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Abstract

Angle-resolved photoemission spectroscopy (ARPES) is the most direct experimental
technique to investigate the electronic band structure of surfaces and layered materials.
ARPES maps are routinely compared to results from ab-initio band structure calcula-
tions. However, simulations of photoemission cross-sections including transition matrix
element effects which provide additional insights are rare, especially simulations that
include spin-orbit coupling in the band structure calculation.
In this thesis, the electronic ground state is calculated using density functional theory
(DFT). Based on the ground state wave function, angle-resolved photoemission inten-
sity maps are simulated within the one-step model of photoemission, by modelling the
final state of the photoelectron as a plane wave. This plane wave final state (PWFS)
approach has proven to work surprisingly well for monolayers of organic molecules on
metal surfaces. For this work, the approach is extended to include spin-orbit coupling
(SOC). The results of the simulations are compared to experiments and calculations
using a tight binding approach.
The method is applied to three classes of materials. First, the transition metal dichalco-
genides (TMD) tungsten disulphide (WS2) and tungsten diselenide (WSe2), second,
a monolayer of silver-tellurium on a silver-(111) surface (AgTe/Ag(111)), and, third,
mono-layer and bilayer graphene. The simulations for the TMDs are able the correctly
describe the ARPES intensities and the spin-splitting of the bands. However, results for
AgTe/Ag(111) show discrepancies to the experiments. It is shown that it is possible to
include SOC in the PWFS approach, which can yield reliable results. However, further
tests are needed.
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Kurzzusammenfassung

Winkelaufgelöste Photoemissionsspektroskopie (ARPES) ist die direkteste experimen-
telle Methode um die elektronische Bandstruktur von Oberflächen und geschichteten
Materialien zu untersuchen. Solche ARPES Experimente werden häufig mit ab-initio
Bandstrukturrechnungen verglichen. Es gibt jedoch wenige Simulationen, bei denen
auch Matrixelement-Effekte zur Berechnung der Photoemission berücksichtigt werden.
Seltener noch sind Simulationen, welche auch Spin-Bahn Wechselwirkungen (SOC) in
Betracht ziehen.
In dieser Abschlussarbeit wird zunächst der elektronische Grundzustand mit der Dichte-
funktionaltheorie (DFT) berechnet. Basierend auf der Grundzustandswellenfunktion
werden ARPES -Intensitäten mit dem sogenanntem one-step Modell der Photoemission
simuliert, wobei der Endzustand des Photoelektrons mit einer ebenen Welle genähert
wird. In dieser Arbeit wird diese Methode so erweitert, um damit auch SOC zu be-
rücksichtigen. Die Ergebnisse der Simulationen werden mit experimentellen Daten und
einem tight-binding Modell verglichen.
Angewendet wird das Verfahren auf drei Klassen von Materialien: Erstens, die soge-
nannten transition metal dichalcogenides (TMD) Wolfram Disulfid (WS2) und Wol-
fram Diselenid (WSe2), zweitens, einer Monolage Silber Tellur auf einer Silber (111)
Oberfläche (AgTe/Ag(111)), und drittens, ein- und doppellagigem Graphen. Die Simu-
lationen für die TMDs sind in Übereinstimmung mit experimentellen Daten und geben
auch die Aufspaltung der Bänder aufgrund der SOC korrekt wieder. Die Ergebnisse für
AgTe/Ag(111) zeigen jedoch Unterschiede zu den Experimenten. Es wird gezeigt, dass
es möglich ist, SOC bei ARPES Simulationen zu berücksichtigen, und dass die Methode
gute Ergebnisse liefern kann. Es sind jedoch weitere Tests notwendig.
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1 Introduction

Single layers of two-dimensional (2D) materials are a relatively new class of materials.
Graphene, as the first of these materials has sparked interest due to its exceptional
properties. One of which is the linear dispersion of the electronic band structure at the
K-point near the Fermi-level. There the electrons can be described in terms of massless
Dirac-fermions [1, 2].
Although graphene shows these interesting properties, it is not well suited for appli-
cations in electronic devices because it lacks a band gap. However, in recent years a
number of other 2D materials have been investigated. One example are transition metal
dichalcogenides (TMD), which form layered materials. Similar to graphite, many of
these TMDs can also be synthesized in single layers [3–5]. By varying the transition
metal atom or changing the dichalcogenide group, a whole range of properties are pos-
sible, where some of them show a sizeable band gap. Several of the TMDs, especially
those containing tungsten or molybdenum also exhibit a large spin-orbit coupling (SOC)
which offers novel applications in electronic devices [6–8]. However, to use such materi-
als in electronic devices, it is essential to have a good understanding of their electronic
properties. One of the best methods to experimentally determine the electronic band
structure of a material is angular-resolved photoemission spectroscopy (ARPES). To
interpret the experimental findings, it is important to be able to to simulate ARPES
experiments.

In this work two methods are used to simulate ARPES experiments. First, the plane-
wave final state (PWFS) approach, which is already routinely done for organic thin
films [9–11]. There the final state of the photoemitted electron is approximated by a
free particle, that is, a plane wave. The initial states are Kohn-Sham orbitals obtained
from a density functional theory (DFT) calculation. Second, a method based on a tight
binding (TB) model is used as implemented in the python-package chinook [12].
The PWFS approach yields good results for simulating ARPES for organic thin films
[13–15]. In this work, the approach is extended to materials showing strong SOC, where
both the initial and final states, are described by spinors. A drawback of this method
is, that it relies on an expensive DFT calculation where the computational costs only
increase when when taking SOC into account. One aim of this thesis is, to test whether
the PWFS approach gives reliable results for materials showing strong SOC.
In contrast to the DFT-treatment, the TB-based method is a cost efficient and fast
method to simulate an ARPES experiment. The method also can be easily extended
to larger systems. But it must be kept in mind that its application depends on the
availability of an accurate TB model. For small systems this method will be compared
to the PWFS approach.
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For this thesis, ARPES experiments will be simulated using the PWFS approach for
the TMDs WS2 and WSe2. Additionally simulations will be done for AgTe/Ag(111).
Here the simulations will be done twice, first, without SOC and, second, with SOC taken
into account. Then the results will be compared to experimental data from literature.
The aim is to asses, whether the PWFS approach yields reasonably results for these
materials, that show strong SOC.
Alternatively, simulations will be done using chinook. The results of these simulations
will be compared with the PWFS approach. The materials used in the simulations are
single layer graphene and bilayer graphene in AA and AB stacking order. Aim of this
part is, to asses the results yielded by chinook.

The thesis is organized as follows. Section 2 contains a short overview of the theories
and methods used throughout this work. Following this, in Section 3, is a presentation of
the results of the simulations together with short discussions. The last section contains
a short summary of the main results of the simulations.
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2 Theory

This section is dedicated to introducing the theories and models in this work. Density
functional theory (DFT) and the tight binding (TB) method are used to calculate the
electronic ground-states of two-dimensional (2D) systems. The resulting ground-state
wave-functions are then used to simulate angle-resolved photoemission spectroscopy
(ARPES) experiments. To this end, there will be a short introduction to DFT and
the TB method. In addition to standard DFT there will be a short explanation of the
theory of spin-orbit coupling and how it is treated in DFT. Finally, this section reviews
the methods for simulating ARPES experiments based on both calculation methods
(DFT, TB), employing the one step model of photoemission.
In this work, two different programs are used for the numerical calculations. For the
DFT calculations the Vienna ab-initio simulation package (VASP) [16,17] is used. The
TB calculations are done using the program chinook [12].

If not specified otherwise, atomic units are used:

e2

4πε0
= me = ~ = 1

c =
1

α
, α =

1

137

(me: electron mass, e: elementary charge, ~: Plank’s constant, c: speed of light, α: fine-
structure constant, ε0: vacuum permittivity).

2.1 Introduction to Density Functional Theory

DFT provides a way to calculate the ground-state of many-body systems such as con-
densed matter systems, which are comprised of the atomic nuclei and the electrons of a
material. For such systems, the atomic nuclei are assumed as slowly moving compared
to the electrons which is known as the Born-Oppenheimer Approximation [18]. Hence, it
is possible to calculate the electronic ground-state for a fixed arrangement of the nuclei.
The electronic ground-state then depends on the nuclear positions as parameters.
DFT is based the theorem of Hohenberg and Kohn [19] to reduce the many-body problem
to calculating only the electron density of the ground-state. The ground-state density
is then calculated self-consistently using the Kohn-Sham equations [20]. The following
subsections will contain an explanation of these main points of DFT. The presentation
will follow closely the lecture notes by Peter Puschnig [21].
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2.1.1 Theorem of Hohenberg and Kohn

After applying the Born-Oppenheimer approximation, the Hamiltonian operator of an
N - electron system consists of three parts [18]. The kinetic energy operator for the
electrons T̂ , the energy V̂ of the electrons in the electrostatic potential v(~r) of the
positively charged nuclei and the interaction between the electrons Û :

Ĥ = −1

2

N∑
i=1

∆i +
N∑
i=1

v(~ri) +
1

2

∑
i,j 6=i

1

| ~ri − ~rj |
= T̂ + V̂ + Û (2.1)

where the ~ri and ~rj are the positions operators for the electrons i and j. The electrostatic
potential of the nuclei v(~r) is often called the external potential. In Equation 2.1 only the
electron-electron interaction is a two particle term that acts on two different electrons.
The solution for the electronic problem and the corresponding stationary electronic states
can then be obtained from the time-independent Schrödinger equation:

Ĥ |Ψ〉 = E |Ψ〉 (2.2)

Here |Ψ〉 stands for eigenstates of the Hamilton operator (Equation 2.1) with the cor-
responding eigenvalues E. In the following it is assumed that the ground-state |Ψ0〉 to
the lowest eigenvalue E0 is non-degenerate:

Ĥ |Ψ0〉 = E0 |Ψ0〉 (2.3)

Corresponding to the ground-state, the ground-state density can be defined:

n0(~r) = N ·
∫
d3r2 · · ·

∫
d3rN |Ψ0(~r, ~r2, · · · ~rN)|2 (2.4)

The lemma of Hohenberg and Kohn states, that the external potential v(~r) caused by
the Coulomb potential of the nuclei is uniquely defined by the ground-state density
n(~r). This lemma can easily be shown by assuming that two different potentials v1 and
v2 exist that give the same ground-state density. The assumption quickly leads to a
contradiction, which proves the lemma to be true [19].
Another approach to obtain the ground-state energy E0 is provided by the Rayleigh-Ritz
variational principle. There the calculation is done by searching for the minimum of the
expectation value of the total energy:

E0 = min
|Ψ〉
〈Ψ|Ĥ|Ψ〉 (2.5)

Following the lemma of Hohenberg and Kohn, the minimization can be split into two
parts. First minimizing the energy for a fixed electron density, which gives a functional
for the energy E[n(~r)] depending on the density. Then this functional is minimized with
respect to the electron density resulting in the ground-state energy E0:

E[n(~r)] = min
|Ψ〉→n(~r)

〈Ψ|Ĥ|Ψ〉 = F [n(~r)] +

∫
d3r v(~r)n(~r) (2.6)
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E0 = min
n(~r)

E[n(~r)] = min
n(~r)

(
F [n(~r)] +

∫
d3r v(~r)n(~r)

)
(2.7)

F [n(~r)] = min
|Ψ〉→n(~r)

〈Ψ|T̂ + Û |Ψ〉 (2.8)

Here, F [n(~r)] is the so-called universal functional and the integral
∫
d3r v(~r)n(~r) is the

Coulomb energy of the electron density in the potential v(~r).
Finding the ground-state energy E0 as the minimum of E[n(~r)] can be done by a variation
of the density n(~r). This variation has to be done under the constraint that the number
of electrons N =

∫
d3r n(~r) remains constant, which is achieved by introducing the

Lagrange-multiplier µ:

δ

δn(~r)

{
F [n(~r)] +

∫
d3r v(~r)n(~r)− µ

(∫
d3r n(~r)−N

)}
= 0

⇒ δF [n(~r)]

δn(~r)
+ v(~r) = µ (2.9)

By using the density as main variable, Equations 2.6 and 2.7 reduce the ground-state
problem from 3N degrees of freedom (Equation 2.2) to only 3 degrees of freedom. This
reduces the computational effort dramatically, which makes ground-state calculations
for larger systems possible. The drawback is, that the universal functional F [n(~r)], in
general, is not known.

2.1.2 Kohn-Sham Equations

Although Equations 2.6 and 2.7 describing the theorem of Hohenberg and Kohn simplify
the treatment of the electronic ground-state, solving the problem requires the knowledge
of the yet unknown dependence of the the universal functional on the electron density.
To overcome this problem Kohn and Sham introduced an auxiliary system of N non-
interacting electrons. The external potential va(~r) of the auxiliary system is changed in
such a way, that the resulting electron density na(r) is equal to the electron density of
the interacting system n(~r) [20]. The external potential of the interacting system is the
bare Coulomb potential of the nuclei.
For the auxiliary non-interacting system, the electron-electron interaction Ûa vanishes.
This way the Hamiltonian operator in Equation 2.1 reduces to a sum of one-particles
operators:

Ĥa = T̂ + V̂a = −1

2

N∑
i=1

∆i +
N∑
i=1

va(~ri) =
N∑
i=1

ĥa(~ri) (2.10)

The N -electron system can then be solved by simply calculating the single particle-
states φi(r) from Equation 2.10. These states are then the Kohn-Sham orbitals and the
single-particle equations are known as the Kohn-Sham equations [20]:(

−1

2
∆i + va(~r)

)
· φi(~r) = εi · φi(~r) (2.11)
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From the single particle states one obtains the electron density by summing the contri-
bution from the occupied states. The resulting density, is by construction, equal to the
electron density of the interacting system:

na(~r) = n(~r) =
N∑
i=1

|φi(~r)|2 (2.12)

To be able to solve the Equations 2.11, the external potential of the auxiliary systems
needs to be calculated. To this end, one again defines an energy functional Ea[na(r)] in
analogy to Equation 2.6

E[na(~r)] = min
|Φ〉→na(~r)

〈Φ|Ĥa|Φ〉 = Ta[na(~r)] +

∫
d3r va(~r)na(~r), (2.13)

where |Φ〉 denotes the wave-function of the non-interacting system built from the Kohn-
Sham orbitals φi. Ta[na(~r)] is the expectation value of the kinetic energy operator T̂ in
the auxiliary system. Through minimizing the functional in Equation 2.13 one arrives
at a similar form to Equation 2.9 with a different Lagrangian multiplier µ′:

δTa[na(~r)]

δna(~r)
+ va(~r) = µ′ (2.14)

Since the Lagrangian multipliers µ and µ′ in Equations 2.9 and 2.14 can only differ by
a constant that can be absorbed in the (auxiliary) potential v(a)(~r), one can set these
equations equal:

δF [n(~r)]

δn(~r)
+ v(~r) =

δTa[n(~r)]

δn(~r)
+ va(~r) (2.15)

To continue from Equation 2.15, Kohn and Sham proposed a form for the universal
functional [20]. The functional is split into three parts: the kinetic energy of the auxiliary
system Ta[n(~r)], the classical electron-electron interaction as the Hartree energy UH [n(~r)]
and an unknown term, the exchange-correlation energy Exc[n(~r)]:

F [n(~r)] = Ta[n(~r)] + UH [n(~r)] + Exc[n(~r)] (2.16)

Here, the Hartree energy functional is equal to the Coulomb repulsion of the electrons:

UH [n(~r)] =

∫
d3r

∫
d3r′

n(~r)n(~r′)

|~r − ~r′|
(2.17)

The Hartree energy represents the Coulomb interaction of a charge density purely based
on classical interactions without quantum-mechanical effects.
Inserting Equation 2.16 for F [n(~r)] into Equation 2.15 one obtains an equation for the
external potential va(~r) of the non-interacting auxiliary system by varying the electron
density n(~r). The variation of the kinetic energy gets eliminated from the equation, the
potential v(~r) is still the Coulomb potential of the nuclei:

va(~r) = v(~r) +
δUH [n(~r)]

δn(~r)
+
δExc[n(~r)]

δn(~r)
= v(~r) + vH(~r) + vxc(~r) (2.18)

6



Here, the variation of the exchange-correlation energy Exc defines the exchange-correla-
tion potential vxc(~r). The variation of the Hartree energy UH yields the Hartree potential
vH(~r):

vH(~r) =

∫
d3r′

n(~r′)

|~r − ~r′|
(2.19)

By inserting Equation 2.18 into the Kohn-Sham Equations 2.11, one can solve for the
single particle states. Since the Hartree energy and the exchange correlation energy
themselves depend the electron density, the Kohn-Sham equations need to be solved
iteratively. To solve the problem, the Equations 2.11, 2.12 and 2.18 are solved in a
self-consistent manner using the following scheme:

0. Begin with an initial guess of N orbitals φn=0
i and calculate the initial electron

density nn=0 using Equation 2.12

1. calculate the external potential vna from the density nn (Equation 2.18)

2. solve the Kohn-Sham Equations 2.11, which results in new single particle states
φn+1
i

3. construct the new density nn+1 from the state φn+1
i

4. repeat 1. through 4. until the density has converged (change of nn, nn+1 smaller
than a given threshold)

Up to this point DFT is still exact and provides a way to calculate the ground-state of an
interacting N -electron system. But to be able to us the iterative scheme outlined above
one has still to know the exchange-correlation functional Exc[n(~r)]. This functional,
in practice, is unknown. To proceed, approximations to this unknown functional are
made. In this work, the generalized gradient approximation (GGA) of Perdew, Burke
and Ernzerhof is used (PBE-GGA) [22].

2.1.3 Plane Wave Basis Set

To do an actual calculation using DFT with the scheme outlined in the previous sections,
one has to choose a basis set for the single-particle functions φi. For periodic systems,
where the solutions must be Bloch waves [23], a natural choice for the basis are plane
waves. To be able to treat three dimensional (3D) and two dimensional (2D) periodic
systems simultaneously using the same approach, the 2D system is approximated in the
repeated slab approach. There the 2D system is repeated in the third direction, however,
with an added vacuum slab to separate the periodic replica of the 2D layer. This way
the repeated slabs do not interact in this direction, but the system retains its periodicity
in all three dimensions.
Following Bloch’s theorem, Bloch waves χ~k(~r) corresponding to a specific wave-vector ~k

constitute of a plane wave ei
~k~r modulated by a lattice-periodic function u~k(~r) [23]:

χ~k(~r) = ei
~k~r · u~k(~r) (2.20)

7



The lattice-periodic function u~k(~r) has the same periodicity as the system. That means,

it remains invariant under translation of one lattice vector ~R of the system: u~k(~r+ ~R) =

u~k(~r). Under the same transformation, the Bloch wave χ~k(~r) obtains a phase factor ei
~k ~R.

This allows one, to confine the wave-vectors ~k to the first Brillouin zone (1.BZ) [24].
From the properties described above it follows, that the Bloch waves are eigenfunctions
of the translational operator that causes translations in units of the lattice vectors. Since
the translation operator commutes with the Hamiltonian operator of this system, Bloch
waves are also eigenfunctions of the Hamiltonian operator. In general, they are not
eigenfunctions of the momentum operator, which means that the wave-vector ~k is not
the true momentum of the electrons. ~k represents the crystal momentum of the electrons
in the periodic system [24].
The Kohn-Sham orbitals φi are then the plane waves as written in Equation 2.20. The
index i of the orbitals refers to a compound index for the band-index n and the wave-
vector ~k:

φi(~r) = χn,~k(~r) = ei
~k~r · un,~k(~r) (2.21)

The vector ~k runs through the whole 1.BZ, however, it is sufficient to sample the 1.BZ
only at specific points. It is then necessary to test whether the resulting electron density
and total energy are converged in respect of the chosen sampling of the 1.BZ.
A convenient choice for the lattice-periodic functions un,~k(~r) is to use plane waves (this
approach gives the name for the basis set):

un,~k(~r) =
∑
~G

cn, ~G(~k)ei
~G~r (2.22)

The cn, ~G(~k) here are the plane wave coefficients. Since un,~k(~r) has to have the same

periodicity as the system, the vectors ~G need to be reciprocal lattice-vectors. In theory,
the sum runs over all reciprocal space vectors, but for practical calculations the sum is
restricted by the plane-wave cut-off to |~G| ≤ |~Gcut|. This restricts then the number of
plane wave coefficients, which directly determines the size of the matrices in the matrix
eigenvalue problem, used to calculate the coefficients.
In a DFT calculation using a plane wave basis set the plane wave coefficients cn, ~G(~k) are
determined. To be able to obtain reasonable results from such calculations, the plane-
wave cut-off |~Gcut| would have to be sufficiently large to correctly describe also the core-
level electrons located near the nuclei. This makes calculations based on the plane-wave

method difficult, since the number of plane-wave coefficients increases as O
(
|~Gcut|3

)
and therefore the computational cost increases as O

(
|~Gcut|9

)
. To reduce computational

costs various schemes have been implemented. This work uses to implementation of
DFT used in the Vienna ab-initio simulation package (VASP) [16, 17]. VASP uses the
projector augmented plane wave (PAW) method as described by Blöchl [25]. There the
core-level states are projected out and only the valence electrons are considered in the
calculation.

8



2.2 Spin-orbit Coupling

The Hamiltonian operator in Equation 2.1 describes the quantum mechanics of the a
condensed matter system in a purely non-relativistic way. This description of the system
excludes all effects of spin interactions. For this reason, to correctly calculate the effect
of spin-orbit coupling (SOC), one needs a description of the electronic system in terms
of relativistic quantum mechanics. There the Dirac equation describes the evolution of
a quantum mechanical state of an electron [26].
In time-independent form the Dirac equation can be expressed as a set of two spinor
equations [27]:

V φ+ c ~σ · ~p χ = Eφ , c ~σ · ~p φ+
(
V − 2c2

)
χ = Eχ (2.23)

Here V is the potential energy of the electron, ~p the momentum operator and ~σi the
vector of the Pauli-matrices σx, σy and σz [26]:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.24)

The φ and χ in Equation 2.23 are two component spinors, they are known as the large
and small component of the four component spinor, respectively, described by the Dirac
equation:

Ψ =

(
φ
χ

)
(2.25)

Keeping the four components of spinor Equation 2.25 is computationally unfavourable,
since every component needs to be described by its own basis set. This would increase
the memory demand and computational costs by a factor of four. One can reduce the
number of spinor components by writing an effective two-component Hamiltonian, either
by the so-called elimination of the small component (ESC) or the Foldy-Wouthuysen
(FW) transformation [26,27].
By using either of these methods, one obtains a relativistic Hamiltonian by doing a

relativistic expansion in
1

2c2 − V
. This leads to a zeroth order Hamilton operator that

acts on a two component spinor [27]:

H0 = V + ~σ · ~p c2

2c2 − V
~σ · ~p (2.26)

This equation can be brought into another form, where the contribution to the Hamilton
operator can be better understood:

H0 = V + ~p
c2

2c2 − V
~p+

c2

2c2 − V
~σ · (∇V × ~p) (2.27)

For small potentials V the first two terms of Equation 2.27 reduce to the non-relativistic

Hamilton operator H =
1

2
p2 + V . The third term causes a correction to the non-

relativistic Hamiltonian depending on the momentum. Additionally, it will cause an

9



interaction between the spin-components via the Pauli-matrices ~σ.

In this work, VASP is used for the DFT calculation. For implementing SOC, VASP
uses a formulation of DFT for non-collinear spins [28,29]. For non-collinear spins, DFT
is expressed in form of 2 × 2 density matrices nαβ(~r) [30], which is calculated from a
two-component spinor:

nαβ(~r) =
N∑
i=1

φαi(~r)φ
∗
βi(~r) α, β = 1, 2 (2.28)

Here α and β refer to the components of the spinor which represent the spin up and the
spin down part of the state ~φi, respectively.

~φi =

(
φ↑i
φ↓i

)
(2.29)

The electron density n(~r) is calculated as the trace of the matrix nαβ(~r). Projecting the
density matrix onto the Pauli matrices ~σ leads to the magnetization ~m(~r).

n(~r) = Tr[nαβ(~r)] =
∑
α=1,2

nαα(~r) (2.30)

~m(~r) =
∑
αβ

nαβ(~r) · ~σαβ (2.31)

In this framework the energy of a state represented by the φαi(~r) can be calculated in a
similar way as described in Section 2.1 [29]:

E =
∑
α=1,2

N∑
i=1

〈
φαi| −

1

2
∆|φαi

〉
+

∫
d3r v(~r)n(~r) + EH [n(~r)] + Exc[n

αβ(~r)], (2.32)

where again v(~r) is the Coulomb potential of the nuclei, EH and Exc are the Hartree
energy respectively the exchange-correlation energy. In this equation, only Exc depends
on the full density matrix. Equation 2.32 does not yet contain the spin-orbit coupling
term.
For the implementation of SOC in VASP, it is assumed that the relativistic correction
only acts in the regions near the nuclei [28]. The correction to the Hamilton operator
(third term in Equation 2.27) is then implemented in the following form [28]:

Hαβ
SOC =

1

c2r

(
1− V (r)

2c2

)−2
dV (r)

dr
~σαβ · (~r × ~p) (2.33)

Since Hαβ
SOC acts only near the nuclei, the distance r in Equation 2.33 is understood to

be relative to the center of the nearest core. The vector-product arises from the angular
momentum of a state with respect the center of the nucleus.
The expectation value of Hαβ

SOC is then added to the energy defined in Equation 2.32.
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2.3 Tight Binding - Method

As an efficient alternative to DFT, the tight binding (TB) method can be applied to
calculate the ground state of condensed matter systems. For this method it is assumed,
that the electrons are tightly bound to the atoms. This causes the overlap of the orbitals
on different atoms to be negligible. For this reason it is advantageous to place, for
example, hydrogen wave-functions at the atomic sites and build the the electronic state
as a linear-combination of these atomic wave-functions [24].
For a periodic system the wave-function needs to fulfill Bloch’s theorem, which can also
be written in the following form [24,31]:

Ψ(~r + ~R) = ei
~k ~RΨ(~r) (2.34)

Here ~r is the position in the periodic system, where ~R is a direct lattice vector of the
system, and ~k denotes the wave-vector of a Bloch wave as described in Section 2.1.3.
One way to write the wave-function Ψ is to use plane waves, which leads to the Equation
2.20. Alternatively, it is possible to use an atomic wave function φn as a basis function
to write a Bloch wave Φn [31]:

Φn(~k, ~r) =
1√
N

∑
~Rn

ei
~k ~Rnφn(~r − ~Rn) (2.35)

or, in ket-notation:

|Φn(~k)〉 =
1√
N

∑
~Rn

ei
~k ~Rn|φn〉 , 〈~r | φn〉 = φn(~r − ~Rn) (2.36)

In these equations, the subscript n is a composite index referring to an atom in the
unit cell of the lattice and an orbital thereof. The ~Rn refer the atomic positions of the
orbital n repeated through the crystal where N is the number of unit cells in the crystal.
Writing the Φn as in Equation 2.36 fulfills the Bloch theorem Equation 2.34 [31].
The eigenstates Ψn of the periodic system can then be written as a linear combination
of the of the Φn:

Ψn(~k, ~r) =
∑
n′

cnn′(~k)Φn′(~k, ~r) (2.37)

or, in ket-notation:

|Ψn(~k)〉 =
∑
n′

cnn′(~k)|Φn′(~k)〉 (2.38)

Since the Ψn are eigenfunctions of the periodic system, they fulfill the Schrödinger
equation to the energy eigenvalue En(~k):

Ĥ|Ψn(~k)〉 = En(~k)|Ψn(~k)〉 (2.39)

Using Equations 2.36 and 2.38 one can rewrite the Schrödinger equation 2.39 in matrix
form. This leads to a generalized eigenvalue equation. In the second form the multi-
plications are understood as matrix-vector multiplication with the ~cn as the columns of
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cn′′n: ∑
n′′

H̃n′n′′(~k)cn′′n(~k) =
∑
n′′

En(~k)S̃(~k)n′n′′(~k)cn′′n(~k)

H̃(~k)~cn(~k) = En(~k)S̃(~k)~cn(~k)

(2.40)

Here, H̃(~k) is the expectation value of the Hamilton operator in the Bloch waves Φn.

S̃(~k) is the overlap matrix of the different Bloch waves Φn. Those two matrices can be
expressed in terms of the atomic basis-functions φn:

H̃nn′(~k) =
〈

Φn′ |Ĥ|Φn

〉
=

1

N

∑
~Rn

~Rn′

eik(~Rn−~Rn′ )Hnn′ , Hnn′ =
〈
φn′ |Ĥ|φn

〉
(2.41)

S̃nn′(~k) = 〈Φn′|Φn〉 =
1

N

∑
~Rn

~Rn′

ei
~k(~Rn−~Rn′ )Snn′ , Snn′ = 〈φn′|φn〉 (2.42)

The diagonal elements of Hnn′ are often referred to as on-site energies and the off-
diagonal elements are the hopping integrals between the basis states φn.
Since the orbitals are decaying rapidly as a function of the distance from the center of
the respective site, the overlap Snn′ is close to unity. If Snn′ is assumed to be equal to the
unity, the generalized eigenvalue problem Equation 2.40 reduces to a standard eigenvalue
problem: (H̃(~k)− En(~k))~cn(~k) = 0 which can be easily solved. In this way, calculating
the bandstructure is equal to calculating the eigenvalues of the hopping matrix at the
different wave-vectors ~k.
In practice, the basis states are restricted to orbitals on atomic sites in the chosen unit
cell. Since hopping between orbitals predominantly takes place between nearest neigh-
bours, the sum over ~Rn in Equations 2.41 and 2.42 can be restricted to the neighbouring
sites of the respective orbital n.
In this work, the hopping integrals are not calculated explicitly. The values for the
hopping integrals are obtained by fitting the resulting En(~k) to results from a DFT
calculation.

2.4 Simulation of Angle-Resolved Photoemission
Spectroscopy

Angle resolved photoemission spectroscopy (ARPES) is one of the most direct experi-
mental methods to probe for the electronic structure of a material or surface. In the
experiments, photons of a specific energy ω and polarization ~ε are used to excite electrons
from a surface. These emitted electrons are then measured angle and energy resolved.
Measuring these quantities simultaneously allows to reconstruct the band structure of
the material from the measured photoelectron intensity maps.
In this work, ARPES is simulated within the one-step model of photoemission [32]. Fol-
lowing Fermi’s golden rule the energy and angle dependent photoelectron intensity is
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proportional to the matrix element of the initial state |i〉 and the final state |f〉 with
interaction with the photon-field [33]:

I(θ, φ, Ekin;ω) ∝
∑
i

∣∣∣〈f | ~A · ~p|i〉∣∣∣2 δ(ω − Ei − Φ− Ekin) (2.43)

Here the angles θ, φ and the kinetic energy Ekin characterize the direction and kinetic
energy of the outgoing electron. Alternatively, the emitted electron can be described by
momentum components parallel k‖ and perpendicular k⊥ to the surface, respectively.
In minimal coupling and Coulomb gauge the interaction between the photon field and
the electron is given by the product of the vector potential with the momentum operator
~A · ~p. In the dipole-approximation, the vector potential of the incoming photons reduces
to the polarization vector ~A = ~ε. In Equation 2.43, Ekin refers to the kinetic energy of the
photoelectron, Ei is the binding energy of the initial state |i〉 and Φ is the work-function.
The Dirac-delta guarantees energy conservation in the photoemission process [34],

Ekin = ω − Ei − Φ. (2.44)

In the following sections three approaches will be presented. They differ in the form of
the initial states. Two methods are based on Kohn-Sham orbitals resulting from a DFT
calculation. The third approach is based on a TB description of the initial states. All
three methods approximate the final state as a plane wave.

2.4.1 Plane-Wave Final State Approach

The plane-wave final state (PWFS) approach uses a plane wave ei
~k~r to approximate the

final state of the photoelectron. As initial states, Kohn-Sham orbitals resulting from a
DFT calculation are used. Here the Kohn-Sham orbitals are written in a plane-wave
basis (Equations 2.21,2.22). Using these descriptions of the initial and final states, the
photoelectron intensity in Equation 2.43 simplifies to the following form [33]:

I(~k,Ekin;ω) ∝ | ~A · ~k|
∑
i,~q

∣∣∣〈ei~k~r|χi,~q(~r)〉∣∣∣2 δ(ω − Ei,~q − Φ− Ekin) (2.45)

Thus, the photoelectron intensity splits into two parts, first the polarization factor ~A ·~k
that modulates the matrix-elements

∣∣∣〈ei~k~r|χi,~q(~r)〉∣∣∣, and second, the contribution of the

matrix-element between the initial states and the final states. The matrix-elements must
be summed over the different Bloch-states for the momenta ~q in the first Brillouin zone
and the occupied bands i.
The choice of the k-mesh sampling the 1.BZ used to calculate the Kohn-Sham orbitals
|χi,~q〉 influences the resolution of the simulated photoemission intensity maps. The res-
olution can be calculated for each direction separately as: ∆ki = 2π

ai∗ni
. Here ai is the

size of the unit cell in i direction and ni is the number of sampling points in the same
direction. ∆ki should than be smaller than the chosen resolution for all directions i.
This restriction on the resolution also applies for PWFS approach for SOC described in
the following section.
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2.4.2 Plane-Wave Final State Approach for SOC

The PWFS approach for SOC builds on the PWFS approach described in the last section.
Since the description of the photoemission process is in first order spin-independent [35],
it is possible to directly use Equation 2.45 also for a spin-dependent description of
ARPES.
To include spin-dependence of the initial |i〉 and final states |f〉, they are written in
spinor form:

|i〉 =

∣∣∣∣i↑i↓
〉

=

∣∣∣∣∣χ↑i,~q(~r)χ↓i,~q(~r)

〉
(2.46)

|f〉 =

∣∣∣∣f ↑f ↓
〉

=

∣∣∣∣∣ei~k~r,↑ei
~k~r,↓

〉
(2.47)

Inserting Equations 2.46 and 2.47 into Equation 2.45 then gives the total photoemission
intensity as follows:

I(~k,Ekin;ω) ∝ | ~A · ~k|
∑
i,~q

∣∣∣〈ei~k~r,↑|χ↑i,~q(~r)〉+
〈
ei
~k~r,↓|χ↓i,~q(~r)

〉∣∣∣2 ·
δ(ω − Ei,~q − Φ− Ekin)

(2.48)

Thus, the intensity can be viewed as a sum of the contributions from the spin-up and
spin-down electrons. Since the spins give different contributions to the total intensity,
the spin-polarization P can be defined as the difference of the signals from spin-up and
spin-down:

P (~k,Ekin;ω) ∝ | ~A · ~k|
∑
i,~q

{∣∣∣〈ei~k~r,↑|χ↑i,~q(~r)〉∣∣∣2 − ∣∣∣〈ei~k~r,↓|χ↓i,~q(~r)〉∣∣∣2} ·
δ(ω − Ei,~q − Φ− Ekin)

(2.49)

2.4.3 ARPES Simulations within the TB Method

The electronic states resulting from a TB calculation are given as a linear superposition
of the states used to set up the tight binding model. Following Section 2.3, the initial
state for the simulation of an ARPES experiment can be written in the following way [12]:

|i〉 = |Φn(k)〉 =
∑
j

bnj (k) |φj〉 (2.50)

Here n is the band-index of the the initial state, bnj is a general coefficient of the linear
superposition of the hydrogen wave-functions |φj〉 used in the TB model. The sum j
runs over all basis-states of the model.
In order to evaluate the matrix elements for initial states in an atom-centered basis,
it is advantageous to convert the plane wave final state from Cartesian coordinates to

14



spherical coordinates. For this purpose, the plane waves are described in the Rayleigh
expansion, where the plane waves are expanded in spherical harmonics [12,36]

ei
~k~r = 4π

∞∑
L=0

L∑
M=−L

iL jL(~k · ~r)YL,M(r̂)Y ∗L,M(k̂) (2.51)

In this expansion YL,M are the spherical harmonics for the unit vectors ~r, respectively ~k
in spherical coordinates. The jL are the spherical Bessel-functions.
Writing the final state as a Rayleigh expansion of a plane wave simplifies the calculation
of the matrix-element to a product of Gaunt-coefficients with the integrals of the radial
parts of the final and initial states [12]. The Gaunt-coefficients result from an integral
over three spherical harmonics.
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3 Results

3.1 Transition Metal Dichalcogenides: WS2, WSe2

Transition metal dichalcogenides (TMD) are a class of materials, that similar to graphene
form 2D-layered structures [4, 5]. Opposed to graphene, these single layer TMDs show
a variety of different electronic properties allowing for novel applications in electronic
devices [3]. Some materials of this class additionally exhibit strong spin-orbit coupling
(SOC). The TMDs tungsten-disulphide (WS2) and tungsten-diselenide (WSe2) are two
representetives of these materials, where the SOC causes a large spin-splitting of the top
valence bands at the K-point at the edge of the first Brillouin zone.
Since WS2 and WSe2 are such materials, the implementation of SOC in the VASP is used.
Therefore, program used to simulate ARPES experiments needs to be extended to spin-
resolved ARPES-simulations. The plane wave final state approximation for simulating
angular resolved photoemission spectroscopy (ARPES) experiments, as described in Sec-
tion 2.4.1 has yielded sytisfying results for organic molecules on metal surfaces [10, 11].
To test whether this simple theoretical approach is also applicable for materials con-
taining heavier elements that show strong spin-orbit coupling, simulations are done and
compared to experimental data from literature.
For the simulations, first a geometry relaxation of the structures of WS2 and WSe2 is
done. Then the electronic band structure is calculated for both materials. Finally, in
the last part of this section ARPES simulations are done, which are then compared to
experiments.

3.1.1 Structure of WS2 and WSe2

Bulk transition metal dichalcogenides (TMD) are layered materials where the interlayer
bonding arises primarily from van-der-Waals forces. Each layer is comprised of three
sub-layers as shown in Figure 3.1. The middle sublayer consists of a transition metal
such as tungsten (W) and the top and bottom sublayers are built up from of 6th group
elements, for example sulphur (S) or selene (Se). Several types of such bulk-TMDs like
WS2 and WSe2 can be exfoliated to or synthesized in single layers [3,5]. The most stable
phase of single layer WS2 and single layer WSe2 has the so-called 2H-structure shown
in Figure 3.1 [3, 8]. As can be seen in Figure 3.1b, the atoms in the top and bottom
sublayers are above each other, which is characteristic to the 2H-structure as opposed
to other structures.
As a starting point for all subsequent calculations, a geometry relaxation is done, where
the initial values of the structural parameters used for the relaxation are taken from
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Figure 3.1: 2H - structure of transition metal dichalcogenides, yellow: dichalcogenide-
atoms (S, Se); grey: transition metal-atoms (W). (a) Top view of the struc-
ture. (b) Side view, the atoms of the dichalcogenide atoms below and above
the metal layer are directly above each other,. The structural parameters are
listed in Table 3.1. (c) Two dimensional Brillouin zone with high symmetry
points.

Ref. [3]. The atomic position of WS2 and WSe2 are relaxed until forces are smaller than

0.01 eVÅ
−1

. The PBE-GGA functional is used for the relaxation and all subsequent
DFT calculations. Table 3.1 lists the relaxed structural parameters of WS2 and WSe2,
as marked in Figure 3.1. Additionally, Table 3.1 provides values for the structural pa-
rameters measured in experiments and results from other calculations from literature.
The resulting lattice constants of 3.17 Å for WS2 and 3.31 Å for WSe2 are in good agree-
ment with experimental results [4, 37, 38]. The result for the thickness of a single layer,
which for both materials is similar to the lattice constant, also agrees with the measure-
ments. For WSe2 the experimental values for the structural parameters correspond to
the bulk material.

3.1.2 Electronic Structure

The electronic band structures of WS2 and WSe2 are calculated for the respective re-
laxed structures. A k-mesh of 30×30×1 points is used to sample the first Brillouin zone
in the calculations. To be able to compare the band structure calculation with simulated
and experimental ARPES-data, the calculations are done in two modes: without SOC
and with SOC. This way, also the effects of SOC can easily be analysed. In Figures 3.2
and 3.3 (page 19) the solid lines give the band structure without SOC and the dashed
lines show the band structure with SOC included. Tables 3.2 and 3.3 (page 20) sum-
marise the most relevant properties of the electronic band structures of WS2 and WSe2
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Table 3.1: Structural parameters a, d, x for WS2 and WSe2 as marked in Figure 3.1

(x =
a√
3

)

present work experiments other calculations [3]
WS2 WSe2 WS2 WSe2 (bulk) WS2 WSe2

a / Å 3.17 3.31 3.2 [4] 3.28 [38] 3.13 3.25
d / Å 1.57 1.68 1.6± 0.4 [37] 1.67± 0.005 [38] 1.56 1.67
x / Å 1.83 1.91 – – 1.84 1.88

calculated with and without including SOC. The tables also include results obtained in
experiments, except for the bandgap of single layer WS2, where no experimental data
was found in literature.
For both materials and both types of calculations the valence band maximum is po-
sitioned at the K-point. There is a second maximum at the Γ-point that is lower in
energy. This energy difference between these two maxima is labled as ∆KΓ in Tables 3.2
and 3.3. ∆KΓ is underestimated by the calculations if SOC is not not considered. When
including SOC, the calculated ∆KΓ grows by about half the value of the spin-splitting
at the K-point. The ∆KΓ calculated for WSe2 of 539 meV fits to the experimental value
of 560 meV, whereas, for WS2 the calculated value of 307 meV is around 100 meV larger
than the value measured in experiment (Table 3.2).
We first focus on the effect of spin-polarization on the valence band structure. The most
obvious difference is the splitting of the top-valence band at the K-point in reciprocal
space, which is described as ∆K in Tables 3.2 and 3.3. This spin-splitting was also mea-
sured in experiments using ARPES [7, 37, 39, 40] (e.g. Figure 3.7a page 24) and gives a
measure for the strength of the SOC. ∆K is calculated to a value of 403 meV for WS2

and 436 meV for WSe2. The calculations somewhat underestimate the results of the
experiments.
Next we concentrate on the influence of SOC on the bandgap. As expected, both ma-
terials show a sizeable bandgap [40, 41], where the size of the bandgap changes when
including SOC (Tables 3.2, 3.3). For both materials the valence band maximum is around
the K-point in reciprocal space (Figures 3.2, 3.3). The conduction band minimum lies
at the K-point when not including SOC. If SOC is included in the calculations, there
is a second minimum between the Γ- and K-point that has nearly the same energy as
the minimum at the K-point. Thus, both materials are predicted to be direct bandgap
semiconductors when not including SOC in the calculation. For WSe2 the calculation
including SOC underestimates the bandgap by around 0.6 eV compared to experimental
values. The value for the bandgap of WSe2 of 1.95 eV was measured using a STM [40].
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Figure 3.2: Band structure of WS2 without SOC (full lines) and with SOC (dashed lines).
The energies are aligned to the Fermi-level of the calculation without SOC.

Figure 3.3: Band structure of WSe2 without SOC (full lines) and with SOC (dashed
lines). The energies are aligned to the Fermi-level of the calculation without
SOC.
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Table 3.2: characteristics of the electronic band structure of WS2;

no SOC with SOC experiment
fundamental gap / eV 1.9 1.6 –

∆KΓ / meV 117 307 200 [41]
∆K / meV – 403 420 [37]

Table 3.3: characteristics of the electronic band structure of WSe2;

no spin-orbit
coupling

with spin-orbit
coupling

experiment [40]

fundamental gap / eV 1.6 1.3 1.95± 0.04
∆KΓ / meV 383 539 560
∆K / meV – 436 475

3.1.3 ARPES - Simulations

In this section, simulated ARPES intensity maps are compared to experimental ARPES-
data which have been taken from References [39,42,43]. The simulations for both TMDs
are based on VASP - calculations for free-standing single layers of the respective material.
The simulations are performed, first, without and, second, with SOC. A 45× 45× 7 k-
mesh for sampling the first Brillouin zone is used for the simulations, yielding a resolution

of less than 0.05 Å
−1

of the simulated ARPES intensity maps. Finally, the details of the
simulations, such as the photon-energy or the angle of incidence, are adjusted to the
available information about the experimental setups.

ARPES WS2. For this section band maps in kx (Γ-M) and ky (Γ-K) direction are
simulated (Figure 3.4) as well as momentum maps for several binding energies (Figures
3.5 and 3.6). The simulated intensity maps are compared to experimental data from
Ref. [42]. Since the simulations are done for a free-standing mono-layer of WS2 and
the experiment was done for a mono-layer on a TiO2 surface the binding energies are
shifted. This shift of the binding energies in the experiment is caused by a shift of the
Fermi-level due to the influence of the substrate. The ARPES experiments of Ref. [42]
were conducted for a mono-layer of WS2 on TiO2 (100) surface. For the experiments
photon-energy of 90 eV was used with angle of incidence of 55◦.
Figure 3.4 shows the simulated and measured band maps of WS2. The left column shows
the Γ-M direction, the right column the Γ-K direction. In the top row are experimental
maps [42]. The middle row shows the simulations without SOC, while the bottom row
contains the maps simulated with SOC. Note that these maps are calculated from the
sum of both spin-channels (up, down). The lines inset in the the simulated maps mark
the M -point, respectively the K-point in reciprocal space.
The simulated band maps are consistent with the calculated band structure of WS2
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Experiment

Simulation,
without SOC

Simulation,
with SOC

Figure 3.4: Band maps of WS2, photon-energy 90 eV; top row: experiment taken from
Reference [42]; left column: Γ-M direction in momentum space; right col-
umn: Γ-K direction in momentum space; middle row: simulations without
SOC, bottom row: simulations with SOC

shown in Figure 3.2. For both simulations the resulting intensity distribution is similar.
The major difference between the simulated maps is the energy splitting of the top-
valence band at the K-point due to spin-orbit interactions. The form of the simulated
maps coincide with the measured maps, however, the photoemission intensity distribu-
tions do not agree entirely. In agreement with the experiment, the simulated maps show
the same low photoemission intensity from the top valence band at the boundary of the
first Brillouin zone at the K- and M -points. Due to the low intensity of the experi-
mental maps it is not possible to distinguish the two spin-split bands at the K-point.
However, the experimental map for the Γ-M show high intensity at the Γ-point and low
intensity at the Γ′ -point in the second Brillouin zone for the top valence band. Thus,
the distribution of the photoemission intensity for the top valence band between the Γ
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Figure 3.5: Momentum maps of WS2, photon-energy 90 eV; a: Experiment taken from
Ref. [42], binding energies: 1.5 eV, 2.0 eV, 2.5 eV, 3.5 eV; b-e: simulated
momentum maps as described in the text, spin-orbit coupling not included,
binding energies: −0.1 eV, −0.6 eV, −1.1 eV, −2.1 eV, blue line: boundary of
the first Brillouin zone, blue cross: Γ-point inside first Brillouin zone (center)
and outside of first Brillouin zone

and Γ′ point appears to be reversed for the simulated maps. On the other hand, for the
second highest band the intensity distributions of the simulated and the experimental
band maps agree for both directions (Γ-K, Γ-M).
In Figure 3.5, we now focus on the comparison of the momentum maps at selected bind-
ing energies. Panel a shows experimental results again taken from Reference [42], while
panels b-e contain the corresponding simulated maps without SOC. In Figures 3.6a-d
the momentum maps simulated with spin-orbit coupling are shown. These maps are
calculated from the sum of the of the spin-channels (up + down). The measurements
shown in Figure 3.5a are done at binding energies of −1.5 eV, −2.0 eV, −2.5 eV and
−3.5 eV. The simulations of the momentum maps for −0.1 eV, −0.6 eV, −1.1 eV and
−2.1 eV correspond best to the respective measured maps. This shift of the binding
energy is due to the influence of the substrate as described before.
At the lowest binding energy of −1.5 eV of the experimental map there are contributions
only from the K-point and the Γ-/Γ′-points in-/outside the first Brillouin zone. These
contributions form points that open up to circles around the high symmetry points for
higher binding energies. In the experimental maps at a binding energy of −2.5 eV, this
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Figure 3.6: Momentum maps of WS2, photon-energy 90 eV; with SOC, the maps cor-
respond to the ones in Figure 3.5; a-d: sum of the spin-channels; e-h: spin
polarization of the simulated maps; blue line: boundary of the first Brillouin
zone, blue cross: Γ-point inside first Brillouin zone (center) and outside of
first Brillouin zone

ringlike structures start to touch. Similar to the experimental band maps, the momen-
tum maps show higher photoemission intensity originating from inside the first Brillouin
zone than from outside for low binding energies. For the highest binding energy of
−3.5 eV this distribution is reversed.
When taking into account the rigid shift of binding energies discussed above, the simu-
lated maps show similar structures as the experiments. Comparing the photoemission
at the Γ respectively the Γ′ point with the the experiments show that the ratio of the
intensities are reversed for the lower binding energies. This is similar to the band maps
discussed before. For the highest binding energy (experiment: −3.5 eV, simulation:
−2.1 eV) the simulations are in good agreement with the experiment although the sim-
ulation shows far more details than the experimental map.
When comparing the two different simulations, with and without SOC, respectively, they
show similar structures. At the binding energy of −0.6 eV the ringlike structures get
the structure of a double ring when spin-orbit coupling is taken into account. The rings
can be best distinguished in the maps for the polarization (Figure 3.6f). This double
ring structure lowers the contributions of each single ring which might conform better
with the experiment. For the higher binding energy of −1.1 eV the separate structures
around the K-point (Figure 3.5d) change to closed forms (Figure 3.6c). These closed
forms can also be seen in the experiment (Figure 3.5a, −2.5 eV).
Figures 3.6e-h show simulations for the spin-polarization of the ARPES-signal as de-
fined in Section 2.4.2. These maps shown here correspond to the momentum maps in
Figures 3.6a-d (directly above). The spin-polarization is equivalent to the difference of
the signals from the two spin-channels (up − down). The first three maps show that
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Figure 3.7: Band maps of WSe2 in Γ-K direction, K-point at 1.26 Å
−1

, photon-energy
70 eV; a: Experiment taken from Ref. [39]; b-c: simulation done as described
in the text, b: no spin-orbit interaction, c: with spin-orbit interaction, d:
spin-polarization

the signal at the K-points is spin-polarized, and that the polarization of inequivalent
K-points has different signs. At the binding energy of −0.6 eV, the ringlike structures
around the K-points show areas of different polarization. This correspond to the double
rings already described above for the simulations of the total ARPES signal. It also
corresponds to the spin-splitting visible in the band structure and ARPES band maps
of WS2. At lower binding energies (EB = −2.1 eV, Figure 3.6h), the simulation shows
a spin-polarized signal at the Γ-points outside the first Brillouin zone (crosses in figure
3.6). This polarization is suppressed inside the first Brillouin zone (Γ) but visible outside
(Γ′). This polarization coincides with a partition of the signal around these points in
reciprocal space into to two parts that are also observed in the simulated momentum
maps (Figures 3.6d, 3.4e).

ARPES WSe2 In this paragraph simulations of ARPES band maps are calculated for
a free-standing single layer of WSe2. These simulations are then compared to experi-
mental data from Refs. [39,43]. In both experiments a single layer WSe2 has been used,
albeit, on different substrates. Ref. [39] used a single layer of WSe2 grown on bilayer
graphene with a photon-energy of 70 eV, while Ref. [43] utilized a mono-layer of WSe2 on
a SiO2 terminated silicon surface and a photon-energy of 74 eV at an angle of incidence
of 45◦.
In the simulations the parameters for the photon-energy and the polarization were ad-
justed to reflect the parameters used in both experiments.
Regarding the spin-splitting of the top-most valence band at the K-point both refer-
ences agree on values of (513 ± 10) meV [39] and ∼ 470 meV [43], respectively. These
values should be compared with the calculated value of 436 meV, which somewhat un-
derestimates the measured values. The simulations in Γ-K direction (Figures 3.7a, 3.8
left column) and along the boundary of the first Brillouin zone in K-M -K ′ direction
(Figure 3.8, right column) reproduce the experimental band structures well. Except for
the spin-splitting the simulations with and without spin-orbit coupling show a similar
distribution of photoemission intensity.
We now focus on the photoemission intensity from the top-most valence band. The sim-
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Figure 3.8: Band maps of WSe2, photon-energy 74 eV; top row: Experiment taken from
reference [43]; bottom row: simulations done as described in the text; left
side: Γ-K direction, right side: K-M -K ′ direction

ulations and experiments are in good agreement. There is high intensity at the Γ-point
and a minimum in intensity at the K-point. However, the simulated band maps in Γ-K
direction somewhat deviate from the experimental maps regarding the lower lying bands
(Figure 3.7, Figure 3.8 left column). In regions where in experiment a high intensity was
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detected, the simulation shows a low intensity. For example at the Γ-point the second
highest band is visible that does not show in the simulations. Additionally there is a

crossing of bands at ky ≈ 0.7Å
−1

and EB ≈ 6.5 eV that is visible in the experiment but
does not appear in the simulations (Figure 3.8 right side). In K-M -K ′ direction (Figure
3.8 left side) the simulation reproduces the photoemission from the highest three occu-
pied bands that are visible, well. The bands measured in experiment at approximately
8 eV binding energy are missed by the simulations.
Inspection of Figure 3.7d and the bottom right panel of Figure 3.8 demonstrates that
the signal from the top-valence band at the K-point is spin-polarized. This agrees with
spin-resolved ARPES measurements that also reveal a similar polarization [39]. The sim-
ulation for the polarization in K-M -K ′ direction (Figure 3.8 bottom right) shows that
the polarization changes sign when going from +k to −k. Similar results are obtained
from simulating ARPES using methods related to time dependent density functional
theory [44]which also predicts a spin-polarized top-valence band at the K-point and a
sign change in the polarization when going from +k to −k.

In conclusion the simulations for WS2 and WSe2 are in good agreement with the experi-
ments. Already the simulations without SOC already reproduce the measured ARPES-
maps well. When including SOC, the resulting spin-splitting at the K-point improves
the agreement of the simulations with the ARPES-band maps. Importantly, the spin-
splitting also affects the bandgap WS2 and WSe2.
When taking into account spin-orbit interactions in the simulations of ARPES-experi-
ments the major changes are due to the altered band structure compared to the simula-
tion without SOC. Furthermore, including SOC allows to simulated the spin-polarization
of the ARPES signal. For the cases of WS2 and WSe2, the simulated spin-polarization
is in good agreement with experimental results and other calculations. To sum up,
including SOC in ARPES-simulations does improve the agreement to experiments by
improving the agreement of the electronic band structure to the band maps and intro-
ducing spin-polarization.

3.2 Monolayer of AgTe on Ag(111) Surface

To further test the ARPES-simulation for materials that show strong spin-orbit coupling,
the electronic properties and ARPES maps of a monolayer silver-tellur (AgTe) on a
Ag(111)-surface are calculated. The simulations are then compared against experimental
results taken from Reference [45].
Due to the broken inversion symmetry and a SOC, a spin-splitting of electronic bands
can be observed. Some of these bands show a spin-splitting of the Rashba-type [45]. The
Rashba effect causes an increase of the spin-splitting of two bands linearly depending on
the momentum [46]. The aim of this section is to simulate the recorded ARPES maps
and reproduce the spin-splitting and the distribution of photoemission intensity in the
measured ARPES maps.
In the first part of this section, the geometric structure of surface is determined by
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relaxing the atomic positions. Then the electronic bandstructure is calculated and its
properties are analysed. Finally, ARPES-maps are simulated and compared against
experimental data from Ref. [45].

3.2.1 Structure of AgTe/Ag(111)

The structure of the single layer AgTe on the Ag(111)-surface is set up as described in
Ref. [45]. It is constructed from the surface of face-centered-cubic (fcc) bulk silver in
(111) direction with a single layer of AgTe on top which forms a hexagonal honey-comb
lattice. According to Ref. [45], the top-most layer forms a hexagonal-closed-packed (hcp)
like stacking order where, the single layer AgTe is directly above the silver atoms of the
underlying silver substrate. Expressed in the stacking order of an hcp-structure of the
three top-most layers it would read: ...ABCA|C′. Where C′ stands for the single layer
of AgTe. To reduce computational costs, the bulk sliver is modelled as a slab consisting
of only 4 layers. The structure is set up as shown in Figure 3.9. The lattice constant of
the structure is assumed to be equal to bulk silver, for which 4.152 Å is used [47]. This
is the equilibrium lattice constant for silver calculated with the PBE-GGA functional.
To obtain the relaxed structure, the atomic positions are optimized until all forces are

smaller than 0.01 eVÅ
−1

, where again the PBE-GGA functional is used. The first Bril-
louin zone was sampled using a 15×15×1 grid in reciprocal space. Note that spin-orbit
coupling has not been taken into account for the geometry relaxation.
Figure 3.9 shows the relaxed structure, where the grey spheres indicate silver atoms
and yellow spheres tellurium atoms. Compared to the initial guess described above, the
structure does not change significantly. Average atomic distances stay at 2.93 Å, which
are consistent with the used lattice constant of 4.152 Å. The inter-layer distances rang-
ing from 2.35 Å to 2.39 Å (Figure 3.9b) are also consistent with the structure of bulk
silver. The adsorption height of the single layer AgTe of 2.35 Å turns out to be equal

Figure 3.9: Relaxed structure of AgTe on a Ag(111) surface: (a) top-view; (b) side-view
with interlayer distances (left) and height differences of single atoms (right);
grey spheres: Ag atoms, dark grey spheres: Ag atoms in the surface layer,
yellow spheres: Te atoms; (c) two dimensional Brillouin zone.
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to the interlayer distance of bulk-silver. It should be noted that AgTe does not form an
entirely flat layer, but the tellurium atoms are located 0.07 Å beneath the silver atoms.
This also influences the second to last layer of the bulk. The silver atoms directly below
the tellurium atoms of the surface layer are pushed slightly downwards with respect to
the other atoms of this layer. The structure obtained here conforms with the relaxed
structure and STM measurements of Ref. [45].

3.2.2 Electronic Structure

In this section the band structure of AgTe on Ag(111) is calculated in two modes. First,
without SOC, and second, with SOC included, in order to reveal the influence of SOC
on the band structure and the simulated ARPES maps. Both types of calculations use
a grid of 31× 31× 1 points in momentum space to sample the first Brillouin zone.
In Figure 3.10a, the results of the band structure calculations are plotted. There, the
continuous lines mark the band structure without SOC, whereas the the dashed lines
show the band structure calculated with SOC. Note that the bands of both calculations
are plotted relative to the Fermi-energy of the calculation done without spin-orbit cou-
pling. However, the Fermi energy rises by only 3 meV, when including SOC.
The most obvious difference between the calculations is that all bands in the region shown
in Figure 3.10a obtain a spin-splitting. A change also occurs for the bands marked with
α and β directly at the Γ-point. These two bands are degenerate at the Γ-point when
no SOC is considered. Including spin-orbit interaction shifts the band-energies even at
the Γ-point such that the degeneracy of the α- and β-bands are lifted. The latter result
is supported by band maps measured using ARPES [45] (Figure 3.12a). Note that the
states contributing to the corresponding bands are located in the surface layer of AgTe
as can be seen in Figure 3.11a.
For the bands in the shown energy range a spin-splitting of the Rashba type occurs at the
Γ-point [45,46]. Typical for this effect is a linear dependence of the size of the splitting
on the momentum. The calculated and experimental values of the splitting of the β-
bands are plotted in Figures 3.10b,c. According to the calculation the linear dependence

for these bands is valid only in the direct vicinity of the Γ-point k ≤ 0.05 Å
−1

(Figure

3.10b). In the experiment the linear increase of the splitting is valid for k ≤ 0.15 Å
−1

.
The calculation gives a slope of the size of the spin-splitting of approximately 1.7 eVÅ.
This is slightly below the measured value of approximately 1.8 eVÅ (Figure 3.10c). This
effect primarily occurs in the bands that are located in the surface layer consisting of the
single layer of AgTe. Figure 3.11 shows the band structure projected onto the (s,p,d)-
states of the atoms located in the surface layer. The size of the dots corresponds to how
strongly the bands are located in the states of the surface-layer.

3.2.3 ARPES - Simulations

Similarly to the band structure calculation, also the simulations in this section are per-
formed, both, without and with SOC, respectively. Results from the simulations are
compared with each other and experimental data from Ref. [45]. A 29 × 29 × 6 grid
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Figure 3.10: a: Electronic band structure AgTe on Ag(111); without SOC (full lines) and
with SOC (dashed lines), the energies are aligned to the Fermi-level of the
calculation without SOC; b,c: spin-splitting of the β-bands, b: calculation,
c: experimental data Ref. [45].

Figure 3.11: Band structure of AgTe on Ag(111) projected on the states in the AgTe
layer; a: calculation without spin-orbit coupling; b: calculation with spin-
orbit included; the size of the dots indicates the contribution of the states
located in the top-most layer to the respective bands.
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Figure 3.12: Band maps of AgTe on Ag(111) for a photon energy of 21.21 eV; a: mea-
sured band map along M-Γ-K [45]; b: simulated maps without spin-orbit in-
teraction; c: simulated maps with spin-orbit interaction. The white dashed
lines mark the band strucuture.

in momentum space is used for sampling the first Brillouin for the DFT calculation
used as a basis for the ARPES-simulation. This gives a maximum resolution in mo-

mentum space of roughly 0.05 Å
−1

. Note that this resolution is, however, insufficient to
reproduce finer details of the ARPES maps. Due to the high memory demand of the
DFT calculation including SOC, the k-point sampling could not be increased further.
All ARPES-intensity maps in this section are simulated using damped plane waves to
describe the final states of the photoelectrons, where the signal originating from below

the top layer is damped by a damping factor of 0.5 Å
−1

.

First, band maps are presented, where a photon-energy of 21.21 eV [45] consistent
with the experimental value has been used. Figure 3.12a shows an ARPES band map

measured in an experiment [45]. Here, the left half of the band map (k‖ = −0.3 Å
−1

through 0.0 Å
−1

) shows the Γ-M direction in reciprocal space, whereas, the right half

(k‖ = 0.0 Å
−1

through 0.3 Å
−1

) shows the Γ-K direction. In Figures 3.12b,c correspond-
ingly simulated band maps are shown, without and with SOC, respectively.
Due to the limited resolution only few details are discernible in the simulated maps. The
β-bands, that can be clearly distinguished in the experiment (Figure 3.14a), appear as
one band in the simulation (Figure 3.12c), although the spin-splitting of the β+- and β−-
bands is reproduced well by the calculations (Figure 3.10a). When including spin-orbit
coupling the simulation (Figure 3.12c) shows a region of lower photoemission intensity
between the α- and β-bands But the two bands can not be as well differentiated as in
the experimental map Figure 3.12a, due to the limited resolution.
In addition to the α- and β-bands, that constitute of states located in the top-most
layer, also bands of the bulk silver contribute to the simulated band maps. The bands
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Figure 3.13: Measured momentum maps of AgTe on Silver (111) [45]; a,b: photonenergy
25 eV; c,d: photonenergy 58 eV; a,c: binding energy −0.95 eV; b,d: binding
energy −1.3 eV; the binding energies are marked in Figure 3.12a

appearing directly below and above the α- and β-bands originate mainly from state
located in the bulk (projected band structure: Figure 3.11). These bands do not seem
to appear in the experiments. A reason for them appearing in the simulation might be,
that too few layers of the bulk were included in the DFT calculation since including
additional layers shifts the electronic bands in the bulk.
Regarding the observed maximum of the photoemission intensity around the Γ-point,
the simulated band maps are in agreement with the experimental maps. In both direc-
tions (Γ-K, Γ-M) the simulations predict emissions from the α- or β-bands to be more
intense, where the bands emitting higher intensity changes depending on the direction.
There, both simulations agree with each other. However, neither of the simulations
agrees with the observed trend, that all bands (α, β+, β−) contribute equally to the
emitted intensity. At a binding energy of around −1.5 eV, both simulations show a
crossing of the bands located in the surface layer and the bulk. These crossings do not
appear in the experiment.
In summary it must be concluded that the simulate band maps do not agree with the
measured ones regarding the intensity distribution and the precise shape of the band

structure. Only in the vicinity of the Γ-point (k‖ ≤∼ 0.1 Å
−1

) can the simulations
reproduce the experiment. But for details in this region the resolution of the simulated
maps is too low.

In the second part of this section simulated momentum maps at selected binding-energies
are compared to available experimental data (Figure 3.13). Two different photon-
energies were used (25 eV: Figure 3.13a,b; 58 eV: Figure 3.13c,d). For each photon-
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no SOC with SOC

Figure 3.14: Simulated momentum maps of AgTe/Ag(111); a-d: photon-energy 25 eV; e-
h: photon-energy 58 eV; a,e,c,g: binding-energy −0.65 eV; b,f,d,h: binding-
energy −0.95 eV, the binding energies are marked in Figures 3.12b,c; with-
out SOC: a,b,e,f; with SOC : c,d,g,h

energy used, two maps at different binding energies (−0.95 eV: Figure 3.13a,c; −1.3 eV:
Figure 3.13b,d) are shown. In the vicinity of the Γ-point the maps show cuts through
the α- and β-bands of the band structure Figure 3.10a. Remarkable is that only par-
tial rings are formed around the Γ-point due to the orbital angular momentum of the
states involved [45]. Since different states with different orbital angular momentum are
involved in the α- and β-bands visible in the momentum maps for a binding energy of
−1.3 eV, the visible parts of the rings change.
The simulated momentum maps corresponding to the maps in Figure 3.13 are shown
in Figure 3.14. The upper row shows simulations for a photon-energy of 25 eV (Figure
3.14a-d), the lower row for a photon-energy of 58 eV (Figure 3.14e-h). The first and sec-
ond column show simulations without SOC (Figure 3.14a,b,e,f), while the simulations
in the third and fourth column are with SOC (Figure 3.14c,d,g,h). The simulations in
the first and third column are done for a binding energy of −0.65 eV (Figure 3.14a,e,c,g)
and the second and fourth column are done for a binding energy of −0.95 eV (Figure
3.14c,d,g,h). Compared to the experiment the binding energies are adjusted by a shift
of 0.3 eV to fit to the calculated band structure.
Simulations for a photon-energy of 25 eV agree well with the experiment. The simula-
tions show partial rings around the Γ-point. At a binding energy of −0.65 eV the parts
of the rings that are visible are parallel to the kx-axis in reciprocal space. Here, only con-
tributions from the α-bands are visible. At an increased binding energy of −0.95 eV the
β+- and β−-bands also emit electrons that are visible near the Γ-point. The contribution
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from the β-bands have an intensity maximum on one side of the Γ-point perpendicular
to the kx-axis. The simulations calculated with and without spin-orbit coupling show
similar results. Both reproduce the experimental results. To see the influence of spin-
orbit coupling on the momentum maps the resolution in momentum space is too low.
When going to a higher photon-energy of 58 eV, the experimental signatures do not
change significantly. The bands again form ring-like structures around the Γ-point.
Where the α-bands form structures parallel to the kx-axis in momentum space and
the β-bands perpendicular to the kx-axis. However, the simulations indicate, that the
pattern of the distribution of the emitted intensity gets tilted by around 45◦, both sim-
ulations, with and without spin-orbit coupling, show the same results. In this way the
simulated and measured maps are not in agreement. The shown area of the simulations
is surrounded by areas of high intensity. This emitted intensity originates from electronic
states in the bulk (Figure 3.11).

In conclusion, the simulated ARPES intensity maps do not reproduce the experimental
data well. For the lower photon-energy of 25 eV the simulated photoemission intensity
from the α- and β-bands are in agreement with the experimental maps. However, for the
higher photon-energy of 58 eV the simulated intensity distributions do not agree with
the experiments. Additionally, simulations for both photon-energies show contributions
from bands of the bulk silver that are absent in the experimental data.
The additional bands in the simulated maps might be due to using too few layers to
simulate the bulk silver. Using additional layers might shift the bands of the bulk which
would remove their contributions to ARPES maps in the considered range of binding
energies.
Regarding the intensity distribution of the α- and β-bands. The differences between
simulations and experiment might be due to the shortcomings of the plane wave final
states. In the first place, the plane wave final state approach works best for organic
molecules containing light elements like carbon and oxygen [13]. Additionally, plane
waves are not suited for mapping angular distributions and representing states with an-
gular momentum. However, the intensity distribution in the experiment is mainly due to
the orbital angular momentum of the states involved [45]. Thus, the differences between
the simulation and experiment might be due to an inappropriate description of the final
states used in the description of the photoemission process.
The resolution of the simulation is to low too resolve the spin-split bands. This spin-
splitting is expected from the experimental maps and the band structure calculations.

3.3 Tight Binding Simulation for Graphene

In this section, ARPES maps for single layer graphene and bilayers of graphene are
simulated using a tight binding model as implemented in the python package chinook
[12]. Based on a tight binding (TB) model for the electronic band structure, chinook
simulates ARPES maps by expanding the plane wave final state of the photoelectrons
in a Rayleigh expansion as described in Section 2.4.3. To test, whether chinook gives
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reliable results, ARPES-maps are simulated with chinook and the PWFS approach based
on DFT calculations (DFT+PWFS) as described in Section 2.4.1. The maps are then
compared to show whether the maps calculated using chinook show different features.
The systems that are used for this test are single-layer graphene (SLG) and bilayer
graphene (BLG) in AA (BLG-AA) and AB (BLG-AB) stacking order, respectively. For
all three cases, the corresponding TB model is fitted to the band structure obtained
from a DFT calculation. For the TB models of the three systems only of pz orbitals
have been considered. The fit of the TB-bands to the DFT-bands is done using the
method of simulated annealing [48] by varying the parameters of the TB model. During

the fitting process, the square of the energy difference between the TB-bands (ETB
n (~k))

and the DFT-bands (EDFT
n (~k)) is minimized:

(∆E)2 =
∑
n,~k

(EDFT
n (~k)− ETB

n (~k))2 −→ min (3.1)

The first part of this section deals with the results for SLG, while the second and third
parts treat BLG-AA and BLG-AB respectively. Each part contains a description of the
TB model and simulations of ARPES-maps. A short description of the usage of chinook
can be found in the Appendix: usage of chinook.

3.3.1 Single Layer Graphene (SLG)

DFT Calculation for SLG

Graphene forms a flat 2-dimensional hexagonal lattice of carbon atoms as shown in
Figure 3.15a. The lattice constant of 2.47 Å is obtained from a geometry relaxation. For
the band structure calculation a 81×81×1 grid is used to sample the first Brillouin zone
with a plane-wave cut-off of 450 eV. The treatment of the exchange-correlation energy
is done using the PPE-GGA functional.

Tight-binding Model for SLG

To calculate the TB model one pz orbital is used per carbon atom on the sites A and
B. Using only pz orbitals is possible since the bands near the Fermi-level are composed
of those orbitals. Restricting the model to include only nearest neighbour hopping, the
Hamilton matrix can be written as [31]

H =

( A B

A ε −t
B −t ε

)
, (3.2)

where the diagonal elements ε stand for the orbital energy of the pz orbitals on the
different atoms and t is the hopping integral between the pz orbitals on the inequivalent
carbon atoms A and B. The diagonal elements are set to ε = 0 eV as they only cause
an energy shift. The hopping parameters t are obtained from the fit to the DFT band
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Figure 3.15: a: Structure of single-layer graphene in top-view (top) and side-view (bot-
tom); b: Electronic band structure of SLG, full lines: DFT calculation,
dashed lines: TB calculation

structure (Figure 3.15b) which results in t = 2.56± 0.01 eV. The k-dependence of eigen-
values is calculated numerically as described in Section 2.3.
Figure 3.15b shows the DFT band structure (full lines) together with the fitted TB band
structure (dashed lines). Around the K-point both band structures show the linear dis-
persion that is typical for graphene. The TB band structure is able to reproduce the
DFT band structure there. The unoccupied band of the TB-model does not fit so well
to the DFT-calculation because the overlap matrix has been neglected in the TB model.
As a result, the TB band structure is symmetric around the Fermi-level. Nevertheless,
the occupied band is in good agreement with the DFT-band structure, which is essential
for the ARPES-simulation.

ARPES simulations for SLG

The ARPES simulations for this section are calculated for a photon energy of 40 eV.
The simulation using the DFT+PWFS approach is based on a DFT calculation that
samples the first Brillouin zone using a 79×79×16 grid in reciprocal space. This results

in a resolution of 0.04 Å
−1

of the simulated maps. The parameters chinook uses for the
ARPES simulations are adjusted to give the same resolution. Both simulations use a
workfunction of 4.282 eV, as obtained from the DFT-calculation. The polarization is in
the DFT+PWFS approach with an angle of incidence of 90◦, which corresponds to a
linear polarization in z-direction in chinook.

Figure 3.16 shows the simulated momentum maps for SLG. The upper row shows sim-
ulations done using chinook, the lower row contains the maps simulated using the
DFT+PWFS approach. The ARPES momentum maps simulated using both methods
agree with each other as far as the TB-model can reproduce the respective electronic
bands. Both methods show the Dirac cones at the K-points at the corners of the first
Brillouin zone. For lower binding energies the points open to pockets that are open to the
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Figure 3.16: SLG: ARPES momentum maps; photon energy: 40 eV; top row: maps simu-
lated using chinook ; bottom row: simulations using DFT+PWFS approach;
lines inset: boundary of the first Brillouin zone, crosses: Γ-points

outside of the Brillouin zone. The direction where the circles open depends for the tight-
binding model on the sign of the hopping parameter t in the Hamilton matrix (Equation
3.2). When changing the sign of t the direction where the circles open changes, since
changing the sign of the hopping term interchanges valence and conduction bands [49].
However, the TB band structure does not change. The sign used before, is the correct
one.
At approximately −3 eV binding energy the PWFS simulation show emissions from σ-
bands that are visible at the Γ points outside the first Brillouin zone (bright spots at
the border of the visible area). These emissions are clearly absent in chinook, since only
π-bands are included in the model.
The simulated band maps (Figure 3.16) show similar results. The contributions of the
π-bands are the same for both the simulations. Contributions from the σ-bands are
again missing in the TB-model.
In Figure 3.18 the photoelectron intensity is plotted against the photon energy ~ω. This
intensity is measured for an initial state close to the Dirac point at a binding energy of
−0.1 eV. The signal is averaged and normalized to one for the peak in photoemission
intensity for each calculation separately. The curves are calculated for chinook (red
dashed line) and DFT+PWFS (black continuous line). To take into account the the
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Figure 3.17: SLG: ARPES band maps; photon energy: 40 eV; left panels: maps simu-
lated using chinook ; right panels: simulations using the DFT+PWFS ap-
proach

Figure 3.18: SLG: photoemission intensity versus photon energy, measured for initial
states EB = 0.1 eV around one K-point (1.48 Å≤ k‖ ≤ 1.89 Å)
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Figure 3.19: a: Structure of BLG-AA top-view, grey spheres: carbon atoms in the top
sublayer, black spheres: carbon atoms in the bottom sublayer; b: electronic
band structure of BLG-AA, full lines: DFT calculation, dashed lines: TB
model

dependence of the vector potential on the photon energy ~ω, a factor of 1
~ω is included

in the DFT+PWFS approach.
Both simulations show one maximum of the emitted photoelectrons at a photon energy
of 28 eV. To higher photon energies the intensity is decaying slowly, where the curve
calculated for chinook is decaying faster. The form of the photon energy dependence
conforms with the Fourier transform of the pz orbtial, which is the analytic form of the
energy dependence [50].

3.3.2 Bilayer Graphene in AA Stacking Order (BLG-AA)

DFT Calculation for BLG-AA

The structure of BLG-AA is formed of two sublayers of graphene, where each atom in
the top layer is located above an atom in the bottom layer. Figure 3.19a shows the top
view of the structure. Carbon atoms in the top layer are coloured in grey and the atoms
in the bottom layer in black. The lattice constant of 2.47 Å of single layer graphene
is also used for the simulations of the bilayer graphene. For the distance between the
sublayers a value of 3.76 Å is used, which has been obtained from a structure relaxation,
where the intra-layer distances were kept fixed. For the band structure calculation a
81 × 81 × 1 grid is used to sample the first Brillouin zone with a plane-wave cut-off of
450 eV. The treatment of the exchange-correlation energy is done using the PPE-GGA
functional. van der Waals interactions are treated using the DFT-D3 method [51].

Tight-binding Model for BLG-AA

For setting up the TB-model one pz orbital is placed on each carbon atom, where A,B
are located in the bottom sublayer and A′, B′ are located in the top sublayer. Again the
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model includes only nearest neighbour interactions. Hopping is possible inside the layer
(t1) where the hopping constant is the same for both sublayers. Between the layers only
the contributions from the atoms above each other are considered (t2). The Hamilton
matrix can then be written [2]:

H =


A B A′ B′

A ε1 −t1 t2 0
B −t1 ε1 0 t2
A′ t2 0 ε2 −t1
B′ 0 t2 −t1 ε2

 (3.3)

The Hamiltonian splits into the contribution from intra-layer hopping of the two sub-
layers on the diagonal blocks. ε1 and ε2 are the orbital energies of the pz orbitals in the
different layers which are set to ε1 = ε2 = 0 since the layers a symmetric. The hopping
parameter t2 on the off-diagonal blocks accounts for the inter-layer hopping. From the
fit of the tight binding band structure to the DFT-band structure the parameters are
determined as: t1 = 2.58± 0.01 eV and t2 = 0.18± 0.01 eV.
In Figure 3.19b the DFT- (full line) and the TB- (dashed line) band structures are plot-
ted. Similar to the case for the SLG, the band structures agree best around the K-point.
The TB model is able to reproduce the same splitting of the bands at this point. This
splitting is not the same over the whole band structure. Near Γ the TB model under-
estimates the splitting of the bands. Regarding the unoccupied bands the TB model
deviates from the DFT results more strongly for the same reason as for SLG. Overall
the π-bands of the two calculation methods are in good agreement. By construction,
the TB-model does not include the deeper lying σ-bands.

ARPES Simulations for BLG-AA

The simulation of the ARPES-maps for BLG-AA is done using the same parameters as
for the single layer graphene. This means a photon energy of 40 eV and a resolution of
less than 0.04 Å−1. Both simulations use a work-function of 4.275 eV, as obtained from
the DFT-calculation. The polarization is in the DFT+PWFS approach with an angle
of incidence of 90◦, which corresponds to a linear polarization in z-direction in chinook.
Figure 3.20 shows the simulated momentum maps. The upper row of the figure shows
simulations done using chinook, whereas the lower row contains the simulated maps of
the DFT+PWFS approach. Similar to the case of SLG, both simulations show almost
the same results. Differences are mainly due to the slightly different band structures
and the missing σ-bands not included in the TB-model. Both simulations show almost
the same structure of the pockets around the K-points that are open to the outside
of the first Brillouin zone. The pockets, in fact, get contributions from two separate
bands, where in the momentum maps (Figure 3.20) the inner-lying bands show a larger
contribution to the photoemission intensity. These different contributions can be well
seen in the band maps in Figure 3.21. When simulating the maps using chinook the
relative intensities of these bands depend on the sign of the inter-layer hopping constant
t2 (Equation 3.3), where the sign used in the previous section is the correct one. If t2
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Figure 3.20: BLG-AA: ARPES momentum maps: photon energy 40 eV; top row: maps
simulated using chinook ; bottom row: simulations using the DFT+PWFS
approach; lines inset: boundary of the first Brillouin zone, crosses: Γ-points

has an additional minus sign, the band giving the larger contribution changes.
The band maps simulated for this system are plotted in Figure 3.21, where the simu-
lations are done for the ΓK-direction. Figure 3.21a shows simulations of chinook and
Figure 3.21b contains the simulation using the DFT+PWFS approach. Regarding the
π-bands the simulations of both methods are in good agreement, except for the σ-band
emissions that are missing. In Figure 3.21b these contributions are visible at higher
momenta. At Γ the splitting of the bands is clearly visible. As discussed before, the
bands show different contributions to the photoemission intensity, where the upper band
contributes less. The upper band in the band maps corresponds to the outer-lying band
of the pockets in the momentum maps (Figure 3.20). Both simulations agree on the
distribution of intensity between the bands. chinook underestimates the splitting of the
bands as already follows from the band structures in Figure 3.19b.
Figure 3.22 compares the dependence of the photoemission intensity on the photon en-
ergy ~ω for both methods. The photoemission intensity is measured for an initial state
binding energy of −0.1 eV in the vicinity of the K-point. The signal is averaged over
this region. The maxima of the curves at around 28 eV are normalized to one. Again,
as for SLG, a factor of 1

~ω is included in the DFT+PWFS approach.
Both calculations show a maximum of emission at similar photon energy (DFT+PWFS:
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Figure 3.21: BLG-AA: ARPES band maps in ΓK-direction, photon energy 40 eV; a:
simulation using chinook ; b: simulation using the DFT+PWFS approach

Figure 3.22: BLG-AA: photoemission intensity versus photon energy, measured for ini-
tial states EB = 0.1 eV around one K-point (1.48 Å≤ k‖ ≤ 1.89 Å)
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26 eV, chinook : 28 eV). The results of chinook for BLG-AA show the same dependence
as for SLG. In contrast, the DFT+PWFS calculation shows a minimum at 39 eV and
an additional maximum at 52 eV. At higher photon-energies there possibly are further
minima and maxima. Thus the dependence of the photoemission intensity calculated
for the two methods do not agree.
For bilayers graphene, it is expected that the photoemission shows oscillations depend-
ing on the photon energy respectively depending on k⊥ for constant k‖. Ref. [2] reports
such oscillations for multi-layers of graphene with maxima in the photoemission. For
BLG the maxima are located at k⊥ ≈ 4.0 Å and k⊥ ≈ 5.0 Å, which corresponds to an
energy-difference of approximately 28 eV. This value fits well to the difference between
the maxima of the DFT+PWFS simulation of 26 eV.

3.3.3 Bilayer Graphene in AB Stacking Order (BLG-AB)

DFT Calculation for BLG-AB

The structure of BLG-AB is formed of two separate sublayers of graphene. But compared
to the structure of BLG-AA discussed in the previous section, one layer is shifted by
half a lattice vector of graphene. Figure 3.23a shows the top-view of the resulting
structure. There the carbon atoms of the top layer are coloured grey and the atoms
in the bottom layer are coloured black. The lattice constant of 2.47 Å of SLG is used.
For the distance of the sublayers the value of 3.56 Å is used, which has been obtained
from a structure relaxation, where the intra-layer distances were kept fixed. For the
band structure calculation a 81 × 81 × 1 grid is used to sample the first Brillouin zone
with a plane-wave cut-off of 450 eV. The treatment of the exchange-correlation energy is
done using the PPE-GGA functional. van der Waals interactions are treated using the
DFT-D3 method [51].

Tight-binding Model for BLG-AB

As in the previous sections on BLG-AA, for the TB model one pz orbital is placed on each
carbon atom. The first (A) and the fourth (B′) orbital of the model are on the atoms
directly above each other (e.g. the site in the center of Figure 3.23a). Interlayer hopping
(t2) is only possible between these sites, since only nearest neighbour interactions are
considered. The intra-layer hopping has again the form of SLG (Equation 3.2). From
this one can write the Hamilton matrix:

H =


A B A′ B′

A ε −t1 0 t2
B −t1 ε 0 0
A′ 0 0 ε −t1
B′ t2 0 −t1 ε

 (3.4)

As in the previous section, the Hamiltonian splits into contributions of intra-layer hop-
ping in the blocks along the diagonal and the contribution of inter-layer hopping on the
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Figure 3.23: a: Structure of BLG-AB in topview, grey spheres: carbon atoms in the top
sublayer, black spheres: carbon atoms in the bottom sublayer; b: electronic
band structure of BLG-AB, black continous line: DFT calculation, red
dashed line: TB calculation

off-diagonal blocks. The on-site energy ε and the hopping term t1 describe hopping in
the graphene sublayers. t2 describes hopping between the layers. The on-site energies
are set to ε = 0 eV. The other parameters are again obtained from a fit to a DFT band
structure as follows: t1 = 2.61± 0.01 eV and t2 = 0.27± 0.01 eV.
Figure 3.23b gives the band structure of BLG-AB calculated using DFT (full lines) and
the TB model described above (dashed lines). Similar to the calculations described in
the previous sections, the TB model reproduces the DFT band structure best near the
K-point. Both calculations show that the bands do not cross at the K-point but only
touch. The occupied bands show an energy splitting that is reproduced correctly near
the K-point by the TB model. When going to Γ the energy splitting is underestimated
by the TB model. The unoccupied bands again do not agree with the DFT-calculation
and only the π-bands appear in the TB-band structure since only those are considered in
the TB model for BLG-AB. Considering the TB model, the calculated band structures
are in good agreement.

ARPES Simulations for BLG-AB

The simulations of ARPES maps for BLG-AB are done using the same parameters as
in the simulations of the previous sections on graphene. This means a photon energy
of 40 eV and a resolution in momentum space of 0.4 Å. Both simulations use a work-
function of 4.289 eV, as obtained from the DFT-calculation. The polarization is in the
DFT+PWFS approach with an angle of incidence of 90◦, which corresponds to a linear
polarization in z-direction in chinook.
Similar to the previous sections about graphene, the simulations done using the two
methods are in good agreement regarding the π-bands. The main differences stem from
the TB model that only includes pz orbitals. Furthermore the model does not capture all

43



Figure 3.24: BLG-AB: ARPES momentum maps, photon energy: 40 eV; top row: maps
simulated using chinook ; bottom row: simulations DFT+PWFS approach;
lines inset: boundary of the first Brillouin zone, crosses: Γ-points

details of the occupied band structure as described in the previous section. The momen-
tum maps in Figure 3.24 again show the pockets at the K-points typical for graphene.
Both types of simulations show similar structures of the pockets. Similar to BLG-AA,
the pockets get contributions from two different bands. In the case here, this second
band at the pockets is barely visible in the simulated maps.
The band maps in Figure 3.25 show similar results as the momentum maps in Figure 3.24.
Both simulations show that only one band of the band structure (Figure 3.23b) shows a
significant contributions to the photoemission. The simulations using the DFT+PWFS
approach shows this band with low photoemission above the visible band.
The dependence of photoemission intensity on the photon energy in Figure 3.26 is sim-
ulated and measured the same way as described in the previous sections on SLG and
BLG-AA. The results of TB calculation show the same features as in the previous sec-
tions. There is again a maximum at 28 eV photon energy with an exponential decay
of the photoemission intensity to higher photon-energies. The results of the simulation
using the DFT+PWFS approach for BLG-AB are comparable to the result for BLG-
AA. The difference is, that here the minimum at approximately 42 eV photon energy
is far less pronounced. This minimum and the subsequent maximum of the photoe-
mission intensity simulated based on a DFT calculation is not reproduced by chinook.
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Figure 3.25: BLG-AB: ARPES band maps in ΓK-direction, photon energy: 40 eV; left
panel: maps simulated using chinook ; right panel: simulations using the
DFT+PWFS approach

Figure 3.26: BLG-AB: photoemission intensity versus photon energy, measured for ini-
tial states EB = 0.1 eV around one K-point (1.48 Å≤ k‖ ≤ 1.89 Å)
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Similar to BLG-AA, the maxima and minima in the photoemission are expected from
measurements [2].

3.3.4 TB Models for BLG-AA and BLG-AB

Bilayer graphene in AA and AB stacking order are materials with a similar structure,
with the difference, that for BLG-AB one graphene sublayer has a relative shift. Also the
TB-models for both materials are similar, where each contains two blocks describing the
single sublayer and the interactions between the sublayers (equations 3.3, 3.4). Given
these similarities one may expect the interlayer hopping constants to be similar in size,
which is not the case:

d (Å) t2
BLG-AA 3.76 0.18
BLG-AB 3.56 0.27

The difference of the size the values for t2 can be explained by the different layer dis-
tances, that is larger for BLG-AB. Since interlayer hopping happens only between atoms
directly above each other, the shift in the layers of BLG-AB does not play a role in the
size of the hopping constant.
The shift in the layers causes also a change in the electronic band structure of bilayer
graphene (BLG). Figure 3.27 shows simulated band maps for BLG-AA and BLG-AB in
ΓK-direction near the K-point. The band structure of BLG-AA is similar to graphene
where the contributions of the sublayers are shifted relatively to each other by a small
energy. In contrast, the bands of BLG-AB bend at K near the Fermi-level, so that the
bands do not cross.
For free-standing BLG-AB, where the sublayers are symmetric, the band gap is zero.
Under the influence of a substrate or by doping it is possible to open a band gap. The
size of the gap can be controlled by changing the charge-carrier density in the sublayers
of BLG-AB [2,52].
The simulations for BLG-AA are in good agreement. Both methods predict emission
from the lower lying bands and directly at the K-point is a region low photoemission
intensity. Similarly, for BLG-AA only the lower lying bands contribute to the photoemis-
sion. Again, the DFT+PWFS approach predicts a region low photoemission intensity at
the K-point. However, chinook does not show such a minimum in the emitted intensity
for BLG-AA.
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Figure 3.27: Band maps of BLG-AA and BLG-AB near K; lines inset: band structure
calculated for the respective material and method; The same parameters
are used for the simulations as in the previous sections
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4 Summary and Conclusion

In this thesis angle-resolved photoemission spectroscopy (ARPES) experiments are sim-
ulated for two-dimensional (2D) materials. To this end, the electronic ground state of
the materials is calculated using density functional theory (DFT). Based on the Kohn-
Sham orbitals obtained from DFT, ARPES is simulated within the one-step model of
photoemission. The final state of the photoelectrons is treated using the plane wave
final state (PWFS) approach. In this work, the PWFS approach is extended to include
spin-orbit coupling (SOC).

Simulations of ARPES including SOC are done for the transition metal dichalcogenides
WS2 and WSe2, and for AgTe/Ag(111). Important for these three materials is, that
they show strong SOC. The results of the simulations are compared with experimental
data from literature.
The results for the ARPES simulations for the TMDs are in good agreement with the
experimental findings. Here, the calculated band structure and ARPES intensity maps
coincide with the experimental data, where also the spin-splitting of the top-valence
band is predicted correctly. Simulations for the spin polarization of the photoelectrons
agree with expectations from the experiments. However, there are still some discrepan-
cies regarding the distribution of the photoemission intensity, especially for WS2. There,
the experiments show a high intensity originating from the centre of the first Brillouin
zone, whereas the simulations predict a low photoemission intensity.
For AgTe/Ag(111), the calculated band structure coincides with the measurements, in-
cluding correct predictions for the spin-splitting at the Γ-point. However, the simulated
band maps show different results for the intensity distribution compared to the exper-
imental maps. Also, for higher photon energies, the momentum maps differ, where
the angular distribution of the simulated photoemission intensity does not agree with
the experiments. This leads to the conclusion, that the PWFS approach within the
one-step model of photoemission is insufficient the describe the ARPES experiment for
AgTe/Ag(111).
Concluding from the results from the two different systems, it is possible to obtain reli-
able results by applying the PWFS approach to simulate ARPES for materials showing
strong SOC. For these materials, including SOC in the simulations can improve the fit
to experiments. But as can be seen from the calculations for AgTe/Ag(111), the PWFS
approach is not applicable for all systems.

In addition, calculations are also conducted for free standing films of single layer graphene
(SLG) and bilayer graphene (BLG) in AA and AB stacking order. Here the ARPES
simulations are performed in two modes. First, by using the PWFS approach based
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on initial states modelled as Kohn-Sham orbitals (DFT+PWFS). And second, by em-
ploying a TB approach as implemented in chinook [12]. For the tight-binding model
necessary for chinook, pz orbitals are placed on each carbon atom and nearest neighbour
hopping is considered. The parameters for the TB-model are obtained by fitting the TB
band structure to a band structure calculated using DFT.
The band maps and momentum maps calculated using both methods show similar re-
sults. For SLG, they show Dirac cones at the K-points. For higher binding energies,
the methods predict the formation of pockets around the K-points for all three systems,
where the structure of the pockets is the same for both methods.
In addition to the ARPES maps, the photoemission intensity is calculated depending on
the photon energy for a specific initial state near the Fermi level. For SLG both methods
show a peak in intensity at a photon energy of 28 eV and a decay to higher energies,
where the signal of the DFT+PWFS approach decays more slowly. The DFT+PWFS
approach predicts several peaks for bilayer graphene, whereas chinook shows the same
dependence as for SLG. The results of the DFT+PWFS approach are supported by
measurements [2].
There are several advantages of chinook over the DFT+PWFS approach. If an accu-
rate TB-model is available for a specific system, the simulations are numerically less
expensive compared to a DFT-calculation. Therefore, larger system sizes are possible.
A drawback of the TB-method is, that it needs an accurate TB-model for the system.
If no such model is available, setting it up and finding the correct parameters is a dif-
ficult task, which can only be done easily for simple systems, similar to the ones used
in this work. Additionally, there are some discrepancies in the results compared to the
DFT+PWFS approach, where the results of the DFT+PWFS approach agree better
with the experimental results.
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Appendix: usage of chinook

The python package chinook implements a solver for a tight-binding (TB) model. Based
on this TB model chinook can simulate angular resolved photoemission (ARPES) exper-
iments by expanding the final state in spherical harmonics. A short describtion of the
TB method and simulating ARPES can be found in section 2. Explanations of chinook
are given in Ref. [12]. The python package is written by R.P. Day and is available online
and via the python installer.
The following section contains a short summary on how to use chinook in a python
script, with the example of graphene. The options and settings necessary for the pro-
gram are handed to chinook in the form of python dictionaries.

As the first step, the libraries are imported the structure is set up. The parameters
needed are the lattice vectors and the atomic positions, both are given in Cartesian
coordinates in units of Å.

import chinook

import chinook.build_lib as build_lib

import chinook.ARPES_lib as arpes_lib

import numpy as np

import matplotlib.pyplot as plt

# lattice constant

a = 2.47

# lattice vectors

avec = np.array([[(3**0.5)/2*a , 0.5*a , 0.0],

[(3**0.5)/2*a , -0.5*a , 0.0],

[0.0 , 0.0 ,10.0]])

# atomic positions

p1 = np.array([0.0,0.0,0.0])

p2 = np.array([ ((1/3)**0.5)*a,0.0,0.0 ])

# possible to include SOC

spin_args = {’bool’:False}#,’soc’:True,’lam’:{0:1.5}}

The next step combines these informations to set up the basis for the TB model. Ad-
ditional information of the types of atoms and orbitals is given. The keyword ’atoms’
defines labels for the atoms on each position given in ’pos’, where ’Z’ gives the atomic
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number for the labels. ’orbs’ lists the orbitals placed at each position where each orbital
is characterized by the three quantum numbers of hydrogen wave-functions. ’21z’ stands
for the 2pz orbital.

# define the orbitals

basis_args = {’atoms’:[0,0], # number of atoms at the positions

’Z’:{0:6}, # atomic numbers

’pos’:[p1,p2], # positions

’orbs’:[[’21z’],[’21z’]], # orbitals at the positions

’spin’:spin_args}

Following, the TB Hamiltonian is defined. chinook accepts different ways to define
the model. The main types are, first, directly giving values to the hopping integrals
or, second, using Slater-Koster parameters [53]. Here the method for directly handing
over the hopping integrals is presented. Since the Hamilton operator is hermitian, it
is sufficient to give, for example, the upper triangular of the Hamilton matrix. The
entries of the hamiltonian are given as a list, where each entry contains the two orbitals
involved, the distance in Cartesian coordinates and the value of the hopping integral.

###Hamilton

ep = 0 # on-site energy

HP = -2.56 # hopping pz-pz

H_list=[[0,0,0,0,0,ep],

[1,1,0,0,0,ep],

[0,1, -1/2*((1/3)**0.5)*a , 1/2*a , 0.0 ,HP],

[0,1, -1/2*((1/3)**0.5)*a , -1/2*a , 0.0 ,HP],

[0,1, ((1/3)**0.5)*a , 0.0 , 0.0 ,HP],]

hamiltonian_args = {’type’:’list’, # give Hamilton as list

’list’:H_list,

’cutoff’:0.6*a,

’renorm’:1.0,

’offset’:0.0,

’tol’:1E-4,

’avec’:avec,

’spin’:spin_args}

Before doing the TB calculations, the information about required k-points are gathered
in a dictionary. The points are given in units of the reciprocal lattice vectors (’pts’).

###define Path for bandstructure plot

momentum_args = {’type’:’F’,

’avec’:avec, # real lattice
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’grain’:100, # number of points

’pts’:[[0,1/2,0],[0,0,0],[1/3,2/3,0]], # define path in k-space

’labels’:[’M’,’$\\Gamma$’,’K’]} # labels for the points pts

Here the necessary objects will be created. build lib.gen TB() creates the TB object for
chinook, TB.solve H() than solves the TB model for the given path in momentum space
and TB.plotting() then plots the bandstructure.

###create objects, solve and plot TB model

basis = build_lib.gen_basis(basis_args)

kpath = build_lib.gen_K(momentum_args)

TB = build_lib.gen_TB(basis,hamiltonian_args,kpath)

TB.solve_H()

TB.plotting()

plt.show()

After creating the TB object, one can use it to simulate ARPES experiments. Following
are two examples, first, for a momentum map and second, for a band-map. The first
lines define region in momentum space and energy, where the experiment is simulated.
arpes args contains the set-up for the simulation. ’cube’ defines the region where the
TB model is solved and ARPES is simulated, ’hv’ gives the photon-energy in eV. ’pol’
gives the polarization in Cartesian coordinates. ’T’ gives the temperature in Kelvin, if
it is positive the Fermi distribution is applied.
After defining arpes args the necessary object is created with arpes lib.experiment().
The calculation is started using datacube(). It calculates the matrix-elements in the
given region in energy and momentum space. The maps are then plotted using spectral().
In Imap the command returns the photoemission intensity for each point defined in
’cube’.
Note that for plotting the momentum map the vertical axis is k and the horizontal axis
represents the binding energy.

### ARPES

emin = -10.0

emax = 0.0 # energy range

xmin = -3.0

xmax = 3.0 # region in kx-direction

ymin = -3.0

ymax = 3.0 # region in ky-direction

nk = 300 # number of points in k-space

nE = 300 # number of energy-points

# momentum map

arpes_args={’cube’:{’X’:[xmin,xmax,nk],
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’Y’:[ymin,ymax,nk],

’kz’:0.0,

’E’:[-3.1,-0.1,7]},# region in x,y,E to solve TB

’SE’:[’constant’,0.1], # self energy

’hv’: 30, # photon energy

’pol’:np.array([0,0,1]),# light polarization in z direction

’resolution’:{’E’:0.08,’k’:0.045},

’T’:-1.0, # Temperature, -1: off

’W’:4.282, # work function

’rad_type’:’slater’} # type of radial integrals

experiment = arpes_lib.experiment(TB,arpes_args)

experiment.datacube()

Imap,Imap_resolution,axes = experiment.spectral(ARPES_dict=arpes_args,

slice_select=(’E’, -0.1),

plot_bands=False); # select k-map for EB=-0.1

plt.show()

# band map ky

arpes_args={’cube’:{’X’:[-0.001,0.001,3],

’Y’:[ymin,ymax,nk],

’kz’:0.0,

’E’:[emin,emax,nE]},# region in x,y,E to solve TB

’SE’:[’constant’,0.1], # self energy

’hv’: 30.0, # photon energy

’pol’:np.array([0,0,1]),# light polarization in z direction

’resolution’:{’E’:0.08,’k’:0.045},

’T’:-1.0, # Temperature, -1: off

’W’:4.282, # work function

’rad_type’:’slater’} # type of radial integrals

experiment = arpes_lib.experiment(TB,arpes_args)

experiment.datacube()

Imap,Imap_resolution,axes = experiment.spectral(ARPES_dict=arpes_args,

slice_select=(’x’, 0.0),

plot_bands=False); # select band-map for kx=const.

plt.show()
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induced spin splitting in two-dimensional transition-metal dichalcogenide semicon-
ductors. Physical Review B, 84(15):153402, 2011.

[7] Iori Tanabe, Takashi Komesu, Duy Le, Takat B. Rawal, Eike F. Schwier, Mingtian
Zheng, Yohei Kojima, Hideaki Iwasawa, Kenya Shimada, Talat S. Rahman, et al.
The symmetry-resolved electronic structure of 2H-WSe2 (0001). Journal of Physics:
Condensed Matter, 28(34):345503, 2016.

[8] P. Chen, Woei Wu Pai, Y.H. Chan, W.L. Sun, C.Z. Xu, D.S. Lin, M.Y. Chou, A.V.
Fedorov, and T.C. Chiang. Large quantum-spin-hall gap in single-layer 1T ′ WSe2.
Nature communications, 9(1):1–7, 2018.
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[30] J. Kübler, K.-H. Höck, and A. R. Williams. Density functional theory of non-
collinear magnetism. Journal of Physics F: Metal Physics, 18:469–483, 1988.

[31] G Dresselhaus, Mildred S. Dresselhaus, and Riichiro Saito. Physical properties of
carbon nanotubes. World scientific, 1998.

[32] Peter J. Feibelman and D. E. Eastman. Photoemission spectroscopy—
correspondence between quantum theory and experimental phenomenology. Phys-
ical Review B, 10:4932–4947, Dec 1974.
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