
Jannik Hildebrandt, BSc

An Online Collaborative Learning
Environment for Computer Science

Education

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Johanna Pirker, BSc

Co-Supervisor

Dipl.-Ing. Michael Holly, BSc

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, March 2021

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Over the past centuries, the industry’s digital transformation has made com-
puter science a relevant field of study. Companies worldwide are searching
for new computer scientists and even other jobs nowadays often require
fundamental computer science knowledge. Thus, computer science educa-
tion has become increasingly important over the years. While the traditional
approach of frontal instruction is still most common, modern learning
approaches are rising. One of these methods is digital learning, utilizing
computers or other technology in the learning process. It has the critical
benefit that students can learn from home, often even without a dedicated
instructor. However, this learning approach lacks a social component, as it
leaves aside direct communication with others. That is where collaborative
learning comes into play, another modern learning approach. It builds upon
going through the learning process as part of a group, profiting from others’
knowledge and experiences. The two methods can be combined to create
computer-supported digital learning environments, emphasizing the advan-
tages of both. However, there are only a few examples for this approach and
even fewer, where it is integrated into a whole virtual learning world.

This thesis presents a multi-user network solution for the immersive learn-
ing environment Maroon, an interactive virtual laboratory and experiment
environment that allows students to explore various experiments and phe-
nomena first-hand. The multi-user feature adds collaboration to the environ-
ment, allowing users to work on the experiments together. To demonstrate
the effectiveness of this collaborative environment in computer science edu-
cation, this thesis introduces a new computer science experiment in Maroon.
The experiment showcases essential aspects of algorithms by providing in-
teractive visualizations. Furthermore, it involves a sorting challenge, where
users can guess which of two competing algorithms will sort a field faster.

iii

In multi-user mode, users compete who can guess best, providing a proof
of concept for an interactive multi-user experience.

To compare the multi-user and the single-user version, an AB study with 35

participants was carried out. The goal was to compare the users’ knowledge
increase and their emotions in the learning process. The results showed that
both groups significantly improved their knowledge. While the multi-users
had a slightly higher increase, the single-users already had more prior
knowledge, resulting in even knowledge level after the study. However, the
multi-user participants were slightly happier throughout the study. Overall,
the study showed that the created application is a valuable learning tool,
both in single-user and multi-user modes.

iv

Acknowledgements

First of all, I’d like to thank my supervisors Johanna Pirker and Michael
Holly, who have guided me through this thesis’s creation process with their
experience and expertise. They always reliably supported me throughout
the journey, even answering questions on weekends or in the middle of the
night.

Also, I am grateful for all people who sacrificed some of their time to
participate in my study. Their feedback really made me appreciate the
created work.

Special thanks to my longtime good friend Kaleb Mertz and my sister Tanja
for proofreading this thesis.

Furthermore, I thank my friends and family for always supporting me over
the years of study. Especially my girlfriend Veronika has helped me get
through the exciting but also stressful time of creating this thesis.

Finally, I thank my parents, who always supported me both financially and
mentally. Without them, I would not have achieved this degree.

v

Contents

Abstract iii

1. Introduction 1
1.1. Objectives . 2

1.2. Methodology and Structure . 3

2. Background and Related Work 5
2.1. Computer Science Education 5

2.1.1. Digital Learning . 6

2.1.2. Computer-Supported Collaborative Learning 8

2.1.3. Digital Learning Environments 9

2.2. Maroon . 11

2.2.1. Maroon Laboratory . 12

2.2.2. Maroon Desktop & Browser 13

2.2.3. Maroon Experiments . 14

2.3. Sorting Algorithms . 14

2.3.1. Sorting Fundamentals 15

2.3.2. Selected Algorithms . 17

2.3.3. Sorting Algorithms in CSE 21

2.4. Summary . 25

3. Design & Conceptual Model 27
3.1. Starting Point & Objective . 27

3.2. Target Group . 28

3.3. Requirement Analysis . 29

3.3.1. Functional Requirements 29

3.3.2. Non-Functional Requirements 30

3.4. Network Architectures . 32

3.4.1. Local Network . 32

vi

Contents

3.4.2. Dedicated Server . 33

3.4.3. Peer to Peer (P2P) . 34

3.5. Network Address Translation Traversal 36

3.5.1. Internet Protocol Version 6 37

3.5.2. Automatic Port Forwarding 38

3.5.3. NAT Punch-through . 39

3.5.4. Relay Server . 39

3.6. Multi-User Options for Unity 40

3.6.1. UNet . 40

3.6.2. Connected Games . 41

3.6.3. Mirror . 42

3.6.4. Photon . 42

3.6.5. MLAPI . 43

3.7. Multi-User Design . 43

3.7.1. Network Architecture Selection 43

3.7.2. Network Address Translation Traversal Comparison . 44

3.7.3. Selected Multi-User Option for Unity 45

3.7.4. Network Address Translation Traversal Selection . . . 47

3.8. Sorting Experiment Design . 48

3.9. Summary . 50

4. Implementation 51
4.1. Network Establishment . 51

4.1.1. Local Network Discovery 52

4.1.2. List Server . 52

4.1.3. Network Setup . 54

4.1.4. Connection and Disconnection Handling 56

4.1.5. Naming . 61

4.1.6. Ports . 61

4.2. User Interaction . 62

4.2.1. Control Handling . 63

4.2.2. Menu . 68

4.2.3. Messages . 69

4.2.4. Scene Handling . 72

4.3. Synchronizing Experiments . 73

4.3.1. Synchronizing User Input 75

4.3.2. Adding Multi-User to Existing Experiments 78

vii

Contents

4.4. Sorting Experiment Implementation 80

4.4.1. Detail-View . 80

4.4.2. Battle-View . 86

4.4.3. Sorting Challenge . 88

4.5. Summary . 90

5. Evaluation 91
5.1. Methodology & Procedure . 91

5.1.1. Pre-Questionnaire . 92

5.1.2. Tasks . 92

5.1.3. Post-Questionnaire . 93

5.2. Participants . 94

5.3. Results . 95

5.4. Discussion . 99

6. Lessons Learned 101
6.1. Theory . 101

6.2. Development . 101

6.3. Evaluation . 102

7. Future Work 103
7.1. Evaluation Results . 103

7.2. Technical Improvements for Multi-User 104

7.2.1. WebGL & VR Support 105

7.2.2. Steam Networking . 105

7.2.3. NAT Punch-through . 106

7.2.4. User Interactions . 107

7.2.5. Experiment Status Saving 107

8. Conclusion 108

A. Sorting Algorithms 111
A.1. Insertion Sort . 111

A.2. Merge Sort . 112

A.3. Heapsort . 112

A.4. Quicksort . 113

A.5. Selection Sort . 113

viii

Contents

A.6. Bubble Sort . 113

A.7. Gnome Sort . 114

A.8. Radix Sort . 114

A.9. Shellsort . 115

B. Questionnaires 116
B.1. Pre-Questionnaire . 116

B.2. Post-Questionnaire . 118

C. Installation Guide 122
C.1. Installation . 122

C.2. System Requirements . 122

Bibliography 123

ix

List of Figures

1.1. Thesis Structure . 3

2.1. Virtual TEAL World . 10

2.2. Maroon Entering Room . 12

2.3. Faradays Law Experiment . 13

2.4. Toptal - Sorting Algorithm Visualization 23

2.5. Zapponi - Sorting Algorithm Visualization 24

2.6. Schnurr - Sorting Algorithm Visualization 24

2.7. Buchbauer - Sorting Algorithm Visualization 25

3.1. Maroon’s Conceptual Model 28

3.2. Local Area Network . 33

3.3. Dedicated Server . 34

3.4. Direct Peer to Peer . 35

3.5. Client-Server Peer to Peer . 36

3.6. Relay Server . 37

3.7. Network Decision Flow Chart 46

3.8. Detail-View Mock-up . 49

3.9. Battle-View Mock-up . 50

4.1. Server Status Class Representation 52

4.2. List Server Communications . 53

4.3. Network Flow Chart . 54

4.4. Password Screen . 57

4.5. Connection Procedure . 58

4.6. Disconnection States . 60

4.7. Grant Control . 64

4.8. Control Handling UI . 65

4.9. Control Handling UI States . 65

x

List of Figures

4.10. Control States Diagram . 66

4.11. Network Menu . 69

4.12. Network Status Station . 71

4.13. Experiment Network Sync Class Representation 76

4.14. User Input Synchronization . 77

4.15. Synchronized Faraday’s Law Experiment 80

4.16. Detail-View User Interface . 81

4.17. Detail-View UML Diagram . 82

4.18. Radix Sort Visualization . 83

4.19. Sorting Algorithm UML Diagram 85

4.20. Battle-View . 87

4.21. Battle-View UML Diagram . 88

4.22. Sorting Challenge . 89

5.1. Knowledge Results . 96

5.2. CES Results . 97

5.3. SUS Results . 98

xi

List of Tables

2.1. Algorithm Comparison . 21

3.1. Network Architectures Overview 44

3.2. NAT Traversal Overview . 45

3.3. Network Technologies in Unity 47

4.1. Disconnection States . 59

4.2. Port Numbers . 62

4.3. Control Handling Comparison 67

4.4. Connection States . 70

4.5. Experiment List . 79

5.1. CES Results . 97

7.1. Steam Network Comparison . 106

xii

Listings

4.1. Enter Scene Method . 74

4.2. Execute Next State Method of Sorting Algorithm 86

A.1. Insertion Sort . 111

A.2. Merge Sort . 112

A.3. Heapsort . 112

A.4. Quicksort . 113

A.5. Selection Sort . 113

A.6. Bubble Sort . 113

A.7. Gnome Sort . 114

A.8. Radix Sort . 114

A.9. Shellsort . 115

xiii

1. Introduction

Computer Science is a broad field of study with versatile focus areas. Many
people associate it purely with programming. While it is true that computer
scientists should know how to find their way around code, there is much
more to it. Computer science is a theory-heavy field, and many basics and
concepts have to be understood. However, now more than ever, there is
an enormous request for computer scientists. Therefore, computer science
education (CSE) is a topic with increasing importance. The traditional way
to teach computer science at universities is a classic lecture format, where
the lecturer presents the theory to the students in an in-person presentation.
While this suits the auditory learning type, it is not the best solution for
other learning types. Thus, it has proven valuable to also rely on other
teaching methods (Aycock et al., 2019; Pirker et al., 2014). Two of these
methods that have grown to become very popular are digital learning and
collaborative learning. Digital learning depends on the use of computers to
assist the students’ learning process (Wheeler, 2012). Collaborative learning
focuses on teamwork and acquiring knowledge as a group process. Both of
these methods also teach valuable skills for business life. Digital learning
familiarizes students with modern technology and prepares them to acquire
knowledge autonomously. Collaboration, on the other hand, is crucial for
almost every profession, as many companies tend to work in teams. More-
over, communication skills are developed in collaborative exercises (Laal &
Laal, 2012). Although these two approaches are fundamentally different, it
is possible to combine them into computer-supported collaborative learn-
ing. It enables students to collaborate in a digital learning environment,
and it merges the advantages of the two methods. However, only a few
examples have implemented this approach in large-scale interactive learning
environments, and there are even fewer examples that have accomplished
collaboration via the internet.

1

1. Introduction

1.1. Objectives

The goal of this thesis is to create a computer-supported collaborative
learning environment for CSE. This learning environment is implemented
as part of the Maroon laboratory. The Maroon laboratory1 is an immersive
digital learning environment. It provides a set of interactive experiments
that allow users to explore different phenomena in an immersive way.
However, there is no support for collaborative learning. Therefore, this
thesis’s first objective is to add a multi-user network to Maroon that allows
online collaboration. The system should be fully compatible with the current
version of Maroon. Users should be able to host servers, and other users
should join them to work on experiments together.

Maroon was developed as a modular learning platform, allowing developers
to constantly be widening the spectrum. However, it does not have a section
dedicated to CSE yet. Therefore, it is predestined to be extended for CSE.
Sorting algorithm visualization is the perfect choice for the first experiment
in this section. Sorting algorithms are a key concept in computer science,
as they are a basic example to demonstrate the complexity of algorithms.
Moreover, visualizing the algorithms can be engaging and educative. There-
fore, this thesis’s second objective is to create an experiment for Maroon
dedicated to the visualization of sorting algorithms.

When teaching sorting algorithms, it is hard to show how efficient an al-
gorithm is (Laxer, 2001). When running in real-time, the simulation is too
fast to see a difference between different algorithms. In slower-paced visual-
izations on the other hand, there are rarely enough elements to display the
complexity. Therefore, this thesis’s third goal is to create an addition to the
sorting visualization that demonstrates the different algorithms’ efficiency.
This addition will be implemented as a playful challenge. Having such a
mini-game in the experiment can also lead to more active participation in
the collaborative version (Azmi et al., 2015).

1https://maroon.tugraz.at/

2

https://maroon.tugraz.at/

1. Introduction

Figure 1.1.: The structure of this thesis.

1.2. Methodology and Structure

This thesis is split into four major parts. The first part focuses on the
theory and the related work. The second part contains the design and
implementation. The third part is an evaluation of the implementations, and
the fourth and closing part summarizes the thesis and gives an outlook for
the future. Figure 1.1 illustrates the structure in a diagram.

Chapter 2 gives a theoretical background of digital learning and collabora-
tive learning in the context of computer science education. It introduces the
learning environment Maroon, an immersive virtual laboratory. Moreover,
it provides fundamental knowledge about sorting algorithms and algorithm
visualization and presents related work.

3

1. Introduction

Chapter 3 defines the objectives, the starting point, and the target group for
this work. Moreover, it specifies functional and non-functional requirements.
It provides background information about various approaches to implement-
ing multi-user networks and justifies the decisions. Furthermore, it presents
a design for the sorting experiment and the corresponding challenge.

Chapter 4 presents the implementation details. It defines how a network
connection can be established and how the server handles user interactions.
It presents a procedure to add multi-user support to new or existing ex-
periments by providing a guideline for future developers. Furthermore,
it presents the software architecture and the visualization details for the
sorting experiment and presents the sorting challenge as a proof of concept
for an interactive multi-user feature.

Chapter 5 analyzes the results of a study carried out to compare the newly
created multi-user mode to single-user operation. It describes the method-
ology and procedure of the research and presents the standardized and
environment-specific questionnaires used.

Chapter 6 outlines takeaways of the creation process of this thesis. It presents
various challenges that had to be faced on the way and how they were
addressed. Chapter 7 depicts multiple desirable features that were beyond
the scope of this thesis but might be beneficial to be implemented in the
future. Chapter 8 provides a final summary of the most critical aspects of
this work.

4

2. Background and Related Work

2020 will go down in history as the year of the Coronavirus pandemic. The
virus forced countries all around the world into a lockdown. Besides closed
shops and companies sending their employees into home-office wherever
possible, this also meant closed schools and universities. This caused the
need for distance learning in a whole new dimension, as students’ education,
of course, had to be continued. Video conferences were held instead of
regular lessons. Homework had to be submitted over the internet, and even
exams were mainly carried out online. Overall, a significant shift towards
digital learning has happened. Especially for the study of computer science,
this is a promising development, as the field is naturally computer-focused.
The following section discusses computer science education focusing on
digital learning, identifies advantages and disadvantages of digital learning,
and presents collaborative learning as a possible solution to address a critical
issue.

2.1. Computer Science Education

It is safe to say that the computer has been the most dominant technology
change in the last century. Nearly everyone uses a computer daily and most
even own one. People use smartphones, tablets, and smartwatches - all
miniature versions of computers. The devices are easy to use and become
more intuitive every year. With the digital economy’s growth comes the
search for people that understand how things work in the deeper parts of
a computer, behind the fancy windows and graphics. Thus, the industry
is always on the lookout for computer scientists. In 2020 computer science
jobs in the US grew twice as fast as the average job (University of California,
2020) and there were more than three open jobs per student. Computer

5

2. Background and Related Work

science is not the small, highly complex field that it used to be, where only a
few nerds make up the entire field. As computers have become so common,
everyone should at least learn the fundamentals of computer science. It has
become a vital part of education, from schools to universities (University of
California, 2020).

The traditional teaching approach for computer science education (CSE),
as in many other degrees, is didactic teaching. The lecturer stands in front
of the class and imparts knowledge to the students by presenting and
explaining. However, studies show that using other teaching methods that
are more engaging and interactive can enhance traditional teaching (Aycock
et al., 2019; Pirker et al., 2014). If such methods rely on the use of technology,
they belong to digital learning methods.

2.1.1. Digital Learning

Digital learning is also referred to as electronic learning (e-Learning),
technology-enhanced learning, or distance learning (Lin et al., 2017; Wheeler,
2012). The primary goal of digital learning is to take advantage of modern
technology to support the learning process of students (Wheeler, 2012). Digi-
tal learning methods are continually evolving and becoming more and more
relevant for modern education. With the Coronavirus pandemic in 2020,
they have become crucial, as suddenly students world-wide were forced to
study from home. According to Peters (2000) we are at “the beginning of a new
era, in which distance education will develop into an extraordinarily open, flexible
and variable form of teaching and learning which can be adapted and adjusted to
the learning requirements of students, who will differ greatly from one another
with regard to their age, social background and vocational orientation and position.
A clear student-oriented form of studies will have been created.” Especially in
computer science, a subject specialized in computers and their software, it
seems only logical to also utilize computers for the learning process. And
indeed, digital learning plays a significant role in modern CSE. Below we
discuss the advantages and disadvantages of digital learning to evaluate its
value for CSE.

6

2. Background and Related Work

Benefits. It is hard to identify the benefits of digital learning in general,
as it is a versatile field. They are strongly connected to the implementation
and can differ for each concrete example. Nonetheless, several authors have
identified the following advantages:

• Increased motivation of students and therefore increased time spent
with the learning material (Lin et al., 2017)
• Saved time, as students can learn from anywhere at any time they

want (Lynch, 2020)
• Reduction of overall costs, as no classrooms are required, and trans-

portation costs can be omitted (Kruse, 2015; Lynch, 2020)
• Increased learning quality (Erhel & Jamet, 2013)
• Specific promotion of students by differentiating the learning experi-

ence (Haelermans et al., 2015) and personalizing the learning proce-
dure (Lynch, 2020)
• Positive effects on the learning outcome (Lin et al., 2017)
• High number of people are trained at the same time (Welsh et al.,

2003)
• Increased amount of study material that a student remembers (Kruse,

2015; Lynch, 2020)
• Continuous tracking of the gathered knowledge of users (Welsh et al.,

2003)

Drawbacks. There are also some drawbacks to digital learning that have
to be taken into account:

• Reduced amount of social interaction (Kruse, 2015; Lynch, 2020; Welsh
et al., 2003)
• Technical knowledge and equipment needed both by the user and the

provider (Kruse, 2015)
• High up-front costs, as money has to be invested for creating the

learning application in the first place (Kruse, 2015; Welsh et al., 2003)
• Theory-heavy with few possibilities for interaction (Lynch, 2020)

One of the main identified disadvantages of digital learning is the lack
of social interaction. This might also be why Warschauer (2007) observed
that while out-of-school education is becoming more powerful and more

7

2. Background and Related Work

popular, studies have shown that paradoxically in-school-learning is be-
coming more decisive for the learning outcome. Thus, a social component
has to be reintroduced to digital learning. This can be accomplished by
adding the concept of collaborative learning to digital learning. The next
part introduces computer-supported collaborative learning that describes
this combination.

2.1.2. Computer-Supported Collaborative Learning

Collaborative learning is a teaching approach that requires a group of people
to work together to solve a problem. It is a shift away from the commonly
known teacher-centered learning activities used in schools and universi-
ties (Laal & Laal, 2012). The combination of collaborative learning and digi-
tal learning results in computer-supported collaborative learning (CSCL).
“CSCL is one of the most promising innovations to improve teaching and learning
with the help of modern information and communication technology” (Lehtinen
et al., 1999). The created technology systems impart knowledge in a social
and interactive way (Halavais, 2016). A particular form of CSCL is online
collaborative learning, which utilizes the internet as a connection platform.
Already in 2004, Roberts (2004) predicted that this would be the learning
approach of the future.

We have to differentiate between asynchronous collaborative learning and
synchronous collaborative learning. Asynchronous collaborative learning
refers to platforms such as newsgroups, where students can post and reply
to messages. However, the asynchronous nature of the communication
reduces the flow of the conversation. Therefore, it does not feel natural
to the users (Kreijns et al., 2003). In synchronous collaborative learning,
users communicate over a live chat, or even better, over voice chat. This
makes communication smoother and more natural. Below, we review the
benefits and drawbacks of CSCL, especially in comparison to pure digital
learning.

8

2. Background and Related Work

Benefits. There are many advantages to CSCL that various authors have
identified:

• Group-work skills that are required both in social and work life are
developed (Roberts, 2005)
• Groups learn faster and perform better than individuals (Johnson

et al., 1990; O’Malley, 2012)
• Social benefits, such as building a diverse understanding and develop-

ing learning communities (Laal & Ghodsi, 2012; Roberts, 2005)
• Psychological benefits, such as increased self-esteem and reduced

anxiety (Laal & Ghodsi, 2012; Roberts, 2005)
• Academic benefits, such as evolving critical thinking skills and im-

proved classroom results (Johnson et al., 1990; Laal & Ghodsi, 2012;
Roberts, 2005)
• Diverse backgrounds and multi-cultural groups (Roberts, 2005)
• Team members motivate each other (Laal & Laal, 2012)

Drawbacks. While CSCL addresses some digital learning problems, most
of the drawbacks found in Section 2.1.1 still apply. Additionally, other
disadvantages come with CSCL:

• Virtual social interaction cannot fully replace face-to-face communica-
tion (Gütl & Pirker, 2011)
• Presence of social interaction enhancing technology does not mean

that users automatically make use of it (Kreijns et al., 2003)
• Know-how of the tools in use is required (Chang et al., 2009)

The following part gives some examples for existing learning environments
in the setting of digital learning and CSCL.

2.1.3. Digital Learning Environments

A digital learning environment can come in various ways. It can be a simple
questionnaire with feedback that a student can fill out to practice learning
material up to an entire virtual learning world. Boticki et al. (2013) even
presented a smartphone application, teaching users the concepts of sorting

9

2. Background and Related Work

Figure 2.1.: Computer science experiment in the Virtual TEAL World by Pirker (2013). Used
with permission.

algorithms. The usage of a smartphone allows even more of the ability
for users to study when and wherever they want. The conducted study
suggests that students, in general, like the idea of using smartphones for
learning. However, it could not prove to have a positive impact on the
knowledge gained. While the smartphone application is an example of
digital learning, it does not include a collaborative aspect. An example of
a learning environment focused mainly on CSCL is PeerSpace (Li et al.,
2011). It is an online learning platform that supports both synchronous
and asynchronous communication. It was designed as an assistive tool for
computer science students in addition to their university education. They
showed that students are more socially engaged with their peers when
using this additional collaborative platform.

An example of a 3D learning world is the Virtual Teal world, created by
Pirker (2013). It is an immersive and engaging digital learning environment
designed for various interactive virtual experiments. The environment in-
cludes physics experiments as well as CSE-specific experiments, as shown
in Figure 2.1. Moreover, it embraces collaborative learning, as groups of 3

10

2. Background and Related Work

to 9 perform activities together, but it does not allow collaboration via the
internet. Such interactive learning platforms primarily address the disad-
vantage that digital learning is too theory-heavy. Based on this approach,
Pirker (2017) developed a stand-alone virtual laboratory and experiment
environment called Maroon. It is an interactive learning environment that
uses different experiment rooms to impart knowledge of various topics. The
following section presents the Maroon project in more detail.

2.2. Maroon

The Maroon laboratory1 is a virtual laboratory that gives students at schools
and universities an opportunity to experience science phenomena first-hand.
It is a modular learning management tool, which allows content creators to
extend the laboratory with various experiments from different fields. The
current laboratory version contains seven physics experiments with a focus
on electromagnetism. Pirker (2017) started the project at the University of
Technology Graz. In 2017 it won the GOLC Award for the “Best Visualized
Experiment”, and in 2018 it was featured in Forbes Magazine. The Maroon
project is open-source and available via GitHub2. It has gone through many
stages of development, and today it comes in different versions. The most
recognized part is the virtual reality (VR) version of the laboratory (Pirker
et al., 2017). Users can explore it by the use of a VR headset, such as
the HTC Vive. The second version is a desktop version that can run on
any Windows or Mac computer. It allows users who do not have a VR
headset to benefit from the learning platform. Additionally, there is a WebGL
version obtainable via the browser. While the performance is worse than the
downloaded version’s, it can be more easily accessed.

The laboratory is implemented in Unity3, as Unity already provides the
necessary technology for 3D and 2D virtual worlds. It also comes with
various assets that allow easy integration of VR. Unity also allows the
managing of the distinct versions inside of one big project. The VR version

1https://maroon.tugraz.at/
2https://github.com/GameLabGraz/Maroon
3https://unity.com/

11

https://maroon.tugraz.at/
https://github.com/GameLabGraz/Maroon
https://unity.com/

2. Background and Related Work

Figure 2.2.: The entering room of the Maroon laboratory. Screenshot taken from GameLab-
Graz (2020).

and the desktop version differ fundamentally in that all controls have to be
adapted for the corresponding platform. A 2D user interface that works well
for the desktop is considered a poor VR choice in many cases. Therefore
these two versions are kept separate inside the project. However, assets and
code are shared across these versions. The WebGL version and the desktop
version use the same controls, and therefore, these two versions are treated
as one inside Unity. The Unity Build Target controls which version Unity
builds from the project.

2.2.1. Maroon Laboratory

When entering the laboratory, users find themselves in a room with various
experiments to their left and right side (Figure 2.2). This room acts as
a 3D menu as users can walk up to these experiments and on-demand,
enter a different scene that implements the functionality. Inside, users have
the opportunity to explore the presented science simulation and interact
with it. The experiments are implemented independently, each experiment
in a separate scene. This modular system allows adjusting existing work
without unintended side effects, making it easy to add new functionalities
to Maroon.

12

2. Background and Related Work

Figure 2.3.: The experiment view of the Faraday’s Law experiment. Screenshot taken
from GameLabGraz (2020).

2.2.2. Maroon Desktop & Browser

In the desktop and browser versions, users move around the laboratory
with the keyboard and control the camera view-direction with the mouse.
These controls are well-established in first-person computer games and
provide an intuitive way of movement. The character controller4 used in
Maroon already comes with Unity out-of-the-box. Inside the experiment
scenes, the camera is static, with the experiment setup placed in the center.
On the right side is a user interface that lets users tweak the parameters or
display valuable information. In Figure 2.3 the layout of the Faraday’s Law
scene is illustrated. As one of Maroon’s current experiments, it showcases
the described design. The control buttons are at the bottom of the screen.
These control the flow of operation, as they allow the user to start and stop
the simulation. Moreover, they can reset the simulation to a neutral state
and, if paused, they can simulate frame by frame. The exit button, which
brings users back to the main menu, is located in the lower-left corner. All
newly added experiments should adopt this functionality. There is space
for more user interfaces on the left side, which has for example been used
to integrate an assessment system into Maroon.

4https://docs.unity3d.com/ScriptReference/CharacterController.html

13

https://docs.unity3d.com/ScriptReference/CharacterController.html

2. Background and Related Work

2.2.3. Maroon Experiments

As discussed above, the experiment setup differs fundamentally between
the two versions. However, it would be highly inefficient to develop two
completely independent versions of an experiment. Therefore, the experi-
ment design in Maroon follows specific rules. The core 3D visualization is
platform-independent and is usable for both versions. Only the way how
users interact with the experiment differs. A crucial part of the experiment
implementation is the Simulation Controller. It is an integrated part of Ma-
roon and controls whether the simulation is currently running or stopped.
There is a template experiment scene available that already contains all stan-
dard components. It already connects the control buttons mentioned above
to the corresponding features of the Simulation Controller. When creating
a new experiment, the developer should use the template scene. Another
standardized procedure is reset-handling. It should be possible to reset
the simulation to a state that allows the user to start the experiment anew.
To achieve this, Maroon has a script named IResetObject. It is an interface
that each resettable object should implement. In practice, this means that
a ResetObject method has to be added, which defines what to do with the
object when users press the reset button.

So far, all experiments in Maroon are educating in the topic of Physics.
However, a new series of experiments dedicated to CSE should be added. A
must-have topic for this new category is sorting, as it is a classic example for
comparing algorithms and their efficiency. The following section discusses
the fundamentals of sorting and deals with algorithm visualization.

2.3. Sorting Algorithms

When starting education in computer science, it usually does not take long
until students learn about sorting algorithms. This is not only the case
because sorting is an important task that appears a lot in computer science.
It is also an excellent way to learn about algorithms in general. It introduces

14

2. Background and Related Work

students to the concepts of algorithm complexity and teaches them pro-
gramming paradigms. All in all, this explains why sorting algorithms are
so prevalent in the early stages of CSE.

2.3.1. Sorting Fundamentals

There are various methods how to sort an ordered field of items. Putting the
idea of how to sort it into concrete computer-interpretable rules transforms
the idea into an algorithm. Comparing different algorithms is tricky, as the
performance of an algorithm depends on the task. One algorithm might
be especially good at sorting big fields in random orders, whereas another
algorithm might outperform the first one on a smaller input that is nearly
sorted (Estivill-Castro & Wood, 1992; Mishra & Garg, 2008). However, some
measures allow comparing and classifying of sorting algorithms. These
measures are mostly applicable to other kinds of algorithms as well. They
are one reason students learn about sorting in the first place, as they are a
fundamental CSE concept.

Complexity. The runtime (in seconds) of an algorithm depends on various
factors, such as the field’s size, the machine’s computational power, and the
unsorted elements’ order. Thus some other way to measure the efficiency of
an algorithm has to be found. Therefore the efficiency of a sorting algorithm
is usually compared by its time complexity, denoted in the big O notation.

The big O notation gives an upper bound for the time complexity, dependent
on the input field’s size. The exact definition of the notation is the following:
“O(f (n)) denotes the set of all g(n) such that there exist positive constants C
and n0 with |g(n)| ≤ C f (n) for all n ≥ n0” (Knuth, 1976). The notation
has the advantage that all constants fall out of the equation, so there is
no difference between O(2n) and O(n). This makes the time complexity
of different algorithms more comparable, as these constants depend on
the implementation, whereas the big O notation gives an implementation-
independent measure.

15

2. Background and Related Work

Worst Case, Best Case, and Average Case. Apart from the size of the
input field, the efficiency of a sorting algorithm can also vary with the
order of the input field. An algorithm might perform well on a field that
is almost sorted, but perform poorly on a reversed field. The same can
happen the other way around. To take this into account when comparing
different sorting algorithms, the time complexity of the algorithm is usually
determined for three different cases. The worst case can be constructed
manually and describes the case for which the algorithm has the worst
time complexity. The same goes for the best case, which might even be
that the field is already fully sorted. In the average case the field is equally
distributed. In most scenarios the worst case and the average case are the
interesting ones to look at. For many algorithms these two also have the
same time complexity.

Stability. In a sorting field, a sorting element may appear multiple times. A
sorting algorithm is defined as stable if it leaves the order of these elements
the same as they were in the unsorted field (de Gouw et al., 2014). This is
especially important if sorting by more than one value. Sorting algorithms
can be classified into those that are stable and those that are not.

Adaptivity. A sorting algorithm is adaptive if it benefits from specific
input orders. This means that the best-case time complexity is better than
the average case’s. Adaptive algorithms are exceptionally efficient in cases
where they benefit from nearly sorted orders, as these orders frequently
appear in practice (Estivill-Castro & Wood, 1992).

In-Place vs. Not-In-Place. Another criterion by which to compare sorting
algorithms is memory usage. An algorithm works in-place if it sorts the
field in the same memory location that it already occupies, and it does
not need additional memory. This does not mean that it can not cache a
single value, but there is never the need to store larger chunks of memory
to a different location. Strictly speaking, the additional memory usage must
not depend on the input field’s size for the algorithm to be considered

16

2. Background and Related Work

in-place (Franceschini & Geffert, 2005). For some algorithms, it depends on
the implementation if they are in-place or not.

Comparison Sorts vs. Non-Comparison Sorts. Closely related to in-place
vs. not-in-place, algorithms can be classified by the way that they sort.
Comparison-based algorithms are most common, and they operate by com-
paring the sorting elements to each other and arranging them accordingly.
However, it is also possible to sort a field without comparisons. An example
is the Radix Sort algorithm that Section 2.3.2 presents. For comparison-based
algorithms, it has been proven that their average case time complexity can
not be better than O(n log n), as there are at least O(n log n) comparisons
necessary. If such an algorithm achieves this complexity for the worst case,
it is called worst-case optimal. Non-Comparison sorts can even be linear
(O(n)) under specific conditions.

Iterative vs. Recursive. It is hard to classify sorting algorithms into itera-
tive and recursive ones, as for most of them, this depends on the implemen-
tation. Therefore this category is more of an implementation choice. While
the recursive implementation is usually easier to understand, the iterative
implementation needs slightly less memory, as it does not have to store
return addresses. The complexity usually does not differ.

2.3.2. Selected Algorithms

This section presents nine algorithms that are of particular interest to CSE.
These algorithms are either especially important or unique. An algorithm is
regarded as important if widely used in practice. But important can also re-
late to simple algorithms commonly used as introductory examples. The end
of this section compares the complexity and stability. Appendix A contains
the implementation details and pseudo-code. The following explanations
are based on Cormen et al. (2009).

17

2. Background and Related Work

Insertion Sort. Insertion sort starts with the second element, compares
it to the first, and arranges them accordingly. Then it takes the third ele-
ment and inserts it in the correct position. This is iteratively repeated for
the whole field, so the front elements are always sorted. With an average
time complexity of O(n2), insertion sort is usually not feasible in practice.
However, it is one of the first algorithms taught to students when they learn
about sorting. This is due to the intuitive way it can be implemented.

Merge Sort. Merge sort splits the elements into two halves. It recursively
splits these halves further and sorts them individually. Once it can not split
the halves any further, or the two parts have already been sorted, it merges
them. Merging happens by continually comparing the leftmost elements
of both halves and arranging them accordingly. Merge sort is a divide and
conquer algorithm, which means it divides the problem into more minor
ones until it can solve them. It is worst-case optimal, but it is not stable.

Heapsort. Heapsort uses the maximum heap data structure to sort the
elements. This data structure always has the maximum element as its root
element. The algorithm first builds a maximum heap of all elements. It
then moves the root to the last unsorted position and again builds a heap
of the remaining elements, using the fact that they are already pre-sorted.
This is iteratively repeated until all elements are sorted, so the back always
contains the sorted elements. Schaffer and Sedgewick (1993) proved that
the time complexity is about 1

2 n log n in best case, about n log n in average
case and n log n + O(n) in worst case. So using the big O notation heapsort
sorts in-place in O(n log n) time for all inputs, which means it is worst-case
optimal.

Quicksort. Quicksort sorts the elements using a pivot element. It moves
all elements smaller than the pivot to the left of the field. All bigger ones
move to the right. It then places the pivot in the middle and sorts the left
and right parts recursively. Just as merge sort, quicksort uses the divide
and conquer principle. It builds upon the premise that it is easy to sort
smaller chunks of data if there is a divisional line that separates the data.

18

2. Background and Related Work

Therefore it manually introduces this line utilizing the pivot element (Hoare,
1962). The efficiency of quicksort depends on a smart choice for the pivot.
A standard option is to use the last element of the field, but especially for
(nearly) sorted or reversed fields, this leads to a complexity of O(n2). The
same happens if the first element is chosen as a pivot. Ideally, the pivot is
chosen randomly, but selecting a random element each time also requires
computational effort.

Selection Sort. Selection sort scans through all the elements to find the
smallest one. It moves the selected element to the first unsorted position and
iteratively repeats the procedure until finished. The popularity of selection
sort certainly does not come from its time complexity of O(n2), even in the
best case. Instead, it is due to its ease of understanding and implementation,
as always looking for the next fitting element is intuitive.

Bubble Sort. Bubble sort goes through the elements from left to right,
constantly comparing it to its right neighbor. If an element is bigger than
its neighbor, it swaps them, so the larger element moves to the right like a
rising bubble. After each iteration, the biggest element reaches the rightmost
position. The process is repeated until all elements are sorted. Bubble sort is
a classic sorting algorithm that is commonly used in CSE. The importance
has grown historically, as it has been described and analyzed in various
researches (Astrachan, 2003). However, experts question the importance
of bubble sort, as it is neither efficient nor as intuitive as, for example,
insertion sort. “In short, the bubble sort seems to have nothing to recommend
it, except a catchy name and the fact that it leads to some interesting theoretical
problems” (Knuth, 1998).

Gnome Sort. Gnome Sort works by continually comparing two neighbors.
One can imagine a little gnome starting at the most left element. If the
right neighbor is bigger than the element, it swaps them and takes a step
to the left. If it is smaller than the element, it moves to the right. This is
repeated until it moves past the rightmost element, then all elements are
sorted. Sarbazi-Azad (2000) initially presented gnome sort under the name

19

2. Background and Related Work

‘Stupid Sort’. It was designed to be the most simple sorting algorithm in
existence. However, the time complexity of O(n2) on average shows that it
is not an efficient algorithm (Hammad, 2015).

Radix Sort. Radix sort moves the elements into different buckets to sort
them. In the first pass, it puts each element into the bucket corresponding
to the one digit. After that, it puts the elements back into the original field
by emptying the buckets in ascending order. In the second pass, it sorts the
elements by the tens digit, the third pass by the hundreds digit, and so on.
This is repeated as often as the largest element’s number of digits. Radix sort
is the only selected algorithm that is not comparison-based. Therefore the
lower bound for the time complexity of comparison-based algorithms does
not hold for this one. Instead, the algorithm purely depends on the input
size n and the largest element’s size. For each of the d digits, one sorting
iteration has to be performed. Therefore the time complexity is O(dn) for
all inputs. If the maximum size is known, it can be regarded as constant,
and the time complexity becomes linear (O(n)).

Shellsort. Shellsort defines a gap between two element positions. It com-
pares each element to the element that is positioned this gap away. It swaps
the elements if necessary. After each iteration, the gap is halved. Once the
gap reaches zero, sorting is finished. Shell (1959) originally introduced Shell-
sort, which is where the name originates. It is also known as ‘Diminishing
Increment Sort’ because the increment (the gap) is reduced in every itera-
tion (Knuth, 1998). While being easy to implement without any recursions,
it is still effective regarding time complexity.

Comparison. As pointed out at the beginning of the section, it is hard to
rank algorithms, as their performance is highly task-dependent. However,
it is possible to compare the different metrics defined in Section 2.3.1. In
Table 2.1 the time complexity and stability of the selected algorithms are
compared.

20

2. Background and Related Work

Worst Case Best Case Average Case Stable
Insertion Sort O(n2) O(n) O(n2) X
Merge Sort O(n log n) O(n log n) O(n log n) X
Heapsort O(n log n) O(n log n) O(n log n) x
Quicksort O(n2) O(n log n) O(n log n) x
Selection Sort O(n2) O(n2) O(n2) X
Bubble Sort O(n2) O(n) O(n2) X
Gnome Sort O(n2) O(n) O(n2) X
Radix Sort O(dn) O(dn) O(dn) X
Shellsort O(n3/2) O(n log n) O(n4/3) x

Table 2.1.: Comparison of the selected sorting algorithms (Cormen et al., 2009; Hammad,
2015; Kazim, 2017; Mishra & Garg, 2008).

2.3.3. Sorting Algorithms in CSE

“Algorithms and data structures . . . are at the heart of computer science, being the
building blocks of any software” (Baeza-Yates, 1995). Thus, it is an important
task to start teaching the fundamental concepts of algorithms in the early
stages of CSE. Introducing the concept of complexity is challenging, as
computers have become so fast that students hardly realize if their code is
efficient (Laxer, 2001). Traditionally teaching algorithms with chalk on the
blackboard can be a challenging task. As algorithms are dynamic, it is hard
to catch their essential aspects in a static drawing. Thus, experts agree that
it is a good idea to use some form of dynamic algorithm visualization in the
learning process (Baecker, 1998; Battistella et al., 2017; Naps et al., 2002).

Algorithm Visualization. Algorithm visualization refers to visualizing the
steps of an algorithm on the computer. It is a common example of digital
learning. However, studies have shown that visualization does not have to
be of educational value. Instead, it depends on the implementation, if it
improves the learning process (Hundhausen et al., 2002).

21

2. Background and Related Work

Naps et al. (2002) address this problem by defining eleven best practices for
algorithm visualization:

1. Provide additional resources that put the visualization into a context.
2. Adapt to the user’s knowledge level.
3. Provide additional views, such as an animation of the source code that

displays the execution status.
4. Include information about the performance to allow conclusions about

the efficiency.
5. Include an execution history, so learners can comprehend how they

got to the current state.
6. Support forward and backward execution, so learners are always in

full control.
7. Allow users to build custom visualizations.
8. Allow users to modify the input-data to engage them more actively.
9. Dynamically challenge users by asking questions, which force them to

reflect on the tasks frequently.
10. Give the users feedback on their activities dynamically.
11. Add explanations to the visualization for more background informa-

tion.

Following these practices ensures that a created algorithm visualization
is not only a fancy animation but also a valuable contribution to CSE. A
popular field to apply algorithm visualization to is sorting algorithms.

Sorting Visualizations. The field of sorting algorithms is very well-researched,
and there are numerous ways to visualize the different sorting algorithms
and how to best teach the differences between them. The most common
approach to visualize sorting algorithms is to use bars of different lengths
and have them sorted by the different algorithms. This form of visualization
goes back to Baecker (1981), a film that laid the basics for many algorithm
visualizations (Dershem & Brummund, 1998). The film ended with a race
where all algorithms sort the same array side by side at the same time. This
kind of comparison makes it easy to examine the run times of the different
algorithms. It is still widely used nowadays. However, most of the time,
it is hard to see how the algorithm works in the background. Examples

22

2. Background and Related Work

Figure 2.4.: Sorting algorithms visualised by bars of different lengths in the implementation
of Toptal (2020). Screenshot by author.

for modern implementations of this kind are Toptal (2020), displayed in
Figure 2.4, or Macrae (2016).

Zapponi (2014) takes a more artistic approach that displays the sorting
algorithms in a very pleasing way. He permanently shows the swaps that
have taken place as curved lines, as presented in Figure 2.5. This lets the
user spot patterns that are hard to observe with the bar length method. The
website also allows running several algorithms at the same time for easy
comparison. However, when it comes to algorithms that usually do not sort
in place, such as radix sort, the visualization is not intuitive.

Schnurr (2017) found another visually appealing solution. He displays the
sorting algorithms as images, where the first line of pixels contains randomly
distributed pixels of a color gradient. The pixels are then sorted by color
using the different algorithms that the image should visualize. Each line
of the image corresponds to one step of the sorting algorithm. His display
method is very engaging and lets the user recognize patterns that show how
the algorithm is working. Figure 2.6 shows two of the results.

Buchbauer (2019) presented a more immersive approach. He selected nine
different sorting algorithms that should be taught to the users. One part

23

2. Background and Related Work

Figure 2.5.: Sorting algorithms visualised by Zapponi (2014). Screenshot by author.

(a) Bubble Sort (b) Merge Sort

Figure 2.6.: Algorithms visualised by Schnurr (2017) under license (“GNU General Public
License, version 3,” 2007)

24

2. Background and Related Work

Figure 2.7.: Web application to visualize sorting algorithms by Buchbauer (2019).

of his work is a web application that allows users to go through the algo-
rithms, step by step. Figure 2.7 shows the design of this web application.
Moreover, he created a VR version that showcases the algorithms in a virtual
world. He conducted a study to compare the two versions and gather user
feedback for the visualization. Overall the feedback was very positive and
encouraging. However, a point of criticism was that the two versions were
too fundamentally different to compare them.

2.4. Summary

With the growth of the digital economy, CSE is an increasingly important
task. Modern techniques, such as digital learning and collaborative learning,
can enhance conventional teaching methods. They build on the premise
of making the learning process more engaging to increase the learning
motivation. Different authors prove that this can be achieved (Boticki et al.,
2013; Li et al., 2011; Pirker, 2013). A notably immersive digital learning
environment is the Maroon laboratory (Pirker, 2017). However, it does
not allow for collaborative learning. There are only a few digital learning

25

2. Background and Related Work

platforms that support online collaboration. Another part that is missing
in the Maroon laboratory is a section dedicated to CSE. A prevalent digital
learning concept in CSE is algorithm visualization, as it allows to impart
knowledge in a way that is not possible with traditional teaching methods.
Sorting algorithms are a popular choice to learn the basics of algorithms.
Therefore, this chapter presented fundamental knowledge about sorting
algorithms. It outlined how to create a successful algorithm visualization and
introduced existing ones. The following chapter defines the requirements for
the Maroon extensions that we implement as part of this thesis. It outlines
the theoretical background of various options for implementing multi-user
networks in Unity and presents the design decisions.

26

3. Design & Conceptual Model

This chapter defines the objective, the target group, the functional and
non-functional requirements, and the implementation’s starting point. It
discusses different design choices in the network part and the sorting
experiment and justifies our decisions.

3.1. Starting Point & Objective

The Maroon laboratory presented in Section 2.2 is an immersive virtual
learning environment, offering users the opportunity to explore interactive
experiments. However, it does not offer the option to collaborate with other
students. As Section 2.1.2 describes, a digital learning environment can
significantly benefit from the addition of collaborative learning. Therefore,
this thesis’s primary goal is to create a multi-user network for Maroon,
allowing online collaboration. This means that multiple users, from multiple
computers, should enter the laboratory together and collaboratively expe-
rience the experiments. Part of this work is to equip existing experiments
with multi-user support.

Additionally, this thesis aims to design an experiment dedicated to computer
science education to expand Maroon’s repertoire. As Section 2.3 points out,
sorting algorithms are a good starting point to include computer science
experiments, as they are fundamental to CSE and have the opportunity
for exciting and educational visualizations. The experiment should serve
as a proof of concept for the network part. In addition to the multi-user
functionalities that all other experiments get, this work aims to add a more
interactive multi-user feature. This feature should be implemented as a small
game inside the sorting experiment to achieve more active engagement, an

27

3. Design & Conceptual Model

Figure 3.1.: A conceptual model of Maroon. All elements marked in red should be added
as part of this thesis.

essential topic for algorithm visualization (Azmi et al., 2015; Naps et al.,
2002). The mini-game should consist of a challenge, where all connected
users can compare their assessment of different sorting situations.

As described in Section 2.2, Maroon comes in three versions, namely VR,
WebGL, and desktop. The multi-user network and the sorting experiment
should be implemented in the desktop version. The multi-user concept
might be adapted for the other versions in the future (Chapter 7). Figure 3.1
displays a conceptual model of Maroon’s setup, where all parts that should
be implemented as part of this thesis are marked in red.

3.2. Target Group

As described by Holly (2019), the Maroon laboratory was designed for
students of schools and universities as an addition to the standard lessons.
With the online multi-user functionality, they have the additional option

28

3. Design & Conceptual Model

to work on the experiments from home collaboratively. This allows group
work exercises, even if it is impossible for the groups to meet in person.

The sorting experiment mainly focuses on computer science students. It can
also be used for fundamental computer science education in schools, but it is
most beneficial for students who just started their computer science degree.
They might profit from the new computer science section of Maroon by
either having it integrated into their lectures or by using it as an additional
learning resource.

3.3. Requirement Analysis

Before starting the implementation of a project, it is necessary first to
define the software’s requirements. It is common practice to split these
requirements into functional and non-functional ones. As the name suggests,
functional requirements describe the functionalities that the created software
should implement. Non-functional requirements, on the other hand, do not
describe specific behavior but focus on more general concerns (Sommerville,
2007).

3.3.1. Functional Requirements

The identified functional requirements are based on the research performed
in Chapter 2. For the sorting experiment and sorting challenge, the best
practices for algorithm visualization by Naps et al. (2002) were taken into
account.

1. Multi-User Network

a) Users should be able to create a server, that other users can join
i. over the local network.

ii. over the internet.
b) The created server should be published so that other users can

see it.

29

3. Design & Conceptual Model

c) Users should be presented with a list of all available servers to
join any of these.

d) Existing experiments should be equipped with multi-user support
if sensible.

2. Sorting Experiment

a) Users should be able to
i. control the flow of the sorting procedure. This includes step-

wise execution both forward and backward.
ii. control the size of the sorted field.

iii. choose from various sorting algorithms.
b) A highlighted pseudo-code should be displayed to the user that

links the code to the visualization.
c) The executed swaps and comparisons should be displayed to give

users a notion of the execution history.
d) A short description of the selected algorithm should support

users’ understanding.

3. Sorting Challenge

a) It should be possible to compare algorithms by running them
side by side on the same input data.

b) Users’ engagement should be increased by adding a competitive
element.

3.3.2. Non-Functional Requirements

The non-functional requirements have been defined separately for the multi-
user part and the sorting experiment as these parts differ fundamentally.
The sorting challenge’s non-functional requirements are already covered by
the sorting experiment, as the challenge should be implemented as a part of
the experiment.

30

3. Design & Conceptual Model

Multi-User

1. Availability. The multi-user service should be available via the internet
at all times.

2. Scalability. The system should support multiple users per server and
multiple servers. One school class, about 30 people, should be able to
collaborate on a server at once.

3. Compatibility. The network system should be fully compatible with
the current version of Maroon. None of the current functionalities
should be influenced negatively while the network is disabled.

4. Usability. The whole multi-user system should be intuitive to use. This
includes joining and creating a server, interacting with other users and
elements on the server, and leaving the server. User interfaces should
be appealing to the user while matching the current style of Maroon.

5. Maintainability. The developed system should be easy to maintain,
even by people who were not involved in the development process.

6. Reliability. The down-time of the network service should be minimal.
7. Performance. Users should not perceive performance issues. Lags and

latency should be minimized.
8. Security. It should be possible to protect a server from uninvited joins.
9. Integrability. It should be easy to integrate the network component

into future experiments.
10. Reusability / Configurability. Most of the system’s parts should be

reusable or at least configurable to implement virtual reality multi-user
in the future.

11. Extensibility. It should be possible to extend the network with addi-
tional functionalities, such as a voice chat component if needed in the
future.

Sorting Experiment & Sorting Challenge

1. Usability. The experiment controls should be intuitive to use. All
experiment parts, including the user interfaces, should be visually
pleasing while fitting the style of Maroon and the other experiments.

2. Scalability. The experiment should be usable by multiple users at once
by integrating the multi-user network that is also part of this thesis.

31

3. Design & Conceptual Model

3. Performance. Users should not perceive lags or other performance
issues when using the experiments. The execution speed of the exper-
iment should be frame-rate independent to allow fluent multi-user
integration.

4. Reliability. The implementation should manage resources carefully to
prevent an overload shutdown of Maroon.

5. Compatibility. The experiment should be compatible with the current
Maroon version, and it should be integrated into the current laboratory.

6. Maintainability. The implementation should be easily understandable
to allow maintenance.

7. Reusability / Configurability. It should be possible to reuse the al-
gorithms and visualizations to create a virtual reality version of the
experiment in the future.

8. Extensibility. It should be possible to add additional sorting algo-
rithms to the visualization without too much effort.

Overall, the goal is to seamlessly integrate all new functionalities into
Maroon while achieving good usability and performance. As one aim of this
work is to implement a multi-user network in Unity, the following sections
will discuss the available options before making the design decisions.

3.4. Network Architectures

Before tackling the different ways how to integrate a network component
into Unity, it is good to know the differences, advantages, and disadvantages
of the available architectures. This section gives an overview of the findings,
compares them, and presents the selected choice. The following explanations
and figures are based on Bharambe et al. (2008), Douglas et al. (2005),
Schollmeier (2001), Stagner (2013), Unity (2018).

3.4.1. Local Network

The simplest solution for multi-user programs is to have the users physically
close to each other. Having all users use the same machine is an example of

32

3. Design & Conceptual Model

Figure 3.2.: Users connected via LAN.

this architecture. It is used in various multiplayer games, where each user
has their own controller but plays on the same screen. This only allows a
minimal number of players, as the screen space is restricted, but everyone
can play simultaneously with no latency.

The more scalable local option is to have each player on a separate computer
and connect them via a local area network (LAN), as illustrated in Figure 3.2.
This can be done by physically connecting the players via LAN cables or
over a router, supporting Wireless LAN. With this method, many players
can simultaneously play together, and the network setup complexity is
minimal. The advantage over online architectures is that there is hardly
any latency, as everyone is close together. However, this is also the most
significant disadvantage, as the players have to come together, which makes
the reach very small. Depending on the project, a local multi-user setup can
be just fine, but as soon as users are not at the same location, utilizing the
internet is the way to go.

3.4.2. Dedicated Server

As the name suggests, this architecture relies on a server (can also be
several servers) responsible for all appearing network traffic. Each party
connects to this server only, so all the server logic is in one place. Figure 3.3
illustrates the architecture. Having all the logic in the same place makes it

33

3. Design & Conceptual Model

Figure 3.3.: The architecture of a dedicated server architecture, where the server is physi-
cally independent of the users.

easy to prevent people from misbehavior like cheating. Also, it is by far the
best scaling option, and the latency is fairly low. Thus, it is nowadays the
only reasonable choice for large-scale competitive games. The two major
drawbacks are cost and complexity. In order to set up a dedicated server
architecture, a full network stack has to be implemented. Moreover, a server
is needed, which usually leads to rent and maintenance costs.

3.4.3. Peer to Peer (P2P)

“A distributed network architecture may be called a Peer-to-Peer (P-to-P, P2P, ...)
network, if the participants share a part of their own hardware resources (...).
These shared resources are necessary to provide the Service and content offered
by the network (...): They are accessible by other peers directly, without passing
intermediary entities. The participants of such a network are thus resource (Ser-
vice and content) providers as well as resource (Service and content) requestors
(...).” (Schollmeier, 2001). The essential benefit of P2P is that no additional
server is needed to connect the players. Therefore there are no renting costs
and no maintenance costs. The problem, especially when looking at games,
is that there is no security whatsoever. As each player has the same rights
and there is no central authority, it is hard to detect and prevent cheating
users. There are various ways how to implement a P2P network.

34

3. Design & Conceptual Model

Figure 3.4.: The architecture of a direct peer to peer network.

Direct P2P. Figure 3.4 shows the architecture of a direct P2P network,
where each player connects to all other players. This means that each player
acts both as the server and the client at the same time. It is robust against
players dropping out, but it is tough to keep all the peers synchronous.
With each additional user, the system becomes more complex, so it does
not provide much scalability. Typically the number of users is limited to
around 10 to 20 concurrent users. The system’s advantage lies in the peers’
equality, as each peer has the same rights. The latency, however, is one of the
drawbacks of this system. It is very high, as there are so many connections,
and it may vary from player to player.

Client-Server P2P. In the client-server P2P network, one user acts as the
server, called the host, and all other users connect to this peer as clients
(Figure 3.5). This makes the network much less complex, as each peer only
has to connect to the host. However, this introduces some new problems.
The host has an advantage over the other users, as it has no latency and total
control over everything. Especially in competitive games, this is a massive
problem. Moreover, the whole program has to be remigrated to a new host
or shut down when the host leaves. The remigration process is complex,
and the program has to pause until completed. Therefore this architecture
can only be used when there is a reliable host and when the latency is not a
significant issue.

35

3. Design & Conceptual Model

Figure 3.5.: The architecture of a client-server peer to peer network, where one user acts as
the host.

A special kind of client-server P2P network is the Client-Server Relay P2P
Network. It still utilizes one player acting as the server, but this time the
other players connect to the host over a relay server (Figure 3.6). This re-
duces the host-advantage, but it is a worse solution regarding latency, as
it adds another network node to cross. Moreover, the added relay makes
the architecture substantially more complex. The advantage over the pure
host system and the reason this architecture was established is the increased
reach, as it presents a solution to overcoming the network address transla-
tion. The following section describes this problem in detail.

3.5. Network Address Translation Traversal

Network address translation (NAT) is the solution to the limited internet
protocol version 4 (IPv4) addresses. Instead of each machine on a network
having an independent IP address, only the router has an IP address that is
reachable by the whole internet. This is called the public IP address. The
router assigns all the other devices in the network a local IP address, which
is only valid in the local network. The router then uses a NAT table to store
these local IP addresses and redirect the traffic from outside the network
to its corresponding device. This might not seem like a problem, but one
peer has to host the server, as explained earlier. The other peers need the IP

36

3. Design & Conceptual Model

Figure 3.6.: The users connect to the host over a relay server.

address of this server to connect to it, but as the server is running on a device
hidden behind NAT, it only has a local IP address and cannot be reached by
the clients. Instead, the other peers will have to use the router’s public IP
address to connect to the server. However, by default, the router will not
know what to do with the requests it receives, as it does not know which
of the local devices the request targets. Outgoing connections work fine, so
it is possible to connect to a server as a client, but incoming connections
are declined when acting as a server. The procedure of overcoming this
problem is called NAT traversal, and there are various ways to overcome
this problem (Hu, 2005).

3.5.1. Internet Protocol Version 6

As mentioned above, the NAT was introduced because more devices are on
the internet than available IPv4 addresses. With the latest internet protocol
version 6 standard defined in Deering and Hinden (1998), which increased
the size of an address, there are more than enough addresses available for
each device, so there will be no need for NAT and therefore no need to
implement NAT traversal. Nevertheless, it is uncertain when IPv4 will be
deprecated, so we still need a solution for this problem until then.

37

3. Design & Conceptual Model

3.5.2. Automatic Port Forwarding

The usual procedure to host a server hidden behind the NAT is to connect
to the router through the browser and manually establish port forwarding.
We tell the router that it should forward all accesses on a specific port to
a specified device. If the firewall is set up correctly, other devices can then
connect to the hosted server. However, users would have to manually set
all things up, which, even with good documentation, can be challenging,
especially if the users are not computer specialists. So a solution that works
out of the box when starting the program is required. The program should
set up the NAT traversal, and the users should have to do as little as possible
for this. That is where automatic port forwarding comes into play. There
are possibilities to automatically forward ports to a running program on a
device.

Universal Plug and Play (UPnP). UPnP is a technology designed to make
things as easy as possible for users. Microsoft initially introduced it, and
it is now widely used. The key feature is that a device immediately works
when plugged in, without any setup necessary. It is a convenient way
to locate other devices on the same network and modify router settings
remotely at the router-level. UPnP can also be used to establish automatic
port forwarding. Users can request a temporal port forward from the router
that stays active as long as in use. The only prerequisites are that both the
router and the operating system need to have UPnP support, and both
devices must have it enabled (Esnaashari et al., 2013; Hu, 2005). The big
drawback of UPnP is that it is known to have security issues. While making
it easy for devices to work out of the box, it also makes it easy for malware
to exploit its weaknesses. Malicious programs can effortlessly request a port
forward from the router, either on specific ports or all ports at once. Having
all the computer’s ports open to the whole internet gives an attacker various
opportunities to do evil. While some experts advise disabling UPnP due to
these vulnerabilities, others advise to keep the service active and use it with
caution, as many devices depend on it (Garcia, 2011; Hemel, 2006).

38

3. Design & Conceptual Model

NAT Port Mapping Protocol (NAT-PMP) & Port Control Protocol (PCP).
NAT-PMP, defined by Chesire and Krochmal (2013), is Apple’s answer to
Microsoft’s UPnP. It is simpler than UPnP, but it is used much less. In
2013 it was replaced by Apple’s PCP. The protocol is fully compatible with
NAT-PMP. While still much less in use than UPnP, Apple uses it in its newer
NAT devices.

3.5.3. NAT Punch-through

A second option to achieve NAT traversal is NAT punch-through. It tricks the
NAT by using a public server, the so-called facilitator. One problem of NAT is
that the router only allows incoming messages from a specific IP address and
port if this exact address-port combination has been messaged to before. This
is why the router blocks incoming messages to the hosted server, and it is
why NAT traversal is needed in the first place. In the NAT punching process,
also referred to as hole punching, both peers message the facilitator first.
The facilitator stores the IP addresses and port information and forwards
them to the other respective peer. Both peers now have the port-address
combination of the other peer. When sending messages to the other peer, the
first message might get rejected by the router, but after that, the messages are
no longer blocked. This works because the other peer has also sent a message
and therefore allowed the communication (Hu, 2005; Thu et al., 2014). The
session traversal utilities for NAT (STUN) protocol defined by Rosenberg et
al. (2008) provides a standardized communication protocol. It should not be
confused with its successor, the simple traversal of user datagram protocol
through network address translators (also STUN), defined by Rosenberg
et al. (2003). The old version was not only a standardized protocol but
provided a complete solution for NAT traversal. Because of this old version,
the phrases NAT punch-through and STUN are often used as synonyms.

3.5.4. Relay Server

As already stated, when hiding behind NAT, it still works fine to connect
to a server outside of the NAT. Only hosting a server behind the NAT

39

3. Design & Conceptual Model

causes problems. The idea behind a relay server is to run a separate server
on a public IP address that allows connection for all peers. Section 3.4
already described the architecture. As the name suggests, the server relays
all received messages. It forwards the messages coming from a client to
the server and vice versa. The relay server is a straightforward solution for
NAT traversal. The disadvantage is that a server with a public IP address is
needed. All network traffic will be routed over this server. This leads to high
latency, and the scalability is very limited. Another problem with the relay
server is that the server does not know that it communicates with more than
one client. For the server, it seems as if there is only one client, the relay
server. The traversal using relays around NAT (TURN) protocol defined by
Mahy et al. (2010) addresses this problem. It makes it possible for the server
to communicate with different peers over the same relay. Often, TURN is
used when NAT punch-through by STUN was not successful. The following
section discusses the different network solutions available for Unity, some
of which already come with integrated NAT traversal.

3.6. Multi-User Options for Unity

Unity’s standard multi-user technology used to be UNet1, which Unity
provided by default. However, UNet was deprecated in 2018 to start all
over with a new solution: Connected Games2. While this is a necessary step
towards a well-functioning network technology in Unity, it leaves developers
pending what to do in the transition time. Apart from the Unity out-of-the-
box solutions, there are several other ways to tackle the problem of getting
multi-user support into the project. This section compares the advantages
and disadvantages of the various solutions to select one for this thesis.

3.6.1. UNet

As already pointed out, UNet was the old Unity standard for multi-user
projects. UNet consists of different parts, most notably the High-Level

1https://docs.unity3d.com/Manual/UNet.html
2https://unity3d.com/partners/google/connectedgames

40

https://docs.unity3d.com/Manual/UNet.html
https://unity3d.com/partners/google/connectedgames

3. Design & Conceptual Model

Scripting API (HLAPI), the Low-Level Scripting API (LLAPI), and the Relay
Server and Matchmaker services. The LLAPI provides a basic Transport
Layer setup that sets up a network and connects users. The HLAPI is built
on the LLAPI and gives the user an easy starting point for building a P2P
architecture. Additionally, a relay server can be added, as described in
Section 3.5. UNet mainly focuses on P2P architectures, but Unity wants to
shift to dedicated server architectures. Thus, Unity decided to deprecate
UNet in 2018 and started over with Connected Games. According to House
(2018a), Unity Technologies (2021), Unity will no longer ship with the HLAPI
after 2018 but will support it for two more years. The same is applicable for
the LLAPI, but from 2019 on.

3.6.2. Connected Games

In 2018 Unity announced Connected Games as the new standard for multi-
user projects. Unity teamed up with Google Cloud Platform to create this
new network technology. It should include all kinds of architectures in the
distant future, but for now, it concentrates on dedicated server architectures.
House (2018b) states this is due to this architecture’s increased reach and
scalability. Unity wants to first focus on the big flagship projects that should
establish this new technology in well-known games. Thus, they moved away
from the P2P architecture used by UNet. Just like UNet, the new system
consists of two distinct parts:

Unity Transport Package. The Unity Transport Package3 is the replace-
ment for the UNet LLAPI. It establishes connections, sends messages be-
tween clients and servers, serializes the data, and takes care of all other
underlying network operations.

Unity NetCode Package. The new network solution Unity NetCode4 is
not directly a replacement for the UNet HLAPI. While it still takes care of
synchronizing the game, it does this in a completely different way. This is

3https://docs.unity3d.com/Packages/com.unity.transport@0.3/manual/index.html
4https://docs.unity3d.com/Packages/com.unity.netcode@0.0/manual/index.html

41

https://docs.unity3d.com/Packages/com.unity.transport@0.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.netcode@0.0/manual/index.html

3. Design & Conceptual Model

because the NetCode package is part of Unity’s new data-oriented technol-
ogy stack (DOTS). The DOTS project is part of a big refurbish plan for Unity.
It focuses on bringing the advantages of multi-threading to Unity. The basis
for DOTS is the Entity Component System (ECS), a new way of thinking
in Unity. Instead of each game object having its scripts executed, the game
objects (entities) only store the data (components). What to do with the
data is determined by the systems (Unity Technologies, 2020). According to
House (2019) the new DOTS NetCode will be released in early 2021.

Several disadvantages come with the new system. Rent has to be paid
for a server on the Google Cloud Platform, and the documentation is not
extensive by now. Unity’s sample projects allow having a first insight, but
there is no official documentation yet.

3.6.3. Mirror

Mirror5 is the open-source successor of UNet, that ships under MIT license.
It provides most of the functionalities known from UNet but addresses
significant issues that UNet still included. In contrast to UNet, Mirror is
still fully supported, and on their website, they assure that it also will be
in the future. The fundamental components are already known from UNet,
making this system easy to learn for developers who have worked with UNet
before. It is easy to set up a network with a host and connecting clients. The
included ‘NetworkTransform’ component automatically synchronizes game
objects over the connected parties.

3.6.4. Photon

Unlike Mirror, Photon6 does not purely focus on Unity projects. It is a
pay-to-use API that supports all kinds of network architectures. It offers
various products for different network architectures. The Bolt and Quantum
products are focused on dedicated server architectures. Photon PUN, on the

5https://mirror-networking.com/
6https://www.photonengine.com/

42

https://mirror-networking.com/
https://www.photonengine.com/

3. Design & Conceptual Model

other hand, provides a P2P solution. The main advantage over Mirror is that
it comes with integrated NAT traversal. Also, it is cross-platform out of the
box. The Photon public cloud is used to run the projects, and a subscription
plan has to be purchased to use it. It is free for up to 20 concurrent users
(CCU), but for more users, the price ranges from 95$ one-time (100 CCU)
up to 370$ per month (2000 CCU).

3.6.5. MLAPI

The Mid Level API7 (MLAPI) is another open-source game networking
stack that ships with an MIT license. It runs on top of UNet, and, as the
name suggests, it is a network solution located somewhere between UNets
LLAPI and HLAPI. It provides many simplifications over the LLAPI, such
as keeping game objects in sync and handling underlying network setups.
It provides much more control than the HLAPI. According to their website,
it also provides more functionalities than Mirror does. However, MLAPI
relies heavily on UNet, so it also suffers from the deprecation of UNet.

With the theoretical foundations laid, the following section presents the
concrete design decisions.

3.7. Multi-User Design

This section compares the different options that were presented in the
previous sections. We used the gathered information to make reasonable
design decisions for Maroon.

3.7.1. Network Architecture Selection

Table 3.1 compares the different architecture properties that were presented
in Section 3.4. As defined in the requirements in Section 3.3, the primary
use case for multi-user in Maroon is to connect classes and their teachers.

7https://mlapi.network/

43

https://mlapi.network/

3. Design & Conceptual Model

Local Direct P2P Client-Server P2P Dedicated Server
Latency XX x x X
Scale x xx x XX
Cost XX XX X xx
Complexity XX x X xx
Reach xx x X XX

Table 3.1.: Overview over the properties of the different multi-user architectures (Unity,
2018). The ranking in each category goes from xx - vital disadvantage, to XX -
vital advantage.

To be usable by more than one class at once, different instances of Maroon
have to run at the same time. In other words, it is not sufficient to have
only one dedicated server for all users. It would be an option to have a
dedicated server setup, where users launch a new instance on the server for
each class. However, this would cause the need for a lot of server capacity,
which limits the scalability. This means that more servers would be needed
once the project and its online usage grow.

It is good to have a local network solution in addition to an online one.
However, this thesis’s primary requirement is to achieve online collaborative
learning, so a purely local solution does not fit this objective.

For this thesis, we chose a P2P network, a client-server P2P architecture to
be exact. The teacher, or any of the students, can host a server for the class,
and all other class members can connect to this server. The low scalability of
a P2P network is not a decisive factor, as it still works well for the number
of people in one class. As all the instances of Maroon run separately, there is
no limitation to the scalability overall. The only additional requirement is a
list server that keeps track of all the available hosted servers (Section 4.1.2).
However, a P2P architecture choice means that we have to overcome the
network address translation.

3.7.2. Network Address Translation Traversal Comparison

Table 3.2 compares the advantages and disadvantages of the various NAT
traversal options that were presented in Section 3.5. However, the choice

44

3. Design & Conceptual Model

UPnP PCP STUN TURN
Success rate x xx X XX
Latency X X X x
Complexity X X xx x

Table 3.2.: Overview over various options of NAT Traversal. The ranking in each category
goes from xx - vital disadvantage, to XX - vital advantage.

is not exclusively. All the presented methods can be combined to achieve
better performance. A common approach is to try the methods sequentially.
First, a direct connection is attempted to check if the server has a public IP
address. If this fails, the server tries to set up automatic port forwarding,
both by UPnP and PCP, as these are the easiest options. If this fails as well,
the peers try NAT punch-through by STUN. This has a higher success rate,
but dependent on the NAT, there is still a chance that it fails. If all other
approaches failed, the system falls back to using a relay server applying
TURN. While this is the worst option regarding latency and requires an
external server, it is the only option with guaranteed success. This NAT
traversal setup would also be desirable for Maroon, but it is not in this
thesis’s scope to implement all of these options by hand. Some network
options for Unity already provide a solution for NAT traversal, but others
do not. Therefore a reasoned choice for NAT traversal can only be made
once a Unity network option is selected.

3.7.3. Selected Multi-User Option for Unity

This section presents which option we chose to implement a network solu-
tion for Maroon in Unity. The available options were presented in Section 3.6.
Usually, this selection would be an easy one to make. With the project being
open-source and having as few dependencies as possible, the logical choice
would be to take an out-of-the-box solution that ships with Unity. With the
particular state that Unity’s networking code is currently in, this selection
is a much harder one to make. UNet was the go-to solution for Unity so
far, but now that it is deprecated, it will only be supported for a limited
time. With a continually changing project such as Maroon, which is under
constant development, it is not compatible with this thesis’s objective to

45

3. Design & Conceptual Model

Figure 3.7.: The decision flow chart, redrawn from House (2019).

add a multi-user feature that has to be removed soon because it is not
supported anymore. On the other hand, the new DOTS NetCode is not
officially released yet, and therefore the documentation is hardly existent.
This makes it very hard to work with, and as it is still under development,
there is no guarantee that what works in the pre-released version will also
work using the released version in 2021.

Unity is well-aware of the unpleasant situation that developers are in these
days. Figure 3.7 shows in a flow chart how to handle the current situation
as a developer from Unity’s perspective. Following the path applicable to
Maroon (marked in green) concludes that a P2P network is most feasible.
Unity recommends using UNet, as long as it is still supported. However, due
to the reasons stated above, this is not possible. Therefore other networking
stacks, not provided by Unity, have to be taken into consideration.

Table 3.3 gives an overview of the features of the available technologies.
Photon would be a suitable solution, as it is easy to use and already handles
NAT traversal. However, it has to be purchased or subscribed, which violates
the open-source approach of Maroon. MLAPI is also not an option, as it

46

3. Design & Conceptual Model

UNet NetCode Mirror Photon MLAPI
Future Support x X X X x
Documentation X x X X X
Suitable License X X X x X
Cost X x X x X
NAT Traversal x X x X X

Table 3.3.: Overview over network technologies for Unity.

relies on UNet. Therefore, the chosen networking API is Mirror. It offers the
same functionalities as UNet, which according to Figure 3.7 is the option
recommended by Unity. “Mirror is the most compatible direct replacement for the
deprecated Unity Networking API” (Mirror Networking, 2020). In contrast to
UNet, it will not be deprecated shortly. Moreover, Mirror ships with an MIT
license, which allows us to use it in the Maroon project without any trouble.
The 25 concurrent user limit in Figure 3.7 is calculated for UNet and does
not apply to Mirror. The networking technology is so much more efficient
than UNet that it can handle up to 500 concurrent users, which is more
than enough for Maroon (Mirror Networking, 2020). However, the choice of
Mirror means that there is no integrated solution for NAT traversal, so we
have to find a custom solution.

3.7.4. Network Address Translation Traversal Selection

Mirror’s website8 recommends forwarding the ports manually as a solution
for NAT Traversal. This is not a satisfying solution for Maroon, as we do not
want users to have this effort. There are integrations for Mirror that provide
NAT traversal, but none have a suitable license for Maroon. We considered
using a relay server, but the limited scalability and the cost for a server
made us reject the idea. With the relay server off the board, automatic port
forwarding is the chosen solution. Research brought attention to Open.NAT9,
a C# library that supports port forwarding by both UPnP and PMP. It allows
the user to discover a UPnP or PMP device in the current network, and if

8https://mirror-networking.com/list-server/
9https://github.com/lontivero/Open.NAT

47

https://mirror-networking.com/list-server/
https://github.com/lontivero/Open.NAT

3. Design & Conceptual Model

it finds an enabled device, it sets up a custom port mapping. As the more
recent PCP protocol is also compatible with PMP, PCP routers should work
as well. The mapping is temporal and deleted after a specified time or when
the application is closed. We tested the solution with a UPnP-enabled router,
and it worked perfectly. As already discussed earlier, the disadvantage of
automatic port forwarding is the low success rate. This is because not every
router supports UPnP or PMP, and on many devices, it is disabled. However,
according to a study carried out by Yang (2019), 76% of all routers on the
internet have UPnP enabled. With multiple people trying to collaborate, this
leaves only a minimal chance that none of the users can create a UPnP port
mapping. Therefore it is feasible to rely on this method of NAT traversal
for Maroon. The addition of a local network connection option allows the
use in school or organization networks, where UPnP is usually disabled.
It even works when the peers only connect over a smartphone that has an
active WiFi hotspot. NAT punch-through would be a valuable addition for
those cases where automatic port forwarding fails, so we leave it open as
an extension for the future (Chapter 7). With all relevant multi-user design
decisions made, the following section focuses on the sorting algorithm
experiment’s design.

3.8. Sorting Experiment Design

The sorting experiment should allow users to get to know different sorting
algorithms. The visualization should be engaging and pleasing while still
educational. As Naps et al. (2002) define in their eleven best practices for
algorithm visualization, there are several properties that the visualization
should fulfill. Users should control the visualization flow, so they can step
through the visualization at their pace. Also, it should be possible to step
backward for better traceability. A pseudo-code should be displayed to
the user as technical background information. The current execution line
should be highlighted in the pseudo-code to make it easier for the user to
understand the execution order. Additionally, a short textual description of
the algorithm should be displayed to explain the basic concept. As already
described in Section 2.2, the setup of a Maroon experiment is predefined.
There exists a template experiment that we can use for the creation of the

48

3. Design & Conceptual Model

Figure 3.8.: A mock-up for the detail-view design.

new sorting experiment. Following the style of Maroon, we developed a
detail-view mock-up, shown in Figure 3.8.

In addition to the detail-view covering all the aspects defined above, the
experiment should contain a battle-view. In this view, users should let
algorithms compete on different data sets. If these data sets are large enough,
this allows a judgment of the algorithms’ time complexity, which is usually
hard to achieve with algorithm visualizations (Laxer, 2001). Moreover, the
competition is entertaining to watch, as users can cheer along for their
favorite. To amplify this, we introduce the sorting challenge. In this challenge,
users can predict which algorithm will sort the field faster. They gain a
point for each correct prediction. Especially in the multi-user version of
the experiment, this can lead to positive competition. Moreover, having
such a mini-game in a collaborative environment can lead to more active
participation (Azmi et al., 2015). Figure 3.9 shows a mock-up of the battle-
view.

49

3. Design & Conceptual Model

Figure 3.9.: A mock-up for the battle-view design.

3.9. Summary

This chapter defined the objectives and requirements for this thesis, based
on the research in Chapter 2. It presented a client-server P2P network as the
chosen architecture, as this architecture best suited the defined requirements.
With the choice of this architecture, network address translation is a problem
that we have to overcome. This chapter gave different solutions to the
problem and introduced automatic port forwarding as the choice for this
thesis. Moreover, this chapter deals with the current unfortunate situation of
network development in Unity. As Unity is currently redesigning its network
code, we chose Mirror as a substitute. Mirror provides all functionality
that was provided by Unity before and more. The end of this chapter
presents the design of the sorting experiment. It consists of a detail-view
that teaches the various algorithms and a battle-view in which algorithms
can compete. Additionally, the battle-view includes a challenge in which
users can predict which algorithm will be faster. The next chapter deals
with the implementation of all the defined functionalities.

50

4. Implementation

This chapter describes the implementation details based on the requirements
and design defined in the previous chapter. It shows in detail how the multi-
user network is established, which parts are required and how they interact.
Moreover, it introduces the concept of control handling as a regulation tool
to prevent chaos when having many users. Synchronizing experiments is
introduced as an important topic, as it is a feature that future developers
will have to implement for their experiments. Furthermore, this chapter
presents the design of the sorting experiment and the associated sorting
challenge.

4.1. Network Establishment

In Section 3.7.3, we chose Mirror to implement the network part. The crucial
component in a network implementation with Mirror is the Network Manager.
Mirror provides a base class that handles hosting a server, joining a server
at a specified IP address, and all other kinds of basic functionalities. We
derived from this base class to create a custom Network Manager for Maroon.
We implemented this new class as a singleton that stays active across all of
Maroon’s scenes. It spawns a player object for all connected clients and is
responsible for all messages sent between clients and the server. It handles
the network setup process by calling the corresponding methods in the
classes for automatic port forwarding, the list server, and the local network
discovery. The following sections describe these classes and how the various
parts act together to form the setup process.

51

4. Implementation

Figure 4.1.: Representation of the ServerStatus class.

4.1.1. Local Network Discovery

As defined in the requirements, Maroon should support online as well as
local connections. Mirror already comes with an in-built network discovery
base class. This class provides two essential options: (1) Advertising a server
over the local network and (2) finding advertised servers. Deriving a class
from this base class also allows the publication of custom server information.
This allows passing information, such as the server name and the current
players, over the local network. The MaroonNetworkDiscovery class extents the
Mirror base class to advertise running servers on the network or search for
active servers. To store the server information, we introduced the ServerStatus
class, displayed in Figure 4.1. This class contains all information on servers
published over the network, and one class instance is created for each server
found.

4.1.2. List Server

With the client-server P2P architecture chosen, the need for a list server
arises. Without it, the users would have to manually type in the host’s IP
address to connect to it. This requires additional effort to figure out the IP
address and to distribute it to the other peers. Therefore, a list server is

52

4. Implementation

Figure 4.2.: Incoming and outgoing communication with the list server.

needed to keep track of which peer has hosted a server on which IP address.
The list server then distributes this information to all clients connected to it,
allowing users to join the requested server with one button click.

Since the Maroon team decided to use an independent server solution,
we had to set up a custom list server. This meant that we had to write
the server code ourselves. The custom implementation, written in NodeJS,
allows running the server on all major hosting platforms. The client-side
implementation of the list server ships under MIT license and provides a
basis for the server-side implementation.

Figure 4.2 shows all the interactions of the existing implementation in Mirror
and the list server. The list server consists of two separate parts, the client-
server and the game server. Once the multi-user feature is enabled, each
Mirror instance connects to the client-server. Over this server, the list server
distributes all available matches to all connected clients. Once users decide
to host a server, they disconnect from the client-server and connect to the
game-server instead, which runs on a different port of the list server. Users
running an active server provide their server information to the game server
and update it continually. This allows the list server to have up-to-date
information about all hosted servers continually, and it also keeps track of
which servers are still running and which have quit service. We used all this
gathered information to implement a custom version of the list server in

53

4. Implementation

Figure 4.3.: Setting up the network. Green arrows are user interactions, grey arrows are
executed automatically.

NodeJS. The server is fully compatible with Mirror’s client-side code, which
we customized for Maroon. All the servers received from the list server are
stored in the ServerStatus class displayed in Figure 4.1. The only difference to
above is that the isLocal attribute is set to false, so it is possible to distinguish
between servers found over the local network and those received from the
list server.

4.1.3. Network Setup

The network system should automatically be able to handle local and online
servers at the same time. To make it as easy for the user as possible, we
handle both options equally. It is even possible to have online users and
local users connect to the same server. This subsection explains how the
different parts act together to set up the network. Figure 4.3 shows the setup
process. All states marked in red are the networked states in which the
network is enabled.

The network part remains completely inactive before the main menu’s
network button is clicked for the first time. This ensures that the multi-user
part of Maroon does not affect the offline version at all. Once the user has
clicked on the network button, a connection to the list server is attempted,
and the local network discovery is started. All the found servers are stored in

54

4. Implementation

the same list displayed to the users over the menu, described in Section 4.2.2.
If users select one of the available servers by clicking on it, a connection
attempt is made. On success, they join the server as a client, which leaves
no further actions to be made. Failing to connect brings users back to the
offline state they started in, with the difference that the search for servers
both over the list server and the local network remains active. An error
message informs the user that a connection was not possible.

The more complex part comes into play when users decide to host a server.
Once the host is started, it notifies the local network discovery of the new
server. At the same time, it starts an attempt to automatically forward
the necessary ports, as described in Section 3.7.4. If the attempt fails, the
user proceeds to the local-only mode, in which clients can only join over
the local network. In this case, the server will not send data to the list
server and will not be displayed to online users. There is still the option
to manually forward the ports by entering the router settings, which the
network administrator can do. Over the menu, the user can confirm that they
forwarded the ports to be recognized by the list server. If port forwarding is
successful, however, the host sends the server information to the list server.
Now, everything is set up for online users to join. If the host cannot establish
a connection to the list server, it is once again in local-only mode, where
clients can only join over the local network. Note that there are cases that
the diagram in Figure 4.3 does not cover. It is, for example, possible to host
a server without first listing the available servers. Moreover, there is no
real difference between the Host Local Mode and the Host Online Mode in
practice. The only difference is that the server is not reachable by online
users. Therefore, it is possible to directly go from Host Local Mode to Host
Online Mode if the ports are forwarded successfully. However, the connection
to the list server is established only at a later point. The diagram shows the
network setup concept, but it should not be regarded as an accurate flow
chart of the implemented solution.

55

4. Implementation

4.1.4. Connection and Disconnection Handling

While the previous section covered the network setup process itself, this
section focuses on a client’s behavior when connecting to a server. Moreover,
it shows how to handle client disconnects, both planned and unplanned.

Password Protection. One desired feature, defined in Section 3.3, is to
have optional password protection for a server. Students might be assigned
homework in Maroon or want to work together on a private project in the
future. In these cases, there must be a way to keep other users from joining
the server uninvitedly. However, working with IT security is a critical topic.
If something has to be secure for real, it must be implemented by relying on
secure libraries. Passwords should never be accessible to anyone who did not
enter them, and the communication channels should be encrypted. Overall,
actual security is a complex goal to achieve. Apart from the password,
Maroon does not have to exchange any sensitive data over the network.
There is also no threat that any hacker might attack the Maroon network.
Our solution only has to keep a user who entered the wrong password from
joining the server. So it is sufficient in Maroon’s case to knowingly waive IT
security and send the password unencrypted to then directly compare it to
the defined server password.

Once users want to host a server, they first have the option to set a server
password using the password interface shown in Figure 4.4. Once they hit
the OK button or the enter key, the server is started. When users select a
server to connect to, they must also enter the password using the same
interface. The password is then compared in the connection procedure.

Connection Procedure. Some parameters have to be checked when a client
connects to a server. As explained above, a password has to be exchanged
and confirmed, and due to reasons explained in Section 4.3, a client cannot
join a server that is currently in an experiment. Therefore we developed the
connection procedure presented in Figure 4.5. Once a client has connected
to the server, it sends a connect message over the network that contains the
password that the user entered via the interface earlier. When the server

56

4. Implementation

Figure 4.4.: When starting a host or connecting to a server a password can be entered.

receives this message, it checks if it is currently in an experiment and if
the password that is received matches the password set on the server. In
case it is in an experiment or the password was wrong, it sends a leave
message back to the client that asks the client to leave the server. If both the
password is correct and the server is currently in the lobby, the server adds
the client to a list of authenticated clients. This allows spawning a player
object later. Moreover a CharacterSpawnMessage is sent to the client. This
message gives the client feedback that everything is fine and that it should
send its character spawn information. When receiving this message, the
client responds with a CharacterSpawnMessage itself, containing information
about the position and rotation of the character in the laboratory. This
allows the server to spawn the networked player object in the same position
that the user was standing in when offline. This makes joining and leaving
servers feel smoother, as the user does not randomly teleport through the
laboratory. When the server receives this spawn information, it checks if
the client is authenticated. If not, it immediately removes the client from
the server. Otherwise, the server creates a player object for the new client
and spawns it over the network. From this point onward, the client can
participate in the collaborative learning environment.

57

4. Implementation

Figure 4.5.: The communication of client and server on connection. The green arrows are
messages sent over the network.

58

4. Implementation

State Description

NoConnection The server could not be reached when
trying to connect.

Disconnect The connection to the server was
unexpectedly interrupted.

InExperiment Could not connect to the server because
it is in an experiment.

WrongPW Could not connect to the server because
the provided password was wrong.

Kicked The user was kicked from the server
by the host.

Usual The client was actively stopped by
the user over the menu.

Table 4.1.: The different disconnection states.

Disconnection Handling. When a client disconnects from the server, it
is necessary to evaluate why this happened. To do this, we introduced
the DisconnectionState. This state is stored on the client and can take the
values shown in Table 4.1. When the client stops, the disconnection state
can evaluate the reason, and a message can be displayed to the user. The
disconnection state has to be kept up to date on the client. For this sake,
we introduced the leave message mentioned above. The message contains a
DisconnectionState. Once the client receives the message, it leaves the server
and displays the associated message. If the client ignores the message, the
server forces a disconnection to prevent malicious clients from exploiting
the architecture. If a client disconnects from the server without receiving
a leave message, we know that it was not a planned disconnection. Again,
the corresponding message is shown to the users. Figure 4.6 shows the
connection procedure diagram from above, extended by the disconnection
states, displayed in orange.

59

4. Implementation

Figure 4.6.: The connection procedure diagram was extended by the disconnection states
displayed in orange.

60

4. Implementation

4.1.5. Naming

There are two components in our network that require choosing a name:
users and servers. Allowing users to choose names freely allows them to
choose offensive names. Therefore, we decided to assign all names automat-
ically. As Maroon comes with support for different languages, the names
have to be language-independent. For the user names, we chose some of
the most famous scientists to match the theme of the laboratory (Stewart,
2020). As the selection is very male-heavy, we extended it by some of the
most famous women in science (Curry, 2017). The name is assigned to a
user by the server once connected. For the server names, we settled on the
top-ranked universities’ names for natural sciences (Quacquarelli Symonds,
2020). The name is chosen at random when starting the server, disregarding
all names already taken by other servers on the list server or in the local
network.

4.1.6. Ports

Several network parts in Maroon require a port. The most crucial one is
the host port used for the connection of all the clients. The list server needs
two ports, one for the client-server and one for the game-server. Moreover,
the local network discovery needs a port to broadcast and receive server
information over the local network. So in total, we need four ports, which
have to be unique to avoid problems.

Ports can not just be selected randomly. A wide range of ports is already
reserved for certified usage. The Internet Assigned Numbers Authority1

(IANA) provides a register of all the taken ports. Cotton et al. (2011) de-
scribes how the port ranges are defined and which ports are open for public
use. The ports 0-1,023 are the standardized ports or well-known ports. They
are heavily occupied and should not be used for custom programs. The
ports 1,024-49,151 are the user ports or registered ports. Together with the
standardized ports, they are assigned by IANA, so the register gives in-
formation if these ports are open for use. The ports 49,152-65,535 are the

1https://www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xhtml

61

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

4. Implementation

Service Port Number
Host 13,118

List Server - Game Server 13,119

List Server - Client Server 13,120

Network Discovery 13,121

Table 4.2.: The port numbers chosen for Maroon.

Dynamic Ports or Private Ports. They are not assigned by IANA and can be
assigned freely for private use.

For Maroon, a free port in the high (>10,000), mostly unoccupied, ports
is the best choice. This leaves the option to register the port at IANA if
wanted but still has a low risk of interfering with other programs. To choose
a random port, we took the alphabetical position of the first three letters in
Maroon: M - 13, A - 1, R - 18, resulting in port 13,118. Checking the IANA
registry confirms that ports 12,866-13,159 are unassigned and free for use.
Table 4.2 shows our final port assignments.

This section explained the implementation details of the network, its setup
process, and the disconnection process. The following section deals with
user interactions while users are on the server.

4.2. User Interaction

User interaction can be interpreted in different ways. On the one hand,
it can mean the interaction of users that are on the same server. On the
other hand, it can also mean how users interact with the program while
on the server. Users’ interaction with other users is a topic that we do not
address in detail with our implementation, as it is not a pushing matter. Of
course, interaction is a crucial topic for a collaborative learning environment,
and as explained in Section 2.1.2, we favor synchronous communication
between users. However, users nowadays are usually already connected
over some voice chat. It is therefore not feasible to implement a custom
communication solution. Instead, we leave it open for future work to add
a voice chat component if desired (Chapter 7). This section mainly deals

62

4. Implementation

with the interaction of users with the program. Moreover, it introduces the
concept of control handling, which brings order to an otherwise chaotic
system.

4.2.1. Control Handling

As defined in Section 3.3, it should be possible to work on a server for only
a small group of students and for the whole class at once. If anyone can
control anything, this introduces many problems. Two users could change
something simultaneously, but we cannot tell which information arrives on
the server faster due to network latency. Moreover, it can be unpleasant to
users if another user immediately undoes something they just did. Especially
in big groups, if many people interact, things change continuously without
leaving users the chance to explore. Thus, we decided that only one user
should control all actions synchronized over the network. It is still possible
to have local user interactions that users can perform independently of
other users. However, only one user should control essential operations like
entering an experiment or changing the experiment parameters.

This section deals with the handling of who is in control. Section 4.3 deals
with how the information of the user in control is synchronized over the
network. For control handling, we implemented and compared two different
approaches.

Approach 1: Granting Control. In this approach, the host starts as the
user in control when starting a server. Once clients have joined, the host can
grant them control over the menu. In the network column of the menu, a list
of all connected clients can be seen, and clicking on this client hands over
the control, as shown in Figure 4.7. The host always has the option to take
back control over the menu actively. This prevents that an unresponsive user
blocks other users from using the multi-user feature. It is also a security
feature to take control of someone who purposefully misbehaves. If the user
in control disconnects, the host automatically regains control.

63

4. Implementation

Figure 4.7.: Grant control to a client over the menu.

Approach 2: Taking Control. Once again, the host starts as the client in
control. A box in the lower-left corner displays the current control infor-
mation. When hovering over the box with the cursor, the box expands and
displays the user’s name and the server’s name, as shown in Figure 4.8. For
users that join, the box displays the name of the user in control. Clicking
on the box sends a request to the user in control. The control request is
displayed in the same box, together with a five-second countdown. If the
control request is not declined in this period, control is granted to the user
who requested it. Users can also cancel their requests by clicking on the
box again. Canceling a request, either by users themselves or by the user
in control, triggers a 15-second countdown in which they cannot request
control. This keeps users from repeatedly spamming the request. Only one
request can be made at a time, so all the connected clients have to be notified.
The control user interface is both displayed in the lobby of the laboratory
and inside each experiment. This means that it is always possible to change
the user in control. Figure 4.9 displays all the states of the control user
interface, and Figure 4.10 shows a flow chart diagram of how the control
user interface states are reached. The colors in the diagram match the colors
of the control user interface in the corresponding state.

64

4. Implementation

Figure 4.8.: The control handling user interface is displayed in the lower left corner, here
inside the Huygens’ Principle experiment (Holly, 2019). The player name and
server name are only displayed while the mouse hovers over the interface.

(a) The user is in control.
(b) Another user has requested

control from you.

(c) Another user is in control. (d) You have requested control

(e) Your last request has been canceled. (f) Another user has requested control.

Figure 4.9.: All the states of the control handling user interface.

65

4. Implementation

Figure 4.10.: Flow chart diagram for the control UI states. A colored arrow indicates an
active input from the user.

66

4. Implementation

Approach 1

Grant Control
Approach 2

Take Control
Robustness x X
Usability x X
Inactive Users x X
Troll Protection X x

Table 4.3.: The two control handling approaches in direct comparison.

Comparison. The approach with granting control has the advantage that
once users are in control, they can only actively lose this control and not
bother with any requests. When looking at the use case where a teacher
presents an experiment to a class, this is ideal. On the other hand, with the
control-request approach, users in control might have to deal with numerous
requests that they have to deny, which might be bothersome. However, this
method’s advantage is handling players who experience network problems
or are inactive. In the control-granting approach, only the host can take
control from them, but if the host itself is not actively participating, this
leaves no user with the option to take control. Especially if the host might
only run the server in the background for others to participate, this is
a problem. With the control-taking approach, on the other hand, this is
no problem at all. Users can leave their computers, even if they are in
control, because other users can take control from them after a short delay.
This option is also much more error-prone, which is crucial for network
architecture.

Table 4.3 compares the two approaches. Overall, the second approach’s
advantages are more decisive, so we chose it for the final version. With
the chosen solution, control visualization is already handled. A glance in
the lower-left corner immediately tells the user who is currently in control.
However, in the lobby, where the users can move around, there might still
be confusion. For clarification, all user characters are displayed in red, apart
from the user in control, who has a green character. This allows the other
users to see what this user is doing or which experiment is about to start.

However, there is still a problem we have to address: a client that disturbs
the experiments on purpose. First of all, this person should not be allowed
to join the server in the first place. As described in Section 4.1.4, this can be

67

4. Implementation

achieved using password protection. However, if unwanted users join the
server, there has to be a way to deal with them. This would not have been a
problem in the first approach, as the control can be taken from them by the
host, and then they do not have an option to retake control. In the second
approach, however, we have to find a solution to deal with the troublemaker.
We solved this problem by adding an option for the host in the menu’s
network section. We introduced a Kick User button, which shows a list of all
currently connected users. Clicking on a name removes the corresponding
user from the server. The following section introduces the network menu,
including this new button.

4.2.2. Menu

Maroon already provides a pause menu that lets users control language
and sound settings. We decided to utilize this menu for the network part as
well. Activities such as hosting a server or joining a server can be performed
over this menu. The menu relies on a column design, so clicking a category
button in the first column opens a second column with the corresponding
category. Figure 4.11 shows the new network category of the menu.

The displayed buttons in the network column depend on the state of the
network. When the user is offline, the menu contains the two buttons shown
in Figure 4.11. The Host Server button, as the name suggests, starts a server.
The Join Server button opens a third column, which lists all available servers.
The local servers are listed first in alphabetical order, with the house icon
marking them as local. The online servers are displayed in alphabetical
order below the local servers, but instead of the house icon, the button
shows the ping to the server. For all servers, the button contains the server’s
name, the number of currently active users, and the maximum number of
users.

Once users have started a host or connected to a server, there are new options
available. If they are connected to a server, the only button displayed is the
Leave Server button, leaving the server and returning to offline mode. When
starting a host, the user can instead stop the host with the Stop Host button.

68

4. Implementation

Figure 4.11.: The newly added network menu.

Additionally, the host can remove any user but itself from the server, using
the Kick Player button introduced in the previous section.

The last button displayed is the Ports Mapped Manually button. As explained
in Section 4.1, this is only displayed if the automatic port forwarding on a
host failed. It allows declaring that the ports have been forwarded manually
so online users can join the server. In addition to the appearance of the
button, the user also receives an error message. The following section deals
with this message and other ones and how they are displayed to the user.

4.2.3. Messages

A network solution needs to keep the user up to date with what is hap-
pening. Therefore some way is needed to display information to the user.
Maroon already has a help character that presents messages to the user.
According to Baylor (2009), such a virtual agent increases the motivation, so
we decided to use the character to transmit our messages. Different kinds
of messages can occur while running the network.

69

4. Implementation

Connection State Client
Active

Server
Active

List
Server

Connection

Ports
Forwarded

Offline x x X -
Offline No Connection
To List Server x x x -

Client Online X x - -
Host Online x X X X
Host Online No
Connection To List Server x X x X

Host Online Ports
Not Mapped x X - x

Table 4.4.: All possible connection states for Maroon. The - indicates that the state does not
depend on that parameter.

Network Status Messages. As already covered in Section 4.1, the setup
for the network is a complex process, so the need for user information is
high. The user should be updated whenever the network status changes.
This status mainly depends on the following parameters:

• Is the network client active (client only mode)?
• Is the network server active (host mode)?
• Is there a connection to the list server?
• Was the automatic port forwarding successful?

We defined different connection states depending on the combination of
these parameters. Table 4.4 shows the defined states. Each second, the state is
evaluated and stored in the NetworkManager class. Each time the connection
status changes, a message is displayed to the user by the help character.
When a user fails to start a host because a different server runs on that
socket, a message is displayed. This is not a connection state message, but
definitely, the user has to be informed about it.

Besides the messages displayed by the virtual agent, we introduced the
network status station. It is a screen that the user can walk to in the virtual
laboratory (Figure 4.12). It displays messages about the current network
status and, in some cases, information on how to fix an issue. There is also

70

4. Implementation

Figure 4.12.: The Network Status Station: The screen displays the network status, the red
light indicates that there is a problem.

a light bulb attached to the station. The light indicates if there is a problem
of interest to the user. If everything is fine, the light is green. If there is no
connection to the list server or the port mapping failed, the light is red or
yellow. If the user is offline, the light is switched off, so it is a good indicator
for users in the scene to know if they are currently online.

Connection Messages. The second main category of messages consists of
the connection messages. Users should know when they have successfully
connected to a server and, even more critically, when disconnected from a
server. The host is additionally informed each time a client joins or leaves
the server. Once clients connect to a server, they are greeted by a welcome
message. This message includes the assigned name of the user and the
server’s name. This message is also displayed to a host when starting the
server initially. The disconnection messages depend on the disconnection
state, defined in Section 4.1.4, and they display why the connection to the
server stopped. All the messages are once again displayed to the user by
the help character.

71

4. Implementation

4.2.4. Scene Handling

As defined in Section 3.7.3, we use Mirror to implement multi-user. The
name of Mirror reflects the strategy pursued, as the server mirrors scenes
to the clients. This means that the server and the client always have to be
in the same scene. Thus, users must enter experiments simultaneously, and
they cannot work on distinct experiments on the same server. We ensure
this by assigning the task of scene management to the network manager.
As Maroon was not originally designed for multi-user scenarios, scene
management was handled by different classes at the same time. This is the
most fundamental change that had to be made to the existing framework,
as now the network manager has to take over these functionalities.

Therefore, we created a new method in the NetworkManager that takes care of
the scene management and is a direct replacement for the LoadScene method
to be called before. Listing 4.1 shows the code of this new EnterScene method.
It takes the scene name as a parameter, just as the scene management’s
LoadScene method does. If the user is offline, the method forwards the
request to the scene management, so the offline behavior does not change. If
the user is online, we perform a couple of checks. Firstly, we check if the user
tries to enter the main menu scene. As already mentioned, all connected
clients have to be in the same scene, so it is impossible to switch to the
main menu scene while on a server. Therefore, we deny this with an error
message. Secondly, we check if the request was made by the client in control.
As described in Section 4.2.1, only one player at a time can be in control,
which includes the right of changing scenes. If the client is not in control,
the scene change is denied with an error message. The third check that
we perform verifies if the requested scene is valid. This validity check was
introduced to ensure that only those experiments that support multi-user
can be entered in multi-user mode. To implement this, we added a list of
scenes to the network manager class that can be accessed over Unity’s editor.
Once an experiment has been set up for multi-user, the developer should
add the experiment scene to this list. Only if the scene is in the list, the
validity check succeeds. If the check fails, an error message is displayed
once again, and the scene change is denied. If none of the three checks fails,
a network message is sent to the server containing the requested scene’s
name.

72

4. Implementation

When the server receives the message, it first checks that the client that
made the request is the client in control. Then it double-checks that the
requested scene is valid. This prevents that a client requests a scene that is
not valid on the server, which can happen if the client and the server are
not running the same version. The server spawns a countdown screen over
the network that is visible to all clients. This five-second countdown is a
warning to every client that the scene is about to change. It allows everyone
to finish what they are doing before entering the next scene. Moreover, the
client in control has the opportunity to cancel the countdown in case any
client is not ready yet. Once the countdown reaches zero, the server initiates
a scene change that is automatically mirrored to all other clients.

As mentioned above, developers have to customize an experiment to add
multi-user functionality manually. The following section covers how the
developer can add this functionality and how we made it as straightforward
as possible.

4.3. Synchronizing Experiments

Since Maroon’s existing experiments should be equipped with multi-user
support, we had to find an effective way to enable collaboration without
redesigning the experiments. The problem is that these experiments were
designed for single-user interactions. We found the solution to mirror all
the actions taken by the controlling client to all other clients. This limits
the interaction possibilities of those clients that are not in control. Never-
theless, it allows collaboration in experiments that were not designed for
this purpose. When implementing the solution, we must be careful not to
interfere with the functionalities of the experiment. Therefore we tried to
change the existing implementation as little as possible while still reaching
full functionality.

From an implementation perspective, the critical question is which data we
have to send over the network. For simply mirroring the controlling client’s
experiment, it would be possible to share the whole screen. However, this
has no advantage over sharing the screen over an external platform. It takes
away the opportunity to specifically design an experiment for multi-user,

73

4. Implementation

1 public void EnterScene(string sceneName)

2 {

3 if (offline)

4 {

5 SceneManager.LoadScene(sceneName);

6 }

7 else

8 {

9 if (sceneName.Contains("Menu"))

10 {

11 DisplayError("Main Menu Denial");

12 return;

13 }

14 if (IsInControl)

15 {

16 if (CheckSceneValid(sceneName))

17 {

18 SendMessageToServer(sceneName);

19 }

20 else

21 {

22 DisplayError("Experiment Not Enabled");

23 }

24 }

25 else

26 {

27 DisplayError("Control Denial");

28 }

29 }

30 }

Listing 4.1: The EnterScene method of the NetworkManager, that is called by clients.

74

4. Implementation

where each user can influence an experiment individually. Moreover, there
would be immense amounts of data sent over the network. So we decided
to implement a more elegant way that utilizes the fact that each instance of
Maroon has all the necessary information to compute an experiment. The
program already repeatedly evaluates the user input and recalculates the
experiment state. So in order to synchronize the experiment, it is enough to
synchronize the user input.

4.3.1. Synchronizing User Input

User input strongly varies from experiment to experiment, and our solution
should not synchronize the user input of a specific experiment but for all of
them. It should also be easy for future developers to synchronize user inputs
to enable multi-user for their experiments. Therefore, we implemented a base
class that provides basic functionalities. Developers only have to derive from
this class and adapt it for their experiment. Figure 4.13 shows a class diagram
for the new ExperimentNetworkSync class. It synchronizes the starting and
stopping of experiments by adding a listener to the simulation controller’s
associated events. The virtual functions OnGetControl and OnLoseControl
are called when a client gains control or loses it. Developers can use these
functions to enable and disable user interactions. The class also provides the
functions AddListeners and RemoveListeners, and automatically calls them.
Listeners are a key part of synchronizing the user input. Each user interface
element has some event attached to it, such as an onClick2 event for buttons
or an onValueChanged3 event for sliders. We can add listeners to these events
that do not change the rest of the experiment’s behavior. They listen if there
is any user input and allow sending this user input to the other clients.

The way that Mirror is designed, clients can only communicate with the
server and not directly with other clients. Therefore all the information has
to be sent to the host first. As each client can be the client in control, a
method was needed to distribute the user input from any client to all other

2https://docs.unity3d.com/530/Documentation/ScriptReference/UI.Button-onClick.
html

3https://docs.unity3d.com/540/Documentation/ScriptReference/UI.
Slider-onValueChanged.html

75

https://docs.unity3d.com/530/Documentation/ScriptReference/UI.Button-onClick.html
https://docs.unity3d.com/530/Documentation/ScriptReference/UI.Button-onClick.html
https://docs.unity3d.com/540/Documentation/ScriptReference/UI.Slider-onValueChanged.html
https://docs.unity3d.com/540/Documentation/ScriptReference/UI.Slider-onValueChanged.html

4. Implementation

Figure 4.13.: Representation of the ExperimentNetworkSync class.

clients. Using the functionalities that Mirror provides, we achieved this by
designing the architecture shown in Figure 4.14. Clients receive the user
input, check if they are in control, and send the user input to the server
using a command message. The server then distributes this message to all
connected clients via a client remote procedure call (client RPC), including
the client that initially sent the message. This client can then ignore the
message as the action as it already acted. All other clients who receive the
message perform the action connected to the event that has been triggered.
This action has to be defined by the developer. It usually includes invoking
the event that was triggered on the client in control.

It generates much code to write a listener, a command, a client RPC, and
an action method for each possible user interaction. Therefore the base
class provides the method SyncEvent that already implements most of
this functionality. It takes the name of the action method as a parameter.
Developers have to create a listener on the event that they want to observe,
and inside this listener, they call the SyncEvent method, passing the name
of the action method. For each event, they have to implement this action
method, which has to have the return type IEnumerator4 so it can be started
as a subroutine. The SyncEvent method implements all logic needed for
a client to be in sync with the client in control. Developers should add
listeners to the overwritten AddListeners method and remove them in the

4https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html

76

https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html

4. Implementation

Figure 4.14.: Synchronizing a user input over the network using Mirror. All green arrows
represent network messages.

RemoveListeners method to prevent problems when leaving the server while
still being inside an experiment.

The SyncEvent method, as described above, works fine for all events that
do not carry any additional information. However, most of the events have
some information attached to them. The onValueChanged event of a slider, for
example, carries the updated value as a float data type, and the onEndEdit
event of an input field carries the input text as a string. To allow easy
synchronization of these methods, we implemented various versions of
the SyncEvent method, taking various input parameters. This method is
currently available for the data types float, integer, string, and bool, but it is
straightforward to add more variations. The corresponding action method
also has to take the required data type as a parameter.

Unfortunately, not all user inputs trigger an event that we can capture
using a listener. In these cases, developers must find a custom solution and
implement synchronization themselves, using Mirror’s network tools. When
implementing the synchronization for the existing experiments, described
in the following section, we came up with several custom solutions to be
used as a guideline for other developers. These methods mainly rely on
the SyncVar attribute provided by Mirror that automatically synchronizes a
variable on all clients.

77

4. Implementation

4.3.2. Adding Multi-User to Existing Experiments

The current framework consists of eight experiments. Table 4.5 shows a
list of these experiments and indicates if we added multi-user support. We
did not add support to the Coulomb’s Law experiment, as it is still under
constant development. We implemented a solution for the other seven
experiments and added them to the list of multi-user enabled experiments,
introduced in Section 4.2.4.

We created a guideline for future developers that they can follow to add
multi-user support to their experiments. This guideline is published on the
wiki of Maroon5. It presents the steps that developers have to take:

1. Derive from the ExperimentNetworkSync base class and implement

a) all user input fields as serialized fields.
b) the corresponding listeners using the provided SyncEvent meth-

ods.
c) the action methods triggered by the listeners.
d) all custom synchronizations.
e) the control handling methods, overwriting the provided methods.

2. Place the script on an empty game object in the scene and link all the
input fields.

3. Add the network.xml language file to the experiment’s language man-
ager, so all the network-specific texts can be displayed.

4. Add the scene to the enabled experiments in the NetworkManager. This
allows users to enter the scene while in multi-user mode.

We followed this guideline when adding multi-user support to the existing
experiments so that these experiments can serve as an example for future
developers. Figure 4.15 shows four instances of Maroon, connected over the
network, in the Faraday’s Law experiment. Only one user is in control and
therefore has the user interface enabled. The following section describes
how we designed the sorting algorithm experiment and how we used this
section’s guideline to add multi-user support.

5https://github.com/GameLabGraz/Maroon/wiki

78

https://github.com/GameLabGraz/Maroon/wiki

4. Implementation

Experiment Multi-User
Support Description

Falling Coil &
Faraday’s Law X

Two experiments focused on the
current that is induced in a coil moving
inside a magnetic field or the other
way around (Holly, 2019).

Huygen’s
Principle X

This experiment focuses on waves
and how these behave when hitting
different numbers of slits
in a wall (Holly, 2019).

Van de Graaf X

Two experiments focused on van de
Graaf generators that create charges.
In one experiment these are
discharged to a balloon,
in the other one they are discharged
to a grounder (Pirker et al., 2017).

Pendulum X

Users can swing a pendulum of
adaptable weight and rope length.
Using an integrated stopwatch they
can make observations of the
frequency (Wolf, 2019).

Coulomb’s
Law x

In this experiment the interaction of
charged objects is visualized both in
a two-dimensional and a three-
dimensional setting (Brettschuh, 2019).

Whiteboard X

This scene is not an experiment but
instead provides background
information on the other
experiments (Pirker et al., 2017).

Table 4.5.: A list of all the experiments in Maroon, showing if we implemented multi-user
support.

79

4. Implementation

Figure 4.15.: Four instances of Maroon running the Faraday’s Law experiment, but only
one user is in control. The experiment was originally designed by Holly (2019).

4.4. Sorting Experiment Implementation

In Section 3.8 we designed the sorting experiment to consist of two views.
The detail-view lets users step through algorithms forward and backward
and provides additional information, such as a description and pseudo-code.
The battle-view allows comparing two algorithms on a larger input field
directly. It contains the sorting challenge, which should engage users. Both
views support all nine algorithms that we described in Section 2.3.2. We
implemented a SortingController class responsible for changing the view
by enabling and disabling the corresponding components. This section
describes the implementation of the different views in more detail.

4.4.1. Detail-View

The detail-view allows users to examine algorithms in detail. Figure 4.16

shows a screenshot of the user interface that we created based on the design

80

4. Implementation

Figure 4.16.: The user interface of the detail-view.

defined in Section 3.8. The description on the left side gives a short overview
of the idea behind the algorithm. In the operations panel on the right, users
can select the algorithm that they want to examine. They can set the number
of elements in the sorting field up to a maximum of ten elements. The
Enter Battle Mode button switches to the battle-view. Below the options, the
highlighted pseudo-code is placed. An arrow indicates the current execution
line. Below that, the program counts the swaps and comparisons that the
algorithm needs to sort the field. This allows users to keep track of what
already happened and to compare different algorithms. The buttons at the
bottom of the screen are the control buttons. From left to right, these buttons
allow to reset the simulation, play and pause the execution and step through
the algorithms backward and forward.

Software Architecture. The implementation of the sorting algorithms
themselves is commonly known and straightforward. Appendix A con-
tains the pseudo-codes that we used as an implementation basic. What
increases the implementation complexity is that we want to have interac-
tive visualizations of algorithms that display all the current state’s vital

81

4. Implementation

Figure 4.17.: A UML diagram of the detail-view’s architecture.

information. Figure 4.17 shows the architecture we came up with. It is
based on the model-view-controller concept (Krasner, Pope, et al., 1988).
The SortingLogic, marked in red, acts as the controller. It receives the user
input, such as taking steps forward and backward and directs the other
classes. The SortingAlgorithm class in blue is an abstract class. It acts as the
model by providing all the information about specific algorithms. It is also
responsible for storing the execution history. The DetailSortingVisualization,
shown in green, acts as the view and visualizes the current sorting state.
The following paragraph discusses the various visualizations.

Visualizations. We designed the sorting elements as spheres of different
sizes. The size allows seeing if the elements are arranged correctly at one
glance. While executing a sorting algorithm, operations are performed on
the elements. To notify users about these operations, we visualized the
following operations on the field:

82

4. Implementation

Figure 4.18.: The radix sort visualization has additional buckets. In this picture the element
of value 26 is sorted to the bucket number 6.

• Comparison. To indicate that we compare two elements, we set a spot
highlight to them.
• Swapping. We animated the swapping of two elements by shrinking

both elements’ size until they disappear and let them reappear at the
other position. In the process, we highlight the elements with the same
highlight used for comparison.
• Inserting. Just as in the swapping animation, the element disappears

and reappears in the new position. Simultaneously, all elements be-
tween the new and the old position shift by one place in a smooth
movement to make room.
• Moving from/to bucket. This operation is only needed for radix sort.

To allow the visualization, we added ten buckets to the scene when
switching to radix sort. When an element is moved to a bucket, it
disappears. While disappearing, the bucket that the element is moved
to is highlighted. When moving from a bucket, the element reappears
in the new position, and again the bucket is highlighted. Figure 4.18

shows the moving to bucket animation in action.

83

4. Implementation

Apart from these operations, we visualized other features that help the user
to understand the current state. In recursive algorithms, we highlight the
subset of elements that is currently under investigation. This makes it easier
for users to follow the recursion. Moreover, we display the state of all local
variables that are used in the pseudo-code. Variables that store an index are
displayed above the corresponding element to link the index to the element.
All other variables are displayed below the pseudo-code.

As shown in Figure 4.17, the DetailSortingVisualization orchestrates the vi-
sualizations. It stores a list of all ArrayPlace instances, which contain a
SortingElement and the highlight for this element. The SortingElement class
implements all the visualizations performed on the sphere that represents
the element, such as moving to the left and right, changing the color, disap-
pearing, and appearing.

Sorting Algorithm Implementation. As described above, the sorting al-
gorithm acts as the model and is implemented as an abstract class. Each
algorithm derives from this class to implement the logic specific to that al-
gorithm. The complexity of the algorithm class comes from the requirement
that users should take backward steps. This means that we have to store an
execution history to be able to recover previous states. Figure 4.19 shows the
implemented architecture, using insertion sort as an example. The Sortin-
gAlgorithm class stores a linked list of SortingState. These states are the basis
of each sorting algorithm, as they store all the execution information, such
as the local variable values. They are linked to a line of the pseudo-code
via the SortingStateLine enumeration. When the Execute method is called,
it executes all needed operations, such as swap, in the SortingAlgorithm
class, which forwards them to the SortingLogic. Moreover, it sets the local
variables’ values and defines which line of the pseudo-code comes next. The
Next method then creates a new sorting state for the next line, allowing to
store the old state in the execution history. What was especially difficult to
handle were subroutine calls, as they often appear in recursive algorithms.
We addressed this, by adding the methods EnterSubroutineWithExitLine and
LeaveSubroutine of the SortingElement class that automatically store all vital
information and later recover it.

84

4. Implementation

Figure 4.19.: A UML diagram of the SortingAlgorithm class and its dependencies.

The ExecuteNextState and ExecutePreviousState methods of the SortingAlgo-
rithm class are called by the corresponding functions of the sorting logic.
Listing 4.2 shows the implementation of the ExecuteNextState method. First,
we create a new state, using the Next method of the previous state. After
updating the pseudo-code visualization, we check if sorting is finished.
If there is still an executable state, we execute it. We store the executed
state in a linked list to recover it if users want to go backward. Afterward,
we update the visualizations of the subset, the indices, and the execution
information. The ExecutePreviousState method recovers the last element from
the linked list, containing all the visualization information, and updates
the visualization. We call the Undo method of the state, which reverses any
operations that the state’s execution performed, such as swaps or inserts.

To implement a specific sorting algorithm, we have to derive classes both
from the SortingAlgorithm class and the SortingState class. All the algorithm-
specifics are implemented in the ‘Execute’ method of the SortingState.

85

4. Implementation

1 public void ExecuteNextState ()

2 {

3 newState = _executedStates.Last.Value.Next();

4 sortingLogic.SetPseudocode ();

5 if (newState.GetLine () != SortingStateLine.SS_None)

6 {

7 newState.Execute ();

8 _executedStates.AddLast(newState);

9 sortingLogic.MarkCurrentSubset ();

10 sortingLogic.DisplayIndices ();

11 }

12 else

13 {

14 sortingLogic.SortingFinished ();

15 }

16 sortingLogic.SetSwapsComparisons(_swaps , _comparisons);

17 }

Listing 4.2: Implementation of the ExecuteNextState method in the SortingAlgorithm class.

4.4.2. Battle-View

The battle-view allows users to execute two sorting algorithms on a large
field side by side. We implemented it using the design defined in Section 3.8.
Figure 4.20 shows the implemented battle-view. In the center, two algorithms
operate on a sorting field. On the right, users can select different options.
Besides changing the selected algorithms, they can adapt the execution
speed and change the arrangement mode. The arrangement mode can be
random, sorted, or reversed. These states cover the best-case and worst-case
scenarios for many algorithms, making them a valuable selection choice. On
the left side is the sorting challenge, which we describe at the end of this
chapter.

Software Architecture. Using a model-view-controller architecture has
the advantage that parts of the architecture can be exchanged. We tried to
implement the battle-view by reusing the model and the controller of the
detail-view, in our case, the SortingAlgorithm and the SortingLogic class. We
replaced the view component with a new visualization for the battle-view.

86

4. Implementation

Figure 4.20.: The battle-view of the sorting experiment.

However, sorting fields in the battle-view are larger, and the execution speed
is faster than in the detail-view. Testing the approach, we realized that we
used too many resources and could not reach the desired speed. Therefore
we came up with an independent solution for the battle-view.

There is no need to move backward in the battle-view, so we do not need to
store an execution history. We moved away from the model-view-controller
approach due to the performance issues mentioned above. Instead, we cre-
ated one class responsible for all the battle-view executions: the BattleSorting
class. Figure 4.21 shows its class diagram. Each algorithm is implemented as
a co-routine that calls the various visualization functions. The SortingStarter
method starts the co-routine and the operationsPerSecond define how fast the
co-routine is executed. All operations are executed directly on the sorting
elements implemented in the SortingColumn class, representing one column
of the sorting field.

Visualizations. We want the sorting algorithms to compete on a field of
100 elements, but sorting 100 spheres of different sizes does not work for
this amount. Especially as we want to sort two fields side by side. Therefore,

87

4. Implementation

Figure 4.21.: A UML diagram of the battle-view’s architecture.

we came up with the idea of splitting an image into 100 stripes and using
them as sorting elements. We decided to use Maroon’s logo for this purpose.
To be consistent with the detail-view, we visualized the same actions:

• Comparison. To indicate that we compare two columns, they are both
colored in black.
• Swapping & Inserting. At the speed that the simulation runs in, it is

sufficient to adapt the elements’ positions and pause the animation for
a moment.
• Moving from/to bucket. If an element has been moved to a bucket,

its transparency is lowered. Once it is moved from the bucket, the
transparency is set back to normal.
• Subsets. The same visualization is used to mark the current subset of

a recursive algorithm. All elements that are not part of the subset have
lower transparency.

Local variables’ values do not have to be visualized in the battle-view, as
there is no pseudo-code in this view.

4.4.3. Sorting Challenge

The sorting challenge is a mini-game integrated into the battle-view. Users
can guess which algorithm will sort the field faster. In single-user mode, it

88

4. Implementation

Figure 4.22.: Eight users compete in the sorting challenge, shown on the left side of the
screen.

counts how many points of possible points the user achieved. However, the
challenge is most interesting in multi-user mode.

We added multi-user support to the sorting experiment using the guideline
presented in Section 4.3. As in the other experiments, the controlling user’s
actions are mirrored to the other users. However, we used the experiment
as a proof of concept that it is also possible to implement an interactive
solution for all connected users. Each user can individually guess which
algorithm will sort the fields faster, and they compete who guesses best.
Once again, users receive a point if they guess correctly. The user’s choice
is hidden to other users until the sorting starts. When started, the choices
are revealed, and the guessing interface is disabled until selecting new
algorithms or resetting. The user in control additionally has the option to
reset the scores. Figure 4.22 shows an example where eight users compete
in the challenge.

89

4. Implementation

4.5. Summary

This chapter described the implementation details for both the multi-user
network and the sorting experiment. It presented the procedure of estab-
lishing a network connection where both local and online users can join
the same server. Simple password protection was added to keep uninvited
users from joining. To prevent chaos on a server with numerous users, we
developed a control handling approach, where only one user has control
over the adjustable parameters. Any user can request the control at any time.
Moreover, this chapter presented a solution to how the multi-user network
can be added to existing experiments. A base class with helpful methods
was created for use by future developers. Furthermore, we provided a
guideline with all the necessary steps.

The end of the chapter described the implementation of the sorting exper-
iment. A sophisticated software architecture had to be developed for the
detail-view, allowing the execution of algorithms stepwise, both forward
and backward. The designed architecture worked well for the slow-paced
detail-view. However, it was not suitable for the battle-view, where the algo-
rithms compete on larger data sets and run faster. Therefore, the battle-view
needed an independent implementation. Moreover, it presented the sorting
challenge as a proof of concept for an interactive multi-user implementation.
The following chapter presents a study conducted on the sorting experiment,
where we compared collaborative groups, using our multi-user network, to
autonomous users.

90

5. Evaluation

To evaluate the effectiveness of the sorting visualization experiment for
computer science education in combination with a multi-user network, we
performed an AB study with 35 participants. The following research focuses
were set for the study:

• Comparing single-user to multi-user operation of Maroon.
• Exploring how collaboration affects learners’ emotions and learning

outcomes.
• Identifying student expectations for conceptual learning in a collabo-

rative environment.
• Evaluating the usability of the created program.

5.1. Methodology & Procedure

We constructed our study according to the framework provided by Naps
et al. (2002), designed for measuring the effectiveness of algorithm visual-
izations. The framework suggests, to query the participants with the same
theory questions before and after using the application to measure the
knowledge increase. We adapted the framework by splitting the partici-
pants into two groups: (A) single-user and (B) multi-user. The single-user
participants received the instructions online and performed the tasks au-
tonomously. The multi-user participants were divided into pairs, where each
pair received a timeslot. The multi-user pairs executed similar instructions
but were connected via voice chat and joined a server for performing the
tasks. They could work on the experiments collaboratively using the new
multi-user part. However, they also only received their instructions online
and did not get any tutorial or instructor support. The participants had

91

5. Evaluation

to perform the following activities: (1) pre-questionnaire, (2) predefined
tasks, (3) post-questionnaire. Appendix B presents all the questions of the
two questionnaires. In the study they were provided both in English and
German to prevent misconceptions.

5.1.1. Pre-Questionnaire

The pre-questionnaire was conducted to evaluate the users’ experiences and
prior knowledge. In the first part, the users had to rate their confidence
in using computers, their programming skills, and their experience with
sorting algorithms by reacting to statements on a scale from strongly disagree
(1) to strongly agree (5). Moreover, they indicated whether they have worked
with e-learning tools before. In the second part, we queried their knowledge
on sorting algorithms with ten questions. We created these questions based
on Bloom’s taxonomy (Bloom, 1956), splitting the learner’s depth of under-
standing into six levels: (1) knowledge, (2) comprehension, (3) application,
(4) analysis, (5) synthesis, and (6) evaluation. We will not reach the two
deepest levels with our learning application, as this is not possible in such
a short time. Therefore, we focused our questions on the remaining four
levels. We created one question for the knowledge level, two questions for
the comprehension level, three questions for the application level, and four
questions for the analysis level.

5.1.2. Tasks

After finishing the pre-questionnaire, the users were asked to perform a
series of tasks in Maroon’s newly added sorting experiment. As mentioned
above, the multi-user group had to connect to a server to perform the tasks.
Both groups executed the following tasks:

1. Familiarize yourself with merge sort, insertion sort, and radix sort
without using the battle-view mode yet. There will be a small challenge
at the end, where you can apply your knowledge. Take as much time
as you need.

92

5. Evaluation

2. Once you feel confident that you understand the sorting algorithms
switch to the battle-view. Before you start sorting, always choose one
of the two algorithms in the challenge.

a) First, let merge sort compete against insertion sort.
b) Next, let merge sort compete against radix sort.
c) Last, change the arrangement to sorted. Then let insertion sort

compete against radix sort.

While the users performed these tasks, we automatically measured their
time in the detail-view and their performance in the challenge.

5.1.3. Post-Questionnaire

After these tasks, the users were asked to fill out a post-questionnaire.
The questionnaire gathered information about users’ perception of the
experiment and evaluated if their knowledge increased throughout the
experience. It was made up of the following sections.

Overall Impressions. In this section, users rated their overall impression
of the sorting experiment, the battle-view, and the sorting challenge. They
provided textual feedback and suggestions for improvement. The multi-user
participants answered additional questions on the multi-user implementa-
tion.

Theory Questions. As suggested by Naps et al. (2002), we asked the
same ten questions that the users already answered as part of the pre-
questionnaire. This allowed judging if the users’ knowledge increased accu-
rately.

Computer Emotion Scale (CES). We assessed the users’ emotions while
working with the program using the computer emotion scale defined by
Kay and Loverock (2008). They introduced the scale to measure feelings
while learning new software. It measures twelve feelings, where users can
rate how often they felt it on a scale from none of the time (0) to All of the
time (3). The feelings are then evaluated in four groups: happiness, anger,
anxiety, and sadness.

93

5. Evaluation

System Usability Scale (SUS). Brooke (1996) developed the SUS as an
easy evaluation tool for usability. It has become so commonly used that it
now also provides a benchmark to compare a system’s usability to other
programs. Users rate the usability with ten different questions that they
answer on a scale from strongly disagree to strongly agree. The results are
interpreted as values between 0 and 4. The values are summed up and
multiplied by 2.5, resulting in a scale from 0 to 100 points. Over the years,
many ways to interpret the scale have emerged. However, for this study we
rely on the interpretation by Bangor et al. (2009), as suggested by Brooke
(2013).

Learning Experience. To measure the learning experience, we adapted the
questionnaire from Pirker et al. (2020). The adapted version contains 16

questions that users answer on a Likert scale from fully disagree (1) to fully
agree (7). The questions determine if users enjoyed the learning process and
think that the learning environment could be used in practice.

Collaboration. To evaluate the collaboration with the partner in the multi-
user group, we adapted the classroom community scale by Rovai (2002).
While the scale is focused on classroom collaboration, many of the questions
are also suitable to measure collaboration in small groups. The questions
are answered on a Likert scale from fully disagree (0) to fully agree (4).

Online Student Engagement. The online student engagement scale by Dix-
son (2015) provides a scale to measure students’ engagement in online
learning scenarios. Students describe themselves concerning certain behav-
iors, thoughts, and feelings. The scale goes from not at all characteristic of me
(1) to very characteristic of me (5).

5.2. Participants

As the study required some prior knowledge on sorting algorithms, we
targeted participants who have a computer science background. Thirty-
five people participated in the study, aged between 21 and 34 (M=26.91;
SD=2.98). There were six female and 28 male participants. We assigned 15

participants (3 female, 12 male) to the single-user group and 20 participants

94

5. Evaluation

(3 female, 17 male) to the multi-user group. The multi-user group pairs
were chosen randomly, depending on the timeslots in which the users
were available. Both groups rated themselves as expert computer users
(single-user: M=3.93; SD=1.22, multi-user: M=4.10; SD=1.12). Regarding the
experience as a programmer, the single-user participants (M=3.87; SD=1.46)
rated themselves slightly higher than the multi-user participants (M=3.20;
SD=1,24). Also, with sorting algorithms, the single-user group (M=2.73;
SD=0.80) has slightly more experience than the multi-user group (AVG=2.35;
SD=0.88). None of the users ranked themselves as an expert in the topic
of sorting algorithms. Out of the 35 participants, 28 have worked with
e-learning tools before. The following section presents the results that we
obtained in our study.

5.3. Results

The study results were evaluated for each group individually to compare
the two groups. This section presents the outcome by category.

Gathered Knowledge. Figure 5.1 compares the results of the two groups
on the theory questions in the pre-questionnaire and post-questionnaire.
Confirming the single-user participants’ self-assessment, they performed
better on the pre-questionnaire theory questions than the multi-user partici-
pants (single-user: M=5.83; SD=1.67, multi-user: M=4.50; SD=7.74). After the
study, both groups’ knowledge improved, with the single-user group still
slightly ahead (single-user: M=7.93; SD=0.98, multi-user: M=7.74; SD=7.93).
However, the multi-user group had a higher increase (M=3.24; SD=2.27) than
the single-user group (M=2.10; SD=2.00). For both groups, the increase was
highly significant (α < 0.001). As for the following sections, the significance
was determined with a two-sample t-test.

On-Task Measurements. The time that users spent in detail-view before
entering the battle-view challenge varied enormously across the groups. The
single-users spent 9.6 minutes on average in detail-view, with a mentionable

95

5. Evaluation

Figure 5.1.: Results on the theory questions before and after learning with Maroon.

standard difference of 10.7 minutes, while the multi-users spent 14 minutes
(SD=7.4min) on average. Both groups performed equally well on the three
tasks in the sorting challenge (single-user: M=2.40; SD=0.63, multi-user:
M=2.56; SD=0.51).

Overall Impression. All users agreed that they liked the sorting experi-
ment (M=4.23, SD=0.74). There was a difference in the perception of the
battle-view. The single-user group (M=4.73; SD=0.46) liked it significantly
(two-sample t-test: α < 0.02) better than the multi-user group (M=3.95;
SD=1.10). However, both groups agreed that the battle-view “gave a clearer
understanding of the complexity of the algorithms” (M=4.14; SD=1.09).

The multi-user group overall liked the multi-user feature (M=3.60; SD=1.23).
However, three of the 15 users disliked it, with one user stating to like it not
at all. They disliked the concept that only one user is in control and would
rather have more interactions for all clients.

Emotions. The CES results were evaluated for the four categories happi-
ness, anger, anxiety, and sadness. While Figure 5.2 shows the composition of
the groups’ feelings, Table 5.1 shows the observed results as numbers. The

96

5. Evaluation

(a) Single-User (b) Multi-User

Figure 5.2.: Comparison of CES results for single-users and multi-users.

Feeling Single-User Multi-User
AVG SD AVG SD

Happiness 1.69 0.68 1.89 0.74

Anger 0.11 0.31 0.14 0.37

Anxiety 0.33 0.35 0.24 0.38

Sadness 0.18 0.36 0.18 0.40

Table 5.1.: The obtained values of the CES.

obtained emotions are predominantly positive, with the multi-user group
being slightly happier. The only significant (two-sample t-test: α < 0.05)
difference was that the single-user participants (M=0.87; SD=0.34) felt more
dispirited than the multi-user participants (M=0.53; SD=0.50).

Usability. The average system usability score of the single-user group was
81.67 (SD=9.71), which according to Bangor et al. (2009) indicates good
usability. On the other hand, the average SUS of the multi-user group was
72.24, indicating OK to good usability. However, the answers of the multi-
user group were diverse (SD=17.08). Nevertheless, none of the users scored
less than 35.7 points, indicating poor usability. The two groups differed
most significantly (two-sample t-test: α < 0.02) on whether the system was
easy to use (single-user: M=4.27; SD=0.70, multi-user: M=3.53; SD=0.96).
Figure 5.3 shows the achieved SUS of both groups, extended by the adjective

97

5. Evaluation

Figure 5.3.: Results of the SUS, extended by the adjective rating scale of Bangor et al. (2009).

rating scale of Bangor et al. (2009).

Learning Experience. Overall, the feedback in this section was positive.
Both groups agreed that they learned something through the experience
(M=6.09; SD=1.46) and that the application is a good supplement for learning
(M=6.06; SD=1.19). They even stated that the experience inspired them to
learn more about sorting algorithms (M=5.00; SD=1.71). Both groups would
prefer learning with the application at home (M=5.06; SD=1.84) to learning
with it in the classroom (M=4.68; SD=1.98).

Collaboration. The observed collaboration in the multi-user group was
very high. 10 of the 20 users stated to fully agree that they can rely on their
team partner, while none disagreed. The users did not feel uneasy about
exposing their knowledge gaps (M=0.68; SD=0.92) or reluctant to speak
openly (M=0.47; SD=0.82). Also, they disagreed with the statement that
their team partner did not help them learn (M=0.42; SD=0.82).

98

5. Evaluation

Engagement. The groups differed significantly (two-sample t-test: α <
0.02) on the characteristic, if they participate actively in small group discus-
sion forums (single-user: M=2.53; SD=3.63, multi-user: M=3.58; SD=1.17).
Overall, the multi-user group rated their engagement higher in 17 of the 19

characteristics.

5.4. Discussion

The study results were overwhelmingly positive. Participants enjoyed the
chance to refresh their knowledge on sorting algorithms. We observed that
many participants explored the sorting experiment beyond the defined tasks,
investigating those algorithms that were not part of the study. Multiple pairs
of the multi-user group stayed in the experiment after all tasks were finished
to compare more algorithms in the battle-view. Several users also mentioned
the battle-view as the standout positive feature. One user of the single-user
group suggested to “implement a leaderboard for the Battle mode and let players
compete with each other” and another user suggested that “Everything could be
online without the need to download a file”. Both of these features are already
implemented but were not part of the single-user study. However, it is
positive that users request supported features.

The comparison showed that the multi-user group’s knowledge level in-
creased more considerably than the single user group’s. However, this
is relativized by the fact that the single-users performed better overall.
Both groups increased their knowledge significantly (two-sample t-test:
α < 0.001). The multi-user participants were slightly happier throughout
the study. Moreover, the multi-users tend to spend more time on the appli-
cation. Their feedback and the great assessments of the sorting challenge
indicate that they like the addition of a competitive element to the collabo-
rative environment.

The usability was good for both groups, especially when keeping in mind
that they did not have a tutorial. However, the SUS Score of the single-
user group was significantly (two-sample t-test: α < 0.1) better than the
multi-user groups’. This result is not surprising, as the experiment controls
were the same for both groups, but the multi-user group had the additional

99

5. Evaluation

effort of joining a server and dealing with the server’s control handling.
Nevertheless, we take it as a hint that the network part’s usability can be
improved further.

The study was also an excellent opportunity to test the multi-user part’s
performance and stability and the sorting experiment. None of the users
experienced any crashes or other notable issues. However, one user re-
ported experiencing lags. Several users pointed out that the program was
resource-heavy. We could trace this problem back to the fact that it does
not limit the framerate. Predominantly positive was that the test server for
the multi-user group ran for several hours without any problems, with con-
stantly new users connecting. We can therefore conclude that our network
implementation is stable.

100

6. Lessons Learned

This chapter discusses the experiences we had in the creation process of this
thesis. It is chronologically split into the three project phases: (1) theoretical
background and literature research, (2) design and development process,
and (3) the evaluation of the created application.

6.1. Theory

The literature research presented digital learning and collaborative learn-
ing in the context of computer science education. While both are effective
methods on their own, they can be combined into collaborative e-learning.
If done right, this can create a productive learning platform with social
components, allowing users to benefit from exchanging with others. How-
ever, the literature research showed that not every implementation of an
e-learning platform is an exemplary implementation. Many things have to
be kept in mind to successfully create a practical learning application, such
as engaging and motivating users. Moreover, we had to refresh our knowl-
edge on sorting algorithms before starting the development. Many concepts
of algorithms can be effectively showcased by using sorting algorithms.
However, the implementation has to be well-planned.

6.2. Development

For development, we used Unity, as already predetermined by the frame-
work. It proved to be a valuable environment for the implementation of
our 3D experiment. However, we had to find a way to create a multi-user

101

6. Lessons Learned

network. With Mirror, we found a tool that provides all the functionalities
we need, such as hosting and joining servers and synchronizing data over
the network. Nevertheless, it does not provide a solution for NAT traversal,
so we utilized Open-NAT to establish automatic port forwarding.

A big challenge for the development process was to work on such a contin-
ually evolving project as Maroon, where multiple programmers work on
the project simultaneously. The workflow is well defined, and by using the
version control platform Github, there were never any problems of getting
in each other’s way. However, the multi-user part spans across vast parts
of the project, so it had to be adapted whenever new features were added.
The coordination was achieved in regular meetings with Maroon’s project
lead.

6.3. Evaluation

The evaluation was based on a framework for algorithm visualization studies
provided by Naps et al. (2002). Following their instructions, we queried the
participant’s knowledge on sorting algorithms before and after learning
with our application, using the same questions. Moreover, we extended
the post-questionnaire by well-researched standardized questionnaires and
environment-specific questions. The study was executed in two groups, one
where users worked independently and one where users worked in pairs,
using the new multi-user feature. The study showed that the participants
liked the application and deepened their knowledge. It also revealed various
improvements for the future, which are presented in the following section.

102

7. Future Work

Our implementation fulfills all the requirements that we defined in Chap-
ter 3. However, some desirable functionalities exceed these requirements, so
we left them open for implementation in the future. This chapter presents
these functionalities. The first section focuses on the feedback we received
as part of our study. The second section presents ideas that we came up
with during the design and implementation phases.

7.1. Evaluation Results

In the study, users had the opportunity to suggest improvements, both for
the sorting experiment and the multi-user part. For the sorting experiment,
they mostly requested more control over the parameters. They would like to
adapt the execution speed in the detail-view and the input field’s size in the
battle-view. Moreover, several users reported that they did not identify the
Maroon logo as the sorting field first. It would be desirable to exchange the
Maroon logo with other representations, such as bars of different lengths.
These parameters are already accessible via code, so only the corresponding
user interface elements have to be created and linked for implementing
these features.

Some users noted that while the experiment visualizes the algorithms’ time
complexity effectively, it never states the concrete time complexity in big O
notation (Section 2.3.1). This was mainly done because the big O notation is
never explained inside the experiment, and not all users are familiar with
the concept. The suggestion could be implemented by adding a set of slides
to the whiteboard experiment that explain the big O notation. Inside the

103

7. Future Work

experiment, the time complexity of the algorithms could then be added to
the existing description.

One issue that both the single-users and the multi-users identified is that
it is easy to overlook the challenge. This can be adjusted by changing the
challenge’s appearance, so it stands out. Moreover, the challenge could be
required before being able to start the sorting.

For the multi-user part, the main criticism was usability. It should be able
to join servers over the main menu instead of first entering the laboratory.
Moreover, it should be possible to enter the main menu when on a server.
This feature is strongly connected to the new modular setup of Maroon,
where users can switch from a computer science laboratory to a physics
or a chemistry laboratory over the main menu. The main menu has to be
synchronized over the network to enable this feature.

Another improvement can be made concerning interactivity. While the
sorting challenge was a pleasant exception, many parts of the sorting ex-
periment were only accessible for the client in control. At the same time,
the other user did not always know what is happening. One user suggested
displaying the controlling client’s mouse position to keep the other clients
involved. Overall, it would be desirable to design future experiments in
ways where all clients are more actively engaged simultaneously.

7.2. Technical Improvements for Multi-User

This thesis’s work laid the basis for multi-user functionalities in Maroon by
providing the option to host and join servers. However, many other things
can contribute to the network part, and there are sections of Maroon that
do not have multi-user support yet. This section describes some ideas for
future implementations.

104

7. Future Work

7.2.1. WebGL & VR Support

As described in Section 2.2, Maroon consists of three individual versions.
While we equipped the desktop version with multi-user support, both the
WebGL and the VR version currently do not have it. To add network support
to WebGL, we would have to change to WebSocket transport, as WebGL
does not support the current TCP transport. Moreover, WebGL does not
support local network discovery, so that feature will have to be disabled.

Adding multi-user support to the VR version is more complex because it
is more distant from the desktop version. However, the desktop version’s
implementation can be used as a guideline to implement the new func-
tionality. The core modules could be reused, reducing the efforts for future
development.

7.2.2. Steam Networking

Steam Networking is a network service provided by Steamworks1. In the
design phase, we considered using it as a network technology layer on
top of Mirror. It provides network messages over the Steam servers, and it
automatically takes care of NAT traversal. It even falls back on Steam’s relay
servers if no direct connection is possible, so a connection from the client
to the server can be guaranteed. With the FizzySteamworks2 add-on, it is
drag-and-drop supported for Mirror, so the setup complexity is minimal.
Another advantage would be that we could also use Steamworks’ other
functionalities, such as a lobby system or voice chat. The main disadvantage
is that each user would need a Steam account, and Steam would have to be
running in the background when starting Maroon. Also, an app ID would
be needed to correctly use the network, for which we would need to register
our program in the Steam library. Moreover, Steam does not support WebGL.
It would be possible to create a hybrid solution, where users can decide if
they want to host a regular server using automatic port mapping or a Steam
server. This would combine all the advantages of the two methods, but it
increases the network code’s complexity and makes it harder to maintain.

1https://partner.steamgames.com/doc/features/multiplayer/networking
2https://github.com/Chykary/FizzySteamworks

105

https://partner.steamgames.com/doc/features/multiplayer/networking
https://github.com/Chykary/FizzySteamworks

7. Future Work

Current Steam Networking Hybrid
NAT Traversal X XX XX
Independence XX xx x
Server costs x X x
WebGL Support X x X
Complexity x X xx

Table 7.1.: Comparison of the current solution using port forwarding, Steam network-
ing and a hybrid approach. he ranking in each category goes from xx - vital
disadvantage, to XX - vital advantage.

Table 7.1 compares the three different options. Based on the findings, we
decided to stick to the independent solution, relying on automatic port
forwarding. This decision was made in consultation with the project lead
of Maroon. The main reason was that the program is currently shipped
only over the website, and the freedom to choose a distributing platform
should not yet be sacrificed. The hybrid solution would be too complicated,
both for the user and for maintenance. However, if Maroon is added to the
Steam library in the future, this decision might be reconsidered. Note that
Epic Games3 also provides a network service that handles NAT traversal.
Everything stated in this section about Steam also applies to Epic Games.

7.2.3. NAT Punch-through

As already described in Section 3.7.4, NAT punch-through would be a valu-
able addition to the network setup. In case the automatic port forwarding
fails, clients could try to connect to the server using hole-punching. It might
be possible to use the server we acquired for the list server (Section 4.1.2) as
the facilitator for the hole-punching process.

3https://dev.epicgames.com/en-US/services

106

https://dev.epicgames.com/en-US/services

7. Future Work

7.2.4. User Interactions

Currently, we assume that users are already connected via voice chat over a
platform independently of Maroon. While this is a reasonable assumption,
it might be desirable in the future to add a voice chat component directly to
Maroon. This would allow users who are not already connected or do not
know each other to connect to servers and collaborate with other users on
the server.

Moreover, we advise replacing the multi-user avatar that is spawned for
each user in the laboratory room. Currently, we reused the model of the help
character. We leave it open to more artistically talented developers on the
Maroon team to create a new character. This character could be equipped
with animations that allow users to communicate language-independently.
We already provide the functionalities to synchronize these animations over
the network in our current network solution.

7.2.5. Experiment Status Saving

Maroon’s development team currently plans to add status saving to experi-
ments. This would allow saving the current status of an experiment to return
to it later. However, this would also mean that we could send this current
status to other clients over our network, which means that we can lift the
restriction that users can not join running experiments. Moreover, it would
be possible to create a database on our server to upload and download
interesting experiment setups.

107

8. Conclusion

Computer science is a future-oriented field, but it is also already heavily
requested in the present. The demand for computer scientists has constantly
grown over the past years, and there are no signs that this trend will change
anytime soon. Therefore, computer science education has become an increas-
ingly important topic. As in many other courses, the traditional way to teach
computer science has been in-person presentation by a lecturer. However,
new and innovative methods of learning are becoming more popular. Two
of these methods are collaborative learning and digital learning. Especially
the latter has gained importance through the recent coronavirus pandemic.
The two methods can be combined, resulting in computer-supported collab-
orative learning. While still being accessible from everywhere, this adds a
social component to digital learning allowing students to benefit from each
other.

This work presented the design and implementation of a computer-supported
collaborative learning environment, building upon the immersive learning
and experiment environment Maroon. A multi-user network was added to
the laboratory, allowing users to experience the experiments together. More-
over, computer science was added to Maroon as a brand new educational
area. As the first contribution to this field, a sorting experience was im-
plemented explaining and visualizing different sorting algorithms. Besides
investigating the algorithms’ details, users can let the algorithms compete
on a larger data set to develop a feeling for time complexity. Moreover,
there is a challenge where users can guess which algorithm will be faster,
increasing the students’ engagement through involvement. This challenge
was used as a proof of concept for an interactive multi-user experience,
where all connected users compete against each other.

An evaluation was carried out to compare the sorting experiment when
used alone or in a group. It showed that both groups of people significantly

108

8. Conclusion

increased their knowledge of sorting algorithms. The multi-users were
slightly happier throughout the experience, and they tended to spend more
time with the application. However, the usability evaluation showed that the
multi-user controls could be improved further. Overall, the users agreed that
adding a multi-user function to the framework makes it a more attractive
application and that the sorting experiment is a valuable tool for learning.

109

Appendices

110

Appendix A.

Sorting Algorithms

We used the following pseudo-codes to implement the various sorting algo-
rithms. They are also displayed to the users in the detail-view of the sorting
experiment. The implementations are adapted from the GeeksForGeeks web-
site1. We define the following variables and functions:

• A is the sorting field, where A[i] is the ith element of the field. len(A)
defines the length of the field.
• insert(i,j) moves the element at index i to index j. All elements between

i and j are increase or decreased by one to make room.
• swap(i,j) swaps the elements at indices i and j.
• moveToBucket(i,b) stores the element at index i into the bth bucket.
• moveFromBucket(i,b) places the first element in the bth bucket at index

i.

A.1. Insertion Sort

1 for i = 1 .. len(A) -1:

2 j = i-1

3 while A[j]>A[i] and j>=0:

4 j = j-1

5 insert(i,j+1)

Listing A.1: The pseudo-code of insertion sort.

1https://www.geeksforgeeks.org/

111

https://www.geeksforgeeks.org/

Appendix A. Sorting Algorithms

A.2. Merge Sort

1 mergeSort(i, j):

2 if i<j:

3 k = (i+j)/2

4 mergeSort(i,k)

5 mergeSort(k+1,j)

6 merge(i,k,j)

7

8 merge(i, k, j):

9 r = k+1

10 l = i

11 while l<r and r<=j:

12 if A[r]<A[l]:

13 insert(r,l)

14 r = r+1

15 l = l+1

Listing A.2: The pseudo-code of merge sort.

A.3. Heapsort

1 n = len(A)

2 for i = len(A)/2+1 .. 0: #Build heap

3 heapify(i,n)

4 for i = len(A)-1 .. 1: #Iteratively take maximum

5 swap(0,i)

6 n = n-1

7 heapify(0,n)

8

9 heapify(j, n):

10 l = 2*j+1

11 r = 2*j+2

12 m = j

13 if l<n and A[l]>A[j]:

14 m = l

15 if r<n and A[r]>A[m]:

16 m = r

17 if m!=j:

18 swap(j,m)

19 heapify(m,n)

Listing A.3: The pseudo-code of heapsort.

112

Appendix A. Sorting Algorithms

A.4. Quicksort

1 quickSort(l, r):

2 if l<r:

3 k = partition(l,r)

4 quickSort(l,k-1)

5 quickSort(k+1,r)

6

7 partition(l, r):

8 p = A[r] #pivot element

9 k = l

10 for j = l .. r-1:

11 if A[j]<=p:

12 swap(j,k)

13 k = k+1

14 swap(k,r)

15 return k

Listing A.4: The pseudo-code of quicksort.

A.5. Selection Sort

1 for i = 0 .. len(A) -1:

2 m = i

3 for j = i+1 .. len(A) -1:

4 if A[j]<A[m]:

5 m = j

6 if i != m:

7 swap(i,m)

Listing A.5: The pseudo-code of selection sort.

A.6. Bubble Sort

1 for i = 0 .. len(A) -1:

2 for j = 0 .. len(A)-1-i:

3 if A[j]>A[j+1]:

4 swap(j,j+1)

Listing A.6: The pseudo-code of bubble sort.

113

Appendix A. Sorting Algorithms

A.7. Gnome Sort

1 while i<len(A):

2 if i==0:

3 i = i+1

4 if A[i]>=A[i-1]:

5 i = i+1

6 else:

7 swap(i,i-1)

8 i = i-1

Listing A.7: The pseudo-code of gnome sort.

A.8. Radix Sort

1 key = max(A)

2 exp = 1

3 while key / exp > 1:

4 countingSort(exp)

5 exp = exp * 10

6

7 countingSort(exp):

8 for i = 0 .. len(A) -1:

9 b = (A[i]//exp)%10

10 moveToBucket(i,b)

11 i = 0

12 for b = 0 .. 10:

13 if bucket[b] not empty:

14 moveFromBucket(i,b)

15 i = i + 1

Listing A.8: The pseudo-code of radix sort.

114

Appendix A. Sorting Algorithms

A.9. Shellsort

1 gap = len(A)/2

2 while gap >0:

3 for i = gap .. len(A) -1:

4 j = i

5 while A[j-gap]>A[j] and j>=gap:

6 swap(j,j-gap)

7 j = j-gap

8 gap = gap/2

Listing A.9: The pseudo-code of shellsort.

115

Appendix B.

Questionnaires

B.1. Pre-Questionnaire

General Questions.

116

Appendix B. Questionnaires

Theory Questions.

117

Appendix B. Questionnaires

B.2. Post-Questionnaire

Overall Impressions: Sorting.

Overall Impressions: Multi-User.

Theory Questions. The same ten questions as in the pre-questionnaire.

118

Appendix B. Questionnaires

Computer Emotion Scale (Kay & Loverock, 2008). While using the sort-
ing algorithm experiment I felt... (0 none of the time - 3 all of the time)

System Usability Scale (Brooke, 1996). (1 strongly disagree - 5 strongly
agree)

119

Appendix B. Questionnaires

Learning Experience (Pirker et al., 2020). Answer the question with re-
gard to the sorting algorithm experiment. (1 fully disagree - 7 fully agree)

Collaboration (Rovai, 2002). How did you feel about the collaboration in
your group? (1 strongly disagree - 5 strongly agree)

120

Appendix B. Questionnaires

Online Student Engagement (Dixson, 2015). How well do the following
behaviors, thoughts, and feelings describe you, when in an online lecture?
(1 not at all characteristic of me - 5 very characteristic of me)

Personal Information.

121

Appendix C.

Installation Guide

C.1. Installation

• Desktop:

– Download the Maroon project from
https://github.com/GameLabGraz/Maroon.

– Build the project.
– Run the created executable.

• WebGL: Visit https://maroon.tugraz.at/

C.2. System Requirements

• Desktop:

– For the required Unity version, please refer to
https://github.com/GameLabGraz/Maroon.

– For the requirements for running Unity or a Unity-created exe-
cutable, refer to https://docs.unity3d.com/2019.4/Documentation/
Manual/system-requirements.html.

• WebGL: Any recent version of Chrome, Firefox, or Edge.

122

https://github.com/GameLabGraz/Maroon
https://maroon.tugraz.at/
https://github.com/GameLabGraz/Maroon
https://docs.unity3d.com/2019.4/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2019.4/Documentation/Manual/system-requirements.html

Bibliography

Astrachan, O. (2003). Bubble sort: An archaeological algorithmic analysis.
ACM Sigcse Bulletin, 35(1), 1–5.

Aycock, J., Wright, H., Hildebrandt, J., Kenny, D., Lefebvre, N., Lin, M.,
Mamaclay, M., Sayson, S., Stewart, A., & Yuen, A. (2019). Adapting
the”unessay”for use in computer science, In Proceedings of the western
canadian conference on computing education.

Azmi, S., Iahad, N. A., & Ahmad, N. (2015). Gamification in online collabo-
rative learning for programming courses: A literature review. ARPN
Journal of Engineering and Applied Sciences, 10(23), 18087–18094.

Baecker, R. (1981). Sorting out sorting. University of Toronto.
Baecker, R. (1998). Sorting out sorting: A case study of software visualization

for teaching computer science. Software visualization: Programming as
a multimedia experience, 1, 369–381.

Baeza-Yates, R. A. (1995). Teaching algorithms. SIGACT News, 26(4), 51–59.
https://doi.org/10.1145/219817.219828

Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual
sus scores mean: Adding an adjective rating scale. Journal of usability
studies, 4(3), 114–123.

Battistella, P. E., Von Wangenheim, C. G., Von Wangenheim, A., & Martina,
J. E. (2017). Design and large-scale evaluation of educational games
for teaching sorting algorithms. Informatics in Education, 16(2), 141–
164.

Baylor, A. L. (2009). Promoting motivation with virtual agents and avatars:
Role of visual presence and appearance. Philosophical Transactions of
the Royal Society B: Biological Sciences, 364(1535), 3559–3565.

Bharambe, A., Douceur, J. R., Lorch, J. R., Moscibroda, T., Pang, J., Seshan,
S., & Zhuang, X. (2008). Donnybrook: Enabling large-scale, high-
speed, peer-to-peer games. ACM SIGCOMM Computer Communication
Review, 38(4), 389–400.

123

https://doi.org/10.1145/219817.219828

Bibliography

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification
of educational goals. Cognitive domain.

Boticki, I., Barisic, A., Martin, S., & Drljevic, N. (2013). Teaching and learning
computer science sorting algorithms with mobile devices: A case
study. Computer Applications in Engineering Education, 21(S1), E41–
E50.

Brettschuh, S. (2019). Exploring the visualization of coulomb’s law in an educa-
tional virtual reality environment. Graz University of Technology.

Brooke, J. (1996). Sus: A “quick and dirty’usability. Usability evaluation in
industry, 189.

Brooke, J. (2013). Sus: A retrospective. Journal of usability studies, 8(2), 29–40.
Buchbauer, B. (2019). Educational computer science visualizations in virtual

reality (Master’s thesis). Graz University of Technology. https ://
online.tugraz.at/tug online/wbabs.showThesis?pThesisNr=68248&
pOrgNr=37

Chang, V., GÃ1/4tl, C., Kopeinik, S., & Williams, R. (2009). Evaluation
of collaborative learning settings in 3d virtual worlds. International
Journal of Emerging Technologies in Learning (iJET), 4(2009).

Chesire, S., & Krochmal, M. (2013). Nat port mapping protocol (nat-pmp) (RFC
No. 6886). RFC Editor. RFC Editor. https://www.rfc-editor.org/rfc/
rfc6886.txt

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to
algorithms. Amazon Digital Services LLC. https://books.google.at/
books?id=aefUBQAAQBAJ

Cotton, M., Eggert, L., Touch, J., & Westerlund, M. (2011). Internet assigned
numbers authority (iana) procedures for the management of the service name
and transport protocol port number registry (RFC No. 6335). RFC Editor.
RFC Editor. https://www.rfc-editor.org/rfc/rfc6335.txt

Curry, C. (2017). 17 famous female scientists who helped change the world. Re-
trieved May 11, 2020, from https ://www.famousscientists .org/
popular/

de Gouw, S., de Boer, F., & Rot, J. (2014). Proof pearl: The key to correct and
stable sorting. Journal of automated reasoning, 53(2), 129–139.

Deering, S., & Hinden, R. (1998). Internet protocol, version 6 (ipv6) specification
(RFC No. 2460). RFC Editor. RFC Editor. https://www.rfc-editor.
org/rfc/rfc2460.txt

124

https://online.tugraz.at/tug_online/wbabs.showThesis?pThesisNr=68248&pOrgNr=37
https://online.tugraz.at/tug_online/wbabs.showThesis?pThesisNr=68248&pOrgNr=37
https://online.tugraz.at/tug_online/wbabs.showThesis?pThesisNr=68248&pOrgNr=37
https://www.rfc-editor.org/rfc/rfc6886.txt
https://www.rfc-editor.org/rfc/rfc6886.txt
https://books.google.at/books?id=aefUBQAAQBAJ
https://books.google.at/books?id=aefUBQAAQBAJ
https://www.rfc-editor.org/rfc/rfc6335.txt
https://www.famousscientists.org/popular/
https://www.famousscientists.org/popular/
https://www.rfc-editor.org/rfc/rfc2460.txt
https://www.rfc-editor.org/rfc/rfc2460.txt

Bibliography

Dershem, H. L., & Brummund, P. (1998). Tools for web-based sorting anima-
tion, Atlanta, Georgia, USA, Association for Computing Machinery.
https://doi.org/10.1145/273133.274301

Dixson, M. D. (2015). Measuring student engagement in the online course:
The online student engagement scale (ose). Online Learning, 19(4), n4.

Douglas, S., Tanin, E., Harwood, A., & Karunasekera, S. (2005). Enabling
massively multi-player online gaming applications on a p2p architec-
ture, In Proceedings of the ieee international conference on information and
automation.

Erhel, S., & Jamet, E. (2013). Digital game-based learning: Impact of in-
structions and feedback on motivation and learning effectiveness.
Computers & education, 67, 156–167.

Esnaashari, S., Welch, I., & Komisarczuk, P. (2013). Determining home
users’ vulnerability to universal plug and play (upnp) attacks, In
2013 27th international conference on advanced information networking
and applications workshops. IEEE.

Estivill-Castro, V., & Wood, D. (1992). A survey of adaptive sorting algo-
rithms. ACM Computing Surveys (CSUR), 24(4), 441–476.

Franceschini, G., & Geffert, V. (2005). An in-place sorting with o (n log
n) comparisons and o (n) moves. Journal of the ACM (JACM), 52(4),
515–537.

GameLabGraz. (2020). Maroon. Retrieved February 3, 2021, from https :
//maroon.tugraz.at/

Garcia, D. (2011). Universal plug and play (upnp) mapping attacks. DEFCON-
19.

Gnu general public license, version 3 [Last retrieved 2021-01-20]. (2007).
Gütl, C., & Pirker, J. (2011). Implementation and evaluation of a collabo-

rative learning, training and networking environment for start-up
entrepreneurs in virtual 3d worlds, In 2011 14th international conference
on interactive collaborative learning. IEEE.

Haelermans, C., Ghysels, J., & Prince, F. (2015). Increasing performance by
differentiated teaching? experimental evidence of the student benefits
of digital differentiation. British Journal of Educational Technology, 46(6),
1161–1174.

Halavais, A. (2016). Computer-supported collaborative learning. The Interna-
tional Encyclopedia of Communication Theory and Philosophy, 1–5.

125

https://doi.org/10.1145/273133.274301
https://maroon.tugraz.at/
https://maroon.tugraz.at/

Bibliography

Hammad, J. (2015). A comparative study between various sorting algorithms.
International Journal of Computer Science and Network Security (IJCSNS),
15(3), 11.

Hemel, A. (2006). Universal plug and play: Dead simple or simply deadly?
In 5th system administration and network engineering conference, delft, the
netherlands.

Hoare, C. A. (1962). Quicksort. The Computer Journal, 5(1), 10–16.
Holly, M. S. (2019). Interactive physics simulations in a room-scale virtual

laboratory (Master’s thesis). Graz University of Technology. https:
//online.tugraz.at/tug online/wbAbs.showThesis?pThesisNr=
68264&pOrgNr=37

House, B. (2018a). Evolving multiplayer games beyond unet. Retrieved April
23, 2020, from https://blogs.unity3d.com/2018/08/02/evolving-
multiplayer-games-beyond-unet/

House, B. (2018b). Multiplayer connected games: First steps forward. Retrieved
April 23, 2020, from https ://blogs .unity3d.com/2018/09/12/
multiplayer-connected-games-first-steps-forward/

House, B. (2019). Navigating unity’s multiplayer netcode transition. Retrieved
August 7, 2020, from https://blogs.unity3d.com/2019/06/13/
navigating-unitys-multiplayer-netcode-transition/

Hu, Z. (2005). Nat traversal techniques and peer-to-peer applications, In Hut
t-110.551 seminar on internetworking. Citeseer.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of
algorithm visualization effectiveness. Journal of Visual Languages &
Computing, 13(3), 259–290. https://doi.org/https://doi.org/10.1006/
jvlc.2002.0237

Johnson, D. W., Johnson, R. T., Stanne, M. B., & Garibaldi, A. (1990). Im-
pact of group processing on achievement in cooperative groups. The
Journal of Social Psychology, 130(4), 507–516.

Kay, R. H., & Loverock, S. (2008). Assessing emotions related to learning new
software: The computer emotion scale. Computers in Human Behavior,
24(4), 1605–1623.

Kazim, A. (2017). A comparative study of well known sorting algorithms.
International Journal of Advanced Research in Computer Science, 8(1).

Knuth, D. E. (1976). Big omicron and big omega and big theta. SIGACT
News, 8(2), 18–24. https://doi.org/10.1145/1008328.1008329

126

https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=68264&pOrgNr=37
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=68264&pOrgNr=37
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=68264&pOrgNr=37
https://blogs.unity3d.com/2018/08/02/evolving-multiplayer-games-beyond-unet/
https://blogs.unity3d.com/2018/08/02/evolving-multiplayer-games-beyond-unet/
https://blogs.unity3d.com/2018/09/12/multiplayer-connected-games-first-steps-forward/
https://blogs.unity3d.com/2018/09/12/multiplayer-connected-games-first-steps-forward/
https://blogs.unity3d.com/2019/06/13/navigating-unitys-multiplayer-netcode-transition/
https://blogs.unity3d.com/2019/06/13/navigating-unitys-multiplayer-netcode-transition/
https://doi.org/https://doi.org/10.1006/jvlc.2002.0237
https://doi.org/https://doi.org/10.1006/jvlc.2002.0237
https://doi.org/10.1145/1008328.1008329

Bibliography

Knuth, D. E. (1998). The art of computer programming: Volume 3: Sorting and
searching. Addison-Wesley Professional.

Krasner, G. E., Pope, S. T. Et al. (1988). A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal
of object oriented programming, 1(3), 26–49.

Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls
for social interaction in computer-supported collaborative learning
environments: A review of the research. Computers in human behavior,
19(3), 335–353.

Kruse, K. (2015). Benefits and drawbacks of e-learning. Retrieved January 15,
2021, from https://brucedwatson.wordpress.com/2015/05/19/
benefits-and-drawbacks-of-e-learning

Laal, M., & Ghodsi, S. M. (2012). Benefits of collaborative learning. Procedia-
social and behavioral sciences, 31, 486–490.

Laal, M., & Laal, M. (2012). Collaborative learning: What is it? Procedia-Social
and Behavioral Sciences, 31, 491–495.

Laxer, C. (2001). Treating computer science as science as: An experiment
with sorting (poster session), In Proceedings of the 6th annual conference
on innovation and technology in computer science education, Canterbury,
United Kingdom, Association for Computing Machinery. https://
doi.org/10.1145/377435.377710

Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen, M., & Muukkonen,
H. (1999). Computer supported collaborative learning: A review. The
JHGI Giesbers reports on education, 10, 1999.

Li, C., Dong, Z., Untch, R., Chasteen, M., & Reale, N. (2011). Peerspace-
an online collaborative learning environment for computer science
students, In 2011 ieee 11th international conference on advanced learning
technologies. IEEE.

Lin, M.-H., Chen, H.-G., & Liu, K.-S. (2017). A study of the effects of digital
learning on learning motivation and learning outcome. Eurasia Journal
of Mathematics, Science and Technology Education, 13(7), 3553–3564.
https://doi.org/10.12973/eurasia.2017.00744a

Lynch, M. (2020). 5 advantages and 5 disadvantages of e-learning. Retrieved Jan-
uary 15, 2021, from https://www.thetechedvocate.org/5-advantages-
and-5-disadvantages-of-e-learning

Macrae, C. (2016). Sorting algorithms visualised. Retrieved May 5, 2020, from
https://macr.ae/article/sorting-algorithms

127

https://brucedwatson.wordpress.com/2015/05/19/benefits-and-drawbacks-of-e-learning
https://brucedwatson.wordpress.com/2015/05/19/benefits-and-drawbacks-of-e-learning
https://doi.org/10.1145/377435.377710
https://doi.org/10.1145/377435.377710
https://doi.org/10.12973/eurasia.2017.00744a
https://www.thetechedvocate.org/5-advantages-and-5-disadvantages-of-e-learning
https://www.thetechedvocate.org/5-advantages-and-5-disadvantages-of-e-learning
https://macr.ae/article/sorting-algorithms

Bibliography

Mahy, R., Matthews, P., & Rosenberg, J. (2010). Traversal using relays around
nat (turn) (RFC No. 5766). RFC Editor. RFC Editor. https://www.rfc-
editor.org/rfc/rfc5766.txt

Mirror Networking. (2020). Mirror networking - open source networking for
unity. Retrieved April 24, 2020, from https://mirror-networking.
com/

Mishra, A. D., & Garg, D. (2008). Selection of best sorting algorithm. Interna-
tional Journal of intelligent information Processing, 2(2), 363–368.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen,
C., Korhonen, A., Malmi, L., McNally, M., Rodger, S., & Velázquez-
Iturbide, J. Á. (2002). Exploring the role of visualization and engage-
ment in computer science education, Aarhus, Denmark, Association
for Computing Machinery. https://doi.org/10.1145/960568.782998

O’Malley, C. (2012). Computer supported collaborative learning (Vol. 128).
Springer Science & Business Media.

Peters, O. (2000). Digital learning environments: New possibilities and op-
portunities. The International Review of Research in Open and Distributed
Learning, 1(1). https://doi.org/10.19173/irrodl.v1i1.3

Pirker, J., Lesjak, I., & Guetl, C. (2017). Maroon vr: A room-scale physics
laboratory experience, In 2017 ieee 17th international conference on
advanced learning technologies (icalt). https://doi.org/10.1109/ICALT.
2017.92

Pirker, J. (2013). The virtual teal world-an interactive and collaborative
virtual world environment for physics education. Dr. Diss. Master’s
thesis, Graz Univ. Technol.

Pirker, J. (2017). Immersive and engaging forms of virtual learning (Doctoral
dissertation). Graz University of Technology.

Pirker, J., Holly, M., & Gütl, C. (2020). Room scale virtual reality physics edu-
cation: Use cases for the classroom, In 2020 6th international conference
of the immersive learning research network (ilrn). IEEE.

Pirker, J., Riffnaller-Schiefer, M., & Gütl, C. (2014). Motivational active learn-
ing: Engaging university students in computer science education, In
Proceedings of the 2014 conference on innovation & technology in computer
science education.

Quacquarelli Symonds. (2020). Natural sciences. Retrieved May 11, 2020, from
https://www.topuniversities.com/university-rankings/university-
subject-rankings/2020/natural-sciences

128

https://www.rfc-editor.org/rfc/rfc5766.txt
https://www.rfc-editor.org/rfc/rfc5766.txt
https://mirror-networking.com/
https://mirror-networking.com/
https://doi.org/10.1145/960568.782998
https://doi.org/10.19173/irrodl.v1i1.3
https://doi.org/10.1109/ICALT.2017.92
https://doi.org/10.1109/ICALT.2017.92
https://www.topuniversities.com/university-rankings/university-subject-rankings/2020/natural-sciences
https://www.topuniversities.com/university-rankings/university-subject-rankings/2020/natural-sciences

Bibliography

Roberts, T. S. (2004). Online collaborative learning: Theory and practice. IGI
Global.

Roberts, T. S. (2005). Computer-supported collaborative learning in higher
education.

Rosenberg, J., Mahy, R., Matthews, P., & Wing, D. (2008). Session traversal
utilities for nat (stun) (RFC No. 5389). RFC Editor. RFC Editor. https:
//www.rfc-editor.org/rfc/rfc5389.txt

Rosenberg, J., Weinberger, J., Huitema, C., & Mahy, R. (2003). Stun - simple
traversal of user datagram protocol (udp) through network address transla-
tors (nats) (RFC No. 3489). RFC Editor. RFC Editor. https://www.rfc-
editor.org/rfc/rfc3489.txt

Rovai, A. P. (2002). Development of an instrument to measure classroom
community. The Internet and higher education, 5(3), 197–211.

Sarbazi-Azad, H. (2000). Stupid sort: A new sorting algorithm. Newsletter
(Computing Science Department, Univ. of Glasgow)(599), 4.

Schaffer, R., & Sedgewick, R. (1993). The analysis of heapsort. Journal of
Algorithms, 15(1), 76–100.

Schnurr, D. (2017). Visualizing sorting algorithms in 2d space. Retrieved May
5, 2020, from https://medium.com/@dschnr/visualizing-sorting-
algorithms-in-2d-space-c85dcda72f5c

Schollmeier, R. (2001). A definition of peer-to-peer networking for the classi-
fication of peer-to-peer architectures and applications, In Proceedings
first international conference on peer-to-peer computing. IEEE.

Shell, D. L. (1959). A high-speed sorting procedure. Communications of the
ACM, 2(7), 30–32.

Sommerville, I. (2007). Software engineering. Addison-Wesley. https://books.
google.at/books?id=B7idKfL0H64C

Stagner, A. (2013). Unity multiplayer games. Packt Publishing. https://books.
google.at/books?id=BWVpAgAAQBAJ

Stewart, D. (2020). Our most popular scientists – top 100. Retrieved May 11,
2020, from https://www.famousscientists.org/popular/

Thu, H. T. T., Park, J., Won, Y., & Kim, J. (2014). Combining stun protocol
and udp hole punching technique for peer-to-peer communication
across network address translation, In 2014 international conference on
it convergence and security (icitcs). IEEE.

Toptal. (2020). Sorting algorithms animations. Retrieved May 5, 2020, from
https://www.toptal.com/developers/sorting-algorithms

129

https://www.rfc-editor.org/rfc/rfc5389.txt
https://www.rfc-editor.org/rfc/rfc5389.txt
https://www.rfc-editor.org/rfc/rfc3489.txt
https://www.rfc-editor.org/rfc/rfc3489.txt
https://medium.com/@dschnr/visualizing-sorting-algorithms-in-2d-space-c85dcda72f5c
https://medium.com/@dschnr/visualizing-sorting-algorithms-in-2d-space-c85dcda72f5c
https://books.google.at/books?id=B7idKfL0H64C
https://books.google.at/books?id=B7idKfL0H64C
https://books.google.at/books?id=BWVpAgAAQBAJ
https://books.google.at/books?id=BWVpAgAAQBAJ
https://www.famousscientists.org/popular/
https://www.toptal.com/developers/sorting-algorithms

Bibliography

Unity. (2018). Connected games: Building real-time multiplayer games with unity
and google - unite la. Retrieved April 21, 2020, from https://www.
youtube.com/watch?v=CuQF7hXlVyk

Unity Technologies. (2020). Performance by default. Retrieved August 7, 2020,
from https://unity.com/dots

Unity Technologies. (2021). Multiplayer and networking. Retrieved March 2,
2021, from https://docs.unity3d.com/Manual/UNet.html

University of California. (2020). The importance of computer science education.
Retrieved February 11, 2021, from https : / / sites . uci . edu / cs1c /
importance-of-computer-science-education/

Warschauer, M. (2007). The paradoxical future of digital learning. Learning
Inquiry, 1(1), 41–49.

Welsh, E. T., Wanberg, C. R., Brown, K. G., & Simmering, M. J. (2003).
E-learning: Emerging uses, empirical results and future directions.
international Journal of Training and Development, 7(4), 245–258.

Wheeler, S. (2012). E-learning and digital learning. In N. M. Seel (Ed.),
Encyclopedia of the sciences of learning (pp. 1109–1111). Boston, MA,
Springer US. https://doi.org/10.1007/978-1-4419-1428-6 431

Wolf, J. P. (2019). User assessment in 3d environments (Master’s thesis). Graz
University of Technology. https ://online. tugraz.at/tug online/
wbAbs.showThesis?pThesisNr=66360&pOrgNr=37

Yang, T. (2019). Upnp-enabled connected devices in the home and unpatched
known vulnerabilities. Retrieved August 11, 2020, from https://blog.
trendmicro.com/trendlabs- security- intelligence/upnp- enabled-
connected-devices-in-home-unpatched-known-vulnerabilities/

Zapponi, C. (2014). Sorting. Retrieved May 5, 2020, from http://sorting.at/

130

https://www.youtube.com/watch?v=CuQF7hXlVyk
https://www.youtube.com/watch?v=CuQF7hXlVyk
https://unity.com/dots
https://docs.unity3d.com/Manual/UNet.html
https://sites.uci.edu/cs1c/importance-of-computer-science-education/
https://sites.uci.edu/cs1c/importance-of-computer-science-education/
https://doi.org/10.1007/978-1-4419-1428-6_431
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=66360&pOrgNr=37
https://online.tugraz.at/tug_online/wbAbs.showThesis?pThesisNr=66360&pOrgNr=37
https://blog.trendmicro.com/trendlabs-security-intelligence/upnp-enabled-connected-devices-in-home-unpatched-known-vulnerabilities/
https://blog.trendmicro.com/trendlabs-security-intelligence/upnp-enabled-connected-devices-in-home-unpatched-known-vulnerabilities/
https://blog.trendmicro.com/trendlabs-security-intelligence/upnp-enabled-connected-devices-in-home-unpatched-known-vulnerabilities/
http://sorting.at/

	Abstract
	Introduction
	Objectives
	Methodology and Structure

	Background and Related Work
	Computer Science Education
	Digital Learning
	Computer-Supported Collaborative Learning
	Digital Learning Environments

	Maroon
	Maroon Laboratory
	Maroon Desktop & Browser
	Maroon Experiments

	Sorting Algorithms
	Sorting Fundamentals
	Selected Algorithms
	Sorting Algorithms in CSE

	Summary

	Design & Conceptual Model
	Starting Point & Objective
	Target Group
	Requirement Analysis
	Functional Requirements
	Non-Functional Requirements

	Network Architectures
	Local Network
	Dedicated Server
	Peer to Peer (P2P)

	Network Address Translation Traversal
	Internet Protocol Version 6
	Automatic Port Forwarding
	NAT Punch-through
	Relay Server

	Multi-User Options for Unity
	UNet
	Connected Games
	Mirror
	Photon
	MLAPI

	Multi-User Design
	Network Architecture Selection
	Network Address Translation Traversal Comparison
	Selected Multi-User Option for Unity
	Network Address Translation Traversal Selection

	Sorting Experiment Design
	Summary

	Implementation
	Network Establishment
	Local Network Discovery
	List Server
	Network Setup
	Connection and Disconnection Handling
	Naming
	Ports

	User Interaction
	Control Handling
	Menu
	Messages
	Scene Handling

	Synchronizing Experiments
	Synchronizing User Input
	Adding Multi-User to Existing Experiments

	Sorting Experiment Implementation
	Detail-View
	Battle-View
	Sorting Challenge

	Summary

	Evaluation
	Methodology & Procedure
	Pre-Questionnaire
	Tasks
	Post-Questionnaire

	Participants
	Results
	Discussion

	Lessons Learned
	Theory
	Development
	Evaluation

	Future Work
	Evaluation Results
	Technical Improvements for Multi-User
	WebGL & VR Support
	Steam Networking
	NAT Punch-through
	User Interactions
	Experiment Status Saving

	Conclusion
	Sorting Algorithms
	Insertion Sort
	Merge Sort
	Heapsort
	Quicksort
	Selection Sort
	Bubble Sort
	Gnome Sort
	Radix Sort
	Shellsort

	Questionnaires
	Pre-Questionnaire
	Post-Questionnaire

	Installation Guide
	Installation
	System Requirements

	Bibliography

