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Abstract

Data-driven methods have been a cornerstone in the development computational chemistry
algorithms since their inception, for example in the form of force �elds and semi-empirical
methods. The recent developments and renewed interest in the �eld of machine learning gave
rise to tools allowing for the treatment of extremely large data sets and �tting of models with
potentially millions of parameters. Open availability of these tools has led to a quick spread
of machine learning-based algorithms throughout several other �elds of research including
computational chemistry.
After a short introductory overview of the many suggested applications of machine learning

in computational chemistry, detailed investigations of four algorithms, with the common goal of
facilitating the simulation of heterogeneous catalysis on bimetallic nanoparticles, are presented.
The improvement of classical many-body potentials, typically used for the simulation of metallic
systems, by replacing some of their contributions by �exible machine learning expressions is
investigated. A previously proposed algorithm to accelerate the search for stable molecular
geometries is extended to molecule-speci�c coordinate systems. Various machine learning
methods are compared with respect to their performance as surrogate model in the calculation
of reaction pathways and energy barriers. Finally, a methodological improvement of a machine
learning-based approach to a fundamental unsolved problem in computational chemistry, the
description of the kinetic energy of electrons as functional of their density, is investigated.
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Kurzfassung

Datengestützte Methoden bilden seit Anbeginn der Computerchemie einen Eckpfeiler der
Methodenentwicklung, zum Beispiel in Form von Kraftfeldern und semi-empirischen Methoden.
Die jüngsten Entwicklungen auf dem Gebiet des maschinellen Lernens haben Algorithmen
und Programmpakete hervorgebracht, die die Behandlung extrem groÿer Datensätze und die
Anpassung von Modellen mit potenziell Millionen von Parametern ermöglichen. Die o�ene
Verfügbarkeit dieser Methoden hat zu einer schnellen Verbreitung von maschinellem Lernen in
verschiedenen anderen Fachgebieten, einschlieÿlich der computergestützten Chemie, geführt.
Nach einem kurzen einführenden Überblick über die vielen vorgeschlagenen Anwendungen

von maschinellem Lernen in der Computerchemie werden detaillierte Untersuchungen von
vier Algorithmen vorgestellt, deren gemeinsames Ziel es ist, die Simulation der heterogenen
Katalyse an bimetallischen Nanopartikeln zu erleichtern. Es wird versucht klassische Vielkör-
perpotentiale, wie sie typischerweise für die Simulation von metallischen Systemen verwendet
werden, durch den Einbau �exibler maschinell erlernter Ausdrücke zu verbessern. Ein
zuvor vorgeschlagener Algorithmus zur Beschleunigung der Suche nach stabilen molekularen
Geometrien wird auf molekülspezi�sche Koordinatensysteme erweitert. Verschiedene Methoden
des maschinellen Lernens werden im Hinblick auf ihre Genauigkeit als Näherungsmodell bei
der Berechnung von Reaktionswegen und Energiebarrieren verglichen. Abschlieÿend wird
eine methodische Verbesserung eines auf maschinellem Lernen basierenden Ansatzes für ein
grundlegendes, ungelöstes Problem in der Computerchemie, der Beschreibung der kinetischen
Energie von Elektronen als Funktional ihrer Dichte, untersucht.
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1. Introduction

In the introduction to his article on �Quantum Mechanics of Many-Electron Systems�, published
in 1929, Paul Dirac famously stated,1

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
di�culty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which can
lead to an explanation of the main features of complex atomic systems without too
much computation.

Decades later the hunt for these approximate practical methods, which in modern days almost
exclusively refers to computational algorithms, continues. These algorithms are typically
tailored to speci�c use cases due to some inherent trade-o�s. Highly accurate predictions for
comparison with high resolution experiments are for example limited to molecules containing
a few atoms due to the enormous computational e�ort required. For the simulation of large
systems or long time scales it is therefore necessary to sacri�ce some of the accuracy in order
to reduce the computational e�ort.
This trade-o� is also re�ected in the approach taken to derive the various methods. High

accuracy algorithms are designed by starting from �rst-principles (ab initio), paired with a
careful inspection of each introduced approximation with respect to the loss in accuracy and
the reduction in computational e�ort. In algorithms designed for large systems and time scales
these approximations have to be applied much more widely, and some of the computationally
most challenging contributions are typically replaced by parameterized expressions. Since the
parameters are �tted to high accuracy calculations or experimental results these algorithms
are often referred to as empirical methods. One of the most widely used computational
chemistry methods, density functional theory, straddles this boundary between ab initio and
empirical methods, o�ering both options, namely functionals derived purely from physics-based
arguments such as scaling laws, and others incorporating �t parameters that are tuned to a
speci�c class of molecules.

A fairly recent development is the emergence of machine learning-based methods. Through-
out this thesis the de�nition of machine learning given by Mitchell is used,2

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

These newly suggested methods forego the concept of physically motivated approximations and
directly approximate a functional relationship between the input to computational chemistry
algorithms and their output. This typically involves using highly �exible mathematical
functions containing a large number of adjustable parameters and vast amounts of data to

1



1. Introduction

�t the parameters. The rise of machine learning-based methods is driven by a general renewed
interest in the �eld of machine learning following increased public and private research funding
due to breakthroughs in the areas of computer vision and natural language processing. This
led to the development of a plethora of easily accessible tools which in turn facilitated the
application of machine learning in many di�erent �elds of research, including computational
chemistry.

The goal of this thesis is to identify combinations of computational chemistry methods and
machine learning algorithms that yield a signi�cant reduction of the computational e�ort, with
a special focus on the simulation of heterogenous catalysis on bimetallic clusters. While most of
the ground work in this regard has already been done by various research groups over the course
of the last few years, there is still much room for improvement in these early implementations.

Based on several reviews on the topic,3�13 Chapter 2 gives a rough overview of the broad
range of suggested machine learning-based computational chemistry algorithms. While all of
the presented concepts can be followed by simply considering machine learning algorithms as
black box �tting tools, a short introduction and references to detailed explanations are given
in Appendix A. The overview in Chapter 2 is intended to provide context for the detailed
investigations of four speci�c applications presented in Chapters 3-6, corresponding to previ-
ously published standalone manuscripts. In Chapter 3 a machine learning-informed approach
to the construction of many-body potentials for bimetallic nanoparticles is investigated. After
replacing some of the contributions by neural network expression, the newly �tted functions
are closely inspected to derive simple analytical formulas for an extended many-body potential.
Chapter 4 shows that a previously suggested Gaussian process regression-based geometry
optimization algorithm can be improved signi�cantly by using molecule-speci�c coordinates
instead of simple Cartesian coordinates. Since locating transition states is a crucial step for
the computational description of catalysis, several machine learning models are compared with
respect to their ability to accelerate a transition state search algorithm in Chapter 5. Chapter 6
covers a signi�cantly more fundamental problem by applying the insights from gradient-based
geometry optimization using machine learning to a toy model in the �eld of orbital-free density
functional theory. The resulting improved model of the kinetic energy functional is shown to be
signi�cantly more robust especially during the iterative search for minimum energy densities.
Finally, a conclusion and an outlook are provided in Chapter 7.

2



2. Machine learning in computational

chemistry methods

The main goal of most computational chemistry calculations is to solve the time-independent
Schrödinger equation,

Hmol(R, r)|Ψ(R, r)〉 = E|Ψ(R, r)〉, (2.1)

for the non-relativistic molecular Hamiltonian, which (in atomic units ~ = me = a0 = e = 1)
is given by

Hmol(R, r) = −
∑
a

1

2Ma
∇2

Ra
−
∑
i

1

2
∇2

ri+
∑
a>b

ZaZb
|Ra −Rb|

−
∑
a,i

Za
|Ra − ri|

+
∑
i>j

1

|ri − rj |
, (2.2)

whereMa, Ra, and Za are the masses, positions and charges of the Nnuc atomic nuclei, denoted
by indices a and b and ri are the positions of the Nelec electrons denoted by indices i and j.
A �rst step towards solving Equation 2.1 is the so-called Born-Oppenheimer approximation.14

Motivated by the large di�erence in mass between nucleons and electrons, the nuclear and
electronic degrees of freedom are separated by basis expansion of the total wave function,

Ψ(R, r) =
∑
i

χi(R)ψi(R, r), (2.3)

where the χi(R) are the expansion coe�cients and the basis functions ψi(R, r) are typically
chosen to be the eigenfunctions of the electronic Hamiltonian,

Helec(R, r) = −
∑
i

1

2
∇2

ri +
∑
a>b

ZaZb
|Ra −Rb|

−
∑
a,i

Za
|Ra − ri|

+
∑
i>j

1

|ri − rj |
. (2.4)

Inserting the expanded wave function in the molecular Schrödinger equation and multiplying
by 〈ψj(R, r)| from the left gives

〈ψj(R, r)|
(
−
∑
a

1

2Ma
∇2

Ra
+Helec

)∑
i

χi(R)|ψi(R, r)〉 = 〈ψj(R, r)|E
∑
i

χi(R)|ψi(R, r)〉.

(2.5)
Using the fact that the basis functions are solutions to the electronic Schrödinger equation
Helec|ψi(R, r)〉 = Ei|ψi(R, r)〉 and orthonormal 〈ψj(R, r)|ψi(R, r)〉 = δij yields

−
∑
a

1

2Ma

∑
i

[
2〈ψj(R, r)|∇Ra |ψi(R, r)〉 (∇Raχi(R)) + 〈ψj(R, r)|∇2

Ra
|ψi(R, r)〉χi(R)

]

+

(
−
∑
a

1

2Ma
∇2

Ra
+ Ej

)
χj(R) = Eχj(R).

(2.6)

3



2. Machine learning in computational chemistry methods

In the Born-Oppenheimer approximation the non-adiabatic coupling terms are neglected,
〈ψj(R, r)|∇Ra |ψi(R, r)〉∇Ra = 〈ψj(R, r)|∇2

Ra
|ψi(R, r)〉 = 0, simplifying the nuclear Schrödinger

equation to (
−
∑
a

1

2Ma
∇2

Ra
+ Ej(R)

)
χj(R) = Eχj(R). (2.7)

This leads to the picture of nuclei moving on the so-called potential energy surface (PES),
the hyperplane of solutions to the electronic Schrödinger equation which assigns a potential
energy value Ej(R) to each 3Nnuc-dimensional molecular geometry. Machine learning-based
algorithms for solving the nuclear Schrödinger equation have been suggested by several groups.
A review of these approaches was given by Sergei Manzhos.11 The remainder of this thesis,
however, is focused on solving the electronic Schrödinger equation and the classical motion of
the nuclei on the resulting PES.

2.1. Ab initio computational chemistry

Methods of solving the electronic Schrödinger equation without empirical parameters are
commonly referred to as ab initio methods. What follows is a quick review of some of
these algorithms intended to provide context for recently suggested machine learning-based
modi�cations. The explanations of standard computational chemistry methods presented
in this section closely follow the corresponding chapters in �Introduction to Computational
Chemistry� by Frank Jensen.15

2.1.1. Wave function-based methods

The Hartree-Fock (HF) method represents the basis for all wave function-based ab initio

methods. Following the variational principle, the energy of a trial wave function is minimized
to obtain the ground state energy E0.
The �rst approximation in Hartree-Fock theory is due to the fact that the electronic wave

function ψ is represented by a single Slater determinant,

Φ =
1√
Nelec!

∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) . . . φNelec

(1)
φ1(2) φ2(2) . . . φNelec

(2)
...

...
. . .

...
φ1(Nelec) φ2(Nelec) . . . φNelec

(Nelec)

∣∣∣∣∣∣∣∣∣ , (2.8)

where the so-called molecular orbitals φi(k) are orthonormal singe-electron wave functions
(〈φi|φj〉 = δij) occupied by electron k, and the determinant is used to build an anti-symmetric
wave function. Recently, several groups have suggested neural network-based representations of
the wave function16�21 and machine learning algorithms for the optimization of wave function
parameters.22�24

The energy of a Slater determinant is given by

E = 〈Φ|Helec|Φ〉 =

Nelec∑
i

〈φi|hi|φi〉+
1

2

Nelec∑
ij

(〈φj |Ji|φj〉 − 〈φj |Ki|φj〉) + Vnn, (2.9)
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2.1. Ab initio computational chemistry

where the nuclear repulsion,

Vnn = 〈Φ|
Nnuc∑
a>b

ZaZb
|Ra −Rb|

|Φ〉 = 〈Φ|Φ〉
Nnuc∑
a>b

ZaZb
|Ra −Rb|

=

Nnuc∑
a>b

ZaZb
|Ra −Rb|

, (2.10)

is an additive scalar, the core Hamiltonian,

hi = −1

2
∇2
i −

Nnuc∑
a

Za
|Ra − ri|

, (2.11)

is the sum of both one-electron operators, and the Coulomb operator,

Ji|φj(2)〉 = 〈φi(1)| 1

|ri − rj |
|φi(1)〉|φj(2)〉, (2.12)

and the exchange operator,

Ki|φj(2)〉 = 〈φi(1)| 1

|ri − rj |
|φj(1)〉|φi(2)〉, (2.13)

are two-electron operators.
Variation of the energy with respect to the molecular orbitals under the constraint of

orthonormality yields the Hartree-Fock equations,

Fiφi = εiφi, (2.14)

where the εi are referred to as molecular orbital energies and the Fock operator is de�ned as

Fi = hi +

Nelec∑
j

(Jj −Kj). (2.15)

In a �nal approximation the molecular orbitals are expanded using a linear combination of
atomic orbitals (LCAO),

φi =

Nbasis∑
j

cijϕj . (2.16)

Combining Equation 2.14 and Equation 2.16 yields the Roothaan-Hall equations,

FC = SCε, (2.17)

where F is the Fock matrix Fαβ = 〈ϕα|F |ϕβ〉 in the space of atomic orbitals, C is the matrix
of basis set expansion coe�cients, S is the overlap matrix Sαβ = 〈ϕα|ϕβ〉, and ε is a diagonal
matrix containing the molecular orbital energies.
Equation 2.17 has to be solved iteratively since the two-electron interactions in the Fock

operator depend on the set of occupied orbitals and thereby the coe�cient matrix C.
Reasonable starting points for the iteration are given by the extended Hückel theory25 or
the superposition of atomic densities approach.26 In the master's thesis of Johannes Cartus27

we investigated the computational savings achieved by a neural network-based initial guess.

The restriction to a single Slater-determinant in Hartree-Fock results in a mean-�eld
approximation, where each single electron only interacts with the averaged density of the

5



2. Machine learning in computational chemistry methods

remaining electrons. Methods for calculating the resulting deviation from the exact energy, the
correlation energy,

Ec = Eexact − EHF, (2.18)

are referred to as post-Hartree-Fock methods.

In the con�guration interaction (CI) approach the wave function is represented as a linear
combination of Slater determinants,

ψCI = a0ΦHF +
∑

S

aSΦS +
∑
D

aDΦD +
∑

T

aTΦT + . . . (2.19)

where the additional Slater determinants are constructed from the Hartree-Fock ground state
ΦHF by single (S), double (D), triple (T), etc. excitation. The expansion coe�cients can
be calculated by diagonalizing the so-called CI matrix. Due to the combinatorial nature of
the approach the number of possible determinants grows quickly with the number of excited
electrons restricting calculations for all but the smallest systems to single and double excitations
(CISD). However, only a small percentage of these con�gurations contributes signi�cantly to
the ground state wave function. Jeremy Coe suggested on the �y training of a neural network to
predict the important con�gurations in an iterative CI calculation.28,29 A similar approach for
determining the active space for a multi-con�guration self-consistent �eld calculation, where the
molecular orbital coe�cients and the CI expansion coe�cients are optimized simultaneously,
was suggested by Jeong et al.30

The Møller-Plesset (MP) method uses many-body perturbation theory to recover the
correlation energy. The molecular Hamiltonian is split in an unperturbed part built from
the sum of Fock operators,

H0 =

Nelec∑
i

Fi, (2.20)

and a �small� perturbation operator consisting of the di�erence between the full electron-
electron interaction and the averaged interaction

H1 = Vee − 2〈Vee〉. (2.21)

The factor two stems from the fact that Fock operators as de�ned in Equation 2.15 count the
mean-�eld interaction twice. This double counting is corrected by the �rst-order perturbation
term already contained in the Hartree-Fock method (see Equation 2.9). Therefore, the lowest
order correction containing correlation energy is given by the second-order Møller-Plesset (MP2)
method.

To overcome the lack of size consistency in truncated CI methods, the coupled cluster (CC)
approach uses a di�erent expansion in the basis of excited Slater determinants generated from
a Hartree-Fock reference using an excitation operator T . Using Equation 2.19, the operator T
can be de�ned as ψCI = (a0 + T )ΦHF. The coupled cluster wave function is given by

ψCC = eTΦHF =

∞∑
k=0

1

k!
T kΦHF, (2.22)

where the (implicit) expansion coe�cients are referred to as amplitudes. This exponential
approach yields signi�cantly higher accuracy even for truncated expansions such as the CCSD
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2.1. Ab initio computational chemistry

method, using only single and double excitations T = TS +TD, as the correlation energy due to
certain contributions is accounted for to in�nite order. The downside of the more sophisticated
wave function is that the amplitudes have to be calculated by iteratively solving the so-called
coupled cluster equations.
Townsend and Vogiatzis showed that the number of iterations needed to solve these coupled

cluster equations can be reduced signi�cantly by using machine learning to predict the CCSD
amplitudes from the results of the reference calculation.31

The CCSD(T) method, in which the contribution due to triple excitations is calculated using
perturbation theory, is often referred to as the �gold standard� of computational chemistry and
serves as reference for many investigations of machine learning models.

Both the error due to the limited number of basis functions (basis set approximation) and
the mean-�eld approximation can be reduced in a systematic increase in basis set size and
correlation contributions. Several schemes make use of this structure by suggesting simple
formulas to extrapolate toward the exact limit from select calculations at lower accuracy.32�35

In fact, several families of basis sets, such as Dunnings �correlation consistent� basis set,36

are explicitly designed with the goal of extrapolation in mind. Recently, several groups have
proposed machine learning-based alternatives for these simple extrapolation formulas.

Reference

Theory

Basis

CBS

..
.

HF

CC
SD

(T)

Exact
Solution

(1)
QZ

TZ

DZ (2)

(3)

MP
2

CIS
D

MP
4

Figure 2.1.: Correction of the two approx-
imations in the HF method. Inspired by
similar graphics in Ref. 37 and Ref. 38.

Balabin and Lomakina showed that neural
networks can be used to extrapolate the results
of small basis set calculations toward the com-
plete basis set (CBS) limit, i.e. along arrow (1)
in Figure 2.1, even if the basis set family does
not o�er a dedicated extrapolation formula.39

Schütt and VandeVondele demonstrated that
the number of basis functions needed for a
given accuracy can be reduced by using a ma-
chine learning-based geometry adapted atom-
centered basis.40

The highest reduction of computational ef-
fort is achieved by methods for extrapolation
to higher levels of theory, i.e. along arrow (2)
in Figure 2.1. In the �molecular-orbital-based
machine learning� method by Welborn et al.
matrix elements of the Fock, Coulomb, and exchange matrices are used to extrapolate from
a Hartree-Fock reference calculation toward MP2 and CCSD results.41�43 An alternative
approach using only the projected density matrix as input to a linear regression or neural
network model was presented by Chen et al.44 Townsend and Vogiatzis showed that their
scheme of calculating coupled cluster amplitudes from MP2 results can also be used as e�cient
extrapolation scheme.45

Simultaneous extrapolation of both the number of basis functions and the level of theory, i.e.
along arrow (3) in Figure 2.1, using a neural network was investigated in the group of Hiromi
Nakai.38,46

Similarly, the machine learning-based extrapolation of computational results toward various
experimental observables has been suggested by several groups.47�53 These methods typically
use density functional theory calculations (see Section 2.1.2) as reference since the hierarchical
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2. Machine learning in computational chemistry methods

relationship of the wave function-based methods can not be exploited in this application.
Similar extrapolation models that do not use any of the reference calculation results as input,

but instead model the deviation from higher level methods as function of the geometry such as
the ∆-learning approach by Ramakrishnan et al.,54 can be constructed from the PES models
presented in Section 2.2.

2.1.2. Density functional theory

The Hohenberg-Kohn theorem55 states that the ground state energy of a many-electron system
is uniquely determined by the electron density n(r). Therefore, even without knowledge of the
underlying wave function, the energy can be calculated as a functional of the density,

E[n] = T [n] + Ene[n] + Eee[n]. (2.23)

This would result in a signi�cant reduction in the computational e�ort required to calculate the
PES since the two spin electron densities are functions of only three spatial degrees compared to
the 4Nelec degrees freedom of a wave function (three spatial, one spin degree for each electron).
Motivated by the Hartree-Fock method, the electron-electron interaction functional Eee[n]

can further be divided into the Coulomb (or Hartree) functional J [n] and the exchange
functional K[n]. The attraction between nuclei and electrons and the Coulomb part of the
electron-electron interaction can be described by their classical counterparts

Ene[n] = −
∑
a

∫
Zan(r)

|Ra − r| dr (2.24)

and

J [n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| dr dr′. (2.25)

While several properties of the functionals for the kinetic energy T [n] and the exchange energy
K[n] have been derived, the exact functional forms are unknown and remain an active �eld of
research. Similar to post-Hartree-Fock methods an additional correlation functional EC[n] is
needed to describe the deviation of the mean-�eld approximation from the full electron-electron
interaction.

Kohn-Sham density functional theory

In the Kohn-Sham approach the kinetic energy is calculated as sum of the kinetic energy of a
single Slater-determinant,

TS =
∑
i

〈φi| −
1

2
∇2|φi〉, (2.26)

which is the exact solution of a non-interacting system, and a correction term TC due to the
electron correlation in interacting systems. These Kohn-Sham orbitals are also used to represent
the electron density,

n(r) =
∑
i

|φi|2. (2.27)

The total energy in the Kohn-Sham approach is given by

E[n] = TS [n] + Ene[n] + J [n] + Exc[n], (2.28)
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2.1. Ab initio computational chemistry

where the unknown contributions are collected in the exchange-correlation functional,

Exc[n] = (T [n]− TS [n]) + (Eee[n]− J [n]). (2.29)

The remaining task therefore is to �nd an expression for the exchange-correlation functional,
which is typically divided into a sum of two separate terms for the exchange and correlation
contributions,

Exc[n] = Ex[n] + Ec[n]. (2.30)

A formal classi�cation of approximate exchange-correlation functionals based on their complex-
ity, commonly referred to as Jacob's ladder of density functionals, was introduced by Perdew
and Schmidt.56

The �rst rung of this ladder is occupied by the so-called local density approximation (LDA),
which corresponds to the limit of a slowly varying density, where the exchange functional is
given by57

ELDA
x = Cx

∫
n(r)4/3 dr, (2.31)

with Cx = −3
4

(
3
π

)1/3. Similar results have been derived for the correlation energy in both
the high58�60 and low density limit.61 A formula for interpolation between these limits was
suggested by Vosko, Wilk and Nusair (VWN).62

Semi-local functionals improve on the local expressions by including derivatives of the density.
The Generalized-Gradient-Approximation (GGA) functionals on the second rung of Jacob's
ladder depend on the �rst derivative of the density, typically in the form of the rescaled variable

s =
|∇n(r)|
n(r)4/3

. (2.32)

This category includes some of the most widely used functionals, and most cited scienti�c
publications, such as the B88 exchange functional by Axel Becke,63 the Lee-Yang-Parr
(LYP) correlation functional,64 and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional.65

Third rung functionals, so-called meta-GGA functionals, depend on higher order derivatives
or alternatively on the orbital kinetic energy density,

τ =
1

2

Nocc∑
i

|∇φi|2, (2.33)

where Nocc refers to the number of occupied Kohn-Sham orbitals.
The hybrid functionals, which occupy the forth rung on the ladder, additionally include some

amount of �exact� exchange. Since the Kohn-Sham approach uses a single Slater determinant
this corresponds to the exchange energy K given by the Hartree-Fock method. Notable
examples are the B3 family of functionals by Becke66 and its most prominent member B3LYP67

given by

EB3LYP
xc = (1− a)ELDA

x + aEexact
x + b(EB88

x − ELDA
x ) + (1− c)EVWN

c + cELYP
c , (2.34)

with a, b, and c as �tting parameters.
The �fth and �nal rung contains functionals that additionally depend on the unoccupied

Kohn-Sham orbitals and fully non-local density functionals.
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2. Machine learning in computational chemistry methods

While data-driven approaches for �tting of free parameters have always been a core part
of the development of exchange-correlation density functionals, in recent years several groups
have suggested functionals that rely heavily on modern machine learning concepts.
One of the earliest examples of machine learning-based density functionals is the neural

network �t of the exchange-correlation functional by Tozer et al.68

Zheng et al.69 presented a neural network approach of determining the weighting parameters
for the terms in the B3LYP functional (Equation 2.34) based on system-speci�c properties such
as the multiplicity and the dipole moment.
Building on the idea of error estimation for density functionals,70 Wellendor� et al. suggested

a Bayesian learning approach to determine the parameters of both a non-local71 and a meta-
GGA72 exchange-correlation functional.
Similar empirical parameters are used in range-separated functionals. The electron-electron

interaction is divided into a short and a long range part,

1

r
=

1− erf(µr)

r
+

erf(µr)

r
, (2.35)

where erf(r) is the error function and µ is a parameter, and di�erent functionals are used for
the two contributions. Lui et al. presented a neural network to determine a system-speci�c
range-separation parameter µ for a long-range-corrected exchange-correlation functional.73

The transferability of neural network-based approximations to the whole Hartree-exchange-
correlation potential for one-dimensional systems was investigated by Nagai et al.74

Ji and Jung75 presented a local environment descriptor of the electron density, which was
used in combination with kernel ridge regression to �t the exchange-correlation potential in 16
small molecular systems. A similar neural network-based approach, using Maxwell-Cartesian
spherical harmonics as environment descriptors, was presented by Lei and Medford.76 Dick and
Fernandez-Serra used an expansion of the density in atom-centered basis functions as input to
a neural network-based correction to the PBE functional.77,78

The same idea of exploiting the dependence on local environments is used in convolutional
neural network-based exchange-correlation functional models. Schmidt et al. trained a one-
dimensional convolutional neural network to reproduce both the exact exchange�correlation
energy and its derivative in a two electron model. Ryczko et al.79 showed that deep two-
dimensional convolutional neural networks can be used to predict all energy components in
Kohn-Sham density functional theory, and even outright replace it by additionally mapping
the external potential to the corresponding electron density. A three-dimensional convolutional
neural network for the exchange-correlation functional in small two and four electron systems
was investigated by Zhou et al.80

Nagai et al.81 suggested neural network-based semi-local exchange-correlation functionals
on the local, GGA, and meta-GGA level and compared their performance to existing density
functionals on a large set of benchmark molecules.

Orbital-free density functional theory

The re-introduction of orbitals in the Kohn-Sham formalism results in a loss of the superior
scaling compared to wave function-based methods. Therefore, in order to realize the full
potential of density functional theory, an approximation to the elusive exact kinetic energy
functional, allowing for orbital-free calculations, has to be found.
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2.1. Ab initio computational chemistry

A starting point, the local density approximation of the kinetic energy functional, known as
Thomas-Fermi functional, is given by82�84

TTF[n] = CTF

∫
n(r)5/3 dr, (2.36)

where CTF[n] = 3
10(3π2)2/3. Von Weizsäcker suggested a gradient-based correction, which is

exact for the case of a single orbital,85

T vW =
1

8

∫ |∇n(r)|2
n(r)

dr. (2.37)

These simple approximations are, however, not accurate enough to be useful in computational
chemistry calculation. Suggested corrections including higher order derivatives86,87 have been
shown to diverge in the long-range limit.88 Therefore, most modern day research is focused on
non-linear functionals of the form

TNL[n] = C

∫ ∫
n(r)αω[n](r, r′)n(r′)β dr dr′, (2.38)

where ω is a dimensionless kernel, typically assumed to be a function of |r − r′|, and the
exponents α and β are parameters.

Snyder et al.89 showed that the kinetic energy functional can be approximated using machine
learning by training a kernel ridge regression model for a one-dimensional system of non-
interacting particles. This approach has also been successfully used to describe bond breaking90

and the universal part of the total energy density functional.91

Traditional approaches of �nding density functionals rely heavily on the known properties
of the exact functional. For example, the exact kinetic energy functional for non-interacting
particles is known to transform as92

T [nλ] = λ2T [n] (2.39)

for a coordinate scaling,
nλ(r) = λ3n(λr), (2.40)

that conserves the total number of particles
∫
nλ(r) dr =

∫
n(r) dr = N . All of the simple

approximations such as the Thomas-Fermi and the von Weizsäcker functionals ful�ll this
condition. Hollingsworth et al.93 investigated if imposing this scaling law on a kernel ridge
regression model can improve the machine learning kinetic energy functional.
While these models achieved chemical accuracy using only a minimal amount of training

data, this mapping of density to kinetic energy represents only part of the orbital-free density
functional theory problem. Following the variational principle, every density functional theory
calculation involves minimizing Equation 2.23 with respect to the density

δE[n]

δn
=
δT [n]

δn
+
δEne[n]

δn
+
δEee[n]

δn

!
= 0. (2.41)

Accurate predictions of the kinetic energy functional derivative are therefore just as important
as achieving chemical accuracy on the kinetic energy itself. The noisy nature and bad
extrapolation behavior of machine learning models for the kinetic energy functional often result
in the exploration of unphysical density regimes during the iterative search for the minimum
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energy density. Snyder et al.94 suggested a projection scheme based on principal component
analysis to restrict the search to the subspace of densities for which the machine learning
approximation is valid.
An alternative solution to this problem was proposed by Brockherde et al.95 Instead of

minimizing the total energy functional, they used a second machine learning model to directly
predict the minimum energy density for any given nuclear potential, a process they refer to as
Hohenberg-Kohn mapping. This density is then used to predict the total energy using machine
learning-based orbital-free density functional theory. Motivated by the ∆-learning approach,54

the same group recently showed that this two-stage approach can also be used to achieve coupled
cluster level accuracy at the computational cost of orbital-free density functional theory.96

In Ref. 97, reprinted as Chapter 6 of this thesis, we showed that the problem of noisy
functional derivatives can be reduced signi�cantly by including reference data for the functional
derivative into the training set. Since the computational e�ort of evaluating a kernel ridge
regression model increases with the size of the data set, we additionally tested a convolutional
neural network model which o�ers a constant evaluation time, independent of the number of
training examples.
A di�erent convolutional neural network-based approach was presented by Yao and

Parkhill.98 They used one-dimensional scans of the density and its gradient along bond
directions as input to model the kinetic energy of alkane molecules.
Seino et al.99 suggested a semi-local kinetic energy functional in the form of a neural network

mapping of the density and its �rst three derivatives to the kinetic energy density τ , where

T [n] =

∫
τ [n] dr. (2.42)

In later works they slightly modi�ed their approach by �tting an enhancement factor,

Fenh =
τ

τTF + τvW
, (2.43)

instead of the total kinetic energy density, and adding the inverse distances between r and the
nuclei {1/|r−Ra|, . . . , 1/|r−RNa |} to the list of neural network inputs.100,101

Golub and Manzhos102 presented a similar semi-local approach. However, instead of using
plain derivatives of the density they used �ve rescaled input variables,

z1 = n(r)5/3, z2 =
1

8

|∇n(r)|2
n(r)

− 1

4
∆n(r), z3 = n(r)1/3

(
∆n(r)

n(r)

)2

,

z4 = n(r)1/3

(
∆n(r)

n(r)

)(∇n(r)

n(r)

)2

, z5 = n(r)1/3

(∇n(r)

n(r)

)4

, (2.44)

motivated by the terms in the fourth-order gradient expansion to �t the kinetic energy density.
In a follow-up article, Manzhos and Golub103 investigated linear and kernel-based �ts of the

kinetic energy density as a function of density dependent variables such as the Thomas-Fermi
τTF, and von Weizsäcker kinetic energy density τvW.
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2.2. Potential energy models

2.2. Potential energy models

Most research is focused on directly learning the PES, i.e. mapping a given arrangement of
atoms to the corresponding potential energy. These machine learning potentials represent a
continuation of earlier data-driven approximations such as force �elds or direct interpolation
and �tting of the PES.
In order to be useful in computational chemistry calculations these approximations should

possess some of the properties of the exact PES. An example is the invariance with respect to
transformations such as rotation and translation of the coordinate system and the permutation
of atoms of the same element. Other desirable properties for the machine learning models
include the prediction of a smooth energy surface, to allow for the evaluation of forces and the
Hessian matrix, and the ability to generalize to arbitrarily sized systems.

2.2.1. Encoding invariance

Rasmussen andWilliams104 list three approaches to incorporate known invariances into machine
learning models. These methods are illustrated here by training neural networks on the simple
function,

f(x) = x+ sin(πx), (2.45)

which is point-symmetric, i.e. invariant to inversion

f(−x) = −f(x). (2.46)

The presented neural networks consist of a single hidden layer containing 16 neurons with
a hyperbolic tangent activation function and are trained on the mean squared error of 7
data points using the L-BFGS algorithm105,106 as implemented in the tensor�ow-probability
package.107 Note that all of the presented results are handpicked examples to highlight the
strengths and weaknesses of each approach and can not demonstrate some of the intricacies
such as added complexity in training.

2 1 0 1 2
x

2

1

0

1

2

f(x
)

Ground truth
Training data
NN prediction

Figure 2.2.: Neural network �t of the train-
ing data without symmetry adaptions.

Figure 2.2 shows the result of �tting a neural
network without any attempts to account for
the symmetry. As expected, the neural network
accurately reproduces the function at the train-
ing examples. However, without knowledge of
the point-symmetry of the underlying reference
function, the generalization to other values of
x is extremely poor. In fact, this result would
be classi�ed as a typical example of over�tting.

Given enough training data, machine learn-
ing models should be able to learn these invari-
ances. The �rst approach is therefore to gener-
ate more data by applying the transformation
to existing training examples. This is referred
to as data augmentation and a common technique employed to include rotational invariance
into image classi�cation models. One of the earliest applications is the distortion model by
Baird.108
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Figure 2.3.: Neural network �t of the aug-
mented training data.

Figure 2.3 shows that this approach can
signi�cantly improve the generalization of the
neural network �t for this simple example.
For point-symmetry, the data augmentation
approach results at most in a doubling of the
number of training data, that is when applied
to all examples. Note, however, that for more
complex invariances such as the invariance with
respect to permutation of atom of the same
species this would yield a massive increase in
the number of training examples that the model
needs to be trained on. Even worse, there is
no straight-forward strategy for extending the
data augmentation approach to parametrized

transformations. Translational invariance can for example be used to generate arbitrarily many
additional training examples. Augmented data sets are therefore unable to fully cover this
invariance.

Invariance with respect to these parametrized transformations are the main focus of
the second approach, the �tangent prop� method by Simard et al.109 Similar to other
regularization techniques, the main idea is to include an additional term to the loss function
in order to penalize deviations from the correct transformation behavior. For parametrized
transformations this additional penalty term takes the form of a directional derivative, i.e. the
tangent to the set of points that can be generated from applying the transformation to a data
point. The modi�ed loss function is given by

L̃ = L+ µ
M∑
i

∑
j

∥∥∥∥∥Tj(xi)− ∂fML(sj(x, α))

∂α

∣∣∣∣
x=xi,α=0

∥∥∥∥∥
2

= L+ µ

M∑
i

∑
j

∥∥∥∥∥Tj(xi)− ∂fML(x)

∂x

∣∣∣∣
x=xi

∂sj(xi, α)

∂α

∣∣∣∣
α=0

∥∥∥∥∥
2

, (2.47)

where L is the original loss function, fML is the machine learning model, sj(x, α) are
transformations parametrized by α, Tj(x) are the target values for the directional derivative
(for invariance Tj(x) = 0), and µ is a scaling factor. Translational invariance for example can
be enforced using three transformations corresponding to translation along the Cartesian axes,

s1(x, α) = x + αêx s2(x, α) = x + αêy s3(x, α) = x + αêz, (2.48)

where êx, êy, and êz denote unit vectors along the axes. For a potential energy model this yields
the condition that the sum over all atomic forces must be equal to the zero vector. Note that the
directional derivative in Equation 2.47 corresponds to a linearization of the transformation. For
non-linear transformations this approach therefore only ensures local invariance, i.e. invariance
with respect to small distortions. The �tangent prop� method can for example not be used to
include invariance under (arbitrarily large) rotations.
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Figure 2.4.: Neural network �t with addi-
tional penalty term.

Figure 2.5 shows the results of including
an additional penalty term in the loss func-
tion. Since the point-symmetry of the example
function in Equation 2.45 is a non-parametric
transformation, it can not be included using the
derivative approach in Equation 2.47. Instead,
the penalty consists of the mean squared di�er-
ence of the neural network prediction between
the right hand and left hand side of Equa-
tion 2.46 evaluated on 101 evenly distributed
values in the interval [−2, 2]. The regulariza-
tion strength µ is set to 1. Note that while
the penalty term can in theory be reduced
arbitrarily far during the training, the resulting
function is never perfectly invariant with respect to the transformations.

The third approach is to develop a suitable representation of the input which is invariant
to the transformations. Conversion to this representation can either be a preprocessing step,
the so-called feature extraction phase, or integrated into the model expression, which allows
adapting its parameters during the training process, commonly referred to as deep learning.
The most prominent example of this approach are convolutional neural networks,110,111 which
by construction include translational invariance.
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)
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Figure 2.5.: Neural network �t using an
invariant architecture.

Figure 2.5 shows the results of �tting a neural
network which includes point-symmetry. This
is achieved by using the absolute value of x
as input to the machine learning model and
multiplying the output by the sign function of
x,

f̃ML(x) = fML (|x|) sgn(x). (2.49)

While this results in a perfectly point-
symmetric function it introduces a disconti-
nuity at x = 0, highlighting the fact that
additional conditions, such as smoothness of
the result, might need to be considered during
the construction of a transformation invariant
model. This smoothness condition could for example be enforced by including an additional
multiplicative correction,

f̃ML(x) = fML (|x|) sgn(x)
(

1− e−x2
)
. (2.50)

For most applications in computational chemistry the invariances have to be reproduced
exactly. Consider for example a molecular dynamics simulations. Evaluating the potential
energy and atomic forces using a model without translational and rotational invariance would
lead to variations in the energy as a molecule moves through the simulation box, thus breaking
conservation of energy. Therefore, only the third approach represents a viable option.
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2. Machine learning in computational chemistry methods

2.2.2. Molecular and atomic descriptors

Several invariant representations of molecular geometries have been suggested as input for
machine learning models. A simple example of such invariant features are internal coordinates,
i.e. bond distances, bond angles, and dihedral angles. The Z-matrix representation built
from these coordinates is, however, not uniquely de�ned and not invariant with respect to the
ordering (indexing) of atoms.

A systematic extension is given by the construction of permutation-invariant polynomials
(PIP) from these features. From a given set of internal coordinates, referred to as monomials in
this context, permutation-invariant descriptors can be build as symmetric product. A detailed
discussion of PIP and a review of their application to PES �tting was given by Braams and
Bowman.112 For illustrative purposes, a possible set of PIP for the CO2 molecule, constructed
from the three inter-atomic distances RCC, RCO1 , and RCO2 , is given by113

d1 = RCC, d2 = RCO1RCO2 , d3 = (RCO1 +RCO2) /2. (2.51)

The speci�c choice of polynomials is not unique; typically, PIP are generated using an
automated procedure. In general the PIP approach is not transferable across di�erent systems
and limited to a few atoms as it involves no reduction of dimensionality.

The structure of covalently bonded molecules lends itself to a representation as an undirected
graph, consisting of vertices (atoms) and edges (bonds). These graphs can be described by the
so-called adjacency matrix A, where Aij = 1 if the atoms i and j are bonded. Geometry
information can be included by weighting the edges, for example using the inter-atomic
distances,

Aij = |Ri −Rj |. (2.52)

Ralaivola showed that a molecular descriptor can be derived from (random) paths, i.e.
sequences of edges, on the graph.114

Rupp et al.115 suggested a vectorial descriptor built from the ordered list of eigenvalues of
the Coulomb matrix,

Mij =

{
1
2Z

2.4
i for i = j

ZiZj
|Ri−Rj | for i 6= j,

(2.53)

where the exponent in the diagonal term is derived from a polynomial �t of the energy of
isolated atoms. Zero padding is used to ensure same length descriptor vectors for di�erently
sized Coulomb matrices allowing for transferability across systems.
Von Lilienfeld et al. compared the performance of the Coulomb matrix descriptor to their

suggestion of a Fourier series of atomic radial distribution functions.116

Since the representation of the Coulomb matrix by its eigenvalues might result in a loss of
information, Hansen et al. investigated alternative ways of deriving a permutation-invariant
descriptor from the matrix representation, such as sorting the rows and columns by their
norm.117 In a follow-up, they presented a modi�cation of the Coulomb matrix descriptor
speci�cally aimed at the robust description of chemical composition.118 In this so-called Bag-
of-Bonds approach the o�-diagonal entries of the Coulomb matrix are used to construct a
descriptor vector by sorting them into �bags� according to the atomic element of the involved
atom i and j. Equal size of the individual bags is again enforced by zero padding. The �nal
descriptor vector is constructed by concatenation of all bags.
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2.2. Potential energy models

Huang and von Lilienfeld generalized the Bag-of-Bonds descriptor in their so-called �BA-
representation�, where BA stands for bonds and angles.119 Instead of populating the bags with
elements of the Coulomb matrix they suggested using the energy contributions of the universal
force �eld (UFF) method120 and introduced additional bags for three- and four-atom terms.
In a similar approach, Faber et al. investigated molecular descriptors generated from specially

binned histograms of the bond distances, bond angles, and dihedral angles.121

The �many-body tensor representation� by Huo and Rupp represents a smooth, generalized
version of the BA-representation.122

Many of the most successful machine learning PES models calculate the total energy as a
sum of atomic contributions,

E =

N∑
i

εi, (2.54)

which allows for simple generalization to di�erently sized systems. The atomic energies εi are
assumed to be functions of a descriptor vector of their local environment. This approach is
often, though controversial, justi�ed by the nearsightedness principle of quantum chemistry.123

As a �rst step in the construction of these atomic descriptors, the local environment of each
atom i is typically restricted by a cuto� sphere of radiusRcut. In order to avoid discontinuities as
an atom j enters and leaves the cuto� sphere, atomic descriptors are faded to zero at Rij = Rcut

using a multiplicative cuto� function. A common choice is the cosine cuto� function,

fcut(Rij) =

{
1
2

(
cos
(
πRij
Rcut

)
+ 1
)

for Rij < Rcut

0 for Rij ≥ Rcut.
(2.55)

Note, however, that this results in a discontinuity in the second derivative at Rij = Rcut. An
in�nitely di�erentiable alternative is given by

fcut(Rij) =


1

1+exp

(
Rcut(Rcut−2Rij)
Rij(Rij−Rcut)

) for Rij < Rcut

0 for Rij ≥ Rcut.

(2.56)

The so-called atom-centered symmetry functions (ACSF), �rst introduced by Behler and
Parrinello,124 can be divided into two-body or radial descriptors and three-body or angular
descriptors. Examples from the detailed discussion of ACSF in Ref. 125 are the radial descriptor

Grad
i =

∑
j

e−η(Rij−Rs)2fcut(Rij) (2.57)

and the angular descriptor

Gang
i = 21−ζ

∑
j,k

(1 + λ cos θijk)
ζe−η(R

2
ij+R

2
ik)fcut(Rij)fcut(Rik). (2.58)

Slightly modi�ed functional forms of ACSF were suggested by Smith et al.126 Botu and
Ramprasand investigated projections of radial descriptors along select directions for the
description of vectorial properties.127
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2. Machine learning in computational chemistry methods

An excellent �rst-principles discussion of atomic descriptors and their mathematical proper-
ties was given by Bartok et al.128 They derived descriptors similar to ACSF by expanding the
local environment,

ρi(R) =
∑
j

Zjδ (R−Rij) fcut(Rij), (2.59)

in a product of radial basis functions gn and spherical harmonics Ylm,

ρi(R) =
∑
n

∑
l=0

l∑
m=−l

cnlmgn(|R|)Ylm(R̂), (2.60)

where R̂ denotes a unit vector along R and cnlm are expansion coe�cients. The so-called power
spectrum pnl and bispectrum bnll1l2 can be constructed from the expansion coe�cients,

pnl =

l∑
m=−l

c∗nlmcnlm, bnll1l2 =

l∑
m=−l

l1∑
m1=−l1

l2∑
m2=−l2

c∗nlmC
ll1l2
mm1m2

cnl1m1cnl2m2 , (2.61)

where the summation overm ensures rotational invariance and C ll1l2mm1m2
are the Clebsch-Gordan

coe�cients. As an alternative to the radial basis functions they suggested encoding the distance
information as a third angle θ0 = |R|/R0, where R0 > Rcut is a parameter. Using four-
dimensional hyperspherical harmonics U jm′m(ϕ, θ, θ0) as basis for the expansion in Equation 2.60
the so-called SO(4) power spectrum and bispectrum descriptors can be constructed similar to
their standard SO(3) counterparts by summation over the indices m′ and m.

In the standard approach separate radial and angular descriptors are de�ned for each possible
pair and triple of atom types. This results in a rapid growth of the descriptor space with the
number of di�erent chemical elements and restricts the approach to data sets containing only a
handful of atom types. Gastegger et al.129 suggested modi�ed ACSF using element-dependent
weighting functions. The new radial descriptor is then given by

G̃rad
i =

∑
j

g(Zj)e
−η(Rij−Rs)2fcut(Rij). (2.62)

Similarly, the angular descriptor Gang
i is modi�ed using the weighting function h(Zj , Zk). They

showed that using the simple weighting functions g(Zj) = Zj and h(Zj , Zk) = ZjZk the
generalization of machine learning energy predictions can be improved signi�cantly.
An extension of this weighting method is obtained by allowing for vector-valued functions

g(Zj) and h(Zj , Zk). A weight vector g could for example be constructed from element-speci�c
properties such as the ionization potential and the electron a�nity. In the so-called �embedding�
approach, commonly used in natural language processing, this mapping from a discrete input
space to a real-valued vector is learned as part of the training procedure of a deep learning
model.

The presented atomic descriptors can also be used to construct molecular descriptors for
example using the �regularized entropy match� approach by De et al.130
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2.2. Potential energy models

2.2.3. Neural networks-based models

One of the earliest examples of a neural network-based PES model was presented by Sumpter
and Noid in 1992.131 Most early applications used permutation-invariant polynomials as input
and are therefore limited to low dimensional systems. Extensive reviews of these e�orts can be
found in Ref. 3 and Ref. 4. A review of the current state of the art in neural network-based
potential energy models for small systems was given by Manzhos and Carrington.12

In order to allow for simulations of large scale systems Hobday et al.132 suggested to modify
existing many-body potentials, such as the Terso� potential,133,134 using neural networks. In
Chapter 3 we investigated a similar extension to a many-body potential by replacing some of
the contributions in the �second moment approximation tight binding� potential with neural
network expressions.

A more general approach was presented in a seminal article by Behler and Parrinello.124

They suggested to model the total energy as a sum of atomic contributions (see Equation 2.54)
described by element-speci�c atomic neural networks using atom-centered symmetry function
descriptors as inputs.
Artrith et al.135 extended the method to include long-range electrostatic interactions,

Eel =
1

2

∑
i,j

qiqj
Rij

(2.63)

by modeling atomic charges qi using separate atomic neural networks. A comprehensive review
of the method was given by Jörg Behler.136

A modi�cation to the Behler-Parrinello approach was suggested by Liu and Kitchin who used
a single neural network with multiple outputs for all chemical elements instead of separate
atomic neural networks.137 This approach, e�ectively identical to weight sharing between
the hidden layers of the atomic neural networks, is especially useful if the number of training
examples is limited or in applications where the time spent on neural network training is critical
such as on the �y learning.
More recent developments typically employ deep neural network architectures where a

construction of the invariant representation is part of the model and the corresponding
parameters are adapted during training. Examples include the �deep tensor neural networks�,138

and �SchNET�139 models by the group of Tkatchenko and Müller, and the �deep potential
molecular dynamics� model by Zhang et al.140

An alternative energy partitioning is given by the so-called many-body expansion, in which
the total energy is calculated as a sum of n-body energy contributions,

E =
∑
i

E1−body(i) +
∑
ij

E2−body(i, j) +
∑
ijk

E3−body(i, j, k) + . . . (2.64)

Since the contributions of higher order terms decrease rapidly, this expansion can typically be
truncated at n = 3 or n = 4. An advantage of the approach is that permutation-invariant
polynomials of internal coordinates can be used as input since the individual many-body terms
are low-dimensional. Manzhos and Carrington presented one of the �rst neural network-based
�ts of the many-body contributions.141 Similar to the idea of element-speci�c atomic neural
networks, using a common n-body neural network for each unique combination of chemical
element, as suggested by Malshe et al., can signi�cantly reduce the number of �t parameters.142

Lubbers et al. combined both energy partitioning approaches by modeling the atomic energy
from Equation 2.54 using the many-body expansion from Equation 2.64.143
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2. Machine learning in computational chemistry methods

2.2.4. Kernel-based models

Several of the early examples of PES interpolation, such as the reproducing kernel Hilbert
space (RKHS) method144,145 and the modi�ed Shepard method,146,147 are closely related and
in some cases even mathematically equivalent to kernel-based machine learning models. The
use of Cartesian or internal coordinates as input does, however, limit these methods to low
dimensional systems.
Analogously to the Behler-Parrinello atomic neural networks, the �Gaussian approximation

potentials� (GAP) by Bartok et al.148 partition the total energy in a sum of atomic energies.
These atomic contributions are modeled using Gaussian process regression with a squared
exponential kernel function in the space of SO(4) bispectrum descriptors. Latter applications
of the method typically employed the so-called �Smooth overlap of atomic positions� (SOAP)
kernel,128 which can be evaluated as a dot-product kernel of SO(3) power spectrum descriptors.
A detailed explanation of the method was given by Bartók and Csányi.149

The �spectral neighbor analysis potential� (SNAP) by Thompson et al. is closely related to
GAP.150 Instead of Gaussian process regression, a simple linear model for the atomic energy
contributions in the space of SO(4) bispectrum descriptors is used, where the parameters are
determined by weighted least-squares regression.

Chmiela et al. presented the �gradient-domain machine learning� (GDML) approach, a
special kernel ridge regression model for atomic forces.151 The resulting force predictions
are conservative, i.e. curl free, by construction. Other machine learning potential energy
models include this property by calculating forces as analytical derivatives of the total energy
expression.
In a follow-up study the approach was extended to include permutational invariance resulting

in the so-called symmetrized GDML (sGDML) method.152 This is achieved by using a
symmetrized kernel function,

ksym(x,xi) =

S∑
q

k(x,Pqxi), (2.65)

where x and xi are molecular geometries and Pq is a permutation operator. While this approach
is conceptually identical to the data augmentation presented in Section 2.2.1, the resulting
increase in computational e�ort is kept low by including the additional training examples at
the kernel level.
A similar approach of kernel-based learning of atomic forces was investigated in the group of

De Vita. These investigations include studies of on the �y training for molecular dynamics,153

symmetry invariant kernels,154 and n-body kernels for many-body force �elds.155

The �graph approximated energy� (GRAPE) suggested by Ferre et al. uses adjacency ma-
trices as graph-based description of the local environments for atomic energy contributions.156

A translation and rotation invariant kernel is derived from random walks on the local graphs.
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2.3. Structure search

2.3. Structure search

For a given method that can be used to evaluate the PES most problems in computational
chemistry reduce to �nding stationary points such as (local) minima and saddle points on the
PES. While there are general purpose algorithms to locate stationary points on high dimensional
surfaces, certain methods have been developed speci�cally for the application to molecular
systems, signi�cantly reducing the number of computationally expensive evaluations of the
PES.

2.3.1. Local geometry optimization

A routine task in computational chemistry is the search for local minima corresponding to
stable molecular geometries. What di�erentiates the optimization of molecular geometries
from other problems with respect to optimization algorithms is that evaluating gradients of the
PES requires a similar time as the evaluation of the energy. Typical optimization algorithms,
however, assume that the evaluation of an n-dimensional gradient requires n times the e�ort
of a single function evaluation and are therefore trimmed to avoid frequent calculation of
gradients.157 An in-depth discussion of general optimization problems is given in Fletcher's
textbook on �Practical Methods of Optimization�158 which is the primary source for the
standard optimization algorithms presented in this section.
All the presented optimization methods can be described using the following algorithm.

Starting from an initial guess x0 for the minimum energy structure:

1. Evaluate the PES at xi to obtain the energy Ei, the gradient vector gi,
and possibly the Hessian matrix Hi.

2. Check for convergence, typically by comparing the gradient to a threshold.

3. Fit an approximate model of the PES using the available information.

4. Calculate the displacement ∆x by �nding the minimum of the model PES.

5. Set xi+1 = xi + ∆x and go to step 1.

The main di�erence of the various optimization algorithms is given by the choice of
approximate model for the PES used in step 3.

Newton-Raphson

The standard Newton-Raphson method can be obtained by using a second order Taylor series
expansion as model PES in step 3 of the optimization algorithm. Note that a �rst order
approximation can not be used since a �at plane does not contain stationary points, rendering
step 4 of the optimization algorithm impossible. Using the symbols de�ned in step 1 of the
optimization algorithm, the second order Taylor series is given by

E = Ei + ∆x>gi +
1

2
∆x>Hi∆x + . . . (2.66)
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2. Machine learning in computational chemistry methods

In this simple example the minimum of the model can be calculated analytically by setting
∂E
∂∆x = 0, which yields the so-called Newton-Raphson step,

∆x = −H−1
i gi. (2.67)

Note that this algorithm is therefore only dependent on PES information from the geometry
at step i and immediately discards all knowledge from previous steps.

Quasi Newton methods

Evaluation of the Hessian is computationally expensive. Therefore, in the so-called quasi
Newton methods the Hessian is approximated using information from previous steps. The de-
facto standard method for approximating the Hessian is the Broyded-Fletcher-Goldfarb-Shanno
(BFGS) algorithm. Using the step size,

∆xi = xi+1 − xi, (2.68)

and the change in the gradient vector,

∆gi = gi+1 − gi, (2.69)

the update formula for BFGS is given by

HBFGS
i+1 = Hi +

∆g∆g>

∆g>∆x
− H∆x∆x>H

∆x>H∆x
. (2.70)

In practice it is more e�cient to update the inverse Hessian G = H−1 needed in the Newton-
Raphson stepi, which can be achieved using the formula

GBFGS
i+1 = Gi +

(
1 +

∆g>G∆g

∆x>∆g

)
∆x∆x>

∆g>∆x
− ∆g∆x>G+G∆x∆g>

∆g>∆x
. (2.71)

An initial guessH0 orG0 is needed for the �rst step. Typically, a unit matrix or problem-speci�c
scaled diagonal matrices are used. For the application in molecular geometry optimizations a
informed guess such as the Hessian from a force �eld calculation can be used to signi�cantly
accelerate convergence.159�162

Figure 2.6 shows the optimization of a diatomic molecule using a combination of the Newton-
Raphson step and the BFGS update scheme. The PES for the molecule is given by a Morse
potential,

E = De

(
e−2α(r−re) − 2e−α(r−re)

)
, (2.72)

with parameters De = 5.0, α = 1.0, and re = 2.0. The starting position is set to r0 = 3.0 and
the single entry in the Hessian is initialized to H0 = 2.0. The oscillatory behavior depicted
in Figure 2.6 can be eliminated in higher dimensional systems by using the Newton-Raphson
formula to determine a search direction ∆x = −αH−1

i gi and applying an iterative line search
algorithm to determine a suitable step size α.

iNote that this naming convention for H and G is reversed with respect to the notation used in the textbook
by Fletcher.158
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Figure 2.6.: Optimization of a dimer using the BFGS algorithm and the Newton-Raphson step.

Machine learning-accelerated geometry optimization

Further improvement can be achieved by using all the available data to �t more complex models,
such as the machine learning potentials presented in Section 2.2. For this speci�c application
the machine learning models are not strictly required to include any invariances due to the fact
that the training data has a constant atomic composition and the model is only applied to a
limited region of the PES.
Figure 2.7 shows the performance of machine learning-accelerated geometry optimization

for the dimer example using a 1D Gaussian process regression model combined with a
standard Newton-Raphson BFGS optimization to locate the model PES minimum. A squared
exponential covariance function with �xed length scale of l = 1.69 is used. This value is
chosen such that the �rst step ∆x is approximately the same as the �rst Newton-Raphson step
in Figure 2.6. The main advantage illustrated by this example is that the machine learning
model can make use of all available PES information and thereby avoid the oscillating behavior
exhibited in Figure 2.6.
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Figure 2.7.: Optimization of a dimer using Gaussian process regression to model the
approximate PES.

This additional �exibility in the model PES does, however, come with several di�culties and
computational overhead which has to be made up for by a signi�cant reduction in the number
of PES evaluations.
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The most signi�cant increase in computational e�ort is due to step 3, the �tting/training of
machine learning PES approximations. Since the model has to be constructed on the �y during
the optimization, the training procedure has to be executed fully automatically without manual
tuning or inspection. Ideally, the model can be easily updated every iteration to incorporate the
newly added data without starting from scratch. Most implementations therefore use Gaussian
process regression which o�ers the additional advantage of a closed form solution, eliminating
the dependence on randomly initialized weights typically used in neural networks.
Another source of additional computational overhead comes from the fact that there is no

analytical method for �nding the closest local minimum on the model PES in step 4 of the
algorithm. Using an iterative search algorithm such as a quasi Newton method to locate this
minimum is only feasible the evaluation of the machine learning approximation is orders of
magnitude faster than evaluating the ab initio PES.
Denzel and Kästner163 showed that using Gaussian process regression in Cartesian coordi-

nates the reduction in ab initio PES evaluations can outweigh the additional computational
overhead even for small molecules. Similar algorithms were suggested by Garijo del Río et
al.,164 and Schmitz and Christiansen.165

In Ref. 166, reprinted as Chapter 4 of this thesis, we showed that the GPR based
optimization can be further improved by transforming the input from Cartesian coordinates to
molecule-speci�c internal coordinate systems that are used by most state-of-the-art geometry
optimization packages.
Recent advances in this �eld include the incorporation of higher order derivatives,167 and

the extension to anisotropic kernels.168,169

2.3.2. Transition state search

Other points of interest on the PES, especially for the investigation of reactions, are the so-
called transition states. In mathematical terms these are �rst order saddle points, that is
minima in all but one coordinate and characterized by a zero gradient and a single negative
eigenvalue of the Hessian matrix. Based on this property of a negative eigenvalue, Cerjan and
Miller170 suggested an algorithm for locating transition states. After rewriting the Newton-
Raphson step from Equation 2.67 in terms of eigenvalues bj and eigenvectors Vj of the Hessian
matrix H,

∆x =
∑
j

VjV
>
j gi

bj
, (2.73)

the eigenvalue spectrum corresponding to a �rst order saddle point can be enforced by shifting
the eigenvalues,

∆x =
∑
j

VjV
>
j gi

bj − λ
. (2.74)

Di�erent methods for determining the shift parameter λ were suggested by Cerjan and Miller170

and Simons et al.171

A more general algorithm for locating stationary points was suggested by Banerjee et al.172

In the so-called rational function optimization (RFO) method the Taylor-Series expansion of
the Newton-Raphson step is replaced by a Padé approximation to order [2, 2],

E = Ei +
∆x>gi + 1

2∆x>Hi∆x

1 + ∆x>S∆x
, (2.75)
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where S is a symmetric matrix of expansion coe�cients, typically set to a diagonal (or unit)
matrix. Note that the denominator contains no linear term in order to ful�ll the conditions
∂E
∂∆x

∣∣
∆x=0

= g and ∂2E
∂∆x2

∣∣∣
∆x=0

= H. The step ∆x is determined by �nding the stationary

points of the Padé approximation characterized by ∂E
∂∆x = 0. This yields an eigenvalue equation

of dimension (n+1),

(
Hi gi
g>i 0

)(
∆x
1

)
= λ

(
S 0
0> 1

)(
∆x
1

)
. (2.76)

The resulting eigenvectors correspond to steps towards di�erent stationary points. A step in the
direction of a minimum is obtained from the eigenvector for the lowest eigenvalue. Similarly,
the eigenvector corresponding to the second lowest eigenvalue can be used to locate a �rst order
saddle point. In order to increase the stability of transition state searches most optimization
packages use a slight modi�cation of the algorithm, the partitioned RFO.173

As shown by Denzel and Kästner174 these single point transition state search algorithms can
be accelerated using machine learning in exactly the same way as the search for minimum
energy con�gurations. Similarly, Koistinen et al.175 used Gaussian process regression in
inverse distance coordinates to reduce the number of PES evaluations for the so-called dimer
method.176�179 A more sophisticated transition state algorithm based on the predicted variance
of a Gaussian process regression model was suggested by Fernández et al.180

Two-sided transition state search

A di�erent class of transition state algorithms, often referred to as two-sided transition state
search or string methods, is focused not only on locating the saddle point but also exploring
the reaction path connecting two minima, commonly referred to as minimum energy path.
Since these algorithms involve signi�cantly more evaluations of the PES possible savings in
computational e�ort due to the combination with machine learning methods are even higher.
In the nudged elastic band (NEB)181�183 algorithm the path between two minima is

discretized into a band of so-called images which are connected by �ctitious springs. During
the iterative relaxation procedure the images move according to two forces. The �rst force,
corresponding to the negative PES gradient, is applied perpendicular to the band and results
in a minimization of the potential energy for all images. The second force, due to the newly
introduced springs, is applied tangential to the band and ensures an even distribution of images
along the band. More detailed descriptions of the method and variants thereof are given in
Section 5.3.1, Ref. 184, and Ref. 185.
Implementations of machine learning-accelerated nudged elastic band calculations based

on atomic neural networks and Gaussian process regression in Cartesian coordinates were
suggested by Peterson186 and Koistinen et al.,187 respectively. In Ref. 188, reprinted as
Chapter 5 of this thesis, we compared the performance of these two previously suggested
machine learning models and Gaussian approximation potentials for the task of accelerating
NEB calculations on both a simple benchmark system and a catalytic reaction.
Recently suggested modi�cations for the Gaussian process regression-accelerated NEB

method include di�erent acquisition functions189 and inverse distance coordinates.190 Denzel
et al.191 introduced a Gaussian process regression-accelerated version of the minimum energy
path method by Vaucher and Reiher.192
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2.3.3. Global geometry optimization

Local minima can be used to divide the PES into so-called basins of attraction de�ned as the set
of points from which gradient descent optimization leads to the same minimum. The number
of these basins increases exponentially with the system size rendering exhaustive search for the
global minimum impossible.193 Nevertheless random search has been used successfully to locate
experimentally con�rmed global minima.194 This can be attributed to chemical constraints on
the search space and the structure of the PES. For example, the Bell-Evans-Polanyi15,195�197

principle implies that low energy basins are separated from even lower lying basins by small
energy barriers. This leads to a clustering of these low energy minima in regions commonly
referred to as funnels.

Structure
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basins
funnel funnel
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Figure 2.8.: Illustration of various global
optimization methods. Inspired by similar
plots in Ref. 198 and Ref. 199.

In general, global optimization algorithms
consist of two parts. The �rst part is method
to suggest a new atomic con�guration, ideally
corresponding to jumps from basin to basin
(and funnel to funnel). Simple ideas include
shaking, i.e. small random perturbation to
the atomic positions, short molecular dynamics
runs, and the exchange of atoms of di�erent
species.
More complex methods are typically based

on distorting the PES and subsequent gradient
descent or molecular dynamics steps. Stillinger
et al. demonstrated that several of the local
minima for 13 atom Lennard-Jones clusters can
be eliminated by varying the exponent in the
interaction.200 A more general approach is to

modify the PES by an additive bias potential. In metadynamics201 and similar earlier
suggestions, such as the �ooding method by Grubmüller,202 local minima are �lled using a bias
potential constructed as sum of Gaussians in a reduced space of coordinates typically referred
to as collective variables. An opposite approach is taken by the basin hopping algorithm203

which aims to remove all transition states between local minima by replacing the PES in a
basin with the energy of its local minimum.

The second part is a method of sampling, i.e. choosing which of the suggested atomic
con�gurations to accept, typically based on the Metropolis-Hasting method.204 More sophisti-
cated sampling methods include simulated annealing,205 parallel tempering206,207 and nested
sampling.208,209 The minima hopping algorithm198 purposefully avoids a thermodynamic
distribution by introducing a search history to discourage repeated sampling of the same basin.

A di�erent class of global optimization algorithms, typically categorized as machine
learning, are the biology inspired evolutionary algorithms. The most prominent example
genetic algorithms are among the earliest applications of machine learning in computational
chemistry.210�215 Particle swarm optimization, a di�erent variant of evolutionary algorithms,
has also been suggested for global geometry optimization.216,217

Common to all these optimization methods is the large amount of PES evaluations needed
to locate a global minimum, which restricts them to computationally inexpensive methods
of calculating the potential energy. Therefore, combinations of the machine learning PES
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models presented in Section 2.2 with global optimization algorithms such as random structure
search,218,219 basin hopping,220�225 and evolutionary algorithms226�234 were suggested by
several groups.
More recent examples leverage uncertainty predictions of the machine learning models for

fully automated exploration of the PES based on active learning.235�240

Jørgensen et al.241 introduced the �atomistic structure learning algorithm�, a convolutional
neural network trained using reinforcement learning to predict the global minimum of 2-
dimensional structures. Suggested improvements to the method include the generalization to 3-
dimensional systems and the combination with machine learning potential energy models.242�244

Machine learning-based dimensionality reduction techniques were also suggested as a data
driven method of constructing collective variables for metadynamics245�252 and the related
variationally enhanced sampling method.253�255

Building on the concept of distorting the PES, Sørensen et al.256�258 suggested an
optimization step based on cluster analysis in an atomic feature space for use in basin hopping
and evolutionary algorithms.

One of the most prominent challenges in the realm of global optimization is protein folding,
i.e. locating the minimum energy geometry (tertiary structure) for a given sequence of amino
acids (primary structure). The biannual critical assessment of structure prediction (CASP)
experiment259�261 showcases the most recent advances in this �eld. Since CASP12 in 2016 the
competition is increasingly dominated by deep learning-based algorithms.262�270

Gln Glu Cys Ser Leu Gln
Ser

Cys Thr
Gln

His
Gln

Figure 2.9.: Machine learning-based protein
folding algorithm.

This special class of global optimization al-
gorithms typically aims to predict the contact
points, that is regions where di�erent parts
of the protein chain are in close proximity.
Figure 2.9 illustrates the algorithm presented in
Ref. 270. First, a deep neural network is used
to predict the distance matrix between speci�c
carbon atoms of the individual residues (amino
acids) using the given sequence of amino acids
and features derived from comparison with a
protein database as input. In a second step the
�nal three-dimensional structure is constructed
by optimization of a protein-speci�c potential
derived from the machine learning prediction of the distance matrix.
In CASP14 (2020) the �AlphaFold2� model, presented by the DeepMind group, achieved

unprecedented accuracy with a root mean squared deviation of 1.6 Å.271 This is comparable
to the accuracy of experimentally obtained results.

27





3. Embedded atom model potentials for

Pt-Ni nanoclusters improved by machine

learning: a compromise between

�exibility and physical meaning

This chapter corresponds to the manuscript
�Embedded atom model potentials for Pt-Ni nanoclusters improved by machine learning: a
compromise between �exibility and physical meaning� by Ralf Meyer, Martin Schnedlitz,
Riccardo Ferrando, and Andreas W. Hauser, currently in preparation for publication.

Contributions:

� Ralf Meyer ran the density functional theory calculations, implemented, trained, and
evaluated the machine learning models, and wrote the �rst draft of the manuscript.

� Martin Schnedlitz generated the data set using the global optimization program.

� Riccardo Ferrando provided the global optimization program, and contributed to the �nal
manuscript.

� Andreas W. Hauser supervised the method development, contributed to the manuscript,
and provided the funding.
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3.1. Abstract

A many-body potential for the Pt-Ni system, based on the second-moment approximation to
tight binding, is systematically improved via machine learning for applications as a DFT energy
predictor in the nanometer regime. In a series of modi�cations, the embedding function as well
as the pair density functions are replaced by neural network expressions. We investigate the
performance of these hybrid systems and compare them to the purely mathematically inspired
Behler-Parrinello atomic neural network model, carving out the advantages and disadvantages
of hard-wired physical knowledge versus maximum �exibility.

3.2. Introduction

Metallic nanoclusters are quantum objects of �nite size, situated somewhere between few-
atom systems and the bulk. For small aggregates, density functional theory (DFT) is the
most suitable choice, while even smaller systems might still be accessible via more costly wave
function-based methods. However, for larger systems, consisting of hundreds or thousands of
atoms, practical evaluations of the highly complicated energy landscapes or potential energy
surfaces (PES) are only feasible via approximations such as inter-atomic potentials or force
�elds.
A typical choice for mixed-metallic structures are many-body potentials derived from the

embedded atom model (EAM).272�274 As shown by Gupta,275 the inclusion of a many-body
term in addition to simple pair-wise interactions is necessary to accurately describe surface
relaxation. In the EAM approach, the binding energy is calculated as a sum of N atomic
contributions E =

∑N
i Ei. The latter, consisting of a pair interaction and a term describing

the energy associated with embedding an atom in the local density of surrounding atoms, are
given by

Ei =
1

2

N∑
j 6=i

φαβ(rij) + Fα

 N∑
j 6=i

ραβ(rij)

 , (3.1)

where φαβ(rij) is a typically repulsive pair potential, Fα(ρ) is the embedding function, ραβ(rij)
is a pair-wise density function and the indices α and β denote the element of the atoms i and j,
respectively. Mathematically equivalent models have been suggested by Smith and Banerjea276

as well as Ercolessi, Tosatti, and Parrinello.277 Prominent examples in the EAM family
include the second-moment approximation to the tight-binding (SMATB),275,278�280 the Finnis-
Sinclair,281 and the Sutton-Chen282 potentials. Note that this original energy expression was
intended for nearly �lled d-band transition metals and is only a function of pair-wise distances.
The approach has also been extended to include angular dependence for the description of
covalently bond materials in the so-called modi�ed embedded atom model (MEAM).283�285

A recent extension of the embedded atom model also takes polarization e�ects into account,
aiming at the description of surface interactions between metal structures an polar, yet non-
reactive species.286

In this article we revisit the idea of Hobday et al.132 and introduce additional complexity to
physically derived many-body models via machine learning methods. In a series of step-wise
modi�cations we investigate the transition from physically motivated approaches for the Pt-
Ni system, containing only a handful of parameters, towards highly �exible potentials based
on neural networks featuring thousands of weight parameters. We study their performance
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3.3. Structure search

with respect to the most challenging problem in this �eld: costly, hence often insu�cient and
inhomogeneous data sets for training.
Early applications of machine learning (ML) techniques to this problem were restricted to

small, low dimensional systems and required prior knowledge for proper parametrization of
the PES.132,287�290 A breakthrough towards larger system sizes was achieved using purely
mathematical models, in particular by means of neural network approaches.4,124,135,291�293

Similar to the traditional techniques of above, these modern methods still attempt a modelling
of the total energy via a summation over separable, atomic contributions, yet at much greater
complexity. In recently suggested models based on deep learning the previously hand-crafted
environment descriptors are incorporated into the neural network architecture and adapted
during training.138�140,294 However, this extremely high versatility comes at the cost of an
overwhelming amount of �t parameters in the form of weights that need to be adjusted during
network training, which translates into masses of data points required. An alternative approach
is given by kernel-based models,115,117,148,154 employing much less parameters, which can
be interpreted physically,155,295,296 and might even allow for a certain generalization across
systems.
The Pt-Ni system treated in this article has been chosen for various reasons. First, it is a

well-known system that has been studied theoretically by several groups,297�300 with SMATB
parameters available for pure Pt and Ni systems as well as for mixed systems.280,301,302 Second,
it is an interesting system with respect to structural features at the nanoscale: a simple
comparison of surface and cohesive energies of both elements (Ni has a lower surface energy,
Pt a higher cohesive energy) would suggest demixing tendencies in Pt-Ni particles, with Ni
being pushed to the surface. However, the actual behavior is strongly dependent on cluster
composition, size and temperature,297 rendering this system as rather challenging to describe
via many-body potentials. Third, the Pt-Ni alloy is known to be a very potent catalyst for the
oxygen reduction reaction (ORR), a crucial chemical process in proton-exchange membrane
fuel cells.303�305 In fact, the Pt3Ni(111) single-crystal surface is providing one of the highest
speci�c ORR activities known up to date.306 A combination of this feature with the high
surface-to-volume ratio of nanoclusters seems highly promising, but is handicapped by the
poor stability of the currently synthesized octahedral nanoparticles.307�309 Ternary alloying or
surface doping of Pt-Ni nanoclusters has been suggested as a remedy.303

Our article is structured as follows. In Section 3.3 a state of the art EAM potential is used in
combination with an global optimization algorithm to �nd the energetic minima of small Pt-Ni
clusters of various compositions. In Section 3.4 the local minima identi�ed in the optimization
procedure are evaluated at DFT level. The results are then used as training and test sets
throughout the remaining article. Section 3.5 describes the machine learning-based potentials
and procedures used for training. In Section 3.6 the various potentials are investigated with
regards to their accuracy and their ability to generalize. Our �ndings are summarized in
Section 3.7.

3.3. Structure search

We start with the pre-selection of suitable Pt-Ni cluster geometries and metallic ratios for the
sizes N = 38, 55 and 147 atoms. In this size regime, surface energy e�ects are supposed to
play a dominating e�ect, and strong deviations from bulk properties are to be expected. The
basin hopping algorithm of Rossi and Ferrando310 is used to search for global minima of Pt-Ni
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3. Embedded atom model potentials for Pt-Ni nanoclusters improved by machine learning

clusters in their various compositions. Energies and forces are evaluated using the SMATB
potential, which features a negative square root embedding function without any atom-speci�c
parameters,

Fα(ρ) = −√ρ, (3.2)

and combines it with the Born-Mayer311 ion-ion repulsion, originally suggested as part of a
potential for ionic crystals,

φαβ(rij) = Aαβe
−pαβ

(
rij

r
αβ
0

−1

)
. (3.3)

The pair-wise density functions are given by

ραβ(rij) =

ξαβe−qαβ
(
rij

r
αβ
0

−1

)
2

. (3.4)

The equilibrium distances are set to experimental values for the nearest neighbor distance in the
bulk lattice, r0 = 2.77 Å for Pt-Pt, r0 = 2.49 Å for Ni-Ni, and the arithmetic mean r0 = 2.63 Å
for the mixed Pt-Ni interaction.280,312

The computational demand is reduced by only evaluating the pair interactions up to a
cuto� distance bαβ . In order to avoid sudden jumps in the energy as atoms enter or leave
the cuto� sphere the contributions are smoothly faded towards zero over an interval [aαβ, bαβ]
by interpolation using a �fth order polynomial. A detailed description of this scheme and all
the parameters aαβ and bαβ are provided in Section B.2 of the supporting material. For the
remaining parameters, we use the values given by Cheng et al.302 as summarized in Table 3.1.

Table 3.1.: The Pt-Ni SMATB parameters from Ref. 302.

α β A (eV) ξ (eV) p q

Pt Pt 0.1602 2.1855 13.00 3.13
Pt Ni 0.1346 2.3338 14.838 3.036
Ni Ni 0.0845 1.405 11.73 1.93

For each cluster size we investigate structures containing a single impurity of the opposite
element, and mixtures of roughly 1:3 and 1:1 ratios. The optimization runs are started from a
truncated octahedral structure for the N = 38 clusters and icosahedral geometries for N = 55
and N = 147, with random mixing of Pt and Ni atoms. Additionally, for each size a single
optimization run with a mixture ratio of 1:1 is started from a so-called janus con�guration, in
which the clusters are clearly divided into one half consisting of Pt atoms and one half of Ni
atoms.
In Figure 3.1 selected examples of the local minimum structures are presented. The Pt20Ni18

cluster in panel a) shows a layered structure of Pt and Ni atoms while maintaining a truncated
octahedral structure. Similar results are obtained for Pt10Ni28 in panel b) where the Pt atoms
only partially �ll their respective layers. The Pt28Ni27 structure presented in panel c) shows
a continuous band of Ni atoms running along the surface layer of an icosahedral cluster. A
minimal change in the composition to Pt27Ni28 leads to a rearrangement towards fcc as depicted
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Figure 3.1.: Minimum energy con�gurations as predicted by SMATB for various cluster sizes
and ratios of Pt (grey) to Ni (green) atoms located via a basin hopping algorithm.

in panel d). Similar results are obtained for the larger clusters containing 147 atoms. The
con�guration Pt110Ni37 in panel e) is favoring an icosahedral structure with the Ni atoms
centered in the triangular faces of the outer most layer, and the con�guration Pt73Ni74 in
panel f) is favoring a layered fcc structure. Common to all global minima is a strong intermixing,
i.e. the tendency to maximize the number of Pt-Ni interactions.

3.4. DFT data generation

In a next step, in order to validate the results of the global optimization algorithm discussed
above, we use DFT to calculate the energies of the �ve best geometries for each composition,
i.e. the lowest energy predictions of the SMATB approach. For the sake of a fair comparison,
all DFT parameters are chosen to be consistent with the values used in Ref. 302 to �t the
original SMATB parameters (see Table 3.1). All cluster geometries are evaluated as predicted
by SMATB, i.e. without further local geometry optimizations, using the Quantum Espresso
package313,314 in a 45 x 45 x 45 Bohr3 supercell. In spin unrestricted calculations we combine
the PBE functional65 and ultrasoft pseudopotentials315,316 with a wavefunction cuto� of 40
Ryd and a density cuto� of 400 Ryd. The Brillouin zone is sampled at the Gamma-point and
the smearing technique of Methfessel and Paxton317 with a value of 0.002 Ryd is employed.
Figure 3.2 shows large discrepancies in the energy ordering predicted by DFT and SMATB. In

fact, the prediction for the geometry of lowest energy is correct only for 7 of the 22 investigated
systems, which suggests a systematic error in the SMATB potential. This ranking performance
is only minimally better than random, given a number of just 5 geometries to choose from
in each size and con�guration regime. Note that the SMATB potential only predicts the
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Figure 3.2.: Comparison of the energy ordering predicted by the SMATB potential and DFT
for the �ve evaluated geometries for each composition. The plots are organized by ascending
total number of atoms (columns) and ascending ratio of Pt atoms (rows).

bonding energy, whereas the DFT calculations provide an absolute electronic energy of all
valence electrons as determined by the underlying atomic pseudo-potentials. Performing two
additional DFT calculations on the isolated atoms, a �reference� bonding energy ERef can be
obtained by subtracting the atomic energies from the total energy,

ERef = EDFT
tot −NPtE

DFT
Pt −NNiE

DFT
Ni . (3.5)

In Figure 3.3 the energy di�erence between SMATB and DFT results is plotted as a function
of the NPt : N ratio. The clear dependence of the prediction error on that ratio suggests
that the SMATB potential is most e�ectively improved by a slight readjustment of the Pt-Ni
interaction. The alternative, a possible imbalance in the relative strengths of the Pt-Pt and the
Ni-Ni interaction, can not be quanti�ed due to the lack of pure Ni or Pt cluster geometries in
the data set. In addition to these 110 geometries used as test set we further evaluate all 1353
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Figure 3.3.: Di�erence between the SMATB energy prediction and the DFT reference for the
geometries of the test set as a function of the ratio of Pt atoms. The reference binding energy
ERef is calculated from the DFT results using Equation 3.5.

intermediate best candidates which have been identi�ed by the basin hopping algorithm. This
second, extended set is split roughly 90:10 into a training set and a validation set consisting
of 1217 and 136 geometries, respectively. All of the data sets include both the bonding energy
calculated from Equation 3.5 and the atomic forces predicted by DFT, which substantially
increases the number of individual data points that can be used to �t new potentials. A more
detailed analysis of the data sets is provided in Section B.1 of the supporting material.

3.5. Synthesis of new potentials

In this section we discuss the stepwise improvement of the original SMATB model for the Pt-
Ni system. Starting from a simple re�t of the original SMATB parameters taken from Ref.
302, additional �exibility is gradually introduced by replacing some of the contributions by
neural networks. Finally, a state-of-the-art neural network many-body potential as suggested
by Behler and Parrinello is �tted as a lower threshold for the achievable accuracy.
In the interest of a fair comparison all models are trained in the same way. However, we note

that especially those models relying only on a small number of parameters could be trained
more e�ciently with di�erent methods. The model parameters are determined by minimization
of the loss function

L =
1

M

M∑
k

(
Emodel
k − Eref

k

Nk

)2

+
κ

M

M∑
k

1

3Nk

3Nk∑
l

(
Fmodel
kl − F ref

kl

)2
+ λ

Nw∑
k

w2
k, (3.6)

which consists of the mean squared error for the energy per atom as well as for all atomic force
components. The weighting coe�cient κ for error contributions due to deviations in the forces
is set to 1. For all of the neural network-based models a third term in the loss function, the
so-called regularization term, is added in order to penalize network complexity, which can be
quanti�ed by the presence of larger weights. The regularization function is only applied to
weights (not biases) in the hidden layers and controlled by the hyperparameter λ.
All of the presented models are implemented with the help of keras318 and tensor�ow319

Python machine learning packages and evaluated in 32-bit �oating point precision.
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The loss function is minimized using the Adam optimizer320 with a learning rate of 10−4 for a
total of 2000 epochs with a batch sizeM = 50, resulting in 25 weight updates per epoch. During
the optimization run the loss on the validation set is calculated after each epoch. The model
weights achieving the lowest validation loss are used as �nal optimization result. Unless noted
otherwise, all neural network weights w are initialized randomly using the �Glorot uniform�
tensor�ow method321,322 and the biases are set to zero.
All neural network-based models are trained with several architectures, i.e. number and

size of hidden layers and di�erent values for the regularization parameter λ. Only the
models achieving the lowest error scores on the validation set are presented here; results for
other models are presented in Section B.4 of the supporting material. However, the model
performance appears to be mostly independent of our choice of hyperparameters. A small
remaining variation can be attributed to the random initialization of weight parameters.

3.5.1. Re�tting the SMATB parameters

A �rst improvement is obtained by simply re�tting the 12 free parameters of the SMATB model
to the training data, using the values in Table 3.1 as an initial guess. The standard procedure
for fading long range interactions is slightly modi�ed to allow for easier implementation in the
neural network-based models. Instead of the interpolation using a �fth order polynomial, both
φαβ and ραβ are multiplied by a polynomial cuto� function,

fαβcut(r) =


1, for r ≤ aαβ
1− 10r̂3 + 15r̂4 − 6r̂5, for aαβ < r < bαβ

0, for r ≥ bαβ
(3.7)

with r̂ = r−aαβ
bαβ−aαβ as scaled distance. The range a�ected by the cuto� function is stretched by

setting the inner cuto� aαβ to the second nearest neighbor distance and the outer cuto� to the
�fth nearest neighbor distance, in order to avoid rapid changes in the atomic energy. Note that
the exponential pair density function in Equation 3.4 is multiplied by the cuto� function before
being squared to ensure a smooth second derivative. A detailed analysis of e�ects introduced
by these modi�cations is given in Section B.2 of the supporting material.
The newly obtained SMATB parameters are listed in Table 3.2.

Table 3.2.: The re�tted Pt-Ni SMATB parameters.

α β A (eV) ξ (eV) p q

Pt Pt 0.24860 2.30001 10.11435 3.08657
Pt Ni 0.22629 2.17392 10.15831 3.23356
Ni Ni 0.14672 1.79192 10.22987 2.80600

3.5.2. Neural network-based EAM potential

In a second step we attempt to improve the SMATB model by a piece-wise introduction of
neural network structures. We start with the replacement of the embedding function, then
test for a replacement of the pair density functions, and combine both options eventually. All
neural network functions employed in this process are one-dimensional, i.e. R1 → R1. The
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resulting functions can be exported in tabulated form which allows for compatibility with many
molecular dynamics packages. For two hidden layers such a neural network is given by

c(x) = w3 · (w2 · ϕ (w1 · x+ b1) + b2) + b3, (3.8)

where the wk are weight matrices, the bk are bias vectors and ϕ is an activation function. Since
the input and output to the neural network function are scalars, the �rst weight matrix w1

and the last weight matrix w3 reduce to vector quantities and the �nal bias vector b3 reduces
to a scalar. Note that the �nal layer is linear, i.e. no activation function is used. The hidden
layers employ a hyperbolic tangent activation function. For all contributions that have not
been replaced by neural network expressions, the parameters are initialized to the values of the
re�tted SMATB model as listed in Table 3.2.

Neural network embedding function

A di�erentiation missing in the SMATB approximation is the usage of di�erent embedding
functions for the two elements Pt and Ni. Therefore, a �rst improvement is to distinguish
with respect to index α. In SMATB, the root dependence can be justi�ed by the fact that
the binding energies of transition metals are approximately proportional to the average width
of the corresponding density of states, i.e. the square root of the second moment, with the
latter being represented by sum over squares of overlap or �hopping� integrals.280 We keep
this dependence in our formulation, but provide additional �exibility by an element-dependent
correction function of the pair density, cαF(ρ), which appears as a multiplicative factor next to
the SMATB ansatz:

Fα(ρ) = −√ρ cαF(ρ). (3.9)

This way, an asymptotically correct behavior for a vanishing density is ensured. The correction
function cαF(ρ) is modelled using a one-dimensional neural network. A reasonable starting guess
is obtained by a speci�c initialization of the last (linear) layer: Its initial values for the weights
are drawn from a random normal distribution with mean µ = 0.0 and standard deviation
σ = 0.001, and the bias is initialized to 1.0. This ensures that, initially, the modi�ed embedding
function is almost identical to the standard square root embedding function. Lowest values for
the summed energy and force errors on the validation set are achieved using a regularization
value of λ = 10−5 and a neural network architecture consisting of two hidden layers containing
15 neurons each. Combined with the unmodi�ed SMATB parameters, this yields a total of 584
free parameters.

Neural network pair density functions

Modi�cations of the pair density functions must take the positivity constraint into account. In
our expression, a neural network function cαβρ is introduced, which takes the same normalized
and shifted argument as apparent in the exponent of the original SMATB ansatz (see
Equation 3.3). The squared product of this function with the cuto� function fαβcut(rij) as
de�ned in Equation 3.7 yields a modi�ed pair density function of the form

ραβ(rij) =

(
cαβρ

(
rij

rαβ0

− 1

)
fαβcut(rij)

)2

. (3.10)
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In order to reduce the training e�ort, the neural network-based density functions are �rst
trained separately to reproduce the exponential density function used in the SMATB model.
The training examples are generated by evaluating the SMATB density functions at 101 equally
distributed inter-atomic distance values between 0.0 and 6.2. Using the Adam algorithm, the
neural network parameters are optimized until the summed mean squared error for all three
interactions is below 10−5.
The lowest error score on the validation set is achieved for λ = 10−6 and three hidden layers

consisting of 15 neurons each, yielding already a total of 1584 adjustable parameters for this
model.

Neural network density and embedding functions

In an obvious third modi�cation of the original SMATB ansatz, both the embedding function as
well as the pair density functions are now represented by neural networks as described above.
All neural network weights are initialized using the schemes described in the corresponding
sections. The lowest validation score is achieved with the hyperparameter λ = 10−6 and three
hidden layers containing 20 layers each. This leads to a total number of 4511 parameters in
the joint NN model.

3.5.3. Behler-Parrinello atomic neural networks

For the sake of a more diverse evaluation of neural network capabilities when applied to the
problem at hand we further employ neural networks in the style of Behler and Parrinello.124

Contrary to the methods described above, these networks lack any physically motivated choice
of structure or parameters, but are instead relying on their ability to � at least in principle
� emulate any functional dependence to the desired accuracy if su�cient amounts of data
can be provided. Yet, despite their purely mathematically inspired construction, Behler-
Parrinello atomic neural networks are built upon the very same assumption that the total
energy of a system can be represented by a sum of atomic contributions. Indeed, the energetic
characterization of each atom by its local environment in a �feature space� is conceptually very
close to the much older idea of describing its local �embedding� by some nonlinear function
within the EAM picture. In a Behler-Parrinello network structure, for each atom i of type α
the distribution of neighboring atoms of type β is encoded using so-called symmetry functions
or descriptors. This way, any given environment can be translated into a vector in an abstract
feature space and used as an input for a neural network. For the sake of a fair comparison with
the SMATB ansatz, which neglects any angular dependence (at least in its standard formulation
used here), only radial symmetry functions are employed in this model.

Gαβ
i =

N∑
j∈β

e−η
αβr2ij · fαβcut(rij). (3.11)

The values for the seven entries in the ηαβ parameters are summarized in Table 3.3.
It is considered best practice to normalize the inputs for neural networks. Behler suggests

restricting the variation in each descriptor entry to the interval [−1, 1] by applying the
transformation136

G̃αβ
i =

2(Gαβ
i −Gαβ

min)

Gαβ
max −Gαβ

min

− 1, (3.12)
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Table 3.3.: Parameters for the descriptors

α β a (Å) b (Å) η (Å−2)
Pt Pt 0.0 6.20 0.001 0.02 0.04 0.08 0.16 0.32 0.64
Pt Ni 0.0 6.20 0.001 0.02 0.04 0.08 0.16 0.32 0.64
Ni Pt 0.0 6.20 0.001 0.02 0.04 0.08 0.16 0.32 0.64
Ni Ni 0.0 5.57 0.001 0.02 0.04 0.08 0.16 0.32 0.64

where Gαβ
min and Gαβ

max are calculated as the minimum/maximum values of all Gαβ
i in the

training set for each vector entry individually. The values for these quantities are tabulated in
Section B.3 of the supporting material.
The vectors encoding the Pt and the Ni environments for each atom i are then concatenated

Gα
i = [GαPt

i ,GαNi
i ] and used as input for the atomic neural networks. This results in a mapping,

RD → R1, from the D-dimensional environment description to an atomic energy contribution.
For a network architecture consisting of two hidden layers the atomic energy is then given by

Ei = wα3 · ϕ (wα2 · ϕ (wα1 ·Gα
i + b1) + b2) + b3, (3.13)

with wk again denoting the weight matrices, the bk as bias vectors and ϕ as an activation
function. In contrast to Equation 3.8, due to the vector input, only the �nal weight matrix w3

and the �nal bias vector reduce to a vector and scalar, respectively. The bias weight of the
linear last layer (b3 in the example in Equation 3.13) is not allowed to vary freely during the
training procedure. Instead, its value is chosen such that the atomic energy predicted for a
single atom is exactly zero. Details on the necessity and the implementation of this scheme are
given in Section B.3 of the supporting material.
The hyperparameter search yields the best validation score for λ = 10−5 and atomic neural

networks consisting of three hidden layers consisting of 20 neurons each. This neural network
architecture results in a total of 2320 parameters.

3.6. Evaluation of the new potentials

3.6.1. Error scores

We start with the discussion of error scores for all methods on the test and the training/�tting
sets. The root mean squared errors, summarized in Table 3.4, do con�rm the intuitive
expectation of reduced scores achieved with methods employing an increasing amount of
parameters. However, what stands out is the actual �cost� of little additional accuracy as
it is documented in the second half of the table, in comparison to the signi�cant improvement
of the original SMATB achieved by a re�tting of its parameters to the new data set. This
simple measure already reduces errors in the energy by an order of magnitude, a consequence
of the physically meaningful foundation of the tight-binding model.
We further note that the original SMATB of Ref. 302 achieves similar force errors as the

simple geometry independent models presented in Section B.1 of the supporting material. This
�nding is consistent with the fact that all investigated geometries are local minima predicted
by these SMATB parameters and the forces are therefore close to zero.
The noticeably higher errors in the test set can be attributed to the fact that the latter

contains a higher proportion of N = 38 clusters, for which the largest deviations are observed
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3. Embedded atom model potentials for Pt-Ni nanoclusters improved by machine learning

Table 3.4.: Root mean squared errors for energy and forces on the training and test set achieved
by the various potentials given in meV/atom and meV/Å.

Training set Test set
Model Energy Forces Energy Forces

SMATB Ref. 302 844.6 336.6 830.2 336.2
SMATB re�tted 71.3 202.0 105.7 208.3

NN F 24.4 198.5 39.1 202.2
NN ρ 53.7 177.0 84.0 174.9

NN F and ρ 21.1 169.7 35.6 167.2
Behler-Parrinello 10.2 132.1 18.1 122.8

4.25 4.00 3.75
0.2

0.1

0.0

0.1

E m
od

el
 - 

E R
ef

 (m
eV

/at
om

)

N = 38

SMATB refitted
NN F

NN 
NN F and 

Behler-Parrinello

4.50 4.25 4.00
ERef (meV/atom)

N = 55

4.75 4.50 4.25

N = 147

Figure 3.4.: Deviations of the energy predicted by the newly �tted models from the reference
DFT energy for the geometries of the test set.

in general. This is seen best in Figure 3.4, where signed errors in the energies are plotted as
a function of the DFT energies per atom. On one hand, the latter choice of x-axis allows for
a direct judgement of the actual error size in terms of the DFT energy. On the other hand, it
leads to a sorting of the various data points with respect to Pt-Ni cluster composition, since
the Pt:Ni ratio enforces a rather speci�c average energy per atom with little variation due to
cluster geometry (hence the column-like aggregations of data points). An increase in cluster
size, displayed by three separate panels for N = 38, 55 and 147, causes a constant shift in DFT
energies of about -0.3 meV per atom in each step, following the expected trend. Errors in the
predictions become smaller with increasing cluster sizes. For the largest cluster size, N = 147,
the sign of the error changes for all methods in our study, which we attribute to the models not
fully capturing the dependence of the energy on the total number of particles. This may be
caused by the increase in relative number of surface atoms or the stronger in�uence of angular
dependent terms not covered by the EAM models. As a consequence, all models overestimate
the binding energy of smaller clusters and underestimate the binding energy of the 147 atom
cluster as this yields the lowest overall mean squared error per atom.
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3.6. Evaluation of the new potentials

3.6.2. Simple PES scans

Energies of optimized structures are clearly the most important expectation values to be
predicted, but o�er little insight in actual weaknesses of a given model or method. Atomic
forces, on the other hand, are very speci�c for a given cluster geometry and therefore hardly
useful for a more general interpretation.
A more suitable approach is based on the analysis of averaged binding energies as a function

of inter-atomic distances. We start with the potential energy curves for the three diatomic
molecules Pt2, PtNi, and Ni2, and compare their shape as predicted by DFT and the newly
�tted models in Figure 3.5. The admittedly challenging comparison reveals large deviations
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Figure 3.5.: The Pt2, PtNi, and Ni2 dimer potential energy curves as predicted by the various
models, compared to results obtained using DFT.

from the DFT results for all model potentials. This failure follows from the lack of comparably
small structures in the training set, and could have been compensated only by the addition
either of data points or �hard-wired� physical knowledge on diatomics. However, even the
unmodi�ed SMATB does not reproduce the DFT curves correctly simply because it was not
constructed for this purpose. Due to the lack of training data in this size regime we refrain
from any deeper interpretations of this �gure but move on to more representative bimetallic
geometries instead.
Figure 3.6 shows the breathing mode of fully symmetrical icosahedral clusters consisting

of 13 atoms. Due to a full shell of nearest neighbors for the central atom, this benchmark
structure is signi�cantly closer to the geometries found in the training set. While the binding
energy and the energy minimum predicted by the models match the DFT results much more
closely in this case, a signi�cant deviation in the long range behavior is noticeable in of some
of the machine learning models. However, an optically much more prominent deviation can be
observed for the predictions of the Behler-Parrinello potential at short distances. Again, this
can be attributed to the lack of training examples in this region, a fact which becomes most
obvious for the model featuring the most opulent parametrization. A simple �x would be to
include the pair repulsion term employed in all other models and use neural networks only to
describe the attractive embedding energy.
Finally, in Figure 3.7 the extrapolation towards bulk properties is tested by plotting the

cohesive energy as a function of the lattice constant a for both pure Pt and pure Ni structures.
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Figure 3.6.: Breathing mode of 13 atom icosahedral clusters. The top right and bottom left
panels correspond to single Ni and Pt atoms surrounded by a 12 atom shell of Pt and Ni atoms,
respectively.

The DFT reference is calculated using a 20 × 20 × 20 Monkhorst-Pack k-point grid.323 As
can be seen in the �gure, all but the original SMATB of Ref.302 (which was �tted to exactly
reproduce the experimental values) agree very well with the DFT curves obtained for bulk
fcc geometries. Again, the lack of training data at shorter inter-atomic distances leads to a
pronounced deviation of the Behler-Parinello potential, while all other models are also able to
extrapolate correctly. Note that the DFT predictions for the cohesive energy of 5.52 eV for
Pt and 4.87 eV for Ni deviate from the experimental values of 5.84 eV and 4.44 eV for Pt and
Ni, respectively.312 In other words, any of the DFT-trained models is equally suitable for bulk
since relative deviations in the energy per particle are below the systematic error of the actual
density functional at the chosen plane-wave energy cuto�s.

3.6.3. Analysis of individual contributions

Despite the underlying complexity in case of the neural network models, the pair density
functions as well as the embedding functions for Pt and Ni are simple, one-dimensional
functions. The former are functions of the interatomic distance between atoms i and j, the
latter are functions of the density contribution of all atoms in the environment of atom i. These
functions can be plotted and inspected. We start with the analysis of the pair density functions
ραβ in Figure 3.8.
It shows ρPtPt, ρPtNi, and ρNiNi as used by each model, plotted as a function of the inter-

atomic distance, together with a histogram depicting the distribution of distances rij in the
data set. The histogram of NiNi interactions in the bottom panel shows a signi�cantly lower
number of short range and a higher number of long range interactions. This can be explained
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by the lower binding energy predicted for NiNi interactions which are therefore disfavored in
the global minimum search. Interestingly, both neural network-based models suggest a stronger
long range contribution of the pair density functions than provided by the SMATB model. An
obvious ad hoc correction would be switching to a modi�ed density function ρ̃αβ built from
two exponential functions,

ρ̃αβ(rij) =

ξαβ1 e
−qαβ1

(
rij

r
αβ
0

−1

)
2

+

ξαβ2 e
−qαβ2

(
rij

r
αβ
0

−1

)
2

. (3.14)

This measure, here conceived directly by looking at the machine learning-suggestions of
Figure 3.8, even has physical meaning to it: It can be interpreted as an ansatz employing
di�erent pair density functions for s and d orbitals, as it had been suggested by Foiles et al.
more than 30 years ago.274

A similar analysis can be done for the embedding functions and is presented in Figure 3.9.
Here we plot the neural network correction cαF to the square root embedding as a function of the
summed pair density ρ. However, note that interpretations of the embedding functions are less
straightforward due to their obvious dependence on the actual choice of pair density functions.
This becomes evident already when looking at shape of both neural network-based corrections,
which deviate much more than what is observed for the pair density functions. Again, the
region for ρ < 20 should be excluded from any interpretations. Due to the lack of training data
in this region, indicated by the combined histogram of summed density values, the functional
behavior at short range is fully irrelevant for the �t. In the regime 20 < ρ < 40 a damping
of the embedding function for small density values is common to all corrections suggested by
neural networks. This �nding is consistent with Figure 3.4, indicating that the binding energy
for smaller clusters is overestimated by the simple square root embedding function of SMATB.
Again, an analytical model for the correction function in the region of the training points can
be constructed from an extremely reduced neural network expression,

Fα(ρ) = −√ρ (cα0 + cα1 tanh(cα2 ρ)) . (3.15)

This correction function is, however, purely inspired by the neural network approach and o�ers
no obvious physical interpretation. Note that the coe�cients cα can not simply be integrated
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Figure 3.8.: The pair density functions as a function of the distance (left axis) and a histogram
of the inter-atomic distances for all the geometries in the training data (right axis).

into a rescaling of the pair density functions ραβ (more speci�cally the parameter ξ in the
SMATB potential) due to the assumption that these functions are symmetric, i.e. ραβ = ρβα.
Therefore, the rescaled square root dependence could also be interpreted as an indicator that
this restriction should be lifted, and di�erent parameters for ραβ and ρβα should be �tted
instead.

3.6.4. Extended SMATB

Building on the insights from Section 3.6.3 we �t three extended SMATB models starting from
the parameters given in Table 3.2. The goal here is to achieve a similar improvement over
the standard SMATB model as observed for the neural network-based models, but using a
minimal amount of additional parameters. The �rst model uses the embedding function in
Equation 3.15, where the parameters are initialized to cα0 = 0.5, cα1 = 0.5, and cα2 = 0.05. The
second model uses the pair density function in Equation 3.14, where ξαβ1 and qαβ1 are initialized
to the values given in Table 3.2 and the newly added parameters are initialized to ξαβ2 = 0.5

and qαβ2 = 0.1. Finally, the third model again combines both the extended embedding function
and the extended pair density function using the same values to initialize the new parameters.
The results of training these extended SMATB models is summarized in Table 3.5. All three

investigated extended SMATBmodels achieve comparable error scores to their respective neural
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network-based counterparts.

Table 3.5.: Root mean squared errors for energy and forces on the training and test set achieved
by the extended SMATB models given in meV/atom and meV/Å.

Training set Test set
Model Energy Forces Energy Forces

extended F 22.8 198.7 37.3 201.7
extended ρ 56.0 176.7 84.5 172.9

extended F and ρ 17.4 174.0 27.8 169.5

A table containing the full set of optimized parameters for the three extended models is
given in Section B.5 of the supporting material. It is worth noting that the optimization of
both the extended pair density model and the extended embedding and pair density model
yields negative qαβ2 parameters for all three interactions. This would lead to the unphysical
prediction of increasing binding energy with increasing inter-atomic distance if multiplication
with a cuto� function was skipped. We suspect that a reliable and physically meaningful �t of
the second exponential term could be achieved after increasing the cuto� distance bαβ .

3.7. Conclusion

An SMATB-based many-body potential for Pt-Ni systems at the nanoscale has been system-
atically improved by machine learning. We have shown that introducing additional complexity
to established potential energy expressions via neural networks allows to derive physically
meaningful extensions. Numerical correction functions produced by the networks can be
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�translated� and expressed by simple, appropriately parametrized analytical functions due
to their slowly varying character. The obtained models, employing just a few additional
parameters, yield signi�cant improvements in the error scores. However, they do not quite
reach the accuracy of purely mathematical models such as the Behler-Parrinello approach, if
the overwhelming hunger of the latter for training data can somehow be satis�ed.
For future work, an extended combination of machine learning and physical models for

predictions of system properties such as melting temperatures, mixing behavior and phase
diagrams might allow for further improvements and generalizations of atomic models. Such an
endeavor would also necessitate the costly generation of suitable data sets containing geometries
at higher temperatures, e.g. through molecular dynamics simulations.
Finally, symbolic regression might o�er a way to automate the process of inspecting the

correction functions provided by neural networks, translating them into simple analytical
expressions, and �tting these new expressions to the training data.
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4. Geometry optimization using Gaussian process regression in internal coordinate systems

4.1. Abstract

Locating the minimum energy structure of molecules, typically referred to as geometry
optimization, is one of the �rst steps of any computational chemistry calculation. Earlier
research was mostly dedicated to �nding convenient sets of molecule-speci�c coordinates for a
suitable representation of the potential energy surface, where a faster convergence toward the
minimum structure can be achieved. More recent approaches, on the other hand, are based
on various machine learning techniques and seem to revert to Cartesian coordinates instead
for practical reasons. We show that the combination of Gaussian process regression with
those coordinate systems employed by state-of-the-art geometry optimizers can signi�cantly
improve the performance of this powerful machine learning technique. This is demonstrated
on a benchmark set of 30 small covalently bonded molecules.

4.2. Introduction

The localization of extrema on the potential energy surface (PES) of a molecular system is one of
the most fundamental tasks of computational chemistry. Due to the high computational e�ort
which is necessary to obtain �chemically� accurate (δE < 1 kcal/mol) estimates of electronic
energy di�erences, the search for algorithms that use the least amount of evaluations possible
to locate minima or transition states on a molecular PES has been a long standing research
topic.
The even higher computational cost of evaluating Hessians limits these undertakings to

gradient-based optimization algorithms in most cases. Quasi-Newton optimizers, which
approximate the (inverse) Hessian matrix via gradient information taken from previous steps,
are the method of choice for these tasks. Research intentions in this area include the
identi�cation of suitable coordinate systems,324�336 the development of better initial guesses
for the Hessian,159�162 and a proper treatment of weakly coupled systems.337�340 Even though
quasi-Newton methods are forming the basis of most optimization algorithms, there exist
several alternative approaches which have been designed for the speci�c purpose of molecular
geometry optimization. Some of the most common techniques are GDIIS,341 QUICCA,342

FIRE,343 and Quick-Min.183,344

In the more recent literature, a strong trend toward machine learning concepts can be noted.
Current research in this �eld is dedicated to the accelerated localization of minima163,164 and
transition states174,186�188,190,191,345 as well as to the improvement of local PES scans for
better accuracy of reaction rates within instanton rate theory.346�348 These methods employ
the strategy of �tting a surrogate energy surface to those points already evaluated and provide
suggestions for new geometries via a computationally much less demanding structural search on
that surrogate surface. Typically, the latter is continuously updated with new information since
the actual single point evaluation is performed on the real PES and then added to the dataset.
So far, most of the machine learning potentials employed in these algorithms are formulated
in Cartesian coordinates even though the most successful machine learning potentials and
geometry optimization algorithms use alternative coordinate systems.
In this work, we aim to bridge the gap between �classic� state-of-the-art optimization

algorithms employing thoughtfully designed internal coordinate systems and �novel� approaches
based on machine learning. Our method of choice is Gaussian process regression (GPR),
formulated in various non-Cartesian coordinate systems. We test the performance of
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selected algorithms for the task of geometry optimization and discuss their advantages and
disadvantages in comparison to conventional approaches.

4.3. Methods

4.3.1. Geometry optimization

The main objective of this article is to investigate the in�uence of various coordinate systems
on optimization performance. Our implementation of machine learning-accelerated geometry
optimization is a combination of the ideas presented in Refs. 163 and 164. In order to provide
a fair and unbiased comparison of this core feature, we restrain from any modi�cations or
advancements suggested in the literature, which may reduce the computational overhead or
accelerate the convergence of a speci�c approach. The remaining universal algorithm comprises
the following steps:

� Step 0: Given an initial geometry x0, construct the coordinate transformation and
initialize xmin = x0 and Emin =∞.

� Step 1: Evaluate energy Ei and forces Fi at the current geometry xi. If Ei < Emin set
xmin = xi and Emin = Ei.

� Step 2: Check for convergence.

� Step 3: Add geometry xi, energy Ei and forces Fi to the training set.

� Step 4: Fit the machine learning model and optimize the hyperparameters.

� Step 5: Perform a geometry optimization using the machine learning potential starting
from xmin. Stop if the maximum predicted force component is smaller than 0.5fmax

(where fmax is the overall convergence threshold on force components) or the distance to
xmin exceeds the trust radius rmax.

� Step 6: Use the last geometry of the machine learning optimization trajectory as a new
guess for the minimum xi+1 and go to step 1. If the machine learning optimization has
stopped because rmax was exceeded, use the second to last geometry as new guess xi+1

instead.

While simple in concept, certain details of this algorithm prove crucial not only for improving
the overall performance but even for achieving actual convergence in the �rst place. Probably,
the most important detail is the necessity of small step sizes on the machine learning PES
in step 5 while monitoring the distance from the starting geometry xmin in order to enforce
a maximum step length rmax. This measure, which is slightly more complicated than the
standard remedy of a simple down-scaling of large predicted steps, is necessary because the
optimization trajectory on the machine learning PES is not a straight line in general. A similar
idea was presented by Koistinen et al.187 for their machine learning-accelerated nudged elastic
band algorithm.
The starting point for the optimization on the machine learning PES is always the lowest

energy geometry xmin in order to avoid unphysical �escapes� from a local minimum area on the
real PES, which is not correctly represented on the yet insu�ciently informed PES constructed
by the machine learning model. The optimization in step 5 is carried out using the FIRE343
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method, which has been chosen due to its e�ciency and robustness. It is based on a molecular
dynamics engine with modi�ed velocity calculations and adaptive time steps. In particular, in
the �rst few steps, when the machine learning representation of the energy surface is still crude,
quasi-Newton optimization algorithms tend to suggest very large displacements or might not
converge at all.

The parameters of the optimizer are set to the default values of the Atomic Simulation
Environment (ASE)349 default values (∆t = 0.1 Å

√
u/eV (approximately 1 fs), ∆tmax = 10∆t,

αstart = 0.1, fα = 0.99, finc = 1.1, fdec = 0.5 and Nmin = 5). The maximum step size on the
machine learning PES, however, is reduced to 0.02 Å. The global maximum step size is set to
0.2 Å. All calculations are restricted to a maximum of 150 optimization cycles. An optimization
run is considered converged if a maximum gradient component of less than fmax = 0.0003
hartree/bohr and either an energy change of less than 10−6 hartree or a maximum displacement
of less than 0.0003 bohr are reached. These convergence criteria were used by most previous
studies on the investigated benchmark set.

We would like to emphasize that all geometry optimization steps, e.g., coordinate displace-
ments or any measurements of step lengths, are performed in Cartesian coordinates and
that it is only the machine learning model that is trained on the PES in a transformed
coordinate system. This choice guarantees a fair comparison to reference calculations in
Cartesian coordinates. The latter are done with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS)158,350�353 method, including a line-search algorithm as implemented in the ASE
program package,349 with the same global maximum step size of 0.2 Å as used in all machine
learning methods.

4.3.2. Gaussian process regression

This section is mostly dedicated to the necessary modi�cations to GPR due to the trans-
formation of the input coordinates and our choice of certain hyperparameters of the model.
We refer the interested reader to Ref. 104 for a detailed introduction to the GPR method
and to Refs. 163 and 164 for the inclusion of derivative information. In summary, given
a set of geometries {x(1) . . .x(M)}, corresponding energies {E(1) . . . E(M)}, and gradients
{g(1) . . .g(M)}, the formulas needed for energy and gradient prediction of a previously unseen
geometry x? are given by

E(x?) =
∑
n

α(n)k(x?,x(n)) +
∑
n

∑
i

β
(n)
i

∂k(x?,x(n))

∂x
(n)
i

+ Emean(x?), (4.1)

and

∂E(x?)

∂x?k
=
∑
n

α(n)∂k(x?,x(n))

∂x?k
+
∑
n

∑
i

β
(n)
i

∂2k(x?,x(n))

∂x?k∂x
(n)
i

+
∂Emean(x?)

∂x?k
, (4.2)

where the kernel k (x,x′) is a measure of similarity between di�erent geometries. Using a
constant mean model Emean(x) = Emean, the parameters α(n) and β(n) can be determined by
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solving the following linear equation:

α(1)

...
α(M)

β(1)

...
β(M)


=
(
K + σ2

nI
)−1



E(1) − Emean
...

E(M) − Emean

g(1)

...
g(N)


, (4.3)

where σ2
n is an assumed Gaussian noise on the training data, which increases numerical stability,

and K is the extended kernel matrix given by

K =

[
k(x(m),x(n)) ∂k(x(m),x(n))

∂x(n)

∂k(x(m),x(n))

∂x(m)

∂2k(x(m),x(n))

∂x(m)∂x(n)

]
. (4.4)

Due to the inclusion of derivative information, GPR cannot simply be applied to transformed
input data q(x). This problem can be solved in di�erent ways. The probably most intuitive
solution is to �rst transform both the coordinates and the gradients into the non-Cartesian
coordinate system and train the GPR using the transformed training examples. Predictions,
more precisely the gradient predictions, are then transformed back into Cartesian coordinates.
While straight-forward in principle, knowledge of the back transformation is needed in this case.
Unfortunately, the latter can be particularly di�cult to construct if the Cartesian coordinates
have been transformed into a redundant set of coordinates.
Due to these di�culties, we used an alternative approach in which the GPR is performed

in Cartesian coordinates. First, the kernel matrix is built in the space of the transformed
coordinates, followed by a back-transformation to the Cartesian space. This is similar in
concept to the approach used by descriptor-based machine learning models such as atomic
neural networks124 or Gaussian approximation potentials,148 where no back-transformation
from the descriptor space is possible.
The three basic components of the extended kernel matrix K are given by

k
(
x,x′

)
= k(q

(
x),q(x′)

)
= k

(
q,q′

)
, (4.5)

∂k(x,x′)

∂xk
=
∑
i

∂k(q,q′)

∂qi

∂qi
∂xk

(4.6)

and
∂2k(x,x′)

∂xk∂x
′
l

=
∑
i

∑
j

∂qi
∂xk

∂2k(q,q′)

∂qi∂q′j

∂q′j
∂x′l

. (4.7)

For all calculations presented, we use the constant mean model as suggested by Denzel and
Kästner,163

Emean = max
i

Ei + 10, (4.8)

with energies measured in eV, and set the noise parameter to σ2
n = 10−6. Unless noted

otherwise, our calculations employ the squared exponential kernel,

kSE
(
x,x′

)
= σ2

m exp

(
−1

2

∑
h

(xh − x′h)2

l2h

)
. (4.9)
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Matérn kernel354,355(for ν = 5/2) as suggested by Denzel and Kästner,163

kM
(
x,x′

)
= σ2

m

(
1 +

√
5
∑
h

(xh − x′h)2

l2h
+

5

3

∑
h

(xh − x′h)2

l2h

)
exp

(
−
√

5
∑
h

(xh − x′h)2

l2h

)
.

(4.10)

For torsional angles (given in radian), we use the following periodic kernel suggested by
MacKay:356

kP
(
φ,φ′

)
= σ2

m exp

−2
∑
h

sin2(
φh−φ′h

2λh
)

l2h

 , (4.11)

where setting λh = 1.0 yields functions periodic in 2π. The hyperparameters are optimized by
maximizing the log marginal likelihood using the L-BFGS algorithm,105,106 as implemented in
the SciPy open source Python library.357 Determining a separate length scale hyperparameter
for all dimensions is typically not feasible. Therefore, unless noted otherwise, we use a common
value along all dimensions lh = l yielding the so-called isotropic kernels.

4.3.3. Internal coordinate systems

Two di�erent sets of primitive internal coordinates are investigated in this article.
The �rst set employs internal coordinates which are typically used to de�ne the Z-matrix of

a molecular system. It comprises bond stretches, planar bends (or linear bending coordinates),
and proper torsions. These primitives are generated from the atomic connectivity, which is
determined following a scheme similar to the algorithm presented in Ref. 331. Atoms are
considered connected if the square of the interatomic distance is less than 1.25 times the square
of the sum of their covalent radii. This may lead to a disconnected graph consisting of several
fragments. In this case, the latter are then merged iteratively by adding connections between
the shortest distance atoms on di�erent fragments.
Using this connectivity graph, a set of internal coordinates can be generated. First, bond

stretch coordinates are de�ned for all connections. Next, the bending angles enclosed by
adjacent bonds are calculated and added to the coordinate set. Bending angles larger than
175◦ or smaller than 5◦ are ignored. If the center atom along the ignored coordinate is only
connected to two atoms, the bend coordinate is replaced by two linear bending coordinates:
the coplanar and perpendicular bend described in Ref. 358. Torsion coordinates involving this
angle are instead de�ned via a central bond between the two endpoints of the angle (see Ref.
359 for a more detailed description). Finally, torsion coordinates are de�ned for all triplets of
bonds that do not form three-membered rings.
The second set of primitives, referred to as the �total connection scheme� by Billeter et

al.331 considers every atom connected to every other atom and comprises all resulting inverse
internuclear distances. This set has also been used as a basis for more sophisticated molecular
descriptors such as the Coulomb matrix115 or the so-called bag of bonds vector.118

In neither of these two sets of internal coordinates do we take advantage of symmetry to
reduce the number of primitives. Therefore, both schemes lead to highly redundant sets of
coordinates. The number of inverse distances grows as N(N − 1)/2, whereas the number of
Z-matrix-derived internals grows roughly linear with the number of atoms N.
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Delocalized internal coordinates

A simple and unbiased scheme for eliminating redundancies was introduced by Baker et al.
in the form of the so-called delocalized internal coordinates.329 They represent the default
coordinate system of choice for most geometry optimization algorithms. The starting point
for the construction of delocalized coordinates is the general non-linear transformation from
Cartesian coordinates to internal coordinates. However, at any reference geometry x0, this
transformation can be linearized and expressed through the well-known Wilson B-matrix.360

For small displacements from the reference geometry, the change in internal coordinates can,
therefore, be written as

∆q = B∆x, (4.12)

where the Wilson B-matrix is given by

B =
∂q

∂x

∣∣∣∣
x=x0

. (4.13)

Constructing and diagonalizing the matrix G = BB> yields a set of n eigenvectors, with n
denoting the number of primitive internal coordinates. Using the matrix U whose columns
contain the eigenvectors corresponding to non-zero eigenvalues (for numerical reasons, a
threshold of 10−10 is used), a non-redundant set of coordinates can be de�ned as follows:

s = U>q. (4.14)

This reduced set of coordinates, consisting of linear combinations of primitive internal
coordinates, is referred to as the �active� coordinate set throughout this article.

Localized internal coordinates

The linear combination of primitives in delocalized internal coordinates leads to an often
undesirable mixing of di�erent types of primitives. Even though it was never used for
geometry optimization, Baker et al.329 described a scheme for localizing the delocalized internal
coordinates. The individual primitives are projected onto the active subspace U by taking the
scalar product of a unit vector q̂i with a unit component corresponding to the primitive internal
i and the columns of the matrix U,

qproj
i =

∑
k

(qi ·Uk) Uk. (4.15)

The resulting set of projected vectors {qproj
0 , . . .qproj

n } is then normalized and Schmidt-
orthogonalized to obtain the �nal set of active internal coordinate vectors. The Schmidt
orthogonalization ensures that the �nal set is non-redundant by eliminating linearly dependent
coordinates. Note that this localization scheme does not yield active coordinates consisting
of single primitives. However, the active coordinates are typically dominated by just a few
primitives, which allows dividing them into stretch, bend, and torsion dominated subsets.

4.3.4. Benchmark systems

We measure the in�uence of the coordinate system on the optimization performance using a
benchmark set of 30 molecular geometries originally introduced by Baker.328 The 30 initial
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geometries are depicted in Figure 4.1. This set of covalently bonded, small molecules has
been used by several groups to investigate their proposed optimization methods. Therefore, it
allows us to conveniently track the continuous improvements of the state-of-the-art in geometry
optimization over time.162,334,340,342,361�366 An overview of results selected from this literature
is given in Table C.1 of the supporting material.

Figure 4.1.: The initial geometries of the 30 benchmark systems suggested by Baker.

The ab initio PES is evaluated using the Hartree-Fock method with a STO-3G basis set,367,368

as implemented in the Q-Chem package.369

4.4. Results

The number of optimization cycles for each molecule and the sum of optimization cycles over
the whole benchmark set are summarized in Table 4.1 for all of the investigated geometry
optimization methods. The size of the active coordinate space generated by the various schemes
is given in Table C.2 of the supporting material.
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4.4.1. Cartesian coordinates

The optimization results in Cartesian coordinates mainly serve as reference values for the
investigated internal coordinate systems. We note that the ASE implementation of BFGS-LS
performs worse than the results reported by Baker328 for Cartesian optimization using a unit
Hessian initial guess. Gaussian process regression-accelerated optimization yields a reduction
in ab initio evaluations on almost every molecular system and a sum of 545 optimization
cycles. Similar to the results reported by Denzel and Kästner, we observe a reduction of up to
a factor of two for the larger systems. In our study, the Matérn kernel, which yields a total
sum of 543 optimization cycles, does not signi�cantly outperform the squared exponential
kernel, as reported by Denzel and Kästner. This is most likely due to di�erences in the
implementation, such as the inclusion of a second hyperparameter σ2

m and the re-optimization
of the hyperparameters at every step.

4.4.2. Redundant internal coordinates

As a next step, the potential improvements due to non-Cartesian coordinates are investigated
by using the fully redundant sets of primitive internal coordinates.
Using the inverse distance coordinates in combination with an isotropic squared exponential

kernel leads to a signi�cant further reduction in the number of optimization cycles, in particular,
for larger geometries. The resulting sum of 285 ab initio evaluations represents an improvement
of almost a factor of two in comparison to GPR in Cartesian coordinates.
For the Z-matrix-derived internal coordinates, we use separate kernels for the subsets of bond

stretches r, bend angles θ, and torsion angles ω due to the expected di�erent length scales of
these di�erent types of coordinates,

C(q,q′) = σ2
m · CSE(r, r′) · CSE(θ,θ′) · CP(ω,ω′). (4.16)

This yields a total of four hyperparameters, namely, the scaling parameter σ2
m and three length

scale parameters lr, lθ, and lω. Linear bend coordinates are included in the subset of bend
angles and therefore share the same length scale lθ. This more sophisticated model compared
to redundant inverse distances yields a further reduction to a value of 232 for the sum of
optimization cycles. Using a simpler model with a common length scale for all types of Z-
matrix-derived primitives results in a sum of 431 optimization cycles. Details are presented in
Section C.3 of the supporting material.

4.4.3. Non-redundant internal coordinates

The use of redundant coordinate systems increases the computational overhead of the method.
Therefore, two schemes for eliminating the redundancy are investigated, namely, delocalized
internal coordinates and localized internal coordinates.
While delocalization presents a completely unbiased approach, the ordering of the primitive

internals in�uences the results of the localization algorithm due to the sequential character
of the Schmidt orthogonalization procedure. We choose to sort the inverse distances 1/rij in
ascending order of the corresponding bond lengths rij . While localized and delocalized inverse
distances perform similar to the fully redundant set on most molecules, both fail to locate
a minimum structure for the benzidine molecule. For the case of Z-matrix-derived internals,
the strong mixing of di�erent types of primitives in delocalized coordinates implies that the
approach of separate kernels cannot be applied.
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4.5. Discussion

An additional problem is that the periodicity of torsion coordinates can no longer be
included by using a periodic kernel. Rasmussen and Williams104 showed that the periodic
kernel can be derived by transforming the one-dimensional input ω into a two-dimensional
space u(ω) = (cos(ω), sin(ω)) and applying the squared exponential kernel. We make use
of this fact by transforming all torsion coordinates into (cos(ω), sin(ω)) before applying the
delocalization or localization scheme. Using the squared exponential kernel, which introduces
a total of two hyperparameters, in combination with delocalized Z-matrix-derived primitives,
yields a sum of 444 optimization cycles. The localization of the primitive internals allows us
to characterize them as stretch-, bend-, and torsion-dominated coordinates, where the main
contribution is determined by the sum over the respective squared coe�cients. Using a product
of separate squared exponential kernels for each of these subsets, again resulting in a total of
four hyperparameters, yields a sum of 269 optimization cycles.

4.4.4. Reduced redundancy internal coordinates

Since a certain degree of redundancy seems to be bene�cial, we further investigate possible
schemes to reduce the redundancy without aiming for a non-redundant subset. We attribute
the observed performance improvements to the fact that the machine learning model is free to
select a subset of coordinates which ful�lls the assumption of an isotropic PES better than the
active sets created by the delocalization or localization procedure.
For the inverse internuclear distance coordinates, the most successful investigated approach

to reduce redundancy consists of the following two steps. First, all primitives corresponding
to bond lengths below a certain threshold rcut are added to the active set (in the presented
case rcut = 5.0 Å, the results for other values of rcut are given in Table C.3 of the supporting
material). This might lead to an incomplete coordinate set. Therefore, in the second step, we
sort the remaining primitives from shortest to longest bond length and then add them to the
active set sequentially if the corresponding B-matrix column and the B-matrix of the current
active set are linearly independent. With a sum of 290 optimization cycles, this approach
performs comparably to the fully redundant set of inverse distances. However, we note that
the generated set is still highly redundant, as can be seen when comparing the size of the active
set to the actual number of Cartesian coordinates, as listed in Table C.2 of the supporting
material.
The Z-matrix-derived internals seem to perform best if they are separated into stretches,

bends, and torsions since this allows using di�erent length scales in the kernel. Therefore, the
reduced redundancy approach presented here employs a separate delocalization or localization
procedure on each of these three subsets. Note that torsion coordinates again have to be
transformed into the (cos(ω), sin(ω)) space, as described in Section 4.4.3. Table 4.1 shows the
results for the active set obtained by applying the localization scheme to the individual subsets
yielding a sum of 225 optimization cycles. Delocalization of the coordinates within the three
subsets yields a similar performance with a sum of 229 optimization cycles (see Table C.3 of
the supporting material for details).

4.5. Discussion

A comparison of the results presented in this work to the results of previous studies in Table C.1
of the supporting materialshows that the GPR-based approaches in internal coordinates
perform similar to the original algorithms suggested by Baker,328 but cannot compare to the
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performance of more advanced schemes including a sophisticated guess for the initial Hessian
matrix.
The main weakness of the GPR-based approach used in this article is the isotropic kernel,

which, in turn, implies an isotropic Hessian given a single training geometry. Anisotropic energy
surfaces can only be represented using additional data points, which increases the number
of necessary optimization cycles signi�cantly. Denzel and Kästner presented an approach
to deal with single coordinates on a di�erent length scale by introducing a separate GPR
for these directions. However, our results clearly show that transforming the PES into a
more suitable coordinate space allows for a more convenient treatment of anisotropy. The
idea of transformation into an isotropic vector space also lies at the heart of preconditioning
approaches, as they have been presented, for example, in Refs. 370 and 371. Combining
machine learning-accelerated optimization with an appropriate preconditioner might, therefore,
lead to competitive performance even in Cartesian coordinates.
We note that rerunning the GPR-based optimization on di�erent machines yields slight

variations in the number of optimization cycles. This is most likely due to the fact that the
marginal likelihood surface used to optimize the hyperparameters is very �at in the �rst few
steps. A possible solution for future implementations would be to use prior distributions on the
hyperparameters. This would also allow us to encode prior knowledge of the Hessian matrix
especially in Z-matrix-derived internals and could yield competitive performance compared to
approaches with sophisticated initial Hessian guesses.
Both the GPR-based optimization and the transformation into internal coordinates introduce

a computational overhead compared to the standard optimization in Cartesian coordinates.
The details of the computational cost of both these methods, as well as possible schemes
to reduce it, have been discussed in the respective original publications of the approaches.
In our combination of GPR-based optimization with a transformed internal coordinate
system, the computational overhead is dominated by the GPR-algorithm, in particular by
the hyperparameter optimization via a maximization of the marginal likelihood.
Finally, we note that the methods employed in this article to reduce redundancy rely on

local information, namely, the Wilson B-matrix. Therefore, a slightly worse performance can
be expected for longer trajectories, possibly requiring an occasional reconstruction of the active
set of coordinates.

4.6. Conclusion

We investigated the in�uence of the coordinate system on the performance of Gaussian process
regression-based geometry optimization on a standard benchmark set of molecules. Signi�cant
improvements over Cartesian coordinates are observed for nearly all of the examined internal
coordinate systems. This is attributed to a lower coupling of di�erent coordinates and a higher
degree of isotropy of the PES in internal coordinates.
Due to the rather modest size of the benchmark set, which consists of a small selection

of covalently bonded molecules only, we refrain from a performance ranking of the tested
internal coordinate systems, but note that a certain choice of coordinates will work better for
certain motives and types of molecular binding. Although an obvious statement, this should
be kept in mind when comparing our results to well-established optimizer packages as they
are implemented in most computational chemistry program packages. The latter are still
outperforming Gaussian process regression, even if formulated in internal coordinates, but take
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5. An evaluation of method performance for nudged elastic band calculations

5.1. Abstract

The localization of transition states and the calculation of reaction pathways are routine tasks
of computational chemists but often very CPU-intense problems, in particular for large systems.
The standard algorithm for this purpose is the nudged elastic band method, but it has become
obvious that an �intelligent� selection of points to be evaluated on the potential energy surface
can improve its convergence signi�cantly. This article summarizes, compares, and extends
known strategies that have been heavily inspired by the machine learning developments of
recent years. It presents advantages and disadvantages and provides an unbiased comparison
of neural network-based approaches, Gaussian process regression in Cartesian coordinates, and
Gaussian approximation potentials. We test their performance on two example reactions, the
ethane rotation and the activation of carbon dioxide on a metal catalyst, and provide a clear
ranking in terms of usability for future implementations.

5.2. Introduction

The application of machine learning techniques such as neural networks, Gaussian process
regression, and other algorithms to problems of computational chemistry has become a
highly active �eld in recent years.121,136,138,372,373 Equipped with a vast range of possible
approaches, several closely related applications ranging from the development of atomistic
potentials6,124,148,149 for minimum energy structure searches in large systems over the
enhancement of structural optimizers163,186,187 for the localization of extrema on a given
potential energy surface (PES) and calculation of reaction rates346,347 to predictors for
molecular spectra374 and accelerated molecular dynamics simulations375 have been suggested
recently. Within this subset of applications, the prediction of the electronic energy as a function
of the nuclear coordinates is a central concern due to the substantial cost of its evaluation,
in particular for larger systems, where complicated electronic structures meet with a very
high dimensionality of the corresponding electronic potential energy surface. Aiming for the
localization of certain extrema on the PES is a standard problem of any computational chemist,
and success is particularly hard to achieve in cases where the point of interest resembles a saddle
point of �rst order or �transition state� (TS) in chemist's parlance. Knowledge of the latter,
together with the typically less costly localization of those PES minima that correspond to
reactant and product con�gurations, allow, for example, the application of transition state
theory within the harmonic approximation in order to estimate reaction rates and product
distributions. The reaction itself can be thought as a structural rearrangement best described
by the minimum energy path (MEP), a curved line connecting both minima and running over
the saddle point: in a fully thermalized system, this path corresponds to the trajectory with the
largest statistical weight. A commonly used approach for its evaluation is the nudged elastic
band method (NEB), an iterative procedure in which the path is discretized by a chain of
points or �images� on the PES.183�185 Each of these images corresponds to a certain geometry
of the system. Starting from some initial set of these images, a �rst guess for the actual path,
the NEB technique improves the positions of these images in each iteration until convergence.
Unfortunately, hundreds of energy and gradient evaluations are needed in order to converge
to the MEP, with each of them taking several minutes to hours in typical problem settings.
Obviously, any acceleration of this laborious procedure is highly desired. In this article, we are
concerned with the methodological improvement of the NEB method by tweaking its actual
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choice of images in each step of the path updating process, without any loss of accuracy in
the path. The latter claim excludes pragmatic trade-o�s such as the growing or freezing string
methods.376�378 Obviously, the geometries of each previously evaluated path contain local
knowledge of the high-dimensional PES. In standard NEB, this information is only used to
make reasonable choices for placements of new images in the next step. In 2016, Peterson
suggested the usage of a neural network to collect the information on the PES gained in each
update,186 which laid the foundation for a series of follow-up studies introducing also other
machine learning techniques187 based on Gaussian process regression.104 A common strategy
of all these methods is to perform any intermediate calculations of energies and gradients,
which are necessary to correct the MEP estimate between two updating steps, on a tentative
analytical model PES, which is easy to calculate. The latter can be considered as the best
approximation to the actual ab initio PES given the information at hand and gets updated
each time a new path has been suggested. These updates are enforced by the constraint that
each new image, suggested by an algorithm working on the tentative PES, must be evaluated
on the �real� ab initio PES. The so obtained energies and atomic forces are then used to
improve the current model PES. This way it is ensured that unbiased information is added to
the database only, making it possible to reach the exact MEP in principle upon convergence.
Three popular machine learning techniques are applied to the task of accelerating standard-
NEB: neural network potentials, Gaussian process regression in Cartesian coordinates, and
Gaussian approximation potentials. All of them use energy as well as gradient information
for their predictions. After presenting the details of their implementation in Section 5.3, their
performance will be tested on two molecular systems in Section 5.4. The �rst test, the internal
rotation of an ethane molecule in gas phase, is chosen for the sake of a direct comparison to
the literature.186 The second test, CO2 activation on a Pt−4 atomic cluster, has been selected
in order to provide a more challenging, realistic evaluation on a system of current chemical
interest. A fair comparison of the various machine learning approaches is attempted by creating
unbiased, authentic starting conditions without usage of extra information. In Section 5.5, we
discuss the advantages and disadvantages of each method. We conclude our study with a �nal
suggestion for an optimal choice of method and its corresponding hyperparameters.

5.3. Methods

We start with an overview of selected machine learning techniques that have recently been
suggested for the improvement of NEB calculation performance. We summarize the main
ideas, highlight similarities, and discuss di�erences between these approaches. Numeric values
for all relevant model parameters are listed in the following subsections. For the sake of brevity,
their actual e�ects on the corresponding algorithm are not discussed in greater detail. Instead,
we refer the reader to the original publications of the individual method as provided in the
corresponding sections.

5.3.1. Nudged elastic band

NEB is a standard algorithm of computational chemistry that determines, in an iterative
fashion, the reaction path given two minima on the PES of the molecular system under
investigation.184

First, two initial geometries, preferably those closest to a transition state of interest, are
connected via a linearly interpolated path consisting of N geometries or �images�. Each of
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5. An evaluation of method performance for nudged elastic band calculations

these images corresponds to a certain position on the potential energy surface. Neighboring
images are then connected by �ctitious springs to keep them equidistantly distributed along the
path.183,379 The basic algorithm attempts to minimize an objective function, which is a sum
over spring contributions and the potential energies of all images. Problems such as corner-
cutting and sliding-down issues are solved by a convenient projection of spring and gradient
forces: While the former are considered only in their projection along the band, the latter are
only allowed to act perpendicular to the band. The total force acting on each image is then
given by

Fi = −[∇iE(xi)− ([∇iE(xi)]τ̂i)τ̂i] + (F s
i τ̂i)τ̂i, (5.1)

with τ̂i as tangent to the band, xi as position, F s
i as spring force, and the subscript i denoting

the image. The spring force can be expressed as

F s
i = k[(xi+1 − xi)− (xi − xi−1)], (5.2)

with k as the spring constant. Since the band cannot be considered smooth in general, the
tangent is estimated, for example, through neighboring images,379

τ̂i =
xi+1 − xi−1

|xi+1 − xi−1|
. (5.3)

The main procedure of the nudged elastic band comprises the following steps:

1. Initialize the band with a linear interpolation between the two minima.

2. Evaluate the energy and gradient for each image on the potential energy surface.

3. Estimate every tangent, and calculate the spring and acting force of each image.

4. Move every image on the potential energy surface with respect to the acting force.

5. Continue with step 2 until the acting force norms are below a certain threshold and
convergence is achieved.

Note that the nudged elastic band algorithm converges toward the minimum energy path,
but it does not deliver the transition state automatically. This feature can be added by �rst
converging the algorithm to the (approximate) minimum energy path and then applying the
climbing image method, where the spring force acting on the image with the highest energy
is set to zero, and the component of the gradient force along the band is inverted. As a
consequence, the image with highest energy moves up the PES in the direction of the elastic
band and down perpendicular to the band, toward the actual saddle point.185,379

Alternatively, well-established methods such as eigenvector following techniques173 can be
applied to reasonably close geometries for an exact localization of a transition state. If the exact
reaction pathway itself is not needed, much less expensive approximators of the latter can be
used instead to provide good estimates for the TS structure as well.376�378 The initial linear
interpolation of the band is sometimes problematic because atoms can get too close to each other
or may even collide upon rearrangement. These issues of unphysical proximities can be solved
with the so-called image-dependent pair potential technique380 (IDPP), where the actual PES is
replaced with a well-behaved analytical surface, which is signi�cantly cheaper to evaluate. For
that, the algorithm �rst calculates the pairwise distance between all atoms at each minimum
geometry. These distances are then used to linearly interpolate between pairwise distances for
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each intermediate image, which gives the optimal distance between the atoms. For each atom,
the deviation of the actual pairwise distances to the optimal is calculated. The image-dependent
pair potential is given as a weighted sum over all these deviations. The nudged elastic band
method as described above can then be applied to this potential in order to obtain an initial
pathway on which atomic collisions are avoided. Our computational study is based on the
NEB algorithm as implemented in the ASE suite of programs.349 In all calculations, the spring
constant between images is set to the ASE default value of k = 0.1 eV/Å. Two convergence
thresholds are used. Once the �rst threshold of a maximum force on all atoms TCIon = 0.5 eV/Å
is reached, the highest energy image is switched to climbing mode. This second stage of the
algorithm is run until the maximum force on all atoms is below TMEP = 0.05 eV/Å. As suggested
by the ASE documentation, the Fast Inertial Relaxation Engine (FIRE)343 algorithm is used to
optimize the NEB. We use the ASE default values for the parameters of the optimizer, which
follow the suggestions of the original publication of the algorithm. The time step is set to
∆t = 0.1 Å

√
u/eV (ASE time units), which corresponds to approximately 1 fs. A maximum

time step of ∆tmax = 10∆t is used. The remaining parameters are set to αstart = 0.1, fα = 0.99,
finc = 1.1, fdec = 0.5, and Nmin = 5. The ASE implementation uses a maximum step size,
which was set to 0.2 Å.

5.3.2. Machine learning-accelerated nudged elastic band

Our implementation of the machine learning-accelerated nudged elastic band (ML-NEB) follows
a simple algorithm outlined by Peterson, referred to as the �all-images-evaluated� (AIE)
algorithm by Koistinen et al.:187

1. Generate initial guess for the MEP

2. Calculate ab initio energies and forces for all images

3. Check for convergence Fmax < TMEP

4. Add images to the training set

5. Train machine learning potential

6. Run a complete NEB on the updated machine learning potential, starting from the same
initial guess obtained in step 1

7. Go to step 2

The NEB calculation in step 6 switches to climbing image NEB when the maximum force
drops below a threshold of 0.5 eV/Å. The same value is used for classic as well as ML-enhanced
NEB. In order to avoid oscillation near the true MEP, the convergence threshold for the machine
learning prediction of the MEP is reduced to TML

MEP = 0.025 eV/Å. In addition to restricting the
number of iterations in both phases of the NEB algorithm to NML

max = 250 and NML
max,CI = 150,

we also implemented the suggestion of Koistinen et al.187 to abort the NEB optimization on the
machine learning PES as soon as the distance from any image to the nearest training example
exceeds the trust radius, rmax.
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5.3.3. Machine learning potentials

Standard techniques of approximating potential energy surfaces used to employ physically
motivated models with a relatively small number of meaningful parameters, which are then
�tted to high level ab initio data. More recently, this traditional concept has been challenged
by a purely mathematically inspired class of atomistic potentials, where physically motivated
terms are sacri�ced for higher �exibility. These machine learning potentials can achieve high
accuracy but typically use signi�cantly more parameters and therefore need more reference
data. The following sections outline the main ideas of the three investigated machine learning
potentials including the prediction formulas for the total energy. For more details on the
inclusion of energy and gradient information in all learning procedures under discussion we
refer to the original publications. We note that the usage of atomic forces as additional input
data is essential.

Neural network potentials

A highly prominent machine learning ansatz has been introduced by Behler and Par-
rinello.124,136 The main idea of their approach is to assume that the total energy can be
written as a sum of atomic energy contributions

E =
N∑
i

εi(di), (5.4)

which are functions of a set of descriptors di of the local environment of the atom. These
atomic energy functions are modeled using neural networks (NNs). For each atom type, one
neural network, referred to as atomic neural network, is employed.
The local environment is encoded by �descriptors�, sometimes also denoted as �symmetry

functions� or �features�, which ensure a constant number of inputs for the individual atomic
neural networks. They also o�er the possibility to enforce physical invariances and symmetries
of the PES, for example, with respect to translation or rotation. Invariance with respect to
permutation of same-type atoms is automatically ensured by usage of the same atomic neural
network. The local environment is limited by a cuto� sphere of radius Rc. A cuto� function is
used to ensure that all descriptors fade to zero at the cuto� radius and to avoid discontinuities
in the PES as atoms enter or leave the cuto� sphere:

fc(Rij) =

{
1
2

[
cos
(
πRij
Rc

)
+ 1
]

forRij ≤ Rc

0 forRij > Rc,
(5.5)

where Rij denotes the distance between atoms i and j. For the descriptors, we use functional
forms originally suggested by Behler,125 combined with the parameters given by Artrith and
Kolpak.381 This set employs a combination of two- and three-body descriptors. The former,
referred to as G2 by Behler, are sums of Gaussians multiplied by the cuto� function,

G2
i =

∑
j 6=i

e−ηR
2
ij · fc(Rij), (5.6)

where η is a parameter of the descriptor. The three-body descriptor, termed G4 by Behler,
combines cosine polynomials with radial Gaussians multiplied by the cuto� function,

G4
i = 21−ζ

∑
j 6=i

∑
k 6=i,j

(1 + λ cos θijk)
ζ e−η(R2

ij+R
2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk), (5.7)
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with ζ, λ, and η as parameters and θijk as the angle between the vectors Rij and Rik. In
typical neural network applications, the descriptors are scaled to a �xed range, for example,
-1 to 1, as suggested by Behler, in order to avoid biasing. However, we use the raw descriptor
values without scaling for practical reasons in the given application: A rescaling each time a
new data point is added to the training set would prohibit the usage of weights from previous
�ts.
With the help of these descriptors a certain input geometry of a molecule is translated into

a vector, di, which serves as the input to a feed-forward type neural network with two hidden
layers. The hyperbolic tangent is used as activation function, which leads to an atomic energy
function of the form

εi(d) = b3 +
∑
l

w23
l tanh

b2l +
∑
k

w12
kl tanh

b1k +
∑
j

w01
jkdj

 . (5.8)

The parameters b and w of this function, referred to as biases and weights, are shared by atomic
energy functions for all atoms of the same type.
The actual learning process, given a set of molecular geometries, total energies, and forces,

corresponds to a minimization of the loss function

L =
1

M

M∑
i

(
ENN
i − ERef

i

)2
+

β

3NM

M∑
i

3N∑
j

(
FNN
i,j − FRef

i,j

)2
+ λ

Nw∑
k

w2
k, (5.9)

which consists of the mean squared error (MSE) of the total energies, the MSE of the forces,
and a regularization term that penalizes more complicated models. M denotes the number of
training examples, N the number of atoms, and Nw the number of weights, and β and λ are
hyperparameters.
Our implementation of neural network potentials is based on the TensorFlow library,319 and

the loss function is minimized with respect to the weights using the L-BFGS algorithm105,106

as implemented in the SciPy open source Python library.357

Reliable black box training of neural networks is a di�cult task. We follow the approach of
Peterson and run the optimization until the root-mean-square energy deviation is less than 0.001
eV/atom and the root-mean-square deviation of the forces is less than 0.05 eV/Å. Additionally,
we restrict the number of L-BFGS iterations to a maximum of 104. A minimum of 200 iterations
is enforced in order to ensure new training data is adequately represented by the neural network
potential. At each L-BFGS step, a maximum of 200 previous iterations are used for the Hessian
approximation.105 For the �rst step, the weight matrices w are initialized randomly, and the
bias vectors b are set to zero, with the exception of the linear output layer, where the bias is
set to the energy value of a single atom of the respective element. Subsequent optimizations
start from the result of the previous step. This not only accelerates the training phase but also
stabilizes the whole ML-NEB algorithm, which would otherwise be prone to oscillations about
the MEP.

Cartesian Gaussian process regression

The simplest possible approach to �tting an energy surface is to model the energy as a function
of the Cartesian coordinates of the atoms. In principle, any machine learning regression
algorithm could be used to model this function. Koistinen et al. suggested Gaussian process
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regression (GPR) in Cartesian coordinates (abbreviated as CC-GPR in this article) because
of the closed form solution for the parameters and a black-box method for optimizing the
hyperparameters (maximizing the marginal likelihood).
The total energy is written as a linear model in a high dimensional space, typically referred

to as feature space:
E(x) =

∑
h

whφh(x) = w>φ(x), (5.10)

where φ(·) denotes the transformation from the Cartesian input space into the higher
dimensional feature space and wh are the coe�cients or weights of the linear �t. The energy
prediction for a previously unseen geometry x? is given by

E(x?) = Eref
(

Φ>Φ + σ2I
)−1

Φ>φ(x?), (5.11)

where Eref is the vector of all reference energies, Φ is a matrix with the transformed reference
geometries {φ(xi), . . . ,φ(xM )} along the columns, and σ2 is the assumed variance of the
training data, which improves numerical stability of the matrix inversion. See Ref. 104 for a
detailed description of the derivation of this result. For the prediction, only the inner product
in feature space is needed, which is typically replaced by a so-called kernel (or covariance
function in the context of GPR), C (x,x′) = φ(x)>φ(x′). In practice, knowledge of the actual
transformation into feature space replaced by the kernel is not needed.
Therefore, a central component of the GPR approach is the covariance function, which acts as

a measure of similarity between di�erent points on the PES. We use the in�nitely di�erentiable
squared exponential covariance function187

C
(
x,x′

)
= σ2

c + σ2
m exp

(
−1

2

3N∑
h=1

(xh − x′h)2

l2h

)
, (5.12)

where σ2
c , σ

2
m, and l = {l1, . . . , l3N} are the hyperparameters of the covariance function. Note

that σ2
c introduces a constant energy o�set, which compensates for the absence of a mean

model. The case of a common length scale along all dimensions, lh = l is referred to as
isotropic squared exponential covariance function, whereas the general case is anisotropic. In
addition to �xing the constant term σ2

c = 100 eV2 as suggested by Koistinen et al.,187 we
also �x the scaling factor σ2

m = 1 eV2, leaving only the length scale l as free hyperparameter.
Denzel and Kästner163 reported better performance in optimization tasks using the Matérn
kernel354,355(for ν = 5/2),

C
(
x,x′

)
= σ2

c + σ2
m

1 +

√√√√5

3N∑
h=1

(xh − x′h)2

l2h
+

5

3

3N∑
h=1

(xh − x′h)2

l2h

 exp

−
√√√√5

3N∑
h=1

(xh − x′h)2

l2h

 .

(5.13)
Again, we �x the hyperparameters σ2

c and σ
2
m to the aforementioned values and only optimize

the length scale hyperparameter l.

Gaussian approximation potentials

Gaussian approximation potentials (GAP)148,149 introduced by Bartok et al. feature a similar
approach as the neural network potentials of Behler and Parrinello. The total energy is written
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as a sum of atomic contributions, which in turn are modeled as functions of descriptors of the
local environment.

E =
N∑
i

εi(di) =
N∑
i

w>φ(di). (5.14)

These atomic energy functions, εi(di), are �tted to the total energy using Gaussian process
regression, as hinted at by the linear expansion in basis functions φ. The covariance of two
total energies Ea and Eb is then given by a sum of covariances of atomic contributions (see
Ref. 149 for a detailed derivation):

〈EaEb〉 =

〈∑
i∈a

εi(di)
∑
j∈b

εj(dj)

〉

=

〈∑
i∈a

∑
j∈b

∑
hh′

whwh′φh(di)φh′(dj)

〉
=
∑
i∈a

∑
j∈b

∑
hh′

〈whwh′〉φh(di)φh′(dj)

= σ2
w

∑
i∈a

∑
j∈b

∑
h

φh(di)φh(dj)

= σ2
w

∑
i∈a

∑
j∈b

C(di,dj).

(5.15)

Typically, this approach is combined with the so-called bispectrum descriptors or the smooth
overlap of atomic positions kernel (SOAP),128 which are similar to the Behler symmetry
function descriptors but use di�erent radial and angular expansions. For the sake of a fair
comparison, we will be using the same descriptor set for both descriptor-based approaches in
our study. The SOAP approach was recently expanded to allow coupling of di�erent atomic
species,130 similar to the embedding concept used in SchNet.139 In this work, we choose not to
couple descriptions of di�erent atomic species as this is closest to the neural network potential
ansatz.
In addition to the squared exponential covariance function, we also test the normalized dot

product covariance function as has been suggested by Bartok and Csányi:149

C
(
x,x′

)
= σ2

c + σ2
m

(
x · x′ + σ2

0

)ξ(
x · x + σ2

0

)ξ/2 (
x′ · x′ + σ2

0

)ξ/2 , (5.16)

where the additive constant σ2
0 is a hyperparameter that can be optimized and the exponent

ξ is a �xed hyperparameter. The parameters σ2
c and σ2

m are set to the same value as for the
squared exponential kernel.

5.4. Results

Two molecular systems have been chosen for our study. The �rst part is concerned with
the internal rotation of ethane, a standard problem that has been used before in the same
context of machine learning applications. Although not particularly interesting, it serves as a
benchmark and allows for evaluations against other strategies in the literature. However, as
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will be made clear in later sections of this article, the advantage of its well-behaved, rather
simple, and symmetric PES introduces a 2-fold intrinsic bias: First, it is virtually impossible
for any meaningful NEB implementation not to converge. Instabilities in a chosen algorithm
or sensitivities to unfortunate initialization (e.g., the random weights in NN approaches) are
barely detectable. Second, the high symmetry provides bigger advantages for certain methods
than for others. More concrete, it tips the scale toward descriptor-based machine learning
potentials.
Therefore, our choice for the second part is a more challenging, less symmetric reaction in

a metallic system that is of current interest to the community.382�384 We are concerned with
the activation of CO2 over a Pt−4 atomic cluster ion, where a C=O bond is ruptured and an
O-Pt bond is formed. This problem is not only challenging from the NEB point of view but
also from the point of the computational evaluation of the PES. We note that convergence of
ab initio methods in metallic systems is particularly problematic, leading to much more time-
intense single-point evaluations, discontinuous results for the PES due to wrong or incomplete
convergence, and a much higher risk for unphysical choices of geometries during the NEB
algorithm. Special care has to be taken here.
In both systems to be investigated, the ab initio PES is calculated using the Q-Chem program

package.369 Details of the method chosen for each system are provided in the corresponding
sections.

5.4.1. Test 1: Ethane rotation

The rotation about the C-C bond in ethane is one of the examples used in Peterson's original
description of machine learning-accelerated NEB186 and has been used by Jónsson et al.380

to demonstrate their IDPP initial guess. In order to reproduce the original results, we use
the B3LYP functional62,64,66,67 and the 6-31+G* basis set385�388 as well as 9 interior images
between the two minima. We do, however, use a slightly di�erent initial guess in order to avoid
the long and complex MEP described by Peterson, which would create an unfair disadvantage
for methods based on Cartesian coordinates (including standard-NEB method without machine
learning). This is achieved by setting the remove_rotation_and_translation �ag in the ASE
NEB implementation for the IDPP optimization. The complete initial path used for all ethane
NEB runs is given in Section D.1 of the supporting material. As suggested by Koistinen et al.,
the trust radius for the ML-NEB algorithm is set to half the length of the initial path, that is,
rmax ≈ 1.3 Å.
The plain NEB method without machine learning acceleration needs 21 evaluations of

the whole band until reaching convergence. Note the fundamentally di�erent outcome in
comparison to the 48 steps reported by Peterson, which simply follows from a more natural
choice of coordinate representation. All methods to be tested in this work start from the same
geometries, and their performance will be tested against the 21 evaluations necessary with
standard NEB.

Neural network potentials

For our tests of the neural network potential, we use the same network architecture as
suggested by Peterson, which consists of two hidden layers containing �ve neurons each. Still,
reproducing results of previous studies proves di�cult due to the random weight initialization
used when training a neural network. The performance is also in�uenced by the choice of the
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hyperparameters β and λ in the loss function (Equation 5.9), which are not mentioned in the
study of Peterson.
A small hyperparameter study for the regularization parameter shows that λ = 10−4 (see

Section D.2 of the supporting material) yields the best results for β = 1, converging after four
evaluations of the band (i.e., evaluation of the initial guess and three MEP predictions of the
ML method) in the best case and six evaluations in the worst case. A typical progression of
the PES and MEP as predicted by the neural network potential is presented in Figure 5.1,
which shows NEB projections onto a two-dimensional cut through the multidimensional PES
along the two most important internal coordinates, the C-C bond length and the dihedral
angle. It depicts three update steps of the band, starting with the initial path (gray) and a
�rst prediction (black) in the leftmost picture. The picture in the middle shows the second
step, where the prediction of the �rst step has been replaced by actual data evaluated on the
unknown ab initio surface. Note how this additional data a�ects the landscape and with it
the next prediction. In the rightmost picture, this procedure has been repeated. More data
is now available, and the onset of convergence can be observed as the prediction and the last
path evaluation are almost identical. Note that even the converged path does not fully agree
with the MEP one would obtain on that particular two-dimensional energy surface due to its
projective character; the converged path is the true MEP with respect to all degrees of freedom,
that is, also to those not shown.
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Figure 5.1.: Three reaction pathway updates for the internal rotation of ethane, obtained with
the NN-based NEB method, and projected onto the energy landscape created by two prominent
internal coordinates, the C-C bond length and the dihedral angle. The NEB prediction of each
step (black) is replaced by corresponding data points (grey) evaluated on the ab initio PES in
the next step.

Cartesian Gaussian process regression

Our evaluation of this ML method starts with a test of the isotropic squared exponential
covariance function as a suitable measure of similarities between images. The length scale
is optimized each time the model is �tted by maximizing the marginal likelihood using the
L-BFGS algorithm.105,106 For the �rst iteration, the starting value of the optimization is set
to l = 1 Å. Subsequent iterations use the optimization result of the previous step as starting
value. Aiming at a perfect reproduction of the ab initio PES, the noise parameter is chosen to
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be as small as σ2 = 10−8 eV2; the same value as used in Ref. 187. With these parameters, the
MEP is found after only 7 evaluations of the band. Using the Matérn covariance function and
the same parameters, convergence is reached after 8 iterations.
For the sake of comparison, we also investigate the performance of anisotropic covariance

functions, optimizing all 24 length scale hyperparameters during the �t, again starting from
a value of 1 Å. With this modi�cation, the number of band evaluations until convergence
is increased to 10 for the squared exponential covariance function and reduced slightly to
7 evaluations for the Matérn covariance function. Anisotropic covariance functions are not
recommended for general application, as the high dimensionality of the hyperparameter space
increases the computational e�ort for the �t signi�cantly. Also, it leads to multiple local
maxima on the marginal likelihood surface, which makes the hyperparameter optimization less
reliable.

Gaussian approximation potentials

In the course of this study, it became obvious that a combination of advantageous features
of both methods studied so far, the NN and the Cartesian GPR ansatz, would be highly
desirable. Such a possibility is provided by Gaussian approximation potentials, where the
translation-, rotation-, and permutation-invariant descriptor space of a neural network potential
is combined with atomic energy summations within the closed-form expression of Gaussian
process regression.
We compare the performance of the isotropic squared exponential and Matérn covariance

function as well as the normalized dot product covariance function (for exponents ξ = 2 and
ξ = 4). Anisotropic covariance functions are omitted from this study as the problems already
shown for Cartesian GPR would be even worse for GAP due to the high dimensionality of the
descriptor vectors. The noise term is set to σ2 = 10−6 eV2. This increase over the value for the
Cartesian GPR was necessary to avoid numerical issues during the Cholesky decomposition.
This can probably be attributed to the fact that there is no guarantee that the total energy can
be written as a sum of atomic contributions or that these atomic contributions are functions
of a limited set of descriptors. For the Matérn covariance function, the algorithm converged
after 6 iterations of the whole band. For the other three covariance functions, 4 iterations were
su�cient.

Summary on ethane rotation

The aim of this �rst investigation was to provide the crucial, yet missing comparison of
two state-of-the-art ML-NEB methods and to introduce the new concept of combining their
advantages in the form of the GAP-based approach, given a benchmark system that has been
used for the same purpose in the past. Our results with respect to NEB improvement are
summarized in Table 5.1. This preliminary outcome already demonstrates the signi�cant
acceleration of the NEB convergence by any machine learning ansatz. However, the �nal
numbers of band iterations are very closely grouped, so a more detailed discussion of
performance di�erences seems inappropriate. Clearly, the simplicity of this benchmark system
limits its suitability for an advanced study. Therefore, comments and further discussion will
be postponed to Section 5.5.
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Table 5.1.: Summary of the savings in ab initio evaluations for the investigated machine learning
potentials for the ethane benchmark.

Machine learning method Nsteps

Reference value (no ML) 21

NN, 5-5 architecture 5 ± 1
CC-GPR, isotropic squared exp. 7
CC-GPR, anisotropic squared exp. 10
CC-GPR, isotropic Matérn 8
CC-GPR, anisotropic Matérn 7

GAP, isotropic squared exp. 4
GAP, isotropic Matérn 6
GAP, dot product ξ = 2 4
GAP, dot product ξ = 4 4

5.4.2. Test 2: Bond breaking in heterogeneous catalysis

For the second part, we have chosen the CO2 activation on a Pt4−4 cluster, a reaction that has
recently been studied both experimentally and computationally by Green et al. in Ref. 384.
The aim of their study was to illustrate e�ects of metal cluster size on the amount of CO2

activation. After adsorption from the gas phase, the molecule remains strongly bound to the
cluster, but a larger barrier prevents it from dissociation. The task at hand is to locate the rate
determining transition state of the fully unconstrained system between the two neighboring
minima and identify the MEP by application of NEB comprising 7 intermediate images. The
complete initial path as constructed via the IDPP approximation is given in Section D.3 of
the supporting material. The ab initio PES is calculated employing unrestricted DFT with
the B3P86 functional66,389 and the D95 basis set390,391 in combination with the MWB60
Stuttgart/Dresden e�ective core potential.392 An energy pro�le of the MEP is plotted in
Figure 5.2. For the ML-NEB, we use a signi�cantly reduced trust radius of only a tenth of the
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Figure 5.2.: Reaction pathway for the dissociation of CO2 over a Pt−4 atomic cluster, including
the geometries of both minima and the rate determining TS.

initial path (rmax ≈ 0.284 Å) in order to avoid unphysical geometries, which are di�cult to
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5. An evaluation of method performance for nudged elastic band calculations

evaluate ab initio. The standard NEB algorithm, which is used as baseline for the comparison
of the ML-NEB calculations, takes 86 iterations until convergence for this benchmark system.
All results of this study are summarized in Figure 5.3 in which the maximum force per atom
is plotted as a function of the number of ab initio band evaluations showing the convergence
behavior for the various machine learning potentials.
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Figure 5.3.: The maximum force per atom, recorded for all methods, and plotted as a function
of the number of band evaluations. Due to its statistical character (random initialization of
the weights), several curves are presented for the NN-based approach. Note the sudden spike
of the Cartesian GPR approach (squared exponential, blue curve) at step 33, which is related
to the exploration of a badly represented part of the PES.

Neural network potentials

Finding a suitable set of hyperparameters and neural network architecture for this more
challenging benchmark proves di�cult. A small regularization parameter of λ = 10−6 is
chosen in order to avoid restricting the neural network complexity, and the force weighting
parameter is set to β = 1. Three network architectures, all featuring two hidden layers with
5, 15, or 30 neurons per layer, are investigated with respect to their potential savings in ab

initio evaluations and their consistency in achieving those results. A detailed analysis of all
the conducted calculations can be found in Section D.4 of the supporting material. While all
three architectures yield similar results for their respective best performing runs, reducing the
number of band evaluations by roughly a factor of 3, the results for the medium sized 15�15
network architecture feature the smallest variance. The average number of ab initio band
evaluations for this setup is 40.5 with a maximum of 50 and a minimum of 29 iterations.

Cartesian Gaussian process regression

Cartesian GPR parameters do not need to be adapted to the varying molecular systems.
Therefore, the noise parameter remains set to σ2 = 10−8 eV2. For this more complicated PES
only the performance of isotropic covariance functions is investigated, as the optimization of all
21 length scale parameters for the anisotropic case would become computationally more and
more demanding after the �rst few iterations. This rapidly increasing computational e�ort is
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also the reason why a slightly di�erent hyperparameter optimization scheme is used. Starting
from l = 1 Å for the �rst step and the previous optimization result for subsequent steps,
the hyperparameter is only optimized for the �rst ten steps and kept �xed for the remaining
algorithm. A motivation for this choice and an analysis of its bene�ts is given in Section 5.5
and Section D.5 of the supporting material. Using this scheme, the Cartesian GPR yields a
reduction to 36 and 30 evaluations of the band for the squared exponential and the Matérn
covariance function, respectively.

Gaussian approximation potentials

As for the ethane system, the noise term is set to σ2 = 10−6 eV2 to avoid numerical
issues. The hyperparameters are optimized using the same scheme as described above for
Cartesian GPR, that is, their values are frozen after 10 iterations. The combination of GAP
with a squared exponential covariance function achieved the best overall performance of all
investigated machine learning potentials, reducing the number of steps from 86 without machine
learning to just 20 evaluations of the band. Using the Matérn kernel, a similar performance of
22 iterations is achieved. Given a su�ciently high complexity to accurately represent the PES,
the GAP implementation featuring a dot product kernel yields competitive performance, as it
reduces the number of iterations needed to 31 and 25 for ξ = 4 and ξ = 6, respectively. The
convergence curve for ξ = 2 (see Figure 5.3) clearly shows the problems that arise if the PES
cannot be approximated accurately enough by the machine learning potential. In such a case,
the predicted MEP starts to oscillate around the true MEP without reaching convergence.

5.5. Discussion

Before starting with the actual discussion of the ML potential performances, we would like
to emphasize certain aspects that make the NEB-driven PES exploration di�er signi�cantly
from typical applications of machine learning methods in computational chemistry. Standard
ML potentials should reproduce certain properties of the PES, such as invariance to certain
transformations and (in�nite) di�erentiability. Transferability to other problems, for example,
to molecular systems of varying size, is another prerequisite for most applications. However,
these strong demands are not relevant for the task at hand. This is probably most obvious
from the fact that even a Cartesian coordinate representation, where the degrees of freedom
describing molecular motion are coupled in an unnecessarily complicated way and even basic
invariance to translation and rotation is not given, still yields a reduction in computational
e�ort. Leaving aside the question of whether other coordinate representations are better suited
for the NEB algorithm itself,393 this is a strong indication that, in principle, any representation
and its corresponding machine learning potential seem suitable for this task. Therefore, of the
three criteria mentioned above, only a repeated di�erentiability remains an important claim as
forces need to be used as input and output data besides the energy.
We start with the discussion of the neural network approach, which proved di�cult due

to various reasons. Training of the neural network, a di�cult optimization task by itself,
tends to get stuck in local minima of the loss function, and an automatization of the
process is not straightforward. Another complication is the determination of the optimal loss
function hyperparameters β and λ, a necessary prerequisite before running the actual ML-NEB
algorithm. In our treatments of both test systems, we �xed the value for β = 1 and chose small
regularization parameters of λ = 10−4 and λ = 10−6, for the ethane and the Pt−4 CO2 systems,
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5. An evaluation of method performance for nudged elastic band calculations

respectively. An adjustment to the complexity of the model is achieved by a tuning of the
neural network architecture.
While the latter had been kept �xed in the �rst task for the sake of a direct comparison to

the work of Peterson,186 the in�uence of the architecture on the algorithm performance has
been investigated for the second problem, that is, the CO2 activation, in the course of a small
separate study (please see Section D.4 of the supporting material for details).
In direct comparison, the Cartesian GPR approach stands out by its simple and easy to

implement formalism. Another advantage is the avoidance of any additional assumptions on the
mathematical form of the PES, for example, it being a sum of atomic energies. Computational
savings could probably be increased even further by tuning various details of the algorithm.
Approaches presented by Denzel and Kästner163 are overshooting in separate dimensions,
decreasing the length scale according to a �xed shrinking scheme and nesting of multiple GPRs
in a multilevel ansatz. While Cartesian coordinates are the simplest possible representation of
molecular geometries, extrema on the PES are located in delocalized internal coordinates329

by most ab initio packages. Constructing the GPR model in these coordinates could improve
the performance of the algorithm as the invariance with respect to translation and rotation is
encoded in the coordinate transformation.
Regarding the GAP approach, we investigated the performance of the dot product kernel

because the corresponding feature space is �nite and easy to construct. This opens the
possibility of performing the costly matrix inversion (Cholesky decomposition) in a possibly
smaller feature space. Details of this idea can be found in Section D.6 of the supporting
material. Given the relatively small dimension H = 50 of our descriptor set, in the case of
ξ = 2, it would be computationally less expensive to determine the weights directly in feature
space after 12 steps of the ML-NEB algorithm for the ethane system. The descriptor space
grows rapidly with the number of di�erent elements. For the Pt−4 CO2 benchmark system with
its H = 93 descriptors, performing the matrix inversion in feature space only becomes favorable
after 87 ML-NEB iterations. The dimension of the feature space increases similarly fast for
higher values of ξ, which rules out this possibility for ξ = 4 or ξ = 6.
Common to both the Cartesian GPR and the GAP is that hyperparameter optimization at

each step is the bottleneck of the �tting procedure. The optimization is computationally
demanding and can lead to major instabilities if a new minimum is found for the set of
hyperparameters since large parts of the PES become ill represented. Since the hyperparameters
do not change signi�cantly after the �rst few iterations, as can be seen in Figure D.2 (top panel)
of the supporting material, we suggest �xing them after a certain number of steps (10 steps in
our case). This reduces the computational e�ort of the �tting without drastically increasing
the number of ab initio evaluations needed. Figure D.2 (lower panel) of the supporting material
illustrates the convergence behavior for Cartesian GPR and GAP (similar to Figure 5.3) when
the hyperparameters are optimized after each step. Fixing the hyperparameter bears the
additional advantage that only the part of the kernel matrix corresponding to new training
data needs to be calculated after each iteration. Remarkably, even the Cholesky decomposition,
used here to solve the system of linear equations, can be accelerated by this measure, since a
decomposition into upper and lower triangular matrices is not perturbed by the extra rows and
columns added per optimization step. This makes the algorithm e�ectively scale as O(M2)
instead of O(M3), with M denoting the number of training examples. A graphical illustration
of this �nding is provided in Section D.7 of the supporting material.
Finally, we would like to mention another variant of machine learning NEB, the one-image-

evaluated algorithm (OIE) as suggested by Koistinen et al.,187 in which only one image
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(typically the one with the highest prediction uncertainty) is evaluated and added to the
training set before re�tting the machine learning potential. All methods discussed here o�er
approaches to estimate the uncertainty of the model prediction at each point and could therefore
be used in combination with the OIE algorithm.

5.6. Conclusion

We compared three machine learning-based potential energy approximations, neural network
potentials, Gaussian process regression in Cartesian coordinates, and Gaussian approximation
potentials, for their ability to accelerate the nudged elastic band method, a standard algorithm
for reaction path evaluations in computational chemistry. Their performance has been tested
on two molecular systems, one chosen for the sake of a direct comparison to the literature
(ethane internal rotation) and the other one in order to provide a more realistic evaluation on
a system of current chemical interest (CO2 activation on Pt−4 ).
All methods provide a signi�cant speedup (factors between 2 and 4) of band convergence

at a computational e�ort that is mostly negligible in comparison to the costs for a typical
single-point evaluation on the ab initio surface of any molecular system of chemical interest,
so there is not a single reason to remain with the unmodi�ed standard algorithm.
The simplicity and relatively high symmetry of the PES for ethane rotation disquali�es

this system for an unbiased comparison among machine learning enhanced NEB calculations,
since descriptor-based methods have a certain advantage in such a case. Also, the number
of evaluations needed is very low in all cases (ranging from 4 to 10 in comparison to 21 in
standard-NEB) and therefore not representative. However, on the less symmetric and more
challenging Pt−4 /CO2 system, it became clear that neural network-based ML-NEB falls behind
the two other approaches in several ways. Besides providing the lowest speedup (a factor of 2 on
average), its performance is strongly �uctuating due to the random initialization of its weights.
Another negative aspect to be mentioned is its complicated implementation in comparison
to the other methods, and its sensitivity to the many parameters that have to be selected
and tested by hand. Cartesian Gaussian process regression and Gaussian approximation
potentials on the other side, with the latter being a combination of a descriptor-based approach
with a kernel method, are comparably easy and straightforward in their implementation. In
particular, direct approximation of the PES using Gaussian process regression (providing a
factor of 3) stands out in this regard due to its unbeatable simplicity but also because this
method is even working in an implementation employing Cartesian coordinates. The latter are
typically avoided in any kind of geometry optimization due to their inherent strong coupling
with respect to molecular motion and the resulting computational di�culties. This �nding
suggests an implementation, for example, in delocalized internal coordinates, a standard of
many optimizers in quantum chemistry packages, as the most reasonable next step to take in
order to make machine learning enhanced NEB the new standard. Another positive feature
is the avoidance of any additional assumptions, such as the somewhat unphysical summation
over atomic contributions to obtain the total energy.
This being said, we would like to mention that our newly introduced ansatz featuring

Gaussian approximation potentials showed the best performance in our study (acceleration
by a factor of 4) but comes at the cost of having to choose a suitable set of descriptors and
might be more di�cult to generalize in order to be applicable to arbitrary systems. Despite
the potential for further speedups, we therefore recommend Gaussian process regression as the
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most convenient machine learning extension of the NEB algorithm for a widespread use in
computational chemistry packages.
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6. Machine learning approaches toward orbital-free density functional theory

6.1. Abstract

Orbital-free approaches might o�er a way to boost the applicability of density functional
theory by orders of magnitude in system size. An important ingredient for this endeavor
is the kinetic energy density functional. Snyder et al. [Phys. Rev. Lett. 2012, 108,
253002] presented a machine learning approximation for this functional achieving chemical
accuracy on a one-dimensional model system. However, a poor performance with respect
to the functional derivative, a crucial element in iterative energy minimization procedures,
enforced the application of a computationally expensive projection method. In this work we
circumvent this issue by including the functional derivative into the training of various machine
learning models. Besides kernel ridge regression, the original method of choice, we also test
the performance of convolutional neural network techniques borrowed from the �eld of image
recognition.

6.2. Introduction

Over past decades density functional theory (DFT) has evolved into a powerful standard tool of
computational chemistry.394,395 Although originally intended as an orbital-free ansatz, where
all contributions to the electronic energy of a system are represented by functionals of the
electron density, the reintroduction of orbitals within the Kohn-Sham framework is a de facto

standard of most modern programs.55,396 The crucial term which triggered this development is
the expression of the kinetic energy for a system of interacting fermions, which is much better
covered within the picture of occupied molecular orbitals, i.e. eigenfunctions of an e�ective one-
electron operator in a mean-�eld approximation. In modern functionals, the small deviations
from the true kinetic energy are compensated by approximative functional expressions for
the exchange and correlation interactions of an N -electron system. Although the local density
approximation (LDA) of Kohn and Sham396 is uniquely de�ned by the properties of the uniform
gas, the strategy for further re�nements is not clear at all.
Among the most successful current approaches for kinetic energy density functionals (KEDFs)

is the class of nonlocal functionals, which are built from three parts,

T [n] = TTF + T vW + TNL, (6.1)

with TTF = CTF

∫
n5/3 dr as the Thomas-Fermi functional,82�84 T vW = 1

8

∫
|∇n|2/n dr as

the semilocal von Weizsäcker functional85 and TNL as an additional nonlocal term. A widely
used ansatz for the nonlocal part is of the form

TNL = C

∫ ∫
n(r)αω[n](r, r′)n(r′)β dr dr′, (6.2)

with ω denoting a dimensionless kernel, typically assumed to be a function of |r− r′|, and the
exponents α and β as parameters. This form encompasses state-of-the-art non-local functionals
such as the Wang-Teter,397 Smargiassi-Madden,398 Perrot,399 Wang-Govind-Carter,400,401

Huang-Carter402 and Mi-Genova-Pavanello403 functionals. With varying degrees of success,
these functionals have been applied to metallic and semiconducting bulk systems containing
up to 1 million atoms,404�407 to metallic clusters408�410 and to molecular systems.411,412

Following Ref. 89, the idea of using machine learning (ML) methods to approximate density
functionals has been investigated by several groups recently. The original ML model for the
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KEDF has been shown to successfully describe bond breaking,90 and was extended to include
basis set independence413 as well as scale-invariance conditions.93 The same ML model has also
been employed for direct �ts of F [n], the universal part of the total energy density functional.91

A very interesting ML model was investigated by Yao and Parkhill, who used a 1D convolutional
neural network to �t the kinetic energy as a function of the density projected onto bond
directions.98 Machine learning approximations, in particular neural networks, have also been
suggested for semilocal KEDFs.99�101 However, all of these ML-based KEDFs were deemed
to be inadequate for an application in iterative calculations of the minimum energy density,
mostly due to large errors on the predicted functional derivative. As a consequence, the focus
has shifted toward a direct prediction of the minimum energy density from the nuclear potential,
thereby bypassing the need for iterative calculations.95,414�418

One of the earliest machine learning models for density functionals was presented by Tozer
et al. for the exchange-correlation (XC) functional.68 In addition to explorations of the
XC functional,74,80,81,419 machine learning approximations have also been applied to other
technicalities of DFT.79,420�422

In this article, we follow up on the �rst tests by Snyder et al.89 and investigate if the
original idea of learning the kinetic energy functional for a usage in iterative calculations can
be �salvaged� by a simultaneous training of the machine learning model on both the kinetic
energy functional and its functional derivative. In addition to the application of kernel ridge
regression we evaluate the performance of convolutional neural networks, one of the most
successful and widely used ML architectures to date. Our approach is motivated by the fact
that the underlying mathematical expression is very similar to the nonlocal contribution given
by Equation 6.2 (if the kernel ω is assumed to be a function of |r− r′|) and shows translational
invariance, which might enable a better generalization, especially for large systems.

6.3. Methods

6.3.1. Data generation

A one-dimensional model system of noninteracting spinless Fermions is used to train and test
the ML KEDFs. It consists of N particles in a hard wall box within the interval 0 ≤ x ≤ 1 and
an external potential built from a linear combination of three Gaussians,89

V (x) = −
3∑
i=1

ai exp

(
−(x− bi)2

2ci2

)
, (6.3)

with parameters a, b, and c randomly sampled from uniform distributions in the intervals [1, 10],
[0.4, 0.6] and [0.03, 0.1], respectively. The 1D Schrödinger equation for these potentials is solved
on a grid of G = 500 points using Numerov's method,423 yielding a set of eigenfunctions ψkj (x)

and corresponding eigenvalues Ekj for each potential Vj(x), ordered from lowest to highest
energy with increasing index k. These solutions are then used to calculate all components of
the training data for an N -particle system, namely the density,

nj(x) =

N∑
k

(
ψkj (x)

)2
, (6.4)
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the kinetic energy density, here de�ned as

τj(x) =
1

2

N∑
k=1

(
∇ψkj (x)

)2
, (6.5)

the kinetic energy

Tj =

∫ 1

0
τj(x) dx, (6.6)

and the kinetic energy functional derivative

δT [nj ]

δnj(x)
= µj − Vj(x), (6.7)

with µj =
∑N

k E
k
j /N denoting the total energy per particle. The discretized version of

these functions, written as vectors for clarity nj(x) → nj , τj(x) → τj and δT [nj ]/δnj(x) →
∇njTj/∆x, are used to train the ML models. The error in the eigenenergies due to discretization
is estimated to be below 10−3 kcal/mol by comparing the solutions to calculations on a 10
times �ner grid. However, in the context of the ML models all of the computed quantities are
considered exact. The M = 100 parameter triplets for a, b and c as listed in the Supporting
Material of Ref. 89 are used as training data in order to recreate the original study as closely
as possible. On the basis of Equation 6.3, we generate 1000 additional random potentials as a
test set.

6.3.2. Kernel ridge regression

We start with a brief review of the kernel ridge regression (KRR) approach as introduced in
Ref. 89. This ansatz is then extended by the inclusion of the functional derivative into the
training in order to improve its capabilities. Details on the derivation of the equations used in
the following can be found in Section E.2 of the supporting material. An elaborate discussion
of KRR model training can be found in Ref. 117.
In KRR the simple regularized linear �t of ridge regression is extended toward nonlinear

data through the introduction of a kernel function:

TML(n) =
M∑
j

αjk(nj ,n), (6.8)

with αj as the �t coe�cients, the kernel function k(ni,nj), which can be interpreted as a
measure of similarity between two densities, and with {n1, . . . ,nM} as theM training examples.
The coe�cients αj are determined by minimizing the cost function

L =
M∑
j

∥∥TML(nj)− Tj
∥∥2

+ λ
M∑
i,j

αik(ni,nj)αj , (6.9)

where the second term is a regularization function scaled by the parameter λ and Tj are the
kinetic energies corresponding to the training densities nj . Setting the derivative with respect
to the αj equal to zero yields a matrix equation for the �t coe�cients, α1

...
αM

 = (K + λIM )−1

 T1
...
TM

 . (6.10)
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The matrix K contains the values of the kernel function for the M training examples, so
Kij = k(ni,nj) and IM is a unit matrix of size M .
Snyder et al.89 have shown already that the discretized functional derivative can easily be

calculated from Equation 6.8, yielding

∇nT
ML(n)

∆x
=

M∑
j

αj
∆x
∇nk(nj ,n). (6.11)

In our study, we expand on this idea by including the functional derivatives of the training
examples into the model using additional �t coe�cients βj . The kinetic energy of the extended
model is then given by

TML(n) =
M∑
j

αjk(nj ,n) +
M∑
j

β>j · ∇njk(nj ,n)

∆x
. (6.12)

Derivation with respect to the input density gives the new formula for the functional derivative:

∇>nTML(n)

∆x
=

M∑
j

αj
∆x
∇>nk(nj ,n) +

M∑
j

β>j ·
(
∇nj · ∇>nk(nj ,n)

)
(∆x)2

. (6.13)

Note that each of the newly introduced coe�cients βj is a vector of size G. Therefore, the
number of parameters grows from M to M(1 + G). The cost function is extended by the
squared error of the functional derivative and an additional regularization term for the new
weights βj ,

L =

M∑
j

∥∥TML(nj)− Tj
∥∥2

+
κ

G

M∑
j

∥∥∥∥∥∇njT
ML(nj)

∆x
− ∇njTj

∆x

∥∥∥∥∥
2

+ λ
M∑
i,j

αiKijαj +
β>i ·

(
∇ni · ∇>njk(ni,nj)

)
· βj

(∆x)2

 , (6.14)

with ∇njTj/∆x denoting the reference value for the discretized functional derivative corre-
sponding to the training density nj . Minimizing this extended cost function with respect to
the coe�cients yields 

α1
...
αM
β1
...
βM


= (Kext + Λ)−1



T1
...
TM
∇n1T1

∆x
...

∇nM
TM

∆x


, (6.15)

with an extended regularization matrix

Λ =

(
λIM 0

0 λG
κ IMG

)
, (6.16)
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where IM and IMG are unit matrices of size M and MG, respectively, and an extended kernel
matrix

Kext =

(
K J ′

J H

)
, (6.17)

where K is a (M ×M) matrix with elements Kij = k(ni,nj), J and J ′ are matrices of size
(MG ×M) and (M ×MG), respectively, and contain the gradient vectors of k(ni,nj) with
respect to the input densities Jij = 1

∆x∇nik(ni,nj) and J ′ij = 1
∆x∇>njk(ni,nj). Finally, H

is a (MG × MG) blocked matrix consisting of the Hessian matrices of k(ni,nj) given by
Hij = 1

(∆x)2
∇ni · ∇>njk(ni,nj).

Following Ref. 89, we use the squared exponential kernel for all of the presented KRR models,

k(ni,nj) = exp

(
−1

2

‖ni − nj‖2
σ2

)
, (6.18)

where the hyperparameter σ denotes the length scale on which the training densities vary.

6.3.3. Convolutional neural networks

Convolutional neural networks110,111 (CNNs) are on the forefront of the ongoing deep learning
revolution424,425 and achieve unprecedented accuracy in their main �eld of application,
image recognition.426 CNNs represent a subclass of standard feed forward neural networks,
designed for the speci�c purpose of an e�cient inclusion of spatial information in pixel-
based image processing. Despite their origin in visual pattern recognition, CNNs have been
applied successfully to numerous other tasks, including also the approximation of density
functionals.80,98,420

A single convolutional layer typically consists of several �lters or steps of input processing.
A pass through a single convolutional �lter in one dimension is given by

z(g) = f

b+

σw∑
q=1

n(q)w(g−q)

 , (6.19)

where the index �(g)� refers to the gth element of a vector (parentheses are used to distinguish
grid point indices from training example indices), f is an activation function, b is a bias
parameter, w is a vector of weight parameters for the �lter (commonly referred to as �kernel�),
and σw is the �lter width. Equation 6.19 is only valid for indices (g) where the input and
the convolutional kernel w fully overlap (referred to as �valid padding�). The resulting output
vector z is therefore smaller than the input. Alternatively, the input vector can be padded
with zeros to ensure that the output is of the same size as the input, a technique referred to
as �same padding�.
In the course of this article we investigate the performance of both a standard CNN and a

residual neural network (ResNet),427 with the latter referring to a network featuring a more
sophisticated architecture: In addition to conventional convolutional layers, ResNets use so-
called skip connections through which the feed-forward signal can bypass several layers and is
directly added to the output of a later layer. Connections of this type are known to improve the
training process, in particular if training data is limited, as they are forming a less complicated,
�coarse� network within the actual network structure.
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Both investigated models use 32 �lters per convolutional layer with a �lter width of σw = 100
and employing the softplus activation function.428,429 The standard CNN consists of �ve
convolutional layers using valid padding. This results in an �attened output vector containing
160 entries, which is then reduced to a single scalar, the kinetic energy prediction, using a
weighted sum, referred to as �linear dense layer� in community parlance. The more complicated
ResNet model consists of three blocks of two convolutional layers. Each of these blocks is
bypassed by a skip connection. The three blocks are followed by a �nal convolutional layer
with a single �lter. In order to allow for skip connections all convolutions employ same padding.
This architecture results in an output vector of the same size as the input density, which is
interpreted as kinetic energy density. Finally, the kinetic energy (see Equation 6.6) is calculated
by integrating over the output using the trapezoidal rule. The batch normalization layers430

typically employed in ResNets worsen the training performance in regression tasks and are
therefore not used. Schematics of both models are presented in Figure 6.1. We use the keras318

and tensor�ow319 Python packages to implement and train both types of neural networks.

Figure 6.1.: Schematic depiction of the NN architectures used for the standard CNN (left) and
the ResNet model (right). Note the appearance of skip connections for the latter.

The bias and weight parameters are determined by minimizing a cost function similar to
Equation 6.14. Since the ResNet model o�ers predictions of the kinetic energy densities τj , an
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6. Machine learning approaches toward orbital-free density functional theory

additional error term can be added to the cost function,

L =
ιT
M

M∑
j

||TML(nj)− Tj ||2 +
ιτ
MG

M∑
j

||τML(nj)− τj ||2

+
κ

MG

M∑
j

∥∥∥∥∥∇njT
ML(nj)

∆x
− ∇njTj

∆x

∥∥∥∥∥
2

+ λ||w||2, (6.20)

where the weighting coe�cients are set to ιT = 0.2, ιτ = 0, κ = 1, and λ = 2.5 · 10−4 for the
standard CNN (since it does not predict the kinetic energy density) and to ιT = 0, ιτ = 1,
κ = 1, and λ = 2.5 · 10−4 for the ResNet. The L2-regularization term is applied to weight
parameters exclusively and not to bias parameters.
The network parameters are initialized randomly according to the �Glorot uniform�

tensor�ow method321,322 and trained using the Adam optimizer320 for 100 000 epochs. We
use a two-stage learning rate schedule, where the learning rate stays constant at 10−4 for
the �rst 21 800 epochs and is lowered by 10% every 1000 epochs for the remaining training
procedure, resulting in an exponential decay. This greatly improves the overall convergence,
as the inclusion of derivative information leads to large variations of the cost function during
the training. A more detailed discussion of the training procedure as well as its convergence
behavior is given in Section E.4 of the supporting material.

6.4. Results and discussion

Each of the following investigations can be split into two di�erent parts with respect to their
objectives. In the �rst part, the model performance is tested by using the exact densities of
the test set as input to the ML models and evaluating the error of both the kinetic energy
and the functional derivative. In the second part, the derivative prediction of the ML models
is used to iteratively �nd the minimum energy density for the potentials of the test set. For
these densities, the error of the kinetic energy is reported together with the deviation from the
exact minimum energy density. This way, the impact and the magnitude of both types of error
contributions, one stemming from the model itself, and the other caused by wrong minimum
energy density predictions, should become clear and traceable for the reader.

6.4.1. Training on the functional derivative

As a �rst test we investigate if the inclusion of derivative information can improve the �t quality
of the machine learning models on the data sets for N = 1. Table 6.1 summarizes the mean
value, the standard deviation and the maximum value of both the absolute error of the kinetic
energy |∆T | and the integral over the absolute error of the functional derivative |∆ δT

δn | for all
of the investigated models.
As a reference, we reproduce the KRR results from Ref. 89 by using the reported

hyperparameters (σ = 43 and λ = 12 · 10−14). Slight deviations between our results and
the previous work in Table 6.1 can be attributed to the fact that we use a di�erent randomly
generated test set. The hyperparameters for the extended KRR model including derivative
information (referred to as �ext. KRR� in Table 6.1) are determined using a rough grid search
and 5-fold cross validation. The minimum of the sum of the mean absolute validation errors for
kinetic energy and functional derivative is obtained for σ = 30.58 and λ = 10−12. The in�uence
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6.4. Results and discussion

Table 6.1.: Absolute error values on the N = 1 test set for all of the machine learning models
given in kcal/mol.

|∆T | |∆ δT
δn |

model mean std max mean std max

KRR Ref. 89 0.15 0.24 3.2 − − −
KRR this work 0.163 0.29 4.6 29313.2 345.5 30610.9

ext. KRR 0.004 0.02 0.6 3.4 4.3 50.7
CNN 0.044 0.10 2.3 31.5 25.0 370.1
ResNet 0.015 0.02 0.3 10.1 7.0 110.7

of the weighting parameter κ, which is set to 1, as well as a more detailed description of the
hyperparameter search is given in Section E.3 of the supporting material. Comparison of the
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Figure 6.2.: Comparison of exact functional derivative (solid lines) and predictions by standard
KRR with and without the PCA projection detailed in Section 6.4.2 (dashed lines) as well as
prediction from the ML models trained on derivative information (dashed-dotted lines). The
parameters for the shown potential are a = {4.43, 7.18, 9.03}, b = {0.0532, 0.587, 0.568} and
c = {0.0754, 0.0406, 0.0554}.

two KRR models shows that the inclusion of derivative information into the KRR approach
not only drastically reduces the error on the functional derivative, as illustrated for a sample
potential in Figure 6.2, but also improves the accuracy of the kinetic energy prediction by
reducing the standard deviation and the maximum of the absolute error. The slight increase
in the mean kinetic energy error originates from a trade-o� in accuracy between kinetic energy
and its derivative. Section E.3 of the supporting material shows that the cross validation error
of the kinetic energy is actually lowest for the hyperparameter values σ = 11.50 and λ = 10−14,
whereas the lowest error on the functional derivative is obtained for σ = 30.58 and λ = 10−12.
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6. Machine learning approaches toward orbital-free density functional theory

Both the simpler CNN as well as the more sophisticated ResNet achieve lower mean absolute
errors for both the kinetic energy and its derivative than the standard KRRmodel. We attribute
the better performance of the extended KRR method to a lack of smoothness exhibited by the
neural network models as shown in the bottom panel of Figure 6.2.

6.4.2. Finding minimum energy densities using principal component analysis

In the next step we address the question of applicability with respect to a direct minimization
of kinetic energy density. As will be shown in the following, an unconstrained search still
remains impossible despite the drastic improvements in the prediction accuracy of the functional
derivative.
The reason for this failure lies in the notoriously noisy nature of machine learning

approximations. Already emphasized in Ref. 89, this was discussed in greater detail in a
follow-up investigation on nonlinear gradient denoising.94 For reasons of comparability, we
use the same local principal component analysis (PCA) approach as was introduced in the
original publication as an ad hoc remedy and investigate if the improved accuracy of the
models trained on the functional derivative translates to lower errors on the iteratively found
densities. Additionally, we test if the PCA search space can be increased for these models.
Starting from the average density of all training examples, n(0) = 1

M

∑
j nj , the minimum

energy density is found by simple gradient descent,

n(j+1) = n(j) − ηPm,l(n
(j))

[
V +

∇nT
ML(n(j))

∆x

]
, (6.21)

where the projection matrix Pm,l(n) is acting on the functional derivative and constraining
the search space, η is the step size and V is the discretized potential. We note that more
sophisticated optimization methods such as conjugate-gradient are known to signi�cantly
accelerate the convergence,431 but this is not relevant for the intended comparison. For a
given density n the local PCA algorithm starts by calculating the di�erence matrix X> =
(nj1 − n, . . . ,njm − n) for the m closest training densities and diagonalizing the covariance
matrix C = X>X/m. The projection matrix is then constructed from the eigenvectors wk

corresponding to the l largest magnitude eigenvalues Pm,l(n) =
∑l

k=1 wk · w>k . Figure 6.2
shows the e�ect of this projection on the functional derivative prediction made by the standard
KRR model with parameters m = 30 and l = 5. For all calculations presented in this article
we keep m = 30, but vary the size of the search space via the parameter l. Section S7 of the
Supporting Information shows the e�ect of the projection on the functional derivative prediction
for di�erent values of l. The iterative minimization algorithm is considered converged once the
integral over the absolute projected functional derivative is smaller than 10−6 hartree/particle.
We use a step size of η = 10−3 and restrict the maximum number of iterations to 4000 cycles.
The results for all of the 1000 random potentials in the test set are summarized in Table 6.2.

Again, the inclusion of derivative information reduces both errors signi�cantly when compared
to those obtained with the simple KRR. The �nal error can be attributed to two di�erent
sources. The �rst contribution stems from the model error due to the ML approximation as
has already been discussed in Section 6.4.1. A second contribution arises due to the di�erence
in the corresponding minimum energy densities ∆n, which is in turn caused by the model error
and the restriction of the search space in the PCA. This limited �exibility in the search for l = 5
is likely the cause of the similar error values achieved by all of the ML models using derivative
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6.4. Results and discussion

Table 6.2.: Absolute kinetic energy errors ∆T for the iteratively found densities in kcal/mol as
well as the integrated absolute error of the densities ∆n for the N = 1 test set.

|∆T | |∆n| · 104

model l mean std max mean std max

KRR Ref. 89 5 3.0 5.3 46 − − −
KRR this work 5 2.85 7.00 87.34 45.0 54.0 503.9

ext. KRR 5 0.46 1.05 15.35 14.9 11.5 85.0
ext. KRR 10 0.04 0.22 5.95 0.8 0.7 10.7
ext. KRR 15 0.04 0.22 5.97 0.3 0.5 10.8
CNN 5 0.57 1.40 21.69 15.2 12.0 95.5
CNN 10 0.29 0.77 13.26 5.5 8.5 171.0
ResNet 5 0.51 1.25 19.59 14.9 11.5 85.5
ResNet 10 0.09 0.21 5.72 1.0 0.9 14.7
ResNet 15 0.09 0.22 5.86 2.0 2.4 19.6

information. We therefore also investigated larger l values while keeping m = 30. Runs using
standard KRR fail for every value l > 5, not reaching convergence and predicting sharply
peaked densities instead. Similarly, the performance of the simple CNN deteriorates quickly
for l > 10. For the ResNet and extended KRR models the errors reduce up to an l value of
about 15, at which point the iterative algorithm leaves the valid region of the ML models. Note,
however, that for l values in the range between 10 and 15 the ML approximations including
derivative information achieve errors an order of magnitude lower than standard KRR.
Alternatively, KRR can also be used in iterative calculations without the PCA by introducing

a constant o�set,

T̃ML(n) = b+
M∑
j

αjk(nj ,n), (6.22)

and using a small length scale hyperparameter σ in the kernel function. This can be used to
penalize densities far from the training data and e�ectively acts similarly to PCA, while using
all of the training densities (m = M). This approach is inspired by the use of Gaussian process
regression for molecular geometry optimization,163,164,166 where a similar idea ensures that the
iterative search does not stray too far from the training data. A more detailed explanation and
results for the densities provided by this method can be found in Section E.6 the supporting
material. However, both the need for local PCA and the alternative approach of small length
scales and a constant o�set are indications that the ML density functionals do not properly
generalize and are only valid in close vicinity of the training examples.

6.4.3. Toward a real world use case

While Section 6.4.2 shows that models trained on the functional derivative allow for signi�cantly
larger search spaces, the iterations will, given enough �exibility, inevitably leave the region
where the machine learning approximations are valid. This typically leads to sharply peaked
or rapidly oscillating densities. A straightforward solution for this problem is to use physically
motivated penalty terms for these unphysical densities such as the von Weizsäcker kinetic
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6. Machine learning approaches toward orbital-free density functional theory

energy functional,85 and to train the machine learning model on the di�erence between the
exact kinetic energy and the von Weizsäcker model,

TML = T − T vW = T −
∫
n′(x)2

8n(x)
dx. (6.23)

The prediction of a previously unseen density is then given by the sum of the machine learning
and the vonWeizsäcker model functionals, TML+T vW, where the derivative term n′(x) = dn/dx
in the latter contribution is introducing an energy penalty for rapid changes in the density,
which e�ectively restricts the search space to physically reasonable densities. Since the von
Weizsäcker model already yields the exact solution for the case of a single spatial orbital
(discussed in Section 6.4.1), we test this approach for two-particle densities instead. In our toy
model, this already corresponds to the occupation of two spatial orbitals since there is no spin
degree of freedom taken into consideration.
At �rst, we again investigate the model performance for �xed densities. The hyperparameters

for both the standard and the extended KRR models are readjusted using the same grid search
and 5-fold cross-validation as in Section 6.4.1. This yields σ = 35.16 and λ = 10−12 for the
standard KRR and σ = 26.59, λ = 10−12, and κ = 1.0 for the extended KRR. More details on
the hyperparameter search are provided in Section E.3 of the supporting material.
As can be seen in Table 6.3, all of the three investigated models achieve signi�cantly better

performance on the two-particle densities than on the single-particle densities. The analysis of
the training sets in Section E.1 of the supporting material suggests that even though kinetic
energies in the N = 2 data set are showing a larger variance, most of it can be captured by
a simple linear model. We attribute this to the fact that the second particle is less in�uenced
by the relatively shallow potentials and the more di�cult to learn semilocal contribution is
already covered by the von Weizsäcker functional. Even though chemical accuracy is achieved
by all models on this less challenging data set, extended KRR yields a mean absolute error
for the kinetic energy that is 2 orders of magnitude lower than that obtained with ResNet or
standard KRR.

Table 6.3.: Error values of the machine learning approximations on the N = 2 test set in
kcal/mol.

|∆T | |∆ δT
δn |

model mean std max mean std max

KRR 0.0355 0.0588 0.8752 2957.85 16.00 2990.36
ext. KRR 0.0002 0.0008 0.0233 0.12 0.15 2.18
ResNet 0.0483 0.2837 6.8116 6.78 11.36 223.35

Regarding e�ciency and feasibility, the local PCA introduces a signi�cant computational
overhead and would most likely prohibit a large scale application of ML density functionals to
realistic problems. We therefore opt for a more traditional approach of using a basis of sine
functions instead. This introduces the necessity of ensuring both the positivity and the proper
normalization of the density throughout the iterative algorithm. While the correct norm can
simply be enforced by a Lagrange multiplier, the positivity constraint is typically included by
iterating on the variable ϕ =

√
n instead of the density. The steepest descent update rule for
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this new variable is given by

ϕ(j+1) = ϕ(j) − ηPK
[

2ϕ(j)

(
V +

∇nT (n(j))

∆x
− µ

)]
, (6.24)

where PK is a projection matrix and µ is the Lagrange multiplier used to ensure the conservation
of the number of particles N . A detailed derivation of this result, a possible way of determining
µ as well as an explanation why this procedure is not necessary for the local PCA is provided
in Section E.5 of the supporting material. The matrix used to project the functional derivative
onto the basis of sine functions is constructed via

PK =
1

∆x

K∑
k=1

wk ·w>k , (6.25)

with wk =
√

2 sin(kπx). Note that this matrix does not need to be reconstructed in every
iteration as it is no longer dependent on the density at step j. The size of the search space
is now determined by the maximum wavenumber K. The starting value for the variable ϕ
is the square root of the initial density n(0) projected onto the basis of sine functions ϕ(0) =

PK

[√
n(0)

]
, where the starting density is again given by the average over the training data

n(0) = 1
M

∑
j nj . The maximum number of iterations is restricted to 4000 and calculations are

considered converged once the integral over the absolute projected functional derivative drops
below a threshold of 10−6

√
hartree/particle. Note that this di�ers from the convergence

criterion in Section 6.4.2 because convergence is monitored using the functional derivative with
respect to the variable ϕ instead of the density. The step size is reduced to η = 10−4 in order
to avoid oscillations in the convergence behavior.

Table 6.4.: Absolute kinetic energy error ∆T for the iteratively found densities in kcal/mol
as well as the integrated absolute error of the densities ∆n on the N = 2 test set, compared
between the KRR variants and ResNet for increased search spaces.

|∆T | |∆n| · 104

model K mean std max mean std max

KRR 10 8.431 1.138 16.686 109.0 23.0 222.8
KRR 20 21.365 0.826 22.456 133.9 18.4 194.9
KRR 40 23.882 0.846 25.003 139.8 18.4 200.5

ext. KRR 10 0.523 0.827 7.353 24.8 16.0 102.1
ext. KRR 20 0.074 0.069 0.789 0.5 0.6 2.9
ext. KRR 40 0.076 0.069 0.789 0.1 0.1 1.1
ResNet 10 1.239 6.537 142.649 25.8 18.6 248.9
ResNet 20 0.877 6.634 146.324 2.9 11.8 253.3
ResNet 40 0.877 6.635 146.327 2.7 11.8 253.3

Our results are summarized in Table 6.4. The large errors on the functional derivative of
the standard KRR model lead to poor results for iteratively found densities. This is further
emphasized by the steadily increasing error when the search space grows from K = 10 to
K = 20 and K = 40. The iterative search is, however, stable even for the larger K values
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6. Machine learning approaches toward orbital-free density functional theory

due to the von Weizsäcker penalty term. Extended KRR clearly yields the best predictions for
the minimum energy densities, while the ResNet approach barely manages to achieve a mean
absolute error for the kinetic energy within chemical accuracy.

6.4.4. Larger training set

The previous sections are somewhat biased due to the small number of training examples -
a regime where KRR excels. In a �nal test we therefore investigate the performance of the
neural network-based density functional for an increasing number of training examples. A
similar investigation for the extended KRR model is not feasible since the training e�ort for
the KRR model scales with O(M3) and the memory requirements grow with O(M2). We
note, however, that an alternative approach to reduce the computational e�ort would be to
use sparse kernel-based machine learning algorithms such as support vector regression432�434 or
sparsi�ed Gaussian process regression.435�437 These methods could combine the high accuracy
of kernel ridge regression even for small training sets with the potential of increasing the region
where the model is valid by incorporating a signi�cantly wider range of training examples.
The hyperparameters of the ResNet model and the training procedure have to be adjusted

due to the increased number of examples. Instead of evaluating the cost function involving all
of the training data (batch learning), a random subset or �batch� of 100 examples is used to
calculate the gradient descent step and to update the NN parameters (i.e. minibatch learning).
The models are trained for a total of 300 000 such iterations with a learning rate of 10−4

during the �rst 40 000 steps after which the learning rate is reduced by 10% every 2000 steps.
In addition, the regularization factor λ is lowered as well (see Section E.4 of the supporting
material for details).

Table 6.5.: Absolute error values for the kinetic energy ∆T and its functional derivative (in
kcal/mol) on the N = 2 test set, achieved by the ResNet model trained on sets of varying size.

|∆T | |∆ δT
δn |

M mean std max mean std max

100 0.049 0.284 6.814 6.78 11.36 223.36
1000 0.012 0.063 1.922 3.12 2.81 66.31

10 000 0.007 0.018 0.528 2.79 1.92 45.19
100 000 0.007 0.009 0.138 2.39 1.36 19.40

Table 6.5 shows that the larger amount of training examples leads to a steady reduction in
every error score. The most signi�cant improvement is observed for the standard deviation
and the maximum error, the metrics most closely related to the generalization properties of
the model.
We use a basis of K = 40 sine functions for the iterative calculation of minimum energy

densities. Instead of enforcing a convergence threshold, the calculations stop after a �xed
number of 10 000 iterations for the sake of simpli�ed parallelization on GPUs. Typically, the
�nal error values are reached within the �rst 10% of the iterations. The large overhead in
terms of iterations is used to investigate the numerical stability of the iterations on noisy ML
predictions of the derivative.
The error scores on the iteratively found densities, summarized in Table 6.6, are clearly
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Table 6.6.: Absolute kinetic energy error ∆T in kcal/mol as well as the integrated absolute
error ∆n of the iteratively found densities on the N = 2 test set, employing the ResNet on
training sets of increasing size.

|∆T | |∆n| · 104

M mean std max mean std max

100 0.856 6.591 145.58 2.7 11.8 253.0
1000 0.151 1.196 32.65 0.7 1.9 50.5

10 000 0.062 0.228 6.48 0.6 0.6 13.7
100 000 0.047 0.070 0.89 0.6 0.5 5.5

improving with an increasing number of training examples. The ResNet trained on 100 000
densities achieves a performance similar to the extended KRR model trained on just 100
examples. While this may suggest that KRR should be the obvious choice, one has to keep in
mind that the evaluation times for the ResNet model are independent of the number of training
examples, and that training examples are typically available in abundance: In fact, every single
step in a self-consistent Kohn-Sham DFT calculation could serve as training input.

6.5. Conclusion

The predictive capabilities of kernel ridge regression and convolutional neural networks, two
well-established machine learning techniques, have been tested on a one-dimensional model
system of noninteracting spinless fermions with respect to the kinetic energy and its functional
derivative. Extending the work of Snyder et al.,89 we have investigated if the original idea of
learning the kinetic energy functional for usage in iterative calculations of minimum energy
densities can be �salvaged� by a simultaneous training of machine learning models on both
the kinetic energy functional and its functional derivative. Besides kernel ridge regression, the
method of choice in the original paper, we have evaluated the performance of convolutional
neural networks, one of the most successful and widely used machine learning architectures to
date.
In general, the inclusion of the functional derivative not only improves the prediction accuracy

for the functional derivative, but also leads to better generalization toward out-of-training data.
This is underlined by the fact that iterative calculations of the minimum energy density are
signi�cantly more stable and lead to lower deviations in both the �nal kinetic energy and the
converged density. However, the usage of derivative information in the kernel ridge regression
technique increases the computational e�ort signi�cantly and prohibits its application to larger
data sets. Neural networks, on the other hand, do not show these limitations. Of the two �avors
tested in this study, conventional convolutional networks and the more advanced ResNets,
the latter variant achieves competitive results already on small training sets and improves its
performance steadily with increasing data at minimal additional computational cost.
Very recently, it has already been shown for the exchange-correlation functional that

convolutional neural network-based density functionals can easily be extended toward three-
dimensional systems.80 Using similar techniques for the kinetic energy functional might bring
us closer to the ambitious objective of a truly orbital-free density functional theory.

93



6. Machine learning approaches toward orbital-free density functional theory

6.6. Acknowledgements

Financial support by the Austrian Science Fund (FWF) under Grant P29893 is gratefully
acknowledged. We thank the Central Informatics Service (ZID) of the Graz University
of Technology for providing high performance computing resources and technical support.
Furthermore, we are grateful for resources and support o�ered by Colaboratory, a free service
of Google Research.

94
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Over the last few years several extremely promising proofs of concept and �rst large scale
applications of machine learning in computational chemistry have been presented. In this
thesis methodological improvements to some of these previously suggested algorithms have
been investigated. However, the presented methods only mark the very beginning of a possible
paradigm shift in the �eld of computational chemistry and material science.

The next few years will be a crucial phase for the future of machine learning-based
computational chemistry, determining whether these algorithms can make the jump from
�niche� applications to wide-spread use throughout the community. In discussing these future
developments it is often helpful to look at past examples. The latest example of a large shift
in the �eld was the rise of density functional theory, which has become the workhorse of
computational chemistry. Due to the approximative and often empirical nature, the probably
most important ingredient in its highly successful thirty-year journey from the publication
of the Hohenberg-Kohn theorem and Kohn-Sham method to its wide-spread application was
building trust and con�dence in the calculated results.

Modern machine learning methods �nd themselves in a similar situation. While several
examples of algorithms reaching chemical accuracy have been presented, there is still wide-
spread skepticism regarding the reliability and robustness of these results. Therefore, in
the short term future, the �rst machine learning-based methods to be applied routinely are
probably those classes of algorithms which do not in�uence the �nal calculation accuracy,
such as automated selection of basis sets and active spaces, algorithms assisting structural
search, improved initial guesses for electron densities or expansion coe�cients in self-consistent
calculations, and other convergence accelerating methods.

Another lesson to be learned from the example of density functional theory is that the
availability in main stream computational chemistry packages is a necessary prerequisite for
building trust. The main reason for B3LYPs popularity is most likely not its superior accuracy
but rather the fact that it was the �rst hybrid functional to be implemented in the Gaussian
program package. While most of the presented machine learning methods are published as
open-source project, the burden of adaptation to a speci�c application or system typically lies
with the user.

Even though machine learning methods will undoubtedly �nd their way into many
computational chemistry algorithms, the exact extent and role of these methods in the long
term future is unclear. Some of the more enthusiastic researchers have even speculated that
machine learning models might outright replace most of the approximative methods used today
such as force �elds, semi-empirical methods, and even density functional theory. In this vision
of the future, only the highest accuracy methods remain relevant and will mostly be used to
generate training data for machine learning models.

From a physicist's point of view, the probably most interesting current development concerns
the increased drive towards an actual understanding of the reasons behind a certain machine
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learning performance as opposed to black box �tting of large data sets. Methods, such as
symbolic regression, can o�er more interpretable results and might thereby help to gain insights
into the underlying physics.
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A. Machine learning overview

This chapter provides a quick overview of the two machine learning-based regression models
used throughout the thesis and refer the interested reader to more detailed explanations and
literature.

A.1. Feed forward neural networks

Feed forward neural networks are a special category of neural networks organized in sequential
layers. The basic functional form of a single layer for a D-dimensional input is given by

zj(x) = ϕ

(
bj +

D∑
i

wijxi

)
, (A.1)

where zj are the elements of the output vector, wij is a weight matrix, bj are bias variables, and
ϕ denotes an activation function. Feed forward neural networks are constructed by sequentially
passing the input through a series of these layers,

yNN(x) = zL
(
zL−1

(
. . . z2

(
z1(x)

)))
, (A.2)

where the layers z1, . . . , zL−1 are referred to as hidden layers, and zL is the output layer.
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Figure A.1.: Illustration of the intermediate
representation in the hidden layer.

The universal approximation theorem for
neural networks states that any region of a
function can be approximated arbitrarily well
by single hidden layer feed forward neural net-
works.438 From a mathematical point of view
the hidden layer neurons can be interpreted
as linearly independent basis functions and the
output layer as linear combination thereof. Fig-
ure A.1 illustrates this by plotting the output
of the 16 hidden layer neurons for the example
shown in Figure 2.2.
Therefore, a necessary requirement for the

activation functions is some amount of non-
linearity, otherwise Equation A.2 would be
reduced to a simple linear �t. Common choices include the hyperbolic tangent function
ϕ(x) = tanh(x) or the �softplus� function ϕ(x) = ln(1 + ex). The activation function in
the output layer is speci�c to the learning task. For regression a linear activation function is
used to account for the arbitrary choice in scale of measuring the output. In classi�cation tasks
the so-called �softmax� function is used, which allows to interpret the output as probability for
each class.
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A second requirement for the linear independence of the hidden layer functions is a suitable
initialization of the weights. Typically, the weight matrices are initialized randomly and bias
parameters are set to zero.

During training, the neural network parameters, i.e. the weights and biases, are determined
by minimizing a loss function. For the task of regression this loss function is typically composed
of the summed or mean squared error on a set of M training examples and a regularization
term used to penalize unnecessary complexity,

L =
M∑
i

(
yNN(xi)− yref

i

)2
+ λR(w, b), (A.3)

where the weighting parameter λ is referred to as regularization strength. A common choice is
the L2-regularization R(w, b) =

∑L−1
l

∑
ij |wlij |2 applied to the weights of the hidden layers.

The computational minimization of the loss function with respect to the parameters is
achieved using gradient-based optimization methods. While these training algorithms are
typically based on the simple gradient descent method, additional modi�cations such as
momentum and parameter-speci�c step sizes are used to accelerate convergence and to escape
local minima. A further modi�cation, aimed to reduce the computational e�ort and memory
requirements, is the so-called mini-batch learning. Instead of evaluating the gradient of
Equation A.3 by calculating the full sum over the training set, only a small subset of examples,
referred to as batch, is used. The resulting noise, i.e. deviation from the true gradient, can be
helpful to avoid local minima.
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Figure A.2.: Neural network �t including
derivative information.

Since most physics problems involve solving
of a di�erential equation, training data for the
derivative of the target function y can be ob-
tained with minimal additional computational
cost. Reference information on gradients gref

can be included by extending the loss function,

L̃ = L+ κ
M∑
i

(
∇yNN(xi)− gref

i

)2
, (A.4)

where κ is a weighting parameter for the rela-
tive importance of the error on the gradients.
Figure A.2 shows the signi�cant improvements

in the generalization behavior that can be achieved by including gradient information on the
simple example from Section 2.2.1.

In summary, neural networks provide a capable and versatile framework for function �tting,
especially suited for large training sets due to the fact that the number of parameters and
evaluation time is independent of the number of training examples. However, since the
loss function typically exhibits numerous local minima, careful tuning of the neural network
architecture and training parameters is required to achieve accurate results.
Detailed explanations of the both the basics of neural networks and the more sophisticated

deep learning architectures can be found in Ref. 356 and Ref. 424.
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A.2. Kernel ridge regression / Gaussian process regression

Kernel ridge regression and Gaussian process regression are closely related extensions of ridge
regression and Bayesian regression toward non-linear data. While both methods are derived
di�erently, the �nal prediction formulas are mathematically identical. The probabilistic nature
of Gaussian process regression provides additional expressions for the uncertainty of the
predictions. Since Section E.2 contains a detailed derivation of kernel ridge regression, this
section is focused on summarizing the �nal results and applying them to the simple curve
�tting example from Section 2.2.1.
The prediction of an previously unseen example is given by

y(x) =
M∑
i

αik(xi,x), (A.5)

where k is a similarity measure referred to as kernel or covariance function in the context of
Gaussian process regression and the weights αi are given by α1

...
αM

 =


 k (x1,x1) . . . k (x1,xM )

...
. . .

...
k (xM ,x1) . . . k (xM ,xM )

+ λ

1 . . . 0
...

. . .
...

0 . . . 1



−1y

ref
1
...
yref
M

 , (A.6)

with the regularization parameter λ. Similar to the example of a single hidden layer neural
network, the kernel functions can be interpreted as linearly independent basis functions, which
in this case are anchored on the training examples.
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Figure A.3.: Kernel ridge regression �t us-
ing di�erent length scale parameters.

A common choice for the kernel function
is the so-called squared exponential kernel,
sometimes referred to as Gaussian kernel

k(x,x′) = exp

(
1

2

D∑
d

(xd − x′d)2

l2d

)
, (A.7)

where the length scales ld are additional pa-
rameters. Figure A.3 illustrates the importance
of a suitable scale parameter l by �tting the
example from Section 2.2.1 using a squared
exponential kernel with di�erent length scale
parameter values.
Additional model parameters beyond the �t

weights αi, such as the kernel parameters and
the regularization parameter λ, are referred to as hyperparameters, commonly denoted as θ. In
kernel ridge regression hyperparameter optimization is typically achieved by cross-validation,
i.e. training on a subset of the training set and evaluating the generalization error on the
excluded examples. Gaussian process regression additionally o�ers a probabilistic approach to
hyperparameter tuning by maximizing the marginal likelihood,

p(y|X,θ) =

∫
p(y|X,α)p(α|θ)dα, (A.8)

where X = {x1, . . . ,xM} is a matrix consisting of the input vectors for the training examples.
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Figure A.4.: Kernel ridge regression �t in-
cluding derivative information.

Derivative information can be included by us-
ing additional weights for the kernel derivatives,

y(x) =
M∑
i

(
αik(xi,x) + β>i ∇k(xi,x)

)
.

(A.9)
A detailed derivation of this result and the
formula for the newly introduced weight vectors
βi is given in Section E.2.
Figure A.4 shows the improvements achieved

by including reference values for the deriva-
tive using a squared exponential kernel with a
length scale of l = 0.2.

In summary, kernel-based methods o�er a highly accurate approach for function �tting, given
a suitable set of hyperparameters. The method is, however, restricted to smaller data sets as
the computational e�ort for training and prediction grows quickly with the number of training
examples.
An in-depth discussion of Gaussian process regression and the relation to other machine

learning methods can be found in the book �Gaussian Processes for Machine Learning� by
Rasmussen and Williams.104
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B. Supporting material: Embedded atom

model potentials for Pt-Ni nanoclusters

improved by machine learning: a

compromise between �exibility and

physical meaning

In Section B.1 the DFT data set is inspected in detail and analyzed with the simplest of models.
Section B.2 provides an explanation of the cuto� scheme used to reduce the computational
e�ort. Descriptor parameters and modi�cations of the Behler-Parrinello model are discussed
in Section B.3. Results of the hyperparameter search conducted for all neural network-based
models are presented in Section B.4. Finally, Section B.5 lists the parameters of the newly
suggested extended SMATB models.

B.1. Data set

The data set comprises a total of 1463 cluster geometries evaluated at the DFT level. 167
of these structures consist of 38 atoms, 352 of 55 atoms, and 944 contain 147 atoms. This
distribution emerges from the fact that the global optimization routine applied to clusters of
the three sizes identi�ed more local minima for the larger clusters. The test set consists of
the 5 lowest energy geometries (as determined by SMATB) for each of the 22 optimization
runs, yielding a total of 110 geometries. The remaining 1353 geometries are split into roughly
10 % validation set (136 geometries) and 90 % training set (1217 geometries). Including both
the bonding energy and the components of the force vectors the training, validation, and test
set contain a total of 421 475, 47 530, and 25 880 data points, respectively. In Figure B.1
the distribution of binding energies per atom and their dependence on the fraction of Pt
atoms is plotted. The right side panel shows three distinct binding energy curves for the
three investigated cluster sizes.
The complexity of the data set can be quanti�ed by the error scores achieved by simple

models. We refrained from presenting these models in the main article due to their trivial
nature, but present them here in order to underline that accurate relations between cluster
energy, size and composition are found easily � but useless for the task of geometry optimization.
A simple, constant (i.e. geometry independent) model is given by

E =
N∑
i

Eα = NPtEPt +NNiENi. (B.1)

Fitting the two parameters on the training set yields EPt = −4.7154 eV and ENi = −4.1317
eV. A slightly more re�ned model is obtained by �tting a pair binding energy for each bond
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Figure B.1.: Histogram of the DFT binding energies (left panel) and a plot of the binding
energy as a function of the Pt concentration (right panel) for the various geometries in the
three data sets.

type,

E =
∑

ij∈bonds
Eαβ = NPtPtEPtPt +NNiPtENiPt +NNiNiENiNi. (B.2)

Here we use a distance criterion rij < rcut to determine which pairs of atoms are participating
in bonding. A rough scan over the cuto� radius rcut yields the best results for a value of
rcut = 3.1 Å with bond energies of EPtPt = −0.5358 eV, ENiPt = −0.5110 eV, and ENiNi =
−0.4494 eV. Further improvement might be achievable via element-speci�c cuto� radii rαβcut.
The errors of these basic models for energies and forces are given in Table B.1. While energy
predictions are very good on the given data set, as can already be anticipated from the linear
relationships seen in the right panel of Figure B.1 (binding energy per atom as a function of Pt
content), both models are obviously predicting zero forces for all structures since Equations 1
and 2 are lacking any dependence on geometry. A �rst geometry-dependent model of similarly
low complexity can be constructed by replacing the atomic neural networks in the Behler-
Parrinello model by a linear �t,

Eαi = wαNi ·GαNi
i + wαPt ·GαPt

i + cα, (B.3)

where the constant o�set term cα can either be treated as an additional �t parameter or be
determined by enforcing zero atomic energy for a single, isolated atom. We elaborate on the
reasoning behind the second choice in Section B.3.
Table B.1 summarizes the error scores achieved by these models on the three data sets. Only

the model with �tted o�set parameters achieves lower error scores than the simple pair binding
energy model. Interestingly, the �xed o�set Behler-Parrinello model shows signi�cantly higher
deviations in the force predictions, even compared to the simple geometry independent models.
This can again be attributed to the fact that all three data sets only include geometries near
local minima for which the forces are close to zero. A closer inspection of the Behler-Parrinello
models given in Section B.3 reveals that including the o�set in the �t parameters leads to
severe over-�tting and unphysical predictions outside of the region covered by the data sets.
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Table B.1.: Root mean squared errors for energy and forces achieved by the simple models
given in meV/atom and meV/Å.

Training set Validation set Test set

model Energy Forces Energy Forces Energy Forces
Atomic energy 161.8 321.1 152.2 318.4 230.1 326.2

Pair binding energy 126.6 321.1 119.9 318.4 157.8 326.2
Linear Behler-Parrinello, �tted o�set 112.9 238.2 105.8 235.9 162.1 228.8
Linear Behler-Parrinello, �xed o�set 125.0 531.7 114.5 532.3 146.7 469.2

B.2. Long range cuto�

In order to reduce the number of interactions to evaluate, the pair-wise interactions φαβ and
ραβ in the SMATB expressions are typically forced to fade out in a region between r = aαβ

and r = bαβ using an interpolation function fαβint . For example, the modi�ed pair potential φ̃
is then given by

φ̃αβ(r) =


φαβ(r), for r ≤ aαβ
fαβint (r), for aαβ < r < bαβ

0, for r ≥ bαβ.
(B.4)

For the sake of simplicity the atom type superscripts are dropped for the remainder of this
discussion. A common choice for the interpolation function is a �fth-order polynomial,

f(r) = c0 + c1r + c2r
2 + c3r

3 + c4r
4 + c5r

5, (B.5)

where the parameters ci are determined using the following 6 continuity conditions,

f(a) = φ(b) f ′(a) = φ′(a) f ′′(a) = φ′′(a)

f(b) = 0 f ′(b) = 0 f ′′(b) = 0. (B.6)

The interpolation approach requires evaluating the values φ(b), φ′(a), and φ′′(a) at each step of
the parameter �tting, which introduces additional complexity especially in the case of neural
network-based pair interactions. Therefore, in this article, fading contributions are realized by
a multiplication with a cuto� function,

φ̃(r) = φ(r) · fcut(r), (B.7)

which is inspired by a similar use of cuto� functions in the Behler-Parrinello model. Following
the standard SMATB fading approach mentioned before, we employ a �fth order polynomial
now for the cuto� function,

fcut(r) =


1, for r ≤ a
1− 10

(
r−a
b−a

)3
+ 15

(
r−a
b−a

)4
− 6

(
r−a
b−a

)5
, for a < r < b

0, for r ≥ b.
(B.8)

The SMATB potential by Cheng et al.302 uses �fth and sixth nearest neighbor distances as
inner and outer cuto� for the Ni�Ni interaction (aNiNi = 5.57 Å and bNiNi = 6.10 Å) and the
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values of the third and fourth neighbor distance in bulk Pt for the cuto�s of both the Pt�Ni
and the Pt�Pt interaction (aPtNi = aPtPt = 4.80 Å and bPtNi = bPtPt = 5.54 Å).
Preliminary investigations showed that for the investigated clusters similar accuracy can

be achieved using signi�cantly smaller cuto� values. In order to minimize the computational
e�ort of the basin hopping algorithm we use second and third nearest neighbor distances for
the cuto�s a and b during the global optimization. The cuto�s for the mixed interaction are
de�ned as aαβ = max

(
aαα, aββ

)
and bαβ = min

(
bαα, bββ

)
. All of the presented evaluations of

the SMATB potential by Cheng et al.302 after the data generation phase and the subsequent
splitting into training, validation, and test sets use the original larger cuto� values in order to
correctly investigate its accuracy.
Small fading regions aαβ < r < bαβ , where the binding energy changes rapidly, result

in high forces on the atoms in this region, which in turn yield high �tting errors for the
forces. Therefore, we de�ne the mixed interaction cuto� as aαβ = min

(
aαα, aββ

)
and

bαβ = max
(
bαα, bββ

)
in order to expand the fading region and train models for various cuto�

distances b to investigate the in�uence on the �t accuracy.
Table B.2 summarizes the results for a linear Behler-Parrinello and SMATB model. The

cuto� value a is �xed at second nearest neighbor distance aPtPt = 3.92 Å, and aNiNi = 3.52 Å
and the cuto� value b is varied from third to �fth and seventh nearest neighbor distances.

Table B.2.: Root mean squared errors for energy and forces in meV/atom and meV/Å achieved
by using various cuto� values b in Å.

Training set Validation set Test set

model bPtPt bNiNi Energy Forces Energy Forces Energy Forces

linear
Behler-Parrinello

4.81 4.32 172.6 577.3 161.9 584.4 237.2 504.6
6.20 5.57 120.9 532.8 110.0 533.2 142.0 470.0
7.34 6.59 143.8 523.6 131.0 521.5 176.0 470.1

SMATB
4.81 4.32 70.8 207.2 66.9 199.8 107.6 215.4
6.20 5.57 70.7 201.9 65.9 195.9 107.8 207.5
7.34 6.59 69.6 200.7 64.7 195.1 106.0 205.7

As expected, the accuracy of the �t increases with increasing cuto� distance. For the
geometries of the training set, these three cuto� distances result in an average of 20.6, 37.1,
and 56.0 neighbors, respectively. All models presented in the main article use the second
nearest neighbor distances for a and the �fth nearest neighbor distances for b (bPtPt = 6.2 Å
and bNiNi = 5.57 Å). This choice represents a trade o� between accuracy and computational
e�ciency.
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B.3. Behler-Parrinello model

B.3.1. Descriptors

Table B.3 gives the maximum values for the descriptor vectors Gαβ
max needed for the

transformation in Equation 3.12 of the main article.

Table B.3.: Maximum values for the descriptor vectors used for normalization.

α β Gαβ
max

Pt Pt 11.341068 9.163056 7.438487 5.101074 2.655911 0.836476 0.090367
Pt Ni 13.407259 11.024802 9.073774 6.321983 3.391382 1.120701 0.138323
Ni Pt 10.947930 8.841274 7.159221 4.919796 2.735640 0.911357 0.106661
Ni Ni 11.204494 9.439022 7.967277 5.840071 3.395881 1.318860 0.220886

The minimum value for all descriptors Gαβ
min is the zero vector 0 obtained for the geometries

with the highest Pt and Ni concentrations, respectively. Figure B.2 shows the distribution of
the normalized descriptor vector entries for the training set in the form of �violin plots�, i.e. a
series of histograms describing the relative occurrence of vector entries for the 7 components
of Gαβ

max.
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Figure B.2.: Violin plots of the entries for the descriptor vectors evaluated on the training set.

B.3.2. O�set / Single atom energy

Typically, Behler-Parrinello style atomic neural networks employ a �nal linear layer. This is
motivated by the fact that both the unit of measurement and the zero-point of the energy
scale can be chosen arbitrarily. The zero-point can, however, not easily be determined from the
presented data sets since they only contain geometries close to equilibrium, which in turn leads
to wrong predictions of the dissociation energies. In order to enforce the correct dissociation
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behavior we exclude the o�set, i.e. the bias variable of the �nal linear layer, from the set �tting
parameters and instead determine its value from the remaining neural network parameters.
The o�set parameter is then given by the neural network expression for the input of a single,
isolated atom. For the chosen input normalization this corresponds to the vector −1.
Figure B.3 illustrates the in�uence of this o�set parameter choice for both a linear and a

two hidden layers, 15 hidden neurons each, Behler-Parrinello model by plotting the potential
energy curve of a icosahedral 13 atom cluster breathing mode. Especially for the linear Behler-
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Figure B.3.: Potential energy curve for the breathing mode of a icosahedral 13 atom cluster as
predicted by Behler-Parrinello models using di�erently determined o�set parameters.

Parrinello model �xing the o�set parameter not only ensures the correct atomic energy for
isolated atoms but also greatly improves the �t quality throughout the PES scan. Note that
the obviously incorrect behaviour exhibited by the models which include the o�set in the �t
parameters does not become apparent from the error scores achieved on the data sets presented
in Table B.4. This can again be attributed to the extremely limited region of the PES spanned
by the geometries in the data set.

Table B.4.: Root mean squared errors for energy and forces (in meV/atom and meV/Å) achieved
by Behler-Parrinello models using di�erently determined o�set parameters.

Training set Validation set Test set

model Energy Forces Energy Forces Energy Forces
Linear, �tted o�set 112.9 238.2 105.8 235.9 162.1 228.8
Linear, �xed o�set 125.0 531.7 114.5 532.3 146.7 469.2
15-15, �tted o�set 14.1 134.5 12.9 134.1 24.9 128.0
15-15, �xed o�set 14.1 139.8 13.3 140.1 22.4 132.4
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B.4. Hyperparameters / Model selection

Tables B.5-B.8 show the training and validation scores achieved by the neural network-based
models using di�erent hyperparameters. The �nal model hyperparameters are selected based
on the lowest sum of energy and force root mean squared errors on the validation set.

Table B.5.: Root mean squared errors for energy and forces for the neural network embedding
function model, given in meV/atom and meV/Å, respectively.

Number of
parameters

Training set Validation set

λ Hidden layers Energy Forces Energy Forces

10−5

15-15 584 24.4 198.5 22.6 192.4
15-15-15 1064 25.1 198.5 23.0 192.4
20-20 974 24.7 198.5 22.7 192.4

20-20-20 1814 24.5 198.5 22.6 192.4

10−6

15-15 584 24.6 198.6 22.7 192.4
15-15-15 1064 24.7 198.5 22.8 192.4
20-20 974 24.7 198.3 22.9 192.2

20-20-20 1814 24.6 197.9 23.5 191.8

Table B.6.: Root mean squared errors for energy and forces for the neural network pair density
function model, given in meV/atom and meV/Å, respectively.

Number of
parameters

Training set Validation set

λ Hidden layers Energy Forces Energy Forces

10−5

15-15 864 55.7 177.1 49.8 175.6
15-15-15 1584 53.4 177.9 46.7 175.9
20-20 1449 55.1 177.6 49.2 175.9

20-20-20 2709 55.5 178.9 48.6 177.1

10−6

15-15 864 56.4 177.1 49.9 175.6
15-15-15 1584 53.7 177.0 47.2 175.4
20-20 1449 53.6 177.2 47.8 175.9

20-20-20 2709 56.4 179.6 49.1 177.6
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Table B.7.: Root mean squared errors for energy and forces for the neural network embedding
and pair density function model, given in meV/atom and meV/Å, respectively.

Number of
parameters

Training set Validation set

λ Hidden layers Energy Forces Energy Forces

10−5

15-15 1436 21.4 172.4 16.5 171.2
15-15-15 2636 20.8 172.6 15.9 171.2
20-20 2411 19.3 170.4 15.1 169.1

20-20-20 4511 19.1 171.3 14.0 169.9

10−6

15-15 1436 19.8 171.9 15.1 170.5
15-15-15 2636 19.8 171.6 14.2 169.8
20-20 2411 22.1 171.1 16.9 170.3

20-20-20 4511 21.1 169.7 15.0 168.6

Table B.8.: Root mean squared errors for energy and forces for the Behler-Parrinello model,
given in meV/atom and meV/Å, respectively.

Number of
parameters

Training set Validation set

λ Hidden layers Energy Forces Energy Forces

10−5

15-15 960 14.1 139.8 13.3 140.1
15-15-15 1440 10.7 134.1 10.4 134.6
20-20 1480 13.0 138.1 12.0 138.0

20-20-20 2320 10.2 132.1 8.0 132.9

10−6

15-15 960 11.2 137.9 9.5 138.0
15-15-15 1440 13.3 135.4 12.2 135.4
20-20 1480 13.0 138.1 12.3 137.9

20-20-20 2320 11.8 132.5 10.5 133.2
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B.5. Extended SMATB models

Tables B.9-B.11 list all parameters of the extended SMATB models.

Table B.9.: The parameters for the extended embedding model.

α β A (eV) ξ (eV) p q c0 c1 c2

Pt Pt 0.20458 2.30194 10.78673 2.43044 0.54345 0.40588 0.03907
Pt Ni 0.19395 2.18161 10.79773 2.64396 � � �
Ni Ni 0.15870 1.87030 9.71559 2.15242 0.54559 0.44691 0.04554

Table B.10.: The parameters for the extended pair density model.

α β A (eV) ξ1 (eV) ξ2 (eV) p q1 q2

Pt Pt 0.30929 2.19693 0.65551 10.54191 4.49866 −0.64894
Pt Ni 0.26590 2.09543 0.50503 9.53831 3.82265 −0.73671
Ni Ni 0.22111 1.93536 0.28418 9.03036 3.35666 −0.99338

Table B.11.: The parameters for the model combining the extended embedding function and
the extended pair density function.

α β A (eV) ξ1 (eV) ξ2 (eV) p

Pt Pt 0.31425 2.26808 0.76412 10.28350
Pt Ni 0.25494 2.16532 0.51045 10.01660
Ni Ni 0.20860 1.95425 0.24465 8.81490

q1 q2 c0 c1 c2

3.67648 −0.36707 0.70972 0.29959 0.02336
3.29996 −0.56913 � � �
2.61048 −1.23366 0.68304 0.30589 0.03824
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optimization using Gaussian process

regression in internal coordinate systems

C.1. Previous studies on the benchmark set

Baker's optimization benchmark set of small molecules328 has been used in several previous
studies in order to evaluate method performance. The respective best performance reported by
these investigations is summarized in Table C.1. Note that some of the studies used di�erent
convergence criteria and/or di�erent ab initio methods to evaluate energies and gradients.

� Ref. 328: Baker used natural internal coordinates and the initial Hessian as predicted by
the CVFF force �eld in the original publication of the benchmark set.

� Ref. 162: Lindh et al. used 'local normal modes', i.e. the eigenvectors of the approximate
Hessian, in combination with a constantly updated model Hessian inspired by typical force
�eld expressions

� Ref. 361: Peng et al. used a redundant internal coordinate system and a diagonal initial
Hessian in the redundant internal coordinate space.

� Ref. 362: Eckert et al. used natural internal coordinates in combination with the model
Hessian of Ref. 162.

� Ref. 365: Farkas et al. used a redundant internal coordinate system in combination with
the rational function optimization approach172 and a Hessian initial guess suggested by
Schlegel.159

� Ref. 364: Lindh et al introduced the so-called force-constant weighted redundant
coordinates, i.e. re-weighted delocalized internal coordinates, and the model Hessian
from Ref. 162.

� Ref. 366: Bakken and Helgaker introduced the extra-redundant coordinate system in
which the redundant coordinate system is extended by auxiliary bonds on pairs of atoms
closer than 2.5 times the sum of their covalent radii. The initial Hessian was calculated
using the model Hessian from Ref. 162.

� Ref. 342: Németh and Challacombe used a curve�t in redundant internal coordinates
starting from a diagonal initial Hessian.

aDi�erent convergence criteria.
bDi�erent ab initio method.
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C. Supporting material: Gaussian process regression optimization in internal coordinates

Table C.1.: Summary of the number of optimization cycles reported by previous studies on the
benchmark set.

Molecule Baker
Ref. 328

Lindh
Ref. 162

Penga

Ref. 361
Eckert
Ref. 362

Farkasa

Ref. 365
Lindha

Ref. 364
Bakken
Ref. 366

Németha

Ref. 342
Swartab

Ref. 340

Water 6 4 4 4 4 4 4 4 4
Ammonia 6 5 4 6 5 4 5 4 4
Ethane 5 4 4 4 4 4 3 4 4
Acetylene 6 5 4 6 5 4 4 4 4
Allene 5 5 4 4 3 4 4 3 4
Hydroxysulfane 8 8 7 7 7 7 7 8 6
Benzene 4 3 3 3 3 3 3 2 3
Methylamine 6 5 4 5 3 4 4 4 4
Ethanol 6 5 5 5 5 4 4 5 5
Acetone 6 5 5 5 5 4 4 4 5
Disilyl-ether 8 11 7 9 7 9 8 9 8
1,3,5-Trisilacyclohexane 8 8 11 6 9 7 9 5 6
Benzaldehyde 6 5 4 5 4 4 4 5 5
1,3-Di�uorobenzene 5 5 4 5 3 4 4 4 4
1,3,5-Tri�uorobenzene 5 4 4 4 3 3 4 3 4
Neopentane 5 5 4 4 4 4 4 5 4
Furan 8 7 5 6 6 6 5 6 5
Naphthalene 5 6 4 6 4 5 5 6 5
1,5-Di�uoronaphthalene 6 6 4 6 4 6 5 6 5
2-Hydroxybicyclopentane 15 10 11 9 9 12 9 7 10
ACHTAR10 12 8 9 9 8 10 8 10 8
ACANIL01 8 8 6 8 6 7 7 11 5
Benzidine 9 10 7 7 7 8 9 8 6
Pterin 10 9 8 9 8 8 8 12 8
Difuropyrazine 9 7 6 7 6 6 6 6 8
Mesityl-oxide 7 6 5 6 5 5 5 5 5
Histidine 19 20 14 14 13 19 16 11 14
Dimethylpentane 12 10 9 10 9 12 9 6 5
Ca�eine 12 7 6 7 6 6 6 7 7
Menthone 13 14 11 10 11 13 12 13 8

Sum 240 215 183 196 176 196 185 187 173

� Ref. 340: Swart and Bickelhaupt used a modi�ed version of the force-constant weighted
redundant coordinates from Ref. 364 and the GDIIS341 update method in combination
with the initial model Hessian from Ref. 162.

C.2. Size of the active space

Table C.2 lists the size of the active coordinate space for all of the investigated coordinate
systems, together with the number of vibrational degrees of freedom, the symmetry group, and
the reduced number of variables needed to describe the geometry after taking into account
the molecular symmetry. Note that the number of delocalized and localized inverse distance
coordinates can be lower than the number of vibrational degrees of freedom for planar molecules.
This is due to out-of-plane bending, which can not be described by a change of internuclear
distances within the �rst-order approximation of the Wilson B-matrix formalism.
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C. Supporting material: Gaussian process regression optimization in internal coordinates

C.3. Additional results

In the course of this study, several other choices of coordinate systems have been considered
during preliminary investigations. Some of these intermediate results, which were crucial in
motivating the approaches presented in the main article, are summarized in Table C.3.
The calculations using the fully redundant set of Z-matrix-derived internals and an isotropic

squared exponential kernel employ the approach of transforming torsion angles ω to the
(cos(ω), sin(ω)) space in order to properly take into account the periodicity of these coordinates
and to avoid jumps in the coordinates at ω = ±π.
Reducing the redundancy of inverse distance primitives is achieved using the procedure

detailed in the main article. The results presented here use di�erent values for the threshold
rcut, which enables a certain tuning of the degree of redundancy.

Table C.3.: Size of the active coordinate space and optimization cycles for additional
investigated coordinates systems.

fully redundant
Z-matrix internals
single length scale

Reduced redundancy
inverse distances

rcut = 3.0 Å

Reduced redundancy
inverse distances

rcut = 4.0 Å

Reduced redundancy
Z-matrix internals
delocalized subsets

Molecule size of
active space

opt.
cycles

size of
active space

opt.
cycles

size of
active space

opt.
cycles

size of
active space

opt.
cycles

Water 3 5 3 5 3 5 3 5
Ammonia 6 5 6 4 6 4 6 4
Ethane 37 6 25 5 28 5 22 6
Acetylene 7 6 5 5 6 5 7 6
Allene 22 6 18 5 21 5 15 6
Hydroxysulfane 7 13 6 10 6 10 6 7
Benzene 78 5 39 4 57 4 32 4
Methylamine 27 9 20 7 21 7 17 7
Ethanol 45 11 29 8 35 8 27 7
Acetone 48 11 33 10 44 8 28 8
Disilyl-ether 33 10 23 9 27 8 25 8
1,3,5-Trisilacyclohexane 162 24 66 26 108 11 78 10
Benzaldehyde 91 11 48 9 69 9 38 9
1,3-Di�uorobenzene 78 9 39 8 55 8 32 6
1,3,5-Tri�uorobenzene 78 6 39 7 54 4 32 5
Neopentane 118 6 82 5 130 5 58 6
Furan 54 10 25 7 33 9 23 6
Naphthalene 137 9 67 7 97 7 52 6
1,5-Di�uoronaphthalene 137 10 67 8 95 8 52 6
2-Hydroxybicyclopentane 154 34 65 15 84 15 65 12
ACHTAR10 92 21 61 12 76 13 55 11
ACANIL01 125 13 79 31 113 17 55 8
Benzidine 189 16 103 41 149 24 100 9
Pterin 117 14 58 12 80 11 49 9
Difuropyrazine 126 14 51 10 73 10 48 8
Mesityl-oxide 95 14 63 25 89 11 51 8
Histidine 142 56 78 150 120 22 81 14
Dimethylpentane 172 18 114 12 177 12 85 8
Ca�eine 176 16 101 22 136 17 76 9
Menthone 254 43 152 18 230 21 122 11

Sum 431 497 303 229
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D. Supporting material: Machine learning

in computational chemistry: An

evaluation of method performance for

nudged elastic band calculations

In Section D.1 of this Supporting Material we list the images of the initial path for the ethane
rotation in Cartesian coordinates. In Section D.2 we present a small study of the in�uence of
the regularization hyperparameter λ on the performance of a neural network potential on the
ethane benchmark. Section D.3 contains all images of the initial path for the carbon dioxide
activation on Pt−4 in Cartesian coordinates. The in�uence of the architecture of a neural
network on the performance in the latter reaction is discussed in Section D.4. Section D.5
shows the value of the optimized hyperparameters as a function of the number of iterations. In
Section D.6 the concept of determining the weights of a Gaussian approximation potential in
feature space is explained in detail. Finally, the computational advantages of �xing the kernel
hyperparameters are discussed and exempli�ed in Section D.7.

D.1. Ethane initial path images

While the ethane rotation is a simple example and the initial guess can easily be generated
by following the ASE documentation, the complete initial path is given here for enhanced
reproducibility.

Minimum A:

H 1.02170625 0.00000000 1.16513318

H -0.51085312 0.88482357 1.16513318

H -0.51085312 -0.88482357 1.16513318

C 0.00000000 0.00000000 0.76627284

C 0.00000000 0.00000000 -0.76627284

H 0.51085312 -0.88482357 -1.16513318

H -1.02170625 0.00000000 -1.16513318

H 0.51085312 0.88482357 -1.16513318
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D. Supporting material: Method performance for nudged elastic band calculations

Intermediate image 1:

H 1.00893029 0.10477194 1.17840874

H -0.59520030 0.82137329 1.17840874

H -0.41372999 -0.92614523 1.17840874

C -0.00000000 0.00000000 0.75971474

C 0.00000000 0.00000000 -0.75971474

H 0.41372999 -0.92614523 -1.17840874

H -1.00893029 0.10477194 -1.17840874

H 0.59520030 0.82137329 -1.17840874

Intermediate image 2:

H 0.98725415 0.20944538 1.18901010

H -0.67501210 0.75026448 1.18901010

H -0.31224205 -0.95970986 1.18901010

C -0.00000000 0.00000000 0.75840771

C 0.00000000 -0.00000000 -0.75840771

H 0.31224205 -0.95970986 -1.18901010

H -0.98725415 0.20944538 -1.18901010

H 0.67501210 0.75026448 -1.18901010

Intermediate image 3:

H 0.95651139 0.31188421 1.19683628

H -0.74835534 0.67242105 1.19683628

H -0.20815604 -0.98430526 1.19683628

C -0.00000000 0.00000000 0.75951438

C 0.00000000 -0.00000000 -0.75951438

H 0.20815604 -0.98430526 -1.19683628

H -0.95651139 0.31188421 -1.19683628

H 0.74835534 0.67242105 -1.19683628

Intermediate image 4:

H 0.91703959 0.40991241 1.20163881

H -0.81351436 0.58922338 1.20163881

H -0.10352523 -0.99913579 1.20163881

C -0.00000000 0.00000000 0.76101522

C 0.00000000 -0.00000000 -0.76101522

H 0.10352523 -0.99913579 -1.20163881

H -0.91703959 0.40991241 -1.20163881

H 0.81351436 0.58922338 -1.20163881

Intermediate image 5:

H 0.86953477 0.50202614 1.20324334

H -0.86953477 0.50202614 1.20324334

H -0.00000000 -1.00405227 1.20324334

C -0.00000000 0.00000000 0.76169026

C 0.00000000 -0.00000000 -0.76169026

H 0.00000000 -1.00405227 -1.20324334

H -0.86953477 0.50202614 -1.20324334

H 0.86953477 0.50202614 -1.20324334
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D.1. Ethane initial path images

Intermediate image 6:

H 0.81351436 0.58922338 1.20163881

H -0.91703959 0.40991241 1.20163881

H 0.10352523 -0.99913579 1.20163881

C -0.00000000 0.00000000 0.76101522

C 0.00000000 -0.00000000 -0.76101522

H -0.10352523 -0.99913579 -1.20163881

H -0.81351436 0.58922338 -1.20163881

H 0.91703959 0.40991241 -1.20163881

Intermediate image 7:

H 0.74835534 0.67242105 1.19683628

H -0.95651139 0.31188421 1.19683628

H 0.20815604 -0.98430526 1.19683628

C -0.00000000 0.00000000 0.75951438

C 0.00000000 -0.00000000 -0.75951438

H -0.20815604 -0.98430526 -1.19683628

H -0.74835534 0.67242105 -1.19683628

H 0.95651139 0.31188421 -1.19683628

Intermediate image 8:

H 0.67501210 0.75026448 1.18901010

H -0.98725415 0.20944538 1.18901010

H 0.31224205 -0.95970986 1.18901010

C -0.00000000 0.00000000 0.75840771

C 0.00000000 -0.00000000 -0.75840771

H -0.31224205 -0.95970986 -1.18901010

H -0.67501210 0.75026448 -1.18901010

H 0.98725415 0.20944538 -1.18901010

Intermediate image 9:

H 0.59520030 0.82137329 1.17840874

H -1.00893029 0.10477194 1.17840874

H 0.41372999 -0.92614523 1.17840874

C -0.00000000 0.00000000 0.75971474

C 0.00000000 -0.00000000 -0.75971474

H -0.41372999 -0.92614523 -1.17840874

H -0.59520030 0.82137329 -1.17840874

H 1.00893029 0.10477194 -1.17840874

Minimum B:

H 0.51085312 0.88482357 1.16513318

H -1.02170625 0.00000000 1.16513318

H 0.51085312 -0.88482357 1.16513318

C 0.00000000 -0.00000000 0.76627284

C 0.00000000 0.00000000 -0.76627284

H -0.51085312 -0.88482357 -1.16513318

H -0.51085312 0.88482357 -1.16513318

H 1.02170625 -0.00000000 -1.16513318
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D. Supporting material: Method performance for nudged elastic band calculations

D.2. Hyperparameters for the neural network potential of ethane

The regularization parameter λ in the loss function e�ectively controls the complexity of the
neural network function and is typically used to avoid over�tting. In this context it can be
used to favor �at (that is slowly varying) potential energy surface predictions. This may be
advantageous to avoid unphysical regions of the PES, which are di�cult to evaluate ab initio. In
order to determine a suitable value for the regularization parameter we calculate 10 individual
runs with varying values for λ. Table D.1 summarizes the results of this small hyperparameter
study for a �xed value of β = 1. The best performance and lowest variance is achieved by
setting the regularization to λ = 10−4. Test runs for a larger value of 10−2 did not converge at
all due to the restricted �exibility of the neural network function.

Table D.1.: Summary of the number of ab intio band evaluations till convergence for the neural
network potentials model using varying regularization λ.

ab initio evaluations

Run # λ = 10−4 λ = 10−6 λ = 10−8

0 4 7 5
1 4 6 8
2 6 5 not conv.
3 5 8 7
4 5 8 7
5 6 not conv. 6
6 5 7 not conv.
7 4 5 10
8 5 6 11
9 6 5 not conv.

min 4 5 5
max 6 > 20 > 20

median 5.0 6.5 9.0
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D.3. Pt−4 +CO2 initial path images

D.3. Pt−4 +CO2 initial path images

Initial path for all NEB calculations of the Pt−4 +CO2 system. The minima are optimized
starting from the geometries given by Green et al.384

Minimum A:

Pt 0.00000000 0.00000000 0.00000000

Pt -2.51013000 2.34854000 -0.00615000

Pt 1.83325000 1.19925000 1.17686000

Pt -0.00000000 2.59290000 0.00000000

C -2.89549000 0.46347000 -0.32385000

O -1.97587000 -0.48460000 -0.34359000

O -4.14068000 0.31161000 -0.45994000

Intermediate image 1:

Pt -0.00760961 0.01734639 -0.02196494

Pt -2.46412947 2.29118900 -0.00856104

Pt 1.78208238 1.21084159 1.21700735

Pt 0.02997968 2.61325072 -0.03077237

C -3.02069611 0.55650939 -0.29829468

O -1.75930879 -0.63245319 -0.38691441

O -4.24923809 0.37448610 -0.42716991

Intermediate image 2:

Pt -0.01201091 0.03836466 -0.04267510

Pt -2.41621920 2.23458816 -0.01079449

Pt 1.73079688 1.22229150 1.25713986

Pt 0.06003039 2.63348710 -0.06158979

C -3.14769026 0.64847794 -0.27283520

O -1.54608925 -0.78377638 -0.43171296

O -4.35773766 0.43773702 -0.39420232

Intermediate image 3:

Pt -0.01644321 0.06353525 -0.06205571

Pt -2.36722635 2.17740369 -0.01315643

Pt 1.67997609 1.23331197 1.29675330

Pt 0.08992652 2.65330692 -0.09212495

C -3.27518358 0.74085072 -0.24734303

O -1.33497002 -0.93812371 -0.47740641

O -4.46499945 0.50088516 -0.36133677

Intermediate image 4:

Pt -0.02717895 0.08879492 -0.08168104

Pt -2.31940788 2.11770889 -0.01603298

Pt 1.62997835 1.24378136 1.33554745

Pt 0.11950356 2.67253512 -0.12216938

C -3.40043032 0.83540027 -0.22159004

O -1.12121167 -1.09061598 -0.52195280

O -4.57017309 0.56356542 -0.32879120
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D. Supporting material: Method performance for nudged elastic band calculations

Intermediate image 5:

Pt -0.04722575 0.10628214 -0.10419185

Pt -2.27515166 2.05427207 -0.01959165

Pt 1.58035651 1.25401164 1.37389017

Pt 0.14888399 2.69141713 -0.15193410

C -3.52175658 0.93344588 -0.19533258

O -0.90007648 -1.23431209 -0.56310501

O -4.67395003 0.62605322 -0.29640498

Intermediate image 6:

Pt -0.07137771 0.11279586 -0.13036257

Pt -2.23485726 1.98772757 -0.02361717

Pt 1.53008225 1.26457298 1.41262321

Pt 0.17842946 2.71049943 -0.18194937

C -3.64034931 1.03465502 -0.16851098

O -0.67259201 -1.36820939 -0.60113000

O -4.77825541 0.68912853 -0.26372313

Intermediate image 7:

Pt -0.09226870 0.11445409 -0.15789912

Pt -2.19670233 1.92046370 -0.02768412

Pt 1.47877187 1.27571863 1.45207570

Pt 0.20825604 2.73002976 -0.21241903

C -3.75860395 1.13669599 -0.14146792

O -0.44446410 -1.49919905 -0.63866339

O -4.88390884 0.75300687 -0.23061213

Minimum B:

Pt -0.10809266 0.11925179 -0.18419984

Pt -2.15822425 1.85469435 -0.03149471

Pt 1.42691527 1.28726131 1.49188210

Pt 0.23816035 2.74981794 -0.24309706

C -3.87820278 1.23713046 -0.11466073

O -0.21935266 -1.63419886 -0.67775294

O -4.99012327 0.81721300 -0.19734681
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D.4. Neural network architecture for the Pt−4 +CO2 system

D.4. Neural network architecture for the Pt−4 +CO2 system

In order to determine the in�uence of the neural network architecture on the ML-NEB
performance three architectures, consisting of two hidden layers containing 5, 15, and 30
neurons each, are compared. In order to account for the statistical nature of the neural network
training procedure, the algorithm is run 10 times for each architecture. Figure D.1 shows the

10 20 30 40 50 60 70 80 90 100
Number of band evaluations
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100
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Figure D.1.: Comparison of the convergence behavior of di�erently sized neural network
potentials.

convergence behavior of the various neural network sizes compared to the reference calculation
without machine learning. For easier analysis the results of the individual runs are given in
Table D.2.

Table D.2.: Detailed listing of the performance of various architectures for neural network
potentials

ab initio evaluations

Run # Statistics

Layers 0 1 2 3 4 5 6 7 8 9 min max median mean

5-5 - 30 67 65 59 26 83 - 27 96 26 > 100 66.0 −
15-15 32 43 35 48 29 43 49 46 50 30 29 50 43.0 40.5
30-30 40 30 55 54 28 30 34 29 57 59 28 59 37.0 41.6

Remarkably, the best individual run was achieved by the simplest 5-5 architecture.
Figure D.1, however, also clearly shows that the lower complexity of this setup leads to
di�culties in the �nal convergence for several runs. The two larger network architectures
yield similar performance, with the medium sized 15-15 atomic neural networks achieving the
smallest variance in the number of ab initio evaluations. This is re�ected by the slightly
smaller average number of iterations of 40.5 compared to 41.6 for the largest architecture.
Judging by the median the 30-30 network with a value of 37 should be preferred over the 15-15
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architecture with a value of 43. Our choice of presenting the mid-sized network in the main
article is motivated by the fact that this leads to a reduction in the number of parameters of
the model simplifying the training procedure signi�cantly.

D.5. Hyperparameters for the Gaussian process regression-based
methods

Figure D.2 shows the optimization results for the single hyperparameter used for the Cartesian
GPR and the GAP as a function of the number of steps in the ML-NEB algorithm. Comparison
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Figure D.2.: Values for the single hyperparameter (top panel) (in Å for Cartesian GPR, unitless
for GAP) and maximum force per atom (lower panel) plotted as a function of the number of
band evaluations for the various Gaussian process regression-based machine learning potentials.

with Figure 5.3 from the main article shows, that optimizing the hyperparameters at every step
does slightly reduce the number of ab initio evaluations needed to �nd the MEP, at the cost
of increased computational e�ort for the �tting process. This high time requirement is the
reason why the runs for the GAP using the dot product kernel with ξ = 2 and ξ = 4 had
to be stopped before reaching convergence. The top panel shows that the hyperparameters
approach a constant value after the �rst few steps, which motivates our approach of freezing
the hyperparameters after 10 band evaluations (marked by the dotted vertical line). It also
clearly shows that determining the optimal value for the σ2

0 hyperparameter of the dot product
kernel proved to be very hard without su�cient training data.

122



D.6. Kernel trick versus linear �t in feature space

D.6. Kernel trick versus linear �t in feature space

The derivation of the energy prediction formula for the Gaussian process-based method
(Equation 5.11 of the main article) involves the so-called �kernel-trick�, replacing the inner
product of vectors in feature space by a kernel. A prerequisite for this step is applying the
following matrix identity, often referred to as push-through identity,439

(λI + PQ)−1 P = P (λI +QP )−1 , (D.1)

to the prediction formula for GPR by setting P = Φ> and Q = Φ. In general the matrices Φ
and Φ> are not square: Φ ∈ RD1×D2 ,Φ> ∈ RD2×D1 with D1 6= D2. As a result the matrices
that have to be inverted are of di�erent sizes. Due to the high computational e�ort of matrix
inversion, choosing to inverting the smaller one can result in signi�cant speed up. For the
application in GPR this gives the choice of doing the matrix inversion either in feature space or
the space spanned by the training data. Typically the feature space is very high dimensional
or even of in�nite dimension as for example in the case of the squared exponential kernel.
However, the dimension of the GAP feature space for the dot product kernel is �nite and given
by:

D1 =

(
H + ξ

ξ

)
·Natomtypes, (D.2)

where H is the dimension of the input space (descriptor space), ξ is the exponent of the dot
product kernel and Natomtypes is the number of elements in the molecule. This has to be
compared to the dimension of the kernel matrix, which for the ML-NEB is a simple function
of a few parameters:

D2 = (2 +NimagesNsteps) · (1 + 3Natoms), (D.3)

where the �rst term is the number of training examples consisting of the two minima and
the number of intermediate images Nimages times the number of ab initio evaluations of the
band Nsteps and the second term represents the number of pieces of information per data point
consisting of the value for the total energy and the 3Natoms values of the atomic forces.
This allows to determine the number of iterations after which inverting the matrix in feature

space becomes computationally cheaper, namely when D1 < D2. For the ethane system,
consisting of two elements Natomtypes = 2, the size of our descriptor set is H = 50. Using a
value of ξ = 2 and plugging in the remaining values of Natoms = 8 and Nimages = 9 gives a
value of 12 iterations after which D1 < D2. Due to the larger descriptor set of H = 93 and
the increased number of elements Natomtypes = 3 the trade-o� is only reached after 87 ab intio

evaluations for the Pt−4 CO2 benchmark (Natoms = 7, Nimages = 7).
While determining the weights in feature space does not prove useful for ML-NEB on the

presented systems this concept might o�er a way to reduce computational cost for tasks
involving few atom types or easy access to large amounts of training data.

123



D. Supporting material: Method performance for nudged elastic band calculations

D.7. Computational savings due to �xed hyperparameters

Using the simple example of �tting the one dimensional cardinal sine function using training
data for the function value and the �rst derivative, the possible computational savings can be
illustrated clearly. The left panel of Figure D.3 shows the starting situation. Given two training
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Figure D.3.: Gaussian process regression �t of the cardinal sine function using 2 and 3 training
points for the left and right panel, respectively

points (orange) the cardinal sine function is approximated using a Gaussian process regression
with a squared exponential covariance function (l = 1). The kernel (covariance) matrix C in
Equation D.4 is organized as follows: The �rst row (and column) corresponds to the function
value at the �rst training point (x = 0), the second row to the �rst derivative at the same
point. The covariance between the function value and the �rst derivative is zero (function
value and derivative can be adjusted independently). Third and forth row are organized in a
similar fashion, the former corresponding to the function value at the second training point
(x = −2), the latter to the derivative at the training point. A crucial part of the Gaussian
process regression is solving a set of linear equations which is done by calculating the Cholesky
decomposition of the kernel matrix. The lower triangular matrix L corresponding to C is also
given in Equation D.4.

C =


1. 0. 0.135 0.271
0. 1. −0.271 −0.406

0.135 −0.271 1. 0.
0.271 −0.406 0. 1.

 L =


1. 0. 0. 0.
0. 1. 0. 0.
.135 −0.271 0.953 0.
0.271 −0.406 −0.154 0.859


(D.4)

In the next step the training set is expanded and a third data point (at x = 1) is added. Given
a �xed kernel hyperparameter only the covariance of the new data point and the previous
training data has to evaluated. The computational e�ort of this scales linearly in the number
of training examples, in contrast to the quadratic scaling of reevaluating the whole covariance
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matrix. In Equation D.5 the updated parts of the matrix are highlighted in light blue.

C ′ =



1. 0. 0.135 0.271 0.607 −0.607
0. 1. −0.271 −0.406 0.607 0.

0.135 −0.271 1. 0. 0.011 −0.033
0.271 −0.406 0. 1. 0.033 −0.089
0.607 0.607 0.011 0.033 1. 0.
−0.607 0. −0.033 −0.089 0. 1.

 (D.5)

The determining factor in the overall O(M3) scaling of the GPR algorithm is the Cholesky
decomposition, where M denotes the number of training examples. Just updating the result
of a previous decomposition, however, can signi�cantly reduce the computational e�ort.
Equation D.6 highlights the elements of the lower triangular matrix that have to be updated,
which can be achieved in O(M2) operations.

L′ =



1. 0. 0. 0. 0. 0.
0. 1. 0. 0. 0. 0.

0.135 −0.271 0.953 0. 0. 0.
0.271 −0.406 −0.154 0.859 0. 0.
0.607 0.607 0.098 0.152 0.481 0.
−0.607 0. 0.051 0.097 0.723 0.311

 (D.6)
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E. Supporting material: Machine learning

approaches toward orbital-free density

functional theory: Simultaneous training

on the kinetic energy density functional

and its functional derivative

In the �rst section of this supporting material the data sets used in the main article are
inspected and the accuracy achieved by simple linear models is investigated. Section E.2
gives a detailed derivation of the kernel ridge regression algorithm and the method used to
include derivative information. Section E.3 and Section E.4 discuss hyperparameter choices
and training procedures for kernel ridge regression and neural networks, respectively. In
Section E.5 the algorithm used to �nd minimum energy densities is explained. Section E.6
shows the investigations of kernel ridge regression models using a constant o�set term, an
alternative approach to the principal component analysis method employed in the main article.
Section E.7 details the in�uence of the principal component analysis on the functional derivative
predictions. Section E.8 contains a plot of the learning curve. Section E.9 shows computational
timings for the various machine learning models.

E.1. Data sets

Training and test data are supposed to be created as closely as possible to the data used by
Snyder et al.89 in order to clearly demonstrate the improved accuracy achieved by including
the functional derivative into the training algorithm. In Section E.1.1 and Section E.1.2 the
data sets for N = 1 and N = 2, respectively, are inspected in greater detail. Additionally,
the performance achieved by simple models is investigated as reference for the more complex
models explored in the main article. The parameter triplets a, b, and c, used to generate the
potentials of the training and test set, are available online in CSV format.

E.1.1. Data for N = 1

The training set consists of a total of M = 100 densities. Figure E.1 shows a typical example
of an input density as well as a histogram of the corresponding kinetic energies. In order
to evaluate the complexity of the data set we �t simple regression models and test their
performance on the test set. The results for all of these models are summarized in Table E.1.
The simplest possible model is a constant model:

T const = b (E.1)

where the least squares solution for the parameter b is given by the mean kinetic energies of the
training examples b =

∑M
j Tj/M . The mean absolute error achieved by this model is known
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Figure E.1.: Left panel: The shaded region shows the variation of densities in the training set
for N = 1. The density corresponding to the �rst potential in the training set is shown as solid
line. Right panel: A Histogram and the statistical parameters of the distribution of kinetic
energies in the training set.

Table E.1.: Absolute error values for the simple models on the N = 1 data set given in kcal/mol.

|∆T |
model mean std max

Constant model 138.3 107.3 847.4
Linear model 2429.8 9924.9 162087.9

Ridge regression 54.3 52.1 417.1

as mean absolute deviation (MAD) in statistics. A slightly more complex model is given by a
standard least squares linear �t, relating the G = 500 dimensional input densities to the kinetic
energy:

T linear(n) =
G∑
g

w(g)n(g) = w> · n, (E.2)

where the index (g) denotes the g-th entry of a vector and the brackets are used to distinguish
grid point indices from training example indices. Note that the absolute error for this model
is signi�cantly higher than for the constant model. This is most likely due to the fact that
100 training examples are insu�cient to �t 500 weight parameters. Ridge regression addresses
this problem by introducing an additional regularization term that is used to penalize large
weights in the linear �t. Since ridge regression is a linear variant of kernel ridge regression used
in the main article, the achieved errors represent an upper bound to the expected performance
of KRR. The results are obtained with a regularization parameter of λ = 10−6 and the ridge
regression algorithm as implemented in the scikit-learn Python package.440

E.1.2. Data for N = 2

The data set for N = 2 used in Section 6.4.3 and Section 6.4.4 of the main article is based on
the same potentials as the data presented the previous section. While the addition of a second
particle leads to higher values for the total kinetic energy, the standard deviation does not
increase signi�cantly. We attribute this to the fact that the second particle is less in�uenced by
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the potential and the corresponding wave function resembles that of an particle moving freely
in a hard wall box. A summary of this training set is given in Figure E.2.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n
(x

)

24.8 25.0 25.2 25.4 25.6 25.8

T (Hartree)

0

2

4

6

8

10

C
ou

nt

Mean : 25.20 Hartree
Std : 0.29 Hartree

Max : 25.93 Hartree
Min : 24.72 Hartree

Figure E.2.: Left panel: The shaded region shows the variation of densities in the training set
for N = 2. The density corresponding to the �rst potential in the training set is shown as solid
line. Right panel: A Histogram and the statistical parameters of the distribution of kinetic
energies.

Table E.2 shows the error values achieved by the simple models presented in the previous
section. The most notable di�erence to the results for N = 1 is the signi�cant improvement in
the accuracy of the linear model.

Table E.2.: Absolute error values (in kcal/mol) achieved by the simple models on the N = 2
test set.

|∆T |
model mean std max

Constant model 145.1 111.7 730.5
Linear model 121.2 409.9 6987.7

Ridge regression 34.6 30.8 322.3

In Section 6.4.3 and Section 6.4.4 of the main article the kinetic energy is given by a machine
learning correction to the von Weizsäcker functional:

T = TML + T vW. (E.3)

The models are therefore not trained on the data set presented in Figure E.2 but rather on
the di�erence between these exact values and the prediction obtained with the von Weizsäcker
functional.
In Figure E.3 the kinetic energy predictions of the vonWeizsäcker functional and the Thomas-

Fermi functional (for the sake of completeness) are plotted versus the exact solutions in order
to show that the von Weizsäcker model can not describe systems consisting of two spatial
orbitals. While the Thomas-Fermi model roughly captures the correct functional correlation,
the predictions by the von Weizsäcker functional exhibit an opposing trend. The accuracy of
the Thomas-Fermi model can be improved further by adding a constant term. Fitting this
constant o�set using the training set yields reduced values of 110.9 kcal/mol, 83.1 kcal/mol,
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Figure E.3.: Comparison of the exact kinetic energy values of the N = 2 test set on the x-axis
and the corresponding predictions by the Thomas-Fermi functional (left panel) and the von
Weizsäcker functional (right panel) on the y-axis.

and 453.5 kcal/mol for the mean, the standard deviation and the maximum of the absolute
error, respectively.
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Figure E.4.: Histogram of the kinetic energies in the training set for N = 2 after subtracting
the von Weizsäcker kinetic energy.

Due to the opposing functional behavior of the von Weizsäcker model, subtracting the von
Weizsäcker kinetic energy from the exact values leads to an increased variance in the training
data for the machine learning model as depicted in Figure E.4.
Table E.3 shows that this fact is also re�ected in the reduced accuracy achieved by the

constant model. Note, however, that both linear models achieve signi�cantly lower mean
absolute errors. We conclude that the von Weizsäcker term captures some of the non-linear
contributions to the kinetic energy in this data set.

Table E.3.: Absolute error values ∆T (in kcal/mol), achieved by the simple models trained on
the N = 2 data set after subtracting the von Weizsäcker kinetic energy.

|∆T |
model mean std max

Constant model 378.8 279.4 1543.5
Linear model 87.6 413.5 8067.3

Ridge regression 12.9 13.3 113.6
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E.2. Kernel ridge regression

In this section we provide a detailed derivation of the Kernel Ridge Regression (KRR)
algorithm. In Section E.2.1 the KRR method is reviewed and a standard notation valid in
both the supporting material and the main manuscript is introduced. Section E.2.2 shows how
this concept can be extended to include training data for the functional derivative. Note that
in both sections the formulas are derived in the so-called weight space view and transformed
only in the last step to the kernel space expressions used in the main article.

E.2.1. Standard KRR

The main idea in KRR is that even non-linear data can be described by a linear model after
the transformation to a higher dimensional vector space,

TML (n) =
D∑
d

wdφd (n) = w>φ (n) , (E.4)

where wd are the �t coe�cients and φ denotes the transformation from the input space RG to
a higher dimensional feature space RD. The weights are determined by minimization of a cost
function consisting of the squared error and a regularization term

L =

M∑
j

(
TML(nj)− Tj

)2
+ λ

D∑
d

w2
d, (E.5)

where the parameter λ controls the regularization strength. The cost function is minimized by
setting the derivative with respect to wk equal to zero:

∂L
∂wk

= 2

M∑
j

(
D∑
d

wdφd (nj)− Tj
)
φk (nj) + 2λwk

!
= 0

M∑
j

D∑
d

wdφd (nj)φk (nj) + λwk =
M∑
j

Tjφk (nj) .

(E.6)

Derivation with respect to all weights gives a total of D such equations which can be rewritten
as a matrix equation: (

ΦΦ> + λID

)
w = ΦT, (E.7)

where Φ is a (D ×M) matrix whose columns contain the transformed input densities and ID
is a unit matrix of size (D ×D). The weights can be calculated by inversion of the matrix on
the left hand side:

w =
(

ΦΦ> + λID

)−1
ΦT. (E.8)

This expression for w can be rearranged further by the following matrix identity, often referred
to as push-through identity:439,441,442(

A+ P>R−1Q
)−1

P>R−1 = A−1P>
(
R+QA−1P>

)−1
. (E.9)
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Setting A = λID, P = Q = Φ> and R−1 = IM yields:

w = Φ
(

Φ>Φ + λIM

)−1
T. (E.10)

One of the advantages of this rearrangement is that the costly matrix inversion can be performed
either on the (D ×D) matrix in Equation E.8 or the (M ×M) matrix in Equation E.10. As
an analog to the D-dimensional weight vector w the M -dimensional vector α is de�ned as:

w =
∑
j

αjφ (nj) with α =
(

Φ>Φ + λIM

)−1
T. (E.11)

Plugging the weight vector back into the linear model in Equation E.4 yields:

TML (n) = T
(

Φ>Φ + λIM

)−1
Φ>φ (n) = α>Φ>φ (n) . (E.12)

Another advantage of applying the push-through identity is that it allows for the so-called kernel
trick, where the scalar product in feature space is replaced with a kernel function φ(ni)

>φ(nj) =
k (ni,nj). After de�ning the kernel matrix K = Φ>Φ with elements Kij = k (ni,nj) and a
vector k(n) = Φ>φ (n) with elements kj(n) = k (nj ,n) the �nal result can be written as:

TML (n) = T (K + λI)−1 k (n) = α>k (n) =
M∑
j

αjk (nj ,n) . (E.13)

As shown by Snyder et al.89 the corresponding prediction for the functional derivative is given
by:

∇nT
ML(n)

∆x
=

M∑
j

αj
∆x
∇nk (nj ,n) . (E.14)

Note that the division by ∆x in the discretized functional derivative is necessary to eliminate
the dependence on the number of grid points G.

E.2.2. Including derivative information

In a similar fashion, taking the derivative of Equation E.4 with respect to the input densities,
yields the prediction of the functional derivative in weight space:

∇nT
ML(n)

∆x
=

D∑
d

wd
∆x
∇nφd (n) . (E.15)

The g-th component of the gradient is denoted as:(∇nT
ML(n)

∆x

)
(g)

=

D∑
d

wd
∆x

(
∇nφd (n)

)
(g)

=

D∑
d

wd
∆x

∂φd (n)

∂n(g)
, (E.16)

where the brackets are used to distinguish grid point indices from training example indices.
Using this expression, the cost function can be extended to include the squared error of the
functional derivative weighted by an additional hyperparameter κ:

L =
M∑
j

(
TML(nj)− Tj

)2
+
κ

G

M∑
j

G∑
g

(∇njT
ML(nj)

∆x

)
(g)

−
(∇njTj

∆x

)
(g)

2

+ λ||w||2,

(E.17)
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where
∇njTj

∆x are the reference vectors of the discretized functional derivative. The weights are
determined by setting the derivative with respect to wk equal to zero:

∂L
∂wk

=2
M∑
j

(
D∑
d

wdφd (nj)− Tj
)
φk (nj)

+ 2
κ

G

M∑
j

G∑
g

(
D∑
d

wd
∆x

∂φd (nj)

∂nj,(g)
−
(∇njTj

∆x

)
(g)

)
1

∆x

∂φk (nj)

∂nj,(g)
+ 2λwk

!
= 0.

(E.18)

Collecting all terms proportional to the weights on the left hand side yields

M∑
j

D∑
d

(
wdφd (nj)φk (nj) +

κ

G

G∑
g

wd
(∆x)2

∂φd (nj)

∂nj,(g)

∂φk (nj)

∂nj,(g)

)
+ λwk

=
M∑
j

(
Tjφk (nj) +

κ

G

G∑
g

(∇njTj

∆x

)
(g)

1

∆x

∂φk (nj)

∂nj,(g)

)
.

(E.19)

By extending the matrices de�ned in Equation E.7 this can again be rewritten as a matrix
equation (

Φext S Φ>ext + λID

)
w = Φext S Text, (E.20)

with the extended transformation matrix of shape (D ×M(1 +G)):

Φext =


φ1(n1) . . . φ1(nM )

∇>n1
φ1(n1)

∆x . . .
∇>nM φ1(nM )

∆x
...

. . .
...

...
. . .

...

φD(n1) . . . φD(nM )
∇>n1

φD(n1)

∆x . . .
∇>nM φD(nM )

∆x

 , (E.21)

the extended target vector:

Text =
(
T1 . . . TM

∇>n1
T1

∆x . . .
∇>nM TM

∆x

)>
, (E.22)

and a (M(1 + G) ×M(1 + G)) diagonal matrix containing the scaling factor for the relative
importance of derivative information:

S =

(
IM 0
0 κ

GIMG

)
. (E.23)

Solving Equation E.20 for the weight vector w and applying the push-through identity of
Equation E.9 by setting A = λID, P = Q = Φ>ext and R

−1 = S yields

w =
(

Φext S Φ>ext + λID

)−1
Φext S Text = Φext

(
Φ>extΦext + Λ

)−1
Text, (E.24)

with the regularization matrix

Λ = λS−1 =

(
λIM 0

0 λG
κ IMG

)
. (E.25)
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The weights are again rewritten as

w> =
∑
j

αjφ(nj)
> +

β>j ·
(
∇njφ(nj)

>)
∆x

, (E.26)

where the coe�cients α and β are determined by solving the matrix equation

α1
...
αM
β1
...
βM


=
(

Φ>extΦext + Λ
)−1



T1
...
TM
∇n1T1

∆x
...

∇nM
TM

∆x


= (Kext + Λ)−1 Text. (E.27)

Note that the individual βj are vectors of length G. The extended kernel matrix Kext is
calculated by applying the kernel trick to the extended transformation matrix Φext:

Kext =

(
K J ′

J H

)
=

=



k(n1,n1) . . . k(n1,nM )
∇>n1

k(n1,n1)

∆x . . .
∇>nM k(n1,nM )

∆x
...

. . .
...

...
. . .

...

k(nM ,n1) . . . k(nM ,nM )
∇>n1

k(nM ,n1)

∆x . . .
∇>nM k(nM ,nM )

∆x
∇n1k(n1,n1)

∆x . . .
∇n1k(n1,nM )

∆x

∇n1 ·∇
>
n1
k(n1,n1)

(∆x)2
. . .

∇n1 ·∇
>
nM

k(n1,nM )

(∆x)2

...
. . .

...
...

. . .
...

∇nM
k(nM ,n1)

∆x . . .
∇nM

k(nM ,nM )

∆x

∇nM
·∇>n1

k(nM ,n1)

(∆x)2
. . .

∇nM
·∇>nM k(nM ,nM )

(∆x)2


(E.28)

Using the new weights from Equation E.26 for the prediction of the kinetic energy of a previously
unseen density n in Equation E.4 yields:

TML(n) =

M∑
j

αjk(nj ,n) +

M∑
j

G∑
g

βj,(g)

∆x

∂k(nj ,n)

∂nj,(g)
=

M∑
j

αjk(nj ,n) +

M∑
j

β>j · ∇njk(nj ,n)

∆x
.

(E.29)
The corresponding prediction of the derivative is given by:(∇nT

ML(n)

∆x

)
(g)

=

M∑
j

αj
∆x

∂k(nj ,n)

∂n(g)
+

M∑
j

G∑
g′

βj,(g′)

(∆x)2

∂2k(nj ,n)

∂nj,(g′)∂n(g)
, (E.30)

or similarly in the vector notation used in the main article by:

∇>nTML(n)

∆x
=

M∑
j

αj
∆x
∇>nk(nj ,n) +

M∑
j

β>j ·
(
∇nj · ∇>nk(nj ,n)

)
(∆x)2

. (E.31)
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E.3. Kernel ridge regression hyperparameter search

The hyperparameters for the KRR models are determined using 5-fold cross validation on a
rectangular search grid. A total of 29 points, log-uniformly distributed between 10 and 500, are
used for the length scale parameter σ, and 5 points, log-uniformly distributed between 10−10

and 10−14, for the regularization parameter λ. Both the mean absolute error for the kinetic
energy and the functional derivative are evaluated using cross validation. The hyperparameters
are chosen such that the sum of these two errors is minimized. Note that this choice is biased
toward the derivative score as the mean absolute error on the derivative is typically signi�cantly
larger.
As a �rst test we investigate if the extended KRR model yields similar tendencies for the

hyperparameters when the number of training examples is increased as reported for standard
KRR in Ref. 89. Figure E.5 shows that the rough grid search in fact displays a similar trend
toward smaller values for both σ and λ for an increasing training set size M . As expected
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Figure E.5.: Mean absolute error of the kinetic energy (top row) and the functional derivative
(bottom row) as a function of the hyperparameters σ and λ for an increasing number of training
examples M and κ = 1.

for a machine learning model, both errors decrease with the number of training examples.
Chemical accuracy, de�ned as a mean absolute error for the kinetic energy below 1 kcal/mol,
is already reached using M = 40 training examples for a broad range of hyperparameters.
This improvement over the M = 80 necessary training examples reported by Snyder et al.89 is
attributed to the inclusion of derivative information. The lowest summed error on theM = 100
set is achieved for σ = 30.58 and λ = 10−12.
The in�uence of the weighting parameter κ is investigated by repeating the grid search on

M = 100 training examples for various values of κ. Figure E.6 shows the cross validation score
for both the kinetic energy and the functional derivative for κ ∈ {0.1, 1, 10, 100, 1000}. Note
that the blank regions in Figure E.6 denote areas where the matrix inversion in Equation E.24,
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Figure E.6.: Mean absolute error of the kinetic energy (top row) and the functional derivative
(bottom row) for the di�erent values of the hyperparameters κ, σ and λ on the M = 100,
N = 1 training set.

more precisely the Cholesky factorization used to solve Equation E.27, failed due to numerical
noise. As expected, the larger values of κ lead to an increased parameter range with low errors
on the functional derivative and conversely a decreased parameter range with the lowest errors
for the kinetic energy. Note, however, that the parameter region in which chemical accuracy is
reached increases for large κ values. The overall lowest summed error is reached for κ = 0.1,
σ = 17.49 and λ = 10−11. Nevertheless, the weighting parameter is set to κ = 1 for all of the
hyperparameter investigations, since it is di�cult to judge the relative importance of the errors
for the presented application.
Figure E.7 shows the results of the hyperparameter search for the N = 2 data set. The best

performance is achieved for values of σ = 35.16, λ = 10−12 and σ = 26.59, λ = 10−12 for the
standard and extended KRR models, respectively. The hyperparameters for standard KRR
are chosen based solely on the MAE of the kinetic energy and a value of κ = 1.0 is used for
extended KRR. Again, the inclusion of derivative information signi�cantly improves the error
on the kinetic energy for a wide range of hyperparameters, yielding chemical accuracy on all
points of the hyperparameter grid.
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Figure E.7.: Cross validation scores of the grid search for both the standard KRR model (left)
and the extended KRR model (right) on the N = 2 training set.

E.4. Neural network hyperparameters and training behavior

This section summarizes all the hyperparameters used during the training of the convolutional
neural network models for the sake of reproducibility, but without discussing their in�uence on
the actual training behavior or the �nal model performance.
The neural network models are trained by minimizing the following cost function:

L =
ιT
M

M∑
j

||TML(nj)− Tj ||2 +
ιτ
MG

M∑
j

||τML(nj)− τj ||2

+
κ

MG

M∑
j

∥∥∥∥∥∇njT
ML(nj)

∆x
− ∇njTj

∆x

∥∥∥∥∥
2

+ λ||w||2.
(E.32)

Most choices for the hyperparameters are shared by all of the models. The remaining
hyperparameters are listed in Table E.4. Since the relative weighting of contributions in the
cost function is over determined by four scaling factors, the weighting parameter κ is set to
a �xed value of κ = 1. The network parameters are determined with the Adam optimizer,320

a variation of the steepest descent algorithm, with the tensor�ow319 default hyperparameters
of β1 = 0.9, β2 = 0.999, and ε = 10−7. The gradient of the cost function with respect to
the weights and biases is calculated using a batch size of 100 examples. This corresponds to
the whole training set for the investigations in Section 6.4.1 through Section 6.4.3 of the main
article. If the norm of the gradient surpasses a threshold value of 100 it is rescaled to a length
of 100. This process is referred to as clip by norm in tensor�ow.
Starting from an initial learning rate of 10−4 the learning rate stays constant for the �rst

Nconstant training steps and is then reduced by a factor 0.9 every Ndecay steps. Figure E.8 shows
the learning rate schedule used for training the convolutional neural networks. The number of
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Table E.4.: Summary of the hyperparameters used for training of the neural networks.

model N data seta vWb M epochs ιT ιτ λ Nconstant Ndecay

CNN 1 recreated - 100 100 000 0.2 - 2.5 · 10−4 21 800 1000
ResNet 1 recreated - 100 100 000 0 1 2.5 · 10−4 21 800 1000
ResNet 2 recreated Yes 100 100 000 0 1 2.5 · 10−4 21 800 1000
ResNet 2 generated Yes 1000 30 000 0 1 2.5 · 10−5 40 000 2000
ResNet 2 generated Yes 10 000 3000 0 1 2.5 · 10−5 40 000 2000
ResNet 2 generated Yes 100 000 300 0 1 1.0 · 10−7 40 000 2000

arecreated refers to the fact that the parameters for the potentials are taken from Ref. 89 whereas generated

refers to new randomly generated parameters.
bDenotes that the von Weizsäcker predictions have been subtracted before training.
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Figure E.8.: Plot of the learning rate schedule.

training steps on the x-axis refers to the number of weight updates and is given by the number
of epochs times M divided by the batch size.
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Figure E.9.: Plot of the mean absolute error of the kinetic energy during the training of the
neural network models.

In Figure E.9 the mean absolute errors for the kinetic energy on the training set are plotted as
a function of the training progress. It shows that in addition to the lower �nal error reached by
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ResNets trained on larger data sets, the variation in the error curve during the training is also
reduced. For all of the presented models the �nal training error in Figure E.9 is signi�cantly
lower than the reported test errors. The generalization properties can be improved by using
additional training data as shown in Section 6.4.4of the main article.
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Figure E.10.: Plot of the mean absolute error of the kinetic energy derivative during the training
of the neural network models.

Figure E.10 shows the mean absolute error for the functional derivative as a function of the
training process. Comparing Figure E.9 and Figure E.10 shows that the early stages of the
training are dominated by a reduction in the derivative error. In part due to the decreasing
learning rate, the derivative error stops improving roughly at the half-way point of the training
process while the kinetic energy error keeps decreasing.
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E.5. Finding minimum energy densities

E.5.1. Iteration on the density and local principal component analysis

The direct minimization algorithm used to �nd the minimum energy density is a standard
steepest descent optimization using a Lagrange multiplier µ to ensure the correct number of
particles N . The corresponding Lagrange function is given by:

L[n] = E[n]− µ
(∫

n dx−N
)
, (E.33)

where the total energy functional E[n] for non-interacting particles is simply the sum of kinetic
energy T [n] and potential energy:

E[n] = T [n] +

∫
nV dx. (E.34)

The steepest descent update rule with step size η is given by:

ni+1 = ni − η
δL
δn

= ni − η
(
δT [n]

δn
+ V − µ

)
, (E.35)

where the Lagrange multiplier µ is chosen such that the norm
∫
ni+1 dx = N is ensured.

Assuming that ni is properly normalized, this is equivalent to∫ (
δT [n]

δn
+ V − µ

)
dx

!
= 0 (E.36)

µ =

∫ (
δT
δn + V

)
dx∫

1 dx
. (E.37)

The introduction of a projection operator P for the functional derivative as suggested by Snyder
et al.:89

ni+1 = ni − ηP
[
δT [n]

δn
+ V − µ

]
, (E.38)

yields a similar result for the Lagrange multiplier µ:

µ =

∫
P
[
δT [n]
δn + V

]
dx∫

P [1] dx
. (E.39)

Note that the local principal component analysis (PCA) of Ref. 89 uses the di�erence of the
density at the current step ni and a subset of the training densities as basis for the projection
operator. Since the integral over the di�erence of two valid densities is zero, the same will be
true for all functions projected onto this subspace. The correct norm for the density ni+1 is
therefore ensured without the need for a Lagrange multiplier.

E.5.2. Iteration on the variable ϕ

In Section 6.4.3 and Section 6.4.4 of the main article a basis of sine functions is used to restrict
the search space instead of the local PCA. This necessitates additionally enforcing a non-
negativity constraint, which is typically achieved by iterating on the variable ϕ =

√
n instead

of the density n. The steepest descent update rule for ϕ is given by:

ϕi+1 = ϕi − η
δL
δϕi

= ϕi − η
δL
δni

δni
δϕi

= ϕi − 2ηϕi

(
δT

δn
+ V − µ

)
, (E.40)
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where the Lagrange multiplier µ is again chosen such that the norm
∫
ni+1 dx =

∫
ϕ2
i+1 dx =

N is ensured:∫
ϕ2
i+1 dx =

∫ (
ϕi − 2ηϕi

(
δT

δn
+ V − µ

))2

dx

=

∫
ϕ2
i dx− 4η

∫
ϕ2
i

(
δT

δn
+ V − µ

)
dx+ 4η2

∫
ϕ2
i

(
δT

δn
+ V − µ

)2

dx.

(E.41)

Assuming that ϕi is properly normalized
∫
ϕ2
i dx =

∫
ϕ2
i+1 dx = N this simpli�es to:

−4η

∫
ϕ2
i

(
δT

δn
+ V − µ

)
dx+ 4η2

∫
ϕ2
i

(
δT

δn
+ V − µ

)2

dx
!

= 0∫
ϕ2
i

(
δT

δn
+ V − µ

)
dx = η

∫
ϕ2
i

(
δT

δn
+ V − µ

)2

dx.

(E.42)

Since the step size η is an arbitrary positive number the integrals on both sides have to be
equal to zero, which yields

µ =

∫
ϕ2
i

(
δT
δn + V

)
dx∫

ϕ2
i dx

. (E.43)

Inspired by the local PCA method, the basis of sine functions is introduced using a projection
operator acting on the functional derivative:

ϕi+1 = ϕi − ηP
[
δL
δϕi

]
= ϕi − ηP

[
2ϕi

(
δT

δn
+ V − µ

)]
. (E.44)

The norm of ni+1 is then given by∫
ϕ2
i+1 dx =

∫
ϕ2
i dx− 2

∫
ηϕiP

[
2ϕi

(
δT

δn
+ V − µ

)]
dx

+

∫
η2

(
P

[
2ϕi

(
δT

δn
+ V − µ

)])2

dx.

(E.45)

Again assuming that
∫
ϕ2
i dx =

∫
ϕ2
i+1 dx = N yields:∫

ϕiP

[
ϕi

(
δT

δn
+ V − µ

)]
dx = η

∫ (
P

[
ϕi

(
δT

δn
+ V − µ

)])2

dx. (E.46)

Using the same arguments as before and the fact that P is a linear operator the multiplier µ
can be calculated via

µ =

∫
ϕiP

[
ϕi
(
δT
δn + V

)]
dx∫

ϕiP [ϕi] dx
. (E.47)
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E.6. Kernel ridge regression with o�set

The main problem of the iterative calculation of minimum energy densities is that the search
algorithm is likely to leave the valid region, i.e. the region where the machine learning model
o�ers correct predictions. Snyder et al.89 solved this by restricting the search space using
a projection onto the subspace of training densities. Denzel and Kästner163 suggested a
di�erent solution for a similar problem in machine learning-accelerated molecular geometry
optimization. The extrapolation behavior of kernel-based machine learning models can be
tuned by introducing a constant o�set:

TML(n) = b+

M∑
j

αjk(nj ,n). (E.48)

In Figure E.11 the e�ect of this o�set term is demonstrated for a one-dimensional example.
The models predict an output value of b for examples far away from the training data. Using
larger values, therefore, o�ers the possibility of introducing an energy penalty for these out-
of-training examples and thereby ensuring that the iterative search is restricted to the region
spanned by the training examples. Note that this one-dimensional model trained on M = 4
examples does not display the problems encountered in the G = 500 dimensional model trained
on just M = 100 examples discussed in the main article.
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Figure E.11.: Kernel ridge regression of the function y(x) = (x + 1
4 sin(πx))2 using di�erent

o�set values b. The model shown in the left panel is trained only on function values yi, whereas
the training data for the model in the right panel also includes derivative information dyi/ dx.
Both models use a length scale of σ = 0.5 and parameters κ = 1 and λ = 10−8.

As a �rst test the model errors on theN = 1 data set are evaluated. The results of a small grid
search for the parameters b ∈ {max(Tj),max(Tj)+5,max(Tj)+10} and σ ∈ {2.5, 5.0, 10.0} are
summarized in Table E.5. All presented models use the extended KRR formalism and κ = 1,
λ = 10−12 for the remaining hyperparameters. Table E.5 shows that the largest value for the
length scale parameter of σ = 10.0 yields the best accuracy for both the kinetic energy and the
functional derivative. The value of the o�set parameter b has a smaller in�uence on the model
performance than the length scale parameter.
The results for the iteratively found densities are summarized in Table E.6. All three models

with length scale σ = 10.0 show a large number of minimization runs that leave the region
spanned by the training examples, leading to extremely large mean absolute error values.
While the results for σ = 2.5 suggest a better behavior during the minimization (at least
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Table E.5.: Absolute error values on the test set for extended KRR models with o�set term
given in kcal/mol.

|∆T | |∆ δT
δn |

b σ mean std max mean std max
max(Tj) 2.5 0.256 2.253 61.617 55.932 95.658 1746.875
max(Tj) + 5 2.5 1.005 7.484 158.321 84.234 225.494 3929.710
max(Tj) + 10 2.5 2.260 16.813 338.897 183.468 477.609 8025.145
max(Tj) 5.0 0.014 0.098 2.502 20.638 34.946 391.505
max(Tj) + 5 5.0 0.006 0.033 0.732 17.325 28.796 339.674
max(Tj) + 10 5.0 0.012 0.102 2.162 14.902 25.382 306.731
max(Tj) 10.0 0.002 0.010 0.165 6.650 9.340 105.226
max(Tj) + 5 10.0 0.002 0.008 0.130 6.520 9.148 103.361
max(Tj) + 10 10.0 0.001 0.007 0.111 6.394 8.972 101.919

for b = max(Tj) + 5 and b = max(Tj) + 10), the �nal errors achieved by these models are
clearly limited by the poor model performance shown in Table E.5. A length scale of σ = 5.0,
therefore, represents a balanced trade-o� between model error and the ability to restrict the
search space. In fact, the performance for b = max(Tj) + 10 and σ = 5.0 is comparable
to the results achieved using the principal component analysis presented in the main article.
However, in general this method is not practical for large scale applications as it is di�cult
to determine a set of hyperparameters during training which will lead to models suitable for
a usage in iterative minimizations. This problem does not arise in the original application
of this approach in geometry optimization tasks as the training set is constantly extended by
additional ab-initio calculations during minimization.

Table E.6.: Absolute kinetic energy error values for the iteratively found densities in kcal/mol
as well as the integrated absolute error of the densities.

|∆T | |∆n| · 104

b σ mean std max mean std max
max(Tj) 2.5 15.143 52.469 381.315 17861.5 55933.6 259048.3
max(Tj) + 5 2.5 2.884 12.282 209.400 13.5 38.8 534.0
max(Tj) + 10 2.5 4.364 16.793 265.146 20.2 49.9 607.7
max(Tj) 5.0 258.283 105.156 514.125 6199.3 7862.7 25692.3
max(Tj) + 5 5.0 0.128 0.838 17.815 2.4 5.5 80.5
max(Tj) + 10 5.0 0.075 0.642 15.196 1.2 3.5 71.0
max(Tj) 10.0 5468.034 257.717 5958.720 5674.8 392.5 7273.1
max(Tj) + 5 10.0 3787.131 243.600 4265.972 5226.8 405.1 6817.0
max(Tj) + 10 10.0 2365.444 215.082 2814.292 4748.9 417.8 6292.2
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E.7. In�uence of the local PCA on the functional derivative

Figure E.12 shows the e�ect of the local PCA projection on the functional derivative prediction
of the various models on the sample potential of Figure 6.2 of the main article. The
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Figure E.12.: Projected functional derivative (top row) predicted by the machine learning
models as well as the di�erence to the exact solution (bottom row) for the projection parameters
m = 30 and various values of l (columns).

corresponding integrated absolute error values for the projected functional derivatives are
summarized in Table E.7. Note that both the exact and the machine learning predicted
functional derivatives are projected.

Table E.7.: Absolute error values for the projected functional derivative on the N = 1 test set
given in kcal/mol.

|∆Pm=30,l=5(n) δTδn | |∆Pm=30,l=10(n) δTδn | |∆Pm=30,l=15(n) δTδn |
model mean std max mean std max mean std max
KRR 147.5 177.8 1326.2 2008.1 879.6 4951.6 7874.8 3132.0 17518.6

ext. KRR 0.6 1.1 15.8 1.7 2.2 26.0 2.3 2.8 30.9
CNN 6.5 10.3 119.1 21.6 20.1 317.4 25.2 22.0 359.5
ResNet 1.9 2.5 54.1 4.7 4.4 81.4 7.6 5.8 85.0
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E.8. Learning curve

E.8. Learning curve

Figure E.13 shows the learning curve, that is the accuracy of the models as a function of the
number of the training examples, for the presented machine learning models. The errors are
evaluated on the N = 1 test set while the �rst M = 40, 60, 80, and 100 training examples are
used as training examples.
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Figure E.13.: Errors on the N = 1 test set achieved by the various models as a function of the
number of training examples M .

We use the hyperparameters given by Snyder et al. for the standard KRR method. A
description of the method for optimizing the extended KRR hyperparameters as well as a
detailed analysis of the results are given in Section E.3. The hyperparameters for both KRR
models are summarized in Table E.8. For all of the neural network training runs the same
hyperparameters as presented in Section E.4 is used and the batch size is reduced to the
number of training examples M .

Table E.8.: Hyperparameters used in the training of the KRR models for di�erent training set
sizes M .

KRR ext. KRR

M σ λ× 1014 σ λ× 1012

40 238 57 600 61.49 10
60 95 10 000 35.16 10
80 48 4489 30.58 1

100 43 12 30.58 1
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Figure E.13 shows a general trend of decreasing error with increasing number of training
examples. Once again the advantage of including derivative information becomes apparent as
all three models trained on derivatives achieve chemical accuracy for the smallest training set
size M = 40.
Note the slight increase in the kinetic energy error for the ResNet when the number of training

examplesM is increased from 60 to 80. This variation in the performance is to be expected due
to the random initialization of the weights at the beginning of the training process. A detailed
comparison of neural network learning curves could therefore only be done after averaging the
results over several training runs.

E.9. Computational timing

Figure E.14 shows the computational time required by the various models for evaluating a single
density of the test set. All times are measured by averaging over 100 runs on a workstation
equipped with an Intel i7-920 and without GPU acceleration for tensor�ow. Note that the
individual evaluation times could be improved signi�cantly by further optimization in the
computational implementation and more specialized hardware. Nevertheless, this graph clearly
shows that the computational e�ort for the kernel-based methods increases with the number
of training examples while the neural network models maintain a constant evaluation time.
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Figure E.14.: Evaluation time of the various models averaged over 100 runs as a function of
the number of training examples.
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