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Abstract

Proposed is a MATLAB-based code to compute a wanted number of natural frequencies
and mode shapes of any arbitrary two-dimensional frame structure. The considered frame
can consist of several continuous beam elements. Common supports, hinges, and springs
can be applied at the nodes. The computations are executed analytically and refer to the
exact solutions of the homogenous differential equations specified on each elastic beam
of the structure before the application of boundary and interface conditions. Hence, the
discretization of a frame-system at the nodes is sufficient. The computation is restricted
to the two-dimensional space considering longitudinal and transversal vibrations. The
natural frequencies of structures can be obtained based on either the Euler-Bernoulli or the
Timoshenko beam theory, and the corresponding mode shapes are plotted.

Especially, when the natural frequencies need to be determined exactly, as e.g. for sen-
sitive technical equipment, robotic arms etc. this thesis can be of high relevance. The
"Numerical Assembly Technique" (NAT) was used to determine the natural frequencies
which relies on solving a system matrix that is a result of the general differential equation
with enforced boundary conditions. The created code was tested on several structures and
the implementation in MATLAB is described.

Keywords: Dynamic Analysis of Frames, Numerical Assembly Technique, NAT, Euler-
Bernoulli Beam Theory, Timoshenko Beam Theory, Natural Frequencies, Mode Shapes





Zusammenfassung

Vorgestellt wird ein MATLAB-basierter Code zur Berechnung einer gewünschten Anzahl
von Eigenfrequenzen und Eigenformen beliebiger zweidimensionaler Rahmenstrukturen.
Der betrachtete Rahmen kann aus mehreren zusammenhängenden Balkenelementen beste-
hen. An den Knotenpunkten können gängige Lager, Drehgelenke und Federn angebracht
werden. Die Berechnungen werden analytisch durchgeführt und beziehen sich auf die ex-
akten Lösungen der homogenen Differentialgleichungen, die auf jedem elastischen Balken
der Struktur vor der Aufbringung von Rand- und Übergangsbedingungen angegeben sind.
Das Diskretisieren eines Rahmensystems an den Knotenpunkten ist daher ausreichend.
Die Berechnung beschränkt sich auf die zweidimensionale Ebene und berücksichtigt lon-
gitudinale und transversale Schwingungen. Die Eigenfrequenzen der Strukturen können
entweder nach der Euler-Bernoulli- oder der Timoshenko-Balkentheorie ermittelt werden
und die entsprechenden Eigenformen werden grafisch dargestellt.

Insbesondere, wenn die Eigenfrequenzen exakt bestimmt werden müssen, wie beispiels-
weise bei empfindlichen technischen Geräten, Roboterarmen etc. kann diese Arbeit von
hoher Relevanz sein. Zur Bestimmung der Eigenfrequenzen wurde die "Numerical Assem-
bly Technique" (NAT) verwendet, die auf der Lösung einer Systemmatrix beruht, welche
ein Resultat aus der allgemeinen Differentialgleichung mit erzwungenen Randbedingun-
gen ist. Der erstellte Code wurde an mehreren Strukturen getestet und die Implementierung
in MATLAB wird in dieser Thesis ausführlich beschrieben.

Schlagwörter: Dynamische Analyse von Rahmensystemen, Numerical Assembly Tech-
nique, NAT, Euler-Bernoulli Balkentheorie, Timoshenko Balkentheorie, Eigenfrequenzen,
Eigenformen
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1. INTRODUCTION

The deformation of an elastic body can only be described approximately when using either
the method of Multi-Body Systems (MBS) or the Finite Element Method (FEM). When
modelling the elastic continuum in a refined and detailed way through infinitesimally small
elements, the body shows an infinite number of degrees of freedom. Its deformation can be
described locally by partial differential equations, which can only be solved by applying
intermediate and boundary conditions. This leads to an infinite-dimensional eigenvalue
problem that holds the exact description of the body’s deformation. Narrowing down the
amount of elements to a finite number defining the system, where constant parameters
hold within the elements, allows one to determine the exact solutions for a system of
elements [1, 2].

A significantly high number of mechanical and structural engineering problems can be
modelled by an assembly of beams with attached supports, hinges, and springs such as
building structures but also robotic arms or any mechanical mechanism. Especially struc-
tural features where the dynamic behaviour is of major interest, the natural frequencies
play an important role. Thus, having an efficient tool to determine those natural frequen-
cies, combined with the corresponding mode shapes, helps engineers perform high-quality
work. In many cases, the structure is modelled in finite element software packages that
are based on an approximation of the exact solution and requires a laborious discretiza-
tion process. Working with methods based on the analytical solution is, therefore, less
time-consuming and the results are more accurate. The Numerical Assembly Technique
(NAT) [3–9] counts as such a method.

In several publications, natural frequencies and mode shapes were calculated analytically.
Gasch and Knothe [4] described the analytical determination of eigenfrequencies on simple
structures such as single-span beams and cantilever beams in their work. The same applies
to Dinkler [2], where he explained the fundamentals of structural dynamics. Klanner and
Ellermann [3] compiled a comprehensible overview of analytic methods for dynamic anal-
ysis, which comprises several techniques. These include the Numerical Assembly Tech-
nique (NAT), the Transfer Matrix Method (TMM) [10–14], the Dynamic Stiffness Method
(DSM) [15, 16], the Green Function Method (GFM) [17–21], the Generalized Function
Approach (GFA) [22–24], and the Modal Superposition Method (MSM) [25]. The latter
describes a method to analyse forced vibrations and can be applied to the other mentioned
methods. Nonetheless, the main focus in Klanner’s work is the utilization of the Nu-
merical Assembly Technique on a multiple-stepped Euler-Bernoulli beam with arbitrarily
distributed force or moment loading.

Similar publications exist, such as the dynamic analysis on multiple-stepped Timoshenko
beams with several applied concentrated masses or spring-mass systems, using the Numer-
ical Assembly Technique, for instance, in Faraghaly’s and El-Sayed’s work [5]. Several

1



2 1. Introduction

other researchers, such as Hsien-Yuan Lin [7], Jee-Ray Wang, et al. [8], and Der-Wei
Chen [9], have used their expertise to find the exact solution of natural frequencies for
Timoshenko multi-stepped beams with attached concentrated masses and spring-mass sys-
tems. Yusuf Yesilce and Oktay Demirdag extended the research by observing the influence
of axial forces on such beams [6]. A summarized list of papers referring to the determi-
nation of natural frequencies using the Numerical Assembly Technique can be found in
Table 1.1.

Table 1.1.: References using the NAT.
No. Title Author

[9]
The exact solutions for the natural frequencies and
mode shapes of non-uniform beams carrying multiple
various concentrated elements

Chen, Der-Wei

[5]
Exact free vibration of multi-step Timoshenko beam
system with several attachments

Farghaly, SH and
El-Sayed, TA

[4]
Strukturdynamik-Band 2: Kontinua und ihre
Diskretisierung

Gasch, R. and
Knothe, K

[3]
Steady-state harmonic vibrations of multible-stepped
Euler-Bernoulli beams under arbitrarily distributed
loads carrying any number of concentrated elements

Klanner, M. and
Ellermann, K

[7]
On the natural frequencies and mode shapes of a mul-
tispan Timoshenko beam carrying a number of vari-
ous concentrated elements

Lin, Hsien-Yuan

[8]
Free vibration analysis of a Timoshenko beam carry-
ing multiple spring-mass systems with the effects of
shear deformation and rotary inertia

Wang, Jee-Ray
and Liu, et al

[6]
Effect of axial force on free vibration of Timoshenko
multi-span beam carrying multiple spring-mass sys-
tems

Yesilce, Yusuf
and Demirdag,
Oktay

In the mentioned publications, the beam theories were mostly applied to basic structural
models such as single-span or cantilever beams. These observations led to the formulation
of a MATLAB-based code that calculates the natural frequencies in a wished frequency
range and its corresponding mode shapes of any arbitrary, two-dimensional frame structure
Figure 1.1. It should be possible to choose between the Euler-Bernoulli and Timoshenko
beam theory to get an idea about the influence of shear deformation and rotational iner-
tia. Also, a large selection of different supports and hinges, in addition to rotational and
translational springs, are provided. To easily interpret computational results, the output
is transformed into standalone LATEX-files. This is practical when visualizing the mode
shapes and incorporating them in reports.
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c cT
Em,Am, Im,
rm,Gm,Lm

Em+1,Am+1, Im+1,
rm+1,Gm+1,Lm+1

Enm ,Anm , Inm ,
rnm ,Gnm ,Lnm

Figure 1.1.: Arbitrary frame vibration problem.

This thesis is divided into seven chapters. After the introduction as the first chapter, the
mechanical models, such as the derivation for the longitudinal, as well as the transversal
vibrations are presented in Chapter 2. Moreover, the terms are also simplified in order
to differentiate the Euler-Bernoulli beam theory from the Timoshenko beam theory. In
Chapter 3, the application of the derived differential equations to structures is discussed.
To do so the main calculation processes is explained after a clear definition of the structure.
Knowing the way of how the calculation process works, the procedure was applied on
simple test-examples in Chapter 4. The computational results were always compared to
handwritten calculations to assure the liability of the code. Throughout the examples, the
different results of both beam theories were studied. In Chapter 5, the code is used for
the dynamic analysis of more practical examples. Furthermore, a closure insight into the
implementation of the calculation process in the MATLAB code is given in Chapter 6.
The computational steps are denoted to comprehend and retrace the code easier from the
reader’s point of view. Finally, the work is concluded in Chapter 7 with the hope of new
research findings that could help to progress the computational way of finding natural
frequencies abroad from using the finite element approach.
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2. MECHANICAL MODELS

The mechanical models are split up into transversal and longitudinal vibrations, as both
are considered in the two-dimensional space. Thus, the derivation of both is given on
straight and uniform beams. Within an element the governing equation of motion holds.
Meaning the material, and the geometrical parameters of this beam element, are constant
over the length and supports can only be applied on either the starting or end node of a
beam element.

2.1. Transversal Vibrations

The focus is on deriving the general differential equation of motion, meaning that this
equation will be served to obtain the eigenfrequencies of beams with various bearings. To
stay as general as possible, first, we assume that the beam is shear elastic and that the cross-
section could vary along the coordinate x. Whereas, m and Qy define the translational and
rotational inertial masses, V and M the internal shear force and bending moment, A and
I the cross-sectional area and moment of inertia, and q and r the externally applied force
and the material density, respectively.

z

x

q

dx

V + ∂V
∂x dxV

M+ ∂M
∂x dxM

z

x

w

y

Figure 2.1.: The equilibrium condition between external and internal forces (left), and the
vertical deflection w and rotation y of a small element (right).

Throughout the deformation, a very small element of the beam can move in z�direction
noted as w(x,t) (2.1), as well as rotate around the y� axis, noted as y(x, t) (2.2). Therefore
the equations can be set up considering the equilibrium condition, see Figure 2.1, as

5



6 2. Mechanical Models

dm ẅ =�V +
⇣

V +
∂V
∂x

dx
⌘
+q dx ! rA ẅ =V 0+q (2.1)

and

dQy ÿ =�M+
⇣

M+
∂M
∂x

dx
⌘
�V dx ! rI ÿ = M0 �V, (2.2)

referring to the equilibrium condition on a small element of the beam in vertical direction
and rotation respectively, see Figure 2.1. Therefore, ()0 denotes the derivative with respect
to the axial coordinate x and ()̇ the time derivative. In addition we assume the linear elastic
constitutive relation for the bending moment,

M = EIy

0, (2.3)

as well as for the shear force

V = GAs(w0+y). (2.4)

Considering shear deformations, the actual cross-sectional area A is reduced by the shear
coefficient k̄ to As, bearing the shear force. Thus, it holds As = k̄A. The shear coefficient
k̄ indicates the effective shear area due to a non-constant distribution of the shear stresses
over the cross section and depends therefore on the form and dimensions of the cross-
section. For beams with a constant rectangular cross section it holds that k̄ = 5/6.

However, four equations exist to solve for the unknowns M,V,w and y . The theory based
on those equations is called the Timoshenko beam theory, meaning that shear deformation
and the rotational inertia are respected and will be further analysed in Section 2.1.2. M and
V can be eliminated by applying equation (2.3) and (2.4) into (2.1) and (2.2). Therefore,
we can obtain the two linked differential equations of second order

r A ẅ� [G As(w0+y)]0 = q, (2.5)

and

r I ÿ � [EI y

0]0+G As(w0+y) = 0. (2.6)

The differential equations (2.5) and (2.6) can be interpreted as the general base equations
for further simplifications discussed in the Section 2.1.1 and Section 2.1.2. To solve the
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differential equations, boundary conditions need to be determined from bearing situations
as well as other properties as they will be mandatory to form the integration constants.

Before specifying the two different beam theories, the differential equations should be
simplified for a constant cross-section along the x� axis. Therefore, the equation (2.3) can
be written as

M = EI(w0+y)0 �EIw00 (2.7)

and the equation (2.2) as

rI(w0+y)..�rIẅ0 �M0+V = 0. (2.8)

After forming the derivatives with respect to x, the combined differential equation of mo-
tion for a beam with a constant cross section can be obtained as

EIwIV +rAẅ�rI
⇣

1+
EA
GAs

⌘
ẅ00+rA

rI
GAs

¨̈w = q+
rI

GAs
q̈� EI

GAs
q00. (2.9)

2.1.1. Euler-Bernoulli beam theory

The main idea of the Euler-Bernoulli beam theory is based on the simplifications of an
infinite high shear stiffness (GAs ! •) and zero rotational inertia (rI ! 0).

Those assumptions simplify the differential equations derived in Section 2.1. The equation
(2.2) changes to the equilibrium condition M0 �V = 0 and equation (2.4) is simplified to
w0+y = 0. The four obtained equations

rAẅ =V 0+q, M0 =V, EIy

0 = M, w0 =�y (2.10)

can then be implemented to obtain the resulting Euler-Bernoulli equation of motion

(EIw00)00+rAẅ = q, (2.11)

which simplifies in case of EI = const. to

EIwIV +rAẅ = q. (2.12)
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To obtain results for the eigenfrequencies and the eigenmodes of the structure the non-
trivial solutions for the eigenvalues of the differential equation need to be found. This
can be either done by solving the differential equation remaining in the time domain or by
transferring the differential equation to the frequency domain. In this thesis the calculations
are done in the frequency domain. Nevertheless, both possibilities will be derived.

Free vibrations define the dynamic displacements of a structure without an excitation force
affecting the vibrations, meaning that the right-hand side of the equation is zero as the outer
load q = 0. Still, the system needs to vibrate. Therefore, a starting deflection needs to be
applied.

It is already known that the equation of motion is

∂

4w
∂x4 +

rA
EI

∂

2w
∂ t2 = 0. (2.13)

To solve the equation an Ansatz for w(x,t) needs to be found. Thus, the Ansatz for harmonic
oscillations wt with a phase angle j was chosen for the displacement in the time domain,
so that

w(x,t) =W(x) cos(wt �j) (2.14)

Cancelling out the cos()-terms leads to the differential equation in the frequency domain

d4W
dx4 �k

4W = 0. with k

4 = w

2 rA
EI

(2.15)

For the complex displacement W(x) in the frequency domain, the Ansatz is

W(x) = elx. (2.16)

After dropping the exponential terms, the fourth-degree polynomial is

l

4 �k

4 = 0. (2.17)

When solving the characteristic polynomial fourth order (2.17), the four roots of the eigen-
value problem are l1 =+k , l2 =+ik , l3 =�k , and l4 =�ik . Where

k =
p

w

4

r
rA
EI

. (2.18)
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A common general solution respecting those eigenvalues is the straight trigonometric ap-
proach

W(x) =C1 cos(kx)+C2 sin(kx)+C3 cosh(kx)+C4 sinh(kx). (2.19)

In this thesis, a slightly different approach was chosen so that the general solution has the
form

W(x) =C1 cos(kx)+C2 sin(kx)+C3ek(x�L) +C4e�kx. (2.20)

Using the solution (2.20) guaranties that the amplitude of each function term remains
smaller or equal to 1 within the segment span (0 < x < L), whereas the amplitude of
the common approach Equation (2.19) rises as the beam length and/or the observed fre-
quency range increases. The proposed solution Equation (2.20) appears to be more stable
especially for higher frequencies than the commonly used one in (2.19). More details can
be obtained in Appendix A.

However, Equation (2.20) implemented in the Ansatz (2.14) forms the general solution in
the time domain

w(x,t) =
⇥
C1 cos(kx)+C2 sin(kx)+C3ek(x�L) +C4e�kx⇤cos(wt �j). (2.21)

The internal forces for the Euler-Bernoulli beam are defined as

M =�EI
∂

2W
∂x2 and V =

∂M
∂x

. (2.22)
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2.1.2. Timoshenko beam theory

material
with high
axial strength

soft
material
(no shear strength)

Figure 2.2.: The composition of a ’sandwich beam’.

The theory of a Timoshenko beam is based on a model that considers shear deformations
and rotational inertia. Meaning that the beam includes finite shear strength 0 < G < •
and rotational inertia rI > 0. In a practical view, this theory is commonly used for cal-
culations of vibrations of ’sandwich beams’, which define beams that have an outer layer
of a material with a high axial rigidity (i.e. glass fibre reinforced synthetic material) and
inner layers of a softer material. Besides the vertical bending deformation, which is al-
ready taken into account for the Euler-Bernoulli beam, also the shear deformation is to be
considered if respecting the Timoshenko beam theory. That means, two independent kinds
of deformations w and y are allowed. Whereas the Euler-Bernoulli beam theory considers
the vertical deformation w and the rotation y as dependent on each other since it holds
w0 =�y .

MM

Bending deformation
(flection y)

Q

Q

shear deformation
(shear distortion g)

Figure 2.3.: The bending and shear deformation of a Timoshenko beam.
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If we take a look back on the earlier derived differential equation (2.9) of a beam, it is
known that the equation of motion for a beam with constant cross-section is

EIwIV +rAẅ�rI
⇣

1+
EA
GAs

⌘
ẅ00+rA

rI
GAs

¨̈w = q+
rI

GAs
q̈� EI

GAs
q00. (2.23)

The equation (2.23) can be simplified for the case of free vibrations with the condition
q = 0 ! q̈ = q00 = 0 to end up with the equation of motion for free vibrations

EI
∂

4w
∂x4 +rA

∂

2w
∂ t2 �rI

⇣
1+

EA
GAs

⌘
∂

4w
∂x2

∂ t2 +rA
rI

GAs

∂

4w
∂ t4 = 0. (2.24)

With the Ansatz for harmonic vibrations

w(x,t) =W(x) cos(wt �j), (2.25)

and the abbreviations

k

4 = w

2 r A
E I

[m�4], i2 =
I
A
[m2], a =

E A
G As

[�], (2.26)

(where i is the radius of inertia), the general differential equation is obtained as

d4W
dx4 +k

4i2(1+a)
d2W
dx2 �k

4(1�k

4i4a)W = 0. (2.27)

When the exponential Ansatz for the complex deformation in the frequency domain

W(x) = elx, (2.28)

is applied, the equation (2.27) can be expressed as the characteristic polynomial

l

4 +k

4i2(1+a)l 2 �k

4(1�k

4i4a) = 0. (2.29)

With l̄ = l

2 and the abbreviations P = k

4i2(1+a) and Q = k

4(1�k

4i4a) the equation
(2.29) can be reduced to a second-order eigenvalue problem

l̄

2 +Pl̄ �Q = 0. (2.30)

Solving for l̄ leads to two solutions
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l̄1,2 =�P
2
±
r⇣P

2

⌘2
�Q. (2.31)

Respecting the relation l = ±
p

l̄ generates two eigenvalues l for each l̄ . Thus, the
complete set of four eigenvalues is

l1 = (i)

s

�P
2
�
r⇣P

2

⌘2
�Q, l2 = (i)

s

�P
2
+

r⇣P
2

⌘2
�Q, (2.32)

l3 =�(i)

s

�P
2
�
r⇣P

2

⌘2
�Q, l4 =�(i)

s

�P
2
+

r⇣P
2

⌘2
�Q. (2.33)

One can observe that each of the four eigenvalues can be, depending on the frequency
range, either real or imaginary as a term under any of the two square roots turns negative at
a certain value for w . This specific frequency w

c, where the eigenvalues change domains
is defined as the critical frequency [26]

w

c =

s
GAs

rI
. (2.34)

Signifying that a beam has a critical frequency w

c depending on its material properties and
its eigenvalues change domains within the three defined frequency ranges

I: 0 < w < w

c,
II: w = w

c,
III: w > w

c.

Due to this change, different general solutions hold within those intervals

I: W(x) =C1 cos(l1x)+C2 sin(l1x)+C3el1(x�L) +C4e�l1x for w < w

c

II: W(x) =C1el1x +C2el2x +C3el3x +C4el4x for w = w

c

III: W(x) =C1 cos(l1x)+C2 sin(l1x)+C3 cos(l2x)+C4 sin(l2x) for w > w

c

More details about the behaviour of the eigenvalues can be studied in Appendix B. Besides
the transversal deflection, also the cross-sectional rotation of the beam needs to be consid-
ered in the Timoshenko beam theory, therefore it holds for y considered in the frequency
domain
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y(x) =�
∂

3W
∂x3 + ∂W

∂x

⇣
w

2
r A

GAs
+ As G

E I

⌘

w

2
r

E � As G
E I

. (2.35)

The internal forces and the bending moment in the frequency domain for the Timoshenko
beam are defined as

M(x) =
EI∂y

∂x
, V(x) = GAs

✓
∂W
∂x

�y

◆
(2.36)

2.2. Longitudinal Vibrations

Longitudinal vibrations include dynamic deformation along the longitudinal axis of a
beam. It should be mentioned that the system will be acting under free vibrations, mean-
ing that there is a starting deflection, after releasing the deflection the system is moving
completely on its own. If a homogenous beam with a constant material density r and
cross-sectional area A over the length of the beam is considered, the differential equation
of longitudinal motion can be obtained through the equilibrium conditions, see Figure 2.4
and (2.37),

dx

N + ∂N
∂x dxN

dm = rAdx

Figure 2.4.: The equilibrium condition for longitudinal forces on a small element.

r A dx ü =�N +
⇣

N +
∂N
∂x

dx
⌘

! r A ü = N0. (2.37)

When applying the elasticity equation

N = E A u0 (2.38)
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one can obtain r ü = E u00 or

∂

2u
∂x2 =

1
c2

∂

2u
∂ t2 with c2 =

E
r

, (2.39)

where c defines the wave propagation velocity which depends in case of longitudinal vi-
brations only on the Young’s Modulus E and the material density r .

To find a solution for the differential equation, an Ansatz is needed. As we focus on
vibrations of finite beams, the Bernoulli Ansatz has been chosen so that

u(x, t) =U(x) cos(wt �j), (2.40)

whereas a harmonic vibrational behaviour of the beam is assumed. The equation (2.40)
can now be applied on the general differential equation (2.39) to obtain

d2U
dx2 +

⇣
w

c

⌘2
U = 0 (2.41)

with the general solution in the frequency domain

U(x) =C5 cos
⇣

w

c
x
⌘
+C6 sin

⇣
w

c
x
⌘
. (2.42)

Applying the equation (2.42) into the Ansatz (2.40) leads to

u(x) =
h
C5 cos

⇣
w

c
x
⌘
+C6 sin

⇣
w

c
x
⌘i

cos(wt �j), (2.43)

being the general solution in the time domain.



3. APPLICATION

In this chapter, the derived differential equations are applied to structures. The calculation
steps to obtain the natural frequencies and mode shapes of structures are described gen-
erally. The computational implementation of those steps explained in Chapter 3 are then
described in Chapter 6.

3.1. Structural Definitions

It is of importance to define the frame structure systematically [27]. Therefore, the wanted
object can be seen as a set of frame members t and frame nodes N

t

. Each frame node
is either considered as an unsupported node NF ( N

t

or a supported node NS ( N
t

, but
can not be both. Thus, for the frame nodes of the structure it holds that N

t

= NF +NS.
Each frame member m 2 t connects in each case two frame nodes k 2 N

t

which are de-
noted as {km0,kmL} =: {m ⇢ N

t

. The parameters Lm,Em,Gm,Am and Im can be defined
for each frame member individually. For practical reasons the unit tangential vector {r}m
is established for each member m pointing from km0 to kmL, along with the corresponding
unit normal vectors. Furthermore, each frame node k 2 N

t

has a set of attached frame
members bk ⇢ t . If a change in parameters is wished within a frame member, two frame
members need to be modelled as one can only have constant parameters. Any number of
bearings and springs can be applied in a combinational matter on then called, supported
nodes NS.

3.2. Differential Equations

For each frame member m 2 t the general solution of the differential equations for lon-
gitudinal and transversal vibrations in the frequency domain Um and Wm respectively are
set up. To enable the enforcement of boundary and intersectional conditions the kinematic
relations Nm, Vm and Mm are defined based on the derivatives of the general solutions U 0

m,
W 0

m, W 00
m and W 000

m with respect to the local beam axis x. The setup of kinematic and kinetic
equations differ depending on the chosen beam theory.

The explanation is based on vectors and matrices that are denoted using {} and [ ] paren-
thesis, respectively. To start the application the resulting internal force Sk at a node k
is introduced by adding the vectors containing the kinetic forces in the local coordinate
system through (3.1)

15
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{Sk}= {Nk}+{Vk}. (3.1)

Same holds true for the total deflection {Ūk} of a frame member at this node that can be
expressed as the combination of the local transversal and longitudinal displacement {Wk}
and {Uk} respectively, see Figure 3.1 and (3.2)

{Ūk}= {Uk}+{Wk}. (3.2)

Nk1,0

Vk1,0

Sk1,0

My,k1,0

Uk1,0

Wk1,0

Ūk1,0

x

z
y

Figure 3.1.: The resulting kinetic force S (left) and the total deformation Ū (right) at the
frame node k1,0.

The kinetic force Sk for each frame member m 2 t is globally composed by a horizontal
and vertical component in the global coordinate system as FX ,k and FZ,k respectively. The
global coordinate system serves as the basis for attachments of bearings and springs at any
angle. Therefore, the decomposition of Sk into FX ,k and FZ,k is essential to facilitate the
computational steps in Chapter 6. The same holds for the resulting deflection Ū , which
can be decomposed into UX ,k and UZ,k

FZ,k1,0

FX ,k1,0

Sk1,0

MY,k1,0a

UZ,k1,0

UX ,k1,0

Ūk1,0

a

X

Z
Y

Figure 3.2.: The decomposed kinetic force (left) and the total deformation (right) at the
frame node k1,0.
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3.3. Boundary Conditions

The general equilibrium conditions {Feq} :=Â{Fk}= 0 and {Meq} :=ÂMk = 0 are formu-
lated for each frame node k 2 N

t

by adding the kinematic quantities {Fk} = {FX ,k,FZ,k}T

and MY,k of each attached frame member bk 2 t at the corresponding node km0 or kmL.
Resulting in nN equations, where nN is the number of frame nodes N

t

. An example can
be studied, where the internal forces are exemplified for an arbitrary frame structure in
Figure 3.3.

k1,0
c

k1,L = k2,0

k2,L

cT

m
=

1 m
=

2
L L

FZ,k1,0

FX ,k1,0

MY,k1,0

FZ,k1,L

FX ,k1,L
MY,k1,L

FZ,k2,0

FX ,k2,0
MY,k2,0

FZ,k2,L

FX ,k2,L

MY,k2,L

X

Z

Y

Figure 3.3.: The equilibrium conditions at each frame node k 2 N
t

(bottom), applied at an
example frame (top).

A collection of equations {Beq} = 0 is defined by setting the constrained kinematic or
kinetic quantities due to attached bearings zero at the corresponding supported frame node
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k 2 NS. Simultaneously, the a variable is introduced representing the unknown kinematic
and/or kinetic quantities at this node. All unknown quantities are stored in a separate vector
{Q} and will be determined along with the integration constants {C}1�6 when solving the
system equation. In the case of a roller, this would mean that the deformation perpendicular
to the rolling surface and the rotational moment at this node equals zero, see Figure 3.4 and
the kinetic variable {Fn} is added to {Q}. Since bearings can be attached in any slanted
position, the perpendicular kinematic and kinetic components Un and Fn, as well as the
parallel components Up and Fp respectively, are decomposed into quantities {UX ,UZ}T

and {FX ,FZ}T respecting the global coordinate system. Further bearing conditions can be
obtained from Table 3.1.

FZ,k1,0

FX ,k1,0

Sk1,0

MY,k1,0 = 0

a

g

Fn,k1,0FZ,k1,0

FX ,k1,0

a

Fp,k1,0 = 0

Un,k1,0 = 0

X

Z

Y

Figure 3.4.: Attachment of a roller in a slanted position.

Respecting longitudinal and rotational springs, the corresponding equilibrium equation at
this node {Fk}= 0 and Mk = 0 is modified by adding the increase of the internal force and
bending moment respectively due to the spring equations

DF = c ·DU and DM = c ·Dy. (3.3)

For longitudinal springs, the translational spring force is decomposed into the X and Z
components regarding the global coordinate system and added as DFX and DFZ respectively
as the spring can be applied at an angle a .
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DU
c

Fn
DF

DFX

FZ

a

X

Z

Y

Figure 3.5.: Attachment of a longitudinal spring.

While the geometrical components play an important role when applying translational
springs, the rotational spring can be attached in any case when referring to the two-
dimensional space. Meaning, an additional rotational moment around the global Y -axis
is added to the equilibrium equation. It holds Mk = DM at the supported node k 2 NS, as
seen in Figure 3.6. Further spring conditions can be obtained from Table 3.2.

Dy

DM

c X

Z

Y

Figure 3.6.: Attachment of a rotational spring.

Thus far, the explained bearing and spring conditions hold for all supported nodes k 2 NS.
Kinetic quantities such as {Fk} and Mk remain zero at nodes without attached bearings or
springs noted as k 2 NF .

An additional set {Jeq}= {0} of coupling conditions need to be defined for nodes with a set
of attached frame members bk where #{m 2 bk : m > 1}. To set up the correct kinematic
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and kinetic relations among the attached frame members we introduce one fixed frame
member m f 2 bk. The kinematic compatibility equations can now be defined for any case
as

Ūm f |k = Ūn|k 8 n 2 bk\m f . (3.4)

Only when connecting beams rigidly, the rotation angle of this node is

ym f |k = yn|k 8 n 2 bk\m f . (3.5)

Contrarily, for beams connected with hinges the condition for the rotational moment is

Mn = 0 8 n 2 bk. (3.6)

A vector {eq} is proposed and can be seen as the collection of system equations {Feq,Meq,Beq,Jeq}T .
Consequently, the system equation is of the form {eq} = {0} where {eq} depends on the
integration constants C1, ...C6, the set of bearing constrains Q and w .

Table 3.1.: A list of the different support types and its support conditions.
name of

support type
symbolic

representation
supporting
conditions

Pinned

M = 0
Ux = 0
Uz = 0

Roller

M = 0
Sx = 0
Uz = 0

Fixed

y = 0
Ux = 0
Uz = 0

Parallel guide

Sz = 0
Ux = 0
y = 0

Sliding Sleeve

Sx = 0
Uz = 0
y = 0
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Table 3.2.: A list of the different springs and hinges and its support conditions.
name of

support type
symbolic

representation
supporting
conditions

Axial spring

M = 0
Ux = Sx/c

Sz = 0

Rotational Spring

y = M/c
Sx = 0
Sz = 0

Full Hinge 1

2

M1,2 = 0
U1 =U2
S1 = S2

Half hinge

1

2

M2 = 0
U1 =U2
S1 = S2

3.4. System of Equations

The integration constants {C} = {C1, ..,C6}, as well as the set of bearing constrains {Q},
are now taken out of {eq} so that [eq] forms the asymmetric system matrix and only de-
pends on w . The equation is now of the form [eq] · {C̄} = {0} where {C̄} is the vector
containing the integration constants and bearing constrains {C̄} = {C,Q}T . Hence, the
system equation is

2

64

. . .
eq

. . .

3

75

2

64
C1
...

Qn

3

75= 0. (3.7)

A practical example for a so-called system matrix [eq] is given for a cantilever beam

2

6666666666664

a 0 �a 0 0 0 0 0 1
�a cos(g) �a sin(g) a a exp(�g) 0 0 0 0 0

0 0 0 0 0 c 1 0 0
0 �b b exp(�g) �b 0 0 0 1 0
0 0 0 0 c �c cos(d ) 0 0 0

�b sin(g) b cos(g) �b b exp(�g) 0 0 0 0 0
0 0 0 0 1 0 0 0 0
�1 0 �exp(�g) �1 0 0 0 0 0
0 d d exp(�g) �d 0 0 0 0 0

3

7777777777775
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where

B = EI P = AE a = Bw b

2 c = Pw a

a =
q

r

E g = L
p

w b and b = Bw

3/2
b

3 d =
p

w b

b =
⇣

Ar

E I

⌘1/4
d = Lw a

Non trivial solutions for w fulfil the system of equation (3.7) when its determinant is
zero,

f (w) = det(eq) = 0. (3.8)

f (w) is a continuous function with an infinite number of zero crossings and is often re-
ferred to as the eigen-, or frequency function, or characteristic equation.

In the case of an Euler-Bernoulli cantilever beam, the eigenfunction is

f (w) = 2PB2
w

4
r

2
a b

6 cos(d ) e�2g

⇥
cos(g)+2eg + e2g cos(g)

⇤
. (3.9)

The frequency function of a cantilever beam is plotted along the w axis and can be studied
in Figure 3.7. Certainly, the shape of f (w) dependents on the structural parameters, and
so do the natural frequencies.
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0 1 2 3 4 5 6 7 8 9 10
�800

�600

�400

�200

0

200

400

wn wn+1

wn f

w

de
t(

eq
)

Figure 3.7.: Plot of the characteristic function for a Euler-Bernoulli cantilever beam in the
range of w = 0�10 rad/s.

3.5. Natural Frequencies

Each w that fulfils the so-called characteristic equation f (w)
!
= 0 is an eigenvalue of the

system of equations and therefore a natural frequency of the frame structure. Theoreti-
cally, there is an infinite number of eigenfrequencies for any structure since the frequency
function is continuous and provides an endless number of zero crossings.

However, in finite element approaches, the number of natural frequencies is limited to the
number of degrees of freedom and the determination of the natural frequencies w is rather
convenient, since the equation of an undamped motion without an excitation force is

Mẅ(x,t) +Kw(x,t) = 0. (3.10)

with the assumption of harmonic vibrations w(x,t) = W(x) cos(wt �j) the equation (3.10)
can be written in the frequency domain as

K�w

2M = 0. (3.11)
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To determine the natural frequencies, the non-trivial solutions for w need to be found by
setting the determinant of the system equation zero,

f (w) = det(K�w

2M) = 0. (3.12)

Finding w’s that full fill (3.12) requires less computational effort since w is represented ex-
plicitly in the system equation. Whereas in the formulation using the Numerical Assembly
Technique, the variable w is implicitly included in the system matrix [eq]. Hence, finding
the zeros of the frequency function f (w) = det(eq) can be rather laborious.

Determination of zeros

The zeros of f (w) are determined using the Regular-Falsi method. Evaluating f (w) step
by step at ak and bk using rather big intervals, sign changes can be spotted which locates
the area of a potential zero-crossing roughly. When a sign change is found, the exact value
for f (w) = 0 is obtained by evaluating the function value at the intersection point S using
progressively decreasing interval sizes, within this determined area. S can be calculated
through

S =
ak�1 f (bk�1)�bk�1 f (ak�1)

f (bk�1)� f (ak�1)
, (3.13)

and is therefore, the intersection point of the secant going through the points (ak, fak) and
(bk, fbk), and the w-axis. As soon as the function value fck+1 at a specific intersection point
S⇤ = ck+1 is zero, thus, f (S⇤) = 0, a natural frequency w = S⇤ is found. An illustration
of one iteration step can be seen in Figure 3.8. This method gives accurate results with a
rather short computation time and, as a result, meets the expectations of this application.
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(a0 fa0)

(b0 fb0)

S

(c1 fc1)

w

f

(a1 fa1)

(b1 fb1)

S

(c2 fc2)

w

f

Figure 3.8.: One iteration-step of the regula-falsi method.

Collection of characteristic functions

To validate the computations, the characteristic equation can be solved manually. There-
fore, lists of characteristic functions and mode shapes for transversal Table 3.3 and longi-
tudinal vibrations Table 3.4 of some common structures are added where kB =

p
EI/rAL4

and kD =
p

E/rL2 [2]. It should be noted that the characteristic functions shown in Ta-
ble 3.3 and Table 3.4 are considering transversal and longitudinal vibrations separately. As
soon as both vibrations are simultaneously considered in the calculation, the characteristic
equations become more complex. In this thesis, the transversal and longitudinal vibra-
tions are taken into account. Therefore different characteristic functions will be shown in
Chapter 4, where the NAT will be executed on test examples.

Further note, the mode shapes for longitudinal vibrations in Table 3.4 describe the distri-
bution of the axial deflection along the beam.
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Table 3.3.: Frequency functions for transversal vibrations.

System: x = x
L frequency function w j = l

2
j · kB mode shape

x

L
cosl coshl =�1 l j = ( j� 1

2)p
sinlx�sinhlx

sinl+sinhl

� coslx�coshlx

cosl+coshl

sinl = 0 l j = j ·p sinlx

tanhl = tanl l j = ( j+ 1
4)p

sinlx

sinl

� sinhlx

sinhl

tanhl = tanl l j = ( j+ 1
4)p

sinlx

sinl

+ sinhlx

sinhl

coshl cosl = 1 l j = ( j+ 1
2)p

sinlx�sinhlx

sinl�sinhl

+ coslx�coshlx

cosl�coshl

coshl cosl = 1 l j = ( j+ 1
2)p

sinlx+sinhlx

sinl�sinhl

� coslx+coshlx

cosl�coshl

Table 3.4.: Frequency functions for longitudinal vibrations.

System: x = x
L frequency function w j = l

2
j · kD mode shape

x

L
cosl = 0 l j = ( j� 1

2)p sinlx

sinl = 0 l j = j ·p sinlx

sinl = 0 l j = j ·p coslx
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3.6. Mode Shapes

Implementing the calculated w-values into our system of equation makes it possible to
solve for the integration constants {C1, ..,C6} and the bearing constrains {Q} stored in
{C̄}. Considering that we have n� number of natural frequencies we also have n� cor-
responding system matrices. Through determining the eigenvalues and eigenvectors of
each system matrix, n� matrices containing the eigenvectors and n� diagonal matrices
representing the eigenvalues are obtained.

To get the corresponding mode shapes to each natural frequency, the column of the matrix
containing the eigenvectors needs to be found where the associated eigenvalue reaches the
minimum value. A brief example is given where [v] is the matrix of eigenvectors and [l ]
the diagonal matrix of eigenvalues.

vi =

2

66664

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

3

77775
li =

2

66664

5 0 0 0 0
7 0 0 0

0 0 0
sym. 19 0

21

3

77775

Figure 3.9.: The matrix of eigenvectors [vi] and eigenvalues [li] for one specific natural
frequency wi.

A more practical example is shown where the matrix of eigenvectors and eigenvalues are
given for the first transversal mode shape of a cantilever beam. In this case, the seventh col-
umn of [l1] has the lowest eigenvalue on the main diagonal and is, therefore, the searched
column number in [v1].

l1 =

2

6666666666664

12.0 0 0 0 0 0 0 0 0
8.2 0 0 0 0 0 0 0

2.6 0 0 0 0 0 0
0.27 0 0 0 0 0

49.0 0 0 0 0
sym. 49.0 0 0 0

0 0 0
0.08 0

4.6

3

7777777777775

Figure 3.10.: The matrix of eigenvectors for a cantilever beam evaluated at the first eigen-
frequency w1, highlighting the jth column containing the lowest eigenvalue
on the main diagonal.
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v1 =

2

66666666666664

310�4 0.31 0.78 0.2 0.05 0.05 0.083 610�5 0.13
310�4 0.08 0.23 0.1 0.17 0.17 0.061 210�4 0.65
810�4 0.4 0.09 0.04 0.68 0.68 0.083 310�4 0.43
410�4 0.31 0.29 0.01 0.02 0.02 0.061 210�4 0.4

1.0 0.79 0.02 710�4 0.65 0.65 0 0.08 0.12
610�4 0.03 210�3 710�5 0.3 0.3 0 910�3 0.02
0.08 0.1 910�3 210�3 0.01 0.01 0 1.0 0.03

410�5 0.01 0.33 0.59 0.01 0.01 0.8 310�3 0.12
810�6 0.05 0.37 0.77 710�3 710�3 0.58 110�3 0.43

3

77777777777775

Figure 3.11.: The matrix of eigenvectors for a cantilever beam evaluated at the first eigen-
frequency w1, highlighting the jth column responsible for the first transversal
eigenmode.

Hence, the first six entries of the vector containing the eigenmode are the values for the
integration constants {C1, ..,C6} and the last three entries are related to the restricted de-
grees of freedom through enforcement of the boundary conditions. It can be noted that
for the first transversal mode shape the integration constants {C5,C6} remain zero as lon-
gitudinal deformation does not contribute to this mode shape. Also the X component of
the supporting force FX is zero whereas the Z component FZ and the bending moment MY
do interact. Thus, all variables are determined to get the transversal deformation W(x) or
so-called mode shapes for each frame member and natural frequency. The contribution of
the integration constants and bearing variables stored in {C̄} to the first transversal eigen-
mode and a visualization of the the mode shape can be seen in Figure 3.12 and Figure 3.13
respectively.

2

6666666666664

0.083
0.061
0.083
0.061

0
0
0

0.8
0.58

3

7777777777775

=

2

6666666666664

C1
C2
C3
C4
C5
C6
FX
FZ
MY

3

7777777777775

!
W(x) =C1 cos(kx)+C2 sin(kx)+C3ek(x�L) +C4e�kx

U(x) =C5 cos w

c x+C6 sin w

c x = 0

Figure 3.12.: The contribution of the integration constants and bearing variables on the first
transversal mode shape of a cantilever beam.
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Figure 3.13.: The first transversal mode shape of a cantilever beam.
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4. TEST EXAMPLES

The calculation process was applied to different structural examples such as a single-span
beam (pinned-pinned), a clamped-pinned beam, a cantilever beam (clamped-free), and an
arbitrary structure consisting of two rigidly connected beams. Those examples enable a
comparison of the natural frequencies calculated based on the two different beam theories
used. General parameters were chosen to be able to retrace the calculation process better
and to get a good variety of transversal and longitudinal vibrations in the results. To study
the difference between the Euler-Bernoulli and the Timoshenko beam theory, the beams
were kept compact, meaning the rate L/I is rather small in comparison to conventional
beams. The code-based computations were double-checked, by comparing the computed
solutions for the eigenfrequencies to hand calculations. Especially for the more simple
structures, this was done by using existing analytic formulas. For unconventional struc-
tures, the results were checked through finite element-based computations using at least
ten elements per beam.

4.1. Single-Span Beam

The single-span beam is the most common example structure, to begin with, and was
executed under the following general parameters

E = 1 [kN/m2]
G = 1 [kN/m2]
I = 1 [m4]
A = 1 ·103 [m2]
L = 1 [m]
r = 1 [t/m3] .

L

E,G, I,A,r

The transversal natural frequencies were calculated by hand using analytically derived for-
mulas [4] for the Euler-Bernoulli and Timoshenko beam theory. Furthermore, the structure
was analysed using the computational code to determine the eigenfrequencies.

Hand Calculation

The transversal eigenfrequencies of a single-span beam based on the Euler-Bernoulli beam
theory can be obtained through the equation

w

2
B,n = n4

f w

2
B (4.1)
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with wB as the natural frequency due to bending deformation and n f� the number of the
wished natural frequency. wB depends on the bending stiffness B, the mass distribution µ

and the length L of the beam. Thus, the natural frequencies can be calculated through

w

2
B =

Bp

4

µL4 (4.2)
with :
B = EI
µ = rA

The results for the first four natural frequencies were added in Table 4.1 to compare them
to the computations.

To calculate the natural frequencies based on the Timoshenko beam theory by hand, the
shear stiffness S = GAs is required. Since the deformation of a Timoshenko beam is a
composition of bending and shear deformation, also the natural frequency wBS,n consists
of the previously calculated natural frequency due to bending wB respecting the Euler-
Bernoulli beam theory and an additional part wS due to shear deformation respecting the
Timoshenko beam theory and is combined as followed

1
w

2
BS,n f

=
1

n4
f w

2
B
+

1
n2

f w

2
S

(4.3)

with:
w

2
S = Sp

2

µl2

S = GAs
As = 5/6 A

The effective shear area As was chosen based on a rectangular cross-section and is, there-
fore, 5/6 of the actual cross-section A.

To calculate the first longitudinal eigenfrequency, one can refer to the general solution

U(x) =C1 cos
⇣

w

c
x
⌘
+C2 sin

⇣
w

c
x
⌘
. (4.4)

Embedding the boundary conditions

U(x=0) = 0 ! C1 = 0,
U(x=L) = 0 ! C2 sin(w

c L) = 0

leads to

sin(w

c L) = 0 ! w

c L = n f p, ! wn f =
c
L n f p

Meaning, for non-trivial solutions the term within the sinus function needs to be a multiple
n f of p , whereas n f is a real and positive integer n f 2 N.

Therefore, the first natural longitudinal frequency of the beam is
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wn f =
p c
L n f ! w1 =

pE
Lr

= p = 3.141593 rad/s

The results are added to Table 4.1.

Computation using the NAT

The solution procedure was applied to the single-span beam leading to the characteristic
equation, here for the Euler-Bernoulli beam theory

f (w) = 4AEIw

2
r sin(d ) e�2g sin(g)

�
e2g �1

�
(4.5)

where

g = L 4
q

w

2Ar

E I

d = Lw

q
r

E .

The complexity and length of the characteristic function regarding the Timoshenko beam
theory did not allow it to include it in the report, therefore only the Euler-Bernoulli version
of the characteristic function is presented. A plot of the characteristic function in the range
of 0� 4[rad/s] can be seen in Figure 4.1. The zero crossings of this function, so that,
f (w)

!
= 0 form the natural frequencies and can be studied in Table 4.1.
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Figure 4.1.: Characteristic function for a single-span beam based on the Euler-Bernoulli
beam theory.

Table 4.1.: The natural frequencies of the single-span beam in [rad/s].

no. of eigenmode Euler-Bernoulli Timoshenko
hand calculation
Euler-Bernoulli

hand calculation
Timoshenko

1 (transv.) 0.312104 0.308787 0.312104 0.310272
2 (transv.) 1.248417 1.198448 1.248417 1.219857
3 (transv.) 2.808939 2.577719 2.808939 2.670229
4 (long.) 3.141593 3.141593 3.141593 3.141593

In Table 4.1 it can be seen that the results from the computation are reliable. Also, the
natural frequencies respecting the Timoshenko beam theory are slightly lower than the
natural frequencies from the Euler-Bernoulli calculations. Thus, the Timoshenko beam
behaves less stiff due to the additional shear deformation.

After obtaining the eigenvectors corresponding each natural frequency, the mode shapes
were plotted separately in Figure 4.2 and collectively in Figure 4.3. To verify if the kinetic
boundary conditions were implemented correctly, the qualitative internal forces occurring
at the natural frequencies were observed, see Figure 4.4.
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1 2

3 4

Figure 4.2.: The first four eigenmodes of a single-span beam.
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Figure 4.3.: The eigenmodes fi with i = {1, ..4} of a single-span beam in one plot.
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bending moment [M] shear force [V] axial force [N]

Figure 4.4.: The quantitative internal forces occurring at the natural frequencies 1-4.
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4.2. Clamped-Pinned Beam

The single clamped-pinned beam example was executed under the following general pa-
rameters

E = 1 [kN/m2]
G = 1 [kN/m2]
I = 1 [m4]
A = 1 ·103 [m2]
L = 1 [m]
r = 1 [t/m3] .

L

E,G, I,A,r

Hand calculation

To approximately check the reliability of the computation, the first transversal eigenfre-
quency can be calculated by transforming the beam into a single mass-spring system. The
spring stiffness is therefore the force that is needed to enforce a unit displacement at the
location where the highest deformation is expected [28].

Wmax =
FL3

48
p

5EI
! F(W=1) = k =

48
p

5EI
L3 = 48

p
5 kN/m (4.6)

The contributing mass m is approximated to be half of the beam’s mass. The other half is
bared by the supports.

m = rA
L
2
= 500 t. (4.7)

Hence, the first natural frequency can be estimated as

w =

r
k
m

=

s
48
p

5
500

= 0.4633 rad/s. (4.8)

Although this is a fast and simple approximation to check if the computations are reliable,
the accuracy of this outcome is rather imprecise. Therefore, the system has been modelled
in a finite element-based computation code using ten elements, the results are added in the
Table 4.2.

The natural frequencies for longitudinal vibrations remain the same for this example since
the boundary conditions in x-direction are the same as for the single-span beam.
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Computation using the NAT

The solution procedure was applied to this structure leading to the characteristic function
for the Euler-Bernoulli beam

f (w) = 2E I w

3
2 sin(a) e�2g

⇥
cos(g) + sin(g)� e2g cos(g)+ e2g sin(g)

⇤
d

3/4 (4.9)

where

a = Lw

q
r

E

d = Ar

E I

g = L 4p
w

2
d .

The natural frequencies are the zeros of the function f (w). A plot of the frequency function
can be seen in Figure 4.5, and the natural frequencies are added in Table 4.2.

0 0.5 1 1.5 2 2.5 3 3.5

�4

�3

�2

�1

0

1
·106

w1 w2 w3 w4

w

de
t(

eq
)

Figure 4.5.: Characteristic function for a single clamped-pinned beam.
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Table 4.2.: The natural frequencies of the clamped-pinned beam in [rad/s].
Nr. of eigenfrequency Euler-Bernoulli Timoshenko FEM
1 (transv.) 0.487566 0.477197 0.4848
2 (transv.) 1.580028 1.489210 1.5476
3 (long.) 3.141593 3.141593 3.1552
4 (transv.) 3.296602 2.953855 3.1576

The first four eigenmodes can be studied in Figure 4.6 and Figure 4.7. Furthermore, the
qualitative pass of the internal forces can be observed in Figure 4.8.

1 2

3 4

Figure 4.6.: The first four eigenmodes of a clamped-pinned beam.
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Figure 4.7.: The eigenmodes fi, i = {1,2, ..4} of a clamped-pinned beam in one plot.
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Figure 4.8.: The quantitative internal forces of a clamped-pinned beam occurring at the
natural frequencies 1-4.
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4.3. Cantilever Beam

The cantilever beam example was executed under the following general parameters

E = 1 [kN/m2]
G = 1 [kN/m2]
I = 1 [m4]
A = 1 ·103 [m2]
L = 1 [m]
r = 1 [t/m3] .

L

E,G, I,A,r

Hand calculation

The cantilever beam is a common structure for engineers, therefore the availability of
analytic formulas to calculate the transversal eigenfrequencies by hand is given for the
Euler-Bernoulli beam theory [4]. To get the first three transversal natural frequencies, the
equation

wi = (liL)2

s
B

µL4 (4.10)

was used, which can be specified for this case as

wi =

s
l

4
i

1 ·103 (4.11)

li defines the ith eigenvalue and B=EI the bending stiffness. For common structures as the
cantilever beam, the eigenvalues are often pre-calculated and available in the literature.

Table 4.3.: li and wi for a cantilever beam.
Nr. of transv. eigenmode Eigenvalue li Natural frequency wi

1 1.875 0.111174
2 4.694 0.696764
3 7.855 1.951158

To get a comparison, the cantilever beam was modelled with the finite element code using
ten elements. The results are added in the column ’FEM’ in Table 4.4.
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For the longitudinal eigenfrequencies, the general solution

U(x) =C1 cos
⇣

w

c
x
⌘
+C2 sin

⇣
w

c
x
⌘
, (4.12)

can be used. Enforcing the boundary conditions

U(x=0) = 0 ! C1 = 0,
N(x=L) = EA U 0

(x=L) = 0 ! C2 cos(w

c L) = 0

leads to

cos(w

c L) = 0 ! w

c L = p

2 +n f p ! wn f =
c
L

�
n f p � p

2
�
.

Considering the wave propagation velocity c = r E, the first longitudinal eigenfrequency
can be calculated as

wl,1 =
rE
L

p

2
=

p

2
= 1.570796 rad/s. (4.13)

Computation using the NAT

The solution procedure was applied to this structure leading to the characteristic function
Equation (4.14) and its natural frequencies based on the Euler-Bernoulli beam theory in
Table 4.4.

f (w) = 2AE3 I2
w

4
r

2
a (d )3/2 cos(b ) e�2g

⇥
cos(g)+2eg + e2g cos(g)

⇤
(4.14)

where

a =
q

r

E d = Ar

E I

b = Lw a g = L 4p
w

2
d .

To obtain the natural frequencies it holds f (w)
!
= 0. A plot of the frequency function

can be seen in Figure 4.9. The natural frequencies of the cantilever beam are collected in
Table 4.4 and the associated mode shapes are shown in Figure 4.10 and Figure 4.11. The
qualitative internal forces can be observed in Figure 4.12.
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Figure 4.9.: Characteristic function for a cantilever beam.

Table 4.4.: The natural frequencies of the cantilever beam in [rad/s].
Number of

eigenfrequency
Euler-Bernoulli

computation
Timoshenko
computation

Euler-Bernoulli
hand calculation FEM

1 (transv.) 0.111186 0.110623 0.111174 0.1109
2 (transv.) 0.696792 0.673312 0.696764 0.6858
3 (long.) 1.570796 1.570796 1.570796 1.570796
4 (transv.) 1.951037 1.806631 1.951158 1.8804.
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Figure 4.10.: The eigenmodes of a cantilever beam.
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Figure 4.11.: The eigenmodes fi, i = {1,2, ..5} of a cantilever beam in one plot.
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Figure 4.12.: The quantitative internal forces of a cantilever beam occurring at the natural
frequencies 1-4.
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4.4. Two-Beam Frame

In the following example, two beams are rigidly connected and forming an arbitrary frame
structure. The frame is pinned on one side and fixed on the other side. The two-beam
frame example was executed under the following general parameters for both beams

E = 1 [kN/m2]
G = 1 [kN/m2]
I = 1 [m4]
A = 1 [m2]
r = 1 [t/m3] .

1

2

3

L1

L
2

E,G, I,A,r

N
t

[XN
t

,YN
t

]
1 [0,0]
2 [3,1]
3 [6,-2]

Lm [m]
L1 3.1623
L2 4.2426

Each frame node N
t

is defined by the coordinates [XN
t

,YN
t

]. Through the connectivity of
the frame nodes N

t

frame members m 2 t are formed. The length of each frame member
Lm is determined within the computation.

Finite Element Computation

No simple formulas to estimate the natural frequencies for such arbitrary frame structures
are available. Therefore, the frame was modelled in the finite element-based code.

Analytical Computation using the NAT

The solution procedure was applied to this structure and the results are added in Table 4.5.
In the plot of the frequency function Figure 4.13 it can be noted that the amplitudes be-
tween each natural frequency increase drastically. Thus, when plotting the characteristic
function over a broad frequency range, the smaller amplitudes are no longer visible. There-
fore, the frequency function was plotted on a logarithmic scale, see Figure 4.14.
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Figure 4.13.: Characteristic function f (w) for the two-beam frame.
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Figure 4.14.: Characteristic function f (w) on a logarithmic scale.
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Table 4.5.: The natural frequencies of the two-beam frame in [rad/s].
Nr. of eigenfrequency Euler-Bernoulli Timoshenko FEM

1 0.310142 0.104480 0.316
2 0.406412 0.360978 0.427
3 0.847092 0.767214 1.212

1

2

3

Figure 4.15.: The mode shapes fi, i = {1,2,3} of the two-beam frame.



5. PRACTICAL EXAMPLES

In comparison to the Test Examples which serve to verify the reliability of the computa-
tional code, in this chapter, the capability of the code is tested. Therefore more complex
structures are modelled, using an increased number of frame members. Structures where
the dynamic analysis is of importance can be e.g. a railway bridge modelled as a metallic
truss system or a wooden frame embodying a multi-storey building. Computing the natu-
ral frequencies and mode shapes of those examples can show if the code’s potential suits
practical modelling.

5.1. Multi-Storey Frame

Tall buildings exposed to earthquakes or other dynamic forces constitute a danger to people
in and around the structure. To prevent those buildings from much damage the natural
frequencies need to be determined. The structural parameters are chosen for the wooden
frame structure as Em = 12.5 ·106[kN/m2], rm = 0.41[t/m3], Am = 8 ·10�2[m2] and Im =
11 ·10�4[m4] and a sketch of the structure can be regarded in Figure 5.1.

10 m

3
m

Figure 5.1.: The sketch of the multi storey frame.
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The wooden multi-storey building is modelled as a frame structure. Hence, the frame
members are connected rigidly and the transversal vibrations are dominant. Therefore, it
is assumed that the choice of the beam theory matters in the way that the frame using the
Euler-Bernoulli beam theory appears to be stiffer than processing with the Timoshenko
beam theory. The first lateral natural frequency occurs at 37.808498 [rad/s] = 6.0174 [Hz]
regarding the Euler-Bernoulli- and at 32.4654 [rad/s] = 5.1670 [Hz] respecting the Tim-
oshenko beam theory and provokes the first horizontal mode shape shown in Figure 5.2.
It is comprehensible that the system acts ’softer’ when considering the Timoshenko beam
theory due to the additional shear deformation. The comparison of the results between
the two different beam theories and the finite element based computation can be studied
in Table 5.1. Besides the superior behaviour of wooden structures due to earthquakes,
the footfall sound can be seen as a weak point. Also acoustic problems need a dynamic
analysis, whereas the focus there is on a higher frequency range.

Table 5.1.: The first natural frequency of the multi-storey frame in [rad/s].
Euler-Bernoulli Timoshenko FEM

37.808498 32.4654 37.452

Figure 5.2.: The first lateral eigenmode of the multi storey frame.
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5.2. Railway Bridge

Truss systems can also be modelled and their natural frequencies and mode shapes can be
computed. Dynamic observations of bridges are essential, not only due to the dynamic
excitation through moving vehicles but also to determine the long-therm fatigue of the
structure. The parameters for this example are Em = 2 ·108 [kN/m2], Gm = 0.8 ·1014, Am =
0.01 [m2], Im = 3.5 ·10�4m4 and rm = 7.85 [t/m3] for each truss member. A visualization
of the structure can be seen in Figure 5.3 (top).

9 m

8
m

Figure 5.3.: The sketch (top) and the first mode shape (bottom) of the railway bridge.

Table 5.2.: The first natural frequency of the railway bridge in [rad/s].
Euler-Bernoulli Timoshenko FEM

69.49832 69.4523 70.269

Due to the fact that bending moments can not be transmitted over hinges, longitudinal vi-
brations dominate when observing a truss system. Hence, no significant differences of the
natural frequencies are expected when changing between the two beam theories. Accord-
ingly, the first natural frequency of this bridge was computed as w = 69.498320 [rad/s] =
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11.061001 [Hz] for the Euler-Bernoulli beam theory and w = 69.4523 [rad/s] = 11.0537 [Hz]
respecting the Timoshenko beam theory. The natural frequencies are gathered in Table 5.2
and the corresponding mode shape is shown in Figure 5.3 (bottom).

To sum up, it can be noted that the NAT code is capable of processing more complex
structures. Although the computational time rises as more frame members are considered,
the calculation process is stable, and the results are accurate. Building the determinant of
the system matrix and finding the zeros of that determinant turn out to be the main two
steps causing the increase in computational time.



6. IMPLEMENTATION

The MATLAB code was created to enable dynamic analysis of 2D-frames with any shape
and supports. Several frame members can be connected with a range of hinges and several
bearings can be applied on the frame nodes N

t

. This project aims to obtain the eigenfre-
quencies of the chosen frame structure analytically based on two different beam theories
such as the Euler-Bernoulli- and Timoshenko- beam theory. Also, the corresponding mode
shapes are determined. The code was created in MATLAB and separated into the main
function and several sub-files and functions. The hierarchy of code files can be seen in
Figure 6.1.

computeNaturalFrequencies.m

inputFile.m

switch

’EBB’ ’TIB’

BCs.m

subSoE.m

allRoots.m

plotFile.m

Figure 6.1.: The hierarchy of code files.

To get a better insight into the computational process, a more detailed flow chart was made,
see Figure 6.2. This should help to visualize the computational steps. Furthermore, each
part of the code is described separately.
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computeNaturalFrequencies.m

(inputFile,interval,beamTheory)

evaluate
inputFile

nodes

elements

bearings

springs

L,r,A,E,I,G

establish symbolic variables
L

t

,r
t

,A
t

,E
t

,I
t

,G
t

a,b,c,d,e,f

define local coordinate axis [x
t

,y
t

]

for each frame member t

through rotation Rl

g

and translation Tl

g

set up general solution
for longitudinal vibrations

U,U’,U”

switch’EBB’ ’TIB’

general solution
W,W’,W”,W”’

and
N,V,M

BCs.m

coefficients

equations

define
interval

sequence

general solution
W,W’,W”,W”’,

y,y

0

and
N,V,M

system matrix

SoE

frequency

function

f = det(SoE)

allRoots.m

wRes

for each interval sequence

Figure 6.2.: The computation process to calculate the natural frequencies.
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Nomenclature regarding the code

i subscript for i= {1 : nBeams}
L symbolic unit length 1m
nBeams number of frame members

symbolic variables actual parameters
x
i

the axial coordinate X
i

l
i

length of the beam lBeam
i

A
i

cross-section area CrossSectionArea
i

E
i

Young’s Modulus YoungsModulus
i

I
i

moment of inertia MomentOfInertia
i

G
i

shear modulus ShearModulus
i

rho
i

material density MaterialDensity

omega circular frequency naturalFrequencies

c spring stiffness springConstant

a
i

�f
i

integration constants
xi, yi local system coordinates

u
i

longitudinal deformation in frequency domain
w
i

bending deflection in frequency domain
phi

i

rotational degree of freedom
V
i

shear force
M
i

rotational moment
N
i

axial force
U
i

total deflection in [X,Y]
S
i

internal forces in [X,Y]
ev matrix of eigenvectors
ew matrix of eigenvalues

EBB Euler-Bernoulli beam theory
TIB Timoshenko beam theory

6.1. computeNaturalFrequencies.m

The file computeNaturalFrequencies.m accounts as the main function to evaluate the
natural frequencies along with the corresponding mode shapes. Within this function mul-
tiple other files and functions are evaluated, see Figure 6.2. The main function
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computeNaturalFrequencies.m can be ran through a MATLAB command, e.g.

omega = computeNaturalFrequencies("inputFileName",[interval],"beamTheory").

The input parameters are essential for the computations, further details will be given in
Sections 6.2 to 6.5. Anyway, a possible command to start the computation of the natu-
ral frequencies and mode shapes in a range of 0� 10 [rad/s] for a Euler-Bernoulli frame
structure with multiple frame members, would be

omega = computeNaturalFrequencies("multiBeamFrame",[0 10],"EBB").

The explanation of the code will be executed based on an example of an arbitrary frame
structure, see the "multiBeamFrame" in Figure 6.3. How to obtain the natural frequencies
of this arbitrary structure will be explained step by step by showing parts of the code.

N1

m1

N3

m2
N4

m3

c

N2

cT

3L

3L 2L

2L

Figure 6.3.: The system plot of the multiple beam frame.

The first lines define the input data of the function, see Listing 6.1, line 1-2. Furthermore,
the file paths of potential input files are added. Thus, the inputFile.m is evaluated, see
Listing 6.1, line 6. Meaning, that all defined parameters of the structure, as well as the
matrices containing the nodes and elements established in the inputFile.m are added as
variables to the workspace.
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1 function naturalFrequencies = computeNaturalFrequencies(
inputFileName , interval , theory)

2

3 addpath(genpath(pwd))
4

5 %% define variables
6 eval(inputFileName)

Listing 6.1.: Call of the function and evaluation of the input file.

Define variables

Although, the structural variables are available, the computations are processed using sym-
bolic variables l

i

,A
i

,I
i

,G
i

,E
i

,r
i

, Listing 6.2, line 7-12, as well as x and w , see Listing
6.1, line 3 being the axial coordinate and rotational frequency respectively. This should
help retracing and understanding the computational steps and enables symbolic calcula-
tions up to the point when the zeros of the frequency function need to be determined. Thus,
before finding the zeros of the characteristic function f(w), the actual parameters need to
be embedded. Also variables for the integration constants a,b,c,d,e,f, are required for
each frame member, see Listing 6.2, line 4-5.

1

2 nBeams = size(elements ,1);
3 syms x omega
4 coeffs = [sym(’a’,[nBeams 1]), sym(’b’,[nBeams 1]), sym(’c’,[nBeams

1]) ...
5 , sym(’d’,[nBeams 1]), sym(’e’,[nBeams 1]), sym(’f’,[nBeams

1])];
6

7 l = sym(’l’,[nBeams 1]);
8 A = sym(’A’,[nBeams 1]);
9 E = sym(’E’,[nBeams 1]);

10 I = sym(’I’,[nBeams 1]);
11 G = sym(’G’,[nBeams 1]);
12 rho = sym(’rho’,[nBeams 1]);

Listing 6.2.: Setup of the symbolic variables for the computation.

Local coordinates

Each frame member will count as the domain where the established general solution for
longitudinal and transversal vibrations holds. For frame members that are modelled in an
angle at an arbitrary location in the two-dimensional space, its local coordinate system
needs to occur a shift and a rotation, see Listing 6.3, line 11-12. Therefore, the global
unit vectors [X

g,0,m,Yg,0,m] are transferred from the origin to the start node k
m,0 of the frame



58 6. Implementation

member and rotated using the rotation matrix, see Listing 6.3, line 7-10 and (6.1). Any-
way, when plotting, the deformation for each frame member in the local coordinates will
be transferred back to the global coordinate system in order to use the plot function.

Rl

g

=


cos(a) �sin(a)
sin(a) cos(a)

�
(6.1)

1 %% rotated coordinate system
2 eAxes = [1 0;0 -1]; %ex ez
3 nodesTex = subs(nodes ,L,1);
4 for i=1: nBeams
5 lBeam(i) = sqrt(sum(( nodes(elements(i,2) ,:)-nodes(elements(i,1)

,:)).^2));% Beam lengths
6 % transformation of coordinate system
7 lclOrig(i,:) = nodesTex(elements(i,1) ,:); % origin , local css
8 gCoord(i,:) = nodes(elements(i,2) ,:)-nodes(elements(i,1) ,:); %

Vectors in global coordinates
9 rotAn(i,:) = atan2(subs(gCoord(i,2),L,1),subs(gCoord(i,1),L,1));

% rot angle for axis
10 rotMat(:,:,i) = [cos(rotAn(i,1)), -sin(rotAn(i,1)); sin(rotAn(i

,1)), cos(rotAn(i,1))];%rotation matrix
11 lclAxes(:,:,i) = rotMat(:,:,i)*eAxes; % rotated local axes
12 LCLAxes(:,:,i) = double(lclOrig(i,:))+double(lclAxes(:,:,i)); %

rotated + shifted local axes
13 end

Listing 6.3.: Shift and rotation of the unit vectors X
g,0,m,Yg,0,m

Longitudinal vibrations

The general solution for longitudinal vibrations (6.2) can be set up for each frame member
since the differentiation in beam theories only applies to transversal vibrations the longi-
tudinal Ansatz holds for both cases, see Listing 6.4.

u
m

= e cos(l
m

x)+f sin(l
m

x) with l

m

= w

r
r

m

E
m

(6.2)

1 %% longitudinal vibrations
2 lambda = omega .* sqrt(rho./E);
3 u = coeffs (:,5) .* cos(lambda .*x) + coeffs (:,6) .* sin(lambda .*x);
4 du = diff(u,x);
5 ddu = diff(u,x,x);

Listing 6.4.: Introducing the general solution for longitudinal vibrations.
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Transversal vibrations / Euler-Bernoulli

Depending on the chosen beam theory, the code switches at this point. After the computa-
tion of the natural frequencies, the code reunites again to further plot the results. Here, the
general solution for the transversal deformation regarding the Euler-Bernoulli beam (6.3)
is implemented and its derivatives with respect to the local beam axis x are formulated, see
Listing 6.5, line 3-9.

W
m

= a cos(k
m

x)+b sin(k
m

x)+c cosh(k
m

x)+d sinh(k
m

x) (6.3)

with k

m

= 4

s
w

2
rAm

EmIm
.

1 case ’EBB’
2 %% definition Bernoulli
3 % transversal vibrations
4 kappa = sqrt(omega) .* ((rho.*A)./(E.*I)).^(1/4);
5

6 w = coeffs (:,1) .* cos(kappa .*x) + coeffs (:,2) .* sin(kappa.*x)...
7 + coeffs (:,3) .* exp(kappa .*(x-l)) + coeffs (:,4) .* exp(-kappa.*

x);
8 dw = diff(w,x);
9 ddw = diff(w,x,x);

10 dddw = diff(w,x,x,x);
11

12 for i=1: nBeams
13 N(i,:) = E(i)* A(i)*du(i);
14 V(i,:) = -E(i)*I(i)*dddw(i);
15 M(i,:) = -E(i)*I(i)*ddw(i);
16 U(i,:) = u(i)*lclAxes(:,1,i) + w(i)*lclAxes (:,2,i); % Resultierende

Verformung
17 S(i,:) = N(i)*lclAxes(:,1,i) + V(i)*lclAxes (:,2,i); % Resultierende

Schnittkraft
18 end

Listing 6.5.: General solution for w kinetic and kinematic quantities

Along with the partial derivatives of w
i

the kinetic quantities are defined here for the Euler-
Bernoulli beam theory, where the resulting internal force S

i

is the combination of the
normal- and the shear force N

i

and V
i

respectively. Same holds for the resulting deforma-
tion U

i

as it is the sum of the transversal and longitudinal deflection w
i

and u
i

respectively,
see Listing 6.5, line 11-17.
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Transversal vibrations / Timoshenko

For the Timoshenko beam, the general solution of w
i

depends on the investigating fre-
quency interval, see Listing 6.6. As the eigenvalues li change, depending on the interval,
from the real to the imaginary domain and vice versa. This occurs at the critical frequency
w

c
i . Since each beam has a critical frequency w

c, the computations need to be redone for
each beam and frequency interval resulting in natural frequencies within this interval.

1 case ’TIB’
2 %% definition Thimoshenko
3 Kappa = 5/6;
4 As = A*Kappa;
5

6 for i=1: nBeams
7 frequencySwitchID(i) = sqrt(ShearModulus(i)*Kappa*CrossSectionArea(i

)/MaterialDensity(i)/MomentOfInertia(i));
8 end
9

10 frequencySwitch= [interval (1) frequencySwitchID interval (2)];
11 rowsToDelete = frequencySwitch < interval (1) | frequencySwitch >

interval (2);
12 frequencySwitch(rowsToDelete) = [];
13 frequencySwitch = sort(frequencySwitch);
14

15 nInterval = (length(frequencySwitch) -1)+( length(frequencySwitch) -2);
%nInterval (Ansatz01 or Ansatz02)+nInterval (Ansatz03)

16 interval = zeros(nInterval ,2);
17

18 for i=1: length(frequencySwitch) -1
19 interval (2*(i-1) +(1) ,:)=[ frequencySwitch(i)+1e-10 frequencySwitch(i

+1) -1e-10];
20 end
21 for i=1: length(frequencySwitch) -2
22 interval (2*(i-1) +(2) ,:)=[ frequencySwitch(i+1) frequencySwitch(i+1)];
23 end

Listing 6.6.: Determining the frequency intervals for the Timoshenko beam.

As long as the observed w < w

c
m, all eigenvalues consist of a real and an imaginary part.

Hence, the general solution is

W
i

= a cos(l
i,1x)+b sin(l

i,1)+c e�li,1(x�L) +d eli,1x. (6.4)

For the case that the wanted frequency w equals the critical frequency w

c two eigenvalues
are completely in the real domain and two are fully in the imaginary space. Thus, the
general solution for this case is
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W
i

= a eli,1x+b eli,2x+c e�li,1x+d e�li,2x. (6.5)

Upon this interval all eigenvalues li, j remain in the imaginary domain. Whereas, two
eigenvalues consist of a real and imaginary part and the other two remain completely in
the imaginary domain. As for one frame member, the general solution does not change
anymore with rising frequencies. Therefore, the general solution is

W
i

= a cos(l
i,1x)+b sin(l

i,1x)+c cos(l
i,2x)+d sin(l

i,2x). (6.6)

The eigenvalues and the implementation of the three different general solutions are shown
in Listing 6.7.

1 lambda1=abs(-(-(omega .*(( rho .*(I.*rho.*A.^2.*E.^2* omega ^2 + ...
2 4.*A.*As.^2.*E.*G.^2 - 2.*I.*rho.*A.*As.*E.*G.*omega ^2 +...
3 I.*rho.*As.^2.*G.^2* omega ^2))./I).^(1/2) + A.*E*omega ^2.* rho

+...
4 As.*G*omega ^2.* rho)./(2.* As.*E.*G)).^(1/2));
5

6 lambda2 = abs(-(-(A.*E.*omega ^2.* rho - omega .*(( rho.*(I.*rho.*A.^2.*
E.^2* omega^2 + ...

7 4.*A.*As.^2.*E.*G.^2 - 2.*I.*rho.*A.*As.*E.*G.*omega
^2 +...

8 I.*rho.*As.^2.*G.^2* omega ^2))./I).^(1/2) + ...
9 As.*G*omega ^2.* rho)./(2.* As.*E.*G)).^(1/2));

10

11 naturalFrequencies =[];
12 for k=1: nInterval
13 for j=1: nBeams
14 Ansatz01=interval(k,2)<frequencySwitchID(j);
15 Ansatz02=interval(k,2)>frequencySwitchID(j);
16 Ansatz03=interval(k,2)== frequencySwitchID(j);
17 if Ansatz01
18 w(j,:) = coeffs(j,1) * cos(lambda1(j)*x) + coeffs(j,2) * sin(lambda1

(j)*x)...
19 + coeffs(j,3) * exp(-lambda1(j)*(x-l(j))) + coeffs(j,4) * exp(

lambda1(j)*x);
20 elseif Ansatz02
21 w(j,:) = coeffs(j,1) * cos(lambda1(j)*x) + coeffs(j,2) * sin(lambda1

(j)*x)+...
22 coeffs(j,3) * cos(lambda2(j)*x) + coeffs(j,4) * sin(lambda2(j)*x

);
23 elseif Ansatz03
24 w(j,:) = coeffs(j,1) * exp(lambda1(j)*x) + coeffs(j,2) * exp(lambda2

(j)*x)...
25 + coeffs(j,3) * exp(-lambda1(j)*x) + coeffs(j,4) * exp(-lambda2(

j)*x);
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26 end
27 end

Listing 6.7.: The eigenvalues and the three different cases of general solutions.

Depended on the general solution for w the general solution for the rotational degree of
freedom is

y

i

=�
w000
i

+w
i

(w

2
ri

Giki
+

As,iGi
EiIi

)
w

2
ri

Ei

As,iGi
EiIi

. (6.7)

For all frequency intervals, the same relation for y

i

holds. Although, varying between
different Ansatz functions for w

i

will change y

i

as well as M
i

,V
i

,U
i

and S
i

depending on
the frequency interval, see Listing 6.8.

1 dw = diff(w,x);
2 ddw = diff(w,x,x);
3 dddw = diff(w,x,x,x);
4

5 phi = -(1./(( rho.* omega ^2./E) -(G*Kappa.*A./E./I))).*( dddw+(dw.*((
omega ^2.* rho./Kappa ./G)+(G*Kappa.*A./E./I))));

6 dphi = diff(phi ,x);
7

8 for i=1: nBeams
9 N(i,:) = E(i)* A(i)*du(i);

10 M(i,:) = E(i)*I(i)*dphi(i);
11 V(i,:) = G(i)*A(i)*Kappa*(dw(i)-phi(i));
12 U(i,:) = u(i)*lclAxes(:,1,i) + w(i)*lclAxes (:,2,i); %resulting

deformation
13 S(i,:) = N(i)*lclAxes(:,1,i) + V(i)*lclAxes (:,2,i); %resulting

internal force

Listing 6.8.: Rotational degree of freedom and the kinetic and kinematic relations.

Having the two equations W
i

and y

i

, the kinetic relations M
i

,V
i

can be defined, which
differ in this case to the ones from the Euler-Bernoulli beam theory. All Ansatz equations
are now set up and can be used to enforce the boundary conditions in the BCs.m file, see
Listing 6.9, line 2, in Section 6.3 which will provide the vector of system equations eqs
and the coefficient vector containing the integration constants and bearing variables cof.

Compute natural frequencies

The vector of system equations {eqs}, obtained from BCs.m, is written now in matrix form
by taking out the integration constants and the variables representing the bearing constrains
in {cof}, see Listing 6.9, line 5. Hence, the system equation can be written as
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[eqs] · {cof}= {0}. (6.8)

The now called coefficient- or system matrix [eqs] is simply depending on w . For the
natural frequencies of the system, it holds that the determinant of the coefficient- or sys-
tem matrix needs to be zero. This is done within the allRoots_regula_falsi function
in Listing 6.9, line 10-11. Each w fulfilling this condition can be counted as a natural
frequency.

Up to here, the computations were executed using symbolic variables. Before finding
the zeros of the characteristic function, all symbolic variables need to be substituted by
the structural parameters obtained from the inputFile.m. This substitution is done in the
subSoE.m file, see Listing 6.9, line 7, and the code is explained in Section 6.4. Anyway, the
zeros of the characteristic function, and therefore the natural frequencies are determined
by the allRoots_regula_falsi function which is based on the Regula-Falsi method, see
Listing 6.9, line 11.

1 %% get boundary conditions
2 BCs
3

4 %% get eigenfrequencies
5 [SoEref ,~] = equationsToMatrix(eqs ,cof);
6

7 subSoE
8

9 %% get eigenfrequencies
10 matlabFunction(SoEref ,’File’,’sysMat.m’);
11 naturalFrequencies = allRoots_regula_falsi(interval);

Listing 6.9.: Set up of system matrix and determination of natural frequencies.

Eigenvectors

The eigenvectors f

n

play an important role when plotting the mode shapes. It holds to find
n eigenvectors that correspond to the n- computed natural frequencies. Therefore the set of
eigenvalues and eigenvectors of the nth system matrix SoE(wn) needs be computed. Hence,
the ith column in [ew] presenting the lowest eigenvalue (l <<) on the main diagonal, is
considered as the ith column in [ev], responsible for the eigenvector corresponding to w

n

,
see Listing 6.10.

1 %% get eigenvectors
2 for e = 1: nOmegaRes
3 [ev(:,:,e),ew(:,:,e)] = eig(vpa(subs(SoEref ,omega ,

naturalFrequencies(e)))); %eigenvectors eigenvalues
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4 [minEw(e),columnID(e)]=min(abs(diag(ew(:,:,e))));
5 evec(:,e) = ev(:,columnID(e),e);
6 end

Listing 6.10.: Determination of the eigenvector associating w

n

.

The natural frequencies, as well as the corresponding eigenvectors, are thus determined.
Visualizing the results is done by calling the plotFile.m file, and will be interpreted in
Section 6.5.

6.2. inputFile.m

The inputFile.m can also be renamed in case a library of structures is wished to establish.
Meaning, the inputFile.m could be changed to e.g. multiBeamFrame.m as long as the
inputName is accordingly called that way when running the function
computeNaturalFrequencies.

In the inputFile.m, material and geometrical parameters E,G,r,A,I are defined respec-
tively, see Listing 6.11, line 3-9. It is of importance that defining the geometry of the
structure in a parametrized manner is possible. Therefore, a symbolic variable L was intro-
duced which should be seen as a unit length of one meter, see Listing 6.11, line 1. Frame
nodes are defined using multiples of L as a base for the coordinates in the two-dimensional
space [XN

t

,YN
t

], see Listing 6.11, line 13. Frame members can be formed by defining the
start- and end node [km,0, km,L] of each frame member respectively, see Listing 6.11, line
15].

When finishing the input process, all created vectors and matrices besides [nodes] should
have nm rows according to the number of frame members. [nodes] is a n j⇥2 matrix where
n j is the number of frame nodes.

1 syms L % symbolic variable for unit length 1m
2 %% Material
3 YoungsModulus = [1;2;3]; % young ’s modulus E [kN/m^2]
4 ShearModulus = [3;2;1]; % shear modulus G [kN/m^2]
5 MaterialDensity = [2;3;1]; % density rho [t/m^3]
6

7 %% Cross Section
8 CrossSectionArea = [1;10;100]; % cross sectional area A [m^2]
9 MomentOfInertia = [1;10;100]; % moment of inertia I [m^4]

10

11 %% Geometry
12 % x y
13 nodes = [-2*L,-2*L;L,L;3*L,-L;-2*L,L];
14 % node 1 - node 2
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15 elements = [1 ,2;3 ,2;4 ,2];

Listing 6.11.: Definition of material and geometrical parameters frame nodes and frame
members.

Bearings and springs can be attached on each frame node N
t

, see Listing 6.12, line3-6.
Those frame nodes turn into supported frame nodes NS, whereas the others remain as free
frame nodes NF . To do so the type of support needs to be chosen from the list of supports,
see Listing 6.12, line 12-13. Furthermore, the frame node N

t

where the support should
be attached is defined. Each support can also be implemented in an angle F [°] counted
counter-clockwise from the initial configuration, see Table 6.1. For joints and the other
supports, the rotational angle is of minor importance since it does not affect the results.

Table 6.1.: The initial configuration of bearings and springs.
roller parallel sliding tr. spring

The scaling option is there for visualisation reasons and has no impact on the computation.
When attaching springs on a frame node, see Listing 6.12, line 9-10, the spring stiff-
ness must be defined in [kN/m] for translational springs and in [kNn/rad] for rotational
springs. It should be mentioned that for one frame node N

t

, a combination of bearings,
springs, and joints can be attached.

1 %% Bearings and Springs
2 % type - node - rotation angle [deg] (default = horizontal) - scale
3 bearings = [3,1,-45,1;
4 2,3,0,1;
5 1,4,-90,1
6 ];
7

8 % type - node - rotation angle [deg] - scale - spring stiffness [kN/
m] or [kNm/rad]

9 springs = [8,4,90,1,1;
10 9,2,180,1,1];
11

12 type = ["\ Loslager", "\ Festlager", "\ Einspannung", "\ Vollgelenk", "\
Halbgelenk ",...

13 "\ Parallelfuehrung", "\ Schiebehuelse", "\ Wegfeder", "\
Drehfeder "];

Listing 6.12.: Attachment of supports joints and springs at frame nodes.

To understand the parametric vectors and matrices established within the inputFile.m

file better, all outputs based on random values are summarized.
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Thus, the material parameters defined in inputFile.m are

E=

2

4
1

2

3

3

5 [kN/m2], G=

2

4
3

2

1

3

5 [kN/m2], r =

2

4
2

3

1

3

5 [t/m3]

9
=

; n- frame members,

with the parameters for the cross sections

A=

2

4
1

10

100

3

5 [m2], I=

2

4
1

10

100

3

5 [m4]

9
=

; n- frame members.

The frame nodes N
t

of the structure are defined in the [nodes] matrix referring to in-
put values in [m]. The frame members are created by connecting the frame nodes in the
[elements] matrix.

nodes=

X Y
2

64

3

75

�2L �2L N
1

L L N
2

3L �L N
3

�2L L N
4

[m], elements=

k
m,0 k

m,L" #
1 2 m

1

3 2 m
2

4 2 m
3

The bearings, hinges and springs are defined through

bearings=

type node angle scale

" #
3 1 �45 1 fixed

2 3 0 1 pinned

1 4 �90 1 roller

springs=

type node angle scale stiff. �
8 4 90 1 1 transl. spring

9 2 180 1 1 rot. spring

6.3. BCs.m

The file BCs.m collects all boundary and interface equations in a vector which forms the
base of the system matrix. However, this vector is a composition consisting of the equi-
librium of forces and moments, the bearing constraints, spring conditions, and coupling
equations.
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First, bearing constraints for each supported frame node NS are gathered as variables
whereas the subscripts h and v describe the horizontal and vertical component of bear-
ing forces respectively, see Listing 6.13. Referring to the global coordinate system, this
would mean the X and Y component, respectively

1 bearingForces = [];
2 for i = 1 : nBearings
3 bearingTyp= bearings(i,1);
4 nodeIDofBearing = bearings(i,2);
5

6 switch bearingTyp
7 case 1 %roller
8 bearingForces = [bearingForces;sym(sprintf(’Fn%d’,

nodeIDofBearing))];
9 case 2 %pinned

10 bearingForces = [bearingForces;sym(sprintf(’Fh%d’,
nodeIDofBearing)); sym(sprintf(’Fv%d’, nodeIDofBearing)) ];

11 case 3 %fixed
12 bearingForces = [bearingForces;sym(sprintf(’Fh%d’,

nodeIDofBearing)); sym(sprintf(’Fv%d’, nodeIDofBearing)); sym(
sprintf(’M%d’, nodeIDofBearing)) ];

13 case 6 %parallel guide
14 bearingForces = [bearingForces;sym(sprintf(’Fn%d’,

nodeIDofBearing)) ; sym(sprintf(’M%d’, nodeIDofBearing)) ];
15 end
16 end

Listing 6.13.: Set up of variables representing the bearing constrains.

The equilibrium conditions of forces and moments are introduced for each frame node
N

t

, see Listing 6.14, line 14-15. Precaution, the sign definition needs to be taken into
account, since the beam can be either positively or negatively connected to the node, see
Listing 6.14, line 6-13.

1 %% equilibrium of forces and moments
2 for i = 1: nNodes
3 [attachedBeams ,~] = find(any(elements ==i,2));
4 nAttachedBeams = length(attachedBeams);
5 for j = 1: nAttachedBeams
6 isBeamPositivlyConnected = elements(attachedBeams(j) ,1)==i;
7 if isBeamPositivlyConnected
8 y=0;
9 fac = 1;

10 else
11 y=l(attachedBeams(j));
12 fac = -1;
13 end
14 momentenGLG(i) = momentenGLG(i) + fac*subs(M(attachedBeams(j))

,x,y);



68 6. Implementation

15 krafteGLG (2*(i-1) +(1:2)) = krafteGLG (2*(i-1) +(1:2)) + fac*(
subs(S(attachedBeams(j) ,:),x,y)).’;

16 end
17 end

Listing 6.14.: Equilibrium conditions of forces and moments defined on each frame node.

The bearing constraints are enforced by setting the blocked degrees of freedom at this
supported frame node N

S

zero, see Listing 6.15, line 19-40. It should be noted that supports
as e.g. rollers are considered having a parallel and normal component that needs to be
converted into the global coordinates [X,Y], see Listing 6.15, line 8. This should be taken
into account since bearings and springs can be attached at any angle. Again, the sign
definition should clarified before the enforcement of bearing conditions, see Listing 6.15,
line 12-17.

1 %% bearing constrains
2 for i = 1: nBearings
3 bearingTyp=bearings(i,1);
4 [attachedToBearingBeams ,~] = find(any(elements == bearings(i,2) ,2));
5 nAttachedToBearingBeams = length(attachedToBearingBeams);
6 nodeIDofBearing = bearings(i,2);
7 rotAngleBearing = bearings(i,3);
8 NPComponents = [cosd(rotAngleBearing +90);sind(rotAngleBearing +90)];
9

10 for j = 1%:nAttachedToBearingBeams
11

12 isBeamPositivlyConnected = elements(attachedToBearingBeams(j) ,1)==
nodeIDofBearing;

13 if isBeamPositivlyConnected
14 y=0;
15 else
16 y=l(attachedToBearingBeams(j));
17 end
18

19 switch bearingTyp
20 case 1 %roller
21 bearingConstraints= [bearingConstraints; sum((subs(U(

attachedToBearingBeams(j) ,:),x,y).’.* NPComponents)) ];
22 krafteGLG (2*( nodeIDofBearing -1) +(1:2)) = krafteGLG (2*(

nodeIDofBearing -1) +(1:2)) + ...
23 [sym(sprintf(’Fn%d’, nodeIDofBearing)); sym(sprintf(’

Fn%d’, nodeIDofBearing))].* NPComponents;
24 case 2 %pinned
25 bearingConstraints= [bearingConstraints; (subs(U(

attachedToBearingBeams(j) ,:),x,y)).’ ];
26 krafteGLG (2*( nodeIDofBearing -1) +(1:2)) = krafteGLG (2*(

nodeIDofBearing -1) +(1:2)) + ...
27 [sym(sprintf(’Fh%d’, nodeIDofBearing)); sym(sprintf(’

Fv%d’, nodeIDofBearing))];
28 case 3 %fixed
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29 bearingConstraints= [bearingConstraints; (subs(U(
attachedToBearingBeams(j) ,:),x,y)).’;

30 subs(dw(attachedToBearingBeams(j)),x,y)];
31 krafteGLG (2*( nodeIDofBearing -1) +(1:2)) = krafteGLG (2*(

nodeIDofBearing -1) +(1:2)) + ...
32 [sym(sprintf(’Fh%d’, nodeIDofBearing)); sym(sprintf(’Fv

%d’, nodeIDofBearing))];
33 momentenGLG(nodeIDofBearing) = momentenGLG(nodeIDofBearing) +

sym(sprintf(’M%d’, nodeIDofBearing));
34 case 6 %parallel guide
35 bearingConstraints= [bearingConstraints; sum((subs(U(

attachedToBearingBeams(j) ,:),x,y)).’.* NPComponents);
36 subs(dw(attachedToBearingBeams(j)),x,y) ];
37 krafteGLG (2*( nodeIDofBearing -1) +(1:2)) = krafteGLG (2*(

nodeIDofBearing -1) +(1:2)) + ...
38 [sym(sprintf(’Fn%d’, nodeIDofBearing)); sym(

sprintf(’Fn%d’, nodeIDofBearing))].* NPComponents;
39 momentenGLG(nodeIDofBearing) = momentenGLG(nodeIDofBearing) +

sym(sprintf(’M%d’, nodeIDofBearing));
40 end
41 end
42 end

Listing 6.15.: Embedding the bearing constrains at each supported frame node N
S

.

For all frame nodes that connect two or more frame members, the coupling equations en-
sure the kinematic and kinetic connectivity of the attached beams at this node, see Listing
6.16. Also here, the sign definitions need to be respected for each attached frame mem-
ber, see Listing 6.16, line 9-23. Noted that besides having a rigid connection of multiple
beams, also hinges, bearings, and springs can be attached in a combined matter to this
frame node which influences the boundary conditions at this node, see Listing 6.16, line
24-30.

1 %% coupling equations
2 for i = 1: nNodes
3 [attachedBeams ,~] = find(any(elements ==i,2));
4 nAttachedBeams = length(attachedBeams);
5 [rowOfBearingsAtNode ,~] = find(bearings (:,2)==i);
6 bearingsAtNode = bearings(rowOfBearingsAtNode ,1);
7 rotationalJointAtNode=ismember(4, bearingsAtNode);
8

9 for j = 1:( nAttachedBeams -1)
10 isBeamPositivlyConnected = elements(attachedBeams(j) ,1)==i;
11 if isBeamPositivlyConnected
12 y=0;
13 else
14 y=l(attachedBeams(j));
15 end
16 isBeamPositivlyConnected2 = elements(attachedBeams(j+1) ,1)==i

;



70 6. Implementation

17 if isBeamPositivlyConnected2
18 y2=0;
19 else
20 y2=l(attachedBeams(j+1));
21 end
22 couplingEquations = [couplingEquations; (subs(U(attachedBeams

(j) ,:),x,y) - ...
23 subs(U(attachedBeams(j+1) ,:),x,y2)).’];
24 if rotationalJointAtNode
25 couplingEquations = [couplingEquations; subs(M(attachedBeams(

j)) ,x,y)];
26 else
27 couplingEquations = [couplingEquations; subs(dw(attachedBeams

(j)),x,y) - ...
28 subs(dw(attachedBeams(j+1)),x,y2) ];
29 end
30 end
31 end

Listing 6.16.: Defining the coupling equations for frame nodes with multiple beams
attached.

All boundary and interface equations are collected in the vector {eqs}, see Listing 6.17,
line 10-13 and will be transformed into the system matrix [eqs] by separating the equa-
tions from the integration constants and variables of bearing constrains gathered in the
vector {cof}, see Listing 6.17, line 6-8. Thus, the system equation has the form
[eqs] · {cof}= {0}.

1 variable = [coeffs (:,1);coeffs (:,2);coeffs (:,3);
2 coeffs (:,4);
3 coeffs (:,5);coeffs (:,6)
4 ];
5

6 cof = [variable;
7 bearingForces
8 ];
9

10 eqs =[ momentenGLG;
11 krafteGLG;
12 bearingConstraints;
13 couplingEquations ];

Listing 6.17.: Storing the boundary equations the integration variables and the bearing
coefficients in vectors.
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6.4. subSoE.m

The subSoE.m file converts the system matrix [eqs] that contains the symbolic variables
into the array consisting of the actual structural input values, see Listing 6.18.

1 % set reference length L = 1
2 SoEref = subs(SoE ,L,1);
3 for i=1: nBeams
4 SoEref = subs(SoEref ,l(i),lBeam(i));
5 SoEref = subs(SoEref ,E(i),YoungsModulus(i));
6 SoEref = subs(SoEref ,A(i),CrossSectionArea(i));
7 SoEref = subs(SoEref ,G(i),ShearModulus(i));
8 SoEref = subs(SoEref ,I(i),MomentOfInertia(i));
9 SoEref = subs(SoEref ,rho(i),MaterialDensity(i));

10 end

Listing 6.18.: Substituting the symbolic variables in [eqs] with input parameters.

6.5. plotFile.m

The aim in the plotFile.m file is to visualise the results that were computed in
computeNaturalFrequencies.m. The LATEX environment enables plotting the results in
editable .tex files and allows an easy implementation into reports. All .tex files are
established in a standalone environment, ensuring a compilation of the plot by itself.

The plotFile.m file enables the visualization of mode shapes in the first instance but
gives also a closer insight into the computations by showing and plotting the frequency
function as well as the system matrix. Anyway, the following plots are included:

System plot in LATEX

A .tex file is created to visualize the system in LATEX. Vectors for each frame member are
defined. Along with the coordinates, supports, hinges, and springs from the inputFile.m
file the system can be plotted, see listing 6.19.

1 %% plot the System in latex
2 fid = fopen(’../08 _TeXplots/systemPlot.tex’,’w’);
3 fprintf(fid ,’%s\n’,’\documentclass{standalone}’);
4 fprintf(fid ,’%s\n’,’\usepackage{tikz}’);
5 fprintf(fid ,’%s\n’,’\usepackage{rotating}’);
6 fprintf(fid ,’%s\n’,’\usetikzlibrary{snakes}’);
7 fprintf(fid ,’%s\n’,’\input {../ IAM_Lager.sty}’);
8 fprintf(fid ,’%s\n’,’\begin{document}’);
9 fprintf(fid ,’%s\n’,’\begin{tikzpicture}’);
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10 % draw beams
11 for i=1: nBeams
12 fprintf(fid ,’\\draw[thick] (%0.5f,%0.5f) -- (%0.5f,%0.5f);\n’, ...
13 nodesTex(elements(i,1) ,1),nodesTex(elements(i,1) ,2),nodesTex(

elements(i,2) ,1),nodesTex(elements(i,2) ,2));
14 fprintf(fid ,’\\draw[->, thick ,draw=red] (%0.5f,%0.5f) -- (%0.5f,%0.5

f)node [above ]{$x_ {%.0f}$};\n’, ...
15 lclOrig(i,:),LCLAxes (1,:,i),i);
16 fprintf(fid ,’\\draw[->, thick ,draw=red] (%0.5f,%0.5f) -- (%0.5f,%0.5

f) node [above ]{$z_ {%.0f}$};\n’, ...
17 lclOrig(i,:),LCLAxes (2,:,i),i);
18 end
19 % draw bearings
20 for i=1: nBearings
21 fprintf(fid ,"%s {(%0.5f,%0.5f)}[%f][%f];\n",...
22 type(bearings(i,1)), nodesTex(bearings(i,2) ,1),nodesTex(bearings

(i,2) ,2), bearings(i,3) ,...
23 bearings(i,4));
24 end
25 % draw springs
26 for i=1: nSprings
27 fprintf(fid ,"%s {(%0.5f,%0.5f)}[%f][%f];\n",...
28 type(springs(i,1)), nodesTex(springs(i,2) ,1),nodesTex(springs(i

,2) ,2), springs(i,3) ,...
29 springs(i,4));
30 end
31 fprintf(fid ,’%s\n’,’\node[above ,font=\ large\bfseries] at (current

bounding box.north) {System Plot};’);
32 fprintf(fid ,’%s\n’,’\end{tikzpicture}’);
33 fprintf(fid ,’%s\n’,’\end{document}’);
34 fclose(fid);

Listing 6.19.: The system plot in LATEX.

System matrix and characteristic equation

Having an insight into the system matrix can help understand the code, especially with
keeping the symbolic parameters in the matrix, see Listing 6.20, line 7. The same holds
for the characteristic equation known as the determinant of the system matrix, see Listing
6.20, line 19. Both are implemented in a LATEXdocument.

1 % visualization of the system matrix in LaTeX
2 fid = fopen(’../08 _TeXplots/systemOfEquations.tex’,’w’);
3 fprintf(fid ,’%s\n’,’\documentclass{standalone}’);
4 fprintf(fid ,’%s\n’,’\begin{document}’);
5 fprintf(fid ,’%s\n’,’$’);
6

7 fprintf(fid ,’%s %s = 0’,latex(SoE),latex(variable));
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8

9 fprintf(fid ,’%s\n’,’$’);
10 fprintf(fid ,’%s\n’,’\end{document}’);
11 fclose(fid);
12

13 display characteristic equation in LaTeX
14 fid = fopen(’../08 _TeXplots/characteristicEquation.tex’,’w’);
15 fprintf(fid ,’%s\n’,’\documentclass{standalone}’);
16 fprintf(fid ,’%s\n’,’\begin{document}’);
17 fprintf(fid ,’%s\n’,’$’);
18

19 fprintf(fid ,’%s = 0’,latex(simplify(detSoE)));
20

21 fprintf(fid ,’%s\n’,’$’);
22 fprintf(fid ,’%s\n’,’\end{document}’);
23 fclose(fid);

Listing 6.20.: Visualization of the system matrix and the frequency function in LATEX.

Plot of the frequency function

The frequency- or characteristic function f (w) was plotted first in MATLAB, see Listing
6.21, line 6-16 and then converted into TikZ, see Listing 6.21, line 19-29, an environment
especially for plots and drawings supported by LATEX. To do so, the matlab2tikz function
was used, see Listing 6.21, line 16. The frequency function regarding a Timoshenko beam
is a composition of n functions based on n frequency intervals. Thus, for each interval one
frequency function holds.

1 %% characteristic function
2 % plot the characteristic function in MATLAB
3 rowsToDelete = find(interval (:,1)== interval (:,2));
4 interval(rowsToDelete ,:) = [];
5 detSoEref(rowsToDelete) = [];
6 figure (1)
7 for i=1: size(interval ,1)
8 omegaPlot(i,:) = linspace(interval(i,1),interval(i,2));
9 for j=1: length(omegaPlot)

10 f(i,j) = vpa(subs(detSoEref(i),omega ,omegaPlot(i,j)));
11 end
12 plot(omegaPlot(i,:),f(i,:))
13 hold on
14 end
15 title(’characteristic function ’)
16 matlab2tikz(’../08 _TeXplots/myfile.tex’);
17

18 % plot the characteristic function in LaTeX
19 fid = fopen(’../08 _TeXplots/characteristicFunctionPlot.tex’,’w’);
20 fprintf(fid ,’%s\n’,’\documentclass{standalone}’);
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21 fprintf(fid ,’%s\n’,’\usepackage{pgfplots}’);
22 fprintf(fid ,’%s\n’,’\pgfplotsset{compat=newest}’);
23 fprintf(fid ,’%s\n’,’\pgfplotsset{plot coordinates/math parser=false}

’);
24 fprintf(fid ,’%s\n’,’\newlength\figureheight ’);
25 fprintf(fid ,’%s\n’,’\newlength\figurewidth ’);
26 fprintf(fid ,’%s\n’,’\begin{document}’);
27 fprintf(fid ,’%s\n’,’\input{myfile.tex}’);
28 fprintf(fid ,’%s\n’,’\end{document}’);
29 fclose(fid);

Listing 6.21.: Plot of the frequency function in TikZ using matlab2tikz.

Plot of mode shapes

To compute the mode shapes, the symbolic vector {U} representing the total deflection
needs to be substituted with the input parameters, see Listing 6.22, line 2-8. Having a
number of natural frequencies n will enforce n mode shapes. Therefore, the deflection is
given in n deformation matrices resulting from n substituted natural frequencies w at each
increment of a frame member X, see Listing 6.22, line 13-14. The previously computed
n eigenvectors help to get n mode shapes, in the way, that each entry of the eigenvector
is replacing the integration constants and the variables of bearing constraints in {cof},
see Listing 6.22, line 15-17. The searched deflection regarding the n mode shapes U

n,(x)
can now be determined by inserting the obtained values of the eigenvectors into the equa-
tion and plotting the results for each beam and the natural frequency at each incremental
point X, see Listing 6.22, line 18-28. It should be noticed that the deformation needs to
be converted into the global coordinate system before plotting. Plots are done in MAT-
LAB, see Listing 6.22, line 2-30 and LATEX, see Listing 6.22, line 32-95 also including a
visualisation of the structural features such as bearings, hinges and springs.

Besides the deformations, U
n,(x) or so-called mode shapes all the other kinetic quantities

such as N,V and M can also be determined for each beam and mode shape.
1 % plot eigenmodes in Matlab
2 for i=1: nBeams
3 U = subs(U,E(i),YoungsModulus(i));
4 U = subs(U,A(i),CrossSectionArea(i));
5 U = subs(U,I(i),MomentOfInertia(i));
6 U = subs(U,rho(i),MaterialDensity(i));
7 U = subs(U,G(i),ShearModulus(i));
8 end
9 % scale factor for plotting eigenmodes [x z]

10 scaleFac = [1e4 1];
11 for e = 1: nOmegaRes
12 figure(e+1);
13 for i = 1:size(elements ,1)
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14 X(i,:) = linspace(0,lBeam(i) ,100);
15 Ux(i,:,e) = subs(U(i,:),omega ,naturalFrequencies(e));
16 for q = 1:size(variable ,1)
17 Ux(i,:,e) = subs(Ux(i,:,e),variable(q),evec(q,e));
18 end
19 for j = 1:size(X,2)
20 beamUndeformedRef(j,:,i) = subs(lclOrig(i,:) + X(i,j).*

lclAxes(:,1,i)’,L,1);
21 beamDeformedRef(j,:,i,e) = subs(beamUndeformedRef(j,:,i)

+ (subs(Ux(i,:,e),x,X(i,j)).* scaleFac),L,1);
22 end
23 plot(beamUndeformedRef (:,1,i),beamUndeformedRef (:,2,i),’k’)
24 hold on
25 plot(beamDeformedRef (:,1,i,e),beamDeformedRef (:,2,i,e),’r’)
26 hold on
27 title(sprintf(’eigenmode %d’,(e)))
28 grid on
29 legend off
30 end
31 end
32 %% plot eigenmodes in latex
33 fid = fopen(’../08 _TeXplots/eigenmodesPlot.tex’,’w’);
34 fprintf(fid ,’%s\n’,’\documentclass{standalone}’);
35 fprintf(fid ,’%s\n’,’\usepackage{tikz}’);
36 fprintf(fid ,’%s\n’,’\usepackage{rotating}’);
37 fprintf(fid ,’%s\n’,’\usetikzlibrary{snakes}’);
38 fprintf(fid ,’%s\n’,’\input {../ IAM_Lager.sty}’);
39 fprintf(fid ,’%s\n’,’\begin{document}’);
40 for e = 1: nOmegaRes
41 fprintf(fid ,’%s\n’,’\begin{tikzpicture}’);
42 % draw beams
43 for i=1: nBeams
44 fprintf(fid ,’\\draw[dotted ,draw=gray] (%0.5f ,%0.5f) -- (%0.5f

,%0.5f);\n’, ...
45 nodesTex(elements(i,1) ,1),nodesTex(elements(i,1) ,2),nodesTex(

elements(i,2) ,1),nodesTex(elements(i,2) ,2));
46 fprintf(fid ,’\\draw plot [smooth] coordinates{’);
47 for j=1: size(X,2)
48 fprintf(fid ,’ (%0.5f ,%0.5f) ’, ...
49 beamDeformedRef(j,1,i,e),beamDeformedRef(j,2,i,e));
50 end
51 fprintf(fid ,’};\n’);
52 fprintf(fid ,’\\draw[->, thick ,draw=red] (%0.5f,%0.5f) -- (%0.5f,%0.5

f)node [above ]{$x_ {%.0f}$};\n’, ...
53 beamDeformedRef (1,:,i,e) ,(( beamDeformedRef (1,:,i,e)-

beamUndeformedRef (1,:,i))+LCLAxes(1,:,i)),i);
54 fprintf(fid ,’\\draw[->, thick ,draw=red] (%0.5f,%0.5f) -- (%0.5f,%0.5

f) node [above ]{$z_ {%.0f}$};\n’, ...
55 beamDeformedRef (1,:,i,e) ,(( beamDeformedRef (1,:,i,e)-

beamUndeformedRef (1,:,i))+LCLAxes(2,:,i)),i);
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56

57 [rowBearingAtBeam ,columnBearingAtBeam] = find(elements(i,:)==
bearings (:,2));

58 nBearingsAtBeam = length(rowBearingAtBeam);
59 % draw bearings
60 for k=1: nBearingsAtBeam
61 isBearingAtFirstNode = columnBearingAtBeam(k)==1;
62 if isBearingAtFirstNode
63 fprintf(fid ,"%s {(%0.5f,%0.5f)}[%f][%f];\n",...
64 type(bearings(rowBearingAtBeam(k) ,1)), beamDeformedRef (1,1,i,e),

beamDeformedRef (1,2,i,e), bearings(rowBearingAtBeam(k) ,3) ,...
65 bearings(rowBearingAtBeam(k) ,4));
66 else
67 fprintf(fid ,"%s {(%0.5f,%0.5f)}[%f][%f];\n",...
68 type(bearings(rowBearingAtBeam(k) ,1)), beamDeformedRef(end ,1,i,e

),beamDeformedRef(end ,2,i,e), bearings(rowBearingAtBeam(k) ,3) ,...
69 bearings(rowBearingAtBeam(k) ,4));
70 end
71 end
72

73 if isempty(springs)
74 else
75 [rowSpringAtBeam ,columnSpringAtBeam] = find(elements(i,:)== springs

(:,2));
76 nSpringsAtBeam = length(rowSpringAtBeam);
77 % draw springs
78 for k=1: nSpringsAtBeam
79 isBearingAtFirstNode = columnSpringAtBeam(k)==1;
80 if isBearingAtFirstNode
81 fprintf(fid ,"%s {(%0.5f,%0.5f)}[%f][%f];\n",...
82 type(springs(rowSpringAtBeam(k) ,1)), beamDeformedRef (1,1,i,e),

beamDeformedRef (1,2,i,e), springs(rowSpringAtBeam(k) ,3) ,...
83 springs(rowSpringAtBeam(k) ,4));
84 else
85 fprintf(fid ,"%s {(%0.5f,%0.5f)}[%f][%f];\n",...
86 type(springs(rowSpringAtBeam(k) ,1)), beamDeformedRef(end ,1,i,e),

beamDeformedRef(end ,2,i,e), springs(rowSpringAtBeam(k) ,3) ,...
87 springs(rowSpringAtBeam(k) ,4));
88 end
89 end
90 end
91 end
92 fprintf(fid ,’\\node[above ,font =\\ large\\ bfseries] at (current

bounding box.north) {$\\ omega_{res ,%0.0f} = %0.2f rad/s$};\n’, e,
naturalFrequencies(e));

93 fprintf(fid ,’%s\n’,’\end{tikzpicture}’);
94 end
95 fprintf(fid ,’%s\n’,’\end{document}’);

Listing 6.22.: Plot of the mode shapes in MATLAB and LATEX.
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A summarized plot was made, gathering all mode shapes in one graph, which tend to be a
practical addition when mode shapes want to be included in technical reports, see Listing
6.23.

1

2 %% single plot normalized mode shapes
3 figure;
4 for e = 1: nOmegaRes
5 for i = 1:size(elements ,1)
6

7 maxU = max(abs(beamDeformedRef (:,2,i,e)));
8 plot(beamUndeformedRef (:,1,i),beamUndeformedRef (:,2,i))
9 hold on

10 plot(beamDeformedRef (:,1,i,e),beamDeformedRef (:,2,i,e)./maxU
)

11 hold on
12 %grid on
13 end
14 legendInfo{e} = [sprintf(’$\\phi_ %.0f$’,e)];
15

16 end
17 title(’mode shapes ’)
18 hl = legend(legendInfo);
19 set(hl, ’Interpreter ’,’latex ’)
20 matlab2tikz(’../08 _TeXplots/modeShapes.tex’);
21 legend off
22

23

24 fid = fopen(’../08 _TeXplots/normModeShapes.tex’,’w’);
25 fprintf(fid ,’%s\n’,’\documentclass{standalone}’);
26 fprintf(fid ,’%s\n’,’\usepackage{pgfplots}’);
27 fprintf(fid ,’%s\n’,’\pgfplotsset{compat=newest}’);
28 fprintf(fid ,’%s\n’,’\pgfplotsset{plot coordinates/math parser=false}

’);
29 fprintf(fid ,’%s\n’,’\newlength\figureheight ’);
30 fprintf(fid ,’%s\n’,’\newlength\figurewidth ’);
31 fprintf(fid ,’%s\n’,’\begin{document}’);
32 fprintf(fid ,’%s\n’,’\input{modeShapes.tex}’);
33 fprintf(fid ,’%s\n’,’\end{document}’);

Listing 6.23.: Summarized plot of mode shapes in MATLAB and LATEX.

Thus, as an result the first two natural frequencies for this example of an arbitrary multiple-
beam structure can be obtained in Table 6.2 along with the according mode shapes in
Figure 6.4.
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Table 6.2.: The first two natural frequencies of the multi-beam frame in [rad/s].
Nr. of eigenfrequency Euler-Bernoulli Timoshenko FEM

1 0.10448 0.137811 0.104
2 0.360978 0.297423 0.364

1

2

Figure 6.4.: The first two eigenmodes of the multiple beam frame.
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Having a tool to analyse the dynamics of structures without going through the meshing
process, as it is necessary for finite element programs, is practical. Another advantage
besides skipping the discretization part of modelling a technical problem is the fact that
analytical computations are representing the exact solution whereas finite element-based
calculations refer to an approximation of the exact solution. Although the results of a
finite element computation can nowadays be really accurate, there is still an open risk for
miscalculation depending on the refinement of the mesh. When it comes to the fine-tuning
of very sensitive technical equipment such as e.g. robotic arms etc. the exact solutions of
its natural frequencies can be essential as light vibrations can already lead to failure.

However, as everything has advantages, it comes with disadvantages. One disadvantage
could be the rather computational-intensive determination of the frequency function since
this requires building the determinant of the system matrix that can be quite big as the
number of beams forming the structure rises. A further weak point could be finding the
zeros of the characteristic function. This has to be done in a numerical matter using a
finite number of steps to determine the return of zero values within an interval. As the first
intention was to execute all computations using symbolic variables, this goal could not
be reached, since the determination of the natural frequencies requires ascertained values.
Thus, every symbolic variable must have an assigned number.

Overall this method can be seen as a good alternative to existing finite element based com-
putations and shows a different approach as to how the natural frequencies of an arbitrary
structure can be determined. Not being restricted to basic beam models while still obtain-
ing the analytical solution of a vibration problem can be seen as the main achievement of
this thesis. Further upgrades of this tool could be the expansion of the computations to the
three-dimensional space, including torsional vibrations, enlarging the dynamic analysis by
adding plates and arcs or considering structural damping in the computation.
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A. DIFFERENT APPROACH FOR THE GENERAL SOLUTION

In this thesis, hyperbolical functions are avoided in the general solution. The reason for
that is the asymptotic form of this formulation as the value of x gets bigger. Whereas, the
amplitudes of the exponential terms in the general solution do not exceed 1 independent
from the beam length L, see Figure A.1.

y = sinhx

y = coshx

L

�2

�1

1

2

x

y

y = e(x�L)

y = e�x

L

�2

�1

1

2

x

y

Figure A.1.: The difference of Ansatz functions for the general solution. The hyperbolic-
(left) and exponential approach (right).

Due to rounding errors, small changes in the system matrix could lead to instability of
the linear system when choosing the common hyperbolic functions in the general solution.
The proposed exponential and trigonometrical approach ensures stable computations even
at high frequencies. This can be proofed by observing the conditioning number for the
system matrix [eq] for the two different general solutions. The conditioning number gives
information about the sensitivity of a linear system to small changes in the system matrix.
The behaviour of the two different approaches can be seen in Figure A.2
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Figure A.2.: The behaviour of the conditioning number for the system matrix.

It can be observed that the linear system based on the commonly used general solution
(org) as W(x) = C1 cos(kx)+C2 sin(kx)+C3 cosh(kx)+C4 sinh(kx) becomes rather un-
stable for high frequencies. The instability of the linear system using the modified general
solution (mod) as W(x) =C1 cos(kx)+C2 sin(kx)+C3ek(x�L) +C4e�kx rises linearly in a
relatively moderate manner. Thus, the evaluation of natural frequencies should therefore
be improved by this change and has an effect when the natural frequencies need to be
accurately determined, particularly for higher frequency ranges.



B. THE BEHAVIOUR OF THE EIGENVALUES FOR A
TIMOSHENKO BEAM

Starting with the equation

l̄1,2 =�P
2
±
r⇣P

2

⌘2
�Q. (B.1)

When considering the relation l = ±
p

l̄ the eigenvalue l gets certainly an imaginary
part as soon as it holds

�P
2
±
r⇣P

2

⌘2
�Q < 0. (B.2)

Implementing the abbreviations

P = k

4i2(1+a) and Q = k

4(1�k

4i4a) (B.3)

into (B.2) leads to

k

4 >
1

i4a

. (B.4)

After applying the relations

k

4 = w

2 r A
E I

, i2 =
I
A
, a =

E A
G As

, As = kA, (B.5)

and simplifying, the equation (B.4) can be rearranged to

w

2 >
GAs

rI
! w

c >

s
GAs

rI
. (B.6)

With w

c being the critical value for w where a change in number ranges occur. Hence,
after crossing the critical frequency w

c it holds for a fact that the solution for all four
eigenvalues l1�4 possess an imaginary part. Therefore, the behaviour of the eigenvalues
were studied for the three frequency ranges
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I: 0 < w < w

c,
II: w = w

c,
III: w

c < w.

A test example of eigenvalues for a single-span beam were computed and plotted for all
three frequency domains I, II and III. Their real and imaginary parts can be studied in
Figures B.1 to B.3.

Figure B.1.: The eigenvalues for the frequency range I.

For the first frequency interval I:0 < w < w

c all four eigenvalues have the form a+ ib
consisting of a real part a and an imaginary part ib, see Figure B.1. The closer the ob-
served frequency approaches the critical frequency, the value range for l1�4 converge to
the axis.

When w reaches the exact value w

c, the total set of four eigenvalues can be distinguished
as l2 and l4 being absolutely in the real domain, and l1, l3 dropping their real part and
remaining entirely in the imaginary domain, see Figure B.2. After w passed the critical
frequency, l1 and l3 remain completely in the imaginary space, whereas l2 and l4 gain
the imaginary part to end up with the form a+ ib again.
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Figure B.2.: The eigenvalues for the frequency range II.

Figure B.3.: The eigenvalues for the frequency range III.
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