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Abstract

Bayesian Direct Position Estimation (BDPE) is a novel and promising Global
Navigation Satellite System (GNSS) positioning method, which estimates the
Position Velocity and Time (PVT) directly from the signal samples. The first
novelty of this thesis is to estimate the PVT directly from correlation values,
which are generated using two well-known methods, vector tracking and a
synthetic multi-correlator. Hereby, the vector tracking loop is closed with the
BDPE PVT estimate in order to steer the signal correlation process and the
synthetic multi-correlator is used to produce the measurements, massive cor-
relation values in the range and Doppler domain. It was shown in literature,
that Direct Position Estimation (DPE) promises a significant sensitivity gain
compared to state-of-the-art algorithms and thus, the method fully exploits its
benefits in challenging environments. It is known, that in such environments
the signal measurements are not Gaussian distributed, thus it is expected, that
non-parametric filters will estimate the state more accurately compared to
typical used methods, which are based on Gaussian assumptions. Therefore,
a natural approach for BDPE is the usage of non-parametric Bayesian filter-
ing techniques. Non-parametric Bayesian filters, such as a Grid-Based Filter
(GBF) or Particle Filter (PF), can cope with non-linearities in the system and
observation model and are able to cope with non-Gaussian and multi-modal
distributed measurements. One essential step with non-parametric Bayesian
filters is the measurement update (weight update of grid nodes or particles),
where the current state is updated with a new set of measurements. A non-
parametric Bayes filter needs for the weight update a probabilistic description
of the measurements. Therefore, the second novelty of this work is the deriva-
tion of a probabilistic description of the measurements and development of
a mathematical framework for an optimal and stable weight update based
on correlation values, which can be used for a grid-based filter and a particle
filter. The work points out possible instability issues with a grid-based or
particle filter when using the derived plain weight update function, especially
if User Equivalent Range Errors (UEREs) (orbit, satellite clock, atmosphere or
multipath) are not modeled properly. Therefore, the third novelty of the work
is the extension of the optimal weight update function to cover unmodeled
errors in the range and Doppler domain with Gaussian nuisance parameters.
The stabilizing effect of the proposed approach is shown on real-world data
with an artificial range error, which is injected at the filter update step when
mapping the measurements in the correlation domain to the PVT domain. The
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Abstract

work proposes a computational efficient algorithm to generate the Probability
Density Functions (PDFs) of the measurements and perform the weight up-
date on a Central Processing Unit (CPU), which allows to achieve a real-time
analysis tool of PDFs in the PVT domain or a real-time capable non-parametric
Bayesian filter for DPE. The results include a comprehensive analysis of the
PDFs in the PVT domain, which represents the probability distribution of the
user position, velocity and time. The developed analysis tool for PDFs of the
PVT uses an aided grid-based filter to achieve highly resoluted 2-dimensional
subspaces, which are aligned to the 8-dimensional state space using a vector
tracking PVTsolution as reference. The resulting probabilities of the user PVT
are the basis for a grid-based and particle filter for BDPE and are the result
of this work. The PDF of the PVT is analyzed in a simulated environment
using a GNSS simulator and in a real-world environment. As degraded signal
conditions are of high interest, the real-world analysis focuses on challenging
environments in an urban canyon, under-passing a bridge and an indoor
scenario. The results show strongly deformed, non-Gaussian and multi-modal
PDFs in the PVT domain. The analysis underlines the fact that non-Gaussian
as well as multi-modal probability distributions of the GNSS measurements
exist under specific conditions, and that a BDPE PF or GBF will provide under
these conditions superior performance compared to a Kalman Filter (KF).
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Kurzfassung

Bayesian Direct Position Estimation (BDPE) ist eine neuartige und vielver-
sprechende Global Navigation Satellite System (GNSS) Positionierungsmeth-
ode, welche die Positions-, Geschwindigkeits- und Zeitlösung (PVT) direkt
aus dem digital abgetasteten Signal schätzt. Die erste Neuheit dieser Arbeit
ist die direkte Schätzung der PVT aus Korrelationswerten, welche mithilfe
zweier bekannter Methoden, Vektor-Tracking und eines synthetischen Multi-
Korrelators, berechnet werden. Die Vektor-Tracking Regelschleife wird über
die geschätzte PVT Navigationslösung von BDPE geschlossen um den Ko-
rrelationsprozess zu steuern. Mit dem synthetischen Multi-Korrelator wird
die Messung erzeugt, welche eine hohe Anzahl von Korrelationswerten in
der Distanz und Doppler Domäne beinhaltet. Es wurde in der Literatur
gezeigt, dass DPE eine signifikante Steigerung der Sensitivität gegenüber
konventionellen Methoden ermöglicht, was vor allem einen großen Vorteil
in schwierigen Signalbedingungen mit sich bringt. Es ist bekannt, dass bei
schwierigen Signalumgebungen keine Gauß-verteilten Messungen vorliegen,
daher ist zu erwarten, dass nicht-parametrisierte Filter den Zustand deutlich
besser schätzen als typischerweise eingesetzte Methoden, die auf Annahmen
von Gauß-verteilten Messungen basieren. Deswegen wird der Einsatz von
nicht-parametrisierten Filtern für BDPE als günstig erachtet. Zu den nicht-
parametrisierten Bayes-Filtern gehören beispielsweise der Partikelfilter (PF)
und der Grid-basierte Filter (GBF). Beide Filter erlauben die Verwendung von
nicht-linearen System- und Beobachtungsmodellen, also auch die Verwendung
von nicht Gauß-verteilten und multi-modalen Messungen. Ein wesentlicher
Schritt von nicht-parametrisierten Bayes-Filtern ist die Neugewichtung der
Gitterpunkte bzw. der Partikel, bei dem der aktuelle Zustand mithilfe der
vorliegenden Messungen aktualisiert wird. Für nicht parametrisierte Bayes-
Filter müssen diese Messungen in einer probabilistischen Form vorliegen.
Die zweite Neuheit in dieser Arbeit ist die Herleitung einer probabilistischen
Beschreibung der Messungen und die Entwicklung eines mathematischen
Gerüstes für eine optimale und stabile Neugewichtung basierend auf Ko-
rrelationswerten, welches für einen Partikelfilter und einen Grid-basierten
Filter verwendbar ist. In der Arbeit werden mögliche Instabilitätsprobleme
bei einem Grid-basierten oder Partikelfilter bei Verwendung der entwick-
elten direkten und optimalen Neugewichtung diskutiert, welche vor allem
bei nicht optimal modellierten UEREs (nicht modellierte Fehler im Orbit-
Modell, der Satellitenuhr, der Atmosphäre oder der Mehrwegeausbreitung)
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Kurzfassung

auftreten. Deshalb werden in der Arbeit als dritte Neuheit Gauß-verteilte
Fehler bei der direkten und optimalen Neugewichtung eingeführt, um nicht
modellierte Fehler bei der Messung in der Distanz- und Doppler-Domäne
berücksichtigen zu können. Die vorgeschlagene Methode hat einen stabil-
isierenden Effekt zur Folge, welcher mit realen Daten und einem künstlich
eingeführten Distanzfehler nachgewiesen wird. Dieser künstliche Fehler wird
im Filter-Update Schritt beim Zuordnen der Messungen in der Korrelations-
domäne in die PVT-Domäne eingeführt. Weiter wird in der Arbeit ein ef-
fizienter Algorithmus für die Erzeugung von Wahrscheinlichkeitsdichtefunk-
tionen (PDFs) der Messungen und die Durchführung der Neugewichtung
auf der CPU vorgestellt, welcher ein Echtzeit-Analyse-Tool von PDFs in der
PVT-Domäne oder echtzeitfähige nicht-parametrische Bayes-Filter für DPE
ermöglicht. Die Ergebnisse beinhalten eine ausführliche Analyse der PDFs
in der PVT-Domäne, welche die Wahrscheinlichkeitsverteilung der Benutzer-
Position, -Geschwindigkeit und -Zeit darstellen. Das entwickelte Analyse-Tool
für die PDFs der PVT verwendet einen gestützten Grid-basierten Filter um
hochauflösend 2-dimensionale Teilräume analysieren zu können, wobei das
Grid mithilfe einer Vector-Tracking PVT-Lösung im 8-dimensionalen Zustand-
sraum platziert wird. Die resultierenden Wahrscheinlichkeitsdichtefunktio-
nen der PVT sind die Basis für einen Grid-basierten Filter und Partikelfilter
hinsichtlich BDPE und sind die Ergebnisse dieser Arbeit. Die Wahrschein-
lichkeitsdichtefunktion der PVT wird in einer simulierten Umgebung mit
einem GNSS Signalgenerator und unter realen Bedingungen analysiert. Da
vor allem schwierige Signalbedingungen von Interesse sind, wird eine Anal-
yse der PDF in der Stadt, unter einer Brücke und im Innenbereich eines
Gebäudes durchgeführt. Die Ergebnisse zeigen eine stark deformierte, nicht
Gauß-verteilte und multi-modale Wahrscheinlichkeitsdichtefunktionen der
PVT. Diese Analyse untermauert die Annahme, dass nicht Gauß-verteilte
sowie multi-modale Verteilungen der GNSS Beobachtungen unter bestimmten
Bedingungen existieren und das Partikelfilter sowie Grid-basierte Filter unter
solchen Bedingungen einem typischen Kalman-Filter überlegen sind.
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1 Introduction

Global Navigation Satellite Systems (GNSS) are satellite-based navigation sys-
tems which have the capability to deliver an absolute and accurate Position Ve-
locity and Time (PVT) worldwide. Nowadays GNSSs consist of satellite-based
global and regional navigation systems. The unique capability of delivering
and absolute position worldwide made GNSS an indispensable backbone
infrastructure for a wide range of different applications. Hereby, research
and a strong international collaboration as well as knowledge transfer is
realized by the Position Navigation and Timing (PNT) community. Existing
and new applications have different requirements on the PNT, whereas very
strict requirements need to be fulfilled for safety-of-life applications, critical
infrastructures and military. The next subchapters discuss briefly existing
GNSS, applications which rely on GNSS, GNSS receivers and their perfor-
mance parameters. The introduction includes also a brief overview of the
GNSS market and is concluded with the objectives and the structure of the
thesis.

1.1 GNSS Systems and Applications

GNSS are nowadays more important as ever before and the demand for GNSS
will further grow in future. The very first satellite-based navigation system
Transit was developed by the U.S. Navy and was declared operational in 1964.
The system performance is not comparable to nowadays GNSS, but Transit
achieved that times a 2-D positioning accuracy of 25 m (RMS) in typically
about 10-20 minutes for a stationary or slow-moving user, but up to 100

minutes if the next satellite bypass needs to be awaited for (no continuous
availability). The aim of the system was to update the position of ships and
submarines, and it was dedicated for military usage and limited maritime civil
usage. The equivalent counterpart in the Soviet Union was Parus and Tsikada.
Since 1964 satellite-based navigation encountered a tremendous progress. The
follow-on program of Transit is the well-known Global Positioning System
(GPS), which was declared operational in 1995. The system was designed
to have a selective availability, which delivers the full performance to the
military users and a reduced performance to civil users. The selective avail-
ability aimed to prevent building aided weapons. The counterpart to GPS was
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the Russian Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS),
which was also designed for the military usage, but a subset of the signals
was also made available for civil users [Misra and Enge, 2010]. In 2000, the
selective availability of GPS was disabled and the civil users where able to
obtain worldwide and continuously a 3-D position plus time information
with a horizontal positioning accuracy of about 5 m (RMS). This was the
breakthrough for GPS and due to the continuous availability and good perfor-
mance together with the fact that receivers become cheaper with increasing
demand, GPS become the standard positioning system for a wide range of
different products and applications worldwide. It was rapidly realized by
other governments, that GPS was used in safety-critical systems and that
GPS became a part of the national infrastructure, but without having its
sovereignty. Based on this fact, several countries decided to develop their
own satellite-based navigation system, which can be designed to be a GNSS
or a Regional Navigation Satellite System (RNSS). Europe contributes to the
PNT infrastructure with Galileo (GNSS), China with Beidou (GNSS), India
with the Indian Regional Navigation Satellite System (IRNSS) (RNSS), and
Japan with the Quasi-Zenith Satellite System (QZSS) (RNSS). Furthermore, all
operating countries of a satellite-based navigation system installed a regional
Satellite-Based Augmentation System (SBAS), which deliver supplemental
information from geostationary satellites to increase the positioning accuracy
and availability. North-America is covered with the Wide Area Augmen-
tation System (WAAS) (U.S.), Russia is covered by System for Differential
Corrections and Monitoring (SDCM), Europe is covered by the European
Geostationary Navigation Overlay Service (EGNOS) (EU), China is covered
by the BeiDou Satellite-Based Augmentation System (BDSBAS) (China), India
is covered by GPS-Aided GEO Augmented Navigation (GAGAN) and Japan
is covered by Multi-functional Satellite Augmentation System (MSAS). This
high number of available satellite systems lead to a worldwide significantly
increased coverage which allows a fast and accurate position fix with a high
availability, even in difficult environmental conditions such as in mountains
(if the receiver supports multiple global and regional satellite navigation sys-
tems). The navigation systems are operated in the L-Band (frequency range
of 1-2 GHz) and S-Band (frequency range of 2-4 GHz), whereas only one
signal of the Indian system is placed in the S-Band. Navigation signals are
separated from each other by four different orthogonality principles, code
division by using different Pseudo-Random Noise (PRN) codes, frequency
division by using different center frequencies, phase division by using the
90 deg orthogonality of the In-Phase (I) and Quadrature (Q) component of
a signal, and time division by using assigned time slots. Navigation signals
are transmitted for military and civil users. Newer signals can have different
design criteria and can be optimized to deliver a better ranging performance,
have a reduced multipath error envelope, enable higher sensitivity by using
data free pilot signals, use short codes for fast signal acquisition, include
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encryption or authentication methods or making the signal less sensitive to
interference. Navigation signals are affected by different error sources when
propagating from the satellite to the user. The most dominant error sources
are atmospheric delays caused by the Ionospheric and Tropospheric layer and
multipath effects, caused by the environmental conditions. The transmission
on multiple frequencies has the benefit, that it allows to estimate Ionospheric
delays on receiver side, which is one of the most dominant error sources
in GNSS positioning. State-of-the-art receivers support a subset or all of the
available satellite navigation systems and depending on the receiver grade,
one or multiple frequencies. Low-cost mass-market receivers typically support
a single frequency, but dual frequency mass market receivers are currently
upcoming, especially in mobile phones and receivers for autonomous driv-
ing. High-end receivers for precise positioning or receivers for safety critical
applications use typically multiple frequencies and multiple systems. The
availability of a wide range of different receiver grades allowed GNSSs to
enter many different applications, as shown in Fig. 1.1. GNSS are nowadays
a common standard in mobility and transportation. Everybody uses a nav-
igation system in a car to find the fastest way to a destination or keep on
track at hiking or bicycling. On commercial side transportation companies
use navigation systems for fleet tracking and optimize deliveries in order to
facilitate highest flexibility and efficiency. Positioning becomes also standard
in mobile phones and thousands of different mobile phone applications use
PNT, ranging from taxi apps like Uber to games like Pokemon Go. GNSSs
also enabled a significant increase of the degree of automation in the farming
industry, which increased the efficiency. GNSSs are the only systems which
can deliver a world-wide and continuously available absolute position, which
made it also to a standard in surveying and mapping applications. The Eu-
ropean Galileo as well as other systems will support in future also Search
and Rescue (SAR) in emergency cases, which allows a user to determine and
transmit its position.

The characteristics and requirements of a GNSS receiver strongly depend on
the application. The performance parameters of a receiver for mass market
applications vary significantly in comparison to professional and safety-critical
applications. Typical performance parameters of GNSS receivers, as defined
in [GSA, 2017], are:

• Availability - Percentage of time over a specified time interval that a
sufficient number of satellites are transmitting a usable ranging signal
within view of the user

• Accuracy - The difference between true and computed position (absolute
positioning)

• Continuity - Ability to provide the required performances during an
operation without interruption once the operation has started
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Figure 1.1: Today GNSS is a standard application on the road, water, train, air, farm, map, in
mobile phones and becomes standard in emergencies to deliver a position message
to a search and rescue service. Modern GNSS techniques might allow to extend
the field of applications to more challenging environments like woods or indoors.
Figure adapted and taken from [GSA, 2017].

• Integrity - The measure of trust that can be placed in the correctness of
the position or time estimate provided by the receiver

• Time To First Fix (TTFF) - A measure of a receiver’s performance
covering the time between activation and output of a position within
the required accuracy bounds

• Robustness - A qualitative, rather than quantitative, parameter that
depends on the type of attack or interference the receiver is able to
mitigate

• Authentication - The ability of the system to assure the users that they
are utilizing signals and/or data from a trustworthy source, and thus
protecting sensitive applications from spoofing threats

1.2 GNSS Market

GNSS is a strongly worldwide growing market, and the growing demand
for precise location information in combination with the ongoing evolution
of GNSS technology, means that today’s GNSS market is bigger than ever.
With an estimated 5 billion GNSS devices in use around the world, a num-
ber expected to grow to 8 billion by 2020, has made GNSS to a ubiquitous
technology [GSA, 2017].

The increasing global coverage and the resulting benefits of a higher availabil-
ity and accuracy together with competitive companies pushing their GNSS
receiver developments to support new systems and signals, enables and sup-
ports the development of added-value-services. The sources of the worldwide
revenue made by GNSS can be split into two types, devices and augmentation
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Figure 1.2: Global revenue trend from 2015-2025 made by GNSS and separated by type. [GSA,
2017]

systems (e.g. GNSS receivers) and added-value services. As depicted in Fig. 1.2,
the revenue made from both types is expected to grow significantly, whereas
GNSS as enabling technology brings a rocketing revenue of the added-value
services such as navigation services, fleet management applications and many
location-aware smartphone apps [GSA, 2017]. Smartphone apps also benefit
from the latest developments of a dual-frequency support and access to the
raw GNSS measurements of the integrated GNSS receivers, which enable
precise positioning techniques such as Real Time Kinematics (RTK) or Precise
Point Positioning (PPP) and thus a position accuracy down to the decimeter
or centimeter level.

The cumulative revenue split into market segments is shown in Fig. 1.3. It
is impressive, that Location Based Services (LBS) and the road segment will
dominate the GNSS market together with 93.4% of all revenue made up to
2025. The technological evolutions with connected vehicles and automated
driving is expected to be a major driver of growth of GNSS-enabled road
applications and services over the upcoming years [GSA, 2017]. The seg-
mentation in Fig. 1.3 clearly shows, that GNSS is available for safety-of-life
applications only in (quasi) open sky conditions, whereas non-safety-of-life
applications use GNSS also in degraded signal environments.

Initially, the upcoming market of autonomous driving cars brings civil GNSS
dependent safety-of-life operations into degraded signal environments. GNSS
is a important key element for autonomous driving cars, as it is the only
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Figure 1.3: Global revenue from 2015-2025 made by GNSS separated by market segment. [GSA,
2017]

global available absolute positioning method, which also achieves accuracies
down to sub-dm level. But GNSS relies on very weak signals, which arrive in
case of a omni-directional user antenna below the thermal noise floor. This
makes GNSS sensitive to signal disruptions and interferences. The market
entry of autonomous driving cars is a stepwise approach starting in ideal
conditions e.g. on highways where good conditioned roads (broad roads
and lines for visual aiding) and open sky for GNSS are available. But the
technology for autonomous driving cars need to progress forward to more
challenging environments like urban cities or woods, which pushes also
the need for high sophisticated GNSS positioning algorithms, whereas this
thesis contributes to the development of future advanced GNSS positioning
technologies by deriving a PDF of the PVT and by performing an analysis in
challenging environments.

1.3 Objectives and Structure of the Thesis

This thesis discusses the implementation of a real-time capable analysis tool
for generating PDFs in the PVT domain as well as a real-time capable BDPE
software receiver. Therefore, the discussion starts with a summary of today’s
satellite-based navigation systems in chapter 2. The discussion is continued
by placing the investigated method BDPE in context of state-of-the-art posi-
tioning technology in chapter 3. Based on the fact, that many state-of-the-art
GNSS receivers rely on Bayesian filtering techniques and the implemented
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BDPE receiver uses a particle or a grid-based filter for estimating the PDF
of the PVT, the basic principles of Bayesian filters are introduced in chapter
4. In order to understand details of state-of-the-art positioning algorithms
and fundamental basics for BDPE, the fundamentals of GNSS receivers are
discussed in chapter 5. Furthermore, chapter 6 describes the implemented
BDPE receiver architecture and shows how the particle and grid-based filter
is linked to DPE and how the concept is integrated efficiently into an existing
framework of a software-based receiver. Based on the fact, that a probabilistic
framework for BDPE is not available, the thesis shows the derivation of a
mathematical framework and investigates in an optimal and stable weight
update for BDPE in chapter 7. A comprehensive analysis of the obtained PDFs
is performed in the correlation domain and in the PVT domain in chapter
8. Furthermore, the resulting PDF is analyzed in challenging real-world sce-
narios when driving through an urban canyon, underpassing a bridge and
going indoors in chapter 8.7. The conclusion in chapter 9 summarizes the
obtained results, the lessons learned and gives a short outlook for possible
future investigations. The Appendix delivers supplemental material, whereas
Appendix A-C contain the complete mathematical derivations to make some
chapters more readable, Appendix D extends chapter 8.7 with a time series of
the PDFs for the urban scenarios and the indoor case. Appendix E extends
chapter 8.5 with a time series of 2D PDFs of the position in order to give
evidence, that the proposed approach of introduced nuisance parameters to
cover unmodeled UEREs works as expected.
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This chapter discusses the system architecture of a global or regional navi-
gation satellite system and explains the composition of navigation signals.
The discussion is continued with an up-to-date description of all available
satellite navigation systems, augmentation systems and transmitted signals.
The chapter is concluded with a discussion on the impact of GNSS signal
parameters on a DPE solution.

GNSS and RNSS have reserved frequency bands to operate. The frequency
bands are assigned by the International Telecommunication Union (ITU) and
are located for GNSS in the L-Band and S-Band, whereas today only the
Indian system transmit navigation signals in the S-Band. An overview of
the allocated frequency bands by GNSSs is shown in Fig. 2.1. All GNSS sig-
nals are located in the Radionavigation-Satellite Service (RNSS) band and
for safety-of-life applications, some GNSS signals are also located in the
stronger protected Aeronautical Radio Navigation Service (ARNS) band. The
ARNS band is also used by other radionavigation systems like marker bea-
cons, VHF Omnidirectional Radio Range (VOR), Instrument Landing System
(ILS), ILS glideslope, Distance Measuring Equipment (DME), Special CAT-
egory I (SCAT-I), Tactical Air Navigation (TACAN), Automatic Dependent
Surveillance - Broadcast (ADS-B) transponders, ground-based radars and
associated airborne transponders, and the Microwave Landing System (MLS)
[Avila-Rodriguez et al., 2007].

In general, the system operators aim to achieve interoperability of the systems
and thus many signals are located at same center frequency and use a common
access technique. Hereby, the spectral separation, the spectral shape and
modulation types of the navigation signal determine the basic cross-talk
(signal interference) properties between the signals and systems. A state-of-
the-art overview of all GNSS signals is given in Fig. 2.2, which shows the
frequency band and spectral shape of each signal.

2.1 System Architecture

A navigation satellite system consists of three segments, the Space Segment,
the Ground Segment and the User Segment. The space segment represents
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Figure 2.1: Overview of GNSS frequency bands [P. Teunissen and Montenbruck, 2017, Fig. 4.6].

the satellites, which are distributed according to a defined constellation. The
ground segment is responsible for the operation of the satellites. The functions
of the ground segment, rewritten and adapted from [Misra and Enge, 2010],
are

• to monitor satellite orbits,
• to monitor and maintain satellite health,
• to maintain the system time,
• to predict satellite ephemerids and clock parameters,
• to update satellite navigation messages,
• and to command small maneuvers of satellites to maintain orbit, and

relocations to compensate for failures, as needed.

Monitoring stations are distributed over the world to achieve a continuous
monitoring of all satellites. In case of anomalies satellites are set to unhealthy
such that receivers do not use them for positioning. The data of the monitoring
stations is used to predict satellite orbits and satellite clock parameters in
order to produce a new set of ephemeris data for each satellite, which is
uploaded to the satellites on a regular basis (some hours). The user segment
consists of the receivers, which receive and process the navigation signals in
order to obtain distance measurements to the satellites and calculate a PVT
solution. A variety of GNSS receivers emerged in the past decades targeting
different user applications. Receivers became that cheap, small and energy
efficient such that they are integrated nowadays in every mobile phone.
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2 Satellite-Based Navigation Systems

Figure 2.2: Overview of all GNSS signals with modulation schemes - colors indicate open
signals (green), authorized signals (red) and restricted access signals (yellow).
The figure might differ slightly from the descriptions given by the tables in each
subsection, which rely on the latest published ICDs [P. Teunissen and Montenbruck,
2017, Fig. B.1].
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2.2 Navigation Signals

A navigation signal is composed of three components, the carrier, the spreading
waveform with a possibly secondary code, and the navigation data message,
as shown in Fig. 2.3. The spreading waveform is used to generate a Direct
Sequence Spread Spectrum (DSSS) signal. At signal generation, the spread-
ing waveform is multiplied with a navigation data message. The resulting
baseband signal is mixed to a carrier frequency, typically in the L-Band, is
amplified and transmitted.

The spreading code sequence determines the basic characteristics of the nav-
igation signal. The codes have two functionalities, (1) to generate a spread
spectrum which allows to recover the signals received below the thermal
noise floor and (2) to establish the access technique Code Division Multiple
Access (CDMA) and separate the signals from each other. The basic aim of
the code sequence is to fulfill the criteria of orthogonality, which is established
by generating PRN like sequences allowing to separate the signals by their
individual codes. But also a second access technique is used in GNSS, separa-
tion of the signals by frequency division, which is called Frequency Division
Multiple Access (FDMA). FDMA uses the same PRN code sequences but
different carrier frequencies for each transmitted navigation signal, whereas
each signal has an assigned frequency slot. There exist different types of PRN
codes, but all of them are generated with a Linear Feedback Shift Register
(LFSR) or stored as a sequence in memory. Some examples are a Gold Codes,
Weil Codes, Kasami Codes or Memory-Codes, whereas a detailed description
is not given here. The PRN code together with the modulation scheme defines
the spectral characteristics and auto-correlation function of the navigation
signal. The higher the code rate, the higher is the occupied spectral bandwidth
and the better is the ranging performance. The impact of the code rate and
modulation type on the spectral characteristic is briefly visualized in Fig. 2.4,
which shows two different modulation types, a Binary Phase Shift Keying
(BPSK) and a Binary Offset Carrier (BOC). The BPSK(1) and BPSK(10) have
a code rate of 1 ∗ 1.023 MHz and 10 ∗ 1.023 MHz, and the BOCsin(10,5) has a
sub-carrier frequency of 10 ∗ 1.023 MHz and a code rate of 5 ∗ 1.023 MHz, all
centered at a defined center frequency. The benefit of the BOC modulation is
to separate the main lobe symmetrically around the center frequency, whereas
the offset between the two main lobes is defined by the subcarrier frequency.

The navigation message contains the almanac and ephemeris data. The
almanac data contains a rough description of all satellite orbits and the
ephemeris data a precise description of the orbit and clock parameters of the
currently tracked satellite. A navigation signal is referred as data signal, if the
signal carries a navigation message and as pilot signal, if no navigation data is
modulated onto the navigation signal.
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Figure 2.3: The figure shows the composition of a navigation signal consisting of a carrier,
spreading code sequence and a navigation data message [P. Teunissen and Mon-
tenbruck, 2017, Fig. 7.7].

Figure 2.4: The figure shows the spectral shape of three different navigation signals. The
C/A-code is a BPSK(1), the P(Y)-code is a BPSK(10) and the M-code a BOCsin(10,5).
Figure extracted from [P. Teunissen and Montenbruck, 2017, Fig. 7.8].
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2.3 Global Navigation Satellite Systems

There are currently four global satellite navigation systems present, which
are operated by the U.S., Europe, Russia and China. All systems and their
parameters are discussed briefly in the following subsections. The data is taken
from the latest published Interface Control Documents (ICDs), [P. Teunissen
and Montenbruck, 2017] and [ESA, 2018].

2.3.1 GPS

The Global Positioning System (GPS) is the GNSS of the U.S. which was
developed for the U.S. military, whereas the Department of Defense (DOD) is
responsible for operating the system. The deployment of the system started in
February 1978 with the first experimental Block I Navstar GPS satellite. The
Initial Operation Capability (IOC) with 24 operational satellites in six orbital
planes was achieved in December 1993. The full operational capability with
Block II / IIA production model satellites was achieved two years later in June
1995. The next generation of satellites was called Block IIR (replenishment)
and Block IIF (follow-on). The latest generation of GPS satellites is Block
III, produced by Lockheed Martin. The first series of Block III satellites was
launched with 4 years of delay in December 2018, whereas the 10th GPS Block
III satellite is projected for Q2 2023.

Table 2.1: GPS L1 signal characteristics [P. Teunissen and Montenbruck, 2017], [ESA, 2018],
[Kwan, 2019b] and [Kwan, 2019a]

GNSS System GPS GPS GPS GPS
Service Name C/A-Q L1C-I P(Y)-Code-I M-Code-I
User Group civil civil military military
Encryption no no yes yes
Centre Frequency 1575.42 MHz 1575.42 MHz 1575.42 MHz 1575.42 MHz
Access Technique CDMA CDMA CDMA CDMA
Signal Component Data Data and Pilot Data Data and Pilot
Modulation BPSK(1) TMBOC(6,1,4/33) BPSK(10) 2xBOC(10,5) mux
Prim. PRN Length 1023 10230 / 10230 6.9e12 N.A.
Sec. PRN Length - - / 1800 - N.A.
PRN Code Family Gold Codes Weil Codes M-seq. N.A.
Data Rate 50 bps 50 bps / - 50 bps ≤100 bps / N.A.
Min. Rcv. Pwr. 5° -158.5 dBW -157 dBW -161.5 dBW -158 / -158 dBW

GPS provides two services, the Standard Positioning Service (SPS) and the
Precise Positioning Service (PPS). The SPS is a positioning and timing service
for commercial and scientific civil users, nowadays transmitted on the L1, L2

and L5 frequency band. The PPS is intended for military usage with encrypted
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precision ranging codes for authorized users transmitted on the L1 and L2

frequency band [ESA, 2018].

As shown in Tab. 2.1, Tab. 2.2 and Tab. 2.3, the access technique of GPS is
purely based on CDMA. The newer L1C and L5 civil signals deliver a better
ranging performance compared to the original C/A code, which is established
with the increased code rates. The increased primary PRN code lengths of
the new civil signals aim to reduce the cross-talk between the signals. The
data free pilot component on the L1C and L5 signal allows for a longer
coherent integration time on receiver side which enables a higher sensitivity.
The navigation data rates of the new signals have not been increased. Higher
data rates would deliver the required ephemeris data faster, but with the
tradeoff of a reduced coherent integration time. The coherent integration time
needs to be reduced with higher data rates, because the integration period
must be aligned to the navigation data bit boundaries. A reduced coherent
integration time also leads to a reduced sensitivity and higher Bit Error Rate
(BER).

Table 2.2: GPS L2 signal characteristics [P. Teunissen and Montenbruck, 2017], [ESA, 2018] and
[Kwan, 2019b]

GNSS System GPS GPS GPS GPS
Service Name L2CM-Q L2CL-Q P(Y)-Code-I M-Code-I
User Group civil civil military military
Encryption no no yes yes
Centre Frequency 1227.60 MHz 1227.60 MHz 1227.60 MHz 1227.60 MHz
Access Technique CDMA CDMA CDMA CDMA
Signal Component Data Pilot Data Data/Pilot
Modulation BPSK(1) - 2 streams at 511.5 kHz BPSK(10) 2xBOC(10,5) mux
Prim. PRN Length 10230 767250 6.9e12 N.A.
Sec. PRN Length - - - N.A.
PRN Code Family M-seq. M-seq. M-seq. N.A.
Data Rate 25 bps - 50 bps ≤100 bps / N.A.
Min. Rcv. Pwr. 5° -164.5 dBW (II/IIA/IIR) -164 / -164 dBW

The new military M-Code comes along with two benefits compared to the
original P(Y)-code signal. The signal has an increased ranging performance
due to the BOC modulation, which occupies a higher spectral bandwidth
compared to BPSK. The higher the occupied bandwidth (Gabor Bandwidth),
the sharper is the correlation function and the higher is the navigation signal
tracking accuracy [Zhang, Yao, and Lu, 2011]. The second benefit is, that the
civil signals can be jammed without hitting the main-lobes of the M-code.

The baseline satellite constellation consists of 24 satellites but supports up to
30 satellites due to a spare slot in each orbit. The orbits are nearly circular
with a radius of 26560 km (semi-major-axis), which equals an altitude of about
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Table 2.3: GPS L5 signal characteristics [P. Teunissen and Montenbruck, 2017], [ESA, 2018] and
[Kwan, 2019c]

GNSS System GPS GPS
Service Name L5-I L5-Q
User Group civil civil
Encryption no no
Centre Frequency 1176.45 MHz 1176.45 MHz
Access Technique CDMA CDMA
Signal Component Data Pilot
Modulation BPSK(10) BPSK(10)
Prim. PRN Length 10230 10230

Sec. PRN Length 10 20

PRN Code Family M-seq. M-seq.
Data Rate 50 bps -
Min. Rcv. Pwr. 5° -157.9 dBW -157.9 dBW

20200 km and which belongs to the Medium Earth Orbit (MEO). The orbital
period is approximately 12 hours and the ground tracks are stationary. The
satellites are distributed in 6 orbital planes inclined with 55 deg relative to
the equatorial plane. The GPS satellites where launched from Cape Canaveral
and the used datum is the World Geodetic System 1984 (WGS-84) [Misra and
Enge, 2010] and [ESA, 2018].

2.3.2 GLONASS

The Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS) is the
Russian counterpart to GPS. The first GLONASS satellites where launched
in October 1982, this times in the Soviet Union, with Kosmos-1413, Kosmos-
1414 and Kosmos-1415. The system was declared operational in 1993 and its
optimal status with 24 operational satellites was achieved in 1995. After 1995

the Russian economy was in a crisis and a full funding for the system was
not possible, which caused a disrepair of the system. In 2000 the funding was
significantly increased by Vladimir Putin and the restoration become high
priority in the government. The original access technique of GLONASS was
FDMA (’F’), which delivers a higher robustness due to improved spectral
separation and, that times, also a higher protection against narrowband
jammers. The original open (’O’) and encrypted military (’S’) FDMA signals
where transmitted on the L1 and L2 band (the L1OF, L1SF, L2OF and L2SF).
But two drawbacks came with time, broadband jammers can be produced
easily and the spectral separation of each signal increased the complexity on
receiver side. The spectral separation induces frequency dependent delays in
the satellite hardware, transmission channel and the receiver hardware, which
need to be accounted for. Based on these facts, Russia started also to setup
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CDMA (’C’) signals. The generation of GLONASS-M satellites were initially
launched in 2003, which come along with improved clocks and an additional
open CDMA signal on the L3 band from 2014 onwards (the L3OC) [Russian
Space Systems, 2016d].

Table 2.4: GLONASS FDMA signal characteristics [P. Teunissen and Montenbruck, 2017], [ESA,
2018]

GNSS System GLONASS GLONASS GLONASS GLONASS
Service Name L1OF(C/A)-Q L1SF(P)-I L2OF(C/A)-Q L2SF(P)-I
User Group civil military civil military
Encryption no yes no yes
Centre Frequency 1602 + n*0.5625 MHz 1246 + n*0.4375 MHz
Access Technique FDMA FMDA FDMA FDMA
Signal Component Data Data Data Data
Modulation BPSK(0.5) BPSK(5) BPSK(0.5) BPSK(5)
Prim. PRN Length 511 5110000 511 5110000

Meander Seq. 100 Hz N.A. 100 Hz N.A.
PRN Code Family M-seq. M-seq. M-seq. M-seq.
Data Rate 50 bps 50 bps 50 bps 50 bps
Min. Rcv. Pwr. 5° -161 dBW N.A. -161 dBW N.A.

Since 2007, Russia is providing the civil navigation signals to own and foreign
users free of charge and without limitations. A further improvement of the
clock was made with the GLONASS-K satellites, which have been initially
launched in in 2011. Russia realized that times the rapidly growing demand
for high precision services with dual and triple frequencies and thus they
placed two more open and encrypted CDMA signals on the L1 and L2 band
(the L1OC, L1SC, L2OC and L2SC). The roadmap of GLONASS foresees with
the GLONASS-V and GLONASS-KM satellites a encrypted military CDMA
signal on the L3 band (the L3SC) as well as interoperable CDMA signals on
the L1, L2 and L3 band (the L1OCM, L2OCM and L5OCM) [ESA, 2018] and
[Yuri et al., 2011], whereas at the moment only the L1OCM and the L5OCM
has been defined [P. Teunissen and Montenbruck, 2017].

GLONASS offers two services, the SPS and the PPS. The SPS is an open civil
service without any charge and for worldwide users, whereas the PPS is
restricted to authorized users [ESA, 2018].

The space segment of GLONASS consists of nominally 24 satellites distributed
in three circular orbital planes. The satellites are operated in the MEO at an
altitude of 19140 km, and thus they have a revolution time of approximately
11 hours 15 minutes. Each orbital plane is inclined by 64 deg 8 min and can
carry up to eight satellites. Russia uses the launch site in Baikonur/Plesetsk
for its satellites and the GLONASS reference datum is the PZ-90.11. The usage
of FDMA influenced the satellite constellation, because all FDMA signals
transmit the same PRN code. The DSSS code is still necessary due to the
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Table 2.5: GLONASS L1 and L2 CDMA signal characteristics [Russian Space Systems, 2016a],
[Russian Space Systems, 2016b], [Russian Space Systems, 2016d], [P. Teunissen and
Montenbruck, 2017]

GNSS System GLONASS GLONASS GLONASS
Service Name L1OC-Q L1SC-I L2OC-Q
User Group civil military civil
Encryption no yes no
Centre Frequency 1600.995 MHz 1600.995 MHz 1248.060 MHz
Access Technique CDMA CDMA CDMA
Signal Component Data/Pilot (TM) N.A. Pilot/Pilot (TM)
Modulation BPSK(1)/BOC(1,1) BOC(5,2.5) BPSK(1)/BOC(1,1)
Prim. PRN Length 1023 N.A. 10230

Sec. PRN Length 2 N.A. 50

PRN Code Family Gold Codes N.A. Truncated Kasami
Data Rate 125 bps / - N.A. -
Min. Rcv. Pwr. 5° -158.5 dBW N.A. -158.5 dBW

Table 2.6: GLONASS L2 and L3 CDMA signal characteristics [Russian Space Systems, 2016b]
and [Russian Space Systems, 2016c], [Russian Space Systems, 2016d], [P. Teunissen
and Montenbruck, 2017]

GNSS System GLONASS GLONASS GLONASS
Service Name L2SC-I L3OC-I L3OC-Q
User Group military civil civil
Encryption yes no no
Centre Frequency 1248.060 MHz 1202.025 MHz 1202.025 MHz
Access Technique CDMA CDMA CDMA
Signal Component N.A. Data Pilot
Modulation BOC(5,2.5) BPSK(10) BPSK(10)
Prim. PRN Length N.A. 10230 10230

Sec. PRN Length N.A. 5 10

PRN Code Family N.A. Baker Neuman-Hoffman
Data Rate N.A. 100 bps -
Min. Rcv. Pwr. 5° N.A. -158.5 dBW -158.5 dBW

limited transmission power, which delivers an additional correlation gain
when despreading the weak signal on the earth. In order to keep the occupied
spectral bandwidth low (L1: 1602.0–1615.5 MHz, L2: 1246.0–1256.5 MHz), 14

frequency channels (almanac slots) are shared with up to 28 satellites. This
means that 2 satellites transmit the same code on same frequency at same
time. The constellation ensures that these two satellites separated by 180 deg
in argument of latitude, which means that they are always at the opposite
side of the world [ESA, 2018].
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Table 2.7: Planned Interoperability CDMA signal characteristics [Grigoriy Stupak, 2010] and
[Yuri et al., 2011], [P. Teunissen and Montenbruck, 2017]

GNSS System GLONASS GLONASS GLONASS
Service Name L1OCM L3OCM L5OCM
User Group civil civil civil
Centre Frequency 1575.42 MHz 1207.14 MHz 1176.45 MHz
Modulation BOC(1,1) BPSK(10) BPSK(10)
Similar to L1C, E1, B1C E5b, B2b L5, E5a, B2a

2.3.3 Galileo

Galileo is the European GNSS, which is an accurate, guaranteed and world-
wide available global positioning system under civil control. In 1990 the
European Union (EU) decided to set up their own system, whereas the Eu-
ropean Comission (EC) together with the European Space Agency (ESA) got
the task to deploy the system. The Galileo program consists of three major
phases, the IOV (In-Orbit Validation), the IOC (Initial Operation Capability)
and the FOC (Full Operation Capability) phase. Prior the IOV phase, two
experimental satellites GIOVE-A and GIOVE-B where launched in Decem-
ber 2005 and April 2008 with the purpose to characterize the planned MEO,
perform initial tests with the intended satellite payload and to secure the
allocated frequency spectrum, which is assigned to Galileo by the ITU in
accordance with the World Radiocommunication Conference (WRC) RNSS
allocations [ESA, 2018].

The first of four operational IOV satellites was launched with Soyuz VS01

in October 2011 and the satellites where constructed by Astrium GmbH and
Thales Alenia Space. The IOV satellites transmit signals on the E1, E5 and
E6 band and had the planned SAR feature already installed. First position
fixes where reported with the IOV satellites in March 2013. Early in 2014

the IOV tests have been completed and it was clear that Galileo will achieve
the expected performance, if the full ground and space segment is installed.
The follow-on FOC satellites where produced by OHB Systems and the first
two FOC satellites where launched in August 2014. In December 2015 the
EC announced the declaration of initial services, which means that Galileo
satellites and ground infrastructure is operationally ready, but the high accu-
rate position fix where not available that times, because users cannot always
count on four available satellites [GPS World, 2016]. It is expected that Galileo
will reach the FOC with 30 satellites (24 satellites plus 6 orbital spares) in
2020. In parallel to deploying the first generation of Galileo satellites, ESA
and industry partners are studying already the Galileo Second Generation
(G2G) satellites, signals and ground infrastructure [ESA, 2018].

Galileo offers four services, the Open Service (OS), the High Accuracy Service
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Table 2.8: Galileo E1 signal characteristics [EU, 2016], [P. Teunissen and Montenbruck, 2017],
[ESA, 2018]

GNSS System Galileo Galileo Galileo
Service Name E1 OS-I E1 OS-I E1 PRS-Q
User Group civil civil authorized
Encryption no no yes
Centre Frequency 1575.42 MHz 1575.42 MHz 1575.42 MHz
Access Technique CDMA CDMA CDMA
Signal Component Data Pilot Data
Modulation CBOC(6,1,1/11) BOCcos(15,2.5)
Prim. PRN Length 4092 N.A.
Sec. PRN Length - 25 N.A.
PRN Code Family Random Codes N.A.
Data Rate 125 bps - N.A.
Min. Rcv. Pwr. 10° -157 dBW N.A.

(HAS), the Public Regulated Service (PRS) and the SAR service. The OS is
accurate to one meter and is freely accessible. The service should support the
mass market segment, especially motor vehicle navigation and location-based
mobile phone services. The HAS provides an additional navigation signal on
a different frequency band for added value services and the signal can be
encrypted in order to control the access. The PRS is restricted to government-
authorized users. The signal is designed to have a higher robustness against
jamming and spoofing and promises a high level of continuity. The signal
is intended to be used by critical infrastructure such as energy providers,
telecommunications, finance or police forces. The SAR service is worldwide
available and establishes also an uplink to the satellites in order to transmit an
emergency message including a position. The message can be transmitted with
a dedicated SAR beacon. This service extends the Cospas-Sarsat Medium Earth
Orbiting Search and Rescue (MEOSAR) program. The SAR center collects
emergency messages and relay them to national rescue centers. In some cases
it is also possible to feedback a message to the transmitting beacon [EU, 2016],
[ESA, 2018], [EU, 2020].

The architecture of Galileo is also divided in a space, ground and user segment.
The 30 satellites of the space segment are distributed on three orbital planes
in the MEO at an altitude of 23222 km. The planes are inclined by 56 deg with
respect to the earth’s equator. The satellites are equidistantly distributed in
the orbit and need approximately 14 h for one revolution. Each plane has two
spare satellites, which are on hold until an operational satellite will have a
failure [ESA, 2018].

The transmission frequencies are shown in Fig. 2.1. Galileo transmit all signals
E1, E5a, E5b and E6 in the RNSS band, whereas E1, E5a and E5b is additionally
located in the ARNS band, which is employed by civil aviation users and
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Table 2.9: Galileo E5 signal characteristics [EU, 2016], [P. Teunissen and Montenbruck, 2017],
[ESA, 2018]

GNSS System Galileo Galileo Galileo Galileo
Service Name E5a-I E5a-Q E5b-I E5b-Q
User Group civil civil civil civil
Encryption no no no no
Centre Frequency 1176.45 MHz 1176.45 MHz 1278.75 MHz 1278.75 MHz
Centre Frequency 1191.795 MHz (center E5ab AltBOC)
Access Technique CDMA CDMA CDMA CDMA
Signal Component Data Pilot Data Pilot
Modulation BSPSK(10) BSPSK(10) BSPSK(10) BSPSK(10)
Modulation AltBOC(15,10)
Prim. PRN Length 10230 10230 10230 10230

Sec. PRN Length 20 100 4 100

PRN Code Family M-seq. M-seq. M-seq. M-seq.
Data Rate 50 sps - 250 sps -
Min. Rcv. Pwr. 10° -158 dBW -158 dBW -158 dBW -158 dBW

allows for dedicated safety-critical applications. The E1 and E5a/E5b bands
are dedicated to mass marked OS and Safety of Life (SoL) applications,
whereas the E6 band is dedicated to the HAS.

Table 2.10: Galileo E6 signal characteristics [ESA, 2018], [EU, 2016], [EU, 2019]
GNSS System Galileo Galileo Galileo
Service Name E6 CS-I E6 CS-I E6 PRS-Q
User Group civil civil authorized
Encryption no no yes
Centre Frequency 1278.75 MHz 1278.75 MHz 1278.75 MHz
Access Technique CDMA CDMA CDMA
Signal Component Data Pilot Data
Modulation BPSK(5) BPSK(5) BOCcos(10,5)
Prim. PRN Length 5115 5115 N.A.
Sec. PRN Length - 100 N.A.
PRN Code Family Mem-Seq. Mem-Seq. N.A.
Data Rate 1000 sps - N.A.
Min. Rcv. Pwr. 10° -158dBW -158 dBW N.A.

2.3.4 BeiDou

The BeiDou Navigation Satellite System (BDS) is the Chinese global navigation
satellite system. BeiDou followed a three-step development strategy with
BeiDou-1 (BDS-1), BeiDou-2 (BDS-2) and BeiDou-3 (BDS-3). Hereby, BDS-1
is a RNSS planned to cover China and neighbor countries, BDS-2 is also a
RNSS and covers Asia-Pacific (roughly East Asia, South Asia, Southeast Asia,

20



2 Satellite-Based Navigation Systems

and Oceania) and BDS-3 becomes a GNSS covering the whole world [State
Council Information Office Republic of China, 2016].

BDS-1 is a experimental demonstration navigation satellite system consisting
of three operational satellites in the Geostationary Earth Orbit (GEO). The
first satellite BeiDou-1A of BDS-1 was launched in October 2000 and the
system became operational in December 2000. BeiDou-1 is already decommis-
sioned since 2012. The system offered PNT to Chinese users [State Council
Information Office Republic of China, 2016].

The project for the second generation BDS-2 started in 2004, whereas the first
launch of the BDS-2 satellite Compass-M1 was back in April 2007. BDS-2, also
known as COMPASS, became operational end of 2012. The system consists
in total of 14 satellites - 5 GEO satellites, 5 Inclined Geosynchronous Satellite
Orbit (IGSO) satellites and 4 MEO satellites. BDS-2 was compatible with
BDS-1 and provided PNT, wide-area differential services and short message
communication services [State Council Information Office Republic of China,
2016].

The last step of the strategic plan is the third generation BDS-3, whereas the
project started in 2009. The first BDS-3 satellite was launched in March 2015

and the satellites will offer same passive and active services as BDS-2 and
transmit a new set of improved navigation signals. The basic constellation
of BDS-3 consists of 3 GEO satellites, 3 IGSO satellites and 24 MEO satel-
lites, whereas the full constellation will have 35 satellites [PhysOrg, 2019],
[State Council Information Office Republic of China, 2016], [China Satellite
Navigation Office, 2017a]. On 20th October 2020 the constellation consisted
of 34 BDS-3 satellites in orbit, with the status that one is in testing and four
are experimental [Test and Assessment Research Center of China Satellite
Navigation Office, 2020].

The GEO satellites operate in an altitude of 35786 km and are located at 80°E,
110.5°E, and 140°E. The IGSO satellites also operate in an altitude of 35786

km and have and inclination of 55 deg with respect to the equatorial plane.
The MEO satellites are operated in an altitude of 21528 km and have also an
inclination of 55 deg with respect to the equatorial plane. The coordinate frame
is adopted and called BeiDou Coordinate System (BDCS) and is in accordance
with the International Earth Rotation and Reference System Service (IERS) as
well as with the China Geodetic Coordinate System 2000 (CGCS2000) [China
Satellite Navigation Office, 2017a].

The BDS will offer an Open Service (OS) for civil usage, an Authorized Service
(AS) for authorized and military usage, a wide-area differential Precise Point
Positioning (PPP) service, a regional and global Short Message Service (SMS),
a Search and Rescue (SAR) service as well as an augmentation service via
GEO satellites and ground based communication infrastructure. An overview
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Table 2.11: BeiDou Service Plan [China Satellite Navigation Office, 2019d].

of planned services is given in Tab. 2.11. The OS provides a position with an
accuracy of 10 m, time with an accuracy of 50 ns and velocity with an accuracy
of 0.2 m/s to civil users worldwide. The wide area differential service is a
correction service intended to achieve 1 m positioning accuracy and to allow
Cat I approaches with aircraft. Hereby, 30 stations broadcasting corrections via
GEO satellites. The short message service is also called Position Report Service
(PRS) and allows a user to exchange 120 Chinese characters per message [ESA,
2018], [China Satellite Navigation Office, 2019d].

2.4 Regional Navigation Satellite Systems

Regional navigation systems have a limited aerial coverage and are planned
by Japan and India. Both systems are described in the following sections.

2.4.1 QZSS

The Quasi-Zenith Satellite System (QZSS) is the Japanese regional naviga-
tion satellite system. The Japanese government initiated the development of
QZSS in 2002. At beginning a development team called Advanced Space Busi-
ness Corporation (ASBC) was set up, which consisted of Mitsubishi Electric
Corp., Hitachi Ltd., and GNSS Technologies Inc. This cooperation collapsed in
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Table 2.12: BeiDou OS B1 (L1-Band) signal characteristics. The QMBOC(6,1,4/33) is effectively
composed of a BOC(1,1) and a BOC(6,1) which are in-phase quadrature. The
navigation message D1 is transmitted from the MEO and IGSO satellites, D2 is
transmitted from GEO satellites. Data from the ICDs [China Satellite Navigation
Office, 2017a], [China Satellite Navigation Office, 2019a].

GNSS System BeiDou BeiDou BeiDou
Service Name B1C-I B1C-IQ B1I
User Group civil civil civil
Encryption no no no
Orbit MEO, IGSO MEO, IGSO, GEO
Centre Frequency 1575.42 MHz 1575.42 MHz 1561.098 MHz
Access Technique CDMA CDMA CDMA
Signal Component Data Pilot Data
Modulation BOCsin(1,1) QMBOC(6,1,4/33) BPSK(2)
Prim. PRN Length 10230 10230 2046

Sec. PRN Length 1 1800 -
PRN Code Family Weil Weil Gold
Data Rate 100 sps - D1: 1kbps, D2:500 bps
Power Ratio Data:Pilot=1/4:3/4 -
Min. Rcv. Pwr. 5° -158.5 dBW (MEO), -160.3 dBW (IGSO) -163 dBW

Table 2.13: BeiDou OS B2 (L5-Band) signal characteristics. Data from the ICDs [China Satellite
Navigation Office, 2017b], [China Satellite Navigation Office, 2019b], [China Satellite
Navigation Office, 2019b]. Signals and Data with (*) indicates data from [P. Teunissen
and Montenbruck, 2017] and might not be according to latest ICDs

GNSS System BeiDou BeiDou BeiDou BeiDou
Service Name B2a-I B2a-Q B2b-I B2b-Q*
User Group civil civil civil civil
Encryption no no no no
Orbit MEO, IGSO MEO, IGSO
Centre Frequency 1176.45 MHz 1176.45 MHz 1207.14 MHz 1207.14 MHz
Access Technique CDMA CDMA CDMA CDMA
Signal Component Data Pilot Data TBD
Modulation BPSK(10) BPSK(10) BPSK(10) BPSK(10)
Modulation TD-AltBOC(15,10)*
Prim. PRN Length 10230 10230 10230 10230

Sec. PRN Length 5 100 - TBD
PRN Code Family Gold Gold Gold TBD
Data Rate 200 sps - 1000 sps TBD
Pwr. Ratio Data:Pilot=1/2:1/2 - TBD
Min. Rcv. Pwr. 5°[dBW] -155.5 (MEO), -1570.3 (IGSO) -160 (MEO), -162 (IGSO)

2007 and the Japan Aerospace Exploration Agency (JAXA) together with the
Satellite Positioning Research and Application Center (SPAC) took over the
responsibilities for system development and operation. The initial operation
phase started in Sept. 2010 and has been completed in summer 2011. During
this phase it was verified, that the first quasi-zenith satellite Michibiki and the
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Table 2.14: BeiDou OS B2b-PPP and B3 signal characteristics [China Satellite Navigation Office,
2019c], [China Satellite Navigation Office, 2018]. The navigation message D1 is
transmitted from the MEO and IGSO satellites, D2 is transmitted from GEO satel-
lites.

GNSS System BeiDou BeiDou BeiDou
Service Name B2b-I-PPP B2b-Q-PPP B3-I
User Group civil TBD civil
Encryption no TBD no
Orbit GEO GEO MEO, IGSO, GEO
Centre Frequency 1207.14 MHz 1207.14 MHz 1268.520 MHz
Access Technique CDMA CDMA CDMA
Signal Component Data TBD Data
Modulation BPSK(10) TBD BPSK(10)
Prim. PRN Length 10230 TBD 10230

Sec. PRN Length - TBD -
PRN Code Family Gold TBD Gold
Data Rate 1000 sps TBD D1: 1kbps, D2:500 bps
Pwr. Ratio - TBD Data:Pilot=1:2
Min. Rcv. Pwr. 5 -160dBW TBD -163 dBW

Table 2.15: BDS-II AS signal characteristics. Planned BDS-III AS signals cannot be confirmed
and thus they are not listed in the table, but Fig. 2.2 contains also planned BDS-III
AS signals [ESA, 2018], [Lu and Yao, 2014]
GNSS System BeiDou BeiDou BeiDou
Service Name B1-Q B2-Q B3-IQ
User Group authorized authorized authorized
Encryption yes yes yes
Orbit N.A. N.A. N.A.
Centre Frequency 1561.098 MHz 1207.14 MHz 1268.52 MHz
Access Technique CDMA CDMA CDMA
Signal Component N.A. N.A. Data
Modulation BPSK(2) BPSK(10) QPSK(10)
Prim. PRN Length N.A. N.A. N.A.
Sec. PRN Length N.A. N.A. N.A.
PRN Code Family N.A. N.A. N.A.
Data Rate N.A. N.A. N.A.
Pwr. Ratio N.A. N.A. N.A.
Min. Rcv. Pwr. 5 N.A. N.A. N.A.

ground segment was operational and that QZSS+GPS can deliver an improved
position performance of more than 10 percent compared to GPS only. The
Japanese government decided to accelerate the QZSS development to reach
an initial constellation of 4 satellites and targeting a full constellation of 7

satellites [ESA, 2018].

The space segment is planned to have three satellites in a periodic Highly
Elliptical Orbit (HEO) and a fourth satellite in a GEO. The perigee altitude
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is about 32000 km and apogee altitude is about 40000 km for the HEO
satellites, and all of them have the same ground track [ESA, 2018]. The name
quasi-zenith arises from the fact, that one satellite has always an elevation
of more than 70 deg in Japan. The system is designed to have the highest
interoperability with GPS and thus the system has, at least for initial signals,
same signal characteristics as GPS. QZSS is designed to transmit 6 signals on
the L1, L2, L5 and L6 (E6) frequency band.

QZSS offers a positioning service and a short message delivery service. The
positioning services will cover a Satellite Positioning Service similar to GPS
[Japanese Cabinet Office, 2018c], a Sub-Meter Level Augmentation service
[Japanese Cabinet Office, 2019d], a Centimeter Level Augmentation service
[Japanese Cabinet Office, 2019a], [Japanese Cabinet Office, 2018a] and Position
Technology Verification Services for purposes to demonstrate position tech-
nologies [Japanese Cabinet Office, 2019c], [Japanese Cabinet Office, 2018b].
The short message delivery service aim to provide messages for disaster and
rescue management [Japanese Cabinet Office, 2019b].

Table 2.16: QZSS L1 Signal Characteristics for the Satellite Positioning Service. BI and BII are
acronyms for Block I and Block II QZSS satellites. Data from [ESA, 2018], [Japanese
Cabinet Office, 2018c].

GNSS System QZSS QZSS QZSS
Service Name C/A-BI:I-BII:Q L1CP-BI:Q-BII:I L1CD-I
Orbit Quasi-Zenith Orbit, GEO
User Group civil civil civil
Encryption no no no
Centre Frequency 1575.42 MHz 1575.42 MHz 1575.42 MHz
Access Technique CDMA CDMA CDMA
Signal Component Data Pilot Data
Modulation BPSK(1) BI: BOC(1,1), BII: TMBOC(1,1) BOC(1,1)
Prim. PRN Length 1023 10230 10230

Sec. PRN Length - 1800 -
PRN Code Family Gold Codes Weil Code Weil Code
Data Rate 50 bps - 100 sps
Min. Rcv. Pwr. 5° -158.5 dBW BII:-158.25 dBW BII: -162.4 dBW

2.4.2 IRNSS

The Indian Regional Navigation Satellite System (IRNSS) covers primary the
area of India plus 1500 km of its geo-political boundaries. The IRNSS is devel-
oped, maintained and operated by the Indian Space Research Organisation
(ISRO) and should deliver an accuracy better than 20 m to its users. The
system design criteria was to minimize the Dilution of Precision (DOP), max-
imize the visibility over the target area, minimize the satellite constellation,
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Table 2.17: QZSS L2 and L5 Characteristics for the Satellite Positioning Service. BI and BII
are acronyms for Block I and Block II QZSS satellites. (*) Two channels are time-
multiplexed into one channel for each chip. All signals in this table refer to the
Satellite Positioning Service. Data from [ESA, 2018], [Japanese Cabinet Office, 2018c]

GNSS System QZSS QZSS QZSS QZSS
Service Name L2CM-I L2CL-I L5-I L5-Q
Orbit Quasi-Zenith Orbit, GEO
User Group civil civil civil civil
Encryption no no no no
Centre Frequency 1227.60 MHz 1227.60 MHz 1176.45 MHz 1176.45 MHz
Access Technique CDMA CDMA CDMA CDMA
Signal Component Data Pilot Data Pilot
Modulation BPSK(1) - 2 streams at 511.5 kHz (*) QBPSK(10)
Prim. PRN Length 10230 767250 10230 10230

Sec. PRN Length - - 10 20

PRN Code Family M-seq. Neuman Hofman
Data Rate 25 bps - 50 bps -
Min. Rcv. Pwr. 5° BII:-158.5 dBW -157.0 dBW -157.0 dBW

Table 2.18: QZSS L1 Signal Characteristics for the Submeter Augmentation Service and the
L6 Signal Characteristics for the Centimeter Level Augmentation Service. BI and
BII are acronyms for Block I and Block II QZSS satellites. (*) Code 1 and code 2

are time multiplexed. The navigation message of the L6 signal is modulated with
Code Shift Keying (CSK). Data from [ESA, 2018], [Japanese Cabinet Office, 2019d],
[Japanese Cabinet Office, 2018a], [Japanese Cabinet Office, 2019a].

GNSS System QZSS QZSS QZSS
Service Name L1S L6-1 L6-2
Orbit Quasi-Zenith Orbit, GEO Quasi-Zenith Orbit, GEO
User Group civil restricted restricted
Encryption no yes yes
Centre Frequency 1575.42 MHz 1278.75 MHz 1278.75 MHz
Access Technique CDMA CDMA CDMA
Signal Component Data BI:Data, BII:Data BI:Pilot, BII:Data
Modulation BPSK(1) BPSK(5) - 2 streams at 2.5575 Mcps (*)
Nav. Msg. Modulation - Code Shift Keying (CSK)
Prim. PRN Length 1023 10230 BI:1048575, BII:10230

Sec. PRN Length - - -
PRN Code Family Gold Code Small Kasami Set
Data Rate 250 bps 2 kbps BI:-, BII: 2 kbps
Min. Rcv. Pwr. 5° BII:-158.5 dBW BI:-155.7 dBW BII:-156.82 dBW

achieve sustenance in case of one-satellite failure and consider the availability
of orbital locations [P. Teunissen and Montenbruck, 2017].

The space segment consists of seven satellites, four in the IGSO and three in
the GEO. The orbits are inclined by 29 deg with respect to the equatorial plane.
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Table 2.19: QZSS L5S Signal Characteristics for the Positioning Technology Verification service.
GNSS System QZSS QZSS
Service Name I5S Q5S
Orbit Quasi-Zenith Orbit, GEO Quasi-Zenith Orbit, GEO
User Group civil civil
Encryption no no
Centre Frequency 1176.45 MHz 1176.45 MHz
Access Technique CDMA CDMA
Signal Component Data Pilot
Modulation QPSK(10)
Prim. PRN Length 10230 10230

Sec. PRN Length - 20

PRN Code Family - Neuman Hofman
Data Rate 250 bps -
Min. Rcv. Pwr. 5° -157.0 dBW

Hereby, the GEO satellites are distributed approximately equidistantly in a
range of 100 deg in longitude between central Africa and Indonesia. The IGSO
satellites cover a latitude range of +/- 30 deg and are centered at 55 deg and
111.75 deg East. IRNSS transmit on the L5 and S-band, whereas the frequencies
have been assigned for RNSSs. It was easier to go for the less populated L5-
band because the L1 and L2 frequency bands where already intensively
used by other GNSSs and interoperability needs to be ensured. In order to
achieve better ranging performances with a dual frequency approach, a second
frequency in the S-Band was selected, which is up to now unique. The ITU
allocated globally a 16.5 MHz slot for Radio Determination Satellite Services
(RDSSs) and RNSSs. Furthermore, the S-band is less affected by ionospheric
perturbations compared to the L-band [P. Teunissen and Montenbruck, 2017],
[Indian Space Research Organization, 2017].

The IRNSS offers a primary and secondary service area, whereas the primary
area covers the Indian landmasses plus 1500 km and the secondary service
ranges from latitudes 30°S to 50°N and longitudes 30°E to 130°E. The system
will offer an open SPS and an encrypted Restricted Service (RS) [P. Teunissen
and Montenbruck, 2017].

2.5 Augmentation Systems

Augmentation systems deliver supplemental information to GNSS receivers
in order to improve the accuracy, integrity and availability of the PVT solu-
tion. There exist different types of augmentation systems, which can be a
Ground-Based Augmentation System (GBAS) or a Satellite-Based Augmenta-
tion System (SBAS). The GBAS is also often called Local Area Augmentation
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Table 2.20: IRNSS L5 and S-Band Signal Characteristics for the SPS and RS. The signal concept
adds a fourth interplex signal to achieve a constant envelope signal in order to
avoid saturation effects at the high-power amplifier of the satellites. Data from
[Indian Space Research Organization, 2017] and signals with (*) from [P. Teunissen
and Montenbruck, 2017].

GNSS System IRNSS IRNSS IRNSS IRNSS
Service Name L5-SPS-I L5-RS-IQ (*) S-SPS-I S-RS-IQ (*)
Orbit IGSO, GEO IGSO, GEO IGSO, GEO IGSO, GEO
User Group civil restricted civil restricted
Encryption no yes no yes
Centre Frequency 1176.45 MHz 1176.45 MHz 2492.028 MHz 2492.028 MHz
Access Technique CDMA CDMA CDMA CDMA
Signal Component Data Pilot/Data Data Pilot/Data
Modulation BPSK(1) BOC(5,2)/BOC(5,2) BPSK(1) BOC(5,2)/BOC(5,2)
Prim. PRN Length 1023 8192/8192 1023 8192/8192

Sec. PRN Length - 40/- - 40/-
PRN Code Family Gold Code - Gold Code -
Data Rate 50 sps -/TBD 50 sps -/TBD
Min. Rcv. Pwr. 5° -159.0 dBW - -162.3 dBW -

System (LAAS), whereas the International Civil Aviation Organization (ICAO)
prefers GBAS. The very first augmentation system WAAS from the U.S. is a
SBAS and aim to enable GPS to aircraft in all phases of a flight, including
precision approaches to any airport in the covered area. Today’s augmentation
systems are typically designed to be a SBAS using satellites in the GEO to
transmit the correction data. GBAS systems cover only a limited area, typ-
ically an airport to enable precision approaches for aircraft. Augmentation
systems use typically the same carrier frequencies and spreading techniques
as the GNSS signals, with the benefit that receivers need less modifications
to enable the service. Augmentation systems rely on data from a network of
ground-based reference stations, which continuously observe GNSS signals
and calculate the correction data and integrity messages [ESA, 2018]. Other
sectors profit from SBAS as well, it is used in agriculture to get a more precise
position to reduce fertilizers and pesticides, it is used by the marine in poor
visibility conditions and SBAS capability is integrated in nearly all mobile
phones. The future trends of SBAS systems is to support multiple systems
and multiple frequencies, but with focus on L1 and L5 [P. Teunissen and
Montenbruck, 2017].

2.5.1 WAAS

The Wide Area Augmentation System (WAAS) is operated by the U.S. and the
service area covers Continental United States (CONUS), Alaska, Canada and

28



2 Satellite-Based Navigation Systems

Figure 2.5: The left figure shows the SBAS service areas and the right figure SBAS reference
stations from 2015 [Dennis, 2015, Fig. 1 and 2].

Mexico. The system development and operation is performed by the Federal
Aviation Agency (FAA), whereas the system became operational in late 2003.
The system was developed originally for the civil aviation community and
supported already thousands of aircraft instrument approaches on Canadian
and U.S. airports. The system supports en-route, terminal and approach
operations as well as a full Localizer Performance with Vertical guidance until
a decission height of 200 ft (LPV-200) precision approaches (similar to a CAT-I
approach capability). The system uses a ground-based network of 38 reference
stations to calculate the correction data in 3 master stations. The corrections
are transmitted by 6 uplink systems to three geostationary telecommunication
satellites. The user benefits in two aspects, because the GNSS receiver can
use the three additional geostationary satellites for calculating the navigation
solution and can improve the solution by using the correction data [FAA,
2020].

2.5.2 SDCM

The System for Differential Corrections and Monitoring (SDCM) is the Russian
SBAS, which is developed as a component of GLONASS. It supports integrity
monitoring and generation of correction data for both, GPS and GLONASS.
The ground segment consists of 19 prototype measuring points in Russia and
4 outside of Russia, whereas it is planned to add further 27 measurement
points inside Russia. The SDCM control center is located in Moscow and the
system distributes the correction data using 3 geostationary satellites and
a Signal-in-Space via Internet (SISNeT) server. The geostationary satellites
where launched between 2011 and 2014. The SDCM development plan foresees
regional SDCM data processing centers, enlargement of the reference station
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network and enlargement of the transferred data composition [ESA, 2018],
[Grigory Stupak, 2012].

2.5.3 EGNOS

The European Geostationary Navigation Overlay Service (EGNOS) is the
European satellite-based augmentation system. EGNOS offers three services,
the OS, which is freely available to the public of Europe (operational since
2009), the SoL service, which provides the most stringent level of Signal-in-
Space (SIS) performance (operational since 2011) and the EGNOS Data Access
System (EDAS), which provides access to EGNOS data by other communi-
cation channels not using the GEO satellites. The ground segment uses a
network of 39 reference stations in Europe, Africa and North America and
processes the data in four Mission Control Centres (MCCs). The correction
data is distributed by 6 uplink stations and 3 geostationary satellites. From
2011 to 2030 EGNOS supports augmentation for GPS L1 only, but it is planned
with EGNOS-V3 to support also the SBAS dual frequency L1/L5 standard,
which is forseen to enter into service in 2024 [GSA, 2019]. Since 2015 EGNOS
supports LPV-200 aircraft approaches [GSA, 2015], [ESA, 2018].

2.5.4 SNAS

The Satellite Navigation Augmentation System (SNAS) is the Chinese satellite-
based augmentation system, which is also called BDSBAS. The SNAS service
is compatible the standard of ICAO and is planned for 2020. The full system
is planned to have 30 reference stations in China and 20 reference stations in
neighbor countries. The space segment consists of 3 geostationary satellites to
transmit the correction data [P. Teunissen and Montenbruck, 2017].

2.5.5 MSAS

The Multi-functional Satellite Augmentation System (MSAS) is the Japanese
satellite-based augmentation system. MSAS was declared operational in 2007

and supports the augmentation of the GPS L1 signal. The ground segment
consists of six Ground Monitor Stations (GMSs) to collect information on the
signals and use two Master Control Stations (MCSs) to process the data. The
correction data is distributed via two geostationary Multifunctional Transport
Satellites (MTSATs), the MTSAT-1R and MTSAT-2. It is planned to perform a
system update to support QZSS and Area Navigation (RNAV) with MSAS-
V2, add additional GEO satellites and GMSs, support Localizer Performance
with Vertical guidance (LPV) aircraft approaches with MSAS-V3 (from 2023
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onwards) and support in future dual frequency and multi-constellation SBAS
with MSAS-V4 [Saito, 2019].

2.5.6 GAGAN

The GPS-Aided GEO Augmented Navigation (GAGAN) is the Indian satellite-
based augmentation system. The system consisted of 15 Indian Reference
Stations (INRESs), 2 Indian Master Control Centers (INMCCs) and 3 Indian
Navigational Land Uplink Stations (INLUSs) in 2017. The space segment
should cover 5 geostationary satellites which distribute the correction data
over India. Lateral guidance for aircraft became operational in 2014 and the
vertical guidance in 2015 [P. Teunissen and Montenbruck, 2017].

2.5.7 Other SBAS

The Republic of Korea intends to develop its own SBAS system Korean Aug-
mentation Satellite System (KASS). The system should consist of 5 or more
reference stations, 2 central processing centers, 4 uplink stations and 2 geosta-
tionary satellites. A preliminary service was planned for 2020 [P. Teunissen
and Montenbruck, 2017].
South/Central America and the Caribbean intend a SBAS system called Solu-
cion de Aumentacion para Caribe Centro y Sudamerica (SACCSA). SACCSA
is an ICAO project with the contributing member states Argentina, Bolivia,
Colombia, Costa Rica, Guatemala, Panama, Spain, Venezuela and Corporacion
Centroamerica de Servicios de Navegacion Aerea (COCESNA) [ESA, 2018].
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State-of-the-Art Positioning

This chapter gives an overview of state-of-the-art positioning methods, of
positioning methods where research is currently ongoing and how DPE is
placed in context of the latest methods. All methods aim to improve the user
Position Velocity and Time (PVT) estimate, which is corrupted by natural,
unintentional or intentional error sources. Thus, the chapter is concluded with
a short discussion on error sources in GNSS in context of DPE/BDPE.

3.1 State-of-the-Art Positioning Methods

In the last decades many GNSS signal processing and positioning algorithms
have been implemented and proposed to improve one or more of the perfor-
mance parameters listed in chapter 1.1. Common state-of-the-art and future
technological improvements in GNSS are briefly summarized in the next
paragraphs.

Single Point Positioning (SPP) is the most common positioning method
which is used since GNSS became available. This method relies on the code
pseudorange measurement of the GNSS receiver, which is a range measure-
ment from the user to the satellite. Based on triangulation and known position
of the satellites, the PVT of the user can be estimated by means of a Least
Squares (LSQ) solution. This fundamental approach is discussed in detail in
chapter 5.8.1. The positioning accuracy depends on the system UERE budget,
which depends on the broadcast clock and ephemeris, on the residual iono-
spheric and tropospheric delays, on the receiver noise and resolution and on
multipath. The 1-σ Residual Sum of Squares (RSS) error is about 7.1 m for the
GPS SPS and about 1.4 m for the PPS [Kaplan and Hegarty, 2006, Chap. 7.2.8].
Some well-known concepts can be used to improve the code pseudorange
based SPP solution: (1) The code measurements can be smoothed with carrier
phase measurements, which reduces the code noise and thus the position
noise. (2) Dual frequency measurements allow to eliminate the ionosphere,
one of the most dominant error sources. This method removes a bias of the
position solution but increases the measurement noise and thus the position
noise. (3) Ionospheric and tropospheric delays can be accounted by models
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such as Klobuchar, which reduces the position bias caused by the atmosphere.
SPP is the most fundamental positioning method and used in every GNSS
receiver. [Kaplan and Hegarty, 2006], [Misra and Enge, 2010].

Differential GNSS (DGNSS) is a differential positioning method and is also
known as Differential GPS (DGPS), but which considers GPS only. DGNSS
aims to improve the accuracy by usage of correction data from a reference
station or reference receiver. This method allows to significantly (1) reduce
the satellite clock error from 2 m to 0.0 m (RMS), (2) reduces the satellite
ephemeris prediction error in LOS from 2 m to 0.1 m (RMS), (3) reduces the
error caused by the ionospheric delay (zenith) from 2-10 m to 0.2 m (RMS),
and reduces the error caused by the tropospheric delay (zenith) from 2.3-2.5 m
to 0.2 m (RMS). Errors caused by multipath (code 0.5-1 m and carrier 0.5-1 cm
in a clean environment) and receiver noise (code 0.25-0.5 m and carrier 1-2 mm
(RMS)) cannot be removed with DGNSS, because multipath is uncorrelated
between antennas and receiver noise is uncorrelated between receivers. The
above-mentioned reduction in errors can only be achieved, if the reference
station is in proximity of about 10 km regarding the user and the delay of
the correction data is below 10 seconds. With DGNSS a position accuracy less
than 1 m can be achieved. DGNSS is typically applied in professional survey
or aviation receivers, or with applications where an improved and robust
position estimate is required [Kaplan and Hegarty, 2006], [Misra and Enge,
2010].

Receiver Autonomous Integrity Monitoring (RAIM) aims to improve the
integrity of a position solution by performing a Fault Detection (FD) on
processed GNSS signals. With this method the GNSS receiver is able to detect
a corrupt signal autonomously, without any external information. Hereby,
the method of Fault Detection and Exclusion (FDE) allows to continue the
operation even if a faulty signal was detected. RAIM relies on four steps, a (1)
preliminary step computing the navigation solution, (2) executing the fault
detection mechanism, (3) isolation of faulty satellites and (4) protection level
computation. RAIM is typically applied in professional aviation or backbone
infrastructure receivers, or other safety-critical applications where a higher
level of integrity is required. The development of autonomous driving vehicles
pushes also the research for RAIM algorithms in context with carrier-based
positioning methods [ESA, 2018].

Assisted GNSS (AGNSS), formerly also known as Assisted GPS (AGPS),
aims to improve the TTFF, accuracy and sensitivity. The method should sup-
port GNSS receivers in difficult environments like urban canyons or indoors.
The architecture is similar to DGNSS with using correction data from a ref-
erence receiver, but AGNSS provides a variety of assistance data. AGNSS
receivers can be supported with (1) almanac and ephemeris data, with (2) cor-
rection data and with (3) navigation data bits. The support with almanac and
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ephemeris data allows a receiver to determine all available satellites with just
having a rough knowledge about the time. This allows a receiver to reduce the
TTFF because the navigation data does not need to be decoded and a receiver
in very challenging environmental conditions can focus only on available
satellites. The correction data from a reference receiver helps to improve the
accuracy of the position estimate, based on the same principle as DGNSS. If
the receiver has knowledge about the navigation data bits in near real-time,
long coherent integration times up to 2 seconds can be employed by perform-
ing a databit wipeoff prior the correlation, which significantly improves the
sensitivity of the receiver. The assistance data is typically distributed via the
Internet, e.g. using Local Area Network (LAN), Wireless Local Area Network
(WLAN), Global System for Mobile communications (GSM), 3G, 4G, 5G or
other links. AGNSS was initially applied in mass-market receivers which are
integrated in mobile phones or similar devices, but is nowadays also employed
in professional and R&D receivers [Misra and Enge, 2010].

Real Time Kinematics (RTK) aims to increase the position accuracy by mak-
ing use of ambiguous but accurate carrier phase measurements of a GNSS
signal. Therefore, RTK follows a DGNSS approach and uses reference data
from a nearby real or virtual reference station with known position to resolve
this ambiguity, e.g. by using the Least Squares Ambiguity Decorrelation Ad-
justment (LAMBDA) method [P. J. G. Teunissen, 2014]. It is a relative method
with respect to the used reference station. The reference data is typically deliv-
ered to the RTK receiver via internet connection, geostationary satellite-link or
terrestrial Radio Frequency (RF) links. It is possible to use a Virtual Reference
Station (VRS), where the reference data is virtually generated from a network
solution (network of GNSS reference stations). The achieved accuracy is in
the centimeter range, whereas the convergence time is within some seconds.
This method is available with professional or R&D GNSS receivers, whereas
proprietary or open commercial services exist to deliver the necessary refer-
ence data [Henkel, Mittmann, and Iafrancesco, 2016], [Vollath et al., 2000b],
[Vollath et al., 2000a], [Henkel and Sperl, 2016].

Precise Point Positioning (PPP) also aims to increase the position accuracy
by making use of carrier phase measurements of a GNSS signal. Therefore,
PPP uses precise clocks and orbits (precise ephemeris) and accurate atmo-
spheric correction data (ionosphere and troposphere) calculated from a global
network. The correction data can be accessed via an internet connection or
commercially available geostationary satellite links. The commercial service
of Galileo will also provide PPP correction and authentication data, whereas
the correction data is transmitted using all Galileo satellites on the E6-B
band. The major benefit compared to state-of-the-art commercial services is,
that the necessary correction data is available through MEO satellites with
a good worldwide coverage. A worldwide coverage with a good visibility
to geostationary satellites is not possible due to the low elevation at high-
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latitude regions, which causes easily broken transmission links. The achieved
accuracy is in the sub-decimeter level, but the convergence time is typically
large compared to RTK with up to half an hour. But the convergence time
can be significantly reduced if using a dual- or triple frequency approach,
down to the minutes or several seconds level. This method is available with
professional or R&D GNSS receivers and proprietary or open commercial
services exist and will be deployed to deliver the necessary correction data
[Basile et al., 2018], [Leandro et al., 2011], [X. Chen et al., 2011], [Zang, Li, and
Shen, 2017].

Sensor Fusion aims to increase the accuracy, continuity, Time To Re-Fix (TTRF)
and robustness of the PVT by incorporating additional (ideally complemen-
tary) sensor information. The most common approach the fusion of GNSS
with relative measurements of an Inertial Navigation System (INS), because
it delivers ideal complementary measurements of accelerations and rotation
rates with respect to an inertial reference frame [Wendel, 2007; Groves, 2013].
Furthermore, INSs are self-contained systems which are not affected by the
outside world, in contrast to GNSS receivers which depend on the received
signal quality. GNSS/INS systems can be loosely, tightly and ultra-tightly
coupled [Hwang et al., 2011]. A loosely coupled system update the relative
Inertial Measurement Unit (IMU) measurements with a PVT solution [Wang
et al., 2017], a tightly coupled system uses for the update pseudorange and
Doppler measurements [Garc, 2018] whereas an ultra-tightly (deeply) coupled
system additionally aid the receiver internal tracking loops using the IMU
measurements [Niedermeier et al., 2010; Ban et al., 2014]. But there exist
several other sensors which deliver absolute or relative position or attitude
information. Some commonly used absolute sensors for positioning are RF
signals e.g. from mobile network, WLAN or Bluetooth [Pany, Winkel, et al.,
2010]. The most common used sensors for relative positioning are barometric
sensors supporting the height estimate, optical sensors for attitude, position
and velocity determination, odometer sensors together with wheel angle sen-
sors for relative positioning in cars or sensor fusion with Light Detection and
Ranging (LIDAR) systems [Sánchez and Gómez, 2018; Fernández et al., 2010].
The most common method for sensor fusion is a Kalman filter or Extended
Kalman Filter (EKF), basically due to its low complexity and computational
efficiency. The Kalman filter is discussed in chapter 4.2 and the Extended
Kalman filter in chapter 4.3. Sensor fusion is widely used and can be found in
the professional GNSS market e.g. for tilted surveying applications or aviation
systems as well as in the mass market and R&D segment.

Vector Tracking (VT) aims to improve the accuracy, continuity, and robustness
of a GNSS receiver. “The signal tracking is performed using receiver tracking
loops which continuously align internally generated replica signals to the
received signals. From these tracking loops the signal parameters of interest
can be derived, which allow in a further step the estimation of the position,

35



3 BDPE in Context of State-of-the-Art Positioning

velocity and time. In vector mode, the navigation processor controls the code
and carrier Numerically Controlled Oscillator (NCO) replacing the tracking
loops. A major advantage of this method is that once a good PVT solution
is available, all GPS signals are continuously tracked even under weak (or
no) signal conditions” [Pany and Eissfeller, 2006]. The major drawback of
vector tracking is, that the presence of a fault in one channel will affect all
the other channels and possibly leads to receiver instability or loss of lock
on all satellites [Lashley and Bevly, 2009]. The method exploits its benefits
in degraded signal environments and shows an increased robustness during
jamming and spoofing attacks. The method is discussed in more detail in
chapter 5.9. Beside R&D GNSS receivers it is not totally clear, if the method
is generally utilized in professional and mass market GNSS receivers due to
less publications of proprietary processing methods. But due to patents it
is strongly assumed that vector tracking is applied in ultra-tightly coupled
GNSS-INS receivers for integrated aircraft systems [Broderick and Grove,
2006], in professional surveying and non-surveying receivers [Zhodzishsky
and Ashjaee, 2001] as well as in military systems.

Beamforming aims to improve the accuracy, continuity, authentication and
robustness of a GNSS receiver. This signal processing method generates
an antenna aperture which suppresses signals retrieved from an unexpected
Direction of Arrival (DOA), such as multipath signals or interference [Viandier
et al., 2008; Fernández-Prades, Arribas, and Closas, 2016]. Beamforming can
be exploit using antenna arrays or synthetically with a single antenna and
known motion. The synthetic beamforming method, also called Synthetic
Aperture Processing (SAP), is based on a spatial movement of a single GNSS
antenna, same as the principle of Synthetic Aperture Radar (SAR), which
stands in contrast to multi-phased array antennas having an instantaneous
spatial separation. Whereas multi-phased array antennas need to be well
calibrated and accurately know their orientation, the synthetic approach with
a single antenna needs a well-known trajectory and time over the beamforming
interval. The key step to create a synthetic antenna aperture is to project the
retrieved signal on an internally generated and expected phase signature. In a
GNSS receiver this step can also performed in the post-correlation domain.
This method allows to effectively detect and eliminate multipath and spoofing
signals. Based on the fact that the method also allows to discriminate the DOA
of GNSS signals, it is also one of the most reliable methods to authenticate
GNSS signals, as it is practically impossible to send modified signals from
the true spatial direction or generate a modified signal with a faked DOA
without knowledge of the exact attitude or motion of the spoofed receiver.
SAP was investigated within an ultra-tightly coupled GNSS-INS system in
[Dampf, Gruber, and Pany, 2013] and analyzed for multipath and spoofing
detection and mitigation using a rotating antenna in [Dampf, Pany, Baer,
et al., 2016; Dampf, Pany, Bär, et al., 2017]. It was shown that the method
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is capable of removing effectively the multipath on code and carrier phase
measurements and thus can be used e.g. for fixed mounted reference stations
to deliver reliable and authenticated correction data to all of its clients or using
the method to allow RTK/PPP receivers enter multipath prone environments.
The method is currently further investigated to bring it to embedded devices
and was patented in [Faragher, Couronneau, and Crockett, 2017].

Direct Position Estimation (DPE) is a rather new GNSS positioning technique
which aims to improve the sensitivity, continuity, integrity and robustness of a
GNSS receiver. The method was introduced in [Closas, Fernández-Prades, and
Fernández–Rubio, 2007; Closas, 2009] and in comparison to state of the art
receivers, which use a two steps approach for positioning (synchronization and
trilateration) and which track each GNSS signal independently, a DPE receiver
estimates the PVT in a single step directly from the signal samples [Closas,
Fernández-Prades, Bernal, et al., 2008]. The method directly tracks the PVT
solution which allows to collectively process all available GNSS signals and
thus exploit a significant tracking gain of G = 10 log 10(N) dB, where N is
the number of GNSS signals [Closas and Gusi-Amigó, 2017]. If combined with
Bayesian nonlinear filters — like particle filters — the method is called BDPE,
which allows for coping with multi-modal probability distributions and avoids
the linearization step to convert correlation values into pseudoranges [Dampf,
Frankl, and Pany, 2018]. Since the method operates in the PVT domain, the
fusion with additional sensors and side information is more intuitive and
allows e.g. the incorporation of probabilistic maps to the position estimation
process. Due to the significantly increased sensitivity and ability to derive
a PDF for the estimated PVT, which allows also for integrity measures, the
method is a strong candidate to be exploited in future GNSS receivers. The
drawback of the method comes with higher processing complexity, the need
of a rough initial PVT and knowledge about the ephemeris data. The method
is currently only implemented in R&D GNSS receivers.

The listed methods briefly summarize some major advances in GNSS since
the last decades, whereas this work investigates in the realization of BDPE in
a commercial software-based GNSS receiver using a particle and grid-based
Bayesian filter and perform an analysis on the obtained PDFs.

3.2 Bayesian Direct Position Estimation

As stated in [Dampf, Frankl, and Pany, 2018], the PVT estimate of a GNSS
receiver is sometimes not sufficiently accurate, in particular in difficult en-
vironments such as urban areas, forests or indoors. In such environments,
the observations do not follow a Gaussian distribution. In ideal (open sky)
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conditions the PVT solution can be described as closely to Gaussian dis-
tributed [Misra and Enge, 2010; Van Diggelen, 1998; Viandier et al., 2008; Bin
Ahmad, Sahmoudi, and Macabiau, 2014; Zhu et al., 2018], but deformed and
non-Gaussian observations lead to diverge from Gaussian distributed PVT
solutions. Thus, the PVT estimation in difficult environments can benefit from
Sequential Monte Carlo (SMC) methods because they consider all available
statistical information in the estimation process.

Particle filters [Kitagawa, 1996; Kanazawa, Koller, and Russell, 1995] belong to
the group of non-parametric Bayesian filters and are an implementation of an
SMC method [Arulampalam et al., 2002]. Thus, they allow for nonlinear and
non-Gaussian distributed system and observation models. A performance
comparison between a particle filter and a EKF operated in a nonlinear and
non-Gaussian environment shows, that improved position estimates can be
expected when using a particle or grid-based filter, but with the drawback of
a computationally intensive processing [Gordon, Salmond, and Smith, 1993].
But this assumption is not generally true, the presence of a performance
improvement depends on the non-linearities in combination with the variance
of the state estimate and especially, if there are relevant multi-modalities.
The application of particle filters in the field of PVT estimation can mostly
be found in research. Often, particle filters are applied in tracking multiple
objects e.g. [MacCormick and Blake, 1999]. For this purpose, particle filters
are used to combine different sensors with the GNSS receiver PVT estimate
or the receiver observables, the pseudorange, Doppler and carrier phase.
For instance, the shadow matching algorithm is based on a particle filter
that aims to improve the positioning results in dense urban areas by fusing
three-dimensional geometry information of buildings with the PVT estimates
from GNSS signals [Roi and Boaz Ben, 2014]. In [Gentner et al., 2012], the
indoor positioning results are improved by a particle filter that fuses PVT
estimates from GNSS signals with high power 4G Long Term Evolution (LTE)
mobile network signals. Furthermore, in [Hafner, 2015] a particle filter is
used to improve the position estimate to support visual impaired people by
fusing non-Gaussian distributed probabilistic maps with PVT solutions from
GNSS.

Apart from these investigations that combine GNSS PVT estimates with other
sensors, particle filters and grid-based filters are also applied in BDPE, that
aims to estimate the PVT of a GNSS receiver directly from the signal samples
or correlation values. All previous related work on DPE use a summation of
the correlation function in the PVT domain, which is a valid approach but not a
probabilistic description. Non-parametric filters used for BDPE, like a particle
or grid-based filter, require for optimal usage a probabilistic description of the
measurements. The development of such an optimal probabilistic description
of the measurements and the corresponding mathematical framework is a
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part of this work. An overview of previous related work on DPE based on the
summation of the correlation function is given in the next chapter.
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Bayes filters nowadays are a common standard in many scientific areas and
applications. In a general description a Bayes filter tries to estimate recursively
the PDF of the state estimate, which allows in the next step the estimation
of the system state and nuisance parameters. The most often and commonly
used subtype of a Bayes filter is the Kalman filter, basically due to its sim-
ple implementation and computational efficiency. In the navigation domain
Kalman filters are often used for different purposes such as PVT estimation
from pseudoranges and Doppler observations, Position Velocity Time and At-
titude (PVTA) estimation when doing sensor fusion with additional (ideally)
complementary sensors - e.g. an IMU - or using a Kalman filter for ambiguity
estimation, when dealing with carrier phase based precise positioning tech-
niques such as RTK or PPP.

This chapter describes some fundamental elements for state estimation when
dealing with linear and Gaussian as well as non-linear and non-Gaussian
state and observation models. First a brief overview of Bayes filter realizations
are given, followed by descriptions of the most common filters in navigation.
The focus will be on a grid-based and PF, simply because of the important
role within this work and to achieve a real-time capable BDPE GNSS receiver
implementation. This chapter is stongly aligned to [Arulampalam et al., 2002]
and partial contents have been adapted and rewritten.

4.1 Introduction and Overview

All types of non-parametric Bayesian filters aim to estimate the state of a
dynamic system by construction of a posterior PDF of the state estimate.
The PDF of the state estimate is from now on abbreviated as PDF, if not
stated otherwise. To follow this approach, all models need to be available in
a probabilistic form. A target system is described by its state vector, which
contains all relevant information to describe the dynamics of the system. The
system state is propagated in time using the system model. Usually, a perfect
description of the target system is not available, and the process noise is used
to describe the system model uncertainties. The information about the system
state is updated with measurements, which are affected by noise. As the system
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Figure 4.1: Bayes filter realizations which have been redrawn and adapted from [Hafner, 2015,
Fig. 3.4]

state mostly cannot be measured directly, the measurements must be related
to the system state by a measurement model. In most applications it is sufficient
to describe the system model and measurement model with linear elements
and it is often assumed that all occurring noise is unimodal and Gaussian
distributed. The group of parametric filters in Fig. 4.1 covers implementations
which follow these assumptions, while the group of non-parametric filters
allows also for non-linear system and measurement models and possible
non-Gaussian distributed system state and measurements.

The state evolution in time in a discrete form can be described with

xk = fk(xk−1, vk−1) (4.1)

where xk is the state vector of the current epoch, which is propagated from
the previous epoch xk−1 using the possibly non-linear function fk(·) and
the corresponding Independent and Identically Distributed (i.i.d.) process
noise sequence vk−1, where epoch k ∈ N. Two different random variables
are independent and identically distributed, if they are independent from
each other but induce the same probability distribution. The system state is
estimated recursively from the measurements using the measurement model

zk = hk(xk, nk) (4.2)

where the measurement for the current epoch zk depends on the possibly
non-linear function hk(·), the current state xk and the i.i.d. measurement noise
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sequence nk. The Bayesian approach requires to estimate some degree of
belief of the state xk and thus it is required to construct the PDF p(xk|z1:k),
where z1:k contains all measurements up to time k [Arulampalam et al., 2002].
The initial PDF p(x0|z0) is probably unknown and may be initialized with
a Gaussian or uniform distribution under the assumption, that the variance
have been chosen large enough to cover the true state. The above described
framework allows to estimate p(xk|z1:k) in two steps, prediction and update.
Under the assumption that p(xk−1|z1:k−1) is known, the prediction step allows
to estimate the prior PDF at time k using the system model (4.1) by evaluating
the Chapman-Kolmogorov equation

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4.3)

The first term in the integral p(xk|xk−1) refers to the probabilistic model of the
state evolution, which is defined by the system model (4.1). If a measurement
zk at time k becomes available, the prior PDF can be updated using Bayes’
rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4.4)

and with

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk (4.5)

as a normalization constant. The PDF for p(zk|xk) is defined by the measure-
ment model in (4.2) and describes in a probabilistic form the measurement zk
in dependency of xk. After the Bayes update p(xk|z1:k) refers to the posterior
PDF of the current state. Hereby, the normalizing constant in (4.5) is necessary
to normalize the posterior PDF in order to obtain

∫
p(xk|z1:k)dxk = 1 (4.6)

As stated in [Arulampalam et al., 2002], the recurrence relations in (4.3)
and (4.4) form the basis for the optimal Bayesian solution. But the analytical
optimal solution is only available in very restrictive cases, for example with the
Kalman filter. In case if the analytical solution cannot be evaluated, suboptimal
algorithms does exist. Suboptimal approaches such as the Extended Kalman
Filter (EKF), Approximate Grid-Based Filter (AGBF) and Particle Filter (PF)
approximate the optimal Bayesian solution.
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4.2 Kalman Filter

The Kalman filter assumes that both models, the system and measurement
model can be written as linear functions and assumes that all occurring noise
can be modeled as Gaussian. If these assumptions hold, the posterior PDF
can be modeled with the first and second order statistical moments, the mean
and variance. As stated in [Arulampalam et al., 2002], this is possible because
it was proven that if p(xk−1|z1:k−1) is Gaussian, also p(xk|z1:k) is Gaussian,
when following assumptions hold [Ho and Lee, 1964]:

• vk−1 and nk are drawn from Gaussian distributions of known parame-
ters.

• fk(xk−1, vk−1) is known and is a linear function of xk−1 and vk−1.
• hk(xk, nk) is a known linear function of xk and nk.

In such a case (4.1) and (4.2) can be rewritten as

xk = Fkxk−1 + vk−1 (4.7)

zk = Hkxk + nk (4.8)

where (4.7) and (4.8) refers to the system model and measurement model,
which have been rewritten in a way to include the known linear functions
Fk and Hk in matrix notation. The Kalman filter assumes that the occurring
noise vk−1 and nk can be modeled as statistically independent Gaussians with
zero mean. This allows to formulate the noise terms vk−1 and nk as covariance
matrices for the process noise Qk−1 and measurement noise Rk, containing
only the statistical second order moment. Both, the linear models and noise
terms can be time variant.

Rewritten from [Arulampalam et al., 2002, Eq. (8)-(14)], the Kalman filter
defines the following recursive relationship:

p(xk−1|z1:k−1) = N (xk−1; mk−1|k−1, Pk−1|k−1) (4.9)

p(xk|z1:k−1) = N (xk; mk|k−1, Pk|k−1) (4.10)

p(xk|z1:k) = N (xk; mk|k, Pk|k) (4.11)

where

mk|k−1 = Fkmk−1|k−1 (4.12)

Pk|k−1 = Qk−1 + FkPk−1|k−1FT
k (4.13)

mk|k = mk|k−1 + Kk(zk −Hkmk|k−1) (4.14)
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Pk|k = Pk|k−1 −KkHkPk|k−1 (4.15)

and where N (x; m, P) describes a Gaussian with argument x, mean m and
covariance P. By the way, equation (4.12) describes the propagation in time of
the previous state mk−1|k−1 to the prior state mk|k−1 using the linear system
matrix Fk. Equation (4.13) does basically the same and propagates the previous
state covariance matrix Pk−1|k−1 via Fk in time, but additionally add the process
noise Qk−1 in order to obtain the prior state covariance matrix Pk|k−1. Equation
(4.14) and (4.15) depends further on

Sk = HkPk|k−1HT
k + Rk (4.16)

Kk = Pk|k−1HT
k S−1

k (4.17)

where Kk defines the Kalman gain, which is the relative weight given to a new
measurement. The Kalman gain or weighting is basically derived form the
prior state covariance matrix Pk|k−1 and measurement noise covariance matrix
Rk, which can also be tuned in order to achieve a dedicated filter response. To
obtain the posterior state mk|k in (4.15), the prior state mk|k−1 is updated with
the weighted innovation term (zk −Hkmk|k−1), while the innovation term
describes the error between the prior state and the current measurement. In
(4.15) the Kalman gain is further used to update the state covariance matrix
Pk|k−1 with a weighted measurement noise covariance matrix in order to
obtain the posterior state covariance matrix. As stated in [Arulampalam et
al., 2002], if the (highly restrictive) assumption hold, the Kalman filter is an
optimal solution an no algorithm can ever do better than the Kalman filter.

4.3 Extended Kalman Filter

If the system model (4.1) and measurement model (4.2) cannot be written in a
linearized form as in (4.7) and (4.8), a local linearization may be a sufficient
description of the nonlinearity. The EKF is based on this approximation and
further assumes that p(xk|z1:k) can be approximated by a Gaussian, as given
in [Arulampalam et al., 2002, Eq. (22)-(28)], with

p(xk−1|z1:k−1) ≈ N (xk−1; mk−1|k−1, Pk−1|k−1) (4.18)

p(xk|z1:k−1) ≈ N (xk; mk|k−1, Pk|k−1) (4.19)

p(xk|z1:k) ≈ N (xk; mk|k, Pk|k) (4.20)

where
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mk|k−1 = fk(mk−1|k−1) (4.21)

Pk|k−1 = Qk−1 + F̂kPk−1|k−1F̂T
k (4.22)

mk|k = mk|k−1 + Kk(zk − hk(mk|k−1)) (4.23)

Pk|k = Pk|k−1 −KkĤkPk|k−1 (4.24)

and where fk(·) and hk(·) are nonlinear functions with their local linearization
F̂k and Ĥk using the first term of a Taylor series expansion of their nonlinear
function, shown as

F̂k =
dfk(x)

dx

∣∣∣∣
x=mk−1|k−1

(4.25)

Ĥk =
dhk(x)

dx

∣∣∣∣
x=mk|k−1

(4.26)

Sk = ĤkPk|k−1ĤT
k + Rk (4.27)

Kk = Pk|k−1ĤT
k S−1

k (4.28)

In general, it is possible to use also higher order terms of the Taylor series
expansion, but due to a higher complexity this is not commonly done. The
EKF still assumes that p(xk|z1:k) can be approximated by a Gaussian. If the
true density is a non-Gaussian, the EKF does not perform well and a grid-
based or particle filter yield to an improved performance. In case of just
significant non-linearities but still Gaussian distributions it is expected, that
the Unscented Kalman Filter (UKF) performs better than the EKF.

4.4 Unscented Kalman Filter

The UKF uses a number of deterministic distributed support points (sigma
points) selected from the Gaussian approximation p(xk|z1:k), which are propa-
gated through the true non-linear functions. These support points are used in
a second step to re-estimate the Gaussian approximation. Due to the fact, that
the non-linearity of the measurement and state propagation is approximated
more accurately, the UKF better estimates the parameters of the Gaussian
approximation and perform better as the EKF. For the UKF it is not necessary
to build the Taylor series expansion and calculate the Jacobians, which can be
difficult or even not possible, if the non-linear functions are not differentiable.
More details on the UKF can be found in [Gustafsson and Hendeby, 2012],
[Wan and Van Der Merwe, 2000] and [Menegaz et al., 2015].
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4.5 Approximate Grid-Based Filter

Grid-based methods use an discrete finite state space xi
k−1 which is decom-

posed into a grid of Ns cells (or grid-points) i = 1, . . . , Ns, whereas each cell i
is represented by a state vector xk−1. From this discrete grid the approxima-
tion to the posterior PDF at time k− 1 is given in [Arulampalam et al., 2002,
Eq. (33)] with

p(xk−1|z1:k−1) ≈
Ns

∑
i=1

wi
k−1|k−1δ(xk−1 − xi

k−1) (4.29)

where δ(·) is the Dirac delta measure. Substitution into (4.3) and (4.4) leads
to

p(xk|z1:k−1) ≈
Ns

∑
i=1

wi
k|k−1δ(xk − xi

k) (4.30)

p(xk|z1:k) ≈
Ns

∑
i=1

wi
k|kδ(xk − xi

k) (4.31)

where

wi
k|k−1 ,

Ns

∑
j=1

wj
k−1|k−1 p(xi

k|x
j
k−1) (4.32)

wi
k|k ≈

wi
k|k−1 p(zk|xi

k)

Ns

∑
j=1

wj
k|k−1 p(zk|x

j
k)

(4.33)

Equation (4.32) and (4.33) describe the approximate prior and posterior state
probability, where xj

k−1 denotes the center of the jth cell. In general, for each

xj
k−1 an integral over the region of this cell (grid-point) must be evaluated, as in

more detail shown in [Arulampalam et al., 2002, Eq. (36) and (37)]. To simplify
and to keep the computational complexity low, wi

k|k is evaluated at the center

of each corresponding cell xi
k and thus is a discrete approximation to the true

continuous state space. In order to get a reasonably good approximation to
the continuous state space, a sufficiently dense grid must be used. In case of
dealing with higher dimensionality of the state space, the computational cost
increases exponentially with the number dimensions. Furthermore, the grid
can only cover a finite state space and a drawback of this grid-based method is,

46



4 Bayesian Filters

that the grid cannot be distributed unevenly in order to give greater resolution
in high probability regions, if no prior knowledge is used. This work uses a
grid-based filter for the analysis of the PDF of the state estimate. Grid-based
filters are often used in image or map processing applications.

4.6 Particle Filter

The basic idea of a particle filter is to recursively construct the posterior
Probability Density Function (PDF) based on a set of random samples with
associated weights. From this posterior samples the PDF, statistical parameters
as well as the state estimate can be derived. A generic particle filter relies on
the concept of Sequential Importance Sampling (SIS) and can be realized with
three major steps, prediction, update and resampling.

Sequential Importance Sampling (SIS) As stated in [Arulampalam et al.,
2002], the SIS algorithm is a Monte Carlo (MC) method that forms the basis for
most sequential MC filters developed over the past decades. This Sequential
Monte Carlo (SMC) method is known from literature as bootstrap filtering
[Gordon, Salmond, and Smith, 1993], as condensation algorithm [MacCormick
and Blake, 1999], particle filtering [Carpenter, Clifford, and Fearnhead, 1999]
and survival of the fittest in [Kanazawa, Koller, and Russell, 1995]. The idea of
the SIS is to describe the posterior PDF by a set of randomly chosen weighted
samples. Thereby, the randomly chosen samples can also follow a defined PDF
in order to increase the sample density in regions of interest. If a sufficient
large number of samples is used, the Monte Carlo characterization becomes
an equivalent representation of the functional description of the posterior
PDF [Arulampalam et al., 2002].

In general and as given in [Arulampalam et al., 2002, Eq. (40)], the posterior
density at time k can be approximated as

p(x0:k|z1:k) ≈
Ns

∑
i=1

wi
kδ(x0:k − xi

0:k) (4.34)

if the weights are normalized to ∑Ns
i=1 wi

k = 1. The equation in (4.34) is the
discrete weighted approximation to the true posterior p(x0:k|z1:k). The approx-
imate posterior filtered density simplifies in the sequential case to

p(xk|z1:k) ≈
Ns

∑
i=1

wi
kδ(xk − xi

k). (4.35)
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An important statement in [Arulampalam et al., 2002] is, that it can be
shown that the approximation in (4.35) approaches the true posterior density
p(xk|z1:k) for Ns → ∞.

The principle of importance sampling draws a set of samples ξ from a known
importance density q(·) such that xi ∼ q(x), i = 1, ..., Ns, from which the
true posterior density p(xk|z1:k) is reconstructed. Hereby, q(·) is used to
distribute the samples xi according to a known distribution, most likely to
place more samples in regions of higher interest. For the sequential case with
a dependency only on the previous epoch, it was shown in [Arulampalam
et al., 2002, Eq. (48)] that the weight update can be rewritten to

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1, zk)
(4.36)

where q(·) acts as a normalization step in (4.36) to account for the introduced
sampling distribution. This normalization step is required, as the sampling
distribution itself influences the resulting posterior PDF.

The idea for the choice of the importance density is to select a probability
density, which is close to the unknown but expected posterior PDF. The closer
the importance density is to the true PDF, the more samples constructively
contribute to the reconstruction, because less samples are wasted in low
probability areas. The optimal importance density is defined to be

q(xk|xi
k−1, zk)opt = p(xk|xi

k−1, zk) (4.37)

which has the drawback, that it must be possible to resample from p(xk|xi
k−1, zk)

and to evaluate the integral over the new state, where both steps are typi-
cally not straight forward [Arulampalam et al., 2002]. The evaluation of the
optimal importance density is only possible for two cases, if (1) xk is from a
finite set and thus sampling from p(xk|xi

k−1, zk) becomes possible and (2) if
p(xi

k|xk−1, zk) is Gaussian. But in many cases an analytical evaluation is not
possible and methods exist to construct suboptimal approximations, such as
local linearization techniques [Doucet, Godsill, and Andrieu, 2000]. A con-
venient and common way is to set the importance density to the prior such
as

q(xk|xi
k−1, zk) = p(xk|xi

k−1) (4.38)

Inserting (4.37) in (4.36) leads to

wi
k ∝ wi

k−1 p(zk|xi
k) (4.39)
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The choice of the importance density is a crucial design step in a particle
filter, whereas (4.39) is commonly used due to its simple implementation
[Arulampalam et al., 2002].

Degeneracy and Resampling A common problem of the SIS is the degener-
acy problem, as it was shown in [Doucet, Godsill, and Andrieu, 2000] that the
variance of the importance weights can only increase. This leads to particles
which have almost zero weight and having neglectable contribution to the
approximation p(xk|z1:k). A measure of the degeneracy is the effective sample
size Ne f f , which was introduced in [Bergman, 1999] and [Liu and R. Chen,
1998] and is given in [Arulampalam et al., 2002, Eq. (50)] as

Ne f f =
Ns

1 + Var(w∗ik )
(4.40)

where w∗ik = p(xi
k|z1:k)/q(xi

k|xi
k−1, zk) is the ‘true weight’. As it cannot be

evaluated exactly, an estimate is given in [Arulampalam et al., 2002, Eq. (51)]
by

N̂e f f =
1

∑Ns
i=1(w

i
k)

2
(4.41)

where wi
k is the normalized weight from (4.36). It is noted, that Ne f f ≤ Ns and

that a small Ne f f corresponds to severe degeneracy. Basically, there are two
methods to overcome this degeneracy phenomenon.

If degeneracy of the particle cloud is observed and N̂e f f drops below a defined
threshold, the method of resampling can be applied. The idea of resampling is
to eliminate particles with low weights and concentrate on particles with high
weight. Therefore, the method generates a new set of {xi∗

k }
Ns
i=1 by resampling

from an approximate discrete representation

p(xk|z1:k) ≈
Ns

∑
i=1

wi
kδ(xk − xi

k) (4.42)

such that Pr(xi∗
k = xj

k) = wi
k. The new distribution equals the distribution of

p(xk|z1:k) using i.i.d. samples with reset weights wi
k =

1
Ns

. In other words, the
same probability distribution is represented with another set of i.i.d. particles
of equal weights, which leads to a dense concentration of particles at higher
probabilities. Such a resampling procedure can be implemented with O(Ns)
operations [Carpenter, Clifford, and Fearnhead, 1999; Ripley, 1987].
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Realization of a Particle Filter A generic particle filter which uses the
optimal importance density can be realized in three steps, the

(1) Prediction step, which propagates the particle states from the previous
state xk−1 to the prior state xk and adds the process noise according to
the system model given in (4.1)

(2) Update step, which updates the weights wi
k in (4.39) of the prior states

according to the measurement model given in (4.2)
(3) Resampling step, which is triggered at each iteration or if N̂e f f in (4.41)

drops below a defined threshold in order to prevent degeneracy and to
keep particles in high probability areas of the true posterior PDF.

It should be noted, that the approximation to the true posterior PDF need
to account for both, the weights wi

k of the particles and their distribution
p(xk|z1:k), if no resampling step was conducted. Therefore, a weighted his-
togram is a possibility to retrieve the posterior PDF from weighted samples.
The resampling step can be interpreted as shifting the information about the
PDF from the weights to the distribution of the samples. After the resampling
step, all weights have the same weight and do not contribute to the represen-
tation of the PDF. This further means, that after resampling all information
about the filter history and PDF is contained in the sample distribution. This
implies, that after resampling and a weight update, the weights represent the
unfiltered shape of the posterior PDF.
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5 Fundamentals of GNSS Receivers

This chapter covers some necessary fundamentals of GNSS and receivers
and is strongly aligned to [P. Teunissen and Montenbruck, 2017, Chap. 14].
Sections have been reformulated and figures have been adapted to cover
the basic knowledge needed for the implemented BDPE receiver. Detailed
explanations and GNSS receiver principles can also be found in [Misra and
Enge, 2010; Borre et al., 2007; Kaplan and Hegarty, 2006; Pany, 2010].

5.1 Generic Receiver Architecture

A generic architecture of GNSS receivers is shown in Fig. 5.1. Different re-
alizations of receivers depending on the application exist: Receivers can be
fully integrated on a hardware chip to focus on size and power consumption
or being purely implemented in software to achieve highest flexibility and
processing performance, but all share the same fundamental architecture.
As shown in Fig. 5.1, a typical receiver consists of a GNSS capable antenna
which gathers the navigation signals transmitted from satellites or pseudolites.
In the RF front-end the gathered analog signal r is conditioned, downcon-
verted to a more workable Intermediate Frequency (IF) and digitized to rIF.
Then, a receiver performs two steps, synchronization and trilateration. For
the synchronization step the digital samples enter a channelized structure,
where each signal is acquired and tracked individually. The acquisition block
searches for available GNSS signals and deliver coarse synchronization pa-
rameters, the code delay τ̂ and Doppler f̂d. The acquisition is performed
by doing a serial search (Tong) or applying Fast Fourier Transform (FFT)
techniques. These coarse synchronization parameters are used to initialize the
tracking loops. The tracking loops keep track on the GNSS signal by using the
auto-correlation principle. Hereby the Delay Locked Loop (DLL), Frequency
Locked Loop (FLL) and Phase Locked Loop (PLL) track and refine the pa-
rameters τ̂, f̂d and give an estimate of the carrier phase φ̂. The correlation of
an incoming signal with an internally generated replica delivers the corre-
lation values P, from which the synchronization parameters can be derived.
Furthermore, the correlation values are used to demodulate the navigation
message, which contains almanac and ephemeris data delivering information
about the position/velocity of the satellites. Data bits and frames are counted
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Figure 5.1: Generic architecture of a GNSS receiver showing in detail the tracking channels.
Each GNSS signal is tracked in a tracking channel and the maximum number of
supported tracking channels N is typically a key performance parameter of GNSS
receivers. Redrawn and adapted from [P. Teunissen and Montenbruck, 2017, Fig.
14.3].

to align the integration period of the auto-correlation with navigation data
bit boundaries and to obtain the pseudorange p from the code delay estimate
τ̂, which include the geometric distance from the satellite to the receiver, the
satellite and receiver clock errors, atmospheric delays and hardware delays.
The navigation processor uses the code pseudorange, Doppler and the carrier
pseudorange estimate from each tracking channel together with the ephemeris
data to obtain a PVT solution using the principle of trilateration.

5.2 Transmit and Received Signal Model

The very first step in GNSS is the generation of a GNSS signal on a satellite.
Such a GNSS signal with a generic multiplexing scheme based on Quadrature
Phase Shift Keying (QPSK) transmitted from the antenna of a satellite in one
frequency band can be modeled as given in [P. Teunissen and Montenbruck,
2017, Eq. (14.1)] with a constant power as given in [Misra and Enge, 2010, Eq.
(11.1)] with

s(t) =
√

2Ptmt,cDc(t)CPRN,c(t) cos(2π fLt)
+j
√

2Ptmt,sDs(t)CPRN,s(t) sin(2π fLt) (5.1)
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where Ptmt is the transmit signal power, s and c is the subscript for the cosine
(In-phase) and sine (Quadrature) component, D ∈ [−1, 1] the navigation
data symbol with a symbol duration of Tsym in (s), CPRN ∈ [−1, 1] the PRN
spreading code sequence with a chip duration of Tc in (s), fL the carrier
frequency in the L-band in (Hz), t the time at generation in (s) and j the
imaginary number. It should be noted, that (5.1) is written in the common
complex notation, which allows to apply Euler’s identity and represent the
signal in an exponential notation which simplifies to study the Fourier series
and Fourier transforms, whereas the actually generated and transmitted
signal is just the real valued sum of the In-phase and Quadrature component.
The signal is separated in two components, the cosine and sine component.
The signal power defines beside other factors the positioning accuracy, which
should not vary and is kept constant. This constraint not allows for Amplitude
Modulation (AM) schemes for the model in (5.1) and thus the symbols equal
data bits with an amplitude of 1 (±1 for data channels and +1 for pilot
channels). Pilot channels are channels without a navigation data message,
which allow receivers for longer integration times and to achieve higher
sensitivity. Without usage of data bit removal or prediction techniques, the
navigation symbol duration Tsym defines the maximum (coherent) integration
time T in (s) for GNSS receivers. The model in (5.1) covers the majority of
broadcast GNSS signals, whereas others like Alternative Binary Offset Carrier
(AltBOC) and Code Shift Keying (CSK) are at least similar [P. Teunissen and
Montenbruck, 2017]. Due to the similarity the model can be easily adapted
e.g. to represent a BOC modulation scheme or time-multiplexed signals by
modifying the code sequence CPRN.

The received signal gathered by the GNSS antenna can be modeled as

r(t) =
N

∑
i=1

aiejφ0;i si(t− τi) + nRF(t) (5.2)

where si is the signal from the i-th visible satellite, ai is the attenuation
factor of the signal power and nRF(t) is the additive noise component. The
propagation time from the i-th satellite to the antenna is expressed as code
delay τi in (s) and φ0;i is the carrier phase delay in (rad). The received signal
is a superposition on N gathered GNSS signals. For the case that a single
signal is considered, a more refined model is given in [P. Teunissen and
Montenbruck, 2017, Eq. (14.3)] and in [Misra and Enge, 2010, Eq. (11.2)] as
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rRF(t; τ, φ0, fd, Prcv,c, Prcv,s) =√
2Prcv,cDc(t− τ)CPRN,c(t− τ) cos(2π( fL + fd)t + φ0)

+ j
√

2Prcv,sDs(t− τ)CPRN,s(t− τ) sin(2π( fL + fd)t + φ0) + nRF(t) (5.3)

where fL is the signal center frequency in the L-Band in (Hz), fd is the carrier
Doppler shift in (Hz) and Prcv is the received signal power. nRF(t) is the band-
limited Additive White Gaussian Noise (AWGN) having a one-sided Power
Spectral Density (PSD) N0 and a bandwidth determined by the RF chain
inside the receiver front-end. The subscript RF is an identifier for the carrier.
Before converting the analog signal to a digital signal using an Analog Digital
Conversion (ADC), the signal is pre-conditioned. Therefore, the signal passes
through bandpass filters to cut out the frequency ranges of interest. The real
signal must be sampled with at least the Nyquist frequency or at least half the
Nyquist frequency in case of a complex signal, but which is difficult for GNSS
frequencies above 1 GHz due to the required high sampling rates. Thus,
the carrier RF is mixed down to a more workable IF. The downconverted,
digital and band-limited signal in the discrete time domain for a single signal
component e.g. the cosine carrier, which is related to the In-phase component
of the signal carrying the relevant information (e.g. GPS L1 C/A), can be
written without the quadrature component as

rIF(k; τ, φ, fd, C) =
√

2CD(Tsk− τ)CPRN,c(Tsk− τ) cos(2π( fIF + fd)Tsk + φ)

+nIF(k) (5.4)

where C is the received signal power Prcv including the the antenna gain and
the implementation losses, k = [0, 1, 2, ...] is the sample index with the sample
interval Ts in (s) and sampling frequency fs =

1
Ts

in (Hz) such that t = kTs.
nIF(k) is the corresponding noise at IF, which is assumed to be white with a
power spectral density of N0. Note that φ is the carrier-phase offset in addition
to the Doppler shift. The signal parameters of interest are τ, fd and φ, which
are estimated by the receiver tracking loops.

5.3 Correlator Model

The receiver internal tracking loops continuously try to align a internally gen-
erated replica signal with the incoming GNSS signal. Therefore, the tracking
loops take the output from the correlators, the complex valued correlation
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value. The correlators correlate the received signal rIF and the internally gener-
ated signal r̂IF, whereas the integration time T defines the correlation length in
(s). With the assumption that the navigation data bit does not change during
the integration interval and without use of the amplitude, the local generated
replica at the IF can be written as given in [P. Teunissen and Montenbruck,
2017, Eq. (14.5)] with

r̂IF(k; τ̂, φ̂, f̂d) = 2CPRN(Tsk− τ̂) exp{j(2π( fIF + f̂d)Tsk + φ̂)} (5.5)

The correlation process between the true signal rIF and the replica signal r̂IF
can be defined as

rIF(k) = rIF(k; τ, φ, fd, C) (5.6)
r̂IF(k) = r̂IF(k; τ̂, φ̂, f̂d) (5.7)

with

P(∆τ, ∆ fd, ∆φ) = corr(rIF(k), r̂IF(k)) =
M

∑
k=1

rIF(k)r̂IF(k) (5.8)

and with ∆τ = τ − τ̂, ∆ fd = fd − f̂d and where corr(x, y) is the correlation
function of x and y, M is the number of samples within the integration
time T = MTs and with Ts being the sample interval. The evaluation of the
correlation in (5.8) is given in [P. Teunissen and Montenbruck, 2017, Chap.
14.2.3] and leads to the complex valued correlation value, which can be
modeled as given in [P. Teunissen and Montenbruck, 2017, Eq. (14.18)] with

P(∆τ, ∆ fd, ∆φ) =
√

2TC/N0DR(∆τ)sinc(∆ fdT) exp{j∆φ}+ η

= I + jQ (5.9)

with

R(∆τ) =
M

∑
k=1

CPRN(Tsk− τ)CPRN(Tsk− τ̂) (5.10)

sinc(∆ fdT) =
sin(2π∆ fdT)

2π∆ fdT
(5.11)

whereas the parameter of interest are modeled as the deviation from the
true, given as ∆τ = τ − τ̂, ∆ fd = fd − f̂d and ∆φ = φ− φ̂. R(·) defines the

55



5 Fundamentals of GNSS Receivers

Figure 5.2: Code correlation function (left) and Doppler correlation function (right). Hereby, n
defines the chip and subcarrier rate normalized to 1023 MCPS, T the coherent inte-
gration time and f the Doppler frequency. The circles and stars indicate correlation
points for the acquisition and illustrate, that the correlator spacing need to consider
the signal type and influences the detection probability. Figures from [P. Teunissen
and Montenbruck, 2017, Fig. 14.6 and 14.7].

correlation function resulting from the PRN code sequence, e.g. a triangle
shaped function with the maximum of 1 at ∆τ = 0 for the BPSK signal of
the GPS C/A at L1. The sinc(·) results from the Doppler deviation of the
replica signal to the true, also with it’s maximum of 1 at ∆ fd = 0. Note that
the width of the sinc-function depends on the integration time T. The code
and Doppler correlation function is illustrated in Fig. 5.2. It is assumed that
the baseband signal component has a normalized noise component as given
in (5.14). The C/N0 is the carrier-to-noise ratio in (dB-Hz). I and Q represent
the post-correlation in-phase and quadrature components which are defined
as

I =
√

2TC/N0DR(∆τ)sinc(∆ fdT) cos(∆φ) + ηI (5.12)

Q =
√

2TC/N0DR(∆τ)sinc(∆ fdT) sin(∆φ) + ηQ (5.13)

with the definition of the normalized noise being

E[η2
I ] = E[η2

Q] = 1 (5.14)

whereas E[x] is the expected value of x. The correlation value described by
the correlator model in (5.9) is a fundamental value in each GNSS receiver,
because from this value all measurements to obtain a PVT solution can be
extracted.
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5.4 Acquisition

Once a GNSS receiver is switched on, it has no knowledge about its position
and current visible satellites (cold start). The receiver starts a signal search
and tries to acquire GNSS signals. Therefore, the receiver either selects ran-
domly satellites or selects satellites based on some pre-knowledge, e.g by
rough position and almanac (warm start) or ephemeris and recently accurate
receiver position and time (hot start). The acquisition stage determines rough
synchronization parameters, the code phase τ̂ and Doppler f̂d. These estimates
are used to initialize the receiver tracking loops. The search is based on a
hypothesis test with the hypothesis

H0: Signal is not present
H1: Signal is present.

The test compares the signal power defined as

|S|2 = I2 + Q2 = 2TC/N0 2R(∆τ)2sinc(∆ fdT)2 + ηI,Q (5.15)

with the noise

ηI,Q = η2
I + η2

Q (5.16)

E[ηI,Q] = E[η2
I + η2

Q] = 2 (5.17)

to a defined threshold γ. Therefore, the signal search varies τ̂ and f̂d until a
defined search space (typically a grid in code phase and Doppler direction)
has been completely searched through or till a signal was found. Note that
in (5.15) the data bit vanished due to the squaring operation which allows
a non-coherent integration, but still needs to be accounted to avoid missed
detections. Symbol transitions within the integration time can lead to a sig-
nificant decrease in the amplitude of the correlation result. The longer the
integration time the more sensitive is the acquisition unit. But as mentioned
before, the maximum coherent integration time is given by the symbol dura-
tion or limited resources on the receiver. The integration time can be extended
beyond the coherent integration time by non-coherently summing up squared
coherent batches such that

Snc =
ν

∑
n=1
|Sn|2 (5.18)

with
|S|2 = I2 + Q2 (5.19)
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where ν is the number of accumulated batches and S is the signal power of
(5.9). The total integration time is given with Ttot = Tν. Hereby the hypotheses
are defined as H0: (Snc < γ) and H1: (Snc ≥ γ). The relationship between
coherent and non-coherent integration to the obtained Signal-to-Noise Ratio
(SNR) is given in [P. Teunissen and Montenbruck, 2017, Eq. (14.31)] with

SNR =
2νTC/N0√

4ν
= TC/N0

√
ν (5.20)

The SNR is typically expressed in (dB), which refers to the signal power
and noise power in a given bandwidth. The SNR can also be expressed as
SNR = S− N with S and N being the signal and noise in (dBm) or (dBW).
The C/N0 defines the carrier-to-noise density usually expressed in (dB-Hz)
and refers to the ratio of the carrier power and the noise power per unit
bandwidth [Joseph, 2010]. Doubling the coherent integration time doubles the
SNR, whereas doubling the number of non-coherent summations results in a
gain of

√
2. This is basically caused by the squaring loss, as also the noise is

increased with the squaring operation.

This section only briefly discusses the basic principles of an acquisition unit
and there exist a variety of methods to efficiently search for signals in space
(e.g. Tong, pre-correlation FFT, matched filter structures), methods to detect
weak signals and methods to aid the acquisition process by incorporating
pre-knowledge such as receiver position, velocity, time, almanac or ephemeris
data. More details about acquisition units can be found in [P. Teunissen and
Montenbruck, 2017; Misra and Enge, 2010; Borre et al., 2007; Kaplan and
Hegarty, 2006; Pany, 2010].

5.5 Tracking

The tracking unit refines the coarse estimates of the acquisition unit and keeps
track on the GNSS signals. Hereby each GNSS signal is tracked individually.
A generic tracking loop, which can be applied to track the code phase (DLL),
Doppler (FLL) and carrier phase (PLL), is shown for the time domain in Fig.
5.3. The variable θ in the figure is a placeholder for the code phase τ, Doppler
fd and carrier phase φ.

The correlator block calculates a set of correlation values PI,Q based on (5.8)
which can be modeled as in (5.9). The output of the correlation block is a
set of typically three correlation values with their in-phase (I) and quadra-
ture (Q) components for an Early, Prompt and Late version of the code
[IE, QE, IP, QP, IL, QL]. The early and late version is shifted by the correlator
spacing, which is a key design parameter for the DLL and commonly chosen
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Figure 5.3: Generic structure of a GNSS receiver tracking loop in the time domain. Redrawn
and adapted from [P. Teunissen and Montenbruck, 2017, Fig. 14.9].

to be a narrow correlator with e.g. d = 0.1 chips. The prompt correlator is
placed at d = 0 chips. Depending on the tracked signal or for multipath
estimation and mitigation techniques, a higher number of correlators might
be used. As an example for tracking a Galileo BOC signal additionally, a Very
Early and Very Late correlator is placed onto the side lobes of the correlation
function in order to properly identify and jump to the main peak, if necessary
(bump jumping). The correlator spacing d influences the DLL tracking loop
performance and multipath error envelope [P. Teunissen and Montenbruck,
2017, Chap. 14.4.4 and Chap. 15.5, Fig. 15.10].

The discriminators calculate based on the correlation values the alignment
error between the internally generated replica r̂IF and the received signal rIF.
This is done for the code phase, Doppler and carrier phase. The simplest
definitions of the discriminators for a DLL, FLL and PLL are

∆τ =
αd

2(2− d)
I2
E + Q2

E − I2
L −Q2

L
I2
P + Q2

P

∆ fd =
(∆φk − ∆φk−1)

T
(5.21)

∆φ = tan−1
(

QP

IP

)

where ∆τ, ∆ fd and ∆φ is the code phase error, Doppler error and carrier phase
error, αd is a modulation scheme dependent factor to achieve unity slope of
the resulting discriminator function and k defines the correlation epoch. ∆τ
is calculated from the imbalance of the early and late correlation value, ∆ fd
from the carrier phase change from the previous to the current epoch and
∆φ is the carrier phase obtained from the complex phasor of the prompt I
and Q correlation value. The above shown discriminator functions belong to
the simplest formulations and consider the data signal component of GNSS
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signals for the DLL and PLL, but there exist several other definitions with
different characteristics. The goal of the tracking loop is to steer the tracking
error ∆θ to ∆θ = 0, as illustrated in Fig. 5.3.

The S-curve refers to the discriminator function in dependency of the code
phase error ∆τ. The evaluation of the S-curve is illustrated in Fig. 5.4. The
shape of the S-curve influences the DLL tracking loop response. The tracking
point, the point where the replica signal is aligned with the incoming signal,
is shown by zero crossing point. The S-curve is typically linear around the
tracking point with a unity slope.

The tracking loop filter gets as input the noisy alignment error information ∆θ.
The loop filters are usually designed to be of first, second or third order and
allow to adapt for changes in distance, velocity and accelerations which occur
in LOS direction of the tracked GNSS signal. The loop filters are designed to
output the rate of change θ̇ to the NCO, as shown in Fig. 5.3.

The NCO acts as an integrator and is responsible to deliver the best estimate
θ̂ to the replica signal generator. The estimate of the code phase τ̂ is used for
the PRN code generator of the tracked signal whereas the Doppler and carrier
phase estimate f̂d and φ̂ are used to generate the cos/sin carrier waveform of
the internal generated replica.

The three tracking loops (DLL, FLL, PLL) depend on each other and thus they
can be described as a Multiple Input Multiple Output (MIMO) system. Based
on the reason that such systems are difficult to describe and analyze, the
individual tracking loops are characterized with the constraint that the others
are perfectly aligned, which simplifies the system description to a Single Input
Single Output (SISO) system. More details about receiver tracking units can
be found in [P. Teunissen and Montenbruck, 2017; Misra and Enge, 2010; Borre
et al., 2007; Kaplan and Hegarty, 2006; Pany, 2010].

5.6 Synchronization and Data Demodulation

By synchronization and demodulation of the navigation data message D(t)
from (5.9), a receiver can obtain all necessary information for positioning
(e.g. satellite ephemeris and atmospheric model parameters). The receiver
needs for positioning at least an estimate of the distance to the satellite, the
pseudorange. This distance is obtained by measuring the travel-time from the
satellite to the receiver multiplied with the speed of light. Therefore, the sent
time of the signal needs to be known. Per definition the code phase equals
the sent time (transmission epoch) modulo the code period. An estimate of
the sent time can be calculated from the code phase of the tracked signal and
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Figure 5.4: Normalized discriminator function (S-curve) of a DLL tracking loop. The upper
part of the figure shows the incoming and the early, prompt and late version of the
shifted replica signal for correlation and their position on the correlation function.
The plot in the lower part of the figure shows the normalized DLL discriminator
output. The resulting function is typically linear around the tracking point in the
center of the plot. Figure from [P. Teunissen and Montenbruck, 2017, Fig. 4.11].
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it’s time tag in the navigation message. The DLL continuously steers ∆τ to
zero and thus the estimated sent time is given as

ν̂(k) = Tsk− τ̂ (5.22)

which follows the true sent time

ν(k) = Tsk− τ (5.23)

where trcv = Tsk defines the receiver internal time. The ambiguous code
phase equals the difference of the received and sent time modulo the PRN
code period (in nominal satellite system time scale). The ambiguity of the
code phase can be resolved by the modulated navigation message, which
contains a time tag. The data fields in the navigation message describing
the time tag define the transmission time of a certain bit/symbol boundary
and bit/symbol boundaries typically coincide with PRN code boundaries
[P. Teunissen and Montenbruck, 2017, chapter 14.5]. The receiver continuously
searches in the data bit stream for a preamble, a defined bit sequence. Once
this preamble is found, the receiver can interpret the navigation data bits,
extract the sent time and can resolve the ambiguity. There exist also other
techniques to resolve the code ambiguity e.g. by resolving it from another
tracked signal on a different frequency but from same satellite or performing
consistency checks with approximate user coordinates and known satellite
ephemeris data [P. Teunissen and Montenbruck, 2017, chapter 14.5]. The most
direct way to obtain a data bit can be achieved if a pilot signal is available and
phase lock is given. Phase lock means that the carrier phase error ∆φ from
the discriminator is stable steered towards zero. In such a case the in-phase
prompt correlator values IP,k of the data bearing component correspond to the
bits or symbols, whereas a positive value is typically assigned to bit ’0’ and a
negative value to bit ’1’. Secondly, data bits can be extracted from the prompt
correlation values directly, if phase lock of a Costas PLL is achieved on the
data signal component. A Costas PLL with the discriminator definition from
(5.21) for the phase error is able to deal with data bits and they can be read
again from the prompt correlation values IP,k. In both cases the preamble also
allows to resolve a 180 deg phase ambiguity, which may lead to an inverted bit
sequence. In a third case, if the carrier phase cannot be tracked stable by the
PLL, the receiver switches to the more robust FLL. But from the FLL the data
bits cannot be read directly (no phase lock), but it is possible to detect phase
transitions between two epochs as given in [P. Teunissen and Montenbruck,
2017, Eq. (14.61)] using
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dotk = Ik Ik+1 + QkQk+1 (5.24)

where the dot-term is positive if the bit sequence remains the same and
becomes negative in case of a bit transition. The estimator in (5.24) allows to
continue bit estimation for lower C/N0, but with the care that a incorrectly
detected bit transition flips the complete following bit sequence. The bit error
rate can be evaluated analytically, if a stable frequency or phase tracking is
assumed. Bit/symbol errors occur because IP,k and QP,k are nonzero Gaussian
random variables. The bit error rate for the PLL is given in [P. Teunissen and
Montenbruck, 2017, Eq. (14.62)] as

BERPLL =
1
2

erfc(
√

TC/N0) (5.25)

and the transition error rate for the FLL is given in [P. Teunissen and Mon-
tenbruck, 2017, Eq. (14.63)] as

TERFLL =
1
2

exp(−2TC/N0) (5.26)

In general, the thermal noise contribution does not contribute significantly
to the error rates, rather more likely are decoding errors due to occasional
blocking of the LOS signal component or fading effects.

More details about signal synchronization and data demodulation can be
again found in [P. Teunissen and Montenbruck, 2017; Misra and Enge, 2010;
Borre et al., 2007; Kaplan and Hegarty, 2006; Pany, 2010].

5.7 GNSS Measurements

The measurements made by a GNSS receiver are often called observables.
As given in [P. Teunissen and Montenbruck, 2017, Chap. (14.6)], primary
measurements of the tracking channel are

• the estimated code pseudorange between satellite and receiver
• the estimated Doppler of the received signal
• the estimated carrier phase (carrier pseudorange) of the received signal
• the estimated amplitude (power) of the received signal
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These parameters are generated for each tracked signal independently, except
for combined tracking of data and pilot signals. The typical output rate of
these parameters ranges from 1-20 Hz. The measurements are taken at the
same epoch for all tracked channels.

The measured code pseudorange in (m) is given in [P. Teunissen and Mon-
tenbruck, 2017, Eq. (14.65)] as

p(k) = cτ̂(k) = c[trx − ν̂(k)] (5.27)

where trx = Tsk is the internal receiver time in (s) driven by the sampling rate
fs of the ADC, ν̂(k) is the estimated sent time in (s) and c the speed of light
in (m/s). The nominal receiver time trx has an arbitrary offset to the true time,
called receiver clock error. This receiver clock error drifts with time according
to the quality of the internal clock. The code pseudorange model is given in
[P. Teunissen and Montenbruck, 2017, Eq. (14.66)] as

p = ρ− c(dtrx − dtsat) + I + T + c(drx + dsat) + pT + εmp + εn (5.28)

where ρ defines the geometric distance in (m) between receiver and satellite,
dtrx and dtsat are the receiver and satellite clock error in (s), I and T are the
ionospheric and tropospheric delay in (m), drx and dsat are the receiver and
satellite hardware delay in (s), pT covers transient errors of the tracking loop
in (m), εmp is the error caused by multipath and εn is the tracking noise, both
in (m). The pseudorange model in (5.28) refers to a single receiver, single
satellite, single signal and single frequency. Furthermore, dts should account
also for relativistic effects and corrections for the antenna phase center are
neglected.

The locally generated replica signal as defined in (5.5) has an instantaneous
carrier phase of φ̂NCO(k) defined in (rad) as the argument of the complex
exponential [P. Teunissen and Montenbruck, 2017, Chap. (14.6.2)], with

φ̂NCO(k) = 2π( fIF + f̂d)Tsk + φ̂(k) (5.29)

With this definition the carrier pseudorange measurement in (m) is given in
[P. Teunissen and Montenbruck, 2017, Eq. (14.75)] as

ϕ(k) = −λ

(
φ̂NCO(k)

2π
− fIFTsk

)
(5.30)
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where λ defines the carrier wavelength in (m) and is given with λ = c/ fRF.
The corresponding model for the carrier phase in (m) is given in [P. Teunissen
and Montenbruck, 2017, Eq. (14.79)] with

ϕ = λN + ρ− c(dtrx − dtsat)− I + T + c(δrx + δsat) + pT′ + εmp′ + εn′ (5.31)

where N defines the integer ambiguity of the carrier phase, δrx and δsat are
the respective frequency dependent hardware delays in (s). The hardware
delays are different to the delays in the code pseudorange model due the
different frequencies. Note that the sign of the ionospheric delay has changed
w.r.t. the code pseudorange model in (5.28). Furthermore, this model neglects
antenna phase center corrections and the carrier phase wind-up caused by
the orientation difference along the LOS axes of the user and satellite antenna.
The carrier phase measurement is in contrast to the code measurement very
precise but ambiguous. RTK aims to resolve this unknown integer ambiguity
N and enables positioning with sub-centimeter accuracy.

The FLL and PLL are used for carrier tracking, whereas the FLL tracks the
carrier frequency and the PLL the carrier phase. Both, the FLL and PLL
provide the rate-of-change information of the carrier phase to the carrier
NCO, which is used for replica signal generation. The Doppler is defined
as the carrier phase change between two consecutive samples, which can
be described with 2π( f IF + f̂d)Ts and which is a part of the replica signal
definition in (5.4). Thus, the Doppler is an internal parameter of the carrier
NCO and allows straight-forward to retrieve the Doppler measurement f̂d.
The corresponding Doppler model derives from the carrier-phase model via
the first time derivative and is defined in (Hz) as

fd = − 1
λ
[ρ̇− c(dṫrx − dṫsat) + pT′′ + εmp′′ + εn′′ ] (5.32)

For most GNSS applications the atmospheric delay variations and hardware
delay variations are neglected, because they vary slowly with time. These
variations are only accounted for specific applications where accurate velocity
estimates are necessary. The satellite clock drift dṫsat is very small, because the
satellites are equipped with high grade atomic clocks. The largest contribution
to the Doppler is caused by the range rate ρ̇ and receiver clock drift dṫrx.

The signal power of the received signal can be estimated from the in-phase
and quadrature component of the prompt correlation value as given in [P.
Teunissen and Montenbruck, 2017, Eq. (14.85)] with
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Ĉ/N0 =
I2
P + Q2

P − 2
2T

(5.33)

where T is the integration period. The signal power estimate in (5.33) is valid,
if the variance of the noise in the In-Phase and Quadrature channel equals
one, as given in (5.14). The signal power estimates are typically very noisy
for lower signal strengths and therefore a common approach is to average
over longer intervals e.g. 5-10 seconds. It should be noted that transient errors
of the tracking loops and misalignments of the replica signal in code and
Doppler cause reduction of signal power estimate according to R(∆τ) and
sinc(∆ fd).

5.8 Position, Velocity and Time Estimation

The estimation of the user position, velocity and time (PVT) is a central
point of a GNSS receiver and is performed in the navigation processor. There
exist three different approaches to estimate the user position based on a set
of non-linear equations, (1) closed-form solutions, (2) iterative techniques
based on linearization and (3) Kalman filtering [Kaplan and Hegarty, 2006].
Formerly, the standard positioning technique was based on LSQ or Weighted
Least Squares (WLSQ), whereas the weight depends on the quality of the
measurements. Today’s GNSS receivers use Kalman filtering techniques for
GNSS only solutions and when performing sensor fusion e.g. GNSS+IMU.
This chapter discusses the iterative LSQ and WLSQ approach, describes a
GNSS only Kalman filtering approach, and briefly mentions a Kalman filter
for sensor fusion with the most common combination of GNSS and INS.

5.8.1 Iterative Weighted Least Squares Estimation

The iterative LSQ position and clock error estimation is based on a first or-
der linearization by developing a Taylor series expansion at an approximate
user position. Secondary order error sources such as earth rotation compen-
sation, measurement noise, propagation delays and relativistic effects are
neglected for the linearization step when building the Jacobi matrix [Kaplan
and Hegarty, 2006], but these errors are accounted for when calculating pseu-
doranges. The iterative LSQ approach describes the estimated (in an idealized
case without any error sources the true) user (receiver) position and clock
error xrx with an approximate component x̂rx plus an incremental offset ∆xrx,
as given by [Kaplan and Hegarty, 2006, Eq. (2.26)] with
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xrx = x̂rx + ∆xrx (5.34)

where the matrices are defined as

xrx =


xrx
yrx
zrx
dtrx

 x̂rx =


x̂rx
ŷrx
ẑrx

d̂trx

 ∆xrx =


∆xrx
∆yrx
∆zrx
∆dtrx

 rsat,n =

xsat,n

ysat,n

zsat,n


(5.35)

where rsat,n defines the satellite position of satellite n and dtrx the receiver
clock error (time offset to the GNSS system time). The position variables x, y,
z are given in meters and the clock error dtrx is given in seconds. The offset of
the approximated position and clock error to the estimated position and clock
error can be determined directly if N = 4, as given in [Kaplan and Hegarty,
2006, Eq. (2.34)], with

∆x = H−1∆p (5.36)

where ∆x defines the user position and clock error offset to the estimated
state, H defines a matrix characterizing the user-satellite geometry and ∆p
defines a pseudorange offset matrix with

∆x =


∆xrx
∆yrx
∆zrx
−c∆dtrx

 H =


usat,1

x usat,1
y usat,1

z 1
usat,2

x usat,2
y usat,2

z 1
usat,3

x usat,3
y usat,3

z 1
usat,n

x usat,n
y usat,n

z 1

 ∆p =


∆p1
∆p2

...
∆pn


(5.37)

where c is the speed of light and usat,n = [usat,n
x , usat,n

y , usat,n
z ] the unit vector

pointing from the approximate user position to the satellite. The unit vector is
defined with

usat,n
x =

xsat,n − x̂rx

r̂n
usat,n

y =
ysat,n − ŷrx

r̂n
usat,n

z =
zsat,n − ẑrx

r̂n
(5.38)

r̂n =
√
(xsat,n − x̂u)2 + (ysat,n − ŷu)2 + (zsat,n − ẑu)2 (5.39)

The pseudorange offset for satellite n is defined with
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∆pn = p̂n − pn (5.40)

where p̂n defines the approximate pseudorange and pn the pseudorange
measurement as given in (5.27), whereas the pseudorange model is given in
(5.28). The approximate pseudorange is calculated with

p̂n =
√
(xsat,n − x̂rx)2 + (ysat,n − ŷrx)2 + (zsat,n − ẑrx)2 + cd̂trx (5.41)

Typically a GNSS receiver has N > 4 satellites in view which lead to an over-
determined system and a solution which fits best to the measurements should
be found. For that purpose, the principle of LSQ can be used to determine
the offset to the approximate position, as given by [Misra and Enge, 2010, Eq.
(6.11)] with

∆x = (HTH)−1HT∆p (5.42)

This estimate assumes that all pseudorange measurements are of same quality,
which is typically not the case. For that purpose, a weighting matrix can be
introduced, which rates the quality of each measurement e.g. based on the
SNR. The weighting matrix is a diagonal matrix with

W =


w1 0 0 0
0 w2 0 0

0 0
. . .

...
0 0 · · · wN

 (5.43)

This weight matrix can be used to formulate the WLSQ estimator, as given by
[Misra and Enge, 2010, Eq. (6.13)], with

∆x = (HTWH)−1HTW∆p (5.44)

The iterative estimation process aims to improve the user position with (5.34)
as long the improvement drops below a defined threshold. It shall be noted
that each iteration lead to (1) a new estimate of the GNSS time, which requires
for each satellite a (2) recalculation of the signal transit time, satellite position
and corresponding transformations and an update of the (3) geometry matrix
H. The convergence is typically very fast and in 2-4 iterations good results can
be achieved [Misra and Enge, 2010, Chap. 6.1.1]. The pseudorange residuals for
the estimated user position and clock error xrx can be obtained by calculating
∆p from (5.40) based on the last estimate. The measurement errors (residuals)
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εmeas in LOS direction can be transformed to a position and clock error via
the geometry matrix H with

εx = H−1εmeas (5.45)

The velocity and clock drift estimate can be approximated such as done for the
position approximation above or can be directly estimated from the Doppler
estimates of the receiver tracking loops. The direct estimate of the user velocity
and clock drift ẋrx is obtained directly if N = 4 with

ẋrx = H−1ṗrx (5.46)

With N > 4 a LSQ or WLSQ can be used, which is defined as

ẋrx = (HTH)−1HTṗrx (5.47)

ẋrx = (HTWH)−1HTWṗrx (5.48)

with

ẋrx =


vrx,x
vrx,y
vrx,z
−cdṫrx

 =


ẋrx
ẏrx
żrx
−cdṫrx

 ṗrx =


ṗrx,1
ṗrx,2

...
ṗrx,n

 (5.49)

where dṫrx denote the receiver clock drift and vrx = [vrx,x, vrx,y, vrx,z] the
user velocity. The weight matrix W has the same definition as in (5.43) but
quantifies the quality of the pseudorange rate measurement, e.g. obtained by
the FLL /PLL discriminator noise. The pseudorange rate measurement ṗn of
satellite n contains the motion of the satellite vsat,n, the satellite clock drift
dṫsat,n as well as the motion and receiver clock drift of the user ṗrx,n. Based
on the fact that GNSS satellites use high grade atomic clocks, the satellite
clock drift dṫsat,n can be neglected for all GNSS (neglectable for GPS since the
selective availability was disabled) [Misra and Enge, 2010, Chap. (6.2.1)]. The
user motion and receiver clock drift ṗrx,n can be measured in LOS direction,
as given by [Misra and Enge, 2010, Eq. (6.34)] and above, with

ṗrx,n = ṗn − vsat,nusat,n (5.50)

where usat,n is the unit vector as defined in (5.38). The pseudorange rate is
derived from the Doppler measurement fd in (Hz) from the receiver tracking
loops as defined in (5.32) and above with
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ṗn = − fd,n
c
fT

(5.51)

where fT is the transmission frequency e.g. L1=1575.42 MHz. The basic
equation for (5.51) is given by [Kaplan and Hegarty, 2006, Eq. (2.36)]. This
approach assumes that the satellite velocity can be calculated from the orbital
model, which is delivered with the satellite ephemeris. The satellite clock
drift is also delivered with the ephemeris data, which can be accounted for
in (5.51). The user velocity and clock drift is affected by measurement noise
and multipath and the computation assumes that the user position and clock
error is estimated in advance [Kaplan and Hegarty, 2006, Chap. 2.5].

5.8.2 Kalman Filtering and Sensor Fusion

Apart from LSQ estimation, Kalman Filters (KF) and Extended Kalman Filters
(EKF) are used to calculate a filtered navigation solution. The Kalman filter
is operated in the PVT domain and assumes linear models and Gaussian
distributed measurements. In contrast to the KF, the EKF allows to deal with
small non-linearities as it performs an additional linerization step for the
calculation of the state covariance matrix and Kalman gain matrix [Wendel,
2007], as indicated by (4.25) and (4.26). The KF and EKF can be used to filter
the GNSS only PVT, if no additional sensor is available. For a GNSS only KF
two possible implementations exist, (1) the update with a PVT solution e.g. a
least-squares or RTK solution or (2) the update with pseudorange and Doppler
measurements. The update with pseudorange and Doppler measurements has
the benefit, that the state can be updated with less than four measurements.
This chapter discusses the required components for the implementation of a
PVT KF based on pseudorange and Doppler measurements, and is aligned to
the generic description of a KF in chapter 4.2. The state-space representation
of a PVT Kalman filter, as defined in (4.7) and (4.8), is

xk = Fkxk−1 + Qk−1 (5.52)

zk = Hkxk + Rk (5.53)

with

xk =

rrx
vrx
trx

 =



x
y
z

vx
vy
vz

dtrx
dṫrx


zk,n =

[
pn
fd,n

]
(5.54)
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where xk is the estimated user state (PVT) of the current epoch k, Qk−1 the pro-
cess noise covariance matrix and Rk the measurement noise covariance matrix.
The measurement zk,n of satellite n consists of the pseudorange measurement
p from (5.27) and the Doppler measurement fd from (5.32). The KF update
sequence is given from (4.12) to (4.15) with (4.16) and (4.17) and requires a
description of the state propagation (system) matrix Fk and a description of
the measurement (design) matrix Hk,n, which are given as

Fk =



1 0 0 T 0 0 0 0
0 1 0 0 T 0 0 0
0 0 1 0 0 T 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 1


(5.55)

Hk,n =

[
usat,n

x usat,n
y usat,n

z 0 0 0 1 0
0 0 0 usat,n

x usat,n
y usat,n

z 0 1

]
(5.56)

where usat,n = [usat,n
x , usat,n

y , usat,n
z ] is the unit vector as defined in (5.70) point-

ing to satellite n and T is the update interval (duration of one epoch). In order
to calculate the Kalman gain Kk a description of the process noise Qk−1 and
measurement noise Rk is required. These covariance matrices model the un-
certainty in the state propagation model and uncertainty of the measurement
given with

Qk−1 =



σ2
Q,x 0 0 0 0 0 0 0
0 σ2

Q,y 0 0 0 0 0 0
0 0 σ2

Q,z 0 0 0 0 0
0 0 0 σ2

Q,vx 0 0 0 0
0 0 0 0 σ2

Q,vy 0 0 0
0 0 0 0 0 σ2

Q,vz 0 0
0 0 0 0 0 0 σ2

Q,clkErr 0
0 0 0 0 0 0 0 σ2

Q,clkD f t


(5.57)

Rk =

[
σ2

p 0
0 σ2

fd

]
(5.58)

where exemplary initialization values for Q(t0) of the main diagonal com-
ponents for a commercial-grade C/A code receiver integrated with tactical-
grade sensors can be found in [Kaplan and Hegarty, 2006, Chap. 9.2.4.4]
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with σ2
Q,x,0 = σ2

Q,y,0 = σ2
Q,z,0 = 0.01, σ2

Q,vx,0 = σ2
Q,vy,0 = σ2

Q,vz,0 = 10−5,
σ2

Q,clkErr,0 = 1.1 ∗ 10−3 and σ2
Q,clkD f t,0 = 10−4. It should be noted that the

process noise matrix Qk−1 is time dependent and the values above are just an
initialization example. The pseudorange and Doppler uncertainty can be an
empirical constant, estimated from the discriminator noise or modeled from
the C/N0. The uncertainty of the state xk is described with the covariance
matrix Pk, whereas the initial state uncertainty P0 is given with

P0 =



σ2
P,x,0 0 0 0 0 0 0 0
0 σ2

P,y,0 0 0 0 0 0 0
0 0 σ2

P,z,0 0 0 0 0 0
0 0 0 σ2

P,vx,0 0 0 0 0
0 0 0 0 σ2

P,vy,0 0 0 0
0 0 0 0 0 σ2

P,vz,0 0 0
0 0 0 0 0 0 σ2

P,clkErr,0 0
0 0 0 0 0 0 0 σ2

P,clkD f t,0


(5.59)

and need to be defined together with the initial state x0. It should be noted,
that Pk is time dependent and all values will change with time. Just for
simplicity only the components on the main diagonal are initialized. An
exemplary initialization of the main diagonal components is given in [Kaplan
and Hegarty, 2006, Tab. 9.1] with σ2

P,x,0 = σ2
P,y,0 = σ2

P,z,0 = (20m)2, σ2
P,vx,0 =

σ2
P,vy,0 = σ2

P,vz,0 = (10m/s)2, σ2
P,clkErr,0 = (103m)2 and σ2

P,clkD f t,0 = (100m/s)2.
Typical update rates of the PVT KF are about 1-20 Hz. The GNSS only KF can
be extended to consider also accelerations, which requires an extension to 11

states [GPSoft, 2020].

Furthermore, the EKF is nowadays typically used for sensor fusion with an
IMU, barometer, magnetometer, odometer or other sensors. The aim of sensor
fusion is to find an optimal navigation solution considering all available infor-
mation, with (ideally) complementary sensors which have uncorrelated error
sources. Thus, GNSS is very often combined with an inertial sensor, which
measures gyro rates and accelerations, and which is a self-contained system
completely independent from external error sources. A GNSS/INS integration
with a IMU need also to estimate the attitude e.g. in euler angels with roll φ,
pitch θ, yaw ψ, accelerometer biases ba, gyro biases bg and eventually scale
factors s. In such a case the state vector of the KF expands to
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xk =



[ φ θ ψ ]T

[ x y z ]T

[ vx vy vz ]T

[ tclkErr tclkD f t ]T

[ ba,x ba,y ba,z ]T

[ bg,x bg,y bg,z ]T

[ sx sy sz ]T


(5.60)

and the corresponding matrices need to be also extended accordingly. Note
that a generic description of the KF is given in chapter 4.2 and a generic
description of the EKF is given in chapter 4.3. A detailed description of a
sensor fusion approach is not part of this work, but [Wendel, 2007] and
[Groves, 2013] can be recommended.

5.9 Code/Carrier KF and Vector Tracking

Standard GNSS receivers track the signals individually and there is no cou-
pling between the tracking loops. The signal tracking loop including the
code/carrier NCO can be described by a direct-state Kalman filter [Won, Eiss-
feller, and Pany, 2011]. The measurement update equation for the DLL/PLL/FLL
signal tracking loop KF is given in the state-space form in [P. Teunissen and
Montenbruck, 2017, Eq. (14.91)] as

x̂TL,k = Fkx̂TL,k−1 + Kkz̃TL,k (5.61)

with

xTL,k =


τ
φ
fd
ḟd

 (5.62)

where xTL,k is the state of the tracking loop (subscript TL) at epoch k defined
by the code phase τ, carrier phase φ, Doppler fd and Doppler rate ḟd. It should
be noted that the estimated Doppler fd from the updated state vector can be
used for the NCO update of the code and carrier tracking loop. The Doppler
fd in (Hz) can be converted to the code rate τ̇ in (chips/s) with a scaling
factor s = fτ/ fc such that τ̇ = s fd, where fτ is the chipping rate in (chips/s)
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and fc is the carrier frequency in (Hz) of the signal under consideration. It
might be further required to estimate the Ionosphere and rate of change of
the Ionosphere to account for differences by the Doppler and code rate. This
equation can be set up by the general update equations of a Kalman filter
through (4.14) and (4.12), where xTL,k refers to mk|k. The transition matrix
Fk to propagate the state in time and design (measurement) matrix Hk to
incorporate new measurements are given as

Fk =


1 0 sT s T2

2
0 1 T T2

2
0 0 1 T
0 0 0 1

 (5.63)

Hk =

1 0 0 0
0 1 0 0
0 0 1 0

 (5.64)

where s is the scaling factor from the Doppler to the code rate and T is the
integration time. The measurements

z̃TL,k =

∆τ
∆φ
∆ fd

 (5.65)

are obtained by the discriminator outputs from (5.21), whereas z̃TL,k =
(zk −Hkmk|k−1) in (4.14) because the discriminators deliver directly the mea-
surement error. The Kalman gain matrix Kk = [ki,j]4−by−3 is computed in the
Kalman filters time-varying optimal gain adjustment process as defined in
(4.17) or as given in [P. Teunissen and Montenbruck, 2017, Eq. (14.92)].

More advanced receivers make use of the vector tracking concept, which
closes the tracking loops via the navigation processor as shown in Fig. 5.5.
For vector tracking the navigation processor is typically implemented as a
Kalman filter, which is updated by the measurements of the tracking loops.
Such a PVT KF is discussed in detail in chapter 5.8.2. Hereby, the tracked
state is the PVT solution as given in (5.54). The update of the state is done on
a low rate basis e.g. 1 Hz. The required LOS projection from the PVT state
to the tracking loop parameters requires knowledge about the ephemeris.
The carrier phase-based vector tracking approach is very difficult to realize,
because the PVT needs to be accurately known to achieve continuous phase
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Figure 5.5: Generic structure of a GNSS receiver vector tracking loop. The tracking loops are
closed via the navigation processor. Redrawn and adapted from [P. Teunissen and
Montenbruck, 2017, Fig. 14.20].

tracking, but can be established as described in [Pany, Falk, et al., 2013]. The
classical approach for vector tracking is to implement a DLL/FLL approach
with code phase and Doppler only. Therefore, the LOS projection is performed
for each satellite n by using the code and Doppler model from (5.28) and
(5.32) with

τn =
pn

c
=

ρn

c
− (dtrx − dtsat,n) +

Isat,n + Tsat,n

c
+ (drx + dsat,n) (5.66)

and

fd,n = − 1
λ
[ρ̇n − c(dṫrx − dṫsat,n)] (5.67)

with

ρn = ||rsat,n − rrx|| (5.68)
ρ̇n = −(vsat,n − vrx)

Tusat,n (5.69)

usat,n =
rsat,n − rrx

||rsat,n − rrx||
(5.70)

where ρn is the geometric distance between satellite n and the receiver, ρ̇n is
the relative velocity between satellite and receiver and usat,n is the unit vector
pointing from receiver to the satellite. The replica signal generators will be
aligned for each channel based on the projected code phase and Doppler.

This procedure couples the individual tracking loops by the PVT solution.
The major benefit of this method is that also very weak signals, e.g. caused by
blockage, can be tracked and analyzed [Pany and Eissfeller, 2006]. The major
drawback of the method is, that one faulty channel can kick out all tracked
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channels because they are coupled together [Lashley and Bevly, 2009]. The
method relies also on a recently accurate initial PVT to initialize the Kalman
filter. Some descriptions and implementations of current vector tracking
receivers are given e.g. in [Vu and Andrle, 2014] and [Ng and Grace Xingxin
Gao, 2017].

5.10 Synthetic Multicorrelator

A multi-correlator enlarges the observation space in code phase and Doppler
by evaluating a large set of correlation values for distinct offsets. The result
is a two-dimensional multi-correlator map, also called Doppler-Delay map,
which contains correlation values in code-phase and Doppler direction. This
provides new possibilities for signal assessment, monitoring and receiver
algorithms, because correlation values at different Doppler offsets are often
not utilized. The definition of a single correlation Pk(∆τ, ∆ fd, ∆φ) for epoch
k is given by (5.9) and can be evaluated through (5.8). The carrier phase has
no influence on the correlation power and the phase error can be retrieved
from the maximum correlation value. If the carrier phase is not of further
interest it can be set to an arbitrary value e.g. zero or to the phase of the
corresponding NCO at same epoch. A multi-correlator map can be produced
for the code-phase range offsets ∆τ = [−∆τ0, . . . , ∆τu] and Doppler range
offsets ∆fd = [−∆ fd,0, . . . , ∆ fd,v] by evaluating

PMC,k;u,v =
M

∑
k=1

rIF(k; τ, φ, fd, A)r̂IF(k; τ̂ + ∆τu, f̂d + ∆ fd,v, φ̂ = 0)∀u, v (5.71)

where the integration time is given with T = MTs starting from sample epoch
k with Ts being the sample period. The evaluation of this massive correlation
values is a computational intensive task because the replicas for all correlation
points need to be generated and correlated against the high rate sample
stream. Thus, real-time performance might not be achieved without having
much computational resources on software receivers or massive correlation
units on hardware receivers.

There exists a highly efficient synthetic approach in the post-correlation do-
main using the principle of FFT, which is called Synthetic Multi-Correlator
(SMC). The work from [Stöber et al., 2011] provided a prove that this efficient
and synthetic approach delivers the same correlation values as a direct multi-
correlator. SMCs up to now are used for signal quality monitoring, spoofing
detection, as an analysis tool for GNSS receiver and simulator development,
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Figure 5.6: Generic architecture of a GNSS receiver with an additional multi-correlator block.
Redrawn and adapted from [P. Teunissen and Montenbruck, 2017, Fig. 14.3].

multipath monitoring, bi-static radars, reflectometry systems, teaching pur-
poses and contribute to this work as basis to obtain multi-dimensional proba-
bility density functions for a measured signal. The term synthetic is coming
from the fact, that no real correlators are placed at the Doppler bins. The eval-
uation at the Doppler bins is performed using the Fourier transform principle,
which shifts a sequence into the frequency domain to obtain its spectral com-
ponents, hereby the correlation values in the Doppler direction. As shown in
Fig. 5.6, the method can be integrated into a typical receiver architecture. In a
first step the correlation values Pl = [P0, . . . , PL−1] are buffered with respect to
time after each integrate-and-dump period. l defines the integrate-and-dump
index which can be related to the sample epoch with kl = k0 + lT fs, where
k0 refers to the first sample of the first correlation value in the buffer. The
number of buffered correlation values depend on the FFT settings, especially
on the FFT length. The FFT length is aligned to 2Λ, where Λ is the FFT order.
Without using the zero padding method, the number of buffered correlation
values must equal the FFT length of 2Λ.

The Discrete Fourier Transform (DFT) is the basis for the FFT and is defined
as

X(m) =
N−1

∑
n=0

x(n)e−i2π nm
N (5.72)

where X(m) is a Fourier transformed complex value at the m-th frequency
bin, N is the discrete Fourier transform length and i the imaginary number.
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The FFT is an efficient realization of the DFT. With FFT realizations, like the
radix-2 Cooley–Tukey algorithm, the number of operations can be significantly
reduced from O(n2) to O(n log n). But this fast implementation constrains the
DFT length to N = 2Λ. Using this definition, the synthetic multi-correlation
values can be obtained by

PSMC,k0;u,m =
L−1

∑
l=0

PMC,kl ;ue−i2π lm
L (5.73)

where PSMC,k0;u,m is a synthetically generated (SMC) correlation value at sam-
ple epoch k0 with code phase index u (defining the code phase offset) and
Doppler bin index m (defining the Doppler offset). Hereby, l defines the index
of the correlation value in the correlation buffer and kl the first sample epoch
of the correlation value with index l. A real correlation is still performed
for the code-phase bins PMC,kl ;u, but the Doppler bins are obtained via the
Fourier transform. Due to the FFT properties the Doppler bin is given with
fd,m = f̂d +

m fT
L , where fT = 1/T is the integrate and dump frequency.

The evaluation of the correlation values leads to a total integration time of
Ttot = LT. The formulation resembles a extended/long coherent integration
time and thus the input correlation values must be free of data bits, which
can be established by a prior data bit wipe-off. In order to wipe-off the data
bits from the input correlation values, they must be known in advance. This
can be achieved in (1) post-processing, when the data bits have been decoded
in a prior processing step, (2) in real-time with a reference receiver delivering
the data-bits in real-time to the rover, whereas the rover need to be slightly
delayed to compensate for the transmission time and in (3) real-time with a
prediction of data bits. It shall be noted that the extended integration time
narrows the Doppler correlation function as depicted in Fig. 5.2. The upper
limit of the total integration time is given either by computational resources
or by the receiver clock stability. Fig. 5.7 shows the input data and result of a
SMC. The right plot in this figure shows the synthetic multi-correlator map. It
can be seen, that the Doppler resolution might be very rough such that only
one bin representing clearly the correlation function.

Increasing the FFT length increases the frequency resolution [Oran Brigham,
1990, chapter 9.1], whereas the frequency resolution equals the Doppler
resolution. A higher FFT resolution can be achieved synthetically with the
method of zero-padding. Hereby, the FFT length is increased and the time
domain input values are filled up with zeros. This leads to a larger FFT
length N at same signal period, which increases the Doppler resolution (the
frequency bins are sinc-interpolated) but also increases the computational
load. Fig. 5.8 shows the result of zero padding on the frequency domain
values by an increased FFT length of factor 23 = 8. The FFT parameters must
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Figure 5.7: Input and result data of a synthetic multi-correlator. The left plot shows the time
domain input data with a GPS L1 C/A code signal at C/N0=47 dBHz and a
coherent integration time of T=1ms. The right plot shows the synthetically generated
correlation values using a FFT order of Λ = 7 which equals to a coherent integration
time of Ttot = 128 ms. Both plots show |P| in the z-Axis [Stöber et al., 2011, Fig. 1

and 2].

be carefully chosen to overcome the effect of leakage, which is basically a
limited spectral resolution.
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Figure 5.8: GPS L1 C/A signal of satellite PRN 12 with 49.1 dBHz and a total coherent
integration time of Ttot = 32 ms. The left plot uses an FFT order of Λ = 5 without
zero padding. The right plot uses the same input signal with zero padding up to
an FFT order of Λ = 8. It can be clearly seen, that this procedure increases the
Doppler resolution. Both plots show |P| in the y-Axis and the sinc behavior of the
Doppler is clearly observable in the right plot.
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The discussion starts with an introduction of the concept of BDPE in chapter
6.1. One important step in the concept of BDPE is the weight update of the
Bayesian filter. One novelty of this work is the proposal of an optimal weight
update and thus, the integration into the concept of BDPE is discussed in
chapter 6.2. Based on the fact that the realization of BDPE includes some
assumptions and limitations, related aspects are discussed in chapter 6.3.
The discussion includes a major drawback of current BDPE architectures in
terms of processing complexity, and therefore a solution to achieve a real-time
capable BDPE receiver on top of a conventional receiver is proposed in chapter
6.4.

6.1 Concept of BDPE

The conventional approach to GNSS positioning is a two steps approach with
synchronization and trilateration as shown in Fig. 6.1 [Closas and Gusi-Amigó,
2017]. Hereby, the synchronization step includes the signal acquisition (coarse
synchronization) and the signal tracking (fine synchronization). The signal
acquisition delivers coarse estimates of the code delay and Doppler, which
are handed over to initialize the signal tracking loops. The DLL / FLL / PLL
receiver tracking loops synchronize the internally generated replica signals to
the received signals in order to deliver refined estimates of the code delay τ̂n,
Doppler f̂d,n and carrier phase φ̂n for each tracked signal n. These estimates
allow to derive the common observables, the code pseudorange p̂n, the carrier
pseudorange ϕ̂n and the Doppler f̂d,n. The decoded ephemeris together with
the observables allow in a second step to trilaterate a PVT in the navigation
processor. The PVT estimates are shown as x̂rx in Fig. 6.1. Some receivers
make use of the Vector Tracking (VT) concept as discussed in more detail
in chapter 5.9. In this concept the receiver tracking loops are closed via the
navigation processor. This is established by a LOS projection of the latest PVT
(p̂rx, v̂rx and t̂rx) in order to estimate the code delay τ̂n and Doppler f̂d,n for
the next integration periods. This step requires knowledge of the satellite
positions and respectively the ephemeris, as depicted in Fig. 6.1. It should be
noted, that the projection of the carrier phase is very difficult to realize due
to the short wavelength of the given carrier frequency, as it requires a very
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Figure 6.1: Principle of a state of the art GNSS receiver with a two steps positioning approach,
synchronization of the replica signals to the received signals and trilateration of the
position.

precise knowledge of the PVT, satellite positions, atmospheric effects as well
as other minor contributions to avoid induced cycle slips. A typical approach
is to let the carrier phase run freely without an alignment at the PVT loop
update step. Such a setup is also considered in this work. It should be noted,
that the LOS projection in Fig. 6.1 accounts also for atmospheric effects, if
they are known.

For a more detailed understanding lets repeat the received complex basedband
signal as given in [Closas and Gusi-Amigó, 2017, Eq. (1)] with

r(t) =
N

∑
n=1

ansn(t− τn)exp{j2π fd,nt + jφn}+ n(t) (6.1)

which is the continuous time equivalent model to (5.4), but with intermediate
frequency fIF = 0, and where N is the number of received LOS signals, an is
the complex amplitude, s(t) is the transmitted navigation signal including the
spreading code, possibly navigation data message and secondary code, t is
the time, τn is the time delay, fd,n is the Doppler deviation, φn is the carrier
phase, j is the imaginary number, the subscript n is the signal index and n(t)
is the noise component. The received signal can be modeled in dependency
of the receiver state xrx = [x, y, z, vx, vy, vz, dtrx, dṫrx]T with x, y, z as the user
position and vx, vy, vz as the user velocity, both in the Earth Centered Earth
Fixed (ECEF) coordinate frame and dtrx, dṫrx as the user clock error and clock
drift such that

r(xrx, t) = q(xrx, t)Ta + n(t) (6.2)
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with

q(xrx, t) =

 s1(t− τ1(xrx))exp{j2π fd,1(xrx)t + jφ1(xrx)}
...

sn(t− τn(xrx))exp{j2π fd,n(xrx)t + jφn(xrx)}

 (6.3)

and where a = [a1, . . . , an]T is a vector containing the amplitudes of the signals.
Each receiver channel maximizes the Cross Ambiguity Function (CAF) to get
estimates of the code delay τ̂n and Doppler f̂d,n. It should be noted, that the
maximization of the CAF is fulfilled by a receiver channel in a FLL/DLL
tracking loop setup, which computes the Maximum Likelyhood Estimator
(MLE) as given in [Closas and Gusi-Amigó, 2017, Eq. (2)] with

Λn(τn, fd,n, Nc, Nnc) =
1

Nnc

Nnc−1

∑
k=0

∣∣∣∣∫ (k+1)TPRN Nc

kTPRN Nc

r(t)sn(t− τn)exp{−j2π fd,nt}dt
∣∣∣∣2

(6.4)
with

(τ̂n, f̂d,n) = argmax
τn, fd,n

{Λn(τn, fd,n, Nc, Nnc)} (6.5)

where Λ(·) delivers the correlation result for the given code delay τn and
Doppler fd,n when using Nc non-coherently summed correlation batches with
a coherent integration time of NcTPRN seconds, where TPRN is the duration of
the PRN code sequence. It should be noted, that (6.4) includes an absolute
value operation to deliver the amplitude independent of the resulting relative
carrier phase, which makes the definition of the carrier phase in the replica
signal obsolete. The pseudorange is given with pn = cτn with c as the speed
of light. The pseudorange measurements have a non-linear relationship with
the user position prx = [x, y, z]T and can be modeled as

pn = ρn(prx)− c(dtrx − dtsat
n ) + In + Tn + c(drx + dsat

n ) + εn (6.6)

where ρ defines the geometric distance in (m) between the user and the
satellite, dtrx and dtsat

n are the receiver and satellite clock error in (s), I and T
are the ionospheric and tropospheric delay in (m), drx and dsat

n are the receiver
and satellite hardware delay in (s) and εn accounts all occurring unmodeled
errors. Note that (5.28) is a more detailed equivalent in terms of error sources.
The relationship between the Doppler, the user and the satellite motion can
be modeled with
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fd,n = −(vsat
n − vrx)

Tun
fc

c
(6.7)

where vrx = [vx, vy, vz]T and vsat
n = [vx,n, vy,n, vz,n]T are the velocity vectors of

the user and the satellite in (m/s), fc is the carrier frequency in (Hz) and c is
the speed of light (m/s). The direction vector pointing from the user antenna
to satellite n is defined as un = (psat

n − prx)/(|psat
n − prx|), whereas psat

n is the
satellite position vector.

The full PVT solution obtained from the navigation processor is the current
user state xrx = [pT

rx, vT
rx, tT

rx]
T, whereas the time consists of the receiver clock

error and receiver clock drift and is given with tT
rx = [dtrx, dṫrx]T.

From (6.6) and (6.7) it can be seen that τ , τ(xrx) and fd , fd(xrx), which
allows to setup a function for the joint correlation function Ψ(·), which is
the non-coherent sum over all satellite signals for a distinct receiver state xrx,
defined as

Ψ(xrx, Nc, Nnc) =
N

∑
n=1

Λn(τn(xrx), fd,n(xrx), Nc, Nnc) (6.8)

and which is the principle of DPE. The MLE for DPE maximizes the cost
function in (6.8) as

x̂rx = argmax
xrx

{Ψ(xrx, Nc, Nnc)} (6.9)

which is the maximization of the joint correlation function by varying the re-
ceiver PVT state xrx. In contrast to the classical two stage estimation approach,
DPE is a reverse single step estimation approach which aims to estimate the
PVT directly from the received signal samples [Closas, Fernández-Prades, and
Fernández–Rubio, 2007].

BDPE applies Bayesian estimation principles on top of DPE, as also discussed
in [Closas, Fernández-Prades, Bernal, et al., 2008]. According to the discussion
in chapter 4, different type of Bayesian filters exist. The main difference to
the MLE is, that Bayesian filters deliver a filtered estimate over time and
allows to include side information e.g. from an IMU or probabilistic maps.
The following equations are relevant for non-parametric Bayes filters, as this
work focuses on the optimal weight update function for a grid-based and a
particle filter. Bayes filters rely on two steps prediction and update and require
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therefore a propagation and update model. Let’s briefly summarize the most
relevant equations for BDPE. The propagation of the state from xrx,k−1 to xrx,k
is given with

xrx,k = fk(xrx,k−1, vk−1) (6.10)

where fk(·) is a possibly non-linear function and vk−1 models the process noise.
The measurement model, which relates the state xrx,k to the measurements zk
is given with

zk = hk(xrx,k, nk) (6.11)

where nk defines the measurement noise. The simplest BDPE propagation
model for (6.10) is a linear model as given in (5.52) with

xrx,k = Fkxrx,k−1 + Qk−1 (6.12)

which considers a constant velocity and constant clock drift for the interval
T = NcNncTPRN seconds when using the same definition for Fk and Qk−1 as
given in (5.55) and (5.57). For some other state propagation models and for
the inclusion of other sensors into the propagation model the reader is referred
to [Closas, Fernández-Prades, Bernal, et al., 2008]. The BDPE measurement
model for (6.11) is given in (6.2) with

zk = q(xrx,k)
Ta + nk (6.13)

The prediction and measurement update step using (6.12) and (6.13) is
performed according to the Chapman-Kolmogorov equation in (4.3) and the
Bayes rule in (4.4). The aim of Bayesian filters is to estimate the true posterior
PDF p(xrx,k|z1:k), which can be represented in the case of a particle filter as
given in (4.35) as

p(xrx,k|z1:k) ≈
Ns

∑
i=1

wi
kδ(xrx,k − xi

rx,k) (6.14)

Hereby, a set of Ns samples and corresponding weights wi
k are used to recon-

struct the posterior PDF. The update step of a sequential Bootstrap particle
filter, which updates the weights wi

k with the new measurements, is defined
in (4.39) with

wi
k ∝ wi

k−1 p(zk|xi
rx,k) (6.15)
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In order to extract the PVT state from the signal samples the step of signal
correlation is inevitable, because the GNSS signal needs to be recovered from
the noise. From the known BDPE related literature in [Closas, Fernández-
Prades, Bernal, et al., 2008] and [Closas, 2009] it is assumed that the weight
update is based on the assumption that

p(zk|xi
rx,k) := α−1Ψ(xi

rx,k, Nc, Nnc) (6.16)

with

α =
∫

Ψ(xrx, Nc, Nnc)dxrx (6.17)

whereas α is a normalization factor in order to interpret the joint correlation
function as a PDF. It should be noted, that this normalization step is obsolete
if the weights in (6.15) are normalized after the weight update such that

Ns

∑
i=1

wi
k = 1 (6.18)

After the weight update the number of effective particles is measured with
(4.41) and a resampling step is triggered if a defined threshold is exceeded.
The assumption in (6.16) let operate the particle filter (or grid-based filter) on
the joint correlation function, which resembles a 8-dimensional direct PVT
tracking.

The PVT state and accuracy estimate is based on the updated and normalized
weights. The posteriori belief is the best PVT estimate of the current state and
is generated as a weighted mean with

x̂rx,k =
Ns

∑
i=1

wi
kxi

rx,k (6.19)

If the particle density is high and the resolution small, the particle with the
highest weight can be optionally be used as the best estimate such that

x̂rx,k =
Ns

∑
i=1

δ(arg max
i∈[1,Ns]

(wi
k)− wi

k)x
i
rx,k (6.20)

where δ(·) refers to the Dirac operator. The expected gain in the SNR of
DPE is significant and depends on the number of used GNSS signals. The
formulation is given in [Closas and Gusi-Amigó, 2017] with
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Figure 6.2: Principle of a BDPE GNSS receiver with a single step position estimation approach.

GdB > 10 log10(N) (6.21)

where N is the number of GNSS signals and GdB is the expected gain com-
pared to classical tracking techniques. It is impressive, that with 3 GNSS
systems, 3 frequencies and 10 satellites (of each system) in view a gain in the
SNR of about 19.5 dB could be achieved for same integration periods, which
makes the method superior in sensitivity compared to classical approaches.

In contrast to the common two steps positioning approach, BDPE is an inverse
single step estimation method, which is depicted in Fig. 6.2. As indicated in
the figure, a BDPE receiver requires as input (1) the GNSS signal samples, a (2)
rough initial PVT and the (3) ephemeris data. Hereby, the initial PVT x̂rx,0 is
required to initialize the PF or GBF, as indicated by the PF/GBF block in Fig.
6.2. The upper plot in the block indicates an initial distribution of the particles,
symbolically shown by the weights plotted over one dimension, whereas the
true BDPE filter has an 8-dimensional state space. The update step in a BDPE
receiver evaluates the new weight for each particle. Therefore, each particle
state xi is projected into the LOS code delay τi and Doppler fd,i for each
satellite. Thus, τi and fd,i are vectors. The correlation step is performed for all
satellite signals N for all particles or grid-nodes i. The output of the correlation
step is a scalar non-coherent joint correlation weight ψi. Two options exist
now for the filter update, the (1) direct use of the joint correlation weight such
that wi = ψi, or (2) a prior transformation to a true probabilistic weight such
that wi = Q(ψi), where Q(·) should denote a transformation function. The
updated weights, as indicated by the lower plot in the left block in Fig. 6.2,
allow the PF or GBF to estimate the current state x̂rx,k and variance σ̂rx,k. The
resampling step of the Bayes filter is indicated by the arrow pointing from the
lower plot to the upper plot and by the equalized weights wi.
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Figure 6.3: MLE cost function for DPE from [Closas, 2009, Fig. 4.6]. It should be noted, that
the cost function γ(·) in this figure relates to a normalized inverse version of ψ(·)
in (6.8). The function is evaluated for γ , [x, y]T, where x− x̂ and y− ŷ refers to
the position offset in the ECEF coordinate frame.

The cost function for the MLE of DPE is shown in Fig. 6.3. The figure shows a
normalized inverse version of ψ(·) in (6.8) spanned over the xy-plane in the
ECEF frame. A BDPE receiver aims to track the peak of the joint correlation
function and therefore a particle filter or grid-based filter need to cover the
peak properly in order to get reasonable estimates of the receiver state.

6.2 The Weight Update

The weight update as given in (6.16) with

p(zk|xi
rx,k) := α−1Ψ(xi

rx,k, Nc, Nnc) (6.22)

and with

α =
∫

Ψ(xrx, Nc, Nnc)dxrx (6.23)

interprets the joint correlation function Ψ(·) as a PDF. This assumption is
a working principle and simplifies the realization of a BDPE receiver, but
comes along with drawbacks. Three major problems arise with the definition
in (6.22)

(1) the joint correlation function does by far not reflect the true PVT accuracy
of some meters
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(2) the dependency of the PVT accuracy on the signal strengths is not
reflected properly

(3) the approach is not a valid mathematical description

The extension of the joint correlation function is visible in both plots in Fig.
6.3 for GPS L1 C/A signals, which results from the non-coherent sum of the
correlation functions of all tracked signals projected into the PVT domain.
Both plots are spanned over the xy-plane of the ECEF frame, whereas plot
(b) is a zoomed version of plot (a). This figure clearly underlines statement
(1), as the expected standard deviation of the peak is in the magnitude
of several tens of meters. Evidence of statement (2) is given inherently by
the extension (width) of the correlation function, which solely depends on
the signal type, respectively the code rate, the subcarrier frequency and
modulation scheme, but not on the signal strength. In order to get proper
variance estimates, a measurement model with a dependency on the signal
strength is required. Nevertheless, direct tracking of the joint correlation
function in the PVT domain using a particle filter is possible and was shown
in [Dampf, Witternigg, et al., 2017] and [Witternigg et al., 2017].

One novelty of this work is the development of an optimal weight update
function for BDPE, which also properly reflects the measurement accuracy
based on the signal strength. The optimal weight update can be derived from
the probabilistic description of the signal samples and is given with

p(zk|xi
rx,k) =

1
(2π)L exp{−L}N

√
π

2L

N

∏
n=1

exp

{
|Pn(τn, fd,n)|2

4

}
I0

(
|Pn(τn, fd,n)|2

4

)
(6.24)

where L defines the correlation length in samples, N the number of signals,
Pn(τn, fd,n) is the correlation value at code delay τn and Doppler fd,n, which
depend on xi

rx,k according to the LOS projection, and I0 refers to the Bessel
function of the first kind and order zero. Hereby, the measurement p(zk|xi

rx,k)

represents a multi-dimensional PDF, which depends on the state xi
rx,k. It

should be noted, that the equation builds the product of PDFs of multiple
signals. The PDF of a single signal is a 2D joint PDF which delivers a proba-
bilistic description of the measurement in the code phase and Doppler domain,
whereas the variance of the PDF represents the measurement accuracy of the
signal. This definition accounts for problem (1) and (2), because it reflects
the true measurement accuracy in dependency of the signal strength as it de-
pends on the correlation value Pn(·). The development of the optimal weight
update equation with a discussion on the measurement accuracy, numerical
constrains and efficient realizations is discussed in detail in chapter 7.

The proposed BDPE implementation directly tracks the 8-dimensional PVT
state by using as input multi-dimensional probability density functions. Fig.
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Figure 6.4: The plot shows the normalized logarithmic particle weights w̃i
k from (B.14), as-

suming a uniform distribution from the previous epoch, i.e., w̃i
k−1 = 0 and using

the optimal particle weight update from (B.13). The particles are equidistantly dis-
tributed over a grid in the north-east plane. The lines through the plot correspond
to the weighted correlation function in the position domain and thus refer to a
GNSS signal. In a proper case (correct user velocity, clock error and drift), the
lines overlap at a distinct point in the position domain, which is in this case the
northeast plane. The resulting peak represents the probability of the 2D position.
Note that the plotted weights are normalized and in the logarithmic scale, thus
the peak has the maximum value of 0. The coherent integration time for this plot
was set to Tcoh = 2 ms. The processed data refers to open sky. It was recorded at
latitude LAT = 47.06446263 deg, longitude LON = 15.40777110 deg on the rooftop
of Reininghausstraße 13a, Graz, Austria [Dampf, Frankl, and Pany, 2018, Fig. 2].

6.4 shows an ideal tracking state, where all used GNSS signals overlap in a
distinct PVT. The figure shows the joint probability density function for a 2-
dimensional grid, where the weights of the equidistant grid nodes are spanned
of the north-east plane of a local coordinate frame. Thus, this figure shows
the joint probability function of the horizontal position. In the horizontal local
coordinate frame each GNSS signal looks like a wall. In an ideal tracking
case as shown in Fig. 6.4, the GNSS signals overlap at the true PVT, which
brings the significant sensitivity gain in DPE. In other words, DPE allows to
accumulate signal energy from different signals in the PVT domain. It shall
be noted, that in this example the intersection of the north-east plane is made
at the true PVT and thus the correlation in the PVT domain results in a clear
unimodal maximum.

Fig. 6.5 shows an suboptimal case with an improper aligned receiver clock
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Figure 6.5: This plot depicts a case when the clock error is improperly aligned. The GNSS
signals do not overlap at a distinct position in the north-east plane. The plot shows
the normalized logarithmic particle weights w̃i

k from Equation (B.14), assuming a
uniform distribution from the previous epoch, i.e., w̃i

k−1 = 0 and using the optimal
particle weight from Equation (B.13). The particles are equidistantly distributed over
a grid. The lines through the plot correspond to the weighted correlation function
in the position domain and thus refer to a distinct GNSS signal. The lines look
very broad even after the weight update, which comes from the logarithmic scale
given by log(wi

k). The coherent integration time for this plot was set to Tcoh = 2 ms.
The processed data refers to open sky. It was recorded at LAT = 47.06446263 deg,
LON = 15.40777110 deg on the rooftop of Reininghausstraße 13a, Graz, Austria
[Dampf, Frankl, and Pany, 2018, Fig. 3].

error. In such a case the GNSS signals do not perfectly overlap and a offset
between the signals become visible, because the PDF of a single signal is very
sharp. In such a situation the gain of DPE is partially or completely lost. I
shall be noted, that for this case a optimum still exists at the true clock error,
but it should illustrate cases when signals do not perfectly overlap. This can
be the case, if all processed signals do not intersect at a distinct PVT e.g. if
large atmospheric effects are not modeled or just multipath signals are present.
Nevertheless, with the Bayesian estimator, which calculates the PVT with a
weighted mean, a proper state estimate can be performed, unless the signals
drop below the noise floor. The work in [Dampf, Frankl, and Pany, 2018] and
chapter 7 outline the optimal way to perform the weight update and how to
prevent from losing the gain of DPE.
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6.3 Discussion on BDPE Aspects

This chapter discusses different aspects which need to be considered for a
BDPE receiver. The discussion covers the initialization of a BDPE receiver, the
LOS projection, the impact of atmospheric effects and possible support of
augmentation systems, the phase coherency, the benefit of multiple systems
and frequencies, the impact of the type of navigation signal as well as problems
with the high computational complexity.

6.3.1 Initialization

As visible in Fig. 6.2, BDPE requires an initial position and knowledge about
the ephemeris. As also proposed in [Closas and Gusi-Amigó, 2017], a BDPE
receiver can be operated on top of a conventional GNSS receiver. Once the
ephemeris have been decoded and an initial PVT is available, the receiver can
switch to BDPE tracking.

If such an architecture is not used, the initial PVT and ephemeris need
to be available from external sources. The ephemeris data (e.g. ultra-rapid
orbits) can be easily obtained via the Internet. Since the emerging technology
paradigms such as the Internet of Things (IOT) or smart cities, a Internet
connection can be assumed to be available nearly everywhere, especially in
urban areas and in numerous devices [GSA, 2017]. The initial position can
be obtained for example by using a LTE position or a position entered by
the user. The initial velocity can be assumed to be zero for low dynamic
scenarios, but for higher dynamics, e.g. aircraft or rockets, an approximate
initial velocity might be needed. The initial time can also be retrieved from
the LTE network or Internet using the Network Time Protocol (NTP) or
Precission Time Protocol (PTP). Furthermore, the time could also be obtained
in Europe from the DCF77 long-wave time signal. It is important, that the
initial uncertainty of the PF or GBF must cover the true PVT, otherwise no
convergence can be expected.

The initial PVT is given with

xrx,k=0 =

rrx,0
vrx,0
trx,0

 =

 [x0, y0, z0]T

[vx,0, vy,0, vz,0]T

[dtrx,0, dṫrx,0]T

 (6.25)

and is used to initialize the particle states of a particle filter, whereas the PVT
uncertainty is described by the probability distribution of the particles. Under
the assumption that the initial distribution is Gaussian, the particles can be
initialized with
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p(xrx,k=0) = N (xrx,k=0, Pk=0) (6.26)

where Pk=0 is the covariance matrix for the initial state uncertainty. Typically,
in GNSS the vertical position accuracy is less accurate as the horizontal due
to the geometry of the satellites. The simplest way to account for this fact is to
perform the initialization in a local coordinate frame e.g. North East Down
(NED) and shift it to the working ECEF frame, which is not explicitly shown
here. Once an initial set of particles is drawn with (6.26), the particle filter is
initialized.

6.3.2 LOS Projection

The aim of the BDPE receiver is to track the peak of the joint correlation
function as shown in Fig. 6.3. Therefore, the replica signal alignment for the
correlation process must be modeled accurately, such that the individual
signals overlap in the PVT domain. The extended LOS projection model for
multiple systems for the code pseudorange is given with

pn = ρn(prx)− c(dtrx − dtsat
n ) + In + Tn + c(drx + dsat

n ) + cdsys + εn (6.27)

and needs to be as accurate as possible, because the code phase for the replica
signal alignment is contained in the pseudorange pn. The pseudorange model
contains

• the geometric range ρn = ||psat
n − prx||, which depends on the accuracy

of the satellite position psat
n from the ephemeris. Thus, the projection

error could be reduced when using precise ephemeris.
• the satellite clock error dtsat

n , which is known from the ephemeris. It
should be noted, that the receiver clock error dtrx is part of the receiver
state, which is to be estimated.

• the ionospheric delay In, which can be calculated using the Klobuchar
model and which parameters are part of the ephemeris. Beside the
standard Klobuchar model there exist several possibilities to get more
accurate estimates for the ionospheric delay, (1) use more accurate
models like NeQuick, (2) use correction data from SBASs like WAAS or
EGNOS, (3) use PPP correction data, (4) use a differential approach like
DGNSS or RTK, or (5) use a dual frequency approach.

• the tropospheric delay Tn, which can be modeled with assumptions on
the vertical profile of the troposphere, which consists on a hydrostatic
and wet component delay. Several models exist which can be grouped in
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geodetic or navigation-oriented models, whereas some models require
surface meteorological data.

• the frequency dependent receiver hardware delay drx, which is induced
by the receiver hardware. The receiver hardware delay is typically con-
stant and can be estimated in a time synchronized simulator setup or
with differential methods, if the delay of the reference is known.

• the frequency dependent satellite hardware delay dsat
n , which is known

from the ephemeris data.
• the system offset dsys, which defines the time offset between the different

GNSSs. The system offset might be retrieved from the ephemeris or
needs to be estimated.

The LOS projection does not account for any other errors indicated by εn,
like multipath or scintillation effects. A inaccurate projection model results
in residual errors which cause relative offsets of the correlation functions in
the PVT domain, which might lead to a reduction of the gain of DPE and
difficulties in tracking a possibly distorted peak.

6.3.3 Atmospheric Effects

Atmospheric effects occur during propagation of the signal from sky to earth.
During the propagation the signal passes the ionosphere I and troposphere
T, as modeled in (6.27). Hereby, the ionized atmosphere delays the code
and advances the carrier phase, whereas the total electron content and signal
travel distance through this layer defines the magnitude of the delay. The
ionospheric delay on the code is typically in the magnitude of 2-10 m and the
tropospheric delay on the code and carrier is in the magnitude of about 2.3-2.5
m, if the satellite is in zenith [Misra and Enge, 2010, Tab. 5.4]. Both effects are
relevant to DPE, because the correlation functions and PDFs need to overlap
in the PVT domain such that all available signal energy of the tracked GNSS
signals accumulate in a distinct point, as illustrated by Fig. 6.4 and Fig. 6.5.
Otherwise, the maximum possible signal to noise ratio cannot be exploited,
which leads to a reduced sensitivity. This can be critical with high code
rate signals, which have a very narrow correlation function and PDFs due
to the improved ranging performance, e.g. for GPS L5 or Galileo E5AltBOC.
The effect of non-overlapping signals in the PVT domain for unmodeled
ionospheric errors is similar to an artificial delay in the receiver clock error.
Both effects cause delays on each pseudorange, but it should be made clear,
that the delays for the artificial clock error is the same for all pseudoranges,
whereas the atmospheric delays are different for all pseudoranges. Thus,
the resulting effect in the PVT domain of unmodeled atmospheric delays is
expected to be similar as a delay in the clock error as shown in Fig. 6.5. If
atmospheric models are properly applied, the tension reduces and the gain
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could be recovered, which is illustrated in Fig. 6.4. Without modeling of the
atmospheric delays, a reduced gain of DPE is expected, whereas higher code
rate signals are affected stronger.

6.3.4 Augmentation Systems

Augmentation systems improve the GNSS position by delivering supple-
mental data. Beside plausibility information on GNSS signals and accurate
correction data for satellite clocks and orbits, a significant part of the position
improvement is resulting from accurate information about the ionospheric
layer. The availability of correction data from an SBAS or GBAS system allows
to model the ionospheric delays more precisely and reduce the UERE. DPE re-
lies on a reasonable accurate pseudorange model to be able to accumulate the
correlation functions or PDFs for a distinct PVT. The more accurate the pseu-
dorange model, the better is the overlay of the correlation functions or PDFs
and the higher is the estimated accuracy and sensitivity. Thus, augmentation
systems allow to model the ionospheric delay I in (6.27) more accurately. But
augmentation systems have in context of DPE only a small beneficial impact,
because it is expected that the dominant part of the sensitivity gain of DPE
can also be achieved without correction data from augmentation systems.

6.3.5 Phase Coherency

The herein presented approach for DPE and BDPE is based on a non-coherent
sum of correlation functions, which is shown by the absolute value operation
in (6.4) with

Λn(τn, fd,n, Nc, Nnc) =
1

Nnc

Nnc−1

∑
k=0

∣∣∣∣∣
complex correlation value Pn︷ ︸︸ ︷∫ (k+1)TPRN Nc

kTPRN Nc
r(t) sn(t− τn)exp{−j2π fd,nt}︸ ︷︷ ︸

replica signal

dt

∣∣∣∣∣
2

(6.28)

If the absolute value of the complex correlation value Pn is build, the resulting
phase of the correlation value vanishes and the summation becomes non-
coherent. Based on the fact that only a non-coherent summation is considered
for DPE, the phase in the exponential of the replica signal is obsolete. This
applies also for the introduced optimal weight update, which is also based on
absolute correlation values as given in (6.24) with
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p(zk|xi
rx,k) =

1
(2π)L exp{−L}N

√
π

2L

N

∏
n=1

exp

{ absolute of Pn︷ ︸︸ ︷
|Pn(τn, fd,n)| 2

4

}
I0

( absolute of Pn︷ ︸︸ ︷
|Pn(τn, fd,n)| 2

4

)
(6.29)

This aspect simplifies the BDPE setup significantly, because phase coherency
must not be achieved. Thus, the LOS projection needs to be just accurate in the
meter to decimeter level, depending on the extension of the used correlation
functions, respectively the used GNSS signal types, or the extension of the
PDFs. Nevertheless, a phase coherent approach would be a very interesting re-
search area. The phase coherent approach would require a precise knowledge
of the atmospheric delays in order to converge (similar to PPP) as well as a
highly resoluted PVT space to be able to resolve the carrier phase ambiguity.
The starting point for a phase coherent approach would be the probabilistic
function in (7.2).

6.3.6 Multi-System and Multi-Frequency

Using multiple GNSS systems for positioning brings the benefit of a higher
number of available satellites, which improves with classical positioning
techniques the availability and accuracy of the PVT. DPE adds an additional
benefit, the method improves also the sensitivity with an increasing number
of satellites and signals. The gain is coming from the fact, that DPE is tracking
all signals at once. This approach allows to accumulate the signal energy from
all available signals, whereas classical tracking methods rely on the signal
energy of a single signal. The improvement in sensitivity is significant and
the major benefit of DPE. The sensitivity gain of DPE is given in equation
(6.21). But the full gain of DPE can only be exploited with a good parameter
modeling or parameter estimation, and becomes visible, if all estimated or
modeled parameters fit to the true parameters. When calculating a PVT
with multiple systems and multiple frequencies, some additional parameters
need to be accounted for. For DPE, the system time offset is an important
parameter. Each GNSS system works in its individual time frame, which is
the GPS Time (GPST), GLONASS Time (GLONASST), Galileo System Time
(GST) and Beidou Time (BDT). The GNSS system times are referenced to
Coordinated Universal Time (UTC), also known as Greenwich Mean Time
(GMT) or International Atomic Time (TAI). The offset between UTC and TAI
is defined as TUTC = TTAI + TLeapSeconds. The time specifications of the systems,
as defined in [ESA, 2018], are given with:

• GPST is synchronized to UTC(USNO) at 1 ms level, but typically kept
within 25 ns (about 7.5 m)
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• GLONASST is synchronized to UTC(SU)+3h at 1 ms level (about 300 m)
• GST is synchronized to TAI at 50 ns level (about 15 m)
• BDT is synchronized to UTC at 100 ns level (about 30 m)

These system offsets are crucial for Multi-GNSS DPE, because the auto-
correlation functions or PDFs of the measurements need to overlap in order to
exploit the full gain of DPE. It needs to be considered, that the auto-correlation
function of a BPSK(1) has an extension of about +/- 300 m and a BPSK(10)
of about +/- 30 m, and the PDFs of the signal measurements might be more
narrow. In general, the system offsets need to be significantly smaller than
the width of the auto-correlation functions or extension of the expected PDFs,
such that the correlation functions or PDFs overlap in the PVT domain in
order to exploit the gain. The system offsets can be estimated with DPE by
adding another dimension, but which further increases the computational
complexity, or need to be supplied by externals means. Based on the fact, that
the drift of the system-offsets is very small due to very high-quality clocks,
the offsets can be queried e.g. via the Internet and applied in the DPE receiver.
The system offset dsys needs to be accounted in (6.27), but is not explicitly
written in the equation as this work considers just a single system (GPS).

Frequency dependent delays arise in the satellite, in the transmission channel
and in the receiver. The frequency dependent instrumental delays caused
by the satellite and receiver hardware are neglectable small for DPE, but
they are transmitted for each satellite in the navigation message and can be
calibrated for any GNSS receiver. The frequency dependent delays in the
transmission channel allows to estimate the ionospheric delays, whereas the
ionospheric delays are typically modeled in a single frequency receiver (e.g.
using the Klobuchar model). Estimating the ionospheric delays with a multi-
frequency DPE approach is possible, but increases the dimensionality of the
estimation problem, as an estimate for each satellite is required. It is expected,
that the ionospheric models are sufficient accurate for DPE, especially when
considering inaccuracies of in the pseudorange model, as it is proposed in
chapter 7.1.

6.3.7 Impact of the Navigation Signal

The type and parameters of a navigation signal have an impact on the auto-
correlation function and thus also on DPE. Higher code-rates lead to a sharper
(narrow) auto-correlation function, which allows conventional tracking meth-
ods to track the navigation signal more precisely [Misra and Enge, 2010,
Chap. 3.3 and 10.6]. The impact is the same for DPE, because the sharp auto-
correlation function leads to a narrow PDF in LOS direction. This effect can be
translated to the PVT domain, resulting in a smaller variance of the estimated
PVT. The variance of the PDF of the PVT depends also on the modulation
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type, as for example a BOC(1,1) results in a sharper auto-correlation peak
compared to a BPSK(1). One important aspect of different modulation types
is, that they inherently can cause multi-modal PDFs, which is e.g. the case
for an BOC(1,1). The three autocorrelation peaks of the BOC(1,1) leading to a
multi-modal PDF. But due to an exponential weighting, as visible in (6.29),
the side lobes may only be visible with logarithmic plots. Furthermore, the
variance of the PDF of the PVT also depends on the received signal strength
(signal amplitude). An increase in the signal amplitude behaves the same
way as increasing the integration time, both result in a higher correlation
value. This effect is shown in Fig. 7.1 and thus the transmission power of the
satellites impacts the DPE estimate. The navigation message on data signals
need to be accounted for long integration periods, which can be done by (1)
building the non-coherent sum of short coherent batches or by (2) performing
a prior navigation data bit wipeoff. In this aspect, this is not required for data
free pilot signals.

6.3.8 Computational Complexity

The major drawback of DPE and BDPE is the computational complexity, as
it

(1) requires to solve an 8-dimensional optimization problem and it
(2) requires a computational complex signal correlation step for each tracked

signal for each optimization step in (1).

When considering a minimalistic GBF with just Ns,d=1 = 3 nodes for each
dimension to reconstruct the PDF of the PVT for d = 8 dimensions, which
uses for the evaluation just N = 8 signals, the number of

Ncorrs = Nd
s,d=1N = 52488 (6.30)

correlators are required. A classical receiver would just require for the same
example about Ncorrs = 48 correlators (when consider an Early-Prompt-Late
correlator for the In-phase and Quadrature channel). This simple example
gives a order of magnitude of the processing complexity, whereas even a
higher number of grid nodes or particles is required to properly represent
the PDF. It could easily be seen, that achieving a real-time capable BDPE
receiver, which performs a continuous tracking (no snapshot processing) is a
very difficult task.

The work in [Peretic and Grace X Gao, 2020a] proposes to split up the 8-
dimensional state into 2x4-dimensions by tracking the position and clock
error (4 states) and velocity and clock drift (4 states) separately. The goal of
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the separation is a reduction in computational complexity. This reduces the
grid size from N8

s,d=1 to 2N4
s,d=1, where Ns,d=1 is the number of grid nodes per

dimension. This leads to a reduction in complexity of N8
s,d=1 − 2N4

s,d=1. This is
a significant reduction, but it needs to be considered, that both search spaces
are inherently coupled and the full gain of DPE can only be exploit if both,
the position and velocity search spaces are at their maxima’s.

The realization of a real-time capable BDPE receiver is a challenging task
which might require a tradeoff between the used algorithms, the targeted
positioning performance and available computational resources. One novelty
of this work is the proposed real-time capable BDPE architecture as discussed
in the next chapter 6.4.

6.4 Proposed BDPE Receiver Architecture

In order to realize a real-time capable BDPE receiver or grid-based analysis
tool which is independent from external information, two problems need to
be solved,

(1) a significant reduction of the processesing complexity and
(2) to stay independent on external information.

In order to solve these problems, a maximum reuse of existing and high-
efficient GNSS signal processing elements of an existing software receiver
is targeted and the BDPE receiver is setup on top of a conventional GNSS
receiver. This allows to solve both problems, because high-efficient methods
together with enabling assumptions allow to reduce the processing complexity
and the basis of a conventional receiver allows to stay independent, because
DPE/BDPE can be initialized with a conventional PVT solution and can reuse
the decoded ephemeris for the LOS projection. Therefore, it is proposed to use
three enabling key elements to achieve a integrated real-time BDPE receiver,

(1) a vector tracking setup as discussed in chapter 5.9
(2) the usage of synthetically generated multi-correlation values (Doppler-

Delay maps) as discussed in chapter 5.10

(3) and the assumption that interpolated correlation values are sufficiently
accurate for DPE/BDPE when using a non-coherent approach

Hereby, the vector tracking concept is used for the LOS projection, which
is required for DPE to align the receiver internal replica signals for the
correlation process. Furthermore, the FFT based synthetic multi-correlator is
applied to a time series of common correlation values to obtain very efficiently
a Doppler-Delay map for each integration period. The proposed receiver
architecture is shown in Fig. 6.6.
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Figure 6.6: BDPE processing scheme as implemented in the SX3 software based GNSS receiver;
(1) refers to the analogue to digital conversion, the first stage of the receiver; (2)
refers to the GNSS signal processing, which produces massive number of correlation
values using synthetical FFT based correlation methods for each tracked channel.
The correlation values are converted to 2D joint PDFs in (3), which are further used
to update the particle weights of a particle filter as shown in (4). For the grid-based
analysis tool the particles in (4) are distributed over a equidistant grid and can be
interpreted as grid nodes. Adapted from [Dampf, Lichtenberger, and Pany, 2019,
Fig. 1].

The first block (1) refers to the RF front-end which does the signal condi-
tioning of the analogue signal and the ADC. The digital I/Q-samples are the
input to the signal processing block (2), which uses a channelized structure for
signal acquisition, tracking and producing massive correlation values with the
SMC. The second block consists of common FLL/PLL/DLL tracking loops,
which are steered by the vector tracking feedback loop. Each tracking channel
consists of a list of correlators with defined code offsets (not only Early-
Prompt-Late correlators). The replica signals are generated and correlated
against the incoming signal for each integration period. Each channel stores
(buffers) a series of short coherently integrated correlation values (e.g. 1 ms)
for all code offsets. The SMC removes the data bits and performs a complex
FFT on the buffered series of complex valued correlation values to obtain
the frequency domain (Doppler domain). This resembles a long coherent
integration time and the output of the SMC is a non-coherently integrated
Doppler-Delay map for each integration interval. The Doppler-Delay maps
for each tracked signal are delivered to the third block (3), which shows the
measured data in the correlation domain. One novelty of this work is the
conversion of the Doppler-Delay maps into 2D joint PDFs, which deliver a
probabilistic description of the measurements. The PDFs are used as measure-
ment input for the fourth block (4), which shows the navigation processor.
The measurement update from block (3) to (4) assumes that interpolated

100



6 Bayesian Direct Position Estimation

data from the Doppler-Delay map or the PDF is sufficient. The navigation
processor uses a Bayesian filter (grid or particle filter) to estimate the PVT
directly from the correlation values. It should be noted, that the generation
of the correlation values in the Doppler-Delay map is an intermediate step
to achieve a high processing efficiency. In the literature BDPE is referred to a
PVT estimate directly from the signal samples, but which implicitly requires
the signal correlation step and which is explicitly shown in Fig. 6.6. Thus,
the interpretation of the filter update directly from the signal samples and
directly from the correlation values is the same, as the correlation values
represent the state of the signal samples for a given code-phase and Doppler.
The Bayes filter in the navigation processor in block (4) estimates the PVT,
which is feedback via the vector tracking loop to the signal processor. The
LOS projection uses the best estimate of the PVT and the ephemeris to obtain
the signal synchronization parameters code delay τ̂n and Doppler f̂d,n for the
next correlation epoch for each signal n.

The correlation values of the Doppler-Delay map are obtained with the SMC,
which applies the FFT on a time series of complex correlation values as
discussed in chapter 5.10 and as given in (5.73) with

PSMC,k0;u,m =
L−1

∑
l=0

PMC,kl ;ue−i2π lm
L (6.31)

where PSMC,k0;u,m is a synthetically generated correlation value at sample epoch
k0 with code phase index u (defining the code phase offset) and Doppler bin
index m (defining the Doppler offset). Hereby, l defines the index of the
correlation value in the correlation buffer and kl the first sample epoch of the
correlation value with index l. Thus, PMC,kl ;u denotes the real correlation value
at kl in the time series of correlation values with the code offset index u. The
resulting correlation values of the SMC can be represented in a matrix notation
as PSMC. This formulation delivers a discrete grid of complex correlation
values in dependency of the code delay and Doppler. The major benefit of
this FFT based approach is, that it is possible to generate massive correlation
values for many signals very efficiently, in parallel and in real-time. The
correlation values in (6.31) acts as input for the optimal weight update as
given in (6.24) with

p(zk|xi
rx,k) =

1
(2π)L exp{−L}N

√
π

2L︸ ︷︷ ︸
const.

N

∏
n=1

exp

{
|Pn(τn, fd,n)|2

4

}
I0

(
|Pn(τn, fd,n)|2

4

)
︸ ︷︷ ︸

Qn(τn ,ωn)

(6.32)
with

Pn(τn, fd,n) = f (PSMC,n, τn, fd,n) (6.33)
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where f (·) is a defined interpolation method used to interpolate τn and
fd,n from the grid PSMC. As mentioned earlier, it is possible to update the
Bayes filter with Doppler-Delay maps or with PDFs. In both cases, a bilinear
interpolation is sufficient for f (·), if the resolution of PSMC,n for the code delay
and Doppler is fine enough to deliver a reasonable accurate representation of
the code and Doppler correlation function and PDF in (3) for the requested
particles in (4) of Fig. 6.6. Based on the fact that the used software receiver
is limited in the resolution of the correlator spacing by the sample period
and the Doppler resolution is defined by the FFT settings of the SMC, a
upsampling interpolation is required because the calculated PDF has a very
narrow extension compared to the correlation function. It should be noted,
that the true code correlation function has a rounded peak due to the band
limitation of the RF front-end and the true Doppler correlation function has
a rounded peak due to the sinc-shaped Doppler correlation function. Both
could not be properly reconstructed with linear interpolation methods, which
would lead to a sharp peaked triangle for the code and Doppler correlation
function. According to the Nyquist-Shannon sampling theorem or respectively
Whittaker-Shannon interpolation formula (sinc-interpolation) given with

x(t) =
∞

∑
−∞

x[n]sinc
(

t− nT
T

)
(6.34)

both, the code and Doppler correlation function can be optimally recon-
structed. Hereby, x(t) is the continuous interpolation result, x[n] is the dis-
crete input sequence and in this case the discrete complex correlation values
from PSMC,n, T is the sample interval and sinc(·) denotes the normalized sinc
function. In this work and as shown in Fig. 6.7 a 2D sinc-interpolation is
used for f (·) in (6.33) to interpolate the Doppler-Delay map from the SMC.
It should be noted that the sinc-interpolation is computationally expensive
compared to a linear interpolation, thus a two-staged approach with a single
prior sinc-upsampling step and later bilinear interpolation might be beneficial
with a large number of particles or grid-nodes.

The proper interpolated correlation values allow to calculate the unnormalized
PDF Qn(τn, ωn) as an intermediate step for each signal n with

Qn(τn, ωn) = exp

{
|Pn(τn, fd,n)|2

4

}
I0

(
|Pn(τn, fd,n)|2

4

)
(6.35)

This allows to calculate the PDF p(zk|xi
rx,k) in (6.32) in a parallelized way

and store the matrix Qn as an intermediate result. This conversion step from
correlation values of a Doppler-Delay map to 2D joint PDFs is depicted in Fig.
6.7 for a single GPS C/A code signal. The first row shows the Doppler-Delay
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Figure 6.7: This figure shows in the first row the correlation result of the SMC for a single
GPS C/A signal. The first row shows from left to right the triangular-shaped
code correlation function, the sinc-shaped Doppler correlation function and the 2D
Doppler-Delay map as output from the SMC. The black stars show the correlation
values and the blue line is the sinc-interpolation result. The second row shows from
left to right the corresponding PDFs, the marginalized PDF of the measurement in
the code domain, the marginalized PDF of the measurement in the Doppler domain
and the 2D Doppler-Delay joint PDF. The blue stars indicate the sinc-upsampled
support points for the calculation of the PDF. The maps are centered at the last
navigation solution.

map from the SMC. The code and Doppler correlation function are selected
to contain the maximum correlation value (peak) of the Doppler-Delay map.
The blue line shows the sinc-interpolated correlation values. The second row
shows the normalized PDF Qn, whereas the code and Doppler PDF are the
marginalization of the 2D joint PDF. It should be noted, that the measurement
in the code and Doppler domain in Qn has a very narrow extension compared
to the code and Doppler correlation function, which is the main reason for
the sinc-interpolation step. The 2D joint PDF in Fig. 6.7 shows the normalized
probabilistic measurement of a single satellite, which is the input for the
measurement update step of a particle or grid-based filter.

The attached Bayes filter framework of the navigation processor, as depicted
in Fig. 6.8, allows beside GNSS measurements also measurements from other
sensors. A very common approach in GNSS is the sensor fusion with an IMU,
whereas the measurements of the IMU can be incorporated at the propagation
step of the filter, which requires an adaption of the dynamic model and which
is depicted by the red block in the figure. As the Bayes filter is operated in
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Figure 6.8: BDPE filter framework for a particle filter which is initialized with a set of particles.
The filter executes three steps, propagating the particles in time, update the particle
weight by incorporating a new set of measurements and resampling in case of high
degeneracy. The posterior belief can be estimated from the resampled particle cloud.
For the grid-based analysis tool the propagation and resampling step is obsolete,
the grid nodes remain equidistantly distributed and the center of the grid is aligned
to a reference solution.

the PVT domain, it is easily possible to incorporate data from probabilistic
maps, which might contain a likelihood of the user position (e.g. a car is most
likely located on a road). The grid-based or particle filter is initialized with
an approximate PVT and corresponding uncertainty, which is depicted by
the yellow block in the figure. In case of a grid-based filter, the grid-nodes
are equidistantly distributed over a defined 8-dimensional PVT grid. It is
convenient to align the position and velocity grid with the ECEF or navigation
frame, as it allows an intuitive interpretation of the results. For the particle
filter, the particles can be distributed according a defined distribution, whereas
the implementation supports a Gaussian and a uniform initial distribution.
As shown by the green block in Fig. 6.8, a particle filter executes iteratively
three major steps, the state propagation, the measurement update and the
resampling step.

6.5 Impact of Signal Degradation on DPE

The quality of the estimated PVT relies on the quality of the measured signal,
but all received signals have been degraded during the transmission from
the satellite to the receiver. A brief summary of error sources and how they
impact DPE are given in the paragraphs below.

Multipath is caused by reflective environmental conditions, whereas strong
multipath can be typically observed e.g. in urban canyons or beside buildings.
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Multipath impacts on DPE as it deforms the correlation function and thus the
PDF in the correlation domain. An example of the correlation function and
thereof resulting PDF in the correlation domain is shown in Fig. 6.7. Based on
the fact that the PDF in the PVT domain relies on the PDF in the correlation
domain (as shown by the arrows between step (3) and (4) in Fig. 6.6), the
resulting PDF in the PVT domain, as for example shown in Fig. 6.4, is also
affected. The multipath will bias the resulting PVT estimate, but have less
impact compared to classical tracking methods. The reason for the reduced
impact on BDPE is the exponential weighting, whereas classical methods have
a linear dependency on the correlation amplitude. The linear dependency is
resulting from the S-cure, which describes the DLL discriminator function
in dependency of the code phase error, as shown in Fig. 5.4. Multipath can
be constructive and destructive, depending on the offset of the carrier phase.
If the carrier phases are shifted by 180 deg to each other, the multipath is
destructive. Multipath simulations and real-world data are discussed for the
correlation domain in chapter 8.3 and real-world results are discussed for the
PVT domain in chapter 8.7.1.

Signal Blockage occurs typically in forests or indoors. In case of signal
blockage, the received signal is significantly weakened, diffracted and comes
along with multipath. The signals are mostly that weak that classical tracking
methods will have a loss of lock. In such situations DPE can fully exploit
the additional tracking gain as given in (6.21). But the correlation function is
significantly deformed which can lead to multi-modal PDFs in the correlation
and PVT domain. Such scenarios are analyzed in chapter 8.7.1 and 8.7.2.

Interference and Jamming reduces the quality or completely denies the PVT
estimate of a GNSS receiver and can be separated into intentional and unin-
tentional interference. Unintentional interference sources are resulting from
strong transmitted signals close to the GNSS frequency bands or from defect
transmission hardware. Intentional interference aims to degrade the PVT esti-
mate of the user under attack. Jamming litters the GNSS frequency bands in
order to reduce the SNR until selected or all GNSS signals cannot be tracked
anymore, which results in a bad positioning performance or complete denial
of a PVT solution. Jamming can be separated in narrowband or wideband
jamming. A narrowband jammer uses just a Continuous Wave (CW) signal on
a distinct frequency, whereas wideband jammers typically use a chirping CW
over a selected frequency range or noise with a selected bandwidth. Jamming
is much more likely in contrast to spoofing, because jammers can be easily
built and ordered in the Internet, whereas spoofing is much more complex
and requires more technical expertise. Different methods exist to counter-fight
interference sources on receiver side such as adaptive notch filtering [Kang,
Kim, and Park, 2014], [Chien, 2015] or nulling antennas [McMichael et al.,
2016].
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Spoofing is intentional interference in order to deny, degrade or mislead the
PVT of a user. Spoofing is closely related to matched spectrum jamming,
which transmits a signal with a valid PRN and same modulation parameters
as the true GNSS signals, but without navigation data or a valid PVT. If the
PVT should be decepted, the spoofer need to generate authentic GNSS signals
with a valid and consistent code, Doppler, PVT and navigation data message.
State-of-the-art receivers may detect a spoofing scenario by observing the
signal parameters, e.g. consistent C/N0, changing Automatic Gain Control
(AGC) values, or by identifying unexpected or incorrect navigation data bits.
It is expected, that DPE is more resilient to spoofing compared to classical
tracking methods, because the replica signal generation is coupled with the
navigation solution and thus they may also rely on unaffected GNSS signals,
similar to vector tracking. A spoofing attack with a valid PVT will become
visible with DPE by observing a second maxima in the PVT domain. If the PVT
of the spoofer is close to the PVT of the true PVT, the correlation functions and
PDFs become deformed (like in a multipath case), if the PVT of the spoofer
has a significant PVT offset to the true PVT, the PVTs can clearly be separated
from each other and a spoofing attack could be easily detected with DPE, as
it would be the case for a multi-correlator receiver. Bayesian filters are also
used for multiple-target tracking, which can also be applied for tracking the
spoofing signals or PVTs. Thus, BDPE in general allows to separate multiple
PVTs in the PVT domain, as long as they are distinguishable from each other.
Some upcoming GNSS signals are planned to carry an authentication code in
order to be able to authenticate/separate correct and manipulated navigation
signals. Spoofing is today mainly present in military warfare, but research
is ongoing on how to protect critical infrastructure from such events. A
comprehensive report on the worldwide spoofing activity is given in [C4ADS,
2019].

6.6 Previous and Parallel related work on DPE and
BDPE

DPE was introduced in [Closas, Fernández-Prades, and Fernández–Rubio,
2007], [Closas, 2009] by formulating the problem and it shows how a DPE
receiver estimates the PVT in a single step directly from the signal samples
[Closas, Fernández-Prades, Bernal, et al., 2008]. As DPE allows for a significant
increase in tracking sensitivity, this method was investigated in different
GNSS related topics like GNSS signal acquisition performance in [Axelrad
et al., 2011], [He and Petovello, 2014], [Esteves, Mohamed, and Ries, 2014],
improved positioning accuracy when fusing DPE with visual information in
[Ng and Grace Xingxin Gao, 2016a] or improving the robustness of position
and time estimation during jamming and meaconing attacks in [Ng, Member,
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et al., 2012], [Ng and Grace Xingxin Gao, 2016b]. The first real-time capable
implementation of BDPE into a commercial software-based GNSS receiver
was shown in [Dampf, Witternigg, et al., 2017] and [Witternigg et al., 2017],
even if suboptimal but computational efficient algorithms and limitations in
number of tracked GNSS signals have been made as a tradeoff to achieve real-
time performance [Dampf, Frankl, and Pany, 2018]. Two difficulties arise with
BDPE, the (1) receiver architecture of estimating the PVT directly from the
signal samples deviates significantly from common receiver architectures, and
(2) a particle or grid-based filter for BDPE requires a probabilistic description
of the measurements. Beside this work solutions to these problems are given
in [Dampf, Frankl, and Pany, 2018], which discusses a BDPE integration
into a standard software receiver architecture using a vector tracking loop
and a synthetic multi-correlator, shows how to perform the measurement
update directly from correlation values instead of signal samples, shows
how to convert the correlation values into a probabilistic description of the
measurement in the range domain, shows how to achieve an optimal and
stable weight update and shows a derivation of the optimal particle weight
update for multiple GNSS signals. In order to increase the stability for BDPE
using the optimal weight update, the mathematical framework was extended
from measurements in the range domain to the Doppler domain in [Dampf
and Pany, 2018]. The Stanford University is also developing a DPE receiver,
whereas techniques and algorithms have been published in [Peretic and Grace
X Gao, 2020a] and results have been analyzed in [Peretic and Grace X Gao,
2020b]. Investigations regarding direct time estimation with multiple spatial
distributed antennas are dicussed in [Garcia-Molina and Fernandez-Rubio,
2020]. This work compares the achieved results to the results presented in
[Axelrad et al., 2011], [Closas and Gusi-Amigó, 2017], [Peretic and Grace X
Gao, 2020a] and [Peretic and Grace X Gao, 2020b]. All work on DPE aim to
improve the PVT estimate, especially in challenging signal environments. The
sources of signal degradation and impact on DPE is discussed in the next
chapter.
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In this BDPE approach one of the most crucial steps is to perform an optimal
particle weight update directly from correlation values. This step is indicated
in Fig. 6.6 by the transition from the third to the fourth block and in Fig.
6.8 with computation of the importance weights. Within this work two papers
have been published, which derive an optimal and numerically stable particle
weight update function in [Dampf, Frankl, and Pany, 2018] and extends the
mathematical framework from the code phase to the Doppler in [Dampf and
Pany, 2018]. The weight update equations in the latter publication allow for
an optimal and stable particle weight update directly from the FFT based
correlation values, which depend on code phase and Doppler.

7.1 Development of the Optimal Weight Update based
on Code Phase and Doppler

This work derives the mathematical framework for the optimal weight update
used in Bayesian filters. Equation (4.39) is repeated in (7.1) and shows the
particle filter weight update for a Bootstrap filter.

wi
k ∝ wi

k−1 p(zk|xi
k) (7.1)

In order to implement a Bootstrap filter, a probabilistic model of p(zk|xi
k) with

dependency of the prior state must be available. The state vector xi
k is given

in (5.54). The measurements zk at current epoch k refer to a vector containing
the raw GNSS samples. In order to update the particle weight, BDPE directly
maps the PVT at the particles to the raw signal samples, which contains a
superposition of all GNSS signals. Thus, a probabilistic description of the
samples dependent on multiple GNSS signals must be available [Dampf,
Frankl, and Pany, 2018]. Such a probabilistic model is given in [Pany, 2010,
Eq. (5.9)] for a single GNSS signal with
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p(s|A, τ, ω, φ) =
1

(2π)L exp

−
1
2

L

∑
µ=1
|sµ − Ac(tµ − τ) exp{iωtµ − iφ}︸ ︷︷ ︸

Signal Model

|2


(7.2)

where the vector s ∈ CL contains all signal samples sµ, µ ∈ {1, ..., L}, which
depend on the signal model parameters, the real valued signal amplitude A ∈
R+, the time delay τ ∈ R, the Doppler frequency ω ∈ R , the carrier phase
φ ∈ [0, 2π[ and i the imaginary number. The term c(tµ − τ) ∈ [−1, 1] refers to
the modulated PRN code and the term exp{iωtµ − iφ} to the signal carrier.
The parameter tµ ∈ R defines the time at sample index µ and depends on the
sampling frequency fs ∈ R such as tµ = µ/ fs. The probability distribution
p(zk|xi

k) in the weight update equation (7.1) can be related to the sample
distribution in (7.2), where zk equals the measured sample vector such as
s = zk, where tµ=1 corresponds to the time of the first sample in epoch k and
tµ=L to the time of the last sample in epoch k. The parameters A, τ, ω, φ for a
single replica can directly be related to the PVT state xk, respectively, to the
state of each PVT particle [Dampf, Frankl, and Pany, 2018]. The state xk is
given in (5.54), where the three-dimensional position and velocity is given in
the ECEF reference frame.

The replica signal code phase τn and Doppler ωn for a single signal of satellite
n are related to xk using (5.66) and (5.67) with ωn = 2π fd,n. The equations need
knowledge about the satellite position and velocity and thus the ephemeris
data must be known. In a simplified simulation without atmospheric effects
the terms for the troposphere and the ionosphere can be neglected. Addi-
tionally, in a synchronized simulator-receiver setup the terms for the clock
corrections can be neglected. In such a setup, the correlation functions will
perfectly overlap in the PVT domain. Furthermore it should be noted, that
neglected hardware delays are expected to have no significant impact because
(1) it is expected that there are no relative satellite hardware delays in a simu-
lator setup if not explicitly simulated, and (2) the minor receiver hardware
delay will move, without any further impact, into the clock error estimate.

Basically, the goal of the derivation is to retrieve a formulation for an optimal
particle weight in dependence of an arbitrary number of used GNSS signals
dependent on the code phase τ and Doppler ω only. This is necessary, because
just a non-coherent DPE approach is targeted as a first realization. It should
be noted, that a phase-coherent DPE approach is very difficult to achieve and
can be considered as a follow-on investigation. In principle it is possible to
relate the probabilistic model also on the signal amplitude and carrier phase,
but the dimensionality and thus the complexity of the problem increases
significantly.
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Under the assumption that the carrier phase is uniformly distributed over 0
and 2π, it can be integrated out or in other words marginalized, as shown in
[Pany, 2010], to

p(s|A, τ, ω) = 1
(2π)L

∫ 2π
φ=0 exp

{
− 1

2 ∑L
µ=1 |sµ − Ac(tµ − τ) exp{iωtµ − iφ}|2

}
dφ

= 1
(2π)L exp

{
− 1

2 ∑L
µ=1 |sµ|2

}
exp

{
− LA2

2

}
I0(A|P(τ, ω)|

√
L)
(7.3)

with the definition of the correlator value Pn(τ, ω) as

Pn(τ, ω) =
1√
L

L

∑
µ=1

s̄µcn(tµ − τ) exp{−iωtµ} (7.4)

The correlation value Pn(τ, ω) is taken from the multi-correlation maps as
shown in Fig. 6.6 and I0 refers to the Bessel function of the first kind and order
zero [Dampf, Frankl, and Pany, 2018]. The stepwise integration procedure to
obtain (7.3) from (7.2) is given in Appendix A and a similar equation for joint
detection of weak GNSS signals can be found in [He and Petovello, 2014].

The next step is to integrate out the signal amplitude A and extend the signal
model to multiple GNSS signals. The mathematical derivation to achieve a
probabilistic description with dependency on multiple GNSS signals and
on Doppler-delay maps is shown in detail in Appendix B. The result of the
derivation in Appendix B is given by (7.5) with

p(s|τ, ω) =
1

(2π)L exp{−L}N
√

π

2L

N

∏
n=1

exp
{
|Pn(τn, ωn)|2

4

}
I0

(
|Pn(τn, ωn)|2

4

)
(7.5)

With this equation a numerical problem exist and it cannot be solved directly
with a computer due to a limited precision, especially with long integration
times which lead to high correlation values P. This problem can be solved by
doing the weight update in the logarithmic scale. The problem is discussed
in detail and solved in Appendix B, whereas the stable plain weight update
sequence for multiple GNSS signals N is given with
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w̃i
k−1 = log(wi

k−1) (7.6)

w̃i
k = w̃i

k−1 +
N

∑
n=1

(
|Pn(τn, ωn)|2

2
− log

(√
2π
|Pn(τn, ωn)|2

4

))
(7.7)

wi
k = w̃i

k −max(w̃i
k) (7.8)

wi
k = exp(wi

k) (7.9)

wi
k =

wi
k

∑Ns
i=1 wi

k

(7.10)

The result of this plain weight update sequence is shown in Fig. 7.1 with a
constant signal strength and different coherent integration times Tcoh. It can
be seen, that the resulting probability distribution function in the lower plot is
not Gaussian distributed. It is more similar to a Laplace distribution (without
proof), which is briefly discussed in chapter 8.2 and illustrated in Fig. 8.2.
The shape and extension of the PDF depends on the received signal strength,
on the signal type (higher bandwidth signals have a sharper correlation
function which results in a smaller variance of the PDF), integration time
and environmental conditions (e.g. multipath). A detailed discussion on the
resulting PDF is published by the article in [Dampf, Frankl, and Pany, 2018]
and in chapter 8. Tiny PDFs can be problematic with Bayesian filters, because
the recursive estimation of the PDF can be suboptimal if the peak is located
between grid nodes of a grid-based filter or cannot be covered well by particles
of a particle filter.

Furthermore the extension of the PDF does not represent the true accuracy,
because the model in (7.7) does not account for a UERE such as atmospheric
effects (ionosphere, troposphere) or environmental effects (multipath, fading),
which can lead to an instable or suboptimal behavior of a Bayesian filter. To
account for these uncertainties in the raging accuracy, Gaussian nuisance
parameters for the code phase and Doppler are introduced. The nuisance
parameters model the measurement noise as Gaussian distributions. The
mathematical formulation is given in detail in Appendix C and was published
in [Dampf and Pany, 2018]. The resulting weight update for a Bayesian filter
including the nuisance parameters is given with
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Figure 7.1: The plot is based on a MATLAB [The MathWorks Inc., 2019] simulation. The upper
plot shows the correlation function from (7.4) for different coherent integration
times for a C/N0 = 45 dB-Hz. The simulated signal was generated without noise
(i.e., the C/N0 merely defines the correlation amplitude). The lower plot shows
the corresponding probability function after one weight update from (7.9), for one
signal N = 1 and assuming a uniform distribution from the previous epoch, i.e.,
w̃i

k−1 = 0 from (7.7). The statistics in the lower plot refer to the weighted mean µ

and weighted standard deviation σw [Dampf and Pany, 2018, Fig. 4].
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Figure 7.2: Impact of different code delay bias standard devications σ∆τ on the weights wi
k for

a coherent integration time Tcoh = 10 ms. It can be seen that σw approaches the
theoretical limits for σ∆τ = 3 and σ∆τ = 6 [Dampf, Frankl, and Pany, 2018, Fig. 7].

w̃i
k = w̃i

k−1 +
N

∑
n=1

[
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|Pn(τn + ∆τk, ωn + ∆ωj))|

)]
(7.11)

and is used instead of (7.7), whereas p(∆τ) and p(∆ω) describe the uncer-
tainty for the code phase and Doppler as a Gaussian with zero mean, as shown
in (C.1) and (C.3). The effect is visualized in Fig. 7.2 for a constant coherent
integration time Tcoh = 10 ms. The increased estimated weighted standard
deviation σ∆τ due to the convolution with zero mean Gaussian with given σ∆τ

is clearly visible in the lower plot. Hereby, σ∆τ defines the minimum variance
of the PDF of the signal which can be interpreted as the maximum ranging
accuracy. The proposed approach allows to cover an unmodeled UERE and to
stabilize a Bayesian filter, which takes this PDF as measurement input.

The nuisance parameters (measurement noise) are applied to the measure-
ment in the code and Doppler domain. As a result, a two-dimensional map
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similar to a Doppler-Delay correlation map is obtained, which shows the joint
PDF in Fig. 7.3. The left plots correspond to the plain weight update using
(7.7) and the right plots correspond to the update with nuisance parameters
from (7.11). The nuisance parameters define a lower limit for the variance of
the measurement, which is visible by the increased extension of the peak.

The calculation of the particle weights based on the proposed logarithmic
weight update sequence with (7.11) is computationally expensive, especially
if the convolution with the gaussian nuisance parameters is performed in the
time domain. Therefore, a computationally efficient approach in the frequency
domain is proposed in chapter 7.2.

7.2 Performance Optimized Generation of Logarithmic
PDFs

The performance optimized generation of a PDF was published in [Dampf,
Lichtenberger, and Pany, 2019] and is also discussed here to give a complete
overview of the implemented algorithm. In order to describe a more efficient
algorithm, equation (7.11) and (7.7) are rewritten to

Qn(τn, ωn) = log

 p(∆τ1)p(∆ω1)√
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+
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2

+ log
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∑
k=1

J

∑
j=1

exp

{
|Pn(τn + ∆τk, ωn + ∆ωj)|2

2
− |Pn(τn + ∆τ1, ωn + ∆ω1)|2

2

}
p(∆τk)p(∆ωj)

p(∆τ1)p(∆ω1)

|Pn(τn + ∆τ1, ωn + ∆ω1)|
|Pn(τn + ∆τk, ωn + ∆ωj))|

)
(7.12)

w̃i
k = w̃i

k−1 +
N

∑
n=1

Qn(τn, ωn) (7.13)

where (7.12,A) corresponds to the first line of (7.12), (7.12,B) corresponds to
the exponential term in the second line of (7.12) and (7.12,C) corresponds
to the of summation term of the second and third line of (7.12). Hereby
the Gaussian nuisance parameters are described with p(∆τ) ∼ N (µτ, σ2

τ)
and p(∆ω) ∼ N (µω, σ2

ω), both centered at mean µτ = 0 m, µω = 0 Hz
and with a user defined standard deviation στ and σω. The multi-correlator
maps produced by the receiver are centered at state xk which was used for
generating the correlation values, thus ∆τ and ∆ω are code phase and Doppler
offsets to xk. ∆τ1 and ∆ω1 from (7.12) correspond to the maximum correlation
value of the multi-correlator grid found with argmax

∆τ1,∆ω1

Pn(τ + ∆τ), ω + ∆ω).

114



7 Optimal Weight Update

Figure 7.3: These plots show the joint probability density function for the range and Doppler
based on a coherent integration time of Tcoh = 103 ms. The values are normalized
to 1. The left plot shows the joint PDF from the plain weight update and the right
plot shows the joint PDF including the introduced nuisance parameters from (7.11)
with σ∆τ = 5 m and σ∆ω = 1 Hz [Dampf and Pany, 2018, Fig. 8 and 9].
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Hereby, (7.13) is the core step of the weight update in the logarithmic scale
and can be separated into three parts: (1) The history w̃i

k−1 refers to the
weight of the previous epoch and for epoch-wise analysis the variable is set
to w̃i

k−1 = 0. (2) is the sum of all GNSS signals which contribute to the weight
w̃i

k and (3) describe a logarithmic PDF map Qn(τn, ωn) for signal n. Herby,
Qn(τn, ωn) from (7.12) can be generated for each satellite individually and is
based on the multi-correlator values Pn(τn, ωn) and the nuisance parameters
στ and σω. For a real-time particle filter based BDPE receiver it is crucial to
efficiently calculate Qn(τn, ωn) from (7.12). A grid of multi-correlator values
Pn(τn, ωn) is produced in the software receiver by applying FFT on a time
series of correlator values at defined correlator (code phase) offsets. The FFT
transforms this timely sequenced correlation values from the time domain
into the frequency domain and the correlation values become dependent on
the Doppler.

In more detail, the software receiver produces a discrete two-dimensional
multi-correlator map Pn,i,j(τn,i,j, ωn,i,j) in code phase (index i) and Doppler
direction (index j). This chapter describes the processing steps to obtain
efficiently a discrete logarithmic probability density function Qn,k,l(τn,k,l , ωn,k,l)
for each signal n. The algorithm is optimized for the CPU and uses for
parallelization the Open Multi-Processing (OpenMP) [OpenMP ARB, 2020]
and for vectorization the Intel® Integrated Performance Primitives (IPP) [Intel
Corporation, 2020], which allow to utilize the principle of Single Instruction
Multiple Data (SIMD). Based on the fact, that all arithmetic operations need
to be applied on a two-dimensional grid, the data is interpreted as an image
in order to make use of the highly optimized IPP Image Processing toolset.
It is beneficial, that Qn,k,l(τn,k,l , ωn,k,l) can be calculated independent for each
signal n, which can be easily parallelized and the processing is done in parallel
on different threads. Fig. 7.4 shows the three major processing steps, which
are up-sampling, exponential weighting and convolution with the nuisance
parameters.

7.2.1 Up-Sampling

The number of code phase bins i depend on the extension of the map in code
phase direction, which is defined by the number of correlators (typically 7

correlators i = 1, . . . , 7 for the optimized approach with a correlator spacing
of ∆d = c/ fs = 14.9 m at fs = 20 MHz, where c is the speed of light). The
number of Doppler bins j depend on the number of timely sequenced corre-
lator values which are used for the synthetically generated multi-correlator
map. The Doppler resolution is given with ∆ fd = 1

TcohΛ , Tcoh = 1 ms and
where Λ denotes the FFT length. The first step in the up-sampling procedure
cuts a reasonable range in code phase and Doppler direction from the center
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Figure 7.4: Processing chain when calculating the logarithmic probability density function
Qn,k,l(τn,k,l , ωn,k,l) from multi-correlator maps Pn,i,j(τn,i,j, ωn,i,j). The first row shows
the FFT based up-sampling procedure, the last column to the right refers to the
exponential weighting and the second row corresponds to the convolution with the
nuisance parameters F{Ndim=2(µ, Σ)} [Dampf, Lichtenberger, and Pany, 2019, Fig.
2].

of the map (e.g. i = 1, . . . , 7 and j = 64− 3, . . . , 64 + 4, leading to a quadratic
map with 7x7 bins) and shifts the cut multi-correlator map into the frequency
domain using the DFT. All IPP Fourier transform operations cause a cross-flip
on the quadrants, which is indicated by the second map in Fig. 7.4. The
second step applies the method of zero-padding. The inverse Fourier trans-
form on a rectangle in the frequency domain leads to a 2D sinus cardinalis
function in the time domain. Thus, the zero-padding operation (rectangular
extension) equals a sinc-interpolation in the time domain, which is used to
interpolate the multi-correlator values. The sinc-interpolation is used because
the analog RF signal samples pass through a bandpass filter in the receiver
front-end. Based on the fact that a bandpass filter is a rectangular window
in the frequency domain and a sinus cardinalis in the time domain [Oran
Brigham, 1990, Example 4.6], a sinc-interpolation up-sampling algorithm was
chosen. The insertion of zeros is shown by the yellow area in Fig. 7.4. The
new (up-sampled) number of bins is calculated by the number of inserted
zeros, such that (k = i + #zeros) and (l = j + #zeros). Herby it is considered
that the new number of bins are k, l ∈ 2x with x being the order of the FFT
and Inverse Fast Fourier Transform (IFFT). This allows to use the much more
efficient FFT/IFFT instead of the DFT/Inverse Discrete Fourier Transform
(IDFT). The used up-sampled grid size can be defined by the user and was
chosen to be 512x512 bins.

117



7 Optimal Weight Update

7.2.2 Exponential and Convolution

The exponential function (7.12,B) is applied on the up-sampled multi-correlator
map. The resolution after up-sampling must be fine enough, such that a sig-
nificant number of grid nodes cover the extension and shape of the resulting
function after applying the exponential, as shown by the lower right plot in
in Fig. 7.4. The utilization of the nuisance parameters to cover unmodeled
UEREs is done by convolution with a 2-dim (multivariate) normal distribution
Ndim=2(µ, Σ), where µ = [µτ = 0, µω = 0] is a vector of length 2 containing

the zero mean and Σ2x2 =
[στ 0

0 σω

]
is the covariance matrix. Hereby, µ must

be a zero vector, otherwise an offset would be introduced during the con-
volution. The convolution in the time domain equals a multiplication in the
frequency domain. This Fourier transform property is utilized to perform an
efficient convolution with the nuisance parameters, whereas this convolution
step is indicated with (7.12,C). Therefore, a discrete grid of the multivariate
probability distribution is generated with the up-sampling size of e.g. 512x512

bins, shifted to the frequency domain and is buffered for each multiplication
step. Thus, F{Ndim=2(µ, Σ)} needs only be generated once, as long the nui-
sance parameters στ and σω do not change. The convolution with the nuisance
parameters equals in image processing a Gaussian blur filter. After the IFFT,
some scaling is applied, which refers to (7.12,A). The result of this process
is Qn,k,l(τn,k,l , ωn,k,l), which is referred to as logarithmic probability density
function.

7.2.3 Computational Performance

The performance has been evaluated on an Intel® Core i7-6700HQ quad
core CPU (8 threads) with up to 3.5 GHz integrated in a notebook from the
year 2015. The software was compiled with an Intel® compiler using the
Intel® Parallel Studio XE Professional 2018 to support optimal parallelization
with OpenMP [OpenMP ARB, 2020] and vectorization with the IPP [Intel
Corporation, 2020]. The software was compiled for release without linked
debug information and with highest compiler optimization level O3. Based on
the fact, that writing files to the hard drive is a very time-consuming task, all
log output and file dumps have been disabled. The achieved processing times
for different settings are plotted in Fig. 7.5 and listed in Tab. 7.1. The analysis
focuses on the generation time of the upsampled map Qn,k,l(τn,k,l , ωn,k,l) with
Single Threading (ST) only, whereas the processing time of the weight update
for the particles or grid-nodes is focused on ST and Multi Threading (MT).
Thus, the left plot in Fig. 7.5 shows the upsampling time for a single signal,
whereas this time scales linearly with the number of processed signals, if
only ST is used. The right plot in Fig. 7.5 shows the processing time for the
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Figure 7.5: These plots show the processing time of the upsampling process in dependence of
the grid size (left) and the processing time to update a given number of particles
or grid nodes (right). The left plot has a linear scale for the grid size on the x-axis
and a logarithmic scale for the processing time on the y-axis. The right plot uses a
logarithmic scale for both, the number of particles on the x-axis and the processing
time on the y-axis. The plotted values are listed in Tab. 7.1.

particle or grid node weight update step. Based on the fact, that the number
of particles is significantly larger than the available CPU cores, a meaningful
performance gain with MT is expected, whereas the red-line in the right
plot of Fig. 7.5 shows the MT results. It can be seen, that the MT case is
almost parallel to the ST case, but with an offset. This offset equals a constant
reduction in processing time with same number of particles or grid nodes.
The theoretical gain, when neglecting the overhead for parallelization, which
can be achieved with a quad-core CPU and hyper-threading technology, is
given with a factor of 8, but only a factor of 2 was achieved with the current
architecture.

The generation of Qn,k,l(τn,k,l , ωn,k,l) with 512x512 bins out of Pn,i,j(τn,i,j, ωn,i,j)
with 7x7 bins took in average 18 ms. When fully utilize the quad-core CPU,
theoretically 8 maps can be generated in parallel also in 18 ms plus a minor
parallelization overhead. The processing of the particle filter needs for 25000

particles in average 12 ms with MT, whereas the expected ideal parallelization
gain was not achieved. Beside the time for signal correlation, these times are
the major drivers when targeting a real-time BDPE receiver or a real-time
capable analysis tool. It is assumed, that the required processing time will
significantly decrease when using the latest CPU technology, a higher number
of cores and when further improve the architecture for parallelization. It can
be concluded, that a real-time BDPE receiver or PDF analysis tool based on
logarithmic probability density functions from (7.12) can be realized with
latest CPU performances and when choosing appropriate settings.
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Table 7.1: This table lists the achieved upsampling time in dependence of the grid size in the
left part of the table and the processing time to perform the weight update on a
given number of particles/grid nodes in the right part of the table. Vectorization
with the IPP is applied for the ST and MT case and MT is implemented with the use
of OpenMP. The processing times are averaged with 100 maps (epochs), values with
(*) are averaged with 25 maps (epochs) and k refers to thousand. The listed values
are plotted in Fig. 7.5.

Grid Size [-] time ST [ms] Particles [-] time ST [ms] time MT [ms]
32x32 0.047 25k 24.543 12.681*
64x64 0.146 50k 48.413* 26.461*
128x128 0.613 100k 102.324* 46.650*
256x256 3.194 200k 211.342* 133.052*
512x512 18.605 400k 391.917* 177.999*
1024x1024 81.967 800k 743.717* 324.110*
2048x2048 1337.054* 1600k 1536.220* 681.975*

3200k 3099.332* 1121.322*
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8 Analysis of the Probability Density
Function

This chapter starts with a discussion on the processing setup for the analysis
tool and estimation of statistical parameters. The presented results show a
(joint) Probability Density Function (PDF) and correspond to the correlation
domain or PVT domain. The correlation domain results focus on the pseu-
dorange PDF in LOS direction (1-D) and the PVT domain results focus on
the local north-east plane (2-D). In order to understand the behavior of PDFs
in general, the discussion is continued with the product of Gaussian and
non-Gaussian PDFs in a 1-D and 2-D domain. Thereafter, an analysis of the
pseudorange PDF in LOS direction based on simulations and real-world data
is presented. Once the simplified one-dimensional behavior is understood,
2-D joint PDFs in the PVT domain are discussed in context of the satellite
constellation geometry and impact of nuisance parameters. This chapter is
concluded with a comparison of the derived PDF to existing publications and
a comprehensive analysis of real-world data in challenging environments. A
large part this chapter has been published in [Dampf, Frankl, and Pany, 2018],
[Dampf and Pany, 2018] and [Dampf, Lichtenberger, and Pany, 2019].

8.1 Processing Setup and Statistics

The analysis is done with three different processing setups, (1) simulations
are performed with MATLAB [The MathWorks Inc., 2019] to illustrate the
behavior of the PDFs, (2) simulations are performed with a GNSS simulator
and the SX3 [IFEN GmbH, 2019b] GNSS software receiver and (3) real-world
data has been recorded and post-processed with the SX3 only. Hereby, the
SX3 is configured to process the data with the implemented BDPE navigation
module as discussed in chapter 6.

The 2D analysis is based on a grid-based filter as discussed in chapter 4.5,
but with some assumptions. The analysis is performed with the SX3 software
receiver and the implemented BDPE navigation module. Hereby, the grid-
based filter was parametrized such that the particles are distributed over an
equidistant grid centered at a reference position. The analysis focuses on the
unfiltered PDF of the state estimate and thus the weight is evaluated for each
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epoch without considering any history. Thus, the weight from the previous
epoch wi

k−1|k−1 in (4.32) is obsolete, which makes also the state propagation in
(4.30) obsolete. The grid-based analysis tool evaluates the weight from (4.33)
based on the weight update sequence (7.6) to (7.10) and with (7.11) instead of
(7.7). In order to generate high resolute PDFs, only 2 dimensions are analyzed
in the PVT domain. The presented data will focus on the position domain in
north-east direction, but results are also shown for the velocity in north-east
and clock error/clock drift. An analysis of a subspace (e.g. 1-dimensional or
2-dimensional) still requires knowledge of all PVT states, thus the remaining
dimensions need to be tracked in parallel. Therefore, the BDPE module can be
aided or fully aligned to a reference PVT from a SPP (least squares code-based
position solution) [Tian et al., 2013] or Low Visibility Positioning (LVP) (vector
tracking Kalman filtered position solution) [Pany and Eissfeller, 2006], [Won,
Eissfeller, and Pany, 2011] solution. The aiding concept and processing setup
is shown in Fig. 8.1. Hereby, the implementation supports a full PVT aiding or
any combination of position, velocity and time. The word aiding was chosen
for the case when the module is operated in the BDPE tracking mode and
any subspace of the PVT is aided by a reference, but it should be noted that
for the grid-based analysis a full alignment to the reference PVT is done. The
analysis is based on the following steps,

1. calculate the reference PVT,
2. align the center of the grid to the reference PVT,
3. update the weights (generate the PDF of the state estimate),
4. calculate the statistics of the PDF,
5. dump the results to a file,
6. and plot the results with MATLAB.

The scenario and the processing options for the analysis with the GNSS
simulator are listed Tab. 8.1, whereas a simple static scenario with GPS L1

C/A signals and equal received power level for all signals is considered.

Table 8.1: List of parameters used for the GNSS simulator and receiver
Scenario Static Open Sky
Rcv. Power Level 50 dBHz (all satellites)
System GPS
Frequency Band L1

Signal C/A Code
Ionosphere disabled
Troposphere disabled
User Position ECEF [x, y, z] [4171691.176, 872119.610, 4730006.239] m
User Velocity ECEF [vx, vy, vz] [0.0, 0.0, 0.0] m/s
Sample Rate fs 20.64 MHz
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Figure 8.1: The schema shows the aided/aligned BDPE receiver setup for high-resolution
analysis of the PDF for a 1-dimensional or 2-dimensional subspace, which is used
for the simulations with the GNSS simulator and for the real-world setup [Dampf,
Lichtenberger, and Pany, 2019, Fig. 3].

The SX3 and BDPE module processing settings to generate the correlation
functions and PDFs in the PVT domain are listed in Tab. 8.2. Hereby, the
generation of the correlation function in the PVT domain is performed with
the large grid and the generation of the PDFs in the PVT domain is performed
with the small grid settings. The different grid sizes are necessary, because the
extension of the PDF is in order of 10 meters, whereas the correlation function
in the PVT domain (for GPS L1 C/A) is in order of 300 meters.

Table 8.2: List of parameters used for generation of the PDFs (small grid) and the correlation
function (large grid) in the PVT domain.

Small Grid Large Grid
Coherent Integration Time Tcoh 16 ms 16 ms
Number of correlators 15 61

Nuisance Param. Code σ∆τ 3 m -
Nuisance Param. Doppler σ∆ω 1 Hz -
Position Grid Size 40x40 m or 50x50 m 1000x1000m
Position Grid Resolution 0.2 m 5 m
Doppler Grid Size 2x2 m/s -
Doppler Grid Resolution 0.01 m/s -
Time Grid Size 10 m and 1 m/s -
Time Grid Resolution 0.1 m and 0.01 m/s -

Regarding the presented statistics, all mean and variance estimates in this
work are based on a Gaussian distribution assumption and use the equations
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for the weighted mean and weighted variance

m =
N

∑
i=1

wi
kxi

k (8.1)

σ2 =
∑N

i=1 wi
k(x

i
k −m)2

∑N
i=1 wi

k

(8.2)

where m is the weighted mean vector based on the weight wi
k from (7.10) and

the particle 8-dim state xi
k for epoch k. For completeness, the weighed variance

vector σ2 is normalized with ∑N
i=1 wi

k, which is in principal not necessary
because the weights are already normalized in (7.10).

8.2 Product of Probability Density Functions

The aim of this section is to get an understanding of Gaussian and Non-
Gaussian products for the 1-dimensional (correlation domain) and 2-dimensional
(PVT domain) case. The section shows, how Gaussians behave and interact
when building the product with another Gaussian or non-Gaussian. At the
particle weight update, the product of distributions corresponding to each
satellite is built, which is visible in (7.13). Note that (7.13) shows a sum
because the update is performed in the logarithmic scale. The PDF of a mea-
surement in the code domain looks similar to a Laplace distribution with
the plain weight update and with an infinite sampling bandwidth. This can
be seen when comparing the shape of the Laplace distribution (c) in Fig. 8.2
to the infinite bandwidth measurement in Fig. 7.1. Furthermore, the PDF
of a measurement in the code domain becomes Gaussian like distributed,
if the nuisance parameters are applied (convolution with a Gaussian), and
becomes non-Gaussian in challenging signal environments. Fig. 8.3 shows in
the first two plots (upper row) the normalized result of a product between two
biased Gaussians. A bias in the mean can be caused by unmodeled UEREs
(ionosphere, troposphere, multipath or other errors). It should be noted, that
the offset between the Gaussians does not lead to multi-modality, because
the product of two Gaussian PDFs result in another Gaussian with different
mean and variance [Smith III, 2011, Chap. Product of Two Gaussian PDFs].
It needs to be distinguished between a multiplication of random variables
and the multiplication of (their) Probability Density Functions (PDFs). The
product of two Gaussian PDFs lead to another Gaussian, but which is not a
PDF. A Gaussian PDF can be obtained with an additional normalization step,
which is illustrated in Fig. 8.4. The third plot (lower left) in Fig. 8.3 illustrates
the product between two Gaussians with different variance, which results in
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Figure 8.2: This plot illustrates different PDFs, where (a) is a uniform distribution, (b) a
triangular distribution, (c) a Laplace distribution, (d) a logistic distribution, (e) a
cosine distribution and (f) a normal distribution [Kotz, Kozubowski, and Podgórski,
2001, Fig. 2.1].
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Figure 8.3: These plots illustrate how Gaussian and Non-Gaussian distributions behave when
building their products. All presented results have been normalized to ∑ wi

k = 1 in
order to obtain a PDF. The first three plots show the result of the product of two
Gaussians and third plot the result of a Gaussian with a multi-modal PDF.

another Gaussian located closer to the Gaussian with smaller variance. This is
very interesting and refer to a weighting of the quality of the measurements,
whereas good signals with a small variance have a stronger contribution to
the resulting PDF. The fourth plot (lower right) shows the product between
a Gaussian and a non-Gaussian multi-modal PDF, which results in another
non-Gaussian multi-modal PDF. This means, that in case of just a single
non-Gaussian or multi-modal distributed measurement, the result in the PVT
domain must become also non-Gaussian or multi-modal.
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8 Analysis of the Probability Density Function

Figure 8.4: This plot proves that the product of 2 Gaussian PDFs is a Gaussian, but not a PDF,
as shown by the dashed red line. This is just because the integral over the new
Gaussian does not sum up to 1. But after normalization of the resulting Gaussian, a
Gaussian PDF can be obtained, which is shown by the continuous red line.
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Figure 8.5: This figure illustrates on a 2-dimensioanl plane that the product of biased Gaussian
measurements along a straight line (M1, M2, and M3) lead to another biased
Gaussian, as shown by the right plot. These biases result from unmodeled UEREs.
The Gaussians are placed along a straight constant amplitude line, which should
come close to a real measurement of a single satellite [Dampf, Lichtenberger, and
Pany, 2019, Fig. 15].
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Figure 8.6: This figure illustrates that multi-modalities in the 2-dimensional plane (right plot
in the figure) can only result from multi-modal measurements as depicted by M1.
Note that measurement M3 is not used for this illustration [Dampf, Lichtenberger,
and Pany, 2019, Fig. 16].

In general, biases result from unmodeled UEREs, if any PVT or modeling
parameter in (5.28) or (5.32) is misaligned with the true. Multi-modality
appears only if the measurement itself is multi-modal, which can be the case
in challenging environments. These two cases are illustrated in Fig. 8.5 and Fig.
8.6 for a 2-dimensional case. Both figures illustrate the measurements Mn as a
Gaussian in the local plane. The middle lower plot in each figure shows the
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8 Analysis of the Probability Density Function

sum of the measurements just for completeness, whereas the result obtained
by (7.13) is the product of the measurements illustrated by the large plot to
the right. The results of the 1-dimensioanl case from Fig. 8.3 are applicable to
the 2-dimensional case. Hereby, the plot in Fig. 8.5 shows that the product of
three Gaussian measurements M1, M2 and M3 results in a joint Gaussian PDF.
Fig. 8.6 illustrates the second case, where the product of a non-Gaussian multi-
modal measurement M1 with a Gaussian M2 result in another multi-modal
PDF. These principles are applicable for the multi-dimensional case, but it
should be noted that measurements are noisy and not Gaussian distributed,
which leads to a similar but not same behavior with real measurements.

8.3 Understanding the Pseudorange Probability Density
Function

The content of this chapter was published in [Dampf, Frankl, and Pany, 2018].
The previous chapter 7 presented the optimal weight update sequence for
DPE when using a Bayes filter, whereas the sequence is given by (7.6) to (7.10)
and the problem with the resulting narrow probability function is shown in
Fig. 7.1. In (7.11), a possible solution is proposed to overcome the presented
issues. In order to understand the behavior of the proposed weight update
function, an analysis is performed for (7.11) within this chapter for a single
signal N = 1 and assuming a uniform distribution from the previous epoch,
i.e., w̃i

k−1 = 0. All simulations have been performed completely with MATLAB
[The MathWorks Inc., 2019], except the real-world scenarios, which take as
input the correlation values from the GNSS software receiver. The MATLAB
simulation performs a correlation with a simulated GNSS signal. In order to
see clearly the impact of the different parameters, the simulated signal was
generated without noise. All following plots show the correlation values |P|
from (7.4) and the resulting weight wi

k from Equation (7.9) when using (7.11)
as weight update function. For visualization purposes (7.9) is plotted instead
of (7.10). This is because of the normalized amplitude to 1, which makes a
comparison easier to visualize. The derived equations do not consider any
present multipath signal, thus there is no estimation of multipath parameters
nor a handling or mitigation of multipath.

The next subsections analyze the impact on the resulting probability function
for

• different signal strengths,
• different code delay bias variances,
• constructive and destructive multipath,
• short, medium and far multipath,
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Figure 8.7: Impact of different GNSS signal amplitudes on the correlation values |P| and
resulting probability function for a constant coherent integration time Tcoh and
constant code delay bias standard deviation σ∆τ . Higher signal strengths result in a
smaller weighted standard deviation σw of the probability function [Dampf, Frankl,
and Pany, 2018, Fig. 5].

• different multipath amplitudes,
• two significant real-world scenarios under open-sky and urban condi-

tions.

8.3.1 Impact of Different Signal Strengths

Basically, a higher GNSS signal amplitude increases the correlation value
from (7.4) and thus influences (7.11). From this, it is expected that changes
in amplitude do not shift the mean of the resulting probability function but
influence the variance. This is obvious, because a stronger received GNSS
signal must result in a more accurate estimate, which is shown in Fig. 8.7.

8.3.2 Impact of Different Code Delay Bias Variances

Basically, the expected measurement accuracy σw strongly depends on the
amplitude of the correlation value |P| and thus on the coherent integration
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time Tcoh and the navigation signal strength. However, with the introduction
of a theoretical lower limit of the measurement accuracy in (C.5) defined by
σ∆τ, the estimated accuracy σw must approach the lower limit σ∆τ with an
increasing correlation value |P|. This behavior is shown in three consecutive
plots in Fig. 8.8–8.10 with an increasing coherent integration time Tcoh =
[1, 10, 100] ms. From this series, it is clearly visible that σw also approaches
a very small σ∆τ = 0.1 m in the case of a long coherent integration time
Tcoh = 100 ms.
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Figure 8.8: Impact of different code delay bias standard deviations σ∆τ on the weights wi
k for a

coherent integration time Tcoh = 1 ms. For the given conditions, only the weighted
standard deviation σw for σ∆τ = 6 m seems to approach the theoretical lower limit
of σ∆τ . In particular, σ∆τ = 0.1 m cannot be reached due to the influence of the low
correlation time Tcoh at given C/N0 [Dampf, Frankl, and Pany, 2018, Fig. 6].

The magnitude of σ∆τ should cover residual user range errors (coming from
orbit, satellite clock, multipath or ionospheric errors), which can be in the
range of several meters.
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Figure 8.9: Impact of different code delay bias standard deviations σ∆τ on the weights wi
k for

a coherent integration time Tcoh = 10 ms. It can be seen that σw approaches the
theoretical limits for σ∆τ = 3 m and σ∆τ = 6 m [Dampf, Frankl, and Pany, 2018,
Fig. 7].
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Figure 8.10: Impact of different code delay bias standard deviations σ∆τ on the weights wi
k for

a coherent integration time Tcoh = 100 ms. It can be seen that σw now approaches
the theoretical limits for all σ∆τ . Note also the significantly changed amplitude on
|P| [Dampf, Frankl, and Pany, 2018, Fig. 8].
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8.3.3 Impact of Constructive and Destructive Multipath

The influence of constructive and destructive multipath is shown for a realistic
case with a multipath amplitude of αMP = 0.5 with respect to the LOS
signal and a multipath offset of ∆τMP = 50 m in Fig. 8.11. As similar to
the conventional Delay-Lock-Loop (DLL) in a GNSS receiver and thereof
resulting pseudorange measurement, the weighted mean µ of the probability
function also becomes biased. It can be seen that the resulting bias in µ is in
the opposite direction for the constructive and destructive case. Furthermore,
the destructive multipath reduces the amplitude of the correlation value |P|,
which increases the weighted standard deviation σw, while the constructive
multipath acts in the opposite direction and may also reduce the variance
in distinct cases as visible in Fig. 8.12 for the black line. Furthermore, it can
be seen that constructive and destructive multipath changes the resulting
probability function in a different way, even if the multipath parameters ∆τMP
and αMP are exactly the same.

8.3.4 Impact of Short, Medium and Far Multipath

The impact on short, medium and far multipath on the probability function
is shown on a strong multipath case αMP = 0.9. Basically, it is expected that
such a strong multipath seldomly occurs in typical real-world scenarios, but
it was chosen to clearly visualize the impact of an increasing multipath offset.
It can be seen in Fig. 8.12 that an increase in ∆τMP directly increases σw.

An interesting effect is the short constructive multipath case with an ∆τMP = 3
m. In this case, the weighted standard deviation σw is underestimated and
shows a smaller variance than the LOS signal. This can be dangerous because
this leads to a biased and at the same time more accurate measurement,
compared to the truth. Considering the present multipath and incorporating
it into the models for the weighting may prevent such an underestimation.

8.3.5 Impact of Different Multipath Amplitudes

It is expected that an increase of the multipath amplitude αMP further shifts the
mean and increases the variance. This case is outlined in Fig. 8.13. Naturally, in
the case that the multipath signal is as strong as the LOS signal, the resulting
probability function automatically covers the whole uncertainty range with a
mean exactly between the two signals. This case is shown with the dash-dotted
blue line in Fig. 8.13.
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Figure 8.11: Influence of constructive and destructive multipath on the probability function
with a relative multipath offset of ∆τMP = 50 m and an amplitude of αMP = 0.5
with respect to the line-of-sight signal. The black dotted line refers to the LOS
signal. It can be seen that the multipath variants shift the weighted mean µ in the
opposite direction and that the destructive multipath significantly increases σw
due to the lower amplitude in |P| [Dampf, Frankl, and Pany, 2018, Fig. 9].
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Figure 8.12: Impact of different multipath offsets ∆τMP on the probability function. For a better
visualization, a strong relative multipath to the LOS signal with αMP = 0.9 is
chosen. It can be seen that higher offsets increase the weighted mean µ but do not
necessarily increase the weighted standard deviation σw. The dotted black line
refers to the LOS signal [Dampf, Frankl, and Pany, 2018, Fig. 10].
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Figure 8.13: An increase of the multipath amplitude αMP shifts the weighted mean µ and
increases the weighted standard deviation σw. The probability function naturally
covers the uncertainty also in the case of αMP = 1, when the multipath signal is as
strong as the LOS signal. The dotted black line refers to the LOS signal [Dampf,
Frankl, and Pany, 2018, Fig. 11].
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8.3.6 Real-World Open Sky and Urban Scenario

The real-world tests evaluate the probability function with realistic data for
the code pseudorange. Therefore, two scenarios have been selected: (1) an
open sky case on a rooftop antenna in order to see the probability function
under ideal conditions and (2) an urban case, where multipath is present
and a significant shift and deformation on the probability function should be
present.

The data was recorded in Graz, Austria and post-processed with the SX3

software receiver [IFEN GmbH, 2019b]. The receiver was configured to dump
the multi-correlator maps to files, which contain the correlation values |P|
and which are related to the latest PVT. The multi-correlator maps contain
correlation values for a range of code phases τ and Dopplers fd, as indicated
by the left grids in (3) of Fig. 6.6. For all real-world tests, the red crosses in the
upper plots of Fig. 8.15 to Fig. 8.18 correspond to the correlation values along
the Doppler bin which contains the correlation maxima. In order to obtain a
high-resolution probability function, the correlation values (red crosses) have
been interpolated with sinc function (black line).

It is of major importance that the input correlation values |P| are of correct
amplitude, because it basically drives the shape of the probability function
and variance estimate. In order to obtain the same amplitude for |P| as in
(7.4), all amplitude scaling elements have been verified in the receiver. The
GNSS signal samples s̄µ in (7.4) have been recorded with a quantization of
2 bits in the Analog Digital Conversion (ADC) stage. The two bits refer to
the value range [−3 −1 1 3] and thus the RMS of the recorded samples
differs from that in (7.4) because the Automatic Gain Control (AGC) within
the receiver front-end steers the amplitude of the GNSS signal in a way to
optimally use the available quantization range. The RMS value of the samples
s̄µ can be measured by the receiver. In this experiment, the RMS for the GPS
L1 band was measured with βsµ,RMS = 1.71, as also shown in Fig. 8.14. Due
to computational efficiency, the replica signal used for the correlation was
generated with an amplitude of 8, thus it is simply βrep = 8. Based on this,
the correlation values can be obtained after applying the scaling factors as

|P(τ, ω)| = |PMC,map(τ, ω)| (βsµ,RMS βrep)
−1 (8.3)

where |PMC,map(τ, ω)| refers to the correlation value from the multi-correlator
map of the software receiver.

For both scenarios, open sky and urban, the code delay bias standard deviation
was set to σ∆τ = 3 m and has been evaluated at three epochs. The open sky
case is shown in Fig. 8.15 and refers to good open sky conditions of GPS L1

C/A satellite PRN 12. The probability functions for all epochs show a slight
bias of µ ≈ −1 m with respect to the feed back PVT. The weighted standard
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Figure 8.14: Frequency spectrum of the GPS L1 band with a Root Mean Square (RMS) of the
samples evaluating to βsµ ,RMS = 1.71. At frequency offset of approximately 2.5
MHz a CW interference peak is present. The dataset was recorded with a measure-
ment van during a measurement campaign. Based on the CW interference being
present during the complete measurement run, it is assumed that it was caused
by one of the active on-board measurement instruments or radio connections.
Additionally, it is assumed that the present CW interference does not influence
the measurement because it is significantly outside the main lobe of the analyzed
GPS L1 C/A signal [Dampf, Frankl, and Pany, 2018, Fig. 12].
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deviation σw nearly approaches the theoretical lower limit of σ∆τ = 3 m. No
other significant effects are visible.

The urban scenario was recorded during a test drive through Graz. The data
has been post-processed and analyzed with the software receiver. An urban
environment with significant deformation on the correlation function was
selected and analyzed with MATLAB. The analysis focuses on the GPS L1

C/A satellites PRN 27, PRN 21 and PRN 18, as respectively shown in Fig. 8.16,
8.17 and 8.18. A overview of the analyzed scenario is given in Fig. 8.19, which
shows the three analyzed positions (red dots) and the satellite constellation.
Satellite PRN 27 in Fig. 8.16 and satellite PRN 18 in Fig. 8.17 show a significant
variation in amplitude of the correlation values |P|, basically due to shadowing
and multipath effects. Satellite PRN 21 in Fig. 8.17 is less affected by the
environment, because the signal amplitude remains nearly constant and no
other significant effects are visible. Nearly all of the probability functions face
a significant bias in µ and increased weighted standard deviation σw compared
to a standard open sky signal. Especially the weighted standard deviation
of PRN 18 at third column in Fig. 8.18 shows a significant increase due to
the lowered correlation amplitude. Furthermore, the correlation function as
well as the probability function of satellite PRN 27 in Fig. 8.16, position at
time W/S 1901/317840.4 (middle row) seem to be significantly affected by
multipath, which is assumed due to the flattened peak in the correlation
function and the resulting deformation of the probability function.

For clarification and as noted briefly above, all presented real-world scenarios
show the resulting probability function with respect to the latest PVT estimate,
not to a high accurate absolute reference. It should be considered that the latest
PVT estimate might be already biased and thus the herein presented offset µ
might not show the true bias. Dedicated analysis is planned for future studies
using in one case a GNSS simulator and in another case a surveyed static
reference position together with precise orbits. Nevertheless, the presented
figures give an impression of the effects occurring (deformations and shifts)
on the probability function. This is clearly visible when comparing the open
sky case to the urban scenario, even if the biases cannot be quantified with
absolute values.

8.4 Impact of the Constellation Geometry on the
Probability Density Function

This analysis has been performed with a full constellation multi-frequency
GNSS simulator [IFEN GmbH, 2019a] and it focuses on the dependency of the
PDF on the satellite constellation geometry, whereas further dependencies are
given by the signal type and strength, and the number of accumulated signals.
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Figure 8.15: Real-world open sky scenario of satellite GPS L1 C/A PRN number 12. The plots
show from left to right three epochs referring to GPS Week/Second W/S. The
weighted standard deviations σw approach the theoretical lower limit of σ∆τ = 3
m for this ideal case. The dataset was recorded on the roof at LAT = 47.06446263

deg, LON = 15.40777110 deg at the Reininghausstraße 13a, Graz, Austria. The red
crosses in the upper plots show the correlation values at code offset τ. The black
line in the upper plot shows the sinc interpolated correlation values, which are
used to obtain the weights wi

k shown in the lower plots [Dampf, Frankl, and Pany,
2018, Fig. 13].
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Figure 8.16: Real-world urban scenario of satellite GPS L1 C/A PRN 27. The plots show from
left to right three epochs at different places in a urban environment, referring to
the red dots from left to right in Fig. 8.19. It is expected that the correlation values
|P| vary significantly due to shadowing and multipath. The weighted mean is
shifted for all positions and both the correlation and probability function of the
second point (middle row) seem to be significantly affected by multipath. The red
crosses in the upper plots show the correlation values at code offset τ. The black
line in the upper plot shows the sinc interpolated correlation values, which are
used to obtain the weights wi

k shown in the lower plots [Dampf, Frankl, and Pany,
2018, Fig. 14].
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Figure 8.17: Real-world urban scenario of satellite GPS L1 C/A PRN 21. The plot content is
analogical to Fig. 8.16. For this satellite, it is assumed that the signal is less affected
by the environment because there are fewer variations of the signal amplitude.
Only in the case of the first position is the probability function biased [Dampf,
Frankl, and Pany, 2018, Fig. 15].
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Figure 8.18: Real-world urban scenario of satellite GPS L1 C/A PRN 18. The plot content is ana-
logical to Fig. 8.16. This satellite signal is significantly affected by the environment.
From the azimuth of satellite PRN 18 and the location of the buildings as shown
in Fig. 8.19, it can be assumed that the GNSS signal is blocked at the first and last
positions, which fits to the amplitude of the correlation values. Interestingly, in
the case of the third position, the significantly small correlation value leads to an
increase in variance estimate [Dampf, Frankl, and Pany, 2018, Fig. 16].
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Figure 8.19: Environment for the urban scenario with three red measurement points. The
driving direction was to the east, thus the red measurement points refer from
left to the right column in Fig. 8.16, 8.17 and 8.18. The upper left plot shows the
satellite constellation. The three analyzed satellites PRN 27, PRN 21 and PRN 18

are marked with a black circle. The measurement was taken in the Steyrergasse in
Graz, Austria. The point at W/S 1901/317839.4 refers to LAT = 47.06430622 deg,
LON = 15.45391867 deg. Map image © 2017 Google, Landsat/Copernicus [Dampf,
Frankl, and Pany, 2018, Fig. 17].
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A more detailed analysis is given in [Dampf, Lichtenberger, and Pany, 2019].
The baseline is to generate signals free of any atmospheric and environmental
effects and analyze undisturbed signals in the PVT domain. The simulation
setup parameters are listed in Tab. 8.1. For the analysis a two-dimensional
grid (grid nodes equal particles) can be aligned with the ECEF or local East
North Up (ENU) coordinate frame. For visualization mostly, the north-east
axes of the local frame is used throughout this work, but in some cases e.g.
when comparing to other publications, the plots are aligned to the XY-axes of
the ECEF frame. All presented simulation results in this section correspond
to the satellite constellation given by the top right sky plot in Fig. 8.22. The
presented PDFs are based on the weights wi

k from (7.10) and using (7.11) for
the update. The plots are shown in the north-east offset of the BDPE solution
to the reference. The reference is at position north=0 m and east=0 m and
can be a SPP or LVP solution. An absolute high accurate GNSS-INS reference
solution is not available. Based on the fact, that the SPP and LVP solution is
accurate to approximately 1-3 m depending on the environmental conditions,
also the mean of the PDF varies in that magnitude.

The PDF on the north-east plane in the local coordinate frame of a single
satellite is shown in Fig. 8.20. The evaluated satellite PRN is located in the
north-west. The plot shows the probability of the user position, which is
with a single satellite the range sphere expressed as a probabilistic function
projected onto the local north-east frame. The result look like a straight wall
orthogonal to the azimuth of the satellite and is Gaussian like distributed in
LOS direction. This plot is made under the assumption that all other states
(height, velocity, clock error and drift) are well aligned.

In case of two satellites with nearly 90 deg offset in the azimuth the probability
of the user position in the local north-east plane becomes circular. This is
depicted in Fig. 8.21. The circular like shape is resulting from the intersection
of two Gaussian-like distributions projected onto the north-east plane. The
circles represent the likelihood of the 2-dimensional user position, whereas
the maximum likelihood is located at the peak of the joint PDF. The result
in this figure is closely related to the geometry and thus to the Geometric
Dilution of Precision (GDOP), but with the difference that the underlaying
probability distribution of a single measurement is non-Gaussian. The shape
of the PDF is related to the covariance of the PVT and the size is related to
the GDOP.

In case of a glancing intersection of two satellites, the probability of the user
position becomes strongly elliptical. This is depicted in the upper left plot of
Fig. 8.22. Hereby the used satellites PRN 13 and 2 have an azimuth closely
of about 180 deg to each other, which allows according to the GDOP a good
estimation of the position in LOS direction of the satellites but result in a bad
position estimate orthogonal to the LOS. Respectively the probability of the

145



8 Analysis of the Probability Density Function

Figure 8.20: Particle weights plotted in the local north-east frame for a single signal of PRN
13 (az=313.3 deg, el=21.0 deg) in the sky plot of Fig. 8.22. The spherical satellite
range projected onto the north-east plane appears within the relatively small area
(40 x 40 m) as a straight line. Therefore, the particle weights result in a straight
wall-like shape orthogonal to the azimuth of the satellite but with a Gaussian-like
shape in direction of the azimuth. Thus, the measurement of a single satellite is
not Gaussian distributed on a 2-dimensioaonl plane [Dampf, Lichtenberger, and
Pany, 2019, Fig. 7].

Figure 8.21: Particle weights plotted in the local north-east frame for 2 signals. The map
contains Sat PRN 3 (az=39.9 deg, el=15.6 deg) and PRN 13 (az=313.3 deg, el=21.0
deg) which intersect at the center point. The corresponding sky plot is shown in Fig.
8.22. Note that the black dotted lines show the logarithmic weights, which should
make the background structure of the PDF more visible [Dampf, Lichtenberger,
and Pany, 2019, Fig. 4].
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8 Analysis of the Probability Density Function

Figure 8.22: The upper left plot shows the probability of the user position in case of a glancing
intersection of PRN 13 and PRN 2. The upper right plot shows the sky plot of
the simulation. The lower left plot shows 4 satellite signals with PRN 13, 3, 2, 14.
The lower right plot shows the probability of the user position based on 8 signals,
all except PRN 26. Note that the black dotted lines show the logarithmic weights,
which should make the background structure of the PDF more visible [Dampf,
Lichtenberger, and Pany, 2019, Fig. 8, 9, and 6].

user position becomes highly elliptical. If the number of signals increases, the
probability of the user position becomes circular in case of ideal conditions.
This is depicted by 4 signals in the lower left and by 8 signals in the lower
right plot of Fig. 8.22. It can be shown, that the number of satellites impacts
the estimated accuracy, which can be seen if the lower right plot of Fig. 8.22

(8 signals) is compared to the left plot of Figure 8.21. It can be stated, that the
variance decreases with increasing number of satellites, which is in accordance
with the GDOP.

The variance of the PDF depends also on the signal strength, whereas a lower
signal strength results in a higher variance. This can be seen by equation
(7.11), because the correlation value P(τ, ω) directly depends on the signal
strength. Furthermore, the PDF depends on the signal type. It is known that
GNSS signals with a higher bandwidth result in a higher ranging performance
and thus having a sharper correlation function [Ávila-Rodrı́guez, 2008, Chap.
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Figure 8.23: These plots show the 2D PDF for the position, velocity and time (from left to right).
The position and time is plotted on the north-east plane, whereas the time shows
the clock error and clock drift. The plot contains all 9 satellites from the sky plot.

4.8.4], [Misra and Enge, 2010, Chap. 3.3 and 10.6]. This reduces the variance of
the PDF, which is reasonable because higher bandwidth signals have a higher
ranging accuracy. The shape of the PDF also depends on the environmental
conditions. For example, multipath can change the shape significantly. Fur-
thermore, Fig. 8.23 shows for completeness the PDFs for the position, velocity
and time.

8.5 Impact of Nuisance Parameters

The impact of nuisance parameters is shown with an open sky scenario on
a rooftop antenna without any environmental disturbances. These results
have been published in [Dampf, Lichtenberger, and Pany, 2019]. The aim
of this discussion is to show on real data the benefit of convoluting with
Gaussian nuisance parameters. The herein presented plots show the PDF of
the 2-dimensional position in the local navigation frame. The PDF depends
on nine visible satellites. To achieve a proper visualization of the effect, a long
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coherent integration time of Tcoh = 128 ms is used together with an artificially
introduced delay error ∆ε in the pseudorange model from (5.66) with

τn =
pn

c
=

ρn

c
− (dtrx − dtsat,n) +

Isat,n + Tsat,n

c
+ (drx + dsat,n) + ∆ε (8.4)

The artificial error ∆ε is a range error which is applied on all satellites. The
long integration time leads to a very narrow PDF, as shown in Fig. 7.1 with
the plain weight update and in Fig. 8.8, 8.9 and 8.10 with nuisance parameters.
This has the benefit, that a typical range error of about 8 meters (e.g. strong
ionospheric effects or multipath) on all satellites leads to a clearly visible
biased and multi-modal PDF. This effect is outlined in Fig. 8.24. The left plot
corresponds to the unmodified position result ∆ε = 0. The maximum has
only a slight offset which can arise from the SPP reference position or slight
deviations from the applied atmospheric models (standard Klobuchar for
the ionosphere). The middle and right plot apply an artificial delay error of
∆ε. It can be clearly seen, that the tensions grow and the PDF degenerates
with an increasing ∆ε. Two problems arise in such cases: In case of sudden
biases (e.g. caused when driving through urban canyons) the particles of
a particle filter might not cover the new state and the tracking of the PVT
might be lost. Secondly, the tendency to multi-modal distributions can be
represented by a particle filter, but the particle density around the true PDF is
reduced because the particles are spread over a larger space, which can lead
to a non-optimal performance especially with a higher dimensionality. It is
of crucial importance, that the full 8-dimensional PVT state is covered by the
particle cloud or grid. If just one state is not covered properly, the correlation
used for all other dimensions also breaks away.

It is expected that an increase of the Gaussian nuisance parameter for the
code σ∆τ helps to recover back to a unimodal distribution and less biased PDF.
This effect is shown in Fig. 8.25, whereas the plots from left to right clearly
underline this statement. It can also be seen, that the mean of the PDF becomes
closer the true position at the center of the plot, which can be explained such
that neighbor maxima have more influence because of the convolution, which
basically equals a Gaussian averaging. It is expected that the resulting PDF
stabilizes a particle filter used for BDPE in case of unmodeled UEREs and
with multi-modal measurements in challenging environments. Evidence, that
the proposed procedure should give Appendix E, which shows a time series
of several epochs of the discussed approach.
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Figure 8.24: These plots are generated from a rooftop antenna setup with a coherent integration
time of Tcoh = 128 ms, with a σ∆τ = 0.2 m and an increasing artificial delay error
of ∆ε = [0, 4, 8] m. The long integration time and small σ∆τ leads to a very tiny
PDF, as visible in the left plot. The introduced delay error ∆ε increases the tension
until a significant bias and multi-modal distribution with many local maxima
appears, as visible in the right plot [Dampf, Lichtenberger, and Pany, 2019, Fig.
13].

Figure 8.25: These plots are generated from a rooftop antenna setup with a coherent integration
time of Tcoh = 128 ms and an artificial delay error of ∆ε = 8 m. From the left to
the right plot the code nuisance parameter was increased such that σ∆τ = [0.2, 1, 3]
m. This reduces the number of local maxima until a clear unimodal distribution
appears again. The resulting PDF in the right plot faces a more accurate position
with a reasonable std. dev., while the left improper parametrized plot must be
interpreted with caution, as the result would be a very deviated position with a
low standard deviation [Dampf, Lichtenberger, and Pany, 2019, Fig. 14].
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8.6 Link to Other Publications

In the last years some DPE related results have been published in different
papers. This chapter aims to modify the weight update in such a way, to make
the results comparable to the results published in two different independent
papers. All previous related work on DPE, including the two reference papers,
estimate the PVT based on the correlation function in the PVT domain. Hereby,
the correlation function in the PVT domain is built by a non-coherent sum
of the correlation functions of the individual signal measurements. This is
also possible with the herein presented approach by slightly modifying the
equations such that they deliver a non-coherent sum of the correlation function
of N signals. Therefore, equation (7.6) to (7.10) are rewritten to

ṽi
k =

N

∑
n=1
|Pn(τn, ωn)| (8.5)

vi
k =

ṽi
k

max(ṽi
k)

(8.6)

where vi
k contains the normalized non-coherent sum of the correlation func-

tions. Hereby, vi
k is the weight update equivalent to wi

k from (7.10), but was
renamed to avoid a misinterpretation of the content. Hereby, (8.5) and (8.6)
do not have to perform an exponential weighting, which can cause numer-
ical issues, and thus (7.6), (7.8) and (7.9) are obsolete and are neglected for
(8.5) and (8.6). Furthermore, just a single epoch is considered and thus an
equivalent to wi

k−1 from (7.13) is not written in (8.5). The work from [Axelrad
et al., 2011] presents an approach of a high sensitivity acquisition algorithm
based on a collective detection of GNSS signals in the position domain, which
equals ṽi

k from (8.5), but may have another weighting or scaling. The result in
[Axelrad et al., 2011] is compared to the results obtained in this work in Fig.
8.27. The work from [Closas and Gusi-Amigó, 2017] discusses DPE and uses
(8.5) and (8.6) for the weight update. The result in [Closas and Gusi-Amigó,
2017] is compared to the result obtained in this work in Fig. 8.26. The plot
is qualitatively the same, but slight differences appear due to a different
satellite constellation and simulated signal parameters. The plots in Fig. 8.28

are results of this work and have been obtained with the scaling as given
by (A), (B) and (C). All three plots are based on the same input parameters
Pn(τn, ωn).
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Figure 8.26: The left plot shows the result obtained in [Closas, 2009, Fig. 4.6] and the right plot
shows the results obtained in this work with scaling (B) and as discussed in Fig.
8.28.

Figure 8.27: The left plot shows the result obtained in [Axelrad et al., 2011, Fig. 8] and the right
plot shows the results obtained in this work with scaling (A) and as discussed in
Fig. 8.28.
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Figure 8.28: These plots link the generated results to other publications. The plots have been
generated with a simulated scenario using the settings from Tab. 8.1 with the
constellation given in Fig. 8.22. The receiver uses a coherent integration time
of Tcoh = 128 ms for generating Pn(τn, ωn) and a σ∆τ = 3 m and σ∆ω = 1
Hz for generating Qn(τn, ωn). The first and second plot show vi

k, which is ṽi
k

from (8.5) and scaled as given by (A) and (B). The first plot is an equivalent to
[Axelrad et al., 2011, Fig. 8] and is plotted in the local frame on a north-east plane
with an extension of 1000 m, but looks slightly different (black center) due to
the different simulation and processing settings. The plot was generated with a
logarithmic greyscale and shows clearly the crossing black lines which correspond
to the correlation function of each accumulated signal. The second plot shows an
equivalent to [Closas, 2009, Fig. 4.6] and [Closas and Gusi-Amigó, 2017, Fig. 2 and
3] plotted in the ECEF frame on the XY plane also with an extension of 1000 m.
The third plot shows vi

k, which refers to wi
k from (7.10), which is scaled as given in

(C) and which is a PDF plotted in the local coordinate frame with an extension of
40 m [Dampf, Lichtenberger, and Pany, 2019, Fig. 11].
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8.7 Real-World Results of the PDF Analysis

The results show a 2-dimensional probability density function of the user
position for different signal conditions and purely based on GNSS signals.
The recording and post-processing parameters are listed in Tab. 8.3. The aim
of the real-world data analysis is to analyze the shape and extension of the
probability density function of the user position and to proof that strongly
non-Gaussian and multi-modal PDFs can appear under real signal conditions,
which justify Bayesian estimation techniques as they are able to deal with
non-Gaussian measurements.

Table 8.3: List of parameters used for the real-world data analysis
Scenario Urban Environment / Indoor
Antenna Geodetic 3G+C
Sample Rate fs 20.64 MHz (real)
Quantization 2 bit
Frequency Band L1

Signal C/A Code
Coherent Itegration Time Tcoh 16 ms
Number of correlators 15 / 61

Nuisance Param. Code σ∆τ 3 m
Nuisance Param. Doppler σ∆ω 1 Hz

Therefore, the analysis focuses on an urban environment and an indoor
dataset. Furthermore, detailed time series of the herein analyzed scenarios
can be found in Appendix D.

8.7.1 Urban Environment

The urban environment dataset is based on a measurement drive with a car
through the city Graz. The scenario contains open sky, sub-urban, urban,
bridges and tunnels, whereas the focus in this work is on an urban canyon
with multipath and a bridge underpass with significant shadowing. Fig. 8.29

shows the environmental conditions of the analyzed two scenarios, whereas
the yellow trajectory is the reference trajectory of the Kalman filtered PVT
solution, to which the PDFs are related. The result of one evaluated epoch
is presented with three plots, as shown in e.g. in Fig. 8.30. The first plot in
the row shows the result as presented in [Closas and Gusi-Amigó, 2017], but
shifted into the local north-east plane, and which is based on (8.6). This should
give an impression of how the sum of the correlation values behave in the 2-
dimensional position domain under the given environmental conditions. The

154



8 Analysis of the Probability Density Function

Figure 8.29: The left plot shows an urban canyon with buildings up to 6 floors at the corner
Steyrergasse-Münzgrabenstrasse, Graz, Austria and the right plots shows an
underpass of a railway bridge at the Peter-Tunner Gasse, Graz, Austria. The yellow
reference trajectory corresponds to a Kalman filtered vector tracking solution. The
left plot shows an area of significant multipath short before the cross-roads when
driving from the south to the north-east. The right plot refers to a short signal
blockage when passing under the bridge from the east to the west. The PDF have
been analyzed at position (A), (B), (C), (D), (E) and (F) [Dampf, Lichtenberger, and
Pany, 2019, Fig. 17].

second plot shows in contrast to that the resulting PDF from (7.10), whereas
the black dotted lines show the logarithmic weight from (7.10) in order to
visualize also the structure of the joint PDF of values with lower magnitudes.
Furthermore, a sky plot is shown in the third plot, which shows the satellite
constellation and the signal strength of the current epoch. The satellites are
identified in the plot with their PRN number and are shown according to
their azimuth and elevation, with respect to the current position. The signal
strength is given in (dB/Hz), whereas good signal conditions above 50 dB/Hz
are shown in green and bad signal conditions below 34 dB/Hz are shown in
red. But it should be noted, that the C/N0 might not be fully up to date at the
shown epoch, because the C/N0 estimation process in the receiver need time
due to an averaging. This causes, that the C/N0 is not updated immediately,
for example at the presented bridge underpass.

Fig. 8.30, 8.31 and 8.32 show the results in the urban canyon at the positions
(A), (B) and (C) in Fig. 8.29. Position (A) was selected at a crossroad to have
a good visibility as reference for the resulting PDF, which is shown in the
middle plot of Fig. 8.30. Position (B) was selected at a point where significant
multipath is present. The present multipath causes a shift of about 3 m of
the Kalman filtered vector tracking solution at a static position short before
the crossroad. The resulting PDF in the middle plot of Fig. 8.31 shows a
significant increase of the variance compared to the quasi open sky conditions
at the crossroad of Fig. 8.30. Very interesting is, that the probability of the
user location is significantly deformed to the south-west, same direction to
which the reference solution was shifted. It is assumed, that the area in the
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Figure 8.30: Urban Canyon: These plots correspond to position (A) in Fig. 8.29. The left plot
shows the weights based on (8.6) and the center plot shows the weights from
(7.10). The position is at a crossroad and thus the signals are not obstructed which
lead to a small std. dev. of 3 m [Dampf, Lichtenberger, and Pany, 2019, Fig. 18].

south-west with an increased probability of the user position is caused by the
present multipath from satellite PRN 21. Thus, multipath deforms and biases
the PDF, which is consistent with the work published in [Dampf, Frankl, and
Pany, 2018]. The example in Fig. 8.32 is also representative, as the PDF has
as small extension to the south and north-east, which can be explained by
the satellite constellation. The constellation shows strong (good) signals from
south and north-east, but weak (bad) signals from north-west and south-east,
which is consistent with the simulation in chapter 8.4. A good signal reduces
the variance in the direction of the LOS to the satellite and in case of the
herein 2-dim result in direction of the azimuth, which is assumed to lead to
the given shape of the PDF.

Fig. 8.33, 8.34 and 8.35 show a bridge underpass and Fig. 8.33 is again the
quasi open sky reference. Under the bridge the signals become significantly
weakened, which leads to a significant increase in the extension of the PDF
compared to the urban canyon multipath scenario. This is visible by the
reported std. dev. in Fig. 8.34 and 8.35. It is very interesting, that the PDFs
still show a clear maximum, whereas position (F) shows already a second
maxima at the edge of the analyzed space.

8.7.2 Indoor

The indoor dataset analyzes entering a massive concrete made building with
3 floors. The building and reference trajectory are shown in Fig. 8.36. The
measurement started in urban sky conditions and as reference trajectory the
Kalman filtered vector tracking solution was used. As shown in the left plot,
the reference trajectory was available until entering the passage, approximately
at position (H). Thereafter, no PVT solution was available with vector tracking,
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Figure 8.31: Urban Canyon: These plots correspond to position (B) in Fig. 8.29. The position
is in an urban canyon waiting to enter the crossroad. The Kalman filtered vector
tracking position moved approx. 3 m to the left while being at a static position,
which indicates that significant multipath is present. The PDF from the middle plot
shows a non-Gaussian deformation to the south-west, indicated by the arrow, and
a higher std. dev. of approx. 5.4 m, which is assumed to be caused by the present
multipath. The skyplot shows that some satellites are obstructed significantly
[Dampf, Lichtenberger, and Pany, 2019, Fig. 19].

Figure 8.32: Urban Canyon: These plots correspond to position (C) in Fig. 8.29. The position is
in an urban area where the satellites PRN 10, 26, 16, 21 and 20 deliver a recently
good estimate, and thus it is assumed the PDF in the middle plot has lower
extension to the south and north-east. The suboptimal constellation also leads to
an increased std. dev. of 4.2 to 6.9 m [Dampf, Lichtenberger, and Pany, 2019, Fig.
20].
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Figure 8.33: Bridge: These plots correspond to position (D) in Fig. 8.29. The position is short
before passing the bridge. The signals are not obstructed as indicated in the
sky plot which leads to the usual open sky std. dev. of about 3 m [Dampf,
Lichtenberger, and Pany, 2019, Fig. 21].

Figure 8.34: Bridge: These plots correspond to position (E) in Fig. 8.29. The position is lo-
cated shortly after entering below the railway bridge which causes significantly
obstructed signals. The signal strength estimation period averages over several
seconds, thus the sky plot does not show the reduced C/N0 for the short under-
pass. The PDF shows a significant bias together with an increased extension up to
10 m std. dev. [Dampf, Lichtenberger, and Pany, 2019, Fig. 22].
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Figure 8.35: Bridge: These plots correspond to position (F) in Fig. 8.29. The position is fully
under the bridge and it is expected that only signals from low elevation satellites
or extremely weakened signals from LOS satellites are gathered by the antenna.
The C/N0 in the sky plot is still not updated due to an averaged signal strength
estimate. The PDF is multi-modal with a strong peak in the vicinity of the reference
position and a weak peak at an offset of 30 m to the east. Due to bad signal
conditions the std. dev. increases up to 18 m [Dampf, Lichtenberger, and Pany,
2019, Fig. 23].

but it was possible to propagate the receiver time and constrain the position
and velocity to the last estimates and to calculate PDFs for the position domain.
Position (I) is therefore not located on the yellow trajectory and shows the
approximate indoor position for Fig. 8.39. Hereby, the first position (G) and
corresponding Fig. 8.37 is the reference PDF generated at quasi open sky
conditions before entering the building. Fig. 8.38 and 8.39 show as expected
an increased extension of the PDF. Very interesting is, that the PDF of the 2D
position in (I) becomes multi-modal, whereas most indoor positions showed
a clear unimodal distribution. For the multi-modal case it is assumed, that
at least one measurement was multi-modal, which lead to the multi-modal
PDF in the position domain. The reported standard deviation increased up to
about 13 m, which is still impressive, as it is by far magnitudes lower than
the extension of the reported SPP solution shown by the yellow dots in the
right plot of Fig. 8.36 (as long a SPP solution was available). The presented
results underline the gain of DPE in weak signal conditions and show that the
PDF in challenging GNSS signal scenarios can become strongly non-Gaussian
distributed or multi-modal. The state-of-the-art GNSS position estimation
techniques assume Gaussian distributed measurements, which is not the case
in difficult signal conditions. Thus, it is expected that Bayes filters with the
capability to account for non-Gaussian distributions and multi-modalities,
such as grid-based or particle filters, perform better in such conditions.
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Figure 8.36: The indoor dataset was recorded at the Reininghausstraße 13, Graz, Austria. The
processing setup for the left plot is the same as in Tab. 8.3 and shows a Kalman
filtered vector tracking solution. The right plot shows an unfiltered SPP solution
with a large error up to 150 m. Based on the fact that the vector tracking solution
in the left plot does not follow the true trajectory, position (I) is placed at the
approximate true position. For (G) and (H) a SPP solution is available, which is
referenced in the right plot [Dampf, Lichtenberger, and Pany, 2019, Fig. 24].

Figure 8.37: Indoor: These plots correspond to position (G) in Fig. 8.36. The position is short
before entering the building which leads to the typical std. dev. of about 3 m
[Dampf, Lichtenberger, and Pany, 2019, Fig. 25].
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Figure 8.38: Indoor: These plots correspond to position (H) in Fig. 8.36. The position is short
after entering the passage of the building. The skyplot shows already a reduced
visibility of the signals. The PDF shows a significant non-Gaussian deformation of
the probability of the user position with an increased std. dev. of up to 12 m in
east-west direction [Dampf, Lichtenberger, and Pany, 2019, Fig. 26].

Figure 8.39: Indoor: These plots correspond to position (I) in Fig. 8.36. The position is inside the
building where no direct LOS visibility to any satellite is given. Most epochs inside
the building still show unimodal distributions, but some epochs such as this one,
shows a multi-modal distribution. This can be interpreted such that two likelihood
maxima exist for the user position. The weighted mean from the statistics is placed
near the left maxima, which is at least plausible, because position (I) is located in
the north-west with respect to the reference position [Dampf, Lichtenberger, and
Pany, 2019, Fig. 27].
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9 Summary, Conclusions and Outlook

The work presents a concept of a real-time capable BDPE receiver analysis
tool to generate a PDF in the PVT domain. The introduction in chapter 1

delivers an overview of the current and future GNSS market segments as well
as state-of-the-art and emerging positioning techniques. The current state of
all global and regional satellite navigation systems is summarized in chapter
2. It is discussed in chapter 3, how the concept of BDPE can be placed in
context of existing GNSS positioning techniques. Many state-of-the-art GNSS
receivers as well as BDPE rely on Bayesian filtering techniques. It was shown
that BDPE deal with non-Gaussian multi-modal measurements as well as
with non-linear state propagations. Thus, the principles of Bayes filters with
focus on a grid-based filter and a particle filter are introduced in chapter
4. The fundamentals of a GNSS receiver are discussed in chapter 5 and all
steps till the required input to the proposed BDPE approach, the synthetically
generated multi-correlator values, are explained in detail. The theory of the
particle and grid-based filter is linked to the concept of BDPE in chapter 6,
which describes the proposed receiver architecture for a real-time capable
software based BDPE GNSS receiver. A major part of this work is given in
chapter 7, which derives the mathematical framework for the optimal weight
update for Bayes filter, which rely on a probabilistic description of the GNSS
measurements. Bayes filter for DPE need such a probabilistic description of
the measurements, which are based on the samples or the correlation values.
Furthermore, the chapter discusses limited precision effects of numerical
operations when solving the equations on a computer, and discusses the
introduction of nuisance parameters, which are used to cover unmodeled
UEREs in the range and Doppler model to stabilize BDPE solutions. Further-
more, a performance optimized method is presented to perform all required
calculations in real-time. An analysis of the resulting PDF in the PVT domain
is presented in chapter 8. The analysis uses an aligned grid to a PVT reference
to generate the PDF of a 2-dimensional subspace (2D-position, 2D-velocity
or 2D-time) with a high resolution, in order to analyze and understand the
size, shape and deformation in different conditions. This knowledge helps to
establish an ideal parametrization of a grid-based or particle filter, because
this PDF is the fundamental measurement for a particle or grid-based filter.
Hereby, the chapter discusses in general the product of PDFs, the impact
of different signal and processing parameters, the impact of multipath, the
impact of the satellite constellation geometry, and the impact of the proposed
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nuisance parameters to the PDF. Furthermore, the produced results are linked
to other publications. The results in chapter 8.7 apply the proposed methods to
real-world scenarios. The analysis focuses on challenging scenarios for GNSS
when driving through an urban canyon with significant present multipath,
underpassing a bridge and going indoors. It is known that Bayesian methods,
which do not assume underlying Gaussian distributions for the measurements
and a linear state propagation, exploit their benefits with non-Gaussian mea-
surements and a non-linear propagation. The results clearly demonstrate, that
the probability distribution of the user position, velocity and time can become
non-Gaussian in challenging environments. Moreover, strong deformations
and multi-modalities are possible. It was also clearly shown, that even in the
most severe situations the PDF showed a clear maximum in the north-east
position domain. Furthermore, the generated PDF of the user position is
compared to an SPP solution, which underlines the sensitivity gain of DPE.
This gain is resulting from the non-coherent sum of correlation values over
multiple GNSS signals and can be seen in the presented indoor scenario.

This work extends the current research on DPE by delivering the mathematical
framework and proposes a computational efficient way to update a Bayesian
particle filter or grid-based filter in an optimal way with a probabilistic
description of the GNSS measurements. This allows in contrast to state-of-the-
art methods to calculate not only the PVT, it also delivers a PDF of the user
PVT. The proposed method takes as input correlation values, the same as state-
of-the-art receivers use. The proposed method differs from the state-of-the-art
receivers, as it estimates the PVT collectively on all available GNSS signals.
Most current receivers perform a single channel tracking to obtain the range
and Doppler measurement. The PVT estimate is performed based on this
measurements with a LSQ, WLSQ or KF approach, as explained in chapter 5.8.
More advanced GNSS receivers use vector tracking, a method which closes
the signal tracking loops via the navigation solution. This method is already
close to DPE and is a collective signal tracking method, but still estimates the
Doppler and range on a single channel basis. In contrast, DPE/BDPE directly
estimates the PVT recursively and collectively based on the signal samples or
correlation values. When comparing these methods, vector tracking delivers a
sensitivity gain compared to single channel tracking methods, whereas the
performance improvement from vector tracking is contingent on the number
of available satellites and their geometry [Lashley and Bevly, 2009]. The
sensitivity gain of DPE in (6.21) from [Closas and Gusi-Amigó, 2017] also
depends on the number of available GNSS signals, whereas the impact of the
satellite geometry on the PDF is visualized in chapter 8. Summarized, both
methods vector tracking and DPE/BDPE deliver a sensitivity gain compared
to the single channel tracking methods. The benefit of BDPE compared to
vector tracking is, that the method delivers a PDF of the PVT and can deal
with non-Gaussian multi-modal measurements and a non-linear propagation,
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but with the drawback of a much higher computational complexity.

9.1 Lessons Learned

The first idea of the approach was to build the non-coherent sum of the corre-
lation values in the PVT domain, same as done in [Closas, 2009] or [Axelrad et
al., 2011], and put on top the Bayesian filter. This actually worked straight for-
ward and was presented in [Dampf, Witternigg, et al., 2017] and [Witternigg
et al., 2017]. But this approach was suboptimal, because it re-interpreted the
non-coherent sum of the correlation values in the PVT domain as a PDF and
an empirical amplitude scaling has been applied between consecutive epochs
in order to stabilize the filter. An optimal BDPE receiver requires to update
the Bayesian grid-based or particle filter with a probabilistic description of
the measurement. Since such a description did not exist for correlation val-
ues, this work investigated to derive the mathematical framework to convert
correlation values into a probabilistic description of the measurement. The
effort to obtain such a description, which can also be evaluated in real-time,
was strongly underestimated. The derivation of the mathematical framework
required to solve very complex integrals and required to extend existing single
signal models to multiple signals based on empirical mathematical schemas,
as discussed in chapter 7 and derived in Appendix A and Appendix B. Once
the equations have been derived it turned out, that the weight update cannot
performed on a computer because of the limited precision of mathematical
operations. Thus, all equations have been shifted to the logarithmic scale and
a stable weight update sequence was defined, as discussed also in Appendix
B. After evaluation of that equations it turned out, that the PDF of the pseu-
dorange and Doppler measurement became very narrow for strong signals,
broadband signals and long integration times. It was found, that these narrow
PDFs does not represent the true range and Doppler accuracy accordingly
and caused problems at the alignment in the PVT domain, as they need to
overlap to exploit the gain of DPE. Hereby, UEREs caused the narrow PDFs
to jump between consecutive epochs, which can lead to loss of lock of the
tracked PVT solution in case of a particle filter or grid-based filter, because
the PDF needs to be covered properly and with a reasonable resolution. Thus,
the concept of nuisance parameters was introduced to prevent this behavior,
which is discussed in Appendix C. Hereby, Gaussian nuisance parameters are
used to describe unmodeled UEREs in order to deliver a reasonable variance
of the PDF of a GNSS signal measurement. Evaluating the derived equations
is computationally demanding, as it requires a convolution of the PDF with
a Gaussian for 2-dimensions, code phase and Doppler. In order to achieve
real-time performance, an algorithm is proposed in chapter 7.2. The imple-
mentation in the software based GNSS receiver considers the capabilities of

164



9 Summary, Conclusions and Outlook

the used CPU and uses vectorization by using the Intel IPPs [Intel Corpora-
tion, 2020]. Furthermore, the tracking of the 8-dimensional PVT state is not
trivial, because it requires a large number of particles or fine grid to achieve
a good coverage of the tracked PVT state. Additionally, all Bayesian filter
parameters such as the process noise and dynamic model need to be chosen
carefully in order to achieve a stable convergence of the filter. Summarized,
many aspects which have not been addressed in advance, but which needed
to be investigated and which lead to the underestimated effort to achieve
an optimal and real-time capable BDPE receiver. Nevertheless, the presented
results are worldwide unique and outstanding, as it is possible to calculate
and analyze the probability of the user position, velocity and time in real-time,
proof that BDPE performs better compared to a SPP solution and deliver the
fundamental mathematical as well as processing framework for a real-time
BDPE receiver.

9.2 Possible Future Investigations

Three aspects are very interesting to be investigated in future.

The first proposed investigation to continue is the realization of BDPE with the
herein proposed optimal probabilistic weight update. Therefore, the weight
update needs to be used by the particle or grid-based filter. To achieve a stable
tracking behavior of the PVT, the Bayes filter needs to be well parametrized
such that the PDF of the PVT is well covered by the grid or particle cloud.
This should be achievable in a first step for defined user dynamics and
environmental conditions. Once this is achieved, a sensitivity comparison
between BDPE, vector tracking and a standard SPP navigation solution would
be of high interest in order to proof, that the theoretical promises can be
achieved in real conditions.

The second aspect is the problem and complexity of a Bayesian filter with a
high dimensionality. A reduction of the dimensionality simplifies the problem
and is possible for slow moving users. If the user can be assumed to be
static or slow moving, the velocity states can be neglected, which reduces
the dimensionality from 8 to 5 estimated states. Hereby, the velocity error
expressed in a Doppler frequency must be significantly smaller than 1

Tcoh
,

according to the sinc-behavior of the Doppler correlation function, in order
to keep the correlation loss low. The zero crossing points of the correlation
function, for example Tcoh = 10 ms and a wavelength λ = 0.19 m for the
L1-band is at fd = 1

Tcoh
= 100 Hz, which equals a velocity of v = fdλ = 19

m/s. In order to stay in the main lobe of the sinc, the absolute velocity error
should not exceed e.g. fd

2 = 9.5 m/s = 34.2 km/h, which is sufficient for
many applications such as pedestrians or construction machinery.
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The third proposed research aspect is the comparison of an adaptable grid-
based filter to a particle filter. Hereby, the grid-based filter can be propagated
from one epoch to the next, same as the particle filter does. Hereby, the
extension of the grid can be adapted according to the variance of the PDF of
the covered state, and the resolution can be adapted as a tradeoff between
processing complexity and resolution of the PDF. It is expected, that the
grid-based filter is stable in challenging multipath environments, even if the
nuisance parameters do not cover the multipath error completely. In such a
case, the PDF of the PVT start jumping and the particles of a particle filter
might not cover the new state properly, whereas a grid-based filter would still
deliver reasonable estimates as long the new state is covered by the grid.

9.3 Outlook of GNSS and DPE Receivers

The current trend of GNSS receivers depends on the type of receiver. Mass-
market low-cost receivers, which are used in mobile phones and in the auto-
motive industry start to incorporate a second frequency in order to facilitate
precise positioning techniques such as RTK and PPP. This should enable
location-based services which require a more accurate PVT or should fulfill
the absolute position requirements in self-driving cars. Today’s professional
GNSS receivers, as e.g. used in for surveying, can perfectly compensate for
atmospheric errors, but still struggle with multipath, especially at construc-
tion sites. In the last years some advanced methods emerged, which promise
a significant step forward in compensating the impact of multipath. These
methods are based on forming a synthetic antenna gain pattern or known
as beamforming techniques, either by use of antenna arrays or synthetically
with a single antenna and known antenna motion. Based on the fact that the
hardware complexity of antenna arrays is very high and that the motion of a
single antenna is nowadays already precisely known in GNSS-INS receivers,
it is expected that synthetic aperture antenna processing algorithms based on
a single antenna and known motion, as proposed in [Pany, Falk, et al., 2013],
will be implemented in near future in commercial GNSS receivers. Latest
publications show, that synthetic aperture processing algorithms have already
been implemented on mass-market Acorn RISC Machines (ARM) chipsets e.g.
in a mobile phone [Faragher, 2018], which supports the expectation of this
trend.

Mass-market as well as professional receivers are implemented in Application-
Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays
(FPGAs) to fulfill dominating requirements on power consumption and size.
If more complex positioning algorithms need to be solved, e.g. sensor fusion
with an IMU or calculating a precise position with RTK or PPP, typically ARM
CPUs are used in addition to fulfill this task. The low power consumption of
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an ARM processor causes to have only a Reduced Instruction Set Computer
(RISC) architecture available, which also have very limited computational
and memory resources. Thus, GNSS receivers are tailored and specifically de-
signed for a set of applications. When thinking on DPE in GNSS receivers, two
problems arise, (1) the architecture of current GNSS receivers do not support
the required architecture by DPE and (2) the computational complexity of DPE
is, at the moment, too high to be implemented on state-of-the-art receivers.
Thus, it is expected that DPE or BDPE receivers will not be implemented in
mass-market receivers soon. But it is expected, that first implementations with
a reduced complexity, as briefly discussed in chapter 9.2, focusing only on the
position and time estimate or as proposed in [Peretic and Grace X Gao, 2020a]
to split up the position/time and velocity/time drift estimation process, will
be realized soon.
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Appendix A

This section shows the integration step of the carrier phase φ on the sample
distribution for a single GNSS signal. The result of integrating out φ can also
be found in [Pany, 2010], but a detailed stepwise approach is also shown here
for completeness. The proof in Appendix A was supported by Katrin Frankl.
The sample distribution of a discrete GNSS signal is given with

p(s|A, τ, ω, φ) =
1

(2π)L exp

{
−1

2

L

∑
µ=1
|sµ − Ac(tµ − τ) exp{iωtµ − iφ}|2

}
(A.1)

where s ∈ CL contains all signal samples sµ, µ ∈ 1, ..., L. The time at a sample
µ is given by tµ = µ

fs
, where fs is the sampling frequency. The probability

p(·) basically depends on the replica signal parameters amplitude A ∈ R+,
code delay τ ∈ R, Doppler ω ∈ R and uniform distributed carrier phase
φ ∈ [0, ..., 2π[. Let also define cµ,τ = c(tµ − τ) and i be the imaginary number.
The sample distribution for a single signal in dependence of [A, τ, ω] is
achieved by integrating out the carrier phase φ such as

p(s|A, τ, ω) =
1

2π

∫ 2π

φ=0

1
(2π)L exp

−
1
2

L

∑
µ=1
|sµ − Acµ,τ exp{iωtµ − iφ}|2︸ ︷︷ ︸

R

 dφ

(A.2)

With the definition of the absolute |z| =
√

zz̄ and complex conjugation y + z =
ȳ + z̄ as well as yz = ȳz̄, the term R from (A.2) can be expanded to
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R = −1
2

L

∑
µ=1

[
sµsµ

−sµ Acµ,τ exp{iωtµ − iφ} − sµ Acµ,τ exp{iωtµ − iφ} (A.3)

+Acµ,τ exp{iωtµ − iφ}Acµ,τ exp{iωtµ − iφ}
]

= −1
2

L

∑
µ=1

[
|sµ|2 (A.4)

−2<(sµ Acµ,τ exp{iωtµ − iφ}) (A.5)

+A2|cµ,τ|2
]

(A.6)

where <(·) and =(·) defines the real and imaginary part. To obtain (A.5) the
following mathematical relationship

sz + sz = (x + iy)(u + iv) + (x + iy)(u + iv)
= (x + iy)(u− iv) + (x− iy)(u + iv) (A.7)
= 2xu + 2yv
= 2<(sz)

where s = (x + iy) and z = (u + iv) are complex valued numbers, was
used. For (A.6) it was considered, that | exp{iωtµ − iφ}|2 = 1, because of
|eiz| = 1, z ∈ C. With (A.4) to (A.6) equation (A.2) can be rewritten to be

p(s|A, τ, ω) =
1

2π

∫ 2π

φ=0

1
(2π)L exp

{
− 1

2

L

∑
µ=1
|sµ|2 (A.8)

−A2

2

L

∑
µ=1
|cµ,τ|2 (A.9)

+A
L

∑
µ=1
<(sµcµ,τ exp{iωtµ − iφ})

}
dφ (A.10)

From that restructuring it can be seen, that φ only depends on (A.10) and the
equation can be rewritten to
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p(s|A, τ, ω) =
1

(2π)L exp

{
−1

2

L

∑
µ=1
|sµ|2

}

exp

{
−A2

2

L

∑
µ=1
|cµ,τ|2

}
(A.11)

1
2π

∫ 2π

φ=0
exp

{
A

L

∑
µ=1
<(sµcµ,τ exp{iωtµ − iφ})

}
dφ︸ ︷︷ ︸

m

The basic idea from (A.11) is to bring the integral in a form of a known
solution, therefore let define m to be the integral term of (A.11) with

m =
1

2π

∫ 2π

φ=0
exp

{
A

L

∑
µ=1
<(sµcµ,τ exp{iωtµ − iφ})

}
dφ (A.12)

which can be expanded with the schema of <(sz) = 1
2 (sz + sz) to

m =
1

2π

∫ 2π

φ=0
exp

{A
2

exp{−iφ}
L

∑
µ=1

scµ,τ exp{iωtµ}

+
A
2

exp{−iφ}
L

∑
µ=1

scµ,τ exp{iωtµ}
}

dφ (A.13)

Inserting in (A.13) the definition of the correlation value

P(τ, ω) =
1√
L

L

∑
µ=1

scµ,τ exp{iωtµ} (A.14)

from (5.11) in [Pany, 2010] leads to

m =
1

2π

∫ 2π

φ=0
exp

{ A
2

exp{−iφ}
√

LPτ,ω +
A
2

exp{−iφ}
√

LPτ,ω︸ ︷︷ ︸
n

}
dφ (A.15)

With the following auxiliary calculation, n from (A.15) can be expressed with
trigonometric functions. Let therefore redefine a =: A

2

√
L and Pτ,ω =: u + vi

and reformulate n by
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Figure A.1: This figure illustrates the exponential term from (A.17) with an arbitrary amplitude
A and length L for two representative correlation values Pτ,ω,1 and Pτ,ω,2. The
complex valued correlation values are shifted in phase by π

2 and are shown in blue.
The red line illustrates the result, when shifting the maximum for each example to
φ = 0.

n =
A
2

exp{−iφ}
√

LPτ,ω +
A
2

exp{−iφ}
√

LPτ,ω

= a exp{−iφ}(u− vi) + aexp{−iφ}(u + vi)
= a[cos(φ)− i sin(φ)](u− vi) + a[cos(φ) + i sin(φ)](u + vi)
= 2au cos(φ)− 2av sin(φ)

= a
√

L<(Pτ,ω) cos(φ)− a
√

L=(Pτ,ω) sin(φ) (A.16)

With (A.16), equation (A.15) can be rewritten to be

m =
1

2π

∫ 2π

φ=0
exp

{
A
√

L<(Pτ,ω) cos(φ)− A
√

L=(Pτ,ω) sin(φ)
}

dφ (A.17)

Basically the exponential term in (A.17) is periodically from 0 to 2π, which is
illustrated by Fig. A.1, and thus shifting the maxima by a an abitrary value φ
does not change the result of the integral. It is shown in the next steps, that a
shift of the maxima to φ = 0 simplifies the the exponential term and thus also
the analytical evaluation of the integral. The maxima of the exponential term
in (A.17) can be found by
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d
dφ

exp
{

A
√

L<(Pτ,ω) cos(φ)− A
√

L=(Pτ,ω) sin(φ)
}

!
= 0 (A.18)

exp
{

A
√

L<(Pτ,ω) cos(φ)− A
√

L=(Pτ,ω) sin(φ)
}

[
A
√

L<(Pτ,ω)(− sin(φ))− A
√

L=(Pτ,ω) cos(φ)
]

!
= 0 (A.19)

⇔
−A
√

L<(Pτ,ω) sin(φ) = A
√

L=(Pτ,ω) cos(φ) (A.20)

tan(φ) =
sin(φ)
cos(φ)

= −=(Pτ,ω)

<(Pτ,ω)
(A.21)

φ = arctan
(
−=(Pτ,ω)

<(Pτ,ω)

)
(A.22)

With (A.22) the phase in (A.17) can be shifted to zero by

m =
1

2π

∫ 2π

φ=0
exp

{
A
√

L<(Pτ,ω) cos
(

φ + arctan
(
−=(Pτ,ω)

<(Pτ,ω)

))
−A
√

L=(Pτ,ω) sin
(

φ + arctan
(
−=(Pτ,ω)

<(Pτ,ω)

))}
dφ (A.23)

With the addition theorems

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

equation (A.23) can be rewritten to

m =
1

2π

∫ 2π

φ=0
exp

{
A
√

L<(Pτ,ω)

[
cos(φ) cos

(
arctan

(
−=(Pτ,ω)

<(Pτ,ω)

))

− sin(φ) sin
(

arctan
(
−=(Pτ,ω)

<(Pτ,ω)

))]

−A
√

L=(Pτ,ω)

[
sin(φ) cos

(
arctan

(
−=(Pτ,ω)

<(Pτ,ω)

))

+ cos(φ) sin
(

arctan
(
−=(Pτ,ω)

<(Pτ,ω)

))]}
dφ (A.24)
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and with the definition of

cos(arctan(x)) =
1√

1 + x2

sin(arctan(x)) =
x√

1 + x2

equation (A.24) can be rewritten to

m =
1

2π

∫ 2π

φ=0
exp

{
A
√

L<(Pτ,ω)

cos(φ)
1√

1 + =(Pτ,ω)2

<(Pτ,ω)2

− sin(φ)
−=(Pτ,ω)
<(Pτ,ω)√

1 + =(Pτ,ω)2

<(Pτ,ω)2


−A
√

L=(Pτ,ω)

sin(φ)
1√

1 + =(Pτ,ω)2

<(Pτ,ω)2

+ cos(φ)
−=(Pτ,ω)
<(Pτ,ω)√

1 + =(Pτ,ω)2

<(Pτ,ω)2

}dφ (A.25)

=
1

2π

∫ 2π

φ=0
exp

{
A
√

L cos(φ)


<(Pτ,ω)√
1 + =(Pτ,ω)2

<(Pτ,ω)2

+
=(Pτ,ω)2

<(Pτ,ω)
√

1 + =(Pτ,ω)2

<(Pτ,ω)2︸ ︷︷ ︸
o


}

dφ

In a side calculation the term o in (A.25) can be simplified to

o =
<(Pτ,ω)√
1 + =(Pτ,ω)2

<(Pτ,ω)2

+
=(Pτ,ω)2

<(Pτ,ω)
√

1 + =(Pτ,ω)2

<(Pτ,ω)2

=
<(Pτ,ω)2 +=(Pτ,ω)2

<(Pτ,ω)
√

1 + =(Pτ,ω)2

<(Pτ,ω)2

=

(
<(Pτ,ω)2 +=(Pτ,ω)2)√1 + =(Pτ,ω)2

<(Pτ,ω)2

<(Pτ,ω)
(

1 + =(Pτ,ω)2

<(Pτ,ω)2

)
= <(Pτ,ω)

√
1 +
=(Pτ,ω)2

<(Pτ,ω)2

=
√
<(Pτ,ω)2 +=(Pτ,ω)2 = ||Pτ,ω|| (A.26)

which further simplifies (A.25) to be
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m =
1

2π

∫ 2π

φ=0
exp

{
A||Pτ,ω||

√
L cos(φ)

}
dφ (A.27)

The definition of the modified Bessel function of the first kind is given with

In =
1
π

∫ π

φ=0
exp {x cos(θ)} cos(nθ)dθ (A.28)

whereas the modified Bessel function of the first kind and order n = 0 is
given as

I0 =
1
π

∫ π

φ=0
exp {x cos(θ)} dθ (A.29)

which is of same integral type as (A.27) and thus the integral can be solved to
be

m = I0

(
A||Pτ,ω||

√
L
)

(A.30)

When inserting now m in (A.11) and knowing that the absolute squared sum
of the binary PRN code is ∑L

µ=1 |cµ,τ|2 = L , the sample distribution for a
single signal in dependence of [A, τ, ω] can be obtained to be

p(s|A, τ, ω) =
1

(2π)L exp

{
−1

2

L

∑
µ=1
|sµ|2 −

LA2

2

}
I0

(
A||P(τ, ω)||

√
L
)

(A.31)
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This appendix shows the extension of the probabilistic model to multiple
GNSS signals and how to obtain a numerically stable weight update in the
logarithmic scale. This part of the work was published in [Dampf, Frankl, and
Pany, 2018]. In a first step (A.1) is extended to two signals with the aim to
find a mathematical rule to extend it to multiple signals. The extended model
for two signals is defined as

q8 = [A1, τ1, ω1, φ1, A2, τ2, ω2, φ2]

p(s|q8) = 1
(2π)L exp

−
1
2

L

∑
µ=1

∣∣∣sµ −
[ r1︷ ︸︸ ︷

A1c1(tµ − τ1) exp{iω1tµ − iφ1}+
r2︷ ︸︸ ︷

A2c2(tµ − τ2) exp{iω2tµ − iφ2}
]∣∣∣2︸ ︷︷ ︸

m


(B.1)

With the definition of |z| =
√

zz̄, |z|2 = zz̄ and the definition of the replica
signals r1 and r2, m can be expanded to

m = −1
2

L

∑
µ=1

(
sµsµ − sµ[r1 + r2]− sµ[r1 + r2] + [r1 + r2][r1 + r2]

)
= −1

2

L

∑
µ=1

(
sµsµ − sµr1 − sµr2 − sµr1 − sµr2 + r1r1 + r2r1 + r1r2 + r2r2

)

= −1
2

L

∑
µ=1

(
|sµ|2 + |r1|2 − 2Re(sµr1) +

new terms due to 2nd signal︷ ︸︸ ︷
|r2|2 − 2Re(sµr2) + 2Re(r1r2)︸ ︷︷ ︸

xcorr ≈ 0

(B.2)

With |rn|2 = A2
n|cn(tµ − τn)|2 and neglecting the cross-correlation term xcorr

leads to

m = − 1
2 ∑L

µ=1

(
|sµ|2 + A2

1|c1(tµ − τ1)|2 − 2Re(sµ A1c1(tµ − τ1) exp{iω1tµ − iφ1})

+A2
2|c2(tµ − τ2)|2 − 2Re(sµ A2c2(tµ − τ2) exp{iω2tµ − iφ2})

)
(B.3)
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Inserting (B.3) in (B.1), consider that the sum of the squared PRN code leads
to ∑L

µ=1 |c(tµ − τ2)|2 = L and realigning the terms to integrate out φ1 and φ2
leads to

q6 = [A1, τ1, ω1, A2, τ2, ω2]

p(s|q6) =
1

(2π)L exp

{
−1

2

L

∑
µ=1

∣∣∣sµ|2
}

1
(2π)

∫ 2π

φ1=0
exp

{
−

LA2
1

2

}
exp

{
A1

L

∑
µ=1

Re(sµc1(tµ − τ1) exp{iω1tµ − iφ1

}
dφ1

1
(2π)

∫ 2π

φ2=0
exp

{
−

LA2
2

2

}
exp

{
A2

L

∑
µ=1

Re(sµc2(tµ − τ2) exp{iω2tµ − iφ2

}
dφ2

=
1

(2π)L exp

{
−1

2

L

∑
µ=1

∣∣∣sµ|2
}

exp

{
−

LA2
1

2

}
I0(A1|P1(τ1, ω1)1|

√
L) (B.4)

exp

{
−

LA2
2

2

}
I0(A2|P2(τ2, ω2)2|

√
L)

It can be shown in (B.4) that the extension to multiple GNSS signals follows
the same structure as shown in (A.2) for a single GNSS signal, if the (quasi)
orthogonal cross correlation terms are neglected as shown in (B.2).

Solving an integral of type
∫ ∞

0 exp{− x2

c }I0(xp)dx was performed with the
help of Wolfram Mathematica [Wolfram Research Inc., 2018] which was used
to integrate out the amplitude as
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p(s|τ1, ω1, τ2, ω2) =
1

(2π)L exp

{
−1

2

L

∑
µ=1
|sµ|2

}
∫ ∞

A1=0
exp

{
−

LA2
1

2

}
I0(A1|P1(τ1, ω1)1|

√
L)dA1

∫ ∞

A2=0
exp

{
−

LA2
2

2

}
I0(A2|P2(τ2, ω2)2|

√
L)dA2

=
1

(2π)L exp

{
−1

2

L

∑
µ=1
|sµ|2

}
√

π

2L
exp

{
|P1(τ1, ω1)|2

4

}
I0

(
|P1(τ1, ω1)|2

4

)
(B.5)√

π

2L
exp

{
|P2(τ2, ω2)|2

4

}
I0

(
|P2(τ2, ω2)|2

4

)

With the assumption of using Gaussian distributed complex valued samples
sµ whose real and imaginary parts are each of variance one and zero mean,
the sum over the absolute squared samples approximates to L ≈ 1

2 ∑L
µ=1 |sµ|2.

This approximation can be made if the GNSS signal amplitude is significantly
smaller than the noise. This is generally the case for GNSS signals when
considering receivers operated on the earths ground [Misra and Enge, 2010].
With this approximation, (B.5) can be rewritten for N GNSS signals as

p(s|τ, ω) =
1

(2π)L exp{−L}N
√

π

2L

N

∏
n=1

exp
{
|Pn(τn, ωn)|2

4

}
I0

(
|Pn(τn, ωn)|2

4

)
(B.6)

Equation (B.6) defines the probability function p(zk|xi
k) for an arbitrary num-

ber N GNSS signals in order to obtain wi
k in (4.39). Note that the code-phase

and Doppler values changed from a scalar to vectors τ ∈ RN and ω ∈ RN .
However, with this equation, the weight cannot be evaluated directly due
to finite precision effects when solving the equation on a computer. In par-
ticular, the terms exp

{
|Pn(τn,ωn)|2

4

}
and I0

(
|Pn(τn,ωn)|2

4

)
use a typically ’large’

correlation value P, which causes a numerical problem. The common max-
imum value that can be stored on 64-bit platforms is a double precision
floating-point value (not considering dedicated floating point libraries). The
maximum value is limited to 1.7E ± 308 (15 digits) [Microsoft Cooperation,
2018]. Considering the term exp

{
|Pn(τn,ωn)|2

4

}
in Equation (B.6), the numerical

limits are approximately reached for a correlation value Pn(τn, ωn) > 53.28. A
solution to overcome the effect of limited digital precision is proposed in the
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next chapter.

Logarithmic Weight Update
When performing the particle weight update, the numerical values can be

too large to be evaluated by a computer. The numerical issues at the weight
update when evaluating (B.6) can be solved by shifting the equations to the
logarithmic scale and performing an additional normalization step. As a first
step, let

Iα(z) ≈
ez
√

2πz

(
1− 4α2 − 1

8z
+

(4α2 − 1)(4α2 − 9)
2!(8z)2 + ...

)
(B.7)

be an approximation of the Bessel function of first kind, where only the first
term is used to approximate the function with order zero, resulting in

I0(z) ≈
ez
√

2πz
(B.8)

With (B.8), (B.6) can be rewritten to

p(s|τ, ω) ≈ 1
(2π)L exp{−L}N

√
π

2L︸ ︷︷ ︸
Hconst

N

∏
n=1

exp
{
|Pn(τn,ωn)|2

2

}
√

2π |Pn(τn,ωn)|2
4

 (B.9)

Based on the reason that a later introduced normalization step is performed in
(B.14), the constant term Hconst can be neglected. With that, the weight update
from (4.39) can be expressed as

wi
k ∝ wi

k−1

N

∏
n=1

exp
{
|Pn(τn,ωn)|2

2

}
√

2π |Pn(τn,ωn)|2
4

 (B.10)

Let define w̃i
k = log(wi

k) and w̃i
k−1 = log(wi

k−1). Then, the update can be
written in logarithmic scale as

w̃i
k ∝ w̃i

k−1 +
N

∑
n=1

(
|Pn(τn, ωn)|2

2
− log

(√
2π
|Pn(τn, ωn)|2

4

))
(B.11)

179



Appendix B

The weight update from (4.39) can now be done in five steps from equation
(B.12) to (B.16) using

w̃i
k−1 = log(wi

k−1) (B.12)

w̃i
k = w̃i

k−1 +
N

∑
n=1

(
|Pn(τn, ωn)|2

2
− log

(√
2π
|Pn(τn, ωn)|2

4

))
(B.13)

wi
k = w̃i

k −max(w̃i
k) (B.14)

wi
k = exp(wi

k) (B.15)

wi
k =

wi
k

∑Ns
i=1 wi

k

(B.16)

This series of equations allows for performing the weight update within
numerical boundaries (e.g., double precision) and can be used to implement
the optimal particle weight update for any Bayesian filter working with GNSS
correlation values.
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This appendix shows the introduction of Gaussian nuisance parameters for
the code delay and Doppler. The derivation of the code delay was published
in [Dampf, Frankl, and Pany, 2018]. The herein presented extended derivation
for the code phase and Doppler was published in [Dampf and Pany, 2018].
For the 2-dimensional introduction of a Gaussian nuisance parameter for the
code delay δτ and Doppler δω let define

∆τ ∼ N(0, σ2
∆τ) (C.1)

p(∆τ) =
1√

2πσ∆τ

exp
{
−1

2
∆τ2

σ2
∆τ

}
(C.2)

and

∆ω ∼ N(0, σ2
∆ω) (C.3)

p(∆ω) =
1√

2πσ∆ω

exp
{
−1

2
∆ω2

σ2
∆ω

}
(C.4)

With these definitions the probability function can be modified to include the
code delay uncertainty with

p(s|τ, ω) =
∫ ∞

∆τ=−∞
p(∆τ)p(s|τ + ∆τ, ω)d∆τ (C.5)

and both, code delay and Doppler uncertainty by

p(s|τ, ω) =
∫ ∞

∆τ=−∞

∫ ∞

∆ω=−∞
p(∆τ)p(∆ω)p(s|τ + ∆τ, ω + ∆ω)d∆τd∆ω (C.6)

The discrete form of (C.6) can be written as

p(s|τ, ω) ≈
K

∑
k=1

J

∑
j=1

p(∆τk)p(∆ωj)p(s|τ + ∆τk, ω + ∆ωj) (C.7)
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where k denote the index in code phase direction and j the index in Doppler
direction. The extension of (C.7) to two GNSS signals can be written as

q4 = [τ1, ω1, τ2, ω2] (C.8)

p(s|q4) =
1

(2π)L exp

{
−1

2

L

∑
µ=1
|sµ|2

}
(C.9)

K

∑
k=1

J

∑
j=1

p(∆τk)p(∆ωj)

√
π

2L
exp

{
|P1(τ1 + ∆τk, ω1 + ∆ωj)|2

4

}
I0

(
|P1(τ1 + ∆τk, ω1 + ∆ωj)|2

4

)
K

∑
k=1

J

∑
j=1

p(∆τk)p(∆ωj)

√
π

2L
exp

{
|P2(τ2 + ∆τk, ω2 + ∆ωj)|2

4

}
I0

(
|P2(τ2 + ∆τk, ω2 + ∆ωj)|2

4

)

which can be generalized to multiple GNSS signals N and simplified to the
weight update equation

wi
k ∝ wi

k−1

N

∏
n=1


K

∑
k=1

J

∑
j=1

p(∆τk)p(∆ωj)

exp
{
|Pn(τn+∆τk ,ωn+∆ωj)|2

2

}
√

2π
|Pn(τn+∆τk ,ωn+∆ωj)|2

4︸ ︷︷ ︸
ck,j


(C.10)

In order to obtain again a logarithmic weight update procedure, let define

ak,j =
p(∆τk)p(∆ωj)√

2π
|Pn(τn+∆τk ,ωn+∆ωj)|2

4

(C.11)

bk,j =
|Pn(τn + ∆τk, ωn + ∆ωj)|2

2
(C.12)

The existing logarithmic weight update procedure can be reformulated for
a two-dimensional case accounting for a code phase and Doppler nuisance
parameter as

2

∑
k=1

2

∑
j=1

ck,j = a1,1eb1,1 + ... + a2,2eb2,2 = a1,1eb1,1

(
1 + ... + eb2,2−b1,1

a2,2

a1,1

)
(C.13)

where a1,1 and b1,1 define the maximum of the two dimensional grid. The
equation can further be generalized for multiple grid points to

K

∑
k=1

J

∑
j=1

ck,j = a1,1eb1,1

1 +
K

∑
k=2

J

∑
j=2

ebk,j−b1,1︸ ︷︷ ︸
< 1 if b1,1,max

ak,j

a1,1

 (C.14)

which leads to the following stable update

log

(
K

∑
k=1

J

∑
j=1

ck,j

)
= log(a1,1) + b1,1 + log

(
1 +

K

∑
k=2

J

∑
j=2

ebk,j−b1,1
ak,j

a1,1

)
(C.15)
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With the formulation of (C.15) the weight update can be rewritten as

w̃i
k = w̃i

k−1 +
N

∑
n=1

[
log

 p(∆τ1)p(∆ω1)√
2π
|Pn(τn+∆τ1,ωn+∆ω1)|2

4

+
|Pn(τn + ∆τ1, ωn + ∆ω1)|2

2

+ log

(
K

∑
k=1

J

∑
j=1

exp

{
|Pn(τn + ∆τk, ωn + ∆ωj)|2

2
− |Pn(τn + ∆τ1, ωn + ∆ω1)|2

2

}
p(∆τk)p(∆ωj)

p(∆τ1)p(∆ω1)

|Pn(τn + ∆τ1, ωn + ∆ω1)|
|Pn(τn + ∆τk, ωn + ∆ωj))|

)]
(C.16)

whereas ∆τ1 and ∆ω1 are the offsets to the maximum correlation value of the
2-dimensional discrete grid.
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This appendix shows time series of the urban environment, bridge underpass
and indoor environment. All plots have been generated with the settings
given in Tab. 8.2. Two plots are shown for each epoch, the sum of correlation
values and the PDF, both in the local ENU coordinate system. Details of how
the plots are generated can be found in chapter 8.6. The plots are generated
with 4 Hz and cover a time span of 7 seconds, resulting in 28 epochs where
each page covers 1 second.

Urban Environment

The urban environment scenario was recorded in the Steyrergasse, Graz,
Austria. The trajectory is shown in the figure below.

Figure D.1: Urban trajecotry corresponding to the time series in the Steyrergasse, Graz, Austria.
The red positions of the trajectory refer to the PDFs of Fig. D.2 to D.8
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Figure D.2: PDF time series of the urban trajectory - Part 1
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Figure D.3: PDF time series of the urban trajectory - Part 2
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Figure D.4: PDF time series of the urban trajectory - Part 3
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Figure D.5: PDF time series of the urban trajectory - Part 4
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Figure D.6: PDF time series of the urban trajectory - Part 5
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Figure D.7: PDF time series of the urban trajectory - Part 6
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Figure D.8: PDF time series of the urban trajectory - Part 7
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Bridge Underpass

The bridge underpass was recorded in the Peter-Tunner-Gasse, Graz, Austria.
The trajectory is shown in the figure below.

Figure D.9: Bridge underpass trajecotry corresponding to the time series in the Peter-Tunner-
Gasse, Graz, Austria. The red positions of the trajectory refer to the PDFs of Fig.
D.10 to D.16
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Figure D.10: PDF time series of the bridge underpass - Part 1
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Figure D.11: PDF time series of the bridge underpass - Part 2
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Figure D.12: PDF time series of the bridge underpass - Part 3
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Figure D.13: PDF time series of the bridge underpass - Part 4
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Figure D.14: PDF time series of the bridge underpass - Part 5
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Figure D.15: PDF time series of the bridge underpass - Part 6
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Figure D.16: PDF time series of the bridge underpass - Part 7
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Indoor Environment

The indoor scenario was recorded at the Impulszentrum, Reininghausstrasse,
Graz, Austria. The trajectory is shown in the figure below.

Figure D.17: Indoor trajecotry corresponding to the time series in the Impulszentrum, Reining-
hausstraße, Graz, Austria. The red positions of the trajectory refer to the PDFs of
Fig. D.18 to D.24
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Figure D.18: PDF time series of the indoor scenario - Part 1
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Figure D.19: PDF time series of the indoor scenario - Part 2
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Figure D.20: PDF time series of the indoor scenario - Part 3
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Figure D.21: PDF time series of the indoor scenario - Part 4
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Figure D.22: PDF time series of the indoor scenario - Part 5
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Figure D.23: PDF time series of the indoor scenario - Part 6
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Figure D.24: PDF time series of the indoor scenario - Part 7
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This appendix extends chapter 8.5 and shows the impact of nuisance param-
eters on a series of epochs, which should give evidence that the proposed
approach to cover the UEREs works as expected. The plots have been gen-
erated as described in chapter 8.5. The scenario was recorded at the rooftop
with open sky conditions and the epochs have an interval of 0.25 seconds.
Thus, the satellite geometry is quasi the same for all epochs, and the artificial
introduced error ∆ε on the code pseudorange lead to a similar behavior of all
presented epochs. Nevertheless, the proposed recovery works in all presented
epochs as expected.
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Figure E.1: Impact of Nuisance Parameters - Part 1
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Figure E.2: Impact of Nuisance Parameters - Part 2
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Figure E.3: Impact of Nuisance Parameters - Part 3
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Figure E.4: Impact of Nuisance Parameters - Part 4
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Figure E.5: Impact of Nuisance Parameters - Part 5
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Figure E.6: Impact of Nuisance Parameters - Part 6
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