
Stefan Embacher, BSc

Regularized Ordinal Regression

Applied on Team Performance Data

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Herwig Friedl, Ao. Univ.-Prof. Dipl.-Ing. Dr.techn

Institute for Statistics

Graz, March 2021





AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly indicated all

material which has been quoted either literally or by content from the sources

used. The text document uploaded to TUGRAZonline is identical to the present

master thesis.

Date Signature





DANKSAGUNG
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dermann bedanken, der mir die Möglichkeit gegeben hat die Konzepte dieser Arbeit

auf Basis von Daten meines Herzensvereins zu entwickeln und damit entscheidend

zum Wiederfinden meiner Freude an der Mathematik beigetragen hat.
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ABSTRACT

This thesis focuses on ordinal regression models, which extend multinomial re-

sponse models by taking the ordinal structure of the response into account. Besides

introducing the cumulative logit model, which is a prominent ordinal regression

model, we discuss regularization methods. The presented regularization methods

deal with the problems of multi-collinearity and overfitting resulting by a large

number of available explanatory variables compared to the sample size. Despite

being used for ordinal regression they could be applied to many other models as

well, since they base on the idea to penalize the log-likelihood function. While

ordinal regression models allow a great variety of applications, we discuss the de-

veloped theoretical concepts on a real data example in sports. We therefore model

the match outcome as an ordinal variable and compare the different regularization

methods with the unregularized ordinal regression model.

ZUSAMMENFASSUNG

Diese Arbeit konzentriert sich auf ordinale Regressionsmodelle, welche die multino-

mialen Response Modelle erweitern in dem sie die ordinale Struktur der Response

berücksichtigen. Neben der Einführung des kumulativen Logit Modells, ein bekan-

ntes ordinales Regressionsmodell, werden auch Regularisierungsmethoden disku-

tiert. Diese Regularisierungsmethoden adressieren die Probleme die durch Multi-

Kollinearität und Overfitting auftreten, welche wiederum durch eine große Anzahl

an möglichen Prädiktoren verglichen mit der verfügbaren Stichprobengröße entste-

hen. Da sie auf der Idee beruhen einen Strafterm in die log-likelihood Funktion

hinzuzufügen, könnten sie, obwohl sie in dieser Arbeit nur auf ordinale Regres-

sionsmodelle angewendet werden, auch auf viele andere Modellklassen angewendet

werden. Während ordinale Regressionsmodelle eine große Anzahl an Anwendungs-

feldern ermöglichen, werden wir die entwickelten theoretischen Konzepte auf ein

Datenbeispiel aus dem Sportbereich anwenden. Daher modellieren wir den Aus-

gang eines Spiels als ordinale Variable und vergleichen die verschiedenen Regular-

isierungsmethoden mit den Ergebnissen des unregularisierten Modells.
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1 Introduction

In many fields of studies categorical data and the corresponding methods are in-

dispensable. For instance, in social studies numberless surveys measure attitude

and opinion with a response of the possible form (totally disagree, disagree, neu-

tral, agree, totally agree). Categorical variables are also important in the medical

sector, where we could measure the severity of an injury, pain or the benefits of a

treatment. Even though these are two obvious examples, they are not exclusive,

allowing a great variety of applications. While there are different types of categor-

ical variables we will focus on the ones with an underlying ordinal structure and

discuss models which explicitly take this ordinal structure into account.

When we face samples where the number of possible explanatory variables is large

compared to the number of observations, models might tend to overfit. We there-

fore introduce and discuss different regularization techniques, which all base on

the idea to add a penalty term to the log-likelihood function when finding the

maximum likelihood estimator.

In Chapter 2 we start with an introductory part, shortly describing linear re-

gression models, extend them to the class of generalized linear models and discuss

logistic regression, log-linear Poisson regression and multinomial response models

as explicit examples. Section 2.3 provides some details on possible model selection

criteria. Chapter 3 then introduces the cumulative logit model, which accounts for

the ordinal structure of the response variable, followed by the derivation of the cor-

responding (log-)likelihood function, all necessary derivatives and a discussion of

the implementation in R (R Core Team, 2019) in Chapter 4. Chapter 5 addresses

the problems of multi-collinearity and overfitting, deals with regularization meth-

ods, ridge regression and lasso as prominent examples and provides details on how
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to choose the tuning parameters in the penalized log-likelihood function. To eval-

uate the introduced ordinal regression models we then describe three goodness of

fit tests, found in Chapter 6.

Finally, in Chapter 7, we apply the developed models on a real data example,

where the available data contains performance information on team basis from

two ice hockey seasons. In Section 7.1 we model the expected number of goals

scored by both teams using a log-linear Poisson model, discuss how this can be

used to predict the outcome of a game and evaluate the performance of the fitted

model. In Section 7.2 we then model the match outcome directly as an ordinal vari-

able, applying the developed theoretical concepts, compare the fitting procedure

for the unregularized version and different regularization methods and discuss pos-

sible adjustments. Lastly we discuss the results for ordinal regression and compare

them to the results obtained by the log-linear Poisson model.

2



2 Introduction to Linear Models

In this chapter we will introduce linear regression models, their extension to gener-

alized linear models and discuss their form for different types of response variables.

Additionally, we will discuss how to perform model selection, introduce the most

prominent information criteria and finally discuss how to evaluate models. All

given details are only an introduction to this broad topic, serving as a foundation

to what we will develop in the later chapters. Therefore the given theory is only

a short excerpt and might be studied in more detail in McCullagh and Nelder

(1989) or Agresti (2002). The mentioned references serve as a basis for our short

introduction to linear models and the related topics.

2.1 Linear Regression

The main idea of a linear model is quite simple. We assume that the expected

value of a variable Y , also known as response variable or dependent variable, can

be written as a function of variables x0, x1, . . . , xp−1. These x1, . . . , xp−1 are called

covariates, explanatory variables, predictor variables or predictors. Additionally,

the variable x0 = 1 corresponds to an intercept (respectively the parameter β0).

In ordinary linear regression we assume the response variables to be indepen-

dently normal distributed with mean xᵀ
iβ and variance σ2. This means that we

can model the expected value of the response variable by

E[Yi] =

p−1∑
j=0

βjxij.

If we now assume that we have n observations of a response, which are modelled

by y = (y1, . . . , yn)ᵀ with all components being independent and that we know the
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values of the corresponding explanatory variables which are described by the so

called design matrix X, where each row contains all explanatory variables regard-

ing the respective observation,

X =


1 x11 x12 · · · x1,p−1

1 x21 x22 · · · x2,p−1

...
...

...
...

...

1 xn1 xn2 · · · xn,p−1

 ,

we can write the linear regression model in matrix form

y = Xβ + ε.

Here ε = (ε1, . . . , εn)ᵀ denotes a vector of independent and identically (iid) nor-

mally distributed unobservable error terms and β = (β0, . . . , βp−1)
ᵀ the vector of

unknown parameters. We therefore want to find estimates β̂0, β̂1, . . . , β̂p−1 of those

parameters based on our observed sample. With these parameter estimates we can

then estimate the expected value of Yi, the so called fitted value µ̂i = xᵀ
i β̂. The

residuals are the difference between the variable yi and the corresponding fitted

value, i.e. ri = yi − µ̂i.

The goal is now to find the best estimates for the parameters β0, . . . , βp−1, which

we get by the least square estimator β̂, which minimizes the sum of squared errors

SSE(β) = (y −Xβ)ᵀ(y −Xβ).

Under sufficient regularity assumptions we can calculate the least squares estimator

explicitly by

β̂ = (XᵀX)−1Xᵀy.

Since we assume normality of the response, the log-likelihood function is given by

log f(y|β, σ2) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(yi − µi(β))2

= −n
2

log(2πσ2)− 1

2σ2
SSE(β).

This on the other hand implies that the least squares estimator β̂, which minimizes

SSE(β), also maximizes the log-likelihood function with respect to β. Therefore

4
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the least squares estimator is equivalent to the maximum likelihood estimator for

β. This is an especially nice property since when using generalized linear models

we estimate the parameters by maximizing the respective log-likelihood function.

A value which is often discussed when dealing with linear regression models is

the so called coefficient of determination R2. R2 denotes the proportion of the

variance of the dependent variable, which can be explained by the covariates and

is defined by

R2 =
SSR(β̂)

SST
= 1− SSE(β̂)

SST
, 0 ≤ R2 ≤ 1.

This is based on the fact that the sum of squared errors SSE(β̂) and the regres-

sion sum of squares SSR(β̂) sum up to the total sum of squares SST, which is

independent of the parameter estimates,

SSR(β̂) + SSE(β̂) =
n∑
i=1

(µ̂i − ȳ)2 +
n∑
i=1

(yi − µ̂i)2

=
n∑
i=1

(yi − ȳ)2 = SST.

R2 = 1 denotes perfect fit, implying yi = µ̂i for all i = 1, . . . , n and therefore

SSE(β̂) = 0. R2 = 0 means that there is no linear dependency between the

covariates and the response variable. Therefore β = 0, which implies µ̂i = ȳ for

all i and SSR(β̂) = 0. For all other cases R2 increases with every predictor added

to the model. Therefore an often used modification is the so called adjusted R2,

denoted by R2
adj and given by

R2
adj = 1− SSE(β̂)/(n− p)

SST/(n− 1)
,

with p− 1 predictors in the model.

2.2 Generalized Linear Model

For several reasons it can be necessary to relax the linear regression assumptions

and extend it to the so called generalized linear model. Again we face a vector y =

(y1, . . . , yn)ᵀ of independent responses, with E(Yi) = µi and var(Yi) = aiφV (µi).

5
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The product aiφ is the so called dispersion, where φ is the dispersion parameter

and ai a known weight. Again we have a vector of explanatory variables to each

yi collected in the design matrix X. The main difference to the linear regression

setting is, that we do not assume the responses to be normally distributed, but

allow for a much wider class of distributions. Therefore we connect the expected

value of Yi to a linear predictor ηi = xᵀ
iβ via a link function h(µi) = ηi. Here the

parameters β are estimated by the maximum likelihood estimator. However, since

the resulting system of equations is not linear in general it is solved iteratively.

There are several different methods available, with the Newton-Raphson method

as prominent example. Further, the scaled deviance, a generalization of the sum

of squared errors, is given by

1

φ
D(y, µ̂) = −2

(
`(µ̂|y)− `(y|y)

)
,

where the second term denotes the log-likelihood of the saturated model. The

deviance can be used to evaluate the goodness of fit, where large values indicate a

lack of fit.

2.2.1 Logistic Regression

A special case of a generalized linear model is the so called logistic regression. In

logistic regression we face a binary response variable, i.e. Yi ∈ {0, 1}. We therefore

set the probabilities

P(Yi = 0) = 1− πi P(Yi = 1) = πi,

which can be seen as the probabilities for failure and success respectively. As nicely

described by McCullagh and Nelder (1989), we have several different possibilities

for the link function h. Two of the most prominent ones are the logit link and the

probit link.

The logit link, is the logarithm of the odds of π,

hlogit(π) = log
( π

1− π

)
.

We can therefore model the probability π by using the inverse function of the

logit link, which corresponds to the cumulative distribution function of the logistic

6
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distribution

π =
exp(xᵀβ)

1 + exp(xᵀβ)
.

The second one, the probit link, which is the inverse of the cumulative distribution

function of the standard normal distribution, is given by

hprobit(π) = Φ−1(π).

Therefore the probability can be modelled as

π = Φ(xᵀβ).

Both functions are symmetric, i.e. h(π) = −h(1 − π) and are in general very

similar, while the logistic distribution has heavier tails compared to the normal

distribution.

2.2.2 Log-linear Poisson Model

A second very prominent class of generalized linear models are the so called log-

linear Poisson models. In this case we assume the dependent variable Yi to be

some form of counting, for example the number of goals scored in a game. It is

common practice, that we then assume the variables Yi to be Poisson distributed

with intensity parameter λi and therefore P(Yi = y|λi) =
λyi
y!

exp(−λi).

For the Poisson distribution the expected value is equal to the variance, E(Yi) =

λi = var(Yi). Therefore the dispersion parameter φ is 1. The logarithm is the

usual link function in Poisson regression, this is why it is also called log-linear

Poisson model. We therefore result in a model of the form

log(λi) = ηi = xᵀ
iβ.

2.2.3 Multinomial Response Models

In comparison to the logistic regression setting where we faced a binary response

variable it is also possible to face a categorical response variable, which might take

values in c different categories. There are several familiar examples for categorical

response variables, like blood type (0, A, B, AB) or measurements of agreement

7
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(totally disagree, disagree, neutral, agree, totally agree) or physical and mental

well-being.

As described by McCullagh and Nelder (1989) we can distinguish between three

major types of scales underlying the categorical variables, nominal, ordinal and

interval scale. Using a nominal scale implies that the categories do not show a

structure and they are exchangeable. From the mentioned examples this would

relate to the blood type. In an ordinal scale we assume the categories to be or-

dered, for example as a measurement of agreement, however we can not discuss

the distance between categories. Using an interval scale, in which categories are

ordered and we attach a score or numerical label to the categories, allows for a dis-

cussion of the distance between those categories. These scores can be for example

the category mean or median. A special case of all mentioned, is the case c = 2

where we result in a binary measurement and therefore in logistic regression.

Since the main focus of the following chapters will be drawn to ordinal response

variables which are therefore discussed in more detail, we will only shortly describe

a model for nominal response variables at this point. We therefore assume a sam-

ple of independent multinomial responses y1, . . . , yn, where yi = (yi1, . . . , yic) and∑c
j=1 yij is fixed for each i. Let πi = (πi1, . . . , πic) denote the corresponding vector

of categorical probabilities. In comparison to the binary logistic case, where we

model the logarithm of the odds linearly, i.e. log πi1
πi2

= ηi, we can choose out of c

possible reference categories in the multinomial case. However, it is common prac-

tice to choose the first category as reference category. Note, that by the structure

of a nominal scale this category can be arbitrarily exchanged. We therefore result

in a model of the form

log
πij
πi1

= ηij = xᵀ
iβj , j = 2, . . . , c.

In this model, the parameter vector βj is dependent on the category, to model the

effects of xi on πij. Clearly, we restrict the sum of the probabilities to be one and

8



2.3 Model Selection

therefore get the following expressions for the categorical probabilities

πi1 =
1∑c

k=1 exp(ηik)

πij =
exp(ηij)∑c
k=1 exp(ηik)

, j = 2, . . . , c.

The described multinomial response model treats all categorical data as nominal.

Therefore if we face an ordinal response variable, we would loose some information

contained in the data, namely the ordering. As described by Agresti (2010), many

advantages can be obtained by treating an ordered response variable as ordinal

instead of nominal. They might apply in settings where the standard nominal

models have too many parameters, extend the variety of possible models with

simpler interpretations and can use measures similar to those used for quantitative

variables, as correlations or slopes.

2.3 Model Selection

In model selection we have two essential tasks, the first one is the choice of the

model type and the second one is to decide which subset of the available pre-

dictor variables is the best choice to compromise between a satisfying predictive

performance and the simplicity of the model. As Agresti (2002) formulates it

nicely: ”The model should be complex enough to fit the data well. On the other

hand, it should be simple to interpret, smoothing rather than overfitting the data.”

Two of the most prominent model selection criteria are the Akaike information

criterion (AIC) and the Bayesian information criterion (BIC). It holds for both,

that we want to minimize the respective value. Both base on the same idea, namely

to measure the goodness of fit by the log-likelihood and to punish the number of

predictors included in the model. The AIC was introduced by Akaike (1974),

AIC = 2[−`(θ̂|y) + p],

where θ̂ denotes the MLE of the parameters θ estimated in the model and p de-

notes the number of variables included.

9
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Schwarz (1978) introduced the BIC, which has a very similar appearance as the

AIC,

BIC = −2`(θ̂|y) + p log n.

The main difference is the penalization of the number of parameters which is log n

instead of 2. This on the other hand means that if n > exp(2) = 7.38 the optimal

model chosen by the BIC would not be more complex, compared to the one chosen

by the AIC.

Hurvich and Tsai (1989) introduced a bias corrected form of the AIC, the so

called corrected Akaike information criterion AICc, which is useful if facing a

small sample size or a large fraction of fitted parameters in relation to the sample

size,

AICc = −2`(θ̂|y) + 2p+
2p(p+ 1)

n− p− 1
= AIC +

2p(p+ 1)

n− p− 1
.

It is obvious that for n→∞, the AICc converges to the AIC.

When fitting models, in which the response variables are categorical we have sev-

eral different possibilities to assess the goodness of fit. The first are Pearson χ2

and deviance tests. The Pearson χ2 test statistic is given by

χ2 =
c∑
j=1

Oj − Ej
Ej

,

where c denotes the number of response categories, Oj the number of observations

in category j and Ej the expected number of observations in category j. The

deviance goodness of fit test statistic is based on the deviance given in the previous

section. For categorical data it is of the form

D = 2
c∑
j=1

Oj log
Oj

Ej
,

both test statistics are compared with the χ2-distribution with (c− 1) degrees of

freedom.

When predicting categorical variables, we actually predict the probability for each

category. For comparability reasons we are going to choose the category with

10
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the highest predicted probability as predicted category. If we want to assess how

good we perform when predicting categories we have several possibilities which

essentially only distinguish by the choice of the training and the test sets. To

evaluate the performance, we assess how often we predicted the correct category

and are going to use three different methods, namely in sample, jackknife and data

splitting. When assessing the in sample accuracy of a model, we use all available

observations as training set and as test set. This has the disadvantage that the

observation we are testing for was also part of the model fit and therefore had

influence on the estimates. In contrast to jackknife, where we use all observations

expect one to train the model and then assess the performance of the one left out.

This is repeated for all observations separately.

When we are talking about data splitting, we mean that for a given probabil-

ity p and n observations, we generate n Bernoulli random variables with success

probability p. Each Bernoulli variable indicates whether the respective observa-

tion is in the training or in the test set. With the resulting training set we fit the

model and then assess the accuracy of the test set. This procedure is repeated a

presetted number of times N and is finally averaged to give the respective overall

accuracy. The main difference to cross-validation as presented in Section 5.3 is

that in cross-validation we build the folds once and then assess the accuracy for

each fold, while in data splitting we only assess the accuracy for one test set in

each loop.

11





3 Cumulative Logit Models

The goal of the following chapter is to find a model structure that is able to use the

ordinal structure of the response variable while keeping already known methods

available. We therefore, according to Agresti (2010), first define cumulative logits

and a cumulative logit model.

Let Y be a response variable with c outcome categories, while π1, . . . , πc describe

the respective probabilities. The cumulative logits are defined as

logit[P(Y ≤ j)] = log

[
P(Y ≤ j)

1− P(Y ≤ j)

]
= log

[
π1 + · · ·+ πj
πj+1 + · · ·+ πc

]
, j = 1, . . . , c− 1.

(3.1)

These logits generalise the ordinary binary logit of the response outcome split into

two results, (Y ≤ j) and (Y > j). Each cumulative logit uses all c response

categories. The cumulative logits are not defined for j = c because P(Y ≤ c) = 1

and we would therefore divide by zero. Ordinal models use the (c− 1) logits to fit

a single model. This approach may result in easier to interpret models than fitting

separate models. There are some other logits, which should be mentioned because

they allow for different assumptions on the structure of the ordinal response. For

more details refer to Agresti (2002) or Agresti (2010).

• The adjacent-categories logits

log

(
πj
πj+1

)
, j = 1, . . . , c− 1.

• The baseline-category logits

log

(
πj
πc

)
, j = 1, . . . , c− 1.
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• The continuation-ratio logits

log

(
πj

πj+1 + · · ·+ πc

)
, j = 1, . . . , c− 1.

Suppose there are n observations, let yi denote the outcome category and let xi

denote the vector of the corresponding explanatory variables of observation i. Our

cumulative logit model then has the form

logit[P(Yi ≤ j)] = αj + xᵀ
iβ = αj + β1xi1 + β2xi2 + · · · , (3.2)

where β is a vector of parameters describing the effects of the explanatory variables.

The equivalent model expression for the cumulative probabilities is

P(Yi ≤ j) =
exp(αj + xᵀ

iβ)

1 + exp(αj + xᵀ
iβ)

, j = 1, . . . , c− 1.

As a result the category probabilities are,

P(Yi = j) =
exp(αj + xᵀ

iβ)

1 + exp(αj + xᵀ
iβ)
− exp(αj−1 + xᵀ

iβ)

1 + exp(αj−1 + xᵀ
iβ)

with α0 = −∞ and αc =∞. Thompson and Baker (1981) called this link function

for the category probabilities composite link function. To simplify notation and

unless we need to refer to specific subjects or to specific values of the explanatory

variables, we replace P(Yi ≤ j|xi) by P(Y ≤ j). Keeping in mind that in the model

this is a conditional probability at each fixed value of the explanatory variables.

Proposition 3.0.1. The αj are increasing in j.

Proof. If j < k, then by ordering P(Y ≤ j) ≤ P(Y ≤ k) holds. Therefore,

exp(αj + xᵀβ)

1 + exp(αj + xᵀβ)
≤ exp(αk + xᵀβ)

1 + exp(αk + xᵀβ)
,

after doing some simple calculations this results in exp(αj+x
ᵀβ) ≤ exp(αk+xᵀβ).

By monotonicity and positivity of the exponential function this directly implies

αj ≤ αk.

The αj are strictly increasing in j, if πj 6= 0 ∀j ∈ {1, . . . , c}.
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3.1 Single Continuous Predictor

3.1 Single Continuous Predictor

Lets first consider the model described in (3.2), with a single continuous predictor

x

logit[P(Y ≤ j)] = αj + βx, j = 1, . . . , c− 1.

Figure 3.1 shows the model for c = 4 outcome categories of Y . For fixed j, the

response curve is an ordinary logistic regression curve for a binary response with

outcomes (Y ≤ j) and (Y > j). The common effect β for the three cumulative

logits implies that the three curves for the cumulative probabilities for j = 1, 2, 3

have the same shape. At any fixed x value, the curves have the same ordering

as the cumulative probabilities, the one for P(Y ≤ 1) being lowest. If β = 0, the

graph of P(Y ≤ j) as a function of x is a horizontal line for each j. Then, Y is

statistically independent of x.

Theorem 3.1.1. For j < k, the curve for P(Y ≤ k) is the curve for P(Y ≤ j)

shifted by (αk − αj)/β units in the x direction,

P[Y ≤ k|X = x] = P[Y ≤ j|X = x+ (αk − αj)/β].

Proof. We know that

P[Y ≤ k|X = x] =
exp(αk + βx)

1 + exp(αk + βx)
.

By

exp(αk + βx) = exp
(
αk + βx+ β

αj − αj
β

)
= exp

(
β
αk
β

+ βx+ αj − β
αj
β

)
= exp

(
αj + β(x+

αk − αj
β

)
)
,

it holds that

P[Y ≤ k|X = x] =
exp

(
αj + β(x+

αk−αj

β
)
)

1 + exp
(
αj + β(x+

αk−αj

β
)
) = P[Y ≤ j|X = x+(αk−αj)/β].

Figure 3.2 shows the corresponding curves for the category probabilities. For both,

Figure 3.1 and Figure 3.2, β was chosen to be positive. If β would be smaller than

0, the curves in Figure 3.1 would descend and the labels in Figure 3.2 would reverse

order.
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Figure 3.1: Cumulative Probabilities for a single continous predictor

3.2 Alternative Parametrization

Often, the cumulative logit model as shown in (3.2) is expressed with a negative

sign in the parametrization, i.e.

logit[P(Yi ≤ j)] = αj − xᵀ
iβ, j = 1, . . . , c− 1. (3.3)

This parametrization assures a more natural interpretation, keeping the usual

directory meaning. An increase in the explanatory variables, increases the proba-

bility that Y falls at the high end of the categorical spectrum. Some software use

the parametrization as shown in (3.2) and some the one shown in (3.3). Therefore

it is necessary to keep this in mind when actively using software to be aware of

the interpretation. If not mentioned otherwise, we are going to use the form

logit[P(Yi ≤ j)] = αj + xᵀ
iβ, j = 1, . . . , c− 1.

16



3.3 Proportional Odds

Figure 3.2: Category Probabilities

3.3 Proportional Odds

The model described in (3.2) satisfies

logit[P(Y ≤ j|x1)]− logit[P(Y ≤ j|x2)] = log

[
P(Y ≤ j|x1)/P(Y > j|x1)

P(Y ≤ j|x2)/P(Y > j|x2)

]
= (x1 − x2)

ᵀβ.

This means, that the odds of (Y ≤ j) at x = x1 are the odds at x = x2 multiplied

by exp((x1 − x2)
ᵀβ). The log cumulative odds are proportional to the difference

between x1 and x2. This property is independent of the choice of j. McCullagh

(1980) therefore called the model described in (3.2), proportional odds model.

However, according to Agresti (2010) we will refer to this model as the propor-

tional odds version of the cumulative logit model.

”The term ordered logit is vague, because there are also other types of

logit models for ordinal data [..]. The term proportional odds is also

vague, because these other logit models for ordinal data can also have

a proportional odds structure.” (Agresti, 2010)
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3 Cumulative Logit Models

3.4 Latent Variable Motivation

In this section we want to motivate why it is legit to use a common effect β

for the different cumulative logits. Suppose a latent, continuous variable Y ∗ is

underlying Y and varies around a location parameter η, for example a mean, for

which η(x) = xᵀβ. For the cdf of Y ∗, then

P(Y ∗ ≤ y∗|x) = G(y∗ − η(x)).

Furthermore suppose −∞ = α0 < α1 < · · · < αc = ∞ are thresholds on the con-

tinuous scale, such that the ordinal variable Y falls in category j being equivalent

to the latent variable Y ∗ taking values in the j-th interval,

Y = j ⇐⇒ αj−1 < Y ∗ ≤ αj.

This is visualized in Figure 3.3. For this choice of the latent variable and its

thresholds, it holds that

P(Y ≤ j|x) = P(Y ∗ ≤ αj|x) = G(αj − xᵀβ).

Therefore we obtain the link function G−1, applying to P(Y ≤ j|x) to get a linear

predictor,

G−1[P(Y ≤ j|x)] = αj − xᵀβ.

The proportional odds version of the cumulative logit model, with alternative

parametrization is obtained if G is the cdf of the standard logistic distribution

G(x) = exp(x)
1+exp(x)

, then G−1 is the logit link function and therefore implies the

model. With the cdf choosen above, we rather result in a model with linear pre-

dictor αj −xᵀβ. In practice, it does not make a difference, as long as one is aware

of which sign is used and how to interpret the model correctly. Another obvious

choice would be that G is the cdf of the standard normal distribution, which would

directly lead to the probit model (Anderson and Philips, 1981).

The latent variable motivation clarifies why the choice of the response categories

does not make an impact on β, regardless of how the thresholds {αj} on the con-

tinuous scale where chosen. This property makes it possible to compare different

studies on the same topic, with differently chosen responses. As an example imag-

ine two studies on pain after a surgery, one with three response categories (pain,

exhausted, well) and one with five (great pain, pain, exhausted, well, very well).
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3.5 Other Cumulative Links

Figure 3.3: Latent variable motivation for 4 categories and an underlying linear

regression model for the latent variable (cp. Agresti, 2002)

3.5 Other Cumulative Links

As already mentioned, the type of link functions depends on the choice of the un-

derlying distribution function G. The cumulative logit model results for the choice

of the standard logistic distribution, with the logit link function. Agresti (2002)

also describes the probit link and the log-log link.

Using the probit link function, gives the so called cumulative probit model.

It results from the choice of the standard normal cdf Φ for G, being appropriate

if the latent variable Y ∗ is assumed to be normally distributed. In this model, β

has the interpretation that an one unit increase in xk corresponds to a βk increase

in E(Y ∗) when keeping all other explanatory variables fixed at the same value. If

the error term ε is not necessarily in standardized form with variance 1, an one

unit increase in xk corresponds to a βk standard deviation increase in the expected

value of Y ∗.
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3 Cumulative Logit Models

If the latent variable Y ∗ is assumed to follow a Gumbel distribution, with cdf

G(y) = exp{− exp[−(y − a)/b]},

the resulting link function is the so called complementary log-log link, since

the log-log link applies to the complement of the cumulative probability. This

implies a model of the form

log{− log[1− P(Y ≤ j)]} = αj + xᵀβ.

To clarify notation and to have a model to refer to, if we do not want to specify

the link function, respectively the assumed distribution of the underlying latent

variable, we define a more general form, the so called cumulative link model.

Let h be an arbitrary link function. We then define the class of cumulative link

models by

h[P(Y ≤ j)] = αj + xᵀβ, j = 1, . . . , c− 1. (3.4)

This model again links the cumulative probabilities to a linear predictor and the

effects of x are the same for each cumulative probability.

3.5.1 Dispersion Effects

As defined by Casella and Berger (2002), a cdf FX1 is called stochastically

greater than a cdf FX2 , if FX1(t) ≤ FX2(t), ∀t and FX1(t) < FX2(t) for some t.

Since the cumulative link models have the same effect β for all cumulative proba-

bilities we have a stochastic ordering. This means that for given x1 and given x2

either P(Y ≤ j|x1) ≤ P(Y ≤ j|x2) for all j or P(Y ≤ j|x2) ≤ P(Y ≤ j|x1) for all j.

If dispersion changes substantially for different predictor values, this might result

in a poor model fit. Agresti (2002) gives the following explanation:

”Perhaps responses tend to concentrate around the same location but

more dispersion occurs at x1 than at x2. Then perhaps P(Y ≤ j|x1) >

P(Y ≤ j|x2) for small j but P(Y ≤ j|x1) < P(Y ≤ j|x2) for large j.

In other words, at x1 the responses concentrate more at the extreme

categories than at x2.”
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3.6 Thresholds

A cumulative link model including dispersion effects is

h[P(Y ≤ j|x)] =
αj + xᵀβ

exp(xᵀγ)
.

As descripted in Section 3.2, it is again possible to change the sign in the linear

predictor. The parameter γ describes the dispersion’s dependence on x. The or-

dinary cumulative link model (3.4) results if γ = 0. The main difference between

the ordinary cumulative link model and the cumulative link model including dis-

persion effects, is that the estimation in the second one becomes more complex,

since it is not linear in the parameters anymore.

3.6 Thresholds

So far, we have not discussed restrictions on the thresholds α, except for the

monotony described in Proposition 3.0.1. We call these unrestricted but ordered

thresholds, flexible thresholds. Christensen (2018) describes the possibility of

structured thresholds. Structured thresholds allow for restrictions on the ap-

pearance of the thresholds. We model this by a linear function g(θ) = Jᵀθ = α,

where θ is the vector of parameters describing the thresholds. For example, when

restricting the thresholds to be equidistant, we only need to estimate two parame-

ters, namely the location of the first threshold and the distance between adjacent

ones. For c = 5 we therefore result in a matrix of the form

Jequidistant =

(
1 1 1 1

0 1 2 3

)
.

Analogously it is possible to force the thresholds to be symmetric, which would

result in a matrix of the form

Jsymmetric =

(
0 −1 1 0

−1 0 0 1

)
,

again for c = 5. For the symmetry restriction it is possible to find more than one

appearance of the matrix J . Most available software dealing with cumulative link

models, have the option to restrict on the values and appearance of the thresh-

olds. This might be useful in practice to ensure a better interpretability of the

corresponding results.
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4 Maximum Likelihood

Estimation

In order to be able to estimate the parameters of the cumulative link model, we will

derive the maximum likelihood equations as described in Agresti (2010) and we

will see a regularized Newton-Raphson algorithm with step halving, which is the

method of choice in the package ordinal, made available by Christensen (2019),

used in R (R Core Team, 2019). Certainly, there are different methods available

to maximize the likelihood function, since the Newton-Raphson algorithm is the

one we are going to use in the application when dealing with unpenalized likeli-

hood functions, we restrict on this algorithm. However, when trying to optimize

penalized likelihood functions, which is needed when applying regularization tech-

niques, we will use a different, more complex algorithm. This alternative algorithm

is described in Section 5.3.1. In addition we will shortly discuss the possibility of

infinite estimates.

4.1 Equations

In the following we will treat cumulative link models as multivariate generalized

linear models and therefore assume a multinomial distribution. h describes the link

function, which applies to a vector of means (π1(xi), . . . , πc(xi)). For i ∈ {1, . . . , n}
and j ∈ {1, . . . , c} we define

yij =

{
1 if yi = j

0 otherwise.
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Let G = h−1 be the inverse link function and assume independent observations,

then the likelihood-function is

n∏
i=1

c∏
j=1

πj(xi)
yij =

n∏
i=1

c∏
j=1

[P(Yi ≤ j|xi)− P(Yi ≤ j − 1|xi)]yij

=
n∏
i=1

c∏
j=1

[G(αj + xᵀ
iβ)−G(αj−1 + xᵀ

iβ)]yij

= L(α,β).

Therefore the log-likelihood function is

log(L(α,β)) = `(α,β) =
n∑
i=1

c∑
j=1

yij log [G(αj + xᵀ
iβ)−G(αj−1 + xᵀ

iβ)] .

Let now g denote the derivative of G, the density function of the corresponding

cdf. Then, we result in the following equations

∂`

∂βk
=

n∑
i=1

c∑
j=1

yijxik
g(αj + xᵀ

iβ)− g(αj−1 + xᵀ
iβ)

G(αj + xᵀ
iβ)−G(αj−1 + xᵀ

iβ)

and

∂`

∂αk
=

n∑
i=1

c∑
j=1

yij
δjkg(αj + xᵀ

iβ)− δj−1,kg(αj−1 + xᵀ
iβ)

G(αj + xᵀ
iβ)−G(αj−1 + xᵀ

iβ)
,

where δjk is the Kronecker delta, for which δjk = 1 if j = k and zero else. For

notational purpose we will set zij = αj + xᵀ
iβ, then the second derivatives are

∂2`

∂βk∂βl
=

n∑
i=1

c∑
j=1

yijxikxil

{
[G(zij)−G(zi,j−1)][g(zi,j−1)zi,j−1 − g(zij)zij]

[G(zij)−G(zi,j−1)]2

− [g(zi,j−1)− g(zij)]
2

[G(zij)−G(zi,j−1)]2

}
∂2`

∂βk∂αl
=

n∑
i=1

c∑
j=1

yijxik

{
[g(zi,j−1)− g(zij)][δjlg(zij)− δj−1,lg(zi,j−1)]

[G(zij)−G(zi,j−1)]2

− [G(zij)−G(zi,j−1)][δjlg(zij)zij − δj−1,lg(zi,j−1)zi,j−1]

[G(zij)−G(zi,j−1)]2

}
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4.2 Infinite Parameter Estimates

∂2`

∂αk∂αl
=

n∑
i=1

c∑
j=1

yij

{
[G(zij)−G(zi,j−1)][δj−1,kδj−1,lg(zi,j−1)zi,j−1 − δjkδjlg(zij)zij]

[G(zij)−G(zi,j−1)]2

− [g(zij)δjk − g(zi,j−1)δj−1,k][g(zij)δjl − g(zi,j−1)δj−1,l]

[G(zij)−G(zi,j−1)]2

}
.

Burridge (1981) showed that the log-likelihood function of the cumulative link

model is concave and therefore there exists a unique global optimum.

4.2 Infinite Parameter Estimates

McCullagh (1980) argued that the probability of a unique maximum tends to

one, if the sample size increases. Therefore, a sufficiently large n guarantees a

well-defined maximum. However, for finite n, we might face infinite parameter

estimates. Some indicators, that this might be the case are relatively small sam-

ple sizes, highly unbalanced data or a large number of model parameters. If the

estimate β̂k = ∞ occurs, this means that the log-likelihood function continues to

increase as βk increases, the same holds for the reversed direction. From binary

logistic regression models, it is known that an estimate is infinite or does not exist

if the space of predictor variables is separable by a hyperplane into the ones with

y = 0 and y = 1. For a cumulative logit model this is true, if the separation is

possible for all (c− 1) resulting binary responses.

When facing infinite parameter estimates, one possible solution is to use a simpler

model in which all parameters and interactions which have an infinite estimate

are removed from the model. However, if the simpler model fits poorly this has to

be taken into account when interpreting the model. Agresti (2010) describes how

to still use models with an infinite estimate. Regardless, if we face this situation

in practice, we are going to use methods to remove or improve the estimate of

the corresponding parameter. For numerical reasons most software is not able to

detect infinite estimates, therefore unusually large estimates with huge standard

errors are indicators that we might face a parameter which has an infinite estimate.
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4.3 Regularized Newton-Raphson Algorithm

In the following we will see a regularized Newton-Raphson algorithm with

step-halving using analytical expressions for the gradient and Hessian of the

negative log-likelihood function as described in Christensen (2018). Christensen

argues the choice of this algorithm with the following statement.

”Due to computationally cheap and efficient evaluation of the ana-

lytical derivatives, the relative well-behaved log-likelihood function [..]

and the speedy convergence of the Newton-Raphson algorithm, the es-

timation of CLMs is virtually instant on a modern computer even with

complicated models on large datasets. This also facilitates simulation

studies. More important than speed is perhaps that the algorithm is

reliable and accurate.”

4.3.1 The Algorithm

The regularized Newton-Raphson algorithm is an iterative algorithm, whose out-

put is a sequence of estimates ψ(1), . . . ,ψ(i). Given the i-th estimate, we get the

(i+ 1)-th estimate by

ψ(i+1) = ψ(i) − c1h(i)

where

h(i) = H̃(ψ(i);y)−1g(ψ(i);y)

with

H̃(ψ(i);y) = H(ψ(i);y) + c2(c3 + min(e(i)))I.

Here g(ψ(i);y) is the gradient of the negative log-likelihood function evaluated at

the current estimates and H(ψ(i);y) the respective Hessian matrix. e(i) denotes

the vector of eigenvalues of the Hessian. c2 and c3 are scalar parameters which

control the regularization in the Newton-Raphson algorithm. This regularization

only takes place if the Hessian is not positive definite, therefore c2 ∈ {0, 1}. Due

to numerical reasons c2 = 1 if min(e(i)) < τ , where τ is an appropriate tolerance.

In our case c3 = 1 and therefore simplifies the described algorithm. In the general

case, c3 is arbitrary, however positive. Finally c1 is the scalar parameter which

controls the step-halving. Step-halving takes place, when the full step h(i) results
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4.3 Regularized Newton-Raphson Algorithm

in a decrease in the likelihood function. In this case c1 is repeatedly halved c1 =
1
2
, 1
4
, . . . until the step is small enough to increase the likelihood function or until

the maximum number of step-halvings is reached and the algorithm is forced to

stop.

4.3.2 Convergence Properties

The algorithm described in Section 4.3.1 is used in the package ordinal, made

available by Christensen (2019). It has two convergence criteria, an absolute and

a relative criterion. While the absolute criterion requests

max |g(ψ(i);y)| < τ1,

the relative criterion asks for

max |h(i)| < τ2,

where τ1 and τ2 are set to τ1 = τ2 = 10−6. The algorithm used in the package,

attempts to satisfy the absolute convergence criterion first.

The goal, to find a well-defined optimum, is achieved, if the gradient with re-

spect to the parameters is small and the correpsonding Hessian matrix is positive

definite. It is not uncommon in practice, that the likelihood function is almost flat

in one or more directions and we therefore result in identifiability problems. The

so called condition number of the Hessian, which is the ratio of the largest and the

smallest eigenvalue, is a possible method to measure the empirical identifiability.

The function clm reports this condition number after stopping the algorithm. Ac-

cording to Christensen (2018) a condition number less than 104 strongly indicates,

that a well-defined optimum has been reached.
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5 Regularization

To determine a model, we have to fulfil several tasks, two of them are variable se-

lection and parameter estimation. One, well known, variable selection procedure is

stepwise selection. In stepwise selection, we start with a given model and check if

adding, removing or replacing a predictor would improve some kind of previously

chosen criterion. Common choices for this criterion are the Akaike Information

Criterion, the Bayesian Information Criterion or a corrected version of the Akaike

Information Criterion if one wants to adjust for a high number of possible pre-

dictors in relation to a small sample size. Examples for parameter estimation are

Ordinary Least Square Estimation or Maximum Likelihood Estimation. The goal

of the regularization methods described in the following is to avoid overfitting

or to handle infinite parameter estimates, by adjusting in variable selection and

in parameter estimation. An overfitted model is an model that corresponds too

closely to the available sample and therefore might fail to predict observations,

which are not included in the sample, satisfactorily. Figure 5.1 shows a visual

representation of an overfitted model against a balanced model. As Bickel et al.

(2006) formulate loosely, regularization is the class of methods needed to modify

maximum likelihood to give reasonable answers in unstable situations. We will

focus on popular and well known regularization techniques, even though there are

several other methods available. We are going to discuss ridge regression, first in-

troduced by Hoerl (1962) and well described and discussed in Hoerl and Kennard

(1970). In ridge regression we add a quadratic penalty term to the maximization

problem, which is therefore also referred to as L2-regularization. A very similar

approach is the so called lasso, introduced by Tibshirani (1996). The main differ-

ence to ridge regression is the form of the penalty term, which is a sum of absolute

values in the lasso case. It is therefore also referred to as L1-regularization. A

combination of both was introduced by Zou and Hastie (2005), as the so called
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Figure 5.1: Graphical representation of overfitting; the green line represents a bal-

anced model and the black line an overfitted model

elastic net penalty. The elastic net penalty is simply a convex combination of the

L1 and the L2 penalty terms. While ridge regression does not perform variable

selection, lasso and the elastic net penalty are able to reduce several parameters

to zero and therefore increase the interpretability of the model.

5.1 Collinearity and Motivation

When we face a linear model including many correlated variables, their parameters

might become poorly determined with high variance. A large negative parameter

estimate on one variable can be cancelled by an equally large positive parameter

estimate on its correlated twin. One possible solution is to constraint the size of

the parameter estimates, which is the basic idea behind ridge regression. When

talking about strongly correlated variables, we have to distinguish between two

different types of multi-collinearity, firstly exact multi-collinearity, in which

two or more explanatory variables are linearly dependent. This however implies

that the design matrix X does not have full rank, as well as XᵀX. Therefore,

XᵀX is not invertible. If the covariates are only approximately linearly depen-
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5.1 Collinearity and Motivation

dent, we face approximate multi-collinearity. In the situation of approximate

multi-collinearity the design matrix X and XᵀX do have full rank, due to the al-

most linear dependency the estimates might become very unstable. This is caused

by that fact that det(XᵀX) reaches a value near zero and therefore at least one

eigenvalue λi becomes very small. Again the so called condition number, as men-

tioned in 4.3.2, the ratio between the largest and the smallest eigenvalue, is a

possible measure of multi-collinearity, with a high value indicating the presence of

approximate multi-collinearity. There exist some other methods to detect multi-

collinerity. The first to mention is the so called Farrar-Glauber test, introduced

by Farrar and Glauber (1967). It is actually a composition of three hypothesis

tests, a chi-square test on the presence of multi-collinearity, i.e. checking if the

null hypothesis that X is orthogonal has to be rejected, a F-test for the location

of multi-collinearity and a t-test for the pattern. It is to mention, that several

authors, like Kumar (1975) or Wichers (1975), criticized the Farrar-Glauber test

in their work. The second method is the so called variance inflation factor

(VIF)

V IFj =
1

1−R2
j

, j = 1, . . . , p.

Here R2
j is the coefficient of determination of xj being treated as dependent vari-

able and the remaining xi with i 6= j as predictors. A large value of VIF, highlights

the possibility of multi-collinearity. Alin (2010) claims that the threshold value

between small and large is usually taken to be 10. With a VIF of 10, the corre-

sponding R2
j would be 0.9, indicating that a huge amount of variability of xj can

be explained by the other predictors.

If the sample size is large enough, it might be possible to determine the parameters

accurately by maximum likelihood. In practice however, the sample size often is

not big enough to result in reliable estimates, sometimes not even unique. It there-

fore might be beneficial to use a penalized version of the log-likelihood function.

Tibshirani (1996) introduces the lasso assuming that the predictor variables are

standardized and Zou and Hastie (2005) additionally assume that the response

variable is centred. However, since we are going to discuss ordinal regression mod-

els, we only assume the predictor variables to be standardized. This means that
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we transform location and scale, simply by using the mean and standard devia-

tion. Standardizing the predictors has several advantages. Firstly, rescaling all

variables to equal size and unit standard deviation makes them more comparable.

As pointed out by Hastie, Tibshirani, and Friedman (2009), standardizing the pre-

dictors also makes the penalty term more meaningful. In addition we observed an

improved numerical stability when using standardized predictors. So from now on

all predictors are assumed to be standardized, i.e.

n∑
i=1

xij = 0 and
n∑
i=1

x2ij = 1, j = 1, . . . , p

5.2 Regularization Methods

The main idea of the following regularization methods is, to add a penalization

term to the optimization problem, either as a constraint or equivalently, directly

in the functional. All presented methods where introduced using least squares in

an ordinary regression setting and can therefore be written as penalized least

squares

β̂ = arg min
β

[(y −Xβ)ᵀ(y −Xβ) + P (λ,β)]. (5.1)

Here P (λ,β) denotes the penalty term and λ ≥ 0 a tuning parameter, controlling

the influence of the penalty term. If λ = 0 we would get the ordinary least squares

estimate.

However, when using generalized linear models we might face some difficulties

using least squares estimates. Tibshirani (1996) suggests in his work introducing

the lasso, to use the log-likelihood when applying it to generalized linear models.

Therefore we will rewrite (5.1), replacing the least squares by the log-likelihood

function. We result in the optimization of the penalized likelihood

β̂ = arg min
β

[−`(θ) + P (λ,β)]. (5.2)

θ denotes the vector of unknown parameters, possibly including intercept and

thresholds. However, the penalty term only depends on the coefficients of the

covariates.
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5.2.1 Ridge Regression

As already mentioned, Hoerl and Kennard (1970) introduced ridge regression for

ordinary least squares regression, we will therefore first introduce it analogously

and then extend it to our purposes. In ridge regression the length of the pa-

rameters is restricted, therefore the optimization problem is of the form

β̂ridge = arg min
β

[(y −Xβ)ᵀ(y −Xβ)], s.t.

p∑
j=1

β2
j ≤ t, t ≥ 0. (5.3)

This formulation makes the constraint on the length of the parameters explicit.

An equivalent formulation, in the form of a penalized least squares is then

β̂ridge = arg min
β

[(y −Xβ)ᵀ(y −Xβ) + λ

p∑
j=1

β2
j ]. (5.4)

It is clear to see that t and λ are closely related. There exists a t such that for a

specific value of λ the estimates resulting as a solution of (5.3) and (5.4) are equal.

In terms of an ordinary regression problem we can calculate the solution explicitly

by

β̂ridge = (XᵀX + λI)−1Xᵀy,

where I is the identity matrix. By adding the identity matrix to XᵀX, we assure

that the matrix is invertible. Finally, to extend it to generalized linear models

we simply specify the penalty term in (5.2), corresponding to the ridge penalty or

L2-penalty P (λ,β) = λ
∑p

j=1 β
2
j .

As mentioned by Hesterberg, Choi, Meier, and Fraley (2008), using a ridge penalty

includes all predictors with typically smaller coefficients in comparison to the un-

constrained version. As λ increases, the coefficients approach zero but do not equal

zero and therefore ridge regression do not perform variable selection. This lack

of variable selection is one major drawback of ridge regression and is one of the

reasons, why similar approaches which do perform variable selection, like lasso and

elastic net penalty, were developed. In practice the variables are scaled, such that

the penalty is invariant to the scale of the original data and the intercept is not

penalized. Flexeder (2010) mentions the major advantages of ridge regression, it

reduces the variance of the estimates, possibly improves prediction accuracy and

is less sensitive to changes in data.
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5.2.2 Lasso

When Tibshirani (1996) introduced the least absolute shrinkage and selec-

tion operator, or short lasso, the main idea was to improve prediction accuracy

on the one hand and interpretability on the other hand. Prediction accuracy is

improved by shrinking or setting some coefficients to zero. Loosely said, we trade

in a little bias to reduce the variance in the predictions. As we saw, this is what

ridge regression does. However, to improve interpretability we want less predictors

included in the final model. This is one of the main advantages of lasso regular-

ization, it sets the parameter estimates of covariates with low or no influence on

the response to zero. Therefore lasso is a useful variable selection procedure. The

main difference to ridge regression is the form of the penalty term, where the L2-

penalty is replaced by a L1-penalty. Again for motivational reasons we will start

introducing lasso using least squares and will then simply extend it to the more

general case. The optimization

β̂lasso = arg min
β

[(y −Xβ)ᵀ(y −Xβ)], s.t.

p∑
j=1

|βj| ≤ t, t ≥ 0,

is again equivalent to

β̂lasso = arg min
β

[(y −Xβ)ᵀ(y −Xβ) + λ

p∑
j=1

|βj|].

The one to one relationship between t and λ is again obvious. If t >
∑p

j=1 β̂
OLS
j ,

where β̂OLSj denote the estimates by unpenalized ordinary least squares, we result

in the same estimates. Therefore if we want to force a shrinkage of the coefficients

and perform variable selection, t <
∑p

j=1 β̂
OLS
j is a necessary restriction. To finally

extend lasso to our purposes, we set the penalty term in (5.2) to the L1-penalty

or lasso penalty P (λ,β) = λ
∑p

j=1|βj|.

An extension of the lasso can be found in Zou (2006), the so called adaptive

lasso, in which we add extra weight in the penalty term to adjust for possible

unfair penalization. Unfair in the sense that each coefficient is equally penalized.

We therefore result in

β̂ = arg min
β

[−`(θ) + λ

p∑
j=1

ωj|βj|],
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where the ωj denote known weights. For the linear regression setting Zou (2006),

propose to use ωj = 1/|β̂OLSj |ν , with ν > 0. However we might face missing imple-

mentation in R for several models, especially regarding ordinal responses.

Even though lasso possesses the variable selection property, it has some draw-

backs. As stated by Tibshirani (1996), ridge regression dominates lasso when we

face a large number of small effects. In addition, Zou and Hastie (2005) point out

that for the usual n > p case, with highly correlated predictors, the predictive

performance of lasso is dominated by ridge regression. A further drawback stated

in this work is, that the lasso does not have a grouping property, meaning that if

there is a group of highly correlated variables, lasso tends to select arbitrarily not

taking into account which one is included.

5.2.3 The Lq Penalty

In Figure 5.2 we see the comparison of lasso and ridge regression if there are only

two parameters, β1 and β2. The left part of the Figure shows the lasso, while

the square is the constraint |β1| + |β2| ≤ t and the right part shows ridge regres-

sion with the constraint β2
1 + β2

2 ≤ t. The residual sum of squares are ellipses

centered at the ordinary estimate. Both methods determine the point where the

ellipses first touch the constraint region. If this point is at the corner of the lasso

restriction area one parameter equals zero, unlike the disk which does not posses

corners. As Hastie et al. (2009) state, in the higher dimensional case the square

becomes a rhomboid and therefore has many corners and other opportunities for

the estimated parameters to be zero.

Lasso and ridge regression can be naturally extended to the Lq-penalty term

β̂Lq = arg min
β

[(y −Xβ)ᵀ(y −Xβ) + λ

p∑
j=1

|βj|q]. (5.5)

Figure 5.3 shows the contours of the constraint regions for different values of q in

the two dimensional case. We will shortly discuss properties of the parameter q,

as described by Hastie et al. (2009). For q = 0 we count the number of non-zero

parameters and therefore this method corresponds to variable subset selection.
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Figure 5.2: Estimation for lasso (left) and ridge regression (right) under the re-

spective constraints in the two dimensional space (cp. Hastie et al.,

2009)

Lasso results for q = 1 and ridge regression for q = 2, therefore values of q ∈ (1, 2)

somehow suggest a compromise between lasso and ridge regression. However, the

value of q = 1 is a limit for two very important properties. Firstly for all q less

than one, the constraint region is not convex any more, making the optimization

problem more complex. On the other hand for all values of q being larger than one,

we do not have the ability to set parameters exactly to zero. To some extend these

properties might have been the motivation to introduce the elastic net penalty,

described in the next section.

5.2.4 Elastic Net Penalty

As previously mentioned both, lasso and ridge regression, do have several draw-

backs and the compromise (5.5) for q ∈ (1, 2) looses the variable selection property.

Therefore Zou and Hastie (2005) introduced the so called elastic net penalty.

The elastic net penalty is a convex combination of both, ridge regression and lasso.
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Figure 5.3: Contours of constraint regions for given values of q

The penalty term in (5.2), with fixed α is given by

P (λ,β) = λ
[
α

p∑
j=1

β2
j + (1− α)

p∑
j=1

|βj|
]

or equivalently

P (λ,β) = λ

p∑
j=1

(
αβ2

j + (1− α)|βj|
)
. (5.6)

Therefore, the parameter estimates are then given as the solution of

β̂elasticnet = arg min
β

[−`(θ) + λ

p∑
j=1

(αβ2
j + (1− α)|βj|).]

Note that in contrary to ridge regression and lasso, the elastic net penalty pos-

sesses two tuning parameters. For α = 1 we result in ridge regression, for α = 0

we get the lasso penalty. The elastic net penalty term can therefore been seen as

a generalization of both. It is obvious that α ∈ [0, 1], otherwise the penalty term

in the optimization would perform other than intended. λ should be, as already

mentioned, chosen to be bigger zero. A discussion of how to choose the parameters

is found in Section 5.3.

As stated by Hastie et al. (2009), the elastic net combines the advantages of lasso

and ridge regression, namely the variable selection property and the grouping

property. Figure 5.4 shows a comparison between the constraint regions for the Lq

penalty with q = 1.2 and the elastic net penalty with α = 0.2. Even though they
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Figure 5.4: Constraint regions of the Lq penalty term with q = 1.2 and the elastic

net penalty with α = 0.2

look very similar, the elastic net possesses sharp corners, while the Lq penalty does

not. As already mentioned in the previous section this means that the elastic net

penalty possesses the variable selection property while the Lq penalty term does

not.

Zou and Hastie (2005) discuss the grouping property of the elastic net penalty

in further details. Essentially the grouping property means, that the parameter

estimates of highly correlated variables tend to be equal, with a negative sign for

negatively correlated ones. One disadvantage of the elastic net might be the com-

putational costs, due to the tuning parameters. This is especially noteworthy in

high dimensional settings, however can be overcome for example by presetting a

few different values for α and only tuning λ on these predefined values.

5.3 Estimation of Tuning Parameters

In the penalized likelihood model it is crucial to choose the appropriate tuning pa-

rameter, such that the performance of the fitted model is optimized with respect

to some previously set criteria. Firstly we have to distinguish between two prob-

lems, namely finding the tuning parameter λ for ridge regression, lasso and elastic

net penalty and on the other hand determining the tuning parameter α in the

elastic net penalty term. Basically, we can compare two tuning procedures, which
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Figure 5.5: Five-fold cross-validation. In each iteration one of the five folds was

used to determine the measure Mi, while the other four folds where

used to fit the model

both do not differ dramatically from ordinary model selection procedures. One

option is to select the model which is best with respect to a specific criterion, like

the AIC or BIC. The other option is to use cross-validation. Since many authors,

like Hastie et al. (2009) and Zou and Hastie (2005) in their introducing paper

choose cross-validation to determine the tuning parameters and the R-Package in

use, ordinalNet, provided by Wurm, Rathouz, and Hanlon (2020) also uses cross-

validation, we will follow their choice and use cross-validation when determining

the tuning parameters.

The main idea of cross-validation is rather simple, namely to use a part of the

available data to fit the model and to use the remaining part to test it. While there

are numerous different types of cross-validation, most of them can be described by

the so called K-fold cross-validation. Figure 5.5 gives a visual representation of

five-fold cross-validation. In K-fold cross-validation we split the available data set

into K parts of (approximately) equal size. For the k-th part, where k = 1, . . . , K,

we fit the model to the remaining k−1 parts and assess the prediction error of the

fitted model, or another measure of fit, on the k-th part. We repeat this procedure

for all k and then combine the K prediction error estimates. In practice, when
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trying to determine the tuning parameter λ, it is common to pre-set a sequence

of λ-values and to perform cross-validation for each value separately. Finally one

chooses the λ-value with the best performance.

In the elastic-net penalty case we have to estimate two tuning parameters and

therefore have to cross-validate on a two dimensional surface. This might result

in high computational costs, especially in high dimensional settings. As stated by

Zou and Hastie (2005), one practical solution might be early stopping, meaning

that one simply forces the algorithm to stop when a specific, chosen number of

variables in the model is reached. Another possibility is, as already mentioned in

the previous section, to reduce the possible number of α-values.

Independently of how one chooses to handle the determination of the tuning param-

eters, an essential question is how to choose the number of folds, K. As mentioned

by Hastie et al. (2009), common choices are K = 5, 10, n. In the case K = n, where

n is the number of observations, we talk about leave-one-out cross-validation.

For K = 5, 10 we talk about five-fold cross-validation and ten-fold cross-

validation, respectively. When choosing five-fold cross-validation, this implies

that we use 80% of the data as training set and 20% as test set, while changing

to 90%/10% in ten-fold cross-validation. Since all training sets are very similar

when using leave-one-out cross-validation, the estimator might show high variance

even though it should be approximately unbiased for the true prediction error. In

addition the computational costs are much higher in comparison to the situation

where we build less folds. Figure 5.6 shows a hypothetical learning curve and is

used to visualize the impact of the number of folds. Note that, since this is a hy-

pothetical learning curve, the stated numbers are not valid in general. In the case

of 200 observations, five-fold cross-validation would result in a training set of 160

observations, implying not much bias, since it has almost the same performance as

if one uses the whole data set for training. However, if we face a situation where

only 40 observations could be used as training set we would result in a much higher

bias. Summarizing, five-fold and ten-fold cross-validation would overestimate the

true prediction error if the learning curve shows a substantial slope at the training

set size. Leave-one-out cross-validation on the other hand reduces the bias while

possibly increasing the variance. Hastie et al. (2009) recommend five-fold and ten-
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Figure 5.6: A hypothetical learning curve, the plot of 1-Error against the size of

the training set. The total data set consists of 200 observations (cp.

Hastie et al., 2009)

fold cross-validation as a good compromise. However, in practice it might be useful

to compare the results of both with the results of leave-one-out cross-validation.

5.3.1 Optimization

The algorithm described in Section 4.3, works perfectly for unregularized likeli-

hoods. However, when using the elastic net penalty, including lasso and ridge

regression, we get in need of an adjusted optimization algorithm. Again, even

though there might be numerous different algorithms design for that purpose we

will only discuss the algorithm used in the R-package ordinalNet, since it is the

one we are going to use in the application. Wurm, Rathouz, and Hanlon (2017)

describe the algorithm used for a more general class of models, of which our mod-

els are a subset. We are only going to shortly discuss the basic idea and refer

the reader interested in more details to the work published by Wurm et al. (2017)

basing on ideas by Friedman, Hastie, and Tibshirani (2010) and Friedman, Hastie,

Höfling, and Tibshirani (2007).
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The algorithm described is an iterative one, with an inner and an outer loop.

In the outer loop we construct a quadratic approximation of the log-likelihood,

i.e. a Taylor expansion around the current parameter estimates β̂(r). The inner

loop then computes the next estimate β̂(r+1) by optimizing the penalized quadratic

approximation using coordinate descent. This is necessary since the optimization

step does not have a closed form when using the elastic net penalty. Using a coor-

dinate descent procedure, informally means that we cycle through the coefficient

estimates, update each one with the marginally best value and iterate this cycle

until a convergence criterion is met.

Since we are interested in finding the solutions for different λ-values, it makes

sense to determine the λmax-value, which is the value where the parameter esti-

mate of the first covariate is non-zero. This is simply done by determining the

threshold λ-value for each penalized coefficient where its estimate becomes non-

zero and then setting λmax to the maximum of all those thresholds. Friedman et

al. (2010) propose the strategy, after finding λmax, to set λmin = 0.01∗λmax and to

construct a decreasing sequence of λ-values from λmax to λmin on the log-scale. To

improve the efficiency of the algorithm a technique called warm starts is used. This

means that the starting value for each λ-value is the parameter estimate resulting

from the previous one. Unfortunately, there is no numerical solution provided of

how to estimate the tuning parameter α. Therefore the very pragmatic way chosen

is to simply presetting different α-values and compare the respective performances.
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In the following chapter we will have a look at methods of how to evaluate regres-

sion models for categorical response variables with respect to goodness of fit. All

three following test statistics are based on estimated probabilities, rather than on

a particular model. The strategy is to group the observations by a score and to

derive the test statistics only depending on the ordinal response variable and the

respective probability estimates. All tests base on the Pearson χ2 test and the ap-

proach by Hosmer and Lemeshow (1980) for binary data, which follow the idea to

compare observed and expected frequencies. We will first derive the test statistics

for the proportional odds version of the cumulative logit model, will then compare

the test statistics and shortly discuss advantages and drawbacks regarding the null

distributions and the power of the tests. Finally we will have a brief look at the

extension to the adjacent-category and the continuation-ratio models.

6.1 Test Statistics

Fagerland and Hosmer (2013) derived a test statistic based on the Hosmer-Lemeshow

test for binary logistic regression for the proportional odds version of the cumu-

lative logit model and compared it to a goodness of fit test proposed by Lipsitz,

Fitzmaurice, and Molenberghs (1996) and a modification of the Pearson χ2 and de-

viance statistics for ordinal models published by Pulkstenis and Robinson (2004).

Fagerland and Hosmer (2016) extended their work to the adjacent-category and

the continuation-ratio models and compared the already mentioned test statistics

also for the two alternative models. Due to the different structure of the tests and

models, it is important to note that the distributions of the test statistics might

vary between them.
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6.1.1 Lipsitz Test

First we derive the goodness of fit test for ordinal regression models, including the

proportional odds version of the cumulative logit model, proposed by Lipsitz et al.

(1996). We will therefore refer to it as the Lipsitz test. Let πij = P(Yi = j|xi)
for j = 1, . . . , c and i = 1, . . . , n, and equivalently let π̂ij denote the estimated

probabilities calculated from a fitted ordinal regression model. We then assign a

score

si = 1π̂i1 + 2π̂i2 + · · ·+ cπ̂ic, i = 1, . . . , n (6.1)

to each observation. In the next step we group the observations into g groups

of (approximately) equal size based on the assigned score, where the first group

should contain the n/g lowest score observations and the last group the n/g highest

score observations. Based on this grouping we create g − 1 indicator variables Ik,

such that

Iik =

{
1 if observation i is in group k

0 otherwise.

for i = 1, . . . , n and k = 1, . . . , g − 1. With these variables we fit a new ordinal

regression model of the same type as the previous model, additionally including

the indicators,

h[P(Y ≤ j|x)] = αj + xᵀβ + γ1I1 + γ2I2 + · · ·+ γg−1Ig−1, j = 1, . . . , c− 1.

If the previously fitted model is the correct model, we would result in γ1 = · · · =
γg−1 = 0. To obtain a goodness of fit test we compare the value of the likelihood

ratio test statistic −2(`1 − `0) with the quantiles of the χ2-distribution with g− 1

degrees of freedom. Here `1 and `0 denote the two log-likelihoods of the fitted

model without indicators and with indicators, respectively.

Lipsitz et al. (1996) suggested that the number of groups should fulfill 6 ≤ g ≤ n/5c

or to follow the simpler rule, provided by Hosmer and Lemeshow (1980) which sug-

gest to form 10 groups of equal size. In addition Lipsitz et al. (1996) state, that

using a Taylor series expansion, it can be shown that the test statistic under the

null hypothesis, that γ1 = · · · = γg−1 = 0, is a linear combination of (Okj − Ekj).
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Where

Okj =
n∑
i=1

Iikyij, (6.2)

is the observed number of elements in group k with response j, with

yij =

{
1 if yi = j

0 otherwise,

and

Ekj =
n∑
i=1

Iikπ̂ij, (6.3)

is the estimated number of elements in group k with response j.

6.1.2 Pulkstenis and Robinson Test

The idea of Pulkstenis and Robinson (2004) is to modify the Pearson chisquare and

deviance test, in which we construct a contingency table of estimated and observed

frequencies. The columns consist of all levels of the response variable and the rows

consist of the possible covariate patterns. If all covariates are categorical, we can

easily construct the contingency table and assess the goodness of fit using the

Pearson chisquare and deviance test. However, this approach fails if continuous

covariates are part of the model, because the number of possible covariate patterns

makes the contingency table sparse. Pulkstenis and Robinson (2004) describe the

following procedure to derive the test statistics: Starting with assigning a score,

as defined in (6.1), to each observation, we then specify all covariate patterns

determined by the categorical covariates and remove all unobserved ones. We can

then sort within each covariate pattern and split the group into two subgroups,

one smaller or equal to the median of the estimated scores within this group and

one larger than the median. The modified test statistics are then given by

χ∗2 =
2∑
l=1

K∑
k=1

c∑
j=1

(Olkj − Elkj)2

Elkj
,

D∗2 = 2
2∑
l=1

K∑
k=1

c∑
j=1

Olkjlog
Olkj

Elkj
,

45



6 Goodness of Fit

where c is the number of response categories, K denotes the number of different

observed categorical covariate patterns and l relates to the two score-based sub-

groups. Both test statistics are compared with the quantiles of the χ2-distribution

with (2K − 1)(c − 1) − pcat − 1 degrees of freedom, with pcat denoting the num-

ber of categorical covariates. For example a model with 4 dichotomous covariates

and one factor with 4 levels, represented by three design variables, would result

in pcat = 4 + 3 = 7. Pulkstenis and Robinson (2004) point out that sample size is

an important consideration when performing their tests. They suggest that about

80% of expected cell counts should exceed 5, or at least to be very cautious when

dealing with results of sparse data. As a pragmatic solution they suggest to simply

combine rows with small sample sizes.

6.1.3 Fagerland and Hosmer Test

The test statistic proposed by Fagerland and Hosmer (2013) is based on an ap-

proach first suggested by Hosmer and Lemeshow (1980) for binary logistic regres-

sion and later adapted to multinomial logistic regression by Fagerland, Hosmer,

and Bofin (2008). In the binary setting, the observations are grouped with respect

to the estimated success probability. Again the number of groups g, can be arbi-

trary. However, 10 groups seem to be a reasonable choice. Then a contingency

table containing the observed and estimated frequencies, within each group, can

be constructed. The Pearson χ2 is then the corresponding test statistic and the

reference distribution is the χ2-distribution with g − 2 degrees of freedom. In

the multinomial setting, we analogously group the observations with respect to

the complement of the estimated probability of the reference response category.

Again we can then construct a contingency table containing the estimated and

observed frequencies for each group and each response category. The test statis-

tic is again the Pearson χ2 statistic and is compared with the quantiles of the

χ2-distribution with (g − 2)(c− 1) degrees of freedom. For the proportional odds

version of the cumulative logit model Fagerland and Hosmer (2013) choose a very

similar approach. First they calculate the estimated probabilities π̂ij and compute

the ordinal scores as defined in (6.1). We again split the observations into g groups

of (approximately) equal size, with the same ordering as described for the Lipsitz

test. Let again Okj and Ekj, as defined in (6.2) and (6.3), denote the observed

46



6.1 Test Statistics

Y = 1 Y = 2 · · · Y = c

Group Obs. Est. Obs. Est. · · · Obs. Est. Sum

1 O11 E11 O12 E12 O1c E1c n/g

2 O21 E21 O22 E22 · · · O2c E2c n/g
...

...
...

...
...

...

g Og1 Eg1 Og2 Eg2 · · · Ogc Egc n/g

Table 6.1: Observed and estimated frequencies sorted and summed into g groups

and estimated number of observations in each group for each response level. The

resulting table is shown in Table 6.1. The ordinal test statistic, which we will refer

to as the Fagerland and Hosmer test statistic, is then the Pearson χ2 statistic

given by

Cg =

g∑
k=1

c∑
j=1

(Okj − Ekj)2

Ekj
. (6.4)

Fagerland and Hosmer (2013) posit that the degrees of freedom are (g − 2)(c −
1) + (c − 2). They also proof, that sorting using a score of the form si = π̂i1 is

equivalent to the ordinal score we used so far. This is noteworthy, since this is the

score used in the multinomial setting.

Theorem 6.1.1. Sorting the observations based on the ordinal score as defined

in (6.1) is equivalent to sorting the observations using the multinomial score.

Proof. We know that π1 = P(Y ≤ 1|x) and for j = 2, . . . , c,

πj = P(Y = j|x) = P(Y ≤ j|x)− P(Y ≤ j − 1|x),

with P(Y ≤ c|x) = 1. Then the ordinal score is

OS = π1 + · · ·+ cπc

= P(Y ≤ 1|x) + 2 ∗ [P(Y ≤ 2|x)− P(Y ≤ 1|x)] + · · ·+ c ∗ [1− P(Y ≤ c− 1|x)]

= −P(Y ≤ 1|x)− P(Y ≤ 2|x)− · · · − P(Y ≤ c− 1|x) + c

= c−
c−1∑
j=1

P(Y ≤ j|x).
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The multinomial score is

MS = 1− π1 = 1− P(Y ≤ 1|x).

To show that the sorting is equivalent, we will now show that for two independent

observations A and B

MSA > MSB ⇐⇒ OSA > OSB.

Let xA and xB denote the corresponding covariate vectors. First, we assume that

MSA > MSB. This implies that

1− P(Y ≤ 1|xA) > 1− P(Y ≤ 1|xB),

and by the monotonicity of P(Y ≤ j|x) with respect to αj + xᵀβ it holds that

α1 + xᵀ
Aβ < α1 + xᵀ

Bβ.

By Proposition 3.0.1 we already know that, under sufficient regularity assumptions,

αj < αj+1. Hence,

α2 + xᵀ
Aβ = α1 + xᵀ

Aβ + (α2 − α1) < α1 + xᵀ
Bβ + (α2 − α1) = α2 + xᵀ

Bβ.

Again by the monotonicity this implies that P(Y ≤ 2|xA) < P(Y ≤ 2|xB). Induc-

tively, by the same argument, we can conclude that

P(Y ≤ j|xA) < P(Y ≤ j|xB), for j = 1, . . . , c− 1

and therefore
c−1∑
j=1

P(Y ≤ j|xA) <
c−1∑
j=1

P(Y ≤ j|xB),

which finally means that

OSA = c−
c−1∑
j=1

P(Y ≤ j|xA) > c−
c−1∑
j=1

P(Y ≤ j|xB) = OSB.

Now assume that OSA > OSB and show that this implies MSA > MSB. By

assuming OSA > OSB, we again get that

c−1∑
j=1

P(Y ≤ j|xA) <
c−1∑
j=1

P(Y ≤ j|xB).
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It follows that
c−1∑
j=1

(αj + xᵀ
Aβ) <

c−1∑
j=1

(αj + xᵀ
Bβ),

immediately implying xᵀ
Aβ < x

ᵀ
Bβ and therefore

P(Y ≤ 1|xA) < P(Y ≤ 1|xB).

This however means that

MSA = 1− P(Y ≤ 1|xA) > 1− P(Y ≤ 1|xB) = MSB.

6.2 Comparison of the Tests

Fagerland and Hosmer (2013) performed several simulations to check the null dis-

tribution of the test statistics for a response with three, four and five levels. Ad-

ditionally they assessed the possible effects of sample size, number of response

levels and covariate distribution. In total they compared six test statistics, the

Pulkstenis and Robinson tests, denoted by PR(χ2) and PR(D2), the Lipsitz test

where g = min(10, n/5c) and three Fagerland and Hosmer tests, C8, C10 and C12.

The results of the simulations for the three Fagerland and Hosmer tests did not

differ much, indicating that the test do not strongly depend on the choice of the

number of groups. In addition the Lipsitz test and the Pulkstenis and Robinson

tests had slightly too high rejection rates in comparison with the nominal level,

while the Fagerland and Hosmer test were slightly below the nominal level. More

details and explicit numbers can be found in the web-based supporting materials

(Fagerland and Hosmer, 2013). They found, that none of the tests had good power

when assessing for a missing quadratic term or for a wrong functional form of a

covariate. However, the power to detect a missing interaction term was high for all

test. For detection of a violation of the proportional odds assumption, the Lipsitz

test did not show satisfying results, whereas the Pulkstenis and Robinson tests and

the Fagerland and Hosmer tests performed well. The same holds for the situation

where we face a nominal response instead of an ordinal one, with especially good
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results for the Pulkstenis and Robinson tests. In summary the Cg tests were able

to detect lack of fit in five out of six investigated situations, with an slightly de-

creasing power when increasing g. The Pulkstenis and Robinson tests were able to

detect four cases and the Lipsitz test three. However, the Fagerland and Hosmer

tests have not had the highest power in any of the five situations, when compared

to the other tests.

Fagerland and Hosmer (2016) extended their work also to two other logits, namely

the adjacent-categories and the continuation-ratio logits and again performed sev-

eral simulations to check the null distribution and to assess the power of the tests.

Since it is possible to estimate the probabilities for each response level, conditioned

on a vector of covariates, the test statistics do not change in comparison to the

proportional odds version of the cumulative logit model. The results of this simu-

lation studies where quite similar to the ones mentioned beforehand.

The consistency of the two papers allows to make some general conclusions re-

spectively recommendations. Due to the different lack of fits the test might detect

and the different behaviours with respect to rejection rates and power, it is rec-

ommended to use all three types of tests to assess potential lack of fit. This might

assure that together they have reasonable power when facing samples of moderate

to large size. Fagerland and Hosmer (2013) caution that the tests have low power

for small sample sizes. Therefore they suggest to choose a significance level of 10%

and to be cautious when interpreting the results of the tests.
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In the following we will discuss previously derived results on a real data example.

The available data contains performance information on team basis from two ice

hockey seasons, which corresponds to 104 games in the final data set. All games

were part of the ”Erste Bank Eishockey Liga” and either the home or the away

team was one specific Austrian professional ice hockey team. The information was

provided by InStat (2020), a worldwide leader in sports performance analysis for

professional leagues, clubs, players and media in football, ice hockey, basketball

and futsal. For more details on the data itself, the extraction procedure, discussion

about variables and an exploratory data analysis, refer to Friedl and Embacher

(2020). To improve stability of the estimation procedures, to ensure consistency

with the described methods and to guarantee comparability between the different

methods we will use standardized predictor variables. The following methods can

essentially been split in two different approaches. The first one uses expected

number of goals to either predict the actual number of goals or to use this as

a basis to predict the outcome of a game. The second approach uses ordinal

regression models to directly predict the outcome.

7.1 Prediction of Scores using Poisson

Regression

We are going to start the analysis by looking at the expected number of goals

scored, either by the home team or by the away team independently. It seems

somehow natural to model scored goals by a Poisson distribution, since we are

counting the occurrence of an event, namely a goal being scored. Ice hockey is as

complex as it is simple, if a team wants to win it has to score more goals than

its opponent. The same principle is valid for many other sports, like football,
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Figure 7.1: Comparison of observed frequencies (blue) and expected Poisson fre-

quencies (red), for home (upper) and away team (lower)

handball or basketball. It is very intuitive that shooting on the goals is increasing

your chance to actually score a goal and that having possession of the puck or

winning a faceoff might as well increase your chance of scoring a goal and therefore

increases the number of expected goals. In the following we are going to look at

which variables do have significant influence on the expected number of goals, on

basis of our data, and how good this information might be used to actually predict

the outcome of a game.

7.1.1 Methods

Our first class of models will be log-linear models on the expected number of

goals scored by the home team and the away team respectively. As described by

Groll and Schauberger (2019) we will assume that the scored goals are Poisson

distributed, where X ∼ Poi(λ) denotes the goals scored by the home team and

Y ∼ Poi(µ) the goals scored by the away team. A comparison of the observed rel-

ative frequencies and the theoretical probabilities, when estimating the parameter

of the Poisson distribution as the mean of the scored goals, for both home and
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away team, is shown in Figure 7.1. There we can see that the goals scored by the

home team almost perfectly follow a Poisson distribution, while the goals scored

by the away team somehow struggle to. This however might smooth out with an

increasing number of games in the sample.

In most models, the Poisson distributions are considered independent and we

therefore result in a simple joint distribution

P(X = x, Y = y) =
λx exp(−λ)

x!

µy exp(−µ)

y!
. (7.1)

We now perform some further simplifications to increase the sample size. First we

assume, as already mentioned, that the goals of the home team and the goals of

the away team are independent. Additionally we suppose that for both teams the

same covariates are of significance and we therefore state that

λ = exp(β0 + δ + xᵀβH)

µ = exp(β0 + xᵀβA),
(7.2)

where β0 denotes the intercept, δ is assumed to be a global home effect and βH

and βA the respective parameters of the covariates. The two parameter vectors are

simply connected via βH = βA+βδ. βδ is necessary to adjust for possible different

effects for the home and the away team. From a modelling point of view βδ can

be seen as the parameter of the interaction terms between the factor ’home’ and

the covariates. Having the model fitted, we get two parameter estimates λ̂i and

µ̂i for the i-th game, which represent the expected values of the two independent

Poisson distributions. To now predict the outcome of the game, we have several

options.

The first and very simple way is to use the fitted values of the two Poisson dis-

tributions and determine the result via the difference of the intensity estimates.

Using this approach, one has to think about, how to specify a draw. It might be

very rare that λ̂i − µ̂i = 0, therefore defining an interval in which we determine a

draw is reasonable. We say that if λ̂i − µ̂i ∈ (−0.5, 0.5) the predicted result is a

draw.

The next, very similar approach is to use the estimated distribution of both scores
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to calculate the probabilities of an ordinal outcome, like home win, draw and away

win. For example, the probability of a draw is given by

P(Draw) = P(X − Y = 0).

These probabilities can be derived using a Skellam distribution, which is a discrete

probability distribution, resulting as the difference between two independent Pois-

son distributions. The Skellam distribution has mean λ − µ and variance λ + µ.

Even though it was initially introduced as the difference between two indepen-

dent Poisson distributions, Karlis and Ntzoufras (2008) proved that it can also

be derived as the difference of distributions which have a specific trivariate latent

variable structure. Since we assume the Poisson distributions to be independent

we do not go into further detail here. To now predict the outcome of a game using

the Skellam distribution we simply set the predicted outcome to the one with the

highest predicted probability.

The third possibility is to use random samples, representing the final score, (X, Y )

from the respective distributions. As mentioned by Groll and Schauberger (2019)

due to the high variability of this approach, a large number of replications should

be considered. However, this approach might be very useful when simulating tour-

naments. Often it is necessary to determine the final standing of a group stage or

a tournament itself, including scored and received goals to correctly determine the

following knock-out stage or the winner, respectively.

7.1.2 Results

We now will have a look at the results of our real data example. Since we assume

independence between home and away goals, we result in 208 observations out of

104 games. For each of these 208 observations we have 122 possible covariates and

the factor ’home’, which indicates whether the respective team played home or

away. In addition, we allow for all interactions between the explanatory variables

and this factor, to adjust for possible different effects for the home and the away

team, modelled by βδ. We will fit a model of the form (7.2). For model fitting we

use a stepwise variable selection procedure with the corrected Akaike Information

Criterion as decision base. As mentioned, we will use standardized covariates, re-

flecting zero mean and unit variance.
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Variable Coefficient Std. Error p-value Mean Std. Dev.

Intercept 0.8854 0.0459 0.0000

ShotsOG60 0.2909 0.0575 0.0000 29.61 7.48

FaceoffsNZ 0.1765 0.0430 0.0000 8.44 2.78

Possession3P -0.1223 0.0501 0.0145 538.10 89.07

ShotsAES -0.1286 0.0582 0.0273 42.67 10.49

PassesACkey 0.1162 0.0427 0.0065 3.57 2.27

Takeaways3P 0.1352 0.0466 0.0037 30.88 4.54

Giveaways3P -0.1342 0.0489 0.0060 20.22 5.27

ChallengesWNZ 0.1124 0.0425 0.0082 9.34 4.29

PossessionDZ 0.0917 0.0463 0.0477 612.91 69.92

Table 7.1: Parameter estimates, standard errors and p-values for the Poisson model

using standardized covariates from 208 games, with the mean used for

centering and the standard deviation for scaling

In the first step we allow δ to be non zero, i.e. we include a home effect in the

model. However, when fitting this model we see that no interaction term between

the factor home and the predictors in the model is significant, i.e. we can not reject

a hypothesis like βδ = 0. Even more surprising is, that the home effect is strongly

insignificant (p-value: 0.58029). It therefore seems reasonable to drop the home

effect out of the model and to set δ = 0. We only choose covariates to be included

in the model if the respective p-value is not exceeding 0.05. Table 7.1 shows the

coefficients in the fitted model described by (7.2) and δ being set equal to zero.

Hence we get the same model for both teams, only depending on the respective

performance. The deviance of the fitted model is 168.24 on 198 degrees of freedom.

In the Appendix, in Figure A.1, one can find the diagnostic plots for the fitted

log-linear model. As an example we will use the coefficients on one specific game.

The expected number of goals is given by

E[Goals] = exp

(
β0 +

9∑
j=1

βj
xj − cj
sj

)
, (7.3)
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In Sample Jackknife Data Splitting

Goals Home 22.11% 23.08% 22.88%

Goals Away 28.85% 32.69% 29.91%

Goals 25.48% 25.00% 25.14%

λ̂i − µ̂i 55.77% 53.85% 54.00%

Skellam Distribution 60.58% 57.69% 58.11%

Random Sampling 60.58% 57.69% 58.30%

Table 7.2: Accuracy of the model with parameter estimates as shown in Table 7.1

using in sample accuracy, jackknife and data splitting

where cj denotes the observed mean used for centering and sj the observed stan-

dard deviation used for scaling, both found in Table 7.1. From the home team’s

point of view in our example game we observed 36 shots on goal, 9 won faceoffs in

the neutral zone, 575 seconds of possession in the third period, 40 shots at even

strength, 6 accurate key passes, 31 takeaways in the third period, 37 giveaways in

the third period, 6 won challenges in the neutral zone and 746 seconds of posses-

sion in the defensive zone. Plugging this in Model (7.3) results in 2.56 estimated

goals, while we observed 2 scored goals.

Due to the independence of the expected goals, we are able to discuss the model

performance with respect to the home goals, away goals or goals in general on the

one hand and with respect of the match outcome on the other hand. As men-

tioned, there are multiple possibilities to actually predict the outcome of the game

on 3-way basis (Home win, Draw, Away win). We will compare the results for all

three mentioned methods using in sample accuracy, jackknife and data splitting

where we use 80% as training data and 20% as test data. In addition we will use

the same three test methods on the expected goals, where we simply round the

prediction to the nearest integer to assure comparability. One result, presented

in Table 7.2 is not really surprising, using the Skellam distributions shows similar

results as drawing random samples with a large number of replications. This is

due to the fact that the Skellam distribution is resulting as the difference of two

independent Poisson distributions and in the other case we draw random samples

out of two independent Poisson distributions and build their difference. Table 7.2
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Home

Predicted

Observed 0 1 2 3 4 5 6 7 8 Total

0 3 4 2 9

1 5 9 3 17

2 3 10 8 3 1 25

3 1 13 5 3 1 23

4 2 7 3 2 14

5 1 5 1 1 8

6 1 2 1 4

7 1 1 1 3

8 1 1

Total 0 12 40 32 13 5 1 0 1 104

Away

Predicted

Observed 0 1 2 3 4 5 6 7 8 Total

0 2 6 8

1 3 15 3 1 22

2 3 16 12 31

3 5 7 2 14

4 8 8 4 1 21

5 3 1 4

6 2 1 3

7 1 1

8 0

Total 0 8 50 35 9 1 1 0 0 104

Table 7.3: Predicted and observed in sample frequencies for the goals scored by

the home team and goals scored by the away team

also shows the resulting numbers comparing all methods. There we see that we

approximately predict 25% of the scored goals correctly, with a slightly better per-

formance for the goals scored by the away team. Table 7.3 shows the contingency

tables for both, where we can observe that in both cases we fail to predict games

with no goals and tend to underestimate the scored goals in high scoring games.

When trying to predict the threeway outcome of game i using λ̂i − µ̂i we can see

in Table 7.2, that we are able to predict more than half of the games correctly.

In Table 7.4 we see the contingency table of both, the method using λ̂i − µ̂i and

using the highest predicted probability by the Skellam distribution as predicted

outcome. This immediately shows a major drawback of the latter. It is unable

to predict draws. This however might relate to the fact, that only 19 out of the

104 games in the sample where draws. Figure 7.2 shows the boxplots with the

resulting predicted probabilities. The same holds, as previously mentioned, when

drawing random samples with a large number of replications. Even though this is a

massive drawback when trying to predict the correct outcome, it does not prevent

us from using the predicted probabilities as further insight. When drawing ran-

dom samples on game basis we result in the same predictions as using the Skellam

distribution. However, if we draw the random samples on tournament basis, we

can simulate tournament trees, the scored and received goals and standings in the

table at different timepoints. Also the Skellam distribution might be useful when

57



7 Application

Figure 7.2: Boxplots of the predicted probabilities using the Skellam Distribution

not discussing game results after 60 minutes, but the full time result. It is very

common to play an overtime if an ice hockey game has not seen a winner after 60

minutes.

7.1.3 Possible Extensions and Further Development

The assumptions made in the previous sections are very strong. There are several

extensions possible to improve the model. As proposed by Lee (1997), it is pos-

sible to determine ability parameters, which can be separated into offensive and

defensive parameters. In Maher (1982), we see an even more specified approach,

in which we additionally assume that the offensive and defensive abilities are dif-

ferently determined, when playing home or away. This would result in intensity

parameters

λ = exp(β0 + τH − γA)

µ = exp(β0 + τA − γH).
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λ̂i − µ̂i Skellam Distribution

Predicted Predicted

Observed Away win Draw Home win Total Observed Away win Draw Home win Total

Away win 23 5 6 34 Away win 26 0 8 34

Draw 4 7 8 19 Draw 9 0 10 19

Home win 8 15 28 51 Home win 14 0 37 51

Total 35 27 42 104 Total 49 0 55 104

Table 7.4: Predicted and observed in sample frequencies for λ̂i−µ̂i and the Skellam

Distribution

Here τH denotes the attacking ability of the home team, γA the defensive ability

of the away team, while τA is the attacking ability of the away team and γH the

home team’s defensive ability. It is clearly not necessary to account for a home

effect.

Secondly, assuming independence between scored goals of two teams, which ac-

tually compete against each other does not seem natural. Dixon and Coles (1997)

found empirically that the assumption of independence is reasonable for football

matches, except for low scoring games. They therefore added an dependence term

for these low scoring games in the joint distribution (7.1). Karlis and Ntzoufras

(2003) discuss the effects of using a bivariate Poisson distribution, which allows a

dependence term by definition. McHale and Scarf (2007) use copulas to generate

bivariate Poisson distributions with flexible dependence structure.

7.2 Prediction of Match Outcomes using Ordinal

Regression

In the following we will apply the developed ordinal regression methods on our real

data example. Starting with a discussion of how to choose the response categories

for our data situation and the advantages of using a 4-point scale, we will then see

the problems arising when fitting an unregularized proportional odds version of

the cumulative logit model as described in Chapter 3. We will use these problems

as a motivation to see why it is necessary to use some form of regularization. Ex-

plicitly we are discussing the model fit and tuning procedure for ridge regression
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and the least absolute shrinkage and selection operator (lasso) and compare their

respective properties with regard of our data situation. Additionally we will see

different models using the elastic net penalty term, discuss the tuning procedure,

compare the results to ridge regression and lasso and shortly discuss if using other

logits, building ratios of our data or evaluating the teams performances separately

would improve the model performance. All regularization methods can be found

in Chapter 5.

We will then discuss the performance of the different models fitted, again using

in sample accuracy, jackknife and data splitting. Since our models do not predict

an actual category but probabilities for each category, we will simply use the one

with the highest predicted probability as predicted category. It is to mention that

predicted probabilities give a more differentiated discussion basis when evaluating

team performance, hence in practice it might be more reasonable to discuss the

probabilities for the respective outcomes. As an example, imagine the situation

where the fitted model predicts probabilities for 4 categories and results in values

like (0.23, 0.24, 0.27, 0.26). However, to evaluate the accuracy of our predictions

we are going to discuss it with respect to the categories. Finally, we will compare

the results from using a log-linear Poisson model, as derived in Section 7.1, to the

ones obtained by ordinal regression.

7.2.1 Choice of Categories

When discussing ordinal regression models, one crucial point is how the response

categories are chosen. In some situations the categories are already determined by

the observed responses, i.e. in a study where every participant can choose between

five possible answers like totally agree, agree, don’t know, do not agree and totally

disagree, the categories are already set. In our case, however, we have a more

flexible situation. As we use the on-ice performance after 60 minutes it seems

somehow natural to discuss the result after 60 minutes. This means that we allow

for draws, even though there would be an overtime following and if necessary a

shootout to determine a winner of the respective game. In Section 7.1.2 when

using the Skellam distribution, we faced some difficulties in actually predicting

draws. The same problem occurred with most of the fitted regularized ordinal
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regression models. This is the reason why we decided to replace all draws with the

final result, i.e. the standing after overtime and shootout.

Schauberger, Groll, and Tutz (2018) found that using a 5-point scale instead of

a 3-point scale showed improved performance when predicting match outcomes

for the German football Bundesliga. As they included the possibility of draws in

their model, a 5-point scale means that the away win and the home win are both

divided into high and close wins. The main idea, is that using a 5-point scale

instead of a 3-point scale possibly provides more information on the dominance of

the respective performance and therefore might increase the explanatory power of

the on-ice covariates. Since we exclude the possibility of draws we use a 4-point

scale as defined in (7.4). The categories are chosen in this manner to take care

of the possibility of an empty net goal scored in the end of the game. Empty

net goals are usually scored in games in which the score difference is one and the

team trailing by one pulls the goalie to replace him by a skater. Which is common

practice and often actually results in an additional goal for the team leading. We

therefore let our response variable Y be out of four categories and set

Yi =


1 if the away team wins with 3 or more goals difference,

2 if the away team wins after OT or with 1 or 2 goals difference,

3 if the home team wins after OT or with 1 or 2 goals difference,

4 if the home team wins with 3 or more goals difference.

(7.4)

We are going to refer to category 1 and category 4 as high wins and to category 2

and category 3 as close wins.

We again use the same data set as before. However, since we use the outcomes

of the respective games as response, we only result in 104 observations. For each

observation we have 253 possible covariates. These are two times the 122 possible

covariates in Section 7.1.2 plus 9 information that can not be identified with one of

the two competing teams, for example the total challenges in a game. The observed

goal differences after 60 minutes are shown in Figure 7.3, where the 19 games with

a goal difference of zero, went to overtime. When classifying the observed games

as described in (7.4), we result in the following numbers
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Figure 7.3: Observed goal differences after 60 minutes of play

Category 1 2 3 4 Total

Number of games 13 34 36 21 104

In comparison to the setting when using a log-linear Poisson-model, we do not

specifically need to add, respectively test for the need of a homeeffect. This is

due to the fact that including a homeeffect would effectively only mean that we

shift the respective thresholds or vice versa the flexible thresholds already include

the homeeffect. Additionally, since we are going to find a model for the categor-

ical probabilities, for which we use information from both teams, the parameter

estimates should automatically adjust for the home advantage.

7.2.2 Unregularized Cumulative Logit Model

First we start with an unregularized proportional odds version of the cumulative

logit model as described in Chapter 3. To fit the model we are going to use the

function clm out of the R-Package ordinal provided by Christensen (2019). We

then use a stepwise selection procedure, choosing the AIC as criterion. When

simply running the stepwise procedure, in form of the R-function stepAIC, we
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Figure 7.4: Boxplots of the predicted probabilities for an unregularized model

observe numerical instabilities as NAs for the estimated standard errors, z-values

and p-values or very large parameter estimates and a condition number larger

than 108, while Christensen (2018) suggests a condition number less than 104. We

therefore, in the truest sense, take one step back and simply use the model fit right

before facing these problems. Then we exclude all covariates with p-values which

exceed 0.05, which results in the model presented in Table A.2 found in the Ap-

pendix. The mentioned function fits a model using the alternative parametrization

described in Section 3.2.

It is also noticeable that the estimates with the highest standard errors, are the

ones for which a strongly correlated covariate is also included in the model. For

example, the variables PassesACdumpout h and Passesdumpout h, both have rel-

atively large standard errors and a Pearson correlation coefficient of 0.954. The

same holds for other pairs. When checking the variance inflation factor, as de-

fined in Section 5.1, we observe several covariates exceeding the threshold of 10

by far, and some being slightly below this threshold. This is a strong indication

that we are facing some form of multi-collinearity. Figure 7.4 shows a box plot

of predicted probabilities for the four categories with a grouping at zero and one,
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log-likelihood misclassification rate

five-folds 2.229673 3.082796

ten-folds 1.986049 7.961686

leave-one-out 2.178668 3.624904

Table 7.5: Tuned ridge regression λ-parameters for out of sample log-likelihood

and misclassification rate

which is clearly displaying that we face over-fitting. All these problems together

are suggesting that we are in need of some form of regularization. We are therefore

going to have a look at the same type of model being fitted with a penalty term.

7.2.3 Ridge Regression and Lasso

The first model we are going to discuss is ridge regression, i.e. including a L2-

penalty in the penalized likelihood. As described in Section 5.2.1, ridge regression

does not perform variable selection. Therefore we will result in a model which

includes all 253 covariates. Even though, we intend to reduce the predictors in-

cluded in the model to increase the interpretability, we still fit the model using

ridge regression, simply to compare the results and the respective performances.

To tune the parameter λ we use the function ordinalNetTune included in the

package ordinalNet, provided by Wurm et al. (2020). As tuning criteria we

choose out of sample log-likelihood and the out of sample misclassification rate,

both on five-folds, ten-folds and 104-folds (leave-one-out) and each on 200 different

λ-values. We therefore result in six tuned λ-values, shown in Table 7.5.

The second regularized model we are going to discuss for our real data example is

lasso, i.e. including a L1-penalty in the penalized likelihood. As already discussed

in Section 5.2.2, the major advantage of lasso is that it performs variable selection.

Again we will use the function ordinalNetTune and tune the parameter λ on five-

folds, ten-folds and 104-folds, each on 200 different λ-values being equidistant on

the log-scale. Performing the tuning procedure results in the values presented in

Table 7.6.
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7.2 Prediction of Match Outcomes using Ordinal Regression

log-likelihood misclassification rate

five-folds 0.1075619 0.07601592

ten-folds 0.1324679 0.03976468

leave-one-out 0.1152946 0.102697

Table 7.6: Tuned lasso λ-parameters for out of sample log-likelihood and misclas-

sification rate

In Table 7.5 and Table 7.6 we can already observe what will become even more ob-

vious when tuning the λ parameters for the elastic net penalty. The estimates for

λ using the misclassification rate are more unstable compared to the ones tuned by

the log-likelihood. Since we want to choose one specific λ-value for each model, we

will choose it out of the available values tuned by the out of sample log-likelihood

and base our decision on the respective AICs and BICs. Consequently, we choose

the value determined by ten-fold cross-validation for ridge regression (λ = 1.986)

and the one determined by five-fold cross-validation for the lasso (λ = 0.108).

As already mentioned, ridge regression does not perform variable selection, but

shrinks the respective parameter estimates by the structure of the penalty term.

Lasso does perform variable selection, i.e. sets several parameter estimates to zero.

For the chosen lasso model we result in a total of 8 predictors and 3 thresholds

included in the model.

Figure 7.5 shows a comparison of the coefficient paths for ridge regression and

lasso. To not overload Figure 7.5 we have randomly chosen the path of 80 pre-

dictors out of the 253 available. While it seems, that we see all 80 path for ridge

regression, the number seems to be less for the lasso. This is due to the fact, that

some of the coefficients chosen were estimated to be zero for all shown λ-values.

Figure 7.6 shows the number of predictors included in the lasso model plotted

against the tuning parameter λ. There we can see nicely, how increasing the

tuning parameter λ, i.e. increasing the influence of the penalty term, reinforces

the variable selection property. Even though we have two completely different

models in terms of non zero coefficients, with the lasso including 8 predictors and
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Figure 7.5: Coefficient paths for 80 randomly chosen predictors, with the lasso on

the left and ridge regression on the right. The red line represents the

tuned λ-values

ridge regression including all possible covariates, Table 7.7 shows a very similar be-

haviour. Both models are very unlikely to predict high wins. This inability might

be explained by the fact that we choose the category with the highest predicted

probability and that, at least for the two models, the probability of a high win is

almost always less than the probability of a close win. Even though this might be

true for a lot of games, there should be at least some games where the respective

performance was so dominant that a high win is the most likely possibility.

7.2.4 Elastic Net

As we discussed in Section 5.2.4, the elastic net combines advantages of both, lasso

and ridge regression, simply by using a convex combination of the penalty terms.

In comparison to ridge regression and lasso, where we only need to tune one pa-

rameter, using the elastic net penalty asks for two parameters to be tuned, namely

α and λ. Since these are two dependent parameters we are going to denote λ by

λ(α) where it is needed.
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7.2 Prediction of Match Outcomes using Ordinal Regression

Figure 7.6: Number of non zero coefficients for the lasso, with the red line repre-

senting the tuned λ-value

Since computational costs are an issue when tuning the parameters for the elastic

net penalty we restrict ourselves on 21 possible α-values with equidistant values

between 0.05 and 0.95 and 0.01 and 0.99 as most extreme values. For each α-value

we again tune the λ-values using the function ordinalNetTune on 200 possible

values using five-fold, ten-fold and leave-one-out cross-validation, all using the out

of sample log-likelihood and the out of sample misclassification rate as tuning cri-

terion.

It is to mention that ordinalNet uses a different parametrization of the con-

vex combination in the elastic net penalty term (5.6). While in our case α

corresponds to the weight on the L2-penalty and (1 − α) to the weight on the

L1-penalty, the implemented parametrization changed the roles of the weights,

i.e. P (λ,β) = λ
∑p

j=1

(
(1 − α)β2

j + α|βj|
)
. However, we are going to use the

parametrization described in Section 5.2.4, when discussing results or referencing

on models.
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Lasso Ridge Regression

Predicted Predicted

Observed 1 2 3 4 Total Observed 1 2 3 4 Total

1 10 3 13 1 13 13

2 16 18 34 2 24 10 34

3 7 29 36 3 6 30 36

4 4 17 21 4 1 15 5 21

Total 0 37 67 0 104 Total 0 44 55 5 104

Table 7.7: Observed and predicted in sample frequencies for the response categories

using lasso (left) and ridge regression (right)

In Table A.1, found in the Appendix and visualized in Figure 7.7 we see a com-

parison of the tuned λ(α)-values for both tuning criteria and the three mentioned

cross-validations. As mentioned in the previous section, we can clearly observe,

that using the out of sample log-likelihood as tuning criteria produces more stable

results. This might relate to the small sample size and the therefore resulting very

sensitive misclassification rate. For example using ten-fold cross-validation means

that our test fold only consists of 10 games, which by chance can only consist

of one specific category and therefore heavily influence the tuned λ parameter.

We can observe these stability problems in several λ-values being close to zero,

which implies that cross-validation identifies an nearly unpenalized model as the

best choice. A small λ-value also implies a larger number of non zero coefficients,

which at least for α > 0.5 results in even more predictors included in the model

compared to the unregularized version. All together we therefore decided to only

use the values provided by the log-likelihood and again base our final decision on

the respective AICs and BICs.

To compare some result we choose α = 0.2, 0.8 and the corresponding λ(0.2) =

0.1455 and λ(0.8) = 0.5376. A somehow surprising outcome is that for all α values

smaller than 0.6 we result in very similar results, with all models including almost

the same predictors and very similar coefficients. This might relate to the increas-

ing influence of the L1-penalty term and the implied variable selection property.

Additionally, these predictors are also part of the models including more predic-
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7.2 Prediction of Match Outcomes using Ordinal Regression

Figure 7.7: λ(α) for different α values, comparing out of sample log-likelihood

(left) and out of sample misclassification rate (right) using five-fold

(red), ten-fold (green) and leave-one-out (blue) cross-validation

tors, we therefore can identify them as the most influential. However, we would

expect the number of non zero coefficients to steadily decrease with increasing

weight on the L1-penalty term and not to stagnate that early. From a mathemat-

ical point of view this might relate to the low number of observations compared

to the high number of possible covariates and that most predictors do not or at

least only have little influence on our dependent variable and are therefore set to

be zero by the lasso part of the penalty term. From a sportive point of view, es-

pecially the latter might be a reasonable explanation. It is not uncommon to hear

a player or coach to say something like ”It’s the little things that count”. And

there are a lot of little things, all having their possibly little influence on the result.

Figure 7.8 shows the coefficient paths for the two chosen models. Especially the
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α = 0.2 α = 0.8

Predicted Predicted

Observed 1 2 3 4 Total Observed 1 2 3 4 Total

1 10 3 13 1 9 4 13

2 16 18 34 2 15 19 34

3 8 28 36 3 7 29 36

4 4 17 21 4 4 17 21

Total 0 38 66 0 104 Total 0 35 69 0 104

Table 7.8: Observed and predicted in sample frequencies for the response categories

using elastic net with α = 0.2 (left) and α = 0.8 (right)

graph for α = 0.2 looks very similar to the graph for the lasso in Figure 7.5. In

Table 7.8 we see the observed and predicted in sample frequencies for both model,

where we can observe that their predictive performance is very similar and also

very close to the one by the lasso, shown in Table 7.7. Its again obvious that both

models are unable to predict high wins and that there is some kind of home bias.

We will compare all models and their performance in further detail in Section 7.2.6.

7.2.5 Possible Adjustments

In the following we are trying to solve some of the problems arising in the previous

sections. We are therefore going to discuss if we can improve the models with

slight changes on the structure of the data or by using other logits.

When comparing the covariates included in the lasso or elastic net models we

can observe that most of the used information is from the home team. We there-

fore start by adjusting the data in such a way, that we force the model, when

including a predictor from the home team to also include the respective predictor

from the away team. We therefore create new variables, which are simply the ratio

of the two respective variables and fit the model with these new variables, again

in a standardized form. To tune the parameters and to fit the resulting models

we are again using the same procedure as used in the previous sections. However,

we are not going into further detail and simply compare the results for lasso and

70



7.2 Prediction of Match Outcomes using Ordinal Regression

Figure 7.8: Coefficient paths for 80 randomly chosen predictors, with α = 0.2 on

the left and α = 0.8 on the right. The red line represents the tuned

λ-values

elastic net with α = 0.2 and α = 0.8. Since using lasso and using the elastic

net penalty with α = 0.2 results in very similar models, both including the same

predictors with very close parameter estimates, we are only going to compare the

two elastic net models.

It is noteworthy that using the ratio variables results in a significant higher num-

ber of predictors included in the model. For the lasso and the elastic net penalty

with α = 0.2 we include 23 predictors, which are 46 when splitting them to the

initial variables. However, as we can observe in Table 7.9, using the ratios instead

of the initial variables substantially reduces the home bias and also, at least for

the home wins, enables the model to predict high wins correctly. Even though we

include a high number of initial variables in the models we can not observe numer-

ical instabilities or over-fitting. Since the performances of the two models are very

close, with the one using the elastic net penalty with α = 0.8 including a higher

number of predictors (76 initial variables), we are only going to compare the other

model, namely using the elastic net penalty with α = 0.2 and λ(0.2) = 0.0572, in
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α = 0.2 α = 0.8

Predicted Predicted

Observed 1 2 3 4 Total Observed 1 2 3 4 Total

1 13 13 1 13 13

2 24 10 34 2 25 9 34

3 7 27 2 36 3 6 28 2 36

4 1 11 9 21 4 1 14 6 21

Total 45 48 11 104 Total 45 51 8 104

Table 7.9: Observed and predicted in sample frequencies for the response categories

using elastic net with α = 0.2 (left) and α = 0.8 (right) on the ratios of

the paired covariates

Section 7.2.6.

As described in Section 7.2.2, we faced serious numerical issues when we fitted

an unregularized version of the cumulative logit model. This might be due to the

high number of possible explanatory variables compared to the sample size. We

are therefore going to discuss the results if we adjust our data set in a very similar

way as seen in Section 7.1, where we used a log-linear Poisson model to describe

the number of goals for both team seperately. The main idea is that we do not

describe the outcome of the game depending on the performances of both teams

but use only one team’s performance to predict the match outcome. For that

purpose, we introduce the factor ’home’, which indicates whether the respective

team played home or away. In addition, we allow for all interactions between the

explanatory variables and this factor, to adjust for possible different effects for the

home and the away team. Additionally, we have to slightly modify the ordinal

response variable in such a way, that ascending from 1 to 4 we model high and

close losses and close and high wins. For instance, a high win from the home team

which corresponds to a 4 in the original classification (7.4), would remain a 4 for

the home team in the modified case but change to a 1 for the away team. The

main benefit of this adjustment is that we double the available sample size by

halving the number of possible covariates.
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Predicted

Observed 1 2 3 4 Total

1 13 17 4 0 34

2 6 44 20 0 70

3 1 20 41 8 70

4 0 1 20 13 34

Total 20 82 85 21 208

Table 7.10: Observed and predicted in sample frequencies for the response cate-

gories using the teams performances separately

To fit the model with the modified data, we again use the same R-functions.

However, we do not face numerical issues as we did without the modifications.

This might be due to the new dimensions of the modified data and the resulting

stabilisation of the estimates. Finally we use the model resulting from the step-

wise selection procedure and exclude all covariates with p-values which exceed 0.1.

We therefore result in the model presented in Table A.3 found in the Appendix.

There we can observe that even though the thresholds are flexible they are almost

symmetric around zero. Further there are no notably large parameter estimates or

standard errors, as we observed when using both teams performances simultane-

ously. In Table 7.10 we can see, that we not only improve the numerical stability

of the model fit but also result in a nicely fitting model. However, Table 7.10 also

shows a major disadvantages of this approach, namely that the predictions are not

symmetric, which means that we might face two different predictions for the same

game. This is due to the fact, that we predict the outcome of the game separately

for both teams, i.e. result in two predictions, which are not necessarily the same.

In our sample we actually observed this difference in predictions for almost half

of the games. Therefore we have to be cautious when interpreting the results.

However, this is not only a disadvantage, since the mentioned approach allows

to interpret the performances of the teams separately. As an example imagine a

game which ended with a close win for the home team, while the model predicted

a close win for the home team and a close win for the away team. This states

that the performance of the home team was good enough to be a deserved winner.

However also the away team showed a good performance and the outcome of the
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In Sample Jackknife Data Splitting

Teams separately 53.37% 44.23% 43.77%

Table 7.11: Model accuracy for the model evaluating the teams performances sep-

arately using in sample accuracy, jackknife and data splitting

game, from their point of view, might be seen as bad luck. Table 7.11 shows the

predictive performance of the model.

In the following we are going to discuss if using different logits, as described in

Chapter 3 or changing the assumption of the underlying distribution, i.e. using

the probit link instead of the logit link, would improve our model performance.

Since the package ordinalNet allows to specify the logits and the link function in

the function call, we can simply adjust and compare the results. We again use the

initial data set, not building the ratios. When tuning the parameter λ we again use

cross-validation and the out of sample log-likelihood. Without discussing further

details, we can observe that there is no significant improvement when applying any

of the adjustments mentioned above. Unfortunately, in R there is no function or

package available which combines structured thresholds and regularization meth-

ods for ordinal responses. Since the unregularized model has shown numerical

instabilities and multi-collinearity, we are not going to discuss the possible effects

of structured thresholds, even though they might provide a good solution to the

home bias and the lack of fit for high wins. While forcing the thresholds to be

symmetric should improve the symmetry of the fits, equidistant thresholds might

be beneficial regarding high wins.

7.2.6 Discussion of Results

To now evaluate the predictive performance of several models, namely the de-

scribed unregularized proportional odds version of the cumulative logit model, the

models resulting from using ridge regression and lasso, the elastic net models with

α = 0.2 and α = 0.8 and the model using the ratios of the initial variables and

the elastic net penalty term with α = 0.2, we compare their accuracy regarding

in sample, jackknife and data splitting. All models were fitted using 4 categories
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In Sample Jackknife Data Splitting

Unregularized 88.46% 59.61% 58.26%

Ridge 56.73% 41.34% 39.98%

Lasso 43.26% 36.53% 33.50%

EN α = 0.2 42.31% 37.50% 33.23%

EN α = 0.8 42.31% 37.50% 32.61%

EN ratio α = 0.2 57.69% 44.23% 41.73%

Table 7.12: Comparison of the model accuracy using in sample accuracy, jackknife

and data splitting on a 4-point scale

In Sample Jackknife Data Splitting

Unregularized 95.19% 87.50% 84.59%

Ridge 84.61% 61.50% 61.68%

Lasso 70.19% 60.57% 53.90%

EN α = 0.2 68.27% 57.69% 53.44%

EN α = 0.8 69.23% 55.78% 54.97%

EN ratio α = 0.2 83.65% 76.92% 72.98%

Table 7.13: Comparison of the model accuracy using in sample accuracy, jackknife

and data splitting on a 2-point scale

and can therefore be used to predict the outcome of a game on a 4-point scale.

However, a 4-point scale can be easily combined to the 2-point scale, which is the

reason why we are going to discuss their accuracy for both. The model in which

we evaluate both teams separately is somehow not comparable to the others, since

we might get two different predictions per game. However, Table 7.11 shows the

accuracy for this model and it is noteworthy that this model compared to the

ones given in Table 7.12 shows promising results. Although Fagerland and Hos-

mer (2013) and Pulkstenis and Robinson (2004) warn to be very cautious when

using their goodness of fit test when facing a sample size as small as ours, we are

shortly discussing the problems arising when using the implemented functions in

the R-package generalhoslem provided by Jay (2019).

Table 7.12 displays the accuracy of the respective models on a 4-point scale. We
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can observe that the unregularized model seems to show the best results, espe-

cially regarding the in sample accuracy. However, as described previously this

model shows strong signs of overfitting. Another interesting result is, that the

models using lasso and the elastic net penalty term show very similar results. It is

especially surprising that this is seemingly independent of the choice of α. While

the model using the L2-penalty might be impractical due to the fact that the

model includes all possible covariates, the most promising results can be observed

when manipulating the appearance of the possible covariates to be ratios. While

this substantially increases the number of predictors in the model, it also solves

the problem, that most models exclusively include predictors related to the home

team, which might be the reason that we can observe a home bias.

To now discuss the results on a 2-point scale, which means that we only distinguish

between home and away wins, we simply combine the predicted probabilities for

high and close wins for both, home and away and use the one with the higher pre-

dicted probability as predicted outcome. Clearly, the home bias is again present.

The respective accuracies are shown in Table 7.13. It is not surprising that we can

draw very similar conclusions compared to the 4-point scale. Again the unregular-

ized model shows the best results with the model using the ratios shows the most

promising results. While predicting the correct winner in more than 70% of the

games seems to be a reasonable result, slightly above 50% is somehow unsatisfying

and not much of an improvement to simply guessing.

It is somehow intuitive to fit a binary logistic regression model when trying to

predict the probabilities for a variable with two possible values. When fitting an

unregularized version of this model, we can again observe the numerical instabili-

ties we faced when fitting our ordinal model. When using the R-package glmnet

provided by Friedman et al. (2010) and the corresponding functions to fit a model

with the L1-penalty, using the default measure in cross-validation, which uses the

deviance for tuning, we result in a λ-value where the resulting regularized model

sets all parameter estimates to be zero. This strongly corresponds to the results

we observed when fitting the elastic net models in Section 7.2.4, where all models

with α < 0.6 included the same and small number of predictors. Again observing

this property when trying to fit a regularized logistic regression model is a strong
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C5 C6 C10

Unregularized 0.999 0.936 0.996

Ridge 0.001 0.001 0.014

Lasso 0.017 0.123 0.148

EN α = 0.2 0.001 0.050 0.009

EN α = 0.8 0.013 0.034 0.015

EN ratio α = 0.2 0.039 0.309 0.398

Table 7.14: p-values for the Fagerland and Hosmer test, with 5, 6 and 10 groups

indication that most covariates have little influence on the response and are set to

be zero when we penalize that they are included in the model.

A clear indication that we face some issues regarding our small sample size can be

found in the fact that when we try to determine the number of groups for the good-

ness of fit tests by the formula suggested by Lipsitz et al. (1996), 6 ≤ g ≤ n/5c.

Since in our case n = 104 and c = 4 we result in 6 ≤ g ≤ 5.2 which is a clear con-

tradiction, due to the small sample size n. Additionally in the available package,

the Lipsitz test is not implemented for regularized ordinal regression models. Fur-

thermore, since the Pulkstenis and Robinson tests construct a contingency table

using the categorical covariate patterns, while we have not observed any categori-

cal covariates, these goodness of fit tests are not applicable on our data situation.

All together, we remain with the Fagerland and Hosmer test statistic and compare

their results where we set the number of groups g to 5, 6 and 10. Table 7.14 shows

the respective p-values. We can again see that we face sample size problems, due

to the fact that the results differ widely by just changing the number of groups,

while Fagerland and Hosmer (2013) stated that their test statistic do not depend

strongly on the number of groups. Additionally for almost all tests we get the

warning that the Chi-square approximation might be incorrect because at least

one expected cell frequency is less than 1. When having a look at the form of the

test statistic given in (6.4), where we divide by Ekj, it becomes obvious why this

might give missleading results. Even though the results of the tests performed

might not be trustworthy, we can still observe results which somehow go in line

with the previous ones. Although the p-values differ strongly between the tests
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choosing different numbers of groups it indicates that using the elastic net penalty

and ridge regression might result in poor fit. Additionally the high p-values for

the unregularized model might be reasoned with the issue that we face overfitting

and therefore the tests naturally do not reject the null hypothesis that we fitted a

correct model. Besides the unregularized model, the model using the ratios of the

initial variables shows the most promising results.

Summarizing, we can conclude that using a regularized proportional odds ver-

sion of the cumulative logit model, clearly improves the numerical stability and

does not show any signs of multi-collinearity. On the other hand, the observed

performances are not satisfying when trying to predict the outcome of a game.

As already mentioned this might be due to the fact that in ice hockey, in sports

in general, there are a lot of things that impact the result, while most of them

have little statistical influence. As an example, it might have very low impact if

there are two more faceoffs won, while a faceoff in the last minute on a powerplay

in the offensive zone could be a crucial point in the game. Instead of treating

all information separable, it seemed that comparing the respective team perfor-

mances clearly improved the predictive performance of the models. This suits the

fact, that the two teams actually compete against each other and building ratios

takes this into account and also increases the number of covariates included in the

model, while preserving the stability benefits we get from using a regularization

method. Even though, the unregularized model shows multiple problems it might

strongly benefit, as all other models do, from increasing the available sample size.

This argument is reinforced by the fact, that the unregularized proportional odds

version of the cumulative logit model in which we doubled the sample size and

halved the possible covariates by evaluating the teams performances separately

did not show any numerical issues and resulted in satisfying results.

7.3 Comparison of the two Approaches

We have seen two different approaches when trying to predict the outcome of a

game. In the first, we use a log-linear Poisson model to predicted the number of

goals scored by the home team and the away team independently. In the second

one we used ordinal regression on 4 categories, incorporating information from
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both teams to predict the outcome of a game using the predicted probabilities of

the respective categories. While using the first approach, where we doubled the

available sample size by assuming independence, we did not observe any numerical

issues and resulted in a model with 9 included covariates, a totally different situa-

tion appeared when trying to fit an ordinal regression model. Without penalizing

the log-likelihood, we faced serious numerical issues and a variance inflation factor

strongly indicating multi-collinearity. However, simply applying the regulariza-

tion methods on the available information resulted in models showing unsatisfying

results, due to the fact that they shrunk most parameter estimates to zero and

included almost only home team information. Building ratios of the respective

performance pairs, i.e. shots of the home team and shots of the away team or

faceoffs won in the neutral zone by the home team and faceoffs won in the neutral

zone by the away team, seemed to show promising results, while increasing the

number of covariates included in the model. The ordinal regression model in which

we doubled the sample size, analogously as in the log-linear Poisson model, also

showed improved numerical stability and promising results. However, one has to

be cautious when interpreting the results of this model.

When comparing the predictive performances of the two approaches, we have

to distinguish between the one where we predict the outcome of a game using

the difference of the two estimated Poisson intensities and all other approaches,

which predict the probability of all outcomes. Ultimately, the rules of ice hockey

and how they deal with draws after 60 minutes of play imply that predicting the

correct winner of a game is the most crucial part, while all others provide addi-

tional information. Therefore, we discuss the predictive performance on a 2-point

scale, with two possible outcomes, namely a home win or an away win. While

predicting probabilities gives a more differentiated performance evaluation base,

predicting the number of goals scored by the home and away team is also a rea-

sonable approach. While using the Skellam distribution always allows for draws,

simply because the difference of two Poisson variables can be zero, using the dif-

ference of the intensity estimates allows to predict on a two point scale. This can

be achieved by not defining an interval in which we set the predicted result to a

draw and to define that if the difference is exactly zero, we predict an home win

(even though this might be very rare). As already mentioned and observable in

79



7 Application

In Sample Jackknife Data Splitting

λi − µi 67.31% 63.46% 65.38%

EN ratio α = 0.2 83.65% 74.03% 72.98%

Table 7.15: Comparison of the model accuracy using in sample accuracy, jackknife

and data splitting on a 2-point scale

Table 7.13, the ordinal regression model which shows satisfying results and incor-

porates both teams performances simultaneously is the one using the ratios of the

initial variables.

When comparing the in sample, jackknife and data splitting accuracy as shown in

Table 7.15 we can observe that the regularized ordinal model performs better than

the one using the estimated Poisson intensity parameters. However, the ordinal

model uses more than twice non zero coefficients. When discussing predictive per-

formances in sports, one should remember that there is always some kind of luck

involved and often the outcome of the match is not the performance based fair

outcome. In our case we can say that in approximately two thirds to three fourth

of the games the winner was, from a statistical point of view, a deserved winner,

while in the rest we saw a lucky winner. When using the results in practice, the

best choice would be to combine the advantages of both approaches.
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In this thesis we introduced the cumulative logit model which, by assuming an

underlying latent variable, takes the ordinal structure of the response variable into

account. The idea of penalizing the resulting maximum likelihood function was

discussed in detail and several different possible penalty terms were compared.

Regularizing is especially useful when facing multi-collinearity or a large number

of possible predictors compared to a small sample size. Further, to assess good-

ness of fit we discussed modifications of existing goodness of fit tests on ordinal

data. The theoretical concepts where then applied to a real data example in sports.

In this practical part we faced a sample of 104 ice hockey games, where we observed

253 possible covariates, with each covariate either describing the home team’s per-

formance, the away team’s performance and some providing general information.

The aim was to find a model which allows for predictions on the outcome of a

game, without knowing how many goals were scored by the teams. We therefore

started with a log-linear Poisson model, estimating the number of goals scored by

both teams separately. By discussing the teams performances separately we dou-

bled the available sample size while halving the possible covariates, which seemed

to be sufficient to not face numerical issues and to result in a nicely fitting model.

When modelling the expected number of goals we found a model, which does not

distinguish between the home and the away team. This means that the number of

goals scored is not influenced whether the respective team played at home or away.

The resulting model showed satisfying results, however was unable to predict zero

goals scored. This might be seen as an argument that not conceding a goal in an

ice hockey game is a special achievement. On the other hand the model tended

to underestimate the number of goals scored in high scoring games. With the

estimated number of goals scored by both teams, we then have different possibili-
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ties to assess the outcome of a game, all having their advantages and disadvantages.

In the second part of the practical part we used the developed theoretical con-

cepts to model the outcome of the game directly by ordinal regression. We saw

that the unregularized version of the cumulative logit model had several issues in-

dicating numerical problems, most of them relating to the high number of possible

covariates compared to a relatively small sample size. We therefore fitted different

regularized models, while the one using ridge regression is impracticable since it

does not estimate parameters to be zero, the lasso and elastic net penalty showed

unsatisfying results. They tended to estimate all parameters to be zero, with a

very low number of exceptions, all being information from the home team. This

might relate to the fact, that in a sport competitions there is a high number of fac-

tors all having a possibly small influence and are therefore estimated to be zero, if

we penalize their inclusion in the model. We therefore transformed our data set, to

provide reasonable estimates of the match outcome. In the first approach we built

the ratios of the pairs of covariates to then fit a regularized model, which showed

satisfying results. This indicates that building ratios of the respective teams per-

formances considered the competitive nature of the game and therefore allowed

for reasonable predictions with a larger number of predictors being included in the

model. In the second approach we transformed the data in the same way as when

fitting the log-linear Poisson model, which resulted in a nicely fitting unregularized

model evaluating the teams performances separately. This reinforces the argument

that we face sample size problems with the initial data set.

Conclusively, even though predicting the correct outcome of a sport competition

is always challenging simply because there are numerous unmeasured influences

and luck involved, modelling the expected number of goals scored by a log-linear

Poisson model and using an ordinal regression model to predict the outcome of a

game directly are promising approaches. While the number of goals seemed to not

be directly influenced by the corresponding team playing at home or away, pre-

dicting the match outcome directly required to take the competition into account

or to evaluate the teams separately.
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Appendix

α 5-fold (l) 10-fold (l) 104-fold (l) 5-fold (mc) 10-fold (mc) 104-fold (mc)

0.99 1.58 1.35 1.50 3.16 1.62 2.69

0.95 0.78 0.65 0.62 1.33 1.56 0.72

0.90 0.85 0.76 0.60 0.70 0.32 0.52

0.85 0.66 0.66 0.72 0.38 0.31 0.74

0.80 0.31 0.52 0.54 0.26 0.24 0.57

0.75 0.39 0.50 0.43 0.37 0.01 0.44

0.70 0.43 0.39 0.36 0.37 0.09 0.37

0.65 0.39 0.35 0.32 0.33 0.02 0.32

0.60 0.28 0.32 0.30 0.16 0.06 0.01

0.55 0.25 0.26 0.27 0.14 0.12 0.24

0.50 0.29 0.25 0.23 0.14 0.27 0.22

0.45 0.26 0.24 0.21 0.08 0.25 0.20

0.40 0.20 0.22 0.19 0.15 0.16 0.19

0.35 0.19 0.20 0.18 0.14 0.17 0.18

0.30 0.18 0.19 0.17 0.11 0.16 0.17

0.25 0.17 0.18 0.16 0.11 0.15 0.15

0.20 0.23 0.15 0.15 0.09 0.11 0.13

0.15 0.22 0.14 0.14 0.02 0.11 0.12

0.10 0.20 0.15 0.13 0.13 0.14 0.12

0.05 0.19 0.14 0.12 0.13 0.14 0.11

0.01 0.14 0.15 0.12 0.04 0.07 0.10

Table A.1: A comparison of the tuned λ(α)-values for five-fold, ten-fold and leave-

one-out cross-validation using the out of sample log-likelihood (l) and

the out of sample misclassification rate (mc) as criterion

87



9 References

Figure A.1: Diagnostic plots of the fitted log-linear model
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Variable Coefficient Std.Error p-value Mean Std. Dev.

Entries3P h -2.4446 0.8696 0.0049 20.05 4.15

ShotsOG60 h 2.6639 0.9039 0.0032 31.09 7.03

ChallengesStickh h -8.2583 2.5225 0.0010 22.32 7.61

ChallengesWNZ h 5.7984 1.7817 0.0011 9.13 4.11

ChallengesNZ h -5.5966 1.8487 0.0024 18.68 7.32

Passes3P a -6.6218 2.1805 0.0023 126.97 25.78

PassesACOZ a -11.3986 2.8639 0.0000 127.27 37.38

ChallengesWOZ a 11.4467 3.1305 0.0002 22.72 8.84

Faceoffs3P a 5.9911 1.6679 0.0003 9.83 2.76

EBGTcountatws a -2.8119 0.9465 0.0029 6.35 2.71

EBGTcountatws h 6.0370 1.6031 0.0001 7.04 3.34

FaceoffsOZ h 2.1918 0.7262 0.0025 12.69 4.44

Hits h -6.4928 1.8646 0.0004 14.41 5.89

Entries1P a -4.4425 1.2293 0.0003 18.69 4.38

GiveawaysDZ1P h 2.8999 0.8457 0.0006 8.64 3.30

Passesdumpout h 11.1974 3.2786 0.0006 21.14 10.01

ChallengesWStickh h 3.3000 1.2264 0.0071 12.77 5.62

possessionEVOZavertime h 3.1366 1.0356 0.0024 8.65 1.76

PassesAC60 a 7.7155 2.0803 0.0002 311.05 43.71

FaceoffsNZ a -5.7601 1.6970 0.0006 8.46 2.76

FaceoffsOZ a 3.1428 0.9742 0.0012 11.12 4.11

ShotsOG60 a -3.3573 0.9759 0.0005 28.12 7.64

possessionDZ a -2.6718 0.8401 0.0014 610.21 70.07

Hits a 3.1035 0.9356 0.0009 14.07 6.03

PassesACdumpout h -9.2939 2.9621 0.0017 16.32 7.78

Giveaways1P h 2.9107 0.9936 0.0033 21.69 5.11

PassesAC3P a 9.2352 2.6627 0.0005 101.79 23.05

Shots2P h -3.4214 1.1900 0.0040 19.91 5.68

Passesdumpin a -2.5813 0.9311 0.0055 30.43 8.07

ChallengesW60 a -6.9300 2.0526 0.0007 63.79 19.34

Giveaways3P a 2.1864 0.7651 0.0042 19.94 4.91

ChallengesWownslot a 1.9025 0.7365 0.0097 3.03 2.16

FaceoffsDZ h -2.3119 0.8587 0.0070 9.61 3.66

Table A.2: Parameter estimates, standard errors and p-values for the proportional

odds version of the cumulative logit model using standardized covari-

ates from 104 games, with the mean used for centering and the standard

deviation for scaling. The thresholds are α1 = −14.94, α2 = −0.81 and

α3 = 11.61
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Variable Coefficient Std.Error p-value Mean Std. Dev.

home -0.1094 0.3166 0.7296

ChallengesWNZ 0.5249 0.1557 0.0007 9.34 4.28

ChallengesStickh 0.4921 0.2215 0.0263 21.53 7.85

Pen -0.4245 0.1624 0.0089 4.29 1.79

PassesACdumpout 0.6253 0.1772 0.0004 17.10 7.59

PassesAC3P -0.6268 0.1713 0.0002 105.28 23.49

PassesOTB 0.7346 0.1715 0.0000 107.49 19.84

PP 0.6961 0.2579 0.0069 3.53 1.48

FaceoffsPP -1.1275 0.3068 0.0002 4.65 2.74

ShotsOGSH 0.3566 0.1675 0.0332 0.61 0.99

Hits -0.5376 0.1513 0.0003 14.24 5.95

Giveaways3P -0.7788 0.1973 0.0000 20.21 5.27

GiveawaysDZ3P 0.8543 0.2163 0.0000 8.34 3.54

ShotsOG60 0.5181 0.1710 0.0024 29.61 7.47

Possession1P 0.5637 0.1653 0.0006 533.71 83.00

ChallengesWoppslot -0.3530 0.1512 0.0195 1.17 1.12

Defensiveactions -0.3921 0.1773 0.0270 519.66 45.75

PPshotspermin 0.3440 0.1662 0.0385 1.70 0.61

PassesACPP 1.0220 0.4423 0.0208 78.29 38.78

PPmininOZ -0.7669 0.4111 0.0621 225.59 114.25

homeyes:ChallengesStick -0.6901 0.2848 0.0154

homeyes:FaceoffsPP 0.8059 0.3120 0.0097

Table A.3: Parameter estimates, standard errors and p-values for the proportional

odds version of the cumulative logit model using the teams perfor-

mances separately, with the mean used for centering and the standard

deviation for scaling. The thresholds are α1 = −2.503, α2 = 0.007 and

α3 = 2.507
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