
Jakob Heher, BSc

Security Considerations

in

Online Learning

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Maria Eichlseder, Ass.Prof. Dipl.-Ing. Dr.techn. BSc BSc

Institute of Applied Information Processing and Communications

Graz, March 2021

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

Date, Signature

Special Thanks

This work would not have been possible without the assistance of a number of people,
whom I would like to thank here.

My thanks to Michael Eberl and Egon Humer of FIRSTMEDIA network GmbH, for
granting us access to their product.

Thanks also go to the developers at solocode GmbH, FIRSTMEDIA network GmbH,
and Werbe-Medien-Internetagentur M. Hicke, for being very forthcoming throughout the
disclosure process, and quick to remedy the reported issues.

A very special thanks to Lorenzo Angeli for his invaluable aid in proof-reading and
structuring this work.

Finally, thanks to my supervisor Maria Eichlseder for her support throughout all stages
of the process. In particular, thanks for helping me craft my loose thoughts into an
actual topic, and for putting up with my intermittent bouts of getting distracted by other
work.

v

Acknowledgements

Compiling a list of fellow beings that have been instrumental in getting me to this point
in my journey offers an opportunity for reflection, but is also a cruel ask. Human memory
is fallible, and I am bound to omit some who unquestionably would deserve a mention.

Alas, I will still try my best – but I will nonetheless undoubtedly fail to do the task
justice.

So, without further ado, I would like to thank all of the following. Their contributions
are as varied as human nature, but I would not be who I am today without all of their
influences.

Anton Voit, for introducing me to actual mathematics, and his patience with me.
Neville Smit, for giving me a chance I probably didn’t deserve, and letting me experience
the joys of teaching for the first time. Bettina Klinz and Maria Eichlseder, for having
answers when I had questions. Edward Snowden, for letting us see what was in front of
our eyes. Sarah Jamie Lewis and Vanessa Teague, for being an inspiration.

Emmy Radich, for opening my eyes to humans’ humanity. Kim Cavill, Kate Lister,
and Wagatwe Wanjuki, for making me realize I had my head on backwards. Natascha
Strobl, Rami Ali, Hasnain Kazim, and many others, for letting me look beyond the tip
of my own nose.

My good friend Lorenzo Angeli, for always being there to let me know if I was going
overboard.

My parents, for always supporting me to the best of their ability. Being your child has
been an immense privilege.

There are so many more faces whose trajectories intersected mine briefly over the years,
yet who have left an indelible impression on the amalgamation that is me. To all of them,
I am eternally grateful.

vii

Abstract

In early 2020, the CoViD-19 pandemic spread like wildfire around the globe. Governments
reacted by enacting sweeping measures, bringing entire countries to a grinding halt. In
this environment, online learning has become a mainstay of education. Many small
platforms, developed on meager resources, are faced with an unforeseen torrent of data.

In this work, we investigate the state of online learning platforms in the DACH countries.
We compile a list of resources recommended by public institutions, and identify from
it a number of services likely to handle sensitive data. We then analyze the platforms’
functionality through a security and privacy lens, and assist developers in correcting
flaws.

We present severe vulnerabilities, leading to full account compromise, in all reviewed
platforms. On a portion, we demonstrate unrestricted access to all enrolled students’
data. Disclosure of these flaws has allowed them to be remediated, contributing to a
more secure learning environment for thousands of students. We then discuss systemic
factors that led to the outlined issues, and offer potential mitigations going forward.

Keywords: Information Security · Privacy · Web Security · Distance Learning · Online
Learning Platforms · SQL Injection · Session Authentication · Cross-Site Scripting

ix

Kurzfassung

Im Frühjahr 2020 verbreitete sich die CoVid-19-Pandemie rasend schnell auf der gesamten
Welt. Viele Nationalstaaten reagierten zunächst mit drastischen Einschränkungen. Das
öffentliche Leben stand in weiten Teilen still. Auch die Schulbildung, zuvor zumeist als
traditioneller Präsenzvortrag gestaltet, wurde im Eiltempo digitalisiert. Auch viele kleine
Unternehmen, teils unerfahren und mit wenigen Ressourcen ausgestattet, wurden aus
heiterem Himmel mit der Verwahrung und Verarbeitung von gewaltigen Datenmengen
betraut.

Im Zuge dieser Arbeit untersuchen wir im DACH-Raum verbreitete Online-Lernangebote.
Um einen Überblick zu gewinnen, konsolidieren wir zunächst diverse Ressourcenlisten
öffentlicher Stellen. In Folge identifizieren wir mehrere Plattformen besonderen Interesses
und führen an diesen Sicherheitsanalysen durch.

In allen untersuchten Plattformen entdecken wir Schwachstellen, die die vollständige
Übernahme eines gewählten Lehrer-Accounts ermöglichen. Weiters erlangen wir bei meh-
reren Angeboten Vollzugriff auf die Daten sämtlicher registrierter Schüler*innen. In Ko-
operation mit den Entwickler*innen erreichen wir die Behebung dieser Sicherheitslücken.
Weiters diskutieren wir Faktoren, die wir für die Entstehung der beschriebenen Probleme
als verantwortlich betrachten. Wir stellen Überlegungen an, wie solche Schwachstellen in
Zukunft systemisch vermieden werden könnten.

Schlagwörter: Informationssicherheit · Datenschutz · Web Security · Distanzunterricht
· Online-Lernplattformen · SQL Injection · Session-Authentifizierung · Cross-Site Scripting

xi

Contents

1. Introduction 1

2. Background 3

2.1. A brief history of interactive web applications 3

2.2. JavaScript . 4

2.3. JSON . 6

2.4. SQL . 6

2.5. PHP . 7

2.6. HTTP cookies . 8

2.7. Hash functions . 9

2.8. Session identifiers . 11

2.9. Cross-Site Scripting . 12

2.10. Cross-Site Request Forgery . 14

3. Analysis of Online Learning Platforms 17

3.1. User roles . 17

3.2. Attacker goals . 17

3.3. Case studies . 18

3.4. Review methodology . 19

3.5. Ethical considerations . 20

3.6. Responsible Disclosure . 20

3.7. About the following chapters . 21

4. ANTON 23

4.1. Features . 23

4.2. Functionality . 24

4.3. Analysis . 27

4.4. Disclosure . 31

5. Antonwelt 33

5.1. Features . 33

5.2. Functionality . 34

5.3. Analysis . 37

5.4. Disclosure . 39

6. Schlaukopf.at 41

6.1. Features . 41

xiii

Contents

6.2. Functionality . 42
6.3. Analysis . 43
6.4. Disclosure . 45

7. LearningApps.org 47
7.1. Features . 47
7.2. Functionality . 48
7.3. Analysis . 50
7.4. Disclosure . 51

8. Discussion 53
8.1. On defaults and documentation . 53
8.2. On administrative account resets . 56
8.3. On adversarial thinking . 57

9. Conclusion 59
9.1. Future work . 60

A. Processed resource listings 61

B. Form letters 67
B.1. Request for Access . 67
B.2. Request for Disclosure . 68

Bibliography 69

xiv

List of Figures

3.1. Public institutions’ resource listings – aggregate data 19

4.1. Two example features of ANTON . 24
4.2. Derivatory relationships between entity identifiers in ANTON 28

5.1. A story’s journey in Antonwelt . 34
5.2. Additional features of Antonwelt during class hours 34

6.1. Example problems on Schlaukopf.at . 41
6.2. Tutor features on Schlaukopf.at . 42
6.3. A password reset message from Schlaukopf.at 45

7.1. Some of the available building blocks in LearningApps.org 47
7.2. Creating an app in LearningApps.org . 48

8.1. crypt() — PHP manual . 54
8.2. crypt() examples — PHP manual . 55

xv

Chapter 1.

Introduction

In early 2020, the CoViD-19 (“Coronavirus”) pandemic spread like wildfire across the
globe. As infections surged among immunologically näıve populations, activities that
previously defaulted to physical proximity had to rapidly be reconsidered, with many of
them shifting to an online-only model.

Many users were scrambling to choose the digital platforms to use – they were often
helplessly out of their depth, and always under extreme time pressure. Services that
had previously been relegated niche roles were seeing their user count increase by orders
of magnitude. With this came commeasurate attention to their security and privacy
guarantees.

In-person schooling was hit particularly hard. Practically overnight, curricula worldwide
were upended. Hundreds of thousands of educators were suddenly tasked with constructing
an online learning environment for many millions of students [UNE20]. In a study, Johnson,
Veletsianos, and Seaman find that “more than half of faculty members reported that they
were using new teaching methods following the transition to an online setting” [JVS20].

The results, perhaps, could be called predictable. Take the California-based startup
Zoom, which established itself as a leading provider of seamless video conferencing during
the early stages of the pandemic. Almost immediately, it was rattled by a rapid-fire
sequence of high-impact vulnerabilities [Wag21], such as a lack of proper end-to-end
encryption [GL20]. It is not alone in this – Cisco’s WebEx, Google’s Drive, and Microsoft’s
Teams have all faced similar trouble in 2020 [Jan+20; Has20; Veg20].

In this work, we set out to contribute to gradual improvement, in our own little way.
While videoconferencing giants such as the above certainly had their share of problems
going in, they were also placed under intense public scrutiny due to their widespread and
global use. Thus, we instead chose to focus on a more specific category – online learning
applications. Previously often consigned to being an “adornment” for otherwise in-person
teaching activities, these services also saw a surge of adoption throughout 2020 [VB20].
However, they typically do not command the development budget, enticing bug bounty
program, or army of engineers that an application targeting enterprise customers might.

To this end, we first survey resource listings provided by various public institutions in
Austria and Germany [BdStmk; BMBWF; KMK] for kids aged 6–10. We categorize the
referenced platforms, and identify four targets of particular interest, which we considered
likely to hold sensitive information: ANTON [sola] and Schlaukopf.at [Hic+12a], two
platforms offering access to pre-defined interactive content; Antonwelt [Hum+18c], a
creative workshop that allows students to explore writing short stories in a colorful

1

Chapter 1. Introduction

environment; and LearningApps.org [Hie12], a platform allowing teachers to easily create
their own specialized content through use of generic templates.

Reviewing each of these platforms, we initially view the application server as a black
box. We inspect its behavior through “normal” use, and develop an understanding of
the exchanged information’s structure. Using the information gained as a basis, we then
make incremental changes to the requests transmitted and observe the results. In doing
so, we aim to identify erroneous behavior in the application server’s handling.

For every one of the four platforms we reviewed, we were able to discover and disclose
serious vulnerabilities allowing account compromise. This includes a SQL injection
vulnerability in Antonwelt, Cross-Site Scripting vulnerabilities in Schlaukopf.at and
LearningApps, and Cross-Site Request Forgery vulnerabilities in Antonwelt, Schlaukopf.at,
and LearningApps.org. Furthermore, we analyzed the custom API design of ANTON
and were able to compromise its fundamental authentication design. This allowed us
to demonstrate continuous and complete access to all enrolled students’ data in two of
the four reviewed platforms. All issues outlined have been responsibly disclosed to the
respective developers, and have since been mitigated as a result of our reports.

Finally, we offer some systemic criticisms adjacent to our work. We opine on the
negative impact that poorly chosen default values and disorganized documentation can
have on software security, and connect this to some of the concrete issues we discovered.
Next, we consider proper design of account reset procedures, and how poor decisions
here can circumvent even the most secure systems. Lastly, we discuss the concept of
“adversarial thinking” – and posit the necessity of ingraining it in the next generation of
software engineers.

The remainder of this work is organized as follows: in Chapter 2, we introduce the
technical concepts that will be necessary throughout; in Chapter 3, we summarize some
general concepts, introduce the methodology used in our case studies, and make some
additional considerations; in Chapters 4 to 7, we present the findings of our investigation
of each of the targets identified; in Chapter 8, we explore the nature of the flaws uncovered,
and theorize on what systemic changes could have helped avoid them; finally, in Chapter 9,
we reflect on our results and suggest potential future work in the area.

2

Chapter 2.

Background

When developing an application for public use, ensuring its functionality across different
platforms is more important than ever. According to data aggregator NetMarketShare,
as of September 2020, the majority of web activity (58%) originates on mobile devices,
up from just 25% in 2016 [Net20].

In this environment, developing a native application is often a losing proposition, as it
involves duplicating much work for each supported platform. Thus, developers have taken
to using web technologies – already designed to be platform-agnostic, and ever-growing
in capability – as a means to deliver a consistent user experience across practically
all modern end user devices, in spite of significant performance overheads [CSS12]. A
number of frameworks have sprung up to enable this, such as Electron [Ope20] and
Apache Cordova [Apa12].

In the remainder of this chapter, we introduce a selection of web technologies and
related issues. As enumerating the ever-growing list of interfaces exposed to the modern
internet could fill volumes all by itself [Mozd], we limit ourselves to concepts that will
be relevant to our analysis. This includes common underpinnings such as JavaScript, as
well as more specific security concerns such as password storage, and attack approaches
such as XSS and XSRF.

2.1. A brief history of interactive web applications

The internet’s foundational means of data exchange, the HyperText Transfer Protocol
(HTTP), was originally conceived to allow “a client to acquire a (hypertext) document
from an HTTP server, given an HTTP document address”, and any document thus
retrieved was specified to be “in hypertext mark-up language” [Ber91]. While the
document in the 1991 specification was likely envisioned to be a static document, akin to
retrieving a book from a library, it did not take long for this definition to expand.

By 1993, the Common Gateway Interface (CGI) standard was being established
[McC93] as a means to “interface external applications with information servers, such as
HTTP or Web servers” [McC94]. CGI scripts allowed HTTP responses to be generated
dynamically – however, the retrieval of information was still intricately linked with the
act of page navigation. A number of other technologies and languages, such as PHP
(1995), ASP (1996) and Java Servlets (1997) sprung up over the next years, but did not
change this fundamental paradigm.

3

Chapter 2. Background

Yet, in time, web applications evolved to provide more and more access that was not
purely reading information, but also modifying it. This began to result in significant
user experience challenges. For one, any user interaction that requires server feedback
would necessarily introduce significant wait times during which the application appeared
unresponsive – or worse, during which the user could inadvertently abort the operation
by clicking another button. Furthermore, browsers’ native history navigation could easily
lead to users duplicating actions by accident – for example, innocously clicking “Back”
after placing a purchase order could result in that same order being placed yet again.

To address this, in the late 1990s, Microsoft developed the XMLHTTP ActiveX
control, at the time primarily for use in Outlook Web Access [Hop06]. This control
allowed web pages to make requests to the server in the background, allowing them to
send or retrieve data without needing page navigation. It was implemented starting
with Internet Explorer 5 [Mic]. By 2002, the XMLHTTP control had been adapted into
the XMLHttpRequest (XHR) JavaScript object for the NetScape (later Mozilla),
Safari and Opera browers [App05]. This technology did not see widespread use until the
mid-2000s, when the Google search engine began using it to dynamically load search
suggestions on the fly, based on user input. The company’s Gmail web interface and
Google Maps navigation software also made heavy use of XHR to provide a responsive
and seamless interface to users, setting them apart from most other web applications of
their era [Hof19].

In 2005, the term Asynchronous Javascript And XML (Ajax) was coined [Gar05]
for this use of technology – and the changed viewpoint on web development that came
with it – and stuck. In the intervening decade-and-a-half, the preferred encoding for
information has moved on from XML, and even the XMLHttpRequest interface is reaching
the end of its tenure. However, the fundamental shift of decoupling information exchange
from document navigation – this fundamental departure from the original structure of
the internet as a mere means of document transfer – is likely to stay with us for a very
long time.

2.2. JavaScript

JavaScript is the predominant language for client-side scripting in the modern web.
A document may directly embed JavaScript code, or may instead reference an outside
script file to be requested separately. Regardless, the browser evaluates the referenced
instructions, and executes them in a sandboxed environment – allowing them to dynami-
cally modify the content displayed to the user while isolating them from the underlying
system.

The server architectures and programming languages in use may vary wildly between
different websites. However, a client-side scripting language, by its nature, must be
widely supported by various different web browsers to be useful. Thus, too, JavaScript
remained hobbled for some time after its inception in 1993 – as a scripting language
that was syntactically similar to Java for use in Netscape Navigator [Eic08b] – by a lack
of standardization. This was exacerbated by Microsoft packaging their own brand of

4

2.2. JavaScript

JavaScript – named JScript for trademark reasons – with Internet Explorer [Mic97]. As
a result, designers needed to cope with many subtle differences between browsers for the
early oughts of the burgeoning millennium [Lak07].

However, by the mid-2000s, the then-stagnant browser market was shaken up by the
entry of Netscape’s successor, Mozilla Firefox [Bak04]. This, alongside the developing
AJAX paradigm shift, brought with it a renewed push for true cross-browser standardiza-
tion of JavaScript, again under the ECMA standards process to which it had originally
been submitted in the 1990s. By July 2008, most fundamental disagreements had been
resolved [Eic08a], and the ECMAScript 5 standard was released in December of 2009
[Ecm09]. While adjustments to browsers to comply with the new specification took time,
by the time ECMAScript 6 was released in 2015 [Ecm15], most major browsers had
settled into a mostly-interoperable state of affairs. Thus, the unified JavaScript remained
as the definitive scripting language of the modern web.

Only the most basic of web pages in the modern day make do without executing any
JavaScript, with some estimates giving usage rates in excess of 95% [W3T]. Use cases
vary widely, from basic functionality such as form validation or dynamic repositioning of
UI elements, to advanced applications such as on-demand loading or submission of data,
or even fully-featured site-specific proxy servers [Mozc].

2.2.1. Functionality

Once loaded by a HTML <script src="..."> tag, the script is evaluated in the browser’s
JavaScript sandbox environment. Execution is inherently single-threaded, but cooper-
ative multitasking is supported in most modern browsers via async/await. To defer
functionality, callback functions can be specified, either as event handlers or on a timed
interval.

While interaction with the underlying OS is strictly controlled and gated by user
approval, within the context of the web page itself, JavaScript is practically omnipotent.
The entire HTML document tree is exposed to it via the Document Object Model,
short DOM, a tree-like structure of object representations. This allows JavaScript logic
to freely rearrange the document, adding or removing nodes at leisure.

Additionally, a number of means for making arbitrary HTTP requests are available
[Mozf; Moza], though programmatic access to information requested from third-party
domains is restricted (see Section 2.9). Various mechanisms for persisting data between
visits are also widely supported, such as WebStorage [Moze] or IndexedDB [Mozb].

A plethora of other APIs are also exposed by modern browsers [Mozd], allowing
JavaScript to seamlessly perform an ever-growing number of tasks such as editing images
in real time, securely encrypting data, accessing the device’s camera and microphone,
and many more.

5

Chapter 2. Background

2.3. JSON

JavaScript Object Notation, or JSON, is a language-agnostic interchange format
for structured data. As the name indicates, its syntax is a subset of that of JavaScript.
An example is provided as Listing 2.1.

JSON supports six types of data:

• Numbers, in decimal notation

• Strings delimited by double quotes (")

• Booleans

• Arrays, which are lists of data

• Objects, which are key-value pairs

• null as its own type

This limited feature set makes implementing a JSON parser a fairly simple endeavour.
In particular, it is quite achievable to audit such a parser fully; this is crucial, as it is
a piece of logic that will frequently deal with potentially malicious user input. Most
modern languages provide JSON encoders and decoders as part of their standard library.

{
” id ” : 7 ,
”name” : ”Bond , James” ,
” a c t i v e ” : true ,
” a f f i l i a t i o n s ” : [
{

” id ” : 0 ,
”name” : ”M”

} ,
{

” id ” : 6 ,
”name” : ” Trevelyan , Alec ”

}
] ,
” r e s t r i c t i o n s ” : []

}

Listing 2.1: An example of a JSON-encoded user profile

2.4. SQL

Structured Query Language (SQL for short) is a family of syntactically adjacent
dialects used by both users and software to communicate with the majority of widely-used
database servers. Such a communication is made up of a number of individual instructions,
or queries. Data is stored in tables, which are structured as a set of named columns
of data. Each such table contains zero or more rows, i.e., data items.

At the most basic, each query is transmitted as a simple human-readable string
containing both raw data, and instructions on what to do with that data:

6

2.5. PHP

UPDATE use r s SET s t a t u s=’At home ’ WHERE id=42

In this example, the instructions given are “Update the ‘users’ table, changing the
column ‘status’ to a value for all rows where the ‘id’ column matches a second value.” –
meanwhile, the data provided are the string “At home” for the first value, and the integer
“42” for the second value.

2.4.1. SQL Injection Attacks

However, mixing data and instructions can have vast repercussions if a malicious party
controls the data being processed, and the designer does not carefully consider this. For
example, if an application allows the user to specify a custom status message, it might
simply create a query like above by inserting the user’s requested status message into the
raw string. However, a crafty attacker can then insert instructions into the query:

UPDATE use r s SET s t a t u s=’’, isAdmin=true, status=’ ’ WHERE id=42

As a result, this innocent-seeming query is manipulated into having entirely unexpected
side effects, as confusion occurs between the entered data and the underlying instructions.
This class of attack is called an SQL injection attack. It is possible to programmatically
apply escape characters to user input to prevent this behavior. However, this still
requires the programmer to consciously invoke an appropriate function each time user
input is processed – and any single oversight can have far-reaching consequences. If an
attacker attempts the attack above, but proper escaping techniques are applied, this
results in the following query:

UPDATE use r s SET s t a t u s=’\’, isAdmin=true, status=\’ ’ WHERE id=42

2.4.2. Prepared statements

Many SQL dialects allow for strict separation between instructions and data by introducing
a separate preparation step. Here, the instructions contained in the query are processed
first, with placeholders in positions where data would ordinarily be specified. Afterwards,
data can be bound to the placeholders in this prepared statement. For example, the
instructions contained in the statement above, would be expressed using placeholders as:

UPDATE use r s SET s t a t u s=? WHERE id=?

While the particular placeholders and syntax used in prepared statements differ across
implementations, the underlying concept remains unchanged. As the (user-controlled)
data is strictly separated from the underlying instructions, no confusion can occur.

2.5. PHP

PHP – a recursive acronym for PHP: Hypertext Preprocessor – is “a widely-
used Open Source general-purpose scripting language that is especially suited for web
development” [PPre]. Created in 1994 as a set of CGI binaries [PHis], it is today

7

Chapter 2. Background

embedded by many popular web servers as a way to enrich static HTML content. Its
ability to seamlessly integrate into existing static HTML content makes it especially
attractive as an entry point to web programming. As illustrated in Listing 2.2, the PHP
parser will output any text not wrapped in a <?php/?> pair as-is – this allows users
to take their existing static files, and add tiny specks of PHP over time without ever
needing to re-engineer to entire page.

<html>
<head>

<t i t l e >My F i r s t Dynamic Web Page</ t i t l e >
</head>
<body>

<?php
$one = ’ He l lo ’ ;
$two = ’ World ’ ;
echo $one . ’ ’ . $two ;

?>
</body>

</html>

Listing 2.2: An example PHP file

This prioritization of accessibility also extends to many other aspects of the language’s
design. Variables in PHP are not only weakly typed, but will be very permissively coerced
without requiring explicit instruction. For example, this leads to the string ’0, also

evil code’ being considered equal to the integer 0 by the default equality operator.
Dahse and Holz [DH15, section 2] provide a number of similar situations where such
attempts at accessibility instead lead to hard-to-detect unsafe behavior.

2.6. HTTP cookies

As described in Section 2.1 and Section 2.2, the majority of web applications still rely
on HTTP for most of their communication with the back-end server. However, HTTP
is inherently a stateless protocol – each individual HTTP request is disconnected from
the previous one. This makes HTTP servers comparatively easy to implement – but it
also places significant constraints on the features web applications can provide. This was
already recognized in 1994 [Kri01]. In response, at the request of one of their customers,
Netscape added a proprietary feature to their Navigator browser that would allow web
servers to store a string of text. This string would not be processed, but simply sent
back unaltered with any subsequent requests.

In Unix lingo, the term “magic cookie” was commonly used to describe “a result
whose contents are not defined, but which can be passed back to the same or some other
program later”, such as “the result of ftell [which] may be a magic cookie rather than
a byte offset; it can be passed to fseek, but not operated on in any meaningful way”
[Ray03]. Thus, the term HTTP cookie was coined for this new technology [Sch01].

The widespread adoption of this seemingly innocuous technology, and the associated
ability to link disparate web requests made by the same client, had massive impact on

8

2.7. Hash functions

the web ecosystem. With cookies quickly becoming required to use practically any web
application, users were left with little recourse as a vast multi-billion dollar industry
evolved around weaponizing their devices’ functionality against them, allowing their
every motion to be profiled, dissected, and turned into profit. Combined with a server’s
ability to force most clients into making requests to arbitrary domains – sending their
identifying cookies along for the ride – the HTTP cookie allows disparate user profiles to
be associated across the entire internet, producing an ever-growing and nigh-inescapable
record of users’ every move [Wod20].

2.6.1. Cookie attributes

To store a cookie in the client browser, the server includes a Set-Cookie: key=value

HTTP header in any response. Optionally, this header can also include cookie at-
tributes, which modify the cookie’s behavior. Each attribute is simply appended to the
header, with a leading semicolon (;) as delimiter.

Many cookie attributes exist to work around security concerns in the base cookie
specification, which may not have been considered during its inception in the 1990s. We
list some examples.

Setting the Secure attribute prevents the cookie from being included in non-HTTPS
requests. Many browsers still make an initial HTTP request when the user types a
URL. This request will typically just result in a 301 Moved Permanently status message
directing the user to the HTTPS version of the site. However, the request itself still
includes cookies in plain text. This allows them to be intercepted by an on-the-wire
passive attacker. If Secure is set, this is no longer the case.

Setting the HttpOnly attribute makes the cookie “invisible” to JavaScript code. By
default, all cookies for a host are available to JavaScript sent from that host. This is often
unnecessary, and allows cookie content to be compromised by a successful XSS attack
(see Section 2.9). Setting HttpOnly thus provides a useful defense-in-depth mechanism
with little downside attached to it.

Setting the SameSite attribute causes the cookie to only be sent with first-party
requests. First -party requests are requests initiated by the application itself, rather than
initiated by a third-party website. We elaborate on this further in Section 2.10.

2.7. Hash functions

A cryptographic hash function is a deterministic mapping of arbitrary binary data
to fixed-length binary data. Generic hash functions are used in many areas, such as as a
fingerprint of data, or for indexing of data structures. In a cryptographic context, the
primary properties desired of a hash function are pre-image resistance and collision
resistance: given the hash value (or digest) of some secret, it should be infeasible for
an attacker to compute the original secret; furthermore, it should be infeasible for them
to produce two values with the same digest. These properties, though they may appear
simple at first, allow hash functions to be used in a wide variety of applications.

9

Chapter 2. Background

Of particular interest to us is the use of hash functions in password-based authentication.
Here, exposure of users’ passwords to an attacker would compromise not only their account
on the affected service, but very possibly also their account across a number of other
services [Das+14]. Thus, it has become common practice to store a hash digest of
the user’s password instead of the plain-text password. When a user then attempts to
authenticate, the hash digest of the password candidate can be calculated and compared
against the stored value.

Note that the focus on these particular properties leads to a very different incentive
system in the design of password hash functions. While a general hash function should
typically have minimal runtime and memory use, this is actually counter-productive in
the case of password hashing use. Common attacks will often involve a vast number of
evaluations of the hash function, while legitimate use needs comparatively few. Thus,
the goal should be to maximize resource use while still remaining performant enough in
the environment of actual use. Many hash functions even provide parameters that allow
for dynamic adjustment of the cost of evaluation.

Widespread use of password hashing has also led to a corresponding focus on techniques
for breaking, in particular, weak passwords. For instance, by investing some significant
amount of resources, an attacker could pre-compute the hash value of all alphanumeric
passwords of length 7 or lower (of which there are roughly 242) for some well-known pass-
word hashing function. This advance investment would then permit them to immediately
extract some – likely not negligible – portion of the compromised passwords.

To defeat such an approach, modern password hashing procedures typically involve
a salt; a random – though not secret – string that serves as an additional input to the
hash function. As the salt does not need to remain secret, it can be encoded alongside
the hash digest itself, allowing storage of the entire result as a single string. When a
user attempts to log in using a password candidate, the salt can then first be extracted
from the encoded digest string, after which the hash value can be re-computed using that
same salt and compared against the original digest.

By introducing this additional unpredictable factor, the advance work an attacker
would need to perform for such a pre-computation increases significantly – not only do
they need to account for all possible passwords, but also for all possible salt values for
each password. For a sufficiently sized and appropriately random salt, this makes such
approaches infeasible at no relevant cost to genuine users.

Listing 2.3 shows an example of an encoded result of applying the Argon2 password
hashing function [BDK16] to the password swordfish. Note how the password digest
(ySstDtm0...) is stored alongside the random salt (em1rS...), as well as all other
parameters required to reproduce the original environment the digest was created in.

$argon2id$v=19$m=128 , t =15,p=4
$em1rSXdEY3k0emp6REhGSQ$ySstDtm005SHDdenQnwACGfND7259jt2/
gkpdSPdW8ZWS9udjX8FPh0hD1EqEsKB

Listing 2.3: An encoded password hash using the Argon2 hash function

10

2.8. Session identifiers

2.8. Session identifiers

As previously mentioned in Section 2.6, HTTP is inherently a stateless protocol. This
presents additional complexities for applications that require users to authenticate
themselves to gain additional access.

A first naive approach may be to have a user provide authentication with every request
they make. However, in even a modest application that simply allows navigation between
multiple authenticated resources, this quickly becomes intractable for multiple reasons.
For one, requiring the user to constantly re-enter their password is undesirable from a
usability standpoint, while keeping their password in memory may not be an option due
to security concerns. Furthermore, constantly re-authenticating a user will, if credentials
are properly stored, also consume a nontrivial amount of server resources. (See Section 2.7
for more on secure password storage.)

Instead, it has become common practice to store short-term authentication tokens
called session tokens – meant to be used for the duration of a user’s active session
– on the client, either through HTTP cookies (see Section 2.6) or other means. The
client presents this information whenever necessary, allowing the server to link the user’s
request to their ongoing authenticated session without requiring the client to store a
password. As long as this token is short-lived, the risks of potential compromise are
reduced. Additionally, it is common to require the user to explicitly “re-authenticate”
select high-impact operations – such as a password change, or finalizing an online purchase
– with their password. This limits the harm inflicted if, for instance, a user fails to properly
terminate their session on a public machine, and another user stumbles across it.

We can further differentiate between stateful and stateless session management tech-
niques.

A stateful session manager stores data about the user’s ongoing session on the server,
indexed with a cryptographically secure random value, which serves as the session token.
This random value is only shared with the client establishing the session, and a user’s
knowledge of the value is thus considered sufficient proof that they are that same client.
However, stateful session management can be a concern when scaling web applications, as
it cannot be guaranteed that the same web server responds to each request made by any
given user. Thus, each web server must access and modify some centralized repository of
session data with each user request, producing a performance bottleneck.

Instead, stateless session management relies on cryptography to guarantee authenticity
of data stored by the user. Instead of storing session data centrally, the user is provided
with a token identifying them that is signed using a private signing key. When the user
then presents that token to a web server with knowledge of the associated public key,
that server can verify validity of the token and establish the user’s identity as vouched
for by the signing server. In particular, the web server validating the token does not need
knowledge of the private signing key. This allows for large flexibility in design of such
stateless systems, and is at the core of many of today’s federated authentication systems.

11

Chapter 2. Background

2.9. Cross-Site Scripting

As outlined in Section 2.2, JavaScript is the foundation of seamless interactive web
design, and is supported by practically all modern web browsers. Of course, this
has made it a very attractive target for attackers. For this reason, many features
have become strictly limited in their scope over time. In particular, most JavaScript
logic cannot “pass across” a domain boundary – for example, JavaScript served from
https://attacker.evil/ is unable to access the content of an inline frame in which a
page from https://secure.banking/ is displayed, and unable to inspect the contents
of a fetch() query targeted at https://secure.banking/.

For this reason, being able to execute JavaScript in a first-party context – having it
appear as if it is JavaScript originating from the target site’s servers – is an extremely
desirable goal for any attacker. This is the foundation of a Cross-Site Scripting
attack. To execute such an attack, the attacker must have some way to entice the server
into serving attacker-controlled code to the victim. In most cases, this uses methods
akin to the SQL injection attacks outlined in Section 2.4.1, inducing confusion between
instructions – such as a HTML <script> tag – and data, which is typically expected
to be plain text. Thus, it can again be viewed as a failure to sufficiently distrust and
validate user-supplied information.

For example, imagine a basic chat platform that allows users to send text messages. If
a user sends the message “No, Mr. Bond, I expect you to die.”, and the recipient views
that message, they may be presented with a dynamically-generated HTML page similar
to that in Listing 2.4. However, a crafty attacker can embed HTML in their message
body. If the server does not properly validate the input, this results in a malicious script
running in a first-party context (see Listing 2.5).

<html>
<head><t i t l e>Incoming Message</ t i t l e></head>
<body>

From : Goldf inger , Auric
To : Bond , James
<p>No, Mr. Bond, I expect you to die.</p>

</body>
</html>

Listing 2.4: Example HTML generated by a benign message

<html>
<head><t i t l e>Incoming Message</ t i t l e></head>
<body>

From : Attacker , Ev i l
To : Bond , James
<p><script type=”text/javascript”>

fetch(”https://attacker.evil/?cookie=”+document.cookie)
</script></p>

</body>
</html>

Listing 2.5: The same HTML for a malicious message which injects JavaScript

12

2.9. Cross-Site Scripting

2.9.1. Countermeasures

Typical countermeasures can be roughly divided into two groups, akin for those for SQL
injection outlined in Section 2.4.2. The former uses escaping techniques to render the
user input “harmless” before inserting it, while keeping instructions and data intermingled.
An example of this can be seen in Listing 2.6. As mentioned in Section 2.4.2, this relies on
developers consistently inserting the escaping logic in all relevant locations – oversights
are hard to spot, but any single one can compromise the security of the entire platform.

The latter group delegates transfer of data to designated data transfer formats, such
as JSON (see Section 2.3), and then inserts that data into the respective elements. For
example, JavaScript can use the .innerText attribute to specifically indicate that the
content being inserted it purely data, or use .createTextNode() to create a text-only
node with no parsing. Listing 2.7 shows an example of such strict separation in action.

<html>
<head><t i t l e>Incoming Message</ t i t l e></head>
<body>

From : Attacker , Ev i l
To : Bond , James
<p><script type="text/javascript">

fetch("https://attacker.evil/?cookie="+document.cookie)
</script></p>

</body>
</html>

Listing 2.6: The same HTML after the malicious message has been rendered harmless

<html>
<head><t i t l e>Incoming Message</ t i t l e></head>
<body data−msg−id=”42”>

From :
To :
<p id=”msg”></p>

</body>
<script type=” text / j a v a s c r i p t ”>

document . addEventListener (’ DOMContentLoaded ’ , async () =>
{

const msgId = document . body . datase t . msgId ;
const u r l = (’/ api /getMsg? id=’+msgId) ;
const { from , to , msg} = await (await f e t c h (u r l)) . j s on () ;

const ELEMENT = document . getElementById ;
ELEMENT(’ from ’) . innerText = from ;
ELEMENT(’ to ’) . innerText = to ;
ELEMENT(’ msg ’) . innerText = msg ;
}) ;

</ script>
</html>

Listing 2.7: An alternate approach that strictly separates the data from the HTML
document

13

Chapter 2. Background

2.10. Cross-Site Request Forgery

HTTP Cookies, as described in Section 2.6, are opaque snippets of plain text that are
stored in a user’s browser and sent back with any request to the same server. They are a
popular means of associating temporary authentication tokens with a user’s browsing
session, as outlined in Section 2.8 – the request being associated with the appropriate
session token cookie is treated as proof of authenticity.

However, upon closer inspection, it becomes apparent that it is only proof that the
request was made by the same web browser associated with the session. It is not proof
that the request originated from the genuine website, or indeed that the user is even
aware that they are making that request.

This opens a common vector for attack. If all data that must be submitted with a
given request are known in advance, a malicious third-party site may ask that the user’s
browser submit that request – and the browser will comply without notification to the
user. This results in a legitimate request being made to the server, including the user’s
session cookie. Such an attack is referred to as a Cross-Site Request Forgery attack,
commonly shortened to XSRF or CSRF.

An example of this is shown in Listing 2.8. A seemingly innocent page includes an
invisible <iframe> context containing a form targeted at https://secure.banking, with
pre-set input values. This form is submitted when the page loads, causing the browser to
make a request, which includes the user’s session cookie. As the form is submitted in an
inline frame, only that (invisible) frame is redirected to the banking portal. The attack
is thus not apparent to the user.

<html>
<head><t i t l e>Innocent Page</ t i t l e></head>
<body>

<h1>Hello , user !</h1>
License Agreement
<p>This i s dummy content to avoid s u s p i c i o n .</p>
<p>The user reads th i s , c l o s e s the page and f o r g e t s about i t .</p>
<iframe style=” d i sp l a y : none” src=” . . . ”>

< !−− e x t e r na l content i n l i n e d for r e a d a b i l i t y −−>
<form t a r g e t=” https : // s ecure . banking /” method=”POST” id=” f ”>

<input type=” hidden ” name=” opera t i on ” value=”sendMoney” />
<input type=” hidden ” name=” r e c i p i e n t ” value=” o f f i c e @ a t t a c k e r . e v i l ” />
<input type=” hidden ” name=”amount” value=”42000” />

</form>
<script type=” text / j a v a s c r i p t ”>

document . getElementById (’ f ’) . submit ()
</ script>

</ iframe>
</body>

</html>

Listing 2.8: A malicious third-party causes a request without the user’s knowledge

14

2.10. Cross-Site Request Forgery

2.10.1. Countermeasures

To avoid such attacks, browsers have recently begun supporting the SameSite cookie
attribute. This attribute lets the server indicate that a HTTP cookie should only be
included if the request was initiated by that same host. This would cause the request
in Listing 2.8, which was initiated by https://attacker.evil/, to omit the SameSite-
enabled session cookie of https://banking.secure/.

This attribute supports the values None, Lax and Strict. None is the “original” cookie
behavior, including the cookie with any request. Lax only includes the cookie with
first-party requests, or with user navigation originating on a third-party site, such as
a link click. Strict prevents the cookie from being included in third-party requests
altogether.

As of 2020, adoption of these attributes is low. Van Goethem, Demir, and Pollard
find that only 13.7% of first-party cookies specify any SameSite attribute – and of those,
another 48% opt to use the insecure None option [VDP20].

However, major browsers are moving to make Lax the default unless specified otherwise.
This change, which can be viewed as addressing an unintended side effect of the original
cookie specification, may well herald the decline of the simple XSRF attacks outlined in
this section.

15

Chapter 3.

Analysis of Online Learning Platforms

3.1. User roles

In educational applications, permissions are often arranged hierarchically, to mirror the
structure of a traditional classroom scenario. As the names vary across services, we
will assign one arbitrarily chosen label to each archetypal “role”. We give these below,
alongside some context.

Students are the least privileged users in the ecosystem. The exact scope of their ability
will depend on the application’s functionality, but they can generally be characterized
as consumers of content provided by other users or the platform. Many of the typical
assumptions of account ownership cannot be applied to student accounts due to their
holders’ typical age group. For example, common back-up authentication methods such
as email or text messaging cannot be presumed to be available.

Teachers are afforded moderation privileges over a certain subset of students. They
monitor those students’ activities and, depending on the capabilities of the application,
may also provide additional content for students to consume. Often, teachers are also
provided the ability to perform certain administrative tasks on their students’ accounts
– for example, they may be able to reset passwords or otherwise restore access to an
account. While this is extremely desirable from a real life usage standpoint, care needs
to be taken in designing such features. We discuss this further in Section 8.2.

Teachers and students are typically organized into classrooms. A classroom may have
one or more teachers, and any number of students.

Classrooms can be further grouped into schools. A school can have one or more
administrators. These users will often have access to specialized tools designed for
management of a large number of students and teachers. Batch account creation or data
export functions are often provided here.

3.2. Attacker goals

Many abstract attacker scenarios can also be translated to the educational context. We
attempt to identify and categorize some potential goals below.

I. Impersonation. The attacker aims to be able to produce content that is attributed
to another genuine user by the platform, and then represented as that user’s content to

17

Chapter 3. Analysis of Online Learning Platforms

other users. For example, they might aim to send a message to a student that appears
to originate from a teacher – or might submit an assignment in another student’s name.
This scenario gains special importance in a remote learning scenario, where the platform
may well serve as a primary means of contact between a teacher and their students.

Here, the attacker aims to write data in a way that is indistinguishable from genuine
user input.

II. Surveillance. The attacker aims to surreptitiously monitor a set of other users’
activities. In particular, they may aim to monitor physical movements of the target’s
device, such as a mobile phone. Another aim may be to read communications between
students, or between a student and a teacher, or to track their performance.

Here, the attacker aims to read data that is generated by the genuine user.

III. Suppression. The attacker aims to prevent a genuine user from accessing the
service for a certain period of time. For example, they might aim to prevent a student
from submitting an assignment during the hours leading up to an assignment deadline.
Ways to achieve this are manifold, from corruption of user data to intentionally causing
an account to become locked for security reasons.

Here, the attacker’s aim is not to gain any access – instead, they purely aim to deny
availability of the intended access from the victim.

IV. Reconnaissance. Instead of specifically targeting a single student, the attacker
aims to gain less detailed information about a large number of users. For example,
they may aim to enumerate all students of a school, alongside their full names and the
classrooms they are members of. As a result, the attacker might obtain information
needed for more specific targeting, such as internal user or classroom identifiers, which
may otherwise not be readily available to them.

Here, the attacker aims to gain information on many different users, instead of focusing
on a single victim.

3.3. Case studies

In conducting our research, we reviewed a number of widely-used educational applications.
In the following Chapters 4 to 7, we will be examining a select few in more detail. Note
that all security flaws we discuss were communicated to the respective maintainers as
part of a standard Responsible Disclosure process, and have since been addressed.

To determine which applications were actively being used in educational contexts in
the DACH countries, we deferred to official information that was published early on
during the COVID-19 pandemic. In particular, we used resource listings provided by
the Austrian Federal Ministry of Education [BMBWF], the Styria Board of Education
[BdStmk], and the Standing Conference of the Ministers of Education of Germany [KMK].

18

3.4. Review methodology

[B
M

B
W

F
]?

[B
d

S
tm

k
]?

[K
M

K
]?

Ch.4 – ANTON 3 3 3

Ch.5 – Antonwelt 3

Ch.6 – Schlaukopf.at 3 3

Ch.7 – LearningApps.org 3

(a) Selected platforms

[BMBWF] (46)
[BdStmk] (31)

[KMK] (11)

6

1 0
1

(b) Overlap between listings

Figure 3.1.: Public institutions’ resource listings – aggregate data

From among these lists, we removed any applications that we deemed unlikely to hold
sensitive user data, such as static task sheets, or other stateless services. An overview is
provided as Figure 3.1, and a full list can be found as Appendix A.

We identified four targets of particular interest, which we considered likely to hold
sensitive information: ANTON [sola] and Schlaukopf.at [Hic+12a], two platforms offering
access to pre-defined interactive content; Antonwelt [Hum+18c], a creative workshop
that allows students to explore writing short stories in a colorful environment; and
LearningApps.org [Hie12], a platform allowing teachers to easily create their own special-
ized content through use of generic templates.

3.4. Review methodology

When reviewing a given platform, we aimed to start with the level of access typical to a
student or teacher using the application. In some cases, such as that of Chapter 4, this
did not require us to communicate with the administators, as registration was publicly
available.

Other cases, such as that of Chapter 5, required accounts to be manually verified
as belonging to a legitimate educational institution. In these cases, we used the listed
support channels to disclose our intentions1, and requested access to the application for
research purposes. We would like to explicitly thank those responsible for any affirmative
responses we received.

Once we had obtained the access described above, we began exploring the application’s
behavior in typical use cases. For example, given teacher-level access, we would observe
the steps performed to create a student account, request their personal information, or
add them to a group. Equipped with this knowledge of the program flow, we then began
replaying the requests that had been made with minor modifications. Making small
iterative changes, then observing whether they were still accepted as valid, allowed us to

1see Appendix B.1 for the form letter used

19

Chapter 3. Analysis of Online Learning Platforms

systematically identify the ways in which the application’s server verified the received
inputs.

We then compiled a list of these verification steps and compared them to the “intended”
behavior of the application. In many cases, the two did not quite match up. In some,
they did not match up in ways that allowed us to perform operations that exceeded the
intended permissions. If we managed to elevate our access above the level we had been
provided by the administrators, we then used that access to attempt to pivot further
into the system.

Furthermore, we also considered common vulnerabilities while monitoring the appli-
cation behavior. This includes SQL injection possibilities (see Section 2.4.1), as well as
logic likely to be vulnerable to Cross-Site Scripting or Cross-Site Request Forgery attacks
(see Sections 2.9 and 2.10).

3.5. Ethical considerations

We were typically conducting our reviews against a production environment that was
processing the data of thousands of genuine users. Thus, we took a very cautious stance in
evaluating potential attack vectors to test to minimize the risk of unintended consequences.
From the outset, we determined that any attempt to compromise or otherwise target the
underlying hardware would be out of scope for our review. Furthermore, we generally
refrained from attempting data injection in any context that might potentially lead
to loss of legitimate user data. For instance, we would typically avoid SQL injection
inputs (see Section 2.4.1) that we could envision resulting in an unconstrained UPDATE

statement being executed. As we were generally not able to observe the query that we
were influencing, we erred on the side of caution when required.

Furthermore, we took great care not to come into possession of genuine users’ private
information. When probing and verifying targeted attack scenarios, we created dedicated
“victim accounts” and performed legitimate activites to generate data where necessary.
In a few cases involving exploration attacks, we demonstrated the ability to enumerate
user data of “random” users without specific targeting being possible. Here, we ensured
we accessed the minimum data necessary, and only stored it for the brief period of time
required to verify that our attack had succeeded in retrieving what appeared to be
genuine data, before disposing of it securely.

3.6. Responsible Disclosure

After analyzing the application, we compiled our findings for disclosure. To this effect,
we summarized our findings in a PDF document. Typically, at least some of the flaws
in question were indicative of a lack of fundamental security considerations during the
platform’s design and implementation stages.

Because of this, we included basic background information, akin to that of Chapter 2,
outlining the systems in question and the general concepts that we used to compromise
them. Following these explanatory paragraphs, we then described the particular attack

20

3.7. About the following chapters

vector used in full detail. In some cases where the attack required multiple interdependent
steps, we also provided a proof-of-concept Python script or HTML file to further illustrate
the process. Finally, we gave potential steps to address the specific vulnerability, as well
as process-level recommendations for avoiding the same type of flaw in the future.

While this write-up document was being compiled, we attempted to establish a security
contact for the affected platform. None of the platforms we evaluated had a security.txt

file, or otherwise listed a specific disclosure contact. Thus, we instead directed our initial
outreach to the most suitable address that was publicly listed. In this, we declared
ourselves as researchers, provided that we had identified vulnerabilities, indicated that we
would like to disclose them, and requested the appropriate channels through which to do
so. We did not include any details of the vulnerabilities or information that would allow
reproduction at this time. An example of such a form message can be found attached as
Appendix B.2.

After we had received a reply directing us to a more suitable point of contact, we
then supplied the necessary technical information, including our write-up document and
accompanying files. We requested that the recipients confirm receipt of the message,
asked to be informed as soon as an estimated schedule for remediation was available,
and offered further assistance if requested. Platforms, generally, were very prompt in
reacting to our disclosures and forthcoming in their communication.

3.7. About the following chapters

Each of the following chapters covers one platform that we reviewed at some point
throughout 2020/21. Therein, we describe what we documented throughout that investi-
gation, reflecting the subject platform’s state during that brief window in time. We refer
to each chapter’s disclosure timeline for temporal context.

In the intervening time, each of the listed platforms has indicated to us that they
consider none of the vulnerabilities we outline to still be applicable. As a result, many of
the aspects we describe in this work will likely no longer be applicable at the time of
publication.

21

Chapter 4.

ANTON

ANTON – Lernplattform für die Schule (“ANTON”) is “a universal learning
platform (web & mobile) for both independent learning and for students and schools who
want to learn interactively in a classroom setting” [solb].

The app has garnered significant attention in DACH countries during the pandemic. It
has the distinction of being the only app recommended by all three of the resource listings
we used – by the Austrian Federal Ministry of Education [BMBWF], the Styria Board
of Education [BdStmk], and the Standing Conference of the Ministers of Education of
Germany [KMK]. It is developed by Berlin-based solocode GmbH, and its development
is co-financed by the European Regional Development Fund [solb].

4.1. Features

ANTON’s primary feature is a vast, comprehensive library of online self-study exercises
for kids, covering a variety of topics at levels ranging from Kindergarten through to
4th grade (ages 4 to 10). Subjects are introduced and refined through a sequence of
independent units, starting with interactive exercises before concluding with a short quiz.

The objectives are quite varied, and are not limited to mere multiple choice tests. For
example, learners might be asked to write letters on their (touch-)screen, as seen in
Figure 4.1a. Guidance is provided for this introductory exercise, which later units will
successively reduce.

To further encourage learning, earning perfect scores rewards “coins”, which can be
spent to play simple, but engaging, arcade-like minigames, as seen in Figure 4.1b. Users
can compete for high-score placement on leaderboards among their peer group and
globally. This creates a feedback loop, as completing exercises is rewarded by allowing
more attempts at a new record to be made.

To use the app, an account must be created through a very streamlined process. When
doing so, the user must merely select a nickname and generate a randomized avatar, from
one of the two palettes “human” and “monster”. Afterwards, they can optionally associate
their account with a school, which enables features such as intra-school rankings for
minigames. After registration, a random “Login code” consisting of eight case-insensitive
alphanumerical characters is provided, which serves as the sole identifier needed to log
back on afterwards.

23

Chapter 4. ANTON

(a) An introductory writing exercise (b) “Bat Cave”, a side-scrolling minigame

Figure 4.1.: Two example features of ANTON

In a classroom setting, additional features of the app become available. Teachers can
allow students to join their classrooms by providing them an individualized eight-character
code, which is also available in scannable QR form. Once joined, the teacher can assign
individual assignments to their students for any given day, as well as monitor their
progress and activities. The eight-character code the student used to join the classroom
also functions as a login code for their account and is visible to the teacher, allowing
seamless account retrieval if a student forgets their information.

In addition to the free base app, a subscription service called “ANTON Plus” is offered
at an annual fee. While we did not purchase a subscription, its features are advertised
as including off-line access to the exercise library, as well as additional cosmetic options
for the user’s avatar [sola]. Multiple subscription tiers are available, such as a “Family”
option that allows parents to customize their children’s experience in the app – for
example by adding custom stretch goals with additional rewards. Additionally, school
licenses are available, which enable Plus features for all students registered to the school.
This also allows schools manage their students’ accounts in bulk, enabling tasks such as
classroom assignments to be automated [sola].

4.2. Functionality

ANTON is a single-page web application. Its entire UX is handled in JavaScript with no
top-level user navigation. The back-end server appears to be written in Node.js using
the Express framework [Expr]. This is advertised in the X-Powered-By header with each
response produced.

24

4.2. Functionality

4.2.1. Basic API call structure

API requests to the server are encoded as JSON (see Section 2.3). All requests are made
to https://apis-db.solocode.com/pllsCallAuth, which forwards the request to the
backend. The request body is an object containing:

• isDebug boolean, which appears to always be false

(We have not been able to determine what this value’s impact is.)

• src string, a random four-character persistent identifier of the user device

• logId string, a token that authenticates the request for a specific user
(This is omitted for unauthenticated requests. See Section 4.2.2 for details.)

• path string, a relative path that identifies the particular API call to make
(All paths start with /../server-apis-db2/apis. We omit this going forward.)

• params object, the parameters to that specific API call

In response to such a request, the server returns a code 200 response consisting of an
object that contains a status string. We have observed "ok" and "error" as values for
this field.

"status":"ok" appears to indicate that the API handler script was executed without
errors – not necessarily whether the requested operation was performed. It has the
following additional fields:

• url string, the URL of the back-end server that processed this request

• durationRequest number, likely the time to execute the API handler script
(We assume that this in milliseconds, and have not observed fractional values.)

• postParams object contains the original parameters passed with the request

• jsonResult object contains the actual response from the API handler

"status":"error" appears to indicate that the API handler script execution was aborted
due to an error. The full stack trace of the error is provided in the executionError field.

4.2.2. User identifiers and authentication

When a user account is registered, that user account is assigned a random user log
ID, which is the prefix U- followed by 32 random case-sensitive alphanumeric characters.
This gives 62 possibilities for each character, or slightly over 2190 possible user log IDs.

To authenticate, the user sends an API request to /login/step1/step1 with a value
parameter containing the user’s entered login code. This code is validated by the server.
If it matches an existing account, the response contains the user’s display name, avatar
and user log ID. If the user indicates they wish to remain logged in, the user log ID is
then stored in the browser’s local WebStorage (see Section 2.2.1).

25

Chapter 4. ANTON

Login codes are eight characters long, and not case sensitive. This gives 36 possibilities
for each character, or roughly 241 possible login codes. The login API endpoint appears
to be properly guarded against brute force attempts. After approximately 300 requests,
the client IP address is prevented from making further requests for roughly a minute. If
this limit is reached multiple times, successive blocks’ duration increases rapidly.

With knowledge of the user ID, the client then requests that user’s master log from
https://logger-lb-s2.anton.app/events2?filter[name]=subscribeUser&log=.
This log contains all information about the user as a JSON array of “log events” (see
Listing 4.1). It is worth nothing that, despite being called a “log”, it appears that
outdated information is regularly pruned and is not included in future queries. Given
this, we were not able to discern why this log format was chosen.

{
” value ” : ”max85021” ,
” valueLowerCase ” : ”max85021” ,
” event ” : ”setUniqName” ,
” i n s e r t e d ” : ”2020−07−01T11 : 5 7 : 3 2 . 3 4 1 Z” ,
” s r c ” : ”s−ddb−9” ,
” c rea ted ” : ”2020−07−01T11 : 5 7 : 3 2 . 3 4 1 Z”

}

Listing 4.1: An example user log entry

Among the information included in this log are the user’s “public ID”, as well as their
login code and any groups they are a member of. This public ID is an identifier of similar
structure to a user log ID, but with prefix P- and apparently unrelated randomness. It is
used to represent the user to other users.

4.2.3. Other identifiers

In addition to the user log ID described above, multiple other types of entities have
similar identifiers associated with them.

Group identifiers

If a user is a member of any groups, their user log contains an isGroupMember event for
each group they are a member of. This contains a “group code”, which is the prefix GROUP-

followed by two blocks of four case-insensitive alphanumerical characters. This group
ID allows querying the group’s log via https://logger-lb-s2.anton.app/events2?

filter[name]=subscribeGroup&log=.

However, while this log contains group members’ public IDs and similar metadata, it
does not contain member portraits, login codes, or names. This information is loaded
via a separate authenticated API request (see Section 4.2.1) to path /group/members/

getDescriptions/get with the group code as a parameter.

26

4.3. Analysis

School identifiers

Furthermore, if the group is associated with a school, that school’s “school code” is also
contained in the group log. A school code’s structure is identical to that of a group code,
except that the prefix used is SCHOOL-.

The school’s log can be retrieved from https://logger-lb-s2.anton.app/events2?

filter[name]=subscribeSchool&log= and contains various public information about
the school. If the user is an administrator of a Plus-enabled school, an additional API
call to path /school/admin/membersReport/report can retrieve information about all
member groups and accounts of that school.

Device identifiers

Every individual device also has its own device log ID, with a similar structure to
the user log ID. However, the prefix used is D-, and the fifth character of the suffix is
always -, resulting in an ID of the form D-ABCD-EFGHIJKLMNOPQRSTUVWXYZ12345. The
four-character block enclosed by the hyphens is included with every API request as the
source parameter (see Section 4.2.1). If a user authenticates from a given device, that
device’s log ID is recorded in their user log, even if they do not choose “remember me”.

The device log can be requested via https://logger-lb-s2.anton.app/events2?

filter[name]=subscribeDevice&log=. It includes various information about the device,
such as the device model, serial number or OS platform. Additionally, it also contains any
user log IDs that are “remembered” on that device, and a periodically-updated physical
location of that device. We speculate that this latitude/longitude pair is derived from
the user’s IP address, as the app does not appear to use the client’s GPS functionality.

4.3. Analysis

In the following, we first analyze ANTON’s fairly unique method of authentication. Then,
we outline multiple issues we discovered throughout our investigation. We demonstrate
faults in the fundamental design, granting us continuous and complete access to all
enrolled students’ data.

4.3.1. Identifier design

Given the information presented in the preceding sections, we can now analyze the
sensitivity of each of these identifiers. We visualize how identifiers can be derived from
each other in Figure 4.2.

In the figure, is easily apparent that login codes, user log IDs and device log IDs are
essentially equivalent to each other. The default login flow translates a login code to a
user log ID, while the user’s user log includes both their login codes and their device log
IDs. Meanwhile, at least their “main” device’s device log is very likely to include their
user log ID. As there is no concept of a server-stored “session”, knowledge of a user’s log

27

Chapter 4. ANTON

Figure 4.2.: Derivatory relationships between entity identifiers in ANTON

ID grants permanent irrevocable access to their account. This makes login codes, user
log IDs, and device log IDs extremely sensitive information.

Meanwhile, group codes are visible at least to all members of the group, including
those without any particular permissions. Users’ public IDs are visible to any users they
share a group with, and may also be globally visible via minigame leaderboards or similar.
School codes are public by design, and are indexed by the school search system.

Authenticated APIs exist to allow school administrators to derive group codes from
school codes (via path /school/admin/membersReport/report), as well as allow teachers
to derive login codes of all student members from group codes (via path /group/members/

getDescriptions/get).

4.3.2. Systemic vulnerability

As described in Section 4.2.1, the requesting user’s log ID must be included with any
authenticated API request. This log ID is then validated in the context of the call, such
as specific group or school. The result of this validation is included in the API response’s
jsonResult as an auth field.

However, the result of this validation is only actually used by a small handful of paths.
We theorize that these paths are ones that are intended to be invoked by users of different
access levels. For instance, /group/members/getDescriptions/get, which is used both
by students and teachers, refuses to return data for non-existent or non-member user log
IDs. The vast majority of paths does not check the passed user log ID at all – indeed,
specifying an empty string will change the jsonResult.auth field, but the API will still
perform its function as requested, and otherwise return the same data it would for a
legitimate user.

28

4.3. Analysis

We speculate that an attacker sending API requests directly – rather than being
constrained by the app’s UX flow – was not considered when implementing the API1.
This grants a malicious user unrestricted access to a wide variety of administrative tools.

While the “native” API path for retrieving students’ log ID does only return that data
if a valid teacher log ID is passed, this can be trivially circumvented. For example, the
/group/members/addExistingUserWithCode/step2/step2 path, which is used to add
a student to a group, takes the new student’s public ID as a parameter. However, it does
not validate whether the call is being authenticated with that same student’s log ID.

This allows an attacker to surreptiously obtain the user log ID of arbitrary accounts:

1. Create a new student code in an attacker-controlled group. As a result, the server
returns this code, for example ABCD-EFGH.

2. Invoke /group/members/addExistingUserWithCode/step2/step2 with ABCD-EFG

and the target’s public ID. The server will add the target to the group without
authenticating that the request is from their user log ID.

3. Log into the target’s account by using the ABCD-EFGH student code, which has
become a login code for the target’s account. This gains us their user log ID.

4. Remove the target from the attacker-controlled group, rendering the attack unde-
tectable to the user.

As mentioned in Section 4.3.1, students’ public ID is generally not considered to be
privileged information. In particular, as the /school/admin/membersReport/report

API also does not check the user’s log ID, an attacker can list the public ID of all students
in a given school. School codes can be freely obtained from the publicly-accessible school
search API.

The same underlying flaw could likely allow an attacker to perform any number of
unauthorized actions. However, as we could already demonstrate undetectable full
account compromise, we did not pursue this further.

4.3.3. Device logs’ existence

As previously outlined in Section 4.2.3, each device is assigned a unique device identifier
when first using the app. This device identifier allows access to the device log for that
device. This log contains not only information about the device, but also the device’s
physical location and the user IDs of any users logged into the device that have enabled
“remember me”.

This presents a significant risk factor. In many contexts, multiple students may use a
single shared device over some time. Any one of these students could retrieve the device’s
device log ID and store it externally. This would then allow them to gain access to the
accounts of any other students that uses that device at a later point in time. This is
conditional on those students clicking “Yes, remember me” when logging in. However, we

1We discuss the importance of such “adversarial thinking” to software design further in Section 8.3.

29

Chapter 4. ANTON

posit that many will simply click the button labeled “Yes” without fully processing its
meaning. Additionally, even a user that processes the question will not typically expect
that agreement to grant access to their account to any previous user of that same device.

There is no legitimate reason for any device to ever query a device log that is not its
own. It is thus unclear to us why these logs are stored centrally to begin with, instead of
using various device-local storage methods available to web applications. In particular,
these same storage methods are already in use – they are used to store the device log ID
itself, after all. We find repurposing them to store the contents of the device log instead
to be a fairly straightforward improvement.

4.3.4. Teachers can impersonate students

As described in Section 4.1, if a student joins a group, the code they used to do so
becomes a login code for their account. Not only is this code known to the teacher that
issued it, but is even displayed on the student’s profile for every teacher in the course.

This allows any teacher to authenticate as any student in any course they administrate.
As a consequence, they can gain access to that student’s device logs, allowing them to
monitor their physical location.

As we argue in Section 8.2, allowing a teacher to impersonate their students without
their knowledge should never be permitted. Of course, allowing teachers some degree of
administrative control over their students’ accounts is a useful feature, and provides for
important convenience if students inevitably forget their login code.

However, any use of this ability should always impede students’ UX in a way that they
are forced to notice. For example, a teacher could well be permitted to reset a student’s
login code – however, doing so should then also invalidate all existing login codes, and
log out all user devices. Thus, the user would immediately notice the access when they
next attempt to use the app, making covert abuse impossible.

4.3.5. The API provides verbose error logs

If a request to an API server contains malformatted or otherwise invalid data, it is
very likely that the API handler will fail uncontrolledly. If this happens, an error
response including the full error message and call stack will be returned, as described
in Section 4.2.1. This leaks an enormous amount of information about the server’s
implementation to the user (see Listing 4.2), who should be considered a hostile entity
in this context. This can then be used to guide further exploration of the system. In a
production environment, the information revealed here should thus be minimized.

4.3.6. Potential for Arbitrary Code Execution

As briefly mentioned in Section 4.2.1, every API call includes a path parameter. As /../
is included in genuine values of this parameter, we consider it unlikely that this path is
constrained to subfolders of the web root. Additionally, the stack trace in Listing 4.2
suggests that the file at this path is loaded directly.

30

4.4. Disclosure

TypeError : Cannot read property ’ r e p l a c e ’ o f undef ined
at load

(/ . . / se rver−apis−db/ ap i s / p l l sCa l lAuth / reques t . j s : 7 : 3 7)
at eva l

(/ . . / se rver−apis−db/ ap i s / p l l sCa l lAuth / reques t . j s : 6 2 : 1 2)
at eva l

(/ . . / se rver−apis−db/ i n i t / middlewareOverride / apiRequest / apiRequest . j s : 2 0 : 3 4)
at routeRequest

(/ . . / se rver−apis−db/ i n i t / middlewareOverride / o v e r r i d e . j s : 2 0 : 5 0)
at i n i t P r o j e c t

(/ . . / se rver−apis−db/ i n i t / middlewareOverride / o v e r r i d e . j s : 1 3 : 1 8)
at g l o b a l . middlewareOverride

(/ . . / se rver−apis−db/ i n i t / middlewareOverride / o v e r r i d e . j s : 2 5 : 1 4)

Listing 4.2: An example stack trace, produced by an empty request body

We speculate that this would allow an attacker to execute any file that they manage to
place on the server, such as via a file upload. However, due to the considerations outlined
in Section 3.5, we did not pursue this attack vector further.

4.4. Disclosure

We initially reached out to the ANTON support contact (po ap @ np t o pn.r tus a) on July
20th, 2020. We promptly received a response directing us at a disclosure address, to
which we disclosed our findings on July 21st.

The ANTON developers swiftly reacted. By the 22nd, the primary APIs used to
escalate privilege had been changed to properly use the result of user log ID validation.
By the end of July, all API paths properly verified the user’s permissions, and location
information was no longer recorded in the device log. By late September of 2020, ANTON
communicated to us that they considered all vulnerabilities we had disclosed to have
been resolved.

31

Chapter 5.

Antonwelt

Antonwelt – Lernen mit Anton, dem kleinen Gespenst (“Antonwelt”) is a
German-language platform that “aims to make learning to read and write an enjoy-
able experience” [Hum+18a]. Despite the similarity in name, there is no connection to
ANTON, the platform from the preceding Chapter 4.

It is developed by Vienna-based FIRSTMEDIA network GmbH [Hum+18b] in co-
operation with a number of educators [Hum+18c]. Its development is supported by
the Austrian Federal Ministry of Education [Hum+18d], and it is recommended by the
Standing Conference of the Ministers of Education of Germany [KMK].

At the time of our evaluation, a total of 142 schools were registered with Antonwelt –
90 in Austria, 48 in Germany, 3 in Switzerland, and 1 in Italy. Across them, there were
7,774 user accounts, of which 6,418 were student accounts.

5.1. Features

Antonwelt’s primary feature is its “story workshop”. Here, children are encouraged to
read – and subsequently write – short stories featuring characters and settings from the
“Anton” series of children’s books.

Students first write their story. Certain keywords, such as objects, characters or
settings from the books, are suggested. After they are finished writing, they submit the
story for approval. This notifies their registered parent or teacher. After review and
editing, it can then be approved for reading. Subject to parental consent, the story can
also be read by other students. This process is shown in Figure 5.1.

To use the app, schools must purchase a license at an annual fee, which is tiered
based on the number of supported classrooms. Once enrolled, a central administrative
account can then be used to create individual teachers’ accounts, who can then further
create student accounts. For each student, the teacher is required to positively affirm
the parents’ approval for use of Antonwelt. Additionally, parents can optionally allow
use of inter-classroom/inter-school chat functionality, and control public visibility of the
student’s approved stories.

After the account is created, the teacher then sets a nickname and password for the
student. This information is then used by the child to sign in and use Antonwelt.

In addition to the story workshop, teachers can also manually enable two additional
features during class hours, shown in Figure 5.2. A “digital postcard” feature lets students

33

Chapter 5. Antonwelt

(a) The story being written (b) The same story being read

Figure 5.1.: A story’s journey in Antonwelt

(a) Writing a digital postcard (b) Intra-class chat room

Figure 5.2.: Additional features of Antonwelt during class hours

send colorful emails to friends and family. A chat room lets students exchange messages
with other students in their class – or another class chosen by the teacher.

5.2. Functionality

Antonwelt is a traditional web application. It is written in PHP, as indicated by the
X-Powered-By: PHP/7.0.15 header sent with responses.

5.2.1. Basic environment

Antonwelt uses server-stored sessions, with what appear to be PHP’s default settings.
The session ID is stored in a PHPSESSID cookie with no security options specified. This
causes it to adopt certain default behaviors, as described in Section 2.10.

API requests are made via AJAX, with each handler being a separate script in
the https://www.antonwelt.schule/plattform/api/ajax/ folder. Request data is
transmitted in HTTP form encoding.

34

5.2. Functionality

5.2.2. User authentication

Once a school purchases an Antonwelt license, a central school admin account for that
school is created by Antonwelt staff, with a random password, which is provided to
the school. School admin, teacher and parent accounts are uniquely identified by their
associated email address.

To log in, a HTTP POST to /api/ajax/login.php?login= is made with three
parameters - email, password, and userType. userType appears to be 1 for the parent
login form, and 2 for the teacher login form. The latter form is also used for school admin
accounts.

The API provides a response in plain text. For a successful login, this response is
ok#, followed by a path to redirect the user to. For a failed attempt, the response is
error#, followed by an error message to display. School admin accounts are redirected
to /useradmin/schule/, teachers are redirected to /useradmin/lehrer/. A successful
login response also sets a aw cookie, which contains the user’s user ID. We were not able
to determine what purposes this cookie serves – its presence, or lack thereof, does not
appear to change the site’s behavior.

5.2.3. School admin functionality

School admin accounts for Antonwelt are fairly limited in their functionality. They do
not offer any direct control over enrolled teachers – beyond initial account creation – or
any students in their classrooms.

To create a teacher account, a request to /api/ajax/teacher.php?add_teacher= is
made with four parameters – firstname, lastname, email and sex1. After the request
succeeds, an email is sent to the specified address containing a verification link. Clicking
that link allows the teacher to finalize account creation.

Additionally, forms for modifying the school’s information, and its admin account’s
password, are provided. To modify the password, a request is made to the multi-
purpose endpoint /api/ajax/user-data.php?save_new_password= with a number of
parameters. In addition to the functional parameters password and password2, which
hold the dual values in the “new password” and “confirm new password” boxes, a total
of six static values are also included:

• password required with value Neues Passwort

• password2 required with value Passwort wiederholen

• password type with value password

• password2 type with value password

• schoolchild userId with value 0

• teacher userId with value 0

We speculate that the two userId fields are used in other invocations of this API, and
are included using zero as a “none” value, to indicate editing the current account. It is
unclear to us what purpose the required and type fields’ inclusion serves.

1Frustratingly enough, derived from a dropdown with “Herr” (i.e., “Mr.”) and “Frau” (i.e., “Mrs.”) as
the only options

35

Chapter 5. Antonwelt

5.2.4. Teacher functionality

Once a school admin requisitions a new teacher account, the specified email address
receives a message. This includes a confirmation link of form https://www.antonwelt.

schule/lehrer/confirm-registration-from-school/?sec=TOKEN&userId=USERID.
The token is a hex-encoded 128-bit value, which we assume to be random. Clicking the
link allows the teacher to set a password.

Each teacher account is equivalent to a classroom. To add students, the teacher
first makes a POST request to https://www.antonwelt.schule/useradmin/lehrer/

schueler/ with a numeric addCount parameter. Before each of the newly added accounts
becomes usable, the teacher must first explicitly confirm parental consent with that
student’s use of Antonwelt. Doing so entails a POST form submission to /api/ajax/

teacher.php?agreement_schoolchild= with a number of functional parameters:
• firstname string
• lastname string
• sex 1/2
• birthday day, birthday month, birthday year integer
• agreeFlag, schoolchat right, antongeschichten right 0/1
• chiffre string
• schoolchild userId integer

The chiffre appears to be an additional, presumably random, token. It is unclear what
purpose this serves, as requests to this endpoint are authenticated against the user’s
session regardless. Additionally, a number of static fields are included, akin to those
mentioned in the previous section.

After the user is thusly created, its data can then be adjusted by sending a POST to
/api/ajax/user-data.php?save_data_schoolchild=. It is notable that this request
does not redirect the user on success, and thus does not follow the usual ok#/error#
return pattern. Instead, it appears to return the SQL query executed by the update
operation as a plain text response body. An example of such a query is shown in
Listing 5.1. We discuss the information that can be gleaned from this in Section 5.3.

UPDATE vm347hob db . user SET FirstName=’ Test ’ , LastName=’Name ’ ,
UserData=’ $sex =1; $birthday day =1; $birthday month =1; $b i r thday year =2008;

↪→ $pseudonym=\ ’ \ ’ ; $ t e a c h e r u s e r I d =0; ’ ,
AntongeschichtenRight =0, SchulchatRight=0 WHERE UserId=8875 LIMIT 1

Listing 5.1: An example response body

5.2.5. Student functionality

Once a teacher has setup the student’s account, they can log in via a simple POST to /api/

ajax/login.php?login-schoolchildren= with parameters nickname and password.
Submitting a story is then achieved via POST to /api/ajax/schoolchildren.php?

save_story with a number of parameters:
• titel string
• story string

36

5.3. Analysis

• storyId integer
• topicId integer, appears to always be 2

• language integer, appears to always be 0, presumably for German
• currentStartTime integer, a UNIX timestamp
• finished 0/1, whether this is the story being submitted for approval
• schoolFlag integer, appears to always be 0

For reasons that will become apparent in Section 5.3, we chose not to further explore
students’ functionality.

5.2.6. Antonwelt-Chat

After chat functionality is enabled by a teacher, navigating to the chat page causes a
periodic POST to be sent to /api/ajax/antonchat.php?update=. The initial request
will retrieve the channel’s user list, while any subsequent requests will provide delta
updates for user list and message history. It is likely that the last-requested time is stored
on the server, as no dynamic request parameters appear to be included.

To send a message, a POST is sent to /api/ajax/antonchat.php?send_text= with a
chatText parameter.

5.3. Analysis

In stark contrast to ANTON’s API, as described in Section 4.2.1, Antonwelt’s funda-
mentals are a lot more straightforward. We view this as a positive – reduced systems
complexity, generally, also makes it easier to keep those systems audited and secure.

5.3.1. SQL injection vulnerability

As shown previously in Listing 5.1, one of Antonwelt’s API endpoints appears to inad-
vertedly expose the SQL query that is run as a result of the API request. This allowed us
to operate a lot more aggressively than we ordinarily would in light of the considerations
in Section 3.5.

Indeed, it appears that the developers made a conscious effort towards preventing SQL
injection by applying escaping techniques. However, as we outline in Section 2.4.1, all
that stands between this approach and disaster is a single developer’s due diligence, with
no systemic safeguards in place. As is often the case, this also proves fatal here.

Antonwelt does not properly process the value submitted for the boolean parameter
schoolchat right, and simply trusts the user to provide a value of 0 and 1. Specifying
a malicious value for this parameter thus grants us the ability to read arbitrary data from
the database into the user data fields of a student we control, as pictured in Listing 5.2.

UPDATE vm347hob db . user SET (. . .) , SchulchatRight=1,firstname=(
SELECT UserData FROM vm347hob db.user LIMIT 1

) WHERE UserId=8875 LIMIT 1

Listing 5.2: A malicious parameter leads to SQL injection

37

Chapter 5. Antonwelt

In particular, MySQL provides the information schema meta-database, which pro-
vides database structure information in query-accessible form. This allows us to also use
our SQL read primitive to gain structural information about additional tables, which we
could then also read data from.

Among other things, this would have given us full access to all stories submitted
by students, including not-yet-reviewed, private, or deleted stories. It would have also
allowed us to retrieve all user data of users, as well as chat history, billing data, and
more.

By changing the malicious parameter’s structure, we believe we could have additionally
achieved an arbitrary SQL write primitive. However, due to data integrity concerns, we
did not pursue this further.

5.3.2. Passwords are not stored properly

Using the SQL read primitive we established in Section 5.3.1, we were able to inspect
the way user passwords are stored on the server.

Passwords are stored as hash digests. However, the hash function used is identified
by its prefix 1 to be MD5, as used by PHP’s default one-parameter crypt() API.
Collisions in MD5’s compression function were first found by Dobbertin in 1996 [Dob96],
with full collisions being demonstrated by Wang et al. in 2004 [Wan+04]. Additionally,
calculating a MD5 digest is lightning fast and easily parallelized, making it utterly
unsuitable for storing passwords (see Section 2.7).

We find it likely that this shortcoming is a direct consequence of flaws in PHP’s
documentation of crypt(), as described in Section 8.1.

5.3.3. Some data is stored as code

Referring back to the original exposed query in Listing 5.1, the UserData column stands
out. A brief perusal suggests that this column contains multiple columns worth of data,
stored as PHP code that sets multiple variables.

By modifying our original query slightly, we were able to test this theory.

UPDATE vm347hob db . user SET (. . .) , SchulchatRight=1,
UserData=’$sex=1; $birthday day=1; $birthday month=1; $birthday year=2008; $pseudonym=getcwd();

$teacher userId=0; ’
WHERE UserId=8875 LIMIT 1

Listing 5.3: Attempting to execute code on the server

This indeed caused our student’s pseudonym to be set to what appears to be a server
path. We find it likely that this would allow an attacker to pivot further into the system.
“Mere” write access to a single database table could allow them to transition into full
and/or persistent system compromise.

Additionally, we note that even introducing a double quote (") into a student’s
pseudonym via the genuine UX – without any modifications to the query – is sufficient
to break the escaping mechanism used. Due to the resulting invalid PHP code that will

38

5.4. Disclosure

cause page evaluation to fail, this renders the user account inaccessible. We consider it
quite possible that this could cause an attacker to achieve code execution by itself via an
appropriately crafted pseudonym, without requiring our original SQL injection flaw.

Due to the ethical considerations outlined in Section 3.5, we did not pursue these
attack vectors further.

5.3.4. Session cookies are not secured

Antonwelt appears to use default settings for the PHP’s session cookie. As mentioned in
Section 2.5, this does not set any security attributes on the resulting cookie. As described
in Section 2.10, this allows a third-party site to trivially issue singular requests with the
user’s session cookie.

In Antonwelt’s case, the immediate target for this is the “change password” form,
which we describe in Section 5.2.3. This API does not require any parameters that are
unknown to the attacker beyond the user’s session cookie. Thus, a third-party site can
change the password of any visitor that is also logged into Antonwelt.

5.3.5. The chat member list is publicly visible

As described in Section 5.2.6, the initial POST request to the chat poll API at /api/ajax/
antonchat.php?update= retrieves the channel’s member list, while subsequent requests
are used to monitor changes and messages.

If the current user does not have the necessary permissions to access the chat, the server
still returns the member list, though subsequent requests will fail to retrieve updates
or messages. This allows a malicious user to, for example, monitor which students are
attending class on any given day.

5.4. Disclosure

As Antonwelt is a paid service, we initially reached out on September 11th, 2020, inquiring
about research access. We promptly received a response, and were granted access akin to
that of an enrolled school on September 13th.

By September 30th, we had concluded our review, and shared our findings with
Antonwelt developers. Receipt was acknowledged by the October 8th, and on November
6th, we were notified that the SQL injection, PHP escaping, and chat monitoring flaws
had been rectified. The remaining issues were projected to be corrected by Q1 2021.

39

Chapter 6.

Schlaukopf.at

Schlaukopf.at is an interactive learning platform, providing tens of thousands of exercise
questions for students aged six to eighteen [Hic+12a].

It is developed by Gomaringen-based Werbe-Medien-Internetagentur M. Hicke [Hic+12b].
It is recommended by the Austrian Federal Ministry of Education [BMBWF] and the
Styria Board of Education [BdStmk].

6.1. Features

Schlaukopf.at provides multiple-choice and freetext questions for children. The content
of the questions is tailored towards the specific curricula used in primary and secondary
education in Austria, Germany and Switzerland.

After choosing the desired country, grade, and subject matter, children are presented
with repeated prompts which dynamically adjust their difficulty to the user’s performance.
Some examples are shown in Figure 6.1.

(a) Math for 10-year-olds (b) English for 10-year-olds

Figure 6.1.: Example problems on Schlaukopf.at

By default, users are assigned a guest account, which tracks their performance across
sessions. If they wish, they can register with their email address and a password, which
allows them to work on multiple devices. Parents, teachers, or other guardians can also
associate the pupil’s account as a “tutee” of their own account. This allows them to
track the child’s activity and performance statistics. They can also set goals, completion
of which will be met with encouraging messages or other rewards. These features are
shown in Figure 6.2.

41

Chapter 6. Schlaukopf.at

(a) Detailed monitoring of a tutee’s activity (b) Setting a goal for a tutee

Figure 6.2.: Tutor features on Schlaukopf.at

6.2. Functionality

The Schlaukopf.at servers send an X-Powered-By: PleskLin header, which appears to
merely indicate the hosting solution used. Some files use a .php extension, which may
suggest that the entire page uses PHP (see Section 2.5).

After an initial dump of a concatenated master JavaScript file, which includes a number
of minified libraries, any user interaction with the UI causes a POST request to be sent to
the server.

Typically, asynchrous web applications will retrieve data via a structured API, then
process it using already-loaded logic. Instead, for Schlaukopf.at, these requests are used
to retrieve JavaScript code, which is then executed. This code appears to be dynamically
generated, and has data embedded in it. An example is provided as Listing 6.1.

x time = new Date () . getTime () ;

$ (’#divModalDialog ’)
. html (”. . . <opt ion value=\”1631529\”> gast1631529@schlaukopf . at − <\/option> . . . ”) . modal () ;

$ (’ . s e l e c t p i c k e r ’) . s e l e c t p i c k e r () ;

$ (’ . a c t ive popover ’) . removeClass (’ a c t i ve popover ’) . popover (’ h ide ’) ;

$ (’#togg l e i c on 0 ’) . unbind (’ c l i c k ’) . on (’ c l i c k ’ , function () {
i f ($ (’#togg l e i c on 0 ’) . hasClass (’ fa−chevron−c i r c l e−down ’))
{

$ (’#togg l e i c on 0 ’) . removeClass (’ fa−chevron−c i r c l e−down ’) . addClass (’ fa−chevron−c i r c l e−up ’) ;
$ (’#togg l e i c on 0 ’) . a t t r (’ t i t l e ’ , ’ De t a i l s verbergen ’) ;
xs (’ chart ’ , ’ protoko l l expand ’ , ’ 0 ’ , ’ 11590 ’ , ’ 1610082868 ’ , ’ Buchstaben − Deutsch 1 . Klasse ’) ;

}
else
{

$ (’#togg l e i c on 0 ’) . removeClass (’ fa−chevron−c i r c l e−up ’) . addClass (’ fa−chevron−c i r c l e−down ’) ;
$ (’#togg l e i c on 0 ’) . a t t r (’ t i t l e ’ , ’ De t a i l s anze igen ’) ;
$ (’#diagram 0 ’) . h ide (’ c l i p ’) ;

}
}) ;

s c r e en op t im i za t i on () ;

Listing 6.1: Clicking on “My Statistics”

42

6.3. Analysis

To identify the user, a number of cookies are set. elearning userId and s ids both
hold the current user’s user ID, which appears to be a six-digit integer. Meanwhile,
elearning encrypted and s crypt hold 128 base64-encoded bits. If a user is logged
into multiple accounts, the elearning cookies hold the current account’s information,
while the s cookies hold a list of all available accounts.

To log a user in, a POST request to ?p1=user&p2=login is made. It includes, among
a number of other static parameters, the user’s email address and the same value that
will later be stored in the crypt cookie pair. This suggests that the value is derived
from the password. In response, the server sends a JavaScript response which sets fields
on a global user JavaScript object before invoking its .saveUserToCookie() method,
which appears to set the elearning cookies previously observed. An example of such a
response is provided as Listing 6.2.

x time = new Date () . getTime () ;

user . id = ’ 834814 ’ ;
use r . encryptedPassword = ’. . . ’ ;
u se r . emai l = ’ . . . ’ ;
u se r . f i r s t L o g o n = ’ 2021−01−05 05 : 16 : 06 ’ ;
use r . saveUserToCookie () ;
l o c a t i o n . r e l oad (t rue) ;

x s r e t u r n = ”” ;

Listing 6.2: A successful login attempt

When the user reconnects to the site with an appropriate cookie pair, the JavaScript
response to the initial request to ?p1=user&p2=initialize also sets the same values,
among a number of other things. We thus conclude that this password-derived “encrypted”
value is used for both authentication and re-authentication, is equivalent to the user’s
password, and is stored in JavaScript memory.

If a user indicates they have forgotten their password, they are prompted to enter both
their email address and a new password. The server then sends them a confirmation
message containing a hyperlink. Clicking on the hyperlinks changes the account’s password
to the specified new password, and logs the user in. The message is shown in Figure 6.3.

6.3. Analysis

While we did not investigate Schlaukopf.at as thoroughly as we did ANTON in Chapter 4
or Antonwelt in Chapter 5, we nevertheless discovered multiple issues.

6.3.1. Password “encryption”

The password-equivalent “encrypted password” value stored in JavaScript memory by
Listing 6.2 appeared suspicious due to its particular length of 128 bits. Indeed, this
suspicion was swiftly validated – the value is the unsalted MD5 digest of the user’s

43

Chapter 6. Schlaukopf.at

password. As outlined in Section 2.7 and Section 5.3.2, MD5 is utterly unsuitable for
password storage.

Additionally, even if a suitable algorithm were used, storing a value that is equivalent
to the user’s password in JavaScript memory is not recommended, as it allows trivial
extraction via a successful XSS attack, as described in Section 2.9.

6.3.2. XSS vulnerabilities

As illustrated in Listing 6.1, Schlaukopf.at widely uses jQuery’s .html() method. The
.html() method parses the specified string as HTML and inserts it into the document. This
can easily allow malicious content to execute scripts in a first-party context. Especially
if used with dynamically constructed strings, as is the case here, this makes it a very
attractive vector for XSS attacks.

Schlaukopf.at provides very detailed user tracking. Yet, as it offers no inter-user
communication features, it is surprisingly hard for an attacker to have their input
impact the target’s UX. However, we noticed that the “decline tutor request” email
button hyperlinks to https://www.schlaukopf.at/?showdialog=tutors&accept=0&

newtutor=TUTOR_EMAIL. When the page is loaded, a small modal dialog is then displayed,
indicating that the tutor request from the specified email address has been declined.

This modal dialog is dynamically constructed as HTML on the server, and sent back to
the client as JavaScript, where the dialog is then parsed using .html(). The prospective
tutor’s “email address” is inserted as-is. As a result, an attacker can execute arbitrary
JavaScript in a first-party context if a user clicks a link they control. The same attack
vector may be used if the victim visits a third-party site controlled by the attacker, which
then causes their browser to open the malicious link in an invisible <iframe>, similar to
the scenario described in Section 2.10.

6.3.3. The “Reset Password” UX flow

If a user has forgotten their password, it is common to let them re-authenticate using an
alternate authentication factor, such as access to their email address. Schlaukopf.at’s
implementation of this common process is unique in that it places control over the new
password on the “unauthenticated” side of the flow, before the user has clicked the
confirmation link.

As a result, an attacker can cause a fairly nondescript message – as pictured in
Figure 6.3 – to be sent to the genuine user. If the contained link is clicked on, the attacker
gains control of the victim’s account, without the victim necessarily being aware of what
just happened.

This parallels the concerns with administrative account resets we discuss in Section 8.2.
However, here, the presumed-legitimate user is already required to take action as part of
the process. Thus, it is trivial to rectify the issue by moving the new password entry to
after the user has confirmed their identity, rather than before.

44

6.4. Disclosure

Figure 6.3.: A password reset message from Schlaukopf.at

6.3.4. Unauthorized tracking of users

The “Statistics” dialog includes a dropdown box of accounts that the current user can
view statistics for, as seen in Listing 6.1. Selecting a target initiates a POST request
to ?p1=dialog&p2=statistics with, among other parameters, p3[user]1 being set to
the target user’s ID. The response is JavaScript code which replaces the modal dialog’s
content with the target user’s statistics data.

However, the server handler for this request does not verify that the specified user ID
is one that the current user should actually have access to. Thus, any user’s data can be
requested given their user ID. Alternately, data for all users can presumably be collected
by iterating over all 1,000,000 valid user IDs.

As shown in Figure 6.2a, this access would let an attacker monitor the victims’ usage
of the site in real time. It would also let them create profiles of victims’ daily schedule,
their behavior, or their performance over time.

6.4. Disclosure

We initially reached out to the Schlaukopf.at support contact (ps al@ ac .li u oh f taem k)
on January 14th, 2021, and received a prompt response that same day. We then directed
our findings to the indicated address on January 18th, and receipt was acknowledged on
the 19th.

On February 6th, 2021, we were informed that Schlaukopf.at considered all vulnerabili-
ties we had disclosed to have been resolved.

1This is a POST parameter, not part of the URL query string – Schlaukopf.at uses both in its requests

45

Chapter 7.

LearningApps.org

LearningApps.org is “a Web 2.0 application, to support learning and teaching processes
with small interactive modules” [Hie12]. It allows teachers to easily create their own
specialized content through use of generic templates.

It is developed and maintained by Däniken-based Swiss non-profit Verein LearningApps
interaktive Bausteine [Hie+15]. It is recommended by the Austrian Federal Ministry of
Education [BMBWF].

7.1. Features

LearningApps.org provides a number of template building blocks for creating educational
content. Users can then populate these templates with content, or combine templates, to
construct learning “apps”. They can then share these apps with others, or list them in
a publicly accessible directory. Some examples of such building blocks are pictured in
Figure 7.1.

Figure 7.1.: Some of the available building blocks in LearningApps.org

When a user creates an app from a given template, they assign a name and description,
which are presented to the viewer upon opening the app. Then, the author populates
the template with content, in the form of text, audio, video, or others. The result can
then be saved, shared via a direct link, or set to be publicly visible. This is pictured in
Figure 7.2.

Users can create “classrooms”, becoming the teacher of that classroom. Other users can
then join the classroom as students by clicking on a provided link. Teachers are provided
administrative controls to their students’ accounts, and can monitor their activity, as
well as unilaterally change their passwords.

47

Chapter 7. LearningApps.org

Figure 7.2.: Creating an app in LearningApps.org

A direct message system is also provided, allowing users to send simple freetext
messages to each other.

7.2. Functionality

A PHPSESSID cookie is set upon initial connection to https://learningapps.org/. This
suggests that the platform uses PHP (see Section 2.5). The cookie has the HttpOnly and
Secure attributes set, but does not specify a SameSite attribute.

For clarity’s sake, we will henceforth refer to a type of app as a “template”. For
example, “crossword puzzle” is a “template”. We will refer to a single instance of a
template, populated with user data, as an “app”. For example, a crossword puzzle
populated with a list of animal names and associated photographs would be an “app”.

In requests, templates are identified to by an internal numeric ID. Individual apps are
identified to by a “GUID”, which appears to be a random string of lowercase letters and
numbers.

7.2.1. App creation and usage

Upon choosing the desired app template, the user is redirected to /create?new=

TEMPLATE_ID. This page, pictured in Figure 7.2, loads /AppCreator.js as a JavaScript
file. After the user has finished entering data, clicking the “Preview” button sends a
POST request to that same JavaScript file with a number of parameters:

• LearningApp action: "preview"
• LearningApp tool: the chosen template’s ID
• LearningApp version: "", a blank string
• LearningApp language: the chosen language identifier, a string (e.g., "EN")
• LearningApp GUID: the string "null"

(if an existing app is being edited, this is set to that app’s GUID)

48

7.2. Functionality

• LearningApp title: the app’s title as a string
• LearningApp task: the app’s description text, shown when opening it
• LearningApp help: the help text, accessible from a button in the UI
• LearningApp derived: the string "undefined"

(if the app is a modified copy of another app, this is set to that app’s GUID)
• save: the string "true"

• LearningApp spamcheck: a random numeric string
(this appears to be dynamically embedded into AppCreator.js on page load)

This results in a plain text response containing the newly-created app’s GUID. Then, a
frame is loaded from /show.php?id=APP_GUID, showing the newly-created app. If the
user confirms the preview, the POST request above is sent with LearningApp action set
to "save", and LearningApp GUID set to the app’s newly-assigned GUID.

Viewing an app – be it in the preview screen or “for real” – loads a total of three
JavaScript files. First, /data?jsonp=1&id=APP_GUID&version=VERSION populates a
global variable with app-specific data. Then, /AppClientServer.js?jquery is loaded,
which contains the general framework used by the individual templates. Finally, the
template-specific /tools/TEMPLATE_ID/VERSION/script.js sets up the actual app using
the data and framework previously loaded.

7.2.2. User profile and Direct Messaging

Clicking on “account settings”, or the “you have new messages” notification, takes the
user to /my.php. This page shows the user’s own profile and also embeds recent direct
messages. “Change password” option and “change email address” options are also offered.

To change the user’s password, a POST request to /change-password.php is made with
parameter password set to the current password, and passwordc and passwordcheck

both set to the new password.
To change their email address, a POST request to /update-email-address.php is

made with a lone email parameter set to the desired new address.
When viewing an app, clicking the creator’s name takes the user to their profile at

/user/USERNAME. Clicking the “message” icon pops up a frame loaded from /message.

php?sendto=USERID&app=&reply=. To send a message, a POST request is made to the
same URL with four parameters:

• action: the string "send"

• sendto: set to the recipient’s user ID
• messagetitle: the message’s subject line as a string
• messagetext: the message’s content as a string

49

Chapter 7. LearningApps.org

7.3. Analysis

Upon cursory inspection, it became clear that the main AppClientServer.js framework
makes frequent use of .html() with dynamically generated strings. This is identical to the
issues previously encountered with Schlaukopf.at (see Section 6.3). The .html() method
parses the passed string as HTML before inserting it into the document. Thus, any
attacker that can control the parameter can execute arbitrary JavaScript in a first-party
context. This makes it a useful vector for an XSS attack (see Section 2.9).

7.3.1. XSS vulnerabilities

Initial basic tests immediately led to a vulnerability, as the “app description” field
is passed to .html() via the insecure createModalDialogFrame method. This allows
an attacker to execute arbitrary JavaScript in the user’s browser when they view the
attacker’s app. Indeed, the app creation dialog performs no modification to the user’s
input. This even allows injection of malicious HTML elements to be performed via the
UI, rather than needing to manually tweak HTTP requests.

Additionally, both the subject line and content of direct messages are inserted using
.html(). This allows an attacker to run arbitrary JavaScript in the victim’s browser
by simply sending them a direct message. In particular, message contents are already
displayed in the user’s profile, rather than requiring explicit navigation to the message.
Thus, merely clicking on “you have new messages” is enough to seal the victim’s fate.

7.3.2. XSRF vulnerability

Altering a user’s registered email address requires no parameters beyond the desired new
email address. Additionally, a “reset password” flow is provided. Thus, control over the
registered email address is equivalent to being able to access the account.

Even though changing the user’s password requires knowledge of the current password,
changing their registered email address does not. Additionally, the PHPSESSID cookie
used by LearningApps.org does set the SameSite attribute, similar to that used by
Antonwelt (see Section 5.3.4).

As a result, a malicious third-party site can execute an XSRF attack (see Section 2.10)
against a visitor. If they are also logged into LearningApps.org, this allows the attacker
to cause the victim’s browser to send a properly-authenticated “change email address”
request. This changes their registered email address to one controlled by the attacker.
Afterwards, a password reset email can be requested to that new address, and the account
can be taken over.

50

7.4. Disclosure

7.4. Disclosure

We initially reached out to the LearningApps.org support contact (p r@ r g.sa onl n pgl ei ima a)
on January 14th, 2021, received a response the same day, and disclosed our findings on
January 19th.

On January 20th, we received a response. LearningApps.org acknowledged the XSRF
vulnerabilities and addressed them, but declined to consider the XSS possibilities as a
vulnerability. According to their response, “[they] do have a quite open plattform which
allows users to use full HTML and JavaScript code in their work”, so “[they] deliberately
allow this and have discussed the potential harm this can cause”. Additionally, they
actively review “scripts and the use of HTML in user-generated content. [They] then
manually decide whether the code is malicious and delete the content if necessary.”

51

Chapter 8.

Discussion

We would like to emphasize that it is crucially important to not dismiss the flaws we
outline in Chapters 4 to 7 as merely being the fault of individual designers. Instead,
we feel strongly that one must try to understand how such flaws come to be, so that
recreating them in the future can be avoided through systemic changes.

Thus, we will be using this section to discuss some systemic factors that contribute to
security flaws being introduced into software. Section 8.1 outlines our thoughts on the
importance of good, thought-out documentation, and factors we consider necessary to
achieve such a thing.

8.1. On defaults and documentation

In the work of Xie, Lipford, and Chu [XLC11], they find that “most of [their] participants
[had] a reasonable awareness and knowledge of software security issues”. However, they
also report that “the business logic of an application [is viewed as] the primary concern”
– or, as one respondent they quote directly eloquently puts it: “Now the only way you
can fit a 3-month project into 3 weeks is to cut a whole lot of corners. Security was one
of those corners that got cut.”

We therefore find it reasonable to assume that many developers are generally aware
of common security concerns and make some conscious effort towards addressing them.
However, they may not necessarily possess an in-depth understanding of the technologies
involved, and would thus be heavily reliant on first-party documentation, provided
examples and defaults. This would be further exacerbated by other outside factors,
such as time pressure, that encourage valuing a functional application over a secure
application; after all, once you have logic which works, it gets subsequently more difficult
to justify any time spent investigating its security.

In Section 8.1.1, we offer some general thoughts on documentation usage, and asso-
ciated concerns for authors. In Section 8.1.2, we then review some of the first-party
documentation applicable to the issues raised throughout Chapters 4 to 7, and offer
opinions on how its shortcomings may have contributed to their existence.

8.1.1. Some general considerations

When evaluating documentation covering a subject the reader is intimately familiar with,
it is often easy to project one’s existing knowledge onto the actual page being reviewed.

53

Chapter 8. Discussion

Figure 8.1.: crypt() — PHP manual

However, doing so fails to realize a fundamental truth, which may seem obvious when
put into writing – the intended target audience is indeed not intimately familiar with
the subject matter, or they would likely not be reading the document in question.

Thus, it does not suffice for a good manual page to just “check all the boxes”, include
all individual bits of relevant information, and blame the reader for “not reading the
****** manual”. Instead, the party that has familiarity with the material – the writer
– must actively prioritize certain pieces of information at the expense of others; they
must, based on their knowledge, weigh which pieces are absolutely crucial for the party
without that same familiarity – the user – to take away from their visit. For example,
an introduction to heap memory in C would place free-ing the malloc-ed pointer front
and center, not a discussion on allocation patterns and heap fragmentation.

Furthermore, consider that, as Abdalkareem, Shihab, and Rilling [ASR17] found, not
only do developers commonly insert code snippets from online sourcing, but there is even
correlation between these code snippets and bugs in the respective files. Additionally,
Xie, Lipford, and Chu found that “participants seemed to trust reused code, even those
with high security awareness” [XLC11]. These factors combine to make the security of
any “usage examples” provided within documentation absolutely crucial to the quality
of the overall product; if any one example demonstrates insecure usage, it undermines
any security-minded paragraphs warning the user away from such usage.

8.1.2. PHP crypt()

In Section 5.3.2, we found that passwords were stored in the database as MD5 digests,
as generated by PHP’s crypt() method. crypt() is deeply flawed in multiple ways.
It not only defaults to MD5 if no further parameters are specified – use of a more
secure algorithm also requires user code to independently generate a full, secure and

54

8.1. On defaults and documentation

Figure 8.2.: crypt() examples — PHP manual

appropriately-formatted salt string. Since 2013, PHP has provided a far superior built-in
alternative in password hash(), which defaults to using an actual password hashing
algorithm with a securely-generated salt. Additionally, password hash()’s counterpart,
password verify(), is fully backwards compatible with hashes generated using crypt().
Thus, we struggle to envision any situation in which usage of crypt() in any newly-written
application is appropriate.

Keeping this in mind, Figure 8.1 shows the PHP manual page [Pcryp] for the function.
Indeed, there is a red warning box that immediately stands out on this page, warning us
that crypt() “is not (yet) binary safe”. There is no further elaboration on this, and this
is the only occurrence of the word “binary” in the page. Being concerned about this,
we search the web for the phrase “php crypt binary safe”, and the results prominently
feature an online discussion thread [red12] which not only explains the meaning of “binary
safe”, but also informs us that “[crypt() is] designed to crypt password strings [sic]”.

While the contents of the featured result are not something that documentation
authors have control over, we would generally consider it wise to elaborate on any
prominently-placed warning banners to avoid sending readers on uncontrolled detours.

Disregarding the warning banner, we encounter the method signature, followed by a
fairly long-winded explanation of its functionality. In the second and third paragraph
of this explanation, we find the only references to crypt()’s deep flaws contained in
the page, warning that “crypt() generates a weak hash without the salt”, encouraging
the user to “specify a strong enough salt for better security”, and noting that “[u]se of
password hash() is encouraged”. While this may seem sufficient to educated readers
armed with knowledge of the flaws we outlined previously, we would raise doubts whether
this language is strong enough to discourage use for the casual reader. In particular, we
suspect that phrases like better security and encouraged do not sufficiently impress the
severe weakness of the default behavior. Additionally, these notes are placed past the
first paragraph break, in a fairly technical section on the behavior of crypt().

55

Chapter 8. Discussion

A user might lose interest here and take this as guidance to move to the “Examples”
section (see Figure 8.2). Here, they would find that the first, prominently-placed
example, demonstrates password authentication logic that indeed uses the default MD5
implementation.

To summarize, given that most developers should never use crypt() in an application
due to its deep flaws, we find its manual page to be woefully lacking in indicators of this.
Indeed, we believe that it would be easy for a time-constrained developer to glance past
the weakly-worded discouragements offered by the page, and to readily find a ready-to-use
example of crypt() usage that is perfectly functional, yet utterly insecure.

8.2. On administrative account resets

Online services, generally speaking, identify a user using some subset of their known
authentication factors. Typical factors are knowledge of a password, possession of a
device generating a one-time passcode, or access to a specified email account. Even then,
it is inevitable that genuine users will be left without any of their authentication factors
being available to them at times.

Educational products aimed at young children, in particular, may not require some of
the common authentication factors. For instance, it might simply not be assumed that
users have their own email account. In such a situation, an account would typically be
permanently inaccessible.

Here, it is common to allow an extraordinary procedure to restore access to an account,
which we will here term an “administrative account reset”. This allows an authenticated
administrator user to waive the requirement for a pre-established authentication factor.
In doing so, they substitute the platform’s trust in a user’s authentication factor with
the platform’s trust in their person.

This possibility for human intervention is generally considered desirable in a system.
However, allowing such circumvention of the established authentication process carries
quite clearly carries potential for abuse. We present some potential considerations and
safeguards.

Be impossible to miss. When designing a notification regimen around an admin-
istrative account reset, it is important to keep in mind that use of this mechanism is
extraordinary. Therefore, many of the usual considerations around not being overly
intrusive can be disregarded. Instead, we would suggest designing the system to generate
as many notifications as possible, via as many redundant contact mechanisms as are
available. For instance, if an administrator forces the registered email address to change,
this might generate a notification to the previous address, and an in-app intrusive dialog
upon next login, and a revocation of all existing login sessions, and invalidation of the
user’s password. The main priority here is making sure that a genuine user will not
remain unaware of the feature’s use.

56

8.3. On adversarial thinking

Allow for human intervention. Humans are, generally speaking, slower than com-
puters. Thus, even in a situation where a genuine user is successfully made aware of an
abusive attempt to gain control of their account, they may not be able to intervene in
time to prevent unauthorized access. To combat this, we would suggest considering the
introduction of timed delays into the access reset flow, after notifications have been made
as per the above. This allows a genuine user to notice the attempted access, and take
steps to assert its unapproved nature, before any real damage can be done.

Reduce the impact of compromise. Administrators, of course, are still users, and
their accounts may also be compromised. In such a scenario, an attacker likely has access
to the administrator’s account for only a limited time period. Steps should be taken to
minimize potential abuse of account reset features during this interval. To do so, we
would recommend both rate limits and stringent logging on all administrative account
resets. The former mitigates the harm an attacker can cause over a period of time, while
the latter allows for post-incident investigation and remediation of potential knock-on
compromises.

Closing thoughts. Of course, it is important to consider that each of these constraints
also limits legitimate account resets. One needs to weigh any negative impact this is
likely to have against the likelyhood that the feature will need to be used.

For example, requiring a two-day waiting period to re-gain access to an online message
board will generally be a mere inconvenience. Meanwhile, requiring a two-day waiting
period whenever a student forgets their ANTON login code (see Section 4.3.4) is likely
to be infeasible.

8.3. On adversarial thinking

Throughout this work, we have encountered a plethora of flaws in real-life software,
affecting thousands of students. Some were caused by poor documentation and dangerous
choice of default values, as discussed in Section 8.1. However, we posit that a significant
portion results from a lack of adversarial thinking at the design stage.

Adversarial thinking is a somewhat vague concept. It has been described as “an
intuition for identifying assumptions that can be violated to achieve some goal” [Sch13],
as “the ability to anticipate the strategic actions of hackers” [Ham+17], or as “analyz[ing]
cybersecurity from the strategic perspective of [. . .] adversaries” [Kat19].

Regardless of the particular description chosen, this mindset represents a necessary
condition for designing secure software. Indeed, we feel that it would be crucial that
aspiring developers be taught this viewpoint consistently, and from an early point in
their education – rather than having it consigned to specific courses, and otherwise
only represented in “in production use, you would take care to . . . ” footnotes. Proper
consideration of edge cases and potential malicious inputs should be a requirement of
any assignment, rather than a “if we were to do this properly, we would . . . ” hand-wave.
Only practice makes perfect.

57

Chapter 8. Discussion

Which values are under control of a potential attacker? What kind of values might
they introduce? What assumptions is your code placing on the data it is working with?
Could an adversary violate these assumptions? Are these assumptions guaranteed by
code you can trust? Can you guarantee that our entry points are invoked in the order
you expect? How do you deal with invalid requests? Can you determine if a request is
invalid right away, and reject it before it has any impact on the state? Can you coerce
any input into a form that is guaranteed to be benign and valid?

These questions, and many more, are integral to building a secure system – yet students
are typically not exposed to them on a regular basis. While they might be made aware
that they should “pay attention to security”, they do not practice doing so consistently.

We posit that adversarial thinking, and associated questions, should be viewed as an
integral part of software design. It should be taught early on, then refined and evaluated
constantly – just like it is considered obvious that code submitted for an assignment must
be functional, it should be just as obvious that the same code must be secure against
basic classes of attacks.

58

Chapter 9.

Conclusion

In the wake of the CoViD-19 pandemic reshaping the world as we know it, we set out to
investigate the state of online learning platforms in the DACH countries.

We discussed general concepts that arise in an educational context. We categorized
users as students, teachers and administrators, and group them into classrooms and
schools. We identified some potential attacker goals – impersonation of a genuine user,
surveillance of their activities, suppression of their access, or reconnaissance of many
different users.

We identified three public institutions that provide resource listings for online learning
– the Austrian Ministry of Education [BMBWF], the Styria Board of Education [BdStmk],
and the Standing Conference of the Ministers of Education of Germany [KMK]. We
compiled the respective lists into a single master list and selected four platforms of
particular interest from it. We outlined our review methodology, which is based on
a cycle of behavior analysis and iterative modification. We considered the ethical
implications of conducting security analysis against a production system and discussed
the limits we had placed on our activities ahead of time. We outlined the process we
would use to disclose the discovered vulnerabilities.

Across four chapters, we dissected the four platforms of interest previously chosen –
ANTON [sola] and Schlaukopf.at [Hic+12a], two platforms offering access to pre-defined
interactive content; Antonwelt [Hum+18c], a creative workshop that allows students to
explore writing short stories in a colorful environment; and LearningApps.org [Hie12], a
platform allowing teachers to easily create their own specialized content through use of
generic templates.

We demonstrated fundamental flaws in ANTON’s API design, which would have allowed
an unauthenticated attacker to gain persistent covert access to all enrolled students’ data.
We outlined an oversight in Schlaukopf.at’s validation logic that granted access to activity
logs of any user, and showed that passwords were stored as unsalted MD5 digests. We
discovered a small mistake in Antonwelt’s input escaping logic, which would have allowed
us to inject malicious SQL instructions and gain full access to all enrolled students’ data.
We explored a number of ways in which LearningApps.org permits a malicious author to
include JavaScript in their content, which will be surreptitiously executed for any user
viewing the content.

We took to our proverbial soapbox to opine on various systemic factors, which we
suspect to have played a part in the creation of the vulnerabilities we previously outlined.
We reviewed the design and documentation of PHP’s crypt() function, and found it

59

Chapter 9. Conclusion

to be confusing, disorganized, and encouraging of insecure code such as that found in
Antonwelt. We discussed administrative account reset procedures, which are widely
implemented by the platforms reviewed. We posit that any such procedure should be
designed to be impossible to miss for the target user, should be slow enough to allow
human intervention, and should be stringently documented. Furthermore, we described
the need for heightened emphasis on adversarial thinking in educating the software
engineers of tomorrow. We emphasize that this “attacker mindset” should be taught
consistently and from an early point, and that consideration of edge cases and potential
malicious inputs should be a requirement for any assignment.

9.1. Future work

We close with some musings on future directions.
Our work here, though limited in its sample size, suggests that there may be many

yet-undiscovered vulnerabilities lurking in educational software. Further reviews of
such products will have tangible real-world impact on the safety of students during the
pandemic and beyond, yet their providers frequently lack the budget – and the incentives
– to commission them.

We consider it likely that this extends beyond just the educational context, and into
narrowly targeted applications in many other areas that suffer from a similar lack of
funding. Exploration of further such areas, while perhaps not as scientifically titillating
as theoretical research, may still yield insightful data on common pitfalls that should be
addressed on a systemic level – and simultaneously allow the communities served to be
more secure.

Finally, as mentioned throughout, we believe that many of the issues discovered are
rooted in impractical or unintuitive cryptographic interfaces, which are unsuitable for
the lay developer’s use. While we chose PHP’s crypt() as an example, PHP is far from
the only language with such baggage [Dre20]. Much work remains to be done in this
area, both in designing usable interfaces and in convincing language maintainers that
this is an issue worth tackling. After all, the best cryptography is useless if developers
commonly defeat it by making foreseeable mistakes.

60

Appendix A.

Processed resource listings

Name [B
M

B
W

F
]?

[B
d

S
tm

k
]?

[K
M

K
]?

A
va

il
ab

le
?

S
ig

n
-u

p
n

ee
d

ed
?

N
at

iv
e

a
p
p

ex
is

ts
?

N
at

iv
e

a
p
p

n
ee

d
ed

?

J
av

aS
cr

ip
t

n
ee

d
ed

?

F
re

e-
fo

rm
co

m
m

s?

AMIRA Leseprogramm 3 3 7 7 7 3 7

amira-lesen.de stories for children w/ german as second language
Antolin Lesespiele 3 3 3 3 7 7 3 3

antolin.westerm... quizzes to encourage reading of books and news
ANTON 3 3 3 3 3 7 7 3 7

anton.app learning aid for various subjects
Antonwelt 3 3 3 7 7 7 3

antonwelt.schule students write free-form stories
BetterMarks 3 3 3 7 7 3 ?
de.bettermarks.com paid interactive math quizzes
Blockly Games 3 3 7 7 7 3 7

blockly.games visual programming games
Conni-Apps 3 7 7 3 3 7 7

conni.de 3/4 apps lead to 404, only remaining one is a learning
app for reading the time

Corona-School 3 3 ? ? ? ? ?
corona-school.de tutor matchmaking
Deutsche Verben 3 3 7 3 3 ? ?
play.google.com german grammar assistant
Deutscher Bildungsserver 3 3 7 7 7 3 7

bildungsserver.de official platform for documents on the german education
system

Deutschlerner-Blog 3 3 7 7 7 7 7

deutschlernerbl... tips for learning german
Die Politikstunde 3 3 7 7 7 7 7

bpb.de weekly video lecture for students

61

http://www.amira-lesen.de/
https://antolin.westermann.de/
https://anton.app/de/
https://www.antonwelt.schule/
https://de.bettermarks.com/
https://blockly.games/
https://www.conni.de/apps
https://www.corona-school.de/
https://play.google.com/store/apps/details?id=org.muth.android.conjugator_demo_de&hl=de
https://www.bildungsserver.de/Digitales-Lernen-zuhause-12754-de.html
https://deutschlernerblog.de/deutsch-fuer-kinder-deutsch-lernen/
https://www.bpb.de/lernen/digitale-bildung/306590/die-politikstunde

Appendix A. Processed resource listings

Name [B
M

B
W

F
]?

[B
d

S
tm

k
]?

[K
M

K
]?

A
va

il
a
b

le
?

S
ig

n
-u

p
n

ee
d

ed
?

N
at

iv
e

ap
p

ex
is

ts
?

N
at

iv
e

ap
p

n
ee

d
ed

?

J
av

a
S

cr
ip

t
n

ee
d

ed
?

F
re

e-
fo

rm
co

m
m

s?

digi.komp4 3 3 7 7 7 7 7

digikomp.at list of learning resources
Digitale Flaschenpost 3 3 7 7 7 7 7

edugroup.at digital literacy resources
Duolingo 3 3 3 3 3 7 7

de.duolingo.com professional language trainer
Edmodo 3 3 3 3 7 3 3

new.edmodo.com startuppy social media for schools
EDU-Puzzle 3 3 7 7 7 3 7

baa.at quiz listing
Edugroup 3 3 7 7 7 7 7

edugroup.at resource listing
Eduthek 3 3 3 7 7 7 3 7

eduthek.at resource listing
einmaleins.at 3 3 7 7 7 3 7

einmaleins.at multiplication trainer
GEOlino 3 3 7 7 7 7 7

geo.de magazine for kids
Grundschule Arbeitsblä... 3 3 7 7 7 7 7

grundschule-arb... resource listing
Grundschulkönig 3 3 7 7 7 7 7

grundschulkoeni... exercise sheet resource
Helbling Verlag 3 3 7 3 7 3 7

helbling.at free access to books
Illustratoren gegen Co... 3 3 7 7 7 7 7

illustratoren-g... resource listing
InNote 3 3 7 3 3 7 7

play.google.com note-taking app
Internet-ABC 3 3 7 7 7 7 7

internet-abc.de digital literacy resources
IXL 3 3 3 3 7 7 ? 7

de.ixl.com paid exercises
Jugend & Volk Mathe 3 3 7 7 7 3 7

foxgames.at multiplication trainer
Junge Klassik 3 3 7 7 7 7 7

junge-klassik.de music exercises

62

https://digikomp.at/index.php?id=589&L=0
https://www.edugroup.at/praxis/portale/medienfit-in-der-volksschule/digitale-flaschenpost-fuer-kinder.html
https://de.duolingo.com/
https://new.edmodo.com/?go2url=/home
https://baa.at/mm-team/mobile/elearn/puzzle_v30.php
https://www.edugroup.at/
https://eduthek.at/schulmaterialien
https://www.einmaleins.at/
https://www.geo.de/geolino
https://www.grundschule-arbeitsblaetter.de/deutsch/
https://www.grundschulkoenig.de/
https://www.helbling.at/
https://www.illustratoren-gegen-corona.de/
https://play.google.com/store/apps/details?id=com.intsig.notes&hl=de
https://www.internet-abc.de/
https://de.ixl.com/
http://www.foxgames.at/321mathe/
https://www.junge-klassik.de/de/junge-klassik-home/

Name [B
M

B
W

F
]?

[B
d

S
tm

k
]?

[K
M

K
]?

A
va

il
a
b

le
?

S
ig

n
-u

p
n

ee
d

ed
?

N
at

iv
e

ap
p

ex
is

ts
?

N
at

iv
e

ap
p

n
ee

d
ed

?

J
av

a
S

cr
ip

t
n

ee
d

ed
?

F
re

e-
fo

rm
co

m
m

s?

KidsNet 3 3 7 7 7 7 7

kidsnet.at resource listing
Kidsweb 3 3 7 7 7 3 7

kidsweb.wien resource listing
KiGaPortal 3 3 3 7 7 3 7

kigaportal.com resource listing
Klassenpinnwand 3 3 3 3 7 3 3

klassenpinnwand.at all-in-one educational portal
Klassik4Kids 3 3 7 7 3 7 7

klassik4kids.at music education
Learnattack 3 3 3 ? ? 3 3

learnattack.de paid tutoring
Learning Apps 3 3 7 7 7 ? 3

learningapps.org create & share apps
LegaKids 3 3 7 7 7 7 7

legakids.net exercises for dyslexic kids
Lern Deutsch 3 3 3 7 7 3 3

lernen.goethe.de cooperative german practice
Lernburg 3 3 3 ? ? 3 7

lernburg.at exercises for dyslexic kids
Lernerfolg Grundschule 3 3 ? 3 ? ? 7?

apps.apple.com paid exercises
Lernserver 3 3 3 3 7 ? 7?

lernserver.de paid exercises
Lesen mit Elbot 3 3 7 7 7 3 7

elbot.de CGI chatbot
LL-Web 3 3 7 7 7 7 7

vs-material.weg... resource listing
LMS.at 3 3 3 3 7 ? ?
lms.at official austrian learning management system
Mandala-Bilder 3 3 7 7 7 7 7

mandala-bilder.de resource listing
Math Duel: 2 Player Ma... 3 3 7 3 3 7 7

play.google.com math problem competition
Mathefuchs 3 3 7 7 7 7 7

mathe.aufgabenf... resource listing

63

https://www.kidsnet.at/baum/deutschbaumn.htm
https://kidsweb.wien/startseite/
https://www.kigaportal.com/ng/ng6/en
https://klassenpinnwand.at/lehrerinfo
http://www.klassik4kids.at/
https://learnattack.de/
https://learningapps.org/
https://www.legakids.net/eltern-lehrer/lernmaterialien/motivation
https://lernen.goethe.de/spiele/lerndeutsch
https://www.lernburg.at
https://apps.apple.com/de/app/lernerfolg-grundschule-mathe/id408866513
https://www.lernserver.de/
http://www.elbot.de/htm/index.htm
https://vs-material.wegerer.at/index.htm
https://lms.at/
https://www.mandala-bilder.de/
https://play.google.com/store/apps/details?id=com.mathduel2playersgame.mathgame
http://mathe.aufgabenfuchs.de/bruch/bruchregeln.shtml

Appendix A. Processed resource listings

Name [B
M

B
W

F
]?

[B
d

S
tm

k
]?

[K
M

K
]?

A
va

il
a
b

le
?

S
ig

n
-u

p
n

ee
d

ed
?

N
at

iv
e

ap
p

ex
is

ts
?

N
at

iv
e

ap
p

n
ee

d
ed

?

J
av

a
S

cr
ip

t
n

ee
d

ed
?

F
re

e-
fo

rm
co

m
m

s?

Mathway 3 3 7 7 7 3 7

mathway.com online algebra system
Memrise 3 3 3 ? 7 3 ?
memrise.com professional language trainer
Mindomo 3 3 7 3 3 7 7

play.google.com mindmap tool
MINTMagie 3 3 7 7 7 7 7

mintmagie.de resource listing
Multidingsda 3 3 7 3 3 7 7

apps.apple.com language trainer app
Music Maker 3 3 7 7 7 3 7

musiclab.chrome... interactive music composition tool

ÖSZ 3 3 7 7 7 7 7

oesz.at resource listing
pcvs.info 3 3 7 7 7 7 7

pcvs.info resource listing
PicCollage 3 3 7 3 3 7 7

play.google.com image cropping/editing tool
Pixi-Lesestart 3 ?
apps.apple.com requires apple devices
Planet Schule 3 3 3 7 7 7 3 7

planet-schule.de video listing
Quizlet 3 3 3 3 3 ? ? ?
quizlet.com startuppy learning app
Rechenarena 3 3 7 7 7 3 3?

sgs.at math competition
RoboBee 3 3 7 3 3 7 ?
bee.baa.at programming trainer
Schlaukopf 3 3 3 7 7 7 3 7

schlaukopf.at multiple choice questions
schule.at 3 3 7 7 7 7 7

schule.at resource listing
scook 3 3 3 7 7 3 3

scook.at interactive resources for Veritas books
Scoyo 3 3 3 7 7 3 7

www-de.scoyo.com paid interactive learning

64

https://www.mathway.com/de/Algebra
https://www.memrise.com/
https://play.google.com/store/apps/details?id=air.com.EXswap.Mindomo
https://www.mintmagie.de/
https://apps.apple.com/ch/app/multidingsda/id418298512
https://musiclab.chromeexperiments.com/Song-Maker/
http://www.oesz.at/OESZNEU/home.php
https://www.pcvs.info/schule/e-programme-u-gegenst%C3%A4nde/
https://play.google.com/store/apps/details?id=com.cardinalblue.piccollage.google
https://apps.apple.com/de/app/pixi-lesestart/id508002087
https://www.planet-schule.de/sf/spezial/grundschule/sprachen.php
https://quizlet.com/de
https://www.sgs.at/rechenarena/
http://bee.baa.at/beebot_pc.php
https://www.schlaukopf.at/
https://www.schule.at/portale/deutsch-als-zweitsprache-und-ikl.html
https://www.scook.at/
https://www-de.scoyo.com/

Name [B
M

B
W

F
]?

[B
d

S
tm

k
]?

[K
M

K
]?

A
va

il
a
b

le
?

S
ig

n
-u

p
n

ee
d

ed
?

N
at

iv
e

ap
p

ex
is

ts
?

N
at

iv
e

ap
p

n
ee

d
ed

?

J
av

a
S

cr
ip

t
n

ee
d

ed
?

F
re

e-
fo

rm
co

m
m

s?

Scratch 3 3 3 3 7 3 7

scratch.mit.edu visual programming
Seesaw 3 3 3 3 7 3 ?
web.seesaw.me startuppy “classroom platform for student engagement”
Seitenstark 3 3 7 7 7 7 7

seitenstark.de resource listing
Serlo 3 3 7 7 7 3 3?

de.serlo.org free, crowd-sourced education
Simpleclub 3 3 3 3 7 3 7

simpleclub.com paid interactive learning
Skooly 3 3 3 3 7 3 3

skooly.at online class management
Sofatutor 3 3 3 7 7 3 7

sofatutor.com paid interactive learning
Studio Code 3 3 3 3 7 3 7

studio.code.org visual programming
Veritas Verlag 3 3 3 7 7 3 7

veritas.at paid resource listing
WordArt 3 3 7 3 3 7 7

play.google.com word cloud app
Wunderbare Enkel 3 3 7 7 7 7 7

wunderbare-enke... resource listing
Zahlen-Zorro 3 3 3 7 7 3 7

zahlenzorro.wes... paid interactive learning
Zebra Schreibtabelle 3 3 7 3 3 7 7

play.google.com writing trainer app
Zehn kleine Fingerlein 3 3 7 7 7 7 7

10kleinefingerl... physical typing trainer

65

https://scratch.mit.edu/
https://web.seesaw.me/
https://www.seitenstark.de/
https://de.serlo.org/mathe
https://simpleclub.com/
https://skooly.at/login.php
https://www.sofatutor.com/
https://studio.code.org/courses
https://www.veritas.at/
https://play.google.com/store/apps/details?id=com.phonegap.wordart
http://www.wunderbare-enkel.de/
https://zahlenzorro.westermann.de/
https://play.google.com/store/apps/details?id=air.de.kreaktor.zebraschreibtabelle&hl=de
http://10kleinefingerlein.com/

Appendix B.

Form letters

B.1. Request for Access

Dear application team,

we are researchers at Graz University of Technology doing work related to online education during the
COVID-19 pandemic.

As part of this effort, we are reviewing widely-used products, with a focus on information security and
privacy.
This has already led to us discovering multiple significant flaws in other software, which we were able to assist
the authors in correcting.

We would like to also review your application platform, as it is in use by schools across Austria.

Would it be possible for us to be granted access – akin to what an enrolled school would have – to your
product so we may review its functionality and investigate it for potential flaws?

Best regards,
s/

Sehr geehrtes Plattform-Team,

wir sind eine Forschungsgruppe an der TU Graz, die sich derzeit mit Distance Learning während der
COVID-19-Pandemie beschäftigt.

Im Rahmen dieser Schwerpunktsetzung nehmen wir derzeit Software, die bei der Umstellung des Schul-
betriebs im Rahmen von COVID-19 angewendet wird, sicherheitstechnisch unter die Lupe.
Unser Interesse begründet sich insbesondere darin, dass für Schüler*innen die Verwendung ebendieser Software –
und damit Preisgabe ihrer Daten an ebendiese – zumeist in keinster Weise freiwillig geschieht.

Hierbei liegt der Fokus auf Datensicherheit und Privacy, und insbesondere in der Analyse potentieller
produktübergreifender systematischer Probleme.
Im Zuge unserer Untersuchungen haben wir bereits mehrere Probleme in Software anderer Firmen aufgedeckt,
und konnten im Zuge von Responsible Disclosure die entsprechenden Entwickler*innen bei der Korrektur
ebendieser unterstützen.

Nun würden wir auch gerne Ihre Plattform “Plattform”, die ja in vielen österreichischen Schulen ver-
wendet wird, einbeziehen.
Wäre es für uns möglich, zu Forschungszwecken Zugriff – in etwa entsprechend dem der Direktion einer neu
registrierten Schule – zu erhalten?

Mit allerbesten Grüßen,
s/

67

Appendix B. Form letters

B.2. Request for Disclosure

Dear application team,

We are security researchers at Graz University of Technology in Graz, Austria. As part of a research
effort into CoViD-related use of apps in education, we conducted a security review of the application platform.
During this process, we have discovered several potential security flaws, which we would like to assist you in
correcting.

However, we were unable to locate a contact address for Responsible Disclosure through your platform.
Please let us know where we should direct confidential details and technical documentation regarding the issue.

Kind regards,
s/

Sehr geehrtes Plattform-Team,

wir sind ein Forscherteam für Informationssicherheit an der Technischen Universität Graz. Im Rahmen
eines Forschungsprojekts zur Verwendung von Online-Learning während der CoViD-19-Pandemie haben wir
unter anderem eine Sicherheitsanalyse von Plattform durchgeführt.
Im Zuge dieser Analyse haben wir mehrere potentielle Schwachstellen entdeckt. Wir würden Ihnen gerne im
Rahmen eines industrieüblichen Responsible-Disclosure-Prozesses bei der Behebung ebendieser behilflich sein.

Leider ist es uns nicht gelungen, auf Ihrer Plattform eine Kontaktadresse für Sicherheitsfragen aufzufinden.
Wäre es Ihnen möglich, uns mitzuteilen, an welche Adresse wir sensible Daten und technische Dokumente
übersenden sollen?

Mit besten Grüßen,
s/

68

Bibliography

[BdStmk] Bildungsdirektion Steiermark. Distance Learning – Links & Tips for Stu-
dents and Parents With German as a Second Language. 2020. url: https:
//www.bildung-stmk.gv.at/service/news/aktuelles/2020/corona.

html (visited on 2020-08-30) (cit. on pp. 1, 18, 19, 23, 41, 59, 61–65).

[BMBWF] Bundesministerium für Bildung, Wissenschaft und Forschung. eEducation:
Materialien Primärstufe. 2020. url: https://eeducation.at/index.

php?id=665&L=0 (visited on 2020-08-30) (cit. on pp. 1, 18, 19, 23, 41, 47,
59, 61–65).

[Expr] Express – Node.js web application framework. url: https://expressjs.
com/ (visited on 2020-09-01) (cit. on p. 24).

[KMK] Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik
Deutschland. Lernen von zu Hause – Digitale Lernangebote. 2020. url:
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/

lernen-von-zu-hause-digitale-lernangebote.html (visited on 2020-
08-30) (cit. on pp. 1, 18, 19, 23, 33, 59, 61–65).

[Pcryp] The PHP Group. PHP: crypt – Manual. url: https://www.php.net/
manual/en/function.crypt.php (visited on 2020-11-17) (cit. on p. 55).

[PHis] The PHP Group. PHP: History of PHP – Manual. url: https://www.php.
net/manual/en/history.php.php (visited on 2020-11-23) (cit. on p. 7).

[PPre] The PHP Group. PHP: Preface – Manual. url: https://www.php.net/
manual/en/preface.php (visited on 2020-11-19) (cit. on p. 7).

[red12] /u/1880. Is this a bug? Shouldn’t crypt() be binary safe? 2012. url: https:
//www.reddit.com/r/PHP/comments/t0qzl/is_this_a_bug_shouldnt_

crypt_be_binary_safe/ (visited on 2020-11-17) (cit. on p. 55).

[Apa12] Apache Software Foundation. Apache Cordova. 2012. url: https : / /

cordova.apache.org/ (visited on 2020-09-15) (cit. on p. 3).

[App05] Apple Developer Connection. Dynamic HTML and XML: The XMLHttpRe-
quest Object. 2005. url: https://web.archive.org/web/20080509103519/
http://developer.apple.com/internet/webcontent/xmlhttpreq.

html (visited on 2008-05-09) (cit. on p. 4).

[ASR17] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. “On code reuse from
StackOverflow: An exploratory study on Android apps”. In: Information
and Software Technology 88 (2017), pp. 148–158. issn: 0950-5849. doi:
10.1016/j.infsof.2017.04.005 (cit. on p. 54).

69

https://www.bildung-stmk.gv.at/service/news/aktuelles/2020/corona.html
https://www.bildung-stmk.gv.at/service/news/aktuelles/2020/corona.html
https://www.bildung-stmk.gv.at/service/news/aktuelles/2020/corona.html
https://eeducation.at/index.php?id=665&L=0
https://eeducation.at/index.php?id=665&L=0
https://expressjs.com/
https://expressjs.com/
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/lernen-von-zu-hause-digitale-lernangebote.html
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/lernen-von-zu-hause-digitale-lernangebote.html
https://www.php.net/manual/en/function.crypt.php
https://www.php.net/manual/en/function.crypt.php
https://www.php.net/manual/en/history.php.php
https://www.php.net/manual/en/history.php.php
https://www.php.net/manual/en/preface.php
https://www.php.net/manual/en/preface.php
https://www.reddit.com/r/PHP/comments/t0qzl/is_this_a_bug_shouldnt_crypt_be_binary_safe/
https://www.reddit.com/r/PHP/comments/t0qzl/is_this_a_bug_shouldnt_crypt_be_binary_safe/
https://www.reddit.com/r/PHP/comments/t0qzl/is_this_a_bug_shouldnt_crypt_be_binary_safe/
https://cordova.apache.org/
https://cordova.apache.org/
https://web.archive.org/web/20080509103519/http://developer.apple.com/internet/webcontent/xmlhttpreq.html
https://web.archive.org/web/20080509103519/http://developer.apple.com/internet/webcontent/xmlhttpreq.html
https://web.archive.org/web/20080509103519/http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://dx.doi.org/10.1016/j.infsof.2017.04.005

Bibliography

[Bak04] Loren Baker. Mozilla Firefox Internet Browser Market Share Gains to 7.4%.
2004. url: https://www.searchenginejournal.com/mozilla-firefox-
internet- browser- market- share- gains- to- 74/1082/ (visited on
2020-09-24) (cit. on p. 5).

[BDK16] A. Biryukov, D. Dinu, and D. Khovratovich. “Argon2: New Generation of
Memory-Hard Functions for Password Hashing and Other Applications”.
In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
2016, pp. 292–302. doi: 10.1109/EuroSP.2016.31 (cit. on p. 10).

[Ber91] Tim Berners-Lee. The Original HTTP as defined in 1991. 1991. url:
https://www.w3.org/Protocols/HTTP/AsImplemented.html (visited on
2020-09-15) (cit. on p. 3).

[CSS12] Luis Corral, Alberto Sillitti, and Giancarlo Succi. “Mobile Multiplatform
Development: An Experiment for Performance Analysis”. In: Procedia
Computer Science 10 (2012). ANT 2012 and MobiWIS 2012, pp. 736–743.
issn: 1877-0509. doi: 10.1016/j.procs.2012.06.094 (cit. on p. 3).

[Das+14] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and Xi-
aoFeng Wang. “The Tangled Web of Password Reuse”. In: 21st Annual
Network and Distributed System Security Symposium, NDSS 2014. The In-
ternet Society, 2014. url: https://www.ndss-symposium.org/ndss2014/
tangled-web-password-reuse (cit. on p. 10).

[DH15] Johannes Dahse and Thorsten Holz. “Experience Report: An Empirical
Study of PHP Security Mechanism Usage”. In: Proceedings of the 2015
International Symposium on Software Testing and Analysis. ISSTA 2015.
Baltimore, MD, USA: Association for Computing Machinery, 2015, pp. 60–
70. isbn: 9781450336208. doi: 10.1145/2771783.2771787 (cit. on p. 8).

[Dob96] Hans Dobbertin. “Cryptanalysis of MD5 compress”. In: Rump session of
Eurocrypt 96 (1996). url: http://web.mit.edu/afs.new/net.mit.edu/
dev/user/tytso/papers/md5-collision.ps (cit. on p. 38).

[Dre20] Soatok Dreamseeker. Cryptography Interface Design is a Security Con-
cern. 2020. url: https://soatok.blog/2021/02/24/cryptography-
interface-design-is-a-security-concern/ (visited on 2021-03-03)
(cit. on p. 60).

[Ecm09] Ecma International. Ecma International approves major revision of EC-
MAScript. 2009. url: https://www.ecma-international.org/news/
PressReleases/PR_Ecma%5C%20approves%5C%20major%5C%20revision%

5C%20of%5C%20ECMAScript.htm (visited on 2020-09-24) (cit. on p. 5).

[Ecm15] Ecma International. ECMAScript 2015 Language Specification. 2015. url:
https://www.ecma-international.org/ecma-262/6.0/index.html

(visited on 2020-09-24) (cit. on p. 5).

70

https://www.searchenginejournal.com/mozilla-firefox-internet-browser-market-share-gains-to-74/1082/
https://www.searchenginejournal.com/mozilla-firefox-internet-browser-market-share-gains-to-74/1082/
http://dx.doi.org/10.1109/EuroSP.2016.31
https://www.w3.org/Protocols/HTTP/AsImplemented.html
http://dx.doi.org/10.1016/j.procs.2012.06.094
https://www.ndss-symposium.org/ndss2014/tangled-web-password-reuse
https://www.ndss-symposium.org/ndss2014/tangled-web-password-reuse
http://dx.doi.org/10.1145/2771783.2771787
http://web.mit.edu/afs.new/net.mit.edu/dev/user/tytso/papers/md5-collision.ps
http://web.mit.edu/afs.new/net.mit.edu/dev/user/tytso/papers/md5-collision.ps
https://soatok.blog/2021/02/24/cryptography-interface-design-is-a-security-concern/
https://soatok.blog/2021/02/24/cryptography-interface-design-is-a-security-concern/
https://www.ecma-international.org/news/PressReleases/PR_Ecma%5C%20approves%5C%20major%5C%20revision%5C%20of%5C%20ECMAScript.htm
https://www.ecma-international.org/news/PressReleases/PR_Ecma%5C%20approves%5C%20major%5C%20revision%5C%20of%5C%20ECMAScript.htm
https://www.ecma-international.org/news/PressReleases/PR_Ecma%5C%20approves%5C%20major%5C%20revision%5C%20of%5C%20ECMAScript.htm
https://www.ecma-international.org/ecma-262/6.0/index.html

Bibliography

[Eic08a] Brendan Eich. ECMAScript Harmony. 2008. url: https://mail.mozilla.
org/pipermail/es- discuss/2008- August/003400.html (visited on
2020-09-25) (cit. on p. 5).

[Eic08b] Brendan Eich. Populatory. 2008. url: https://brendaneich.com/2008/
04/popularity/ (visited on 2020-09-24) (cit. on p. 4).

[Gar05] Jesse James Garrett. Ajax: A New Approach to Web Applications. 2005.
url: https : / / web . archive . org / web / 20150910072359 / http : / /

adaptivepath.org/ideas/ajax- new- approach- web- applications/

(visited on 2015-09-10) (cit. on p. 4).

[GL20] Yael Grauer and Micah Lee. Zoom Meetings Do Not Support End-to-End
Encryption. 2020. url: https://theintercept.com/2020/03/31/zoom-
meeting-encryption/ (visited on 2021-03-07) (cit. on p. 1).

[Ham+17] S. T. Hamman, K. M. Hopkinson, R. L. Markham, A. M. Chaplik, and
G. E. Metzler. “Teaching Game Theory to Improve Adversarial Thinking in
Cybersecurity Students”. In: IEEE Transactions on Education 60.3 (2017),
pp. 205–211. doi: 10.1109/TE.2016.2636125 (cit. on p. 57).

[Has20] Abeerah Hashim. Google Drive Vulnerability Allows Spearphishing Attacks.
2020. url: https://latesthackingnews.com/2020/08/25/google-

drive- vulnerability- allows- spearphishing- attacks/ (visited on
2021-02-24) (cit. on p. 1).

[Hic+12a] Michael Hicke, Agathe Hicke, Horst Hicke, and Bernd Dietrich. Schlaukopf.at
– Das Projekt. 2012. url: https://www.schlaukopf.at/seiten/projekt.
php (visited on 2021-02-12) (cit. on pp. 1, 19, 41, 59).

[Hic+12b] Michael Hicke, Agathe Hicke, Horst Hicke, and Bernd Dietrich. Schlaukopf.at
– Impressum und Kontakt. 2012. url: https://www.schlaukopf.at/

seiten/impressum.php (visited on 2021-02-12) (cit. on p. 41).

[Hie+15] Michael Hielscher, Werner Hartmann, Manuela Filzer, Nico Steinbach,
Christian Wagenknecht, and Franz Rothlauf. LearningApps – Imprint. 2015.
url: https://learningapps.org/impressum.php (visited on 2021-02-19)
(cit. on p. 47).

[Hie12] Michael Hielscher. What is LearningApps.org. 2012. url: https://learningapps.
org/about.php (visited on 2021-02-19) (cit. on pp. 2, 19, 47, 59).

[Hof19] Jay Hoffmann. What Does AJAX Even Stand For? 2019. url: https://
thehistoryoftheweb.com/what-does-ajax-even-stand-for/ (visited
on 2020-09-16) (cit. on p. 4).

[Hop06] Alex Hopmann. The story of XMLHTTP. 2006. url: https : / / web .

archive.org/web/20160630074121/http://www.alexhopmann.com/

xmlhttp.htm (visited on 2016-06-30) (cit. on p. 4).

71

https://mail.mozilla.org/pipermail/es-discuss/2008-August/003400.html
https://mail.mozilla.org/pipermail/es-discuss/2008-August/003400.html
https://brendaneich.com/2008/04/popularity/
https://brendaneich.com/2008/04/popularity/
https://web.archive.org/web/20150910072359/http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://web.archive.org/web/20150910072359/http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://theintercept.com/2020/03/31/zoom-meeting-encryption/
https://theintercept.com/2020/03/31/zoom-meeting-encryption/
http://dx.doi.org/10.1109/TE.2016.2636125
https://latesthackingnews.com/2020/08/25/google-drive-vulnerability-allows-spearphishing-attacks/
https://latesthackingnews.com/2020/08/25/google-drive-vulnerability-allows-spearphishing-attacks/
https://www.schlaukopf.at/seiten/projekt.php
https://www.schlaukopf.at/seiten/projekt.php
https://www.schlaukopf.at/seiten/impressum.php
https://www.schlaukopf.at/seiten/impressum.php
https://learningapps.org/impressum.php
https://learningapps.org/about.php
https://learningapps.org/about.php
https://thehistoryoftheweb.com/what-does-ajax-even-stand-for/
https://thehistoryoftheweb.com/what-does-ajax-even-stand-for/
https://web.archive.org/web/20160630074121/http://www.alexhopmann.com/xmlhttp.htm
https://web.archive.org/web/20160630074121/http://www.alexhopmann.com/xmlhttp.htm
https://web.archive.org/web/20160630074121/http://www.alexhopmann.com/xmlhttp.htm

Bibliography

[Hum+18a] Rita Humer, Gabriele Saulich, Egon Humer, and Michael Eberl. Antonwelt –
Für Eltern. 2018. url: https://www.antonwelt.schule/eltern/ (visited
on 2021-02-04) (cit. on p. 33).

[Hum+18b] Rita Humer, Gabriele Saulich, Egon Humer, and Michael Eberl. Antonwelt
– Impressum. 2018. url: https://www.antonwelt.schule/impressum/
(visited on 2021-02-04) (cit. on p. 33).

[Hum+18c] Rita Humer, Gabriele Saulich, Egon Humer, and Michael Eberl. Antonwelt
– Über Uns. 2018. url: https://www.antonwelt.schule/ueber-uns/
(visited on 2021-02-04) (cit. on pp. 1, 19, 33, 59).

[Hum+18d] Rita Humer, Gabriele Saulich, Egon Humer, and Michael Eberl. An-
tonwelt – Unterstützer. 2018. url: https://www.antonwelt.schule/
unterstuetzer/ (visited on 2021-02-04) (cit. on p. 33).

[Jan+20] Jiyong Jang, Dhilung Kirat, Ian Molloy, and J.R. Rao. IBM Works With
Cisco to Exorcise Ghosts From Webex Meetings. 2020. url: https://

securityintelligence.com/posts/ibm-works-with-cisco-exorcise-

ghosts-webex-meetings/ (visited on 2021-02-24) (cit. on p. 1).

[JVS20] Nicole Johnson, George Veletsianos, and Jeff Seaman. “US Faculty and
Administrators’ Experiences and Approaches in the Early Weeks of the
COVID-19 Pandemic.” In: Online Learning 24.2 (2020), pp. 6–21 (cit. on
p. 1).

[Kat19] Frank Katz. “Adversarial thinking: teaching students to think like a hacker”.
In: KSU Proceedings on Cybersecurity Education,Research and Practice.
2019. url: https : / / digitalcommons . kennesaw . edu / ccerp / 2019 /

education/1/ (cit. on p. 57).

[Kri01] David M. Kristol. “HTTP Cookies: Standards, Privacy, and Politics”. In:
ACM Trans. Internet Technol. 1.2 (2001-11), pp. 151–198. issn: 1533-5399.
doi: 10.1145/502152.502153 (cit. on p. 8).

[Lak07] Pratap Lakshman. JScript Deviations from ES3. 2007. url: https://
regmedia.co.uk/2007/10/31/jscriptdeviationsfromes3.pdf (visited
on 2020-09-24) (cit. on p. 5).

[McC93] Rob McCool. Server Scripts. 1993. url: http://1997.webhistory.org/
www.lists/www-talk.1993q4/0485.html (visited on 2020-09-15) (cit. on
p. 3).

[McC94] Rob McCool. Common Gateway Interface. 1994. url: https : / / web .

archive.org/web/20100213224155/http://hoohoo.ncsa.illinois.

edu/cgi/intro.html (visited on 2010-02-13) (cit. on p. 3).

[Mic] Microsoft. IXMLHTTPRequest. url: https://web.archive.org/web/
20160526164820 / https : / / msdn . microsoft . com / en - us / library /

ms759148(VS.85).aspx (visited on 2016-05-26) (cit. on p. 4).

72

https://www.antonwelt.schule/eltern/
https://www.antonwelt.schule/impressum/
https://www.antonwelt.schule/ueber-uns/
https://www.antonwelt.schule/unterstuetzer/
https://www.antonwelt.schule/unterstuetzer/
https://securityintelligence.com/posts/ibm-works-with-cisco-exorcise-ghosts-webex-meetings/
https://securityintelligence.com/posts/ibm-works-with-cisco-exorcise-ghosts-webex-meetings/
https://securityintelligence.com/posts/ibm-works-with-cisco-exorcise-ghosts-webex-meetings/
https://digitalcommons.kennesaw.edu/ccerp/2019/education/1/
https://digitalcommons.kennesaw.edu/ccerp/2019/education/1/
http://dx.doi.org/10.1145/502152.502153
https://regmedia.co.uk/2007/10/31/jscriptdeviationsfromes3.pdf
https://regmedia.co.uk/2007/10/31/jscriptdeviationsfromes3.pdf
http://1997.webhistory.org/www.lists/www-talk.1993q4/0485.html
http://1997.webhistory.org/www.lists/www-talk.1993q4/0485.html
https://web.archive.org/web/20100213224155/http://hoohoo.ncsa.illinois.edu/cgi/intro.html
https://web.archive.org/web/20100213224155/http://hoohoo.ncsa.illinois.edu/cgi/intro.html
https://web.archive.org/web/20100213224155/http://hoohoo.ncsa.illinois.edu/cgi/intro.html
https://web.archive.org/web/20160526164820/https://msdn.microsoft.com/en-us/library/ms759148(VS.85).aspx
https://web.archive.org/web/20160526164820/https://msdn.microsoft.com/en-us/library/ms759148(VS.85).aspx
https://web.archive.org/web/20160526164820/https://msdn.microsoft.com/en-us/library/ms759148(VS.85).aspx

Bibliography

[Mic97] Microsoft. Microsoft Delivers ECMA-Complaint JScript 3.0 In Key Mi-
crosoft Products. 1997. url: https://web.archive.org/web/20090112221530/
http://www.microsoft.com/presspass/press/1997/Jun97/jecmapr.

mspx (visited on 2009-01-12) (cit. on p. 5).

[Moza] Mozilla MDN Web Docs. Fetch API. url: https://developer.mozilla.
org/en-US/docs/Web/API/Fetch_API (visited on 2021-01-31) (cit. on
p. 5).

[Mozb] Mozilla MDN Web Docs. IndexedDB API. url: https://developer.

mozilla.org/en-US/docs/Web/API/IndexedDB_API (visited on 2021-01-
31) (cit. on p. 5).

[Mozc] Mozilla MDN Web Docs. Service Worker API. url: https://developer.
mozilla.org/en-US/docs/Web/API/Service_Worker_API (visited on
2020-09-25) (cit. on p. 5).

[Mozd] Mozilla MDN Web Docs. Web APIs. url: https://developer.mozilla.
org/en-US/docs/Web/API (visited on 2021-01-31) (cit. on pp. 3, 5).

[Moze] Mozilla MDN Web Docs. WebStorage API. url: https://developer.
mozilla.org/en- US/docs/Web/API/Web_Storage_API (visited on
2021-01-31) (cit. on p. 5).

[Mozf] Mozilla MDN Web Docs. XMLHTTPRequest. url: https://developer.
mozilla.org/en-US/docs/Web/API/XMLHttpRequest (visited on 2021-
01-31) (cit. on p. 5).

[Net20] NetMarketShare. Browser Market Share. 2020. url: https://netmarketshare.
com/ (visited on 2020-09-15) (cit. on p. 3).

[Ope20] OpenJS Foundation. Electron: Build cross-platform desktop apps with
JavaScript, HTML and CSS. 2020. url: https://www.electronjs.org/
(visited on 2020-09-15) (cit. on p. 3).

[Ray03] Eric S. Raymond. The Jargon File: magic cookie. 2003. url: https://web.
archive.org/web/20030609151443/http://catb.org/jargon/html/M/

magic-cookie.html (visited on 2003-06-09) (cit. on p. 8).

[Sch01] John Schwartz. Giving Web a Memory Cost Its Users Privacy. 2001. url:
https://www.nytimes.com/2001/09/04/business/giving-web-a-

memory-cost-its-users-privacy.html (visited on 2020-12-29) (cit. on
p. 8).

[Sch13] F. B. Schneider. “Cybersecurity Education in Universities”. In: IEEE
Security Privacy 11.4 (2013), pp. 3–4. doi: 10.1109/MSP.2013.84 (cit. on
p. 57).

[sola] solocode GmbH. ANTON – FAQ. url: https://anton.app/en_us/faq/
(visited on 2021-01-25) (cit. on pp. 1, 19, 24, 59).

[solb] solocode GmbH. ANTON – Imprint. url: https://anton.app/en_us/
imprint/ (visited on 2020-09-01) (cit. on p. 23).

73

https://web.archive.org/web/20090112221530/http://www.microsoft.com/presspass/press/1997/Jun97/jecmapr.mspx
https://web.archive.org/web/20090112221530/http://www.microsoft.com/presspass/press/1997/Jun97/jecmapr.mspx
https://web.archive.org/web/20090112221530/http://www.microsoft.com/presspass/press/1997/Jun97/jecmapr.mspx
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://netmarketshare.com/
https://netmarketshare.com/
https://www.electronjs.org/
https://web.archive.org/web/20030609151443/http://catb.org/jargon/html/M/magic-cookie.html
https://web.archive.org/web/20030609151443/http://catb.org/jargon/html/M/magic-cookie.html
https://web.archive.org/web/20030609151443/http://catb.org/jargon/html/M/magic-cookie.html
https://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
https://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
http://dx.doi.org/10.1109/MSP.2013.84
https://anton.app/en_us/faq/
https://anton.app/en_us/imprint/
https://anton.app/en_us/imprint/

Bibliography

[UNE20] UNESCO. School closures caused by Coronavirus (Covid-19). 2020. url:
https://en.unesco.org/covid19/educationresponse (visited on 2021-
03-08) (cit. on p. 1).

[VB20] Gerrit De Vynck and Mark Bergen. Google Classroom Users Doubled as
Quarantines Spread. 2020. url: https://www.bloomberg.com/news/

articles/2020-04-09/google-widens-lead-in-education-market-

as-students-rush-online (visited on 2021-03-08) (cit. on p. 1).

[VDP20] Tom Van Goethem, Nurullah Demir, and Barry Pollard. Security – The
2020 Web Almanac. 2020. url: https://almanac.httparchive.org/en/
2020/security (visited on 2021-01-15) (cit. on p. 15).

[Veg20] Oskars Vegeris. “Important, Spoofing” – zero-click, wormable, cross-platform
remote code execution in Microsoft Teams. 2020. url: https://github.
com/oskarsve/ms-teams-rce/blob/main/README.md (visited on 2021-
02-24) (cit. on p. 1).

[W3T] W3Techs Web Technology Surveys. Usage statistics of JavaScript as a
client-side programming language on websites. url: https://w3techs.
com/technologies/details/cp-javascript/ (visited on 2020-09-25)
(cit. on p. 5).

[Wag21] Paul Wagenseil. Zoom security issues: Here’s everything that’s gone wrong
(so far). 2021. url: https://www.tomsguide.com/news/zoom-security-
privacy-woes (visited on 2021-02-24) (cit. on p. 1).

[Wan+04] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. “Collisions
for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD.” In: IACR
Cryptol. ePrint Arch. 2004 (2004), p. 199 (cit. on p. 38).

[Wod20] Shoshana Wodinsky. The Butt Pajamas Will Follow You Forever. 2020.
url: https://gizmodo.com/the-butt-pajamas-will-follow-you-
forever-1845929307 (visited on 2020-12-29) (cit. on p. 9).

[XLC11] J. Xie, H. R. Lipford, and B. Chu. “Why do programmers make security
errors?” In: 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 2011, pp. 161–164. doi: 10.1109/VLHCC.
2011.6070393 (cit. on pp. 53, 54).

74

https://en.unesco.org/covid19/educationresponse
https://www.bloomberg.com/news/articles/2020-04-09/google-widens-lead-in-education-market-as-students-rush-online
https://www.bloomberg.com/news/articles/2020-04-09/google-widens-lead-in-education-market-as-students-rush-online
https://www.bloomberg.com/news/articles/2020-04-09/google-widens-lead-in-education-market-as-students-rush-online
https://almanac.httparchive.org/en/2020/security
https://almanac.httparchive.org/en/2020/security
https://github.com/oskarsve/ms-teams-rce/blob/main/README.md
https://github.com/oskarsve/ms-teams-rce/blob/main/README.md
https://w3techs.com/technologies/details/cp-javascript/
https://w3techs.com/technologies/details/cp-javascript/
https://www.tomsguide.com/news/zoom-security-privacy-woes
https://www.tomsguide.com/news/zoom-security-privacy-woes
https://gizmodo.com/the-butt-pajamas-will-follow-you-forever-1845929307
https://gizmodo.com/the-butt-pajamas-will-follow-you-forever-1845929307
http://dx.doi.org/10.1109/VLHCC.2011.6070393
http://dx.doi.org/10.1109/VLHCC.2011.6070393

	Introduction
	Background
	A brief history of interactive web applications
	JavaScript
	JSON
	SQL
	PHP
	HTTP cookies
	Hash functions
	Session identifiers
	Cross-Site Scripting
	Cross-Site Request Forgery

	Analysis of Online Learning Platforms
	User roles
	Attacker goals
	Case studies
	Review methodology
	Ethical considerations
	Responsible Disclosure
	About the following chapters

	ANTON
	Features
	Functionality
	Analysis
	Disclosure

	Antonwelt
	Features
	Functionality
	Analysis
	Disclosure

	Schlaukopf.at
	Features
	Functionality
	Analysis
	Disclosure

	LearningApps.org
	Features
	Functionality
	Analysis
	Disclosure

	Discussion
	On defaults and documentation
	On administrative account resets
	On adversarial thinking

	Conclusion
	Future work

	Processed resource listings
	Form letters
	Request for Access
	Request for Disclosure

	Bibliography

		2021-03-15T00:41:11+0100
	Jakob Maria Heher
	Signaturpruefung unter http://www.signaturpruefung.gv.at

