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Uniform Point Distributions and Energy Estimates on

Compact Riemannian Manifolds

DOCTORAL THESIS

to achieve the university degree of

Doktor der Naturwissenschaften

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Grabner

Institute of Analysis and Number Theory

Graz, May 2021





AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present doctoral thesis.

Date, Signature





to my family

5





Abstract

The focus of this cumulative dissertation are three papers that the author has submitted
during his PhD. After a more detailed introduction to the thesis and the research, some
background in Differential Geometry and Analysis on Manifolds is given in the first part.
The content of the articles is collected in the second part and in some cases additional
material is given. There we find results concerning the Green and Riesz s-energies on the
3-dimensional rotation group, the asymptotic behavior of the L2-norm of Gegenbauer
polynomials and a first systematic study of multivariate kernels and its potential theory.

Kurzfassung

Der Fokus dieser kumulativen Dissertation sind die drei Arbeiten des Autors die während
seiner Studiendauer eingereicht wurden. Der erste Teil dieser These gibt eine umfassendere
Einleitung in dieses Werk und den Forschungsschwerpunkt. Zudem wird eine Einleitung
in die Differenzialgeometrie und Analysis auf Mannigfaltigkeiten gegeben. Der zweite
und letzte Teil gibt den Inhalt der Forschungsarbeiten wieder mit einigen Ergänzungen.
Hier finden wir Resultate über die Green und Riesz s-Energien auf der Lie Gruppe der
Rotationen im 3-dimensionalen Raum, über das asymptotische Verhalten der L2-Norm
von Gegenbauer Polynomen und die erste systematische Untersuchung von multivariaten
Kernen und die dazugehörige Potentialtheorie.
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List of Acronyms and Symbols

Throughout the text, N, R and C will denote the sets of natural (starting with 1), real
and complex numbers respectively. The letter n will usually denote the dimension of an
underlying vector space or manifold and is understood to be a natural number.

We will use the big- and little-oh notation where for functions f, g : N→ R we write
f = O(g) if limj→∞

f(j)
g(j) exists and is bounded. The little-oh notation f = o(g) will mean

that limj→∞
f(j)
g(j) = 0.

The following symbols will be used, usually with no definition within the text:

(a, b] = {x ∈ R : a < x ≤ b} for a, b ∈ R
{yj} = {yj}j∈J a sequence indexed by some J , which is clear from context
R>0 = {x ∈ R : x > 0}
Sd . . . the unit sphere in Rd+1

Bρ(x) = {y ∈ Rn : ‖x− y‖ < ρ}
{ej} = {e1, . . . , en} the standard basis of Rn
〈S〉 . . . the smallest subgroup containing S
〈x, y〉 . . . the inner product in Rn
‖x‖ . . . the norm of x, with inner product clear from context
δkj . . . the Kronecker delta; equals 1 iff j = k and 0 otherwise

δp . . . the Dirac measure, gives a set measure 1 if it contains the point p
N0 = N ∪ {0}
Ck . . . the set of k-times continuosly differentiable functions for k ∈ N0

J(f) . . . the Jacobi matrix of f ∈ C1

C∞(X) =
⋂
k Ck(X) . . . the set of smooth functions from X to R

Ck0 . . . compactly supported functions of Ck, for k ∈ N0 ∪ {∞}
supp(f) = closure of {x ∈ dom(f) : |f(x)| > 0}
1 . . . denotes the identity in the given context (matrix, map)
(M, g) . . . a Riemannian manifold with metric g
〈u, v〉g . . . the inner product of two tangent vectors u, v wrt. the metric g
(U,ϕ) . . . a chart domain and chart of the manifold at hand
∂ϕ,pj . . . the j-th derivative at p with respect to the chart (U,ϕ)

∂1,t1 . . . the vector field in R of unit length pointing to +∞, at t
X(M) . . . set of smooth vector fields on M
X∗(M) . . . set of smooth covector fields on M
Γ∞0 (M) . . . set of compactly supported elements of X(M)
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C(λ)
m . . . the Gegenbauer polynomial of index λ and degree m
σ . . . the normalized surface measure on the sphere
ωN . . . a set of points with N elements
∇gf . . . the gradient of the function f with respect to the metric g
−divu . . . the divergence of the vector field u wrt. to the metric g
∆g . . . the Laplace-Beltrami operator
G . . . the Green function for the Laplace-Beltrami operator with zero mean
P(Ω) . . . the set of probability measures on Ω
M(Ω) . . . the set of finite, signed measures on Ω
2X . . . the power set of X
ω(α−1β) . . . the rotation angle distance of α, β ∈ SO(3)
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Part I.

Introduction
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1. Introduction to the Research and the
Thesis

This thesis is a cumulative dissertation and based on the three papers [BF20], [Fer21]
and [Bil+21b], which appear in Part II with usually moderate changes in content and
form, when compared to their versions on arXiv.org – with one notable exception. The
chapter on multivariate kernels has been extended by two counter examples to some
sensible questions. Part I will give the necessary background in Differential Geometry, as
well on Sobolev spaces and the Laplacian on a Riemannian manifold in order to follow
[BF20] with some ease. There one also finds a potentially new result on the existence of a
series expansion for the Green function for compact Riemannian manifolds of dimension 3.

The undertaken research lies in the field of point distributions and energy estimates
on compact Riemannian manifolds. One of the aims was to estimate various energies
or notions of discrepancy for a finite point set ωN = {x1, . . . , xN} ⊂ X, where X is a
measure space. Discrepancy is based on a family of measurable test sets T ⊂ 2X , usually
balls when X is additionally endowed with a metric, and it quantifies how well distributed
points are by comparison to the normalized volume measure σ on X:

D(ωN ) := sup
A∈T

∣∣∣∣ 1

N

N∑
j=1

1A(xj)− σ(A)

∣∣∣∣.
Discrepancies are difficult to bound and only probabilistic methods give near optimal re-
sults. This is closely related to uniform distribution theory and low-discrepancy sequences
and finds applications in Quasi-Monte-Carlo methods, for instance. A nice overview for
the sphere is given in [KS97], and a direct application of the related Thomson Problem
is given in [Li+18].

Another way to measure well distribution of points is via energies: For a symmetric,
lower semicontinuous kernel K, we define the K-energy of ωN as

EK(ωN ) =

N∑
j=1

N∑
6̀=j
K(xj , x`) and EK(N) = min

ωN⊂X
EK(ωN ).

Calculating EK(N) or finding minimizing configurations is an extremely hard problem
and actual minimizers have been found in only a handful of cases for the Coulomb
potential and certain powers of it on the sphere, i.e. K(x, y) = 1

‖x−y‖ (see [Sch13]).
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This problem becomes tractable if X is Riemannian and K = G is the Green function
for the Laplace-Beltrami operator ∆ with zero mean, as we will see. Well distribution
follows by [BCC19], for if ωN attains the minimal possible G-energy, or Green energy,
then the associated discrete measure approaches the uniform distribution in X as N →∞.

Next we give short summaries of the articles in Part II, where we also highlight
important results.

Green Energy

In [BF20], Carlos Beltrán and this author deduced a closed form expression for the Green
function with zero mean on the Lie group of 3-dimensional rotation matrices SO(3) via
series expansion:

G(α, β) =
(
π − ω(α−1β)

)
cot
(ω(α−1β)

2

)
− 1,

where we used the so-called rotation angle distance of α, β ∈ SO(3), defined as:

ω(α−1β) = arccos

(
Trace(α−1β)− 1

2

)
.

This eigenfunction expansion is justified in the case of SO(3) since the group can be
covered by a single chart (Euler angles) up to a set of measure zero. For domains in Rn,
this is then well known in the theory of elliptic Partial Differential Equations and follows
for instance from Fredholm Theory, see chapter 9 of [RR04] for a reference. Note that
the push-forward of the Laplacian is an elliptic partial differential operator of order two,
and its eigenfunctions will just be precomposed with the chart map.

We further obtained upper bounds for the Green and Riesz s-energies for SO(3), by
applying the theory of determinantal point processes (dpp). A lower bound was obtained
thanks to a Lemma of N. Elkies.

Theorem 1.0.1. Let N =
(

2L+3
3

)
for L ∈ N. Then

−3 3
√
πN4/3 +O(N) ≤ EG(N) ≤ −4

(
3
4

)4/3
N4/3 +O(N).

A deterministic algorithm to produce point sets ωN ⊂ SO(3) for arbitrary N ∈ N is
given, which did not make it into the published version. Numerical experiments indicate
optimal distribution with respect to the Green energy and further investigations will
follow.

Gegenbauer polynomials

One of the key ingredients in [BF20] was the asymptotic behavior of

‖C(2)
n ‖22 :=

∫ 1

0

[
C(2)
n (x)

]2
dx,

where C(2)
n is a Gegenbauer polynomial C(λ)

n with index λ = 2 and degree n.
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Lemma 1.0.2. Let ψ denote the digamma function and γ the Euler-Mascheroni constant.
Then the Gegenbauer polynomials satisfy for n ≥ 2:∥∥C(2)

n−2

∥∥2

2
= 1

16n
4 + 1

64(4n2 − 1)
(
ψ(n+ 1

2) + γ + log(4)
)
− 5

32n
2.

A potential first step to generalize results from SO(3) to rotation groups of higher
dimension is finding the leading asymptotic terms of this kind of integrals with arbitrary
index. It was certainly a surprise that no literature on the L2-norm of Gegenbauer
polynomials seemed to exist and we obtained following results.

Theorem 1.0.3. The Gegenbauer polynomials satisfy for λ > −1
2 , λ 6= 0, and n > 1:

∥∥C(λ+1)
n−2

∥∥2

2
=
n2 − 2λn

24λ3

[
C(λ)
n (1)

]2
+
n(2n+ 1)

23λ2

∥∥C(λ)
n

∥∥2

2
−
n−1∑
k=0

λ+ k

22λ2

∥∥C(λ)
k

∥∥2

2
.

For λ > 1, we have the following asymptotic in n:

∥∥C(λ+1)
n−2

∥∥2

2
=

n4λ

4λΓ(2λ+ 1)2
+

λ− 1

Γ(2λ+ 1)2
n4λ−1 +O(n4λ−2).

Potential Theory with Multivariate Kernels

This is a joint work with Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park, and
Oleksandr Vlasiuk. A generalization of K-energy minimizers is obtained by regarding
arbitrary Borel probability measures µ ∈ P(X) (since point sets ωN always can be
identified with Dirac masses of weight N−1), thus one can seek to find

inf
µ∈P(X)

∫∫
K(x, y) dµ(x) dµ(y).

The book [BHS19] is an in-depth reference on this topic, but no theory exists on three-
input kernels, which cover interesting cases like Menger curvature or Stillinger-Weber
type potentials.

We developed a potential theoretic treatment of continuous and symmetric kernels K
with multiple inputs on a compact metric space X, and determined conditions under
which a minimizing probability measure can be identified. Let K : Xn → R and µ ∈ P(X),
we define

IK(µ) =

∫
X
· · ·
∫
X
K(x1, ..., xn) dµ(x1) · · · dµ(xn),

and, the potential function as

Uµ
n−1

K (z) =

∫
X
· · ·
∫
X
K(x1, ..., xn−1, z) dµ(x1) · · · dµ(xn−1).

If n ≥ 3, we will say that K is (conditionally) n-positive definite, if

Kz1,...,zn−2(x, y) := K(x, y, z1, . . . , zn−2)
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is (conditionally) positive definite for fixed, arbitrary z1, . . . , zn−2 ∈ X. We will restrict
our sample of results to kernels on the sphere which are in addition rotationally invariant ,
i.e. have the form

K(x1, . . . , xn) = F
(

(〈xi, xj〉)ni,j=1

)
.

Theorem 1.0.4. Suppose that K : (Sd−1)n → R is continuous, symmetric, rotationally
invariant, and conditionally n-positive definite on Sd−1. Then σ is a minimizer of IK
over P(Sd−1).

We obtain a particularly nice result for kernels of the type

K(x, y, z) = F (u, v, t), (?)

where u = 〈x, y〉, v = 〈y, z〉 and t = 〈z, x〉.

Corollary 1.0.4.1. Let f : [−1, 1] → R be a real-analytic function with nonnegative
Taylor coefficients and let F (u, v, t) = f(uvt). Then, for K defined as in (?), the uniform
surface measure σ minimizes the energy IK over P(Sd−1).

An additional result to the paper, where we deal with the special case of kernels of
the type K(x, y, z) = h(u)h(v)h(t) on the unit sphere of arbitrary dimension and h is
a certain smooth function is given. This will give a counter example to at least two
reasonable questions that one might ask about properties of multivariate kernels.
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2. Essentials of Analysis on Manifolds

This chapter intends to collect sufficient material on Differential Geometry, Riemannian
structure and the Laplace-Beltrami operator for a reader with some knowledge in these
fields to follow [BF20] with ease. Further, a series expansion for compact Riemannian
manifolds of dimension 3 is derived in subsection 2.3.2. A reference to the strong
maximum principle that was missed out in the aforementioned paper is found in [Gri09],
page 222.

2.1. Differential Geometry Redux

Here we summarize important definitions and theorems from [Lee13] – a book that this
author wholeheartedly recommends. General properties of manifolds and Lie groups, in
particular for SO(3) will be found in the next pages. A discussion of tensor products and
manifolds with boundary has been left out, but will be used in the text. The notation
differs from the book in a fair amount, and was inspired by lectures of Michael Eichmair1,
who got me interested in Differential Geometry in the first place and I thank him for
that.

2.1.1. Manifolds

Definition 2.1.1. Let M denote a topological space. We say that M is a topological
manifold of dimension n, or n-dimensional topological manifold if following holds:

1. M is a Hausdorff2 space,

2. M is second countable, i.e. has a countable basis for its topology, and

3. every point in M has a neighborhood homeomorphic to some open set of Rn.

A coordinate chart for M is always a pair (U,ϕ), where U ⊂M is open and ϕ : U →
ϕ(U) ⊂ Rn is a homeomorphism between open sets. For a fixed point p and a chart
containing it, the map ϕ can be chosen such that ϕ(p) = 0, then called centered at p,
and ϕ(U) is an open ball or cube.

The projection onto the j-th coordinate Prj(v) = vj for (v1, . . . , vn)t = v ∈ Rn is
clearly continuous, hence xj := Prj ◦ ϕ is continuous, and ϕ(q) = (x1(q), . . . , xn(q))t.
These xj ’s are called local coordinates for the chart, and thus we can imagine coordinate

1University of Vienna.
2Thus two distinct points have disjoint neighborhoods, i.e. open sets containing them.
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axes pulled back onto U and pretend to work in Rn, and as long as we do it locally,
nothing bad will happen.

We just note that the dimension of the manifold is invariant under homeomorphisms.

Proposition 2.1.1. Let M be a topological manifold. Then

� M is locally path-connected,

� M is connected if and only if it is path-connected,

� connected and path-connected components are equivalent,

� M has countable many connected components, each an open set and connected
topological n-manifold on its own right.

A collection X ⊂ 2M is called locally finite, if every point in M admits a neighborhood
that intersects at most finitely many elements of X .

Given a cover U of M , a refinement of U is another cover V of M , such that for each
V ∈ V, we find a U ∈ U , such that V ⊂ U. M is said to be paracompact, iff every open
cover admits an open, locally finite refinement.

Theorem 2.1.2. A topological manifold is paracompact.

Two charts (U,ϕ), (V, ψ) are said to be smoothly compatible if either U ∩ V = ∅ or

ϕ ◦ ψ−1 : ψ(U ∩ V )→ ϕ(U ∩ V )

is a diffeomorphism between open sets of Rn. An atlas for M consists of charts whose
domains cover M , and a smooth atlas is an atlas that has smoothly compatible charts.
Compatibility defines an equivalence relation between smooth atlases, and the union of
all compatible atlases is called maximal atlas or differentiable structure on M .

Definition 2.1.2. A smooth manifold M is a topological manifold with a smooth
structure.

Not every topological manifold has a smooth structure, a counterexample was found
by M. Kervaire in 1960.

Definition 2.1.3. A function F : M → N between smooth manifolds is called smooth
if for each p ∈M we find chart neighborhoods (U,ϕ), (V, ψ) of p and F (p) respectively,
such that

F (U) ⊂ V and ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(V ),

is smooth between opens sets of Rn to Rm, where n,m are the dimensions of M and N
respectively.

Note that the whole image F (U) really needs to be contained in V .

Proposition 2.1.3. Let F : M → N be a function between smooth manifolds. Then F
is smooth if and only if one of either of the following conditions is satisfied:
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� For each p ∈M we find chart neighborhoods (U,ϕ), (V, ψ) of p and F (p) respectively,
with U ∩ F−1(V ) open in M and the composition is smooth there

ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V ))→ ψ(V ).

� If F is assumed continuous and atlases exists for M,N , such that all compositions

ψβ ◦ F ◦ ϕ−1
α : ϕα(Uα ∩ F−1(Vβ))→ ψβ(Vβ) are smooth.

Corollary 2.1.3.1 (Gluing Lemma for Smooth Maps). Let M,N be smooth manifolds
and let {(Uα, ϕα)} be an open cover of M . If further there is a family of smooth maps
{Fα} defined on Uα mapping to N with the property that Fα, Fβ when restricted to Uα∩Uβ
are identical, then there is a unique smooth F : M → N that extends all {Fα}.

Smooth manifolds are said to be diffeomorphic if there is a smooth bijective map
F : M → N whose inverse is smooth too. While manifolds usually have incompatible
smooth structures, take N = (R, x3) and M = (R, x) for instance where x ◦ (x3)−1 is not
smooth around the origin, they might still be diffeomorphic: 3

√
· : M → N is continuous

and bijective, and x3 ◦ 3
√
x ◦x−1 is smooth. Indeed, all topological manifolds of dimension

n ≤ 3 have a unique smooth structure up to diffeomorphisms, which follows from results
of J. Munkres 1960 and E. Moise 1977. There are also topological manifolds with many
smooth structures that are not diffeomorphic, which follows by works of S. Donaldson
and M. Freedman 1984 – and R4 is one such example, the only one among the Rn’s.

Definition 2.1.4. Let M be a smooth manifold. A partition of unity subordinate to an
open cover {Xα} of M is a family of real valued continuous functions {ψα} with following
properties

1. ψα : M → [0, 1],

2. supp(ψα) ⊂ Xα for each α,

3. the family {supp(ψα)} is locally finite, and

4.
∑

α ψα(p) = 1 for each p ∈M .

If the ψ’s are in addition smooth, then we call this a smooth partition of unity.

Theorem 2.1.4 (Existence of Partition of Unity). On a smooth manifold there exists a
smooth partition of unity subordinate to any open cover.

The next proposition implies the existence of smooth bump functions and extensions
of vector valued smooth functions.

Proposition 2.1.5. Let M be a smooth manifold and A ⊂ U ⊂M be chosen, such that
A is closed and U open. Then

� there is a smooth bump function for A supported in U , i.e. ψ : M → [0, 1] smooth
with A = ψ−1({1}) and supp(ψ) ⊂ U ;
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� for any smooth f : A→ Rk, there exists a smooth f̃ : M → Rk identical to f on A
and supp(f̃) ⊂ U .

Here it is important that the image lies in Rk and is not an arbitrary manifold N .
Otherwise one first needs to establish the existence of a continuous extension.

An exhaustion function for M is a continuous function f : M → R with the property
that each sublevel set f−1((−∞, c]) for c ∈ R is compact.

Proposition 2.1.6. Every smooth manifold admits a smooth exhaustion function with
values in [1,∞).

Theorem 2.1.7 (Level Sets of Smooth Functions). Let M be a smooth manifold and
A be a closed subset. Then there exists a smooth function f : M → R≥0 such that
A = f−1({0}).

2.1.2. Tangent structure

Let C∞(M) denote the vector space of smooth real valued functions defined on a smooth
manifold M . A derivation at a fixed point p ∈ M is a R-linear map wp : C∞(M) → R
which satisfies the product rule

wp(fg) = g(p)wp(f) + f(p)wp(g).

Definition 2.1.5. The tangent space of M at p is the vector space of all derivations at
p, and is denoted by TpM .

If follows that wp(1) = wp(1 · 1) = 2wp(1), thus derivations send constant functions to
zero. Also, if f(p) = g(p) = 0, then wp(fg) = 0, i.e. functions with double roots will be
send to zero too, as will be functions that are zero in a neighborhood of p.

Definition 2.1.6. The differential at p of a smooth map F : M → N , is defined as a
linear map

dFp : TpM → TF (p)N

wp 7→ dFp(wp),

where dFp(wp)f = wp(f ◦ F ) for all f ∈ C∞(N).

Proposition 2.1.8 (Properties of Differentials). For smooth manifolds M, N and P ,
and smooth maps F : M → N , G : N → P , we have for p ∈M

� dFp is linear,

� d(G ◦ F )p = dFp ◦ dGF (p) : TpM → TG◦F (p)P ,

� d1p = 1TpM ,

� if F is a diffeomorphism, the so is dFp and
(
dFp

)−1
= dF−1

F (p).
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Proposition 2.1.9 (Tangent Space of Open Subsets). Let U ⊂M be open and I : U →
M be the inclusion map. Then for every q ∈ U , dIq : TqU → TqM is an isomorphism.

To identify a derivation it is hence enough to know the values wj = wp(Prj(ϕ)),
where (U,ϕ) is a centered chart neighborhood of p, with ϕ(U) a ball in Rn. For if
w = (w1, . . . , wn)t, then the map on C∞(U) defined via

f 7→ d

dt

∣∣∣
t=0

f ◦ ϕ−1
(
tw
)

= 〈∇
(
f ◦ ϕ−1

)
(0),w〉

has the same action as wp. To see this, let g ∈ C∞(U) and use Taylor expansion at 0:

g(q) = g ◦ ϕ−1(x) = g(p) + 〈∇
(
g ◦ ϕ−1

)
(0),x〉+ 〈x, H

(
g ◦ ϕ−1

)
(ε)x〉,

where q = ϕ−1(x) and H is the Hessian with 0 ≤ ε ≤ ‖x‖ chosen to satisfy the equality
above. Since the term with the Hessian has a double root at 0, we apply wp on both
sides and obtain with xj = Prj(ϕ)

wp(g) = 〈∇
(
g ◦ ϕ−1

)
(0),w〉.

Hence in particular, the dimension of TpM is n, and a basis in the chart (U,ϕ) is given
by ∂ϕ,pj , which act at p as

∂ϕ,pj (f) = ∂j
(
f ◦ ϕ−1

)
(ϕ(p)),

hence

wp(f) =

n∑
j=1

wp(Prj(ϕ)) ∂ϕ,pj (f).

Since dFp is a linear map, a matrix representation is immediate once bases are chosen.
Thus let TpM have basis induced by (U,ϕ), and TF (p)N have one induced by a chart
neighborhood (V, ψ) of F (p) with ψ(F ) = (F 1

ψ, . . . , F
m
ψ )t. Let g ∈ C∞(N), then

dFp(∂
ϕ,p
j )(g) = ∂ϕ,pj (g ◦ F ) = ∂j(g ◦ ψ−1 ◦ ψ ◦ F ◦ ϕ−1)(ϕ(p))

=

m∑
k=1

∂k(g ◦ ψ−1)(ψ(F (p))) ∂j(F
k
ψ ◦ ϕ−1)(ϕ(p))

=

m∑
k=1

∂
ψ,F (p)
k (g) ∂ϕ,pj (F kψ),

hence

dFp(∂
ϕ,p
j ) =

m∑
k=1

∂ϕ,pj (Prk(ψ ◦ F )) · ∂ψ,F (p)
k . (2.1)

This also helps to write down a change of coordinates formula, since the identity map
1 : M →M with two different chart neighborhoods and suggestive notation yields

∂ϕ,pj = d1p(∂
ϕ,p
j ) =

m∑
k=1

∂ϕ,pj (Prk(ψ)) · ∂ψ,pk =:
〈
J(ψ ◦ ϕ−1)

∣∣
ϕ(p)
· ej , ~∂ψ,p

〉
. (2.2)
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Definition 2.1.7. The tangent bundle of M , denoted by TM , is the disjoint union of
all tangent spaces

TM =
⋃
TpM.

There is a natural projection map π : TM →M , sending ∂ϕ,pj to p.

Proposition 2.1.10. If M is a smooth, n-dimensional manifold, then TM is in a natural
way a smooth 2n-manifold.

A chart neighborhood (U ,Φ) of TM at (p,wp) is given via charts (U,ϕ) of M around
p with the notation as above:

U ' U × Rn and Φ(p,wp) = (ϕ(p),w)t.

2.1.3. Whitney approximation theorems

Suppose we have a continuous function on a smooth manifold δ : M → R>0. Two
functions F1, F2 : M → Rm are said to be δ-close, if for all p ∈M

‖F1(p)− F2(p)‖ ≤ δ(p).

Theorem 2.1.11 (Whitney Approximation Theorem for Vector Functions). Suppose
M is a smooth manifold with or without boundary, and F : M → Rk is continuous. If
δ : M → R>0 is continuous, then there is a smooth function F̃ : M → Rk with

‖F (p)− F̃ (p)‖ ≤ δ(p)

for all p ∈M . If in addition F is smooth on a closed subset of M , then F̃ can be chosen
to agree with F there.

Theorem 2.1.12 (Whitney Approximation Theorem). Suppose M is a smooth manifold
with or without boundary, and N is a smooth manifold without boundary. Let F : M → N
be continuous, then it is homotopic to a smooth function.

It follows that a smooth map f : A → N on a closed set A ⊂ M admits a smooth
extension to all of M if and only if it admits a continuous extension.

2.1.4. Lie groups

Recall that a group in the sense of algebra is a non-empty set G with a pairing ◦ : G2 → G,
usually written multiplicative or additive, such that there is a neutral or identity element
e ∈ G, i.e. ◦(g, e) = g for all g ∈ G and each element h has an inverse h−1 satisfying
◦(h, h−1) = e. We will use the multiplicative notation, i.e. ◦(g, h) = gh. A normal
subgroup H of G is a subgroup that satisfies gHg−1 = H for all g ∈ G.

Definition 2.1.8. A Lie group is a smooth manifold G that is a group in the algebraic
sense, such that the action of taking products or inverses is smooth, i.e.

· : G2 → G and ·−1 : G→ G,

are smooth maps between manifolds.
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The left and right translations by an element g are natural diffeomorphisms acting as
Lg(h) = gh and Rg(h) = hg.

Definition 2.1.9. A smooth map F : G → H between Lie groups is a Lie group
homomorphism if it is a group homomorphism. If F is a diffeomorphism that is also a
group homomorphism, then we call F a Lie group isomorphism and G and H isomorphic.

A first example of a Lie group is GL(n,R), the set of real invertible n× n matrices –
it is a group, and it can be thought of being a submanifold of Rn2

. Products are smooth
by nature, and inverses by Cramer’s rule. If we regard R \ {0} as a multiplicative group,
then taking the determinant is a smooth Lie group homomorphism between these groups.

Definition 2.1.10. Let S be a subset of the Lie group G, then we denote by 〈S〉 the
smallest subgroup of G that contains S.

Proposition 2.1.13. Let G be a Lie group and W a neighborhood of the identity. Then

� 〈W 〉 is an open subgroup of G,

� if W is connected, then so is 〈W 〉,

� if G is connected, then 〈W 〉 = G.

The identity component of G is the connected component containing the identity.

Proposition 2.1.14. Let G be a Lie group and Ge be the identity component. Then Ge
is a normal subgroup of G, and it is the only open connected subgroup of G. Further,
every connected component of G is diffeomorphic to Ge.

Proposition 2.1.15. Let F : G→ H be a Lie group homomorphism. Then the kernel
of F is a properly embedded Lie subgroup of G. If F is injective, then F (G) can be made
naturally a Lie subgroup of H.

A left action of G onto any set M is a map ϑ : G×M →M such that for all p ∈M
and g, h ∈ G we have ϑ(e, p) = p and ϑ(g, ϑ(h, p)) = ϑ(gh, p). If M is a manifold, we
call ϑ a smooth action and M a G-space. Similar statements and results hold for right
actions.

Definition 2.1.11. The orbit of p is the set

ϑ(G, p) = {ϑ(g, p) : g ∈ G}.

The isotropy group or stabilizer of p is the set

Gp = {g ∈ G : ϑ(g, p) = p}.

The action is said to be transitive if ϑ(G, p) = M for some and hence all p ∈ M . The
action is said to be free if Gp = {e} for all p ∈M .
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An example is given by GL(n,R) acting on Rn. It is not transitive as the origin is not
moved. It is not free as the origin is fixed by all elements.

Definition 2.1.12. Suppose the smooth manifolds M,N are G-spaces with smooth
action given by ϑ and ζ. A function F : M → N is said to be equivariant with respect to
ϑ, ζ if for all p ∈M and g ∈ G

F (ϑ(g, p)) = ζ(g, F (p)).

It is a theorem that every Lie group homomorphism has constant rank – recall that a
smooth map F : M → N has constant rank if the rank of dFp is the same for all p ∈M .

Theorem 2.1.16 (Equivariant Rank Theorem). Let M and N be smooth manifolds and
G-spaces for a Lie group G. If ϑ is transitive, and F : M → N is an equivariant smooth
map, then F has constant rank.

In particular this means that if F is surjective, it is a submersion; if F is injective, it
is an immersion; and if F is bijective, then it is a diffeomorphism.

Recall that a submanifold S is embedded in M if its topology and charts are restrictions
of the ones for M . A submanifold is properly embedded if the inclusion map is proper,
i.e. the preimage of any compact set is compact.

Theorem 2.1.17 (Constant Rank Level Set Theorem). Let φ be a smooth map between
smooth manifolds M → N . If φ has constant rank r, then each level set of φ is a properly
embedded submanifold of codimension r.

An application is to show that the orthogonal group O(n) is a Lie group. It is
clearly a subgroup of GL(n,R), and we can define a map φ : GL(n,R)→ GL(n,R) via
φ(A) = AtA. Then O(n) is the level set φ−1(1). We define a right action on GL(n,R)
via ρ(A,B) = BtAB – thus ρ(ρ(A,B), C) = Ctρ(A,B)C = (BC)tABC = ρ(A,BC).
The map φ is equivariant with respect to right translation in its domain and ρ in the
codomain: φ(AB) = BtAtAB = Btφ(A)B = ρ(φ(A), B). Hence by the Equivariant Rank
Theorem it has constant rank, and by the Constant Rank Theorem all level sets are
properly embedded submanifolds. We finish using following proposition.

Proposition 2.1.18. Let H be a subgroup of the Lie group G, if H is also an embedded
submanifold, then H is a Lie subgroup.

It follows that SO(n) is a Lie group, for it is the identity component of O(n), and by
Proposition 2.1.14 it is an open subgroup, thus each chart for O(n) restricted to SO(n)
is a chart for the latter, hence being an embedded submanifold.

2.1.5. Vector fields

A (rough) vector field is a map M → TM with the property that p is sent to some
derivation wp. Thus vector fields act on functions f ∈ C∞(M) in the obvious way

Xf(p) := wp(f).
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Definition 2.1.13. A smooth vector field is a smooth map X : M → TM such that its
value at p is a derivation at p. The set of all smooth vector fields of M is denoted X(M).

All our previous results on smooth functions between smooth manifolds apply here,
and in particular X is smooth if and only if it is smooth in any chart (U,ϕ) around every
p ∈M ; and in local coordinates

X
∣∣
U

(p) =

n∑
j=1

X(Prj(ϕ))(p) ∂ϕ,pj .

Evidently {∂ϕj } are smooth vector fields on U , and for arbitrary X, we use the basis
change formula to deduce that X is smooth if and only if the functions X(Prj(ϕ)) are
smooth in each chart domain. Note that smooth functions F : M → N do not yield a
map dF : X(M)→ X(N) in general3, as F (M) might not be all of N .

A smooth n-manifold is called parallelizable, if it admits a smooth global frame, i.e.
there are smooth vector fields E1, . . . , En such that for all p, the derivations that these
fields represent at p span TpM . All Lie groups are parallelizable, and it was shown by
Bott–Milnor and Kervaire that the only spheres that are parallelizable are S1, S3 and S7,
but only the first two admit a Lie group structure.

Definition 2.1.14. The Lie bracket [X,Y ] of X,Y ∈ X(M) is a smooth vector field of
its own and defined as the derivation with action on f ∈ C∞(M) via

[X,Y ]f = XY f − Y Xf.

Proposition 2.1.19 (Properties of the Lie Bracket). Let X,Y, Z ∈ X(M) and f, g ∈
C∞(M), then the Lie bracket

1. is bilinear for the R-module X(M),

2. is antisymmetric,

3. satisfies the Jacobi identity[
[X,Y ], Z

]
+
[
[Y, Z], X

]
+
[
[Z,X], Y

]
= 0,

4. satisfies
[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

Definition 2.1.15. A real vector space endowed with a bracket satisfying the first three
properties is called a Lie algebra.

Recall the definition of left translation in a Lie group G by Lg(h) = gh for all h ∈ G.
This is a transitive action and d(Lg) : X(G)→ X(G) is a diffeomorphism. A vector field
X ∈ X(G) is said to be left-invariant if for all g, h ∈ G

d(Lg)hX(h) = X(gh).

3This circumstance gives rise to the notion of F -related vector fields.
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Let us see what this means in local coordinates. Fix a chart neighborhood (U,ϕ) of
h ∈ G and one for gh, (V, ψ), so that following holds for p ∈ U and q ∈ V

X(p) =

n∑
j=1

X(Prj(ϕ))(p) · ∂ϕ,pj and X(q) =

n∑
j=1

X(Prj(ψ))(q) · ∂ψ,qj ,

and, by (2.1)

d(Lg)p(∂
ϕ,p
j ) =

n∑
k=1

∂ϕ,pj (Prk(ψ ◦ Lg)) · ∂ψ,gpk .

Now, left invariance means in particular, with some suggestive notation

X(Prj(ψ))(gh) =
n∑
s=1

X(Prs(ϕ))(h) · ∂ϕ,hs (Prj(ψ ◦ Lg)) =: 〈Xϕ
h ,∇

ϕ
hL

ψ,j
g 〉,

and we see that if in the right–hand–side we choose h = e and let g run trough all
elements of G, that X is completely determined at e and smooth, since Lg is. With this
short hand notation and a chart (U,ϕ) containing e, we deduce that left invariant vector
fields form a vector space g, since for two such fields X,Y and a, b ∈ R we have

a〈Xϕ
e ,∇ϕeLψ,jg 〉+ b〈Y ϕ

e ,∇ϕeLψ,jg 〉 = 〈aXϕ
e + bY ϕ

e ,∇ϕeLψ,jg 〉.

Proposition 2.1.20. For X,Y ∈ g, it follows that [X,Y ] ∈ g. In particular, g is a Lie
algebra.

We will denote this Lie algebra by Lie(G), and refer to it as the Lie algebra of G.

Theorem 2.1.21. A vector space isomorphism is given by the evaluation map

ε : Lie(G)→ Te(G)

X 7→ X(e).

We readily see that every Lie group is parallelizable by a left-invariant frame. Further,
by regarding T1O(n), we realize that the Lie algebra of O(n) is given by the vector space
of skew symmetric matrices, and this is thus also the Lie algebra of SO(n).

Theorem 2.1.22 (Ado’s Theorem). Every real finite dimensional Lie algebra admits a
faithful finite dimensional representation.

It thus follows that every real finite dimensional Lie algebra is isomorphic to a subalgebra
of the matrix algebra with commutator bracket.
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2.1.6. Tangent covectors on manifolds

For each p ∈ M , we denote the dual space of TpM by T ∗pM , the cotangent space at p.
Elements of T ∗pM are called (tangent) covectors at p. Given a chart neighborhood (U,ϕ)
of p, we define the dual basis to satisfy

dkϕ,p
(
∂ϕ,pj

)
= δkj .

Hence given any element Λp of the cotangent space, we have in local coordinates Aj :=
Λp
(
∂ϕ,pj

)
Λp =

n∑
j=1

Aj · djϕ,p.

Recall that for two overlapping chart domains (U,ϕ) and (V, ψ), the Jacobian matrices
J(ψ ◦ ϕ−1) and J(ϕ ◦ ψ−1) are inverse to each other where defined, thus with (2.2) we
obtain

djϕ,p =

m∑
k=1

∂ψ,pk Prj(ϕ) · dkψ,p =:
〈
J(ϕ ◦ ψ−1)t

∣∣
ψ(p)
· ej , ~dψ,p

〉
=:
〈
∇ψpPrj

(
ϕ
)
, ~dψ,p

〉
.

Definition 2.1.16. The cotangent bundle of M , denoted by T ∗M , is the disjoint union
of all cotangent spaces

T ∗M =
⋃
T ∗pM.

There is a natural projection map π : T ∗M →M , sending djϕ,p to p.

Proposition 2.1.23. If M is a smooth manifold and n-dimensional, then T ∗M is in a
natural way a smooth 2n-manifold.

A chart neighborhood (U ,Φ) of T ∗M at (p,Λp) is given via charts (U,ϕ) of M around
p with A = (A1, . . . , An)t:

U ' U × Rn and Φ(p,Λp) = (ϕ(p),A)t.

Thus local sections of this vector bundle are called covector fields, and a local coframe
are n-many covector fields that are linearly independent and span T ∗pM . Clearly to each
frame exists a coframe and vice versa. The real vector space of smooth covectors on M
will be denoted by X∗(M).

Geometrically, we can visualize a linear functional Λp as an affine (n− 1)-dimensional
subspace IpΛ = Ker(Λp) + vp; where vp is the vector of minimal Euclidean length with
Λp(vp) = 1. Thus all affine subspaces parallel to IpΛ are level sets of Λp with value
depending on the distance to the origin in a natural way: the plane IpΛ is the level set of
the value 1. It follows that IpΛ contains all the information to recover Λp.

Definition 2.1.17. We define the differential of functions to be a covector field

d : C∞(M)→ X∗(M)

f 7→ df.

For wp ∈ TpM , df acts by the assignment dfp(wp) = wpf.
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In local coordinates

df =
n∑
j=1

∂ϕj f · d
j
ϕ.

The next statement is Proposition 2.1.8 for R = N , where we identify R ' TR ' T ∗R.

Proposition 2.1.24. Let f, g ∈ C∞(M), then

� d is R-linear over C∞(M);

� d(fg) = fdg + gdf ;

� dfg = gdf−fdg
g2

whenever g 6= 0;

� d(g ◦ f) = g′ ◦ f · df whenever g ◦ f makes sense;

� if f is constant, then df = 0.

It follows that df = 0 if and only if f is constant on connected components.

2.1.7. Riemannian structure

Definition 2.1.18. A Riemannian metric g on M is a smooth, symmetric covariant
2-tensor field that is positive definite at each point, i.e. for each p, the 2-tensor gp :
TpM

2 → R is an inner product. In local coordinates and in terms of tensor products, we
can write

gp =
n∑

j,s=1

gjs(p)d
j
ϕ,p ⊗ dsϕ,p =

n∑
j,s=1

gjs(p)d
j
ϕ,p · dsϕ,p,

where {gjs} is a strictly positive definite matrix with smooth coefficients for each p. The
elements of the inverse matrix will be denoted by {gjs}.

Riemannian metrics can be assembled via partitions of unity and hence are not rare,
quite the contrary, many different metrics would yield different geometric features.

Once a metric is set, we can define the norm or length of a tangent vector vp ∈ TpM :

|vp|g =
√
〈vp, vp〉g =

√
gp(vp, vp),

and the angle θ between non-zero vectors vp and wp is defined as usual

cos(θ) =
〈vp, wp〉g
|vp|g|wp|g

.

Thus locally we can always have an orthonormal frame field via Gram-Schmidt algorithm.

Definition 2.1.19. For any smooth path γ : (a, b)→M with a < b, we define the length
of γ to be

`(γ) =

∫ b

a
|dγ(∂1,t1 )|g dt.
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Let p, q ∈M , then we set P (p, q) = {γ : [0, 1]→M smooth : γ(0) = p, γ(1) = q} and
define the geodesic distance between these points as

dg(p, q) = inf
γ∈P (p,q)

`(γ). (2.3)

Since the Riemannian metric g is at each point essentially a strictly positive definite
matrix, the geodesic distance is comparable to the Euclidean one for points close together.

Lemma 2.1.25 ([Gri09] Lem. 3.24). For any point p in a Riemannian manifold (M, g),
there is a chart (U,ϕ) containing p, so that for any x, y ∈ U and some C = C(U) ≥ 1,
we have

C−1‖ϕ(x)− ϕ(y)‖ ≤ dg(x, y) ≤ C‖ϕ(x)− ϕ(y)‖.

The product of two Riemannian manifolds (M, g1) and (N, g2) carries a natural
Riemannian structure g1×g2: Given points p ∈M and q ∈ N , we identify Tp,q(M×N) '
TpM × TqN , and for ξp, ζp ∈ TpM , ηq, θq ∈ TqN we define((

ξp
ηq

)
,

(
ζp
θq

))
g1×g2

= 〈ξp, ζp〉g1(p) + 〈ηq, θq〉g2(q).

A flat Riemannian manifold is one that has a local isometry with Rn and its Euclidean
metric, i.e. g is locally the pull back of the Euclidean metric.

Theorem 2.1.26. For a Riemannian manifold (M, g) the following are equivalent.

1. g is flat,

2. for each p ∈M , there is a smooth chart such that g =
∑n

j=1 d
j
ϕ · djϕ =

∑n
j=1(djϕ)2,

3. for each p ∈M , there is a smooth chart such that the resulting coordinate frame
∂ϕ1 , . . . , ∂

ϕ
n is orthonormal.

It is the notion of curvature that measures how much g deviates from being flat.

2.1.8. The tangent-cotangent isomorphism

Every Riemannian metric induces a bundle homomorphism ĝ : TM → T ∗M as follows:
let p ∈M and vp ∈ TpM , then ĝ[vp] : TpM → R acts via

ĝ[vp](wp) = gp(vp, wp).

By linearity, and since ĝ[vp] is injective, it is a bundle isomorphism. In a chart (U,ϕ)
around p, we have for vector fields X,Y

ĝ[X](Y ) = gj,sX
jY s,

where Xj = X(Prj(ϕ)) and similar for Y s. It follows that ĝ[X] =
∑n

j=1 gjsX
j · dsϕ and it

is customary to denote
Xs = gjsX

j ,
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whence we lowered the index. Using musical notation, one rather writes X[ for ĝ[X],
thus the tone has been lowered. The inverse map ĝ−1 : T ∗M → TM , acts on Λ via

ĝ−1[Λ] = gjsΛ(∂ϕs ) · ∂ϕj .

Using again musical notation, one writes Λ] for ĝ−1[Λ], where the index is raised. These
are the musical isomorphisms. Using this, we can introduce the gradient of a function on
Riemannian manifolds via

gradf = ∇gf = df ] =
n∑

s,j=1

gjs∂ϕs f · ∂
ϕ
j .

It follows that ∇g(fh) = h∇gf + f∇gh, and we also obtain

〈∇gf,X〉g =
n∑

s,j,k=1

gjs∂ϕs fgjkX
k =

n∑
s,k=1

δks∂
ϕ
s fX

k = df(X).

Further, these operators introduce an inner product on T ∗pM at each p which is
symmetric, strictly positive definite and smooth: let Λ,Γ ∈ T ∗M , set

〈Λ,Γ〉g∗ = 〈Λ],Γ]〉g.

This puts the isomorphism in musical isomorphisms.
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2.2. Laplace-Beltrami Operator

There are many reasons to study the Laplacian, be it for applications in engineering
or physics, or for its appearance in archetypical partial differential equations. An
ansatz for the heat equation for instance, is to assume the solution to be of the form
u(x, t) = α(t)ϕ(x) for x ∈ Ω and t > 0, which gives

∆ϕ(x)

ϕ(x)
= − α̇(t)

α(t)
.

This automatically leads to the Helmholtz equation

∆ϕ = λϕ,

which for non-empty boundary ∂Ω, usually demands ϕ to be zero on ∂Ω, i.e. Dirichlet
boundary conditions. But understanding or even finding the eigenvalues and -functions is
a very hard task, and the literature has many results regarding upper and lower bounds
for both these quantities, see Section 2.2.5 for more. Different compact shapes with
the same eigenvalues and multiplicity share many properties, like volume, dimension,
curvature, genus, etc. Results like these have been inspired by the classical paper of Kac
and his question if one can hear the shape of a drum...

For a general treatment of partial differential operators on manifolds we refer to [BC17].
The following sections are based on the very well written and extremely useful [Gri09],
and its predecessor [Gri01], which can be found on the homepage of A. Grigor’yan.

2.2.1. Riemannian volume measure and Laplace-Beltrami operator

Given a Riemannian manifold (M, g), then the change of coordinates for the metric looks
as follows

n∑
i,j=1

gϕijd
i
ϕd

j
ϕ =

n∑
k,s=1

( n∑
i,j=1

gϕij∂
ψ
k Pri(ϕ)∂ψs Prj(ϕ)

)
· dkψdsψ,

hence

〈∂ψk , ∂
ψ
s 〉g = gψks =

n∑
i,j=1

gϕij∂
ψ
k Pri(ϕ)∂ψs Prj(ϕ).

In matrix notation with J = J(ϕ ◦ ψ−1) this becomes particularly succinct

gψ = JgϕJ t. (2.4)

Every Riemannian manifold has a natural measure µg on the Borel σ-algebra, induced
by the topology of M , and completed such that a set A ⊂M is measurable if ϕ(U ∩A)
is Lebesgue measurable for every chart (U,ϕ). Concretely, we define on U :

dµg|U (p) =
√

det(gϕ)(p) dλ(ϕ(p)). (?)
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The value µg(A), for an open set A ⊂ U , is defined as the integral of (?) and does not
depend on a particular chart. To see this let A ⊂ V , for a chart (V, ψ), then by (2.4)

µg(A) =

∫
ϕ(A)

√
det(gϕ)(ϕ−1(x)) dλ(x) =

∫
ψ(A)

√
det(gϕ)

(
ψ−1(x)

)
| det J(ϕ ◦ ψ−1)| dλ(x)

=

∫
ψ(A)

√
det(JgϕJ t)

(
ψ−1(x)

)
dλ(x) =

∫
ψ(A)

√
det(gψ)

(
ψ−1(x)

)
dλ(x).

The measure µg is σ-finite, inner and outer regular. Further, since continuous functions
are measurable, we have a bijection between measurable functions on U and ϕ(U). One
can now introduce the notion of measurable functions, and Lp(U, µg)-spaces via lift from
ϕ(U) to U , and via partition of unity, to the whole of M . An immediate corollary is that
if for all compactly supported smooth functions h we have∫

M
f · h dµg = 0,

then f ≡ 0 on M .

Remark 2.2.1. Note that in the definition of µg, it is the term
√

det(g) that transforms in
a way to make the definition independent of the chart. Integration on an oriented manifold
uses that n-forms transform correctly once sign changes during variable transformations
are removed. Nevertheless, orientation is still needed to introduce integration on a
boundary and Stokes Theorem. Measures on manifolds are introduced with more detail
in [Die72] on page 163.

Lemma 2.2.2. Given a compact smooth manifold M with two Riemannian metrics
g1, g2. Then Lp(M,µg1) = Lp(M,µg2) for all 0 < p ≤ ∞.

Proof. This is immediate from Exercise 3.5 on page 64 of [Gri09]: the ratio of det(g1)
and det(g2) is a well defined, positive function r = r(g1, g2) ∈ C∞(M) and

dµg1 |U (p) =
√

det(gϕ1 )(p) dλ(ϕ(p)) =

√
det(gϕ1 )

det(gϕ2 )

√
det(gϕ2 )(p) dλ(ϕ(p)) = r(p) dµg2 |U (p).

�

Theorem 2.2.3 (Divergence Theorem). Given a smooth vector field v on M , then there
is a unique function −divgv ∈ C∞(M), such that for all h ∈ C∞0 (M) we have∫

M
−divgv · h dµg =

∫
M
〈v,∇gh〉g dµg.

On compact manifolds −divg(v) is hence a zero mean function. The Laplace-Beltrami
operator is now defined as

∆g = −divg(∇g).

Functions f with ∆gf = 0 are called harmonic.
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Theorem 2.2.4 ([Aub98] Thm. 1.71). Harmonic functions on compact smooth Rieman-
nian manifolds are constants.

Note that the theorem asks for an oriented manifold, but it easily follows via the
measure theoretic approach that this is not necessary (and indeed it comes right before
T. Aubin introduces Measure Theory).

2.2.2. Partial differential intermezzo

We will for the moment regard Ω ⊂ Rn and consider the differential operator

L =
n∑

i,j=1

∂i(aij∂j) +
n∑
j=1

bj∂j + c,

where aij , bj , c ∈ C∞(Ω) and we assume the matrix aij to be symmetric and uniformly
elliptic with ellipticity constant λ > 0, and that bj , c are bounded by λ, i.e. for ξ =
(ξ1, . . . , ξn) ∈ Rn

n∑
i,j=1

ξiaij(x)ξj ≥ λ‖ξ‖2 for x ∈ Ω.

The appearing Sobolev space will be defined in the next section on manifolds, we just
state some theorems from PDE Theory for later reference.

Definition 2.2.1. Let u ∈W 1,2
loc (Ω) and f ∈ L2

loc, then we say that the equation Lu = f
holds weakly in Ω, if for all h ∈ C∞0 (Ω), we have

−
∑
i,j=1

∫
Ω
aij∂ju · ∂ih dx+

n∑
j=1

∫
Ω
bj∂ju · h dx+

∫
Ω
uch dx =

∫
Ω
fh dx.

Theorem 2.2.5. If L is as above, and u is such that u ∈ W 1,2
loc (Ω) and Lu ∈ W k,2

loc (Ω),

then it follows that u ∈W k+2,2
loc (Ω). Further, for any open and compactly contained U ⊂ Ω

and some constant C depending on U,Ω, n, λ, we have

C‖u‖Wk+2,2(U) ≤ ‖u‖W 1,2(Ω) + ‖Lu‖Wk,2(Ω).

We will write Lku = f if for each 1 ≤ s < k, Lsu ∈W 1,2
loc (Ω) and L

(
Lk−1u

)
= f weakly.

Corollary 2.2.5.1. Assume u, Lu, . . . , Lku ∈W 1,2
loc (Ω), then

u ∈W 2k+1,2
loc (Ω),

and for any open and compactly contained U ⊂ Ω and some C = C(U,Ω, n, λ, k, ρ)

C‖u‖W 2k+1,2(U) ≤
n∑
j=1

‖Lju‖W 1,2(Ω).

By the Sobolev Embedding Theorem, if 2k+1 > n
2 +m for m ∈ N, then u ∈W 2k+1,2

loc (Ω)
can be identified with a u ∈ Cm(Ω).

37



2.2.3. Test functions and Sobolev spaces on manifolds

This part consists mainly of pages 97-108 of [Gri09], where many results are stated for
weighted Riemannian manifolds. We do not need this generality, but want to point it
out. Also, the following notation is used for uniform convergence of functions fj to f
with same domains, which is implicit in Lemma 2.4:

fj ⇒ f :⇔ ∀ε > 0 ∃N > 0 : |fj(x)− f(x)| ≤ ε for all j > N and x ∈ dom(f).

We will use the multi-index notation, where if α = (α1, . . . , αn)t ∈ Nn0 , then |α| =
α1 + . . .+ αn and

∂αf =
∂|α|

∂α1x1 . . . ∂αnxn
f.

Given a smooth manifold M , not necessarily Riemannian, define D(M) to be the space

C∞0 (M) with following mode of convergence: Let fj , f ∈ C∞0 (M), we say that fj
D→ f if

1. for any chart (U,ϕ) and multi-index α, we have ∂αfj ◦ ϕ−1 ⇒ ∂αf ◦ ϕ−1 in ϕ(U),

2. and there is a compact set K ⊂M , such that all involved functions have support
contained in K.

Elements of D(M) are called test functions, and one can show that they are dense in
Lp(M,µg) for 1 ≤ p <∞. Distributions on M are defined as elements of the dual space
to D(M) with weak convergence and topology. Any h ∈ L1

loc(M,µg) can be identified as
distribution via

h(f) = (h, f)L2 =

∫
M
hf dµg for f ∈ D(M).

Taking derivatives of distributions is done via relegation to test functions, i.e. if X ∈ TM ,
then

(Xh, f)L2 = −(h,Xf)L2 or (∆h, f)L2 = (h,∆gf)L2 .

If the stronger requirement holds, that for some u, v ∈ L2
loc(M,µg) and all f ∈ D(M)

(∆u, f)L2 = (v, f)L2 ,

then we say that ∆u = v holds weakly. We define similar notions for compactly supported,
smooth vector fields v, w

(v, w)~L2 =

∫
M
〈v, w〉g dµg,

so that the dual space of ~D(M) are distributional vector fields. For a test function
f ∈ D(M) and distributional vector field ~h, we can define distributional divergence again
via relegation

(−div~h, f)L2 = (~h,∇gf)~L2 .

The gradient of a distribution is defined analogously and shows that distributions and
distributional vector fields are embedded in each other.
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We denote with Γ∞0 (M) the module of smooth, compactly supported tangent vector
fields on M , and by ~L2(M,µg) we associate the vector space of tangent vectors v, with
measurable coefficients in all charts, satisfying in addition |v|g ∈ L2(M,µg). Both are
Hilbert spaces with the inner products given above. We similarly define spaces of functions
having these properties only on compact subsets, and add the index loc to them.

Definition 2.2.2. Let u ∈ L2(M,µg). A weak gradient for u is given by a vector field

v ∈ ~L2
loc(M,µg), such that for all ~h ∈ Γ∞0 (M) we have

(−divg(~h), u)L2 = (~h, v)~L2 .

We will denote the weak gradient of u by ∇u, which still depends on the metric g.

A weak gradient need not exist for an arbitrary L2-function, an example is given in
[Eva10] on page 257 for M being the interval (0,2). Next we define Sobolev spaces.

Definition 2.2.3. Let

W 1(M,µg) =
{
u ∈ L2(M,µg) : ∃v ∈ ~L2(M,µg) with v = ∇u

}
,

and an inner product that turns W 1(M,µg) into a Hilbert space is given by

(u, f)W 1 = (u, f)L2 + (∇u,∇f)~L2 .

In chart domains, this Sobolev space and the Lp spaces can be identified with the ones
in Euclidean space. The norms will be comparable too.

Definition 2.2.4. Let u ∈ W 1
loc(M,µg) and f ∈ L2

loc(M,µg). We say the equation
∆u = f is satisfied weakly, if for all h ∈ D(M) we have

(∇u,∇gh)~L2 = (f, h)L2 . (2.5)

The same result on regularity as in Corollary 2.2.5.1 holds in this case too.

Definition 2.2.5. For an open and bounded subset Ω of M , we have C∞0 (Ω) ⊂W 1(Ω, µg),
and we define the set W 1

0 (Ω, µg) to be the closure of C∞0 (Ω) in W 1-norm. A domain
where ∆ is a self-adjoint operator with respect to ( , )L2 is given by the Hilbert space

W 2
0 (Ω, µg) =

{
u ∈W 1

0 (Ω, µg) : ∃f ∈ L2(Ω, µg) such that (2.5)
}
⊂ L2(Ω, µg).

Note that for u, v ∈W 2
0 (Ω, µg), we have sequences uj , vj ∈ C∞0 (Ω) converging to u, v

respectively in W 1-norm, and

(∆u, v)L2 = lim
j→∞

(∇u,∇gvj)~L2 = (∇u,∇v)~L2 = lim
j→∞

(∇guj ,∇vj)~L2 = (u,∆v)L2 .
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2.2.4. Fredholm theory on manifolds

We will now consider the general Dirichlet problem of finding u ∈ W 1
0 (Ω, µg) for open

and bounded Ω ⊂M , such that

∆u+ αu = f,

where α ∈ R and f ∈ L2(Ω, µg). A function u ∈W 1
0 (Ω, µg) is called weak solution if for

all h ∈ C∞0 (Ω)

(∇u,∇gh)~L2 + α(u, h)L2 = (f, h)L2 . (2.6)

Theorem 2.2.6. For any fixed α > 0 and f ∈ L2(Ω, µg), the above Dirichlet problem
has a unique solution uf = uαf ∈W 1

0 (Ω, µg). Thus, we can define a resolvent operator

Rα : L2(Ω, µg) → L2(Ω, µg)
f 7→ uf .

It turns out that Rα is a bounded linear operator, that is positive definite and self-adjoint
on the Hilbert space L2(Ω, µg).

Proof. We deal with a Hilbert space, so we have the Cauchy-Schwarz inequality at our
disposal and for all h ∈W 1(Ω, µg)

|(f, h)L2 | ≤ ‖f‖L2‖h‖L2 ≤ ‖f‖L2‖h‖W 1 ;

and since we can use the Cauchy-Schwarz inequality for each inner product 〈 , 〉g, we
obtain

|(∇u,∇h)~L2 | ≤ (|∇u|g, |∇h|g)L2 ≤ ‖u‖W 1‖h‖W 1 .

This shows that the terms in (2.6) define bounded linear functionals on W 1(Ω, µg), and
if (2.6) holds for h ∈ C∞0 (Ω), then it will hold by density in W 1

0 (Ω, µg). We define now
an inner product on W 1

0 (Ω, µg) via

[u, h]α := (∇u,∇gh)~L2 + α(u, h)L2 .

Obviously we have

min{α, 1}‖u‖2W 1 ≤ [u, u]α ≤ max{α, 1}‖u‖2W 1 ,

thus making the induced norm equivalent to the one of W 1, so (W 1
0 (Ω, µg), [ , ]α) is a

Hilbert space. Further, since [ , ]α is equivalent to ‖ ‖W 1 ,

h 7→ (f, h)L2

is a bounded linear functional on W 1
0 (Ω, µg) and by the Riesz Representation Theorem,

there is a unique uf ∈W 1
0 (Ω, µg), such that

[uf , h]α = (f, h)L2 ;
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but this is (2.6). Further, if we plug in uf for h, we obtain

α(uf , uf )L2 ≤ [uf , uf ]α = (f, uf )L2 ≤ ‖f‖L2‖uf‖L2 ,

which yields

α‖uf‖L2 ≤ ‖f‖L2 .

It hence follows that

‖Rα‖ = sup
f∈L2(Ω)\{0}

‖Rαf‖L2

‖f‖L2

≤ 1

α
<∞.

For f, h ∈ L2(Ω) we set uf = Rαf and uh = Rαh with uf , uh ∈W 1
0 (Ω) so that

(h, uf )L2 = (∇uf ,∇uh)~L2 + α(uf , uh)L2 = (f, uh)L2 .

If we set h = f in the above formula, we deduce that (f, uf ) ≥ 0, positive definiteness
follows. �

Finally we apply this theorem to the Helmholtz Equation/Eigenvalue Problem

∆u = λu.

The next statement is a summary of Theorem 4.6 and 10.13 of [Gri09] and Theorem 2.11
of [Gri01].

Theorem 2.2.7 (Eigenfunction Basis). The operator ∆ is positive definite and self-
adjoint with domain containing W 1

0 (Ω, µg), for all relatively compact Ω ⊂ M . The
spectrum is discrete and an unbounded sequence in [0,∞). There is an orthonormal basis
of smooth eigenfunctions {φj} in L2(Ω, µg).

Proof. We only sketch the proof. Regard following modification

∆u+ u = (1 + λ)u,

so the problem fits the previous theorem, and a solution uλ would satisfy uλ = R((1+λ)uλ),
where R = R1, or equivalently 1

1+λuλ = R(uλ). Since R is a compact operator on a

Hilbert space, there is an orthonormal basis of L2(Ω, µg) consisting of eigenfunctions φj
for R, and a bounded sequence of eigenvalues aj which accumulate around 0. All the
eigenvalues are positive, since R is positive definite. Thus φj will be an orthonormal
eigenfunction for ∆ too, and λj = 1

aj
− 1 will be its eigenvalue, which again has to be

positive, since ∆ is a positive definite operator. By Corollary 2.2.5.1, all the φj are
smooth. �
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2.2.5. Miscellaneous results on eigenvalues of ∆g

The source for this section is [Can13] and [Ura93], both containing many results that
have nothing to do with the work of this author, but neither could he resist to take them
in. It is for instance a reasonable question how the eigenvalues of ∆g change with the
metric g, and indeed, they depend continuously on g, see page 94 of [Can13].

Also one might wonder what sequences can appear as eigenvalues of a Laplacian?

Theorem 2.2.8 ([Ver87]). If M is a smooth, compact n-dimensional manifold without
boundary and n > 2, then to each finite sequence 0 < λ1 ≤ λ2 ≤ . . . λk, there is a metric
g on M , such that ∆g has this sequence as initial eigenvalues.

Note that for n = 2 there are bounds on the multiplicity of eigenvalues. On the other
hand, the asymptotic behavior of the number of eigenvalues below a threshold µ

N(µ) :=
∣∣{λk : λk < µ}

∣∣
can not be altered, as following result shows (for a proof see page 99 of [Can13]).

Theorem 2.2.9 (Weyl’s Asymptotic Formula). Let (M, g) be a smooth, compact Rie-
mannian n-manifold and {λj} be the eigenvalues of ∆g. Then, with ωn the volume of the
n-dimensional unit ball

lim
µ→∞

N(µ)

µn/2
=
ωnVol(M)

(2π)n
and lim

k→∞

λk
k2/n

=

√
2π(

ωnVol(M)
)2/n .

Upper bounds on eigenvalues for immersed manifolds have been obtained in [CDS10],
lower bounds for closed manifolds with Ricci curvature bounded from below in [HKP16].
Eigenvalues of the Laplace-Beltrami operator determine the volume, dimension and total
scalar curvature of a compact Riemannian manifold without boundary, see [Min53]. Yet
there are different shapes with exactly the same eigenvalues, see [RWP06].
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2.3. Green Functions

We introduce Green functions, i.e. fundamental solutions to self-adjoint linear partial
differential operators. Applications of Green functions in science and engineering, and
how to obtain them in practice for some special domains in Rn can be found in chapter 4
of [Col+11]. The eigenfunction expansion is proven in Section 2.3.2.

2.3.1. Definition and properties

We follow chapter 4 of [Aub98].

Definition 2.3.1. Given a compact smooth Riemannian manifold (M, g) of dimension
n, with volume V =

∫
M 1µg. A kernel G(p, q) : M2 → R ∪ {∞} is called Green function

for the Laplace-Beltrami operator if in the sense of distributions and for any fixed p ∈M
we have

∆gG(p, ·) = δp(·)−
1

V
.

The notion of Green function on manifolds with boundary is a bit different. Existence
and properties are contained in the following theorem, which we state for n > 2 only.

Theorem 2.3.1 ([Aub98] Thm. 4.13). Let M be a compact smooth Riemannian manifold
of dimension n. Then there exists a Green function G for ∆g with the following properties:

1. For all f ∈ C2(M) we have

f(p) =
1

V

∫
M
f dµg +

∫
M
G(p, q)∆gf(q) dµg(q). (2.7)

2. G(p, q) is smooth on the product manifold M2 minus the diagonal.

3. If r = dg(p, q) is the distance in the induced metric, then for n > 2 and some finite
constant C we have

|G(p, q)| < C

rn−2
.

4. Green functions are bounded from below.

5. The integral of G over M2 with respect to dµgdµg exists.

6. We have the symmetry relation G(p, q) = G(q, p) for all p, q ∈M .

Green functions on non-compact manifolds need not exist, see [Gri83] for non-existence
results, which are closely related to capacities of compact sets.
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2.3.2. Eigenfunction expansion

It is unfortunate, but the author of this thesis could not find a reference for the eigenfunc-
tion expansion on manifolds. So it will be derived in this section for n = 3. To do this,
we will use a result of [Coc72], which deals with L2 kernels on intervals. Alternatively we
refer to [Smi38], which is much shorter and more succinct than [Coc72] – but we need
the results for compact manifolds, and indeed, on page 5 of Cochran’s book we find a
remark, that says it is possible to lift the theory of Fredholm integral equations from an
interval to surfaces.

Note that these references rely on properties of integrals, Measure Theory and Hilbert
space techniques, which clearly all are present on L2(M,µg) for a compact Riemannian
manifold (M, g). To show for instance Fubini’s Theorem or Dominated Convergence, we
can use a partition of unity and work in the product of two charts, where we use the
result for Lebesgue measures on R2n.

Theorem 2.3.2. Let (M, g) be a 3-dimensional, compact smooth Riemannian manifold
and G be a Green function for ∆g with zero mean, i.e.

∫
M G(p, q) dµg(q) = 0. Let {λj}

and {φj} for j ∈ N be the set of eigenvalues and eigenfunctions of ∆g with φ0 = 1 and
λ0 = 0. Then

G(p, q) =
∞∑
j=1

φj(p)φj(q)

λj
,

and the series converges in L2(M2) = L2(M2, µg × µg).

Proof. We will use Theorem 3.3-1 of [Coc72], or Theorem 5 of [Smi38] in our setting,
and construct an integral kernel H that is symmetric, in L2(M2) and closed, i.e. there is
no h ∈ L2(M) with

IH(h) =

∫
M
H(p, q)h(q) dµg(q) = 0,

unless h = 0. In this case H has an eigenfunction expansion as we desire for the Green
function, which converges in L2. We set H(p, q) = G(p, q) + V −1 where V =

∫
M 1 dµg.

Then H is symmetric because G is, and since the eigenfunctions φj are smooth and have
zero mean

IH(φj) =
1

λjV

∫
M
φj(q) dµg(q) +

λj
λj

∫
M
G(p, q)φj(q) dµg(q)

=
1

λjV

∫
M
φj(q) dµg(q) +

1

λj

∫
M
G(p, q)∆gφj(q) dµg(q) =

1

λj
φj(p),

by Theorem 2.3.1. This also shows that H is closed, as IH(φ0) = V −1 and the {φj}j∈N0

form a complete orthonormal system. If H were in L2, we would deduce that {λ−1
j } and

{φj} for j ∈ N are eigenvalues and eigenfunctions for H too, completed by λ0 = 1
V , and

thus

H(p, q) = G(p, q) +
1

V
=

1

V
+
∞∑
j=1

φj(p)φj(q)

λj
.
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We are hence left to show that G ∈ L2(M2). By Theorem 2.3.1, G2 will be integrable if
this is true along a neighborhood of the diagonal of M2. We can cover M with finitely
many charts Vs = (Vs, ψs) as in Lemma 2.1.25. There is thus an ε > 0, depending on the
charts Vs, such that for each p ∈M we can find an index α, with Bε(ψα(p)) ⊂ ψα(Vα).
Let us define Γs = {p ∈ Vs : Bε(ψs(p)) ⊂ ψs(Vs)}, then (Γs, ψs) will be charts that cover
M . We will then use this ε-buffer when we integrate with respect to polar coordinates:∫

Γ2
s

G(p, q)2 dµg(p)dµg(q) =

∫
ψs(Γs)2

G(ψ−1(x), ψ−1(y))2
√

det(gψs )(x)

√
det(gψs )(y)dxdy

≤
∫
ψs(Γs)×ψs(Vs)

Cs
‖x− y‖2

dxdy ≤ C ′s
∫
ψs(Γs)

∫ ε

0

r2

r2
drdx <∞,

where we used 2.) + 3.) of Theorem 2.3.1 which is reflected in the constants Cs, C
′
s; we

used that 0 < c ≤ det(g) is continuous on M , and that the change to polar coordinates
brings a factor of rn−1, canceling the (rn−2)2 for n = 3. �

The last part of the proof above can be slightly modified to obtain following corollary.

Corollary 2.3.2.1. Let (M, g) be a compact, smooth Riemannian n-manifold and G as
in Theorem 2.3.2. Then

G ∈ Lp(M2, µg) for 1 ≤ p < n

n− 2
.

A different approach to the eigenfunction expansion is to equate G to the resolvent
operator from Fredholm Theory, which is used to deduce the complete orthonormal ba-
sis for ∆g. This is done in Lemma 2.3 of [AZ98] and should yield the result for arbitrary n.

We also note that by equation (4), on page 88 of [Coc72] and our approach in this
section, it follows that the maximal number N of linearly independent eigenfunctions of
the Laplacian for the eigenvalue λ is bounded by

N ≤ λ2‖G‖2.

In combination with Theorem 2.2.8, this shows that ‖G‖2 for a zero mean Green function
can become arbitrary large.
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Part II.

The Articles

47





3. Approximation to uniform distribution in
SO(3)

This chapter is based on the joint work with Carlos Beltrán, [BF20], and has been
reproduced here with kind permission of E. Saff.

3.1. Introduction and Results

In this paper we study properties of a finite collection of randomly generated points
in SO(3), the rotation group of 3-dimensional Euclidean space, sampled by a certain
determinantal point process (dpp). It turns out that these points tend to be well
distributed, a property that is important for discretization, integration and approximation.
Our goal is not to compute actual collections of evenly distributed rotation matrices, but
rather to provide a comparison tool that allows to decide the effectiveness of any given
method.

If one is given an algorithm to generate finite (but arbitrarily large) collections of
matrices, common methods to measure how well distributed these are include either
calculating some discrete energy of them or looking at the speed of convergence of the
counting measure towards the uniform measure. Most work in this direction has been
done on spheres of various dimensions, see the monograph [BHS19] for a very complete
survey of the state of the art of this question; the particular question of finding collections
of spherical points with small energy was posed by Shub and Smale in [SS93] and is
nowadays known as Smale’s 7th problem [Sma98].

In order to extend part of the work done on spheres to the context of rotation matrices,
we will obtain bounds on various energies for points generated through a certain dpp
(technically speaking, a dpp is a counting measure where one identifies the measure with
its set of atoms). In few words, such a process is obtained by taking a Hilbert space H(X)
(usually H(X) = L2(X,µ)) of an underlying measure space (X,µ) and an N -dimensional
subspace H ⊂ H(X), with projection kernel K onto H – then, under mild conditions on
X, one is guaranteed almost surely the existence of such a process with N distinct points
in X associated to K.

The theory of those processes has been summarized in [Hou+09]; there one also finds a
pseudo-code which samples points from any given dpp. A main feature of the underlying
points is that they tend to repel each other, and hence have become the theoretical basis
of construction of well-distributed points on various symmetric spaces, see for instance
[AZ15; BE18; BMOC16; MOC18].

Since one can sometimes compute the expected value of the energy of points coming
from these processes with high precision, they have been used as a tool to understand
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the asymptotic properties of the discrete energy in that context; and in particular, for
even dimensional spheres with exception of the usual 2-sphere, the best known bounds
for some energies have been proved using this approach.

We will employ the same method for SO(3), considering first the (discrete) Riesz
s-energy for A = {α1, . . . , αN} ⊂ SO(3):

EsR(A) :=
∑
j 6=k

1

‖αj − αk‖sF
,

with αj being thought of as rotation matrices, ‖ · ‖F being the Frobenius or L2-norm,
and s ∈ (0,∞). In contrast to this, the continuous Riesz s-energy is given by replacing
the double sum by the double integral over SO(3). We further set

EsR(N) = inf
|A|=N

EsR(A).

The investigation of these sums is very popular and results usually describe the
behavior of the first leading terms. This seems particularly interesting in case s equals
the dimension, where we have following result.

Theorem 3.1.1. If N =
(

2L+3
3

)
for L ∈ N, then the Riesz 3-energy satisfies

12
√

2π E3
R(N) ≤ N2 log(N) +

(
3γ + log(82 · 6)− 21

4

)
N2 +O(N5/3 log(N)),

where γ is the Euler–Mascheroni constant.

The right-hand side is the expected value of the Riesz 3-energy with underlying points
generated by a certain dpp. Now, given any particular method of generating finite point
sets in SO(3), one can numerically compute their 3-energy and compare it to the value
above to decide if the points are evenly distributed. This comparison would clearly rise
in significance at the presence of lower bounds on the 3-energy. From [BHS19, Th. 9.5.4]
we have

lim
N→∞

E3
R(N)

N2 logN
=

β3

V ol(SO(3))
=

4π
3

16
√

2π2
=

1

12
√

2π
.

Here β3 is the volume of the unit ball in R3 and V ol(SO(3)) is the volume, i.e. the
Hausdorff measure, of SO(3) as a subset of R3×3 ≡ R9, see [Hua63] for a computation of
that volume. We can thus see that random points from our dpp give the correct order
of the asymptotic. The first order asymptotics for other s–energies are also understood
(see the Poppy Seed Bagel Theorem [BHS19, Th. 8.5.2] for s > 3 and the Fundamental
Theorem [BHS19, Th. 4.2.2] for s < 3). However, we have not found estimates on the
next order term for the minimal 3–energy on SO(3), which leads to the following open
question.

Open Problem 3.1.2. Find bounds on the second term asymptotics for E3
R(N) or more

generally for EsR(N).
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We now turn our attention to the Green energy, where we obtain bounds with the
continuous Green energy as coefficient of the factor N2 (zero in this case), and narrow
the domain of the leading coefficient of the second term.

To recap, a Green function GL for a linear differential operator L is an integral kernel to
produce solutions for inhomogeneous differential equations and is unique modulo Ker(L).
In our case, we deal with the Laplace-Beltrami operator ∆g, and note that Ker(∆g) is the
set of harmonic functions – which are just constants on a compact Riemannian manifold
(M, g). We will construct G = G∆g in such a way that it integrates to zero and speak of
the Green function.

The (discrete) Green energy for A = {α1, . . . , αN} ⊂ SO(3) will be given by

EG(A) :=
∑
i 6=j
G(αi, αj),

and we let

EG(N) = inf
|A|=N

EG(A).

It is noteworthy that G(α, β)d(α, β) ≈ 1 for α close to β in geodesic distance d(·, ·), and
a set of points with small Green energy is hence expected to be well-distributed, which is
indeed the main result in [BCC19]: We know that if {α1, . . . , αN} attains the minimal
possible energy, then the associated discrete measure approaches the uniform distribution
in SO(3) as N → ∞. A set of points with small Green energy is also expected to be
well-separated, see [Cri19].

Now, G(·, β) is for any β ∈ SO(3) a zero mean function by definition, and if {α1, . . . , αN}
were simply chosen uniformly and independently in SO(3), then the expected value of
the Green energy would equal 0, so in particular we have EG(N) ≤ 0. In this note we
prove the following much stronger result.

Theorem 3.1.3. If N =
(

2L+3
3

)
for L ∈ N, then

−3 3
√
πN4/3 +O(N) ≤ EG(N) ≤ −4

(
3
4

)4/3
N4/3 +O(N).

The right-hand side is the expected value of the Green energy with underlying points
generated by a dpp, and that is where we have the restriction for N , as the process is
related to subspaces H that we can project onto. The lower bound is valid for all N .

As mentioned above, another classical measure of the distribution properties of
{α1, . . . , αN} is the speed of convergence to uniform measure, which can be under-
stood by choosing some range sets {Aj}j∈I measurable w.r.t. Haar measure µ and
investigating the behavior of

sup
j∈I

∣∣∣#{k : αk ∈ Aj} −Nµ(Aj)
∣∣∣

as N grows large. We will tackle this problem probabilistically, where we turn the count
of points in Aj into a random variable.
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In analogy to spherical caps on spheres, the range sets for SO(3) will be the balls
B(α, 2ε) := {β ∈ SO(3) : ω(α−1β) < 2ε} for ε ∈

(
0, π2

)
and ω(·) being the rotation angle

distance introduced in the following sections. For given random points {α1, . . . , αN} and
fixed α ∈ SO(3), we define random variables via characteristic functions

Xk
α,ε = χB(α,2ε)(αk) and ηα,ε =

N∑
k=1

Xk
α,ε.

Now, for a collection of random uniform points chosen independently in SO(3), denoting
by 1 the identity matrix in SO(3), we have

E[ηα,ε] = Nµ(B(α, 2ε)) = Nµ(B(1, 2ε)),

and the variance can also be computed from the independence of the points:

Var[ηα,ε] = E[η2
α,ε]− E[ηα,ε]

2 = N
(
µ(B(1, 2ε))− µ(B(1, 2ε))2

)
.

We are able to bound the variance of this quantity for our dpp, proving that it is much
smaller than in the previous case.

Theorem 3.1.4. Let N =
(

2L+3
3

)
for L ∈ N, and ε ∈

(
0, π2

)
be fixed. Then the points

generated by the dpp given in Lemma 3.2.3 satisfy

E[ηα,ε] = Nµ(B(α, 2ε)) = Nµ(B(1, 2ε)),

and moreover

Var(ηα,ε) = O
( ε2

cos(ε)

)
N2/3 log(N).

From Theorem 3.1.4 and for any fixed ε, we then have by Chebyshev’s inequality

sup
α∈SO(3)

P
(∣∣ηα,ε −Nµ(B(1, 2ε))

∣∣ ≥ T) ≤ Var(ηα,ε)T
−2;

for example, letting T = N1/3 log(N) and with some little arithmetic we obtain

sup
α∈SO(3)

P
(∣∣ 1

N ηα,ε − µ(B(1, 2ε))
∣∣ ≥ log(N)

N2/3

)
= O

(
1

log(N)

)
.

In other words, for large N the counting and Haar measures are very similar with high
probability.

3.2. Introductory Concepts

In this section we collect some definitions and previous results that we will use and
that intend to make this manuscript reasonably self-contained. Definitions of Chebyshev
polynomials and alike are postponed to section 3.2.4.
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3.2.1. Structure, distances and integration in SO(3)

The special orthogonal group SO(3) is the compact Lie group of 3 by 3 orthogonal
matrices over R that represent rotations in R3, i.e. with determinant equal to one. It is
a 3 dimensional manifold and since it is naturally included in R9 it is customary to let it
inherit its Riemannian submanifold structure.

Following [HS11], using Euler angles (ϕ1, θ, ϕ2) ∈ [0, 2π)× [0, π]× [0, 2π), every element
R ∈ SO(3) can be decomposed as R = sz(ϕ1)sx(θ)sz(ϕ2) where

sz(ϕ1) :=

 cos(ϕ1) − sin(ϕ1) 0
sin(ϕ1) cos(ϕ1) 0

0 0 1

 , sx(θ) :=

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


are rotations around the z-axis and x-axis respectively. The normalized Haar measure
(i.e. the unique left and right invariant probability measure in SO(3)) is given by
dµ(R) = 1

8π2 sin(θ)dϕ1dθdϕ2, and it corresponds to the inherited Riemannian submanifold
structure of SO(3) up to the normalizing constant.

The Riemannian distance associated to the structure of SO(3) is certainly a natural
and useful concept, but for us it will be more convenient to use the so called rotation
angle distance defined as follows: for α, β ∈ SO(3),

ω(α−1β) = arccos

(
Trace(α−1β)− 1

2

)
∈ [0, π].

Its convenience stems from the following fact, see for example [HS11, page 173]: Given
a function f ∈ L1(SO(3)) such that we can find f̃ ∈ L1([0, π]) with f(x) = f̃(ω(x)), then∫

SO(3)
f(x) dµ(x) =

2

π

∫ π

0
f̃(t) sin2

(
t
2

)
dt. (3.1)

By the Monotone Convergence Theorem, (3.1) is also valid if f, f̃ are just assumed to be
non-negative and measurable.

3.2.2. Laplace-Beltrami operator and Green function in SO(3)

The Laplace-Beltrami operator ∆g is defined on any Riemannian manifold (M, g) in
terms of the Levi-Civita connection. Following [Car92], if γ1(t), . . . , γn(t) is a set of
geodesics in an n-dimensional manifold such that γj(0) = p ∈M for all 1 ≤ j ≤ n, and
such that {γ̇j(0)} form an orthonormal basis of the tangent space TpM (geodesic normal
coordinates), then the action of ∆g on C2-functions f at p is given by

∆gf(p) = −
n∑
j=1

d2

dt2

∣∣∣
t=0

f(γj(t)).

Note the convention given by the minus sign in front of the sum, which sometimes leads
to confusion given the Laplacian in Rn. The convention we use here is widely accepted,
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see for example [Jos11]. A Green function G = G∆g is a distributional solution to

∆gG(·, y) = δ(·, y)− 1

µdV (M)
,

where µdV (M) is the Riemannian volume form in M. This way defined it is unique modulo
Ker(∆g) and it is common practice to add a constant in such a way that for all y ∈M
the function G(·, y) has zero mean, see [Aub98]. We use this convention and simply refer
to G as the Green function.

It further follows from classical Fredholm theory that

G∆g(x, y) =

∞∑
j=1

φj(x)φ̄j(y)

λj
, (3.2)

where 0 = λ0 < λ1 ≤ λ2 ≤ · · · is the sequence of eigenvalues for ∆g and {φj}, j ≥ 1 is a
complete orthonormal set of associated eigenfunctions. This is hence true locally on any
smooth manifold.
In the case M = SO(3), we obtain a Green function which is independent of any particular
chart, thus valid globally. The eigenvalues and eigenfunctions of ∆g are known from the
classical theory of continuous groups and have been intensively studied in the physics
literature, see [HS11; Jos73], [Wig59, §15]:

Lemma 3.2.1. The eigenvalues of ∆g in SO(3) are λ` = `(`+ 1) for ` ≥ 0. Moreover,
if H` is the eigenspace associated to λ`, then the dimension of H` is (2` + 1)2 and an
orthonormal basis of H` is given by

√
2`+ 1D`m,n where −` ≤ m,n ≤ ` and D`m,n are

Wigner’s D-functions.

The actual form of the Wigner D-functions will not be important for us, since we will
only use the fact that they constitute an orthogonal basis and the following summation
formula: ∑̀

m=−`

∑̀
n=−`

D`m,n(α)D`m,n(β) = U2`

(
cos
(ω(α−1β)

2

))
; (3.3)

where U2`(x) is the Chebyshev polynomial of second kind and degree 2`, which will be
briefly introduced in section 3.2.4. For more on formula (3.3) see [Jos73, Eq. 4.65] or
[Vol10, pp. 40-41] for a nice summary. The following simple form for the Green function
is derived in section 3.2.4, and to the best of our knowledge, this is the first time it has
been formulated.

Lemma 3.2.2. The Green function for the Laplace-Beltrami operator on SO(3) can be
written in terms of the metric ω, i.e. for α, β ∈ SO(3) with α 6= β:

G(α, β) =
(
π − ω(α−1β)

)
cot
(ω(α−1β)

2

)
− 1.
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3.2.3. Determinantal point processes

We point the reader to the excellent monograph [Hou+09] for an introduction to point
processes, and we briefly summarize part of this material below. As in [BMOC16] and
[BE18], we will use only a fraction of the theory.

A simple point process on a locally compact Polish space Λ with reference measure
µ is a random, integer-valued positive Radon measure η, that almost surely assigns at
most measure 1 to singletons – we shall think of it as a counting measure

η =
∑
j=1

δxj ,

with xj 6= xs for j 6= s. One usually identifies η with a discrete subset of Λ.

The joint intensities of η w.r.t. µ, if they exist, are functions ρk : Λk → [0,∞) for
k > 0, such that for pairwise disjoint sets {Ds}ks=1 ⊂ Λ, the expected value of the product
of number of points falling into Ds is given by

E
[ k∏
s=1

η(Ds)

]
=

∫
D1×...×Dk

ρk(y1, . . . , yk) dµ(y1) . . . dµ(yk),

and ρk(y1, . . . , yk) = 0 in case yj = ys for some j 6= s.

A simple point process is determinantal with kernel K iff for every k ∈ N and all yj ’s

ρk(y1, . . . , yk) = det
(
K(yj , ys)

)
1≤j,s≤k

.

Let (M, g) be a compact Riemannian manifold with measure dµ = µdV . Let H ⊆ L2(M)
be any N -dimensional subspace in the set of square-integrable functions. It follows from
the Macchi-Soshnikov theorem [Hou+09, Thm. 4.5.5] that a simple point process with
N points exists in M associated to H. An important property of that dpp is given by
[Hou+09, Form. (1.2.2)]: For any measurable function f : M×M→ [0,∞],

E
[∑
i 6=j

f(xi, xj)

]
=

∫∫
M
f(x, y)

(
KH(x, x)KH(y, y)− |KH(x, y)|2

)
dµ(x, y); (3.4)

where we write dµ(x, y) as an abbreviation for dµ(x) dµ(y) and

E
[
g(x1, . . . , xN )

]
means expected value of some function defined from M× · · · ×M (N

copies of M) to [0,∞], when x1, . . . , xN are chosen from the point process associated
to H;

KH(x, y) is the (orthogonal) projection kernel on H, namely for any f ∈ L2(M) the
orthogonal projection of f onto H can be computed via:

ΠH(f)(x) =

∫
y∈M

f(y)KH(x, y) dµ(y) ∈ L2(H).
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Note that if ϕ1, . . . , ϕN is an orthonormal basis of H, then we can write

KH(x, y) =

N∑
j=1

ϕj(x)ϕj(y), (3.5)

and clearly ∫
SO(3)

KH(x, x) dµ(x) = N.

Coming back to the case of interest and following ideas in [BMOC16], we choose as
subspace H the span of the first eigenspaces of ∆g. Recall the definition of classical

Gegenbauer polynomials C(λ)
n (t), a sequence of degree n polynomials orthogonal w.r.t the

weight (1− t2)λ−1/2 in [−1, 1], normalized in such a way that

C(λ)
n (1) =

(
2λ+ n− 1

2λ− 1

)
.

An equivalent definition of these polynomials is given by the formal power series

(1− 2tα+ α2)−λ =
∞∑
n=0

C(λ)
n (t)αn.

Lemma 3.2.3. Let L ≥ 0 and HL ⊆ L2(SO(3)) be the span of the union of eigenspaces
for eigenvalues λ0, . . . , λL of ∆g. Then, we define

N := dim(HL) =

(
2L+ 3

3

)
= C(2)

2L (1) =
4

3
L3 +O(L2).

Moreover, the projection kernel is:

KL(α, β) := KHL(α, β) = C(2)
2L

(
cos
(ω(α−1β)

2

))
.

We then consider the dpp associated to HL.

3.2.4. Proofs of the basic lemmas

The degree n+ 1 Chebyshev polynomials of first and second kind satisfy the recurrence
relation

Pn+1(x) = 2xPn(x)− Pn−1(x), (3.6)

with T0 ≡ 1, T1(x) = x and U−1 ≡ 0, U0(x) ≡ 1 in their respective notation. With this
said, using (3.2), (3.3) and (3.5), we obtain

KL(α, β) =
L∑
`=0

(2`+ 1) U2`

(
cos
(ω(α−1β)

2

))
; (3.7)
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G(α, β) =
∞∑
`=1

2`+ 1

`(`+ 1)
U2`

(
cos
(ω(α−1β)

2

))
. (3.8)

Further we list some equations for later reference and the reader’s convenience.

2T2`+1(x) = U2`+1(x)− U2`−1(x) [AS72, Eq. 22.5.8],
Tn(1) = 1 [Gra+00, Eq. 8.944.1],

d
dxT2`+1(x) = (2`+ 1) U2`(x) [Gra+00, Eq. 8.949.1],
d

dxU2L+1(x) = 2C(2)
2L (x) [Gra+00, Eq. 8.949.4],

C(λ)
n (1) =

(
2λ+n−1

2λ−1

)
[Gra+00, Eq. 8.937.4].

(3.9)

Proof of Lemma 3.2.3. Let y := cos
(ω(α−1β)

2

)
, then by (3.7) and (4.3)

KL(α, β) =
d

dx

L∑
`=0

T2`+1(x)
∣∣∣
y

=
d

dx

1

2
U2L+1(x)

∣∣∣
y

= C(2)
2L

(
y
)
.

The formula for the dimension of HL can be proved as follows. The eigenspace associated
to λ` = `(`+ 1) has dimension (2`+ 1)2 since this is the number of elements of its basis
D`
m,n. Thus dim(HL) is given by

∑L
`=0(2`+ 1)2=

(
2L+3

3

)
. �

Proof of Lemma 3.2.2. In (3.8) we apply the equality

U2`(cos(t)) =
sin
(
(2`+ 1)t

)
sin(t)

[Gra+00, Eq. 8.940.1],

and argue, under the assumption w := ω(α−1β)∈ (0, π], as follows

G(α, β) =
∞∑
`=1

2`+ 1

`(`+ 1)

sin
(
(2`+ 1)w2

)
sin
(
w
2

)
=

1

sin
(
w
2

) ∞∑
`=1

(
sin
(
(2`+ 1)w2

)
`+ 1

+
sin
(
(2`+ 1)w2

)
`

)

=
1

i

(
− log

(
1− eiw

)
+ log

(
1− e−iw

))
cot
(
w
2

)
− 1;

where we used the well known fact, that the power series for log(1− x) at 1 converges at
the boundary of its disc of convergence (except for x = 1) and equals the logarithm at
these values:

∞∑
`=1

sin
(
(2`+ 1)w2

)
`+ 1

=
1

2i

∞∑
`=1

ei
w
2 (2`+1) − e−i

w
2 (2`+1)

`+ 1

=
e−i

w
2

2i

∞∑
`=1

eiw(`+1)

`+ 1
− ei

w
2

2i

∞∑
`=1

e−iw(`+1)

`+ 1

=
−e−i

w
2

2i

(
log
(
1− eiw

)
+ eiw

)
+
ei
w
2

2i

(
log
(
1− e−iw

)
+ e−iw

)
=
−e−i

w
2

2i
log
(
1− eiw

)
+
ei
w
2

2i
log
(
1− e−iw

)
− sin(w2 ),
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and similarly

∞∑
`=1

sin
(
(2`+ 1)w2

)
`

=
−ei

w
2

2i
log
(
1− eiw

)
+
e−i

w
2

2i
log
(
1− e−iw

)
.

Further, by 1− e−iw = 2ie−i
w
2 sin(w2 ), we conclude

log
(
1− e−iw

)
− log

(
1− eiw

)
= log

(
2ie−i

w
2 sin(w2 )

)
− log

(
− 2iei

w
2 sin(w2 )

)
= log

(
2ei
−w+π

2 sin(w2 )
)
− log

(
2ei

w−π
2 sin(w2 )

)
= (−w + π) i2 − (w − π) i2 = i(π − w),

where we used a property of the principal branch of the complex logarithm: log(reiϕ) =
log(r) + iϕ. �

3.3. Riesz s-Energy: Proof of Theorem 3.1.1

Recall that if A is a real matrix, we have ‖A‖2F := Trace(AtA). We set throughout

N = N(L) = C(2)
2L (1) for L ∈ N.

Lemma 3.3.1. For α, β ∈ SO(3), we have ‖α− β‖F =
√

8 sin
(ω(α−1β)

2

)
.

Proof. We abbreviate w = ω(α−1β), and use the half-angle formula for sine:

‖α− β‖2F = Trace
[
(α− β)t(α− β)

]
= 6− 2Trace(α−1β)

= 8
2−

(
Trace(α−1β)− 1

)
4

= 8
1− cos(w)

2
= 8 sin2

(
w
2

)
. �

Recall the definition of Euler’s Beta function B(a, b) :=
∫ 1

0 t
a−1(1− t)b−1 dt for a, b > 0.

We are now ready to state our first proposition.

Proposition 3.3.2. For s ∈ (0, 3) and N = N(L)=
(

2L+3
3

)
, we have

EsR(N) ≤ 2
8s/2π

B
(

3−s
2 , 1

2

)
N2 +O(N1+s/3).

If s ∈ {1, 2}, we have more information on the term O(N1+s/3): It is respectively

−
√

2
π

(
3
4

)4/3
N4/3 +O(N) and − 4

15

(
3
4

)5/3
N5/3 +O(N4/3).

Proof. We use (3.4), Lemma 3.2.3, Lemma 3.3.1, invariance of Haar measure, and (3.1):∫∫
SO(3)

KL(α, α)2 −KL(α, β)2

‖α− β‖sF
dµ(α, β)

=

∫∫
SO(3)

[
C(2)

2L (1)
]2 − [C(2)

2L

(
cos
(ω(α−1β)

2

))]2
8
s
2 sins

(ω(α−1β)
2

) dµ(α, β)

=
2

8
s
2π

∫ π

0

(
N2 −

[
C(2)

2L

(
cos
(
t
2

))]2)
sin2−s ( t

2

)
dt

=
4

8
s
2π
N2

∫ π/2

0
sin2−s(t) dt− 4

8
s
2π

∫ 1

0

[
C(2)

2L (t)
]2

(1− t2)
1−s
2 dt.
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The next line is, apart of the factor 4
8s/2π

, the continuous Riesz s-energy:∫ π/2

0
sin2−s(t) dt =

∫ 1

0

t1−st√
1− t2

dt =
1

2

∫ 1

0
t
1−s
2 (1− t)−1/2 dt =

1

2
B
(

3−s
2 , 1

2

)
.

On the other hand, for 0 < s < 3 we have∫ 1

0

[
C(2)

2L (t)
]2

(1− t2)
1−s
2 dt =

∫ π/2

0

[
C

(2)
2L (cos(t))

]2
sin2−s(t) dt

≤
∫ 1/L

0

[
C

(2)
2L (cos(t))

]2
t2−s dt+

∫ π/2

1/L

[
C

(2)
2L (cos(t))

]2
t2−s dt

≤
[
C

(2)
2L (1)

]2 t3−s
3− s

∣∣∣1/L
0
− CL2

1 + s

1

t1+s

∣∣∣π/2
1/L

= O(L3+s);

where we have used that |C(2)
2L (t)| ≤ |C(2)

2L (1)| for all t ∈ [−1, 1] and [Sze39, Eq. 7.33.6],
i.e. for every c > 0 there is C ≥ 0 such that

|C(2)
2L (cos(θ))| ≤ CL

θ2
,

c

L
≤ θ ≤ π

2
.

The case s = 1 is Lemma 3.6.2; the case s = 2 follows from Lemma 3.6.4:∫ 1

0

[
C(2)

2L (t)
]2

√
1− t2

dt =

∫ π/2

0

[
C(2)

2L (cos(t))
]2

dt =
π

2

2L∑
u=0

cu,u =
8π

15
L5 +O(L4),

where cu,u = c
(2)
u,u(2L) with notation as in Lemma 3.6.4. �

In the next proof we use (3.1) and the digamma function ψ, see Section 3.6.

Proof of Theorem 3.1.1. We proceed as in the previous proof and use Lemma 3.6.4, in

particular, we use the notation of that lemma for cj,k = c
(2)
j,k(2L):

∫ π/2

0

[
C(2)

2L (1)
]2 − [C(2)

2L

(
cos(t)

)]2
sin(t)

dt = 2
2L∑
r=1

∫ π/2

0

1− cos(2rt)

sin(t)
dt

2L−r∑
u=0

cr+u,u

= 4
2L∑
r=1

∫ π/2

0

[
Ur−1

(
cos(t)

)]2
sin(t) dt

2L−r∑
u=0

cr+u,u

= 4

2L∑
r=1

∫ 1

0

[
Ur−1(t)

]2
dt

2L−r∑
u=0

cr+u,u = (?).

We use (3.17) and obtain

(?) = 2(γ + log(4))

2L∑
r=1

2L−r∑
u=0

cr+u,u + 2

2L∑
r=1

ψ
(
r + 1

2

) 2L−r∑
u=0

cr+u,u =: S1 + S2.
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By cr+u,u = c
(2)
r+u,u(2L) = (r + u+ 1)(2L− r − u+ 1)(u+ 1)(2L− u+ 1), we have

2L−r∑
u=0

cr+u,u =
16

15
L5 +

2

3
L2r3 − 4

3
L3r2 − r5

30
+Oa+b<5(Larb),

and hence by well known formulas for the sum of powers of integers:

S1 = 2
(
γ + log(4)

)(16

15
L52L+

2

3
L24L4 − 4

3
L3 8

3
L3 − 1

30

32

3
L6

)
+O(L5)

=
16

9

(
γ + log(4)

)
L6 +O(L5).

Invoking Lemma 3.3.3 yields

1

2
S2 =

16

15
L5
(
2L ψ(2L)− 2L

)
+

2

3
L2
((2L)4

4
ψ(2L)− (2L)4

42

)
− 4

3
L3
((2L)3

3
ψ(2L)− (2L)3

32

)
− 1

30

((2L)6

6
ψ(2L)− (2L)6

62

)
+O(L5 log(L))

=
8

9
L6ψ(2L)− 14

9
L6 +O(L5 log(L)).

Since N2 = C(2)
2L (1)2 = 16

9 L
6
(
1 +O(L−1)

)
, and

(
3
4N
)1/3

= L
(
1 +O(L−1)

)1/6
we see

1

3
log
(

3
4N
)

= log(L) +O(L−1);

and using harmonic numbers Hn :=
∑n

k=1
1
k = log(n) + γ + O(n−1) which satisfy

ψ(2L) = H2L−1 − γ, see [AS72, Eq. 6.3.2]:

(?) =
16

9
L6
(
ψ(2L) + γ + log(4)

)
− 7

4

16

9
L6 +O(L5 log(L))

= N2
(

log
(
2(3N/4)1/3 − 1

)
+ γ + log(4)

)
− 7

4
N2 +O(N5/3 log(N))

=
1

3
N2 log(N) +

1

3

(
3γ + log

(
83 3

4

)
− 21

4

)
N2 +O(N5/3 log(N));

proving the claim when multiplied by 4
83/2π

. �

Lemma 3.3.3. Let ψ(t) be the digamma function and m ≥ 0, then
n∑
k=1

kmψ
(
k + 1

2

)
=

nm+1

m+ 1
ψ(n)− nm+1

(m+ 1)2
+O(nm log(n)).

Proof. Since ψ(t) = log(t) +O(1
t ) for t > 2, we have

n∑
k=1

kmψ
(
k + 1

2

)
=

∫ n

1
tm log(t) dt+O(nm log(n));

as the sum can be bounded from above and below by the same integral, apart from
integration boundaries, where we obtain the error term. We finish by integrating:(
tm+1

m+1 log(t)− tm+1

(m+1)2

)∣∣∣n
1
. �
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3.4. Green Energy: Proof of Theorem 3.1.3

We prove the lower and upper bound separately in the following two sections.

3.4.1. Estimate of the Green Energy: Lower Bound

We follow an exposition due to N. Elkies, found in [Lan88, Lem. 5.2 pp. 149-154]. The
results in [Lan88] are stated in detail for Riemann surfaces, i.e. one–dimensional complex
manifolds, although it is mentioned that the argument can be extended to more general
manifolds. Here we work out the details for SO(3).

The idea is to find a function with nice properties smaller than G, and to bound its
energy from below. For α, β ∈ SO(3) and t > 0, we define:

Gt(α, β) =
∞∑
`=1

e−`(`+1)t 2`+ 1

`(`+ 1)
U2`

(
cos
(ω(α−1β)

2

))
.

Quantitative estimates depend on asymptotics for this function.

Lemma 3.4.1 (N. Elkies). For all t > 0 and α 6= β we have

G(α, β) ≥ Gt(α, β)− t.

Proof. Using uniform convergence, we differentiate term by term and define

ht(α, β) := −∂tGt(α, β) =

∞∑
`=1

e−`(`+1)t(2`+ 1)
∑̀
m=−`

∑̀
n=−`

D`m,n(α)D`m,n(β).

Given a smooth test function φ, with uniformly converging representation as
∑∞

`=0 φ`,
where φ` =

∑
m,n ϕ

`
m,nD`m,n

√
2`+ 1, we set

u(α, t) :=

∫
SO(3)

ht(α, β)φ(β) dµ(β) =
∞∑
`=1

e−`(`+1)tφ`(α),

where we interchanged integration and summation by uniform convergence and used that
{D`m,n

√
2`+ 1} is an orthonormal basis. Now we have uniformly

lim
t→0

u(α, t) = φ(α)−
∫

SO(3)
φ(β) dµ(β) = φ(α)− φ0.

For t > 0 fixed, we can interchange differentiation and integration yielding

∆gu(α, t) + ∂tu(α, t) = 0.

By the strong maximum principle (Theorem 3.7.2), we have for every t > 0:

min
α∈SO(3)

u(α, t) ≥ min
α∈SO(3)

u(α, 0).
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The same PDE and estimates hold for

v(α, t) = u(α, t) + φ0.

If φ ≥ 0, then so is v(α, t) for all t > 0 by the maximum principle as v(α, 0) = φ(α).
Hence

u(α, t) = v(α, t)− φ0 ≥ −φ0 for φ ≥ 0.

We further set

I(α, t) :=

∫
SO(3)

Gt(α, β)φ(β) dµ(β) =

∞∑
`=1

e−`(`+1)t φ`(α)

`(`+ 1)
,

where we interchanged sum and integral again. Differentiating term-wise for t > 0 yields

∂tI(α, t) = −
∞∑
`=1

e−`(`+1)tφ`(α) = −u(α, t) ≤ φ0 for φ ≥ 0.

Finally, for fixed α let t > ε > 0, then by the fundamental theorem of calculus:

I(α, t)− I(α, ε) =

∫ t

ε
−u(α, s) ds ≤ φ0(t− ε)

and thus, for all non-negative test functions φ∫
SO(3)

(
Gt(α, β)− Gε(α, β)− (t− ε)

)
φ(β) dµ(β) ≤ 0.

Since the integrand is continuous, this proves that for t > ε

Gt(α, β)− t ≤ Gε(α, β) + ε,

and for any fixed α, β with α 6= β taking the limit as ε→ 0 proves the result. �

Now by Lemma 3.4.1, we have for some t > 0 which will be determined later, and any
collection of distinct points {α1, . . . , αN} ⊂ SO(3):

N∑
s 6=k
G(αs, αk) +N(N − 1)2t ≥

N∑
s6=k
G2t(αs, αk)

=

∞∑
`=1

2`+ 1

`(`+ 1)

∑̀
m=−`

∑̀
n=−`

N∑
s 6=k

e−`(`+1)2tD`m,n(αs)D`m,n(αk) =

∞∑
`=1

2`+ 1

`(`+ 1)

∑̀
m=−`

∑̀
n=−`

(∣∣∣∣ N∑
k=1

e−`(`+1)tD`m,n(αk)

∣∣∣∣2 − N∑
k=1

e−`(`+1)2t
∣∣∣D`m,n(αk)

∣∣∣2)

≥ −
∞∑
`=1

2`+ 1

`(`+ 1)

∑̀
m=−`

∑̀
n=−`

N∑
k=1

e−`(`+1)2t
∣∣∣D`m,n(αk)

∣∣∣2 = −NG2t(α, α).
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Thus our remaining task is to find an asymptotic for Gt(α, α) in t. First we note that

e−`(`+1)t

`(`+ 1)
= 4

e−`(`+1)t

(2`+ 1)2

(
1 +

1

4`(`+ 1)

)
= 4

e−`(`+1)t

(2`+ 1)2
+O(`−4).

For 0 < t� 1 we then obtain

Gt(α, α) =
∞∑
`=1

e−`(`+1)t (2`+ 1)2

`(`+ 1)
=
∞∑
`=1

(
4e−`(`+1)t +

e−`(`+1)t

`(`+ 1)

)

= 4et/4
∫ ∞

0
e−(2x+1)2t/4 dx+O(1)

= 2et/4
∫ ∞

1
e−x

2t/4 dx+O(1)

=
4et/4√
t

∫ ∞
√
t/2
e−x

2
dx+O(1)

=
4et/4√
t

∫ ∞
0

e−x
2

dx+O(1) = 2

√
π

t
+O(1).

(3.10)

If we choose 2t =
3√π
N2/3 , then by (3.10)

G2t(α, α) = 2 3
√
πN

1
3 +O(1),

and hence
N∑
s 6=k
G(αs, αk) ≥ −3 3

√
πN

4
3 +O(N),

proving the lower bound in Theorem 3.1.3.

3.4.2. Estimate of the Green Energy: Upper Bound

According to (3.4), we have to estimate the integral

I =

∫∫
SO(3)

G(α, β)
(
KL(α, α)2 −KL(α, β)2

)
dµ(α, β),

which by Lemmas 3.2.2 and 3.2.3 and by invariance of Haar measure equals∫
SO(3)

((
π − ω(α)

)
cot
(ω(α)

2

)
− 1
)(
C(2)

2L (1)2 −
[
C(2)

2L

(
cos
(ω(α)

2

))]2
)

dµ(α).

The integrand is in L1(SO(3)) since the singularity of the cotangent is removed by the
zero of the difference of Gegenbauer polynomials, thus being a continuous function on a
compact set. We can then apply (3.1) getting:

I =
2

π

∫ π

0

((
π − t

)
cot
(
t
2

)
− 1
)(
C(2)

2L (1)2 −
[
C(2)

2L

(
cos
(
t
2

))]2
)

sin2
(
t
2

)
dt.
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Since ∫ π

0

((
π − t

)
cot
(
t
2

)
− 1
)

sin2
(
t
2

)
dt = 0,

we indeed have

−I =
2

π

∫ π

0

((
π − t

)
cot
(
t
2

)
− 1
)[
C(2)

2L

(
cos
(
t
2

))]2
sin2

(
t
2

)
dt. (3.11)

We simplify by noticing that∫ π

0

[
C(2)

2L

(
cos
(
t
2

))]2
sin2

(
t
2

)
dt = 2

∫ 1

0

[
C(2)

2L (t)
]2√

1− t2 dt

=

∫ 1

−1

[
C(2)

2L (t)
]2√

1− t2 dt

=

∫ 1

−1

[
C(2)

2L (t)
]2√

1− t2(1 + t) dt,

where we used that odd functions integrate to zero over symmetric intervals. But∫ 1

−1

[
C(2)

2L (t)
]2√

1− t(1 + t)3/2 dt =
π

2

(
2L+ 3

2L

)
, (3.12)

by the following equality, valid for ν > 1
2 and found in [Gra+00, Eq. 7.314]:∫ 1

−1
(1− x)ν−

3
2 (1 + x)ν−

1
2
∣∣C(ν)
n (x)

∣∣2 dx =
π1/2Γ(ν − 1

2)Γ(2ν + n)

n!Γ(ν)Γ(2ν)
. (3.13)

We have then proved that

−I =
2

π

∫ π

0

(
π − t

)
cot
(
t
2

)[
C(2)

2L

(
cos
(
t
2

))]2
sin2

(
t
2

)
dt+O(L3)

=
4

π

∫ 1

0

(
π − 2 arccos(t)

)
t
[
C(2)

2L (t)
]2

dt+O(L3)

= 4

∫ 1

0
t
[
C(2)

2L (t)
]2

dt− 4

π

∫ 1

0
2 arccos(t)t

[
C(2)

2L (t)
]2

dt+O(L3).

Next we use Lemma 3.6.1 and Lemma 3.6.2 in∫ 1

0
t2
[
C(2)

2L (t)
]2

dt <

∫ 1

0
t
[
C(2)

2L (t)
]2

dt <

∫ 1

0

[
C(2)

2L (t)
]2

dt,

and obtain ∫ 1

0
t
[
C(2)

2L (t)
]2

dt = L4 +O(L3).

Finally we use
0 ≤ 2 arccos(t) ≤ π

√
1− t, for t ∈ [0, 1]
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so that, by (3.12),∫ 1

0
2 arccos(t)t

[
C(2)

2L (t)
]2

dt <

∫ 1

0
π
√

1− t t
[
C(2)

2L (t)
]2

dt

< π

∫ 1

−1

[
C(2)

2L (t)
]2√

1− t(1 + t)3/2 dt = O(L3).

Hence
I = −4L4 +O(L3),

and the upper bound in Theorem 3.1.3 follows from N = 4
3L

3 +O(L2).

3.5. Variance: Proof of Theorem 3.1.4

Let A = B(1, 2ε) ⊆ SO(3) be as in the introduction, namely

A = {β ∈ SO(3) : ω(β) < 2ε} =
{
β ∈ SO(3) : ‖β − 1‖F <

√
8 sin(ε)

}
,

where the equality follows from Lemma 3.3.1. Note that by rotation invariance it suffices
to study the variance of the random variable

ηA =

N∑
k=1

χA(αk),

where {α1, . . . , αN} are generated by our dpp. The expected value of ηA satisfies
E[ηA] = µ(A)N , and the variance of ηA is by definition (using χA(αk)

2 = χA(αk)):

Var(ηA) = E[η2
A]− E[ηA]2 = E

[∑
i 6=j

χA(αi)χA(αj)

]
+ µ(A)N − µ(A)2N2.

The expected value of the right-hand side equals by (3.4), (with f(x, y) = χA(x)χA(y))∫∫
α,β∈A

[
C(2)

2L (1)
]2 − [C(2)

2L

(
cos
(ω(α−1β)

2

))]2
dµ(β, α) =

µ(A)2N2 −
∫∫

α,β∈A

[
C(2)

2L

(
cos
(ω(α−1β)

2

))]2
dµ(β, α).

In other words, we have

Var(ηA) = µ(A)N −
∫∫

α,β∈A

[
C(2)

2L

(
cos
(ω(α−1β)

2

))]2
dµ(β, α),

and therefore, using invariance of the Haar measure, (3.1) and (3.12)

Var(ηA)−
∫
A

∫
Ac

[
C(2)

2L

(
cos
(ω(α−1β)

2

))]2
dµ(β) dµ(α)

= µ(A)N −
∫

SO(3)
χA(α)

∫
SO(3)

[
C(2)

2L

(
cos
(ω(β)

2

))]2
dµ(β) dµ(α)

= µ(A)N −
∫

SO(3)
χA(α)N dµ(α) = 0.
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All in one we have proved the variance version of [RV07, Eq. 28]:

Var(ηA) =

∫
A

∫
Ac

[
C(2)

2L

(
cos
(ω(α−1β)

2

))]2
dµ(β) dµ(α).

Now, note that
Ac =

{
β ∈ SO(3) : ‖β − 1‖F ≥

√
8 sin(ε)

}
,

and by the triangle inequality ‖β − 1‖F ≤ ‖β − α‖F + ‖1− α‖F for α ∈ A, we see that

Ac ⊂ Sα :=
{
β ∈ SO(3) : ω(α−1β) ≥ f

(
ω(α)

)}
,

where f
(
ω(α)

)
:= 2 arcsin

(
sin(ε)− sin

(ω(α)
2

))
. With the characteristic function χα of

Sα, χα(β) = χ[f(ω(α)),π](ω(α−1β)), we integrate over SO(3) and use (3.1):∫
χα(β)

[
C(2)

2L

(
cos
(ω(α−1β)

2

))]2
dµ(β) =

∫
χα(αβ)

[
C(2)

2L

(
cos
(ω(β)

2

))]2
dµ(β)

=
2

π

∫ π

f(ω(α))

[
C(2)

2L

(
cos
(
t
2

))]2
sin2

(
t
2

)
dt

=
4

π

∫ π/2

f(ω(α))
2

[
C(2)

2L

(
cos(t)

)]2
sin2(t) dt

=
4

π

∫ cos(
f(ω(α))

2
)

0

[
C(2)

2L (t)
]2√

1− t2 dt.

Applying (3.1) one more time yields with χA(β) = χ[0,2ε)(ω(β))

Var(ηA) ≤
∫

SO(3)
χA(α)

∫
SO(3)

χα(β)C(2)
2L

(
cos
(ω(α−1β)

2

))2
dµ(β) dµ(α)

=
4

π

∫
SO(3)

χA(α)

∫ cos(
f(ω(α))

2
)

0

[
C(2)

2L (t)
]2√

1− t2 dt dµ(α)

=
16

π2

∫ ε

0
sin2(x)

∫ √1−(sin(ε)−sin(x))2

0

[
C(2)

2L (t)
]2√

1− t2 dt dx

=
16

π2

∫ ε

0
sin2(x)

∫ √1−(sin(ε)−sin(x))2

cos(ε)

[
C(2)

2L (t)
]2√

1− t2 dt dx

+
16

π2

∫ ε

0
sin2(x)

∫ cos(ε)

0

[
C(2)

2L (t)
]2√

1− t2 dt dx =: I1 + I2.

Next we change the order of integration, thus for t ∈ [cos(ε), 1], we integrate over
{t} × [z(t), ε], where z(t) := arcsin

(
sin(ε) −

√
1− t2

)
. We do this since x ∈ [z(t), ε]

implies
√

1− (sin(ε)− sin(x))2 ∈ [t, 1]. Thus

I1 =
16

π2

∫ 1

cos(ε)

[
C(2)

2L (t)
]2√

1− t2
∫ ε

z(t)
sin2(x) dx dt.
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Further, by a standard estimate and the mean value theorem, we get∫ ε

z(t)
sin2(x) dx ≤ sin2(ε)

(
arcsin

(
sin(ε)

)
− arcsin

(
sin(ε)−

√
1− t2

))
≤ sin2(ε)

√
1− t2

cos(ε)
,

and hence by Lemma 3.6.1

I1 ≤
16 sin2(ε)

π2 cos(ε)

∫ 1

0

[
C(2)

2L (t)
]2

(1− t2) dt =
sin2(ε)

cos(ε)
O(L2 log(L)).

We now estimate I2. Using sin(ε) =
√

1− cos2(ε) ≤
√

1− t2 for t ∈ [0, cos(ε)], Lemma

3.6.1, and sin(x)
sin(ε) ≤ 1 yield

I2 ≤
16

π2

∫ ε

0
sin2(x)

∫ cos(ε)

0

[
C(2)

2L (t)
]2√

1− t2
√

1− t2
sin(ε)

dt dx = ε2O(L2 log(L)).

Theorem 3.1.4 is now proved.

3.6. The L2–Norm of Gegenbauer Polynomials

First we recall the digamma function ψ(x) := d
dx log (Γ(x)) and its property:

ψ(n+ 1
2) =

n∑
k=1

2

2k − 1
− γ − log(4), for n ∈ N, (3.14)

see [AS72, Eq. 6.3.4], where γ ≈ 0.577 is the Euler-Mascheroni constant.

Lemma 3.6.1. The Gegenbauer polynomials C(2)
n−2(x) satisfy∫ 1

0
(x2 − 1)

[
C(2)
n−2(x)

]2
dx = −2n2 − 1

16

(
ψ(n+ 1

2) + γ + log(4)
)

+
n2

8
.

Lemma 3.6.2. The Gegenbauer polynomials C(2)
n−2(x) satisfy∫ 1

0

[
C(2)
n−2(x)

]2
dx =

n4

16
+

4n2 − 1

64

(
ψ(n+ 1

2) + γ + log(4)
)
− 5

32
n2.

For the proofs, we need a result from [Det93], showing the following recursive formula
for squares of Gegenbauer polynomials:( n

2λ

)2 [
C(λ)
n (x)

]2
=

n−1∑
k=0

λ+ k

λ

[
C(λ)
k (x)

]2
− (1− x2)

[
C(λ+1)
n−1 (x)

]2
,

which, for λ = 1, i.e. Chebyshev polynomials of 2nd kind [Det93, Corollary 6.2], is

(n+ 1)2

4
[Un+1(x)]2 −

n∑
k=0

(k + 1) [Uk(x)]2 = (x2 − 1)
[
C(2)
n (x)

]2
. (3.15)
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Proof of Lemma 3.6.1. We will use a well known identity for m ≤ n:

Um(x)Un(x) =
m∑
k=0

Un−m+2k(x), (3.16)

which follows by induction on m, starting and re-applying the recurrence (3.6). Using
(3.16) with m = n in (4.2) and integrating yields∫ 1

0
(x2 − 1)

[
C(2)
n (x)

]2
dx

=
(n+ 1)2

4

n+1∑
k=0

∫ 1

0
U2k(x) dx−

n∑
k=0

(k + 1)

k∑
s=0

∫ 1

0
U2s(x) dx

=
(n+ 1)2

4

n+1∑
k=0

T2k+1(1)− T2k+1(0)

2k + 1
−

n∑
k=0

(k + 1)

k∑
s=0

T2s+1(1)− T2s+1(0)

2s+ 1

=
(n+ 1)2

4

n+1∑
k=0

1

2k + 1
−

n∑
k=0

k∑
s=0

k + 1

2s+ 1
,

where we used (4.3) and that T2n+1(x) is odd. By (3.14), we state for later use:∫ 1

0
[Un(x)]2 dx =

n∑
k=0

1

2k + 1
=

1

2

(
ψ(n+ 3

2) + γ + log(4)
)
, for n ∈ N0. (3.17)

We continue∫ 1

0
(x2 − 1)

[
C(2)
n (x)

]2
dx =

(n+ 1)2

8

(
ψ(n+ 5

2) + γ + log(4)
)

−
n∑
k=0

k + 1

2
ψ(k + 3

2)− (γ + log(4))
(n+ 2)(n+ 1)

4

=
(n+ 1)2

8
ψ(n+ 5

2)−
n+1∑
k=1

k

2
ψ(k + 1

2)− (n+ 3)(n+ 1)

8
(γ + log(4)).

Also, we find by induction:
n∑
k=1

k

2
ψ(k + 1

2) =
1

16

[
(2n+ 1)2ψ(n+ 3

2)− 2(n+ 1)2 + γ + log(4)
]
,

where we used the recurrence ψ(z + 1) = ψ(z) + 1
z , see [AS72, Eq. 6.3.5]. Thus∫ 1

0
(x2 − 1)

[
C(2)
n−2(x)

]2
dx =

2(n− 1)2 − (2n− 1)2

16
ψ(n+ 1

2) +
n2

8

− 2(n+ 1)(n− 1) + 1

16
(γ + log(4))

= −2n2 − 1

16

(
ψ(n+ 1

2) + γ + log(4)
)

+
n2

8
,

finishing the proof. �
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The proof of Lemma 3.6.2 first needs some preparation.

Lemma 3.6.3. Let cj,k for j, k ∈ {0, . . . , n} be real numbers such that

1. cj,k = cj+r,k+r for j + k = n− r with r ∈ {1, . . . , n},

2. cj,k = cn−j,k for j ≥ k,

3. cj,k = ck,j.

Then for any function f : N0 → R, we have1

n∑
j,k=0

cj,kf(|j − k|) =
n∑

j,k=0

cj,kf(|n− j − k|) = 2

n∑′

r=0

f(r)
n−r∑
u=0

cr+u,u. (3.18)

Proof. We first fix some r ∈ {1, . . . , n} and regard the second sum. Observe that for all
tuples such that ji+ki = n−r and ĵi+k̂i = n+r, we also have |n−ji−ki| = |n−ĵi−k̂i| = r.
These tuples are listed in the following table:

i 1 2 . . . n− r + 1

ji 0 1 n− r
ki n− r n− r − 1 . . . 0

ĵi r r + 1 n

k̂i n n− 1 r

So for all r, (ji, ki) 7→ (ji + r, ki + r) = (ĵi, k̂i) is a bijection with cji,ki = cĵi,k̂i and

n∑
j,k=0

cj,kf(|n− j − k|) = 2
n∑

j,k=0
j+k<n

cj,kf(n− j − k) + f(0)
n∑
u=0

cn−u,u.

The first sum of (3.18) can be restricted to j > k when doubled, apart of the sum
f(0)

∑n
u=0 cu,u. Again, we list all tuples with ji − ki = r = n− ĵi − k̂i:

i 1 2 . . . n− r + 1

ji r r + 1 n
ki 0 1 . . . n− r
ĵi n− r n− r − 1 0

k̂i 0 1 n− r

Similarly, (ji, ki) 7→ (n− ji, ki) = (ĵi, k̂i) is a bijection with cji,ki = cĵi,k̂i , and

n∑
j>k=0

cj,kf(j − k) =
n∑

j,k=0
j+k<n

cj,kf(n− j − k).

Rewriting the first sum above via j = r + u and k = u for some u ∈ {0, . . . , n− r} and
using that cn−u,u = cu,u finishes the argument. �

1The apostrophe on the sum-symbol sigma means taking half the first term.
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Requirement 2. in Lemma 3.6.3 is valid for all j, k. To see this, let j < k, then

cj,k
2.+3.
= cj,n−k

1.
= cj+(k−j),n−k+(k−j) = ck,n−j

3.
= cn−j,k.

Lemma 3.6.4. Let n, λ ∈ N be fixed, j, k ∈ {0, . . . , n} and define

c
(λ)
j,k = c

(λ)
j,k (n) =

1

[Γ(λ)]4
Γ(λ+ j)Γ(λ+ n− j)

j!(n− j)!
Γ(λ+ k)Γ(λ+ n− k)

k!(n− k)!
,

then [
C(λ)
n

(
cos(t)

)]2
=

n∑
u=0

c(λ)
u,u + 2

n∑
r=1

cos(2rt)
n−r∑
u=0

c
(λ)
r+u,u.

In particular, ∫ π/2

0
[C(λ)
n (cosϕ)]2 dϕ =

π

2

n∑
u=0

c(λ)
u,u.

Proof. We will use Lemma 3.6.3 with [Gra+00, Eq. 8.934]:

C(λ)
n (cos(ϕ)) =

n∑
k,`=0
k+`=n

Γ(λ+ k)Γ(λ+ `)

k!`![Γ(λ)]2
cos((k − `)ϕ), (3.19)

in conjunction with the angle-sum and half-angle formula for cosine and sine:

[
C(λ)
n (1)

]2 − [C(λ)
n

(
cos(t)

)]2
=

n∑
j,k=0

c
(λ)
j,k

(
1− cos

(
(n− 2j)t

)
cos
(
(n− 2k)t

))
=

n∑
j,k=0

c
(λ)
j,k

1

2

(
1− cos

(
(j − k)2t

)
+ 1− cos

(
(n− j − k)2t

))

=

n∑
j,k=0

c
(λ)
j,k

(
sin2

(
(j − k)t

)
+ sin2

(
(n− j − k)t

))
= 4

n∑
r=1

sin2(rt)

n−r∑
u=0

c
(λ)
r+u,u.

Hence, with
[
C(λ)
n

(
cos(t)

)]2
=
[
C(λ)
n (1)

]2 − ([C(λ)
n (1)

]2 − [C(λ)
n

(
cos(t)

)]2)
[
C(λ)
n

(
cos(t)

)]2
= 2

n∑′

r=0

n−r∑
u=0

c
(λ)
r+u,u − 4

n∑
r=1

sin2(rt)

n−r∑
u=0

c
(λ)
r+u,u

=

n∑
u=0

c(λ)
u,u + 2

n∑
r=1

(
1− 2 sin2(rt)

) n−r∑
u=0

c
(λ)
r+u,u,

and we finish using 1− 2 sin2(rt) = cos(2rt). �
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Proof of Lemma 3.6.2. With the notation of Lemma 3.6.4, where cj,k = c
(2)
j,k(n− 2):

n−2−r∑
u=0

cr+u,u =
n−1−r∑
u=1

(r + u)(n− u)u(n− r − u)

= 4r2−1
120

(
r
(
5n2 − 1

4

)
− r3 − 5n(n2 − 1)

)
− 2r

64
(4n2 − 1) +

(
2n+ 2

5

)
1

8
.

Further, we see by induction
∑n−2

r=1
1

4r2−1
= n−2

2n−3 , and thus by Lemma 3.6.4

∫ 1

0

[
C(2)
n−2(x)

]2
dx =

n−2∑
u=0

cu,u + 2

n−2∑
r=1

∫ π
2

0
cos(2rt) sin(t) dt

n−2−r∑
u=0

cr+u,u

=

n−2∑
u=0

cu,u − 2

n−2∑
r=1

1

4r2 − 1

n−2−r∑
u=0

cr+u,u

=
n5 − n

30
− 1

60

n−2∑
r=1

(
r
(
5n2 − 1

4

)
− r3 − 5n(n2 − 1)

)
+ 2

n−2∑
r=1

1

4r2 − 1

(
2r

64
(4n2 − 1)−

(
2n+ 2

5

)
1

8

)

=
2n4 − 5n2

32
+
n−1∑
r=0

1

4r2 − 1

2r − 1

32
(4n2 − 1),

as
(

4n2−1
32 −

(
2n+2

5

)
1
4

)
n−2
2n−3 has a simple form. Equation (3.17) finishes the proof. �

3.7. The Strong Maximum Principle on Manifolds

We state the classical strong maximum principle Theorem 3.7.1 for open, bounded,
and connected subsets U ⊂ Rn, and regard second order parabolic partial differential
operators L + ∂

∂t acting on functions C2
1 (U × (0, T ]), i.e. twice differentiable with respect

to spatial variables and once w.r.t. time. T > 0. A special case of this is extended in
Theorem 3.7.2. We set for smooth coefficients:

Lu(x, t) = −
∑n

i,j
aij(x, t)

∂
∂xi

∂
∂xj

u(x, t) +
∑n

j
bj(x, t)

∂
∂xj

u(x, t), (3.20)

and without loss of generality, aij(x, t) = aji(x, t).

Definition 3.7.1. L + ∂
∂t is said to be uniformly parabolic if there is a C > 0, s.t.∑

i,j

aij(x, t)ξiξj ≥ C‖ξ‖22, where ξ ∈ Rn, (x, t) ∈ U × (0, T ]. (3.21)
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Theorem 3.7.1 (Thm. 11, page 396 of [Eva10]). Let u ∈ C2
1 (U × (0, T ])∩C(Ū × [0, T ])

be such that

Lu+
∂

∂t
u = 0,

for U ⊂ Rn as above, L + ∂
∂t uniformly parabolic, and L as in (3.20). If the maximum

or minimum of u is attained at a point (x0, t0) ∈ U × (0, T ], then u equals this value
everywhere in U × [0, t0].

Given a manifold M with or without boundary, we set M◦ = M \ ∂M, and for x ∈ M,
define Mx as the connected component of M containing x. Now, the next theorem should
be known, but we haven’t found a reference.

Theorem 3.7.2. Let (M, g) be an n-dimensional (smooth) compact Riemannian manifold
with or without boundary, not necessarily connected. Suppose u ∈ C2

1(M◦ × (0, T ]) ∩
C(M× [0, T ]) satisfies for (x, t) ∈ M◦ × (0, T ]:

∆gu(x, t) +
∂

∂t
u(x, t) = 0.

If the maximum or minimum of u is attained at a point (x0, t0) ∈ M◦ × (0, T ], then u
equals this value everywhere in Mx0 × [0, t0]. In particular, the maximum and minimum
of u are attained in

(
∂M× [0, T ]

)
∪
(
M◦ × {0}

)
.

Proof. For every α ∈ M◦, there is an open neighborhood Uα ⊂ M and a chart xα : Uα →
Bα ⊂ Rn, such that xα(Uα) is an open ball Bα, and the local representation of ∆g in
Uα is of type (3.20), and satisfies (3.21) for C = 1/2. This follows from the fact that
the Laplace-Beltrami operator at a point β in the interior can be written as the usual
Laplacian at β, and by continuity of the coefficients, there is an open set of β where the
inequality (3.21) is true for C = 1/2.

Assume there were a t0 > 0 such that the maximum/minimum of u would be attained
at (α, t0). Writing ∆g w.r.t. the chart xα as ∆α, and regarding the equation

∆αu(x−1
α (x), t) +

∂

∂t
u(x−1

α (x), t) = 0,

in Bα × (0, T ], a neighborhood of (xα(α), t0), we deduce by Theorem 3.7.1 that u(x, t) ≡
u(α, t0) for all (x, t) ∈ Bα × [0, t0].

Further, Mα is covered by finitely many intersecting charts as above, and Theorem
3.7.1 would yield that u is constant and equals u(α, t0) in all of Mα × [0, t0]. The
maximum/minimum is in particular attained at the boundary as claimed. �

3.8. Sampling on SO(3)

This algorithm can still be found on the arXiv–version of [BF20] in Appendix C, and
this section is based on that page. The theoretical upper bounds for the Green energy
on SO(3) cannot be best possible, as it is an expected value – and hence there must be
fluctuations above and in particular below that value.
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We will introduce an algorithm to sample points in SO(3), that is simple to implement
and numerically outperforms points sampled by a dpp. We are not giving any proofs
regarding this algorithm, but rather show that it exists and how our bounds could be
used as a comparison tool.

In 1987 a probabilistic algorithm was introduced by P. Diaconis and M. Shahshahani
for compact groups in [DS87] and seemingly a special case of that was re-discovered by
J. Arvo for SO(3) in [Arv12]. We will use a variant of this, replacing random points by
a Halton sequence in the unit cube, which we baptize HArDiSh algorithm, and it does
very well according to numerics.

The graphic shows the evolution of the Green energy divided by N3/4 for HArDiSh –
generated points, here N = k ∗ 10 for k ∈ {10, . . . , 350}. The boundaries for the y-axis
are chosen to be our theoretical bounds.

Following closely to [Arv12], we sample N points as follows: For x1, x2, x3 to be
determined later, let M = −HR where H = 1− 2vvt,

v =
1√
N

cos(2πx2)
√
x3

sin(2πx2)
√
x3√

N − x3

 , and R =

 cos(2πx1) sin(2πx1) 0
− sin(2πx1) cos(2πx1) 0

0 0 1

 . (3.22)

In [Arv12], the xj were chosen uniformly at random, and as Arvo already mentions,
generating xj by stratified or jittered sampling should yields less clumping for the matrices
M . Our humble modification is to sample xj via Halton sequences, i.e. let vdC(p, j)
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denote the j-th element of the van der Corput seqence in base p, set

H =

1/3 2/3 1/9 4/9 7/9 . . . vdC(3, N)
1/2 1/4 3/4 1/8 5/8 . . . vdC(2, N)
1 2 3 4 5 . . . N

 ;

then we obtain matrices {Mk}Nk=1 via (3.22) by setting xj(k) = H(j, k). We do not know
if the algorithm will continue to perform well for high numbers N .
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4. On the L2-norm of Gegenbauer
polynomials

This chapter is the preprint version of [Fer21] with slight changes. We also take the
opportunity to quickly recall the beta function: Let a, b > 1

2 , then

B(a, b) :=

∫ 1

0
ta−1(1− t)b−1 dt =

Γ(a)Γ(b)

Γ(a+ b)
.

In what follows we will give the leading terms of the asymptotic expansion of integrals
as in [BF20, Cor. 4.1.3.1]. Note that computer algebra systems like Mathematica or
Matlab were not able to numerically support these results at the time of this writing;
but then again if one divides the integrals by the maximum of the integrand squared, a
quickly growing sequence of numbers will emerge – a sign that the mentioned systems in
fact cannot integrate Gegenbauer polynomials squared correctly.

4.1. Notation and Results

Gegenbauer polynomials C(λ)
n , where λ ∈ IG := (−1

2 , 0) ∪ (0,∞) is called the index and
n ∈ N0 is the degree, are the coefficients of following power series expansion in α:

(1− 2xα+ α2)−λ =

∞∑
n=0

C(λ)
n (x)αn.

The case λ = 0 is not considered here. {C(λ)
n }n∈N0 are orthogonal with respect to the

measure (1− x2)λ−1/2 dx over [−1, 1], and by [Gra+00, Eq. 8.930]:

∀λ ∈ IG : C(λ)
0 (x) = 1, C(λ)

1 (x) = 2λx. (4.1)

For continuous f : [0, 1]→ R, the following notation will be used:

‖f‖22 :=

∫ 1

0
[f(x)]2 dx.

We derive an asymptotic formula for ‖C(λ)
n ‖22 when λ > 0 in Corollary 4.1.3.1. Indeed,

one of the key ingredients in [BF20] was the asymptotic nature of ‖C(2)
n ‖22 in n, and the

following lemma was proved in [BF20, Lemmas 6.1 and 6.2]:
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Lemma 4.1.1. Let ψ denote the digamma function and γ the Euler-Mascheroni constant.
Then the Gegenbauer polynomials satisfy for n ≥ 2:

∥∥√1− x2 C(2)
n−2

∥∥2

2
= 1

16(2n2 − 1)
(
ψ(n+ 1

2) + γ + log(4)
)
− 1

8n
2,∥∥C(2)

n−2

∥∥2

2
= 1

16n
4 + 1

64(4n2 − 1)
(
ψ(n+ 1

2) + γ + log(4)
)
− 5

32n
2.

The following result of Corollary 5.2 from [Det93] will prove to be indispensable.

Theorem 4.1.2 (Dette [Det93]). The Gegenbauer polynomials satisfy for λ ∈ IG

( n
2λ

)2 [
C(λ)
n (x)

]2
+ (1− x2)

[
C(λ+1)
n−1 (x)

]2
=

n−1∑
k=0

λ+ k

λ

[
C(λ)
k (x)

]2
. (4.2)

Our main theorem is as follows and we will use it to derive the asymptotic behavior of

‖C(λ)
n ‖22.

Theorem 4.1.3 (Main Result). The Gegenbauer polynomials satisfy for λ ∈ IG and
n > 1:

∥∥C(λ+1)
n−2

∥∥2

2
=
n2 − 2λn

24λ3

[
C(λ)
n (1)

]2
+
n(2n+ 1)

23λ2

∥∥C(λ)
n

∥∥2

2
−
n−1∑
k=0

λ+ k

22λ2

∥∥C(λ)
k

∥∥2

2
.

Corollary 4.1.3.1. Let B(x, y) denote the beta function. The following asymptotic
formulas in n hold for λ ∈ (0, 1) and δ(λ) := max{4λ− 1, 2λ}:

∥∥C(λ)
n

∥∥2

2
< B

(
1− λ, 1

2

)21−2λ

Γ(λ)2

1

n2−2λ
,

∥∥C(λ+1)
n

∥∥2

2
=

n4λ

4λΓ(2λ+ 1)2
+O

(
nδ(λ)

)
,

∥∥√1− x2 C(λ+1)
n−1

∥∥2

2
<
B
(
1− λ, 1

2

)
Γ(λ+ 1)2

n2λ

21+2λ
+O

(
nδ(λ)−1

)
.

The following asymptotic formulas hold for λ > 1:

∥∥C(λ+1)
n−2

∥∥2

2
=

n4λ

4λΓ(2λ+ 1)2
+

λ− 1

Γ(2λ+ 1)2
n4λ−1 +O(n4λ−2),∥∥√1− x2 C(λ+1)

n−1

∥∥2

2
=

2λ− 1

4(λ− 1)Γ(2λ+ 1)2
n4λ−2 +O(nδ(λ−1)+2).

The identity 2 · ‖C(1)
n ‖22 = ψ(n+ 3

2) + γ + log(4) is given by [BF20, Eq. 14].
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4.2. Ingredients for the Proof of the Theorem

In this section we collect known results concerning Gegenbauer polynomials for later
reference and the reader’s convenience, and we derive some technical lemmas in Section
4.3 to prove Theorem 4.1.3. To avoid repetition, we will assume λ ∈ IG for the rest of
the text if not stated otherwise. Note first that

d

dx
C(λ)
n+1(x) = 2λ C(λ+1)

n (x) [Gra+00, Eq. 8.935],

C(λ)
n (1) = Γ(n+2λ)

Γ(2λ)n! =
∏n
j=1(2λ+n−j)

n! [Gra+00, Eq. 8.937];
(4.3)

and C(λ)
n (1) is the maximum on [−1, 1] for λ > 0 by [Sze39, Eq. 7.33.1]. Also, by (4.3):

(n+ 2) C(λ)
n+2(x) = 2λ

(
x C(λ+1)

n+1 (x)− C(λ+1)
n (x)

)
[Gra+00, Eq. 8.933.2], (4.4)

(n+ λ) C(λ)
n (x) = λ

(
C(λ+1)
n (x)− C(λ+1)

n−2 (x)
)

[Gra+00, Eq. 8.939.6]. (4.5)

4.3. Identities for Gegenbauer polynomials

Lemma 4.3.1. The Gegenbauer polynomials satisfy the following identities:

C(λ+1)
n (x) + C(λ+1)

n−2 (x) = 2x C(λ+1)
n−1 (x) + C(λ)

n (x), (?)∫ 1

0

[
C(λ+1)
n (x)

]2 − [C(λ+1)
n−2 (x)

]2
dx =

n+ λ

2λ2

([
C(λ)
n (1)

]2
+ (2λ− 1)

∥∥C(λ)
n

∥∥2

2

)
.

Proof. First we use (4.5); then apply (4.4) to the right-hand side below proving (?):

C(`)
n (x) + C(`)

n−2(x) =
n+ λ

λ
C(λ)
n (x) + 2x C(`)

n−1(x)−
(

2x C(`)
n−1(x)− 2C(`)

n−2(x)
)
,

where ` := λ+ 1. Next we obtain by the binomial theorem with (4.5), (?) and (4.3)

[
C(λ+1)
n (x)

]2 − [C(λ+1)
n−2 (x)

]2
=
n+ λ

λ
C(λ)
n (x)

(
2xC(λ+1)

n−1 (x) + C(λ)
n (x)

)
=
n+ λ

λ

( x
2λ

d

dx

[
C(λ)
n (x)

]2
+
[
C(λ)
n (x)

]2)
.

Integration by parts then finishes the argument. �

Lemma 4.3.2. The Gegenbauer polynomials satisfy the following identity:∫ 1

0
x2
[
C(λ+1)
n+1 (x)

]2
+
[
C(λ+1)
n (x)

]2
dx+

1

2λ

∫ 1

0
(1− x2)

[
C(λ+1)
n+1 (x)

]2
dx

=
(n+ 2)2

8λ3

[
C(λ)
n+2(1)

]2
+

2λ− 1

2λ

(n+ 2)2

4λ2

∥∥C(λ)
n+2

∥∥2

2
.
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Proof. Let n = 2m. By Lemma 4.3.1 and a telescoping sum argument:

∥∥C(λ+1)
n

∥∥2

2
−
∥∥C(λ+1)

0

∥∥2

2
=

m∑
j=1

2j + λ

2λ2

([
C(λ)

2j (1)
]2

+ (2λ− 1)
∥∥C(λ)

2j

∥∥2

2

)
,

∥∥C(λ+1)
n+1

∥∥2

2
−
∥∥C(λ+1)

1

∥∥2

2
=

m∑
j=1

2j + 1 + λ

2λ2

([
C(λ)

2j+1(1)
]2

+ (2λ− 1)
∥∥C(λ)

2j+1

∥∥2

2

)
.

Using (4.1) and summing up, and an application of Dette’s result (4.2) yields:∫ 1

0

[
C(λ+1)
n+1 (x)

]2
+
[
C(λ+1)
n (x)

]2
dx

=
4

3
(λ+ 1)2 + 1 +

1

2λ

n+1∑
j=2

j + λ

λ

[
C(λ)
j (1)

]2
+

2λ− 1

2λ

n+1∑
j=2

j + λ

λ

∥∥C(λ)
j

∥∥2

2

=
(n+ 2)2

8λ3

[
C(λ)
n+2(1)

]2
+

2λ− 1

2λ

n+1∑
j=0

j + λ

λ

∥∥C(λ)
j

∥∥2

2

=
(n+ 2)2

8λ3

[
C(λ)
n+2(1)

]2
+

2λ− 1

2λ

((n+ 2)2

4λ2

∥∥C(λ)
n+2

∥∥2

2
+
∥∥√1− x2 C(λ+1)

n+1

∥∥2

2

)
.

The case n+ 1 = 2m is analogous. �

Lemma 4.3.3. The Gegenbauer polynomials satisfy the following identity:∫ 1

0
x2
[
C(λ+1)
n+1 (x)

]2 − [C(λ+1)
n (x)

]2
dx =

n+ 2

4λ2

([
C(λ)
n+2(1)

]2 − (n+ 3)
∥∥C(λ)

n+2

∥∥2

2

)
.

Proof. Note first that by (4.4) and by quadratic completion

2
n+ 2

2λ
C(λ)
n+2(x)C(λ+1)

n (x) = 2xC(λ+1)
n+1 (x)C(λ+1)

n (x)− 2
[
C(λ+1)
n (x)

]2
= x2

[
C(λ+1)
n+1 (x)

]2 − [C(λ+1)
n (x)

]2 − (xC(λ+1)
n+1 (x)− C(λ+1)

n (x)
)2
.

(4.6)

Hence by the binomial theorem and again by (4.4)

2

∫ 1

0
x2
[
C(λ+1)
n+1 (x)

]2 − [C(λ+1)
n (x)

]2
dx

=
n+ 2

λ

∫ 1

0

(
xC(λ+1)

n+1 (x) + C(λ+1)
n (x)

)
C(λ)
n+2(x) dx

=
n+ 2

λ

∫ 1

0

x

4λ

d

dx

[
C(λ)
n+2(x)

]2
+ C(λ+1)

n (x)C(λ)
n+2(x) dx

=
n+ 2

4λ2

([
C(λ)
n+2(1)

]2 − ∫ 1

0

[
C(λ)
n+2(x)

]2
dx
)

+ 2
n+ 2

2λ

∫ 1

0
C(λ+1)
n (x)C(λ)

n+2(x) dx

which proves the result when we substitute (4.6) and use (4.4) one last time. �
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4.4. Proof of the Main Results

Proof of Theorem 4.1.3. Subtract the left hand sides of Lemma 4.3.2 and Lemma 4.3.3:

2
∥∥C(λ+1)

n

∥∥2

2
+

1

2λ

∥∥√1− x2 C(λ+1)
n+1

∥∥2

2
=
((n+ 2)2

8λ3
− n+ 2

4λ2

)[
C(λ)
n+2(1)

]2
+
((n+ 2)2

4λ2
+

(n+ 2)(n+ 3)

4λ2

)∥∥C(λ)
n+2

∥∥2

2
− 1

2λ

(n+ 2)2

4λ2

∥∥C(λ)
n+2

∥∥2

2
;

an application of Dette’s formula (4.2) then gives the desired expression. �

Corollary 4.4.0.1. The Gegenbauer polynomials satisfy the following identity:∥∥√1− x2 C(λ+1)
n−1

∥∥2

2

=
[
C(λ)
n (1)

]2 n+ 2λ

n+ 1

1− 2λ

23λ2
+

(n+ 1)(2n+ 3)

23λ2

∥∥C(λ)
n+1

∥∥2

2
−
∥∥C(λ)

n

∥∥2

2

n+ 2λ

23λ2
.

Proof. We use Lemma 4.3.3, add zero and obtain with Theorem 4.1.3

n

4λ2

([
C(λ)
n (1)

]2 − (n+ 1)
∥∥C(λ)

n

∥∥2

2

)
+

∫ 1

0
(1− x2)

[
C(λ+1)
n−1 (x)

]2
dx

=

∫ 1

0

[
C(λ+1)
n−1 (x)

]2 − [C(λ+1)
n−2 (x)

]2
dx

=
(n+ 1)2 − 2λ(n+ 1)

24λ3

[
C(λ)
n+1(1)

]2
+

(n+ 1)(2n+ 3)

23λ2

∥∥C(λ)
n+1

∥∥2

2
−

n∑
k=0

λ+ k

22λ2

∥∥C(λ)
k

∥∥2

2

− n2 − 2λn

24λ3

[
C(λ)
n (1)

]2 − n(2n+ 1)

23λ2

∥∥C(λ)
n

∥∥2

2
+

n−1∑
k=0

λ+ k

22λ2

∥∥C(λ)
k

∥∥2

2

=
[
C(λ)
n (1)

]2((n+ 1)2 − 2λ(n+ 1)

24λ3

(n+ 2λ)2

(n+ 1)2
− n2 − 2λn

24λ3

)
+

(n+ 1)(2n+ 3)

23λ2

∥∥C(λ)
n+1

∥∥2

2
−
∥∥C(λ)

n

∥∥2

2

(n(2n+ 1)

23λ2
+
λ+ n

22λ2

)
=
[
C(λ)
n (1)

]2 2n2 + 3n+ 2λ− 2λn− 4λ2

23λ2(n+ 1)

+
(n+ 1)(2n+ 3)

23λ2

∥∥C(λ)
n+1

∥∥2

2
−
∥∥C(λ)

n

∥∥2

2

(2n2 + 3n+ 2λ

23λ2

)
.

We re-order to obtain the result. �

For our asymptotic analysis we will need the following identity, which follows from the
proof of Theorem 4.1.3 and Corollary 4.4.0.1:

Corollary 4.4.0.2. The Gegenbauer polynomials satisfy the following identity:∥∥C(λ+1)
n−2

∥∥2

2
=
n2 − 2λn

24λ3

[
C(λ)
n (1)

]2
+

2n2(4λ− 1) + n(4λ+ 1) + 2λ

25λ3

∥∥C(λ)
n

∥∥2

2

−
[
C(λ)
n (1)

]2 n+ 2λ

n+ 1

1− 2λ

25λ3
− (n+ 1)(2n+ 3)

25λ3

∥∥C(λ)
n+1

∥∥2

2
.

(4.7)
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Using the following asymptotic form, see [TE51]: For |z| → ∞ and α, β ≥ 0:

Γ(z + α)

Γ(z + β)
= zα−β

(
1 +

(α− β)(α+ β − 1)

2z
+O(|z|−2)

)
, (4.8)

we obtain by (4.3) for λ > 0:

Γ(2λ)2 ·
[
C(λ)
n (1)

]2
= n4λ−2 + 2λ(2λ− 1)n4λ−3 +O(n4λ−4). (4.9)

Proof of Corollary 4.1.3.1. We will write ‖C(λ)
n ‖22 = Θ(nΦ(λ)) if there are some constants

c1, c2 > 0 such that c1n
Φ(λ) ≤ ‖C(λ)

n ‖22 ≤ c2n
Φ(λ) for all n big enough. First we use (4.7)

to show by induction that Φ(λ) exists for λ > 1, and that
[
C(λ)
n (1)

]2
= Θ(nΦ(λ)+2).

The case λ = m ∈ N>1: Lemma 4.1.1 gives the result for λ = 2, and if it holds for m,
then with (4.7) and abuse of notation we have:∥∥C(m+1)

n−2

∥∥2

2
= n2 Θ

(
nΦ(m)+2

)
+ n2 Θ

(
nΦ(m)

)
+ Θ

(
nΦ(m)+2

)
+ n2 Θ

(
nΦ(m)

)
.

This proves the claim as it shows that ‖C(m+1)
n ‖22 = Θ(nΦ(m)+4), but by (4.3):

C(λ+1)
n (1) =

(2λ+ n+ 1)(2λ+ n)

2λ(2λ+ 1)
C(λ)
n (1) = Θ

(
n2C(λ)

n (1)
)
, (4.10)

which, when squared and λ = m, is of order Φ(m) + 6.

The case λ ∈ (m,m+ 1), m ∈ N: For λ ∈ (0, 1) and θ ∈ [0, π]:

sin(θ)λ
∣∣C(λ)
n (cos(θ))

∣∣ < 21−λ

Γ(λ)
nλ−1 see [Sze39, Eq. 7.33.5].

We square this inequality, multiply by sin(θ)1−2λ and integrate:

∥∥C(λ)
n

∥∥2

2
<

22−2λ

Γ(λ)2
n2λ−2

∫ π/2

0
sin(θ)1−2λ dθ = B

(
1− λ, 1

2

)21−2λ

Γ(λ)2
n2λ−2;

where we used a change of variables θ = arcsin(x) and B(x, y) is the beta function. This
in combination with (4.9) and (4.7) gives for δ = max{4λ− 1, 2λ}:∥∥C(λ+1)

n

∥∥2

2
=

n4λ

24λ3Γ(2λ)2
+O

(
nδ
)
. (4.11)

Thus for λ ∈ (0, 1): Φ(λ+ 1) = 4λ, and [C(λ+1)
n (1)]2 = Θ

(
n4λ+2

)
by (4.9), which finishes

the case for the interval (1, 2) and we use induction with (4.7) and (4.10).

Thus the two leading terms in the asymptotic form of ‖C(λ+1)
n ‖22 are in the expansion

of C(λ)
n (1) when λ > 1; using once more (4.9) and (4.7) yields

n2 − 2λn

24λ3

[
C(λ)
n (1)

]2
=

n4λ

4λΓ(2λ+ 1)2
+

2λ(2λ− 2)

4λΓ(2λ+ 1)2
n4λ−1 +O(n4λ−2).
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The asymptotic of the rest term of ‖C(λ+1)
n ‖22 follows by (4.7), equation (4.11) and

induction for non-integer λ ∈ R>2 or else Lemma 4.1.1 and induction when λ ∈ N>2.
Now, these asymptotic formulas in combination with Corollary 4.4.0.1 and (4.9) will
finish the argument: As an illustration, let 1 < λ ≤ 2, the cases 0 < λ < 1 and λ > 2 are
similar; let ρ = max{4λ− 3, 2λ}, then

∥∥√1− x2 C(λ+1)
n−1

∥∥2

2
=

1− 2λ

23λ2

[
C(λ)
n (1)

]2
+

2n2

23λ2
‖C(λ)

n+1‖
2
2 +O(nρ)

=
1− 2λ

23λ2

n4λ−2

Γ(2λ)2
+

2n2

23λ2

n4λ−4

4(λ− 1)Γ(2λ− 1)2
+O(nρ)

=
n4λ−2

23λ2Γ(2λ− 1)2

( 1− 2λ

(2λ− 1)2
+

1

2(λ− 1)

)
+O(nρ)

=
n4λ−2

23λ2Γ(2λ− 1)2

1

(2λ− 1)(λ− 1)2
+O(nρ). �

Remark 4.4.1. One can use Lemma 4.1.1, Corollary 4.4.0.1 and identity (4.7) to find

formulas for ‖
√

1− x2 C(m)
n ‖22 and ‖C(m)

n ‖22 where m ∈ N>1.
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5. Potential Theory with Multivariate
Kernels

This chapter is essentially [Bil+21b] and is a joint work with Dmitriy Bilyk, Alexey
Glazyrin, Ryan Matzke, Josiah Park and Oleksandr Vlasiuk. It has been modified slightly
and section 5.7 has been added by this author which gives interesting counterexamples
to natural conjectures related to multivariate kernels.

Abstract

In the present paper we develop the theory of minimization for energies with multivariate
kernels, i.e. energies, in which pairwise interactions are replaced by interactions between
triples or, more generally, n-tuples of particles. Such objects, which arise naturally in
various fields, present subtle differences and complications when compared to the classical
two-input case. We introduce appropriate analogues of conditionally positive definite
kernels, establish a series of relevant results in potential theory, explore rotationally
invariant energies on the sphere, and present a variety of interesting examples, in
particular, some optimization problems in probabilistic geometry which are related to
multivariate versions of the Riesz energies.

5.1. Introduction and main results

Numerous questions, which arise in such different disciplines as discrete geometry, physics,
signal processing, and many others, can be reformulated as problems of minimization of
discrete or continuous pairwise interaction energies, i.e. expressions of the type

1

N2

∑
x,y∈ωN

K(x, y) or

∫
Ω

∫
Ω
K(x, y) dµ(x) dµ(y), (5.1)

where ωN is a discrete set of N points, µ is a Borel probability measure on the domain
Ω, and K is the potential function describing the pairwise interaction. Perhaps one of
the most celebrated examples of such problems is the 1904 Thomson problem, asking
for an equilibrium distribution of N electrons on the sphere, which is notoriously still
open for most values of N [Th]. This and many other problems stimulated the study of
such energies, which has now developed into a full-blown theory, see e.g. [Bjö56; Fug60;
HS04], whose state-of-the-art is very well presented in a recent book [BHS19].

While classical energies (5.1) model pairwise interactions between particles, the present
paper, in contrast, initiates the study of optimization problems for more complicated
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energies, defined by interactions of triples, quadruples, or even higher numbers of particles,
i.e. energies of the type

EK(ωN ) =
1

Nn

∑
x1,...,xn∈ωN

K(x1, ..., xn), (5.2)

IK(µ) =

∫
Ω
· · ·
∫

Ω
K(x1, . . . , xn) dµ(x1) . . . dµ(xn), (5.3)

with n ≥ 3. Energies of this type arise naturally in various fields:

1. In different branches of physics (nuclear, quantum, chemical, condensed matter,
material science etc.), it has been suggested that, if the behavior of the system
cannot be accurately modeled by two-body interactions, more precise information
may be obtained from three-body or many-body interactions. Such forces are
observed among nucleons in atomic nuclei (three-nucleon force) [Zel09], in carbon
nanostructures [MS14], crystallization of atomistic configurations [FT15], cold polar
molecules in optical lattices [BMZ07], interactions of solid and liquid forms of silicon
[SW85], interactions between atoms [AT43], in “perfect glass” potentials [ZST16],
and many other areas.

2. Energy integrals with multivariate kernels defined in (5.3) play the role of polyno-
mials on the space P(Ω) of probability measures on Ω – e.g., their linear span over
all n ∈ N is dense in the space of continuous functions on P(Ω), according to the
Stone–Weierstrass theorem. Such functionals on the space of measures appear in
optimal transport [San15] and mean field games [Lio06].

3. A classical example of a three-input energy, coming from geometric measure theory,
is given by the total Menger curvature of a measure µ

c2(µ) =

∫
Ω

∫
Ω

∫
Ω
c2(x, y, z) dµ(x) dµ(y) dµ(z), (5.4)

where c(x, y, z) = 1
R(x,y,z) and R(x, y, z) is the circumradius of the triangle xyz.

This object plays an important role in the study of the L2 boundedness of the
Cauchy integral, analytic capacity, and uniform rectifiability [Dav99; MMV96].

4. Some questions in probabilistic geometry admit natural reformulations in terms of
multi-input energies (5.2) or (5.3). For example, assume that three points are chosen
in a domain Ω, e.g. Ω = S2, independently at random, according to the probability
distribution µ. Which probability distribution maximizes the expected area of
the triangle generated by these random points or the volume of the parallelepiped
spanned by the random vectors? These quantities can be written as energy integrals
(5.2) with n = 3, and higher dimensional versions of such questions call for energies
with more inputs, which may be viewed as natural extensions of the classical Riesz
energy. Questions of this type are discussed in Section 5.6.4 and are explored in
more detail in [Bil+21a].
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5. Energies with more than two arguments akin to (5.2) appear in three-point bounds
[CW12] and, more generally, k-point bounds [Laa+19; Mus14] in semidefinite
programming [BV08] – a very fruitful method, which led to numerous breakthroughs
in discrete geometry. A discussion of this method in the context of the multivariate
energy optimization and, in particular, applications to the geometric problems
described in Section 5.6.4 can be found in our follow-up work [Bil+21a].

6. Relations between the L2 discrepancy and the two-input energies, in particular,
the Stolarsky principle [Sto73], are well known [BDM18; Skr20]. In a similar spirit,
other Ln norms of the discrepancy or “number variance” with integer values of
n lead to n-particle interaction energies (5.2). Some similar ideas have been put
forward in [Tor10].

Despite the abundance of applications, there seems to have been no systematic devel-
opment of a general theory of multi-input energies, unlike the case of classical two-input
energies which has been deeply and extensively explored. The present paper makes a
first attempt to remedy this shortcoming and to study the general properties of point
configurations and measures, minimizing the multi-input energies (5.2)-(5.3), and the
relations between the structure of the multivariate kernel K and the energy minimiz-
ers. This theory presents many intrinsic obstacles and is far from a straightforward
generalization of the two-input case. In particular, in the spherical case Ω = Sd−1

with rotationally-invariant two-input kernels K(x, y) = F (〈x, y〉), classical Schoenberg’s
theory [Sch41] proves that the uniform surface measure σ minimizes the energy integral
in (5.1) if and only if the kernel K is conditionally positive definite. However, in the
multi-input case, such a characterization is still elusive: while we obtain various natural
sufficient conditions for the surface measure σ to minimize the energy (5.2) in Section
5.5, counterexamples presented in Section 5.6 show that none of them are necessary.

The outline of the paper is as follows. In Section 5.2 we introduce the notation and
some of the main definitions, including the notion of n-positive definiteness. In Section
5.3 we explore some basic properties of multivariate energies. In particular, we analyze
the connections between (conditional) positive definiteness of the kernel K, convexity
of the energy functional IK(µ), and arithmetic and geometric mean inequalities for the
mixed energies. The meat of the paper, i.e. the results about minimizers of the n-input
energies are concentrated in Sections 5.4–5.6.

Section 5.4 deals with analogues of classical potential theoretic results [Bjö56; BHS19;
Fug60], which provide certain necessary (Theorem 5.4.1) and sufficient (Theorem 5.4.2)
conditions for a measure µ to be a minimizer of the n-input energy integral in terms of
the (n− 1)-fold potential of the kernel K with respect to µ. Even though some of these
results by themselves are clear-cut generalizations of standard statements for two-input
energies, they yield several interesting consequences in the n-input case. In particular,
Theorem 5.4.5 states that, under some additional assumptions (e.g., if K is n-positive
definite), for any 1 ≤ k ≤ n − 2, if the measure µ minimizes the (n − k)-input energy
IU , where U is the k-fold integral of K with respect to µ, then µ also minimizes the
n-input energy IK . This statement allows one to simplify proving that a given measure
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is a minimizer of a multi-input energy by considering energies with a lower number of
inputs. A partial converse to Theorem 5.4.5, for k = n− 2, is given in Theorem 5.4.6.
In addition, in Lemma 5.4.3, we show that, for n-positive definite kernels, every local
minimizer of IK is necessarily a global minimizer.

In Section 5.5 we adapt the methods of Section 5.4 to energies with rotationally invariant
kernels on the sphere Sd−1, where symmetries allow for a more delicate analysis, and one
has a natural candidate for a minimizer: the uniform surface measure σ. Theorem 5.5.1
states that energies with conditionally n-positive definite rotationally invariant kernels on
the sphere are minimized by the surface measure σ (without any additional assumptions).
As mentioned above, it turns out that, in contrast to the classical case n = 2, conditional
n-positive definiteness is not necessary for σ to minimize the n-input energy, which is
shown by examples presented in Propositions 5.6.9 and 5.6.10. Nevertheless, Theorem
5.5.1 allows one to prove that σ minimizes a variety of interesting energies, which did not
seem to be accessible by different methods, see e.g. Corollary 5.5.1.1. In Theorem 5.5.2
we obtain very close necessary and sufficient conditions for σ to be a local minimizer of the
n-input energy IK in terms of the minimization properties of the two-input energy with
the kernel given by the (n− 2)-fold integral of K (or the conditional positive definiteness
of this kernel). We also conjecture these are the correct conditions for σ to be a global
minimizer of IK .

Section 5.6 is dedicated to constructing various classes of n-positive definite kernels,
proving that certain kernels of interest are (conditionally) n-positive definite, as well as
exhibiting some naturally arising 3-input kernels on the sphere which are not conditionally
3-positive definite, yet the corresponding energies are minimized by the surface measure
σ. These examples are presented in Propositions 5.6.5, 5.6.9, and 5.6.10. The first one is
closely related to the semidefinite programming method as presented in [BV08], while the
last two are geometric. The latter kernels are studied in Section 5.6.4 which addresses
some problems from probabilistic discrete geometry. Their main objects may be viewed as
multi-input analogues of the classical Riesz energies. In particular, we show that if three
random vectors are chosen in the sphere Sd−1 independently according to the probability
distribution µ, then the expected volume squared of the tetrahedron generated by these
vectors (Theorem 5.6.6) as well as the square of the area of the triangle defined by these
points (Theorem 5.6.7) are maximized if the distribution is uniform, i.e. µ = σ. A more
detailed study of such geometric questions is conducted by the authors in [Bil+21a].

While many of the results presented in this paper hold (or can be extended) to a larger
class of kernels (e.g., bounded lower semi-continuous, or even singular kernels), given that
this is the first effort to establish a theory of multi-input energies, for the sake of brevity
and clarity of the exposition, we shall only consider continuous kernels on compact metric
spaces in this paper. We shall also restrict our attention to symmetric n-input kernels,
i.e. functions invariant with respect to any permutation of variables. These assumptions
are implicitly present in all of the results presented below, even if not stated explicitly.
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5.2. Background and definitions

In what follows, we always assume that (Ω, ρ) is a compact metric space, n ∈ N \ {1},
and the kernel K : Ωn → R is continuous and symmetric, i.e. for any permutation π ∈ Sn
and x1, ..., xn ∈ Ω, K(x1, ..., xn) = K(xπ(1), ..., xπ(n)). We denote by M(Ω) the set of
finite signed Borel measures on Ω, and by P(Ω) the set of Borel probability measures on
Ω. Let ωN = {x1, x2, ..., xN} be an N -point configuration (multiset) in Ω for N ≥ n. We
define the discrete K-energy of ωN to be

EK(ωN ) :=
1

Nn

N∑
j1=1

· · ·
N∑

jn=1

K(xj1 , ..., xjn), (5.5)

and the minimal discrete N -point K-energy of Ω as

EK(Ω, N) := inf
ωN⊆Ω

EK(ωN ). (5.6)

Let µ1, ..., µn ∈M(Ω), then we define their mutual energy as

IK(µ1, ..., µn) =

∫
Ω
· · ·
∫

Ω
K(x1, ..., xn)dµ1(x1) · · · dµn(xn), (5.7)

and, for j < n, the j-th potential function as

U
µ1,...,µj
K (xj+1, ..., xn) =

∫
Ω
· · ·
∫

Ω
K(x1, ..., xn)dµ1(x1) · · · dµj(xj). (5.8)

Note that since we are working with continuous K, the energy is well defined for all
finite signed Borel measures. We will abuse notation, by writing µk if k of the measures
are the same, and define the K-energy functional on M(Ω) by

IK(µ) = IK(µn) = IK(µ, ..., µ). (5.9)

The definitions of discrete (5.5) and continuous (5.9) energies are compatible in the sense
that

EK(ωN ) = IK(µωN ), where µωN =
1

N

N∑
j=1

δxj (5.10)

and due to the weak-∗ density of the linear span of Dirac masses in P(Ω)

lim
N→∞

EK(Ω, N) = inf
µ∈P(Ω)

IK(µ). (5.11)

We now recall the classical notion of positive definiteness for two-input kernels, which
plays an extremely important role in energy optimization problems and which we seek to
generalize to n-input kernels. We state the definition in the form which is most relevant
to our exposition.
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Definition 5.2.1. A kernel K : Ω2 → R is called positive definite if for every finite
signed Borel measure ν ∈M(Ω), the energy integral satisfies IK(ν) ≥ 0.

If the inequality IK(ν) ≥ 0 holds for all ν ∈ M(Ω) satisfying ν(Ω) = 0, we call the
kernel conditionally positive definite.

A more standard way of stating the definition of positive definiteness of K is by
requiring that for all N ∈ N and x1, ..., xN ∈ Ω, the matrix [K(xi, xj)]0≤i,j≤N is positive
semi-definite, i.e.

IK

( N∑
i=1

ciδxi

)
=

N∑
i,j=1

K(xi, xj)cicj ≥ 0

for all c1, . . . , cN ∈ R. Since K is continuous, this is clearly equivalent to Definition 5.2.1
due to weak-∗ density of discrete measures.

We extend this notion to n-input kernels by demanding that, if one fixes arbitrary
values of all but two variables, the resulting two-input kernel is positive definite in the
classical sense. For every m < n and z1, z2, ..., zm ∈ Ω, we define

Kz1,z2,...,zm(x1, ..., xn−m) := K(z1, ..., zm, x1, ..., xn−m). (5.12)

Definition 5.2.2. We shall say that a continuous symmetric kernel K : Ωn → R is
(conditionally) n-positive definite if, for all z1, z2, ..., zn−2 ∈ Ω, the two-input kernel
Kz1,...,zn−2 is (conditionally) positive definite in the sense of Definition 5.2.1.

We would like to emphasize that this definition relies more on the pointwise two-variable
structure, rather than the full set of variables. In particular, it doesn’t have any connection
to positive definite tensors [Qi05]. Thus, it may appear that the name n-positive definite
might be somewhat misleading. However, from the point of view of energy optimization,
which is the main theme of this paper, this nomenclature seems absolutely justified.
Indeed, in various statements about minimal energy (e.g., Theorem 5.4.2, Corollary
5.4.2.1, Theorem 5.5.1), this condition naturally replaces positive definiteness of classical
two-input kernels. In addition, non-symmetric multivariate kernels of similar flavor have
been considered in the context of k-point bounds in semidefinite programming [Laa+19;
Mus14]. The class of n-positive definite kernels is rather rich: throughout the text, in
particular, in Section 5.6, we present numerous examples of functions with this property.

We immediately observe that this property is inherited by kernels with a lower number
of inputs, which are obtained as potentials of K with respect to arbitrary probability
measures.

Lemma 5.2.1. Assume that K is (conditionally) n-positive definite. Then for every
µ ∈ P(Ω), the potential UµK(x1, . . . , xn−1) is (conditionally) (n− 1)-positive definite.

Proof. Let ν be a finite signed Borel measure on Ω (with ν(Ω) = 0 if K is conditionally
n-positive definite). Then by Fubini–Tonelli

I(
UµK

)
z2,...,zn−2

(ν) =

∫
Ω

∫
Ω

∫
Ω
K(z1, z2, . . . , zn−3, zn−2, x, y)dµ(z1) dν(x)dν(y)

=

∫
Ω

∫
Ω

∫
Ω
Kz1,...,zn−2(x, y)dν(x)dν(y) dµ(z1) ≥ 0,
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since Kz1,...,zn−2 is (conditionally) positive definite for all z1, ..., zn−2 ∈ Ω. �

As a corollary of Lemma 5.2.1, we observe that if K : Ωn → R is (conditionally)
n-positive definite, then for all µ1, ..., µk ∈ P(Ω), with k ≤ n− 2, Uµ1,...,µkK (xk+1, ..., xn)
is (conditionally) (n− k)-positive definite.

Naturally, (conditionally) n-positive definite kernels enjoy the same basic properties as
their classical two-variable counterparts.

Lemma 5.2.2. If K and L are n-positive definite, then so are K + L and KL. If
K1,K2, ... are n-positive definite and limn→∞Kn = K (uniformly), then K is n-positive
definite. The statements about the sum and the limit (but not about the product) continue
to hold if we replace n-positive definite with conditionally n-positive definite.

The proof of this lemma is straightforward. The statement about the product KL
follows from the classical Schur’s product theorem, and positive definiteness in this
statement cannot be replaced by conditional positive definiteness (since, for example, a
negative constant is a conditionally n-positive definite function).

5.3. First principles

In this section we explore some basic properties related to (conditional) n-positive
definiteness, such as inequalities for mixed energies and convexity of the energy functionals,
as well as connections between these notions. All the kernels in this section are assumed
to be continuous and symmetric.

5.3.1. Bounds on mutual energies

In the classical case, mixed energies can be bounded by averages of energies of each
individual measure. We refer the reader to Chapter 4 of [BHS19] for details.

Lemma 5.3.1. Suppose K is a conditionally positive definite kernel on Ω2. Then for
every pair of Borel probability measures µ1 and µ2 on Ω, the mutual energy IK(µ1, µ2)
satisfies

IK(µ1, µ2) ≤ 1

2

(
IK(µ1) + IK(µ2)

)
.

Furthermore, if K is positive definite, then

IK(µ1, µ2) ≤
√
IK(µ1)IK(µ2).

These inequalities can be extended to n-input energies with (conditionally) n-positive
definite kernels.

Lemma 5.3.2. Suppose K is a conditionally n-positive definite kernel on Ωn. Then
for every n-tuple of Borel probability measures µ1, . . . , µn on Ω, the mutual energy
IK(µ1, . . . , µn) satisfies

IK(µ1, . . . , µn) ≤ 1

n

n∑
j=1

IK(µj). (5.13)
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If, moreover, K is n-positive definite,

IK(µ1, . . . , µn) ≤
n∏
j=1

n

√
IK(µj). (5.14)

Proof. We only prove (5.14), as one could repeat the proof below verbatim, with the
multiplicative notation replaced by the additive, to arrive at (5.13) (when K is n-positive
definite, it would also follow from the arithmetic–geometric mean inequality).

By Lemma 5.3.1, our claim holds for n = 2. Now, suppose our claim holds for some
k ≥ 2, and let µ1, ..., µk+1 ∈ P(Ω). Lemma 5.2.1 tells us that for 1 ≤ j ≤ k + 1, U

µj
K is

k-positive definite, so by our inductive hypothesis

IK(µ1, ..., µk+1) = IUµ1K
(µ2, ..., µk+1) ≤

k∏
j=1

k

√
IK(µ1, µkj+1). (5.15)

Again using the inductive hypothesis, and the fact that K is symmetric, we have that
for 1 ≤ j ≤ k,

IK(µ1, µ
k
j+1) = IK(µj+1, µ1, µ

k−1
j+1)

≤ k

√
IK(µj+1, µk1) k

√
IK(µj+1)k−1

=
k

√
IK(µ1, µj+1, µ

k−1
1 ) k

√
IK(µj+1)k−1

≤ k2
√
IK(µ1)k−1 k2

√
IK(µ1, µkj+1) k

√
IK(µj+1)k−1,

where in the second and last lines we have used (5.15). Rearranging the terms, we have(
IK(µ1, µ

k
j+1)

) k2−1

k2 ≤ IK(µ1)
k−1

k2 IK(µj+1)
k−1
k ,

so that
k

√
IK(µ1, µkj+1) ≤ IK(µ1)

1
k(k+1) IK(µj+1)

1
k+1 .

Plugging this back into (5.15), we have

IK(µ1, ..., µk+1) ≤
k∏
j=1

k

√
IK(µ1, µkj+1) ≤

k+1∏
j=1

k+1

√
IK(µj). (5.16)

Our claim then follows via induction. �

The upper bound (5.13) allows us to prove a corresponding lower bound for the mixed
energy:

Corollary 5.3.2.1. If K is n-positive definite on Ωn, then for all µ1, ..., µn ∈ P(Ω),

− 1

n

n∑
j=1

IK(µj) ≤ IK(µ1, ..., µn). (5.17)
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Proof. Suppose n = 2, and let µ1, µ2 ∈ P(Ω). Setting µ = 1
2(µ1 + µ2), we have

0 ≤ 4IK(µ) = IK(µ1) + IK(µ2) + 2IK(µ1, µ2),

since K is positive definite, and (5.17) follows.

Now suppose our claim holds for some k ≥ 2, and let µ1, ..., µk+1 ∈ P(Ω). Since by
Lemma 5.2.1 the potential Uµ1K is k-positive definite, the inductive hypothesis implies
that

−1

k

k∑
j=1

IUµ1K
(µj+1) ≤ IUµ1K (µ2, ..., µk+1) = IK(µ1, ..., µk+1).

For 1 ≤ j ≤ k, Lemma 5.3.2 gives us that

IUµ1K
(µj+1) = IK(µ1, µ

k
j+1) ≤ 1

k + 1

(
IK(µ1) + kIK(µj+1)

)
,

leading to

− 1

k + 1

k+1∑
j=1

IK(µj) ≤ IK(µ1, ..., µk+1),

which finishes the proof of the claim. �

Lemma 5.3.2 and Corollary 5.3.2.1 imply that if K is n-positive definite on Ωn and
µ1, ..., µn ∈ P(Ω), then ∣∣IK(µ1, ..., µn)

∣∣ ≤ 1

n

n∑
j=1

IK(µj). (5.18)

Of course, since we can choose the probability measures µk to be Dirac masses, inequality
(5.18) yields pointwise bounds on K. For instance, if K is n-positive definite, then for all
z1, ..., zn ∈ Ω, ∣∣K(z1, ..., zn)

∣∣ ≤ 1

n

n∑
j=1

K(zj , ..., zj),

and for conditionally n-positive definite kernels K, this inequality holds without the
absolute value. Clearly then, K must achieve its maximum value on its diagonal,
something that is already known for the two-input case.

Corollary 5.3.2.2. Suppose K is a conditionally n-positive definite kernel. Then

K(z1, . . . , zn) ≤ max
z∈Ω
{K(z, . . . , z)}. (5.19)

5.3.2. Convexity

Convexity of the underlying energy functionals naturally plays an important role in
energy minimization.
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Definition 5.3.1. Suppose K : Ωn → R. We say that IK is convex at µ ∈ P(Ω) if for
every ν ∈ P(Ω) there exists some tν ∈ (0, 1], such that for all t ∈ [0, tν)

IK((1− t)µ+ tν) ≤ (1− t)IK(µ) + tIK(ν). (5.20)

We say IK is convex on P(Ω) if it is convex at all µ ∈ P(Ω).

Conditional positive definiteness of the kernel K is closely related to convexity of the
corresponding energy functional IK . In fact, as we shall see in Proposition 5.3.5, when
n = 2, the two notions are equivalent. For further discussions about the connections
between various conditions related to positive definiteness in the classical two-input case,
see [BMV21].

One-sided implication holds for all n ≥ 2: as the next proposition shows, convexity
of IK can be deduced from relaxed arithmetic or geometric mean inequalities akin to
(5.13) and (5.14). This implies, due to Lemma 5.3.2, that conditionally n-positive definite
kernels K give rise to convex energies.

Proposition 5.3.3. Let K : Ωn → R be continuous and symmetric and fix µ ∈ P(Ω).
Suppose that for all ν ∈ P(Ω) and 0 ≤ k ≤ n,

IK(µk, νn−k) ≤ k

n
IK(µ) +

n− k
n

IK(ν). (5.21)

Alternatively, assume that for all ν ∈ P(Ω) we have IK(ν) ≥ 0 and for all 0 ≤ k ≤ n

IK(µk, νn−k) ≤
(
IK(µ)

) k
n ·
(
IK(ν)

)n−k
n . (5.22)

Then IK is convex at µ. If (5.21) or (5.22) holds for all µ ∈ P(Ω), then IK is convex on
P(Ω).

Proof. Assume that (5.21) holds. For all t ∈ [0, 1], we have

IK((1− t)µ+ tν) =
n∑
k=0

(1− t)ktn−k
(
n

k

)
IK(µk, νn−k)

≤
n∑
k=0

(1− t)ktn−k
(
n

k

)(
k

n
IK(µ) +

n− k
n

IK(ν)

)

=

n∑
k=1

(1− t)ktn−k
(
n− 1

k − 1

)
IK(µ) +

n−1∑
k=0

(1− t)ktn−k
(
n− 1

k

)
IK(ν)

= (1− t)IK(µ) + tIK(ν),

which proves convexity of the energy functional. The multiplicative inequality (5.22)
implies (5.21) by the arithmetic-geometric mean inequality, leading to convexity of K in
this case. �

Lemma 5.3.2 with µ1 = · · · = µk = µ and µk+1 = · · · = µn = ν shows that inequality
(5.21) holds, if K is conditionally n-positive definite. This leads to the following corollary.
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Corollary 5.3.3.1. If K is conditionally n-positive definite, then IK is convex on P(Ω).

To prove the converse implication for n = 2, we start by observing that Proposition
5.3.3 admits a partial converse:

Lemma 5.3.4. Suppose µ ∈ P(Ω) is such that IK is convex at µ. Then for all ν ∈ P(Ω),

IK(µn−1, ν) ≤ n− 1

n
IK(µ) +

1

n
IK(ν). (5.23)

Proof. Let ν ∈ P(Ω). Assume t ∈ (0, 1) such that (5.20) holds. Then

tIK(ν) + (1− t)IK(µ) ≥ IK(tν + (1− t)µ)

=
n∑
j=0

(1− t)jtn−j
(
n

j

)
IK(µj , νn−j).

Clearly then(
t− tn

)
IK(ν) +

(
(1− t)− (1− t)n

)
IK(µ) ≥

n−1∑
j=1

(1− t)jtn−j
(
n

j

)
IK(µj , νn−j),

and dividing by t(1− t), we obtain( n−2∑
k=0

tk
)
IK(ν) +

( n−2∑
l=0

(1− t)l
)
IK(µ) ≥

n−1∑
j=1

(1− t)j−1tn−j−1

(
n

j

)
IK(µj , νn−j).

If IK is convex at µ, then we may take the limit as t goes to 0, which gives us

IK(ν) + (n− 1)IK(µ) ≥ nIK(µn−1, ν).

�

Observe that if IK is convex (in particular, convex at ν), switching the roles of µ and
ν we obtain

(n− 1)IK(ν) + IK(µ) ≥ nIK(µ, νn−1).

Therefore, in the case n = 2, 3, Lemma 5.3.4 provides the converse of Proposition 5.3.3,
in other words, IK is convex if and only if it satisfies the arithmetic mean inequalities
(5.21). We are now ready to demonstrate the equivalence of the conditional positive
definiteness of K and the convexity of K for the two-input case.

Proposition 5.3.5. Suppose K : Ω2 → R is continuous and symmetric. Then K is
conditionally positive definite if and only if IK is convex.

Proof. Corollary 5.3.3.1 gives us one direction. For the other, assume that IK is convex.
Let µ ∈ M(Ω) satisfy µ(Ω) = 0. Then there exist µ+, µ− ∈ P(Ω) and some constant
c ≥ 0 such that µ = c(µ+ − µ−). Lemma 5.3.4 with n = 2 implies that IK(µ+, µ−) ≤
1
2

(
IK(µ+) + IK(µ−)

)
and therefore

IK(µ) = c2
(
IK(µ+)− 2IK(µ+, µ−) + IK(µ−)

)
≥ 0,

i.e. K is conditionally positive definite. �
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It is not completely clear whether this equivalence holds for n ≥ 3, but evidence
suggests that it doesn’t. Indeed, Proposition 5.6.5 provides an example of a three-input
kernel with Ω = Sd−1, which is not conditionally 3-positive definite, but at the same
time the energy functional is convex at σ (although we don’t know if it is convex at all
measures in P(Sd−1)) and is minimized by σ.

In this regard, we would also like to point out that a number of our results about
energy minimizers do not require the full power of convexity of IK on P(Ω), but rather
just the convexity at the presumptive minimizer µ. In particular, condition (5.26), which
appears in Theorems 5.4.2 and 5.4.5, is implied by inequality (5.23) of Lemma 5.3.4, and
hence it holds if IK is convex at µ.

Using convexity of the energy functional, one can draw a connection between minimizing
the n-input energy IK and the (n− 1)-input energy IUµK

, thus obtaining our first result
about minimizers of multi-input energies.

Proposition 5.3.6. Let n ≥ 3. Assume that K : Ωn → R is continuous and symmetric,
IK is convex, and that µ ∈ P(Ω) is a minimizer of IUµK

. Then µ is a minimizer of IK .

Proof. We first prove that if the energy IK is convex and µ, ν ∈ P(Ω), then

IK(ν)− IK(µ) ≥ n

n− 1

(
IUµK

(ν)− IUµK (µ)
)
. (5.24)

Indeed, we have IUµK
(µ) = IK(µ) and, by Lemma 5.3.4, IUµK

(ν) = IK(µ, νn−1) ≤ 1
nIK(µ)+

n−1
n IK(ν). Thus,

IK(ν)− IK(µ)− n
(
IUµK

(ν)− IUµK (µ)
)

= IK(ν)− nIK(µ, νn−1) + (n− 1)IK(µ)

≥ (n− 2)
(
IK(µ)− IK(ν)

)
,

which implies inequality (5.24).

Inequality (5.24), together with the fact that µ is a minimizer of IUµK
, implies that for

all ν ∈ P(Ω), we have

IK(ν)− IK(µ) ≥ n

n− 1

(
IUµK

(ν)− IUµK (µ)
)
≥ 0,

hence µ minimizes IK . �

Proposition 5.3.6 can be viewed as a precursor of some of our more advanced results
from Section 5.4 which show that there is a strong relation between µ minimizing the
n-input energy IK and the energy functional I

Uµ
k

K

with a lower number of inputs. In fact,

Theorem 5.4.5 contains Proposition 5.3.6 as a special case. We have nevertheless decided
to include this proposition, as it admits a very transparent and elementary proof, which
also provides a quantitative relation between the minimization of IK and IUµK

.
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5.4. Minimizers of the energy functional

We finally turn to some of the general results about minimizers of energies with multivari-
ate kernels. In the classical two-input case, properties of minimizing measures are closely
related to their potentials, see e.g. [Bjö56; BHS19]. Direct analogues of such statements
can be obtained for multi-input energies. We start with the necessary condition, which
states that the potential of a minimizer is constant on its support. As before, in all of
the statements of this section we assume that K : Ωn → R is continuous and symmetric,
even if not explicitly stated.

Theorem 5.4.1. Let K : Ωn → R be continuous and symmetric. Suppose that µ is a

minimizer of IK over P(Ω). Then Uµ
n−1

K (x) = IK(µ) on supp(µ) and Uµ
n−1

K (x) ≥ IK(µ)
on Ω.

Proof. The proof is a simple extension of the proof of Theorem 2 in [Bjö56], and we
include it for the sake of completeness. Let ν ∈ M(Ω) be such that ν(Ω) = 0 and
µ(A) + εν(A) ≥ 0 for all Borel subsets A ⊆ Ω and 0 ≤ ε ≤ 1. This clearly means that
µ+ εν ∈ P(Ω), so

IK(µ) ≤ IK(µ+ εν) =
n∑
k=0

(
n

k

)
εkIK(µn−k, νk).

Thus, for 0 ≤ ε ≤ 1,

0 ≤ ε

(
n∑
k=1

(
n

k

)
εk−1IK(µn−k, νk)

)
.

This means that IK(µn−1, ν) ≥ 0.
Suppose, indirectly, that there exist a, b ∈ R, z ∈ supp(µ) and y ∈ Ω such that

a = Uµ
n−1

K (z) > Uµ
n−1

K (y) = b.

Let B be a ball centered at z, small enough so that y 6∈ B and oscillation of Uµ
n−1

K (x) is
at most a−b

2 , and let m = µ(B). Let ν be defined by

ν(A) = mδy(A)− µ(A ∩B). (5.25)

Then

IK(µn−1, ν) = Uµ
n−1

K (y) ·m−
∫
B
Uµ

n−1

K (x)dµ(x) ≤ bm−
(
a− a− b

2

)
m < 0,

which is a contradiction. Thus, if Uµ
n−1

K (z) = a for some z ∈ supp(µ), then Uµ
n−1

K (x) ≥ a
for all x ∈ Ω. Our claim then follows. �

Definition 5.4.1. We shall say that µ is a local minimizer of IK if it is a local minimizer
in every direction, in other words, if for each ν ∈ P(Ω), there exists tν ∈ (0, 1] such that
for all t ∈ [0, tν ] we have

IK
(
(1− t)µ+ tν

)
≥ IK(µ).
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Observe that this definition differs from the definition of local minimizers with respect
to some metric, such as the Wasserstein d∞ metric or the total variation norm (the
difference is similar to that between the Gateaux and Fréchet derivatives).

Analyzing the proof of Theorem 5.4.1, we find that for ν defined in (5.25), we can
write µ+ εν = (1− ε)µ+ εν̃ with ν̃ = µ+ ν ∈ P(Ω). Hence, one arrives at a contradiction
even if µ is just a local minimizer.

Corollary 5.4.1.1. The statement of Theorem 5.4.1 remains true if we only assume
that µ is a local (not global) minimizer of IK .

In general, the converse to Theorem 5.4.1 is not true. However, with some additional
convexity assumptions, the necessary condition also becomes sufficient.

Theorem 5.4.2. Let K : Ωn → R be symmetric and continuous. Suppose that for

some µ ∈ P(Ω), there exists a finite constant M such that Uµ
n−1

K (x) ≥ M on Ω and

Uµ
n−1

K (x) = M on supp(µ). Suppose further that for all ν ∈ P(Ω), there exists some
α ∈ (0, 1), possibly depending on ν, such that

IK(µn−1, ν) ≤ αIK(ν) + (1− α)IK(µ). (5.26)

Then µ is a minimizer of IK .

Proof. For any ν ∈ P(Ω), for some α ∈ (0, 1), we have

IK(µ) =

∫
Ω
Uµ

n−1

K (x)dµ(x) ≤
∫

Ω
Uµ

n−1

K (x)dν(x) = IK(µn−1, ν) ≤ αIK(ν)+(1−α)IK(µ),

hence IK(µ) ≤ IK(ν). �

Some remarks concerning the assumptions of Theorem 5.4.2, i.e. condition (5.26),
are in order. Due to Lemma 5.3.4, convexity of the energy functional IK at µ implies
condition (5.26) with α = 1

n . In turn, if K is conditionally n-positive definite, Corollary
5.3.3.1 states that IK is convex, and hence again condition (5.26) is satisfied (alternatively,
Lemma 5.3.2 shows directly that conditional n-positive definiteness of K implies the
convexity condition (5.26) of Theorem 5.4.2 with α = 1

n). The hierarchy of these
conditions can be summarized in the following diagram:

K is n-positive definite =⇒ K is conditionally n-positive definite =⇒ (5.27)

=⇒ IK is convex =⇒ IK is convex at µ =⇒ condition (5.26) holds.

Therefore, Theorem 5.4.2 (as well as other statements relying on (5.26), e.g. Lemma
5.4.3 or Theorem 5.4.5) may be applied under the assumptions that K is (conditionally)
n-positive definite or that IK is convex at µ.

We also make the following remark: in the case when µ has full support, i.e. supp(µ) =

Ω, if the first condition of Theorem 5.4.2 holds, i.e. Uµ
n−1

K (x) = M for all x ∈ Ω, then
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IK(µn−1, ν) = IK(µ), and the assumption (5.26) is obviously the same as the conclusion
of Theorem 5.4.2. This does not, however, render this case of the theorem useless – on the
contrary, if one replaces (5.26) with one of the stronger conditions in (5.27), one obtains
an interesting and meaningful statement. (This shows that the most of the content is
hidden in the implications presented in (5.27).) We summarize this case in a separate
corollary, as it will be of use later.

Corollary 5.4.2.1. Let K : Ωn → R be symmetric and continuous. Suppose that
µ ∈ P(Ω) has full support supp(µ) = Ω and that there exists a constant M such that

Uµ
n−1

K (x) = M on Ω. Assume also that any of the conditions in (5.27) holds (e.g., K is
n-positive definite or IK is convex). Then µ is a minimizer of IK .

We also observe that Corollary 5.4.1.1 and Theorem 5.4.2 imply the following local-to-
global principle for minimizers of IK under convexity assumptions.

Lemma 5.4.3. Let n ≥ 2 and let µ be a local minimizer of the energy functional IK .
Assume also that condition (5.26) is satisfied. Then µ is a global minimizer of IK over
P(Ω).

Proof. Corollary 5.4.1.1 shows that the first condition of Theorem 5.4.2 holds. Together
with condition (5.26), this implies that µ is a global minimizer of IK . �

Naturally, the set of minimizers of a convex functional is convex. By Corollary 5.3.3.1,
for conditionally n-positive definite kernels, the energy IK is convex, i.e. minimizers of
IK form a convex set in this case.

Proposition 5.4.4. Let K be a conditionally n-positive definite kernel. Then the set of
minimizers of the energy IK is convex.

While Theorems 5.4.1 and 5.4.2 are straightforward generalizations of the corresponding
facts for the classical two-input energies, they lead to some interesting consequences
for energies with multivariate kernels. In particular, we start by showing that under

condition (5.26), if µ minimizes the lower input energy with the kernel Uµ
k

K , then it also
minimizes the original n-input energy IK .

Theorem 5.4.5. Let K : Ωn → R, n ≥ 3, be symmetric and continuous. Assume that
for some 1 ≤ k ≤ n − 2, the measure µ ∈ P(Ω) (locally) minimizes the (n − k)-input
energy I

Uµ
k

K

. Assume also that µ satisfies condition (5.26) of Theorem 5.4.2. Then µ

minimizes the n-input energy IK .

Proof. Theorem 5.4.1 (or Corollary 5.4.1.1) applied to the kernel Uµ
k

K implies that for all
x ∈ Ω

Uµ
n−1

K (x) = Uµ
n−k−1

Uµ
k

K

(x) ≥ I
Uµ

k

K

(µ) = IK(µ)

with equality for x ∈ supp(µ). Condition (5.26) then allows one to invoke Theorem 5.4.2,
which shows that µ minimizes IK . �
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The converse to Theorem 5.4.5 holds for k = n − 2 even without any convexity
assumptions: in this case, if µ locally minimizes IK , it also locally minimizes the two-
input energy I

Uµ
n−2

K

. Moreover, under the additional condition that µ has full support,

one can deduce that the measure µ is a global minimizer of I
Uµ

n−2

K

, see parts (1)-(2) of

Theorem 5.4.6 below. Furthermore, this implication may be reversed, if one additionally
assumes that µ uniquely minimizes I

Uµ
n−2

K

. Observe that, unlike Theorem 5.4.5, part (3)

of Theorem 5.4.6 does not require any of the conditions of (5.27) and, unlike part (2), it
does not require the condition supp(µ) = Ω.

Theorem 5.4.6. Let K : Ωn → R, n ≥ 3, be symmetric and continuous and let µ ∈ P(Ω).

1. Let µ be a local minimizer of IK . Then µ is a local minimizer of the two-input
energy I

Uµ
n−2

K

.

2. Let µ be a local minimizer of IK and assume, in addition, that µ has full support,
i.e. supp(µ) = Ω. Then µ minimizes the two-input energy I

Uµ
n−2

K

over P(Ω).

3. If µ is the unique minimizer of I
Uµ

n−2

K

in P(Ω), then µ is a local minimizer of IK .

Proof. Fix an arbitrary measure ν ∈ P(Ω). For t ∈ [0, 1], let us define two functions

gν(t) = IK
(
(1− t)µ+ tν

)
and hν(t) = I

Uµ
n−2

K

(
(1− t)µ+ tν

)
= IK

(
µn−2,

(
(1− t)µ+ tν

)2)
.

We have

gν(t) = (1− t)nIK(µ) +nt(1− t)n−1IK(µn−1, ν) +

(
n

2

)
t2(1− t)n−2IK(µn−2, ν2) +Rν(t),

where each term in Rν(t) contains a factor of the form tk with k ≥ 3 and, therefore,
R′ν(0) = R′′ν(0) = 0,

hν(t) = (1− t)2IK(µ) + 2t(1− t)IK(µn−1, ν) + t2IK(µn−2, ν2).

A direct (elementary, but lengthy) computation, which we omit, shows that

h′ν(0) =
2

n
g′ν(0) = 2

(
IK(µn−1, ν)− IK(µ)

)
, (5.28)

h′′ν(0) =
2

n(n− 1)
g′′ν (0) = 2

(
IK(µ)− 2IK(µn−1, ν) + IK(µn−2, ν2)

)
. (5.29)

We now start by proving (1). Let µ be a local minimizer of IK . According to Corollary

5.4.1.1, we have that Uµ
n−1

K (x) ≥ IK(µ) on Ω and therefore, IK(µn−1, ν) ≥ IK(µ) for any
ν ∈ P(Ω). Since gν has a local minimum at t = 0, either g′ν(0) > 0, or g′ν(0) = 0 and
g′′ν (0) ≥ 0. In the first case, we also have h′ν(0) > 0. In the second case, h′ν(0) = 0 and
h′′ν(0) ≥ 0, and since hν is quadratic, this implies that hν(t) = at2 + b with a ≥ 0. Thus,
hν has a local minimum at t = 0 for each ν ∈ P(Ω), i.e. µ is a local minimizer of I

Uµ
n−2

K

.
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If in addition µ has full support, then Corollary 5.4.1.1 implies that for any ν ∈ P(Ω),
we have IK(µn−1, ν) = IK(µ). Therefore, relations (5.28)-(5.29), together with the fact
that gν has a local minimum at t = 0, show that g′ν(0) = 0, hence g′′ν (0) ≥ 0, and at the
same time

g′′ν (0) = n(n− 1)
(
IK(µn−2, ν2)− IK(µ)

)
= n(n− 1)

(
I
Uµ

n−2

K

(ν)− I
Uµ

n−2

K

(µ)
)
. (5.30)

Hence, µ is a global minimizer of I
Uµ

n−2

K

, which proves part (2).

To prove (3), assume that µ is the unique global minimizer of I
Uµ

n−2

K

. Observe that,

since the potential of Uµ
n−2

K with respect to µ is Uµ
n−1

K , Theorem 5.4.1 applied to Uµ
n−2

K

implies that, just like in part (1), we have IK(µn−1, ν) ≥ IK(µ). Thus, g′ν(0) ≥ 0 by
(5.28). If g′ν(0) > 0, there is a local minimum at t = 0. If, however, g′ν(0) = 0, then
IK(µn−1, ν) = IK(µ) and relation (5.30) holds. Since µ uniquely minimizes I

Uµ
n−2

K

, this

proves that g′′ν (0) > 0 for ν 6= µ. Hence, in each case, gν has a local minimum at t = 0,
i.e. µ is a local minimizer of IK . �

For classical pairwise interaction energies, it is well known that the kernel is conditionally
positive definite on the support of the minimizer (see, e.g., [FS13]), therefore, we obtain
the following corollary to part (2) Theorem 5.4.6:

Corollary 5.4.6.1. Assume that µ ∈ P(Ω) with supp(µ) = Ω is a local minimizer of
IK . Then the (n− 2)-fold potential of K with respect to µ, i.e. the two-variable function

Uµ
n−2

K (x, y), is conditionally positive definite on Ω.

Observe that, if the kernel K is conditionally n-positive definite, then, according to

Lemma 5.2.1, Uµ
n−2

K (x, y) is conditionally positive definite. Moreover, Theorem 5.4.5
applies for conditionally positive definite kernels K. Therefore, the statement of Corollary
5.4.6.1 may be viewed as a partial converse of Theorem 5.4.5 for conditionally positive
definite kernels. This interplay will manifest itself in an even stronger fashion on the
sphere, the situation to be explored in Section 5.5.

5.5. Multi-input energy on the sphere

We now restrict our attention to the case when Ω is the unit sphere, i.e. Ω = Sd−1 ⊂ Rd,
where the symmetries and structure of the domain allow one to deduce additional
information about energy minimization.

We shall denote by σ the normalized uniform surface measure on the sphere. One of
the most natural questions is whether σ minimizes the energy functional over P(Sd−1),
or, in other words, whether energy minimization induces uniform distribution.

In this section, we shall be interested in kernels, which (in addition to being continuous
and symmetric) are rotationally invariant , i.e. have the form

K(x1, . . . , xn) = F
(

(〈xi, xj〉)ni,j=1

)
, (5.31)
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in other words, they depend only on the Gram matrix of {x1, . . . , xn} ⊂ Sd−1.
When n = 2, one obtains classical pairwise interaction kernels of the form K(x, y) =

F (〈x, y〉). The theory of both discrete and continuous energies with such kernels on the
sphere is very rich and goes back at least to Schoenberg [Sch41].

In the case n = 3 rotationally invariant kernels are functions of the form

K(x, y, z) = F (〈x, y〉, 〈y, z〉, 〈z, x〉) = F (u, v, t), (5.32)

where we set u = 〈x, y〉, v = 〈y, z〉, t = 〈z, x〉, and we shall keep this notation throughout
the text (the slightly non-alphabetic order is inherited from [CW12]).

Observe that, if the n-input kernel K is rotationally invariant, its potential with respect
to σ is again rotationally invariant. Indeed, for any V ∈ SO(d), we have

UσK(V x1, . . . , V xn−1) = UσK(x1, . . . , xn−1), (5.33)

which easily follows from (5.31) and the facts that 〈xi, xj〉 = 〈V xi, V xj〉 and 〈V xi, xn〉 =
〈xi, V −1xn〉, 1 ≤ i, j ≤ n− 1, together with the rotational invariance of σ, i.e. dσ(xn) =
dσ(V −1xn). Iterating this observation, one finds that all k-fold potentials of K with

respect to σ, i.e. functions Uσ
k

K with 1 ≤ k ≤ n − 1, are rotationally invariant. In

particular, when k = n−2, the two-input kernel Uσ
n−2

K depends only on the inner product

of the inputs, and for k = n− 1, the potential Uσ
n−1

K is just a constant:

Uσ
n−2

K (x, y) = G(〈x, y〉) = G(u) and Uσ
n−1

K (x) = const = IK(σ). (5.34)

Recall that Theorem 5.4.1 would guarantee the latter condition in the case when σ is
a minimizer of IK . However, for rotationally invariant kernels, this is automatically
satisfied, which facilitates the application of the results of Section 5.4 and will play an
important role later, in Theorem 5.5.1.

Turning to the primary task of understanding when σ minimizes IK , we first remind
ourselves that in the classical case of a two-input energy with a rotationally invariant
kernel G(〈x, y〉) on Sd−1, the answer to this question is well understood. In particular,
the following three conditions are equivalent, see e.g. [BDM18]:

1. The uniform surface measure σ minimizes IG over P(Sd−1).

2. The kernel G is conditionally positive definite on Sd−1.

3. The kernel G is positive definite on Sd−1 up to a constant term, i.e. there exists a
constant c ∈ R such that G+ c is positive definite on Sd−1 (in fact, one can take
c = −IG(σ)).

Our goal is to generalize these statements (at least partially) to the case of multi-
input energies. We observe that, if a symmetric rotationally invariant kernel K is
conditionally n-positive definite on Sd−1, then, according to Lemma 5.2.1, the potential
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G(u) = Uσ
n−2

K (x, y) is also conditionally positive definite, and hence, by the discussion
above, σ is a minimizer of the two-input energy I

Uσ
n−2

K
. Therefore, since conditionally

n-positive definite kernels satisfy condition (5.26), Theorem 5.4.5 with k = n− 2 applies
and we obtain the following statement:

Theorem 5.5.1. Suppose that K : (Sd−1)n → R is continuous, symmetric, rotationally
invariant, and conditionally n-positive definite on Sd−1. Then σ is a minimizer of IK
over P(Ω).

This theorem also easily follows from Theorem 5.4.2 and the remarks thereafter (or,
more precisely, from Corollary 5.4.2.1), since, as explained above, the potential Uσ

n−1

K is
constant on Sd−1.

Notice that, unlike some statements of Section 5.4, e.g. Theorem 5.4.5, for rotationally
invariant kernels in the theorem above one does not need to assume anything about
energies with a lower number of inputs – conditional positive definiteness alone suffices.

Theorem 5.5.1 immediately yields some interesting examples:

Corollary 5.5.1.1. Let f : [−1, 1] → R be a real-analytic function with nonnegative
Taylor coefficients and let F (u, v, t) = f(uvt). Then, for K defined as in (5.32), the
uniform surface measure σ minimizes the energy IK over P(Sd−1).

Proof. Observe first that in this setup, if Kz is positive definite for one point z ∈ Sd−1,
it is also positive definite for each z ∈ Sd−1 due to rotational invariance, i.e. Definition
5.2.2 only needs to be checked at one point. Consider first F (u, v, t) = uvt and fix any
z ∈ Sd−1, e.g., z = e1. Then for any ν ∈M(Sd−1),

IKe1 (ν) =

∫
Sd−1

∫
Sd−1

〈x, y〉x1y1dν(x)dν(y) =
d∑
i=1

(∫
Sd−1

x1xi dν(x)

)2

≥ 0,

i.e. the kernel K(x, y, z) = 〈x, y〉〈y, z〉〈z, x〉 = uvt is 3-positive definite, and hence, by
Lemma 5.2.2, so are all of its integer powers, positive linear combinations and their limits.
The conclusion now follows from Theorem 5.5.1. �

This Corollary provides a whole array of examples: for instance, three-input energies
with kernels K(x, y, z) = uvt, or (uvt)n, or euvt are all minimized by σ. We remark that,
while for K = uvt this statement could be proved using semi-definite programing, for
higher powers (uvt)n this would be extremely difficult technically, and for kernels like
euvt almost impossible.

For even exponents, the energies with the kernels K = (uvt)2k can be viewed as
three-input generalizations of the well-known p-frame potentials [Bil+21c; EO12], which
are closely related to tight frames and projective designs [SG; BF03]. We also point out
that Proposition 5.6.2 provides a more general class of n-positive definite kernels, which
contains K = uvt as a special case.

Unfortunately, unlike the classical two-input case, the converse to Theorem 5.5.1 is
not true: Propositions 5.6.5, 5.6.9, and 5.6.10 show that some kernels, naturally arising
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in semidefinite programming and geometry, fail to be conditionally n-positive definite,
even though σ minimizes corresponding energies (see Theorems 5.6.6 and 5.6.7). In other
words, conditional n-positive definiteness of the kernel is not equivalent to the fact that
σ minimizes the energy.

We suspect that the property that σ minimizes IK is equivalent to the fact that Uσ
n−2

K

is conditionally positive definite, i.e. the two-input energy I
Uσ

n−2
K

is minimized by σ. This

conjecture is supported by all the examples known to us. Conditional positive-definiteness
of Uσ

n−2

K obviously follows from conditional n-positive definiteness of K, due to Lemma
5.2.1, but the converse implication is not true, see e.g. Proposition 5.6.5. In fact, all
the kernels discussed in Section 5.6.3 (Propositions 5.6.5, 5.6.9, and 5.6.10) possess this
property: they are not 3-positive definite, but their potentials UσK with respect to σ are
(conditionally) positive definite, and the correspondig energies IK are minimized by σ.

Theorem 5.5.2 below (which is essentially a restatement of Theorem 5.4.6 for the
spherical case, along with the fact that σ has full support) shows that conditional positive
definiteness of Uσ

n−2

K is implied if σ is a local minimizer of IK , and a partial converse
to this statement also holds. Observe that, if the conjecture above is true, then being a
local and global minimizer are equivalent for σ: this fact is indeed true for the two-input
energies, see [Bil+21c].

Theorem 5.5.2. Let K : (Sd−1)n → R be a continuous, symmetric, and rotationally
invariant kernel.

1. Assume that σ is a local minimizer of IK in P(Sd−1). Then the uniform measure
σ is a global minimizer of the two-input energy I

Uσ
n−2

K
, or, equivalently, Uσ

n−2

K is

conditionally positive definite on the sphere Sd−1.

2. Assume that σ is the unique global minimizer of I
Uσ

n−2
K

over P(Sd−1). Then σ is a

local minimizer of the n-input energy IK .

Theorem 5.5.2 above shows that if σ is a global minimizer of IK , then the potential
Uσ

n−2

K is conditionally positive definite. We do not know whether the converse of this
statement holds. One can show, however, at least for n = 3 that if σ minimizes IUσK , but
fails to minimize IK , then the minimizer of IK cannot be supported on the whole sphere.

Lemma 5.5.3. Let K : (Sd−1)3 → R be a continuous, symmetric, and rotationally
invariant three-input kernel. Assume that UσK is conditionally positive definite on the
sphere Sd−1 (i.e. σ minimizes IUσK ), but at the same time σ is not a minimizer of IK .

Let µ be a minimizer of IK . Then supp(µ) ( Sd−1.

Proof. Assume, by contradiction, that supp(µ) = Sd−1. Then, by Theorem 5.4.1,

Uµ
2

K (x) = IK(µ) for every x ∈ Sd−1, and therefore,

IUσK (µ) = IK(µ, µ, σ) =

∫
Sd−1

Uµ
2

K (x) dσ(x) = IK(µ).

On the other hand, obviously, IK(σ) = IUσK (σ). Since µ is a minimizer of IK , and σ is
not, we have IK(µ) < IK(σ). This implies that IUσK (µ) < IUσK (σ), which contradicts the
conditional positive definiteness of UσK . �
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5.6. Positive definite kernels

Corollary 5.5.1.1 of the previous section already provided a class of 3-positive definite
functions. In this section we provide several other classes of kernels that are (conditionally)
n-positive definite.

5.6.1. General classes of (conditionally) n-positive definite kernels

We start with some very natural examples, which show how to construct (conditionally)
n-positive definite kernels from kernels with fewer inputs. In particular, we show that an
n-input kernel can be constructed from m-input ones, m < n, by considering the sum or
product over all m-element subsets of inputs. We first deal with the statement about the
sum.

Proposition 5.6.1. Let 2 ≤ m ≤ n − 1, and suppose H : Ωm → R is continuous,
symmetric, and conditionally m-positive definite. Then

K(z1, ..., zn) :=
∑

1≤j1<j2<···<jm≤n
H(zj1 , zj2 , ..., zjm)

is conditionally n-positive definite.

Proof. Let ν be a finite signed Borel measure on Ω such that ν(Ω) = 0. Then for any
fixed z1, ..., zn−2 ∈ Ω, since H is conditionally m-positive definite, we have

∫
Ω

∫
Ω
K(z1, ..., zn−2, x, y)dν(x)dν(y)

=

∫
Ω

∫
Ω

∑
1≤j1<···<jm−2≤n−2

H(zj1 , ..., zjm−2 , x, y)dν(x)dν(y)

+

∫
Ω

∫
Ω

∑
1≤k1<···<km−1≤n−2

(
H(zk1 , ..., zkm−1 , x) +H(zk1 , ..., zkm−1 , y)

)
dν(x)dν(y)

+

∫
Ω

∫
Ω

∑
1≤l1<···<lm≤n−2

H(zl1 , ..., zlm)dν(x)dν(y)

=
∑

1≤j1<···<jm−2≤n−2

∫
Ω

∫
Ω
H(zj1 , ..., zjm−2 , x, y)dν(x)dν(y) ≥ 0,

which shows that K is conditionally n-positive definite. �

We can also prove an analogue of Proposition 5.6.1 for products of positive definite
functions.

Proposition 5.6.2. Let 2 ≤ m ≤ n − 1 and assume that H : Ωm → R is continuous,
symmetric, and m-positive definite. If H is a nonnegative function or m = n− 1, then

K(z1, ..., zn) =
∏

1≤j1<···<jm≤n
H(zj1 , ..., zjm)
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is n-positive definite.

Proof. Fix z1, . . . , zn−2 ∈ Ω. We can write

K(z1, . . . , zn−2, x, y) =
∏

1≤j1<···<jm≤n−2

H(zj1 , . . . , zjm) (5.35)

×
∏

1≤j1<···<jm−1≤n−2

H(zj1 , . . . , zjm−1 , x) (5.36)

×
∏

1≤j1<···<jm−1≤n−2

H(zj1 , . . . , zjm−1 , y) (5.37)

×
∏

1≤j1<···<jm−2≤n−2

H(zj1 , . . . , zjm−2 , x, y). (5.38)

Observe that the product in line (5.35) is non-negative when H ≥ 0 or if m = n− 1 (the
product is empty in the latter case). The product of lines (5.36) and (5.37) is positive
definite as a function of x and y: indeed, it has the form F (x, y) = φ(x)φ(y) and hence

IF (µ) =

(∫
Ω
φ(x)dµ(x)

)2

≥ 0

for any µ ∈ (Ω). Finally, every factor in the product in line (5.38) is positive definite as
a function of x and y, because H is m-positive definite. Thus, Schur’s product theorem
(see Lemma 5.2.2) ensures that the whole product is positive definite as a function of x
and y, therefore, K is n-positive definite. �

Propositions 5.6.1 and 5.6.2 provide us with large classes of n-positive definite kernels.
However, these constructions do not exhaust all such kernels. In the following subsection,
we provide examples of three-positive definite kernels, which are not obtained from
two-input kernels by the methods described above.

5.6.2. Three-positive definite kernels on the sphere

We also provide some examples of kernels on the unit sphere Sd−1. We use the same
notation as in Section 5.5: for x, y, z ∈ Sd−1, we set u = 〈x, y〉, v = 〈y, z〉, and t = 〈z, x〉.

In Corollary 5.5.1.1, we showed that K = uvt is 3-positive definite on the sphere.
Observe that this is a specific case of Proposition 5.6.2 above, since 〈x, y〉 is a positive
definite function on Sd−1. More generally, Proposition 5.6.2 implies that any kernel of
the form K(x, y, z) = h(u)h(v)h(t) is 3-positive definite, as long as h is a positive definite
function on the sphere.

The kernels considered in Lemmas 5.6.3 and 5.6.4 are closely related to the paral-
lelepiped spanned by the vectors x, y, and z ∈ Sd−1. Indeed, setting a = 2 in (5.39), one
obtains negative volume squared of this parallelepiped: this kernel is not conditionally
3-positive definite according to Proposition 5.6.9, even though σ is a minimizer of the
corresponding energy, as shown in Theorem 5.6.6. However, positive definiteness does
hold for other values of the parameter a.
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Lemma 5.6.3. For a < 1,

K(x, y, z) = t2 + u2 + v2 − auvt+
1

1− a
(5.39)

is 3-positive definite.

Proof. Due to rotational invariance, we only need to check one value of z. Let z = e1.
We have that

K(x, y, e1) = 〈x, y〉2 + x2
1 + y2

1 − ax1y1〈x, y〉+
1

1− a

= 〈x, y〉2 − ax1y1〈x, y〉 − (1− a)x2
1y

2
1 + (1− a)x2

1y
2
1 + x2

1 + y2
1 +

1

1− a

= 〈x, y〉2 − ax1y1〈x, y〉 − (1− a)x2
1y

2
1 +

(
x2

1

√
1− a+

1√
1− a

)(
y2

1

√
1− a+

1√
1− a

)
=

d∑
j,k=2

xjyjxkyk + (2− a)
d∑

m=2

x1y1xmym +
(
x2

1

√
1− a+

1√
1− a

)(
y2

1

√
1− a+

1√
1− a

)
.

We quickly see that for any finite signed Borel measure ν ∈M(Sd−1),

∫
Sd−1

∫
Sd−1

K(x, y, e1)dν(x)dν(y) =
d∑

j,k=2

(∫
Sd−1

xjxkdν(x)
)2

+ (2− a)

d∑
m=2

(∫
Sd−1

x1xmdν(x)
)2

+
(∫

Sd−1

(
x2

1

√
1− a+

1√
1− a

)
dν(x)

)2
,

hence, K is 3-positive definite. �

Lemma 5.6.4. For a ≤ 1, K(x, y, z) = t2 + u2 + v2 − auvt is conditionally 3-positive
definite.

Proof. For a < 1, according to Lemma 5.6.3, K + 1
1−a is 3-positive definite. Thus, for

any fixed z ∈ Sd−1 and any ν ∈M(Sd−1) with ν(Sd−1) = 0,

IKz(ν) = IKz+ 1
1−a

(ν) ≥ 0,

i.e. K is conditionally 3-positive definite. Lemma 5.2.2 then gives the result for a = 1. �

5.6.3. Some counterexamples

While our results provide new and less complicated means to determine minimizers for a
wide range of kernels, it is clear that more general ideas are necessary to categorize all
kernels on the sphere for which σ is a minimizer. In this subsection, we present naturally
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arising kernels on the sphere which are not 3-positive definite on the sphere, but yet the
three-input energies generated by these kernels are minimized by the uniform measure σ.

The semidefinite programming methods of Bachoc and Vallentin [BV08] are more
computationally difficult than ours, and would likely be infeasible for non-polynomial
kernels in the context relevant to this paper. At the same time, they apply to certain
functions which are not covered by our methods from Section 5.5. In particular, an
appropriate version of semidefinite programming implies that the energies with the
following kernels (we keep the notation introduced in [BV08])

Sd0,1,1(x, y, z) = uv + vt+ tu (5.40)

and

Sd1,0,0(x, y, z) = (t− uv) + (u− vt) + (v − tu) (5.41)

are both minimized by σ, see [Bil+21a]. However, neither function is conditionally
3-positive definite, as we demonstrate below. This implies that the converse to Theorem
5.5.1 does not hold. In addition, the potential of both kernels with respect to σ is a
positive definite two-input kernel, which provides evidence that this might indeed be the
correct necessary and sufficient condition for σ to minimize the three-input energy (see
the discussion before Theorem 5.5.2).

The former example (5.40) is particularly interesting, since the energy functional with
this kernel is convex at the minimizer σ, which suggests that conditional n-positive
definiteness and convexity of the energy functional are perhaps not equivalent for n ≥ 3,
unlike the two-input case (see Proposition 5.3.5). We summarize these properties in the
following proposition:

Proposition 5.6.5. Let Ω = Sd−1 and set

K(x, y, z) = Sd0,1,1(x, y, z) = uv + vt+ tu.

The kernel K satisfies the following:

1. the uniform measure σ minimizes the energy IK ,

2. the energy functional IK is convex at σ,

3. UσK(x, y) is positive definite,

4. K is not conditionally 3-positive definite.

Proof. As mentioned above, part (1) follows from the semidefinite programming method
[Bil+21a], however, there is also a simple direct proof of this fact. Observe that by
symmetry, for any ν ∈ P(Sd−1),

IK(ν) = 3

∫
Sd−1

(∫
Sd−1

〈x, y〉dν(x)

)2

dν(y) ≥ 0 = IK(σ). (5.42)
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We now turn to parts (2)–(3). We first note that

UσK(x, y) =

∫
Sd−1

〈z, x〉〈y, z〉dσ(z) =
1

d
〈x, y〉,

which can be proved using the Funk–Hecke formula or by a direct computation (see, e.g.,
[BDM18]). Hence, the kernel UσK(x, y) is positive definite, i.e. (3) holds. Therefore σ
minimizes the two-input energy with this kernel, i.e., for any ν ∈ P(Sd−1),

IUσK (ν) = IK(ν, ν, σ) ≥ IUσK (σ) = IK(σ) = 0.

Observe also that Uσ
2

K (x) = 0 and thus IK(σ, σ, ν) = 0.

For an arbitrary ν ∈ P(Sd−1) and t ∈ [0, 1], define σt = (1− t)σ + tν. Then

IK(σt) = (1− t)3IK(σ) + 3(1− t)2tIK(σ, σ, ν) + 3(1− t)t2IK(ν, ν, σ) + t3IK(ν)

= 3(1− t)t2IK(ν, ν, σ) + t3IK(ν).

If IK(ν) > 0, we can choose tν so small that for all t ∈ (0, tν), we have IK(ν, ν, σ) ≤
1+t
3t IK(ν), since the right-hand side goes to +∞ as t→ 0. Then

IK(σt) ≤ (1− t2)tIK(ν) + t3IK(ν) = tIK(ν) = tIK(ν) + (1− t)IK(σ).

It remains to consider the case IK(ν) = 0. According to (5.42), in this situation,∫
Sd−1

〈x, y〉dν(x) = 0 for ν-a.e. y ∈ Sd−1, and therefore

∫
Sd−1

∫
Sd−1

〈x, y〉dν(x)dν(y) = 0.

But this implies that

IK(ν, ν, σ) = IUσK (ν) =

∫
Sd−1

∫
Sd−1

1

d
〈x, y〉dν(x)dν(y) = 0.

Thus, when IK(ν) = 0, we have

IK(σt) = 3(1− t)t2IK(ν, ν, σ) + t3IK(ν) = 0 = (1− t)IK(σ) + tIK(ν)

for all t ∈ [0, 1]. This finishes the proof that IK is convex at σ.

Finally, we show that IK is not conditionally 3-positive definite, i.e. part (4). Taking
µ = δe2 − δ−e1 and z = e1, a straightforward computation shows that

IKz(µ) = IK(δe1 , µ, µ) = −1 < 0,

which proves our claim. �
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The behavior of the kernel Sd1,0,0 is somewhat different. Since

ISd1,0,0
(δe1 , δe1 , σ) =

∫
Sd−1

(1− z2
1)dσ(z) > 0 = ISd1,0,0

(σ) = ISd1,0,0
(σ, σ, δe1) = ISd1,0,0

(δe1),

we see that for all t ∈ (0, 1),

ISd1,0,0
(tδe1 + (1− t)σ) = 3t2(1− t)ISd1,0,0(δe1 , δe1 , σ) > tISd1,0,0

(δe1) + (1− t)ISd1,0,0(σ),

so ISd1,0,0
is not convex at σ, and therefore not conditionally 3-positive definite, according

to Corollary 5.3.3.1.

In the next subsection we introduce, two more three-input kernels with a geometric
flavor, which have similar properties: they also fail to be 3-positive definite, yet the
corresponding energies are minimized by the uniform measure σ.

5.6.4. Energies with geometric kernels, which are optimized by the uniform
surface measure.

Riesz energies with the kernel K(x, y) = ‖x− y‖α are one of the most important classes
of two-input energies. In particular, when α = 1, maximizing the sum of distances
between points or the corresponding distance integrals is a classical optimization problem
of metric geometry [AS74; Bjö56; Tót56] . One can construct interesting multi-input
analogues of Riesz energies by replacing the distance with other geometric characteristics
which depend on n points, such as area and volume. For n = 3, some of the most natural
examples include the area of the triangle generated by three points or the volume of the
tetrahedron (or the parallelepiped) spanned by three vectors. This can be generalized to
higher values of n by considering volumes of various simplices or polytopes generated by
n points or vectors.

It is reasonable to conjecture that on the sphere, energy integrals with these three-
input kernels (namely, the area of the triangle and the volume of the parallelepiped)
are maximized by the uniform measure σ. Probabilistically, this can be reformulated
in the following way: assume that three random points are chosen on the sphere Sd−1

independently according to a probability distribution µ. The conjecture then states that
the expected value of these geometric quantities is maximized when the distribution µ is
uniform, i.e. µ = σ. The question was posed in this form in [Rom19].

This conjecture is supported, among other reasons, by the fact that for the classical case
n = 2, the analogous kernels | sin(arccos〈x, y〉)| =

√
1− u2 and ‖x− y‖ =

√
2− 2u (i.e.

the area of the parallelogram and the Euclidean distance, respectively) are both negative
definite kernels on the sphere (up to an additive constant), and hence the corresponding
two-input energies are maximized by σ.

In this section, we verify the conjecture above for slightly different, yet closely related
kernels V 2 and A2: the squares of the said volume and area. In these cases, the kernels
are multivariate polynomials, which substantially simplifies the analysis. Theorems 5.6.6
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and 5.6.7 show that the three-input energies IV 2 and IA2 are maximized by the uniform
surface measure σ.

Despite the fact that σ is a minimizer of I−V 2 and I−A2 , we shall show in Propositions
5.6.9 and 5.6.10 that both kernels −V 2 and −A2 fail to be conditionally 3-positive definite,
which provides yet another proof that the converse to Theorem 5.5.1 does not hold, unlike
in the two-input case.

While in the present paper we only touch upon these questions tangentially, a much
more thorough investigation of such geometric problems is undertaken in our paper
[Bil+21a].

Volume of the tetrahedron/parallelepiped

Let V (x, y, z) denote the three-dimensional volume of the parallelepiped spanned by the
vectors x, y, z ∈ Sd−1. (Observe that the volume of the tetrahedron with vertices at x,
y, z, and the origin is 1

6V (x, y, z).) The square of the volume V (x, y, z) is given by the
determinant of the Gram matrix. Thus we consider the kernel

V 2(x, y, z) = det

1 u v
u 1 t
v t 1

 = 1− u2 − v2 − t2 + 2uvt, (5.43)

where, as before, we set u = 〈x, y〉, v = 〈y, z〉, t = 〈z, x〉. We have the following statement.

Theorem 5.6.6. Assume that d ≥ 3 and Ω = Sd−1. Let V 2(x, y, z) = 1−t2−u2−v2+2uvt
be the square of the volume of the parallelepiped spanned by the vectors x, y, z ∈ Sd−1.
Then σ is a maximizer of IV 2 over P(Sd−1).

In fact, this theorem also holds for the n-input kernel K(x1, . . . , xn) defined as the
determinant of the Gram matrix of the set of vectors {x1, . . . , xn} ⊂ Sd−1 with d ≥ n ≥ 3.
This statement is essentially contained in the works of Rankin [Ran56, p. 1956] (n = d)
and of Cahill and Casazza [CC19] (for d ≥ n). A comprehensive exposition is presented
in our paper [Bil+21a].

Area of the triangle

We now turn to the discussion of the area A(x, y, z) of the triangle with vertices x, y,
and z ∈ Sd−1. It is a standard geometrical fact that

A2(x, y, z) =
1

4

(
‖y − x‖2 · ‖z − x‖2 − 〈y − x, z − x〉2

)
. (5.44)

A straightforward computation then shows that

A2(x, y, z) =
3

4
− 1

2
(u+ v + t) +

1

2
(uv + vt+ tu)− 1

4
(u2 + v2 + t2). (5.45)

One could also deduce this identity from Heron’s formula. We are now ready to prove
that the expectation of the area of the triangle squared is maximized by the uniform
surface measure σ on the sphere Sd−1.
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Theorem 5.6.7. Suppose d ≥ 2, and let A2(x, y, z) be the square of the area of the
triangle with vertices at x, y, z ∈ Sd−1. Then the uniform surface measure σ maximizes
IA2(µ) over P(Sd−1).

Proof. Fix an arbitrary measure µ ∈ P(Sd−1). Observe that

Iu(µ) =

∫
Sd−1

∫
Sd−1

〈x, y〉dµ(x)dµ(y) =

∣∣∣∣∣∣∣∣∫
Sd−1

x µ(x)

∣∣∣∣∣∣∣∣2 . (5.46)

Furthermore, applying the Cauchy–Schwarz inequality, we obtain

Iuv(µ) =

∫
Sd−1

∫
Sd−1

〈x, y〉〈z, x〉dµ(x)dµ(y)dµ(z) =

∫
Sd−1

〈
x,

∫
Sd−1

ydµ(y)

〉2

dµ(x)

≤
∫
Sd−1

‖x‖2 ·
∥∥∥∥∫

Sd−1

ydµ(y)

∥∥∥∥2

dµ(x) =

∥∥∥∥∫
Sd−1

ydµ(y)

∥∥∥∥2

= Iu(µ). (5.47)

This inequality implies that the contribution of the two middle terms in the representation
(5.45) is non-positive, i.e. I 1

2
(uv+vt+tu)− 1

2
(u+v+t)(µ) ≤ 0. Finally, we have a well-known

estimate

Iu2(µ) =

∫
Sd−1

∫
Sd−1

〈x, y〉2dµ(x)dµ(y) ≥ 1

d
. (5.48)

The two-input energy appearing above is known as the frame energy . Its discrete version
was introduced in [BF03] in connection to finite unit norm tight frames (FUNTF’s), for
the continuous analogue, see e.g. [BM19]. Putting it all together, we find that

IA2(µ) ≤ 3

4
− 1

4
Iu2+v2+t2(µ) ≤ 3

4
− 3

4d
=

3

4

d− 1

d
,

and it is easy to check that equality holds if µ = σ. �

Numerous generalizations and refinements of Theorems 5.6.6 and 5.6.7 (including
characterizations of minimizers) can be obtained. An in-depth discussion of such geometric
problems can be found in our follow-up paper [Bil+21a].

Lack of 3-positive definiteness.

It now remains to show that the kernels −V 2 and −A2 are not conditionally 3-positive
definite. We first recall the following lemma:

Lemma 5.6.8 (Chp. 3, Lemma 2.1, [BCR84]). Let Ω be a nonempty set, x0 ∈ Ω,
ψ : Ω2 → C be a Hermitian kernel, i.e. ψ(x, y) = ψ(y, x), and define

φ(x, y) := ψ(x, y) + ψ(x0, x0)− ψ(x, x0)− ψ(x0, y).

Then φ is positive definite if and only if ψ is conditionally positive definite. If ψ(x0, x0) ≤ 0
and

φ0(x, y) := ψ(x, y)− ψ(x, x0)− ψ(x0, y),

then φ0 is positive definite if and only if ψ is conditionally positive definite.
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We shall now use this lemma to show that our two geometric kernels are not conditionally
3-positive definite.

Proposition 5.6.9. Assume that d ≥ 3, and let V (x, y, z) be the volume of the paral-
lelepiped spanned by the vectors x, y, z ∈ Sd−1. Define the kernel K(x, y, z) = −V 2(x, y, z).
Then K is not conditionally 3-positive definite.

Proof. Using the representation V 2(x, y, z) = 1− u2 − v2 − t2 + 2uvt and fixing z = e1,
we find that Ke1(x, y) = u2 + y2

1 + x2
1− 2ux1y1− 1. It is easy to check that Ke1(e1, e1) =

Ke1(e1, y) = Ke1(x, e1) = 0 and hence

Ke1(x, y) +Ke1(e1, e1)−Ke1(e1, y)−Ke1(x, e1) = Ke1(x, y). (5.49)

Taking ν = δe2 + δe3 , one can compute

IKe1 (ν) = −2 < 0,

i.e. Ke1 is not positive definite. Lemma 5.6.8 and (5.49) then tell us that Ke1 is not
conditionally positive definite and thus K is not conditionally 3-positive definite. �

We now turn to area squared of a triangle and prove an analogous statement.

Proposition 5.6.10. Assume that d ≥ 2. Let A(x, y, z) be the area of the triangle with
vertices at x, y, z ⊂ Sd−1 and set K(x, y, z) = −A2(x, y, z). Then K is not conditionally
3-positive definite.

Proof. As computed in (5.45),

A2(x, y, z) =
3

4
− 1

2
(u+ v + t) +

1

2
(uv + vt+ tu)− 1

4
(u2 + v2 + t2).

Fixing z = e1, we find that

4Ke1(x, y) = u2 + x2
1 + y2

1 + 2u+ 2x1 + 2y1 − 2x1y1 − 2ux1 − 2uy1 − 3.

The rest of the argument almost repeats the proof of Proposition 5.6.9: we have that

Ke1(x, y) +Ke1(e1, e1)−Ke1(e1, y)−Ke1(x, e1) = Ke1(x, y), (5.50)

as well as
IKe1 (δe2 + δ−e1) = −2 < 0,

and an application of Lemma 5.6.8 finishes the proof. �

5.7. Kernels of the form F (u, v, t) = h(u)h(v)h(t)

In this section we show that the potential of F with respect to σ might be positive
definite, even though h is not. Further we show that the product of two kernels with
positive definite potentials each, does not have necessarily this property.
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5.7.1. Zonal harmonics

This short presentation follows Chapter 1 of [DX13] and will be needed in the next
subsection.

We denote by Zm(x, y) the reproducing kernel associated to the orthogonal projection
of square integrable functions on the sphere to harmonic, homogeneous polynomials of
degree m:

projm : L2(Sd, σ) → Hdm
f 7→

∫
Sd f(y)Zm(x, y) dσ(y).

Theorem 5.7.1. The kernels Zm satisfy following relations:

� for x, y ∈ Sd we have∫
Sd
Zm(x, z)Zm(z, y) dσ(z) = Zm(x, y),

� for m, k ∈ N0 with m 6= k and x ∈ Sd we have∫
Sd
Zm(x, y)Zk(x, y) dσ(y) = 0,

� Zm(x, y) only depends on 〈x, y〉,

� for d ≥ 2 and with 2λ = d− 1, we have the identity Zm(x, y) = m+λ
λ C

λ
m

(
〈x, y〉

)
.

The kernels Zm are called zonal harmonics, and because of the last relation, Gegenbauer
polynomials are also called ultra spherical polynomials.

5.7.2. Counterexamples galore

If our 3-input kernel F is as in the title of the section, then we can integrate once with
respect to σ and say that the resulting 2-input kernel is positive definite, i.e. has a
Gegenbauer expansion with non-negative coefficients save the constant term. Can we
deduce that h has to have a Gegenbauer expansion with non-negative coefficients (save
the constant term)? After all, if it does, then so does the potential of F with respect to σ
by Proposition 5.6.2. The answer is no, as following lemma will show, but first we define

H(u) =

∫
h(v)h(t)dσ(z),

where we again used the notation u = 〈x, y〉, v = 〈y, z〉, t = 〈z, x〉, so that

h(u)H(u) =

∫
F (u, v, t)σ(z).
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Lemma 5.7.2. Let 2λ = d− 1 and u = 〈x, y〉 for x, y ∈ Sd with d ≥ 2. We define h(u)
for n ≥ 2 as

h(u) =
1

3
− Cλ1 (u) + Cλ2 (u) +

n+1∑
j=3

ajC
λ
j (u), (5.51)

where λ+j
λ+1 ≥ aj ≥ 0 for j ≥ 3 in case d > 2, and if d = 2 we will require additionally

a3 = 1. Then h(u)H(u) will have a Gegenbauer expansion with non-negative coefficients,
save the constant term.

Proof. First we will need following formula with n ≤ m, found in [SRD01, Equ. (29)],
which uses the Pochhammer symbol (λ)n =

∏n−1
j=0 (λ+ j) for n > 0 and (λ)0 = 1:

Cλn(t)Cλm(t) =
n∑
k=0

n+m− 2k + λ

n+m− k + λ

(n+m− 2k)!(λ)k(λ)m−k(λ)n−k(2λ)n+m−k
k!(n− k)!(m− k)!(λ)n+m−k(2λ)n+m−2k

Cλn+m−2k(t). (5.52)

Note that the coefficients are all positive. Further we obtain for j ≥ 1

Cλj (t)Cλ1 (t) =
(j + 1)λ

λ+ j
Cλj+1(t) +

λ

j + λ
(2λ+ j − 1)Cλj−1(t).

Now, with some non-negative reminder terms R,R′, we have as identity for h(u)H(u):

(1

3
− Cλ1 (u) +

n+1∑
j=2

ajC
λ
j (u)

)(1

9
+
n+1∑
j=1

λa2
j

λ+ j
Cλj (u)

)

= −1

9
Cλ1 (u)−

n+1∑
j=1

λa2
j

λ+ j
Cλj (u)Cλ1 (u) +

1

3

n+1∑
j=1

λa2
j

λ+ j
Cλj (u) +

1

9

n+1∑
j=2

ajC
λ
j (u)

+

n+1∑
j=2

ajC
λ
j (u)

λ

λ+ 1
Cλ1 (u) +R

= Cλ1 (u)
(1

3

λ

λ+ 1
− 1

9

)
− λ

λ+ 1
Cλ1 (u)2 +

n+1∑
j=2

( λaj
λ+ 1

−
λa2

j

λ+ j

)
Cλj (u)Cλ1 (u) +R′.

For this to be non-negative, we only need to make sure that the term

− λ

λ+ 1
Cλ1 (u)2 = − 2λ2

(λ+ 1)2
Cλ2 (u) + ∗

is compensated (“∗” denotes some constant that we are not interested in). We already
have

1

3

λ

λ+ 2
Cλ2 (u) +

1

9
Cλ2 (u)
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for compensation, but we also see that R contains following terms, of which we calculate
the coefficient of Cλ2 (u) in the Gegenbauer linearization as in (5.52):

λ

λ+ 2
Cλ2 (u)Cλ2 (u) = ∗Cλ4 (u) +

λ

λ+ 2
Cλ2 (u)

2 + λ

3 + λ

2λ3(2λ)3

(λ)3(2λ)2
+ ∗

= ∗Cλ4 (u) + Cλ2 (u)
λ3

3 + λ

4

λ+ 2
+ ∗;

and Cλ3 (u)Cλ1 (u) = ∗Cλ4 (u) + Cλ2 (u)2λ(λ+1)
3+λ . Thus it would be sufficient if

1

3

λ

λ+ 2
+

1

9
+

λ3

3 + λ

4

λ+ 2
− 2λ2

(λ+ 1)2
+ δd2

( λ

λ+ 1
− λ

λ+ 3

)2λ(λ+ 1)

3 + λ
≥ 0,

which is true. �

Computer experiments suggest that more counterexamples are given by

h(u) =
mn

d
+mn

n−1∑
j=1

Cλj (u)−mnC
λ
n(u) + Cλn+1(u) (5.53)

for mn = n+λ
n+1+λ with λ = d−1

2 ; where u = 〈x, y〉 for x, y ∈ Sd.

5.7.3. Product of potentials

A natural question that arises for functions in u, v, t that have positive definite potentials,
is if the potential of their product is positive definite. This is not necessarily the case as
following counter-example demonstrates: Set Fi(u, v, t) = hi(u)hi(v)hi(t) for i ∈ {1, 2}
with

h1(x) =
1

5
− 3

5
C

1
2
1 (x) + C

1
2
2 (x),

h2(x) =
5

21
+

5

7
C

1
2
1 (x)− 5

7
C

1
2
2 (x) + C

1
2
3 (x).

F1 and F2 will have positive definite potentials as the hi are of the form (5.53), but the
Gegenbauer expansion of their product’s potential has negative coefficients as computer
calculations show.
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[Lio06] P.-L. Lions. Équations aux dérivées partielles et applications. 2006. url:
https://www.college- de- france.fr/site/pierre- louis- lions/

course-2006-2007.htm.

[Min53] S. Minakshisundaram. “Eigenfunctions on Riemannian Manifolds”. In: J.
Indian Math. Soc. 17.4 (1953).

[MMV96] P. Mattila, M.S. Melnikov, and J. Verdera. “The Cauchy integral, analytic
capacity, and uniform rectifiability”. In: Ann. of Math. 144.1 (1996).
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[Wig59] E. P. Wigner. Group Theory and its Application to the Quantum Mechanics
of Atomic Spectra. New York, London: Academic Press, 1959.

[Zel09] V.G. Zelevinsky. “Three-Body Forces and Many-Body Dynamics”. In:
Physics of Atomic Nuclei 72 (2009).

[ZST16] G. Zhang, F.H. Stillinger, and S. Torquato. “The Perfect Glass Paradigm:
Disordered Hyperuniform Glasses Down to Absolute Zero”. In: Scientific
Reports 6 (2016).

120


