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Abstract

Although information security is increasingly becoming the focus of society and many
problems have been solved in recent years, there are still many critical areas where
appropriate solutions are lacking. Securely retrieving data from a server is a problem
that has been frequently addressed in the past. The main focus of common schemes such
as Private Information Retrieval (PIR) or Oblivious Transfer (OT) is to hide the client’s
request. However, these schemes do not aim to protect individual entries in the database,
although securely retrieving information about individual items could help construct
entirely new systems. Especially in the cloud, we have seen tremendous data growth in
recent years, leading to the need for new systems to emerge that process data efficiently
and, most importantly, securely. Such systems could be used to build information service
platforms that enable information sharing without violating individual privacy. In this
work, we evaluate Private Selective Aggregation (PSA), a protocol for securely querying
aggregated data that targets both client, server, and individual privacy. We provide
a generic library to help build PSA web applications and study their performance. In
addition, we present business problems that can be solved using PSA and our library,
and provide a Proof of Concept for two of the cases. We also examine various parameters
of these applications and provide recommendations for the correct settings.

Keywords: Information Security, Homomorphic Encryption, Differential Privacy, Pri-
vate Selective Aggregation
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Kurzfassung

Obwohl die Informationssicherheit zunehmend in den Fokus der Gesellschaft rückt und
viele Probleme in den letzten Jahren gelöst wurden, gibt es immer noch viele kritische
Bereiche, in denen geeignete Lösungen fehlen. Das sichere Abrufen von Daten auf einem
Server ist ein Problem, das in den letzten Jahren häufig adressiert wurde. Der Schwer-
punkt gängiger Schemata wie Private Information Retrieval (PIR) oder Oblivious Transfer
(OT) liegt darin, die Anfrage des Clients zu verbergen. Diese Schemata zielen jedoch
nicht darauf ab, einzelne Einträge in der Datenbank zu schützen, obwohl der sichere
Abruf von Informationen über einzelne Elemente helfen könnte, völlig neue Systeme
zu konstruieren. Besonders in der Cloud haben wir in den letzten Jahren ein enormes
Datenwachstum erlebt, was dazu führt, dass neue Systeme entstehen müssen, die Daten
effizient und vor allem sicher verarbeiten. Solche Systeme könnten zum Aufbau von
Informationsdienstplattformen verwendet werden, die den Austausch von Informationen
ermöglichen, ohne die Privatsphäre des Einzelnen zu verletzen. In dieser Arbeit evalu-
ieren wir Private Selective Aggregation (PSA), ein Protokoll zur sicheren Abfrage von
aggregierten Daten, das sowohl die Privatsphäre des Clients und des Servers als auch die
des Einzelnen berücksichtigt. Wir stellen eine generische Bibliothek zur Verfügung, mit
deren Hilfe PSA-Webanwendungen erstellt werden können. Darüber hinaus messen wir
die Leistungsfähigkeit der Bibliothek und stellen Probleme in der Wirtschaft vor, die mit
PSA und unserer Bibliothek gelöst werden können, und liefern ein Proof-of-Concept für
zwei der Fälle. Wir untersuchen auch verschiedene Parameter dieser Anwendungen und
geben Empfehlungen für die richtigen Einstellungen.

Schlagwörter: Informationssicherheit, Homomorphic Encryption, Differential Privacy,
Private Selective Aggregation
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Chapter 1

Introduction

Cryptography increasingly becomes the focus of attention in times where multinational
organizations collect massive user data. Often, companies use collected datasets as input
to machine learning algorithms, which generate new information based on the given
data. The output of such algorithms turn out to be quite shocking sometimes, which
was shown by a case where a company knew that a female customer was pregnant before
her father did [48]. Technology progresses very fast, and the advancements are raising
the question of adequate security among modern systems. Many solutions to common
privacy problems are already present in the academic field. However, only a few of them
are applied to the industry due to a lack of people identifying the issues and insufficient
privacy awareness. We approach the problem by providing a new system for secure
querying of data and dedicated tools for easy integration. In this chapter, we discuss the
foundation of our work and outline the scope.

1.1 Private Data Queries

The idea of privately querying data is not new but was already studied quite some time
ago. Initial work in the field [62, 38, 6] was leveraged later to introduce the notion of
Private Information Retrieval (PIR) [27]. Retrieving data from a server poses a security
risk to the client. A curious database manager could investigate which entries were
requested by the client and infer what the client is after. PIR protocols are a way of
privately retrieving information from one or many untrusted servers without leaking
any information about what was retrieved. In this work, we mainly focus single-server
variants [1, 18, 31, 50]. The concept of PIR is very similar to oblivious transfer [60]
where the server remains oblivious about what and if anything was retrieved at all. Many
advancements happened to oblivious transfer like 1-out-of-2 OT [36] and 1-out-of-n OT
[15]. The latter can be seen as a stronger version of PIR since there is also the requirement
that the client learns only the queried item and nothing else. PIR is tackling the privacy
problem from the user’s point of view by masking the query. Server privacy is neglected
totally in the case of PIR since a curious client could query more items than required. In
1-out-of-n OT, the server’s data privacy is protected to some degree due to the additional
requirements. However, none of these techniques protect individual entries in a database.
This can be accomplished by returning aggregated results. Unfortunately, retrieving
an aggregated result from desired entries in a database requires special indexing, often

1



Chapter 1 Introduction

parametrized with sensible data. Therefore, the need for a system with additional privacy
features arises.

1.2 Our Contribution

Our goal is to enhance privacy in systems that involve retrieving data from a server. We
focus on systems that benefit from data generated by aggregation. We want to give rise
to modern, secure applications by offering a protocol that can be incorporated in many
ways. The protocol originates from previous work [16] where it serves as the core of a
system that privately connects mobility to infectious diseases. We decided to name this
protocol Private Selective Aggregation (PSA) and concluded that it suites well for more
than this particular use-case because of its generic definition. We started to develop
ideas for future scenarios and tools to make integrations easier. Currently, the work
regarding PSA comprises the protocol definition itself, and an implementation of the
said use-case in C++ [2]. All relevant information can be found in the original paper.
We are using this work as a basis and extend it in many directions in this thesis. PSA
enables private information requests towards aggregated results. Since aggregated data
is returned, the privacy of individual database entries is protected, provided that all
recommended security mechanisms are used. We initially give a rough overview of PSA
and discuss the protocol in more detail in chapter 3.

The Target Domain. In recent years, data became one of the main drivers of the
economy. According to a study [29] of the International Data Corporation (IDC)1, we
will have a total of 175 Zettabytes of data across the globe from which 49% will reside
in the cloud by the year 2025. Additionally, as predicted by Gartner Inc.2, annual
revenue for Software as a Service (SaaS) platforms is increasing rapidly [39] as shown
in Figure 1.1. Inherently, we would benefit further from cloud systems utilizing this
massive amount of data. PSA can be used to implement a cloud data service, exposing
aggregated information about a data pool. We define two parties in our protocol, which
we refer to by Client and Server. The Server holds a data set in the form of a matrix
in which the Client is interested. To protect privacy of individual entries, the Client
cannot simply query them individually but is required to provide information about the
indices in the form of an encrypted vector, such that the Server can multiply that vector
with its matrix and return the encrypted result back to the Client. The multiplication
inherently results in the aggregation of the data. The Server operates only on encrypted
data and uses, therefore, a technique known as Homomorphic Encryption (HE). PSA
is the perfect tool when two parties cannot share their data directly due to mistrust or
prohibiting regulations like the European General Data Protection Regulation (GDPR)3.
Nevertheless, it is possible to use PSA even if the two parties have no problems sharing

1https://www.idc.com/
2https://www.gartner.com/en
3https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

2



Chapter 1 Introduction

Figure 1.1: Worldwide Software as a Service (SaaS) revenue forecast as predicted by
Gartner Inc. [39].

their data. However, the computational overhead will diminish the protocol’s utility in
terms of the cost-benefit ratio.

Providing the Right Tools. New technology can be leveraged more efficiently when
the tools for straightforward integrations are available. Since PSA is a generic protocol
that can be applied to a vast array of areas, we are very confident that a library for the easy
integration of PSA into future applications would help the protocol to thrive. Therefore,
we decided to provide such a library for the promising cloud environment. Companies
and institutions that plan to implement a service to share information privately will
benefit from the library considerably. In chapter 4 we talk in-depth about its internals,
proper usage, and design decisions along the way. Additionally, we provide performance
benchmarks and compare our implementation with one in a native language to give a
feeling about trade-offs in the web.

Identifying Industry Problems. A new system gets overlooked easily when its
intention is not initially clear, or the problem domain is defined sloppy. Therefore, in
chapter 5, we identify various industry problems that can be solved using PSA. We describe
the scenarios in detail and provide a PoC for two of the cases. The implementations
are based on our library and show the protocol’s viability in the web. Additionally, we
study the privacy of the two implemented cases and analyze various parameter settings.

3



Chapter 1 Introduction

PSA is equipped with privacy mechanisms that require proper parametrization. Every
system based on PSA handles different data in different situations. Therefore, a thorough
analysis of the parameters is required. We study the proper setting of said parameters
by defining measures to estimate the privacy level.

4



Chapter 2

Preliminaries

Our work builds on top of various research fields we want to discuss and outline in this
section before diving deeper into them. Additionally, we are making use of mathematical
expressions and notations during this work. To make this as straightforward as possible,
we are trying to follow well-established conventions in this field.

2.0.1 Notation

We denote scalars as regular lower case letters, vectors as bold lower case letters and
matrices as regular upper case letters. If we draw a vector x of dimension n randomly

from the set of integers, we write x
$← Zn and if we assign the value y to this vector, we

denote it as x← y. Elements in the vector x are denoted as xi, where i is in the range
1, ..., n in this particular case. The element-wise product of vector x and y is denoted as
x ◦ y and is known as the Hadamard product. We write the inner product of x and y
as 〈x,y〉 and denote the euclidean distance between them as ‖x− y‖. For m ∈ N and
x ∈ Z, we write xm to denote the vector of powers of x: xm = (1, x1, ..., xm−1). The
`1 norm of x is denoted as ‖x‖1. We denote negl(κ) for a negligible function in the
argument κ.

2.0.2 Homomorphic Encryption

Homomorphic Encryption is the idea of performing arbitrarily complex operations on a
ciphertext. A ciphertext is an encrypted version of the raw data itself. The result will
be encrypted and matches the results of operations to be performed on plain text. This
idea was initially proposed by Rivest et al. [64]. However, the system was not capable of
performing computations of arbitrary complexity, but was limited to a finite number of
operations on the ciphertext. It was not sure if such a system even existed, until Gentry
[41] came up with his revolutionary work, theoretically enabling an infinite amount of
operations. This invention led to the field of Fully Homomorphic Encryption, and was
followed by a series of improvements [12, 10, 14, 11, 53, 8, 42, 24, 13] by the community.

Definition. A Homomorphic Encryption scheme HE consists of the four algorithms
HE.KGen, HE.Enc, HE.Dec, and HE.Eval. HE.KGen takes a security parameter κ as its
input and outputs a key-pair (sk, pk), where sk is the secret key and pk the public key
that defines the plaintext space P and the ciphertext space C. HE.Enc takes as an input
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the public key pk and a plaintext m ∈ P and outputs a ciphertext c ∈ C. HE.Dec takes
the secret key sk and a ciphertex c ∈ C and outputs m. The algorithm HE.Eval takes the
public key pk, a circuit C from a permitted set of circuits CHE, a tuple of ciphertexts
(c1, c2, ..., ct) (one for every input bit of C), and outputs a new ciphertext c. Note that
in some definitions of Homomorphic Encryption there is an evaluation key evk used as
input to HE.Eval. In this definition it is part of pk.

Security. A Homomorphic Encryption scheme HE is said to be Indistinguishability Un-
der Chosen-Plaintext Attack (IND-CPA) secure [10] if for any polynomial-time adversary
A it holds that:

|Pr[A(pk,HE.Enc(pk, 0)) = 1]− Pr[A(pk,HE.Enc(pk, 1)) = 1]| = negl(κ)

where (sk, pk)← HE.KGen(κ).
In other words, the scheme is said to be semantically secure if an adversary does not
have a better chance than guessing with 50% probability wether a given ciphertext is the
encryption of either one of two equally likely distinct messages. If that holds true, one
can assume that no information about the content of a given ciphertext is learned by
someone who has no access to the secret key.

Correctness. A Homomorphic Encryption scheme HE is correct [40] if for any t-
input circuit C from CHE, any key-pair (sk, pk) obtained from HE.KGen(κ), any t plain-
text bits (m1,m2, ...,mt) and any ciphertexts c = (c1, c2, ..., ct) with ci obtained from
HE.Enc(pk,mi) it holds, that:

HE.Dec(sk,HE.Eval(pk, C, c)) = C(m1,m2, ...,mt)

Example. A popular application for Homomorphic Encryption is a data owner who
wants his data D to be processed by a cloud service provider. The data owner does not
trust the provider, and so he generates a secret key sk and encrypts all of his data using
the HE scheme HE. Next, he uploads the resulting ciphertext c to the provider’s platform.
The provider is aware of public key pk, and a circuit C used to evaluate c. Evaluation can
be regarded as computing a function on the ciphertext c. This function is represented
by the C. When receiving the c, the provider applies all the relevant computations and
sends it back to the data owner, who will decrypt it eventually. The service provider did
not learn anything about the data since he had no access to sk. More generally spoken,
on the one hand, there is a client providing encrypted data c. On the other hand, there
is a server evaluating c by only knowing pk and C and hands the result back to the client
once he is finished. This process is depicted in Figure 2.1.
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Figure 2.1: A high level view of Homomorphic Encryption.

2.0.3 Homomorphic Encryption Types

Homomorphic encryption schemes can vary quite a bit. However, they can be categorized
into multiple types. To explain the different types, we first introduce the notion of a
circuit.

2.0.3.1 Boolean Circuits

Expressing any Boolean circuit with only two types of gates, namely addition and
multiplication, is not a trivial problem but was shown a long time ago. Every gate has
two inputs. Moreover, such a circuit can express arbitrary functions. If a homomorphic
algorithm can evaluate such a circuit, it can theoretically evaluate any function. Seeing
functions as Boolean circuits makes it, therefore, easier to find cryptographic constructions.
However, the downside is that functions have to be converted to Boolean circuits before
such an algorithm can evaluate them. The function f(x, y) = x+ x · y has two inputs
x and y. To construct a boolean circuit given this function, one will need two gates -
one for addition and one for multiplication. The circuit is depicted in Figure 2.2. For

Figure 2.2: A simple Boolean circuit.

this thesis, there are two properties of interest, while there are many more in general.
The first property is the size, which is simply the number of gates in the circuit. The
second property is the depth, which is the maximal length of a path from an input to the
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output gate. A Boolean circuit’s depth can be described easier by visualizing the circuit
as a directed, acyclic graph. That is, a graph where the vertices and edges are directed
in a way such that following them will never form a closed loop. The circuit’s depth is
then the maximal length from an input gate to the output gate (the number of edges
along the way). In this example, the size is 2 since there are two gates, and the depth is
2 since there are two gates from input y to output x+ x · y along the way.

2.0.3.2 Types

There are three common types of Homomorphic Encryption schemes [69]:

– Partially Homomorphic Encryption (PHE)

– Somewhat Homomorphic Encryption (SWHE)

– Fully Homomorphic Encryption (FHE)

They are different in being homomorphic with respect to either the addition or the
multiplication operation or both. Moreover, they differ in the computational power
needed to run them.

Partially Homomorphic Encryption. Encryption schemes that are Partially Ho-
momorphic can evaluate circuits only with respect to one operation, either addition
or multiplication. Such schemes do not restrict the size or depth of the circuit to be
evaluated. However, one should keep in mind that not every function can be transformed
into a circuit if a fundamental operation is not available. Among the famous examples of
Partially Homomorphic Encryption schemes are the Paillier [58] cryptosystem, which is
additively homomorphic, ElGamal [35] and the textbook variant of RSA [63], which have
a multiplicative homomorphic property. RSA encryption is defined as:

E(m) := me mod n

The homomorphic property is:

E(m1) · E(m2) := me
1 ·me

2 mod n

= (m1 ·m2)
e mod n

= E(m1 ·m2)

where E is the encryption function, n ∈ N the modulus, m,m1,m2 ∈ [0, ..., n − 1] the
message, and e ∈ N the private key.
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Somewhat Homomorphic Encryption. Schemes that are homomorphic with re-
spect to addition and multiplication but are restricted by the depth of the circuit are
called Somewhat Homomorphic Encryption schemes. The BGN cryptosystem, named
after Boneh, Goh, and Nissim [7], was the first of its kind, allowing an arbitrary number
of additions but only a single multiplication. In SWHE (and FHE) schemes, there is a
so-called noise budget that must not run out before having all computations finished. The
noise is a small error added into the ciphertext to guarantee the security of the scheme.
The parameters determine the size of the budget and also the amount spent with each
homomorphic operation. Once it runs out and exceeds a certain threshold, the ciphertext
cannot be decrypted correctly anymore. In general, Somewhat Homomorphic Encryption
schemes get noisier with every operation on the ciphertext, and multiplications are more
expensive than additions. Gentry’s original idea is used frequently [30, 67] to turn
Somewhat Homomorphic Encryption schemes into Fully Homomorphic Encryption. The
original work of Gentry was based on ideal lattices and covered three parts: as a first step
he constructs a SWHE scheme, then simplifies its decryption function (called squashing),
and then he homomorphically evaluates the decryption function to lower the noise budget
(called bootstrapping).

Fully Homomorphic Encryption. Fully Homomorphic Encryption (FHE) schemes
can homomorphically evaluate both addition and multiplication gates and are not re-
stricted in either size or depth. In reality, however, they are usually extremely inefficient,
and any application should be thoroughly evaluated before usage of such a scheme.
Nevertheless, FHE schemes get more and more efficient, and thanks to Gentry, we know
how to transform a SWHE scheme that can evaluate its own encryption circuit to a
FHE scheme by a process called bootstrapping. However, bootstrapping comes with
a high computational cost, making Fully Homomorphic Encryption obsolete for some
applications. Depending on the application, it is wiser to choose a SWHE scheme and
set the parameters accordingly. The most important FHE scheme for this work is the
Brakerski/Fan-Vercauteren (BFV) [12] scheme. The two operations in the scheme are
addition and multiplication. Both operations consume the noise budget at a rate also
determined by the parameters of the scheme. The addition is nearly free to use, while
multiplications are very expensive. The scheme’s security is based on the Ring-Learning-
with-Errors [54] hardness assumption, which is the ring variant of Learning-with-Errors
(LWE) [61].

2.0.4 Differential Privacy

The goal of Differential Privacy [33] is to make the overall output of an algorithm
operating on a (statistical) database as independent as possible from a single entry
of that database. That is, it protects individual privacy from being exposed to some
external entity receiving the output of the algorithm and prevents the (additional) harm
individuals would take due to the information generated by the difference between being
in the dataset and not being in the dataset. A randomized algorithm A is ε-differential
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private if for all adjacent datasets D1 and D2, and all S ∈ range(A) it holds that:

Pr[A(D1) ∈ S] ≤ eε · Pr[A(D2) ∈ S] (2.1)

for ε > 0. Intuitively, it means that an algorithm is differentially private if one cannot
tell if any individual’s data was included in the original dataset by looking at the output.
Differential Privacy identifies the relationship between the change of a single data entry
and the output of a query. The maximum magnitude of change in the output arising
when altering a single data entry that is evaluated over all possible combinations of
entries is called the sensitivity ∆q of the system. It is defined as:

∆q = max
D1,D2

‖q(D1)− q(D2)‖1

where D is a collection of adjacent datasets, D1, D2 ∈ D, and q : D 7→ R. The maximum
is taken over all pairs of D1 and D2. The sensitivity determines how much uncertainty
must be introduced in the final result to hide the participation of a single entry and can
be exactly computed for every application. Additionally, there is the privacy parameter
ε. A popular method to meet the criteria described in equation 2.1 is to add noise drawn
from a zero-centered Laplace distribution with scale b ∈ R and the probability density
function:

Lap(x|b) =
1

2b
e−

|x|
b , with b =

∆q

ε

The variance σ2 of the distribution is 2b2 [34]. Therefore, choosing higher values for
the privacy parameter ε will result in less variance and, thus, in noisy outputs closer
to the true value. This will inevitably lead to more utility and lower privacy levels.
Special care has to be taken in applications using real-valued numbers since floating-point
implementations can vary and destroy this mechanism due to rounding. In integer cases,
this function’s result should just be rounded to the nearest integer or rounded up if the
value is strictly in between.

Choosing the right epsilon. It turns out to be quite challenging to choose an
appropriate privacy parameter ε. Although it is the privacy parameter, it does not
directly adhere to some privacy standards and is not an absolute measure but rather a
relative measure. A lower value of ε implies more noise and, therefore, less chance for
an adversary to identify a single entry. Higher values mean less noise and more chances
for an adversary. It is hard to quantify the privacy of a system and individual data
entries in a database since this highly depends on the application and the data itself. If ε
is set too high, privacy might suffer. If it is set too low, the utility of the application
decreases. Nevertheless, choosing the best ε is the central part of an application based
on Differential Privacy. Unfortunately, there is no default setting for ε, which is clearly
shown by the literature [56, 22, 52, 5, 55, 49] where ε is chosen within the range of 0.01
to 7, oftentimes without proper justification. Therefore, we will try to figure out the best
ε by experimenting within that range in our implementations.
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Chapter 3

Private Selective Aggregation

After explaining the fundamental concepts, we now discuss Private Selective Aggregation
(PSA) in more detail. PSA is a two-party protocol that allows privacy-preserving querying
of a database if all privacy recommendations are followed. The querying party does not
learn individual items in the database since an aggregated result is returned [16].

3.1 Introduction

In PSA, the querying party called the Client can privately query the database of the
other party called the Server to obtain an aggregated result. The database resides in the
form of a matrix. The Client does not learn individual data entries in the Server’s matrix
if privacy parameters are set accordingly. The query is encrypted in the beginning, and
even computations on it happen in the encrypted domain. A simplified depiction is given
in Figure 3.1. In straightforward terms, PSA is a multiplication of a query vector and
a data matrix in the encrypted domain. The vector serves as a list of indices to the
corresponding matrix rows. These indices are pointing to the data that is aggregated into
a final value and collected in an output array. In a real-world scenario, the Client could
be a small business or institution in need of specific information only to be found in a
cloud provider’s database who is the Server in this scenario. The protocol is of most use
if the Client’s query and the Server’s matrix must be kept private. One might see that
the Client can only conduct a reasonable query if the data in the Client’s vector somehow
correlates to the data stored in the Server’s matrix. The order of their entries has to
match so that every entry correlates to an entry in the opposite party’s data structure.
The Client and Server have to place the data in the same sequence. However, sometimes
the Server holds more data in his matrix than the Client in his vector. To solve this
problem, the Client and the Server have to calculate their Private Set Intersection (PSI)
before running the PSA protocol. There are many efficient PSI solutions developed
already [23, 59, 51]. PSI is a protocol with two parties, each holding a set, where the
goal is to calculate the intersection of the sets without revealing anything else than the
intersection itself. The individual sets are kept private and are, therefore, not exposed to
the other party. PSI is not in this thesis’s scope but should be considered when using
PSA. Since the PSA core protocol suffers from a few privacy issues, it can be extended
with privacy-enhancing tweaks like masking and Differential Privacy [33] that eliminate
these issues. The whole Chapter 3 follows the work in the original paper [16]. We will
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discuss the internals of PSA and the additional privacy mechanisms in the following
sections.

Figure 3.1: A high level depiction of Private Selective Aggregation. The Client can
privately query a database for an aggregated result. Neither the query nor
individual entries in the Server’s data matrix are learned by the Client.

3.1.1 Protocol

In the protocol and during this writing we are using a Homomorphic Encryption scheme
HE = (HE.KGen,HE.Enc,HE.Dec,HE.Eval). In the beginning, the Client generates a
secret key sk and an evaluation key evk by running HE.KGen. The evaluation key is
needed to perform operations on encrypted data. Thus, the server also needs evk,
but transmitting it is not part of the protocol and remains an implementation detail.
The query of length N is encoded into a vector x ∈ ZN and encrypted to obtain the
ciphertext c← HE.Encsk(x). This ciphertext is sent to the server who holds a data matrix
Z ∈ ZN×k. The server in turn performs the compute step. That is, multiplying the
matrix Z with the encrypted input vector c. For computation in the encrypted domain,
the evaluation algorithm HE.Eval is required. It uses the evaluation key evk and outputs
h∗ ← HE.Evalevk

(
cT · Z

)
. After the computation, various privacy preserving techniques

are applied to h∗. These techniques will be discussed in the next section. h∗ is sent back
to the client who uses sk for decryption and obtains the result h← HE.Decsk(h

∗).

3.1.2 Privacy

As already mentioned, the goal of PSA is to provide the Client with aggregated data
obtained from the Server’s data pool without leaking any information other than that.
The input vector provided by the Client is not exposed to the Server in plain form. The
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Server does not learn any information about the vector, and the Client learns nothing
about the individual entries in the Server’s matrix since the values are aggregated in the
result vector. Nevertheless, when using the protocol in the wrong way, information leaks
can occur. Assume an input vector x ∈ Zn with n− 1 0s and a single 1:

x =


1
0
...
0

 (3.1)

Such a vector is highly possible. If the input vector holds only zeros except for a single
one, then individual privacy is in danger since this single one from the input vector will
lead to the aggregation of a single matrix entry in the result and is, therefore, visible
to the Client. Even if the Client does provide a multiple non-zero entries vector, the
information could still be leaked if the entries are, for example, tied to different contexts
and would allow an attacker to interpret the result in a way such that specific information
is leaked for every context individually. The Corona Heatmap from section 5.2.2 serves
as an example. The final output is a heatmap showing the geographical footprint of a set
of infected people. If the input vector is chosen so that there is a single 1 in the vector
for each geographical region, respectively, the footprint of each region’s person will be
visible in the output. To circumvent that, there are a few mitigation techniques a PSA
implementation should support.

3.1.2.1 Masking

There are a few issues in the plain PSA protocol presented. First, in some cases, a non-
binary query vector could render the resulting data invalid since this leads to duplicate
values in the aggregation and, therefore, to a distorted result. Second, a Client can target
single entries in the Server’s matrix by using a vector like the one in equation 3.1. As an
example, we again point to the Corona Heatmap from section 5.2.2 where a non-binary
query vector would lead to a heatmap where some of the infected individuals contribute
more than others, although there is no definition of a biased output. A vector as the
one described above would allow querying single individuals. To prevent said issues,
the idea is to optionally add masks to the result vector before sending it back to the
client. The masks are zero-valued if the Client follows the rules agreed on. If the Client
is dishonest, the result vector is randomized and of no use anymore. The simplified
concept is presented in Figure 3.2. All masking happens on the server-side after the main
computation has finished. The masks are added to the result vector and are not obligatory
but remain an option, although if no explicit statement is declared, we recommend using
them by default.

Non-Binary Masking. A non-binary query vector applies weights to specific entries
in the Server’s matrix and has the potential to enhance the utility of the protocol.
However, in some cases, such a query can distort the result in a way that would lead to
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Figure 3.2: High-level depiction of the masking process on the server side.

a sabotaged or simply wrong output regarding the specific application. To circumvent
that, we use a mask µbin. The mask asserts that only zeros and ones can be used in
the query vector. If the Client is dishonest and uses non-binary numbers, the resulting
vector will be randomized, and thus, the output rendered useless. To see if the query
vector x is indeed binary, the Server cannot simply check it since only the encrypted
version c is transmitted and cannot trivially be inspected. However, by using a trick very
close to the one used in the non-interactive zero-knowledge proof protocol Bulletproofs
[17], the vector can be checked. Since Homomorphic Encryption is used in this protocol,
the Server can compute in the encrypted domain. Even though c is a ciphertext, HE
enables us to do regular computations with it. The idea is to calculate d = c− 1 and
then the inner product 〈c,d〉, since this will result in a value of zero if c is indeed binary.
If it is binary, then d will hold a 0 at every index where c is 1 and d will hold a (−1) at
every index where c is 0. Therefore, computing the inner product will result in a scalar
with the value 0. Since the Client still has some chance to cheat, by constructing c in a
way such that some entries cancel each other out, a random integer y is introduced and
multiplied (Hadamard product) with d before calculating the inner product. The security
is further increased by independently checking for a binary c twice. The resulting binary
mask will then be:

µbin = 〈c, (d ◦ y1N )〉 · r1 + 〈c, (d ◦ y2N )〉 · r2

where r1, r2
$← Zt \ {0} are two random integers. The Server can apply this masking

without and further interaction with the user. Fortunately, this means that the Server
can check for a non-binary vector without permitting the Client to influence this decision,
let alone notice it.

Small or Wrong Hamming Weight Masking. If the Client sends a vector filled
with only 0s except for a single 1, the privacy of the Server’s data is not guaranteed.
Such a vector has a Hamming Weight of 1. The Hamming Weight (HW) of a vector is
defined as the sum of all elements in that vector. Such a vector would inherently lead
to the leakage of individual entries in the Server’s matrix. We prevent this by using
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another mask µHW. For this purpose, we modify the protocol and introduce more Client
interaction. The Client calculates the Hamming weight w of the query vector and sends
it to the Server together with the encrypted version of the vector c. To check if the
Client was honest and did not send a wrong w, the Server needs to compute it too, even
though the query vector transmitted is encrypted. The HW can be calculated in the
encrypted domain by the inner product of the input vector c and a vector 1N holding
only 1s. Next, the Hamming Weight w, provided by the Client, is subtracted from this
value to obtain the mask:

µHW = 〈c,1N 〉 − w .

If the Client is honest, µHW will result in 0. In the dishonest case, it will be a non-zero
value. It will later be multiplied by some randomness, unknown to the Client and added
to the Server’s final result. Thus, the final result will be rendered useless if the Client
was dishonest about w.

Final Mask Computation. After the masks are calculated individually, they have to
be combined in the last step, and some randomness must be added for further security
improvement. The two masks are added together to obtain the final mask:

µ = (µbin + µHW) · r

where r
$← (Zt \ {0})k is a random vector. This vector assures that a different random

value is added to every element in the final mask to prevent the Client from learning
anything about the mask if any values of the final result are known in advance.

3.1.2.2 Differential Privacy

Even if all communication is encrypted, the final result aggregated, and masks applied in
the end, there is still a security issue, e.g., in the context of mobility data when looking at
distinct geographical locations [70]. Again, in the Corona Heatmap from section 5.2.2, the
Client can form a query to target individuals of distinct geographical locations and gain
knowledge about these individuals. Therefore, it makes sense to introduce Differential
Privacy to PSA. It targets the unlinking of single entries in the Server’s matrix from the
output of the protocol by introducing noise accordingly. The details about Differential
Privacy are discussed in section 3.1.2.2.

Combining Masks and Differential Privacy. As a general rule, we recommend
using masking as well as Differential Privacy for PSA applications. However, in a few
scenarios, it might result in a too tight restriction. A user of Private Selective Aggregation
must carefully consider the circumstances and evaluate which privacy mechanisms fit the
application. We want to stress that all mechanisms are optional, and every combination
between them is possible. A depiction of the complete control flow related to the privacy
opt-ins is given in Figure 3.3. The query vector reaches the Server, and the compute step
is executed immediately. After retrieving the result, it can then be masked by either the
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Figure 3.3: High-level depiction of the optional privacy extensions in Private Selective
Aggregation. A dashed line indicates an optional path.

binary or the hamming weight mask, or both. Further, differential privacy can be applied
right after compute or directly after the masking. It is possible to use neither masking
nor Differential Privacy in rare cases where the plain PSA protocol already guarantees
full privacy, e.g., individual privacy is already implemented at the data-entry level.
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3.1.2.3 Security Analysis

So far, we described the PSA protocol and the mechanisms required to make it secure.
On top of that, we can now define what we mean by security and justify our claims.
First, we describe the terminology used in the following:

Semi-honest/malicious adversaries: We study the security of the protocol by using two
types of attackers. First, we have semi-honest adversaries who will follow the
protocol but may inspect any transcripts of it after execution, with the goal to
learn anything they should not. Second, there are malicious adversaries who might
deviate from the protocol specification arbitrarily and change inputs and outputs
in their aim to cheat.

Real-ideal paradigm: The real-ideal paradigm [43] is a security definition for multi-party
protocols. It compares the real protocol execution to an ”idealized” version of the
protocol where all computations happen honestly and channels are perfectly secure.
The standard definition of the idealized version today [19] defines no communication
among the parties directly, but the presence of an incorruptible third party acting
as a mediator. All of the other parties’ inputs are sent to this third party, which in
return handles the computation of functions locally and transmits possible outputs
to the corresponding party. A real-world protocol is said to be secure if any attack
carried out on the real protocol could also be carried out in the idealized one. This
type of security definition is also called simulation-based since a real-world protocol
execution is compared to a simulated version.

One-sided simulatability: First considered in the context of Oblivious Transfer[57] and
later formalized [47], one-sided simulatability is a relaxation of the simulation-based
definition. It defines full simulation for one party and privacy via computational
indistinguishability (see paragraph 2.0.2) for the other party. Privacy can be proven
by showing that the corrupted party cannot distinguish between inputs.

PSA achieves simulation-based security against semi-honest adversaries while preserving
the privacy of the Client’s vector against a malicious Server. This is proven by defining
the ideal execution of the protocol and checking it against a real execution.

Security Against Semi-Honest Adversaries. The proof works by showing that a
real-world execution with a semi-honest adversary is indistinguishable from the idealized
execution run by a simulator. This can be achieved by defining a system that breaks the
IND-CPA security (see paragraph 2.0.2) of HE. That is, we reduce the security of PSA
in the semi-honest adversary setting to the security of IND-CPA. The full proof can be
found in the original paper [16] in Appendix B.

Security Against Malicious Adversaries. It is not trivial to achieve simulation-
based security against a malicious adversary since we cannot control what is sent by
either party. Therefore, we focus on the privacy of the Client’s vector x by proving its
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privacy in a malicious Server setting. Since the vector is homomorphically encrypted
before transmission, the Server needs to break HE’s semantic security. Therefore, we
again reduce the security to IND-CPA security of HE. That is, PSA achieves privacy of
x against a malicious Server. The full proof can also be found in the original paper.
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Bringing PSA to the Web

Systems running PSA rely on Homomorphic Encryption. Therefore, they require an
underlying implementation to power the HE part. There is already a considerable
amount of libraries available of which a large proportion is implemented in C++ or
other languages restricted to execution in native environments. Popular libraries are e.g.
HElib1, SEAL2, and TFHE3. A current implementation of an PSA application, called the
Corona Heatmap 4 is based on SEAL. There is also a library called node-seal5 written in
Javascript, utilizing the WebAssembly6 API. By using this library, we can bring PSA to
the web, supporting completely new kinds of applications. The user does not have to
carry out an installation process but instead can simply open the browser, head over to a
URL, upload data, and execute the protocol with no prior setup. The enhancement in
usability eases the adoption of the technology. In this chapter, we discuss the frameworks
and libraries used in PSA, its general performance, caveats, its proper usage and where
to get it.

4.1 Technology in PSA Lib

To bring PSA to the web, we utilize a variety of different libraries and frameworks. The
most important one is node-seal which builds on top of SEAL by Microsoft and offers
support for Homomorphic Encryption in javascript. Additionally, we make heavy use
of Node.js, on which the library depends. Nevertheless, the PSA library can run in a
browser through a Node.js powered frontend library like, e.g., React or Angular.

4.1.1 Node.js

Node.js7 is an open-source Javascript runtime that enables Javascript applications outside
a browser. It uses a non-blocking, event-driven I/O model to be lightweight. Originally,
Javascript was developed for the web to manipulate the internal representation of HTML

1https://github.com/homenc/HElib
2https://github.com/microsoft/SEAL
3https://tfhe.github.io/tfhe/
4https://github.com/IAIK/CoronaHeatMap
5https://github.com/morfix-io/node-seal
6https://github.com/IAIK/CoronaHeatMap
7https://nodejs.org/en/
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documents in the browser, which enables interactive web pages and dynamic content
rendering. In the area of web development, JavaScript gave rise to full-stack web
developers working on both the client and the server-side of an application [66]. The
community is growing fast which leads to a continuous increase in the number of available
packages for Node. Popular frontend libraries like React or Angular are using Node for,
e.g., their building and bundling process or to spin up a local web server for easier testing.

4.1.2 SEAL

SEAL is one of the most popular open-source Homomorphic Encryption libraries. It was
developed at Microsoft and has been adopted by both academic [16, 32] and industry
professionals89. The goal is to ease the complexity of Homomorphic Encryption and
make it accessible to people unaware of the cryptographic internals. It is written in
C++ with no external dependencies and continuously updated by Microsoft. Since
Homomorphic Encryption is a non-trivial topic, it includes many easy examples with
extensive commentary to better understand the library.

4.1.3 Node-SEAL

Node-seal10 is an open-source homomorphic encryption library in JavaScript which
builds on top of Node.js and SEAL by utilizing Web Assembly. It brings homomorphic
encryption to any JavaScript environment, including browsers. The name node-seal is
misleading to some degree since it suggests that only Node.js environments can run the
library. Node-SEAL is very similar to SEAL and requires no additional dependencies.
The usage feels very close to SEAL, since it directly calls the C++ functions via the
WebAssembly API. Web Assembly is a portable low-level byte code that was developed
for the web and is cross-browser compatible. WebAssembly has a low-level syntax that
can be automatically compiled from C++, C, or any other supported language. The
resulting file has the ending .wasm, which stands for WebAssembly. Optionally, one
could write web assembly manually in a .wat file, which is the WebAssembly Text format.
The syntax is very similar to regular assembly language. However, it should be viewed
more like the smallest set of commonalities between all common assembler languages.
Compiling a supported language can be done with Emscripten11, a compiler toolchain
built on top of LLVM and focused on the web platforms. The resulting WebAssembly
code can be much faster than conventional JavaScript code since tasks like memory
management and object references are performed manually and under the developer’s
control. The byte code can then be loaded with JS by so-called glue-code, very much like
a module and executed within a browser. Figure 4.1 depicts the process of transforming
native code to a module that a browser can run.

8https://www.intel.com/content/www/us/en/artificial-intelligence/posts/he-transformer-for-ngraph-
enabling-deep-learning-on-encrypted-data.html

9https://techmonitor.ai/techonology/cloud/homomorphic-encryption-microsoft
10https://github.com/morfix-io/node-seal
11https://emscripten.org/
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Figure 4.1: The web assembly pipeline: Starting with regular C/C++ code through to
its execution in a browser.

4.2 PSA Library

To build arbitrary web applications relying on PSA, we released a publicly accessible
library in JavaScript12. The library is standalone and does not need any dependencies
other than node-seal. We focused on building it in a way that makes it easy to adopt and
provide a variety of adjustment options to the user. The PSA library can be finetuned
according to the particular application. The parameters of the library are passed down the
hierarchy to the underlying SEAL instance. Users can choose the plaintext modulus, the
polynomial degrees, the security level, the compression method used by SEAL internally,
masking, and differential privacy. Choosing suitable parameters heavily depends on the
underlying application and should include trial and error to some degree.

4.2.1 Performance

Since server and browser environments run JavaScript, it is the optimal language to make
it widely accessible. The PSA library can be used in everyday applications without the
overhead of installing software on the local machine. Even in server environments it is
easy to set up the toolchain using the Node Package Manager (NPM). For browsers it is
only required to visit a particular site referenced by its URL. However, since JavaScript
code is not native and has to be interpreted or JIT-compiled first, an application could
be slower than a similar one written in C or C++ by multiple factors. To clarify how
this implementation performs and compares to an implementation in a more low-level
language, we ran a variety of benchmarks on a cluster node with 20 logical cores, an Intel
Xeon E5-2660 v3 @ 2.60GHz CPU and 32GB RAM. Unfortunately, the implementation
cannot fully utilize the multi-core environment since JavaScript follows a single-threaded
design. We could spawn so-called Worker threads which are very similar to regular
threads. However, spawning threads in JavaScript breaks its fundamental single-threaded
design, and the computational overhead for doing so is not worth it. In this section, we
provide detailed information about the PSA library’s performance and compare it to an
implementation in C++.

12https://www.npmjs.com/package/psa-lib
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4.2.1.1 Preliminaries for Reading the Results

In order to gain meaningful test results, we need to measure the right aspects of the
library. Using a HE scheme in practice has some implications which we want to discuss
before considering the test results. We use BFV for homomorphic operations in our
implementation since it is the most appropriate scheme for PSA offered by node-seal.
In BFV, certain parameters must be chosen before doing any computations. We will
discuss the parameters in further detail in section 4.2.4.2. For now, the most important
parameters are the plaintext modulus p, the ciphertext modulus q, the security level κ,
and the degree of the polynomial modulus n that determines the so-called slot size. If
a user of SEAL wants to use an array of length N for computation, the user must first
encode and then encrypt it. N is required to be smaller or at most equal to n. The
array will be accessible in the encrypted domain in the form of a matrix with dimensions
2× n

2 . Various operations like addition, multiplication, and rotation can be applied to it.
Internally, the library is using the diagonal method [44] with the baby-step giant-step
technique [45, 46] applied to it for multiplying the input vector c ∈ ZN with the matrix
Z ∈ ZN×k. This techique requires rotations of c. Since c is split into two rows in the
encrypted domain and we can only perform the rotation for each row separately, we cannot
simply do a multiplication between c and Z directly, but have to do the multiplication
for each row in c separately. As a consequence, we have to split Z into submatrices.
The total number of vector-matrix multiplications is given by #MatMul = vecsn ·matsn,
where vecsn =

⌈
N
n

⌉
and matsn =

⌈
2k
n

⌉
, and vecsn and matsn are rounded up to the next

multiple of n if they are not already a multiple. We will occasionally use #MatMul in
relation to execution time when measuring the library’s performance.

4.2.1.2 Runtime

The PSA library’s runtime is influenced the most by the internal encrypted multiplication
between the input vector and the matrix. Although many more operations are executed
next to the multiplication, it is sufficient to measure only this particular part to gain
accurate insights into the overall library’s performance. All other tasks are neglectible in
terms of runtime. Table 4.1 lists different performance test runs for various parameter
sets and indicates the number of needed matrix multiplications and the consumed time.
One can observe a considerable performance loss when using larger parameter sets, i.e.,
increasing the reduction polynomial n. This helps to allow more computations until the
noise budget is finally consumed but comes with the drawback of high computational
cost and larger ciphertexts. Regarding memory consumption, one needs to be cautious
since the matrix provided as an input to the library can already exceed the limits of
the machine running the library. Consider Nr. 12 in Table 4.1, where the matrix is of
dimensions N = 163840 and k = 40960. The size of this matrix in memory, provided that
the JavaScript’s Number type has 8 bytes, is 50 GB. The processing of this amount of
data was only possible by generating the matrix values separately during the computation.
For future work based on the PSA library, we recommend to proceed in the same way.
The library itself does not use unexpected amounts of memory for its internal datatypes.
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BFV Matrix #MatMul Runtime
Nr. log2(p) log2(q) n κ N k total min

1 33 218 8192 128 8192 4096 1 1.61
2 33 218 8192 128 40960 4096 5 8.18
3 33 218 8192 128 81920 4096 10 17.10
4 33 218 8192 128 163840 4096 20 32.45
5 33 218 8192 128 40960 20480 25 40.40
6 33 218 8192 128 98304 32768 96 154.69
7 42 438 16384 128 16384 8192 1 10.48
8 42 438 16384 128 81920 8192 5 53.27
9 42 438 16384 128 163840 8192 10 109.67
10 42 438 16384 128 327680 8192 20 217.65
11 42 438 16384 128 81920 40960 25 269.77
12 42 438 16384 128 163840 40960 50 542.44

Table 4.1: Runtime in minutes for the encyrypted matrix multiplication for different
parameters.

However, SEAL is using a particular compression method named ZSTD [65]. The
implementation of the compression had a bug13 which was present until version 3.6.1.
Due to this bug, memory consumption was very high in node-seal and, therefore, in the
library. Earlier versions of the PSA library use the buggy version of SEAL. This was
fixed in the latest release where memory consumption is now stable. However, users of
the library should ensure to always use the latest version.

4.2.1.3 Linear Dependency

The runtime of the protocol depends on the size of the matrix. It does not matter which
of the two dimensions is increased. The runtime will eventually increase roughly by the
same amount for both dimensions. Figure 4.2 shows the linear increase of the runtime
depending on the number of matrix multiplications. This allows a prediction of the
protocol’s runtime for a particular set of dimensions N and k.

4.2.1.4 Performance Compared to C++ Implementation

Comparing the JavaScript version to the one in C++, we conclude that JavaScript is
slower by a factor of approximately six. Fortunately, it is consistently slower by this
factor, which makes it possible to predict the runtime of applications with parameters
that have not been tested before. This result also indicates that C++ is suited better
for very large applications and JavaScript for smaller ones where the time difference
is negligible. The difference in runtime becomes more significant as the application’s

13https://github.com/microsoft/SEAL/issues/248
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Figure 4.2: Linear dependency of the runtime of the matrix multiplication and the number
of MatMul evaluations. BFV parameters used: log2(p) = 42, log2(q) = 438,
n = 16384, κ = 128.

complexity increases. An application running six seconds rather than one second may
seem tolerable. However, the impact becomes more clear when running an application
for six hours instead of one hour. In the following, we present Table 4.2 and Figure 4.3,
showing directly how the JavaScript implementation compares to the C++ one.

4.2.2 Tools Used

We were trying to keep the library’s dependencies as small as possible to minimize the
bundle size. We accomplished using node-seal as the only dependency since the library
would not work without it. Besides that, we used code prettifier, testing, and debugging
tools. However, they were exclusively used during development and had no impact on
the execution of the library. The library was developed using Node.js version 14.15.1.
However, users are free to choose an older version from Node 10 and above.

4.2.3 Compatibility

Developing JavaScript libraries that are meant to work in browsers as well as server
environments is a bit tricky since those two environments differ a lot in their structure
and context. Even the JavaScript engines used to execute code are not the same in some
cases. Every browser has its own implementation. For JavaScript on server environments,
Node.js serves as a runtime. However, Node’s development was not always in sync
with the advances of the browser-operated JavaScript implementations. When it comes
to the concept of modules, the two environments differ quite a bit. For a very long
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Matrix JS C++
Nr. N k min min

1 16384 8192 10.48 1.70
2 16384 40960 53.27 8.43
3 81920 8192 54.68 8.45
4 16384 81920 108.75 16.88
5 163840 8192 109.67 16.88
6 16384 163840 220.79 33.75
7 327680 8192 217.65 33.76
8 81920 40960 269.77 42.20
9 163840 40960 542.44 84.35

Table 4.2: Runtime in minutes for both the JavaScript and C++ implementation for the
parameter set: log2(p) = 42, log2(q) = 438, n = 16384, κ = 128.

time, JavaScript code had to be written in a single file since there was no option to
include other JavaScript files in an existing file. The arrival of a combination of modules
and a defining standard was a long time coming which led to a variety of different
implementations for every environment. It differed not only in the syntax but also in
the way the modules were loaded. In browser implementations, modules were loaded
asynchronously, while in server environments, they were loaded synchronously. Browsers,
in general, used RequireJS14 based on the AMD (Asynchronous Module Definition) spec
to import JavaScript modules, while Node.js used the CommonJS15 module spec. The two
syntaxes are not compatible with each other. Nevertheless, it is possible to support both
environments. We wrote our files in CommonJS Syntax and used Babel16 to transpile
them to RequireJS syntax. In the bundle, we provided both files so that a specific
environment can use the corresponding file. We can support even older environments
with this solution since newer ones implement the ES6 Modules standard.

4.2.4 Usage

The library is publicly available and accessible by the Node Package Manager17. It
can be used in any node-powered environment that supports package management by
any common managers like NPM or yarn. This includes React, Angular, Express.js
applications, and many more. The PSA library is installed by running npm i psa-lib

from the command line so that the bundle gets registered in the according package.json file.
The interface of the library is straightforward and has a high usability. The source code,
together with an API documentation, is available in the official GitHub repository18. In

14https://requirejs.org/
15http://www.commonjs.org/
16https://babeljs.io/
17https://www.npmjs.com/package/psa-lib
18https://github.com/Safe-DEED/PSA

25



Chapter 4 Bringing PSA to the Web

Figure 4.3: PSA runtime of JavaScript implementation compared to C++: time in
minutes required to do a certain amount of MatMul evaluations using a
parameters: log2(p) = 42, log2(q) = 438, n = 16384, κ = 128.

the Readme, we discuss the library’s installation procedure and give a detailed description
about implementation details. If a user already knows which application to build on top
of the PSA library, all relevant information can be found in the repository. However, if
a user is unsure which problems are best solved with this library, the following section
gives an overview of the possibilities. We summarize the most important informations in
respect of developing applications with the library in more detail:

1. Client and Server agree on a set of parameters in advance

2. Client and Server instantiate the library on their end (e.g., import PSA from

’psa-lib’)

3. Client and Server create an corresponding context with the parameters agreed on

4. Client passes his data to the library for encryption
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5. Client transmits resulting encrypted vector to the Server

6. Server passes his matrix and the encrypted Client vector to the library and computes
the result vector

7. Server sends result vector back to the Client

8. Client decrypts the resulting vector to obtain the result in plain form

4.2.4.1 Logical separation

To understand the mechanics and in further consequence the proper application of the
PSA library, it is most helpful to seperate the library into logical components. The very
constituents are states, environments, inputs, and outputs. A depiction of the mentioned
seperation is given in Figure 4.4

Figure 4.4: The PSA library seperated into its logical components. Here one can clearly
see how states are transitioning across environments.

States. There is a direct control flow from the start of the protocol to the end on a very
high abstraction level. In between, there are the following states which mostly depend
on a previous state:

1. Context Creation
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2. Encryption

3. Computation

4. Decryption

Every state is associated with executing a set of tasks that are not crucial at this
abstraction level. Although all state transitions happen sequentially, they do not happen
in the same environment.

Environments. An environment is a context in which a particular instance of the
library is running. This differs from Client to Server. The Server takes a whole different
part in the protocol compared to the Client, and the underlying executing platform can
be technically different. The user only needs to know whether a particular instance of
the library should run in a client or server environment. The library then handles the
technical discrepancy. The library’s user does not have to worry about running the code
in the browser or on a Node.js platform.

Inputs and Outputs. Since PSA is a protocol that demands interaction by two parties,
state transitions and their outputs depend on specific inputs. Obtaining the required
inputs need inter-environment communication, which is often performed on untrusted
networks. The library does not handle the network part since this is highly dependent on
the application and should remain the library user’s responsibility. The library’s function
calls yield objects which should be marshaled and sent to the opposing party.

4.2.4.2 Determining Parameters and Execution Environment

Choosing suitable parameters for the library is not trivial and requires careful considera-
tion of the application’s characteristics and edge cases. There are some parameters for
which the right adjustment can be found very easily and some which may involve trial
and error. Since the PSA library works across environments, a user must also decide
whether the application will be executed in a browser or on a node environment. In this
section, we will describe the parameters as well as the environments and give suggestions
on the optimal usage based on our experience.

Parameters. The PSA library needs a block of configuration variables in JavaScript
Object Notation (JSON) form. The object is passed into the functions that create
the Client and Server context, respectively. The keys in the object have to be chosen
carefully. Some of them correspond to the parameters used in BFV [37], the underlying
Homomorphic Encryption scheme. We give a description and recommendations of all
keys below:

polyModulusDegree: Determines the degree of the polynomial modulus used in BFV.
We recommend a value of 4096 when the application runs without any masking
and holds limited data. It has to be either 4096, 8192, or 16384. Choosing higher
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values for the polynomial modules’ degree enables more complex computations but
makes computations slower and results in a larger ciphertext size.

plainModulusBitSize: Bit size of the plaintext modulus used in BFV. It must be set
according to the maximum values needed in the application. Increasing the modulus
results in a larger plaintext size and more noise budget consumption in multiplica-
tions. It should be kept as low as possible.

securityLevel: The security level in bits. We recommend 128 bit as this is usually suffi-
cient. A higher security level means higher security overall but slower performance.

compression: The compression method used internally for serializing and deserializing.
It can be either zstd, zlib, or none. We recommend using zstd since it is the fastest.
However, it may use slightly more memory than zlib.

maskHW: A boolean value determining if hamming weight masking should be applied.
If active, the client query vector’s hamming weight must have the value of the next
parameter minHW at minimum. We recommend activating the hamming weight
mask, otherwise individual matrix entries can be queried directly.

minHW: If maskHW is enabled, minHW determines the HW value the client query
vector must have at a minimum. This parameter heavily depends on the application
and can be adjusted accordingly.

maskBin: A boolean value determining if binary masking should be enabled, that is
restricting the Client to use only zeros and ones in the query vector. If the
application requires weighted query entries, we recommend disabling this mask.

createGkIndices: Internally, the library uses a so-called Galois Key for rotation opera-
tions. When creating the Galois key at the creation of the Client’s context, one
can enter the rotation indices to make the rotation operations faster. This results
in more RAM usage but increases performance in very large applications. We
recommend setting this value for anything working with polyModulusDegree higher
than 4096.

diffPriv: Boolean value determining if differential privacy measures should be applied.
This results in a security-utility trade-off. Values drawn from a Laplace-Distribution
are mixed into the final result to protect individual data entries. This process is
parametrized with sensitivity and epsilon. We recommend setting this value to
true. For detailed information about Differential Privacy and its parameters, we
refer back to section 3.1.2.2.

sensitivity: The sensitivity refers to the largest possible difference that a change in data
can make. Such a change might expose individual data and should be mitigated in
all applications. Sensitivity can be computed exactly for every application.

29



Chapter 4 Bringing PSA to the Web

epsilon: The level of noisiness is controlled with epsilon. Smaller values result in more
privacy. However, the utility of the protocol might suffer from a too-small epsilon.
Therefore, it should be chosen in a way that results in maximum privacy while still
having sufficient utility.

Execution Environment. There are two different environments in which the PSA
library can be executed. On one hand there is the browser, on the other hand the Node.js
environment. These two environments differ significantly. However, in the case of running
a PSA application, everything can be broken down into a few key differences.

Browser. The browser is a computationally weak environment since it usually runs
on a personal computer. It offers a graphical user interface and needs user interaction. A
browser fits very well when operating as a PSA client. If the data returned by the Server is
meant to be visualized, this can be done smoothly in the given environment. It is straight-
forward to load data from the local filesystem into the browser, and usually the Client’s
vector is a few factors smaller than the Server’s matrix. All the heavy computations are
done on the server end, therefore the browser is the optimal environment for Clients
with limited memory and computational power but high interactional requirements. A
browser as a server will be limited in the variety of applications. It is probably only an
option for small PSA applications with low computational requirements since machines
with optimized efficiency are usually not set up with a browser, let alone a graphical user
interface. Such machines are heavily used in cloud computing and backend environments
but rarely to browse the web. Usually, if heavy computational work has to be done in the
web, the browser requests help from such a server and relais the computation. This could
also be done with PSA. A weak machine, set up with a browser, could be used as the
interface to upload data and configure PSA on the server-side. As soon as the PSA client
sends its query vector, the request is relayed to a powerful backend server to execute the
compute step, optionally transferred back to the server-side browser environment and
then sent back to the PSA client. The data can also be sent from the backend directly
to the PSA client. Figure 4.5 shows how this is done on a high level. The process of
relaying the heavy computation can be made entirely invisbile for the PSA Client.

Node. Node is an environment commonly used to power web backends and other
server environments. It does not need any graphical user interface or intervention by a user.
In web applications, it usually powers a web server and handles database communication.
It was made for computationally intensive tasks and to initially solve the I/O scaling
problem [25]. A user cannot interact with Node via a graphical user interface directly
but can program it to be as dynamic as required. In the browser scenario, input files
and process configurations can be loaded into the browser via the File API. If the files
are static or known before the protocol’s execution, then a PSA environment based on
Node is probably the better and faster choice. Node performs well on I/O tasks. It is
possible to set up the PSA client library instance as well as the Server one in a Node
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Figure 4.5: A PSA client browser communicating with a PSA server browser. The heavy
computation can be relayed to a powerful computer.

environment and not use any browser at all since the library is environment-independent
for both the Client and Server end.

4.2.5 Infrastructures in Implementations

After discussing the PSA library’s technological basis, its performance, and the fundamen-
tal environments in which the PSA library can run, we want to give some recommendations
about a real-world infrastructure and communication between Client and Server. Since
there are two environments in which the library is able to run, namely browser and Node
environments, it follows that there are four setups that are equally valid and should be
discussed for future implementations. Additionally, the PSA protocol does not specify a
transportation layer or states how to connect the environments. In an actual application,
the two environments have to communicate. One option to realize this is via a WebSocket
server. This server cannot be hosted in a browser and might need the involvement of
a third party. We will shortly discuss the security implications of a third party and
introduce the four setups.

4.2.5.1 Security Implications of a Third Party

It should be kept in mind that the WebSocket server only acts as the mediator between
the PSA Client and Server since they cannot communicate directly in certain setups.
All communication is encrypted, and the third party is not able to read any messages.
However, some problems arise as the third party turns out to be malicious:

Denial of Service: The third party could hinder Client and Server from communicating
and deny the service. This can be very problematic in applications where, e.g.,
human lives depend on the output of the protocol. This problem can only be
circumvented by placing the WebSocket server at one of the two parties.
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Impersonation: Since the Server does not authenticate itself and prove its identity,
the malicious third party can impersonate it. This can only be circumvented by
introducing authentication into the transport layer or by placing the WebSocket
server at one of the two parties.

Replay attack: The original protocol defines a new secret key for every run. However,
this can easily be overlooked in implementations. The key could be reused and
sockets held open to “improve efficiency”. If the secret key is reused, a malicious
third party can reuse an old input vector to query the Server or return an old result
to the client. This can be circumvented by assuring correct implementation and,
therefore, a new key for every protocol run.

4.2.5.2 Browser-to-Browser communication

The browser-to-browser scenario is the only one in which no direct communication can
be established since a WebSocket server cannot be hosted in a browser environment.
Communication between two browsers must happen through a third party. This schematic
is depicted in Figure 4.6. It is an option to host a Node environment separately at the

Figure 4.6: The browser-to-browser setup: Communication cannot happen directly since
neither of the browser environments can host a WebSocket Server. A third
party is needed.

Client or Server side, although this defeats the purpose of this easy-to-use scheme. In this
case, it is not anymore as easy as just heading to a website, since either Client or Server
needs to execute a Node environment running a WebSocket server in addition to the
browser environment. Nevertheless, the data always remains encrypted on its way, and
the third party only acts as a mediator. This setup allows for adoption by a really broad
field and is very user-friendly. Another option is to make the connection peer-to-peer and
let both browsers communicate directly. However, setting up peer-to-peer connections
requires loads of configurations and is not trivial in case vast amounts of data are sent.

4.2.5.3 Browser-to-Node communication

This case is probably the most common one since the heavy computation is done on the
server end. As a consequence, a solid Node environment on the server side seems to be
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the most efficient solution. A big advantage of this setup is that since there is already a
Node environment at the Server’s end, the WebSocket server can also be placed in this
environment, and communication happens directly between Client and Server without
the need of a third party. Figure 4.7 gives an idea of this scenario.

Figure 4.7: The browser-to-node setup: Communication happens directly between the
two parties since the WebSocket server is placed in the PSA-Server Node
environment.

4.2.5.4 Node-to-Browser communication

The node-to-browser case is probably not the most practical one since the PSA client
usually only provides an array to the Server and is not involved in heavy computations.
Nevertheless, this case should be discussed. Having a PSA server in a browser at the
Server’s end seems legit in some cases when uploading of the required files should happen
manually. It enables technology laymen to handle the Server’s end via the Graphical
User Interface (GUI). Fortunately, since the Client is running a Node environment, the
WebSocket server can be placed in this environment, and direct communication between
the two parties can happen without bringing in a third party. This setup is shown in
Figure 4.8.

Figure 4.8: The node-to-browser setup: The WebSocket server is placed at the PSA-
Client’s Node environment such that communication happens directly between
the two parties.
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4.2.5.5 Node-to-Node communication

Communication between two Node environments is an option, e.g., when the Client and
Server are highly automated or perform a high number of I/O operations. In this case,
the Web Socket server could be placed at either the Client or the Server. These two
scenarios are depicted in Figure 4.9. Again, in this scenario, no third party is required,

(a) WebSocket server at the Client side

(b) WebSocket server at the Server side

Figure 4.9: The node-to-node setup: The WebSocket server is placed either at the Client
(a) or the Server side (b). No third party is involved, and applications in this
setup can be made highly efficient and dynamic.

and communication happens directly. This setup allows complex constructions and is
flexible since Node supports many packages by its package manager acrshortnpm and
enables users to build solid APIs around its applications.

4.2.6 Caveats

There are few limitations imposed by the library which users should keep in mind during
the development. In the following, we provide some information about constraints and
limitations:

BigInt limitations: JavaScript’s built-in Number primitive type only supports numbers
not larger than 253 − 1. For numbers higher than that, the BigInt19 interface
provides a way to represent whole numbers larger than that. The library utilizes
BigInts internally and would therefore allow numbers of arbitrary size. However,
the library’s node-seal core was compiled with Emscripten, which only supports
the wasm32 datatype that cannot handle numbers larger than 232 − 1. This means,

19https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/BigInt
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when data is sent from the JavaScript layer to the WebAssembly layer of the
application, data gets corrupted if it surpasses the limit. The way this was solved
in node-seal is that BigInts are marshaled into strings, passed to the WebAssembly
layer, and then, in C++, unmarshalled and converted into a 64-bit data type. It
follows that, although a BigInt can theoretically hold numbers of arbitrary size, it
is limited to a maximum of 64 bit in the PSA library.

Polynomial modulus limit: We believe that using a polynomial modulus degree higher
than 16384 is out of the scope for most of the applications using the JavaScript
implementation of PSA and thus do not offer such. Nevertheless, if a library user
wishes to use higher degrees, they can be implemented easily.
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PSA In Real World Scenarios

The PSA protocol can be generically applied in many different areas. However, sometimes
it is not initially clear if using PSA on a specific problem is the right choice since there is not
enough reference available. In this chapter, we comprise some practical PSA approaches
with concrete examples to develop an understanding of proper PSA utilization in the
reader. We describe specific industry problems and demonstrate solutions based on
Private Selective Aggregation. For two of the scenarios, we developed a webapp in
JavaScript, utilizing the PSA library.

5.1 Preliminaries

For all PSA scenarios, it is required that Client and Server store their data entries in
the same order since they have to match when computing the internal vector-matrx
multiplication during the execution of the protocol. There are multiple ways to achieve
this. The most secure one would be to use a Private Set Intersection (PSI) protocol.
We shortly discussed PSI in section 3.1. For the description of the use cases below, we
assume already matching data indices and focus only on the data itself. Additionally, the
result of the protocol will be represented by PSA(x, Z, p), where x ∈ ZN is the Client’s
input vector, Z ∈ ZN×k is the Server’s matrix and p is the PSA instance’s parameter set.
We will not specify the parameter set any further since it depends on the size of the data
and the application itself.

5.2 Connecting Mobility to Infectious Diseases

As of April 2020, the world faces an exceptional state due to the SARS-CoV-2 virus and
the resulting corona disease. On March 11 2020, the World Health Organization (WHO)
declared it as a pandemic1. The Austrian government is working in cooperation with
mobile carriers23 to track people and monitor the spread of the disease. The scientific
community is developing many strategies, like contact tracing [28, 4, 21], anonymous

1https://www.euro.who.int/de/health-topics/health-emergencies/coronavirus-covid-19/novel-
coronavirus-2019-ncov

2https://www.reuters.com/article/us-health-coronavirus-europe-telecoms/european-mobile-operators-
share-data-for-coronavirus-fight-idUSKBN2152C2

3https://www.trendingtopics.at/coronavirus-a1-liefert-bewegungsprofile-der-bevoelkerung-an-
regierung/
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collocation discovery [20], decentralized contact tracing [9] and other approaches with
location data. The Corona Heatmap4 is another contribution based on PSA. Currently,
there is a C++ implementation [2]. We contribute an implementation in JavaScript
based on our PSA library. We will describe the JavaScript implementation in detail later
in this section and want to stress, that the implementation is not an official application
but rather a showcase pointing out how this system could be used.

5.2.1 Corona Heatmap Scenario

To monitor the spread of the disease, one idea is to privately link mobility to individual
infection. The idea is based on the fact that both, Mobile Carrier (MC) and the Ministry
of Health (MH), possess a list of phone numbers with a certain intersection. This
intersection is of great significance since, for every phone number in this set, the MH
knows whether it is linked to a positively tested person, while the MC possesses a
comprehensive geographical footprint of this person. This is enough information to draw
a heatmap depicting the spread of the disease. However, due to user privacy protected by
the General Data Protection Regulation (GDPR) and restrictions along with it, this is not
a trivial problem. It would pose a privacy intrusion if two datasets holding information
about individuals were linked naively. This process has to be done privately without
exposing any data. Private Selective Aggregation is of optimal use here since it allows
for a confidential generation of the said heatmap. The MH queries the MC for the
geographical footprint of positively tested people by providing information about them
in encrypted form. The MC generates a list with one entry per person in his network.
Each entry holds the duration a given person was registered by any cell tower among the
observed ones. The list remains encrypted at any point in time, such that the MC does
not learn anything. In the end, the list is sent to the MH, which decrypts it and uses it
to generate a heatmap based on the cell tower locations and the total durations spent at
each location. This process is shown schematically in Figure 5.1.

5.2.1.1 Ministry of Health

The Client in this scenario is the Ministry of Health. If people are infected with the virus
and tested positively, the ministry has information about this. As the query vector of
length N , we define x = (x1, x2, ..., xN ), where xi = 1 if the patient at index i is infected.
If the patient at index i is not infected or i is an index generated due to the preceding
execution of an PSI protocol or another process to get matching indices, then xi = 0.

5.2.1.2 Mobile Carrier

The Server is the Mobile Carrier that holds a matrix Z with dimensions N × k. Every
row corresponds to a client ci, where i is in the range from 1, ..., N and every column

4https://covid-heatmap.iaik.tugraz.at/en/
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Figure 5.1: A high level depiction of the steps required to generate the Corona Heatmap.

corresponds to a cell tower tj , where j is in the range 1, ..., k. An entry zi,j in the matrix
tells the exact duration a client ci was present at a specific cell tower tj .

5.2.1.3 Result

When computing on the query vector and the matrix, the result is a vector holding the
aggregated presence durations at towers t1, ..., tk. In means of this vector, a heatmap can
be drawn. Cell towers with higher presence durations hint towards a hotspot of infected
people.

5.2.2 Implementation

For this thesis’s purpose, we implemented a showcase for the Corona Heatmap by utilizing
JavaScript in combination with the PSA library. We chose to use the browser-to-browser
setup from section 4.2.5. On top, we built an infrastructure for communication between
Client and Server based on Node.js and added a front-end based on the popular front-
end library React5. In this section, we are describing general design decisions and
implementation details. This serves as a guide for possible future projects evolving from
our work. If peers decide to extend this project or simply use it, this section will give the
necessary technical information.

5.2.2.1 Frameworks

The web is a fast-paced environment. One should evaluate the decision of which frame-
works to use and which technology to use very carefully. We intended to build the Corona

5https://reactjs.org/
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Heatmap with the most modern and most easy-to-use tools and still assure to some level
that that those tools will be relevant and in use for a longer period of time. It is a very
tiring process to learn an outdated framework to be able to work on an old project. The
most trivial idea is not to use any frameworks at all. However, the cost of developing and
maintaining an application based on the plain web languages JavaScript, HTML, and
CSS, rises very fast with the project size. Therefore, we decided to use a few libraries for
the sake of easy maintenance.

Front-end implementation details. For the development of the front-end, we had
to choose between React, Angular, and Vue. Those are the most used frameworks and
have been well established for a few years. Angular had many breaking changes in the
past and is a very heavy framework. Although Google supports it, it would be too
much of an overhead to use it here because of all the boilerplate code needed to run
a simple application. Vue is very lightweight but not as well established as React and
Angular. Many developers nowadays head for either React or Angular, so the probability
of losing Vue as a web framework is much higher than React or Angular. We chose
React as the best fitting option since it is supported by Facebook and easy to use due
to its component-based nature. Our focus heavily relies on separating implementation
concerns to reuse code and make application maintenance as easy as possible. React
is the optimal tool for that. In addition, we use Material-UI6 as a components library.
This library provides web components for easier building of modern websites based on
Google’s design guideline Material Design and works in conjunction with React. It offers
ready-to-use buttons, navbars, sliders, and much more.

Back-end details. The front-end requires a server to handle requests, provide files,
and store data. This unit is called the back-end. There are many options in our case. One
possibility is to use a Java back-end with the popular Spring framework, Python with
Django or Flask, or Node with Express.js. Spring is well established and is well supported
by its online community. Python is a very easy-to-use language, and Django works quite
well. However, we decided to use Express.js because more and more developers are using
it, which leads to a higher chance for long-time adoption. It works very well with heavy
I/O work. The development happens in JavaScript. It follows that a developer is only
required to learn JavaScript to work on the front- and back-end. These reasons lead us
to the decision to go for Node with Express.js. For the communication between Client
and Server we set up a WebSocket server based on the NPM package websocket7. This
library provides a pure implementation of the WebSocket standard.

5.2.2.2 Application Infrastructure

When executing the Corona Heatmap, Client and Server communicate with each other.
The PSA protocol itself does not specify a transport layer, so implementations have

6https://material-ui.com/
7https://www.npmjs.com/package/websocket
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to specify this layer independently. The client, as well as the Server, can either be
implemented as browser or Node end. In this implementation, we chose to use a browser-
to-browser case. In our opinion, this case is the most remarkable one since users do not
have to install anything and can simply head to a website. However, since we chose the
browser-to-browser case, communication between the two parties is not trivial. We use
the WebSocket standard, which is built on top of TCP. Unfortunately, using Web sockets
implies that Client and Server cannot communicate directly in the browser-to-browser
case. Communication happens through a server that is hosted either by the Client, the
Server, or a third party and is encrypted all the way. In the browser-to-browser case,
an additional Node environment must be installed at the Client or Server end since the
WebSocket server cannot be hosted in a browser environment directly but needs an own
Node environment on the local machine. This WebSocket Server acts as a mediator
between the two parties. In case the PSA users are not familiar with setting up a Node
application, a third party should provide the WebSocket server. Communicating directly
from one browser to another is called peer-to-peer. There is already a standard called
WebRTC8. However, setting up peer-to-peer connections with WebRTC still requires
a server to distribute session info and handling errors. Moreover, the setup is not as
straightforward as in the case of WebSockets. The extension of the Corona Heatmap with
a peer-to-peer feature could be addressed in future research projects. For the Corona
Heatmap showcase, we chose the browser-to-browser setup since it allows easy execution
from everywhere and offers the implementation of a Graphical User Interface. However,
all of the four possible setups from section 4.2.5 are valid. Developers should carefully
evaluate the circumstances in which the Corona Heatmap is used and then decide which
setup fits best.

5.2.2.3 Dataset

For the showcase, we used a dataset from Gowalla [26], a location-based social networking
website where users can check-in at locations shared by the community. For our purpose,
we trimmed the dataset to lower the computational effort since this is not the focus of
the showcase. The full dataset is available at the Stanford Network Analysis Project9.
The dataset shows how many times users checked in at different locations. We use the
locations as the Mobile Carrier cell towers and the number of check-ins as the time unit
to measure the individual’s duration at some particular cell tower. The trimmed dataset
consists of N = 10000 individuals and k = 3755 cell towers and consists of two separate
parts:

Data file: This file contains the matrix Z ∈ ZN×k. It is in Comma-Separated Values
(CSV) format without a header and consists only of numbers. There are exactly
N rows in the file, each carrying k values. Of course, every row corresponds to
one individual and shows how often this individual was at any of the k locations.
We decided to use CSV as the file format in this application since it is a widely

8https://webrtc.org/
9https://snap.stanford.edu/data/loc-gowalla.html
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known and well-established format for data. The number of possible formats for
the application could easily be extended if wanted.

Mapping file: The mapping file, again in CSV format, holds the mapping from location
index to longitude-latitude. It carries N rows and three values per row. The first
one is the location index in the matrix, the second one is the longitude, and the
third one holds the latitude of this location. This file is mainly to generate the
heatmap at the Client end.

The showcase is not limited to this particular dataset and can be used with data of
arbitrary size. We recommend using our files since we think this parametrization fits the
application in the best way in terms of runtime and scope.

5.2.2.4 Inputs

For our showcase, we use four input files. As already mentioned, the Client vector’s
indices need to match the Server’s matrix indices for PSA. In our showcase, this is not
the case. At the beginning of the communication, the Mobile Carrier sends all of his N
numbers in the exact order used in his matrix Z to the Client, who then constructs a
new encrypted binary vector c that holds N values which are only set to 1 if this number
belongs to a positively tested person. The Client has to provide a file with only one
column holding all of the infected people’s phone numbers. The Server has to provide a
similar file holding all the phone numbers of his clients. Additionally, the Client has to
provide the mapping file for the generation of the heatmap and the Server has to provide
his data file (the matrix Z).

5.2.2.5 Drawing of the Heatmap

After the protocol is executed and the resulting vector is available to the Client, the
heatmap can then be constructed. Since drawing the hotspots involves a map of the real
world and some mechanisms to generate a heatmap layer on top, we used the popular
web mapping library Leaflet10. Under the hood, Leaflet uses the open-source project
OpenStreetMap11 as its underlying map. Since we use React for development, the usage
of a wrapper for the heatmap layer12 was required. This way, the heatmap is encapsulated
and easy to extend and adjust. Figure 5.2 shows an example of the heatmap, generated
by our Corona Heatmap application, positioned over Vienna. One can observe how
Mariahilfer street and Stephansplatz are the hottest places. We used the dataset that is
described above.

10https://leafletjs.com/
11https://www.openstreetmap.org
12https://www.npmjs.com/package/react-leaflet-heatmap-layer
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Figure 5.2: Heatmap of Vienna using sample data from Gowalla [26].

5.2.2.6 Choosing Epsilon

We experimented with various settings of ε in the range of 0.01 to 7 and found a value of
1.5 to be most appropriate since existing hotspots grow negligibly and no new ones are
generated, even though there is generated a high amount of noise. However, we want to
stress that our findings are based on our specific heuristic and must be re-evaluated in
future applications. The original heatmap without noise is shown in Figure 5.3. Assuming
that the heatmap is generated hourly, the sensitivity ∆q of the system is 1 since a person
can only stay at a maximum of one hour at a specific cell tower. We used the dataset that
is described in section 5.2.2.3. As already mentioned, the dataset contains N = 10000
individuals and k = 3755 cell towers. The optimal value for ε is 1.5 since there is clearly
more noise but no new hotspot. The resulting heatmap is shown in Figure 5.4. Setting ε
as low as 0.5 (Figure 5.5) results in too high levels of noise in the output. This value
of ε leads to additional hotspots at places which are not present in the original picture.
Setting ε to 5 yielded a result (Figure 5.6) that is nearly indistinguishable from the
original picture. Changing a single data entry with such an ε could allow an attacker
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Figure 5.3: Corona Heatmap without Differential Privacy.

to gain knowledge about the corresponding individual. Therefore, the value is too high.
Privacy of individuals is in danger when using an ε as high as this.

5.2.3 Usage of the Application

The usage of the Corona Heatmap application is straightforward, provided that the user
knows the concept of PSA and details of the general idea of the Corona Heatmap. Since
this application is deployed in the web, various people from different sectors are privileged
to use it. To make the application accessible to a wide crowd, we describe PSA’s concept
as simple as possible.

5.2.3.1 Back-end

The website for the Corona Heatmap must be hosted on a server. This server can be at
any of the two parties’ ends or at a third party. It is very straightforward to start the
web and socket server since start-up scripts are provided with the code files. We followed
the standard rules to start a Node application which will not lead to problems for users
who are familiar with Node. The default port for the application is 3000. The port must
be provided to the users if no reverse proxy is used.
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Figure 5.4: Corona Heatmap with Differential Privacy parameter ε set to 1.5.

5.2.3.2 Front-end

The front-end of the application is the part that is directly visible to the user in the
browser and, therefore, the interface between the user and the application. It should be
designed as intuitive as possible. In our application, a user visits the link given by the
website’s hoster. This link will point to the main entry point of the Corona Heatmap
web app. On the start page, there are only two options from which the Client and Server
must choose their role and follow the protocol. The Ministry of Health uploads the two
files holding the phone numbers and the mapping file as well as the Mobile Carrier’s
phone numbers and the corresponding matrix. Both parties start the protocol by clicking
the start button. After execution, the heatmap is automatically generated at the Client’s
view and ready to be browsed and even downloaded.

5.2.4 Caveats

Corona Heatmap servers as a showcase and has some limitations we want to discuss
below.
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Figure 5.5: Corona Heatmap with Differential Privacy parameter ε set to 0.5.

Sessions: We designed Corona Heatmap in a way that only one Client and one Server
can participate in the protocol. It is impossible to run multiple Client-Server
sessions simultaneously since this would require a more sophisticated configuration
of the WebSocket server and some kind of identifier attached to each session and
would exceed the scope of this work. Nevertheless, due to highly modular code,
the modification required to achieve this would be neglectable and can be done in
future works.

File loading: Since PSA usually works with vast amounts of data, the files that are loaded
into each environment, especially the Server one, can be quite large. Therefore,
users should be patient and wait until the File API finished handling the loading
process.

Freezing: During the execution of the protocol, the server view freezes completely.
However, this does not indicate an error during processing. In JavaScript, there is
only one thread that handles the main routine. In this case, it handles the PSA
protocol and can therefore not perform the necessary operations. Nevertheless,
we included console logs in the code to give the user the possibility to check the
thread’s activity.
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Figure 5.6: Corona Heatmap with Differential Privacy parameter ε set to 5.

Direct paths: The web app is started by heading to the Uniform Resource Locator
(URL) provided by the web server’s hoster. It will not work to append /client or
/server directly since configurations essential to the protocol must be done before
the specific view can be entered.

5.3 Risk Assessments

An interesting use case for Private Selective Aggregation is in the field of risk assessments.
PSA enables an investor to estimate an investment risk. This would allow companies
or investors to gain knowledge about investment subjects and mitigate possible failures
along the way. A Financial Institution (FI) that is aware of a large customer pool’s credit
standing and financial stability is required. The FI creates a set of assessments or scores
based on chosen or predefined variables for each customer and constructs the matrix Z.
The Investor can then query this matrix with the query vector x to gain insights into the
financial stability of a ceratin set of interest and lower the investment risk. This process
is shown in Figure 5.7. The Investor might be troubled about giving away information
about his customers. However, since this process is based on PSA, the institution does
not learn anything about them or the specific investment subject, and the Investor will
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Figure 5.7: Private Selective Aggregation applied to the area of investments. An investor
can lower the risk of a bad investment by considering a rating issued by a
credit institution.

not gain insights into individual data, provided that all privacy recommendations are
followed.

5.3.1 Rating

For every application, the individual scores of the rating must be chosen. The FI can
determine them on its own. However, it is also an option that the Investor issues a request
for certain scores. This is free to choose and the protocol remains dynamic in this choice.
In many cases, the FI will already have an internal rating scheme. In the area of credit
scoring, there are many well-established methods based on Classification and Regression
Trees, Neural Networks, and k-nearest Neighbor Classifiers [68]. Depending on the exact
implementation, the FI could try to convert it to be used in this application. It does
not matter how the rating is done, the only requirement is the possibility to convert the
rating into numerical form, such that it can be summarized and later averaged. After the
protocol is finished, the Investor will hold a vector of aggregated values and might not be
able to make immediate sense of it. Therefore, in a few cases, it might be necessary that
the institution provides a mapping to the Investor, which clearly shows how to convert
the rating in numerical form back to the original form.
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Scheme. Certain parameters or scores must be defined to issue an assessment or rating
that measures the subject’s stability. Indicators of financial stability or creditworthiness
are debt, liquidity, profitability, activity, as well as other indicators [3]. Some of them are
of particular interest to us and fit most of the applications:

Payment History: A financially stable subject makes payments on time and has a history
of only minimal delays. It is not a good sign if a subject was bankrupt or had his
accounts sent to collections.

Amount Owed If massive portions of available assets are borrowed or in the form of
credits, this can lead to financial instability. However, the institution must inspect
the subject’s responsibility thoroughly since borrowed assets can help to thrive and
are not bad by default.

Liquidity: Subjects with steady, available financial resources to meet obligations should
get a higher score. Solvent subjects are more likely to stay active in the market
and are ready to pay for sudden, unforeseen events.

Activity: Financial activity of a subject indicates consistent management and commit-
ment to assets. A subject might open new accounts, add new subscriptions or
spend money regularly.

Responsibility: Stable subjects spend money responsibly. It is not a good sign if the
subject holds more assets than appropriate or spends money in unreasonable ways.
Responsible customers may hold different accounts for different concerns like loans,
mortgages, or credit cards.

This list can be extended as desired. However, the calculation of the rating is not in the
scope of this work and remains the task of the institution that is performing the rating
in the first place.

5.3.2 Financial Stability Report

As the first application for risk assessments, we introduce the issuing of Financial Stability
Reports via Private Selective Aggregation. This report could help a company to lower
internal investment risks. In this scenario, the objective to be measured is not the
investment subject itself but the steady income flow.

5.3.2.1 Scenario

Company A is selling a product in the Software as a Service (SaaS) sector. They offer the
product online and provide the necessary infrastructure to their customers. This product
is a modern Enterprise Ressource Planning (ERP) system with many additional modules
and plugins. Company A’s customers, mostly small to medium-sized companies, are
subscribed to the software and pay monthly fees. Company A depends on its customers’
credit standing since its business model builds upon subscriptions with monthly payments.
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The company’s shareholders consider investing a significant amount of money into a new
module with technology entirely new to the market. They are not sure if this module
will fail and cost them money to compensate for the failure. Since it is tough to analyze
the market in advance when a product is completely new, this turns out to be a risky
project. If some customers quit their services during the time of the expenditure, the
company would run into financial problems. The management would like to have more
certainty before starting this operation. The customer’s financial stability is an indicator
whether the customers will keep paying for company A’s services.

5.3.2.2 The Company as the Client

In this scenario, the Client is Company A. The input vector x is a vector holding the
customers’ identifiers xi of interest. A possible company’s identifier could be its name
or the International Bank Account Number (IBAN) of a bank account. The term ”of
interest” describes that some customers may be irrelevant and therefore not essential
and used for the assessment. Moreover, a customer could be a company or even a
governmental institution. The input vector is defined as

5.3.2.3 Financial Institution as the Server

The Server is a bank or some institution aware of the customers’ respective financial
ratings. A bank knows about the assets of their customers. How liquid they are, where
they invest, and how much money they have. The bank needs to assign ratings to the
companies. It is essential for the protocol that, in the end, the ratings are numbers from
0 up to an arbitrary value. A common way of classification in the credit rating industry
is using letters like AAA (triple-A rating), the FISCO Score Factors13, or VantageScore
Factors14. However, it is not mandatory for an institution to use these systems. For the
protocol it is only required that the ratings are mapped to a range of numbers ultimately.
The matrix Z is constructed with one row for every of the N customer, holding one
column for every of the k scores. An entry zi,j represents the score at index j for the
customer at index i, for i in 1, ..., N and j in 1, ..., k.

5.3.2.4 Generating the Measurement

The resulting vector h holds the summarized rating of each score for each customer. It
can be transferred to the Client again, who decrypts it and divides every entry by the
number of all customers N to get the Financial Stability Report. The company now
has a measurement of its customers’ average financial standing, which will give a rough
estimation of the liquidity and other factors of their customer pool. For investments of
higher risk, a higher score is recommended in the areas of interest.

13https://www.myfico.com/credit-education/whats-in-your-credit-score
14https://vantagescore.com/
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5.3.3 Estimating Financial Standing of Investment Subjects

Investing in stocks is an example for a very common financial strategy not only for
companies but also for private persons. Since these investments always come with some
risk, it is in the Investor’s interest to minimize that risk. A financial institution can
help the Investor by generating scores for each of the investment subjects and issue a
report privately by using Private Selective Aggregation. In the following, we describe a
real-world scenario.

5.3.3.1 Scenario

A, who is either a person or a company, plans to expand his investment portfolio. To
achieve this in a way that maximizes profit and minimizes risk, Person A needs to invest
in companies with a high rate of success and growth, healthy history, a solid customer
base, and, most importantly, a safe financial standing. Unfortunately, A does not gain
reliable knowledge about a particular company’s financial situation by just looking at the
stocks since its value is merely determined by supply and demand. Organizations like
the Austrian association for the protection of creditors (Kreditschutzverband, KSV)15

offer a rough estimation. However, since Person A invests a high amount of money, it is
essential to use every bit of information.

5.3.3.2 Investor as the Client

In this scenario, the Client is Person A since he owns the list of companies he wants
to invest in. The input vector is a vector x holding the identifiers of the companies
of interest. The identifiers could be the company names. There might be the need to
combine the names with the sector since some countries allow the same name for different
sectors which would result in ambiguities.

5.3.3.3 Credit Institution as Server

The Server is, same as in Example 1, a bank or some financial institution that is aware of
the companies’ respective financial circumstances. Such an institution knows about the
companies’ assets, how liquid they are, where they invest and how much money and debt
they have. Based on this knowledge, the institution can generate a report by assigning
ratings to the companies. It is essential for the protocol that, in the end, the ratings are
numbers from 0 up to an arbitrary value. The requirements on the Server’s matrix are
the same as in the first example described in section 5.3.3.1. The resulting ratings are
required to be mapped to numbers, with 0 being the lowest and counting up from there
to the highest rating. The institution constructs the matrix Z with k scores for each of
the N companies:

15https://www.ksv.at/en
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5.3.3.4 Aggregated ratings

The resulting vector holds the summarized ratings of all the companies, which can be
transferred to the Client again, who then calculates an average over N for every entry.
Person A now has a measurement of its company pool’s overall credit standing, which
will give a rough estimation of how safe the investment is.

5.3.4 Implementation

For the purpose of demonstration, we implemented a showcase for Private Selective
Aggregation applied to the generation of a Financial Stability Report in JavaScript,
utilizing the PSA library. We use the browser-to-browser setup since it offered us the
possibility to implement a GUI and is accessible by every digital system in possession of
a web browser. We tried to keep the application as simple as possible. Client as well
as Server, in this case, Company and Credit Institution, are required to visit a certain
webpage and follow the links to their individual interfaces. Each party uploads their
respective data file and starts the protocol. After some time when the computation is
finished, the Financial Stability Report is displayed in the company’s view in the form of
a bar chart. Figure 5.8 depicts a sample report generated in the app. The chart displays
the Financial Stability Report over 10000 customers. The chart can be saved to the local
disk for later inspection.

5.3.4.1 Frameworks

In our implementation, we tried to keep the amount of frameworks as low as possible,
but still tried to guarantee some convenience for future developers. The reasoning about
the decisions we made along the way is equal to the one in the Corona Heatmap in
section 5.2.2 since those two applications are very similar in their nature.

Front-end libraries. We used the popular library React for the front-end since it
offered us the possibility to separate the concerns in the application and write highly
modular code. We used some React components from the Material-UI library since this
enabled us to write an appealing GUI without unnecessary effort.

Back-end libraries. For the back-end that runs the webserver, we used Express.js
in a Node environment. Express is easy to use which enabled us to do the set up fast.
Since we chose the browser-to-browser setup from section 4.2.5, we were required to host
a WebSocket server. For the WebSocket part we again used the websocket package from
NPM.

5.3.4.2 Application infrastructure

For the communication between Client and Server, we used a transport layer based
on web sockets. Since two browsers cannot communicate directly via web sockets, we
introduced a Node server running Express and the WebSocket server. It can either
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Figure 5.8: Bar chart showing various financial stability ratings of a set of 10000 customers.
In this example, the ratings reach from 0-1000 for five different scores for
randomly generated data.

be executed by a third party, the Client, or the Server. We discussed each scenario’s
implications in section 4.2.5, whereby the browser-to-browser case is the most important
one since it is the one used here.

5.3.4.3 Dataset

For our dataset, we generated a list of N = 10000 random IBANs, which serve as the
input file for the Client-side. For the Server side, we used k = 5 different scores, namely
the ones we described in section 5.3.1. We generated the scores arbitrarily and assigned
them to each of the N IBANs. Both files are in CSV file format.

5.3.4.4 Inputs

For the execution of the protocol only two inputs are needed:

IBAN file: The CSV file holding all the IBANs of the company’s customers. Each row
only contains one IBAN. The header in the CSV file is omitted.
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Rating file: A file in CSV format without a header. It contains five scores in the range
0...1000 for every IBAN. Every row holds the IBAN as its first value. The five
scores are saved in subsequent columns, separated by commas.

Both inputs are provided to the application via the respective interfaces.

5.3.4.5 Generating a Bar Chart

For drawing the bar chart that finally shows the Financial Stability Report after the
protocol’s execution, we used the Chart.js16 library. It allowed us to draw the chart by
only setting a few parameters and the library then generates the plot. The plot is two
dimensional and based on the HTML canvas17, which allows simple downloading of an
image. The x-axis shows a bar with different colors indicating a different score. The
y-axis depicts the extend of the score.

5.3.4.6 Choosing Epsilon

The result of the protocol is a vector h where every entry hi ∈ N is the sum of N
subscores, and i is in the range 1, ..., k. Therefore, the Investor needs to divide every hi
by N to obtain the averaged result. A malicious Investor could form two queries x and x′

that differ in only a single entry. That is, x = (x1, x2, ..., xN ) and x′ = (x1, x2, ..., xN−1).
After running the protocol, the query x will result in the output h and x′ in h′. By
simply computing h − h′, the malicious Investor learns the exact contribution of the
single entry that was not included in x′. That is, the Investor learns a specific row z of
the Financial Institution’s matrix Z and therefore massively intrudes privacy. We can
prevent this behavior by introducing Differential Privacy to the application. However,
setting ε is not trivial since the noise that needs to be added is highly dependent on the
size of the dataset and the desired amount of privacy. The goal is to maximize privacy
and still retain a sufficient level of utility. We measure the rising level of privacy as ε
increases by two indicators:

Noise difference on matrix entry scale: Provided that we do not add any noise to h
and h′, we learn the matrix row z directly by computing z ← h − h′. Assume
another protocol run where we add noise to both vectors. We obtain hns ← h+ n
and h′

ns ← h′ + n′, where n and n′ are vectors holding the noise. By computing
hns − h′

ns we get zns, which is the noisy version of the critical matrix row z. Let

dvec = ‖z − zns‖

be the difference between the orginal version z of the critical matrix row and the
noisy version zns. Intuitively, dvec is the distance from the critical matrix row z to
its noisy variant. We can assume, that the higher this value is, the more noise was
introduced and therefore more privacy is obtained. As a side effect, the implication

16https://www.chartjs.org/
17https://www.w3schools.com/html/html5 canvas.asp
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on the final averaged output increases as dvec grows. In other words, the final score
gets more noisy and the utility decreases as dvec increases. Therefore, we also need
to measure the impact on the noise in the final averaged output.

Noise difference on overall score scale: As we introduce more noise to the output h of
the protocol, the overall score is distorted. Luckily, we average all scores hi, which
allows us to add a substantial amount of noise without suffering from too much
distortion in the averaged result. We compute the difference between the original
averaged scores to the noisy averaged scores:

dout = ‖h · 1

N
− hns ·

1

N
‖

Intuitively, dout is the distance from the noisy score to the original averaged score.
We want to keep dout as low as possible.

The vectors n and n′ hold the noise which is solely influenced by the privacy parameter
ε. We conducted a series of experiments to evaluate which setting of ε fits best. However,
one should keep in mind that our findings represent directives that must be re-evaluated
in future applications since the results are the product of our specific heuristic approach.
We used the two measures dvec and dout to evaluate each setting. We assumed a scoring
scheme with k = 5 scores lying within the range 0, ..., 1000. Since the optimal setting
of ε is heavily dependent on N , we tested against datasets of N in [10, 100, 1000]. We
chose ε from the range 0.1 to 7, depending on the dataset. Our resulting measures dvec
and dout are computed by using the mean noise over 1000 iterations of the same dataset.
The sensitivity ∆q is set to 1000 in all scenarios. Figure 5.9 shows the measurement
for the dataset with N = 10. In the case ε = 1, we can see that, although the distance
to the critical matrix row is distorted by 4120 on average, which makes it practically
impossible to learn it, the distance to the original averaged scores is only 283. This is a
great result since the distance is split on all k = 5 scores. However, we cannot neglect the
fact that those are the distances computed with the mean noise. In reality, the protocol
is executed only once, and chances are that the distance is much higher and unevenly
distributed. To investigate this issue and to get a feeling about the impact of a particular
distance, we randomly picked some hns and compared it to the original h. That is, we
compared the original score with randomly picked noisy variants of it to see how much
deviation we have in practice. We listed this comparison in Table 5.1. The results are
reasonable since hns approximates h quite well, but the utility could be increased by
lowering the privacy, accomplished by choosing a higher ε. This is only an option if there
is enough noise in zns so that it masks z properly. Table 5.2 shows arbitrarily picked
zns for a specific z. There is enough noise since it seems hard to infer z by looking at
zns. We conclude the optimal setting to be at ε = 3, where dvec is still 1389 (averaged),
and dout is only 95 (averaged). For the datasets with N = 100 and N = 1000, we can
take even lower values for ε without suffering too much from a decreased utility. This
stems from the fact that at N = 100 and N = 1000, there is a high enough number
of entries in the set so that even a heavily distorted z does not contribute enough to
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Figure 5.9: Bar chart showing dvec and dout for different settings of epsilon. The difference
is the result of the mean noise over 1000 iterations of a dataset with 10 entries.

the final result to make a significant difference. In the case N = 100 and ε = 0.8 we
have a dvec of 5240 (averaged) and dout of only 35. That is, we have a higher dvec then
in a dataset with N = 10 with ε = 1, but with a considerably lower dout. We can see
that even though the distortion is considerabely high, there is only a small loss in utility.
Therefore, we recommend setting ε = 0.8 in the dataset were N = 100. The utility gain
gets clearer at N = 1000. Setting ε = 0.1, gives us a dvec of 40488 (averaged) and a dout
of 28 (averaged). There is no need to further decrease ε as N raises since further impacts
on privacy are negligible at this point.

5.3.4.7 Caveats

The Risk Assessment implementation reuses almost all visual components and the logic
behind them from Corona Heatmap. Therefore, the limitations and restriction are exactly
the same. We want to to refer to section 5.2.4 for more informations about them.
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h hns

[216, 567, 538, 443, 263]

[276, 761, 503, 581, 345]

[216, 586, 435, 389, 382] [102, 630, 300, 386, 304]

[247, 528, 372, 542, 405]

[177, 470, 487, 103, 386]

Table 5.1: The original scores versus some randomly picked noisy variants in a dataset
with N = 10 entries. Noise was generated with ε = 1.

z zns

[988, 4176,−3358, 1642, 372]

[−14, 2115, 2132, 3749, 2530]

[44, 750, 554, 991, 503] [3132, 3963, 2969, 1791, 2085]

[674,−1827, 3413, 943, 1326]

[127, 1740, 898,−1404, 2014]

Table 5.2: The original critical matrix row z versus arbitrarily picked noisy variants zns

of it in a dataset with N = 10 entries. Noise was generated with ε = 1.

5.4 Privacy-Preserving Questionnaires

Conducting questionnaires can potentially pose a privacy risk for attendees. In most
cases, it is not clear how the data will be treated after conduction. The results might
only be needed once to then be discarded. However, an attendant cannot be sure that
his data will be deleted or treated with discretion. The optimal solution is to encrypt
the answers and hand them over to the conductor, who, in return, will evaluate them in
the encrypted domain. PSA is a system that allows us to do exactly that. However, it
is not possible in every scenario since the Server is required to construct an evaluation
procedure based on a matrix. If the questionnaire is needed as input to deliver an output
according to some linear transformation of the input, then Private Selective Aggregation
can help to secure the process in terms of data privacy.

56



Chapter 5 PSA In Real World Scenarios

5.4.1 Eurecat

During the PSA library’s further development, we collaborate with Eurecat18 to implement
the library as a privacy-preserving measure in their data rating process. Eurecat offers a
quality rating service where a customer can have a dataset rated to gain rough knowledge
about its value. The process is split into two components:

• Qualitative Information Extracting and Data Scoring Sub-Component (QDSC)

• Automatic Data Analysis and Scoring Sub-Component

Our solution targets the QDSC and performs that part in a privacy-preserving way. The
customer has to fill out a questionnaire about the data on a website, and Eurecat will
subsequently use it to generate a rating. The questions are coming from three categories:

• Business Intelligence

• Domain-Specific Questions

• Data Science

Each category targets a different aspect of the dataset. Chances are very high that a
customer wants to avoid giving information about the data out of hands unencrypted.
It is the customer’s interest to keep all answers secret, even from Eurecat, who are
rating the customer’s data in the first place. This can be achieved with Private Selective
Aggregation.

5.4.2 Rating Process

Subject A, who could be an institution or an individual, wants to acquire a quality rating
for a dataset. Eurecat does offer a private rating process and A would like to make use
of it. A visits Eurecat’s website and fills out the questionnaire that holds a couple of
questions about the data. After checking some boxes and assigning values, A clicks the
go-button and waits for a result. Meanwhile, the questionnaire is converted into numerical
form by applying a function that maps the answers to an array of fixed numbers. After
that, the array is locally encrypted in A’s browser and sent to the Server running at
Eurecat’s end. The Server holds a scoring-table that maps every answer to a score. All
scores are summed up and aggregated in a final score. Note that the scoring-table is
matched with the answers homomorphically, that is, in the encrypted domain. The
Server does not learn anything about the answers. The scoring-table is the matrix used
to compute a linear transformation (assigning a score for each answer) on A’s encrypted
array. The result is still encrypted and sent back to A, where it gets decrypted by A
and is ready to be further inspected. Eurecat does not learn anything, not even the
final rating, although they are the ones who provide the rating in the first place. This
procedure is depicted in Figure 5.10. It seems controversial to rate data without even

18https://eurecat.org/en/
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Figure 5.10: A high-level visualization of the private rating obtaining process at Eurecat.

knowing the rating in the end. This is the power of a system based on Homomorphic
Encryption. Eurecat has a fixed matrix that is used to apply a linear transformation on
A’s answer vector. Not all of A’s answers have the same impact on the quality of the data,
therefore some answers add more value to the overall quality. Thus, the transformation
could be seen as a way of applying weights to every answer and summing them up in the
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end. This transformation entirely happens in the encrypted domain. Eurecat knows how
the answers at A’s end are formated and encrypted before transmission and relies on this
form when processing the data at the server-end. The most crucial part of this whole
system is to define the matrix such that it will produce a reasonable rating for a set of
answers.

5.4.3 Environment Details

Since the customer has to fill a questionnaire and needs visual support for usability reasons,
the PSA library on the Client’s end runs in a browser. This way, the questionnaire can
easily be presented to the customer and filled via the GUI. By the click of a button, the
questionnaire is evaluated automatically without any interaction from Eurecat directly.
Running the PSA server in a Node environment is, therefore, the best option. We refer to
the browser-to-node model from section 4.2.5. In this model, data is directly transmitted
between both parties with no need for a mediator.

5.5 Statistics

One exciting field in which the PSA protocol can be applied efficiently is in the area of
statistics. On some occasions, the party which conducts a survey is obliged to keep the
participant’s participation private. This could, for example, be the case with statistics
related to drugs, child abortion, or intercourse. New statistical data is retrieved out of
two independent datasets without leaking information about one party’s dataset to the
other. This section serves as a basis for future work and was not implemented.

5.5.1 Generating Disease Profiles

Assuming that Statistik Austria19 wants to conduct a survey about diseases correlated
to smoking. For this process, Statistik Austria needs to know who is a heavy smoker
and which diseases the smoker was facing in the past. Statistik Austria cannot conduct
this survey without the help of a smoking cessation facility and the Austrian Healthcare
Insurance (Österreichische Gesundheitskasse, ÖGK)20 since those two parties own the
required data. However, it would massively intrude privacy if they generated the statistic
in the naive way. The solution is to let the Smoking Cessation Facility and ÖGK run the
protocol and use the output for transmission to Statistik Austria.

5.5.2 Smoking Cessation Facility

A smoking cessation facility owns information about who is a heavy smoker. It acts as the
Client in this application. Input to the protocol is the vector x of length N containing
the smokers’ identities. Since, we are assuming a preceding run of a PSI protocol, the

19http://www.statistik.at/web de/statistiken/index.html
20https://www.gesundheitskasse.at/cdscontent/?contentid=10007.813892&portal=oegkportal
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data indices match already. The vector x contains a one at indices corresponding to a
smoker, and zero in the non-smoker case.

5.5.3 ÖGK

For this application, information about which diseases an individual faced in the past is
required. The required information is saved in the electronic health records (Elektronische
Gesundheitsakte, ELGA)21, to which the ÖGK has access. The ÖGK acts as the Server
in this scenario and provides a matrix in which the columns map a broad spectrum of
diseases to a maximum of k. Entry zi,j holds a 1 if the person at index i suffered from
disease j, else 0. The matrix will only consist of zeros and ones.

5.5.4 Disease Profile

Performing the protocol yields the vector diseases that holds the summed up amount
ai of how often a particular disease occurred. The Client now divides every ai by the
number of smokers, which is the same as the length of the vector x. The result is the
general disease profile of a smoker. It can then be sold to statistics institutions like
Statistik Austria. High numbers indicate a causality between the specific disease and
smoking.

21https://www.elga.gv.at/
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Conclusion

Our work showed that Private Selective Aggregation can be used to tackle various
privacy-related problems in the industry. We pointed out some of these problems and
studied how PSA can be applied as a generic framework to solve them. Along with our
experiments, we argued about limitations and provided reasoning about proper parameter
settings. By conducting a series of performance tests, we evaluated the viability of PSA
in the web and concluded that it is indeed practical depending on the application’s size.
We developed a publicly accessible library to ease the integration of PSA and provided
recommendations regarding its proper usage. In this section, we want to summarize and
reflect on our key findings.

6.1 PSA as Generic Framework

We saw that PSA indeed solves some present issues in the industry. The focus in this work
was on using PSA to link mobility with infectious diseases and issue risk assessments,
but we also discussed other scenarios in less detail. From our experiments, it becomes
clear that nationwide rollouts of Corona Heatmap’s web version are possible, although it
is better to use an implementation in a CPU-optimized language due to the performance
boost. The web version gets more into focus as the application is restricted to smaller
geographical areas. That is, the size of the underlying data is shrunk down. The same
limitations occur when using PSA as a basis for private risk assessments. We can privately
generate a Financial Standing Report of an investment subject to estimate the risk of
investment. Within the report, we can pick an arbitrary amount of scores to refine
the estimation. In practice, such an application’s size will be smaller than in Corona
Heatmap since the risk assessments do not target whole populations. The same is true
for secure questionnaires where we are cooperating with Eurecat, who are integrating
PSA already into their process.

6.2 PSA Library

To ease the integration of PSA in future applications, we built a library in JavaScript and
provided the results of our performance benchmarks along with it. Our results show that
an PSA application based on JavaScript performs roughly 6x slower than an equivalent
in C++. This number is not tragic after all since it solely hints us towards the fact that
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we have to separate our applications into CPU-intense and CPU-light applications. We
recommend using a native implementation for heavy workloads, while for applications
with a great need for easy adoption and smaller workloads, we recommend the web
implementation. From a usability standpoint, PSA in the web is a great advancement
since the setup is easy and usage straightforward. Using PSA in a browser allows
easy adoption of the technology. This is only possible with the web version since a
native implementation always comes with some kind of setup process. When it comes
to increasing the application’s size, the runtime scales linearly in the dimensions N
and k of the Server’s matrix. Additionally, we discussed various kinds of environment
setups, showed how to set up a transport layer between Client and Server, and studied
corresponding security implications.

6.3 Proper Parameter Settings

We thoroughly studied the right choice of parameters in our work. It is not trivial to find
the right ε for an application based on Differential Privacy. We cannot give a general
statement about the right setting in every case. However, for our applications, the right
choice turned out to be somewhere between 0.1 and 3. For Corona Heatmap, we used a
dataset with 10000 entries, which led to an ε of 1.5. We want to stress that our findings
are solely based on the visual impact induced by adjusting ε. Therefore, if we would
use a different way of dawing the heatmap, the results would probably change. In the
end, we conclude that an adversary would probably learn more by using computational
operations on the output vector rather than by just looking at the heatmap. Moreover,
we evaluated the generation of risk assessments with different settings of ε and multiple
datasets of different sizes (10, 100, and 1000 subjects). We defined two functions dvec
and dout that measure the noise introduced into the assessments. Our results show that
ε is highly dependent on the applications and the size of the dataset used. The optimal
setting in our case was ε = 3 for the data set with N = 10, ε = 0.8 for N = 100, and
ε = 0.1 for N = 1000. However, our findings represent guidelines and not hard facts since
they are based on our specific heuristic approach. Future applications must re-evaluate
them carefully. The results showed that due to the fact that the risk assessments are
generated in terms of the average, ε can be decreased as the size of the dataset increases.
The contribution of the noise in the final result slowly diminishes in large datasets, such
that we keep enough utility at a high privacy level.

6.4 Future Work

There is still a long way to maximize the potential of PSA. From a theoretical standpoint,
the system would benefit the most if there were a trivial way to determine the privacy
parameter ε. Currently, the parameter has to be found by trying different settings and
evaluate the resulting output. This process is very time-consuming and would benefit
considerably from an improvement. From a practical standpoint, we are very optimistic
that there are enough tools out there to start building PSA applications in the web after
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this work. Nevertheless, the protocol would benefit from an implementation of a generic
library in a native language that can be used for arbitrary PSA application construction,
similar to our library. As our results show, the JavaScript implementation becomes less
viable when the underlying data’s size increases. There is no limit per se, but at some
point, it is better to power the protocol with a native implementation for the sake of
performance. The is still much room for improvements in our library. Future work could
address the transport layer problem. It would be a nice feature if the library already
provided a way to manage transmissions across environments. In our opinion, the best
option would be to integrate a peer-to-peer connection layer.
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CSV Comma-Separated Values 40, 41,
52, 53

DP Differential Privacy 62

ERP Enterprise Ressource Planning 48

FHE Fully Homomorphic Encryption 8, 9
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GDPR General Data Protection Regulation 2, 37
GUI Graphical User Interface 33, 40,

51, 59

HE Homomorphic Encryption 2, 6, 19,
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IBAN International Bank Account Number 49, 52,
53

IDC International Data Corporation 2
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JSON JavaScript Object Notation 28

MC Mobile Carrier 37, 40,
41, 44

MH Ministry of Health 37, 44

NPM Node Package Manager 21, 25,
39, 51

OT Oblivious Transfer iv, 1, 17
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