ĵc +α3 (µ) ∂t (ϕs−ϕ`)

)
ψk (ΓR,a)φi dx= 0

(A.7e)

∫∫
Λc

(
∂tcsc φi ψk + α8 (û; µ̂) ∂rcsc ∂rψk φi

)
r2dr

+R2
c α14 (µ̂)

(
∂uĵ

T v+∂µĵ
T λ+ ĵc +α3 (µ̂) ∂t (ϕs−ϕ`)

)
ψk (ΓR,c)φi dx= 0

In the next step, we apply the method of Galerkin, i.e. we substitute the unknowns by
a linear combination of the basis functions:

ϕ` (x, t) =
∑

j

ϕ̂`,j (t) φj (x)
, ϕs (x, t) =

∑
j

ϕ̂s,j (t) φj (x)
,

c` (x, t) =
∑

j

ĉ`,j (t) φj (x)
,

csa (x, r, t) =
∑

j

φj (x) ĉsa,j (r, t)
 =

∑
j

φj (x)
∑

l

ψl (r) ĉsa,j,l (t)
,

csc (x, r, t) =
∑

j

φj (x) ĉsc,j (r, t)
 =

∑
j

φj (x)
∑

l

ψl (r) ĉsc,j,l (t)
 and

v̂j (t) =


ϕ̂`,j (t)
ϕ̂s,j (t)
ĉ`,j (t)
ĉsa,j,l (t)
ĉsc,j,l (t)
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wherein all unknowns are combined.

(A.8a)

∫
Ω
α1 (û; µ̂)

∑
j

ϕ̂`,j (t) ∂xφj

 ∂xφi + α2 (û; µ̂)
∑

j

ĉ`,j (t) ∂xφj

 ∂xφi

−
∑

j

(∂uĵ
T v̂j (t) + α3 (µ̂) ∂t (ϕ̂s,j (t)− ϕ̂`,j (t)) )φj φi dx =∫

Ω

(
∂µĵ

T λ+ ĵc

)
φi dx,

(A.8b)

∫
Ω
α4 (µ̂)

∑
j

ϕ̂s,j (t) ∂xφj

 ∂xφi

+
∑

j

(
∂uĵ

T v̂j (t) + α3 (µ̂) ∂t (ϕ̂s,j (t)− ϕ̂`,j (t))
)
φj φi dx = I φi (Γc)

−
∫

Ω

(
∂µĵ

T λ+ ĵc φi

)
dx,

(A.8c)

∫
Ω
ε`i ∂t

∑
j

ĉ`,j (t) φj

 φi

+ α5 (û; µ̂)
∑

j

ĉ`,j (t) ∂xφj

 ∂xφi + α6 (û; µ̂)
∑

j

ϕ̂`,j (t) ∂xφj

 ∂xφi

− α7 (µ̂)
∑

j

(
∂uĵ

T v̂j (t) + α3 (µ̂) ∂t (ϕ̂s,j (t)− ϕ̂`,j (t))
)
φj φi dx =∫

Ω
α7 (µ̂)

(
∂µĵ

T λ+ ĵc

)
φi dx,

∫∫
Λa

∂t

∑
j,l

φj ψl ĉsa,j,l (t)
 φi ψk + α8 (û; µ̂) ∂r

∑
j,l

φj ψl ĉsa,j,l (t)
 ∂rψk φi

 r2dr

+R2
a α14 (µ̂)

∑
j

(
∂uĵ

T v̂j (t) + α3 (µ̂) ∂t (ϕ̂s,j (t)− ϕ̂`,j (t))
)
ψk (ΓR,a) φj φi dx =

−
∫

Ω

(
R2

a α14 (µ̂)
(
∂µĵ

T λ+ ĵc

)
ψk (ΓR,a) φi

)
dx,

(A.8d)∫∫
Λc

∂t

∑
j,l

φj ψl ĉsc,j,l (t)
 φi ψk + α8 (û; µ̂) ∂r

∑
j,l

φj ψl ĉsc,j,l (t)
 ∂rψk φi

 r2dr

+R2
c α14 (µ̂)

∑
j

(
∂uĵ

T v̂j (t) + α3∂t (ϕ̂s,j (t)− ϕ̂`,j (t))
)
φj ψk (ΓR,c)φi dx =

−
∫

Ω

(
R2

c α14 (µ̂)
(
∂µĵ

T λ+ ĵc

)
ψk (ΓR,c) φi

)
dx,

(A.8e)

Now we identify three parts of the system, i.e. a Mass matrix M , that consists of
coefficients of the terms that contain time derivatives of the unknowns, a Stiffness
matrix K that consists of coefficients to all other terms that include unknowns and
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a Right hand side vector R that contains all constant values. For computing the
Unknowns v̂, we denote the elements of the identified block matrices:

(A.9a)M i,j
1,1 =

∫
ΩE

α3 (µ̂) φj φi dx

(A.9b)M i,j
1,2 = −M i,j

1,1

(A.9c)M i,j
2,1 = −

∫
ΩE

α3 (µ̂) φj φi dx

(A.9d)M i,j
2,2 = −M i,j

2,1

(A.9e)M i,j
3,1 =

∫
ΩE

α3 (µ̂) α7 (µ̂) φj φi dx

(A.9f)M i,j
3,2 = −M i,j

3,1

(A.9g)M i,j
3,3 =

∫
ΩE

ε`i φj φi dx

(A.9h)M i,j,k
4,1 = −

∫
ΩE

R2
a α3 (µ̂) α14 (µ̂) ψk (ΓR,a) φj φi dx

(A.9i)M i,j,k
4,2 = −M i,j,k

4,1

(A.9j)M i,j,k,l
4,4 =

∫∫
Λa,E

ψl ψk r
2dr φj φi dx

(A.9k)M i,j,k
5,1 = −

∫
ΩE

R2
c α3 (µ̂) α14 (µ̂) ψk (ΓR,c) φj φi dx

(A.9l)M i,j,k
5,2 = −M i,j,k

5,1

(A.9m)M i,j,k,l
5,5 =

∫∫
Λc,E

ψl ψk r
2dr φj φi dx

for the Mass Matrix and

(A.10a)Ki,j
1,1 =

∫
ΩE

α1 (û; µ̂) ∂xφj ∂xφi dx

(A.10b)Ki,j
1,3 =

∫
ΩE

α2 (û; µ̂) ∂xφj ∂xφi dx

(A.10c)Ki,j
2,2 =

∫
ΩE

α4 (µ̂) ∂xφj ∂xφi dx

(A.10d)Ki,j
3,1 =

∫
ΩE

α6 (û; µ̂) ∂xφj ∂xφi dx

(A.10e)Ki,j
3,3 =

∫
ΩE

α5 (û; µ̂) ∂xφj ∂xφi dx

(A.10f)Ki,j,k,l
4,4 =

∫∫
Λa,E

α8 (û; µ̂) ∂rψl ∂rψk r
2dr φj φi dx

(A.10g)Ki,j,k,l
5,5 =

∫∫
Λc,E

α8 (û; µ̂) ∂rψl ∂rψk r
2dr φj φi dx
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for the Stiffness Matrix and

(A.11a)K ′i,j
1,1 = −

∫
ΩE

∂ϕ`
ĵ φj φi dx

(A.11b)K ′i,j
1,2 = −

∫
ΩE

∂ϕs ĵ φj φi dx

(A.11c)K ′i,j
1,3 = −

∫
ΩE

∂c`
ĵ φj φi dx

(A.11d)K ′i,j,k,l
1,4 = −

∫
ΩE

∂csa ĵ φj φi dx

(A.11e)K ′i,j,k,l
1,5 = −

∫
ΩE

∂csc ĵ φj φi dx

(A.11f)K ′i,j
2,1 =

∫
ΩE

∂ϕ`
ĵ φj φi dx

(A.11g)K ′i,j
2,2 =

∫
ΩE

∂ϕs ĵ φj φi dx

(A.11h)K ′i,j
2,3 =

∫
ΩE

∂c`
ĵ φj φi dx

(A.11i)K ′i,j,k,l
2,4 =

∫
ΩE

∂csa ĵ φj φi dx

(A.11j)K ′i,j,k,l
2,5 =

∫
ΩE

∂csc ĵ φj φi dx

(A.11k)K ′i,j
3,1 = −

∫
ΩE

α7 (µ̂) ∂ϕ`
ĵ φj φi dx

(A.11l)K ′i,j
3,2 = −

∫
ΩE

α7 (µ̂) ∂ϕs ĵ φj φi dx

(A.11m)K ′i,j
3,3 = −

∫
ΩE

α7 (µ̂) ∂c`
ĵ φj φi dx

(A.11n)K ′i,j,k,l
3,4 = −

∫
ΩE

α7 (µ̂) ∂csa ĵ φj φi dx

(A.11o)K ′i,j,k,l
3,5 = −

∫
ΩE

α7 (µ̂) ∂csc ĵ φj φi dx

(A.11p)K ′i,j,k
4,1 =

∫
ΩE

R2
a α14 (µ̂) ψk (ΓR,a) ∂ϕ`

ĵ φj φi dx

(A.11q)K ′i,j,k
4,2 =

∫
ΩE

R2
a α14 (µ̂) ψk (ΓR,a) ∂ϕs ĵ φj φi dx

(A.11r)K ′i,j,k
4,3 =

∫
ΩE

R2
a α14 (µ̂) ψk (ΓR,a) ∂c`

ĵ φj φi dx

(A.11s)K ′i,j,k,l
4,4 =

∫
ΩE

R2
a α14 (µ̂) ψk (ΓR,a) ∂csa ĵ φj φi dx

(A.11t)K ′i,j,k
5,1 =

∫
ΩE

R2
c α14 (µ̂) ψk (ΓR,c) ∂ϕ`

ĵ φj φi dx

(A.11u)K ′i,j,k
5,2 =

∫
ΩE

R2
c α14 (µ̂) ψk (ΓR,c) ∂ϕs ĵ φj φi dx
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(A.11v)K ′i,j,k
5,3 =

∫
ΩE

R2
c α14 (µ̂) ψk (ΓR,c) ∂c`

ĵ φj φi dx

(A.11w)K ′i,j,k,l
5,5 =

∫
ΩE

R2
c α14 (µ̂) ψk (ΓR,c) ∂csc ĵ φj φi dx

for the linearization parts of the Stiffness Matrix. We denote the elements of the Right
hand side vector as:

(A.12a)Ri
1 =

∫
ΩE

(
∂µĵ

T λ+ ĵ − ∂uĵ
T û− ∂µĵ

T µ̂
)
φi dx

(A.12b)Ri
2 = I φi (Γc)−

∫
ΩE

(
∂µĵ

T λ+ ĵ − ∂uĵ
T û− ∂µĵ

T µ̂
)
φi dx

(A.12c)Ri
3 =

∫
ΩE

α7 (µ̂)
(
∂µĵ

T λ+ ĵ − ∂uĵ
T û− ∂µĵ

T µ̂
)
φi dx

(A.12d)Ri,k
4 = −

∫
ΩE

R2
a α14 (µ̂)

(
∂µĵ

T λ+ ĵ − ∂uĵ
T û− ∂µĵ

T µ̂
)
ψk (ΓR,a) φi dx

(A.12e)Ri,k
5 = −

∫
ΩE

R2
c α14 (µ̂)

(
∂µĵ

T λ+ ĵ − ∂uĵ
T û− ∂µĵ

T µ̂
)
ψk (ΓR,c) φi dx

For a parabolic, linear system, the initial value problem can be stated as:

(A.13)
∂tv̂ = A v̂

v̂ (t0) = v̂0

In this sense, the full parabolic, linear system can be given in general as

(A.14)M ∂tv̂ + (K +K ′) v̂ = R

showing the block matrix structure, it can be stated more clearly as

(A.15)


M1,1 M1,2 0 0 0
M2,1 M2,2 0 0 0
M3,1 M3,2 M3,3 0 0
M4,1 M4,2 0 M4,4 0
M5,1 M5,2 0 0 M5,5


∂v̂

∂t

+
(

K1,1 0 K1,3 0 0

0 K2,2 0 0 0
K3,1 0 K3,3 0 0

0 0 0 K4,4 0
0 0 0 0 K5,5



+


K ′

1,1 K ′
1,2 K ′

1,3 K ′
1,4 K ′

1,5
K ′

2,1 K ′
2,2 K ′

2,3 K ′
2,4 K ′

2,5
K ′

3,1 K ′
3,2 K ′

3,3 K ′
3,4 K ′

3,5
K ′

4,1 K ′
4,2 K ′

4,3 K ′
4,4 0

K ′
5,1 K ′

5,2 K ′
5,3 0 K ′

5,5


)
v̂ =


R1
R2
R3
R4
R5
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Remark: Indices of the high dimensional components M i,j,k,l
y,x have to be mapped to

the matrix entries M i+kNdx,j+lNdx

y,x , M i,j,k
y,x → M i+kNdx,j

y,x – for Ky,x analogously – and
Ri,k

y → Ri+kNdx

y . The entries of the upper right traingle of the linearization part are
mapped K ′i,j,k,l

y,x → K ′i,j+lNdx

y,x for a single k at the Borders ΓR,i – entries for a different
k are dismissed.
Let v̂k denote an approximate solution of (A.14) at a time

(A.16)t = k∆t, ∀k ∈ [0, . . . , K − 1]

given by a time discretization of resolution ∆t, then we approximate

(A.17)∂tv̂ ≈
v̂k+1 − v̂k

∆t

For solving the system (A.14) we apply the implicit Euler method

(A.18)(M + ∆tK) v̂k+1 = ∆t R +M v̂k,

such that the method is of order 1. Technically, a blended Θ-Method was implemented,
but explicit Euler methods were considered inadequate due to the high stiffness of the
system, as the potential equations lead to zero eigenvalues in the mass matrix which
lead to oscillations.
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A.3. Derivation of the Adjoint System

In this section we elaborate in detail on the derivation of the adjoint system as used
in Section 3.2.1. By means of the Langrangian function L we apply the formal
Lagrange method as described by Tröltzsch (2010). This method is based on the
exact Lagrangian principle, but it differs in that the differential operators −4 and
∂ν are written only formally and all multipliers are considered functions without
specifying their corresponding spaces explicitly. By assuming square integrability of
state, multipliers and their respective derivatives we avoid the use of more general
functionals and write L2 scalar products.
Let us start by defining the cost functional:

J (v, λ) ··=
1
2

∫∫
Σd

(ϕs − ϕ̂s)2 ds(x)dt+ 1
2

l∑
i=1

χi (λi − µ̂i)2 (A.19)

subject to the linearized system defined in (2.31) and (2.32) and the box constraints

λa ≤ λ ≤ λb (A.20)

Remark: For the sake of shortness we omitted the dependencies on space and time.
By ϕ̂s we refer to some predefined values that may have been computed by (2.20) or
measurements. The regularization factors χi ≥ 0 ∈ Rl will be discussed later. Finally,
µ̂i refers to a starting value to initialize the optimization.
We denote the Lagrangian function L associated to the problem:

L ··= L (v, λ, p) = J (v, λ)−
∫∫
Q1

− ∂

∂x

(
α1
∂ϕ`

∂x
+ α2

∂c`

∂x

)
p1 dxdt (A.21)

−
∫∫
Q′

1

(
− ∂ĵ

∂u

T

v − ∂ĵ

∂µ

T

λ− ĵc − α3
∂ (ϕs − ϕ`)

∂t

)
p1dxdt−

∫∫
Σad

(
α1
∂ϕ`

∂ν
+ α2

∂c`

∂ν

)
p2dsdt

−
∫∫
Q′

1

− ∂

∂x

(
α4
∂ϕs

∂x

)
+ ∂ĵ

∂u

T

v + ∂ĵ

∂µ

T

λ+ ĵc + α3
∂ (ϕs − ϕ`)

∂t

 p3 dxdt

−
∫∫

Σad

(
α4
∂ϕs

∂ν
− i

)
p4 dsdt−

∫∫
Σbc

(
α4
∂ϕs

∂ν

)
p4 dsdt−

∫∫
Q1

(
ε`i

∂c`

∂t
− ∂

∂x

(
α5

∂c`

∂x

+ α6
∂ϕ`

∂x

))
p5 dxdt−

∫∫
Q′

1

−α7

∂ĵ
∂u

T

v + ∂ĵ

∂µ

T

λ+ ĵc + α3
∂ (ϕs − ϕ`)

∂t

 p5 dxdt
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−
∫

Ω
ε`i (c` (0)− c`,0) p5 dx−

∫∫
Σad

(
α5

∂c`

∂ν
+ α6

∂ϕ`

∂ν

)
p6 dsdt

−
∫∫∫

Q

(
∂csi

∂t
− 1
r2

∂

∂r

(
α8 r

2 ∂csi

∂r

))
p7 r

2drdxdt

−
∫∫
Λ

(csi (0)− csi,0) p7 r
2drdx−

∫∫∫
ΣR,0

(
α8

∂csi

∂ν

)
p8 r

2ds(r)dxdt

−
∫∫∫
ΣR

α8
∂csi

∂ν
+ α14

∂ĵ
∂u

T

v + ∂ĵ

∂µ

T

λ+ ĵc + α3
∂ (ϕs − ϕ`)

∂t

 p8 r
2ds(r)dxdt,

where ν denotes the exterior normal to its respective boundary.
In the second step, we partially integrate each term in (A.21) containing derivatives.
Applying Green’s Identity twice w.r.t. space

(A.22)

∫
Ω
4f φ dx =

∫
Σ
∂νf φ ds(x)−

∫
Ω
∇f ∇φ dx

=
∫

Σ
∂νf φ ds(x)−

∫
Σ
f ∂νφ ds(x) +

∫
Ω
f 4φ dx

or perform partial integration once w.r.t. time, respectively,

T∫
0

∂tf φ dt = (f φ) (T )− (f φ) (0)−
T∫

0

f ∂tφ dt. (A.23)

Thus, (A.21) is equivalent to the following:

L = J (v, λ)−
∫∫

Σad

−
(
α1
∂ϕ`

∂ν
+ α2

∂c`

∂ν

)
p1 + (α1ϕ` + α2c`)

∂p1

∂ν
ds(x)dt (A.24)

−
∫∫
Q1

−
(
∂

∂x

(
α1
∂p1

∂x

)
ϕ` + ∂

∂x
α2
∂p1

∂x
c`

)
dxdt

−
∫

Ω′
−α3 ((ϕs − ϕ`) (T ) p1(T )− (ϕs − ϕ`) (0) p1(0)) dx−

∫∫
Q′

1

α3 (ϕs − ϕ`)
∂p1

∂t
dxdt

−
∫∫
Q′

1

−∂ĵ
∂u

T

v − ∂ĵ

∂µ

T

λ− ĵc

 p1 dxdt−
∫∫

Σad

(
α1
∂ϕ`

∂ν
+ α2

∂c`

∂ν

)
p2 ds(x)dt

−
∫∫

Σad∪Σbc

−α4
∂ϕs

∂ν
p3 + α4ϕs

∂p3

∂ν
ds(x)dt−

∫∫
Q′

1

− ∂

∂x

(
α4
∂p3

∂x

)
ϕs dxdt

−
∫

Ω′
α3 ((ϕs − ϕ`) (T ) p3(T )− (ϕs − ϕ`) (0) p3(0)) dx−

∫∫
Q′

1

−α3 (ϕs − ϕ`)
∂p3

∂t
dxdt
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−
∫∫
Q′

1

∂ĵ
∂u

T

v + ∂ĵ

∂µ

T

λ+ ĵc

 p3 dxdt−
∫∫

Σad

(
α4
∂ϕs

∂ν
− i

)
p4 ds(x)dt

−
∫∫
Σbc

α4
∂ϕs

∂ν
p4 ds(x)dt−

∫
Ω
ε`i (c`(T ) p5(T )− c`(0) p5(0)) dx−

∫∫
Q1

−ε`i c`
∂p5

∂t
dxdt

−
∫∫

Σad

−
(
α5
∂c`

∂ν
+ α6

∂ϕ`

∂ν

)
p5 + (α5c` + α6ϕ`)

∂p5

∂ν
ds(x)dt

−
∫∫
Q1

−
(
∂

∂x

(
α5
∂p5

∂x

)
c` + ∂

∂x

(
α6
∂p5

∂x

)
ϕ`

)
dxdt

−
∫

Ω′
−α3α7 ((ϕs − ϕ`) (T ) p5(T )− (ϕs − ϕ`) (0) p5(0)) dx

−
∫∫
Q′

1

α3α7 (ϕs − ϕ`)
∂p5

∂t
dxdt−

∫∫
Q′

1

−α7

∂ĵ
∂u

T

v + ∂ĵ

∂µ

T

λ+ ĵc

 p5 dxdt

−
∫

Ω
ε`i (c` (0)− c`,0) p5 dx−

∫∫
Σad

(
α5

∂c`

∂ν
+ α6

∂ϕ`

∂ν

)
p6 ds(x)dt

−
∫∫
Λ

(csi(T ) p7(T )− csi(0) p7(0)) r2drdx−
∫∫∫

Q

−csi
∂p7

∂t
r2drdxdt

−
∫∫∫

ΣR,0∪ΣR

α8

(
−∂csi

∂ν
p7 + csi

∂p7

∂ν

)
r2ds(r)dxdt−

∫∫∫
Q

− 1
r2

∂

∂r

(
r2α8

∂

∂r
p7

)
csir

2drdxdt

−
∫∫
Λ

(csi (0)− csi,0) p7 r
2drdx−

∫∫∫
ΣR,0

α8
∂csi

∂ν
p8 r

2ds(r)dxdt

−
∫∫∫
ΣR

α8
∂csi

∂ν
+ α14

∂ĵ
∂u

T

v + ∂ĵ

∂µ

T

λ+ ĵc

 p8 r
2ds(r)dxdt

−
∫∫

ΓR,i

α3α14 ((ϕs − ϕ`) (T ) p8(T )− (ϕs − ϕ`) (0) p8(0)) r2ds(r)dx

−
∫∫∫
ΣR

−α3α14 (ϕs − ϕ`)
∂p8

∂t
r2ds(r)dxdt

The Lagrange method prescribes the variational inequality, i.e.

DvL
(
v̄, λ̄, p

)
(v − v̄) ≥ 0 ∀v ∈ V, such that v (0) = v0. (A.25)

Here v̄ and λ̄ denote the optimal state and the optimal control, respectively. Using the
initial condition v (t = 0) = v0 and defining ṽ ··= (v − v̄), from (A.25) we obtain

DvL
(
v̄, λ̄, p

)
ṽ ≥ 0 ∀ṽ ∈ V, such that ṽ (0) = 0, (A.26)

Remark: Note that starting from (A.26) for the rest of this section, by v we refer to
the substituted states ṽ!
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Because (A.26) has to hold for either v and −v, it constrains the problem such that
the necessary first order optimality condition yields the weak formulation of the adjoint
system

DvL
(
v̄, λ̄, p

)
v = 0, ∀v ∈ V , such that v (0) = 0. (A.27)

In addition, from the box constraints in (A.20) follows the second variational inequality:

DλL
(
v̄, λ̄, p

) (
λ− λ̄

)
≥ 0, ∀λ ∈ Lad. (A.28)

Evaluating the variational inequality in (A.25) for the Fréchet derivative DλL yields

DλL
(
v̄, λ̄, p

) (
λ− λ̄

)
=

l∑
i=1

χi

(
λ̄i − µ̂i

) (
λi − λ̄i

)
−
∫∫
Q′

1

− ∂ĵ
∂µ

T(
λ− λ̄

)
p1dxdt (A.29)

−
∫∫
Q′

1

∂ĵ

∂µ

T (
λ− λ̄

)
p3 dxdt−

∫∫
Q′

1

−α7
∂ĵ

∂µ

T (
λ− λ̄

)
p5 dxdt

−
∫∫∫
ΣR

α14
∂ĵ

∂µ

T (
λ− λ̄

)
p8 r

2ds(r)dxdt

Applying the Fréchet derivative to (A.24) w.r.t. each respective unknown, using v (0) = 0
from (A.27) and the rule that the derivative of a linear continous operator is the operator
itself, we arrive at (A.30).

Dϕ`
L
(
v̄, λ̄, p

)
ϕ` = −

∫∫
Σad

−α1
∂ϕ`

∂ν
p1 + α1ϕ`

∂p1

∂ν
ds(x)dt (A.30a)

−
∫∫
Q1

− ∂

∂x
α1
∂p1

∂x
ϕ` dxdt−

∫
Ω′
−α3 (−ϕ`) (T ) p1(T ) dx−

∫∫
Q′

1

α3 (−ϕ`)
∂p1

∂t
dxdt

−
∫∫
Q′

1

− ∂ĵ

∂ϕ`

ϕ` p1 dxdt−
∫∫

Σad

α1
∂ϕ`

∂ν
p2 ds(x)dt−

∫
Ω′
α3 (−ϕ`) (T ) p3(T ) dx

−
∫∫
Q′

1

−α3 (−ϕ`)
∂p3

∂t
dxdt−

∫∫
Q′

1

∂ĵ

∂ϕ`

ϕ` p3 dxdt

−
∫∫

Σad

−α6
∂ϕ`

∂ν
p5 + α6ϕ`

∂p5

∂ν
ds(x)dt−

∫∫
Q1

− ∂
∂x
α6
∂p5

∂x
ϕ` dxdt

−
∫

Ω′
−α3α7 (−ϕ`) (T ) p5(T ) dx−

∫∫
Q′

1

α3α7 (−ϕ`)
∂p5

∂t
dxdt

−
∫∫
Q′

1

−α7
∂ĵ

∂ϕ`

ϕ` p5 dxdt−
∫∫

Σad

α6
∂ϕ`

∂ν
p6 ds(x)dt−

∫∫∫
ΣR

α14
∂ĵ

∂ϕ`

ϕ` p8 r
2ds(r)dxdt

−
∫∫

ΓR,i

α3α14 (−ϕ`) (T ) p8(T ) r2ds(r)dx−
∫∫∫
ΣR

−α3α14 (−ϕ`)
∂p8

∂t
r2ds(r)dxdt,
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DϕsL
(
v̄, λ̄, p

)
ϕs =

∫∫
Σd

(ϕ̄s − ϕ̂s) ϕs dsdt−
∫

Ω′
−α3ϕs(T ) p1(T ) dx (A.30b)

−
∫∫
Q′

1

α3ϕs
∂p1

∂t
dxdt−

∫∫
Q′

1

− ∂ĵ

∂ϕs

ϕs p1 dxdt−
∫∫

Σad∪Σbc

−α4
∂ϕs

∂ν
p3 + α4ϕs

∂p3

∂ν
ds(x)dt

−
∫∫
Q′

1

− ∂

∂x
α4
∂p3

∂x
ϕs dxdt−

∫
Ω′
α3ϕs(T ) p3(T ) dx−

∫∫
Q′

1

−α3ϕs
∂p3

∂t
dxdt

−
∫∫
Q′

1

∂ĵ

∂ϕs

ϕs p3 dxdt−
∫∫

Σad

α4
∂ϕs

∂ν
p4 ds(x)dt−

∫∫
Σbc

α4
∂ϕs

∂ν
p4 ds(x)dt

−
∫

Ω′
−α3α7ϕs(T ) p5(T ) dx−

∫∫
Q′

1

α3α7ϕs
∂p5

∂t
dxdt−

∫∫
Q′

1

−α7
∂ĵ

∂ϕs

ϕs p5 dxdt

−
∫∫∫
ΣR

α14
∂ĵ

∂ϕs

ϕs p8 r
2ds(r)dxdt−

∫∫
ΓR,i

α3α14ϕs(T ) p8(T ) r2ds(r)dx

−
∫∫∫
ΣR

−α3α14ϕs
∂p8

∂t
r2ds(r)dxdt,

Dc`
L
(
v̄, λ̄, p

)
c` = −

∫∫
Σad

−α2
∂c`

∂ν
p1 + α2c`

∂p1

∂ν
ds(x)dt−

∫∫
Q1

− ∂

∂x
α2
∂p1

∂x
c`dxdt

(A.30c)

−
∫∫
Q′

1

− ∂ĵ
∂c`

c` p1 dxdt−
∫∫

Σad

α2
∂c`

∂ν
p2 ds(x)dt−

∫∫
Q′

1

∂ĵ

∂c`

c` p3 dxdt

−
∫

Ω
ε`ic`(T ) p5(T ) dx−

∫∫
Q1

−ε`i c`
∂p5

∂t
dxdt−

∫∫
Σad

−α5
∂c`

∂ν
p5 + α5c`

∂p5

∂ν
ds(x)dt

−
∫∫
Q1

− ∂

∂x
α5
∂p5

∂x
c` dxdt−

∫∫
Q1

−α7
∂ĵ

∂c`

c` p5 dxdt−
∫∫

Σad

α5
∂c`

∂ν
p6 ds(x)dt

−
∫∫∫
ΣR

α14
∂ĵ

∂c`

c` p8 r
2ds(r)dxdt,

Dcsi
L
(
v̄, λ̄, p

)
csi = −

∫∫
Q′

1

− ∂ĵ

∂csi

csi p1 dxdt−
∫∫
Q′

1

∂ĵ

∂csi

csi p3 dxdt (A.30d)

−
∫∫
Q′

1

−α7
∂ĵ

∂csi

csi p5 dxdt−
∫∫
Λ

csi(T ) p7(T ) r2drdx−
∫∫∫

Q

−csi
∂p7

∂t
r2drdxdt

−
∫∫∫

ΣR,0∪ΣR

α8

(
−∂csi

∂ν
p7 + csi

∂p7

∂ν

)
r2ds(r)dxdt−

∫∫∫
Q

− 1
r2

∂

∂r
r2α8

∂

∂r
p7 csi r

2drdxdt
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−
∫∫∫
ΣR,0

α8
∂csi

∂ν
p8 r

2ds(r)dxdt−
∫∫∫
ΣR

(
α8

∂csi

∂ν
+ α14

∂ĵ

∂csi

csi

)
p8 r

2ds(r)dxdt.

Now we consider the special case when v ∈ X1 ··= C∞
0 (Q1) × C∞

0 (Q′
1) × C∞

0 (Q1) ×
C∞

0 (Qa) × C∞
0 (Qc). Under this assumption the parts containing v(T ), v and ∂νv

vanish on Ω,Λ,ΓR,i and Σ ··= Σa,d ∪ Σb,c ∪ ΣR ∪ ΣR,0, respectively.
By applying (A.27) in (A.30) under assumption v ∈ X1 we obtain

−
∫∫
Q1

− ∂

∂x

(
α1
∂p1

∂x

)
ϕ` dxdt−

∫∫
Q′

1

α3 (−ϕ`)
∂p1

∂t
dxdt−

∫∫
Q′

1

− ∂ĵ

∂ϕ`

ϕ` p1 dxdt (A.31a)

−
∫∫
Q′

1

−α3 (−ϕ`)
∂p3

∂t
dxdt−

∫∫
Q′

1

∂ĵ

∂ϕ`

ϕ` p3 dxdt−
∫∫
Q1

− ∂

∂x

(
α6
∂p5

∂x

)
ϕ` dxdt

−
∫∫
Q′

1

α3α7 (−ϕ`)
∂p5

∂t
dxdt−

∫∫
Q′

1

−α7
∂ĵ

∂ϕ`

ϕ` p5 dxdt

−
∫∫∫
ΣR

α14

(
∂ĵ

∂ϕ`

ϕ` p8 + α3ϕ`
∂p8

∂t

)
r2ds(r)dxdt = 0,

−
∫∫
Q′

1

α3ϕs
∂p1

∂t
dxdt−

∫∫
Q′

1

− ∂ĵ

∂ϕs

ϕs p1 dxdt−
∫∫
Q′

1

− ∂

∂x

(
α4
∂p3

∂x

)
ϕs dxdt (A.31b)

−
∫∫
Q′

1

−α3ϕs
∂p3

∂t
dxdt−

∫∫
Q′

1

∂ĵ

∂ϕs

ϕs p3 dxdt−
∫∫
Q′

1

α3α7ϕs
∂p5

∂t
dxdt

−
∫∫
Q′

1

−α7
∂ĵ

∂ϕs

ϕs p5 dxdt−
∫∫∫
ΣR

α14

(
∂ĵ

∂ϕs

ϕs p8 − α3ϕs
∂p8

∂t

)
r2ds(r)dxdt = 0,

−
∫∫
Q1

− ∂

∂x

(
α2
∂p1

∂x

)
c` dxdt−

∫∫
Q′

1

− ∂ĵ
∂c`

c` p1 dxdt−
∫∫
Q′

1

∂ĵ

∂c`

c` p3 dxdt (A.31c)

−
∫∫
Q1

−ε`i c`
∂p5

∂t
dxdt−

∫∫
Q1

− ∂

∂x

(
α5
∂p5

∂x

)
c` dxdt−

∫∫
Q′

1

−α7
∂ĵ

∂c`

c` p5 dxdt

−
∫∫∫
ΣR

α14
∂ĵ

∂c`

c` p8 r
2ds(r)dxdt = 0,

−
∫∫∫

Q

−csi
∂p7

∂t
r2drdxdt−

∫∫∫
Q

− 1
r2

∂

∂r

(
r2α8

∂

∂r
p7

)
csi r

2drdxdt = 0. (A.31d)

Since compactly supported continous functions are dense in L2, we have that X1
is dense in L2 (Q1) × L2 (Q′

1) × L2 (Q1) × L2 (Qa) × L2 (Qc). Further, we use
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∫∫∫
ΣR
v (x, r, t) r2 ds(r)dxdt ≡

∫∫
Q′

1
v (x,R, t) R2 dxdt and we obtain the equations

of the system adjoint to (2.31):

−α3

(
∂p1

∂t
− ∂p3

∂t
+ α7

∂p5

∂t
− α14

∂p8

∂t

)
(A.32a)

− ∂

∂x

(
α1
∂p1

∂x
+ α6

∂p5

∂x

)
− ∂ĵ

∂ϕ`

(p1 − p3 + α7p5 − α14p8) = 0

α3

(
∂p1

∂t
− ∂p3

∂t
+ α7

∂p5

∂t
− α14

∂p8

∂t

)
(A.32b)

− ∂

∂x
α4
∂p3

∂x
− ∂ĵ

∂ϕs

(p1 − p3 + α7p5 − α14p8) = 0

− ε`i
∂p5

∂t
− ∂

∂x

(
α2
∂p1

∂x
+ α5

∂p5

∂x

)
− ∂ĵ

∂c`

(p1 − p3 + α7p5 − α14p8) = 0 (A.32c)

− ∂p7

∂t
− 1
r2

∂

∂r
r2α8

∂

∂r
p7 = 0 (A.32d)

Now we reduce the requirement ∂νv = 0 on Σ and let it vary freely. Keeping all other
requirements, we obtain the additional conditions

−
∫∫

Σad

∂ϕ`

∂ν
(α1 (−p1 + p2) + α6 (−p5 + p6)) ds(x)dt = 0 (A.33a)

−
∫∫

Σad∪Σbc

∂ϕs

∂ν
α4 (−p3 + p4) ds(x)dt = 0 (A.33b)

−
∫∫

Σad

∂c`

∂ν
(α2 (−p1 + p2) + α5 (−p5 + p6)) ds(x)dt = 0 (A.33c)

−
∫∫∫

ΣR,0∪ΣR

α8
∂csi

∂ν
(−p7 + p8) r2ds(r)dxdt = 0 (A.33d)

Our requirements for arbitrary ∂νv indicate that

p1 = p2, on Σad (A.34a)
p3 = p4, on Σad ∪ Σbc (A.34b)
p5 = p6, on Σad (A.34c)

p7 = p8, on ΣR,0 ∪ ΣR (A.34d)

if and only if we assume αi 6= 0, i ∈ {1, 2, 4, 5, 6, 8}.
In the next step we further relax the conditions and choose v(T ) arbitrary instead of
v(T ) = 0. We still require that v(0) = 0 and v to vanish on Σ. Since we have already
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dealt with the parts on Q1 and Q, this leaves us with the terms containing v(T ) on Ω
and Λ.

−
∫

Ω′
α3ϕ`(T ) p1(T ) dx−

∫
Ω′
−α3ϕ`(T ) p3(T ) dx (A.35a)

−
∫

Ω′
α3α7ϕ`(T ) p5(T ) dx−

∫∫
ΓR,i

α3α14 (−ϕ`(T )) p8(T ) r2ds(r)dx = 0

−
∫

Ω′
−α3ϕs(T ) p1(T ) dx−

∫
Ω′
α3ϕs(T ) p3(T ) dx (A.35b)

−
∫

Ω′
−α3α7ϕs(T ) p5(T ) dx−

∫∫
ΓR,i

α3α14ϕs(T ) p8(T ) r2ds(r)dx = 0

−
∫

Ω
ε`ic`(T ) p5(T ) dx = 0 (A.35c)

−
∫∫
Λ

csi(T ) p7(T ) r2drdx = 0 (A.35d)

Again, all possible values v(T ) are dense in L2 and
∫∫

ΓR,i
v (x, r, T ) r2 ds(r)dx ≡∫

Ω′v (x,R, T ) R2 dx. Hence we obtain the final conditions

α3 (p1(T )− p3(T ) + α7p5(T )− α14p8(T )) = 0, on Ω′ (A.36a)
−α3 (p1(T )− p3(T ) + α7p5(T )− α14p8(T )) = 0, on Ω′ (A.36b)

ε`ip5(T ) = 0, on Ω (A.36c)
p7(T ) = 0, on Λ (A.36d)

Since (A.36a) and (A.36b) coincide, this leaves us with three simplified final conditions:

p1(T )− p3(T ) = 0, on Ω′ (A.37a)
p5(T ) = 0, on Ω (A.37b)
p7(T ) = 0, on Λ. (A.37c)

Finally, we abandon the constraint v|Σ = 0:

−
∫∫

Σad

α1ϕ`
∂p1

∂ν
+ α6ϕ`

∂p5

∂ν
ds(x)dt = 0 (A.38a)

∫∫
Σd

(ϕ̄s − ϕ̂s) ϕs ds(x)dt−
∫∫

Σad∪Σbc

α4ϕs
∂p3

∂ν
ds(x)dt = 0 (A.38b)

−
∫∫

Σad

α2c`
∂p1

∂ν
+ α5c`

∂p5

∂ν
ds(x)dt = 0 (A.38c)
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−
∫∫
Q′

1

− ∂ĵ

∂csi

csi p1 dxdt−
∫∫
Q′

1

∂ĵ

∂csi

csi p3 dxdt−
∫∫
Q′

1

−α7
∂ĵ

∂csi

csi p5 dxdt (A.38d)

−
∫∫∫

ΣR,0∪ΣR

α8 csi
∂p7

∂ν
r2ds(r)dxdt−

∫∫∫
ΣR

α14
∂ĵ

∂csi

csi p7 r
2ds(r)dxdt = 0

To complete the adjoint system, we obtain the boundary conditions

α1
∂p1

∂ν
+ α6

∂p5

∂ν
= 0, on Σad (A.39a)

− α4
∂p3

∂ν
=
ϕ̄s − ϕ̂s on Σd

0 else
(A.39b)

α2
∂p1

∂ν
+ α5

∂p5

∂ν
= 0, on Σad (A.39c)

− α8
∂p7

∂ν
=


∂ĵ
∂csi

(p1 − p3 + α7p5 − α14p7) on ΣR

0 on ΣR,0
(A.39d)

Note that if (A.39a) and (A.39c) form a regular system, analogous to (2.27), they can
be split into two parts:

α1
∂p1

∂ν
= α2

∂p1

∂ν
= 0, on Σad, (A.40a)

α5
∂p5

∂ν
= α6

∂p5

∂ν
= 0, on Σad, (A.40b)

In addition, the variational inequality of (A.29)

l∑
i=1

χi

(
λ̄i − µ̂i

) (
λi − λ̄i

)
(A.41)

−
∫∫
Q′

1

∂ĵ

∂µ

T (
λ− λ̄

) (
−p̄1 + p̄3 − α7 p̄5 + α14 p̄8 R

2
)

dxdt ≥ 0 ∀λ ∈ Lad

has to be fullfilled.
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Glossary
Battery

Several cells electrically connected in series or parallel or both. Usually specified
in “n s m p” notation, where m denotes parallel cells and n denotes the number of
individual or parallel cells in series. Several cells are usually grouped in modules
for better handling and manipulation during manufacturing.

C-Rate
A widely used scaling factor unit representing a discharge or charge current, such
that a current may be expressed in multiples or fractions of the rated capacity.

Calendar Life
The life expectancy of a battery cell/module/pack during storage.

Capacity
The total amount of charge that a battery cell is capable of containing (usually
expressed in the units ampere-hours A h).

Cell
Also: Battery, Battery Cell, Electrochemical Cell. The smallest possible elec-
trochemical cell. Two (or several) electrodes in arbitrary geometrical as well as
topological configuration chemically connected in the same electrolyte.

Cycle
A sequence of a charge and discharge of a battery.

Cycle Life
The life expectancy of a battery cell/module/pack when subjected to cycling.

DOD
Depth of Discharge; Typically a measure of the distance (in energy) from a full
charge. Also used to describe the energy added or removed during cycling in
some situations. Always given as a percentage.

EOL
End of Life; The end of life of a battery, i.e. a point in time when a battery’s
capacity or power capability has reached a usage specific criterion, e.g. 70 % of
its original capacity.

Internal Resistance
The electric resistance (usually in expressed in mΩ) of a battery cell. More
specifically, the sum of the ionic and electronic resistances of the cell components.

Module
Several cells electrically connected in series or parallel or both. Usually specified
in “n s m p” notation, where m denotes parallel cells and n denotes the number
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of individual or parallel cells in series. Modules are building blocks to form a full
pack. Usually, modules are equipped with sensors and monitoring logic on cell
level.

OCV
Open Circuit Voltage; The difference in potential between the terminals of a cell
when the battery is fully rested at a specific temperature (that is, the battery
has been subjected to an open circuit for a substantial period of time).

Pack
or Battery Pack. Several Modules connected in series to form a system along
with special monitoring and safety related devices, e.g. a BMS, fuses and others.

SOC
State of Charge; A fraction of the total amount of charge that is available in the
battery at a given time. Usually given as a percentage.

SOH
State of Health; A measurement of usable life of a battery cell, usually refers to
the current capacity and possibly inner resistance.

Specific Energy
Unit energy per mass W h kg−1; The amount of energy that is theoretically
capable of being contained per unit mass.

Specific Power
Unit Power per mass W kg−1; The power capability scaled per unit mass
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List of Abbreviations
Li+ Li-Ion

ACF autocorrelation function
AM Adaptive Metropolis

BMS Battery Management System

CC Constant Current Charge
CCCV Constant Current Charge with subsequent Constant

Voltage Charge

DFN Doyle–Fuller–Newman model
DOF Degrees of Freedom
DR Delayed Rejection
DRAM Delayed Rejection Adaptive Metropolis

FEM Finite Element Method

GHG greenhouse gas

iACT integrated autocorrelation time
iid independent and identically distributed
IS Impedance Spectroscopy

LSQ Least Squares

MCMC Markov Chain Monte Carlo
MOAT “Morris–one–at–a–time”
MOEA-DD Multiobjective Evolutionary Algorithm based on Dom-

inance and Decomposition
MOGA Multiobjective Genetic Optimization Algorithm
MPC Model Predictive Control
MSE Mean Square Error

nRSME normalized Root-Mean-Square Error
NSDE Non-dominant Sorting Differential Evolution
NSGA-III Non-dominant Sorting Genetic Algorithm III

OCP Open Circuit Potential
OCV Open Circuit Voltage
ODE Ordinary Differential Equation
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List of Abbreviations

PCA Principal Component Analysis
PDE Partial Differential Equation
PSO Particle Swarm Optimization

RMSE Root-Mean-Square Error
RSS Residual Sum of Squares
RTP Reference Test Protocol

SA Sensitivity Analysis
SC Single Component
SoC State of Charge
SoH State of Health
SOHO Single Objective Hybrid Optimizer
SPM Single–Particle model

UQ Uncertainty Quantification
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Nomenclature

Ai Inner surface

bruggx Bruggemann coefficient

Cdl Double–layer capacity

cx Li+–concentration in phase x

cx,0 Initial Li+–concentration

D̂x Diffusivity

Dx Effective Diffusivity

di (θ) Elementary effect of variable θi

e Random number in (0, 1)

F Faraday’s constant

f(·, θ) Model output

Fi Distribution of effects of θi

f̄
(
θ̄
)

Model output for target parameters

f̄
(
θ̄
)

Model output for target parameters

i(t) Cell current density

j∗
BV Butler–Volmer current density

k Exchange current density and reac-
tion rate

ka:c Combined factor ka/kc

ka:c Combined factor ka/kc

n Number of sample

n Number of sample

q(.|θn) Parameter proposal distribution

Q1 Space–time cylinder of Ω

Q′
1 Space–time cylinder of Ω′

Q2 Space–time cylinder of Λ

r Radial coordinate in particles

R0 Proposal deviation of q(.|θ0)

R0 Proposal deviation of q(.|θ0)

Ra Particle radius in anode

Rc Particle radius in cathode

Rg Universal gas constant

Rn Proposal deviation of q(.|θn) at sam-
ple n

Rn Proposal deviation of q(.|θn) at sam-
ple n

T Final simulation time

ti Time at step i of reference model

ti Time at step i of reference model

tj Time at step j of model under test

tj Time at step j of model under test

t+` Transference number of cations

u Unknowns of the model

UOCV Equilibrium potential function

y, yi Points of measurements

z Number of transferred electrons

α Charge transfer coefficient

α(·, θ̂) Acceptance probability

ε Measurement error

εx Phase x volume fraction

ε`:s Combined factor ε`/εs

ε`+s Combined factor ε` + εs

εΣ Small value to add to Rn

εΣ Small value to add to Rn

ϕx Electric potential in phase x
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List of Abbreviations

η Overpotential in j∗
BV

κ̂ (c`) Ionic conductivity function

κ (c`) Effective ionic conductivity

Λa Anode domain in particles

Λc Cathode domain in particles

Λ Combined anode and cathode model
domain

µ Sample mean

µ` Migration coefficient

Ωa Anode model domain

Ωc Cathode model domain

Ωs Separator model domain

Ω Entire model domain

Ω′ Combined anode and cathode model
domain

π(θ) Prior probability

σ Sample or measurement noise stan-
dard deviation

σ̂s Electronic conductivity

σs Effective electronic conductivity

θ Parameter set of interest

θ0 Initial parameter values

θ0 Initial parameter values

θa Lower parameter bounds

θa Lower parameter bounds

τ Integrated autocorrelation time

τ Integrated autocorrelation time

θb Upper parameter bounds

θb Upper parameter bounds

θ̂ Proposed parameter

θ̃(θ) Transformed parameters

θ̃(θ) Transformed parameters

θ̄ Target parameters

θ̄ Target parameters

P Parameter space

ϑ Temperature
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