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Abstract

The quest of solving high dimensional partial differential equations and propagating
uncertainties of their intrinsic parameters within feasible computational time is a known
problem in data analysis. This thesis investigates a surrogate model in order to estimate
uncertainties of partial differential equations which stem from a system describing aortic
wall properties to help modelling of Aortic Dissection.

The aim of this work was twofold. Firstly, Gaussian process sampling techniques were
investigated and adapted to model a stochastic, heterogeneous and spatially correlated
degradation of aortic tissue, due to the accumulation of glycosaminoglycans. There-
fore, random field realizations adhering to the Beta distribution were generated over a
non-equidistant grid, such that the degradation field obeys physical and physiological
constraints.

These random fields then served as the input for an uni-axial tensile test of aortic tissue
with a nearly-incompressible, hyperelastic constitutive law. The output was the left
Cauchy-Green tensor and was provided by Rolf-Pissarczyk with finite element software
application FEAP [1]. Investigations considered a neo-Hookean model as well as the
recently proposed Rolf-Pissarczyk-Holzapfel model [2].

Secondly, a surrogate model was trained to map the input random fields, describing the
degradation parameter, onto the output of the finite element calculation representing
the results of the tensile test. The surrogate, a Convolutional Neural Network more
specifically a Bayesian Deep Convolutional Encoder-Decoder as proposed in [3], was then
used to propagate the uncertainties through the model since a brute force calculation
would have been computationally infeasible because of complexity of the model.

The main pillars of this work include i) finding an efficient method for generating random
fields at non-equidistant points, ii) accurately predict the left Cauchy-Green stresses in
tensile direction as well as iii) the propagation of uncertainties through the model.
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Kurzfassung

Das Lösen von hochdimensionalen partiellen Differentialgleichungen und die damit ver-
bundene Quantifizierung der Unsicherheiten der zugrundeliegenden Parameter ist ein
bekanntes Problem in der Datenanalyse.

In dieser Arbeit wird ein Surrogat Modell aufgestellt, welches die Unsicherheiten eines
Aortenwanddegradationsparameters untersucht, dessen partielle Differenzialgleichungen
aus der Analyse von Aortenwand Abrissen stammen.

Die zwei Hauptziele der Arbeit waren Folgende: Erstens, Findung einer geeigneten Tech-
nik zur Simulierung von stochastischen Prozessen, welche den Degradationsparameter
der Aortenwand als Folge von Ansammlung an Glykosaminoglykane als heterogen und
räumlich korreliert darstellen. Dafür wurden Zufallsfelder (engl. = random fields)
nach einer Beta-Verteilung auf einem nicht äquidistanten Gitter simuliert, welche als
Input zu einer Finiten Elemente Rechnung dienten. Dem physiologischen Modell der
Finiten Elemente Rechnung liegt ein Zugtest zugrunde, welcher ein hyperelatisches und
beinahe inkompressibles Gewebe annimmt. Das Ergebnis dieses Zugtests liefert den
linken Cauchy-Green Tensor in Zugrichtung, dessen Grundlagen auf einem kürzlich pub-
lizierten Modell von Rolf-Pissarczyk-Holzapfel basieren. Die Berechnung des Zugtests
wurde ebenfalls vom Autor Rolf-Pissarczyk mit Hilfe der Software FEAP durchgeführt.

Das zweite Hauptziel, nach erfolgreicher Simulation der Zufallsfelder, war es ein Surrogat
Modell durch eines Neuronalen Netzes zu trainieren, welches den Input, die Zufallsfelder,
auf den Output des Zugtests lernt. Mit Hilfe eines

”
Bayesian Autoecoders“ konnte

dann die Quantifizierung der Unischerheiten durchgeführt werden, welche durch
”
brute-

force“ Analyse der Finiten Elemente Simulation auf Grund der Rechenzeit nicht möglich
gewesen wäre.
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Glossary

Probability Theory

univariate process - process dependent on one variable

bivariate process - process dependent on two variables

multivariate process - process dependent on multiple variables

univariate vector process - process dependent on one variable but with different vari-
ances within variable dimension

multivariate vector process - process dependent on multiple variables and with different
variances within those variable dimensions

lag-vector - vector used for describing time/space steps in stochastic process

auto-covariance - covariance of stochastic process with itself

cross-correlation function - off diagonal elements in correlation function

correlation coefficient - normalized covariance which shows to magnitude of linear re-
lation

ACF - Auto-Correlation function, the auto-correlation describes the correlation of a
stochastic process with itself

PSDF - Power Spectral Density function, or simply PSD

SRM - Spectral Representation method, also called FFT-method or sum of cosines
method

Stochastic Partial Differential Equation method (SPDE) - grid-independent method
to generate Gaussian random fields by solving a PDE

GRF - Gaussian Random Field

GMRF - Gaussian Markov Random Field is a method to approximate Gaussian random
fields by imposing Markov property to GRF

KLE - Karhunen–Loève expansion is a factorisation method to generate Gaussian ran-
dom fields

Ornstein-Uhlenbeck process - Gaussian stochastic process with an exponential kernel
in one-dimension

homoscedastic a sequence of random variables which have the same, finite variance.
Complementary to a sequence being heteroscedastic.
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weakly homogeneous in this context used to describe a random field with only the first
two moments known. Moreover, the mean needs to be constant and the covariance
only dependent on the lag-vector

stationary process or homogeneous process, does not vary its mean and variance over
time/spatial dimension, i.e. joint probability is invariant to shifts

isotropy invariant under rotation, in this case, the isotropic covariance function only
depends on the lag-vector, but not on the direction

ergodic process the joint probability distribution is completely determined by one (suf-
ficiently large) realization

Ergodicity a (large enough) collection of samples will converge to the true distribution

Machine Learning

NN - Neural Network

CNN - Convolutional Neural Network

SVGD - Stein Variational Gradient Descent

Encoder - compresses data e.g. images, via selection or extraction of features

Decoder - decompresses data in order to retrieve input dimensions, i.e. of input image

KL - Kullback Leibler divergence is a measure of difference between two probability
distributions. It is used in Machine Learning to learn data distributions instead of
e.g. regression functions.

Variational Autoencoder - or Bayesian Autoencoder, is a latent variable model which
’learns’ a probability distribution, from which one can sample from. Thus, it is
a generative model. The probability distribution is learned via Kullback Leibler
divergence, which is different to other regression models, which only learn a (hy-
percomplex) function. VAEs are used for surrogate modelling i.e. in uncertainty
quantification.

verbose - optional parameter, if true, network status is printed during training

SVD - Singular Value Decomposition - factorization method to decompose a m × n
matrix into a m×n orthogonal, n×n diagonal and another n×m orthogonal part

PCA - Principal Component Analysis: tool to re-base a set according to descending
variance, similar to SVD

active subspace - is called the span of particular directions in the input parameter
space. Perturbation of the inputs along these active directions changes the output
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more, on average, than perturbing the inputs orthogonal to the active directions.
By focusing on the model’s response along active directions and ignoring the rel-
atively inactive directions, we reduce the dimension for parameter studies, that
are essential to engineering tasks such as design and uncertainty quantification [4].
Examples can be found online at [5].

ADAM - Adaptive Moments method inferred from physical idea, to optimize loss func-
tion by tracking previous descents and adapting the learning rate accordingly

dropout - regularization method used to prevent overfitting by ignoring some layers of
the network during training

batch normalization or Batch Norm - regularization method used to prevent overfit-
ting by normalizing each batch individually during training

pooling layers - compress information of data during training, by either averaging (average-
pooling) over a certain window or taking a window’s maximum value (max-pooling)

fully connected vs. sparsely connected - in a fully connected network, each neuron
within a layer is connected to all neighbouring neurons of another layer; sparsely
connected means the opposite, that not all neurons are connected within two layers.

feature map/ activation map - gives the output activation of a given filter, i.e. pro-
duces a high value at a given location, if the feature represented in the convolutional
filter is present at that location of the input.

latent space - vector space where features to map onto lie

universal approximation theorem - theorem which says that a neural network is capable
to learn any degree complex model for infinite width

Cosine Annealing - a cosine for the learning rate annealing function is used

Warm Restarts - the learning rate is restarted every now and then (e.g. re-raised back
up)

nugget effect - represents short scale randomness or noise in a random and spatially
correlated variable [6].

Biomechanical Engineering

FEM - Finite Elements Method are grid based methods to evaluate PDEs at grid point
locations

GIP - Gaussian Integration Points are called the grid points at which the FEM solver
evaluates the input, in this work Gauss-Kronrod quadtrature is used.

surrogate model - substitute function which is cheaper to evaluate

12
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nH - neo Hookean model is a nonlinear stress-strain model of hyperelastic materials
undergoing deformations

deformation gradient - often denoted by F, is the deformation gradient which defines
the local deformation.

constitutive model - idealized model to approximate observed physical behaviour of an
ideal material, i.e. behaviour under stress or strain

hyperelastic material - also referred to as Green-elastic material, postulates the exis-
tence of a Helmholtz free energy function Ψ, which is defined per unit reference
volume rather than per unit mass. If it solely depends on the deformation gradient
F it is called strain energy function or stored energy function [7].

heterogeneous material - depends on local position in medium.

homogeneous material - does not depend on local position in medium.

isotropic material - a material is said to be isotropic, if the values of the strain energy
function Ψ(F) and Ψ(F∗) are the same for all orthogonal tensors relative to the
reference configuration. In other words, if translation or rotation of the system
leads to the same strain-energy function [7].

First Piola-Kirchhoff stress tensor - often denoted as P, is a second order tensor, and
the derivative of the scalar valued homogeneous strain energy function with respect
to the tensor variable F.

reference/initial frame - before deformation

current frame - after deformation

uniaxial extension test - tensile test with the same extension along the tensile direction

Rolf-Pissarczyk-Holzapfel model - constitutive model of incompressible aortic tissue
with directional elastic and collagen fibers to analyse a tissue degradation param-
eter, as proposed in [2].

curse of dimensionality - calculation gets computationally infeasible when moving to
higher complexity models. Thus, surrogate modelling for i.e. uncertainty quantifi-
cation becomes necessary.

PAV Principal Absolute Value - sum of the squared Cauchy-Stress-tensor elements for
each location.

experimental uncertainty - uncertainties due to observation errors.

epistemic uncertainty - systematic uncertainties arising within the modelling process,
e.g. due to lack of knowledge or limited access to data.

aleatoric uncertainty - statistical uncertainty, repetition of the same event might give
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slightly distributed results due to lack of perfectly precise measurements. Differ-
ence to epistemic uncertainty is the awareness of performing an imperfect mea-
surement.

algorithmic uncertainty - uncertainty due to numerical errors and finite computer pre-
cision.

parameter uncertainty - quantities which ’true’ values are not known but considered
in computations. They arise due to e.g. non-representative sampling or too little
data.

structural uncertainty - uncertainties due to approximating reality/natural laws by
equations.
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1 Introduction

Aortic Dissection (AD), see Fig. 1, is usually initiated by a small tear at the innermost
layer of the aorta, which then gradually propagates within the aortic layers leading to a
so-called false lumen. The presence of a false lumen changes the local hemodynamics in
the aorta, and consequently, causes tissue remodeling (degradation) and thrombus for-
mation and growth. The annual occurrence of AD is 3–6 cases per 100,000 population,
but the mortality rate during the first 24 hours can be high, if it is left untreated.
Surgical repair of the aorta and a placement of a synthetic graft are needed for ascend-
ing aortic dissection and for certain descending aortic dissections. Usually, endovascular
stent grafts are used for certain patients, especially when dissection involves the descend-
ing thoracic aorta. One fifth of patients die before even reaching the hospital, and up to
one third die of operative or perioperative complications [8].

Figure 1: Sketch of Aortic Dissection. The Aorta is one of the main blood vessels in
the body, consisting of three layers, the (tunica) intima, (tunica) media and
(tunica) adventitia. During an Aortic Dissection a tear within the most in-
ner layer occurs and leads to a ’False Lumen’, beside the main blood vessel,
indicated as ’True Lumen’. This image was taken from a video about AD in
[8].

Moreover, diagnosis methods of AD such as MRI or CT are expensive. Therefore, sim-
ulations and models for non-invasive diagnosis methods are needed, which enable to
recognize cheap, fast and yet, very accurately if the patient undergoes an Aortic Dissec-
tion. For the simulation of human tissue, computationally expensive simulations as e.g.
proposed in [2], are needed in order to calculate specific properties, e.g. Stress, Strain,
at certain locations. These calculations aim to predict where AD is most likely to occur
and should describe aortic wall properties precisely within some range of uncertainty.
In this case, the model used incorporates a degradation of the aortic wall, which can be
characterized by a degradation parameter that lies between zero an one, ranging from
healthy to degraded aortic walls respectively.
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Numerical methods for in-silico analysis, like Finite Element Methods, work in princi-
ple, yet, they are unsuitable for performing Uncertainty Quantification. Hence, Neural
Networks which are known to be capable of dealing with loads of data are used to learn
a surrogate function, which can be then used to predict (values of) stress tensors at un-
seen samples. Those comparably ‘cheap’ to evaluate predictions can be used to perform
uncertainty quantification, e.g. by utilizing Convolutional Neural Networks, which have
shown promising results when applied to image-to-image regression including Variational
Autoencoders [9, 10] and Generative Adversarial models [11, 12, 13].

In this work, the input is a degradation parameter describing the degradation of the
aortic wall. This parameter is a random variable or rather Random field as is depends
on the position, see Chapter 3. Gaussian random fields are widely used for modeling
stochastic processes with applications in sampling groundwater resources [14], soil anal-
ysis [15], or, investigations of the cosmic microwave background, [16, 17, 18, 19].

The main advantage of Gaussian random fields is that they inherit Gaussian properties.
Integration, differentiation as well as Fast Fourier transformation, yield again a Gaus-
sian. In addition, one of the most important property is that any Gaussian can be fully
described by its first and second moment, the mean and covariance. A summary of prob-
ability theory is outlined in Section 2. Nevertheless, Gaussian nature is not universal,
which means that fitting a Gaussian process through any data may not yield meaningful
results. Moreover, there is a strong correlation between the values at neighboring sites.
The degradation parameter, by definition, can take on the values between 0 and 1. Due
to lack of detailed knowledge, a uniform distribution is assumed, resulting in a correlated
uniform random field. Therefore, sampling is not as simple as one might think at first
glance. It is common to first sample Gaussian random fields and then map them onto
the desired distribution, either through an analytic relation, or via iterative methods,
see Section 3.4.

Figure 2: Curse of dimensionality. This figure shows samples drawn from a Gaussian
random distribution in (a) one dimension (b) two dimensions and (c) three di-
mensions. Image (c) was taken from Noethinger 2018 [20]. All samples include
spatial correlation to their neighbouring points, which requires the inversion
of the covariance matrix. Factorisation methods like Cholesky decomposition
become infeasible, since complexity grows with Nd with N being the number
of points and d the number of dimensions. Moreover, mapping Gaussian onto
non-Gaussian random fields makes calculations even more demanding.

16
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Figure 3: Uniaxial Tensile Test. The random field input is taken into the FEM solver and
an uniaxial tensile test is performed on the heterogeneous tissue. In subfigure
(a) the two dimensional random field is outlined, which is stacked as layers to a
3-dimensional input. Subfigure (b) shows the Cauchy-Stress-Tensor in tensile
direction E3.

In this thesis, Gaussian random fields, as shown in Fig. 2, were generated in Python
via Spectral Methods, since it turned out to be the most efficient generating method
for this application. More details can be found in Chapter 3.3.3. Other common sam-
pling techniques of random fields, such as the Stochastic Partial Differential Equation
approach, are discussed Chapter 3.3.4. In this work, the distribution of the degradation
parameter was simulated as Gaussian and then mapped onto a Beta distribution, with
special case of a Uniform distribution, because of the prior constraint that the degra-
dation is bounded between [0, 1]. Other distributions to map analytically to would be
e.g. the Gamma or Lognormal distribution, which are outlined in Section 3.5 and their
generating code will be made available on github/wolke26.

After generating the 2D data, two identical layers of those fields were stacked behind
each other, such that a 3-dimensional ’aortic-wall’ was obtained, as shown in Fig. 3. This
assumption of two identical layers is justified by the sliminess of the tissue. The high
resolution images were down-sampled to a lower resolution, by taking only the values
at the later Gaussian integration points of the Finite Element simulation. Moreover,
the heterogeneous block was assumed as a hyperelastic material and the stress/strain
tensors for the Rolf-Pissarczyk-Holzapfel model were computed with FEAP. The model
consisted of collagen and elastic fibres, which were perpendicular and parallel to the
blood flow. Two models used for the analysis were i) the neo-Hookean and ii) the
Rolf-Pissarczyk-Holzapfel model which are explained in full detail in Section 4.

In order to perform uncertainty quantification of the computationally expensive model,
a surrogate model was trained to map the input random fields onto the FEM solution
output. This surrogate mapping was performed by a convolutional neural network,
more specifically, a Bayesian-Encoder-Decoder, which benefits from including Kullback
Leibler divergence (KL) in the loss function. Thus, the surrogate learns a probability
distribution, which enables to propagate uncertainties through the network. More details
on the convolutional neural networks, the architecture and further references can be
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found in Chapter 5.1.

Thus, after training the network once, one can readily use the surrogate model to predict
more stress-tensor data, in order to perform uncertainty quantification, as outlined in
Fig. 4.

Figure 4: Uncertainty Quantification (UQ) of Finite Element Method (FEM) via sur-
rogate model. Random fields are generated and used as an input to Finite
Element simulations, which are too costly to perform UQ with. The mapping
of input to output of the simulation is learned by a neural network, with the
aim that its surrogate can be used for uncertainty quantification.

In this work, a total of 10.000 input-output sample sets were available and were split
in the following way: 1) Training data (4200), 2) Test data (800), and 3) Validation
data (5000). The allocation was taken such that enough data was left for comparing
the surrogate model to unseen data. The network performance is outlined in Section
6.1. By setting up the surrogate model a worthwhile gain of CPU run time for future
simulations can be obtained, with the downside of introducing further errors in the
model. A more detailed discussion about considerations regarding uncertainties is given
in Section 5.2.3.
For implementing the Bayesian-Encoder-Decoder, an architecture similar to Zhu and
Zabaras 2018 [3] was used, with minor modifications as discussed in Chapter 5.2. The
implementation was done in Python, the network itself was implemented with Torch
[21]. A good introduction to the use of PyTorchis given by Stefan Otte’s lecture, [22]
with respective examples outlined on his Github page, see github/sotte [23].
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2 Probability Theory

This Section gives an overview of Bayesian Probability Theory, which was relevant for
this work and concisely summarizes [24]. For a broader approach the reader is referred
to standard literature, such as [25] and a rather entertaining introduction is outlined in
[26].

2.1 Fundamentals of Bayesian Probability Theory

In general, if an experiment is performed, all possible outcomes can be summarized in
a certain event space, called Ω. The probability of a certain event A happening, can be
written as p(A), for all possible events in the event space. Moreover, the probability of
p(A) ≥ 0 is non negative and the total sum of all events holds p(Ω) = 1. The probability
of two mutually exclusive events A and B happening can then be given by their union

p(A ∪B) = p(A) + p(B). (1)

In addition to the sum rule and normalisation, one finds the product rule as

p(A,B | I) = p(A | B, I) p(B | I) (2)

p(A | I) = p(A,B | I) + p(A,¬B | I) (3)

with ¬B as the complement of event B. Those relations are called Kolmogorov axioms
and lead to the most important rule of conditional probabilities, namely Bayes Theo-
rem

p(A | B, I) =
p(B | A, I) p(A | I)

p(B | I)
, (4)

which was first introduced by Thomas Bayes, but only mentioned 2 years after his death
in a letter conversation by Richard Price in 1793 [27]. The importance of this deceptively
simple formula can hardly be overstated as it is the basis for countless innovations in
the last decades. It is also pivotal for the understanding of the concepts as presented in
this work [24].

2.2 Random Variables

There are two types of random variables, discrete and continuous ones. A discrete
random variable is defined as a real valued function, which can at most take countably
infinite numbers of values, whereas continuous variables can hold uncountably infinite
numbers of values. The most common way to characterize a random variable is via its
probability mass function, when it is discrete, and via its probability density function,
if it is continuous. The probability density function (PDF) of a random variable X is
p(x) is given by a non negative function, p(x) ≥ 0, which gives the probability that a
continuous variable X lies in the interval [a, b] such that

P (X ∈ (a.b)) =

∫ b

a
p(x) dx . (5)
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In order to constitute a valid PDF, the function p(x), also needs to be normalized,
hence ∫ ∞

−∞
p(x) dx = 1 . (6)

Moreover, a probability distribution can be introduced by using the CDF, or cumulative
distribution function. The cumulative distribution function is defined by the probability
that a random variable X is smaller than or equal to x,

F (x) = P (X ≤ x, | I) =

{∑
k ≤ x p(k) if X is discrete,∫ x
−∞ p(x

′)dx′ if X is continuous
(7)

i.e. it provides a probability that a random variable X falls within the interval (−∞, x),
[28, 25]. In addition, the following requirements have to be fulfilled:

• 0 ≤ F (x) ≤ 1,∀ x

• FX is monotonic increasing for all x < y, x ∈ X and y ∈ X with F (x) < F (y)

• if X is discrete F (x) is a piecewise constant function of x

• if X is continuous F (x) is a continuous function of x

2.2.1 Transformation of Random Variables

Based on having a random variable X, another one, Y can be obtained via a transforma-
tion. This transformation affects the infinitesimal volume dVX → dVY which includes
the relation

pX(x) dVX = pY (y) dVY , (8)

which holds, because both cases contain the same infinitesimal probability mass. There-
fore, one can write

pY (y) = pX(x)

∣∣∣∣∂Xi

∂Yj

∣∣∣∣ , (9)

whereby the change in volume is given by the Jacobian determinant

|J | =
∣∣∣∣∂Xi

∂Yj

∣∣∣∣ =


∂X1
∂Y1

∂X1
∂Y2

. . . ∂X1
∂Yn

∂X2
∂Y1

∂X2
∂Y2

. . . ∂X2
∂Yn

. . . . . . . . . . . .
∂Xn
∂Y1

∂Xn
∂Y2

. . . ∂Xn
∂Yn

 . (10)

2.2.2 Moments of Distributions

Probability distributions can be characterized in different ways. The most common way
for discrete models is provided by the Probability mass function (PMF), which assigns
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a probability to each value of the discrete random variable, and the Probability density
function (PDF), holds analogously for the continuous case. Another approach, which is
sometimes more convenient to use, is based on moments of those functions. Moments
are the means of powers of random variables. The first and second moment, mean µ and
variance σ2, are written as

E[X] := 〈X〉 :=

∫ ∞
−∞

x p(x) dx (11)

V[X] := 〈
(
X − 〈X〉)2〉 :=

∫
(x− µ)2p(x) dx. (12)

Moreover, the n-th moment is written as

E[(X − E[X]n)] :=

∫ ∞
−∞

(x− µ)n f(x) dx. (13)

For the Gaussian distribution the first two moments are enough to fully describe the
distribution, which makes them so powerful. For other distributions the knowledge of
all n-th order densities have to be known, however there is often not sufficient data
available. This property also influences the correlation function and thus, the spectral
representation, which can then be generalized to the case of random fields, to give a
caveat of the next Section. The first and second moments of a homogeneous random
field are invariant with respect to a group operation (e.g. a linear shift) to their ar-
gument, defined on a class of commutative topological groups [29]. This holds for all
homogeneous random fields, however for the proper description of most other distribu-
tions, the knowledge of all moments needs to be known. Thus, often a random field is
said to be weakly homogeneous, to refer to that only the first two moment characteristics
are known.

Example: Gaussian PDF and CDF

In case of a single real-valued random variable, the univariate Gaussian distribution is
represented by the probability density function with mean µ and variance σ2 as

p(x | µ, σ) = N (x | µ, σ) =
1

(2πσ2)
1
2

exp

{
− 1

2σ2
(x− µ)2

}
. (14)

The cumulative distribution of the centered Gaussian with σ = 1 can be obtained via
the error function, reading

F (x) =
1

2

[
1 + erf

(
x√
2

)]
.

Fig. 5 shows the PDF (left) and CDF (right) of a Gaussian distribution.

2.3 Multivariate Random Variables

Since many applications require the consideration of multiple random variables simul-
taneously, the notions of PMF and PDF are extended to multiple random variables.
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Figure 5: Standard univariate Gaussian distribution. Figure (a) shows the Probability
density function with 95 % confidence region in light blue and figure (b) shows
the Cumulative distribution function.

Therefore, the concepts of conditional and marginal probability distributions are intro-
duced. Based on a collection of either discrete, or continuous, random variables the
so-called joint probability mass function PX(x), or joint probability density pX(x) can
be defined. In this Section the discussion is restricted to a bivariate process, thus, two
continuous random variables x1 ∈ X1 and x2 ∈ X2, which are contained by the random
vector ~X = [X1, X2]T . In statistics these variables could resemble independent distri-
butions, such as people’s weight, height, or else. The generalisation to multiple random
variables is straightforward [24]. The joint probability density of X1 and X2 reads

p(x1, x2) = p(x1 | x2) p(x2) = p(x2 | x1) p(x1), (15)

where p(x1 | x2) and p(x2 | x1) are called conditional distributions and p(x1), respectively
p(x2), are the marginal distributions, which can be obtained by marginalization rule as

p(x1) =

∫ ∞
−∞

p(x1, x2) dx2. (16)

If X1 and X2 are mutually dependent, the complete information of the system can be
calculated using this equation. Another important quantity is the covariance function,
also called kernel function, which describes the joint variability of two random variables

cov(x1, x2) := k(x1, x2) = E
[
(X1 − E[X1])(X2 − E[X2])

]
= E[X1X2]− E[X1]E[X2] (17)

If the covariance has a positive sign, then increasing one variable will lead to an increase
of the other one. In the opposite case, if the covariance has a negative sign, then
a increase of one variable will correspond to a decrease of the other, see [24]. More
information regarding the covariance function, including references, is outlined in Section
3.2.

If the correlation between two random variables is zero, they are called uncorrelated.
One can formulate the normalized covariance, also called correlation coefficient, as

ρ(x1, x2) =
cov(x1, x2)√
V[X1]V[X2]

,

which satisfies − 1 ≤ ρ(x1, x2) ≤ 1
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For a multivariate random variable set in two dimensions, one defines the complete set

as random vector ~X = [X1,X2]T with X1 = [X
(1)
1 , X

(2)
1 ]T and X2 = [X

(1)
2 , X

(2)
2 ]T ,

whereby the lower index indicates the sample and the upper one the dimension within.
Hence, the Gaussian PDF from Eq. (14) can be extended to the multivariate case with

N (x1 | µ1,Σ11) =
1

(2π)
d
2

1

|Σ11|
1
2

exp
{
− 1

2
(x1 − µ1)TΣ−1

11 (x1 − µ1)
}
, (18)

with µ1 being the 2-dimensional mean vector, Σ11 the symmetric, positive definite 2 × 2
covariance matrix and |Σ11| as its determinant. The covariance matrix can be calculated
via the kernel function analogously to Eq. (17) with ∆Xi = Xi − E[Xi] yielding

Σ11 = E[∆X1∆XT
1 ] = E

[[
∆X1

1

∆X2
1

] [
∆X1

1 ∆X2
1

]]
=

[
k(x1

1, x
1
1) k(x1

1, x
2
1)

k(x1
1, x

2
1)T k(x2

1, x
2
1)

]
. (19)

For further details see [25]. Multivariate Gaussian distributions have the crucial property
that both, marginal and conditional distributions of multivariate Gaussians yield again
Gaussian distributions. This property is important when studying Gaussian processes,
which will be introduced in the next Section. For the two multivariate random variables
x1 ∈X1 and x2 ∈X2 their joint random vector is given by

p(x1,x2) ∼ N
([
x1

x2

] ∣∣∣∣ [µ1

µ2

]
,

[
Σ11 Σ12

ΣT
12 Σ22

])
, (20)

then the marginal distribution p(x1) is a Gaussian distribution as well, and can be
computed by integration over the volume

p(x1) =

∫
p(x1,x2) dVx2 = N

(
µ1,Σ11

)
. (21)

The conditional distribution of x1 given x2 is also Gaussian

p(x1 | x2) = N (µX1|X2
,ΣX1|X2

) (22)

with

µX1|X2
= µ1 + Σ11Σ

−1
22 (x2 − µ2), (23)

ΣX1|X2
= Σ11 −Σ12Σ

−1
22 Σ21 . (24)

To illustrate these properties, Fig. 6 depicts an example of a bivariate Gaussian distri-
bution with the associated marginal and conditional distributions. In addition, Fig. 6
also shows a positive covariance between X1 and X2.
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Figure 6: Multivariate Gaussian distributions. (a) Contours of a bivariate Gaussian
distribution p(x1,x2). (b) Marginal distribution of centered Gaussian p(x1)
with σ2 = 1, shown in black and the marginal distribution p(x2) shown in red.

3 Random Fields

This section outlines the main principles of random fields by starting off with the most
simplest case, the Gaussian random process. In this chapter a new notation of indices
is introduced. Main literature recommendations for an introduction to random fields
include [30, 31, 32, 24, 25].

A random field or stochastic process is the extension of a multivariate random variable
up to infinitely many dimensions, such that, given a probability space (Φ,F , P ) with F
being a σ-algebra of subsets of Φ and P is a countable additive, non-negative measure
on (Φ,F) with total mass P (Ω) = 1. Then, from a parameter set X, a random field
is a finite and real valued measurable function f(x,φ) with φ ∈ Φ, for every fixed
x ∈ X. The synonyms stochastic process and random field are used, whereby some
authors associate stochastic processes with time-dependent and random fields with space-
dependent functions [24, 31].
Broadly speaking, the dimension of coordinates are usually within the range from one to
four, but any n > 0 is possible. Random fields in two or more dimensions are encountered
in a wider range of science, especially earth sciences, such as hydrology, agriculture,
geology and climate modelling commonly use random fields, see [30, 33, 34, 16, 17].
In the following discussion, analogously to [24], the focus lies on univariate processes.
According to [24], a stochastic process can be thought of as a function of two variables,
an index parameter x and a probability parameter φ, which values range throughout
the event space Φ, also called sample space. For any fixed φ ∈ Φ, the function f(x,φ) is
deterministic, and referred to as sample path, sample function or further, realization and
for any fixed x, f(x,φ) becomes a random variable [24]. The collection of all possible
realizations is called ensemble. The first order distribution called cumulative distribution
function (CDF) of a stochastic process is defined as

F (f,x) = P (f(x) ≤ f) , (25)

which directly leads to the first order density, or probability density function (PDF)
reading

p(f,x) =
∂F (f,x)

∂f
. (26)
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Here, the mean function reads

m(x) = E [f(x)] =

∞∫
−∞

f p(f,x) df

and similarly the variance function of the random process is defined as

σ2(x) = E[f(x)−m(x)]2 = E[f(x)2]− E[m(x)2]. (27)

Considering two random variables f(x1) and f(x2) with x1 ∈ X1 and x2 ∈ X2 the
second order distribution can be written as

F (f1, f2,x1,x2) = P

(
f(x1) ≤ f1 , f(x2) ≤ f2

)
(28)

with corresponding second order density

p(f1, f2,x1,x2) =
∂2F (f1, f2,x1,x2)

∂f1∂f2
. (29)

From the second order density, Eq. (29), the (auto)-correlation function can be defined
as the expectation of the joint moment with i, j ∈ (1, 2)

R(xi,xj) =

∫ ∞
−∞

∫ ∞
−∞

fi fj p(fi, fj ,xi,xj) dfjdfj = E[fi fj ]. (30)

Similar to before one defines the kernel or (auto)-covariance function as

k(xi,xj) =

∫ ∞
−∞

∫ ∞
−∞

[fi −m(xi)] [fj −m(xj)] p(fi, fj ,xi,xj)dfidfj = (31)

= E
[
[fi −m(xi)][fj −m(xj)]

]
. (32)

In case of e.g. a centered Gaussian (30) and (31) fall together. As before, the normalized
covariance as correlation coefficient reads

ρ(xi,xj) =
k(xi,xj)√

k(xi,xi) k(xj ,xj)
=

k(xi,xj)√
σ2(xi)σ2(xj)

(33)

and shows the magnitude of strength of linear relation. In the univariate process this
function becomes a scalar value, for multivariate processes it is a matrix, see Eq. (19).

3.1 Stationarity and Isotropy

In addition, if a stochastic process obeys both of the following conditions, it is said to
be weakly homogeneous, or homogeneous in the weak sense. First, the mean function
needs to be constant, i.e. not space/time-dependent,

E[f(x1,x2)] = const <∞,∀ x1 ∈ X1 and x2 ∈ X2. (34)

Secondly, the covariance function depends only on the difference between, and not on
the absolute position of x1 and x2, namely k(x1,x2) = k(x1−x2) = k(τ ), with τ called
lag-vector or simply lag.
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Another coining term synonymously used for homogeneous stochastic processes is sta-
tionary. This means, that a process does not vary in its stochastic dimension, i.e. time
or space. In addition, if the regularity of the covariance function in a multi-dimensional
processes is invariant under rotation of the coordinate system, the process is called
isotropic, which is equivalent of saying that the covariance function only depends on
the distance between two points but not on its direction, i.e.

k(x1,x2) = k(||x1 − x2||) = k(||τ ||). (35)

A stochastic process is ergodic in the strict sense if the joint probability distribution is
completely determined from one realization of the process alone. As with homogeneity,
weaker criteria for ergodicity are often used. Roughly speaking, if a stochastic process
is ergodic in the mean or correlation function, then the mean or the correlation function
of the process can be computed from an average over the parameter space X. The
formal requirements and conditions for ergodicity are omitted for the sake of brevity
and the reader is referred to, e.g. [35, 36] and for a more thorough overview see [24] and
references therein.

3.2 Covariance Functions and Correlation Length

After introducing the general concept of random fields, this subsection deals with the
most general, and simplest case of stochastic processes, namely the Gaussian process. In
general, a stochastic process is referred to as Gaussian if all joint probability distribu-
tions are Gaussian, i.e. a infinite collection of random variables, with any finite subset
following a Gaussian distribution. Gaussian processes can be fully described by their
mean µ(x1,x2) and covariance Σ(x1,x2) reading

f(x1,x2) ∼ GP
(
µ(x1,x2),Σ

(
x1,x2)

)
. (36)

A detailed overview of kernels and their properties can be found in [37] and the video
lecture [38]. In this work a zero-mean squared exponential covariance function was
applied, which is a common choice [39]. Hence the covariance matrix Σ(x1,x2) is a
n x n-matrix which holds the entries Σij = k(xi,xj). The kernel function of a centered
Gaussian oughts to be of positive semidefinite form reading

k(x1,x2) = σ2
n exp

{
− (x1 − x2)TM(x1 − x2)

}
. (37)

with σ2
n as an amplitude magnification. Here M is a diagonal covariance matrix of a

d-dimensional Gaussian with a characteristic length scale `2m > 0 and m = 1, 2, . . . , d
yielding

M =



`21

`22

. . .

`2m


. (38)
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The characteristic lengthscale describes the range of correlation between two data points.
An outline of two different stochastic Gaussian processes with varying length scales is
given in Fig. 7.

Figure 7: Realizations of two-dimensional Gaussian processes (a) Realization of
anisotropic process (b) Realization of isotropic process, i.e. different char-
acteristic length scales in x1 and x2 direction.
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3.3 Random Process Sampling

After summarizing the probabilistic background and some useful definitions in Section
2, this subsection gives an overview of sampling methods used to generate stochastic
process realizations. By today, there exists a zoo of different sampling methods for
all kinds of stochastic processes. Even though most theoretical cornerstones have been
proposed in the early 80s and 90s, the field of generating stochastic processes is still an
active area of research. This is also because of growing computational power. In general,
any of the existing sampling methods has their particular advantages and drawbacks. In
essence, the choice usually boils down to a trade-off between speed and accuracy.

For this thesis, one of the simplest, fastest and computationally cheapest methods was
used, namely the Spectral Representation method (SRM). SRM was first introduced
in the early 90s by Shinozuka and Deodatis [40] and combines the advantages of Fast
Fourier Transform with the disadvantage of generating samples only on evenly spaced
grids. A more detailed description of the Spectral Representation method is given in
Section 3.3.3.

In Section 3.3.4, a short summary of the Stochastic Partial Differential Method is out-
lined, which is a computationally more expensive method to generate random fields, but
brings the benefit of generating samples on arbitrary grids. In addition, a numerical
implementation of Gaussian processes, as well as non-Gaussian processes are considered
in 3.3.3 and 3.5, respectively. Some code snippets are attached in the appendix. The
complete code will be made available on github/wolke26 [41].

3.3.1 Gaussian Process Sampling - A Primer

Random field generation schemes are essentially separated in two groups, depending
whether they perform in space (direct methods) or wave-number (spectral methods).
Direct methods generate realizations by filtering a white noise through the square root
of the covariance matrix, whereby the simulation cost is essentially related to the compu-
tation of that square root of which the inverse needs to be calculated [42]. This method
is called Cholesky factorization, see Section A.4 in [39], and comes with the drawback
of scaling with O(N3), where N is the number of sampling points in d-dimensions. If
however, the covariance matrix is sparse, or/and circulant, an optimized factorisation
method, such as Turning bands, Toeplitz method [43], which can be exploited for faster
algorithms, FFT - Moving Average [44], a method similar closely related to the stan-
dard spectral methods, which computes with O(N log(N)), see [45, 46]. In addition,
direct methods use polynomial approximations of that square root, and obtain precondi-
tioned iterative schemes that are interesting for sampling large dimensional random fields
[47, 48]. In the paper of De Carvalho (2019) [42] the authors outline a great overview of
the topic, including references to novel methods, in which e.g. it is proposed to dispatch
the generation over smaller subdomains and to introduce statistical dependence between
the random variables of the different subdomains [49]. However, it needs to be stated,
that none of these models allows to decrease the complexity to O(N), which is necessary
for favourable scaling over large clusters of processes [49].

On the other hand, one can simulate stochastic processes in the spectral domain, see

28



Deep UQ Master Thesis Gloria Wolkerstorfer

[50, 40, 51, 52] by using the byproduct of FFT to speed up the sampling process. There,
the numerical cost is essentially that of computing the inverse Fourier transform, such
that the complexity can be lowered to O(N log(N)). Yet, for every plus there is a
minus, meaning that in this case spectral methods can quickly become memory expensive
[24]. Furthermore, simulation of big domains often require cluster calculations, in which
communication between processors can lead to efficiency loss. Thus, in [42] the authors
introduce a scalable parallel scheme for sampling Gaussian random fields in order to
overcome those limitations. They decompose the simulation domain into overlapping
subdomains, each of which is assigned to a single processor.

3.3.2 Factorisation and the Curse of Dimensionality

The first method mentioned is the most common method to obtain a GP sample. It is
a factorisation method, known as Cholesky decomposition. The Gaussian function over
some points x reads

N (f | µ,Σ,x) =
1

(2π)
d
2

1

|Σ|
1
2

exp

{
−1

2
(f − µ)TΣ−1(f − µ)

}
(39)

whereby the mean function µ = µ(x, θ) and covariance function Σ = Σ(x, θ) are both
dependent on some hyperparameters. For sampling by factorization the precision matrix
Q = Σ−1 needs to be calculated for every sample, e.g. by using Cholesky decomposition
for which the square root Σ = LLT is calculated. To obtain a Gaussian realization the
result is multiplied on a set of standard normal variables z = N (0, I) and the mean
function is added yielding

y(x) = µ+ Lz. (40)

However, for most simulations in high dimensions Cholesky decomposition becomes com-
putationally infeasible, because it scales with N3, with N being the number of sample
points. This effect is also called curse-of-dimensionality and is outlined by Fig. 2.

Nevertheless, for low dimensional problems with relatively small covariance matrix,
Cholesky decomposition works quite well.

3.3.3 Spectral Representation Method

This subchapter provides one of the most common sampling techniques of random fields
being the spectral representation method (SRM), also known as spectral method and
sum of cosines method. The SRM is one of the most common methods, because of
its computational efficiency resulting from FFT. One of the main cornerstones to this
method was introduced by Shinozuka and Deodatis in [50] and [40], who constructed
it based on former work done by Rice (1954) [53]. Moreover, this method has been
applied in many research areas, see Benowitz (2013, 2015) [54, 55], which also gives a
conclusive introduction to this sampling method and thus, will be one of the main papers
summarized in this Chapter.
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However, despite its efficiency, SRM can only be applied for sampling on regular grids.
Modifications for the Fast Fourier Transformation method on non-equidistant grids are
possible, thus an ongoing field of research [56, 57].

First and foremost, SRM is based on two main concepts being Ergodicity and the
Wiener-Khintchine theorem.

Ergodicity in the context of spectral representation method means that the collection
of random samples, obtained by the SRM method, will converge to the true, in this case
zero-mean Gaussian distribution.

In addition, Wiener-Khintchine theorem tells the relation between the auto corre-
lation function (ACF) dependent on the lag-vector ξ and the power spectral density
(PSD), which reads

S(ω) =
1

(2π)

∞∫
−∞

R(ξ)e−iωξ dω and (41)

R(ξ) =

∞∫
−∞

S(ω)eiωξ dξ (42)

meaning that, given either the PSD, or the ACF, the other can always be calculated by
applying a Fourier transform. Thus, Wiener-Khintchine theorem is a special case of of
the cross-correlation theorem [58]. For further references, see [59, 60, 61].

Let’s define the random variable φn ∈ [0, 2π) as independent uniformly distributed ran-
dom phase angles over the time domain t, such that the discretized frequency domain
reads

∆ω =
ωu
N

(43)

ωn = n∆ω (44)

with ωu being a cut-off frequency and N being the number of realizations. Then, having
defined the auto-correlation function and the spectral density function in Eq. (41) and
Eq. (42) respectively, with i =

√
−1 being the imaginary unit, SRM enables to a sample

stationary and Gaussian univariate processes f(t) as

f(t) =
√

2
N−1∑
n=0

[√
S(ωn)∆ω cos

(
ωnt+ φn

)]
. (45)

By help of Central Limit Theorem, f(t) becomes asymptotically Gaussian as N → ∞,
however, in most cases N actually does not need to be extremely large to reach sufficient
accuracy [40, 24]. Moreover, Eq. (45) gives rise to another name of SRM, namely the
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sum of cosines method. In order to benefit from computational speed of FFT the sum
of cosines can further be modified, see [50, 40], as

f(t) = Re

{√
2
N−1∑
n=0

√
S(ωn)∆ωeiφneiωnt

}
. (46)

Here Re{.} denotes the real part. To compactify this equation one can introduce a vector
A with components

An = 2
√
S(ωn)∆ωeiφn (47)

for which a stochastic sample dependent on φn can be generated as

f(t) = Re

{
FFT(A)

}
. (48)

Sampling of Gaussian Random Fields with SRM in two dimensions

In this Section the univariate two-dimensional case will be explained first, followed by
numerical example analogous to Shinozuka (1996) [40]. In general, when sampling a
stochastic field, either the auto-correlation function (ACF) or the power spectral density
(PSD) needs to be known. In the context of engineering it is common to choose an
ACF first. In astrophysics where one cannot really choose but has to fit the later, the
PSD is considered. Here, an ACF is defined, such that one obtains a two-dimensional
univariate (2D-1V) homogeneous and stationary, zero mean random field f(x1, x2) with
xi and i = 1, 2 being the dimensional axes. As mentioned in Chapter 3.1, the axes of
the ACF in the stationary case only depend on their spatial separation ξi, lag-vector,
and are time independent. In case of slowly changing systems, weak stationarity is often
sufficient enough.
Then the (weakly) stationary ACF reads

R(x1, x2) = E [(f(x1 + ξ1, x2 + ξ2)f(x1, x2))] = R(ξ1, ξ2). (49)

The Wiener-Khintchine theorem for two dimensions states that the power spectral den-
sity and the auto-correlation function in Eq. (41) are related via Fourier transforma-
tion

S(ω1, ω2) =
1

(2π)2

∞∫
−∞

∞∫
−∞

R(ξ1, ξ2)e−i(ω1ξ1+ω2ξ2)dω1dω2 (50)

and

R(ξ1, ξ2) =

∞∫
−∞

∞∫
−∞

S(ω1, ω2)ei(ω1ξ1+ω2ξ2)dξ1dξ2 (51)

with ωi being the frequency vectors respectively. Moreover, the following properties are
met by symmetry

S(ω1, ω2) = S(−ω1,−ω2)

R(ξ1, ξ2) = R(−ξ1,−ξ2)
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and in case of quadrant symmetric ACF and PSD the following relations are valid too:

S(ω1, ω2) = S(ω1,−ω2) = S(−ω1, ω2) = S(−ω1,−ω2)

R(ξ1, ξ2) = R(ξ1,−ξ2) = R(−ξ1, ξ2) = R(−ξ1,−ξ2).

When sampling random fields, a distinction between the stochastic field and the simu-
lated field must be made. The stochastic field is represented as an infinite sum of its
elements, whereby the simulated field is regulated by its upper cut-off ωu. This cut-off
is a value above which the PSD is assumed to be zero.
For the stochastic properties in the implementation this means that as Ni → ∞ the
ergodicity of the field is restored. In some cases like [55] values of Ni = 16 with i = 1, 2
were sufficient enough. A detailed review and some proofs are given in [40]. Furthermore
the following property can be proven, see [50]

∞∫
−∞

∞∫
−∞

S(ω1, ω2) dω1 dω2 = R(0, 0) = σ2. (52)

For later clarity the variables An1n2 with ni = 0, 1, 2, . . . , Ni − 1 are introduced

An1,n2 =
√

2 S(ω1n1
, ω2n2

) ∆ω1 ∆ω2 (53)

Ãn1,n2 =
√

2 S(ω1n1
,−ω2n2

) ∆ω1 ∆ω2. (54)

The discretized frequency vectors ωi of length Ni−1 have to be chosen with sufficiently

small, but finite steps ∆ωi reading

∆ω1 =
ω1u

N1
, ∆ω2 =

ω2u

N2
. (55)

yielding the frequency vectors as

ω1n1
= ∆ω1 · n1 ω2n2

= ∆ω2 · n2. (56)

Here ωiu is called cut-off wave number defining the limit above which the PSD is assumed
to be of insignificant magnitude. A 2D-1V homogeneous random field can be calculated
analogously to [40] p. 34, as

f(x1, x2) =
√

2

N1−1∑
n1=0

N2−1∑
n2=0

[
An1,n2 cos

(
ω1n1

x1 + ω2n2
x2 + Φ(1)

n1n2

)
+ Ãn1,n2 cos

(
ω1n1

x1 + ω2n2
x2 + Φ(2)

n1n2

)]
.

(57)

The random phase angle Φ
(i)
n1n2 takes values between [0, 2π) and in case of two dimensions

Φ
(1)
n1n2 and Φ

(2)
n1n2 are two independent sets of random variables, which can be organized

as a matrix with size (N1 − 1, N2 − 1), consisting of independent elements. To obtain
random field samples Eq. (57) can readily be used. However, for a large number of
samples the sum of cosines slows down the calculation substantially. Shinozuka (1996)
[40] and Brigham (1988) [62] suggested to modify the exponential terms in Eq. (57) to
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enhance efficiency.
It should be said straight away that the use of FFT speeds up calculation toO(N log(N))
flops. Yet, this does not come for free. The two main restrictions to keep in mind are
first, an equidistant grid is introduced, which may be disadvantageous, and second, that
even if in two dimensions calculations work out nicely, the FFT approach can lead to
memory issues as dimensions grow. Thus, Biehler (2016) [24] sticked to calculating the
sums of cosines when sampling 3D processes instead.

The periodicity of f(x1, x2) is given by the size of Lxi and in order to avoid aliasing one
considers

∆x1 ≤
π

ω1u
and ∆x2 ≤

π

ω2u
(58)

with

M1 ≥ 2 N1 and M2 ≥ 2 N2. (59)

The lengths of the dimensional axes are given by

Lx1 =
2π

∆ω1
= ∆x1 M1

Lx2 =
2π

∆ω2
= ∆x2 M2

(60)

and in order to make full advantage of FFT it is recommended [40] to define M1 and
M2 as powers of two.

In case where the FFT seems applicable Eq. (57) can be rewritten as

f(k1∆x1, k2∆x2) = Re

[M1−1∑
n1=0

M2−1∑
n2=0

{
Bn1,n2 exp

[
i(n1∆ω1n1

)(k1x1) + i(n2∆ω2n2
)(k2x2)

]

+ B̃n1,n2 exp
[
i(n1∆ω1n1

)(k1x1)− i(n2∆ω2n2
)(k2x2)

]}]
k1 = 0, 1, . . . ,M1 − 1 ; k2 = 0, 1, . . . ,M2 − 1

(61)

where Re indicates the real part and Bn1,n2 and B̃n1,n2 are defined using (53) and (54)
as

Bn1,n2 =
√

2 An1,n2 exp
[
iΦ(1)

n1n2

]
n1 = 0, 1, . . .M1 − 1 n2 = 0, 1, . . .M2 − 1

(62)

B̃n1,n2 =
√

2 Ãn1,n2 exp
[
iΦ(2)

n1n2

]
n1 = 0, 1, . . .M1 − 1 n2 = 0, 1, . . .M2 − 1

(63)

using Φ
(1,2)
n1n2 as the phase angles and ∆ω1 = ω1u

N1
∆ω2 = ω2u

N2
as defined in (55).

The upper cut-off wave number defines the point from which the Power Spectral Density
is assumed to be zero, such that ωi lies in the region

−ω1u ≤ ω1 ≤ ω1u and − ω2u ≤ ω2 ≤ ω2u. (64)
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This leads to a simplification of Eq. (61) reading

f(k1∆x1, k2∆x2) = Re

[M1−1∑
n1=0

M2−1∑
n2=0

{
Bn1,n2 exp

[
i
2πn1k1

M1
+ i

2πn2k2

M2

]

+ B̃n1,n2 exp
[
i
2πn1k1

M1
− i2πn2k2

M2

]}]
.

k1 = 0, 1, . . . ,M1 − 1 ; k2 = 0, 1, . . . ,M2 − 1

(65)
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Numerical Examples with Plots

Let’s consider a two-dimensional homogeneous stochastic field f(x1, x2) with zero mean
and an autocorrelation function R(ξ1, ξ2) given as

R(ξ1, ξ2) = σ2 exp

{
−
(
ξ1

`1

)2

−
(
ξ2

`2

)2
}
. (66)

Here σ2 is the standard deviation of the random field acting as an amplitude term and `i
is proportional to the correlation length. Then the corresponding power spectral density
reads

S(κ1, κ2) = σ2 `1 · `2
4π

exp

{
−
(
`1κ1

2

)2
−
(
`2κ2

2

)2
}
, (67)

which holds the relation in Eq. (52). A stochastic sample can be generated by summation
of cosines or FFT. By using Eq. (65) three different sample fields are obtained with
values listed in Table 1. The generating code can be found in the Appendix Section and
online.

Table 1: Three cases of Gaussian Random field samples simulated via Spectral Repre-
sentation Method.

Case 1 Case 2 Case 3
property value value value
σ 1 1 1
N1 16 16 16
N2 16 16 16
M1 64 256 256
M2 64 256 64

property value / [m] value / [m] value/ [m]
`1 1 4 4
`2 1 4 1
κu1 5 1.25 1.25
κu2 5 1.25 5
∆κ1 0.3125 0.0781 0.0781
∆κ2 0.3125 0.0781 0.3125
Lx1 20.1 80.4 80.4
Lx2 20.1 80.4 20.1
∆x1 0.628 2.51 2.51
∆x2 0.628 2.51 0.628
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Figure 8: Case 1: Sample function of stochastic random field with correlation length
scales `1 = `2 = 1.0.

Figure 9: Case 2: Sample function of stochastic random field with correlation length
scales `1 = `2 = 4.0.

Figure 10: Case 3: Sample function of stochastic random field with correlation length
scales `1 = 4.0 and `2 = 1.0.
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3.3.4 Stochastic Partial Differential Equation Method (SPDE) of Gaussian Markov
Random Fields

This Section introduces another way of sampling stochastic processes. Even though
Spectral Methods were utilized to generate random fields for this thesis, the Stochas-
tic Partial Differential Equation method remains an interesting field of research, thus,
is shortly summarized to give an overview of alternative methods. The main sources
summarized here are [63, 64, 65, 66, 67].

The Stochastic Partial Differential Equation method (SPDE) has the main benefit that
contrary to SRM, also non-equidistant grids of random fields can be sampled. This
comes with the drawback of being much slower since a PDE is solved at each grid point.
In general, sampling Gaussian Markov Random Fields (GMRF) is another common
approach to generate Gaussian random fields, alongside spectral methods, factoriza-
tion and Karhunen-Loève. While factorisation methods suffer from the big-N-problem,
GMRF overcome this by imposing a Markov property to the field, which means that the
information of a point is only dependent on its most direct neighbours. This behaviour
leads to an almost diagonal covariance matrix, which consequently holds a sparse pre-
cision matrix (Σ = Q−1). The sparsity of the precision matrix Q makes computations
much easier and faster.

The idea of GMRF is to approximate a Gaussian Random Field (GRF) by a Gaussian
Markov Random Field. This is possible since GRFs can explicitly be constructed by us-
ing a certain stochastic partial differential equation (SPDE) which has GFs with Matérn
covariance function as a solution, when driven by Gaussian white noise. The basis func-
tion representation, with piecewise linear basis functions and Gaussian weights with
Markov dependence, is determined by a meshgrid (or triangulation) of the domain. In
addition, the approximation with GMRF by imposing a Markov property only uses the
square root of the time required by standard algorithms, e.g. factorisation, see [63].

As given in Section 3.3.2, factorisation methods require the calculation of the inverse
covariance, the precision matrix Q at every iterations. Thus, computations scale with
O(Nd) for d-dimensions.

The trick of GMRF now is to make this matrix sparse by imposing a Markov property,
hence QGMRF ≈ QGRF. Under mild conditions [63], the Cholesky factorisation Q =
RTR also becomes sparse and a realization of a field y can be obtained as

y = µ+ R−1z, z ∈ N (0, I), (68)

with µ and I being the mean and unity respectively. The conditional expectation be-
comes

µX1|X2
= µ1 + R−1

11

(
(R−1

11 )T
(
Q(x2 − µ2)

))
(69)

instead of

µX1|X2
= µ1 + Σ12Σ

−1
22 (x2 − µ2). (70)

For calculating the determinant one can use the relation

log|R| = trace
(
log(R)

)
. (71)
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In contrast to Section 3.2, GMRF utilize the Matérn class as common choice for a covari-
ance function, with ||d|| as the distance between two points. The kernel, or covariance
function reads

cov(||d||) =
σ2

2ν−1Γ(ν)
(η||d||)ν Kν(η||d||), d ∈ Rd (72)

with Kν being the modified Bessel function of the second kind, η > 0 ia a scale pa-
rameter, ν > 0 the smoothness and the marginal variance is given with σ2 > 0. Fields
with Matérn covariances are the solution to Stochastic Partial Differential Equations,
see Whittle (1954, 1963) [68, 69], hence(

η2 −∆
)α/2

y(x) =W(x) (73)

with ∆ =
∑

i
∂2

∂xi2
, α = ν + d/2 and σ2 = Γ(ν)

Γ(α)η2ν(4π)d/2
. Moreover, W(x) is formally

defined as Gaussian white noise. Thus, the Matérn class wave number spectrum is given
by

R(k) ∝ 1

(η2 + ||k||2)α
. (74)

According to Rozanov (1977) [70] a stationary field is Markov if and only if the spectral
density is a reciprocal of a polynomial. The idea is to construct a discrete approximation
of the continuous field using basis functions {ψk} and weights {wk},

y(x) =
∑
k

ψk(x)wk (75)

in order to find the distribution of the weights wk by solving (η2 −∆)α/2y(x) = W(x)
and obtaining y(x) as a weak solution to the SPDE for each set of test functions {ψk}.[

〈ψk, (η
2 −∆)α/2y(x)〉

]
k=1,...,n

= [〈ψk,W〉]k (76)

Following [67] closely one can replace the solution x with its basis expansion to obtain[
〈ψi, (η2 −∆)α/2ψj〉

]
i,j

w = [〈ψk,W〉]k . (77)

In case of α = 2 and ψi = ψj the result is called Galerkin solution, see [67] p. 13.
A review by Lindgren (2011) [63] summarizes the benefits of GMRF in the following
way:

• no positive definite matrix constraint for the covariance matrix: The SPDE method
is independent of the direct construction of a positive definite matrix.

• symmetry property: Usually, the covariance matrix is restricted to a symmetry
property, which can be dropped for SPDE.

• S2 manifolds: Multivariate GRFs can also be constructed on manifolds, e.g. a
sphere.

• Markov property: The Markov property is often indispensable for model analysis
using Markov Chain Monte Carlo techniques, hence GMRF simulations are fast.
Rue et. al. [71] proposed an algorithm under the assumption of a n1×n2, n1 ≤ n2

grid with (2m+ 1)× (2m+ 1) points a GMRF which reduces the simulation cost
to 2n2

1n2m flops.
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One might think that the Matérn covariance function is rather restrictive for statistical
modelling, but it covers the most commonly used models in spatial statistics [63]. Also,
Stein (1999) [72], p. 14 has a practical suggestion: “Use the Matérn model” [73]. For
more information about the Matérn family, see [73] Section 2.6, also [74] and more
recently [75].

For an extensive introduction, the interested reader is referred to [29, 63, 65, 76, 47].
Modern applications with outlined toy examples can be found in Staber (2018) [77],
as well as a modified approach of a scalable parallel scheme to sample Gaussians over
very large domains is presented in De Carvalho (2019) [42]. An excellent introduction
to Gaussian Markov Random Fields (GMRF) is provided in the paper by Rue et. al.
(2002) [71], as well as in the book from 2005 [64], which provides an application oriented
approach to GMRFs with SPDE. For sampling RFs on complex geometries one is referred
to a more recent paper by Pezzuto (2019) [78]. This Section also takes references from
talks given by Lindström (2014) [67] and Lindgren (2015) [79]. Helpful lecture notes
about SPDE and stochastic processes are also provided by Lindgren (2006) [32] as well
as in the work done by Lang (2007) [80].

Some code snippets of how to generate random fields via SPDE method are attached
online [41].
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3.4 Non-Gaussian Process Theory and Gaussian Related Distributions

Even though Gaussian distributions clearly stand out with their effectiveness, flexibility
and the fact that a lot of samples tend to a Gaussian distribution by means of the central
limit theorem, yet nature still not always behaves in a Gaussian manner. In fact, many
natural phenomena have strong non-Gaussian characteristics, like being heavy tailed or
strictly bounded. Thus, an effective way to sample non-Gaussian random fields is needed
and outlined in this Section. The interested reader is referred to the most cited reference
in this field, namely Grigoriu (1995) [81], which gives a general overview of non-Gaussian
translation process theory with the bonus of additional MATLAB supplements. Further
references and numerical examples for non-Gaussian fields of analytic distributions, such
as Beta or Log-normal random fields, are outlined in the next Section.

In general, over the years sampling methods have improved massively, not only from a
computational point of view, also from a theoretical viewpoint. Since the early years
the authors Grigoriu [82, 83, 84, 85], Yamazaki [86] and Popescu [87] proposed similar
algorithms for generating a non-Gaussian, scalar (standard deviation σG) random field
H(x) with a prescribed correlation function ρH(τ ). In principle, there are two steps
necessary: first, sample a zero-mean, scalar Gaussian random field G(x), with a prefixed
correlation structure ρG(τ ) and second, transfer G(x)→ H(x) according to

H(x) = f
[
G(x)

]
, (78)

where f [·] is represented by a nonlinear function. If the mapping f [G(x)] is represented
by a nonlinear function, the process H(x) is truly non-Gaussian.

More explicitly,

H(x) = F−1
Non-Gaussian ◦ΨGaussian

[
G(x)

]
= F−1

NG

{
Ψ
[
G(x)

]}
, (79)

whereby F−1
NG stands for the inverse of the prescribed non-Gaussian cumulative distri-

bution (CDF) and Ψ(·) represents the standard Gaussian CDF, see Fig. 5.

The transformation is called memoryless, if the value H(x) at any arbitrary instant x
only depends on the value of G(x) at x. A process H(x) is said to be stationary in the
strict sense, if G(x) is stationary [81, 88]. Contrary, if the result of the transformation
H(x) = f

[
G(x)

]
does not only depend on the current value of x, but also depends on pre-

vious history, the process is denoted to have memory. Moreover, the transformation from
Gaussian to non-Gaussian in a ”forward” manner is always possible, if auto-correlation
function (ACF) or power spectral density function (PSDF) of the Gaussian process are
known [88]. Each of the two is good enough, because the counterpart can readily be cal-
culated using Wiener-Khintchine theorem. The main goal of translation process theory
is to calculate from a known ACF RG(τ ), of a zero-mean Gaussian process (with τ be-
ing the distance/correlation of the input space dimension points), a specific probability
distribution with desired power spectral density SNG(ω). It can be proven, see Grigoriu
1995 [81], that the auto-correlation functions of the translation field and its underlying
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Gaussian field are linked via the Rosenblatt transformation, see [88, 89]

RNG(τ) =

∞∫
−∞

∞∫
−∞

F−1
NG

{
Ψ[G(x1)]

}
F−1

NG

{
Ψ[G(x2)]

}
φ{x1, x2; ρG(τ )} dx1dx2 (80)

In this integral φ{x1, x2; ρG(τ )} is the joint Gaussian probability density and ρG(τ)
denotes the normalized correlation function defined as

φ{x1, x2; ρG(τ )} =
1

2πσ2
√

1− ρG2(τ )
exp

(
x2

1 + x2
2 − 2ρG(τ ) x1 x2

2σ2
√

1− ρG2(τ )

)
, (81)

and respectively

ρG(τ ) =
RG(τ )

σ2
. (82)

Unfortunately, the direct inversion of this transformation is not always possible. This can
be a problem if, i.e. in Astrophysics a stellar objects with a specific, yet unknown, target
SDF is examined, which makes it difficult to sample random fields accordingly from it.
Even though Wiener-Khintchine theorem gives an appropriate target RNG(τ ) it may
not have an analytic CDF. Then, the underlying Gaussian ACF cannot be determined
and the prescribed non-Gaussian RNG(τ ) and FNG are said to be ”incompatible” [88].
One solution to this problem can be found, if the underlying distribution belongs to the
family of fundamental distribution, i.e. Gamma-, Beta-, Uni-, Logn- distribution. Those
are outlined in Section 3.5. However, there is yet another option, which is the iterative
approximation outlined in Section 3.6.
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3.5 Non-Gaussian Process Sampling Methods for Analytic Functions

Sampling non-Gaussian random fields, as outlined in equations (100) - (103), can be
a daunting task, especially if the correlation functions ρG and ρH are not explicitly
calculable. Fortunately, for some distributions an analytic relation exists, making them
easy to sample from and thus, is the topic of this Chapter. A very nice introduction can
be also be found in [90], whereas [91] summarizes the topic more concisely.

3.5.1 Gamma Distribution

Let Gs(x) with s = 1, 2, . . . , 2m be a collection of independent zero-mean Gaussian fields
with the same covariance function ρG. Then, Gamma random fields are calculated as

Gm(x) =
1

2

2m∑
s=1

G2
s(x). (83)

That is, because the corresponding one-dimensional marginal PDF is a Gamma distri-
bution with m degrees of freedom

fGm(g) =
1

Γ(m)
gm−1e−g/2, g ≥ 0, (84)

where Γ(·) is the Gamma function [90]. In addition, the k -moments of the distribution
are given by

E
[
Gkm
]

=
Γ(m+ k)

Γ(m)
, k > −m. (85)

In particular, the mean and variance are

µGm = σ2
Gm = m. (86)

According to [90] the relation between ρGm(τ ) and ρG(τ ) is independent of m and
yields

ρGm(τ ) = ρ2
G(τ ). (87)

One remarkable characteristic of the Gamma distribution is, that it holds both, the
Chi-squared as well as the Exponential distribution as special cases.

3.5.2 Beta Distribution

Having sampled two independent Gamma distributed fields, e.g. Gm(x) and Gn(x),
characterized by the same correlation function ρG(τ ) it is possible to obtain a Beta
distributed random field as

Bmn(x) =
Gm(x)

Gm(x) + Gn(x)
. (88)
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Their one-dimensional marginal PDF is a Beta(m,n) distribution

fBmn(b) =
1

B(m,n)
bm−1(1− b)n−1, 0 ≤ b ≤ 1. (89)

The respective moments of order k are given as

E
[
Bk
]

=
Γ(m+ k)Γ(m+ n)

Γ(m)Γ(m+ n+ k)
. (90)

In particular, the mean and variance are

µBmn =
m

m+ n
, σ2

Bmn =
mn

(m+ n)2(m+ n+ 1)
. (91)

According to [90] the relation between ρBmn(τ ) and ρG(τ ) can be expressed as

ρBmn(τ ) = 1− Sm+n [ρG(τ )] , with n+m > 1, (92)

whereas

Sq(ρ) = q

(
1− ρ
−ρ

)q [
log(1− ρ)−

q−1∑
i=1

1

i

(
−ρ

1− ρ

)i]
, 0 ≤ ρ ≤ 1, q ∈ {1, 2, . . . }, (93)

with bounding values at Sq(0) = 1 and Sq(1) = 0. Thus, the class of Beta fields is a
useful way to describe strictly bounded random distributions. In addition, a special case
of the Beta distribution is given at values m = 1 and n = 1 which corresponds to the
Uniform distribution B11(x). This relation is utilized within this work to generate the
uniformly distributed random fields used as input to the FEM model.

3.5.3 Lognormal Distribution

Another quite interesting relation of an analytic non-Gaussian random fields is given
by the Lognormal field. If G(x) is a homogeneous, zero-mean, unit-variance Gaussian
random field with correlation ρG, one can define a Lognormal random field as

L(x) = eµ+G(x) (94)

where µ and σ > 0 are two real parameters. Moreover, the field is characterized by the
one-dimensional marginal PDF

fL(l) =
1

lσ
√

2π
e−(ln(l)−µ)2/(2σ2),with l > 0. (95)

The k -th moments can be written as

E
[
Lk
]

= ekµ+k2σ2/2 (96)

where the two first moments, mean and variance, yield

µL = eµ+σ2/2, (97)

σ2
L = e2µ+σ2/2(eσ

2−1). (98)

The relationship between Lognormal and Gamma fields, ρL(τ ) and ρG(τ ), can be ex-
pressed as

ρL(τ ) =
eσ

2ρG(τ ) − 1

eσ2 − 1
(99)
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3.5.4 Results

Numerical examples from these random distributions are shown in Fig. 11 and Fig.
12. The samples were generated via Fast-Fourier-Transform method (Spectral method),
see Chapter 3.3.3, in two spatial dimensions. Every point is spatially correlated to
its neighbours, according to the correlation lengthscale. The samples of random fields
are generated in the boundaries of [0, 1], whereas yellow depicts higher values and blue
accords to lower values, as indicated by the colorbar. In order to generate a Uniform
random field, first, four Gaussian random fields were generated, yielding two Gamma
distributed random fields, according to Eq. (83), which by definition (88) yielded an
Uniform random field. This is a special case for the Beta distribution with parameters
m = n = 1. The code used to generate these images is provided in the Appendix Section.

(a) Beta (b) Uniform

(c) Lognormal (d) Gaussian

Figure 11: Samples of two-dimensional stochastic processes following a Beta distribution
(upper left), Uniform distribution (upper right), a Lognormal distribution
(lower left) and a Gaussian distribution (lower right). The bounds for the
Beta distributed fields were within [0, 1], whereas the Gaussian sample was
sampled between [−2, 2], both indicated by the colorbar.

44



Deep UQ Master Thesis Gloria Wolkerstorfer

(a) Beta(4, 2) (b) Beta(2, 2)

(c) Beta(2, 4) (d) Beta(4, 1)

(e) Comparison of Beta distributions

Figure 12: Samples of two-dimensional non-Gaussian processes following a Beta distribu-
tion with different parameters m and n. At every point the fields correspond
to samples drawn from a Beta-distribution, which is strictly bounded be-
tween [0, 1]. In addition, the random fields are spatially correlated, according
to their correlation function. The colorbar indicates the value range of each
field. The image at the bottom demonstrates the PDF in one dimension for
different parameters m and n at one specific location in panels (a)− (d).
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3.6 Other Approaches

Another way of sampling non-Gaussian random fields is given by an iterative solution,
which was already introduced in the late 70’s. One majorly important contribution
of this approximation was done by Shields (2011) [88], who proposed an algorithm to
approximate any PSDF, while making it unnecessary to sample a new Gaussian field
at every iteration. This was common in previous methods [92, 86]. Since [88] was a
milestone in this field, which lead to many subsequent publications, his proposed method
is summarized briefly in this subchapter.

Start

Initialize Gaussian PSDF
S

(0)
G (ω)

Compute Gaussian ACF
RG

(l)(τ) using Eq. (100)

Compute non-
Gaussian ACF

RNG
(l)(τ) using Eq. (102)

Compute non-
Gaussian PSDF

SNG
(l)(ω) using Eq. (103)

Iteration
finished?

Upgrade Gaussian
PSDF using Eq. (104)

Fine Tune
(optional) End

Yes

No

Figure 13: Flowchart of proposed algorithm by Shields 2011 to approximate non-
Gaussian random fields. For more details see Shields (2011).

To approximate any non-Gaussian random field one starts off with an initial guess for

the power spectral density S
(0)
G (ω) at iteration step l = 0. The corresponding Gaussian

ACF R
(0)
G (τ) can be readily computed by Wiener-Khintchine theorem e.g.
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R(l)
G (τ) =

∞∫
−∞

S(l)
G (ω)eiωξdω (100)

where i is the imaginary unit. The Gaussian correlation coefficient at iteration l is
computed as

ρ
(l)
G (τ) =

R
(l)
G (τ)

σ2
G

. (101)

where σ2
G is the scalar variance of the underlying Gaussian process. In the next step the

non-Gaussian ACF R
(l)
NG(τ) is obtained via a non-linear mapping

R
(l)
NG(τ) =

∞∫
−∞

∞∫
−∞

F−1
NG{Ψ[G(x1)]} · F−1

NG{Ψ[G(x2)]} φ{x1, x2; ρ
(l)
G (τ)}dx1dx2 . (102)

Finally the non-Gaussian PSDF at iteration l is computed using the inverse Wiener-
Khintchine theorem as follows

S(l)
NG(ω) =

1

2π

∞∫
−∞

R(l)
NG(τ)e−iτξdτ . (103)

As a last step the Gaussian PSDF is upgraded via

S(l+1)
G (ω) =

[
STNG(ω)

S(l)
NG(ω)

]β
S(l)
G (ω) (104)

The iterative scheme is looped until a certain convergence is reached, i.e. the relative
difference between the non-Gaussian PSDF and the target non-Gaussian PSDF stabilize
to a constant value

ε(l+1) = 100

√√√√√√
∑N−1

n=0

[
S(l+1)
NG (ωn)− STNG(ωn)

]2

∑N−1
n=0

[
S(T )
NG(ωn)

]2 . (105)

The exponent β is chosen to optimize the convergence rate, common choices are within
the range 1.3 ≤ β ≤ 1.5. For further references and a numerical example of the iterative
approximation of non-Gaussian stationary random processes, see [88]. A visualisation
of the work flow is outlined in Fig. 13.

To sum up, the computational advantage of this algorithm stems from the fact, that
the non-Gaussian PSDF can directly be computed from the Gaussian PSDF without
generating any sample functions on the way. Even though those iterative sampling
methods have gained extreme efficiency, the field still remains one of vivid research, see
[93, 94, 89, 95, 96, 52]. This interest is also due to the wide range of applications ranging
from simulation of wind force, turbulence of aircraft designs, climate models, calculating
drag force on cylindrical elements or stress tensors in mechanical engineering, simulation
of non-linear systems, and many more [81].
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4 Finite Element Analysis

This Section gives a basic overview of the theoretical and computational methods used
to generate the data for the surrogate learning. The main concepts of nonlinear solid
mechanics on aortic tissue are summarized from [2]. In addition, a thorough introduction
to nonlinear solid mechanics as well as theoretical background and can be found in [7],
especially Chapters 2 and 6. After a brief introduction, a review of the paper written by
Rolf-Pissarczyk et. al. [2] is given, in which the authors performed a uniaxial tensile test
with a hyperelastic constitutive model. This model includes collagen fibers, elastic fibers
and ground substance and is later used to generate the data for the surrogate learning
in order to perform uncertainty quantification on.

The work of [2] is a cornerstone of this thesis, since the authors provide the computa-
tional framework, and more importantly, the FEM data used for the surrogate learning,
which describes the properties of a hyperelastic material during an aortic dissection.
The authors proposed a novel approach of finding a constitutive model, which consists
of ground substance, collagen and elastic fibers and is able to capture degradation of
inter-laminar elastic fibres during an aortic dissection. According to [2, 97] predomi-
nant reasons leading to AD are the degradation of elastic fibers, local accumulation of
glycosaminoglycans (GAGs) and the loss and redifferentiation of smooth muscle cells.
Moreover, they explain that those mechanisms are mostly found in the media, but can
also involve adjoining layers and that most likely the pathological alteration of con-
stituents can promote failure of the aortic wall.

Figure 14: These 2D images illustrate a schematic representation of an elastic lamellar
sheet within the human aortic media oriented in the circumferential direction
E1. In (a) a healthy case with more interconnecting elastic fibers within an
elastic lamellar sheet orientated radially in E3 is outlined building up the 3D
architecture on the right handside, whereas (b) shows a diseased case with
less elastic fibers in the elastic lamellar, also distributed radially in E3. These
images are reprinted from Rolf-Pissarczyk et. al. [2].

Fig. 14 illustrated a two-dimensional schematic representation of an elastic lamellar sheet
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in circumferential direction E1 with radially distributed elastic fibers in E3 distinguishing
two cases (a) the healthy and (b) the diseased lamellar unit of the medial layer in the
aorta. Moreover, a general overview of previous attempts modelling AD is given in [2]
and further references therein.

In the hyperelastic material model used in [2], elastic lamellae and inter-lamellar elastic
fibres can be accounted for by a dispersion of elastic fibres, as postulated by Holzapfel et.
al. [98], whereas inter-lamellar elastic fibres are assumed to be symmetrically dispersed in
the lamellar unit of the media. In general, there are two main approaches to model fiber
distributions, the generalized structural tensor and the angular integration, whereby a
discrete version of the angular integration approach is also referred to as discrete fiber
dispersion model, which was proposed by Li [99]. This model reduces computational
costs by assuming the fibre dispersion to be a discrete sum of fibre contributions. This
is done by discretizing a unit hemisphere, describing the dispersion of fibres by a finite
number of elements, which determine the cost of computation [2]. In addition, a degra-
dation parameter ξ is introduced, which describes the disease-dependent degradation
of elastic fibres. High values of the degradation parameter automatically exclude dam-
aged or degraded elastic fibres in order to model the degradation of radially directed
elastic fibres. The degradation initiates in the radial direction due to the highest oc-
curring stretch. Given the random field input, the numerical analysis for generating
the strain energy function including the Cauchy-Stress and elastic tensor elements was
performed by Malte Rolf-Pissarczyk with the software FEAP [1].

4.1 Kinematics

As outlined in Holzapfel (2000) [7], Section 2, a deformation map χ transfers between
the initial (reference) X and the deformed (current) configuration x = χ(X). At every
point the local deformation can be defined via the deformation gradient and is written
as

F(X) =
∂χ(X)

∂X
. (106)

In the constitutive model [2], assume a strictly incompressible material, which constrains
the deformation gradient to be positive, notated by the Jacobian J = det(F) > 0. Fol-
lowing the authors closely, the deformation gradient can be decomposed into a volumetric
and an isochoric part, as J1/3I and J−1/3F, respectively, with I being the second order
unit tensor. The symmetric right Cauchy-Green tensor C = FTF represents a measure

of deformation in the reference configuration, whereas C = F
T
F denotes a modification.

In addition, the symmetric left Cauchy-Green tensor and its modified counterpart is

provided by b = FFT and b = F F
T

. The first invariant can be further defined in the
reference, as well in the current configuration, yielding

I1 = tr C = tr b, Ī1 = tr C = tr b (107)

and the fourth invariant I4, describing the squared fibre stretch λ2 in the direction of a
vector N as

I4 = λ2 = C : N⊗N = n⊗ n, Ī4 = λ
2

= C : N⊗N = n⊗ n. (108)
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can be introduced likewise for both configurations using the dyadic product ⊗. Here, the
overline indicator denotes the modified counterparts. In the reference configuration the
direction of a fiber is denoted by the vector N, consisting of polar angle Θ and azimuth
angle Φ reading

N = sin Θ cos Φ E1 + sin Θ sin Φ E2 + cos Θ E3, (109)

where Ei, i = 1, 2, 3, are the unit Cartesian basis vectors.

4.2 Strain-Energy Function

A hyperelastic material postulates a Helmholtz-free energy function Ψ, which is defined
per unit volume, rather than per unit mass [7]. If this function solely depends on
the strain tensor Ψ = Ψ(F), then the Helmholtz-free energy is referred to as strain
energy function, strain energy or stored energy. In this case the strain energy function
represents the passive material behavior of the aortic wall, whereas the active material
behaviour was neglected, see [2]. By an isothermic assumption this function can be
decoupled for computational efficiency, thus

Ψ = Ψvol + Ψiso, (110)

where Ψvol and Ψiso represent the purely volumetric part and the isochoric part of the
deformation, respectively [7]. The volumetric is given as

Ψvol =
K

4
(J2 − 1− 2 ln(J)), (111)

where K is called bulk modulus and denotes a penalty parameter to enforce kinematic
incompressibility. The isochoric part, which represents the respective constituents of the
aortic wall, namely the ground substance Ψg, the collagen fibers Ψc and the elastic fibers
Ψe, is decomposed as

Ψiso = Ψg + Ψc + Ψe. (112)

The ground substance is given by the (isotropic) neo-Hookean model, which only depends
on the first invariant Ī1, i.e.

Ψg(Ī1) =
µ

2
(Ī1 − 3), (113)

where the constant µ > 0 represents the shear modulus with the dimension of stress
[2]. In addition, one can introduce a degradation parameter ξ ∈ [0, 1] which describes
the damage of elastic fibers as a result of the separation of the elastic lamellae, which is
given as

ξ =

{
0 healthy,

1 completely damaged.

Moreover the authors introduce a degradation, or critical fiber angle Θξ = π ξ/2, to
exclude elastic fibers from the total strain-energy function, i.e.

Ψen =

{
fen(λ2

en) if Θn ≥ Θξ and λ2
en ≥ 1,

0 else,
(114)
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with fen representing the strain-energy function of λ2
en = I4n = C : Nn ⊗Nn, which is

defined as squared fiber stretch of elastic fibers. λ2
cn denotes the squared fiber stretch for

collagen fibres respectively. Moreover, the subindex n = {0, . . . ,m} specifies the fiber
number. Fig. 15 shows that damaged elastic fibres are excluded from the model, in case
that a fibre angle Θn is smaller than a critical fiber angle Θξ Fig. 15.

Figure 15: Critical fiber angle. This image illustrates elastic fibers distributed in and
outside the cone, which is defined by an critical fiber angle Θξ. Any fiber n
exceeding the critical angle is excluded from the strain-energy function, e.g.
Nn+1, whereas elastic fibers inside the cone, such as Nn, are included. The
discrete fiber angle of fibers distributed inside the cone is given by Θn. E1,E2

and E3 represent the unit Cartesian basis vectors. The indices describe the
circumferential, the axial and the radial direction, respectively. This image
was reprinted from [2].

Then, the isochoric part of the strain-energy function reads

Ψiso = Ψg(Ī1) +

m∑
n=1

ρcnΨcn(λ̄2
cn) +

m∑
n=1

ρenΨen(λ̄2
en). (115)

The total strain energy function Eq. (110) can now be inserted in the constitutive
equation to calculate the Cauchy stress tensor

σ = 2ρb
∂Ψ

∂b
(116)

with the left Cauchy-Green tensor b = FFT being dependent on the deformation gradi-
ent F and the displacement vector u since F = 1+Grad(u) and ρ being the fibre density.
The boundary constraints follow from the equilibrium of the first Cauchy-Euler’s law of
motion

div(σ) + ρb̄ = ρü (117)

with b̄ being the volume force vector. For further details see [7].
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4.3 Uniaxial Tensile Test with the Rolf-Pissarczyk-Holzapfel Model

As presented in [2], an uniaxial extension test of an incompressible unit cube, with
dimensions 1×1×1 [mm3], is performed and shown in Fig. 16. The unit cube is aligned
by the unit Cartesian basis vectors E1,E2 and E3 and a uniform displacement along
the top face was applied such that the loading direction coincides with the radial vector
ER = E3.

Figure 16: Uniaxial Extension. This image shows the reference and intermediate con-
figurations of a unit cube under uniaxial extension in E3 direction. Hence,
the radial vector ER is aligned with the E3-direction in the reference config-
uration. In this model a rotational symmetric dispersion of elastic fibers was
investigated. The fiber dispersion within a cone, defined by the critical fiber
angle Θn, of arbitrary fibers such as Nn, is outlined by the cross-section along
the (E1,E3)-plane. This image was taken from the paper by Rolf-Pissarczyk
et. al. [2].

The input to the Finite Element analysis were uniformly distributed random fields de-
scribing the degradation parameter, which were generated via the Spectral method, as
outlined in Chapter 3.3.3. The total length size of the tissue field was lfield = 25.05
[mm], thus the correlation length of the degradation parameter was chosen to be around
one-third the length of the total field reading ` = 8.35 [mm] and the simulated noise
added in the random field sampling was chosen to be σ2 = 0.173.

Therefore, a two-dimensional random field was simulated, then duplicated, and under
the assumption of a very thin tissue those two layers were stacked behind each other to
obtain a three-dimensional mesh for the unit cube as shown in Fig. 16. The assumption
holds for very thin layers of tissues. In further investigations one could directly sample
three-dimensional random fields, with the disadvantage of longer run time, however, this
was beyond the scope of this work.
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Moreover, the two-dimensional random field was sampled on an equidistant grid of size
2048× 2048 and further downsampled to a 20× 20 image, such that the evaluated grid
points of the low-resolution image coincide with the non-equidistant Gaussian integration
points (GIP) of the adaptive Gauss-Kronrod quadrature method, which was used in the
Rolf-Pissarczyk-Holzapfel model. An illustration of those grid points is given in Fig.
17. In the image, the blue crosses denote the Gauss-Kronrod integration points, the two
blue regions represent two unit cubes and the two dashed regions each define a unit cell.

The distance between the GIP within one unit cube is always pcell inner = 2
√

1
3 , whereas

the distance from one cell to another is given by pcell neighbour = 2(1 −
√

1
3) leading

to the non-equidistant grid. Each blue coordinate cross in Fig. 17 corresponds to a
GIP, denoted by red dots in the three-dimensional mesh representation in Fig. 18. The
coordinates E1, E2, E3 denote the coordinate axes, with E1 being the circumferential,
E2 the axial and E3 being radial direction, therefore E3 is the tensile direction of the
uniaxial extension.

Figure 17: Sketch of Gaussian Integration read out along two axes.
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Figure 18: Three dimensional unit cube mesh. One unit cube of size 1×1×1 [mm3] holds
eight Gaussian integration points (GIPs), indicated as red dots at which the
random fields were sampled and used to calculate the solution to the Cauchy
stress tensor. In particular, the tensile direction E3 was denoted as the QoI.

The reason why a higher resolution image was generated and then downsampled was
because of the fact, that the Gaussian integration points of the FE calculation correspond
to a non-equidistant grid, as shown below. Since Spectral methods, in a straightforward
manner, are not applicable for non-equidistant points, a higher resolution image had to
be generated. This was still faster than simulating the non-Gaussian field with SPDE
or other investigated methods. Moreover, since the size of the high-resolution image is
much larger than the actual grid, the error introduced by taking the nearest neighbouring
points can be neglected. Further investigations could overcome this error by estimating
the integration points via Bayes theorem, or by changing the grid of the FE analysis to
be equidistant. For further references of the proposed model see [2].
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5 Surrogate Model

5.1 An Introduction to Convolutional Neural Networks

Convolutional Neural networks (CNNs) are a family of deep neural networks which
can extract spatial structure within data e.g. 1D time series or 2D images, which makes
them an excellent candidate for image analysis.
Other than deep neural networks, which consists of fully connected layers, the layers in
CNNs are sparsely connected and even share some parameters, which (usually) leads to
a faster convergence by requiring less training data.
CNNs typically consist of three different components: convolutional layers, pooling
layers and fully-connected layers. A convolutional layer consists of a so called kernel,
sometimes also referred to as convolutional filter, which extracts local features, e.g. a
person’s nose, eyes, or mouth. Every learned feature is embedded in the model as a
feature map. After training, the CNN will convolve these features over the tested image
to see the global existence of local feature maps via an activation vector. In other
words, the convolution of the image with the kernel results in a matrix, sometimes
called activation map, which produces a high value (at a given location), if the feature
represented in the convolutional filter is present at that location of the input. For a
more detailed explanation, see the MIT video lecture provided at [100]. The pooling

Figure 19: A classical Convolutional Neural Network consists of convolutional layers,
pooling layers and fully connected layers. In this work however, the pooling
layer was replaced by batch normalization, according to [101]. This image
was taken from [102].

layer then extracts information, no matter of the location, hence it makes the network
translational invariant. Pooling, sometimes also referred to as subsampling, is typically
applied as either max pooling (most commonly used) or average pooling. As the
name already indicates, max pooling takes the maximum value of the observed window,
whereas average pooling takes the average value of the observed position of the kernel.
The way a kernel is moved across the image is defined by the so called stride. A typical
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value for stride is two, which means that the kernel is not moving one, but two pixels
per time step along the image.
Finally, the third component of CNNs are the fully-connected layers, which produce
different activation patterns, based on the set of activation feature maps. This means
that neurons in the fully-connected layer will get activated for every component that is
matched between the feature map and the input image. Thus, the number and variety
of activated patterns gives plenty of options what an image can contain, but it is only
the selection done by the fully connected layer in the end which concisely summarizes
the extracted information of a given input. This information can then be classified by
the output layer in the neural network in order to correctly classify the image. A brief
example of a vanilla CNN classifying architecture, is shown in Fig. 19.

5.1.1 Training

When setting up a CNN, convolutional features, like eyes, nose, mouth, do not simply
appear, but are the outcome of an optimization problem. The objective in Machine
Learning is always to mimic features of some given data. This is obtained by minimiz-
ing a cost function (= finding the maximum a posteriori (MAP)), or in simple words,
to learn a function which fits some form of data. Therefore, independent of the neu-
ral network type, the goal is always to reward correctly identified information and/or
penalize unwanted behaviour in the model. The aim of training is to find the optimal
(hyper)parameters like weights and biases, which minimize the cost function in a
specific problem. Commonly used cost functions are e.g. the root mean squared
error (RMSE) or binary cross entropy loss (BCE).

5.1.2 Kullback-Leibler Divergence for Variational Formulation

Yet, there is another option for the loss function, namely the Kullback-Leibler (KL)
divergence. In [103] the author provides a simple introduction to the topic. Moreover,
recommended sources include [25] and [26]. KL divergence has its origin in information
theory where the primary goal is to quantify the amount of information in a dataset. The
most important measure of information is entropy H and its definition for a probability
distribution p(x) is denoted by

H = −
∑
i

p(xi) ∗ log
(
p(xi)

)
The key ingredient is borrowed from a frequently used method in probability theory,
when highly complex distributions of data are approximated and replaced by simpler
ones. Hence, KL divergence helps to measure how much information was kept, respec-
tively lost, when making such approximations.

Frequently the goal is to obtain a posterior distribution p(θ | D), describing the data D
by parameter set θ. KL divergence DKL can be defined by a slight modification of the
above formula. One introduces a second distribution q(θ) which aims to approximate

56



Deep UQ Master Thesis Gloria Wolkerstorfer

the posterior distribution via its logarithmic difference as

DKL = −
∑
i

p(θi | Di) ·
(

log
(
p(θi | Di)

)
− log

(
q(θi)

))
= −

∑
i

p(θi | Di) · log

(
p(θi | Di)
q(θi)

)
.

In fact, KL divergence is the expectation E of the logarithmic difference between the
probability of data in the original distribution compared to the approximating distribu-
tion. The normalization constant of the posterior can be dropped when KL is minimized,
hence the unnormalized posterior is left in the equation as p̃(θ | D). Then, the expecta-
tion yields

DKL := E

[
log
(
q(θ)

)
− log

(
p̃(θ | D)

)]
(118)

This equation is minimized by finding the optimal parameter θ∗ yielding

q(θ∗) ≈ p̃(θ | D),

such that

q(θ∗) = arg min KL
(
q(θ)| p(θ | D)

)
= arg min E

[
log
(
q(θ)

)
− log

(
p̃(θ | D)

)]
. (119)

The combination of neural networks and KL divergence enables to learn complex approx-
imate distributions of the data, by minimizing the information loss when approximating
a distribution. A common application is a ”Variational Autoencoder” which learns the
best way to approximate the information in a data set. Even more general is the area
of Variational Bayesian Methods. Those methods come into play, if, for example, one
wants to compute Monte Carlo simulations with intractable integrals which is a common
technique in Bayesian inference. Those methods are often computationally too expen-
sive, thus variational Bayesian methods can be used to partly replace such calculations
[103]. A more detailed introduction to Variational Autoencoders is given in the next
Section and their use in this work is outlined in Section 5.2.

5.1.3 Variational Autoencoder

In general, one has to distinguish between the terms Encoder-Decoder and Varia-
tional Autoencoder. An Encoder-Decoder is typically utilized wherever data needs to
be compressed and decompressed. Usually, this occurs in two sorts of problems, namely
image classification in ’Vanilla’ CNNs and image-to-image regression tasks. In this work
a Variational Autoencoder is used, which is a slightly modified version of the first incor-
porating e.g. KL divergence. In this work, the terms Encoder-Decoder and Variational
Autoencoder both encounter for the later one.

The two key words when dealing with Variational Autoencoders, short VAEs, or
synonymously ’Bayesian Autoencoders’, are Principle Component Analysis (PCA)
and dimensional reduction. Usually, the input data, which ought be learned by the
neural network, is of high complexity. In order to reduce the data complexity to a
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’neural network feasible format’, the input needs to be compressed. Only then it can
be fed through the neural network before being decompressed to a desireable output
format again. The process of compression (e.g. via selection or extraction of features) is
called encoder, whereas the reverse process of decompression is called decoder. The
whole process of reducing the number of features to an encode space (also latent space)
is understood as dimensional reduction. An encoder decoder architecture is considered
good, if it keeps the maximum information when encoding, while showing minimal error
when reconstructing the data in the decoder. Fig. 20 shows the principles of an Encoder-
Decoder structure.

Figure 20: Principle of Encoder-Decoder structure. The initial data size is reduced when
entering the encoder and its’ shape is reconstructed when leaving the decoder,
in order to map image input to output samples.

The second major ingredient of VAEs along dimensional reduction is Principle compo-
nent analysis. PCA can be obtained by an eigendecomposition of the covariance matrix,
or single value decomposition (SVD), in order to set up a linear projection of the
data onto orthogonal subspaces. With PCA the axes of features in the data are trans-
formed by a change basis to another linear orthogonal basis set. This basis represents the
data along directions of maximal variance. Those axes are then sorted by their maximal
variance. The main benefit of PCA is, that data can be stored much more efficiently,
by using its statistics, without loosing any information. In addition, it is also common
to apply dimensional reduction through PCA, namely by defining a cut off value, after
which higher orders are neglected and hence, a certain percentage of variance is stored.
A great introduction of Principle Component Analysis is given in [104].
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5.2 Uncertainty Quantification with a Variational Autoencoder

The Encoder-Decoder structure used in this work heavily relies on previously presented
efforts done by Zhu and Zabaras (2018) [3]. Thus, this Chapter can be seen as a brief
summary of their paper. In general, a deep convolutional encoder-decoder network
is of similar fashion to a deep learning image-to-image regression task. Therefore, the
Bayesian approach to convolutional neural networks achieves state of the art performance
in terms of prediction accuracy and uncertainty quantification in comparison to other
approaches, like Gaussian processes [3]. Moreover, a variational gradient descent method
[105], based on Stein’s operator, i.e. Stein variational gradient descent (SVGD) was
adapted to convolutional neural networks to perform Bayesian inference on millions of
uncertain parameters. Furthermore, the encoder-decoder structure allows to extract
multi-scale features and spatial correlations from the input, which are processed by
the decoder in order to reconstruct the output. In [3] the model was tested to map a
permeability input onto a flow/pressure output with stochastic dimensions up to 4225.
In their work they present promising results, even for little sets of data, which has led to
great approval in this field and thus, was chosen as the main workhorse in this work.

In general, the list of reasons why and how errors enter a computational model in the
first place is long. It can reach from e.g. a model error, model parametrizations or
specific model assumptions, incomplete data sets, incomplete material properties, as
well as boundary conditions. To quantify uncertainty in complex models, either high
computational power or a lot of computational run time is necessary, most of the time
even both. In case of already computationally expensive Finite Element simulations,
the approach of brute force uncertainty quantification often becomes unfeasible. Thus,
the idea is to train a surrogate model, based on a limited number of simulation runs, in
order to predict a greater set of solutions of a FEM solver. As a consequence, uncertainty
quantification can be performed by using the surrogate predictions instead of solving the
actual PDE thousands of times. One of the essential ideas for handling high-dimensional
data with surrogate models is to learn the latent input representation automatically by
supervision with the output in regression tasks. This is the central idea of deep neural
networks [106], especially convolutional neural networks (CNNs) [107, 108], which are
known for learning information of spatial correlation within data. Convolutional neural
networks consist of stacked layers of linear convolutions with nonlinear activations to
automatically extract multi-scale features or concepts from high-dimensional input [109],
thus alleviating the hand-craft feature engineering, such as searching for the right set
of basis functions or relying on experts knowledge. However, the general perspective
for using deep neural networks [107, 110] in the context of surrogate modelling is, that
physical problems in uncertainty quantification (UQ) are not big data problems, thus
are not suitable for addressing them with deep learning approaches [3]. With Bayesian
Deep learning [111, 112, 113, 114, 105] it is possible to express prediction uncertainty.
The Bayesian network can quantify the predictive uncertainty by treating the network
parameters as random variables and by performing Bayesian inference on those uncertain
parameters, even when the training data set is small.

To sum up, by combining the concepts of a convolutional encoder-decoder network,
Bayesian deep learning, as well as the recently proposed Stein Variational Gradient
Descent [105] a Bayesian surrogate was learned in order to perform uncertainty quan-
tification of an uniaxial tensile test of heterogeneous aortic tissue.
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5.2.1 Data Description

The Rolf-Pissarczyk-Holzapfel model, introduced in Chapter 4.3 describes a Finite El-
ement (FE) simulation of an uniaxial tensile test on an input tissue X , in this case
random fields of a spatially correlated degradation parameter distribution, and in return
gives the symmetric Cauchy-Stress Tensor at all Gaussian integration points. From this
tensor the component σ33 is extracted and relabelled here as the outcome Y. Thus, the
FE simulation can be considered as the mapping from an input space to a certain output
space X → Y. In order to overcome computational expensiveness of the model when
performing uncertainty quantification, a surrogate function f(·) is trained, using a subset
of available FE in-/output data D = {x,y} = {xi,yi}Ni=1, where xi is a random field
input sample, determining the degradation parameter and yi is the true FE solution.

Moreover θ holds the model parameters, such as weights and biases of the neural net-
work, and N is the number of available training samples, based on the number of FE
simulations.

The (hyper)parameters of the surrogate are adapted/trained in order to approximate
the real FE simulation best, and the neural network surrogate reads y = f(x,θ). Con-
sidering the input dimensions, the number of evaluated grid points in the FE Solver are
determined by the Gaussian integration points and can be described via an irregular
grid of size H ×W ×D for height, width and depth respectively. The box is shown in
Fig. 21.

For the input cube one random field realization, is used twice as stacked layers, such
that the input has the dimension xi ∈ RH×W×D and the outcome of the solver similarly
reads yi ∈ RH×W×D. However, for training the Convolutional Neural Network the third
dimension in the input was neglected, meaning that only the two dimensional input
xi ∈ RH×W was mapped by the surrogate function onto a single component of the
Cauchy-Stress Tensor which was located on the sample plane, such that yi ∈ RH×W .
The surrogate model was treated as an image-to-image regression problem with pixel-
to-pixel wise predictions. Thus, the regression function maps RH×W → RH×W .

A total a number of 10.000 FE solutions were available, from which 5000 were used as
a training set, with 4200 training samples and 800 test samples. The remaining 5000
samples could then be used for Uncertainty Quantification, since the data was ’unseen’
by the surrogate model, yet, the ’true’ FE solution was available to compare it to the NN
predictions. The data structure was distributed in order to, first, have enough samples
for training the surrogate with a total of 400 stochastic dimensions, and, second, to be
left with enough unseen data samples, such that a Uncertainty Quantification could be
conducted with enough samples.

5.2.2 Network Architecture

In this subchapter the main terms considering neural network architecture are explained
and the main structure is illustrated. To get a glimpse of the proposed algorithm the
architecture principle is outlined in Fig. 22 and the utilized network parameters are
given by Table 2. Very briefly, Fig. 22 shows the encoding path (upper line) which takes
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Figure 21: The images in the upper line show a high-resolution random field which is
reduced to a lower-resolution image by taking only the Gaussian integration
points used by the FE solver. The Gaussian integration points, indicated by
red dots in the lower image, form a cube of size (20 × 20 × 2) grid points.
One box is labeled by a circled number and consists of 8 integration points,
whereas the readout was performed from top to bottom. To obtain a 3-
dimensional input, two identical low resolution images were stacked behind
each other and used as an input in the FEM solver. The uniaxial tensile test
could then perform a 3-dimensional calculation of aortic tissue based on the
Rolf-Pissarczyk-Holzapfel model [2]. The coordinates were chosen, such that
the stretch was applied in E3-direction. Moreover, the random field spans
the E2 ×E3 plane and the E1-direction represents the wall depth.

random field realizations and feeds them through a convolutional layer. The extracted
feature maps are handed to a number of dense blocks and encoding layers, as introduced
in Fig. 23 and Fig. 24. After the last dense block of transition layer the high level
coarse feature maps are fed through dense layers, as outlined in dark green, and are
subsequently fed into the decode path (lower line) of Fig. 22. The decode path holds
similar structure to the encoder, but with decoders instead. At the end of the last
decode layer, predictions of the σ33 output fields are made. The main architecture used
for this work was initially proposed by [115] and afterwards modified by [3]. The initial
algorithm by [115] is called DenseNet and aims to enhance information gradient flow
through the network. Therefore any layer is connected to all subsequent layers, i.e.
xl = hl([xl−1, xl−2, . . . , x0]). This means that if, e.g. an image has K0 input channels
(for a RGB image: K0 = 3), each lth layer has a number of K0 + (l−1) ·K input feature
maps. The total number of feature maps then grows linearly with every introduced
layer to a total of Kout = K0 + L ·K output feature maps. This structure is embedded
in a so called dense block. A dense block contains multiple densely connected layers
whose input and output feature maps are the same size. Here, two design parameters
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Figure 22: Network architecture used in this work. First, the input field of size (20, 20)
is 2D-convoluted with kernel size k = (7, 7), stride s = (2, 2) and padding
p = (3, 3). Afterwards, it enters the encoder with two Dense Blocks. Both
are identical and consist of BatchNorm2D, ReLU and Conv2d, with k = (3, 3),
stride s = (1, 1) and p = (1, 1). Afterwards, is fed into a transition layer again
holding BatchNorm2D, ReLU and Conv2d twice, with k1 = (1, 1), stride s1 =
(1, 1), p1 = (0, 0) and k2 = (3, 3), stride s2 = (2, 2), p2 = (1, 1), respectively.
Up until this point the Encoder shrinks the input down to size (6, 6), see upper
right handside. Then, the five dense layers, all consisting of BatchNorm2D,
ReLU and Conv2d are used to arrive at the following Transition up layer,
again with k1 = (1, 1), stride s1 = (1, 1), p1 = (0, 0) and k2 = (3, 3), stride
s2 = (2, 2), p2 = (1, 1). What follows next are again two Dense Blocks
of the same, yet inverted, construction. In the last step, called Sequential,
BatchNorm2D, ReLU and Conv2d are used twice, but with ConvTranspose2d
k = (4, 4), stride s = (2, 2), p = (1, 1) in the last cycle. The outcome is the
surrogate prediction of the mapped FE solution.

are introduced, namely L which defines the number of layers within a dense block
and K which represents the growth rate and thus, defines the growth of input feature
maps for each layer.

For image regression with encoder-decoder networks, down-sampling and up-sampling
are required to change the size of feature maps, which makes concatenation of feature
maps unfeasible. Thus, dense blocks and transition layers are introduced to overcome
this issue [3].
In Fig. 23, a brief example of a dense block with parameters K = 3, L = 3,K0 = 3 is
outlined. Similarly to conventional CNNs, DenseNet includes Batch Normalization
(Batch Norm) [116], Rectified Linear Unit (ReLU) [117] and convolution Conv or
transposed convolution (ConvT) [118]. To reduce the number of feature maps between
dense blocks, as well as the size of those, transition layers are used. More specifically,
the encoding layer typically halves the size of feature maps, while the decoding layer
doubles the feature map size. Both of the two layers reduce the number of feature
maps [3], with an illustration shown in Fig. 24. Moreover, batch normalization layers
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Figure 23: The upper image shows the structure of a dense block containing L = 3 layers
called h1, h2, h3 with growth rate K = 3. The input is given by K0 = 3
channels, the output respectively by Kout = 12 feature maps. The lower
image outlines the second layer h2 of the dense block, where x2 = h2([x1, x0])
represents the output feature map. Notice that the input to the third layer
is the concatenation of the output and input features of h2, i.e. [x2, x1, x0].
In addition, each layer consists of Batch Normalization [119](BatchNorm),
Rectified Linear Unit [117](ReLU) and Convolution (Conv). In this case, the
convolution kernel has size k = 3, stride s = 1 and zero padding p = 1, which
keep the size of the feature maps the same as the input.

are used after each convolutional layer, since this can also be considered as an effective
regularizer [119] and is (nowadays) commonly applied in deep neural networks in order
to replace dropout [101]. As proposed in [120] fully-convolutional networks (FCN) are
the extension of CNNs for pixel-to-pixel wise predictions, where FCN replace the fully
connected layers of CNNs with convolutional layers. Moreover, up-sampling layers are
added in the end to restore the input spatial resolution and skip connections between
feature maps are included for the down- and up-sampling path, see [3]. An introduction
of fully convolutional DenseNets can be found here [121]. This work heavily relies on
the principles of [3], which proposed a very similar approach to DenseNet with FCNs,
with the main difference of dropping the concatenation of feature maps between the
encode paths and decode paths. This means, that while in [121] only the last feature
map of the convolutional layer is fed into the transition layer, [3] propose to keep all
feature maps, concatenate them before passing it to the transition layer. In addition,
skipping of connections is avoided because of weak correspondence and no max-pooling
in encoding layers was used, hence the compensation with a stride of 2. Furthermore,
the authors designate their modification of a DenseNet with FCN the term DenseED.
An illustrative example of a DenseED network is shown in Fig. 22. Table 2 shows the
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(a) Encoder structure

(b) Decoder structure

Figure 24: Both the (a) encoding and (b) decoding layer contains two convolutions. In
this case, the first convolution reduces the number of feature maps while
keeping their size the same, by using a kernel with parameters k = 1, s = 1,
p = 0, the second convolution changes the size of feature maps, but not their
number using a kernel k = 3, s = 2, p = 1. The main difference between (a)
and (b) is the type of second convolution, which is Conv, for down-sampling,
and ConvT, for up-sampling respectively, whereby no pooling is used in the
transition layer. The colors of feature maps used here are independent of
feature maps shown in other figures. This figure was inspired by [3].

main architectural features used in this work.

5.2.3 Total Uncertainty

Bayesian Neural Networks (BNN), in contrast to deterministic ones, treat their param-
eters as random variables, since uncertainties can be introduced by a lack of training
data. The BNN takes an input x as well as the set of random variables as parameters ω
and return f(x,ω) as the output. In addition, an additive noise n is commonly added,
see [3] to model aleatoric uncertainty which can not be reduced elsewise, e.g. by having
more observations. Thus, the probabilistic model reads

y = f(x,ω) + n. (120)

In general, finding appropriate priors for probabilistic neural networks can be a chal-
lenging task, because of the difficult interpretability of the parameters. Moreover, any
prior used has to satisfy low memory and computational costs. This motivates the use
of sparse priors [121, 122]. In this model, analogously to the paper of Zhu et. al. (2018),
a fully factorized Gaussian prior with zero mean and a Gamma distributed precision α
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Table 2: Key properties of Bayesian neural network

Network Data
property value property value
Batch size 350 Total number 10.000
Dense Blocks [2, 5, 2] Training set 4200
Epochs 500 Test set 800
growth rate 2 validation set 5000
bottleneck size 1 * growth rate
learning rate 0.03 with cosine an-

nealing
Input size [px] 20 x 20

number of single predictions for
mean field predictions

20 Output size [px] 20 x 20

Dense Blocks Encoder 2
Dense Blocks Decoder 2
Dense Layers 5
Epochs 500
bottleneck size 1 × growth rate

on the parameters of ω is assumed.

p(ω | α) = N (ω | µ = 0, α−1I), p(α) = Gamma(α | a0, b0) (121)

The result is a Student’s t-prior, which is known for its heavy tails and mass close to
the origin. Regarding the additive noise, one can distinguish between (i) output wise
noise (same for all output pixels), (ii) channel wise noise (same across each output
channel) and (iii) pixel wise noise (distinct for every output pixel). Similarly to [3]
only a homoscedastic centered Gaussian output noise n = σε with ε ∼ N (0, I) was
considered.

5.2.4 Stein Variational Gradient Descent (SVGD)

Finding a good approximation for any high dimensional model can be a daunting task,
especially when the surrogate model needs to learn a high-dimensional posterior distri-
bution with millions of random variables, while having only a very limited set of training
data available. Thus, non-parametric method called Stein Variational Gradient Descent
(SVGD) [72, 105] was adopted to replace standard gradient descent with the benefit of
maintaining the efficiency of point methods. In short, Bayesian inference, by Stein Varia-
tional Gradient Descent, is an one line algorithm, where the gradient pushes the samples
towards the high posterior mass region. Fig. 25 shows a schematic representation of the
algorithm.

In a Bayesian Neural Networks with homoscedastic Gaussian noise one can summarize
the hyperparameters as θ = {ω, σ, α} with the random variable ω, the output noise σ
and Gamma distributed precision α, see Section 5.2.3. Then, for a prescribed proba-
bilistic model one can specify a likelihood function p(y | θ,x) and a prior p0(θ). The
posterior distribution reads p(θ | D), where D denote i.i.d. (independent and identically
distributed) observations (= training data) summarized in D = {xi,yi}Ni=1.
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Figure 25: This toy example illustrates the SVGD algorithm with a 1D Gaussian mix-
ture. The red dashed lines are the target density function and the solid green
lines represent the densities of the particles at different iterations of the al-
gorithm. It shows how the gradient pushes the samples towards the high
posterior region. This image was taken from [105]. Even though the initial
distribution had almost zero overlap with the target one, SVGD is capable
of recovering the distribution after 500 iterations of training. In this case the
number of particles used was n = 100.

Bayesian inference enables to determine the posterior distribution

p(θ | D) =
p(D | θ) p(θ)

p(D)
(122)

by approximating it with a variational distribution. The unnormalized posterior reads

p̃(θ | D) = Z · p(D | θ) p0(θ) = ΠN
i=1 p(yi | θ,xi) p0(θ) with Z =

∫
p̃(θ | D) dθ

(123)

being the normalization constant also called model evidence. This constant is usually
computationally intractable, but can be ignored when optimizing the KL divergence [3].
The approximating variational distribution q∗(θ) lies in a restricted set of distributions
with q ∈ Q, such that by minimizing the Kullback-Leibler KL divergence between the
two probabilities one obtains

q∗(θ) = arg min KL
(
q(θ) | p(θ | D)

)
= arg min Eq

[
log
(
q(θ)

)
− log

(
p̃(θ | D)

)
+ log

(
Z
)]
,

Even though most of the network architecture was kept through this analysis, minor
modifications, with e.g. block numbers and the step-size scheduler were adapted. Zhu
et. al. [3] p. 16, utilize a learning rate scheduler, which decreases by a factor 10 when the
regression loss function remained on a plateau during training. Moreover, they applied
RMSE for the regression loss function in SVGD, see Chapter 5.2.4. Here, the learning
rate scheduler was replaced by cosine annealing and the regression loss function was
replaced by smooth L1 loss smooth L1.

In principle, smooth L1 loss, which is also referred to as Huber loss [123] when
parametrized with a delta [124], acts as a combination of L1 and L2 loss, meaning
that it behaves like a L1-loss in case the absolute value of the argument is high, and like
a L2-loss in case of low argument values. Thus, smooth L1 loss should lead to a faster
convergence rate [125, 126]. Mathematically speaking, smooth L1 can be expressed as

L1 smooth(w, q) =
1

N

N∑
i

l1 smooth(wi, qi) (124)
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l1 smooth(wi, qi) =

{
1
2(wi − qi)2 for |wi − qi| ≤ β,
β(|wi − qi| − 1

2β) otherwise.
(125)

with w, q being arbitrary shape parameters, N being the total number of elements and
β representing a parameter of free choice. Having introduced the idea of L1smooth, the
loss function used in this work yields

L1 smooth(x,y,θ) =
1

N

N∑
i

l1 smooth(xi,yi,θ) (126)

and analogous to Eq. (125) with parameter β = 1

l1 smooth =


1
2

(
f(xi,θ) + n− yi

)2

for |f(xi,θ) + n− yi| ≤ 1,∣∣f(xi,θ) + n− yi
∣∣− 1

2 otherwise.

(127)

For the learning rate scheduler cosine annealing was used. In this case, a cosine
function is used as the learning rate annealing function, because the cosine function has
shown to perform very promising compared to alternatives like simple linear annealing
as explained in [127]. From the official website [128] follows the description that ηmax
is set to the initial learning rate, ηmin is the minimum learning rate, Tcur is the number
of epochs since the last restart and Tmax is the maximum number of iterations, which
yields

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur
Tmax

π

))
(128)

It is also a common choice to combine cosine annealing with warm restarts, as proposed
by [129], however in this work we stick to the simple case.

For a more detailed explanation the reader is referred to [105].
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6 Results and Discussion

6.1 Numerical Implementation

The investigated physical system describes a degradation parameter of elastic fibres of
an aortic tissue within an uniaxial tensile test as modeled in the recently published
Rolf-Pissarczyk-Holzapfel model [2]. The underlying distribution of the degradation
within the fibers was assumed to be uniform and was modelled as uniform random
fields, see Chapter 3.5. Therefore, Gaussian random fields were sampled via FFT with
size (2048 × 2048) pixel and were mapped onto Uniform random fields. Two identical
layers of this high resolution grid were stacked behind each other, in order to obtain a
three dimensional mesh. In order to keep computational run time of the Finite Element
Solver feasible, only the Gaussian integration points of the FE Simulation were selected
from the grid, as shown in Fig. 18. In the next step, the solution of the uniaxial
tensile test, namely the elements of the Cauchy-Stress tensor σ were investigated, see

Chapter 4.3. The elements of the displacement vector ~u =
(
u1,u2,u3

)T
of the uniaxial

deformation is shown in Fig. 26. When analysing the Cauchy-stress elements, the
difference of almost two orders of magnitude were reason enough to neglect all tensor
elements other than σ33. For a comparison of Cauchy-stress tensor elements see Fig.
27.

Figure 26: Coordinate displacement done by uniaxial tensile test. The observed tissue
was stretched in E3-direction, which is outlined in subfigure (c). In contrast,
subfigures (a) and (b) have a much smaller distortion scale and represent axes
E1 and E2, respectively.

Attempts to also learn all tensor elements by one network all together were made, but
only resulted in noise predictions rather than meaningful outcomes. Thus, a complete
Cauchy-Tensor prediction with possibly individual neural networks stays a task for future
projects. Fig. 28 outlines the performance of the Bayesian network. In subfigure (a), the
input random field is displayed and figure (b) shows the FEM uniaxial tensile output.
The network prediction is plotted above label (d) and the absolute difference between
FEM output and NN prediction can be seen in (c). From comparing the true output
and its network prediction it is visible that the network is not able to predict small scale
fluctuations within the data. Therefore the network prediction looks rather smooth
compared to the true simulation field. Those fluctuations may be assumed as noise
within the data by the model, and are in fact responsible for the main network prediction
uncertainty, as can bee seen from the absolute difference in (c) and predicted standard
deviation in subfigure (e). Even though at first sight, the network prediction seems to
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Figure 27: Comparison of Cauchy-Stress tensor of one sample output in all different
plane directions.

capture the output well, it is the minor fluctuations which in the end cause relative
errors up to 20%.

Figure 28: Trained surrogate model. A random field input xi at index i, shown in (a),
is mapped onto the target FEM solution yi in (b) with a network mean
prediction µpred in (d). The absolute difference between network prediction
and true solution is depicted in (c) as absolute difference. In addition, the
standard deviation of the prediction is shown in (e).

Three more samples of FEM output and network predictions are outlined in Fig. 29,
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where the true FEM data lies on the upper left side, the upper right hand side shows the
predicted output, the input random field is shown in the lower left image and on the lower
right one there is the absolute difference between true output and network prediction.
From those predictions it is again visible that the true FEM solution shows much more
variations, thus looks less ’smooth’ compared to the neural network prediction. This
could have various reasons. Firstly, it could either result from a rather poor network
architecture, which is incapable of learning small changes in the model, or secondly, it
could be, that when the mean prediction is computed from a set of single predictions,
as in this model 20 single predictions, that such local changes are smoothened as an
inherent feature of Bayesian NNs. On the other side, from a physical model perspective,
it can also very well be that those local fluctuations stem from fiber degradations, which
arise independently in the model, due to exclusion of fibers above the exclusion angle.
Since these excluded fibers stem from randomly arranged fibres the network might,
independent on its architecture assume those distortions to be noise. Beside that, a
smaller kernel window within the Dense Layers might also improve the results.

In order to investigate the individual predictions and their mean field in more detail, a
comparison between the true field, predicted mean field, their absolute difference and
three single predictions is shown in Fig. 30. From that, one can see that even if the
single predictions are less smooth compared to the mean field, the individual predictions
yet don’t show distortions in E2-direction, as in the FEM solution.

70



Deep UQ Master Thesis Gloria Wolkerstorfer

Figure 29: Two different samples of random field Input (lower left), FEM-Output (upper
left), µpred (upper right) and the absolute difference of true FEM solution and
mean prediction (lower right). The colorbar indicates the value range in [kPa].
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Figure 30: BNN - principle. The true target (a) is learned by the surrogate function
and 20 individual predictions are made, whith mean field µpred, see (b), is
returned by the network. Fig. (c) shows the absolute difference of (a) and (b).
In the lower row, three out of 20 single predictions are depicted to compare
the results. Fig. (b) looks rather smooth, which comes from averaging over all
single predictions. It seems that by looking at the individual predictions (d) -
(f), which are samples drawn from the learned distribution, that the surrogate
is incapable of learning local fluctuations of the stress tensor component σ33.

6.2 Uncertainty Quantification of Rolf-Pissarczyk-Holzapfel model

This Section contains the centerpiece of this thesis. After setting up a surrogate model,
training and adapting hyperparameters, as well as architecture of it, this Section concen-
trates on quantifying the uncertainty of the uniaxial tensile test surrogate model. For the
surrogate, a Bayesian neural network was trained and its hyperparamters as well as the
architecture adapted from [3]. Therefore, random fields, which were introduced in Sec-
tion 3, describing degraded elastic fibers of a physical uniaxial tensile test, as proposed
by Rolf-Pissarczyk-Holzapfel Section 4.3, were sampled from a uniform and spatially
correlated distribution and used as input of a Finite Element Solver, performing an uni-
axial tensile test of aortic tissue. Then, by taking σ33, the principal Cauchy-stress-tensor
component as the quantity of interest, a Bayesian Autoencoder was trained to approxi-
mate the mapping of random fields, as an input, onto the stress-tensor-field-component,
as an output. Results of the network predictions are outlined in Section 6.1. To quan-
tify uncertainty, it is useful to compare surrogate predictions at certain locations to the
true solution. Figures 31 - 33 outline the predicted probability of the σ33-stress-tensor
component at three different locations to the true tensor components. The sampled
locations on the two-dimensional grid were chosen analogously to Zhu et. al. (2018),
reading (1.5, 4.5) for Fig. 31, (12.5, 14.5) in Fig. 32 and finally (18.5, 15.5) for Fig. 33.
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Figure 31: Posterior distribution at position (1.5, 4.5).

Figure 32: Posterior distribution at position (12.5, 14.5).

Figure 33: Posterior distribution at position (18.5, 15.5).

From the three posterior distributions, one can see that the surrogate model is able
to capture and predict the probability distribution at those three different locations
quite well. It is notable that more training data leads to a more valuable prediction,
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simply because a greater sample size means a greater variety, which leads to a better
approximation of the underlying distribution by the BNN. However, this only holds if the
initial training set is large enough. Too little data during training might not fully depict
the distribution and its variance, with the consequence of poor prediction accuracy.

In addition to the FEM and NN distribution, a direct comparison of local stresses be-
tween the single predictions within the Bayesian network, their mean values and the
true FEM solution were considered. Therefore, figure 34 (a) shows the three locations
at which the FEM solution was compared to the posterior predictions of the Bayesian
neural network. Figure 34 (b) provides an intuitive outline of how the histogram of
local stress distribution in Fig. 35 was obtained. After training with the first 5000 sam-
ples, predictions of the unseen σ33-stress-components were made and their frequency was
plotted in a histogram.

Figure 34: In subfigure (a) the locations of the evaluated posterior distribution of the
Cauchy-Stress tensor in tensile direction are indicated with red ticks. The
following figures 31 - 33, then show all individual cases of the red markers.
Fig. (b) illustrates how posterior predictions of the Bayesian neural network
were obtained. First, one location is set, then 5000 predictions of the unseen
data are evaluated by the neural network and its posterior distributions are
plotted, as outlined in fig. 31 - 33.

The single predictions in Fig. 35 are in fact the histogram over all individual posterior
predictions made by the neural network. Because of the Bayesian architecture, the
network is trained to learn an underlying distribution of the tensor element σ33 of the
uniaxial tensile test, such that one can sample from this distribution. Those extracted
samples are then used to calculate the statistics of the network, meaning its mean and
variance. Moreover, it would be possible to calculate higher momenta, which in this case
was not necessary, but is generally possible. In this architecture 20 single predictions at
each location of each field were made to characterize the statistics. Further investigations
could be the study of influence of the number of single predictions for the network
performance.

From Fig. 35 one can see, that the posterior of single predictions, in this case 20-times
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5000 individual predictions (blue) approximate the underlying FEM Output (red) not
as good, as when taking the mean of all 20-predictions at every location and plot their
histogram over all 5000 samples (orange).

Figure 35: Histogram of local stress at position of the most uppest red cross in 34.
This figure shows the posterior of all single predictions (blue), their mean
prediction µpred in orange, as well as the true target histogram in red.

In the next figures, one mean field prediction of one of the 5000 samples was analysed.
In detail, a stripe along the middle of the mean field prediction was cut out, as shown
by the grey shaded area in Fig. 36, and was plotted along E2-direction as x-axis and
E3-direction for the y-axis, see Fig. 37. The cyan colored dots, represent the 20-single-
predictions at one location, over which the network takes its mean, which is orange.
The standard deviation at each predicted location is marked in light blue and the true
FEM solution in dark blue. The benefit from using a BNN now is, that even mean and
standard variation predictions can be equipped with error bands.

It is legitimate to ask, why the prediction uncertainty does not always reach out far
enough to capture all FEM solutions within the error bands, as shown in Fig. 37.
Therefore, at first sight, it may seem that the neural network is incapable of predicting
the error bands correctly, but one step at a time.

The total uncertainty of the model consists of

∆Total = ∆Model + ∆Data (129)

where ∆Data is also called aleatoric uncertainty and stems from e.g. obtaining dif-
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Figure 36: Explanation of the extracted data in Fig. 37. The data was taken from
predictions along a line starting from location (1,10) up to (20,10) are out-
lined, which represents a horizontal cut through the Cauchy-Stress-Tensor
distribution along in σ33 direction.

Figure 37: Predictions along a line starting from location (1,10) up to (20,10), includ-
ing error bands. The single posterior predictions are marked in cyan, their
mean, including error bands in orange, the standard deviation of prediction is
marked in blue, including its error bands. The true output solution is marked
in red.

ferent measurement results at the same initial conditions, whereas ∆Model consists of
experimental, parameter, algorithmic, structural uncertainties, and others.

Because the data was simulated the experimental uncertainty is assumed to be zero and
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only the additional noise of the input fields was considered. For the neural network
uncertainty the view gets slightly more complex. Here, the uncertainty is assumed to be
neglectable, also the algorithmic one. Uncertainty of the neural network mainly stems
from approximating that the network truly finds the optimal hyperparameters within
its training, which may not be completely true if the network settles at a good, yet local
minimum.

Here, the hyperparameter θ = (ω, σ, α) contains the weights vector ω, homoscedastic
Gaussian noise σ and the precision of the distribution of weights α in the neural network.
D represents the data of the fields, x the unseen input fields for the prediction and y the
prediction of the neural network on unseen data, such that the neural network prediction
for y = f(x | θ) reads

p(y | x,D) =

∫
p(y | x,θ) · p(θ | D) dθ (130)

whereby brute force calculation is impossible, but with NN one aims to find the best
hyperparameters. Those resemble the minimum of the loss function, or respectively, the
maximum aposteriori. Here, it is assumed that the optimal hyperparameters are found
by the network as θ∗, with no additional error considered in the uncertainty calculation.
This can be assumed to be true if most of the probability mass lies densely around those
optimal parameters. Thus,

p(θ∗ | D) ≈ δ(θ − θ∗) (131)

p(y | x,θ∗) ≈ p(y | x,D). (132)

The total uncertainty in this model stems from

• data: firstly, the added noise when simulating the input random fields. Secondly,
the Gauss-Konrod integration points in the unit cube of the uniaxial tensile test
are not equidistantly spread. This error damage was reduced by sampling high
resolution images of size 2048×2048 which were reduced to the closest GIP yielding
20 × 20 pixel images. Thirdly, the FEM calculation is only a model of the aorta
and no stress or strain equation may describe the real world completely, giving rise
to model errors. In addition, the decimal digits when sampling and evaulating the
FE solver may cause additional uncertainties, which are not considered. Moreover,
within the constitutive model the discretized number of collagen fibre densities
also plays a major role. Here, a finer grid of discretization triangles, see [2] p. 6
would lead to a more accurate model, thus, smaller errors. Having said this, due
to limited capacities only the random field noise was included when propagating
the uncertainties in this work. Furthermore, numerical errors also are assumed to
be zero in this case.

• neural network: firstly, a there is model uncertainty, by using the surrogate. More-
over, even if the NN mimics the FEM quite well, one needs to consider that it might
still not have the optimal hyperparameter. However, this uncertainty is assumed
to be zero, since Eq. (131). Secondly, there is a prediction uncertainty, because the
output is assumed to be Gaussian, when predicting the first and second moment.
On top of that, even the predicted mean and standard deviation have error bands,
which are outlined in Fig. 37.
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Another interesting quantity is the rupture probability of the material. Therefore, the
inverse cumulative distribution of the Cauchy-stress tensor in tensile direction was plot-
ted in Fig. 38, to demonstrate, that, when given a physiological value, e.g. a critical
stress value σcrit, above which the aortic tissue is highly likely to fail, the surrogate model
can be used to support FEM calculations quite accurately. However, this does not mean

Figure 38: Inverse cumulative of stress histogram at location (1,10). This figure shows,
that the surrogate is capable of predicting a rupture probability when given
a critical value. The red bars belong to the true Finite Element solution,
whereas the Neural Network prediction is drawn in blue.

that FEM solvers might be outdated in the future, but that the user can benefit from
combining reliable, well validated and trustworthy methods, like FEM, with modern
approaches of neural networks, in order to boost the efficiency and computational run
time without losing too much precision.

Nevertheless, even if Neural Networks show promising results in more and more fields,
it is up to the user to asses first the appropriateness use of a Neural Network, and if
so, to adapt existing tools to a model dependent task accurately and most importantly
to quantify and compare the introduced uncertainties of the neural network. Here, one
might run into major issues of NNs, which tackles the uncertainty of the network itself.
It is a vivid area of research which concerns this problem [130, 131, 132]. Moreover, the
approach of using predictions of a neural network may sometimes work better, sometimes
worse, without any, at first sight, obvious reason. To demonstrate this, a comparison of
’good’ vs. ’failed’ in quality predicted results in shown in Fig. 39. One reason leading
to failed predictions could be, that the training sample set was too small, or, that the
surrogate model obtained similar input, which had to be mapped onto output with larger
variation, which in return gives a larger error. Furthermore, local distortions as discussed
in 30, may contribute as well. Therefore it is recommended to also look at the quality
of the predictions, i.e. by plotting the reliability diagram, as shown in figure 40. Even
if the optimal neural network prediction analysis should be close to the diagonal line,
which is not always the case, this does not automatically mean a bad result in general.
One needs to keep in mind the high complexity of the model. Moreover, for training the

78



Deep UQ Master Thesis Gloria Wolkerstorfer

Figure 39: Comparison of one ’trustworthy’ vs. a ’failed’ prediction result. In the left
column the FEM solutions are outlined and in the right column the mean
prediction of the neural network.
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Figure 40: Reliability diagram of the surrogate model. The ideal progression is plotted
as dotted black line and the Bayesian surrogate in red. The model frequency
was evaluated at 30 points with a maximum of 86.0%.

network a total of 5000 training samples were used. As discussed in Zhu (2018), remark
4, with a greater set of training samples also comes a greater variety of mapping options.
This means, that a larger set of highly variable input, which maps onto almost the same
output, will make the network automatically less confident with its prediction than if
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it would be only given half or even less training data, i.e. making the mapping more
distinguishable. In that case however, the neural network could get overly confident with
its predictions by seeing too little data. Therefore, a rather linear correlation in Fig. 40
is favourable, but one also needs to take the size of training and evaluation data as well
as complexity of the model into considerations.
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6.3 Predicting the Principal Absolute Value with Bayesian Autoencoder
Surrogate

This final subsection presents the surrogate predictions for a slightly different objec-
tive, namely the Principal Absolute Value, short PAV. The principal absolute value
σ̂totalloc can be calculated by taking the sum of the squared Cauchy-Stress-tensor ele-
ments for each location as

||σ̂totalloc ||
2 =

∑
i,j

σ2
ij with i, j ∈ {1, 2, 3}. (133)

which are the elements taken from the symmetric Cauchy-stress-tensor

σ̂Cauchy =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 .

The summation over space of all local PAV values multiplied with the strain ε gives an
information about the deformation energy E contained within a material reading

E =
1

2

∫
tr (σ̂Cauchy ε) dV ∝

∫
||σ̂totalloc ||

2 dV. (134)

The existing network architecture was adopted to learn a surrogate model, which is able
to predict not only single stress-tensor components, but also the principal absolute value
and its maximum. Further investigations strongly motivated that approximating the
Cauchy-stress-tensor in tensile direction only, i.e. σ33, the surrogate is capable to result
almost the same as the true outcome when taking the complete Cauchy stress tensor.
Hence, the approximation reads

˜̂σCauchy =

0 0 0
0 0 0
0 0 σ33

 .

These additionally introduced uncertainties were neglected, because firstly, the stress-
tensor-components span almost two orders of magnitude, see Fig. 27 and secondly,
because learning different channels with different noises by the same neural network
is counterproductive and leads to even greater noise assumptions by the model. One
way around could be to train each output channel individually, for which one needs to
adapt the architecture individually. This could be an interesting, yet challenging task for
future projects. In this case, the simplified model was assumed and the comparison of
the total PAV of the FEM solver and the predicted reduced PAV of the neural network
are outlined in Fig. 41 at location (1, 10).
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Figure 41: PAV of the FEM solver in comparison to surrogate prediction of reduced
PAV. The PAV was calculated by taking the sum of the square elements of
once the full Cauchy-Stress-tensor for the FEM solution and once the reduced
Cauchy-Stress-tensor for the surrogate model.

The reliability diagram of of the uncertainty analysis is shown in 42 as well as three
posterior samples at locations (1.5, 4.5) for Fig. 43, (12.5, 14.5) in Fig. 44 and (18.5, 15.5)
for Fig. 45.
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Figure 42: Reliability diagram of the PAV surrogate model. The ideal progression is
plotted as dotted black line and the Bayesian surrogate in red. The model
frequency was evaluated at 30 points with a maximum value of 89.2% accu-
racy.
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Figure 43: Posterior distribution at position (1.5, 4.5).

Figure 44: Posterior distribution at position (12.5, 14.5).

Figure 45: Posterior distribution at position (18.5, 15.5).
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7 Summary and Outlook

To sum up, in this work Uncertainty Quantification of a degradation parameter used for
modelling aortic walls in case of Aortic Dissection is investigated, for which an uniaxial
tensile test is performed on hyperelastic, heterogeneous tissue.

First, random field simulation techniques were investigated to model the spatial dis-
tribution of a degradation parameter, see Section 3. The Spectral method was chosen
through which random fields were generated. Those were used as an input to FEM cal-
culations to the Rolf-Pissarczyk-Holzapfel model [2]. Since Uncertainty Quantification
of such calculations are computationally expensive, see Section 4, a surrogate model was
trained to learn the mapping from an input to the output of the uniaxial tensile test
on hyperelastic tissue. This surrogate model consist of a Bayesian Deep Convolutional
Encoder-Decoder, short Bayesian Autoencoder, see Section 5.1, which was adapted from
[3]. The network architecture was investigated in Section 5 and Uncertainty Quantifi-
cation via the surrogate model was analysed in Section 6.2 including quantities like the
critical rupture stress and the principal absolute value, Section 6.3. An accuracy of 86%
for the constitutive model surrogate and 89.2% for the principal absolute value surrogate
was achieved. A more detailed network performance is outlined Section 6.2. Fig. 46
gives a brief summary of this work, including a random field sample, subfigure (a), the
FEM output in subfigure (b), the neural network prediction in (d) and finally, the inverse
cumulative stress histogram to model the critical rupture stress in subfigure (c).

Further investigations of this work could include sampling and training the model with
higher level precision data, moreover one could also train the network with more or
less data and compare the results. On another perspective considering the data, one
can further analyse the differences between the neo-Hookean and the Rolf-Pissarczyk-
Holzapfel model including their PAV. In this case, the Cauchy stress tensor was reduced
to its component σ33, because of two orders magnitude difference to the other elements.
However, one can further investigate to train the network to predict all Cauchy stress
tensor channels individually to probably obtain an even better result. Furthermore, one
could also focus and compare different network architectures and their prediction per-
formances, including different kernel sizes. Another intriguing aspect is the uncertainty
quantification of the neural network itself, which was neglected in this work.

On top of that, one could modify the network to incorporate physics-information of the
tensile test. This state-of-the art research is called Physics-informed Neural Network
[133, 134, 135, 136, 137] and seems a promising modification for future investigations of
surrogate models in biomechanics.
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Figure 46: Summary of this work. Uniformly distributed random fields, as shown in
(a), were sampled and used as input to a FEM simulation. This simulation
performed an uniaxial tensile test on hyperelastic tissue, as proposed by [2].
The mapping from input to output, subfigure (b), was learned by a Bayesian
Autoencoder network, subfigure (d), in order to perform Uncertainty Quan-
tification. In addition, quantities like the critical rupture stress, subfigure (c),
could then be predicted by the surrogate model.
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using localized Karhunen–Loève expansion. Advanced Modeling and Simulation in
Engineering Sciences 5 (2018).
doi:10.1186/s40323-018-0114-7

[50] M. Shinozuka, G. Deodatis. Simulation of Stochastic Processes by Spectral
Representation. Applied Mechanics Reviews 44 (1991) 191.
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Appendix

The following code snippet can be used to simulate Gaussian Random fields and analytic
non-Gaussian random fields via the FFT-Method:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from math import pi

4 from scipy.stats import beta

5 from tqdm import tqdm

6

7 def PSDF_2D(w,k, ell1 ,ell2 , sig):

8 """ Calculate the Power Spectral Density , see eq. (65)."""

9 praefac = sig*(ell1)*(ell2)/ (4*pi)

10 xi1 = np.sum(w**2 ,1).reshape (-1,1) + np.sum(w**2 ,1)

11 xi2 = np.sum(k**2 ,1).reshape (-1,1) + np.sum(k**2 ,1)

12 ker = praefac * np.exp (-.25* (xi1 * ell1 **2 + xi2 * ell2 **2))

13 return(ker / np.sum(ker))

14

15 def Lognstat(mu , sigma):

16 """ Calculate the mean of and variance of the Lognormal distribution

given

17 the mean (‘mu ‘) and standard deviation (‘sigma ‘), of the associated

normal

18 distribution."""

19 m = np.exp(mu + sigma **2 / 2.0)

20 var = np.exp(2 * mu + sigma **2) * (np.exp(sigma **2) - 1)

21 return (m, var)

22

23 def Gamma(sample_field ,n):

24 """ Calculate a Gamma field as in eq. (95) """

25 lim = int (2*n)

26 G = np.sum([ (np.square(np.array(sample_field)[i])) for i in range(

lim)],0)

27 return(G)

28

29 def Beta(Gamma1 , Gamma2):

30 """ Calculate a Beta field as in eq. (100) """

31 return(Gamma1 / (Gamma1 + Gamma2))

32

33

34 def Logn(sample_field ,mu_g , sig_g):

35 """ Calculate a Lognormal field as in eq. (108) """

36 log_field = np.exp(mu_g + sig_g*sample_field)

37 log_mu ,log_sig = Lognstat(mu_g ,sig_g)

38 return(log_field , log_mu , log_sig)

39

40 def Unif(Gamma1 , Gamma2):

41 """ Calculate a Uniformly disrtibuted field as a special case of Beta

field """

42 return (0.5 * Gamma1 / (0.5* Gamma1 + 0.5* Gamma2))

43

44 def mult(A,B):

45 return(A*B)

46

47 # Frequency domain

48 Nw = 2**7

49 Nk = 2**7

50

51 dw = 0.0781

52 dk = 0.0781
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53

54 kmax = dk*Nk

55 wmax = dw*Nw

56

57 w = np.dot(dw , range(0,Nw -1)).reshape (-1,1)

58 k = np.dot(dk ,range(0,Nk -1)).reshape (-1,1)

59

60 # Spatial Domain

61 Mw = 2*Nw

62 Mk = 2*Nk

63

64 t = 2*pi/dw *np.linspace (0,1,Mw+1)

65 Mt = len(t)

66 x = 2*pi/dk *np.linspace (0,1,Mk+1)

67 Mx = len(x)

68

69 # Define field correlation lengthscales

70 corr1 = 10

71 corr2 = 10

72 sig = 1

73

74 S_freq_domain = PSDF_2D(w,k,corr1 ,corr2 ,sig)

75 S_spatial_domain = np.zeros(shape =(Mk ,Mw))

76 S_spatial_domain [0:Nk -1,0:Nw -1] = S_freq_domain

77

78

79 Log_fields = []

80 Beta_fields = []

81 Uni_fields = []

82 Gaussian_fields = []

83

84 Beta_22 = []

85 Beta_0505= []

86 Beta_24= []

87 Beta_41= []

88

89 set_seed = 12

90 for numbers in tqdm(range (0,10)):

91

92 gamma_8 = []

93 gamma_4 = []

94

95 for m in (range(set_seed)):

96 np.random.seed(m+numbers*set_seed)

97

98 phi1 = np.random.rand(Mk,Mw)*2*pi

99 phi2 = np.random.rand(Mk,Mw)*2*pi

100 B1 = 2*np.array(list(map(mult ,np.sqrt(S_spatial_domain*dk*dw), np

.exp(1j*phi1))))

101 B2 = 2*np.array(list(map(mult ,np.sqrt(S_spatial_domain*dk*dw), np

.exp(1j*phi2))))

102

103 F1 = (Mk*2*pi) * np.fft.ifft(B1,Mx ,0)

104 F2 = (Mk*2*pi) * np.fft.ifft(B2,Mx ,0)

105

106 F1 = Mw * np.fft.ifft(F1,Mt ,1)

107 F2 = np.fft.fft(F2,Mt ,1)

108

109

110 # Sample of Gaussian Random Field via FFT -method

111 y = np.real(F1+F2)

112 Gaussian_fields.append(y)
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113

114

115 if m < 8:

116 gamma_8.append(y)

117 if m > 7 :

118 gamma_4.append(y)

119

120

121

122 Gamma4 = np.array(Gamma(gamma_8 ,4))

123 Gamma2 = np.array(Gamma(gamma_4 ,2))

124 Uniform1 = np.array(Gamma(gamma_8 ,1))

125 Uniform2 = np.array(Gamma(gamma_4 ,1))

126 Gamma1_1 = np.array(Gamma(gamma_8 ,1))

127 Gamma1_2 = np.array(Gamma(gamma_8 ,2))

128 Gamma2_2 = np.array(Gamma(gamma_8 ,2))

129 Gamma05_1 = np.array(Gamma(gamma_8 ,.5))

130 Gamma05_2 = np.array(Gamma(gamma_4 ,.5))

131

132 Beta_22.append(Beta(Gamma2 ,Gamma2_2))

133 Beta_0505.append(Beta(Gamma05_1 ,Gamma05_2))

134 Beta_24.append(Beta(Gamma2 ,Gamma4))

135 Beta_41.append(Beta(Gamma4 ,Gamma1_1))

136

137

138 Log_fields.append(Logn(y,np.mean(y),np.std(y)))

139 Beta_fields.append(Beta(Gamma4 ,Gamma2))

140 Uni_fields.append(Unif(Uniform1 , Uniform2))

141

142 # Plot the result

143

144

145

146 def PlotBetaPdf ():

147 """ Define the distribution parameters to be plotted """

148 alpha_values = [4, 2,2, 4]

149 beta_values = [2, 2,4, 1]

150 linestyles = [’-’, ’--’, ’:’,’-’]

151 x = np.linspace(0, 1, 1002) [1:-1]

152

153 for a, b, ls in zip(alpha_values , beta_values , linestyles):

154 dist = beta(a, b)

155

156 plt.plot(x, dist.pdf(x), ls=ls ,

157 label=r’$m=%.1f,\ n=%.1f$’ % (a, b), color= ’k’)

158

159 plt.xlim(0, 1)

160 plt.ylim(0, 3)

161

162 plt.xlabel(’$x$’, size = 22)

163 plt.ylabel(r’$p(x|m,n)$’, size = 22)

164 leg = plt.legend(loc=0, fontsize = 18)

165 plt.tick_params(labelsize =20)

166 plt.show()

167 plt.tight_layout ()

168 return

169

170 i = 0 # index for plot , number in [0,10]

171 fig = plt.figure(figsize =(5, 7))

172 plt.subplots_adjust(wspace= 0.25, hspace= 0.25)

173

174 sub1 = fig.add_subplot (3,2,1)
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175 ax = plt.gca()

176 plt.axis(’off’)

177 plt.title(’Beta (4,2)’, size = 16)

178 im = ax.imshow(Beta_fields[i])

179 divider = make_axes_locatable(ax)

180 cax = divider.append_axes("right", size="5%", pad =0.05)

181 cbar = plt.colorbar(im, cax=cax)

182 cbar.ax.tick_params(labelsize =16)

183

184 sub2 = fig.add_subplot (3,2,2) # two rows , two columns , second cell

185 ax = plt.gca()

186 plt.axis(’off’)

187 plt.title(’Beta (2,2)’, size = 16)

188 im = ax.imshow(Beta_22[i])

189 divider = make_axes_locatable(ax)

190 cax = divider.append_axes("right", size="5%", pad =0.05)

191 cbar = plt.colorbar(im, cax=cax)

192 cbar.ax.tick_params(labelsize =16)

193

194 sub3 = fig.add_subplot (3,2,3)

195 ax = plt.gca()

196 plt.axis(’off’)

197 plt.title(’Beta (2,4)’, size = 16)

198 im = ax.imshow(Beta_24[i])

199 divider = make_axes_locatable(ax)

200 cax = divider.append_axes("right", size="5%", pad =0.05)

201 cbar = plt.colorbar(im, cax=cax)

202 cbar.ax.tick_params(labelsize =16)

203

204 sub4 = fig.add_subplot (3,2,4)

205 ax = plt.gca()

206 plt.axis(’off’)

207 plt.tick_params(labelsize =16)

208 plt.title(’Beta (4,1)’, size = 16)

209 im = ax.imshow( Beta_41[i])

210 divider = make_axes_locatable(ax)

211 cax = divider.append_axes("right", size="5%", pad =0.05)

212 cbar = plt.colorbar(im, cax=cax)

213 cbar.ax.tick_params(labelsize =16)

214 sub5 = fig.add_subplot (3,2,(5,6))

215

216 plt.tight_layout ()

217 PlotBetaPdf ()

Listing 1: Code snippet to generate Gaussian and Non-Gaussian random fields with
plots.
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