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Abstract

The future of computing is heterogeneous. With technological trends to include
processing capability into a large variety of devices, today’s challenges in
distributed computing are no longer solved on homogenous systems. Not only
federations of devices are used to tackle various difficulties, also single devices
nowadays provide a collection of diverse compute units.

This thesis presents a generalized abstraction of algorithms, suited to analyse
its potential for distribution. These algorithms might emerge from any domain
of software tasks, such as number crunching, machine learning, classical signal
processing, or control theory. Such an abstract view does combine the elements
of static and dynamic analysis of the algorithm, and deals with the concrete
pattern of its computational profile. As counterpart to the model of the
computation, a representation of a dedicated compute arrangement is proposed,
in order to deal with the diverse nature of a complex of compute-nodes. This
provides an approach to model heterogeneous systems. These systems can be a
collection of embedded devices, like micro-controllers, but also a combination of
cloud servers with edge computing devices. With these two models in place an
estimation procedure is given to predict the performance profile of the hardware
setup upon serving the defined algorithm. The performance profile does not
only include the overall execution time, but also a detailed view on the data
flow and node allocation. Such an allocation profile for example allows drawing
conclusions on how to improve the hardware arrangement, or the algorithm, to
more efficiently achieve its goal, based on concrete facts.

In this work a set of algorithms is analysed by the procedure given, and its
distribution pattern is dissected in detail. Exemplarily the impact of various
modifications and extensions, like adding additional compute nodes, to the
hardware setup is performed. For these adaptions the impact on the allocation
profile is provided, such that a concrete judgment on their impact can be made.

Based on the presented results, future research directions in the domain of
heterogeneous and parallel distribution of algorithms are illustrated.



Zusammenfassung

Der technologische Trend zielt zurzeit eindeutig in Richtung verteilter und ver-
netzter Systeme, weshalb der Aufbau von Computersystemen immer komplexer
wird. Dies erfordert eine Anpassung der Softwarealgorithmen, da in diesem Um-
feld nicht mehr von einer homogenen oder monolithischen Rechnerarchitektur
ausgegangen werden kann. Die an eine Software gestellten Aufgaben umfassen
neben maschinellen Lernen, neuronalen Netzwerken und ähnlich rechenintensi-
ve Operationen auch klassische Signalverarbeitung oder regelungstechnische
Aspekte. Um diese umfassenden und fachlich breit gestreuten Anforderungen
mittels heterogener Systeme lösen zu können sind neue innovative Ansätze zur
Verteilung und Aufteilung notwendig.

In dieser Dissertation wird eine verallgemeinerte Darstellung von Algorith-
men vorgestellt, welche die Analyse der möglichen Verteilungen auf verschiedene
Rechenknoten erleichtert. Diese basiert auf statischen wie auch dynamischen
Aspekten. Zusätzlich dient eine flexible Repräsentation eines Verbundes von
Rechenwerken als Gegenstück für die Verteilungsanalyse. Diese Rechenwerke
können ein Verbund von eingebetteten Systemen, beispielsweise Mikrocontroller,
aber auch eine Ansammlung von Edge- und Cloud-Servern sein.

Mit diesen zwei Modellen—jenes des Algorithmus und jenes der Hardware—
ist es möglich, die Auslastung der Rechenwerke abzuschätzen. Dieses Aus-
lastungsprofil beinhaltet, neben der globalen Sichtweise, auch eine genaue
Abbildung der zeitabhängigen lokalen Ressourcenauslastung und ermöglicht
somit eine fundierte, auf konkreten Daten basierende, Aussage über die Eignung
eines Hardware Setups für einen definierten Algorithmus.

Die Ergebnisse dieser Arbeit zeigen eine detaillierte Aufschlüsselung ei-
ner Reihe von Algorithmen. Die durchgeführten Simulationen beziehen sich
auf bekannte, und somit leicht abschätzbare, Hardwarestrukturen, welche im
zweiten Schritt modifiziert werden. Die Auswirkungen dieser Modifikationen
auf die Performance werden im Anschluss diskutiert. Abschließend werden,
basierend auf den Ergebnissen dieser Arbeit, einige Anknüpfungspunkte für
zukünftige Arbeiten in den Forschungsgebieten der heterogenen Rechenwerke
und Parallelisierung aufgezeigt.
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Chapter 1

Introduction

1.1 Background and Motivation
The future of computing is heterogeneous. With the first computers operating
mainly on a single central processing unit (CPU), in the last decades computer
architectures have evolved from such single core architectures to multi-core
arrangements.

Initially this trend was caused by hitting technical limits, in particularly the
inability to simply further increase the clock speed of processors. This increase
of clock speed from one generation of processors to the next has offered a
constant improvement to software performance, without the need for adoption
of the latter. This phenomenon has often been referred as “free lunch” in
software development literature.

The new hardware paradigm however offered to pack multiple CPU cores
into a single computer. This has proven to supply a more feasible approach to
increase the computing power from a hardware point of view.

With no longer relying on the hardware improvements to introduce a
performance gain in existing software the design methods and algorithms had
to adapt to the newly offered hardware concurrency [SL05].

These newly developed paradigms for software development in general, and
algorithm design in particular, focused on a homogeneous compute architecture.
Several identical CPUs deployed in the proximity of a single device. A modern
computer system however has to fulfil a large set of tasks, each of which with
a possibly very different performance profile. For example the computational
profile of implementing a file system consists mainly of traversing through data
structures like trees and hash tables [Mat+07] as well as implementing caches
to compensate for long input/output (IO) times. On the other hand rotating a
three dimensional (3D) graphic is dominated by mathematical operations on
matrices, respectively quaternions [DKL98].

In order to optimize such scenarios specialized computing hardware has been
introduced. Such a specialized element was highly optimized for its intended
use. Keeping the previous examples in mind these were implementing routines
for solid state disc (SSD) drives and their wear levelling and algorithms for error
correcting code (ECC) on the one hand, and video decoding or 3D algorithms
in the other hand.

Naturally software and algorithm designers sought for ways of further
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improving their code. This included using compute nodes intended for a
particular usage pattern in realms which they have not been initially designed
for. Probably the most prominent example is the utilization of graphic cards
and their graphics processing units (GPUs) for machine learning applications.

Developing software for such a heterogeneous composition of computing
power is a challenging task, as finding a suitable computational distribution
is influenced by a lot of parameters. Such parameters do not only include
the properties of a specific compute-node as such but also of the interconnect
between them, and the way they influence each other. Data transfer and its
dependencies can dominate the performance metrics.

A connatural problem often arises for basic signal processing applications.
Developing various kinds of sensors can in an abstract way be seen as fitting a
set of measurement data to a specific signal model. With higher demands on the
quality of the sensors the signal model as well as the set of sampling data becomes
larger and more complex. In [Rec+19] the algorithm used in a densitometer is
described in more detail from its signal processing of view. Computationally
the task of the sensor software is to determine a set of parameters according
to Equations (1.1) and (1.2). For a reasonable performance this demands to
fit a signal model with 12 parameters (for each of the curves m0, m1 and m2

the four element vector P has to be estimated) to a set of over two million
data points. A suitable arrangement of compute units (microcontrollers, field
programmable gate arrays (FPGAs) or CPUs) is required to economically fulfil
this task.

P =
[︁
A0 α ωd Φ0

]︁
(1.1)

m(t,P) = P0e
−P1t sin(P2t+ P3) (1.2)

When comparing a system with only one or even several micro-controllers,
like ones based on the Arduino [Smi11] platform, with a GPU equipped personal
computer (PC) the amount of data, as well as the number of operations per
second differ by several orders of magnitude. However the basic principles of
the problem are similar:

Problem statement: How to decompose an algorithm, or
software to suitably apply it on a set of compute nodes ?

1.2 Research Focus
This work shall address the process of partitioning the computation of a specified
algorithm on multiple computing devices. These devices can cover general
purpose processors, dedicated DSPs as well as specialized hardware circuitry
like FPGAs.

The aim is to provide mechanisms and tools which allow an early evaluation
of several architectural choices. The process shall be possible in a design stage
where the concrete hardware-software architecture is not fully specified. As
such, the—probably imprecise—results shall be accompanied by a confidence
metric.
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1.2.1 Description of Algorithms

In general the description (or specification) of mathematical algorithms can be
done in several ways. While a textual description is easy to be understood by
humans, such an approach tends to be hard to interpret by machines. As this
is usually incomplete or ambiguous. A pure formal—mathematical [Lam03]—
description on the other hand is clear without ambiguity and as such easy to
interpret by computer programs. Nevertheless, despite successful applications
[Bee08; Ver+11] such approaches have not yet established as widespread tooling
within the industry.

1.2.2 Data flow analysis of C and C++ programs

The languages C++ and C are likely to be the most prominent languages used
for embedded computing. Compilers are available for a wide range of CPU
cores suited for small scale micro-controllers to large processing units as well as
signal processors. Due to large variety of existing tools (compiler front ends) the
analysis of the specified algorithm can be based on various abstraction levels.
For example the abstract syntax tree (AST) or the intermediate representation
language used by a particular compiler [Mer03; LA04b].

For separating the computation into multiple units it is required to decom-
pose the data flow and data dependency and identify possible parallelism. It is
also compulsory to identify the communication effort in between the separated
computation units.

For elementary mathematical operations in a small scale context the depen-
dency analysis (as well as the potential for utilizing parallel computing units)
is obvious.

1 y = a + b;
2 x = a + c;

Listing 1.1: Simple parallelizable example

Given the example in Listing 1.1 it is trivial to deduce the possible compu-
tation given two independent adder units.

On this level of abstraction the deduced parallelism can be used to optimize
the calculation using multifunction arithmetic logic units (ALUs) as found
on most DSPs as well as data path duplication for hardware (e.g. FPGA)
implementations. For splitting the computation in between multiple loosely
coupled computing devices (multiple CPUs/DSPs or CPUs/FPGAs based
architectures) it is required to identify larger sets of operations which can be
transferred to another computing unit.

Given following example:

1 u = fft(a);
2 v = delaunay(x,y);
3 w = max(u);

Listing 1.2: Non-trivial functions
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Assuming a code as depicted in Listing 1.2 it would be desired to conclude
that the computation of w is suitably combined with the computation of the
Fourier series, while the Delaunay triangulation can be done separately.

With having a method of specifying the algorithm, the capability to decom-
pose and analyse it as well as sufficient data to estimate the relevant parameters
of an arbitrarily chosen hardware-software architecture, the final goal is to
provide a facility for automated or semi-automated optimization.
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1.3 Related Work
This section presents a review on related literature and approaches in the
domain of compiling data to heterogeneous systems, compiling for parallel
systems and software distribution analysis. As there is a reasonable amount of
research actively ongoing in all the these domains, this overview is not intended
to be exhaustive. It is focused on research projects most relevant in the scope
of this thesis.

1.3.1 Modelling of Algorithms

Algorithms, or more generally software, can be modelled on a large set of
different abstraction levels, as well as languages. Commonly the “code level” is
used to specify a concrete implementation of an algorithm.

The code in such a case is represented in a programming language like Ada
[ISO12], C [ISO18], C++ with its recent advancements [ISO98; ISO11; ISO14;
ISO17a], Erlang [AB20], Java [Gos+20], Python [RP18] or any other language
chosen from the comprehensive arsenal of programming languages available.

Higher level modelling

When describing algorithms on a higher level of abstraction, also called “above
code level”, descriptive languages like TLA+ [Lam03] or PlusCal [Lam09] can
be used. They have been successfully utilized in various research approaches
[Bee08; Ver+11; KK20] to verify an algorithm from a functional point of view.
Different to this work such approaches focus on proving the algorithm to be
correct, and keep the implementation aspect out of scope.

This work assumes the algorithm, however it is represented, to be correct
by definition and deals with the implementation aspects. In particular on how
to distribute the algorithm on a dedicated arrangement of computation nodes.

High level synthesis

Especially when verifying algorithms for correctness a high level description is
beneficial. This simplifies methods of formal verification and model checking.
All of these approaches, at least to a certain extent, lack the details to derive a
concrete implementation from it. Matlab models for example usually represent
any data as vectors or matrices. Modelling a low pass filter is a simple matter
of applying the entire input vector to the filter object or function. This not
only improves the performance of the computation it also relieves the model
from the details of the implementation. Exemplary such a detail might be the
fact that filter processing happens sample by sample bound to a constant rate
of input data, dictated by the properties of a data acquisition unit. Omitting
this level of detail for the modelling results in a much better abstracted view,
suited for high level treatment of the algorithm.

In order to generate an implementation, hence code, of such an abstract
description high level synthesis (HLS) [GB08] is used. Most often this synthesis
targets digital hardware respectively FPGAs or application specific integrated
circuits (ASICs) [MS09; SW19]. Quite a decent amount of tooling [DD15;
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Cad20; Sil20], also commercial ones, are available to perform such a high level
synthesis. While not applicable for the generalized use case, a reasonable quality
in comparison to handcrafted coding can be achieved [DDS18; GW20; Wad20].

In this work the synthesis step is not in the primary focus. Rather than
actually implementing a given algorithm on a particular hardware setup, or
synthesizing a suitable digital logic appropriate for an FPGA, we study whether
a hardware setup fits for the algorithm. In particular the identification of
bottlenecks is of interest for this work. In order to be of use for a general and
complete software sequence, and not only a dedicated part of an algorithm
(like computing the fast Fourier transform (FFT)) a certain amount accuracy
is sacrificed. While such a sacrifice will restrict the results from being directly
used for system synthesis, it allows a more general approach to the problem.

1.3.2 Customized compute-nodes

In order to bridge the gap between the hardware centric flows of HLS, and a
software centric view it is an ongoing research approach to customize compute
nodes based on the needs of the algorithm. Especially soft processor cores
embedded into an FPGA offer interfaces to extend their functionality [Xil19;
Int20a]. This extends the capabilities of a regular CPU core by dedicated
instructions which utilize dedicated processing hardware. With a suitable
choice in hardware extensions the computational performance of the CPU can
be significantly improved for a given algorithm. Another approach is to modify
the processor structure more fundamentally in order to fit it to the desired
computation profile [Jää+17]. Such transport triggered architectures (TTAs)
exhibit a data path centric view, and aim at arranging a suited set of compute
nodes on a common data bus. In order to gain an advantage in computation
time quite some effort is delegated to compile time. This allows the timing in
between the various compute units to be specifically crafted for the hardware
arrangement. In an ideal case the housekeeping part of the code (like loop
overheads) can be completely eliminated. A TTA structure can be seen as
going one step further on a very large instruction word (VLIW) core—like the
C6x—which itself is to some extent an extension to a reduced instruction set
computer (RISC). The ongoing research in context of the TTA-based Co-design
Environment [Jää+17] is probably closest to this work. The research focus
differs in the scope of the analysis. While [Jää+17] generally aims at the
“in-chip” scope, like improving the code density via compression [MHJ20], or
exploring new concepts for FPGA soft processor cores [Ter+20], this work
is more in favour of a more abstract view. This reduces the level of detail
on the processor internals, like a cycle accurate model of the memory access
of the CPU, and in turn allows highlighting of architectures with a set of
highly heterogeneous and arbitrarily coupled compute nodes. Today’s compiler
frameworks, and retargetable compilers are not sufficiently capable of handling
a hardware setup which combines very different compute architectures as a
single entity.
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Chapter 2

Methodology

2.1 Basic Concepts
Prior to analysing the computational effort of an algorithm, it needs to be
expressed in a suitable and conveniently machine-readable manner, that is
basically expressing it in any desired programming language.

There are two fundamentally different approaches to quantify a piece of
code, representing an algorithm. Those are the static and the dynamic code
analysis.

Static analysis is mainly used for code inspection and white box software test-
ing [Agh+13; KR19], often using information extracted by compilers [Ant+04].
Based on static analysis results the program flow (data flow) can be extracted.
While variable allocation and memory consumption can also be retrieved with
static analysis, this task becomes more and more complex. The liveness analysis
of objects already requires a quite in-depth understanding of the source code
and the semantics of the programming language. Such an analysis is much
more effort than simply extracting the AST of the program.

Also handling loops is a challenge for symbolic execution [Har+10; Val14].
Providing an example for the code presented in Listing 2.1 the KLEE [CDE08]
symbolic virtual machine would explore a total of 256 possible paths within
the function shown. By the slight modification of only changing the type of
the parameter x and variable y from uint8_t to uint32_t this exploration
explodes into an insane amount of 232 = 4294967296 paths.

1 #include <stdint.h>
2 uint8_t func(uint8_t x)
3 {
4 uint8_t i = 0;
5 while(x--)
6 {
7 ++i;
8 }
9 return i;

10 }

Listing 2.1: Example with loop, initial source

By running a simple optimization on the input the code in Listing 2.1 will
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be transformed into the functionally equivalent representation of Listing 2.2.
Basically all commonly used compilers [GNU20; Int20b; Mic20] succeed in
appropriately optimizing this example. On a global scale the function itself
is likely to be eliminated altogether, provided that inlining is not forcefully
disabled.

1 #include <stdint.h>
2 uint8_t func(uint8_t x)
3 {
4 return x;
5 }

Listing 2.2: Example with loop, optimised source

This transformed function represents the property f(x) = x, which is
obviously trivial to analyse from a computational (and data flow graph) point
of view as well as for performing formal proofs.

In this work we assume the algorithm as such to be correct, hence the formal
or non-formal proofs on correctness are not a primary target. This renders
the possibility to utilize the large set of optimization algorithms to simplify
the source code prior to the analysis, from which the previously demonstrated
transformation being one of them.

The example given in Listing 2.1 is, for the sake of the argument, quite
artificial. Nevertheless, it resembles quite closely a real life scenario. With only
a minor modification (Listing 2.3 and Equation (2.1)) the code will implement
a function usually called foldl (left fold) [Hut99].

s =
N−1∑︂
i=0

a[i] (2.1)

1 #include <stddef.h>
2 #define N 3
3 int TestFunction(const int array[N])
4 {
5 int sum = 0;
6 for(size_t i=0;i<N;++i)
7 {
8 sum += array[i];
9 }

10 return sum;
11 }

Listing 2.3: foldl C source

Some programming languages have build-in support for this operation (like
Haskell [Pey02]), or implement them via library functions (std::accumulate
in C++).

As stated in [LA04a; RB18b] within compilers it is common practice to
separate the language front end, the optimization stages and the code genera-
tion. Using a dedicated front end module simplifies the handling of multiple
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programming languages. This can cover of a group of similar languages, as it is
the case for C, C++ and Objective-C, or a set of different dialects of the same
language as it is the case for C++ [ISO98; ISO11; ISO14; ISO17a].

As soon as the various front ends use a common interface for their later
stages (GIMPLE, RTL and GENERIC as used in GCC [Mer03], or LLVM
assembly language [LA04b] as used in by LLVM project) a common tooling
can be used for implementing the optimizations and other tasks.

Intermediate representations for imperative languages often have SSA form
[App98]. Such a representation is beneficial for several optimization techniques
like constant propagation, variable range analysis and dead code analysis.

For these tasks it does no longer matter whether the front end was parsing a
commonly known language (like C, C++ or Java), or generated the intermediate
code based on less prominent ones like Cobol, Ada, Mercury, Pascal or Modula-2.

2.2 Extracting Data Dependencies
The concept of symbolic execution is a well known technique, whose basic
principles are known since several decades [Kin76]. It has proven to be an
invaluable tool for software testing and formal proofs. However, it is less
suited for determining concrete examples for the computational effort. One
of the reasons for this is the fact that programming languages usually have
a very limited set of numerical representations. Path explosion is an abiding
companion of symbolic execution [Xu+18].

2.2.1 Integer Ranges

While there are languages which intrinsically offer methods to constrain integer
values, most of them do this only in a quite broad range. Following we briefly
introduce the integer types used in some programming languages.

Ada [ISO12] which was specifically designed for embedded and real time
tasks does allow specific constraints on the possible value range an integer
variable can hold (refer Listing 2.4).

1 type Custom_Number is range -10 .. 244;

Listing 2.4: Ada integer range

C++ [ISO17a] on the other hand has a very limited type system for integers.
It does support fixed size integers (like uint8_t for an 8-bit unsigned integer),
but only on a byte granularity (8, 16, 32, 64 bits). Also, the numerical range
is bound to the size. Declaring an 8-bit integer variable whose value ranges
from example −10 to 244 is not possible. Integers are obliged to follow the
twos complement notation and value range. With some trickery it is of course
possible to add more flexibility with respect to the bit size. Executing the code
in Listing 2.5 would yield the value of zero rather than 16 which one might
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expect (refer Listing 2.6). This is simply caused by the 4 bit limitation given
in line 5 of the code, and the corresponding unsigned integer overflow and
wrap-around rules. Nevertheless, arbitrary ranges—not limited to the power of
two—would require using a dedicated coding or library.

1 #include <stdint.h>
2
3 struct CustomInt_t
4 {
5 uint8_t value : 4;
6 };
7
8 int main()
9 {

10 CustomInt_t i;
11 i.value = 15;
12 ++i.value;
13 return i.value;
14 }

Listing 2.5: C++ integer range

1 %struct.CustomInt_t = type { i8 }
2
3 define i32 @main()
4 {
5 ret i32 0
6 }

Listing 2.6: C++ integer range - LLVM assembly language code of Listing 2.5

Haskell [Pey02] even supports to define arbitrary precision integers. These
variables have an unbounded range from a definition point of view. While
an implementation will experience limitations, those are basically contributed
to the finite size of the computer’s memory, not by the language or runtime
framework. Even on a small computer the limitations caused by memory
exhausting will exceed any reasonable limit for a numerical analysis.

Therefore, determining the boundaries for concrete values of integer variables
based on the type information only, delivers poor results in the general case.
Except for Ada only a very generous upper/lower bound can be derived. As
integers are the preferably choice for the data type encoding the number of
loop iterations this bound is usually not sufficient to measurably reduce the
exploration space.

2.2.2 Indirect Memory Access

If indirect memory access is used, a similar problem does arise. Exemplary on a
code as shown in Listing 2.7 concrete execution and symbolic execution or static
analysis will produce different conclusions with respect to data dependency.
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1 #include <array >
2 using A_t = std::array <int , 5>;
3 A_t a = { 1,5,7,9,38 };
4
5 int extr(A_t& src , int offs)
6 {
7 return src[offs];
8 }
9

10 int func(int offs)
11 {
12 return extr(a, offs);
13 }

Listing 2.7: Indirect Memory Access

In order to simplify this example, the out of bound check for the memory
access is not considered, and it is further assumed that no invalid memory
access can occur. That is parameter offs is limited to the interval [0, 4[.

Both, static and dynamic analysis, can conclude on a data dependency of
function func to access a single element of the global array a. Symbolic execution
in accordance with a static analysis can deduce a data read dependency to
the array. Without the knowledge of the offset parameter offs however the
dependency is either on the entire array, or requires forking five analysis paths,
one for each possible element. A single concrete execution on the other hand is
able to isolate the individual element accessed, but will be unable to create the
four forks for the remaining data flow dependencies.

When performing a data flow analysis, whose target is to support distributed
and parallel execution, it is most suited to be able to slice vectorized data
into its individual elements. By considering the individual array elements as
independent entities, they can also be allocated to different memory units in
a distributed computation environment. Whether the algorithm as such is
formulated using array notation, or by using five individual variables (refer
Listing 2.8) should yield identical results. Obviously such a coding would be
less maintainable from a source code point of view.

Again the examples given above are somehow artificial. But by generaliz-
ing the statements given it can be claimed that compilers and intermediate
representations handle aggregate data types quite similar to arrays. For an
analysis and distribution investigation it is desirable to decompose aggregate
data structures (as shown in Listing 2.9) into their individual elements.

In case the analysis succeeds in abstracting a concrete memory layout, it is
no longer relevant whether the data is stored on consecutive memory locations
or not. Once the elements of an array can be treated independently of each
other they can also have an individual data type, hence be aggregate types.
For describing an algorithm and coding it in a programming language these
two concepts are fundamentally different. For the dependency analysis they
are however much more similar.
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1 int a1 = 1;
2 int a2 = 5;
3 int a3 = 7;
4 int a4 = 9;
5 int a5 = 38;
6
7 int func(int offs)
8 {
9 switch(offs)

10 {
11 case 0: return a1;
12 case 1: return a2;
13 case 2: return a3;
14 case 3: return a4;
15 case 4: return a5;
16 }
17 return 0;
18 }

Listing 2.8: Memory Access - Individual Variables

1 struct Product_t
2 {
3 int ID;
4 double price;
5 };
6
7 int get_ID(const Product_t& p)
8 {
9 return p.ID;

10 }
11
12 double get_price(const Product_t& p)
13 {
14 return p.price;
15 }

Listing 2.9: Memory Access - Individual Variables

2.2.3 Call Graphs

In addition to the statements required to express the desired algorithm, each
programming language has syntactical elements not related to functionality.
Declaring functions or objects is not strictly necessary in a lot of cases. Never-
theless, for a clean and maintainable as well as testable implementation they
are of paramount importance. They are designed to enable a modular and
maintainable code base.

The Listing 2.10 highlights two aspects of this difference. The implemen-
tation of the TestFunction only serves as syntactic sugar, hiding the internal
name of f4. It is basically an empty function body, which does nothing more
as to serve as alias for f4. This is iteratively true for f3 and f2.

Any reasonably configured optimizer will eliminate this hierarchy during its
function inlining processing. Also, for a data graph dependency the function
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1 int f1( int a1, int b1 ) { return a1 + b1; }
2 int f2( int a2, int b2 ) { return f1(a2,b2); }
3 int f3( int a3, int b3 ) { return f2(a3,b3); }
4 int f4( int a4, int b4 ) { return f3(a4,b4); }
5
6 int TestFunction( int a, int b )
7 {
8 return f4(a,b);
9 }

10
11 int main()
12 {
13 return TestFunction (1,2);
14 }

Listing 2.10: Function Calls

calls shall not be reflected as dedicated nodes. Even if the call hierarchy is not
inlined by the compiler all the operations performed on function entry, function
exit and call invocations do not contribute to the complexity analysis of the
algorithm.

Whether the concrete hardware does perform stack adjustment operations,
or demands the function operands to be copied into dedicated hardware registers
is an implementation detail, and should not be relevant.

2.3 Preparing the Code
Based on the arguments given in the previous sections, this work uses the
intermediate representation of the compiler as base for its analysis. As the
LLVM project [Lat08] framework has been chosen for front end processing, the
intermediate language is the LLVM assembly language [LLV18]. In addition, the
analysis is based on a concrete execution of the code. In principle the concepts
described in the next sections can be applied to any SSA based representation.
However not all aspects of the LLVM assembly language are present in other
intermediate languages, like the ones used by the GCC compiler framework
[Mer03] or other compilers. The adoptions required to fit into other compiler
frameworks are not discussed in this work.

The simplest approach when analysing a concrete execution of the code, is
to launch the program via an interpreter. The step by step execution is a trivial
base to record all the operations performed by the algorithm. However, such
an approach does not deliver a high performance with respect to the execution
speed of the analysis.

A more sophisticated approach can be derived based on the nature of
the LLVM assembly language itself. Within the LLVM assembly language
a function is composed of elementary program units. Each unit can start
with an arbitrary instruction, but is allowed only to end with a limited set of
terminating instructions. The terminating instructions can for example be a
branch instruction, or a return instruction. Such an elementary unit is called
BasicBlock.
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In case the execution enters such a basic block all its instructions must
be executed. When conditional branching is required, the branch instruction
will terminate the basic block. For each of the conditions of this branch (true
or false, respectively branch taken or not taken) a dedicated basic block will
be generated. This reflects a significant difference to a front end language
like C++. While there are “terminating instructions” in C++ (for example the
return statement) it is not guaranteed that all code lines within a scope are
actually executed. Especially the presence of exceptions do significantly alter
the call tree and program flow. Within the LLVM assembly language and
language run-time these are represented by a set of dedicated function calls
(e.g. __cxa_allocate_exception, __cxa_throw [Fre17], and the unreachable
[LLV18] instruction).

The analysis of the execution can therefore process all the instructions of a
basic block at once, and is no longer obliged to switch between executing the
algorithm, and updating the data flow data on an instruction level granularity,
as it would be the case when executing the code by an interpreter. The analysis
engine does only require the sequence of basic blocks for its task. If the code of
the algorithm to be tested is modified as such that upon entry in each basic
block a dedicated callback function is invoked, the required trace data can be
made easily available to an external module.

The basic sequence for the data and control flow extraction therefore is a
five-step procedure, as listed below:

1. load the code to be analysed into memory

2. modify each basic block, to invoke the trace function upon entry

3. compile the modified module to native code

4. natively execute the module

5. post process the generated tracking data

Performing in memory modification of the loaded module does require
inserting instructions into the program, in particular a function call. This
function call is required to convey sufficient information to uniquely identify
the basic block. The simplest approach in doing so is to assign an arbitrary but
unique identifier to each basic block, and modify the code such that each basic
block invokes the external tracking function upon its entry. This is depicted in
Listing 2.11, with the unique identifier set to the value of 42.

1 define i32 @main()
2 {
3 call void @TrackBasicBlock( i32 42 )
4 ret i32 0
5 }

Listing 2.11: C++ execution tracking LLVM assembly language [LLV18] code

In order to decouple the analysis code base and the algorithm, it is desirable
not to share type information between them. Such a type information for
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example can be the type of the analysis object, or the types used within the
LLVM project code base. An example is the llvm::Instruction class used to
implement all LLVM assembly language specific aspects of instructions. This
class is usually not present in an intermediate representation of an algorithm.

Aiming to simplify the instrumentation code generator the tracking function
is implemented in a two-step approach. The function call inserted into the
module operates only with build in types, namely three integers. They represent
the address of a second level function within the Just-In-Time compiler’s
instance, a reference to the tracking instance and the first instruction of the
block to be executed [RB18b]. Their basic concept ins shown in Listing 2.12
and Listing 2.13.

1 #include <stdint.h>
2 namespace CodeTracker
3 {
4 class CodeTracker_t;
5 }
6 namespace llvm
7 {
8 class Instruction;
9 }

10
11 typedef int (* Trampoline)(CodeTracker :: CodeTracker_t*, llvm::

↪→ Instruction *);
12
13 extern "C"
14 {
15 void TrackBasicBlock_SpringBoard(uint64_t FctPtr , uint64_t me,

↪→ uint64_t InstrcPtr)
16 {
17 Trampoline trampoline = reinterpret_cast <Trampoline >( FctPtr);
18 trampoline(reinterpret_cast <CodeTracker :: CodeTracker_t *>(me),
19 reinterpret_cast <llvm:: Instruction *>(InstrcPtr));
20 }
21 }

Listing 2.12: First Level Tracking Function [RB18b]

1 void Track_Trampoline(CodeTracker :: CodeTracker_t* me, llvm::
↪→ Instruction* I)

2 {
3 try
4 {
5 me->Track(I);
6 }
7 catch (...)
8 {
9 // ...

10 }
11 }

Listing 2.13: Second Level Tracking Function
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Using this separation allows the first level (the spring board) to use incom-
plete types. I can cast its arguments to pointers to forward declared types.
This redeems its compilation unit from including any external headers, like
the ones of the LLVM project code base. In addition, does this technique of
conveying pointers by storing their address values camouflage the types from
the module to be instrumented. Finally, forcing a C level calling convention
simplifies the implementation of the instrumentation code. In particular this
is by ensuring the much simpler C name mangling rules being applied for the
spring board function. With the C++ name mangling scheme the function
signature would be encoded in the symbol. This would have yield something
like @_Z27TrackBasicBlock_SpringBoardmmm, depending on the compiler used.

Using the example of the foldl function introduced previously (Listing 2.3),
the original and modified intermediate representation code is demonstrated in
Listing 2.14 and Listing 2.15.

1 ; Function Attrs: norecurse nounwind readonly uwtable
2 define dso_local i32 @TestFunction(i32* nocapture readonly)
3 {
4 br label %3
5
6 2: ; preds = %3
7 ret i32 %8
8
9 3: ; preds = %3, %1

10 %4 = phi i64 [ 0, %1 ], [ %9, %3 ]
11 %5 = phi i32 [ 0, %1 ], [ %8, %3 ]
12 %6 = getelementptr inbounds i32 , i32* %0, i64 %4
13 %7 = load i32 , i32* %6, align 4
14 %8 = add nsw i32 %7, %5
15 %9 = add nuw nsw i64 %4, 1
16 %10 = icmp eq i64 %9, 3
17 br i1 %10 , label %2, label %3
18 }

Listing 2.14: foldl original code

The function contains 3 basic blocks. The function entry (an unnamed
block), the loop exit “2:”, and the loop body “3:” graphically visualized in
Figure 2.1. Each of which is equipped with a call to the spring board function.
This basically conveys the information “this block is now being executed”, as
shown in lines 9, 13 and 19 of Listing 2.15. For reasons of better readability
the 64 bit address values in these function calls have been simplified to three
to four digit decimal numbers in the exemplary code.

2.3.1 Program optimization

In this work we rely on the fact that the algorithm representation, respectively
the program code under analysis, has experienced reasonable optimizations.
A simple translation of the front end source code (e.g. the C++ files) into
the LLVM assembly language intermediate representation, without running
optimization algorithms (a debug build), will deliver quite underwhelming
results.
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1 ; Function Attrs: norecurse nounwind readonly uwtable
2 define dso_local i32 @TestFunction(i32* nocapture readonly)
3 {
4 call void @TrackBasicBlock_SpringBoard(i64 140, i64 516, i64

↪→ 5167)
5 br label %3
6
7 2: ; preds = %3
8 call void @TrackBasicBlock_SpringBoard(i64 140, i64 516, i64

↪→ 3240)
9 ret i32 %8

10
11 3: ; preds = %3, %1
12 %4 = phi i64 [ 0, %1 ], [ %9, %3 ]
13 %5 = phi i32 [ 0, %1 ], [ %8, %3 ]
14 call void @TrackBasicBlock_SpringBoard(i64 140, i64 516, i64

↪→ 9328)
15 %6 = getelementptr inbounds i32 , i32* %0, i64 %4
16 %7 = load i32 , i32* %6, align 4
17 %8 = add nsw i32 %7, %5
18 %9 = add nuw nsw i64 %4, 1
19 %10 = icmp eq i64 %9, 3
20 br i1 %10 , label %2, label %3
21 }

Listing 2.15: foldl modified code

Not only will the generated intermediate representation show artefacts of
the implementation which are not related to the algorithm itself, it will also
expose lots of boiler plate data introduced by the language front end designed to
support later optimization steps. Also, the functionality for target lowering of
the code, that is generating native assembly for the desired execution machine,
relies on metadata and constructs of the previous processing stages.

An example for the first type of artefacts is given in Listings 2.9 and 2.10.
Neither the function calls, nor the fact that within the code the product data is
represented in an aggregate data structure do contribute to an understanding
of the computational profile of this algorithm. Some of such artefacts can be
dissolved by a smart tracking engine, while others cannot. Listings 2.16 to 2.18
demonstrate an optimization, which is assumed to be beyond the capability of
a data flow analysis.

Under the assumption that the underlying hardware can do the basic integer
arithmetic with identical performance, it is trivial to transform the expression
“a+ a+ a+ a+ b+ c” into “4a+ b+ c”, and as such reducing five operations
to three. Whether the “multiply with four” operation is implemented by the
shift instruction or with a multiply instruction depends on the specifics on the
hardware. In the majority of cases the shift operation will be more beneficial,
and for this reason the intermediate representation prefers this implementation.

Although this transformation is quite obvious it necessitates that the engine
performing this transformation has a concrete understanding on the operations
as such. In this case it is not only required to know an addition and its mathe-
matical properties, it also requires to know the multiply (or shift) operations
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CFG for ’TestFunction’ function

%1:
 br label %3

%3:
3: 
 %4 = phi i64 [ 0, %1 ], [ %9, %3 ]
 %5 = phi i32 [ 0, %1 ], [ %8, %3 ]
 %6 = getelementptr inbounds i32, i32* %0, i64 %4
 %7 = load i32, i32* %6, align 4, !tbaa !0
 %8 = add nsw i32 %7, %5
 %9 = add nuw nsw i64 %4, 1
 %10 = icmp eq i64 %9, 3
 br i1 %10, label %2, label %3

T F

%2:
2: 
 ret i32 %8

Figure 2.1: Control Flow Graph for Listing 2.14

1 int func(int a, int b, int c)
2 {
3 int t1 = a + a;
4 int t2 = a + a;
5 int t3 = t1 + t2;
6 return t3 + b + c;
7 }

Listing 2.16: Numeric example (with temporary computations)

and their properties. Additionally, a set of rules is required to describe their
mathematical relationship. Without this replacing a sequence of operations
(add) with a completely different one (mul) and still preserving an identical
result is not possible.

In a scenario where the dependencies of operations, and their applicability
to certain nodes on a distributed hardware shall be analysed this might not be
the case. Such a task demands a clear understanding on which data is required
for an operation (its inputs), which data is generated (its outputs), and the
time required to do so. As such for a common integer ALU, which executes
each binary integer operation in the same amount of time, there is no need to
distinguish add, sub or mul instructions.

2.3.2 Program optimization, vectorization

Vectorizing loops and arithmetic operations has been a research topic for several
decades. A work published in 2011 has made claim “that despite all the work
done in vectorization in the last 40 years 45− 71% of the loops in the synthetic
benchmark and only a few loops from the real applications are vectorized by
the compilers we evaluated” [Mal+11]. Especially due to the advancement of
GPUs and FPGAs a large amount of computing devices with massively parallel
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1 ; ModuleID = 'opt.bc '
2 source_filename = "..\5 CTempVariableArtefact.cpp"
3 target datalayout = "e-m:w-i64:64-f80:128-n8:16:32:64 - S128"
4 target triple = "x86_64 -pc-windows -msvc19 .22.27905"
5
6 ; Function Attrs: noinline nounwind uwtable
7 define dso_local i32 @func(i32 , i32 , i32)
8 {
9 %4 = add nsw i32 %0, %0

10 %5 = add nsw i32 %0, %0
11 %6 = add nsw i32 %4, %5
12 %7 = add nsw i32 %6, %1
13 %8 = add nsw i32 %7, %2
14 ret i32 %8
15 }
16
17 !llvm.module.flags = !{!0, !1, !2, !3}
18 !llvm.ident = !{!4}
19
20 !0 = !{i32 2, !"CodeView", i32 1}
21 !1 = !{i32 2, !"Debug␣Info␣Version", i32 3}
22 !2 = !{i32 1, !"wchar_size", i32 2}
23 !3 = !{i32 7, !"PIC␣Level", i32 2}
24 !4 = !{!"clang␣version␣9.0.1␣"}

Listing 2.17: Straight forward intermediate representation of Listing 2.16

1 ; Function Attrs: noinline norecurse nounwind readnone uwtable
2 define dso_local i32 @func(i32 , i32 , i32) local_unnamed_addr
3 {
4 %4 = shl i32 %0, 2
5 %5 = add nsw i32 %4, %1
6 %6 = add nsw i32 %5, %2
7 ret i32 %6
8 }

Listing 2.18: Optimized intermediate representation of Listing 2.16

computing capability have entered the mass market. For almost any platform,
may it be embedded or not, such a structure demands the vectorization still to
be an active research topic [Men+19; Ama20]. Optimization algorithms are
based on a widespread portfolio [LA00; Haj+20]. But the LLVM assembly
language is not always a perfect fit to represent high level type information
with respect to graphs. Other representations are under research for more
abstracted tasks, like representing TensorFlow graphs [Lat+20] or hardware
descriptions [Sch+20].

Especially for a C++ or C front end the extraction of a vectorized represen-
tation exhibits more peculiarities than immediately obvious.

For two different implementations of the simple algorithm of element wise
adding two 128 element vectors (Listings 2.19 and 2.20), the expectation is to
get an ideal coding within the intermediate representation. The expected coding
is presented in Listing 2.21. Neither shall the two different implementations
produce different output, nor do we expect any overhead added to the LLVM
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assembly language. However, with a default configuration none of the compilers
available today will generate such an intermediate representation. Even when
explicitly instructed only to consider the case for 128 elements (by defining
N = 128 as compile-time constant). This is due to the fact that compilers
use a dedicated metric to identify the vectorization width. Usually this selects
values between 4 and 16. Therefore, the compiler has to generate a loop or a
sequence of instructions to perform the 128 additions in packs of 4 to 16 values.
The chosen value depends on the intended hardware architecture. This is not
because such an representation is not valid in the intermediate representation,
it is more attributed to the fact that current compilers are designed for regular
CPUs. Those usually do not employ a capability to handle such an amount of
parallelization, therefore generating such code a does not make sense.

1 #include <algorithm >
2 #include <functional >
3
4 template <typename T, unsigned N>
5 void TestFunction(const T (& a)[N], const T (& b)[N], T (& c)[N])
6 {
7 using namespace std;
8 transform(cbegin(a), cend(a), cbegin(b), begin(c), plus <>{});
9 }

Listing 2.19: Adding two vectors, C++ code

1 #define N 128
2 void foo(const float * a, const float * b, float *c)
3 {
4 for(int idx=0;idx <N;++idx)
5 c[idx] = a[idx] + b[idx];
6 }

Listing 2.20: Adding two vectors, C code

1 %5 = load <128 x float >, <128 x float >* %a, align 4
2 %7 = load <128 x float >, <128 x float >* %b, align 4
3 %8 = fadd <128 x float > %5, %7
4 store <128 x float > %8, <128 x float >* %c, align 4

Listing 2.21: Adding two vectors, expected intermediate representation code

Forcing the compiler to use a factor of 128 for the vectorization still does only
partly deliver the expected code (Listing 2.22, lines 13-21). Doing so requires a
dedicated set of command line options, in the case of the clang compiler they
are “-x c -O3 -emit-llvm -mllvm -force-vector-width=128 -g0”. This
time the boiler plate code (initial basic block, and the block following label 22:
in line 24) is caused by a property of the front end language. Neither the C code
(Listing 2.20) nor the C++ coding (Listing 2.19) express any guarantee with
respect to aliasing (Listing 2.22). The two pointers a and c might very well
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point to the same object, similar as the arrays b and c might be the same object.
From a language point of view the compiler is not allowed to assume those
memory regions to be distinct. This mandates the run-time checks performed
upon function entry.

In the C language the desired constraint can be expressed with the restrict
keyword (Listings 2.23 and 2.24). The same holds true when reverting to the
GCC compilers __restrict__ (Listings 2.25 and 2.26) in C++. The latter
keyword however is not standardized.

Summarizing the aspects of vectorization it is evident that if relying on
a regular compiler it cannot be guaranteed that full vectorization is always
expressed within the LLVM assembly language. The reasons given are the
inherent property of having a CPU like execution unit in mind, and the potential
inability of the front end to express the vectorization properly. For a hardware
structure which has the capability to actually execute in an embarrassingly
parallel [Fos95] manner additional handling is required. For the cases given
a desired result would be to extract a data flow graph which represents the
embarrassingly parallel nature of the vector addition. Independent of whether
the intermediate representation represents the operation in a single vectorized
instruction, or a sequence of 128 sequential instructions, or any combination of
which.

2.3.3 Front End and Compiler Optimizations

The primary input to the analysis engine is based on the abstraction level
of the compilers intermediate representation. The implementation however
is based on a dedicated programming language, C++ in the examples given.
As discussed in the previous sections the concept relies on a decent set of
optimization to produce reasonable results. In the following sections some
compiler optimizations as well as peculiarities of the LLVM assembly language,
and their impact to the analysis concept are discussed.

In this context the generation of the CDFG competes with the vectorization
optimization passes of the compiler. As the vectorization capabilities of the
front end are usually limited to a certain width (usually less than 4) there is
not much lost by inhibiting the vector optimization in the front end.

Throughout this work the front end and optimization configuration has
been chosen as such that the vectorization passes are disabled.

2.3.4 Φ-nodes

The SSA notation is generated from the program source, used to represent
the code internally to the compiler. Paired with the control flow graph it has
established itself as suitable data structure for compilers. It allows efficient
implementation of various operations of paramount importance to compilers in
general, and optimization algorithms in particular [Cyt+91]. For a discussion
on one of such optimizations, the constant propagation, refer [WZ91].

Φ-nodes are a special instruction within SSA notations. The Φ-instruction
is a typed instruction, with an arbitrary long list of input tuples. Each input
tuple is composed of a reference to a variable and a referenced basic block.
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1 define dso_local void @foo(float* %0, float* %1, float* %2) {
2 %4 = getelementptr float , float* %2, i64 128
3 %5 = getelementptr float , float* %0, i64 128
4 %6 = getelementptr float , float* %1, i64 128
5 %7 = icmp ugt float* %5, %2
6 %8 = icmp ugt float* %4, %0
7 %9 = and i1 %7, %8
8 %10 = icmp ugt float* %6, %2
9 %11 = icmp ugt float* %4, %1

10 %12 = and i1 %10 , %11
11 %13 = or i1 %9, %12
12 br i1 %13 , label %22 , label %14
13 14: ; preds = %3
14 %15 = bitcast float* %0 to <128 x float >*
15 %16 = load <128 x float >, <128 x float >* %15 , align 4
16 %17 = bitcast float* %1 to <128 x float >*
17 %18 = load <128 x float >, <128 x float >* %17 , align 4
18 %19 = fadd <128 x float > %16 , %18
19 %20 = bitcast float* %2 to <128 x float >*
20 store <128 x float > %19 , <128 x float >* %20 , align 4
21 br label %21
22 21: ; preds = %22 , %14
23 ret void
24 22: ; preds = %3, %22
25 %23 = phi i64 [ %51 , %22 ], [ 0, %3 ]
26 %24 = getelementptr inbounds float , float* %0, i64 %23
27 %25 = load float , float* %24 , align 4
28 %26 = getelementptr inbounds float , float* %1, i64 %23
29 %27 = load float , float* %26 , align 4
30 %28 = fadd float %25 , %27
31 %29 = getelementptr inbounds float , float* %2, i64 %23
32 store float %28 , float* %29 , align 4
33 %30 = or i64 %23 , 1
34 %31 = getelementptr inbounds float , float* %0, i64 %30
35 %32 = load float , float* %31 , align 4
36 %33 = getelementptr inbounds float , float* %1, i64 %30
37 %34 = load float , float* %33 , align 4
38 %35 = fadd float %32 , %34
39 %36 = getelementptr inbounds float , float* %2, i64 %30
40 store float %35 , float* %36 , align 4
41 %37 = or i64 %23 , 2
42 %38 = getelementptr inbounds float , float* %0, i64 %37
43 %39 = load float , float* %38 , align 4
44 %40 = getelementptr inbounds float , float* %1, i64 %37
45 %41 = load float , float* %40 , align 4
46 %42 = fadd float %39 , %41
47 %43 = getelementptr inbounds float , float* %2, i64 %37
48 store float %42 , float* %43 , align 4
49 %44 = or i64 %23 , 3
50 %45 = getelementptr inbounds float , float* %0, i64 %44
51 %46 = load float , float* %45 , align 4
52 %47 = getelementptr inbounds float , float* %1, i64 %44
53 %48 = load float , float* %47 , align 4
54 %49 = fadd float %46 , %48
55 %50 = getelementptr inbounds float , float* %2, i64 %44
56 store float %49 , float* %50 , align 4
57 %51 = add nuw nsw i64 %23 , 4
58 %52 = icmp eq i64 %51 , 128
59 br i1 %52 , label %21 , label %22
60 }

Listing 2.22: Adding two vectors, LLVM assembly language code of Listing 2.20
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1 #define N 128
2
3 void foo(const float * restrict a, const float * restrict b, float

↪→ * restrict c)
4 {
5 for(int idx=0;idx <N;++idx)
6 c[idx] = a[idx] + b[idx];
7 }

Listing 2.23: Adding two vectors, C code with expressing alias free input

1 define dso_local void @foo(float* noalias nocapture readonly %0,
↪→ float* noalias nocapture readonly %1, float* noalias
↪→ nocapture %2)

2 {
3 %4 = bitcast float* %0 to <128 x float >*
4 %5 = load <128 x float >, <128 x float >* %4, align 4, !tbaa !2
5 %6 = bitcast float* %1 to <128 x float >*
6 %7 = load <128 x float >, <128 x float >* %6, align 4, !tbaa !2
7 %8 = fadd <128 x float > %5, %7
8 %9 = bitcast float* %2 to <128 x float >*
9 store <128 x float > %8, <128 x float >* %9, align 4, !tbaa !2

10 ret void
11 }

Listing 2.24: Adding two vectors, LLVM assembly language code of Listing 2.23

All variables in this list of tuples must have the same type. At runtime the
Φ-node represents one of the listed values. The selection which of those is
chosen is dictated by the program flow. The basic block which was executed
previously to encountering the Φ-node is the basis of this selection. For this
reason Φ-nodes by definition are only allowed at the very beginning of a basic
block.

Reverting again to code example in Listing 2.14 lines 10 and 11 give an
example for the usage of such a Φ-node. Variable %4 represents the loop
counter. Its value is the constant zero in case the loop body is approached
via the function entry (the basic block in line 4, by convention of the LLVM
assembly language implicitly named %1), and the value of variable %9 when
approached by the loop body (%3). This models a variable which is initialized to
zero, and incremented in every loop iteration. The very same concept is applied
to the variable pair %5, %8, whose represent the sum for the fold operation.

Resolving Φ- nodes to their corresponding concrete value (or variable) is
not a particularly complicated task. It does only require to keep track of the
previously executed basic block. A single function can be composed of an
arbitrary amount of basic blocks, whose in turn can be executed in any order
and repetition. Therefore, such a tracking is more complex than to memorize
the previous instruction (program counter). It has to follow a call stack (last
in first out (LIFO) queue) like concept, but on the abstraction level of basic
blocks, rather than functions. For the sake of completeness it should be noted
that the Φ-node selection can yield another Φ-node, and as such demanding
the resolving to work recursively until a regular variable is encountered.
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1 #include <algorithm >
2 #include <functional >
3 #include <memory >
4 using namespace std;
5
6 template <typename T, unsigned N>
7 void TestFunction( const T (& __restrict__ a)[N], const T (&

↪→ __restrict__ b)[N], T (& c)[N])
8 {
9 transform(cbegin(a), cend(a), cbegin(b), begin(c), plus <>{});

10 }
11
12 using T = int;
13 constexpr int N = 128;
14
15 template void TestFunction(const T (& a)[N], const T (& b)[N], T

↪→ (& c)[N]);
16
17 void foo( const T * __restrict__ a, const T * __restrict__ b, T*

↪→ c)
18 {
19 transform(a, a+N, b, c, plus <>{});
20 }

Listing 2.25: Adding two vectors, C++ with compiler extension

2.3.5 Function calls

The LLVM assembly language allows representing code segments in separate
functions, a feature which almost all programming languages support. Dealing
with them is a necessity for the data flow extraction engine. Depending on the
specific settings configured for the language front end, a large set of functions
can be eliminated by the help of inlining. However, a modern compiler usually
does not provide guarantees whether a function is inlined or not. In particularly
it can be safely assumed that in every module there will be at least one function
call left. The reason for the compilers not to give such guarantees is to keep
their manoeuvrability with respect to program optimization as high as possible.
Further, flattening a full program into a single function is usually not practical.

As the function calls cannot be completely eliminated, they require some
logic within the data and control flow tracking engine. In order to properly
merge the data and CDFG generated within a sub function into the parent
scope, its root and leaf nodes need to be linked to the global scope. Basically
the principle relies on the input and output arguments of a function to be
mapped to the local variables in the callers scope. Similarly, the return value of
the function is to be linked to the corresponding variable at the caller side. For
the tracking it is of minor importance whether the variables exposed from the
module have the form of a function return code, or are syntactically modelled
by call be reference [ISO17b] semantic in the language front end.
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1 void TestFunction <int , 128u>(int const (&) [128u], int const (&)
↪→ [128u], int (&) [128u]):

2 xor eax , eax
3 .L2:
4 movdqu xmm0 , XMMWORD PTR [rsi+rax]
5 movdqu xmm1 , XMMWORD PTR [rdi+rax]
6 paddd xmm0 , xmm1
7 movups XMMWORD PTR [rdx+rax], xmm0
8 add rax , 16
9 cmp rax , 512

10 jne .L2
11 ret
12 foo(int const*, int const*, int*):
13 xor eax , eax
14 .L6:
15 movdqu xmm0 , XMMWORD PTR [rsi+rax]
16 movdqu xmm1 , XMMWORD PTR [rdi+rax]
17 paddd xmm0 , xmm1
18 movups XMMWORD PTR [rdx+rax], xmm0
19 add rax , 16
20 cmp rax , 512
21 jne .L6
22 ret

Listing 2.26: Adding two vectors, x86 assembly code Listing 2.25

2.3.6 Initialization and detecting input and output data

For any concrete execution a reasonable set of input data is required to produce a
suitable computational profile upon investigating the algorithm. For this reason
it is beneficial to exclude a certain initialization procedure from the analysis.
In absence of a Just-In-Time compiler and on a hardware model which does
not apply data dependant costs to arithmetic operations the initialization has
minor impact to the computational profile. A matrix vector multiplication can,
without the loss of generality, be decomposed in its intermediate representation
with its input being run-time initialized to “all zero” values. The concrete
execution will yield a vector with each of elements to be zero, but the amount
of multiplications and additions performed will be a suitable representation of
the computational effort. Once the procedure becomes more complex, and for
example includes a floating point division, the simple “all zero” initialization
might no longer deliver a representative operation pattern. The early program
abort due to a divide by zero exception will render incorrect results. A similar
effect can arise if the hardware model employs a data dependant execution
time. This can for example mimic an optimization that a · b = a if b = 1. This
is a common implementation in software based floating point arithmetic (refer
Listing 2.31 for a similar optimization).

In order to compose an executable program the algorithm therefore will
not be represented by the program entry (e.g. the main function), but rather
by a function invoked at some point within the execution flow. This has
two consequences. First there is an arbitrary long sequence of code which
shall not contribute to the CDFG. Reading data from a file, or generating
random or pseudo-random data are examples of which. This aspect can easily be
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handled by not instrumenting those functions with the various Track_ functions
described in Section 2.3 and Listing 2.11. The second aspect is more subtle.
The initialization routines are likely to initialize various variables, which as such
from a language specification point of view, must not have a read only property.
They cannot be constant. From an algorithm point of view they might however
be constant, in case they represent a constant input. In an equation like c = 4b,
the variable “b” as well as the literal “4” are constant within the context of the
expression. However, in case b is to be initialized by some code outside the
scope of the analysis, it cannot be represented as a constant variable. For an
analysis this reflects the fact that if a variable is flagged as constant within the
LLVM assembly language it implies to be read only. However, it cannot be
concluded that any non-constant variable is actually written. This information
has to be extracted from the execution tracing.

2.3.7 Cross function Φ-nodes

The argument tracing will not only need to resolve function arguments to its
corresponding parent scope variables, it also has to do this in the awareness of
Φ-nodes. In a first order Φ-node resolving, the local variable can resolve to a
function argument. In this case the resolver has to continue its mapping in the
parent scope of the caller. On this second level the argument on the caller side
can also be represented by Φ-node.

An example of such a coding is given in Listings 2.27 and 2.28. Resolving
the variable %1 in Listing 2.28 line 4 causes a sequence of back tracking events.

1. Resolve %1 on local function scope
By convention the arguments of the function are numbered from %0
onwards. %1 hence is the second argument of the function ?add@@YAHHH@Z.

2. Resolve the argument via the call stack information
Within the callers scope (line 24), the second argument is extracted,
yielding variable %8.

3. As %8 is an indirect access, the back tracking has to continue
The load instruction (pointer indirection) of variable %8 yields the Φ-
instruction in line 18 (%.0).

4. Φ-node transformation
The Φ-node in question is within basic block “5:”, while the load in-
struction is in basic block “7:”. To correctly resolve the variable %.01,
knowledge of the basic block from which block “5:”, not block “7:” was
entered in its last execution is required.

By this example it is obvious that the basic block tracking needs to reflect the
stack based scoping as mentioned in Section 2.3.4.

2.3.8 GEP-nodes

When dealing with data arrays, or aggregate data structures in general, another
aspect of the intermediate language has to be taken into account. As soon as a
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1 constexpr int N = 5;
2
3 int add(int a, int b)
4 {
5 return a+b;
6 }
7
8 int func(int (&a)[N])
9 {

10 int s = 0;
11 for(int v : a)
12 {
13 s = add(s,v);
14 }
15 return s;
16 }

Listing 2.27: Φ-node example C++ source

computational operation is applied to data stored in an array, it is required to
explicitly reference a single entry within the aggregate set.

Doing this causes memory access to happen via the pointer arithmetic
like scheme of the getelemptr instruction. This closely resembles the index
operator of the C language.

Digging into the details of this index operator (and as such the getelemptr)
reveals that for those not only an arbitrary number of arguments is required,
but also that resolving the corresponding element of the aggregate structure
requires the runtime values of the arguments. The analysis concept described
so far does perform a dynamic analysis of which blocks are to be traced (and
their order of execution), backed up by a purely static analysis of the block
content itself. The operand data for the array indexing is only available as
reference to a variable or the instruction computing it but, not the actual value
it has been assigned when executing the array indexing.

In order to make this values available for the control and data flow extraction
engine the dynamic part of the instrumentation requires some extension. Most
prominently the static processing of the elementary block has to be interrupted
upon reaching an instruction which requires the actual values of its operands.
Doing so demands the instrumentation mechanism to be changed. Rather
than simply inserting an informative callback (“this block is now executed”)
at the beginning of each elementary block and recursively doing so for all
subroutines, the memory access instructions need to be handled. Differently
than inserting a simple informative callback the extended tracing function is
required to additionally convey the actual values of the arguments.

Listing 2.29 demonstrates the instrumentation required for such an extended
data tracking. In line 14 as described above the regular basic block tracking
is done. The argument data for the TrackBasicBlock_SpringBoard functions
consists of references to the internal data structures of the Just-In-Time compiler
only. This information does only relate to the source of the algorithm under
analysis, they do not convey any information on concrete values of variables.
As such this tracking component is restricted to perform static analysis, on the
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1 ; Function Attrs: noinline nounwind uwtable
2 define dso_local i32 @"?add@@YAHHH@Z"(i32 , i32)
3 {
4 %3 = add nsw i32 %0, %1
5 ret i32 %3
6 }
7
8 ; Function Attrs: noinline nounwind uwtable
9 define dso_local i32 @"?func@@YAHAEAY04H@Z"([5 x i32]*

↪→ dereferenceable (20))
10 {
11 %2 = getelementptr inbounds [5 x i32], [5 x i32]* %0, i64 0, i64

↪→ 0
12 %3 = getelementptr inbounds [5 x i32], [5 x i32]* %0, i64 0, i64

↪→ 0
13 %4 = getelementptr inbounds i32 , i32* %3, i64 5
14 br label %5
15
16 5: ; preds = %10 , %1
17 %.01 = phi i32 [ 0, %1 ], [ %9, %10 ]
18 %.0 = phi i32* [ %2, %1 ], [ %11 , %10 ]
19 %6 = icmp ne i32* %.0, %4
20 br i1 %6, label %7, label %12
21
22 7: ; preds = %5
23 %8 = load i32 , i32* %.0, align 4
24 %9 = call i32 @"?add@@YAHHH@Z"(i32 %.01, i32 %8)
25 br label %10
26
27 10: ; preds = %7
28 %11 = getelementptr inbounds i32 , i32* %.0, i32 1
29 br label %5
30
31 12: ; preds = %5
32 ret i32 %.01
33 }

Listing 2.28: Φ-node example LLVM assembly language source

abstraction level of a single basic block.
The static analysis has to stop processing the BasicBlock ad interim once

approaching the getelementptr in Listing 2.29 line 17. This is caused by its
incapacity to properly track the argument denoting the array index (the last
argument of the instruction, %4). To perform a proper slicing of the array, and
providing a data flow graph with decomposed elements, the concrete value of
variable %4 is required. The newly introduced tracking function Track_GEP_i64
steps into this role, providing the essential data. In addition to the similar
references to the code base, as used in the TrackBasicBlock_SpringBoard
invocations, its last argument holds the index information for the slicing
(variable %4 in this case).

Once the concrete values have been feed into the tracking engine, the
static instruction sweep of the basic block will continue. By convention of the
implementation this is implemented by an additional call to the already existing
TrackBasicBlock_SpringBoard function. While not obvious in this example
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1 define dso_local i32 @TestFunction(i32*)
2 {
3 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 3624, i64

↪→ 6032)
4 br label %2
5
6 2: ; preds = %10 ,

↪→ %1
7 %3 = phi i32 [ 0, %1 ], [ %9, %10 ]
8 %4 = phi i64 [ 0, %1 ], [ %11 , %10 ]
9 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 3624, i64

↪→ 6328)
10 %5 = icmp ult i64 %4, 3
11 br i1 %5, label %6, label %12
12
13 6: ; preds = %2
14 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 3624, i64

↪→ 3728)
15 call void @Track_GEP_i64(i64 9357, i64 3624, i64 3728, i64 %4)
16 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 3624, i64

↪→ 3728)
17 %7 = getelementptr inbounds i32 , i32* %0, i64 %4
18 %8 = load i32 , i32* %7, align 4
19 %9 = add nsw i32 %3, %8
20 br label %10
21
22 10: ; preds = %6
23 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 3624, i64

↪→ 176)
24 %11 = add i64 %4, 1
25 br label %2
26
27 12: ; preds = %2
28 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 3624, i64

↪→ 7208)
29 ret i32 %3
30 }

Listing 2.29: Tracking getelemntptr instructions

the getelementptr instructions, contrary to for example the Φ-instructions, can
be arbitrarily distributed within the basic block. For this reason the separation
of concrete tracking and static sweeps is beneficial from an implementation
point of view. Conceptually lines 14, 15 and 16 in Listing 2.29 could have been
merged into a single call.

In addition to giving an example of the array slicing capability, Listing 2.29
demonstrates two other aspects. Firstly it can be observed that the arrange-
ment of basic blocks differs from Listings 2.14 and 2.15. Nevertheless, both
implementations reflect the same algorithm. The arrangement of basic blocks
is heavily influenced by the compiler options, most notably the configured
optimization levels.

For the examples given the performed optimization steps have mostly been
individually chosen. The focus is on providing applicative examples, not
primarily generating the most efficient code. An optimized (but not vectorized)
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version of the foldl operation on three elements is given in Listing 2.30.
Generalizing the findings we can conclude that there is no guarantee on the

order of operations, or a particular arrangement on basic blocks. While the
compiler is obliged to produce “correct” code, the “as-if” rule [ISO17a] offers a
large degree of freedom in the concrete implementation. This is the base of all
compiler optimizations [God17; Tan+20].

1 define dso_local i32 @TestFunction(i32*)
2 {
3 call void @TrackControl_SpringBoard(i64 40952, i64 7032, i8 1)
4 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 7032, i64

↪→ 6488)
5 %2 = load i32 , i32* %0
6 call void @Track_GEP_i64(i64 9357, i64 7032, i64 1376, i64 1)
7 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 7032, i64

↪→ 1376)
8 %3 = getelementptr inbounds i32 , i32* %0, i64 1
9 %4 = load i32 , i32* %3

10 %5 = add nsw i32 %4, %2
11 call void @Track_GEP_i64(i64 9357, i64 7032, i64 6896, i64 2)
12 call void @TrackBasicBlock_SpringBoard(i64 1147, i64 7032, i64

↪→ 6896)
13 %6 = getelementptr inbounds i32 , i32* %0, i64 2
14 %7 = load i32 , i32* %6
15 %8 = add nsw i32 %7, %5
16 ret i32 %8
17 }

Listing 2.30: foldl optimized representation

2.3.9 Raising Abstraction Level

One of the greatest drawback of evaluating the algorithm on LLVM assembly
language scope its very low level view of things. The LLVM assembly language
does to a large extend reflect the instructions of a general purpose CPU. While
it does have an abstract view on data types and memory from an operation
point of view, it boils down to basic assembly level operations. Generating
native machine code out of LLVM assembly language is therefore a task with
acceptably small effort. The target specific back-end needs to perform register
allocation and stack assignment to variables, but can map most intermediate
representation statements directly to their corresponding machine instruction.

For data flow and sequencing this has shown to be very effective abstraction.
Quite commonly although it is beneficial to raise the abstraction level for
certain computations. This can for example be the case for functions whose
computational profile is well known. In such a case an optimal assignment
of the individual operations to the compute-nodes is either well known, or a
dedicated library is used for this purpose. In both cases it usually does not
provide additional insights if these functions are dissolved, and included in
the analysis. Alternatively it might be desirable to run an investigation on
a partially implemented algorithm. A partially implemented algorithm is a
piece of code where not all the dependencies are known to the compiler. For

30



some functions only their signature (inputs and outputs) are known, and only
a mock-up implementation is available.

Such functional blocks (function calls) will be threaded as unresolved ex-
ternal entities. As long as they do not generate data whose concrete value
is needed (like the array indices shown in Listing 2.29 line 17) this will not
affect the computational analysis. It will—in the general case—consider the
unresolved function call as regular operation, with its function arguments as
inputs, and the functions return code as output.

Listing 2.32 demonstrates the computation of the vector L2 norm, according
to Equation (2.2).

x =

⌜⃓⃓⎷ N∑︂
i=0

|ai|2 (2.2)

Assuming the hardware in question is capable of providing the sqrt instruc-
tion, but neither has support for a hardware loop nor floating point squaring,
the above mechanisms suites the desired functionality. The computation of
the square root shall be handled as “external call”, in this simple case with a
single input, and a single output. The remaining part of the algorithm shall
be optimized at full extend, and handled accordingly. This includes the likely
mapping according to Equations (2.3) and (2.4), as well as decomposing the
C++ lambda expression within loop caused by the function std::accumulate.

∀x ∈ R : |x|2 = x2 (2.3)
x2 = x · x (2.4)

Listing 2.33 depicts the corresponding intermediate representation, demon-
strating the desired behaviour. The function call to the square root computation
(line 37) is simply integrated into the code as external function call. The analy-
sis engine can threat it as single input single output operation. The lambda
function (Listing 2.32 line 10) with its std::pow invocation is fully dissolved.
Its multiply accumulate (MAC) operation is reflected in Listing 2.33 lines 24-26.

In particular the optimization of the pow function relies on an interplay of
compiler optimization and library implementation. With squaring being quite
common, and the transformation according to Equation (2.4) usually being
beneficial on most hardware platforms, the usual implementation of the pow
function (Listing 2.31) reflects this property. Inlining and constant propagation
will be in charge of reducing the source level boiler plate code into a single fmul
float %10, %10 instruction (Listing 2.33 lines 25). And common mathematical
optimization for the float data type (Equation (2.3)) can eliminate the need for
the abs function.

This can also be done on a much different scope for example on a sparsely
distributed system with a web server and a resource limited interface node
[Tan+17; Rec+18]. For this case running a geo-location algorithm (global
navigation satellite system data to physical address lookup) is performed. In
this scenario only the server part is capable of running the lookup in full detail,
that is solving the point in polygon problem for a large set of complex polygons.
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1 inline float pow(float mantissa , int exponent)
2 {
3 if (exponent == 2)
4 {
5 return mantissa * mantissa;
6 }
7
8 return powf(mantissa , static_cast <float >( exponent));
9 }

Listing 2.31: pow implementation

1 #include <numeric >
2 #include <cmath >
3 #include <iterator >
4
5 template <typename T, size_t N>
6 T TestFunction(const T(& a)[N])
7 {
8 using namespace std;
9 return sqrt(accumulate(begin(a), end(a),T(0),

10 [](T sum , T next){ return sum + pow(abs(next) ,2); }));
11 }

Listing 2.32: vector norm

Such polygons occur when mapping a latitude and longitude data obtained
by global navigation satellite system to a district with a certain area. As the
district boundaries are usually of highly irregular shape, numerous points are
required to correctly describe those boundaries as polygons. A trade-off has
to be found on either transmitting all or just parts of the large polygon set
(database) to the interface node, or running all computations on the server.

2.4 Representing Hardware
Once the control and data flow has been extracted, a suitable metric is required
to express a statement whether a dedicated arrangement of compute-nodes
and storage-nodes is suited for this particular algorithm. Such a metric can
have quite widespread criteria, depending on the design goal of the hardware
arrangement.

While the execution time is certainly not the only criteria applied, in most of
the cases it will however be of some relevance. In order to estimate the amount
of time required by a certain “distributed device” to execute an algorithm
the CDFG needs to be mapped onto this hardware arrangement. For each
of the operations to be performed an execution-node within the hardware
representation needs to be chosen. Such a selection requires to consider the
data, time and transfer dependencies. For the sake of the argument we assume
that only binary functions are available, in particular no ternary add is available.
For this assumption the data dependency of a simple 3 element add operation
(Figures 2.2a and 2.2b) is expressed in the data flow graph (Figure 2.2c). It
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depicts the second add operation (add (5 | 7)) to have a data dependency on
the first one (add(3 | 4)). Within an execution mapping these two operations
are bound to be executed sequentially. They still can be distributed on different
execution-nodes. Whether this is beneficial from a performance point of view
depends on the layout of the hardware’s storage units, mainly whether an
additional data transfer is required in such a case.

Another common metric for a dedicated hardware mapping is the utilization
of compute- and storage units. Not only is this a good indicator whether the
selected hardware arrangement fits to the desired algorithm, such a metric
is relevant for other aspects as well. Having lots of unused hardware units
indicates a waste of resources, likely causing inefficient energy usage.

Such an under utilized hardware can be caused by a limitation of the
algorithm itself. Namely, a sequential algorithm being applied to a hardware
unit capable of parallel computation [Amd67; Gus88]. It can also indicate a
constraint in the hardware arrangement, like a bottleneck for the data transfer.
[WWP09] introduced the term “operational density” to discuss multi processor
architectures and their performance bounds with respect to operations and
memory bandwidth.

2.4.1 Hardware Model

With representing a hardware arrangement as graph, utilization of all the graph
based algorithms is possible within the estimation and mapping process. A
data flow graph can be expected to be a directed acyclic graph (DAG), as it is
generated by the SSA based intermediate representation. A graph representing
a hardware composition will not have this property.

Its nodes are suitably composed of two different types. Nodes which can
store data (storage-nodes), and nodes capable of servicing various operations
(compute-nodes). The membership to these two groups is a metadata property
of each node. Whether a membership to one of the two groups is however
mutually exclusive depends on the abstraction level of the modelling. The edge
weights will reflect the transfer cost applied to values passing in between nodes.
When this property is expressed in transfer time, the usual set of path finding
and shortest path algorithms [Bel58; Dij59] can be employed to estimate the
computational cost of a specific operation on a desired node.

In a quite low level style of hardware modelling, a CPU core and its attached
storage units can have quite different transfer cost. Likely the CPU to register
bank transfer is the cheapest, probably even a zero cost data exchange. A
non-volatile storage like a flash memory might require several CPU cycles to
be accessed. Also, the estimator for the data and computation distribution will
need to honour the fact that a flash memory is not suited for temporary data
due to its limited write cycles. Using a directed graph, with the storage-node
for the flash memory being connected in one direction only, can be used to
reflect this property. Any attempt to find a path to store a value within the
flash is doomed to fail in such a case.

A simplified example of a RISC based CPU architecture is depicted in
Figure 2.3. All nodes but one (the CPU/floating point processing unit
(FPU)) represent the various storage options for variables in a basic micro-
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1 #include <numeric >
2 #include <iterator >
3
4 template <typename T, unsigned N>
5 T TestFunction(const T (& a)[N])
6 {
7 using namespace std;
8 return accumulate(begin(a), end(a), T(0));
9 }

(a) C++ source

1 ; Function Attrs: nounwind uwtable
2 define linkonce_odr dso_local i32 @"??

↪→ $TestFunction@H$02@@YAHAEAY02$$CBH@Z"([3 x i32]*
↪→ dereferenceable (12) %a)

3 {
4 entry:
5 %arr = getelementptr inbounds [3 x i32], [3 x i32]* %a, i64 0,

↪→ i64 0
6 %0 = load i32 , i32* %arr , align 4
7 %ptr = getelementptr inbounds [3 x i32], [3 x i32]* %a, i64 0,

↪→ i64 1
8 %1 = load i32 , i32* %ptr , align 4
9 %add.1 = add nsw i32 %1, %0

10 %ptr.1 = getelementptr inbounds [3 x i32], [3 x i32]* %a, i64 0,
↪→ i64 2

11 %2 = load i32 , i32* %ptr.1, align 4
12 %add.2 = add nsw i32 %2, %add.1
13 ret %add.2
14 }

(b) intermediate representation source

int __cdecl TestFunction<int, 3>(int const (&)[3])

a

[0,0]

a

[0,1]
a

[0,2]

a

load
arr.i

add (3 | 4)load
ptr

add
add.1

add (5 | 7)

add.1

load
ptr.1

add
add.2

ret (7 | 8)
add.2

(c) Control and data flow graph

Figure 2.2: Example, sum elements of array
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Figure 2.3: ARM Cortex-M (simplified) [RB18a]

controller entity. Similar with two exceptions all connections are bidirectional.
Only the flash connections are unidirectional. It cannot be written in this
model. However, it might quite well suite as storage for constants.

In order to model a storage-node which can hold variables prior to executing
the algorithm to be analysed a “materialization” property is introduced. Any
storage-node might declare itself to have this property, indicating values can
be applied to it without the execution of the instructions actually executing a
store operation.

The model in Figure 2.3 still is quite simple as the CPU/FPU node can access
both register banks, the regular one and the floating point one. Also there is no
distinction between integer and floating point arithmetic. More complex system
descriptions, as shown in Figure 2.4, may separate the integer and floating
point units. For this model the CPU core cannot directly access the FPU cores
registers, and vice versa. Data exchange in between those two would utilize the
RAM storage-node. Transferring a constant from the ROM to the FPU node is a
quite expensive task. The shortest and (if excluding insentient ones) only path
is via the Registers node to the RAM node, and then via the FP Registers to
the FPU.

The DSP system in Figure 2.4 resembles a simplified representation of a
C6x micro-controller. It has two register banks (Register A, Register B)
two set of identical compute units (L, M, S, D). Each of which has a slightly
different set of capabilities [Ins02]. The M unit for example is unable to generate
constants, while the S unit is less capable with respect to multiply operations.

2.4.2 Execution time estimation basics

For properly modelling the behaviour of such arrangements the data transfer
model has to be extended. Transferring data alongside the graph is no longer
just a matter of consuming time (specified by the edge weight), but might also
allocate compute-nodes to do so. In order to express such behaviours in the
hardware graph an additional metadata property is required to be assigned to
each edge. This property declares a set of compute units required to perform a
data transfer alongside this edge.

After—presumably—identifying the shortest path by traditional algorithms
[Bel58; Dij59] the cost model requires adaption. In case a transfer utilizes
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Figure 2.4: Multi chip hardware model [RB18a]
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an edge whose metadata property indicates the involvement of another node
during this transfer, the allocation of this node has to be taken into account. If
the node is already busy at the time consumed by the desired transfer, the data
transfer cannot happen. In such a case additional delays need to be introduced,
to reflect the congestion of the required resources.

Consequently, each node needs to keep track on its allocation profile. Con-
sidering the parallel nature of a generic allocation algorithm, the assignments
are not guaranteed to be monotonic in time. A node might as well be requested
to contribute to an activity prior to its last recorded execution. Its allocation
tracking needs to properly handle such scenarios.

Facing this set of constraints, with respect to transferring data to compute
units, is a major issue in allocating a computation onto a distributed hardware.
While the aspects change whether the hardware represents a sparse distribution
(with mostly large edge weights) or a dense allocation (with lots of “cheap”
connections), the fundamental problem of transfer allocation stays the same.

For the example given above there are multiple potential bottlenecks. For
the RISC system the data transfer from ROM to RAM is likely to allocate the CPU
node. As both paths would require the CPU node to be available during the
transfer with such a constraint the paths ROM to Registers and Registers to
RAM cannot be utilized simultaneously. Despite the independent edges retrieving
some values from both of these to memories would demand sequential scheduling.
This constraint cannot be extracted out of the hardware graph as it is depicted
in Figure 2.4. This is simply because the metadata of the corresponding edges
is not shown. Another constraint will materialize within the DSP unit and the
data transfer to and from its local RAM storage.

On a very basic scale the distribution algorithm has to perform following
tasks.

1. Select an operation from the CDFG which shall be “executed”.
Any operation within the graph whose dependencies (inputs) have already
been computed (are available) can be selected.

2. Select a suitable compute-node to perform the operation.
In order to be considered as suitable a node has to expose following
properties.

• It can in principle execute the desired operation.

• All the inputs can be transferred to the compute-node.
This mandates the have at least one existing path from their current
storage-node to the compute-node in question.

• The storage-nodes alongside this path have free storage slots to hold
the variable in transit.

• If the operation is generating a result (is “non-void”), there shall be
a storage-node with a sufficient number of free slots, to hold the
result value.

The latter two properties might mandate an additional operation in the
next step.
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3. Optionally rearrange the stored variables in order to free space in the
involved storage-nodes. Either by moving them to other nodes (spilling)
or by overwriting them.

4. Estimate the total cost of the operation.
This includes the execution time, the time required for all the data trans-
fers, and possibly all delay slots introduced due to resource congestion.
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1 ; Function Attrs: noinline nounwind uwtable
2 define linkonce_odr dso_local float @"??

↪→ $TestFunction@M$0CA@@@YAMAEAY0CA@$$CBM@Z"([32 x float]*
↪→ dereferenceable (128))

3 {
4 call void @TrackBasicBlock_SpringBoard(i64 867, i64 744, i64

↪→ 928)
5 %2 = alloca %0, align 1
6 call void @Track_GEP_i64i64(i64 4077, i64 744, i64 584, i64 0,

↪→ i64 32)
7 call void @TrackBasicBlock_SpringBoard(i64 867, i64 744, i64

↪→ 584)
8 %3 = getelementptr inbounds [32 x float], [32 x float]* %0, i64

↪→ 0, i64 32
9 call void @Track_GEP_i64i64(i64 4077, i64 744, i64 792, i64 0,

↪→ i64 0)
10 call void @TrackBasicBlock_SpringBoard(i64 867, i64 744, i64

↪→ 792)
11 %4 = getelementptr inbounds [32 x float], [32 x float]* %0, i64

↪→ 0, i64 0
12 %5 = bitcast %0* %2 to i8*
13 call void @llvm.lifetime.start.p0i8(i64 1, i8* %5)
14 call void @Track_GEP_i64i32(i64 4077, i64 744, i64 8, i64 0, i32

↪→ 0)
15 call void @TrackBasicBlock_SpringBoard(i64 867, i64 744, i64 8)
16 %6 = getelementptr inbounds %0, %0* %2, i64 0, i32 0
17 store i8 undef , i8* %6, align 1
18 br label %7
19
20 7: ; preds = %7, %1
21 %8 = phi float [ %12 , %7 ], [ 0.000000e+00, %1 ]
22 %9 = phi float* [ %13 , %7 ], [ %4, %1 ]
23 call void @TrackBasicBlock_SpringBoard(i64 867, i64 744, i64

↪→ 5320)
24 %10 = load float , float* %9, align 4
25 %11 = fmul float %10 , %10
26 %12 = fadd float %11 , %8
27 call void @Track_GEP_i64(i64 4077, i64 744, i64 6640, i64 1)
28 call void @TrackBasicBlock_SpringBoard(i64 867, i64 744, i64

↪→ 6640)
29 %13 = getelementptr inbounds float , float* %9, i64 1
30 %14 = icmp eq float* %13 , %3
31 br i1 %14 , label %15 , label %7
32
33 15: ; preds = %7
34 call void @TrackBasicBlock_SpringBoard(i64 867, i64 744, i64

↪→ 2744)
35 %16 = bitcast %0* %2 to i8*
36 call void @llvm.lifetime.end.p0i8(i64 1, i8* %16)
37 %17 = tail call float @sqrtf(float %12)
38 ret float %17
39 }

Listing 2.33: vector norm, intermediate representation
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Chapter 3

Results

3.1 Control and Data Flow Graphs

3.1.1 Simplified Microbenchmark

For a first evaluation a simple hardware model, according to Figure 2.3 is used.
It reflects a simple RISC core with floating point capability. Two very basic
routines are used in this initial evaluation. At first this involves adding a few
numbers (Figure 2.2a, Equation (2.1)), and later the element wise MAC of two
arrays (Listing 3.1, Equations (3.1) and (3.2)).

y =
N−1∑︂
i=0

c[i] · x[i] (3.1)

r = r + (b · c) (3.2)

y[n] =
N−1∑︂
i=0

c[i] · x[i−N ] (3.3)

The MAC routine is the simplified form of the core routine of an finite
impulse response (FIR) filter (Equation (3.3)). The input data is represented
by argument a, while b would correspond to the filter coefficients. The first in
first out (FIFO) nature of the input array, required to perform filtering of a
complete input vector, is omitted in this example.

1 template <typename T, unsigned N>
2 T TestFunction(const T (& a)[N], const T (& b)[N])
3 {
4 T r = T(0);
5 for(auto idx=0;idx <N;++idx)
6 r += a[idx] * b[idx];
7 return r;
8 }

Listing 3.1: array multiply accumulate (simplified FIR core)

These routines are quite primitive, and although self-contained as such, are
rather useless on their own. However, their expected runtime and compute
profile is well known, which qualifies them for a first comparison.
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In addition to the model based estimation a very basic model-less algorithm
is used. The model-less algorithm does not reflect any data move operation,
and simply counts the number of compute operations within the CDFG. By
definition such an estimation can only produce reasonable results under a
dedicated set of boundary conditions.

• The estimation is only valid for a hardware arrangement with a single
compute-node.

• The compute nodes capability closely matches the instruction set of the
LLVM assembly language.

• There is no significant limitation on the data access.

Except for the register pressure, and the need for spilling these assumptions
hold for the model referenced in Figure 2.3. For the model based estimation some
parametrization within the model has been applied. Almost all instructions
within the intermediate representation are assumed to map to a single cycle
instruction of the RISC core. Only a subset of the more complex floating point
arithmetic functions (like for example the floating point square root (VSQRT))
is assigned a higher cycle cost. A compute-node will therefore require several
cycles to server these instructions. The second adoption is on the data load and
store operations. Locality of the data, and as such the assignment to registers
is a dominant concern when mapping the intermediate representation to target
specific assembly [ASU06, Chaper 11]. The spilling operations [FH92] will
degrade the execution performance. Finding an optimal allocation of variables
within the registers is an ongoing research topic. In addition, there are plenty of
algorithms [AG01; QP08; Len12] available to perform this tasks. Any compiler
is required to implement at least one of these algorithms, when generating the
machine code. For this early study an overly simplified approach is used. We
assign a fixed amount of cycles to be consumed by any spilling (respectively
load/store) operation, rather than modelling the register allocation. This fixed
cost and the number of registers are parametrized to generate a set of reference
models. For the full parameter sweep a set of 66 models is used in this early
evaluation. Their details are shown in Table 3.1. Most of the early estimation
results have already been presented in a previous publication [RB18a], whereas
in this work some more details on the interpretation are given.

For reference both algorithms have been executed on a hardware board
[ST 18] with the CPU cycle count as figure of merit for the execution time.
The build-in cycle counter of the ARM core was used to count the number of
CPU cycles. Its data was manually extracted via an integrated development
environment (IDE)1. As development environment VisualGDB [Vis20], with the
GCC [GNU20] was used for compiling the code. For such small code snippets
all recent compiler versions produce identical assembly output.

The results are shown in Figures 3.1 and 3.2. The execution time estimates in
these figures are normalized to cycle count measured by the hardware reference
prototype.

1https://visualgdb.com/tutorials/arm/chronometer
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Figure 3.1: Normalized estimates vector sum (
∑︁N

i ai)[RB18a]

Figure 3.2: Normalized estimates FIR iteration (
∑︁N

i aibi)[RB18a]
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Table 3.1: Early Evaluation Models

Model No. No. of Registers Spilling Cost
1 n/a n/a
2 3 2.0
3 3 2.25
4 3 2.5
5 3 2.75
6 3 3.0
7 4 2.0
8 4 2.25
9 4 2.5
10 4 2.75
11 4 3.0
12 5 2.0
...
65 15 2.75
66 15 3.0

For the algorithm performing a simple accumulation (Figure 2.2a) there is
quite a good match between the estimate and the true value (real hardware
model). Increasing the load store delay has a rather linear impact on the
execution time estimation. For a simple fold operation this is expected, as its
memory access profile is straight forward. Every element in the input array
needs to be accessed exactly once, and the access is performed in strictly
increasing indexing. With a model not reflecting any cache behaviour the
access pattern, whether its continuous increasing, decreasing or random cannot
impact the estimation. There are no cache lines to hit, or burst accesses to be
modelled. There is also almost zero impact on the number of registers in the
hardware model. As a rule of thumb a larger number of registers offers better
performance, as the increase locality of the data and virtually act as cache.
But for a basic foldl operation a total of three registers is already sufficient
(loop counter, accumulator and zero flag). As such it is quite apparent that
increasing the register count even further will not improve the performance, as
the implementation is unable to utilize the additional registers.

Modelling on such a low level does reveal quite a large degree of hardware
subtleties. The ARM Cortex-M4 for example has pre and post increment load
operations. This allows the compiler to generate a four instruction loop for
the fold core (ldr, cmp, add, beq as shown in Listing 3.2). The intermediate
representation does not have this ability, and such is obliged to revert to a five
instruction sequence (load, add, add, cmp, br as shown in Listing 3.3). For
the second add instruction clang has decided to a particular LLVM assembly
language idiom rather than adding a pointer (or index).

It uses a combination of a Φ-node together with a getelementptr instruction
referencing the second element. The indexing starts at zero, hence index one
references the second element. Subsequently, accessing the second element of
an array (pointer) based on the previous second element advances through the

44



input array. An alternative representation would have been incrementing the
index by one and using the increased index for the getelementptr instruction.

1 ;template <typename T, unsigned N> T TestFunction(const T (& a)[N])
2 4: 2300 movs r3, #0
3 ; __init = _GLIBCXX_MOVE_IF_20(__init) + *__first;
4 6: f850 2b04 ldr.w r2, [r0], #4
5 ; for (; __first != __last; ++ __first)
6 a: 4288 cmp r0, r1
7 ; __init = _GLIBCXX_MOVE_IF_20(__init) + *__first;
8 c: 4413 add r3, r2
9 ; for (; __first != __last; ++ __first)

10 e: d1fa bne.n 6 <
↪→ _Z12TestFunctionIiLj40EET_RAT0__KS0_ +0x6>

11 ;{
12 ; using namespace std;
13 ; return accumulate(begin(a), end(a), T(0));
14 ;}
15 10: 4618 mov r0, r3
16 12: 4770 bx lr

Listing 3.2: foldl core, ARM Cortex-M4 assembly code

1 for.body.i.i: ; preds = %entry , %for.body.i.i
2 %_UFirst .010.i.i = phi i32* [ %incdec.ptr.i.i, %for.body.i.i ],

↪→ [ %arraydecay.i, %entry ]
3 %_Val.addr .09.i.i = phi i32 [ %add.i.i.i, %for.body.i.i ], [ 0,

↪→ %entry ]
4 %0 = load i32 , i32* %_UFirst .010.i.i, align 4, !tbaa !8
5 %add.i.i.i = add nsw i32 %0, %_Val.addr .09.i.i
6 %incdec.ptr.i.i = getelementptr inbounds i32 , i32* %_UFirst .010.

↪→ i.i, i64 1
7 %cmp.i.i = icmp eq i32* %incdec.ptr.i.i, %add.ptr.i
8 br i1 %cmp.i.i, label %"?? $accumulate@PEBHH@std@@YAHQEBH0H@Z.

↪→ exit", label %for.body.i.i

Listing 3.3: foldl core, LLVM assembly language code

This single miss-modelling bias causes a constant error within each loop
iteration, as otherwise both model and reference have an identical instruction
set. This systematic estimation error is however “accidentally” compensated
by the cost assigned to the load/store operation. The cost model assigns two
cycles for a load operation, while the real hardware consumes only one cycle.
As the load instruction is also executed once per loop iteration, these two errors
compensate each other.

The FIR algorithm, in contrast to the foldl operation, experiences a strong
dependency on the number of registers within the model. This is also a quite
expected behaviour. The reference hardware (ARM Cortex-M4) has 16 general
purpose registers, and while not all of them can be freely used (like the stack
pointer or link register) an estimation is damned to be quite bad if restricting
the hardware model to three registers. Even assigning very low spilling costs
(like model index 2) cannot compensate for such a modelling flaw. A 40...50 %
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increase compared to reality is experienced. As soon as reaching the critical
limit of seven registers (index 22 and onwards) the estimation results flatten.
This is again an expected behaviour. Both data vectors are initially located in
FLASH, respectively random access memory (RAM) and the performance does
no longer increase as soon as sufficient registers for the loop counter, memory
pointers and accumulate variable are available.

The notable exception is the 16 tap FIR algorithm which continues to speed
up with making further registers available. This is likely to be caused by the
fact that the coefficient vector is small enough to fit almost entirely into the
register bank.

In total the model has a slight bias, representing its tendency to estimate
a bit too pessimistic. A plausible reason for this bias might be the fact that
the model (and the LLVM assembly language) does not have a representation
of a MAC instruction, while the reference hardware does. This enforces the
estimator to run two consecutive operations (multiply and accumulate), while
the reference does merge these two operations into a single one (MLA [ARM10]).

Summarizing for a quite simplified modelling approach ±10% accuracy can
be achieved. To reach this accuracy some tuning of the model parameters is
required. This however is a micro benchmarking comparison, and such a tuning
has a reasonable potential to fulfil Knuth’s “premature optimization is the root
of all evil” [Knu74] claim.

3.1.2 Arithmetic benchmark

For a second benchmark various hardware arrangements are evaluated with
respect to their performance for a matrix vector multiplication (Equation (3.4)
and Listing 3.4). C style indexing (zero based) is used for these examples and
equations.

r =

⎛⎜⎜⎜⎝
m0,0 m0,1 · · · m0,n−1

m1,0 m1,1 · · · m1,n−1
...

... . . . ...
mm−1,0 mm−1,1 · · · mm−1,n−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v0
v1
...

vn−1

⎞⎟⎟⎟⎠ (3.4)

1 template <typename T, size_t N, size_t M>
2 void TestFunction(const T(&m)[M][N], const T(&v)[N], T(&r)[M])
3 {
4 for (size_t i = 0; i < M; i++)
5 {
6 T tmp = T(0);
7 for (size_t j = 0; j < N; j++)
8 {
9 tmp += m[i][j] * v[j];

10 }
11 r[i] = tmp;
12 }
13 }

Listing 3.4: Matrix Vector multiply, C++ code
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TestFunction<float,2,2>

m

m[0,0,0] m[0,0,1]m[0,1,0] m[0,1,1]

fmul (2 | 4)
 [MatrixVector.cpp:19:0] 

v

v[0,0] v[0,1]

fmul (2 | 17)
 [MatrixVector.cpp:19:0] 

fadd (3 | 5)
 [MatrixVector.cpp:19:0] 

fadd (4 | 11)
 [MatrixVector.cpp:19:0] 

tmp
<const float 0.000000e+00>

fadd (3 | 18)
 [MatrixVector.cpp:19:0] 

fmul (2 | 10)
 [MatrixVector.cpp:19:0] 

fmul (2 | 22)
 [MatrixVector.cpp:19:0] 

r[0,0]

r

fadd (4 | 23)
 [MatrixVector.cpp:19:0] 

r[0,1]

Figure 3.3: 2x2 matrix vector multiply, fully unrolled

The extracted CDFG for such a small program depends quite heavily on
the optimizations performed by the compiler. Due to the fact that the matrix
size is known at compile time, the optimizer is very likely to fully unroll the
nested loop. Especially if the matrix size is very small. For the sake of the
argument, and to still have a suitable sized graph for the visualization the
CDFG of a 2x2 matrix is depicted in Figure 3.3. Each rectangular node in
this picture indicates a compute operation which needs to be performed, while
the elliptic nodes are used to represent variables. Dashed lines indicate the
array slicing as described in Section 2.3.8. The “meta nodes” indicating the
variables m, v and r serve only representational proposes. For the analysis only
the individual array and matrix elements are of interest. The numbers given
next to the operations name indicate the rank and linear execution count. The
rank is an indicator for the ability to schedule the instruction with respect to
others. A rank of zero indicates any operation whose dependencies are fulfilled
at the beginning. As such they only depend on initially available input. A rank
indicator of one indicates an operation whose depends on at least one rank zero
operation. A rank indicator of two reflects an operation whose depends at least
on one rank one statement and so forth. The linear execution count is the time
stamp assigned to this operation when executing the program on a hardware
setup with a single compute-node. Both numbers are only indicative and the
automated scheduling is not required to oblige to them. Obviously all control
structures, like branches, have been eliminated in this example, as both of the
loops have been fully unrolled by the optimizer.

Figure 3.4 demonstrates the same code as shown in Figure 3.3 but with
forcefully forbidding loop unrolling. This causes the loop overhead (counting
and conditional branching) to survive the optimization steps, and as such be
represented in the CDFG.

The hardware models used for this evaluation are composed of a general
purpose compute-node, and a set of dedicated arithmetic cores, as exemplarily
depicted in Figure 3.5. Some properties are common for all the hardware
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TestFunction<float,2,2>

m

m[0,0,0]

m[0,0,1]

m[0,1,0]

m[0,1,1]

fmul (3 | 6)
 [mv.cpp:19:0] 

v

v[0,0]

v[0,1]

fmul (5 | 26)
 [mv.cpp:19:0] 

fadd (4 | 7)
 [mv.cpp:19:0] 

fadd (7 | 14)
 [mv.cpp:19:0] 

tmp
<const float 0.000000e+00>

fadd (6 | 27)
 [mv.cpp:19:0] 

br (1 | 8)
 [mv.cpp:17:0] 

fmul (3 | 13)
 [mv.cpp:19:0] 

<const i1 true>

br (0 | 28)
 [mv.cpp:17:0] 

fmul (3 | 33)
 [mv.cpp:19:0] 

r[0,0]

br (1 | 15)
 [mv.cpp:17:0] 

add (2 | 18)
 [mv.cpp:14:0] 

<const i1 false>

br (1 | 35)
 [mv.cpp:17:0] 

r

icmp (3 | 19)
 [mv.cpp:14:0] 

add (3 | 38)
 [mv.cpp:14:0] 

i
<const i64 0>

j
<const i64 1>

br (4 | 20)
 [mv.cpp:14:0] 

<const i64 2>

icmp (4 | 39)
 [mv.cpp:14:0] 

fadd (7 | 34)
 [mv.cpp:19:0] 

r[0,1]

br (7 | 40)
 [mv.cpp:14:0] 

Figure 3.4: 2x2 matrix vector multiply, no unrolling

arrangements evaluated.

• All input data (the matrix m and the vector v) is initially located in the
RAM (main) node.

• The complete output data (the vector r) shall finally be stored in the
RAM (main) node.

• The general purpose compute core (CPU) is the only ode which can access
this storage.

• The ALU nodes on the other hand are much more capable with respect
to arithmetic processing. In particular the can perform floating point
operations much faster than the general purpose node.

• Any data transfer over these edges requires utilization of a dedicated
compute-node.

Obviously a balance has to be found to either transfer the data to the ALU
nodes, perform a fast execution, and copy the data all the way back to the
RAM (main), or run the computation with higher cost on the general purpose
core. The basic fact that increasing the amount of compute nodes will not
linearly decrease the runtime is well known [Amd67; Gus88]. The problem
however remains to identify the threshold at which additional compute units
do not speed up the computation any more, or are only inadequately utilized.
Answering this questions does not only depend on the computational profile
of the algorithm, but also on the properties of the model. Most dominantly
the transfer cost over the edges, or the ratio between the CPU floating point
cost and the transfer time. The node allocation for such a transfer, and the
parametrizable cost (tacc) are depicted in Figure 3.6. The model used demands
the general purpose core (CPU) to transfer data to and from the main RAM
(RAM (main)) and the ALU exchange node (ARAM (shared)). Each ALU in
turn can access this node, and transfer its data to its individual register storage
(e.g. Regs #1). The transfer cost is variable (tacc), but generally high. In
order to prevent excessive spilling cost, a dedicated storage-node (like RAM #1)
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Figure 3.5: Multi core architecture with 4 ALU cores

is associated with each ALU. Figure 3.6 depicts the transfer realms in different
colours. All ALU units can access the shared storage in parallel, but at high
cost. With more ALUs this cost is likely to increase due to bus arbitration.

From an implementation point of view such a design can be implemented in
a straight forward synchronous design, with a global clock. The shared RAM
entity (ARAM (shared)) might be a dual ported memory. Using a dedicated port
for the CPU side access offers a short access timing. The multi-user port for
the various ALU cores requires several cycles to be accessed, likely to increase
with extending the model with additional ALU units.

3.2 Manual Performance Estimation
A matrix vector multiply has a well known computational profile. Multiplying
a m×n matrix with a vector requires exactly m · n · n = m · n2 MAC opera-
tions. Assuming all computation to be done by ALU nodes, the data transfer
requirements are quite predicable as well. The matrix, as well as the vector has
to be transferred to the ALU cores, hence into the shared memory. Once the
result is complete the result vector r demands transfer into the main RAM. So
a simple straight forward algorithm would use the general purpose CPU node
to transfer the matrix m and vector v to the shared storage-node, wait for the
ALU nodes to finish the computation, and copy the result back to the main
RAM.

Following the notation given by Knuth [Knu76] its computational effort is
given by Equation (3.5). All computations which are served by the CPU are
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Figure 3.6: Multi core architecture, transfer node allocation

pure transfer operations, as in our scenario all mathematical operations are
done by the ALU units.

fCPU(n,m) = Ω(m · n+m+ n) (3.5)
m · n ≫ n ∧m · n ≫ m (3.6)

f̂CPU(n,m) = Ω(m · n) (3.7)

The lower computation bound can be simplified with reasonable accuracy
to Equation (3.7), when assuming m and n to be sufficiently large, such that
Equation (3.6) holds.

For the corner cases n = 1, respectively m = 1 the computation degrades
to a row vector column/vector operation, and Equation (3.5) collapses to
Equation (3.7) and further to f(m, 1) = Ω(m) and f(1, n) = Ω(n).

With only a single node (the CPU) being responsible for these actions
no option or distribution exists to fasten the computation. For the sake of
simplifying this argument and without proof any housekeeping computations
(like loop counters), done by the CPU are considered as not relevant for the
result and ignored. Either due to the known matrix size the loops are unrolled by
the compiler, or the loop overhead happens in parallel to the ALU movements.
For the mathematical operations the manual prediction becomes a little more
subtle. In order to provide suitable boundary conditions, following additional
assumptions are made:

• The vector size n and the number of ALU (c) cores follow Equation (3.8),
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that is the vector size is a multiple of the number of ALUs.

∃i ∈ N+ : i · c = v (3.8)

• The RAM module attached close to the ALU cores are sufficiently large.
In particular, they are large enough to hold the entire vector v, and all
spilling data.

The following assumptions do not claim any formal guarantee on the optimal
distribution, but for an intuitive estimation a few conclusions might be expected:

• The MAC operation for a single matrix line with the vector is performed
entirely by a single ALU. This allows to conclude that no intermediate
results are shared between the ALU nodes.

• Spilling is only performed into the dedicated RAM nodes close to the
ALU. No spilling data is to be (expensively) transferred to the ARAM
(shared) node.

Under these assumptions the intuitive estimation for a four ALU hardware
with a two cycle access for tacc performing a 16x16 matrix vector multiplication
boils down to following:
To transfer the matrix and the vector to the shared RAM accessible by compute-
nodes (ALUs) 3(m · n+ n+m) = 864 cycles are required.

Each ALU in turn will be in charge of 4 matrix rows. This will require
tacc · n = 32 cycles to fetch the vector data and 4 · tacc ·m = 128 cycles to
fetch all the rows.

Assuming a single cycle performance for fmul and fadd we will end up in
(m · 4) · 2 = 128 cycles for the computation itself. Because all ALU cores shall
run in parallel, it is sufficient to consider the execution time of one core. For
the result we need to transfer only one value per matrix line, hence another
4 · tacc = 8 cycles.

The CPU than will need another 3 · 16 cycles to transfer the data from the
shared RAM to the main RAM.

The crude estimate is tCPU = 864 and tALU = 160+128+128+8+16 = 440
cycles. Assuming full parallelism the optimistically formulated lower bound
is given by equation Equation (3.9) with C denoting some small constant to
attribute for the delayed start of the ALUs. They cannot start until at least
some required data has arrived at the node “ARAM (shared)”.

tmin > min(tCPU , tALU + C) (3.9)

However, the hardware model does only supply eight registers near the ALU
core. This is insufficient to store the entire vector v within the register bank.
Estimating the spilling cost is a tedious and error prone process.

51



2 4 6 8 10 12 14 16

Number of ALUs

1300

1400

1500

1600

1700

1800

1900

2000

C
y
c
le

s

(a) Required compute cycles

2 4 6 8 10 12 14 16

Number of ALUs

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

S
p

e
e

d
U

p

(b) Achieved speed up

Figure 3.7: Performance 16x16 Matrix Vector Multiplication

3.3 Automated Distribution Analysis
In order to eliminate the flaws in such a manual performance estimation an
automated approach is desired. With expressing the hardware model as directed
and weighted graph a generalized algorithm for the estimation can be used.

Based on the hardware model as depicted in Figure 3.6 the number of cycles
and respectively the speed up to run the 16x16 matrix vector multiplication
follows Figures 3.7a and 3.7b.

It is evident that the manual estimation was quite inaccurate, and far to
optimistic. As it did not take the limited space in the register bank into account,
this was expected.

In general the speed up shown in Figure 3.7b shows a habitual behaviour.
A matrix vector multiplication is well suited for parallelization, and as such
adding more ALU cores will improve the performance. However, the hardware
is not able to suitably utilize more than four ALU cores in this scenario. As all
data has to be prepared via the CPU core it materializes as bottleneck for the
parallelization. This is especially true as the data transfer within the domain
of the ALU cores is faster. With tacc = 2, they are faster with their memory
access compared to the three cycles required for the CPU to access the shared
RAM.

A graphical investigation of the distribution pattern as generated by the
automated distribution algorithm is depicted in Figure 3.8. These figures
demonstrate the activity of the computation hardware at the various steps
within the computation cycle. A computation cycle is equivalent to a certain
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fixed time slice. It is normalized to the assumed clock period of the fastest
node within the arrangement.

Within these graphs an octagonal node represents a compute-node, that is
one which is suited to serve instructions. A node might be capable of serving
any possible instruction or just a subset. The number shown below the node
identifier (a unique name) represents the number of instructions the node has
already served.

A node shown with an elliptical shape represents a storage-node. It cannot
process instructions but store a certain amount of values. Different to compute
nodes the number printed below the nodes name does not represent the number
of executed instructions, but the amount of variables stored within the node.
While the intermediate representation is a strictly typed language the storage-
nodes are not. For reasons of simplification the implementation only models
their storage capacity via a number of value slots. There is no formal dependency
between the number of bytes allocated within this memory, and the number of
variables currently stored. A variable of type double consumes a single slot, as
well does a variable which represents a single bit (bool in C++ or i1 in LLVM
assembly language).

Coloured nodes and edges represent and activity, while black nodes and
connections are inactive at the specific time point. Nodes coloured in brown
(colour code #A0522D “sienna” [Fe01]) declare an active data transfer. This
involves the originating storage-node, as well as the target storage-node. Op-
tionally a data transfer might also occupy a computational node (like the CPU).
In such a case the corresponding node is coloured as well.

Occupying a dedicated compute-node for data transfer operations is only
relevant for the nodes allocation and availability for other actions. It does not
increment the counter monitoring the number of instructions served by this
node. The edges allocated by the transfer are marked in green (colour code
#00FF00 [Fe01]).

Compute nodes whose are filled with cyan (colour code #40E0D0 “turquoise”
[Fe01]) are currently serving an instruction.

The cycle 104 (Figure 3.8a) represents the cycle at which the CPU node
is finalizing the transfer of the second operand of the first fmul operation
(v[15]). As it can be seen by the variable counter in Regs #1 the first operand
(m[15,15]) has already been placed in the desired target node in previous
computation cycles. Immediately after finalizing this transfer (Figure 3.8b) the
operand is rerouted to the Regs #1 node in order to fulfil the needs of running
the fmul operation on node ALU #1 in the computation cycles to follow. In
parallel the CPU continues to load data into the ARAM (shared) node in order
to prepare for future arithmetic operations on the floating point capable nodes
ALU #0 to ALU #3. Once the two required variables have been transferred to
the desired storage-node (Regs #1) the attached computation (ALU #1) node
executes the instruction, fetching both operands from Regs #1 (Figure 3.8d).
In this case this is the only place suited for the operands.

Figure 3.9 depicts the computational sequences 124 to 127. In cycle 125
(Figure 3.9b) the register pressure on Regs #1 becomes too high. As there is no
more space available in the register bank to store the result of the instruction,
there is need of moving one of the intermediate values to an alternate location.
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Execution Step : 105
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Execution Step : 106
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Execution Step : 107
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Figure 3.8: 16x16 matrix vector multiplication, computation cycle 104...107
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Execution Step : 124
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Execution Step : 125
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Execution Step : 126

 CPU
[48]

Registers
[12]

0

0

RAM (main)
[312]

1

ARAM (shared)
[9]

21

3

2

3

Regs #0
[0]

2

Regs #1
[7]

2

Regs #2
[0]

2

Regs #3
[0]

2

ALU #0
[0]

0

2

0

RAM #0
[0]

1 1

ALU #1
[6]

0

2

0

RAM #1
[1]

1
1

ALU #2
[0]

0

2

0

RAM #2
[0]

1
1

ALU #3
[0]

0
2

0

RAM #3
[0]

1 1

(c) Cycle 126

Execution Step : 127
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Figure 3.9: 16x16 matrix vector multiplication, computation cycle 124...127
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Execution Step : 1370
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Execution Step : 1372

 CPU
[48]

Registers
[12]

0

0

RAM (main)
[327]

1

ARAM (shared)
[432]

21

3

2

3

Regs #0
[8]

2

Regs #1
[8]

2

Regs #2
[8]

2

Regs #3
[8]

2

ALU #0
[51]

0

2

0

RAM #0
[39]

1 1

ALU #1
[228]

0

2

0

RAM #1
[222]

1
1

ALU #2
[176]

0

2

0

RAM #2
[164]

1
1

ALU #3
[57]

0
2

0

RAM #3
[42]

1 1

(c) Cycle 1372

Execution Step : 1373
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Figure 3.10: 16x16 matrix vector multiplication, computation cycle 1370...1373

This is called spilling [FH92]. For the depicted hardware structure the RAM #1
node is the most appropriate node to do so. It has the lowest cost to store and
restore a value.

In parallel the ALU #2 (Figures 3.9c and 3.9d) node is in the stage of
becoming ready for processing its first instruction, by loading the required
operands.

The final steps of the computation sequence are shown in Figure 3.10. The
last data is transferred to the RAM (main) node to fulfil the finalization criteria
as stated in Section 3.1.2. From the node counters it is apparent that not
all the compute-nodes have been utilized to an equal amount. As the data
transfer to the floating point capable nodes, via the ARM (shared) nodes acts
as bottleneck, this hardware arrangement cannot provide a sufficient amount
to data bandwidth to fully occupy all computation nodes.

Multiplying the 16x16 matrix with an 16x1 vector requires 256 MAC
operations. As the ALU #x nodes do not support this as a single instruction,
its has to be emulated by a sequence of two operations (fmul, fadd). As such
the compute-nodes (ALU #0...ALU #15) are expected to serve 512 instructions.
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Figure 3.11b depicts the total number of instructions executed by the CPU
and ALU cores of the different hardware model variants. For this test a
set of 16 hardware models has been used, equipped with respectively one
to sixteen ALU cores according to Figure 3.12. Despite the fact that the
general purpose computation node (CPU) is highly unsuited to perform such
floating point operations a few of them are assigned to it. This is simply an
indication that the data transfer rate to the computation nodes is faster than
their computational capability.

The CPU node can push a new value into the ARAM (shared) node every
third cycle. The computation nodes can extract those values every second cycle,
hence faster. But at least a third cycle is consumed by the operation itself.
Including the spilling efforts this allows the CPU to expensively pre-process the
data prior to moving it to the ARAM (shared).

In the example given in Figure 3.11 the computational performance difference
is 80:1. That is the CPU node requires 80 cycles to perform a floating point
operation, while the dedicated floating point ALUs can server such an instruction
in a single cycle. As long as there are less that three floating point nodes
within the hardware arrangement, the data transfer bandwidth outperforms
the computation capability. The CPU can push more data to the ALU nodes
that those are capable of processing.

With at least three floating point units the processing capability exceeds
the threshold, and using the slow CPU to run some of the fmul instructions is
no longer beneficial.

For the hardware models (Figure 3.12) used in this example all floating
point nodes are equal. Each of which has the same memory bandwidth to
the shared memory node, as well as operates as single cycle compute-node.
Figures 3.12a to 3.12d and 3.13 depict the node allocation exactly as chosen
by the automated distribution algorithm. On Figure 3.12b for example it can
be seen that ALU #1 (351 instructions) is used more heavily than ALU #0 (only
159 instructions).

Figure 3.13 provides a clear evidence that the computational load is not
evenly distributed among the available ALU cores. This visualization however
is not suited for a proper demonstration of the distribution aspect. For reasons
given above for this hardware arrangement we can arbitrarily reshuffle their
numbering after allocating the instructions, without influencing the result.

Similar to Figure 3.13, Figure 3.14 depicts the amount of operations per-
formed by the various nodes. For a better visualization of this fact however, the
numbering of the ALU nodes has been rearranged in this graph. In Figure 3.14
ALU #0 always represents the floating point node with the highest number of
instructions executed, and subsequent numbering is used for ALU nodes with
decreasing allocation. ALU #15 will therefore always represent the least used
node. This depicts with much more clarity that the allocation of added ALU
units is quite low. Starting with one ALU the distribution algorithm will
obviously allocate all of the instructions not handled by the CPU to it. Adding
another unit will achieve a 70:30 split, hence the second unit will only take
care of one third of the instructions, or computed the other way round do only
half as much work as the primary node.

Even if an infinite amount of floating point compute-nodes would be added,
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Figure 3.12: Different HW models, instruction distribution
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almost 70 percent of the workload will be served by only two units. Even if
compute performance (speed up) is more important than hardware efficiency,
respectively allocation, for this arrangement (Figure 3.12) four compute units
are sufficient (Figure 3.7b).

In addition to the overall utilization, the allocation of the nodes as function
of the time (or cycle count) is a relevant metric for the efficiency of the hardware,
when executing a dedicated algorithm. As all the previous figures this metric is
highly dependent on the computational and memory profile of the algorithm.

Figure 3.15 depicts the normalized load of each compute-node within the
hardware models with two (Figure 3.15a) to seven (Figure 3.15f) ALU units.
Within a single cycle a node can only be busy (hence 100 percent loaded), or
idle (0 percent load). The load average is computed by post processing this
impulse train with a zero phase moving average filter ([OS09]).

Due to the nature of the hardware arrangement only the CPU node can
begin to operate from the very beginning, the ALU nodes are obliged to idle
until at least some data transfer to the ARAM (shared) has finished. For the
initial data transfer, the parameters (the matrix m, and the vector v) need
to be transferred to the ALU nodes. After the computation the result vector
has to be stored in the RAM (main) node. During this phase the CPU is the
primary node in charge, and limits the overall allocation. This is visible in the
black line of figure 3.15, showing a drop at the beginning and the end of the
sequence.

Table 3.2 shows the overall allocation for the entire algorithm. In Equa-
tion (3.10) l(i) denotes the binary load indication, hence the unfiltered raw data
of Figure 3.15, tmax is the runtime of the sequence for this particular hardware
platform.

l̂ =
tmax∑︂
i=0

l(i)

tmax

(3.10)
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Table 3.2: Total Allocation

No of ALUs System Load, l̂
1 0.8468
2 0.6743
3 0.5254
4 0.4811
5 0.3984
6 0.3251
7 0.3253
8 0.2831
9 0.2596
10 0.2390
11 0.2164
12 0.1997
13 0.1855
14 0.1731
15 0.1623
16 0.1527

3.3.1 Anomalies

Although it is expected that adding additional compute nodes will not always
increase the performance, we expect from a suitable distribution algorithm to at
least not degrade performance with additional compute power. For the scenario
considered in the previous section this can be formally expressed. Figure 3.12
depicts some hardware models. Equation (3.11) denotes the graph representing
a model with i ALU nodes. Vi is the set of vertices (compute or storage-nodes),
while Ei being the set of vertices and edges. As additional ALU nodes will only
extend the graph we can rely on the fact that Equation (3.12) holds.

HWi = G(Vi, Ei) (3.11)
G(Vi+1, Ei+1) ⊂ G(Vi, Ei) (3.12)

S(Gi+1) ≤ S(Gi) (3.13)

Following this it is trivial to conclude that any valid solution for the dis-
tribution problem for graph Gi is also valid for graph Gj∀j > i. This can be
simply achieved by not using the new vertices and edges introduced by Gj.
Under the assumption that newly introduced nodes and edges shall improve
the performance metric of the system it is unlikely the optimal solution, but
it proves that Gj cannot perform worse than Gi with an optimal distribution
algorithm (Equation (3.13)). The speed up S is therefore bound to be mono-
tonically increasing (Equation (3.13)). A distribution algorithm which fails to
deliver this performance metric is considered as non-optimal.

As the goal of a distribution algorithm as adumbrated in Section 2.4.2 is
to find an optimal distribution, it seems obvious to expect such a behaviour.
Newly added resources whose fail to contribute to a better result shall simply
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not be used. However, Figure 3.7 clearly indicates the contrary. The hardware
equipped with six ALU nodes (G6) performs worse than its subsets G5 and G4,
violating the assumption above.

A careful comparison on the node allocation of the G5 and G6 case yields a
difference in the first step of the algorithm, the selection of the next instruction
from the set of “ready” instructions. An instruction is considered “ready” if
all its inputs have been computed, hence its preconditions are fulfilled. The
description on 2.4.2 ensures that for an selected instruction the optimal node is
selected. It however does not make any claim how to choose the next instruction
for scheduling in case the ready set contains more than one operation.

Non determinism

While not immediately obvious, the implementation of the distribution algo-
rithm described above has a nondeterministic property. Listing 3.5 depicts
the relevant code snippets. The get_next_operation function implements a
deterministic operation retrieval, based on the first element in the std::set. A
set is an associative container that supports unique keys (contains at most one
of each key value) and provides for fast retrieval of the keys themselves. [ISO98;
ISO11; ISO14; ISO17a]. The graph itself uses boost::listS as container to
represent the vertex list in its internal structures. With such a setting the type
VertexId is of type pointer to OperationProperties_t [SLL01]. This obliges
the std::set to sort the elements based on the address in the memory where
the elements are stored. For this implementation all of them are allocated on
the heap.

1 namespace DFG
2 {
3 struct OperationProperties_t;
4 typedef boost:: adjacency_list <boost::listS , boost::listS , boost::

↪→ bidirectionalS , OperationProperties_t , DataProperties_t ,
↪→ GraphProperties_t > OperationsMap_t;

5
6 typedef OperationsMap_t :: vertex_descriptor VertexId;
7 }
8
9 std::set <DFG::VertexId > m_ready_to_compute_nodes;

10
11 virtual std::optional <DFG::VertexId > get_next_operation () const

↪→ noexcept
12 {
13 if (all_nodes_computed ())
14 {
15 return {};
16 }
17 return *m_ready_to_compute_nodes.begin();
18 }

Listing 3.5: Selection Logic for next operation

Basically all modern operating systems implement some sort of address
space layout randomization (ASLR) as part of their security functionality
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[Sno+13]. While the effectiveness varies on the nature of the attack [Sha+04;
Mee10; EPA16] the effect in our case is that the sort order of the container
holding the “ready to compute operations” is effectively random.

Depending on the extracted CDFG, the retrieval order will influence the
performance of the distribution algorithm. The latter claim can easily be
demonstrated by following the example in Listing 3.1. The set of “ready to
compute” operations will initially contain all the multiplication instructions.
Servicing each of this instruction potentially adds a new operation to the set,
the fadd instruction of the adder tree. If the selection strategy would now be
FIFO based the distribution analysis will first schedule all multiply operations
prior to any add operation. This basically creates a temporary array of size
N, which in a second step will be computed identically to the foldl example
given in Figure 2.2a, Equation (2.1). If on the other hand any newly available
fadd operation is scheduled immediately for execution, hence following a LIFO
scheme, only a single temporary has to be stored, the accumulator r. It is
trivial to conclude that on a system with a single compute-node the latter
approach does not generate any spilling demand, and by this will outperform
the FIFO strategy.

Next to the random approach described above there are several strategies
possible to select the next instruction. A non-exhaustive enumeration includes:

• Select the next operation based on the depth first search (DFS) [Tar72;
Sed92] principle.
This tends to increase the locality of the data, and reduce the register
pressure. As the next operation chosen will at least depend on the output
of the current one spilling is less likely.

• A selection based on the breadth first search (BFS) approach [Sed92;
Hol99].
This way favours to keep the liveness of intermediate data short, by
prioritizing scheduling operations which “use” already available data over
the ones which utilize recently created one.

• Following a LIFO approach.
This expresses the desire to process operations which became recently
“ready” as fast as possible. Again the basic idea in mind is to reduce
spilling efforts.

None of the approaches can guarantee an optimal result for a generalized
algorithm on a generalized graph. Using the DFS or LIFO approach might
be more beneficial for the matrix multiply algorithm. The primary argument
for this is the fact that this approaches will implicitly fuse the multiply and
accumulate operation and as such avoid the spilling of multiplication results.
A full featured liveness analysis however is a topic whose would require more
sophisticated algorithms [ASU06].

3.3.2 Randomization

With not having a generically suitable strategy for instruction selection this
optimization can also be done with Monte Carlo methods [Eck87]. This
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Figure 3.16: SpeedUp (Monte Carlo Method)

approach basically means selecting the next instruction randomly from the
pool of ready instructions, and repeat the entire simulation reasonably often.
By this the unknown but presumably deterministic behaviour of the system is
revealed.

Figure 3.16 and Table 3.3 depict the results of such a Monte Carlo run. For
this picture 49 simulations have been performed. With a reasonable confidence
it can be concluded that more than three ALU nodes do not provide any
significant benefit. Also, the performance increase with going from the G2

model to the G3 model is already quite small with an increase of less than 10
percent. This is a slightly different picture than that of a single run (Figure 3.7b)
which claims the maximum speed up to be achieved with four or more floating
point units (G4). Also, the average speed up has increased from 1.45 to 1.61
in the Monte Carlo run. All models have a relatively stable deviation of the
achieved speed up of approximately 0.063.

Repeating the Monte Carlo experiment with another 34 simulations yields
a very similar picture. The maximum speed up becomes flat from G3 onwards,
but at a slightly lower level (≈ 1.53 ± 0.075, rather than ≈ 1.6 ± 0.063). In
absolute terms the second run was slightly worse in performance. On average,
it required 38 cycles more to run the entire test sequence. Presumably making
only a small number of 34 runs for the Monte Carlo trial is insufficient for an
optimal result.

In general, it can be observed that running performance evaluations on such
small test programs is susceptible to effects of micro benchmarking. Transferring
the result of such a small scale benchmarking to a larger algorithm should only
be done with caution.

3.3.3 A Heterogeneous Example

As a second example a less homogeneous hardware is used. Its basic architecture
is similar to the one presented in the Equation (3.11) and Figure 3.12 of the
previous section, but this time the ALU units do not have equal capabilities.
Their access performance to the ARAM (shared) node as well as the computation
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Table 3.3: Average Speed Up

No of ALUs Speed up (S) σS

1 1.0000 0.1043
2 1.3716 0.1092
3 1.5250 0.0689
4 1.5333 0.0689
5 1.5248 0.0699
6 1.5282 0.0697
7 1.5305 0.0708
8 1.5250 0.0716
9 1.5277 0.0696
10 1.5238 0.0702
11 1.5204 0.0707
12 1.5205 0.0706
13 1.5183 0.0711
14 1.5183 0.0711
15 1.5183 0.0711
16 1.5183 0.0711

time of their instructions have been altered. The access time for all the models
Ĝ are adjusted according to Equations (3.14) and (3.15). The number of cycles
to process a floating point instruction is given by Equation (3.16). In total
again sixteen models (Ĝ1...Ĝ16) are used.

tacci = C − i (3.14)
C = tacc + imax (3.15)

tfpi = i+ 1 (3.16)

This effectively renders a hardware model whose employs capable compute
nodes, but connects them inefficiently. As an example the Ĝ4 model as depicted
in Figure 3.17 has its most powerful compute unit (ALU #0) connected via a
four cycle transfer delay to its primary data source (ARAM (shared)). It can
perform any floating point operation within two cycles, but when including
the fetching delay of a single parameter this results in a 6 cycle demand for
servicing the request.

With the exception of the CPU node, the ALU #3 and its compute time of
five cycles is the slowest node in this arrangement. However, due to its fast
access time of a single cycle, its single parameter fetch and compute timing is
identical to the one of ALU #0.

The speed up achieved by the various hardware models, compared to a
single ALU model is shown in Figure 3.18. For these models (Ĝi) an argument
similar to Equation (3.12) no longer holds due to the condition given by
Equation (3.17). As such, Equation (3.18) no longer mandates the speed up
(S) to be monotonically increasing.
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Ĝi ⊈ Ĝi+1 (3.17)

S(Ĝi+1) ≱ S(Ĝi) (3.18)

Figure 3.19 depicts the allocation of the individual nodes for the models
Ĝ1 (Figure 3.19a) to Ĝ6 (Figure 3.19f). With more compute nodes the load
average starts to oscillate. This is true for the overall load, as well as for the
load metric of the individual nodes. This is an indication for the presence of
bottlenecks. The particular algorithm (the matrix vector multiplication) used
for these examples is not prone to computation deadlocks. But the data transfer
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of intermediate values in between the ALU units can potentially severely impact
the performance. Such a transfer is shown in Figures 3.20 to 3.22. Stripping
all operations not relevant for the argument the sequence is as follows:

• Cycle 28
ALU #2 initiates an fadd instruction

• Cycle 31
ALU #2 finalized the fadd operation, and starts transferring the result to
the ARAM (shared) node

• Cycle 33
The transfer has finished, and ALU #0 starts fetching the value

• Cycle 37
The transfer has finished, and ALU #0 starts fetching the second parameter
(computed in cycle 17 (not shown) on ALU #3)

• Cycle 41 (not shown)
The two operands (from ALU #3 and ALU #2) are available at ALU #0 and
can be processed.

This simple snippet from the execution history of the nodes demonstrates
the impact of assigning an operation to an specific ALU. Not only the servicing
ALU is utilized, but also additional nodes can be obliged to assist. In this case
this is demanded by the hardware arrangement, as only the originating node
can transfer its intermediate data from its register set to the shared memory
location.
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Figure 3.19: Load average (100 cycles window)
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(a) Ĝ4 model, sequence time 28

Execution Step : 29
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Figure 3.20: Ĝ4 model, sequence time 28 to 31
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Execution Step : 32
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Execution Step : 33
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(b) Ĝ4 model, sequence time 33
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(c) Ĝ4 model, sequence time 34

Execution Step : 35
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(d) Ĝ4 model, sequence time 35

Figure 3.21: Ĝ4 model, sequence time 32 to 35
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Execution Step : 36
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(a) Ĝ4 model, sequence time 36

Execution Step : 38
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(b) Ĝ4 model, sequence time 38

Execution Step : 39
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(c) Ĝ4 model, sequence time 39

Execution Step : 40
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(d) Ĝ4 model, sequence time 40

Figure 3.22: Ĝ4 model, sequence time 36 to 40
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Chapter 4

Conclusion

In the previous chapters it has been shown that a CDFG is a suitable repre-
sentation for an automated distribution of an algorithm on a heterogeneous
hardware arrangement. It can be shown with simple examples that reverting to
the data flow only is insufficient. If for example the code shown in Listing 4.1
is invoked with the parameter a = 10.0, the loop will be executed a single time.
This is determined during run-time by two conditional branch operations (br
in combination with fcmp caused by Listing 4.1 line 7). There is no data de-
pendency between the update of the result b and the value a used to determine
the loop condition. However the fmul operation depends on the branch in an
“execute after” relation. This is depicted in Figure 4.1 with the dashed lines.

1 template <typename T>
2 T TestFunction(T a, T b) __attribute (( noinline));
3
4 template <typename T>
5 T TestFunction(T a, T b)
6 {
7 while(a >7.53)
8 {
9 b *= 1.1;

10 a -= 10;
11 }
12 return b;
13 }

Listing 4.1: Branches in code

The combined CDFG represents a graph, more specifically a DAG. Its
common notation is given by either a tuple or triple notation as given in
Equations (4.1) and (4.2) [Küh96; Lee99; Cor+01; BW10]. With restricting the
set V to be a finite set of operations this implies the execution time to be finite
as well. Dealing with an infinite amount of operations does not make sense
in this scenario. It would reflect an algorithm which cannot be computed in
finite time. This definition is based on the operations of executing the sequence
which specify the algorithm, not the operations to define the algorithm. Such a
definition (in source form like LLVM assembly language for example) might
look different. The control flow graph (CFG) of Listing 4.1 would only depict
a single fmul node, independently of how often this instruction is actually
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TestFunction<double>

fcmp (1 | 0)
 [Branch.cpp:7:0] 

br (2 | 1)
 [Branch.cpp:7:0] 

a

fadd (1 | 3)
 [Branch.cpp:10:0] 

<const double 7.530000e+00>

fcmp (2 | 4)
 [Branch.cpp:7:0] 

fmul (3 | 2)
 [Branch.cpp:9:0] 

ret (4 | 6)
 [Branch.cpp:12:0] 

b <const double 1.100000e+00>

<const double -1.000000e+01>

br (5 | 5)
 [Branch.cpp:7:0] 

Figure 4.1: CDFG of Listing 4.1 with a = 10.0

executed. For the distribution algorithm to work each executed operation needs
to be uniquely assigned to a vertex.

CDFGtuple = G(V,E) (4.1)
CDFGtriple = G(V,E, ϕ) (4.2)

E = Ed ∪ Ec (4.3)
V = Vc ∪ Vd (4.4)

The CDFG does contain two sets of vertices and edges. A vertex can
either represent an operation or an input variable respectively a constant.
These nodes are represented by two disjoint sets. Vc the set of compute-nodes
and Vd the set of data-nodes (Equation (4.4)). Similar the set of edges E
contains the edges representing a data flow (Ed) and edges declaring a control
flow dependency (Ec). Using this distinction simplifies the realization of the
distribution algorithm. From a graph point of view this distinction is of no
relevance. Whether an edge emerges from a value-node, or from a compute-node
does not influence the properties of the graph. The destination node simply
handles them as “input dependency”. For the distribution algorithm we need
to assign certain properties to the set of compute vertices Vc of the CDFG.
Equation (4.5) defines the function op which retrieves the operation assigned
to such a vertex. The set of valid operations depends on the abstraction level
of the analysis. In general O (Equation (4.6)) is a set of arbitrary operations.
A compute operation however cannot be nullary. Data vertices are nullary,
and are not associated to a specific operation. Further, operations cannot be
assumed to be commutative. Therefore each data dependency edge needs a
dedicated property to specify an index idx (e) as given by Equation (4.8), its
ordinal number. With this property the input arguments form an ordered set
which uniquely maps all the data flow edges of any compute vertex to the
arguments of the n-ary function represented by op(v). This ordering is not
shown in any of the depicted graphs in this work. For all the figures shown, the
vertices and edges are arranged based on layout demands only. Equation (4.7)
shows the minimal operation set for the example given in Figure 4.1. It is a
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subset of all the LLVM assembly language instructions available. A distribution
algorithm has to comply with the constraints given by these dependencies
(topological ordering of the graph), but within these bounds can choose any
execution order desired.

op : Vc → O (4.5)
O = {Operation1, Operation2, ..., Operationn} (4.6)

Oconcrete = {fmul, fcmp, fadd, br, ret} (4.7)
idx : Ed → N0 (4.8)

Complementary to the generalized CDFG representation of an algorithm, a
dedicated compute arrangements (the hardware) can be described by means of
graphs as well. The hardware is expressed as directed graph (Equation (4.10)).
This allows to model storage-nodes which can only be read, as well as for
example reflecting different access times for retrieving and depositing data from
storage. This however is not a strict necessity. If such a behaviour is not required
for a particular hardware model, its graph can also be undirected. Neither is
the hardware graph required to be free of loops, nor is this the case in most of
the scenarios. This distinguishes the hardware graph from the CDFG, which as
previously mentioned obeys the rules of a DAG. From a modelling perspective
similar to the CDFG it can be beneficial to distinguish the storage-nodes VS̃

and the execution-nodes VẼ as two disjoint sets (Equation (4.9)).

Ṽ = Ṽ S ∪ Ṽ E (4.9)

HW = G(Ṽ , Ẽ, ϕ̃) (4.10)

For the generic distribution algorithm some auxiliary methods are required.
These for example declare the properties of an edge. In the case of the “edge
weight” this denotes the time quanta required to transfer an object across
a particular connection. Within the examples given in the previous sections
this time quanta was restricted to be an integer. This was only for reasons
of a simpler demonstration. The edge weight can be any real number, but is
required to be positive, including zero as given in Equation (4.11). For the
sequence given in Section 2.4.2 additionally the two functions cost and ops
(Equations (4.12) and (4.13)) are required. They reflect the execution cost of an
operation o ∈ O when served by node v ∈ VẼ, and the set of operations which
can be served by the node in general. S in this Equation (4.13) denotes the
current state of the hardware arrangement HW . It reflects the location of all
variables, and the executions already scheduled on the various execution-nodes.
This function therefore does not deliver a static mapping on the execution
time of an operation on a node. It does consider the current state and delivers
the time t at which the function finalizes, if executed on node v with the
precondition S. Equation (4.14) declares one of the conditions such that an
algorithm can be mapped to a specific hardware. With allowing the state S to
influence the computation capability of the hardware setup (Equation (4.13))
this becomes a complex condition. While obviously for a proper execution
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at least one node must be capable of serving an instruction within the set
Oconcrete there are additional conditions to be fulfilled. For example that any
data required for an operation must have a path from its current location to
the selected compute-node. These properties are dependent on the state S.
Within this work this precondition was not formally verified upfront, but during
run-time of the distribution algorithm.

w : Ẽ → {x | x ∈ R ∧ x ≥ 0} (4.11)

ops : Ṽ E → {o | o ∈ O} (4.12)

cost : {HW, Ṽ E, O, S} → R (4.13)

∀o ∈ Oconcrete ∃ops(v ∈ Ṽ E ) ̸= ∅ (4.14)

Section 3.3 showed the performance and distribution pattern of such an
algorithm when mapped to a set of heterogeneous hardware arrangements by a
simple distribution algorithm.

4.1 Future Work
In Section 3.3.1 the impact of the evaluation order of the instructions within
the distribution algorithm has been briefly discussed. It intrinsically implies
that for an automated distribution two disjoint sets need to be managed. The
one holding all operations not yet scheduled but with all their dependencies
fulfilled (the “ready to compute” set) and the one for the remaining instructions
(the “not ready” set). Whenever a node has finished servicing an instruction,
it potentially transfers an arbitrary amount of operations from the latter set
to the first one. Whenever the cardinality of the “ready to compute” set is
larger than one, the order of evaluation impacts the final result (Section 3.3.1).
Therefore, in addition to selecting the optimal compute-node for an operation,
the optimal order in which this selection takes place has to be chosen. This has
similarities with the problem of scheduling jobs with precedence constraints.
Variants of this have been researched since several decades [QK90], but are
also subject to more recent publications. For example [Ben+20] discusses the
scenario when dealing with errors in the execution, and as such the need to
repeat a failed task. These research is however more abstract than this work,
as considering rigid and moldable [Leu+04] tasks and not operations. In this
work an operation can not be sliced and partitioned as moldable tasks can,
but also does not have the strict performance characteristics of rigid tasks. Its
performance metric varies among other things on the scheduling decisions of
other (also independent) operations.

Another open issue arises whenever the representation of the operations of
an algorithm does not entirely match the capabilities of the hardware. That is
Equation (4.12) does not exist, but instead an alternative set of operations O′

is available. An example of such a scenario is the MAC operation as discussed
in Section 3.1.1. For a more precise estimation the instruction set O has to
be transformed to O′, including all the required modifications to the CDFG.
This is similar to the common problem of modern compilers when lowering
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their intermediate representation to target specific instructions. This process is
called instruction selection, and discussed in various research on compiler and
compiler optimizations [FFY01; EKS03].

Possible future extension to this work can also lift the restriction on a static
hardware model. In this work the hardware connection properties are considered
to be static. The transfer cost function (Equation (4.11)) is invariant on the state
S introduced in Equation (4.13). By this the path finding is static, and can be
computed a priori by means of well established algorithms [Bel58; Dij59]. When
working with a hardware model which features different transfer cost depending
on its state S, these algorithms need to be extended. Such an extension is
proposed in [SG18]. Such models can reflect hardware arrangements whose
connections interfere with each other. This is one approach to model a setup
which has a difference between the logical view, and the physical realization.
This might for example reflect a set of storage-nodes, which are connected via
a shared bus interface. A micro controller unit (MCU) by this approach can
express that fact that its external RAM as well as its non-vloatile memory, is
connected via a shared hardware connection, the external memory interface.
Internally or logically however they reflect to independent storage-nodes, and
are used by compute-nodes accordingly.

Assuming a computationally efficient realization of the automated distribu-
tion is available, one can also extend the topic to a slightly modified research
question. Rather than answering on the efficiency of one or multiple dedicated
hardware arrangements for a particular algorithm we could ask for the most
efficient hardware setup. This is basically building a particular compute ar-
rangement specifically suited for this algorithm. With a large variety on the
restrictions applied this topic is covered by several approaches in the area of
HLS [MS09; Jää+17; SW19]. Especially the ability to connect different hard-
ware models by adding edges in-between their disjoint graphs looks promising.
This allows rather than synthesizing the entire hardware during the distribu-
tion analysis to revert to combining existing build blocks. For engineering
purposes such an approach offers a quite promising field of application. With
the emergence of internet of things (IoT) and publications in the domain of
edge computing [Nez+20; Wan+21] a collection of independent but connected
nodes whose can be utilized to serve a common goal becomes an interesting
field of research.

78



Bibliography

[Bel58] Richard Bellman. “On a routing problem”. In: Quart. Appl. Math
16.16 (1958), pp. 87–90.

[Dij59] E. W. Dijkstra. “A Note on Two Problems in Connexion with
Graphs”. In: Numerische Mathematik 1.1 (1959), pp. 269–271.

[Amd67] Gene M. Amdahl. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities”. In: Proceedings of
the April 18-20, 1967, Spring Joint Computer Conference. AFIPS
’67 (Spring). Atlantic City, New Jersey: Association for Computing
Machinery, 1967, pp. 483–485. isbn: 9781450378956. doi: 10.1145/
1465482.1465560.

[Tar72] Robert Tarjan. “Depth first search and linear graph algorithms”. In:
SIAM Journal on Computing 1.2 (1972). doi: 10.1137/0201010.

[Knu74] Donald E. Knuth. “Structured Programming with Go to State-
ments”. In: ACM Comput. Surv. 6.4 (Dec. 1974), pp. 261–301. issn:
0360-0300. doi: 10.1145/356635.356640.

[Kin76] James C. King. “Symbolic Execution and Program Testing”. In:
Commun. ACM 19.7 (July 1976), pp. 385–394. issn: 0001-0782.
doi: 10.1145/360248.360252.

[Knu76] Donald E. Knuth. “Big Omicron and Big Omega and Big Theta”.
In: SIGACT News 8.2 (Apr. 1976), pp. 18–24. issn: 0163-5700.
doi: 10.1145/1008328.1008329.

[Eck87] Roger Eckhardt. “Stan ulam, john von neumann, and the monte
carlo method”. In: Los Alamos Science 15 (1987), pp. 131–136.

[Gus88] John L. Gustafson. “Reevaluating Amdahl’s Law”. In: Commun.
ACM 31.5 (May 1988), pp. 532–533. issn: 0001-0782. doi: 10.
1145/42411.42415.

[QK90] Qingzhou Wang and Kam Hoi Cheng. “Parallel time complexity of
a heuristic algorithm for the k-center problem with usage weights”.
In: Proceedings of the Second IEEE Symposium on Parallel and
Distributed Processing 1990. Dec. 1990, pp. 254–257. doi: 10.1109/
SPDP.1990.143543.

[Cyt+91] Ron Cytron et al. “Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph”. In: ACM Trans. Pro-
gram. Lang. Syst. 13.4 (Oct. 1991), pp. 451–490. issn: 0164-0925.
doi: 10.1145/115372.115320.

79

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1137/0201010
https://doi.org/10.1145/356635.356640
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1008328.1008329
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1109/SPDP.1990.143543
https://doi.org/10.1109/SPDP.1990.143543
https://doi.org/10.1145/115372.115320


[WZ91] Mark N. Wegman and F. Kenneth Zadeck. “Constant propagation
with conditional branches”. In: ACM Transactions on Programming
Languages and Systems 13 (1991), pp. 291–299.

[FH92] Christopher W. Fraser and David R. Hanson. “Simple register
spilling in a retargetable compiler”. In: Software: Practice and
Experience 22.1 (1992), pp. 85–99. doi: 10.1002/spe.4380220105.

[Sed92] R. Sedgewick. Algorithmen in C++. Addison-Wesley, 1992. isbn:
9783893194629.

[Fos95] Ian Foster. Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering. C++ In-Depth Series.
Addison-Wesley, 1995. isbn: 978-0-201-57594-1.

[Küh96] Dietmar Kühl. “Design patterns for the implementation of graph
algorithms”. MA thesis. Technische Universität Berlin, 1996. url:
http://www.dietmar-kuehl.de/generic-graph-algorithms.
pdf (visited on 12/28/2020).

[App98] Andrew W. Appel. “SSA is Functional Programming”. In: ACM
SIGPLAN Notices 33.4 (1998), pp. 17–20.

[DKL98] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions,
interpolation and animation. Tech. rep. University of Copenhagen,
1998.

[ISO98] ISO/IEC JTC 1/SC 22. ISO International Standard ISO/IEC
14882:1998 – Programming Language C++. ISO. Oct. 1998.

[Hol99] Jason J. Holdsworth. The Nature of Breadth-First Search. 1999.

[Hut99] Graham Hutton. “A Tutorial on the Universality and Expressive-
ness of Fold”. In: J. Funct. Program. 9.4 (July 1999), pp. 355–372.
issn: 0956-7968. doi: 10.1017/S0956796899003500.

[Lee99] Lie-Quan Lee. “The High Performance Generic Graph Compo-
nent Library”. MA thesis. Department of Computer Science and
Engineering, University of Notre Dame, 1999.

[LA00] Samuel Larsen and Saman Amarasinghe. “Exploiting Superword
Level Parallelism with Multimedia Instruction Sets”. In: Proceed-
ings of the ACM SIGPLAN 2000 Conference on Programming Lan-
guage Design and Implementation. PLDI ’00. Vancouver, British
Columbia, Canada: Association for Computing Machinery, 2000,
pp. 145–156. isbn: 1581131992. doi: 10.1145/349299.349320.

[AG01] Andrew W. Appel and Lal George. “Optimal Spilling for CISC
Machines with Few Registers”. In: Proceedings of the ACM SIG-
PLAN 2001 Conference on Programming Language Design and
Implementation. PLDI ’01. Snowbird, Utah, USA: Association for
Computing Machinery, 2001, pp. 243–253. isbn: 1581134142. doi:
10.1145/378795.378854.

[Cor+01] Thomas H. Cormen et al. Introduction to Algorithms. 2nd. The
MIT Press, 2001. isbn: 0262032937.

80

https://doi.org/10.1002/spe.4380220105
http://www.dietmar-kuehl.de/generic-graph-algorithms.pdf
http://www.dietmar-kuehl.de/generic-graph-algorithms.pdf
https://doi.org/10.1017/S0956796899003500
https://doi.org/10.1145/349299.349320
https://doi.org/10.1145/378795.378854


[FFY01] Paolo Faraboschi, Joseph Fisher, and Cliff Young. “Instruction
scheduling for instruction level parallel processors”. In: Proceedings
of the IEEE 89 (Dec. 2001), pp. 1638–1659. doi: 10.1109/5.
964443.

[Fe01] Jon Ferraiolo and ed. Scalable Vector Graphics (SVG) 1.0 Speci-
fication. 2001. url: https://www.w3.org/TR/SVG10/ (visited on
12/28/2012).

[SLL01] J.G. Siek, L.Q. Lee, and A. Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual, Portable Documents. C++ In-
Depth Series. Pearson Education, 2001. isbn: 9780321601612.

[Ins02] Texas Instrumentes. TMS320DM642 Technical Overview. English.
TI. Sept. 2002. 43 pp. url: https : / / www . ti . com / lit / ug /
spru615/spru615.pdf (visited on 12/28/2020).

[Pey02] Simon Peyton Jones. Haskell 98 Language and Libraries: The
Revised Report. Vol. 13. Cambridge University Press, Jan. 2002.
isbn: 978-0521826143.

[EKS03] Erik Eckstein, Oliver König, and Bernhard Scholz. “Code Instruc-
tion Selection Based on SSA-Graphs”. In: vol. 2826/2003. Sept.
2003, pp. 49–65. isbn: 978-3-540-20145-8. doi: 10.1007/978-3-
540-39920-9_5.

[Lam03] Leslie Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley Pro-
fessional, 2003. isbn: 978-0-321-14306-8. url: https://lamport.
azurewebsites.net/tla/book.html (visited on 12/28/2020).

[Mer03] Jason Merrill. “Generic and gimple: A new tree representation for
entire functions”. In: In Proceedings of the 2003 GCC Summi. 2003.

[Ant+04] G. Antoniol et al. “Compiler hacking for source code analysis”. In:
Software Quality Journal 12 (2004), p. 2004.

[LA04a] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation”. In: Pro-
ceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO’04). Palo Alto, California, Mar. 2004.

[LA04b] Chris Lattner and Vikram Adve. “The LLVM Compiler Frame-
work and Infrastructure Tutorial”. In: LCPC’04 Mini Workshop on
Compiler Research Infrastructures. West Lafayette, Indiana, Sept.
2004.

[Leu+04] Joseph Y-T. Leung et al. Handbook of scheduling. Algorithms,
Models and Performance Analysis. Ed. by Joseph Y-T. Leung. 2004.
isbn: 9781584883975. url: https://b-ok.org/book/1022695/
3e78d0 (visited on 12/21/2020).

[Sha+04] Hovav Shacham et al. “On the Effectiveness of Address-Space
Randomization”. In: Proceedings of the 11th ACM Conference on
Computer and Communications Security. CCS ’04. Washington DC,
USA: Association for Computing Machinery, 2004, pp. 298–307.
isbn: 1581139616. doi: 10.1145/1030083.1030124.

81

https://doi.org/10.1109/5.964443
https://doi.org/10.1109/5.964443
https://www.w3.org/TR/SVG10/
https://www.ti.com/lit/ug/spru615/spru615.pdf
https://www.ti.com/lit/ug/spru615/spru615.pdf
https://doi.org/10.1007/978-3-540-39920-9_5
https://doi.org/10.1007/978-3-540-39920-9_5
https://lamport.azurewebsites.net/tla/book.html
https://lamport.azurewebsites.net/tla/book.html
https://b-ok.org/book/1022695/3e78d0
https://b-ok.org/book/1022695/3e78d0
https://doi.org/10.1145/1030083.1030124


[SL05] Herb Sutter and Jim Larus. “Software and the Concurrency Rev-
olution”. In: ACM Queue (Sept. 2005), pp. 54–62. url: https:
//www.microsoft.com/en-us/research/publication/software-
and-the-concurrency-revolution/ (visited on 12/28/2020).

[ASU06] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools, Second Edition. USA: Addison-
Wesley Longman Publishing Co., Inc., 2006. isbn: 0-321-48681-1.

[Mat+07] Avantika Mathur et al. “The New ext4 filesystem: current status and
future plans”. In: Jan. 2007. url: https://www.kernel.org/doc/
ols/2007/ols2007v2-pages-21-34.pdf (visited on 12/28/2020).

[Bee08] Robert Beers. “Pre-RTL Formal Verification: An Intel Experience”.
In: Proceedings of the 45th Annual Design Automation Conference.
DAC ’08. Anaheim, California: Association for Computing Ma-
chinery, 2008, pp. 806–811. isbn: 9781605581156. doi: 10.1145/
1391469.1391675.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs”. In: 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2008,
December 8-10, 2008, San Diego, California, USA, Proceedings. Ed.
by Richard Draves and Robbert van Renesse. USENIX Association,
2008, pp. 209–224. url: http://www.usenix.org/events/osdi08/
tech/full%5C_papers/cadar/cadar.pdf (visited on 12/28/2020).

[GB08] Rajesh Gupta and Forrest Brewer. “High-Level Synthesis: A Ret-
rospective”. In: High-Level Synthesis: From Algorithm to Digital
Circuit (Jan. 2008). doi: 10.1007/978-1-4020-8588-8_2.

[Lat08] Chris Lattner. “LLVM and Clang: Next Generation Compiler Tech-
nology”. In: The BSD Conference. 2008.

[QP08] Fernando Magno Quintão Pereira and Jens Palsberg. “Register
Allocation by Puzzle Solving”. In: SIGPLAN Not. 43.6 (June 2008),
pp. 216–226. issn: 0362-1340. doi: 10.1145/1379022.1375609.

[Lam09] Leslie Lamport. “The PlusCal Algorithm Language”. In: Theoretical
Aspects of Computing-ICTAC 2009, Martin Leucker and Carroll
Morgan editors. Lecture Notes in Computer Science, number 5684,
36-60. (Jan. 2009). url: https://www.microsoft.com/en-us/
research/publication/pluscal-algorithm-language/ (visited
on 12/28/2020).

[MS09] G. Martin and G. Smith. “High-Level Synthesis: Past, Present,
and Future”. In: IEEE Design Test of Computers 26.4 (July 2009),
pp. 18–25. issn: 1558-1918. doi: 10.1109/MDT.2009.83.

[OS09] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal
Processing. 3rd. USA: Prentice Hall Press, 2009. isbn: 0131988425.

82

https://www.microsoft.com/en-us/research/publication/software-and-the-concurrency-revolution/
https://www.microsoft.com/en-us/research/publication/software-and-the-concurrency-revolution/
https://www.microsoft.com/en-us/research/publication/software-and-the-concurrency-revolution/
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://doi.org/10.1145/1391469.1391675
https://doi.org/10.1145/1391469.1391675
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-1-4020-8588-8_2
https://doi.org/10.1145/1379022.1375609
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://doi.org/10.1109/MDT.2009.83


[WWP09] Samuel Webb Williams, Andrew Waterman, and David Patterson.
“Roofline: An Insightful Visual Performance Model for Multicore
Architectures”. In: Commun. ACM 52.4 (Apr. 2009), pp. 65–76.
issn: 0001-0782. doi: 10.1145/1498765.1498785.

[ARM10] ARM, ed. Cortex-M4, Technical Reference Manual. ARM Limited.
Mar. 2010. url: https://static.docs.arm.com/ddi0439/b/
DDI0439B_cortex_m4_r0p0_trm.pdf (visited on 07/26/2020).

[BW10] Edward A. Bender and S. Gill Williamson. Lists, Decisions and
Graphs. University of California, Sept. 2010. url: http://cseweb.
ucsd.edu/~gill/BWLectSite/Resources/LDGbookCOV.pdf (vis-
ited on 12/28/2020).

[Har+10] William R. Harris et al. “Program analysis via satisfiability modulo
path programs”. In: IN: POPL. 2010, pp. 71–82.

[Mee10] Haroon Meer. Memory Corruption Attacks The (almost) Complete
History. 2010.

[ISO11] ISO/IEC JTC 1/SC 22. ISO International Standard ISO/IEC
14882:2011 – Programming Language C++. ISO. Oct. 2011.

[Mal+11] Saeed Maleki et al. “An evaluation of vectorizing compilers”. En-
glish (US). In: Proceedings - 2011 International Conference on
Parallel Architectures and Compilation Techniques, PACT 2011.
Parallel Architectures and Compilation Techniques - Conference
Proceedings, PACT. 20th International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT 2011 ; Conference
date: 10-10-2011 Through 14-10-2011. Dec. 2011, pp. 372–382. isbn:
9780769545660. doi: 10.1109/PACT.2011.68.

[Smi11] Alan G. Smith. Introduction to Arduino - A Piece of Cake. Cre-
ateSpace Independent Publishing Platform, 2011. isbn: 978-1-
463-69834-8. url: http://www.introtoarduino.com (visited on
12/28/2020).

[Ver+11] Eric Verhulst et al. Formal Development of a Network-Centric
RTOS. Springer, Boston, MA, Jan. 2011. isbn: 978-1-4419-9736-4.
doi: 10.1007/978-1-4419-9736-4.

[ISO12] ISO/IEC JTC 1/SC 22. ISO International Standard ISO/IEC
8652:2012 Information technology — Programming languages —
Ada. ISO. Dec. 2012.

[Len12] Christian Lengauer. “Polly—Performing Polyhedral Optimizations
on a Low-Level Intermediate Representation”. In: Parallel Process-
ing Letters 22 (Dec. 2012). doi: 10.1142/S0129626412500107.

[Agh+13] Ishwari Aghav et al. “Automated static data flow analysis”. In: 2013
Fourth International Conference on Computing, Communications
and Networking Technologies (ICCCNT). July 2013, pp. 1–4. doi:
10.1109/ICCCNT.2013.6726670.

83

https://doi.org/10.1145/1498765.1498785
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://cseweb.ucsd.edu/~gill/BWLectSite/Resources/LDGbookCOV.pdf
http://cseweb.ucsd.edu/~gill/BWLectSite/Resources/LDGbookCOV.pdf
https://doi.org/10.1109/PACT.2011.68
http://www.introtoarduino.com
https://doi.org/10.1007/978-1-4419-9736-4
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1109/ICCCNT.2013.6726670


[Sno+13] K. Z. Snow et al. “Just-In-Time Code Reuse: On the Effectiveness
of Fine-Grained Address Space Layout Randomization”. In: 2013
IEEE Symposium on Security and Privacy. May 2013, pp. 574–588.
doi: 10.1109/SP.2013.45.

[ISO14] ISO/IEC JTC 1/SC 22. ISO International Standard ISO/IEC
14882:2014 – Programming Language C++. ISO. Dec. 2014.

[Val14] Celina Gomes do Val. “Conflict-Driven Symbolic Execution : How
to Learn to Get Better”. MA thesis. University of British Columbia,
2014. doi: http://dx.doi.org/10.14288/1.0165906.

[DD15] Michael Dossis and Georgios Dimitriou. “Hardware Synthesis of
High-Level C Constructs”. In: Proceedings of the 19th Panhellenic
Conference on Informatics. PCI ’15. Athens, Greece: Association
for Computing Machinery, 2015, pp. 83–85. isbn: 9781450335515.
doi: 10.1145/2801948.2802029.

[Aba+16] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. 2016. arXiv: 1603.04467
[cs.DC].

[EPA16] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over
ASLR: Attacking branch predictors to bypass ASLR”. In: 2016
49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). Oct. 2016, pp. 1–13. doi: 10.1109/MICRO.2016.
7783743.

[Fre17] Free Software Foundation. The C++ Runtime Library (libstdc++).
Sept. 13, 2017. url: https://gcc.gnu.org/onlinedocs/libstdc+
+/latest-doxygen/ (visited on 12/25/2020).

[God17] Matt Godbolt. “What Has My Compiler Done for Me Lately -
Unbolting the Compiler’s Lid”. In: Cppcon 2017 KeyNotes. CppCon.
2017. url: https://github.com/CppCon/CppCon2017/tree/
master/Keynotes (visited on 12/28/2020).

[ISO17a] ISO/IEC JTC 1/SC 22. ISO International Standard ISO/IEC
14882:2017 – Programming Language C++. ISO. Dec. 2017.

[ISO17b] ISO/IEC JTC 1/SC 7. ISO/IEC/IEEE International Standard -
Systems and software engineering -- Vocabulary. ISO. 2017.

[Jää+17] Pekka Jääskeläinen et al. “HW/SW Co-design Toolset for Cus-
tomization of Exposed Datapath Processors”. In: Computing Plat-
forms for Software-Defined Radio. Ed. by Waqar Hussain et al.
Springer International Publishing, 2017, pp. 147–164. isbn: 978-3-
319-49679-5. doi: 10.1007/978-3-319-49679-5_8.

[Tan+17] Satyanarayana Tani et al. “Application of crowdsourced hail data
and damage information for hail risk assessment in the province
of Styria, Austria”. In: Application of crowdsourced hail data and
damage information for hail risk assessment in the province of
Styria, Austria. EGU 2017, IE2.1/NH9.19, Apr. 2017. url: http:
//meetingorganizer.copernicus.org/EGU2017/EGU2017-6822.
pdf (visited on 12/28/2020).

84

https://doi.org/10.1109/SP.2013.45
https://doi.org/http://dx.doi.org/10.14288/1.0165906
https://doi.org/10.1145/2801948.2802029
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://doi.org/10.1109/MICRO.2016.7783743
https://doi.org/10.1109/MICRO.2016.7783743
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/
https://github.com/CppCon/CppCon2017/tree/master/Keynotes
https://github.com/CppCon/CppCon2017/tree/master/Keynotes
https://doi.org/10.1007/978-3-319-49679-5_8
http://meetingorganizer.copernicus.org/EGU2017/EGU2017-6822.pdf
http://meetingorganizer.copernicus.org/EGU2017/EGU2017-6822.pdf
http://meetingorganizer.copernicus.org/EGU2017/EGU2017-6822.pdf


[DDS18] Georgios Dimitriou, Michael Dossis, and Georgios Stamoulis. “Oper-
ation Dependencies in Loop Pipelining for High-Level Synthesis”. In:
Sept. 2018, pp. 1–6. doi: 10.23919/SEEDA-CECNSM.2018.8544930.

[ISO18] ISO/IEC JTC 1/SC 22. ISO International Standard 9899:2018
Information technology — Programming languages — C. ISO. June
2018.

[LLV18] LLVM Project. LLVM Language Reference. 2018. url: https:
//llvm.org/docs/LangRef.html (visited on 01/03/2018).

[RB18a] Andreas Rechberger and Eugen Brenner. “Generalized Execution
Time Estimation”. In: 2018 IEEE 13th International Symposium
on Industrial Embedded Systems (SIES). 2018, pp. 1–4.

[RB18b] Andreas Rechberger and Eugen Brenner. “Partitioning of Algo-
rithms for Distributed Computation”. In: Embedded World 2018 -
Proceedings. Embedded World Conference, Mar. 2018.

[Rec+18] Andreas Rechberger et al. “HeDi - Hagelereignis Dateninterface”.
deutsch. Lange Nacht der Forschung 2018. Apr. 2018. url: https:
//hedi.tugraz.at (visited on 12/28/2020).

[RP18] Guido Van Rossum and Python Development Team. The Python
Language Reference. 12th Media Services, 2018. isbn: 1680921614.

[ST 18] ST Microelectronics. Discovery kit with STM32F407VG MCU.
2018. url: http://www.st.com/content/st_com/en/products/
evaluation - tools / product - evaluation - tools / mcu - eval -
tools/stm32- mcu- eval- tools/stm32- mcu- discovery- kits/
stm32f4discovery.html (visited on 04/09/2018).

[SG18] Sunita and Deepak Garg. “Dynamizing Dijkstra: A solution to
dynamic shortest path problem through retroactive priority queue”.
In: Journal of King Saud University - Computer and Information
Sciences (2018). issn: 1319-1578. doi: https://doi.org/10.1016/
j.jksuci.2018.03.003.

[Xu+18] H. Xu et al. “Benchmarking the Capability of Symbolic Execution
Tools with Logic Bombs”. In: IEEE Transactions on Dependable
and Secure Computing (2018), pp. 1–1.

[KR19] S. Kim and J. Ryou. “Source Code Analysis for Static Prediction
of Dynamic Memory Usage”. In: 2019 International Conference on
Platform Technology and Service (PlatCon). Jan. 2019, pp. 1–4.
doi: 10.1109/PlatCon.2019.8669417.

[Men+19] Charith Mendis et al. “Compiler Auto-Vectorization with Imita-
tion Learning”. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp. 14625–14635. url: http://papers.nips.cc/paper/9604-
compiler-auto-vectorization-with-imitation-learning.pdf
(visited on 12/28/2020).

85

https://doi.org/10.23919/SEEDA-CECNSM.2018.8544930
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://hedi.tugraz.at
https://hedi.tugraz.at
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-discovery-kits/stm32f4discovery.html
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-discovery-kits/stm32f4discovery.html
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-discovery-kits/stm32f4discovery.html
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-discovery-kits/stm32f4discovery.html
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.03.003
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.03.003
https://doi.org/10.1109/PlatCon.2019.8669417
http://papers.nips.cc/paper/9604-compiler-auto-vectorization-with-imitation-learning.pdf
http://papers.nips.cc/paper/9604-compiler-auto-vectorization-with-imitation-learning.pdf


[Rec+19] Andreas Rechberger et al. “High Precision Vibration-Type Densito-
meters Based on Pulsed Excitation Measurements”. In: Sensors 19.7
(2019). issn: 1424-8220. doi: 10.3390/s19071627. url: https:
//www.mdpi.com/1424-8220/19/7/1627 (visited on 12/28/2020).

[SW19] B. C. Schafer and Z. Wang. “High-Level Synthesis Design Space
Exploration: Past, Present and Future”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2019),
pp. 1–1. issn: 1937-4151. doi: 10.1109/TCAD.2019.2943570.

[Xil19] Xilinx, ed. MicroBlaze Processor Reference Guide. Xilinx Inc. Mar.
2019. url: https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2019_1/ug984-vivado-microblaze-ref.pdf
(visited on 12/20/2020).

[AB20] Ericsson AB. Erlang Reference Manual User’s Guide. 2020. url:
https://erlang.org/doc/reference_manual/users_guide.html
(visited on 12/17/2020).

[Ama20] Saman Amarasinghe. “Compiler 2.0: Using Machine Learning
to Modernize Compiler Technology”. In: The 21st ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems. LCTES ’20. London, United Kingdom:
Association for Computing Machinery, June 2020, pp. 1–2. isbn:
9781450370943. doi: 10.1145/3372799.3397167.

[Ben+20] A. Benoit et al. “Resilient Scheduling of Moldable Jobs on Failure-
Prone Platforms”. In: 2020 IEEE International Conference on
Cluster Computing (CLUSTER). Sept. 2020, pp. 81–91. doi: 10.
1109/CLUSTER49012.2020.00018.

[Cad20] Cadence. Stratus High-Level Synthesis. Aug. 28, 2020. url: https:
//www.cadence.com/content/dam/cadence-www/global/en_US/
documents/tools/digital-design-signoff/stratus-ds.pdf
(visited on 12/20/2020).

[GW20] Stephane Gauthier and Zubair Wadood. High-Level Synthesis:
Can it outperform hand-coded HDL? Tech. rep. June 2020. url:
https://www.silexica.com/wp-content/uploads/High-level-
Synthesis-Can-it-outperform-hand-coded-HDL.pdf (visited on
12/20/2020).

[GNU20] GNU Project. GCC, the GNU Compiler Collection. 2020. url:
https://gcc.gnu.org/ (visited on 06/23/2020).

[Gos+20] James Gosling et al. The Java® Language Specification. 2020. url:
https://docs.oracle.com/javase/specs/jls/se15/html/
index.html (visited on 12/17/2020).

[Haj+20] Ameer Haj-Ali et al. “NeuroVectorizer: End-to-End Vectorization
with Deep Reinforcement Learning”. In: Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation and
Optimization. CGO 2020. San Diego, CA, USA: Association for
Computing Machinery, 2020, pp. 242–255. isbn: 9781450370479.
doi: 10.1145/3368826.3377928.

86

https://doi.org/10.3390/s19071627
https://www.mdpi.com/1424-8220/19/7/1627
https://www.mdpi.com/1424-8220/19/7/1627
https://doi.org/10.1109/TCAD.2019.2943570
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug984-vivado-microblaze-ref.pdf
https://erlang.org/doc/reference_manual/users_guide.html
https://doi.org/10.1145/3372799.3397167
https://doi.org/10.1109/CLUSTER49012.2020.00018
https://doi.org/10.1109/CLUSTER49012.2020.00018
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/stratus-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/stratus-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/stratus-ds.pdf
https://www.silexica.com/wp-content/uploads/High-level-Synthesis-Can-it-outperform-hand-coded-HDL.pdf
https://www.silexica.com/wp-content/uploads/High-level-Synthesis-Can-it-outperform-hand-coded-HDL.pdf
https://gcc.gnu.org/
https://docs.oracle.com/javase/specs/jls/se15/html/index.html
https://docs.oracle.com/javase/specs/jls/se15/html/index.html
https://doi.org/10.1145/3368826.3377928


[Int20a] Intel, ed. Nios II Custom Instruction User Guide. Intel Corporation.
Apr. 2020. url: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug_nios2_custom_
instruction.pdf (visited on 12/20/2020).

[Int20b] Intel Corporation. Intel® C++ Compiler. 2020. url: https://
software.intel.com/en-us/forums/intel-c-compiler (visited
on 06/23/2020).

[KK20] Y. Kim and M. Kang. “Formal Verification of SDN-Based Firewalls
by Using TLA+”. In: IEEE Access 8 (2020), pp. 52100–52112. doi:
10.1109/ACCESS.2020.2979894.

[Lat+20] Chris Lattner et al. MLIR: A Compiler Infrastructure for the End
of Moore’s Law. 2020. arXiv: 2002.11054 [cs.PL].

[Mic20] Microsoft. Visual Studio 2019. 2020. url: https://visualstudio.
microsoft.com/vs (visited on 06/23/2020).

[MHJ20] Joonas Multanen, Kari Hepola, and Pekka Jääskeläinen. “Pro-
grammable Dictionary Code Compression for Instruction Stream
Energy Efficiency”. In: Dec. 2020.

[Nez+20] Zeinab Nezami et al. Decentralized Edge-to-Cloud Load-balancing:
Service Placement for the Internet of Things. 2020. arXiv: 2005.
00270 [cs.DC].

[Sch+20] Fabian Schuiki et al. LLHD: A Multi-level Intermediate Representa-
tion for Hardware Description Languages. 2020. arXiv: 2004.03494
[cs.PL].

[Sil20] Silexia. SLX FPGA. 2020. url: https://www.silexica.com/wp-
content/uploads/2020/03/SLX- FPGA- 20.1.pdf (visited on
12/20/2020).

[Tan+20] Jialiang Tan et al. “What Every Scientific Programmer Should
Know about Compiler Optimizations?” In: Proceedings of the
34th ACM International Conference on Supercomputing. ICS ’20.
Barcelona, Spain: Association for Computing Machinery, 2020.
isbn: 9781450379830. doi: 10.1145/3392717.3392754.

[Ter+20] Kati Tervo et al. “TTA-SIMD Soft Core Processors”. In: Aug. 2020,
pp. 79–84. doi: 10.1109/FPL50879.2020.00023.

[Vis20] Visual GDB. VisualGDB Serious Cross-Platform for Visual Studio!
2020. url: https://visualgdb.com (visited on 07/26/2020).

[Wad20] Zubair Wadood. Adaptive Radar Beamformer: An HLS Optimiza-
tion Case Study With SLX. Tech. rep. 2020. url: https://www.
silexica.com/wp-content/uploads/Adaptive-Beamformer-An-
HLS-Optimization-Case-Study-with-SLX-FPGA.pdf (visited on
12/20/2020).

[Wan+21] J. Wang et al. “Fast Adaptive Task Offloading in Edge Computing
Based on Meta Reinforcement Learning”. In: IEEE Transactions
on Parallel and Distributed Systems 32.1 (Jan. 2021), pp. 242–253.
issn: 1558-2183. doi: 10.1109/TPDS.2020.3014896.

87

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://software.intel.com/en-us/forums/intel-c-compiler
https://software.intel.com/en-us/forums/intel-c-compiler
https://doi.org/10.1109/ACCESS.2020.2979894
https://arxiv.org/abs/2002.11054
https://visualstudio.microsoft.com/vs
https://visualstudio.microsoft.com/vs
https://arxiv.org/abs/2005.00270
https://arxiv.org/abs/2005.00270
https://arxiv.org/abs/2004.03494
https://arxiv.org/abs/2004.03494
https://www.silexica.com/wp-content/uploads/2020/03/SLX-FPGA-20.1.pdf
https://www.silexica.com/wp-content/uploads/2020/03/SLX-FPGA-20.1.pdf
https://doi.org/10.1145/3392717.3392754
https://doi.org/10.1109/FPL50879.2020.00023
https://visualgdb.com
https://www.silexica.com/wp-content/uploads/Adaptive-Beamformer-An-HLS-Optimization-Case-Study-with-SLX-FPGA.pdf
https://www.silexica.com/wp-content/uploads/Adaptive-Beamformer-An-HLS-Optimization-Case-Study-with-SLX-FPGA.pdf
https://www.silexica.com/wp-content/uploads/Adaptive-Beamformer-An-HLS-Optimization-Case-Study-with-SLX-FPGA.pdf
https://doi.org/10.1109/TPDS.2020.3014896

	Introduction
	Background and Motivation
	Research Focus
	Description of Algorithms
	Data flow analysis of C and C++ programs

	Related Work
	Modelling of Algorithms
	Customized compute-nodes


	Methodology
	Basic Concepts
	Extracting Data Dependencies
	Integer Ranges
	Indirect Memory Access
	Call Graphs

	Preparing the Code
	Program optimization
	Program optimization, vectorization
	Front End and Compiler Optimizations
	Φ-nodes 
	Function calls
	Initialization and detecting input and output data
	Cross function Φ-nodes
	GEP-nodes
	Raising Abstraction Level

	Representing Hardware
	Hardware Model
	Execution time estimation basics


	Results
	Control and Data Flow Graphs
	Simplified Microbenchmark
	Arithmetic benchmark

	Manual Performance Estimation
	Automated Distribution Analysis
	Anomalies
	Randomization
	A Heterogeneous Example


	Conclusion
	Future Work


		2021-01-26T07:02:18+0100




