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Abstract

Occupancy grids are a common method for creating maps of the envi-
ronment for uncertain sensor data. Measurements are integrated into this
map by means of an inverse sensor model. This thesis shows alternative
approaches for inverse sensor models for automotive radar sensors.

Commonly used approaches usually rely on the standard output for radar
sensors, the object list. This has several shortcomings especially the loss
of geometric information. Therefore a geometric representation derived
from the raw radar data is used as a basis for the models. It represents the
sensor data in a form that can be interpreted more intuitively for integrating
the measurements into a gridmap. Two different ways of transforming the
sensor’s output into a probability of occupancy will be presented. This two
transformations are used in three different sensor models.

The models are tested on measurements that have been conducted with a
mobile robot platform. This platform was equipped with a radar sensor and
odometry for creating gridmaps from the radar data. Additionally a camera
and a laser-scanner to create reference occupancy grids were attached
to it. The reference gridmaps and the camera images have been used to
qualitatively assess the radar-generated gridmaps. 34 different measurement
scenarios have been recorded to cover a broad variety of applications and
provide data to examine certain sensor and model characteristics.

To be able to assess the final gridmaps criteria are derived that formalize
the quality of the generated occupancy grids. These criteria are applied to
the generated maps and the results evaluated. Characteristics of the sensor
or the modeling approach that led to a reduced quality of the gridmaps are
discussed based on these criteria.
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1. Introduction

1.1. Motivation

Applications for automotive radar sensors range from advanced driver assis-
tant systems (ADAS’s) [12] to complete autonomous driving [11]. Due to it’s
ability to also work in bad visibility conditions, it’s comparably low price
and it’s ability to measure the velocity of objects it will also play a key-role
in applications where conventional sensors perform poorly. Autonomous
driving in bad weather conditions would be such an application. Another
one would be navigation in rooms filled with smoke e.g. for firefighting.

An important task in this context is generating a map of the static envi-
ronment. For this task occupancy grids are a very popular solution. In
this thesis solutions for effectively creating occupancy grids from radar
measurements should be investigated. However the literature on this field
is still quite sparse. There are some projects where radar is used for creating
occupancy grids, but in almost all of them the object list is used as a basis
for creating the grids. The object list is a standard output of radar sensors,
which lists the location and the velocity of the objects the sensor has de-
tected in it’s field of view (FOV). This attempt has several shortcomings in
the mapping context especially the mapping of free space and the loss of
geometric information.

1.1.1. Goals

The main goal of this thesis is to develop an alternative way for creating
occupancy grids from radar measurements. Instead of the object list the raw
radar data should be utilized for this purpose. The final outcome of this

1



1. Introduction

efforts should be an inverse sensor model for a radar sensor that incorporates
the sensor’s properties as good as possible into the occupancy framework.
The found model should also be able to provide a modeling of free space
that utilizes the data provided by the sensor more excessively. It should
be evaluated by real-world measurements. As a side effect it is desired to
gain a deeper understanding of the limitations and possibilities of the radar
technology for mapping. Finally shortcomings and future improvements for
the developed approach should be presented.

1.1.2. Challenges

The first challenge was to find a mathematical model. This was particularly
difficult as the whole radar framework has a lot of tuneable parameters that
influence the results. Also there is no derived model in the literature for
this purpose. As a complete mathematical derivation proved too difficult
in the scope of this thesis a total of six heuristic attempts for an inverse
sensor model have been proposed. For all of this models suitable parameters
had to be found. The main challenge was to find a suitable mapping from
radar-data to probabilities of occupancy that incorporates the sensor’s
properties.

The second challenge has been conducting the measurements. They needed
to cover a variety of different scenarios to get insights into the sensor’s prop-
erties. At the same time additional data had to be recorded for processing
and validation purposes (e.g. reliable positional data and laser scans of the
scene). For the final validation it was important to find and apply criteria
that accurately describe the quality of an occupancy grid. In this context it
was an important point to trace corrupting effects back to the properties of
the sensor and/or the model.

1.1.3. Contributions

A novel approach has been developed to extract geometric data from radar
measurements. Unlike the object list which relies on the range doppler map,
the used models rely on a representation that will later be called range
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1.2. Outline

angle map. The six different candidates for the inverse sensor models have
been validated on the conducted measurements. Some of the approaches
provided decent results. Also an outlook has been given which models
could be further investigated to provide better results and utilize the data
provided by the radar sensor as good as possible.

1.2. Outline

First there will be a short overview on the related work (Section 2) . Then
Section 3 covers important prerequisites of the radar technology and occu-
pancy grids. After that Section 4 explains how a series of measurements
is processed into an occupancy grid. Next Section 5 first describes the
conducted measurements, in particular the used platform, measurement
environments and parameters. After that the results will be evaluated and
discussed. Finally in Section 6 the thesis will be concluded and an outlook
for further improvements is given.

3





2. Related Work

2.1. Occupancy Grid Maps

Occupancy grids originate from the field of robotics and were first proposed
in [1]. Since then they have been widely used and adapted. The basic
idea of this concept is to represent a map by equally big grid-cells with
a probability of occupancy. Each sensor measurement is transformed into
such a probability by the inverse sensor model and used to update the
corresponding grid-cell. [26] gives a good overview how they are used
especially in the mapping context of robotics. The mathematical basics from
this book that were used for this thesis are described in section 3.2.

A widely used framework in the field of robotics is the Robot Operating
System (ROS)1. It will be used for the measurements. [14] introduces a
Simultaneous Localization and Mapping (SLAM) framework for lidars that
uses scan matching for the localization. A package called Hector-Mapping is
available for ROS. It will also be used for the measurements. An alternative
ROS package for conducting SLAM is Gmapping2. It is based on [8]. It’s
algorithm uses Rao-Blackwellized particle filters.

Applications where occupancy grids have already been used in combination
with radar sensors will be described in section 2.3.

1ros.org
2openslam-org.github.io/gmapping.html
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2. Related Work

2.2. Radar Signal Processing

Signal processing covers a very big part of this thesis. Basic concepts like
the Signal to Noise Ratio (SNR) and the Fast Fourier Transform (FFT) are
excessively discussed in [28] and [7]. Background important for radar signal
processing like the Radar Cross Section (RCS), Constant False Alarm Rate
detectors (CFAR) and the Direction Of Arrival (DOA) can be found in [17]
and [15]. Section 3.1 shortly summarizes and explains the relations of this
books that are later used to pre-process the raw radar data.

2.3. Occupancy Grid Maps Using Radar Sensors

There have already been several projects where radar is used to create
occupancy grids. This section will provide a brief overview of the work
already contributed. Further the basic ideas of commonly used approaches
will be explained.

2.3.1. Object List Based

The most usual approach is to directly use the common output of radar
sensors, the object list. This list contains only positions of the sensor’s Field
Of View (FOV) on which an object has been detected. Very often it is al-
ready provided by the sensor manufacturer itself and therefore most of the
signal processing and parameterization is already done. A big shortcom-
ing of this approach is that detected objects are reduced to single points.
Geometric information of the object is lost. However to compensate this
loss of information usually a probability distribution is laid around the de-
tected points. This way the geometric properties of a detection are modeled.
CFAR detectors in combination with DOA estimators (e.g. Multiple Signal
Classification) have been used in most cases.

[18] focuses on sensor-fusion of radar and lidar through occupancy grids.
For the radar-sensor model a two dimensional Gaussian distribution (in
bearing and range) is used to model a radar-beam for each object in the

6
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object list. [16] creates a 3D grid from radar-data. The target detection is
based on CFAR and MUSIC. Again a two dimensional Gaussian distribution
modeling a radar-beam for each object in the object list is used as inverse
sensor model.

[6] investigates two different approaches for radar-based grid mapping:
Amplitude-based and an occupancy grid. Distance, bearing and SNR of the
observation are taken into account for the map creation. Uncertainties of
range and bearing are taken into account by Gaussian distributions.

[5] creates a 2D occupancy grid similar to the approaches stated above, with
the small difference that the authors create the object list themselves by
using a dedicated FPGA. The SNR values are transformed into probabilities
by normalizing them depending on the maximal SNR value of a measure-
ment. The distance to the target, the antenna-gain and the SNR are taken
into account for interpreting the radar measurements as probabilities of oc-
cupancy. Additionally some post-processing in terms of different clustering
algorithms is used for further improving the grid quality.

[10] creates a 3D occupancy grid using a 3D radar sensor. The detection’s
are weighted by the SNR and interpolated to the nearest grid cell. There is
explicitly no measurement uncertainty modeling done.

All those approaches rely on the object list as a basis for the inverse sensor
model. Therefore a lot of data is discarded. The inverse sensor model pro-
vided in this thesis should not discard this data, but use it to achieve higher
quality occupancy grids. However SNR and antenna-gain are important
factors that need to be considered for transforming the radar measurements
to their corresponding probabilities of occupancy. This factors will also be
considered by the models proposed in this thesis.

2.3.2. Raw Data Based

By utilizing the raw radar data the whole sensor’s FOV can be used. In [3]
the author uses a static, mechanical rotated, narrow beam radar to generate
a three dimensional occupancy grid. For each alignment the corresponding
beam is processed. Target classification is done by a CFAR algorithm on the

7



2. Related Work

range-doppler-map generated from the raw measurement data. The classi-
fication is used to separate the measurements in free, occupied (weighted
by SNR) and non-informative (e.g. behind objects) space. More theoretical
detail can be found in [2]. As the Author concentrates on narrow beam
applications, spatial information of detected objects is also modeled using
certain probability distributions. The idea of this sensor model has been
used, and further refined for the proposed inverse sensor model.

[4] investigates 2D occupancy grid creation using radar in static scenarios
especially in bad visibility situations. The used radar scans the area with a
narrow beam. No CFAR but a constant, pre-calculated threshold for each
measurement-bin is used for obstacle classification. [13] conducts Simul-
taneous Localization And Mapping (SLAM) with a mechanically scanned
radar and uses different approaches for target detection than traditional
CFAR techniques. By assuming different noise- and power distributions
hypotheses are used for calculating the probabilities of occupancy from
the radar measurements. This two papers follow completely different ap-
proaches for the inverse sensor modeling. However as CFAR detectors are
commonly used, effective and robust, this approach has not been further
investigated.

2.3.3. Other Approaches

[11] and [19] perform radar-based occupancy grid creation for parked
vehicles, but don’t give any implementation details. [21] uses an entirely
different approach by trying to create occupancy grids from raw radar
data using neural networks. [20] proposes enhancements for radar based
occupancy grids by more explicitly mapping free space and by adapting
measurement uncertainties to the vehicle speed. [22] focuses on free space
detection of occupancy grids on the basis of radar and a stereo camera, but
doesn’t give specific implementation details. Some of this topics especially
the adaptation of the measurement uncertainties could also be investigated
for the proposed models in future research.

8



3. Prerequisites

3.1. Radar

Radar technologies work through transmitting and receiving electro-magnetic
waves. The received signals are processed in a way that objects in the sen-
sor’s filed of view can be extracted. The basic radar-equation represents
the ratio of received power Pr to transmitted power Pt depending on the
relevant system parameters according to [12]:

Pr

Pt
=

GtGrλ2

(4π)3R4L
σ (3.1)

Gt is the transmitting antenna’s gain, Gr receiving antenna’s gain, λ the
transmitting wavelength, σ the RCS and R the distance to the reflecting
object. L < 1 denotes losses within the radar sensor.

3.1.1. Radar Cross Section (RCS)

The RCS is a factor describing the ability of an object to reflect energy back
towards an antenna. It depends on three major factors ([2]):

• Size: the bigger an object, i.e. the bigger it’s reflective surface the more
energy is directed back to the receiving antenna.

• Material: materials with good reflective properties (e.g. metal) reflect
more energy than absorbing or pervious materials (e.g. plastic or
wood).

• Directivity: the reflected energy of a surface is at it’s maximum if it is
arranged 90° to the wave propagation direction.

9



3. Prerequisites

The ability of a radar sensor to perceive an object highly depends on the
reflected signal’s strength. This comes into play especially in real-world
scenarios which include a big variety of object types and arrangements.

3.1.2. Discrete Time Fourier Transform

This section will provide a brief overview of the basic signal-processing
tools connected with the Fourier Transform (FT) necessary to understand
the topics that follow. A more detailed introduction to this subjects can be
found in [7] and [28].

In contrast to the Fourier transform which is for continuous-time signals the
Discrete Time Fourier Transform (DTFT) is used for discrete-time signals.
The time domain signal x[n] is converted into a frequency domain signal
X(ejω). It represents the magnitudes and their corresponding frequencies ω
of the sinusoidal decomposition of x[n]. This decomposition can be visual-
ized by computing the Fourier Series. The frequency domain representation
is also called the frequency spectrum or just spectrum of x[n]. x[n] is sup-
posed to be equally spaced in time with T = 1/ fs where fs is the sampling
frequency. The DTFT is defined as:

X(ejω) =
∞

∑
n=−∞

x[n]e−jωn (3.2)

In relation to Equation 3.2 it is important to notice that the frequency
spectrum X(ejω) is continuous. This is because x[n] is observed infinitely
long i.e. from n = −∞ to ∞. As this is not possible in real systems the DTFT
has to be adapted for finite length signals. This adaption is the Discrete
Fourier Transform (DFT). It is defined as:

X[k] =
N−1

∑
n=0

x[n]e
−j2π

N
kn

(3.3)

The DFT assumes that x[n] is periodically outside the base interval from
n = 0...N − 1. As a result the frequency spectrum is also periodic around
ω = 0...2π. Comparing Equation 3.2 and 3.3 it can be observed that X[k]

10



3.1. Radar

represents a sampled version of X(ejω) with N samples. The sample points
of the DFT are:

ωk =
2π

N
k with ∆ω =

2π

N
(3.4)

Equation 3.4 shows that by increasing N the difference between the spectral
lines for the discrete spectrum becomes smaller. Thus, for increasing N
X[k] resembles X(ejω) more exact. To get a better representation without
changing the signal it is therefore possible to simply add a certain number
of zeros. This is called zero-padding. Note that this process cannot achieve
better frequency resolutions, the DFT simply becomes a denser sampled
version of the DTFT. The Fast Fourier Transform (FFT) is a fast implementa-
tion of the DFT where N gets zero-padded to a power of two to accomplish
faster computation.

According to the Nyquist-Shannon theorem x[n] can be perfectly recon-
structed from X[k] by computing the inverse DFT if the highest occurring
frequency in x[n] is smaller then half of the sampling frequency fs. If this
theorem is not respected the frequency components higher than fs/2 get
projected back into the base spectrum and therefore corrupt it. This is called
aliasing.

Taking N samples of x[n] is called windowing. Mathematically the window
w[n] is applied by a multiplication in the time domain.

v[n] = x[n] · w[n] (3.5)

If the time domain samples are used directly for computing the DFT it is
more precisely called a rectangular window.

wR[n] =

{
1, if 0 ≤ n ≤ N − 1
0, otherwise

(3.6)

The problem of this window-shape is that if the window length doesn’t
perfectly align with a multiple of the period of x[n] there are discontinuities
at the window verges due to the periodic assumption of the signal. The
DFT interprets this discontinuities as edges in the signal. This edges have
an infinitely high number of containing frequency components which cause
aliasing. Therefore if unknown frequencies (i.e. no synchronous sampling)
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should be evaluated, using a different window is necessary. To avoid the
mentioned discontinuities the windowing function usually fades to zero at
the window’s verges. Hanning- and Blackman-window are two common
windowing functions for such cases.

The time-domain multiplication of window and signal causes a convolution
of their corresponding spectra in the frequency domain.

V[k] = X[k] ∗W[k] (3.7)

That means that every frequency component of x[n] present in the spectrum
X[k] gets superimposed by the DFT of the windowing function. This shows
another problem of the rectangular window: the Fourier Transform of a
rectangle is a sinc-function. This function has a very narrow main-lobe at the
corresponding frequency bin, but also high side-lobes next to the main-lobe.
On the one hand the narrow main-lobe is desired because it points out
the location of a single frequency-peak more clearly. On the other hand
neighboring frequency peaks are corrupted and might even get invisible in
case of small magnitudes by the high side lobes. In contrary the Hanning
window has a broader main-lobe but also lower side-lobes. Thus windowing
functions always have a trade-off between the side-lobes height and the
main-lobes width i.e. the frequency resolution.

3.1.3. LFMCW-Radar

The most commonly used type of radar sensors in automotive applications
are LFMCW-radars (Linear Frequency Modulated Continuous Wave). A
continuous sinusoidal electromagnetic wave is transmitted. As illustrated
in figure 3.1 the frequency of this wave is linear chirped over a certain
bandwidth. Using this method the propagation delay τ of the sent signal
can be evaluated by estimating the frequency difference ∆ f . Knowing τ
allows to estimate the relative velocity and distance to an object.

Figure 3.2 shows the basic schematic of a FMCW-radar. The oscillator gen-
erates the frequency chirp. It is transmitted via the antenna. For systems
where transmitting and receiving is done via the same antenna a separation
block is necessary. Finally the echo is down-mixed by the sending signals
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3.1. Radar

Figure 3.1.: Frequency chirp of a LFMCW radar. BSW is the chrip bandwidth, f0 the base
frequency. TSW is the sweep duration, TID the idle duration, necessary for
settling in between two cycles. TP = TSW + TID is the overall duration for one
cycle. The application illustrated uses just an up-chirp (saw-tooth function), but
using a down-chirp for reducing the frequency back to f0 (triangular function)
is also possible.

frequency. An important component is the mixer. It converts the received
signal down by the senders frequency. Therefore the mixer already forms
the differential signal needed for estimating the intermediate frequency
∆ f = f IF. As a result the signal processing can be done in a much lower
frequency-range. This relaxes the necessary hardware’s requirements re-
markably especially in terms of sampling frequency. The usually used Band
is 76GHz - 81GHz. The simplified IF-signal model for one reflection (i.e.
the signal that is received at the output of the mixer for one object in the

Figure 3.2.: Basic FMCW-radar schematic
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(a) Matrix for the measured data. (b) Range-doppler matrix arrangement.

Figure 3.3.: Matrix representations of measured and processed data

sensor’s FOV) is given with (derivation can be found at [25]):

sIF(t) = AIFcos

2π

BSW

TSW
τ︸ ︷︷ ︸

f IF

+ f0
2v
c

 t + 2π f0τ︸ ︷︷ ︸
Φ0

 (3.8)

3.1.4. Range Doppler Processing

Figure 3.1 illustrates that several consecutive cycles are sent and received for
one measurement. Each cycle itself acquires N samples as a data vector xi
with i = 1...Ncycle. The collected data is arranged in a matrix. It’s structure
is depicted in Figure 3.3a. Every column of this matrix is one data vector for
one chirp sequence. Therefore the map has N rows and Ncycle columns. First
an appropriate windowing function is applied to the measured data-vector
xi. Then the complex valued spectrum yi for each data vector is calculated
using a 1. FFT. The vector yi might be longer than xi as a result of zero-
padding done in the FFT. The vectors yi are again arranged as columns
of a matrix, called the range-compressed map. Thus each column of this
new matrix now contains the spectrum of one cycle. Note that by using
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3.1. Radar

Figure 3.4.: Illustration of a range-compressed map with a target at approximately 6m.

the FFT the spectrum is symmetric on the x-axis i.e. it is the same for
positive and negative ranges. As a consequence just the positive part of the
range is shown. However for the target detection it is important to use the
whole spectrum. Figure 3.4 shows a visualization of a range-compressed
matrix. f IF can be extracted by evaluating the peak of the spectrum. If there
are multiple targets at different ranges in the measurement range of the
radar, there are peaks at multiple frequencies visible in the spectrum. From
equation 3.8 the relation

τ = f IF
TSW

BSW
(3.9)

can be used to determine the propagation delay from f IF. Knowing τ the
distance to the object can be evaluated by using c the propagation speed of
light. The factor 2 is necessary because the wave has to travel to the object
and back.

r = f IF
c
2

TSW

BSW
(3.10)

Due to the sampling the maximal resolvable frequency is fs/2. Therefore
the maximum resolvable distance is

rMAX = fs
c
4

TSW

BSW
(3.11)

The range resolution is calculated according to [24]

∆r =
c

2BSW
(3.12)
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If the object is moving, τ changes at each cycle. To point this out math-
ematically, every row ξ of the range-compressed map can be interpreted
as

Y[ξ, m] =
[

Aξ,1ejΦ0,ξ,1 , Aξ,2ejΦ0,ξ,2 , ..., Aξ,Ncycle e
jΦ0,ξ,Ncycle

]
(3.13)

This collects the phases and amplitudes of the same bin of the frequency
spectra into a single vector. The phase changes proportional to ∆τ according
to

∆Φ0 = 2π f0∆τ = 2π f0
2v
c

TP (3.14)

This phase change can be re-interpreted as a frequency. Assuming the
amplitudes for each bin do not change, it can be interpreted as a complex
exponential vector of the form

z[m] = Aξej∆Φ0m = Aξe
j2π f0

2v
c

TPm
(3.15)

m denotes the sweep index. Equation 3.14 shows that the phase change ∆Φ0
is proportional to the velocity v. Therefore according to Equation 3.15 ∆Φ0
can be extracted as a frequency which is related to the object’s velocity.

Evaluating the velocity is similar to the range evaluation. By applying a 2.
FFT on the rows of the range-compressed map the spectrum of the velocity
dimension is calculated. Again an appropriate windowing function has to be
used. The computed spectra are used as the rows of a new matrix - the final
range doppler map. The column- (or also called slow-time-) dimension of
this matrix represents the range. The row- (also called fast-time-) dimension
represents the velocity. Figure 3.3b illustrates the structure of the matrix.
Figure 3.5 shows a visualization of this matrix. The final range doppler map
has a dimension of NFFT1× NFFT2. NFFT1 is the length of the spectral vector
of the range-compression. NFFT2 is the length of the spectral vector of the
velocity-compression. The peaks in this the RD-map correspond to objects.
By extracting the peaks of the spectrum in the fast-time dimension, the

velocity of the objects can be identified. In equation 3.14 the factor
∆Φ0

2π
can

be transformed into the expression
f IF

fs
. Thus knowing the peak frequency
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Figure 3.5.: Illustration of a range doppler map with a target at a distance of approximately
6m and a velocity of approximately 0.5 m/s.

fv in the range doppler map the velocity can be calculated by

v =
fv

fs

c
2 f0TP

(3.16)

The velocities range and resolution can be calculated using [24]

vMAX =
c

4 f0TP
(3.17)

∆v = 2
vMAX

Ncycle
(3.18)

The illustration in Figure 3.5 shows a range doppler map. Common radar
sensors used in automotive applications have more than one receiving
antennas (i.e. channels). Using the steps provided, the signal received on
every one of them can be processed to a range doppler map. The map shown
in Figure 3.5 has been created using non-coherent sampling. That means it
is obtained by averaging the corresponding bins of the range doppler maps
for every channel.

3.1.5. Target Detection

Separating objects from noise in a spectrum is called target detection. One
of the biggest problems of radar sensors is that they suffer from high
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noise influence. The two sources of noise in a radar system are internal
noise (e.g. phase noise) and external noise (e.g. clutter). Modern radar
systems use Constant False Alarm Rate (CFAR) detectors to establish a
reliable detection in noisy conditions. The false alarm rate PFA describes the
probability on how probable noise is mistakenly considered as detection.
The two important components for calculating PFA are the noise model and
the RCS fluctuation model. The fluctuation model represents the change of
the RCS over time. Usually Swerling models are used for this purpose. [17,
p. 496] shows that for white Gaussian noise and a nonfluctuating target PFA
is

PFA = e−T/σ2
w with T = ασ2

w (3.19)
σ2

w denotes the noise power. T is the detection threshold, α the scaling
between threshold and noise power. This already shows that for setting a
detection threshold the noise power needs to be known. As σ2

w is highly
dependent on the environment (e.g. temperature, geometric measurement
scenario...) setting a constant threshold is not feasible for general applica-
tions. Therefore it is necessary to estimate the noise power in real-time to
provide a possibly constant false alarm rate. The estimate is based on the
current measurement, more particular it’s range doppler map. Estimating
σ2

w of a single range doppler cell is based on two major assumptions:

• Neighboring cells that are used for estimating σ2
w only contain noise,

no targets.
• Neighboring cells have the same noise statistics as the Cell Under Test

(CUT).

The Neyman-Pearson detector optimally describes the stated threshold-
detection problem. It is approximated by a square-law detector for simplicity.
With independent identically distributed white Gaussian noise the detection
Probability Density Function (PDF) for a single cell with the measured
signal xi is according to [17, p. 500]

p(xi) =
1

σ2
w

e−xi/σ2
w (3.20)

If N cells adjacent to the CUT are used for the estimate it is shown that σ2
w

can be calculated using

σ̂2
w =

1
N ∑

N
xi (3.21)
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Figure 3.6.: Cell averaging CFAR

This is also referred as the cell-averaging CFAR. Figure 3.6 shows the
structure for this estimation. The actual averaging is done with the values
in the leading- and the lagging-window. In most cases a target will occupy
several consecutive cells. To avoid using this occupied cells next to the CUT
for the estimate, guard cells are placed between the windows and the CUT
which are not used for the averaging. Figure 3.7 shows a cell-averaging
CFAR applied to a range-doppler map. For a given average false alarm rate

Figure 3.7.: CFAR Detection on the range doppler map. Crosses indicate a detection at a
certain cell.

pFA the necessary threshold multiplier α can be chosen according to [17,
p.504] as

α = N(p−1/N
FA − 1) (3.22)
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The detection probability pD is evaluated according to [17, p.504] as

pD =

(
1 +

α

N(1 + ξ)

)−N
(3.23)

where ξ denotes the signal to noise ratio.

3.1.6. Direction of Arrival (DOA)

Modern radar sensors are additionally equipped with antenna array’s for
sending and receiving. By fusing the spatial- and the temporal information
provided, it is possible to determine the Direction of Arrival (DOA) of a
signal. This makes it possible to estimate the relative angle to a target. The
output signal of a single receiving antenna x(t) of the array is modeled
according to [15], [9] as

x(t) = a(θ)s(t) (3.24)

s(t) describes the source- or sender- signal. a denotes the steering vector.
It represents the electro-magnetic wave’s amplitude in the direction given
by the angle θ. Extending this model for a whole antenna array is done
by collecting all steering vectors in a matrix A(θ) and all sources in the
vector s(t). Incorporating additive noise yields the commonly used model
for array processing

x(t) = A(θ)s(t) + n(t) (3.25)

For further investigation it is necessary to create the spatial covariance
matrix R

R = E{x(t)x(t)H} (3.26)

For real-world applications R has to be estimated from a limited number of
N samples. The sample covariance matrix is such an estimate

R̂ =
1
N

N

∑
i=1

x(i)x(i)H (3.27)

This models form the basis for further DOA-estimators, or also called
beamformers. In the following paragraphs two types will be discussed more
intensively: the standard or Bartlett- and the Multiple Signal Classification
(MUSIC)- beamformer.
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Bartlett Beamformer

This is the most basic beamformer. It poses an extension of Fourier-based
spectral analysis for sensor arrays [23]. The array output of the signal coming
from direction θ corrupted by additive noise is modeled according to 3.24.
The idea of this estimator is to maximize the output power with respect to
θ. [9] derives the resulting spatial power spectrum

PBF(θ) =
aH(θ)R̂a(θ)
aH(θ)a(θ)

(3.28)

The denominator can be expressed as |aULA(θ)|2 = M, with M the number
of source signals in s(t). The denominator is just a constant scaling for the
spectrum. For a uniformly spaced linear array the steering vector is

aULA(θ) =
[
1 ejφ · · · ej(L−1)φ

]T
(3.29)

φ is called the electrical angle, and can be translated in a geometrical angle
according to [9]

φ = −ω

c
dcos(θ) (3.30)

L denotes the number of antennas of the array. d is the distance between two
antenna elements. Putting together Equation 3.28 and 3.27 shows that the
numerator of 3.28 contains the term aH(θ)x(t)x(t)H(t)a(θ). Using Equation
3.29 and comparing it with the definition of the DFT in equation 3.3 shows
that this result is the spatial equivalent to the periodogram PBF(θ) ∼ |X[k]|2.
This spectrum is formed by conducting a FFT on the samples of the angular
dimension of the range doppler matrix (Figure 3.3b). Detecting targets is
again done the same way as before: by extracting peaks in the spectrum.
The resolution of this beamformer is limited by the resolution of the antenna
array’s number of antennas and their geometry. This approach also doesn’t
incorporate the signal quality for the estimate.

Multiple Signal Classification

A more sophisticated method is an approach called Multiple Signal Clas-
sification (MUSIC). It is a subspace-based method. The spatial covariance
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matrix is divided into a source- and a noise-covariance matrix

R = E{x(t)x(t)H} = AE{s(t)s(t)H}AH + E{n(t)n(t)H} = APAH + σ2I
(3.31)

P denotes the source- and σ2I the noise- covariance matrix with the noise
power σ2. Using a unitary transform a representation featuring the eigen-
values can be given

R = UsΛsUH
s + UnΛnUH

n (3.32)

Λs and Λn are diagonal matrices containing the real eigenvalues of source
and noise respectively. By estimating the number of targets, MUSIC can
achieve an angular resolution that goes beyond the physical resolution of
the antenna array.

3.2. Occupancy - Grids

The two basic types of map representations are feature-based and location-
based maps. As the name implies the elements of feature-based maps
are distinct features (e.g. obstacles) of the environment along with their
Cartesian coordinates. In location-based maps on the other hand each map
element corresponds to a specific location. This kind of map not only
contains information about the location of objects but also about free space.
This property is very important for not only for autonomous driving but
many things e.g. navigation, path planning and obstacle avoidance.

Occupancy grids are a special type of location based maps used for mapping
static environment. They were first introduced by Elfes [1]. In a lot of
frameworks they are also used as a basis to further solve the so called SLAM-
problem (Simultaneous Localization And Mapping). The occupancy grid
framework aims to provide means for generating a map of the environment
from noisy sensor data while simultaneously dealing with unknown or
uncertain position data. The general posterior probability over a map is
denoted with

p(m|z1:t, x1:t). (3.33)

This expression describes the probability for a map m given all so far
conducted measurements z1:t and vehicle positions x1:t. In this case the
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objective would be to find a map which maximizes the posterior. The map
is divided in equally sized grid-cells.

m =
⋃

i

mi (3.34)

Each of those cells is a continuous random variable that carries information
about it’s occupancy status. p(mi = 1) indicates that a cell is certainly occu-
pied and p(mi = 0) certainly free respectively. The first big simplification of
this model is, that the occupancy of each cell is assumed to be independent
from it’s neighboring cells occupancy. The posterior is approximated as the
product of it’s marginals according to [26, p. 225] as

p(m|z1:t, x1:t) = ∏
i

p(mi|z1:t, x1:t) (3.35)

This drastically decreases the necessary computational effort for computing
the posterior. The second big simplification is to apply the Markov Assump-
tion to the occupancy of each cell. This means, that the stat of each cell (e.g.
the occupancy) is sufficient to describe all past states and measurements.
The advantage of this is, that in order to update a cell only the current state
and measurement are relevant. The expression

p(mi|zt, xt) (3.36)

is called inverse sensor model. Inverse describes the property, that the
model concludes from the impact (measurement) to the cause (occupancy
= environment). It formulates how a measurement zt and a position xt
influence the probability of occupancy for a cell. The contrary approach -
creating maps using a forward model - is discussed in [27], but will not be
discussed further in this thesis. To avoid certain numerical difficulties the
probability is usually implemented as log-odds-ratio ([26]).

lt,i = log
(

p(mi|z1:t, x1:t)

1− p(mi|z1:t, x1:t)

)
(3.37)

The probability can be recovered from the log-odds-ratio using

p(mi|z1:t, x1:t) = 1− 1
1 + exp(lt,i)

(3.38)
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The update rule according to the Bayes filter for the log-odds ratio of a cell
mi (i.e. the measurement applies to the cell):

lt,i = lt−1,i + log(p(mi|zt, xt))− l0 (3.39)

l0 denotes the prior of occupancy in it’s log-odds form.

24



4. Processing Pipeline

This chapter shows which data is necessary and how it is processed to
generate occupancy grids from radar data as well as reference occupancy
grids. The data-flow of the processing pipeline is divided into three major
steps as illustrated in Figure 4.1. The first step is the data acquisition. It
organizes how the measurement data is acquired and stored. Second is the
radar signal processing. In this step the previously measured raw radar data
is processed in a way that the interesting features for creating a gridmap
are extracted. In the third step the previously modified data is incorporated
into an occupancy grid.

Figure 4.1.: Processing pipeline overview.
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4.1. Data Acquisition

This block in the pipeline structures how the data captured by the sensors on
the robot platform is acquired and stored. Figure 4.2 gives a more detailed
overview. It shows the two big components for the acquisition process: a
robot platform equipped with various sensors and a data converter. They
will be explained in more detail in the sections to follow. The final result
of this block is a file that contains the necessary data for all further steps.
The file is stored in an universal data-format that can be read platform
independent.

Figure 4.2.: Data acquisition overview.
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4.1.1. Robot - Platform

For the evaluation it is necessary to record data from measurement scenarios
with dynamic positions. Therefore the robot platform needs to be mobile
but not autonomous. Steering will be done by an external operator.

For the creation of the occupancy grids the position for each radar measure-
ment is necessary. Furthermore scans from a lidar and their corresponding
positions are needed for creating the reference gridmaps. Lidar is used
because it is capable of creating high quality grids. Additionally there are
a lot of ROS software packages available that already provide means for
creating occupancy grids from those sensors. Finally a camera is required
that films from the robot’s ego perspective. It documents the path and
provides additional means for a qualitative evaluation.

The sensors are attached to the robot and linked to the operating system. It
is mainly used for collecting and recording measurement data. The creation
of the radar generated occupancy grids will be done offline. In the following
sections the components that need special attention will be described in
more detail.

Radar Sensor Configuration

Section 3.1.4 shows that there are several parameters influencing the per-
formance of the sensor. Some of these parameters can be defined by the
user depending on the use-case. Using the data for creating occupancy
grids special attention will be given to the parameters rMAX and ∆r as they
directly influence the grid quality. For tuning them Equations 3.11 and 3.12

show that the choice of TSW and BSW play an important role. The graphical
interpretation in Figure 3.1 is advised to be revisited at this point. Those
parameters have a special significance since they can be directly influenced
by the sensor configuration.

A big chirp- bandwidth BSW is beneficial for the distance resolution ∆r. The
bigger BSW the lower the range resolution. This parameter is limited by the
sensors capabilities and by the frequency band radar sensors are allowed to
operate in. However the bigger BSW the lower the maximum range rMAX. An
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intuitive explanation for this is that more samples are necessary to capture
the whole frequency range. This can be compensated for by using a higher
sampling frequency fs which is limited by the sensors internal hardware.

Increasing TSW results in a higher maximum resolvable range but also
increases the duration Tp of a single sweep-cycle. The frame rate of the
sensor defines the maximum time a whole measurement is supposed to
take. Therefore the frame rate defines the duration of Ncycles · Tp. An increase
of Tp results in a decrease of Ncycles. Eventually an increased TSW decreases
vMAX (Equation 3.17) and also ∆v (Equation 3.18). Note that this parameters
have to be configured before the measurements

Robot Operating System (ROS)

The robot platform is running ROS. It already comes with a lot of useful
features as well as packages for interpreting sensor and control data. The
operating system is used for three major tasks. The first task is simply
translating the steering of the operator into commands for the motor-drivers
of the platform.

The second task is the creation of the reference occupancy grid. This task
won’t be done manually since there already exist powerful packages to
create grids using laser-scanners. Using a package which comes with a fully
featured SLAM algorithm is also important to provide corrected positional
data as well (e.g. odometry drift).

As the processing in this thesis will be done offline, the third task is the
recording of the necessary sensor data. ROS already provides a proprietary
recording format for that purpose called ROS-bags. For each different
measurement scenario a bag file is created.

4.1.2. Data Converter

Unfortunately ROS-bags can’t easily be read by an operating system that
has no ROS distribution installed. However one sub-goal of the thesis was
to provide a set of measurement-scenarios that can be easily reused for
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different evaluations on different operating systems. To be able to also use
the data on Windows-machines the data has to be converted into a different
format. Therefore the ROS-bags are translated into python-pickles.

ROS simply dumps the message-objects published on the ROS-topics that
are marked for recording into the bag-file. In the first step the converter
creates a configuration file, that shows the data-structure for each topic.
The structure is derived by reading the first message-object of a topic. For
every variable present in this object an entry is created in the configuration
file. Each of those entries has additional parameters that can be used for
influencing the output (e.g. the length of array-like variables, the data-type
etc.). By simply deleting an entry from the configuration the corresponding
variable is also ignored for the later conversion. In the second step the
information from each topic-object is extracted into a two dimensional data
format based on the configuration file.

4.2. Radar Signal Processing

Figure 4.3 shows the steps for the radar signal processing. The input for
this block is the raw radar data from the converted output file. The raw
data is basically the IF-signal (Equation 3.8) recorded after the mixer in
Figure 3.2. This signal is sampled for every antenna and represented as an
one dimensional array at the output. This array will be transformed into
a 3D-matrix such that it has the format shown in Figure 3.3a for further
processing.

4.2.1. Range-Doppler Processing

The next step is the range-doppler processing. As described in Section
3.1.4 a windowed FFT is applied to the range and velocity dimensions.
The windowing function used is a Hanning window. For each antenna the
matrix now looks as depicted in Figure 3.3b. An exemplary measurement
can be seen in Figure 3.5.

29



4. Processing Pipeline

Figure 4.3.: Radar signal processing chain overview.
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Important in this step are the parameters rCMIN, rCMAX, NRANGE and
NVELOCITY. Subsequently they represent also the length of the window-
ing functions. rCMIN and rCMAX crop the measured matrix such that the
bins outside the defined range are removed. Using Equation 3.11 the indices
corresponding to the distances can be calculated according to

iMIN =

⌈
rCMIN

rMAX
NRANGE

⌉
(4.1)

iMAX is achieved following the same equation. NRANGE and NVELOCITY are
the number of samples for the range and velocity FFT’s. Going back to
Equation 3.3 NRANGE and NVELOCITY can be chosen arbitrary high due to
zero-padding as described in Section 3.1.2. In a later processing step, the
Signal to Noise Ratio (SNR) of each range bin will be transformed into
a probability for occupancy. As the range rMAX and the velocity vMAX
are divided into NRANGE or NVELOCITY bins respectively, those parameters
control how many SNR values the range doppler map has. Choosing values
for NRANGE and NVELOCITY that are too high would mean to incorporate a
number of SNR values that is not supported by the physical capabilities of
the sensor. Redundant information would be incorporated into the gridmap.
Therefore the number of bins has to reflect sensor’s capabilities. NRANGE is
chosen according to

NRANGE =
rMAX

∆r
(4.2)

NVELOCITY is calculated the same way with respect to vMAX and ∆v (see
Equations 3.17 and 3.18).

4.2.2. Range Angle Processing

Conventional occupancy grid creation with radar is usually done by detect-
ing targets in the range doppler domain. This detections are points where
the spatial information is later added using three dimensional Gaussian
probability models as shown for example in [16, p. 47]. This approach has
several difficulties:

• Loss of geometric information: In the range doppler domain objects
are reduced to points. On each of this points a probabilistic distribution
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is applied that is supposed to model a radar beam. The real shape
of an object could just be reconstructed by the superposition of the
probability distributions of multiple point-targets belonging to the
same object. This however requires an ideal measurement and ideal
parametrization of the distributions.

• Free space modeling: Free Space is just modeled in front of a detec-
tion. That means space without a detection is considered unknown.
Potentially important information is neglected. An example where
this would prove difficult is a vehicle on an empty street with a radar
sensor aligned in driving direction. Supposing there are no obstacles
on the street, it would always be marked as non-informative.

• Model parametrization: Finding suitable models and parameters for
the point- probability distributions is a very difficult task, especially
the superposition case as described above has to be considered.

An alternative to analyzing the range doppler domain is analyzing the range
angle domain. By conducting a third FFT (which is a Bartlett beamformer
according to Equation 3.1.6) in the angular dimension (on the channels) of
the data matrix (see Figure 3.3) a spatial representation is achieved. Further
it will be referenced as range angle map. Figure 4.4 shows how a map
created with this method can look like. The asymmetry of the angle in this
representation is a result of the even number of samples used for the FFT.
The negative part of the axis has a sample more since the positive part
includes the sample belonging to 0◦. This could be changed by using an odd
number of samples for the Fourier Transform. However then FFT algorithms
could not be used as they require the number of samples to be a power of
two. This would lead to a significantly increased computation time since
other Fourier Transform algorithms needed to be used. Note that for the
final representation the maps of all channels are non-coherently combined
(as for the range doppler map, see Section 3.1.4).

In this representation each bin of the matrix represents the SNR of the
received power for a certain distance and angle. This can already be inter-
preted very intuitively: a high SNR means that there is probably an obstacle,
a low SNR means there is probably just noise present in the corresponding
bin. To incorporate the information into an occupancy grid a more formal
definition is necessary.
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4.2. Radar Signal Processing

Figure 4.4.: Map of the range angle domain. A target can be seen at around 6m in front of
the sensor.

4.2.3. Target Detection

The theoretical background for this block has already been described in
Section 3.1.5. A Cell Averaging CFAR-algorithm is used to distinguish
noise from signal information. As pointed out in Figure 4.3 it is done in
two different ways: based on the range doppler map and the range angle
map. In the first path the CFAR is applied on the range doppler map. The
algorithm follows the classical detection scheme for radar sensors. The range
doppler map is non-coherently combined over all channels, then a CA-CFAR
is applied along the range dimension. The bearing of the extracted target
points is determined by applying a Bartlett beamformer on the channels. As
illustrated in Figure 4.5 this is done for the points on which a target has
been detected. The detections with their corresponding ranges, velocities
and bearings are assembled into an object list.

In the second path the CFAR algorithm is used on the non-coherently (now
over all velocities) combined range angle map. The CFAR window is applied
along the range dimension. This is particularly important since the peak
width in this direction is approximately constant where as in the angle
dimension it is not. A peak in the range angle map represents a reflective
surface. In the angular dimension such a surface can be arbitrary wide.
Figure 4.6 shows an exemplary measurement. For the calculation of the
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Figure 4.5.: CFAR detection on the range doppler map. Crosses indicate detections.

Figure 4.6.: Range angle Representation with applied CFAR - detection (inside margin).

SNR the definition

SNR =
PM

PN
=

PS + PN

PN
(4.3)

is used. PM denotes the measured power and PN the noise power. For PM
the measured power given in the range angle map is used, because the
actual signal power can’t be directly observed. It is the sum of noise- (PN)
and signal power (PS).

There are three important parameter types for this processing step:

1. The threshold value α.
2. The averaging window length NWIN.
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3. The guard window length NGUARD.

Equations 3.22 and 3.23 show the influence and connection between these
parameters. The most straight-forward determinable parameter is NGUARD.
It should be set such that the total number of guard cells is equal to the width
of a detection-peak. Equation 3.19 shows that a higher NWIN diminishes
the false alarm rate since it improves the noise estimate. On the other hand
it can’t be chosen too big since possible detections at the same angle may
corrupt the noise estimate.

The most difficult parameter to set is the threshold. It is set differently for
the range doppler- and the range angle approach; αRD and αRA respectively.
As already described in Section 3.1.5 a signal is classified as target if SNR >
NOISE · α. For radar the reflected energy highly depends on the RCS.
Two of it’s factors are highly scenario-dependent (e.g. material and object
geometry). Two extreme complementary examples would be a car and a
tree. The car on the one hand provides big flat metal surfaces which are
easy to detect. The tree on the other hand does not have large reflective
surfaces and additionally wood is a very poor reflector of the radar waves.
A parking lot for example provides a completely different detection scenario
than park. As a there are no rules or formulas the parameter α will be set
heuristically.

4.3. Occupancy Grid Creation

Figure 4.7 shows the basic steps for the occupancy grid creation. The inputs
for this block are the range angle map created from the radar processing
and the positional data received from the robot platform. First the sensor
coordinates are translated into grid coordinates. After that the range angle
map obtained in the signal processing chain is further processed using a
sensor model. The last step is to incorporate the local gridmap with the
translated positions into the global gridmap.
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Figure 4.7.: Occupancy Grid Creation Overview

4.3.1. Sensor Model

The range angle map already is a geometric representation of the radar sen-
sor’s field of view and therefore also some kind of local map. To incorporate
the information into an occupancy grid, the SNR values of each bin have to
be converted into a probability of occupancy. Also additional knowledge
for free space modeling based on the sensor’s properties can be used. There
exists no mathematically derived sensor model for the intended use case.
During the thesis’s course it turned out that a derivation of such a relation
goes beyond it’s scope. Therefore a heuristic approach will be used. Three
different models will be investigated, where each model will be an extension
of the previous one. The models aim to exploit the data provided by the
radar sensor as good as possible. That also includes properties that are
unique for radar e.g. it’s capability of looking through certain objects. Each
one will have the two tuneable parameters kOCC and kFREE. In general kOCC
is a weighting factor for detections and kFREE weights free space. However
the particular purpose depends on the model and will be described in the
next sections.
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4.3. Occupancy Grid Creation

Model 0: Direct SNR Transformation

The most basic model is to simply convert the SNR value of every bin of
the range angle map into a probability of occupancy and directly integrate
this values into the global gridmap following the assumption that noise is
treated as free space. To convert a SNR value into a probability of occupancy
two basic questions have to be addressed:

• Which bins can be classified as ”free” and which ones as occupied?
• How should the SNR values be converted into probabilities of occu-

pancy?

Looking at Equation 4.3 gives a clearer picture for answering that question:
The SNR consists of two components the noise power PN and signal power
PS. The higher the SNR, the bigger PS and the more probable a cell is
occupied. However no general decision boundaries for the SNR can be
derived at this point since the RCS is an completely unknown parameter
in the mapping context. The second component influencing the SNR is the
actual present noise level. It can have a lot of different sources. Some of
them may be external e.g. scattering objects or environments, and others can
be sensor-internal e.g. thermal- or phase noise. Noise occurs with a certain
power on the whole bandwidth of the received signal. It’s presence might
indicate that a bin indeed doesn’t contain a reflecting object, but the signal
might also have a completely different source. This issue will be given more
attention later. From the literature two relations are good candidates for a
mapping between the SNR and the probability of occupancy:

SNR Only Based (pSNR(bi)): A similar form of this relation is already used
in [3]. Combining Equations 3.37 and 3.38 yields

pSNR(bi) = 1− 1
1 + zi

(4.4)

bi denotes the bin i in the range angle map, and zi the measured SNR value
for bi. The physical and probabilistic justification of this relation can be
derived from the SNR definition in Equation 4.3. SNR values range from 0
to ∞. Equation 4.4 scales them into the interval from 0 to 1. Also, if PS = 0
(which means the measured SNR equals the estimated noise floor) would
mean p(bi) = 0.5. This result makes sense since strictly speaking noise
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is considered non-informative. Note that the used CFAR-threshold is not
considered in the probability calculation. Figure 4.8 shows an example of
the SNR based representation with it’s corresponding range angle map.
Note that in the practical use-case values of pSNR(bi) < 0.5 can occur. This
is because the noise power PN is estimated by the CFAR algorithm. If SNR
values in the range angle map are below this estimated power, pSNR(bi) is
smaller than 0.5. Therefore SNR values below the noise-floor are considered
as free space.

Figure 4.8.: pSNR(bi) based probability representation with the corresponding range angle
map.

Detection Probability (pPD(bi)): The second possible relation is using the
already introduced detection probability. The measured SNR values can be
transformed in a probability of occupancy by means of equation 3.23.

pPD(bi) = pD(zi) (4.5)

Again zi is the measured SNR value. This model already is a mathematical
derivation for the used CFAR detector. It describes how probable a measured
SNR value is a detection, given the threshold α. For a better understanding
figure 4.9 in principal illustrates the purpose of the CFAR framework. Two
hypotheses are shown with their corresponding PDF’s: the noise- and the
detection hypothesis. The threshold is the decision boundary to choose the
most likely hypothesis e.g. if the measurement is classified as detection or
noise. The areas under the PDF’s represent the probabilities for the noise
and detection hypothesis respectively. From the graph four possible cases
can be extracted:
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• Noise classified as detection: The ”false alarm” case, where a detection
is triggered by the mere presence of noise. It is represented by the area
under the noise PDF which is right to the threshold (pFA). The CFAR
framework sets the threshold such that the false alarm rate (Equation
3.19) is constant on average (Equation 3.22).

• Object classified as detection: A SNR value that is is bigger than the
threshold triggers the detection. The probability pD, reflected by the
area under the detection PDF right to the threshold.

• Noise classified as noise: Noise is correctly classified. This happens
with the probability 1− pFA as it is represented by the area under the
noise PDF which is left of the threshold.

• Object classified as noise: An object reflects not strong enough such that
the SNR value is below the threshold. The corresponding probability
is 1− pD, represented by the area under the detection PDF which is
left of the threshold.

Figure 4.9.: Graphical illustration of the detection probability

An advantage of this method is, that the CFAR relevant parameters (N and
α) are already included in the derivation. On the other hand the probability
is always with respect to the used threshold. This requires it to be perfectly
set - a condition which can never be guaranteed for different scenarios as
has already been discussed in Section 4.2.3.

An important property of pD is that it reflects the probability that the
measured SNR is a detection. pD = 0 would mean that the measured
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SNR definitely will be classified as noise while pD = 1 means that it
definitely will be classified as detection. In the occupancy grid framework
a detection probability of 0 would mean that the corresponding cell is
certainly free. The presence of noise however doesn’t necessarily indicate
free space. That means a bin classified as noise is treated as certainly
free space by the function pPD(bi). To handle this discrepancy, additional
shaping is necessary. This will be done in the next step. Figure 4.10 shows
an example of the unshaped, detection probability based representation
with it’s corresponding range angle map.

Figure 4.10.: pPD(bi) based probability representation with the corresponding range angle
map.

Figure 4.11 shows a comparison of the two above described approaches.
Both of them just give a rough transformation from a SNR value to a
probability. Further shaping of this probabilities to incorporate knowledge
how probable high- and low SNR values should be integrated into the final
grid is necessary. In other words the credibility of a single measurement
should be tune-able. When using pPD(bi) this is necessary anyway. It is
done with the relation

p(mi) = pX(bi) · (kOCC − kFREE) + kFREE (4.6)

As there a two different proposals for transforming the SNR into a prob-
ability both will be evaluated in all models. That means that for pX(bi),
pSNR(bi) (the SNR only based approach, Equation 4.4) as well as pPD(bi)
(the detection probability based approach, Equation 4.5) might be used.
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(a) pPD(bi) (b) pSNR(bi)

Figure 4.11.: Comparison of pPD(bi) and pSNR(bi).

To adhere the laws of probability the parameters will be chosen from the
interval

0.5 ≤ kOCC ≤ 1 (4.7)

0 ≤ kFREE ≤ 0.5 (4.8)

The parameter kFREE tunes the weight for free space and kOCC for occupied
space respectively. This model has no explicit modeling for free space.
The choice of kFREE decides on how sure a SNR value in the vicinity of
the noise floor should be considered as free. Choosing kFREE = 0 would
mean to interpret the absence of a detection as free space and kOCC = 1 to
consider a detection as certainly occupied. Figure 4.12 shows the shaped
probability representations. By tuning the corresponding parameters noise
is less weighted as free and detections are less weighted as occupied. In the
last chapter the overall performance of both approaches will be evaluated.
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Figure 4.12.: Shaped probability representations. Left: pPD(bi), kOCC = 1, kFREE = 0.3.
Right: pSNR(bi), kOCC = 0.8, kFREE = 0.2. The shaping transforms the values
of pX(bi) into probabilities of occupancy that are more compliant to the
occupancy grid framework.

Model 1: Detection Only

For model 0 all bins of the range angle map containing noise are considered
as free space. To achieve higher quality gridmaps a more detailed analysis of
the interpretation of noise is necessary. A problematic scenario can be seen
in Figure 4.13. The left figure shows an image of the scene. The sensor is
directed straight on a parked car. The right plot is the corresponding range
angle map. The park car is well detected at a distance of approximately 2.5
meters. All around the reflecting surface of the car is noise. When generally
treating noise as free, even the area behind the reflecting surface - which
is inside the car - is considered free. However the waves sent by the sensor
cannot penetrate this surface and therefore the area behind it should be
considered non-informative. The reason why there is a signal at this bins is
noise. Every bin in the range angle map carries at least noise no matter if
the sent electro-magnetic waves can’t even reach this certain point in space.
The resulting probability representations can be seen in figure 4.14. Both
representations show free space inside the parked car. For pSNR(bi) it seems
not as severe as for pPD(bi) in this illustration though.

To overcome this problem noise in front of a detection is considered as
free space, noise after the last detection is considered non-informative. The
weight of the free space is tuned by kFREE. Detections are considered as
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Figure 4.13.: Problematic scenario for model 0. Right: Image of the scene. Left: Correspond-
ing range angle map

Figure 4.14.: Probability representations for the problematic scenario in Figure 4.13.

occupied space with the parameter kOCC. This is very similar to the model
used in [3]. However there are some major differences in the original use-
case of the model:

• Originally the radar sensor is mechanically scanned with a preferably
narrow main lobe, whereas the actual use case is a sensor with an
antenna array.

• The radar sensor has been on a static position whereas the later
conducted measurements will be with changing positions.

• The original model distinguishes between wide and narrow pulses
when updating grid cells classified as free.
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• Originally the model is used directly in a log-odds form, with a
single parameter. Here it will be used in it’s likelihood form with two
parameters.

• The update function for occupied space in the original use-case is
always just pSNR(bi). In this thesis the two cases pSNR(bi) and pPD(bi)
will be evaluated.

The adapted model can be written as:

p(mi) =


pX(bi) · kOCC if detection
kFREE if in front of detection
0.5 otherwise

(4.9)

In case a bin bi is classified as detection by the CFAR algorithm, the prob-
ability representation is scaled by kOCC. All bins in front of a detection
with the same angle are updated with a probability represented by kFREE.
Everything else is considered non-informative therefore 0.5. Figure 4.15

illustrates the detection based approach. Again for pX(bi), pSNR(bi) as well
as pPD(bi) might be used. The difference to model 0 is however, that the
transformation from a SNR into a probability is just used for detections.

Figure 4.15.: Illustration of model 1. Left: pPD(bi), kOCC = 1, kFREE = 0.3. Right: pSNR(bi),
kOCC = 1, kFREE = 0.2
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Model 2: Incorporated Beam Pattern

Model 1 introduces a very big shortcoming. Without a detection nothing
is considered as free space. Figure 4.16 illustrates a case where this is
problematic. No detecions are in front of the sensor but most of the space
could be considered free. This is a very important scenario as it represents
one of the most likely use-cases in an automotive application; i.e. driving
on a road. The probability representation for model 1 can be seen in Figure

Figure 4.16.: Problematic scenario for model 1.

4.17. In the shown scenario a car is detected to the sides of the path, and
consequently the area in front of the car is considered free. The part that
would be important for further path-planning - the empty space in front
the sensor - is considered non-informative. To overcome this problem the
connection between noise and free space has to be modeled in more details.
The sensor’s antenna array has it’s highest sensitivity at an angle of 0◦ and it
decreases further outward towards ±90◦. The higher the sensor’s sensitivity
the more reliable noise can be considered as free space. The correlation of
the sensor’s sensitivity with the angle is given by the beam pattern. It is an
antenna- (and therefore sensor-) specific characteristic and can be seen at
the left side of Figure 4.18. The right side shows the transformed function
fFREE(φ, kFREE) that is used for updating free-space depending on the angle
φ. The following manipulation steps are necessary for the transformation:

1. Transform the logarithmic scale beam pattern into a linear scale.
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Figure 4.17.: Model 1 without obstacle in front of the sensor.

2. Invert the function. This is necessary as a high SNR in the beam pattern
reflects a high certainty for the detection of objects. The more certain
objects are detected, the more the absence of a detection indicate free
space.

3. Scale and shift the function such that 90◦=̂0.5 (non-informative) and
0◦=̂kFREE (maximal certainty that no object is missed). Again the
parameter kFREE can be used to tune the factor for weighting free
space.

Figure 4.18.: Beam pattern (left) and derived free space update function with kFREE = 0.1
(right).

Figure 4.19 shows the in Figure 4.16 depicted scenario with the beam pattern
enhanced model. Now the space directly in front of the sensor, that has
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previously been marked as non-informative is now considered free. The
influence of the update function on the mapping of free space is especially
visible for higher angles.

Figure 4.19.: Illustration of the beam pattern based sensor model.

The final model utilizing the beam pattern can be written as:

p(mi) =


pX(bi) · kOCC if detection
fFREE(φ, kFREE) if in front of- or no detection
0.5 otherwise

(4.10)

As for the two models before for pX(bi), pSNR(bi) as well as pPD(bi) might
be used. Like for model 1 it will only transform the SNR of detections.

4.3.2. Position Translation

Each bin of the probability representation is referenced with polar, local
sensor coordinates. They have to be translated into Cartesian global grid
coordinates. Figure 4.20 shows exemplary how the sensor’s FOV might be
placed into the global occupancy grid. It is described by the range r and
the angle φ. The global position of the sensor is given by the coordinates xS
and yS. It’s orientation by the bearing angle Θ. Those values are provided
by the mapping-package used within ROS.
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Figure 4.20.: Position translation overview.

The global position of a single bin in the range angle map is calculated
according to

xi = r · sin(φ + Θ) + xS (4.11)

yi = r · cos(φ + Θ) + yS (4.12)

4.3.3. Integration

To integrate the local probability representation into the global grid map
first the translated bin positions have to be mapped to grid-cells. The
correspondence can simply be calculated using the formulas

mX =

⌊
xi

R
+ xSTART

⌋
(4.13)
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mY =

⌊
yi

R
+ ySTART

⌋
(4.14)

R is the resolution of the occupancy grid. It will be set to a reasonable value
in terms of necessary map resolution, sensor capabilities and empirical
values from related publications. xSTART and ySTART can be used to set the
initial robot position with respect to the scenario. The number of grid cells
can be set using xSIZE and ySIZE for the corresponding dimension.

The local representation will be transformed into it’s log-odds form using
Equation 3.37. As final step the global map is updated by integrating all
bins of the local occupancy representation that fall into their corresponding
global grid-cells. The update of the global map can be done as described in
Equation 3.39.
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In this chapter the performance of the developed sensor models should be
evaluated. In order to do this, occupancy grids are created from measure-
ments using the developed models. The performance evaluation is based on
the quality of the resulting gridmaps.

At first the used robot platform with it’s mounted sensors is shown and the
used components especially the radar sensor are specified. Next the choice
of the measurement scenarios is discussed. The scenarios have been chosen
in a way that certain properties of the radar sensor could be examined, and
the influence on the resulting gridmap derived. After that the choice of the
parameters used for the processing pipeline is explained.

As a basis for assessing the quality of the final maps reference occupancy
grids generated with a laser scanner are used. To further formalize the
quality of the results, criteria are introduced that generally describe the map
quality. More specifically they categorize features that caused a reduced
quality. This criteria are applied on the occupancy grids created from the
measurements. It is investigated what effects of the sensor caused certain
criteria to occur. Finally there will be a discussion of the results.

5.1. Robot Platform

To perform measurements that are close to a real use-case they needed
to be dynamic. The robot platform has been steered through the different
scenarios on certain paths. Therefore it needed to be mobile and as well
carry and connect all the sensors necessary for the measurements. Important
at this point are the localization task it needed to perform as well as the
reference occupancy grid creation using a laser-scanner. For a more detailed
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explanation Section 4.1 can be revisited. Figure 5.1 shows the setup, pointing
out the important components for the measurement as described in section
4.1. The used components of the setup were:

Figure 5.1.: Robot platform with the components used for the measurements.

Robot Platform: Clearpath Husky UGV1 with custom top-plate.

ROS: Version Kinetic2

Mapping Package: Hector Mapping3, Resolution: 0.1cm, Update Factor
Free: 0.4, Update Factor Occupied: 0.7. A cell-size of 10cm has been used.
This package was used over Gmapping because it was already fully func-
tional on the used platform.

Laser Scanner: SICK MRS1000
4

Steering: USB Game pad, EasySMX ESM 9013 Wireless 2.4G Game Con-
troller5.

1clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
2wiki.ros.org/kinetic
3wiki.ros.org/hector slam
4sick.com/ag/en
5easysmx.com/products/easysmx-esm-9013-wireless-gaming-controller
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5.1.1. Radar Sensor

The radar sensor will be given special attention at this point, as it is the most
important part of the setup. The sensor RadarLog6 of the company Inras
has been used. It is special since it can provide raw data measurements. The
antenna-fronted has two transmit and 16 receive antennas and operates at
77 GHz. The full sensor configuration can be seen at Table 5.1.

Parameter Value Parameter Value
N 256 NCYCLES 64

fSTART 76GHz fSTOP 78GHz
TP 200µs TINT 200ms

TSW 128µs TRD 32µs
NCHANNELS 16 NTXSEQ 1

fs 2MHz

Table 5.1.: Radar sensor configuration.

The choice of fSTART and fSTOP results in a sweep-bandwidth of BSW =
2 GHz. TRD is the ramp-down time after the up-chirp. It’s value has been
empirically derived. NTXSEQ is the number of sequences that has been
transmitted during a chirp. TINT is the overall update frequency of the
sensor. It is set such that a overall frame rate of 5 Hz is achieved. This may
seem rather low compared to commercial sensors that work with rates
of up to 25 Hz, but these sensors don’t transmit raw data. Frame rates
that high proved impossible with the used sensor, because they resulted
in corrupted data. The most probable reason for this is that the sensor’s
internal components are not able to handle the data traffic. Apart from
that, the resulting data-files quickly get a size where further processing gets
difficult (especially the conversion into the final python pickle format) even
with the low frame rate. As the maximum speed of the Husky platform is
approximately 1m/s, 5 Hz is easily sufficient for providing measurements
for a decent occupancy mapping.

6inras.at/produkte/radarlog.html
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5.2. Measurement Scenarios

The measurement scenarios are a key component for an analysis of the
developed framework. They provide real data to test the derived models on.
By choosing different setups for every scenario a more detailed influence of
environment and sensor properties on the resulting gridmaps can be done.
Therefore two different types of measurements have been conducted. The
first type were regulated scenarios. They aimed to provide measurements
in as much as possible controlled environments. This scenarios have been
chosen such that certain properties of the sensor can be examined. The
second type were real-world scenarios. For them a set of relevant real-world
environments have been chosen. They should give a more detailed insight
in the overall performance for later applications.

5.2.1. Regulated Scenarios

For this environments simple scenarios were created with a previously
defined number and placement of objects. To be able to perform the mea-
surements without interference of the environment with respect to noise and
reflections a free area had been chosen. Due to availability of the location
as well as the robot platform two different areas have been used for this
purpose as shown in Figure 5.2. Two major factors will be investigated: the
influence of the RCS and the ability of the sensor to detect objects behind ob-
jects. A total number of six objects have been chosen for the measurements.
To cover the necessary aspects three different materials (plastic, wood, metal)
and 2 different sizes (small, big) have been used. Figure 5.3 shows pictures
and Table 5.2 a more detailed description of the used objects.

For investigating the influence of the RCS occupancy grids of single objects
have been created. As described in Section 3.1.1 two parameters of the RCS
depend on the object itself: size and material. To cover this two aspects for
all six objects an occupancy grid has been created by approaching it straight.
The third RCS-influencing parameter, the directivity, depends on the relative
position between object and sensor. To cover this aspect, for all six objects
an occupancy grid was created by approaching it straight, but shifted by a
certain distance. Figure 5.4a illustrates this measurements.
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Figure 5.2.: Measurement areas for the regulated scenarios. Left: Area 1. Right: Area 2.

Description Size [cm] Figure
Metal pole 6x4x100 5.3a
Plastic pole �7.5x106 5.3b
Wood pole 4.5x4.5x82 5.3c
Metal box 76x37x38 5.3d
Plastic box 60x40x22 5.3e
Wood box 132x80x5 5.3f

Table 5.2.: Measurement objects Description.

For investing the sensor’s capability to detect something behind an object
two objects are necessary. Therefore occupancy grids were created by placing
two of the three big objects behind each other with two different distances
in all possible combinations by approaching the first object straight. The
principle can be seen in Figure 5.4b.

Tables 5.3 and 5.4 summarize the conducted regulated experiments.

5.2.2. Real-World Scenarios

Figure 5.5 shows the environments for the real-world scenarios. Four dif-
ferent environments have been chosen, three of them automotive related
scenarios and one more general scenario. Figure 5.5a shows a scene where
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Nr. Object Offset Area Localization
1 Metal pole 0m 1 SLAM
2 Metal pole 2m 1 SLAM
3 Metal pole 4m 1 SLAM
4 Plastic pole 0m 1 SLAM
5 Plastic pole 2m 1 SLAM
6 Plastic pole 4m 1 SLAM
7 Wood pole 0m 1 SLAM
8 Wood pole 2m 1 Odometry
9 Wood pole 4m 1 Odometry

10 Metal box 0m 2 Odometry
11 Metal box 2m 2 Odometry
12 Metal box 4m 2 Odometry
13 Plastic box 0m 2 Odometry
14 Plastic box 2m 2 Odometry
15 Plastic box 4m 2 Odometry
16 Wood box 0m 2 Odometry
17 Wood box 2m 2 Odometry
18 Wood box 4m 2 Odometry

Table 5.3.: Single object measurements scenarios. The measurement setup can be seen in
Figure 5.4a. The robot platform approaches the object shifted by the given offset.

56



5.2. Measurement Scenarios

(a) (b) (c) (d) (e) (f)

Figure 5.3.: Objects used for the measurements described in Table 5.2. (a) Metal pole; (b)
Plastic pole; (c) Wood pole; (d) Metal box; (e) Plastic box; (f) Wood box.

cars are parked along a road. It is a classic ”driving along a road scenario”.
The second environment is shown in Figure 5.5b. It poses a classic parking
lot scene. In the third automotive scenario a single car is examined. It can
be seen in Figure 5.5c. The last scenario is a scene taken at the campus,
shown at Figure 5.5d. It contains mainly trees and concrete with little metal
surfaces.
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Nr. Object 1 Object 2 Offset Area Localization
1 Metal box Plastic box 2m 1 SLAM
2 Metal box Plastic box 4m 1 SLAM
3 Metal box Wood box 2m 1 SLAM
4 Metal box Wood box 4m 1 SLAM
5 Plastic box Metal box 2m 1 SLAM
6 Plastic box Metal box 4m 1 SLAM
7 Plastic box Wood box 2m 1 SLAM
8 Plastic box Wood box 4m 1 SLAM
9 Wood box Metal box 2m 1 SLAM

10 Wood box Metal box 4m 1 SLAM
11 Wood box Plastic box 2m 1 SLAM
12 Wood box Plastic box 4m 1 SLAM

Table 5.4.: Two object measurements scenarios. The measurement setup can be seen in
Figure 5.4b. The offset describes the distance between the two objects.

(a) Single object scenarios. (b) Two object scenarios.

Figure 5.4.: Illustration of the regulated scenarios.
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(a) Street scenario (b) Parking lot scenario

(c) Single car scenario (d) Campus scenario

Figure 5.5.: Real-world scenario environments.
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5.3. Processing Parameters

The following section will briefly describe the used parameters for the pro-
cessing. The theoretical background has already been discussed in Chapter
4.

5.3.1. Radar Signal Processing

rCMIN, rCMAX: Using Equation 3.11 and the sensor configuration given
in Table 5.1 the maximum achievable range is approximately rMAX ≈
10m. Naturally the minimum range is rMIN = 0m. Figure 5.6 shows a full
representation of the range doppler and range angle map without cropped
range dimension. Very high SNR components in the vicinity of r = 0 are
visible. They are a result from DC-noise in the receiver chain which is
characteristic for radar sensors. To avoid this high noise components a
feasible value for cropping the minimum range is rCMIN = 0.5m. As there
are no high noise components at high ranges the upper end of the range
dimension won’t be cropped.

Figure 5.6.: Range doppler and range angle map without cropped range dimension.

NWIN, NGUARD: The range angle map of Figure 5.6 shows a peak at a dis-
tance of about 6m. It has a width (in the range-dimension) of approximately
0.5m. To obey the assumption of the CFAR-algorithm that the neighboring
cells for estimating σ2

w only contain noise (see Section 3.1.5) a minimum total
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number of guard cells of 0.5m/∆r ≈ 7 is necessary. Considering leading and
lagging part of the window NGUARD = 4 is chosen. Assuming detections
will be spaced with at least one meter and still providing a feasibly low
false-alarm rate as well as a feasible accurate noise estimate NWIN = 10 is
chosen.

NRANGE: As already suggested calculating rMAX/∆r gives the most feasible
value. By using the values of Table 5.1 as well as Equations 3.11 and 3.12 it
is set to NRANGE = 256 which perfectly reflects the configured number of
samples N for a single sweep.

NANGLE: Physically the resolution is set by the number of used antennas,
therefore the lowest choice would be NANGLE = 16. However the experi-
ments showed that it makes sense to set it higher. A value of NANGLE = 64
turned out to be a feasible choice since peaks are more distinct but the
angular dimension is not overly dense described.

αRA: A set of values has been empirically derived. For that purpose the
parking lot and the campus scenario (Figures 5.5b and 5.5d) were chosen
as reference as they provide two key and yet contrary applications. Table
5.5 shows the values for αRA that have proven to be feasible choices. This
parameters are tested for the parking lot and the campus scenario for
every model together with the parameter sets for kFREE and kOCC in the
next section. The value for αRA with the best results has then been further
applied for the remaining scenarios for the corresponding model.

αRA 15 25 50

Table 5.5.: Parameter candidates for αRA.

Note: As the parameters αRD and NVELOCITY do not influence the range
angle map, but only the object list which is just used for illustration purposes
in this thesis, they weren’t mentioned at this point.

5.3.2. Occupancy Grid Creation

R: According to Equation 3.12 the range resolution with the used radar
sensor configuration is ∆r ≈ 8cm. This as well as approaches in the literature
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suggest that a cell size of R = 10cm is a feasible choice.

xSTART, ySTART, xSIZE, ySIZE: As those parameters simply influence the
visualization of the occupancy grid, their choice is of minor importance
for the processing. The starting position is usually in the middle of the
grid xSTART = ySTART = 0.5. A general grid size of xSIZE = ySIZE = 1500
(which results in a grid of 150mx150m for the chosen cell size) is used. For
each scenario the plotted occupancy grid is cropped to the area containing
measurement data. The big size of the gridmap has been chosen because a
uniform value eased the configuration of the processing framework.

kFREE, kOCC: The quality of the final gridmap will strongly depend on the
choice of those parameters. As the parameters αRA, kFREE and kOCC are
tightly connected, the final values are derived by using the values for αRA in
Table 5.5 together with parametric sweeps for kFREE and kOCC. The intervals
used can be seen in Table 5.6. The sweeps were conducted for pSNR(bi) as
well as pPD(bi) with all different modeling approaches described in Section
4.3.1 and have been applied to the parking lot and the campus scenario. The
parameters with the best map quality have been chosen and can be seen
at Table 5.7. The quality assessment of the maps was based on the criteria
introduced in section 5.5. The interval for pPD(bi) is smaller and more
densely sweeped than the interval for pSNR(bi). This is because pSNR(bi)
has several points which are similar in quality over the whole range of kFREE
and kOCC (Equations 4.7 and 4.8) whereas pPD(bi) yields meaningful results
only in the given, restricted interval.

p(bi) Start Stop Step

kOCC
pPD(bi) 0.4 0.5 0.01

pSNR(bi) 0 0.5 0.1

kFREE
pPD(bi) 0.9 1 0.01

pSNR(bi) 0.5 1 0.1

Table 5.6.: Parameter sweeps for kFREE, kOCC and the two possibilities of p(bi).
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PR Model αRA kFREE kOCC

pPD(bi)
0 25 0.49 1

1 15 0.45 1

2 15 0.49 1

pSNR(bi)
0 15 0.3 0.65

1 25 0.25 0.8
2 15 0.45 1

Table 5.7.: Parameter choices for the possibilities of p(bi) and models.

5.4. Reference Occupancy Grids

The robot platform has been equipped with a laser-scanner which has
been used to create occupancy grids for reference purposes. The following
sections will briefly show and describe this reference gridmaps.

Note: In the reference gridmaps as well as in the radar generated occupancy
grids the red line marks the path of the robot by means of the position data
used for the grid creation. The red cross indicates the starting point.

5.4.1. Regulated Scenarios

Unfortunately the reference grids for the regulated scenarios are of quite
poor quality and therefore couldn’t really be used. However as the desired
result is anyway known from the object sizes in Table 5.2 and the setup
itself (Figure 5.4) this is of minor importance. One main reason for the
poor quality is, that the measurements have been conducted consecutively
without restarting the platform. This was necessary because otherwise the
battery of the platform as well as the radar-sensor would have been depleted
too fast. As a result, the reference grid often has fragments of previously
measured objects as can be seen in Figure 5.7.

The second main reason why the reference grids for the regulated scenarios
are often not usable is, that the positions that have been derived by the
SLAM algorithm of the hector map very often diverge severely. The left
part of Figure 5.8 shows the SLAM generated positions for such a case. It is
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Figure 5.7.: Metal box/Plastic box 2m reference gridmap (Nr. 1 in Table 5.4).

clearly visible that the positions are completely wrong. This malfunction
has quite certainly to do with the second measurement area used for the
regulated scenarios. Apparently some features of the space in combination
with the continuous driving back- and forth between the starting point and
the object caused the position correction to fail. To minimize the influence of
those errors, the positional data generated by the platforms odometry has
been used instead. Unfortunately the quality of this data is not as accurate
as a good SLAM-estimate as can be seen in the right side of Figure 5.8. This
also reduces the quality of the radar-generated occupancy grid. However as
the paths and setups for this scenarios are really simple and most objects
are detected when the robot is rather close to the object, the measurements
still bear useful information. Table 5.3 and 5.4 show on which measurement
area a certain scenario has been conducted and if the SLAM- or odometry
generated data has been used.

5.4.2. Real-World Scenarios

The generation of the reference grids for the real-world scenarios worked
generally pretty well. They are shown in the Figures 5.9 to 5.12. The left
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Figure 5.8.: Metal box 0m reference gridmap (Nr. 10 in Table 5.3. Ground truth: Figure 5.4a).
Left: SLAM positions. Right: Odometry positions.

part of the figure always shows the approximate path, which was inserted
by hand. The right part shows the actual positional data of the scenario.

The single car scenario (Figure 5.5c) and the street scenario (Figure 5.5a)
show the expected map. In both cases the parking cars are the main features.
They are clearly mapped, together with some features of the environment
like trees and small buildings. The estimated paths match the recorded
paths really well.

The campus scenario (Figure 5.5d) also worked really well. The trees,
benches and surrounding walls are correctly mapped. The only discrepancy
is a small hitch in the path shortly after the starting point (x ≈ 40m and
y ≈ 10m). It is probably also the reason for the fragments of the curved wall
on the right end of the map.

Most problematic is the parking lot scenario (Figure 5.5b). The positional
data provided by the SLAM algorithm (right side of Figure 5.12) completely
deviates from the actual path which results in a completely corrupted map
at some point. The car right to the starting point is correctly mapped. As
the path after the starting point is slightly downwards, just the tires of the
cars opposite to the starting point are visible. However their locations are
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Figure 5.9.: Single car scenario reference grid. Left: Illustrated path. Right: SLAM positions.

correctly mapped. The cars further to the right of the starting point are not
really mapped at all. To compensate for the wrong path again the positional
data provided by the odometry has been used. It can be seen at figure 5.13.
The estimated path clearly deviates from the expectation. Considering the
nature of this scenario (big metallic reflective surfaces) the choice as one
of the two scenarios for which the parameters are optimized is still valid.
Because of the sensors properties, the resulting radar-generated grid will
just be skewed around the corrupted path.
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Figure 5.10.: Street scenario reference grid. Left: Illustrated path. Right: SLAM positions.

Figure 5.11.: Campus scenario reference grid. Left: Illustrated path. Right: SLAM positions.
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(a) (b)

Figure 5.12.: Parking lot scenario reference grid. (a) Illustrated path. Because the mapping
algorithm failed at some point, the positions of the parked cars are also
illustrated in order to have a ground truth reference for this scenario. (b)
SLAM positions.

Figure 5.13.: Parking lot scenario reference grid. The map is created by the hector-map
package, but the positions provided by the robot’s odometry are depicted.
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5.5. Metric

The radar-generated maps have been assessed according to criteria which
aim to describe the quality of the gridmap as well as the type of deviation
from the desired output. The assessments have been done subjectively by the
author and therefore leave room for interpretation and further discussion.
However this process gives a good overview of the evaluated data and the
overall performance of the used methods.

For the final evaluation a total of approximately 2200 gridmaps have been
created for the parametric sweeps (6 modeling approaches x 121 combina-
tions of kFREE and kOCC x 3 values for αRA) and further approximately 200
gridmaps (34 scenarios x 6 sets of final parameters) have been created by
applying the optimized parameters to all scenarios. Because of this huge
number of plots just a few examples will be added to the thesis for illus-
tration and explanation purposes. The whole set of plots can be requested
from Paul Meissner. As reference for the assessments the laser-generated
grids (especially for the real-world scenarios), knowledge about the setup
(especially for the regulated scenarios) and general knowledge of the scene
from the given photos and the camera-stream will be used.

One big part of the map’s quality will be determined according to the
presence of the desired features. For the regulated scenarios this are the
placed objects. For the street, single car and parking lot scenario this features
are the cars. For the campus scenario this are the benches, trees and the
surrounding walls. The second big part of the map’s quality is the mapping
of free space. In total there are five criteria for the final plots:

• Over-Estimated Occupancy/Objects (OO): Features are mapped too
excessively. Objects are represented too big in terms of occupied cells.
Also cells in the vicinity of an object can be occupied as a result of
fragments (due to processing, sensor characteristics etc.).

• Under-Estimated Occupancy/Objects (UO): Features are mapped in-
sufficiently. Known objects are represented too small or not mapped
at all. The corresponding grid-cells are marked as free space.

• Over-Estimated Free Space (OF): Cells that are mapped as free space
should be marked as unknown. The corresponding cells are highly
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unlikely reached by the electromagnetic waves of the sensor (e.g. inside
cars).

• Under-Estimated Free Space (UF): Cells that should be mapped as
free space are mapped as unknown. This criteria is particularly evalu-
ated in the vicinity of the driven path as it has not been occupied for
sure.

• Noise (N): The map has random cells which are classified as occupied.

If a criteria is present in a certain scenario it has been rated according to the
occurrence’s severeness. The final categorized scenarios for all combinations
can be found in Appendix A.

5.6. Results

5.6.1. Influence of αRA, kFREE and kOCC

To get a better understanding how the used parameters in Table 5.7 shape
the resulting gridmap their influence will be discussed in this Section. The
necessary parameter choice reflects back on the properties of pX(bi) as well
as the properties of the model. For illustration purposes in Figure 5.14 and
5.15 only grid-maps of model 0 using pPD(bi) will be used. This is because
pPD(bi) provided slightly better results than pSNR(bi) and maps created
using model 0 contain the most information. However the principles apply
to all other cases as well. Effects that occur on the shown maps will be
discussed later.

Figure 5.14 first compares the influence of kFREE and kOCC for the same
αRA. Figure 5.14c shows the map for the optimized parameter set. As kFREE
tunes the weight for free space, it also tunes the compensation of noise
and previously made detections. Consequently a higher value for kFREE
causes objects to be smaller or even to completely vanish. The resulting
gridmap is sensitive to the choice of this parameter. A change of 0.02 already
yields completely different results. This is illustrated in Figure 5.14a. On
the contrary Figure 5.14d shows a map using kFREE = 0.5. This means that
noise is generally treated as non-informative. Naturally this map has no
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free space. All SNR values are put into the map and never eradicated since
pX(bi) never goes below 0.5. Noise or object fragments are not removed as
well. The choice of kOCC is less important. In Figure 5.14b the value deviates
by 0.1 to the optimized case and almost no difference is visible. Occupancy
is emphasized a little more. However increasing kOCC has a similar effect
than increasing kFREE.

Reducing αRA from the optimized case as shown in Figure 5.15b, shows a
similar effect like increasing kFREE. The threshold for considering a SNR
value as detection gets lower and therefore more values are considered a
detection. Consequently a lower kFREE with a simultaneously lower αRA
yields a similar result as the optimized case (Figure 5.15a). The difference
between those two cases can be seen at the borders, where for the reduced
kFREE the space is weighted more as free space. Increasing αRA has the
opposite effect. Objects are smaller or even vanish (Figure 5.15c). Figure
5.15d shows that even for higher values of αRA objects are detected but
over-compensated by the free space estimation.

The change of the parameters has the same effects for pPD(bi) and pSNR(bi).
However Figure 5.16 shows that the parameter choice for pSNR(bi) is much
more delicate, especially for kOCC. Figure 5.16b shows the optimized case.
Just slightly increasing kOCC by 0.05 causes the map to show way too
much occupied areas and noise (Figure 5.16c). Slightly decreasing it by 0.05

shows a map that has too much free space (Figure 5.16a). Another important
difference between pPD(bi) and pSNR(bi) is, that pSNR(bi) has several points
with similar results over the whole parameter range (Equations 4.8 and 4.7).
A comparison of the Figures 5.16a and 5.16d shows an example for this.
Here kFREE is increased with the same value kOCC is decreased. For pPD(bi)
no such behavior can be observed. Values of kFREE < 0.4 cause the map to
show almost no objects like shown in Figure 5.17.
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(a) M0, pPD(bi), αRA = 25, kFREE = 0.47, kOCC = 1.0 (b) M0, pPD(bi), αRA = 25, kFREE = 0.49, kOCC = 0.9

(c) M0, pPD(bi), αRA = 25, kFREE = 0.49, kOCC = 1.0 (d) M0, pPD(bi), αRA = 25, kFREE = 0.5, kOCC = 1.0

Figure 5.14.: Parking lot scenario (Ground truth: Figure 5.12a). Parameter influence for
pPD(bi) and model 0 for a single αRA = 25. Decreasing kFREE causes objects
to be too small, increasing it yields a higher amount of unwanted fragments.
Tuning kOCC has the opposite effects of tuning kFREE.
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(a) M0, pPD(bi), αRA = 15, kFREE = 0.48, kOCC = 1.0 (b) M0, pPD(bi), αRA = 15, kFREE = 0.49, kOCC = 1.0

(c) M0, pPD(bi), αRA = 50, kFREE = 0.49, kOCC = 1.0 (d) M0, pPD(bi), αRA = 50, kFREE = 0.5, kOCC = 1.0

Figure 5.15.: Parking lot scenario (Ground truth: Figure 5.12a. Parameter influence for
pPD(bi) and model 0 for different αRA. Decreasing αRA has the same effect as
decreasing kFREE and vice versa.
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(a) M0, pSNR(bi), αRA = 15, kFREE = 0.3, kOCC = 0.6 (b) M0, pSNR(bi), αRA = 15, kFREE = 0.3, kOCC = 0.65

(c) M0, pSNR(bi), αRA = 15, kFREE = 0.3, kOCC = 0.7 (d) M0, pSNR(bi), αRA = 15, kFREE = 0.25, kOCC = 0.65

Figure 5.16.: Parking lot scenario (Ground truth: Figure 5.12a). Parameter influence for
pSNR(bi) and model 0. Parameter changes cause the same effects as for
pPD(bi), with the difference that pSNR(bi) is more sensitive to the param-
eters.
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Figure 5.17.: Campus scenario (Ground truth: Figure 5.11). M0, pPD(bi), αRA = 25, kFREE =
0.4, kOCC = 1.0. For pPD(bi) values for kFREE < 0.45 yield maps with too much
free space.
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5.6.2. Detailed Assessment

This section will present a detailed assessment of the proposed sensor mod-
els using criteria given in Section 5.5. Detailed results from all conducted
experiments can be found in the Appendix A.

Over-Estimated Occupancy/Objects

The effect that corrupts the radar-generated occupancy grids most severe is
that some objects are estimated way too big. It the effect that is most difficult
to handle. This effect occurs for objects that are highly reflective and large
like the used metal box. Figures 5.21 to 5.23 show that this effect is very
strong for all models no matter what choices of p(bi) are made. Objects with
smaller RCS don’t have this kind of problem as shown in Figure 5.19.

Over-estimation has multiple causes. The first major cause is the choice of
αRA. As already discussed it is impossible to use a value that fits for all
kinds of materials and object sizes equally well. The chosen thresholds are
set such that the average detection performance is maximized. This however
means that for objects with a high RCS αRA is set too low. The corresponding
projection in the range angle map appears too large. An example is pictured
in Figure 5.20. It shows that due to the peak’s high amplitude, the side lobe’s
amplitudes exceed the CFAR-threshold. Therefore a detection is triggered
along the whole angle for the affected ranges. This phenomenon is the
reason why a lot of maps show concentric circles around some objects.
Figure 5.20a shows that this effect already starts at bigger distances, and
becomes worse the further the sensor moves to the object. One solution
for this problem would be choosing a higher value for αRA. But as already
shown in Section 5.6.1 this would require a way more detailed examination
of the parameter space for kFREE and probably also for kOCC. Another way
to address this problem would be to increase the angular resolution. This
could be done by sub-space angle estimation methods like mentioned in
Section 3.1.6 or by using a sensor that provides a better angular resolution.

A special case of this criteria occurs for strong reflecting objects that are
close to ±90◦. The part of the peak that exceeds the maximum angle gets
projected back to the other end of the axis as result of the FFT’s circular
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Figure 5.18.: Single car scenario. αRA = 25. The detection on the left side gets projected
back to the right side.

convolution. This happens for example when driving next to a parking
car like shown in Figure 5.18. Fragments opposite of the detected surface
can be observed in the corresponding grid map (Figure 5.33a at x ≈ 17m
and x ≈ 15m). The only way this effect can be reduced, is by reducing
over-estimation utilizing the measures described above.

The second major cause for over-estimated objects are multi-path reflections.
They manifest as targets with different velocities and therefore can clearly
be seen at at the range doppler maps of Figure 5.20. The further the sensor
moves to the object the more clearly the effect occurs. At Figure 5.20a a
single multi-path reflection already shows up at a distance of approximately
9m. This additional target already appears as a detection on the range angle
map and therefore corrupts the resulting grid map. At Figure 5.20b the
effect becomes severely worse, and creates fragments behind the detected
object, that are clearly visible in the final occupancy grid (Figure 5.22a at
x ≈ 15m and y ≈ 20m). The occupied space behind the metal box in Figures
5.21 to 5.23 is always a result of multi-path reflections. This can just be seen
examining the range doppler maps as the space could also be occupied
because of the second object behind the metal box.

The fact that the detections in the range angle map originate from objects
in the range doppler domain with different velocities clearly shows that
this detections are not because of the wood box behind the metal box. The
wood box would be detected at the same velocity as the metal box i.e. the
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Figure 5.19.: Plastic pole 0m scenario (Nr. 4 in Table 5.3. Ground truth: Figure 5.4a). M0,
pPD(bi), αRA = 25, kFREE = 0.49, kOCC = 1.0. The object is mapped adequately
because αRA fits it’s RCS.

platform’s velocity. The over-estimation as a result of multi-path reflections
occurs more intensively for strong reflecting objects. The reflected energy
is higher and therefore more likely to traverse back by multiple paths. To
compensate this effect just velocities of the range doppler map around
the vehicles velocity could be used to generate the range angle map. This
however would just remove the multi-pah reflections if the vehicle is moving.
It also would probably lead to a worse detection of objects that are not
directly in front of the sensor as their radial velocity changes when the
sensor moves towards them.
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(a) Distance ≈ 4.5m to the metal box.

(b) Distance ≈ 1.5m to the metal box.

(c) Distance ≈ 0.75m to the metal box.

Figure 5.20.: Range doppler- and range angle maps for the Metal/Wood 2m scenario (Nr.
3 in Table 5.4, αRA = 25). The different objects in the range angle map are a
result of multi-path reflections which can bee seen in the corresponding range
doppler map.
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(a) M0, pPD(bi), αRA = 25, kFREE = 0.49, kOCC = 1.0 (b) M0, pSNR(bi), αRA = 15, kFREE = 0.3, kOCC = 0.65

Figure 5.21.: Example of an over-estimated occupancy case for model 0. Metal box/Wood
box 2m scenario (Nr. 3 in Table 5.4. Ground truth: Figure 5.4b). The metal box
is mapped far too large because of it’s big RCS.

(a) M1, pPD(bi), αRA = 15, kFREE = 0.45, kOCC = 1.0 (b) M1, pSNR(bi), αRA = 25, kFREE = 0.25, kOCC = 0.8

Figure 5.22.: Example of an over-estimated occupancy case for model 1. Metal box/Wood
box 2m scenario (Nr. 3 in Table 5.4. Ground truth: Figure 5.4b). The metal box
is mapped far too large because of it’s big RCS.
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(a) M2, pPD(bi), αRA = 15, kFREE = 0.49, kOCC = 1.0 (b) M2, pSNR(bi), αRA = 15, kFREE = 0.45, kOCC = 1.0

Figure 5.23.: Example of an over-estimated occupancy case for model 2. Metal/Wood 2m
scenario (Nr. 3 in Table 5.4. Ground truth: Figure 5.4b). The metal box is
mapped far too large because of it’s big RCS.
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Under-Estimated Occupancy/Objects

One cause for the absence of objects has already been shown and explained
in Section 5.6.1 and can be seen in Figures 5.15c and 5.14a: αRA is set too
high or kFREE is set too low respectively. As the parameter choice strongly
depends on the reflectivity and therefore the RCS of objects, a RCS that is
too small is often the root cause for missing or too small mapped objects.
To investigate this effect the resulting grids of the three small objects are
shown in Figures 5.24 to 5.26. Model 1 is used for the illustration because
the compensation of occupancy by free space is minimal. Also the free space
in front of an object shows the distance from which on an object is detected.
The metal pole in Figure 5.24a is clearly recognized and even over-estimated
when approached straight. When approaching it 4m shifted in Figure 5.24b,
the pole is still visible. The detection is not that strong though but still an
over-estimation effect can be seen. The wood pole yields a contrary picture.
When approached straight in Figure 5.26a it is recognized with little to
no over-estimation. Approached by a shifted distance of 2m (Figure 5.26b)
the pole isn’t recognized at all. This is because wood is a poor reflector of
electromagnetic waves and therefore has a significantly smaller RCS than
the metal pole - even if they have approximately the same size and shape.
The plastic pole shows that its RCS lies between the metal and the wood
pole. It is detected for the 0m (Figure 5.25a) and 2m (Figure 5.25b) case, but
in case of approaching it shifted by 4m it is not visible at all.

Another cause for the absence of objects occurs for the two object scenarios.
For some scenarios the sensor was clearly able to detect the 2nd object.
As already shown and explained in Section 5.6.2, the sensor is not able to
penetrate metal. The occupied space that is visible behind the metal box is
just a result of multi-path fragments. For the other two cases - the plastic
box and the wood box - the experiments showed that the sensor was able
to detect the 2nd object in most cases. Figure 5.27 shows that the plastic
box has been detected behind the wood box in the 2m case as well as in
the 4m case, whereas the plastic box was just detected in the 2m case. The
reason for this is because the surface of the wood box is significantly bigger
and thicker and therefore harder to penetrate. The metal box behind the
two other objects is always detected except for the Wood box/Metal box 4m
scenario for the same reason (see Figures 5.29 and 5.30).
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(a) Metal pole 0m scenario, M1, pPD(bi), αRA = 15,
kFREE = 0.45, kOCC = 1.0

(b) Metal pole 4m scenario, M1, pSNR(bi), αRA = 15,
kFREE = 0.45, kOCC = 1.0

Figure 5.24.: Approached directly the metal pole is visible and clearly over-estimated. The
occupied space that appears as a second object behind it is a result of multi-
path reflections of the metal pole. When the pole is approached shifted by 4m
it is still visible, but the representation is distorted. Ground truth: Figure 5.4a.

A special case for an under-estimated object can be seen at figure 5.31. When
using pPD(bi) the first object is clearly visible (figure 5.30a) whereas when
using pSNR(bi) it almost vanishes (figure 5.31a). This effect occurs for model
0 as well as model 1. For model 1 it is not that severe though. Looking
at figure 4.8 shows that pSNR(bi) has a margin that is considered almost
certainly as free up until approximately 1m. This margin results from the
noise floor estimation of the CFAR. The high DC-noise components also
visible in figure 5.6 cause the noise estimate to be too high. And even if
the range dimension is cropped this high noise still influences the SNR
estimate by the CFAR’s lagging window. This problem can be solved by
further cropping the usable range and therefore setting rCMIN to a higher
value e.g. 1m.

Interestingly a lot of objects are mapped too small for the approach using
model 2. This can be seen for example by comparing the figures 5.32b and
5.34b. SNR measurements that are below the CFAR-threshold are rejected
and therefore objects are less dense. Simultaneously occupied space is
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(a) Plastic pole 0m scenario, M1, pPD(bi), αRA = 15,
kFREE = 0.45, kOCC = 1.0

(b) Plastic pole 2m scenario, M1, pPD(bi), αRA = 15,
kFREE = 0.45, kOCC = 1.0

Figure 5.25.: Approached directly the plastic pole is clearly visible and a little over-
estimated. When the pole is approached shifted by 2m it is still visible. When
it is approached shifted by 4m it is not visible at all. Ground truth: Figure 5.4a.

compensated by noise that is considered as free space according to equation
4.10. The sum of this two effects add up to the worse results.
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(a) Wood pole 0m scenario, M1, pPD(bi), αRA = 15,
kFREE = 0.45, kOCC = 1.0

(b) Wood pole 2m scenario, M1, pPD(bi), αRA = 15,
kFREE = 0.45, kOCC = 1.0

Figure 5.26.: Approached directly the wood pole is visible. When the pole is approached
shifted by 2m it is not visible on the map at all. Ground truth: Figure 5.4a.

(a) Plastic box/Wood box 2m scenario, M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

(b) Plastic box/Wood box 4m scenario, M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

Figure 5.27.: The wood box is visible behind the plastic box for both offsets. Ground truth:
Figure 5.4b.
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(a) Wood box/Plastic box 2m scenario, M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

(b) Wood box/Plastic box 4m scenario, M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

Figure 5.28.: The plastic box is just visible when it is placed 2m behind the wood box.
Ground truth: Figure 5.4b.

(a) Plastic box/Metal box 2m scenario, M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

(b) Plastic box/Metal box 4m scenario, M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

Figure 5.29.: The metal box is visible behind the plastic box for both 2m and 4m offset. The
third object in the 2m scenario is due to multi-path reflections of the metal
box. Ground truth: Figure 5.4b.
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(a) Wood box/Metal box 2m scenario, M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

(b) Wood box/Metal box 4m scenario. M1, pPD(bi),
αRA = 15, kFREE = 0.45, kOCC = 1.0

Figure 5.30.: The metal box is just visible behind the wood box with an offset of 2m but
not with an offset of 4m. Ground truth: Figure 5.4b.

(a) M0, pSNR(bi), αRA = 15, kFREE = 0.3, kOCC = 0.65 (b) M1, pSNR(bi), αRA = 15, kFREE = 0.25, kOCC = 0.8

Figure 5.31.: Wood box/Metal box 2m scenario (Nr. 9 in Table 5.4). Parts of objects are
missing due to the noise estimation of the CFAR algorithm. Ground truth:
Figure 5.4b.
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Over-Estimated Free Space

Determining which areas should be unknown for the given scenarios is
generally difficult. As already shown, it is often possible that the sensor
penetrates certain objects. In other cases the sensor might look beyond
objects because they are not very high, the sensor has a beam-width of
≈ 10◦ in elevation and was mounted approximately 0.5m above the ground.
Therefore for assessing over-estimation of free space the focus has been put
on the scenarios with cars. The sensor cannot penetrate the metal surface of
a car and therefore the inside should be marked as unknown. That means
the single car, street and parking lot scenarios are important for this criteria.
Figures 5.32 to 5.34 show the occupancy grids using pPD(bi) with all models
for the single car and the street scenario. The parking lot grid maps can be
found in Section 5.6.3.

The best results with respect to this criteria are achieved using model 1 as
free space is mapped very conservatively. In most cases the contours of the
cars are clearly visible especially in the parking lot scenario (Figure 5.37b).
In some cases there is a slight over-estimation of the free space as a result
of a over-estimation of the car’s surfaces (e.g. Figure 5.33a at x ≈ 22m and
y ≈ 15m.

As expected the inside of the cars for model 0 are marked as free because no
detection is generally considered as free space. Interestingly the results for
model 2 deviate from the expectations. The modeling approach should have
improved the free space over-estimation by considering noise towards the
borders of the FOV less certain as free space. However free space is almost
as over-estimated as for model 0. This is a strong indication that the used
function for fFREE(φ, kFREE) (Equation 4.10) is not increasing fast enough
towards 0.5 as the angle goes towards ±90◦. Also the parameter space for
kFREE could be explored more densely. This is an additional explanation
for the potential under-estimation of occupancy for model 2 mentioned in
Section 5.6.2.
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(a) Single car scenario, M0, pPD(bi), αRA = 25, kFREE =
0.49, kOCC = 1.0

(b) Street scenario, M0, pPD(bi), αRA = 25, kFREE =
0.49, kOCC = 1.0

Figure 5.32.: Model 0 final occupancy grids (Ground truth: Figures 5.9 and 5.10). The space
inside the cars for both scenarios should not be mapped as free space.

(a) M1, pPD(bi), αRA = 15, kFREE = 0.45, kOCC = 1.0 (b) M1, pPD(bi), αRA = 15, kFREE = 0.45, kOCC = 1.0

Figure 5.33.: Model 1 final occupancy grids (Ground truth: Figures 5.9 and 5.10). Unlike for
model 0 and model 2 there is almost no over-estimation of free space inside
the cars.
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(a) M2, pPD(bi), αRA = 15, kFREE = 0.49, kOCC = 1.0 (b) M2, pPD(bi), αRA = 15, kFREE = 0.49, kOCC = 1.0

Figure 5.34.: Model 2 final occupancy grids (Ground truth: Figures 5.9 and 5.10). The
space inside the cars for both scenarios should not be mapped as free space.
However the effect is not as strong as for model 0.
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Under-Estimated Free Space

Under estimation of free space happened only when model 1 was used.
This is obvious as it reflects the shortcoming of this approach as discussed
in Section 4.3.1. For areas including a lot of objects with a high RCS it still
achieves decent results as can be seen at the parking lot scenario in Figure
5.37b. Still this model serves more as an analytical tool than as a final model.
Figures 5.25 and 5.26 show examples where free space is not recognized,
even along the robots path. In Figure 5.26b there is even no free space due
to the lack of detections.

Noise

A lot of spots that are mistakenly classified as occupied and look like noise
at the first place can be traced back to effects that are connected to the over-
estimation of objects explained in Section 5.6.2. Therefore the noise criteria
is in some cases closely related to this over-estimation. However there are
some cases where the presence of noise fragments has other reasons.

One of them can be seen in Figures 5.36c and 5.36d. Both figures show noise
at all borders of the measured space. This is related to the properties of
pSNR(bi). Figure 5.35 helps to understand the cause of this phenomenon.
Even for SNR values in the vicinity of the noise floor a probability of
occupancy close to 1 is assigned. For example the slight peak in the range
angle map at a range of ≈ 9m and an angle of 30◦ is assigned a probability of
≈ 0.9. The cause of this lies in the function of pSNR(bi) (Equation 4.4). Figure
4.11 already indicated this behavior. pSNR(bi) is already fully ascending for
a value of 0dB while pPD(bi) starts to ascend at much higher SNR values
(depending on αRA).
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Figure 5.35.: Campus scenario. M0, pSNR(bi), αRA = 15, kFREE = 0, kOCC = 1.0. pSNR(bi)
causes high probabilities of occupancy at the borders of the sensor’s FOV.

5.6.3. Final Radar-Generated Occupancy Grids

Figures 5.36 to 5.38 show the grids of the campus and the parking lot sce-
nario with the optimized parameters according to Table 5.7. The important
features in both scenarios are visible in principle (the benches, trees and
walls in the campus scenario and the cars in the parking lot scenario). All
figures show some of the criteria and the corresponding effects described
above.

The campus scenario using model 0 in Figure 5.36 shows that the detection
of the trees is rather difficult. Just a few of them are detected between the
benches. The scene also includes two wastepaper baskets which have a fully
metallic surface (one at x ≈ 15m and y ≈ 12m, the second at x ≈ 27m and
y ≈ 20m). They are mapped too big and too dense because of the high
reflective nature of the object as described in Section 5.6.2. The cars in the
parking lot scenario using model 0 are in principal detected. However there
is a huge gap between the detection of cars that are faced straight (e.g. before
the first right turn in the path) and that are at the borders of the the sensor’s
FOV (e.g. after the first right turn to the left side of the path). This perfectly
shows the strong dependence of the RCS on the angle as described in Section
5.6.2. Characteristically for model 0 is also the free space behind the detected
surfaces (inside the cars), which is not desired and has been explained in
Section 5.6.2. Figure 5.36b shows two fragments at x ≈ 17m and y ≈ 15m.
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The right one is a product of an object being projected over the edges of the
angular dimension as described in Section 5.6.2. This can be concluded as
the fragment is parallel to the parking car. The left one is probably a result
of the odometry’s position drift and therefore a measurement of the same
parking car. With the choice of kFREE = 0.49 for pPD(bi), noise is treated as
”almost non-informative” and with kOCC = 1.0 detections are rated reliable.
The parameter choices for pSNR(bi) can’t be explained that intuitively. The
pSNR(bi) based approach shows characteristic higher noise and occupancy
values as described in Section 5.6.2.

In a lot of real-world scenarios the approach of model 1 will not produce
usable results because mapping of free space is neglected in a lot of cases.
In this thesis it served more as an analytical tool because it just focuses on
detections. Because the parking lot scenario has a lot of highly reflective
objects, the results for this scenario are still usable. Section 5.6.2 already
explained, that free space is mapped too sparse. Noise is interpreted more
distinguished as free space with this modeling approach and therefore
kFREE can be set lower compared to model 0. However model 1 is interesting
in another context as well. It somehow shows why using the object list for
creating occupancy grids is difficult. The mapping of free space depends
on the presence of detections. So model 1 and the object list have the same
basic idea.

Model 2 shows the results as explained in Section 5.6.2. Unfortunately the
results don’t meet the expectations. Objects are not mapped as distinct as
for model 0 and 1 but free space is still over-estimated. This indicates that
this approach needs further investigation as it should be able to perform
better than both approaches.
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(a) M0, pPD(bi), αRA = 25, kFREE = 0.49, kOCC = 1.0 (b) M0, pPD(bi), αRA = 25, kFREE = 0.49, kOCC = 1.0

(c) M0, pSNR(bi), αRA = 15, kFREE = 0.3, kOCC = 0.65 (d) M0, pSNR(bi), αRA = 15, kFREE = 0.3, kOCC = 0.65

Figure 5.36.: Final radar generated occupancy grids for the campus and parking lot scenario
using model 0. Figures (a), (c): Campus scenario (Ground truth: Figure 5.11).
Figures (b), (d): Parking lot scenario (Ground truth: Figure 5.12a).
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(a) M1, pPD(bi), αRA = 15, kFREE = 0.45, kOCC = 1.0 (b) M1, pPD(bi), αRA = 15, kFREE = 0.45, kOCC = 1.0

(c) M1, pSNR(bi), αRA = 15, kFREE = 0.25, kOCC = 0.8 (d) M1, pSNR(bi), αRA = 25, kFREE = 0.25, kOCC = 0.8

Figure 5.37.: Final radar generated occupancy grids for the campus and parking lot scenario
using model 1. Figures (a), (c): Campus scenario (Ground truth: Figure 5.11).
Figures (b), (d): Parking lot scenario (Ground truth: Figure 5.12a).
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(a) M2, pPD(bi), αRA = 15, kFREE = 0.49, kOCC = 1.0 (b) M2, pPD(bi), αRA = 15, kFREE = 0.49, kOCC = 1.0

(c) M2, pSNR(bi), αRA = 15, kFREE = 0.45, kOCC = 1 (d) M2, pSNR(bi), αRA = 15, kFREE = 0.45, kOCC = 1

Figure 5.38.: Final radar generated occupancy grids for the campus and parking lot scenario
using model 2. Figures (a), (c): Campus scenario (Ground truth: Figure 5.11).
Figures (b), (d): Parking lot scenario (Ground truth: Figure 5.12a).
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5.7. Discussion

The results presented in Section 5.6.3 show that the investigated methods
pose a considerable way to create occupancy grids using radar sensors.
Naturally they cannot compete in terms of map quality with maps generated
using lidars for now, but have other advantages e.g. being able to look
beyond certain objects.

The results suggest that pPD(bi) is a better choice for transforming the SNR
into a probability of occupancy than pSNR(bi). On reason for this is the
high sensitivity of the results on the parameters. pPD(bi) definitely shows
more predictable and stable results in that regard. However the discrepancy
that increasing αRA decreases the probabilities of occupancy needs to be
further investigated. Ideally a mathematically correct model for assigning
probabilities to SNR values for the occupancy grid framework is derived.

From the three different modeling approaches model 0 and in some cases
model 1 show the best results. However they still have the problem of over-
(model 0) or under-estimating (model 1) free space. This should have been
solved with model 2, but as the results show this modeling approach needs
further refinement. The most important component to improve the map
quality is to more closely investigate the function fFREE(φ, kFREE) (Equation
4.10). The results suggest that it should move faster towards 0.5 as the angle
moves toward ±90◦.

The biggest problem of the introduced approaches is the over-estimation
of objects. As the static environment should be mapped, just the utilization
of the velocities in the vicinity of the vehicles velocity for the range angle
map could improve the quality of the grid maps. This would remove the
fragments due to multi-path reflections for the most part, but also just
consider the static environment - if the vehicle is moving. However those
reflections would not be removed in static scenarios since they appear with
the same velocity (0) as the original objects. Additionally the sensitivity
for objects that are not directly in front of the sensor could decrease as the
sensor measures a radial velocity which is a function of the angle. Of course
a sensor with a higher angular resolution would also improve the over-
estimation of objects. Finally setting αRA to higher values is also an option.
This however would make a more intense investigation of the parameter
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space of αRA, kFREE and kOCC necessary. A deeper investigation of this
space might make sense anyway, especially for model 0 and model 2 using
pPD(bi). The results for model 0, kFREE = 0.5 and αRA = 50 (e.g. Figure
5.15d) show that even higher values for αRA would make sense as without
any compensation by free space the objects are still over-estimated. A value
of 0.49 < kFREE < 0.5 would be necessary. Also for model 2 a value of
kFREE > 0.49 would make sense (see e.g. Figure 5.38b). In some cases using
values for kOCC > 1 could also improve the results, however this comes
with difficulties in terms of the laws for the probability representations that
would need to be addressed.
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In this thesis inverse sensor models for creating occupancy grids using a
radar sensor have been developed. Other than the commonly used approach
the basis for this models is not the object list but a geometric representation
derived from the raw radar data. It represents the sensor data in a form that
can be interpreted more intuitively into a probability of occupancy for the
gridmap creation. For this purpose two different ways of transforming a
SNR value into a probability of occupancy have been derived. This two trans-
formations have been used on three different inverse sensor models. The
first model (model 0) directly transformed all SNR values into a probability
of occupancy. This model has no explicit free space modeling. The second
one (model 1) just considered this probabilities for detections. Free space
was only mapped in front of them. The third one (model 2) extended this
model by also considering the sensor’s beam-pattern for a more accurate
free space mapping.

To evaluate the models, dynamic measurements using a mobile robot plat-
form were conducted. This platform was equipped with sensors that pro-
vided data for creating occupancy grids using radar. Additionally it was
equipped with a laser-scanner to create reference occupancy grids and a
camera. This reference gridmaps and the camera images have been used to
qualitatively assess the the radar-generated gridmaps. Two different types
of measurement scenarios have been conducted. The first one have been
regulated measurements with a previously defined number an placement of
objects. They have been used to examine the properties of the radar sensor.
The second type of scenarios have been real-world scenarios that should test
the performance of the developed models on setups that are interesting for
future applications. Based on two of them a parametrization of the models
has been done. For a formalization of the map quality criteria have been
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derived and applied to the final gridmaps. Effects that led to a reduced
occupancy grid quality have been discussed based on these criteria.

The introduced range angle map has proven to be a considerable alternative
to the commonly used object list as a basis for the occupancy grid mapping.
For transforming the SNR into a probability of occupancy the approach
using the detection probability should be preferred over the purely SNR
based method. It proved more stable in it’s parameters and achieved a better
separation of noise and detections. A general statement which sensor model
performed best cannot be made at this point since their performance was
strongly scenario dependent. The results of model 2 however fell short of
the expectations. It should have been the best performing option as it used
to most extensive model of the sensor properties.

A first step for further improvement would therefore be to examine model 2
more closely. Especially the weighting function for free space fFREE(φ, kFREE)
plays an important role in this regard. Also using a higher value for αRA is
advised. This however requires a deeper investigation the parameter space
for kFREE and kOCC.

The biggest challenge of this approach is the over-estimation of objects. A
first step to address it would be to only utilize velocities in the vicinity of
the vehicles velocity for creating the range angle map. Means for achieving
a higher angular resolution would also be highly beneficial for avoiding this
over-estimation. One method to do this would be to use more sophisticated
angular estimation methods (e.g. Multiple Signal Classification). Another
one to use a sensor that can provide a higher angular resolution. A topic for
further research is also to adapt the configuration of the sensor according to
the situation (e.g. speed of the vehicle) dynamically.
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Appendix A.

Categorization Tables

Symbol Meaning
+ Criteria occurs very dominant
o Criteria can be observed
- Criteria has a minor influence

Table A.1.: Criteria rating (severeness of occurrence)

The three different levels are shown and explained in table A.1. No rating
for a scenario means that this specific criteria does not occur. Table A.2
describes the abbreviations for the column titles. They represent the criteria
given in Section 5.5.

Symbol Meaning
OO Over-Estimated Occupancy/Objects
UO Under-Estimated Occupancy/Objects
OF Over-Estimated Free Space
UF Under-Estimated Free Space
N Noise

Table A.2.: Criteria abbreviations
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ID Scenario OO UO OF UF N
1 Metal pole 0m + -
2 Metal pole 2m + -
3 Metal pole 4m o
4 Plastic pole 0m -
5 Plastic pole 2m o
6 Plastic pole 4m +
7 Wood pole 0m -
8 Wood pole 2m +
9 Wood pole 4m +

10 Metal box 0m + +
11 Metal box 2m o o
12 Metal box 4m + o
13 Plastic box 0m o o
14 Plastic box 2m - o
15 Plastic box 4m + o
16 Wood box 0m + o
17 Wood box 2m +
18 Wood box 4m + +
19 Metal box/Plastic box 2m + +
20 Metal box/Plastic box 4m + + +
21 Metal box/Wood box 2m + + +
22 Metal box/Wood box 4m + + +
23 Plastic box/Metal box 2m + -
24 Plastic box/Metal box 4m + - -
25 Plastic box/Wood box 2m +
26 Plastic box/Wood box 4m +
27 Wood box/Metal box 2m +
28 Wood box/Metal box 4m + o
29 Wood box/Plastic box 2m +
30 Wood box/Plastic box 4m + +
31 Street - o + -
32 Parking lot - o + -
33 Single Car - o + -
34 Campus o - o

Table A.3.: Assessment of model 0 using pPD(bi).
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ID Scenario OO UO OF UF N
35 Metal pole 0m + + -
36 Metal pole 2m + + -
37 Metal pole 4m o +
38 Plastic pole 0m - +
39 Plastic pole 2m - +
40 Plastic pole 4m + +
41 Wood pole 0m - +
42 Wood pole 2m + +
43 Wood pole 4m + +
44 Metal box 0m + + o
45 Metal box 2m o + o
46 Metal box 4m + + o
47 Plastic box 0m - + o
48 Plastic box 2m o + o
49 Plastic box 4m + + o
50 Wood box 0m + + o
51 Wood box 2m + + o
52 Wood box 4m + + o
53 Metal box/Plastic box 2m + + o
54 Metal box/Plastic box 4m + + o
55 Metal box/Wood box 2m + - o
56 Metal box/Wood box 4m + + - o
57 Plastic box/Metal box 2m + + -
58 Plastic box/Metal box 4m + +
59 Plastic box/Wood box 2m + +
60 Plastic box/Wood box 4m + + -
61 Wood box/Metal box 2m + +
62 Wood box/Metal box 4m + + +
63 Wood box/Plastic box 2m + +
64 Wood box/Plastic box 4m + + +
65 Street - o +
66 Parking lot - - o -
67 Single Car o o - +
68 Campus + o + -

Table A.4.: Assessment of model 1 using pPD(bi).
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ID Scenario OO UO OF UF N
69 Metal pole 0m + -
70 Metal pole 2m o
71 Metal pole 4m o
72 Plastic pole 0m -
73 Plastic pole 2m -
74 Plastic pole 4m +
75 Wood pole 0m -
76 Wood pole 2m +
77 Wood pole 4m +
78 Metal box 0m + o
79 Metal box 2m - o
80 Metal box 4m + o
81 Plastic box 0m - -
82 Plastic box 2m o -
83 Plastic box 4m + -
84 Wood box 0m + o
85 Wood box 2m o o
86 Wood box 4m + o
87 Metal box/Plastic box 2m + o
88 Metal box/Plastic box 4m + o
89 Metal box/Wood box 2m + o
90 Metal box/Wood box 4m + + o
91 Plastic box/Metal box 2m + -
92 Plastic box/Metal box 4m +
93 Plastic box/Wood box 2m +
94 Plastic box/Wood box 4m + - -
95 Wood box/Metal box 2m +
96 Wood box/Metal box 4m + +
97 Wood box/Plastic box 2m +
98 Wood box/Plastic box 4m + +
99 Street - o o -
100 Parking lot o o -
101 Single Car o + -
102 Campus - + -

Table A.5.: Assessment of model 2 using pPD(bi).
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ID Scenario OO UO OF UF N
103 Metal pole 0m o o +
104 Metal pole 2m + +
105 Metal pole 4m + +
106 Plastic pole 0m - +
107 Plastic pole 2m + +
108 Plastic pole 4m + +
109 Wood pole 0m + +
110 Wood pole 2m + +
111 Wood pole 4m + +
112 Metal box 0m + o +
113 Metal box 2m - +
114 Metal box 4m - +
115 Plastic box 0m - - +
116 Plastic box 2m - +
117 Plastic box 4m - +
118 Wood box 0m o +
119 Wood box 2m - +
120 Wood box 4m + +
121 Metal box/Plastic box 2m o + +
122 Metal box/Plastic box 4m o + +
123 Metal box/Wood box 2m + + +
124 Metal box/Wood box 4m + + +
125 Plastic box/Metal box 2m + +
126 Plastic box/Metal box 4m + +
127 Plastic box/Wood box 2m + +
128 Plastic box/Wood box 4m + - +
129 Wood box/Metal box 2m + + +
130 Wood box/Metal box 4m + + +
131 Wood box/Plastic box 2m + + +
132 Wood box/Plastic box 4m + + +
133 Street o o + +
134 Parking lot o o + +
135 Single Car o o + +
136 Campus o - +

Table A.6.: Assessment of model 0 using pSNR(bi).
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ID Scenario OO UO OF UF N
137 Metal pole 0m + - + -
138 Metal pole 2m + +
139 Metal pole 4m o +
140 Plastic pole 0m o +
141 Plastic pole 2m o +
142 Plastic pole 4m + +
143 Wood pole 0m o +
144 Wood pole 2m +
145 Wood pole 4m +
146 Metal box 0m + + o
147 Metal box 2m + + o
148 Metal box 4m + + o
149 Plastic box 0m + -
150 Plastic box 2m o + -
151 Plastic box 4m + + -
152 Wood box 0m + - + o
153 Wood box 2m + + o
154 Wood box 4m + + o
155 Metal box/Plastic box 2m + + + o
156 Metal box/Plastic box 4m + + + o
157 Metal box/Wood box 2m + o o
158 Metal box/Wood box 4m + + o o
159 Plastic box/Metal box 2m + + + o
160 Plastic box/Metal box 4m + + -
161 Plastic box/Wood box 2m + - + -
162 Plastic box/Wood box 4m + + -
163 Wood box/Metal box 2m + - + -
164 Wood box/Metal box 4m + + + -
165 Wood box/Plastic box 2m + + -
166 Wood box/Plastic box 4m + + + -
167 Street - o + -
168 Parking lot - o + -
169 Single Car o o + o
170 Campus + o + -

Table A.7.: Assessment of model 1 using pSNR(bi).
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ID Scenario OO UO OF UF N
171 Metal pole 0m +
172 Metal pole 2m + -
173 Metal pole 4m -
174 Plastic pole 0m -
175 Plastic pole 2m -
176 Plastic pole 4m +
177 Wood pole 0m -
178 Wood pole 2m +
179 Wood pole 4m +
180 Metal box 0m + +
181 Metal box 2m - o
182 Metal box 4m + o
183 Plastic box 0m - o
184 Plastic box 2m o
185 Plastic box 4m + o
186 Wood box 0m + o
187 Wood box 2m o
188 Wood box 4m + +
189 Metal box/Plastic box 2m + -
190 Metal box/Plastic box 4m + +
191 Metal box/Wood box 2m + +
192 Metal box/Wood box 4m + +
193 Plastic box/Metal box 2m + o
194 Plastic box/Metal box 4m + -
195 Plastic box/Wood box 2m + -
196 Plastic box/Wood box 4m +
197 Wood box/Metal box 2m +
198 Wood box/Metal box 4m +
199 Wood box/Plastic box 2m +
200 Wood box/Plastic box 4m +
201 Street - o + -
202 Parking lot - o + -
203 Single Car o +
204 Campus + + -

Table A.8.: Assessment of model 2 using pSNR(bi).
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