
Richard Sadek, BSc

User-space Syscall Filtering for In-process Isolation

based on Memory Protection Keys

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisors

Dipl.-Ing. David Schrammel, BSc

Dipl.-Ing. Dr.techn. Samuel Weiser, BSc

Assessor

Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard

Institute of Applied Information Processing and Communications

Graz, March 2021



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

Date, Signature



Acknowledgements

Thanks to everyone who made this thesis possible.
Special thanks to my advisors David Schrammel and Samuel Weiser for their excellent

mentoring of this thesis and help with their Donky framework, Michael Schwarz for
writing the kernel module, IAIK for inspiring me to pursue my journey in information
security, and my friends and family for always being there for me.

iii



Abstract

Complex software systems often contain exploitable bugs. In a modern operating system,
process isolation is used as a last defense against software bugs so that a faulty application
cannot affect other applications running on the same system. Modern applications usually
consist of multiple mutually distrusting components and libraries that could benefit from
isolation. Often, splitting up an application into multiple processes is not feasible because
of the substantial performance overhead of every context switch. Recent attempts in
isolating components in web browsers using process isolation also have shown that there
is a significant engineering effort involved.

Thus, efficient in-process isolation with fast switches between isolation domains is in
great demand. Existing in-process isolation schemes primarily concentrate on memory
isolation but usually do not provide sufficient isolation regarding the kernel interface. In
the worst case, domains have access to resources that could break the memory isolation.
Depending on the use-case, other kernel resources (e.g., file descriptor or the file system)
need to be isolated too.

In this thesis, we employ sophisticated user-space syscall filtering for in-process isolation
based on Protection Keys for User-space (PKU). Additional to the memory protection
from PKU, we restrict access to kernel resources on a per-domain basis. Unlike other
user-space syscall filtering systems, we do not need an additional process to filter syscalls.
We use PKU to provide us with an isolated memory region for the syscall filtering code.
We propose a novel way of syscall delegation that filters syscalls by redirecting them
into a trusted reference monitor in the same application. Our flexible architecture allows
so-called nested-filtering, where domains can register custom filtering code to constrain
their child domains.

We discuss two main use-cases: syscall filters for self-protection of an existing PKU
system and syscall filters to implement a lightweight local storage sandbox for isolated
domains. We evaluate the performance and security of both novel and adapted existing
mechanisms for syscall interception. By delegating the filtering to user-space, even
the fastest syscalls (e.g., getpid) only have an overhead of 2x. The overhead for the
open syscall in our local storage sandbox is just 57%–84%. When sandboxing various
applications with our novel mechanisms, we measure only 0–20% overhead, whereas
existing mechanisms have 5–71% overhead (depending on the syscall frequency).

Our results look promising, proving that PKU sandboxing can be both fast and secure.

Keywords:. in-process isolation, memory protection keys, user-space syscall filtering
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Kurzfassung

Komplexe Softwaresysteme enthalten oft für Angreifer ausnutzbare Fehler. Betriebssys-
teme nutzen Prozessisolation, sodass Fehler in einer Anwendung andere nicht negativ
beeinflussen können. Moderne Anwendungen bestehen oft aus mehreren Programmbi-
bliotheken, die sich gegenseitig nicht vertrauen und daher von einer weiteren Isolierung
profitieren können. Oft ist es nicht praktikabel, solche Anwendungen in mehrere Prozesse
aufzuteilen, da jeder Kontextwechsel mit einem großen Overhead verbunden ist. Aktuelle
Entwicklungen, einzelne Komponenten in Webbrowsern zu isolieren, zeigten, dass das
Aufteilen in mehrere Prozesse auch eine große technische Herausforderung darstellt.

Folglich gibt es eine große Nachfrage nach In-Prozess-Isolation, mit der schnell zwischen
Isolationsdomänen gewechselt werden kann. Bestehende In-Prozess-Isolationssysteme
konzentrieren sich vor allem auf Isolierung des Speichers, aber bieten keine ausreichende
Isolation der Schnittstelle zum Kernel. Im schlechtesten Fall haben Domänen Zugriff zu
Ressourcen, die die Speicher-Isolation brechen können. Abhängig vom Anwendungsfall
müssen auch andere Kernelressourcen isoliert werden (z.B. Dateideskriptoren).

In dieser Arbeit werden User-Space-Systemaufrufsfilter für In-Prozess-Isolation einge-
setzt. Diese basieren auf Protection Keys für User-Space (PKU). So kann zusätzlich zu der
Speicherabsicherung von PKU der Zugriff auf Kernelressourcen pro Domäne beschränkt
werden. Im Unterschied zu anderen User-Space-Systemaufrufsfiltersystemen, braucht
dieses System keinen zusätzlichen Prozess zum Filtern der Systemaufrufe. Es wird PKU
verwendet, um die Systemaufrufsfilter in einer isolierten Speicherregion ausführen zu
können. Außerdem werden in dieser Arbeit eine neue Art von Systemaufruf-Delegation
sowie verschachtelte Systemaufrufsfilter vorgeschlagen. So können Domänen benutzerdefi-
nierte Filter registrieren, um ihre Subdomänen einzuschränken.

Es werden zwei Hauptanwendungsfälle besprochen: Systemaufrufsfilter um ein exis-
tierendes PKU System vor bösartigen Domänen zu schützen und Systemaufrufsfilter
für eine Local-Storage-Sandbox für isolierte Domänen. Die Leistungsfähigkeit und die
Sicherheit für alle neuartigen und adaptieren Systemsaufrufsfiltermechanismen wird
ermittelt. Indem das Filtern in den User-Space delegiert wird, ist der Overhead sogar
für die schnellsten Systemaufrufe (z.B. getpid) nur 2x. Der Overhead des open System-
aufrufs in der Local-Storage-Sandbox ist nur 57%–84%. Für Anwendungen, die in der
Sandbox ausgeführt werden, wird für die neuartigen Mechanismen ein Overhead von
0–20%, für existierende Mechanismen ein Overhead von 5–71% verzeichnet (abhängig
von der Frequenz der Systemaufrufe).

Diese Arbeit zeigt, dass Isolation mit PKU gleichzeitig schnell und sicher sein kann.

Schlagwörter:. In-Prozess-Isolation, Memory Protection Keys, Systemaufrufsfilterung
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Chapter 1

Introduction

In a modern operating system, the main form of memory isolation is process isolation.
Each process has its own address space that maps virtual addresses to physical ones. By
default, memory is private to a process. Nevertheless, a process can also decide to share
parts of its address space with other applications.

For modern applications with complex trust relationships between software components
and libraries, process isolation is not enough. For example, a browser runs code that
renders websites and executes JavaScript. Neither the render engine nor the JavaScript
code needs to interact directly with passwords stored in memory. In the past, multiple
vulnerabilities in JavaScript engines were found that allowed JavaScript code to escape
the sandbox and read or write arbitrary memory [Cho16]. Web servers can also benefit
from additional memory isolation. A web server handles requests, but at the same time,
a secret cryptographic key is loaded into memory to encrypt the traffic. In the past,
vulnerabilities like Heartbleed [CVE14] allowed extracting this secret key.

A common approach for isolation is to split up an application into multiple processes.
However, frequent switches between processes incur a substantial performance overhead.
Multiple methods for in-process isolation have been proposed in recent years to overcome
this overhead. Some are based on intrusive modifications of the operating system [Bit+08;
Lit+16]. Others propose introducing a capability register [Vil+14; Wat+16; ARMb]
or alternative changes in hardware [Fra+18; MRD18]. Again others use virtualization
features [Bel+12; Liu+15; Kon+17] and privilege rings [LSK18; Wan+20] of the CPU. It
is also possible to implement in-process isolation purely in software [Wah+93; Yee+09;
Cas+09; Seh+10]. Some methods are based on protection keys [Zho+14; Che+16;
Hed+19; Vah+19; Sch+20] to isolate memory. Most of these papers only discuss the
memory isolation aspect of in-process isolation but treat interaction with the kernel as
an orthogonal problem. However, for in-process isolation to be secure, it is necessary to
consider all ways isolated memory can be read or modified.

The primary way of interaction between an application and the kernel is the syscall
interface. One can restrict this interaction by syscall filtering. Multiple mechanisms
have been used for syscall filtering in Linux: Seccomp [Linb], Ptrace [JS00], Ptrace in
combination with Seccomp [KZ13], Seccomp filters that can trap to user-space [Cor18],
and custom kernel modules that redirect syscalls to user space [Gar03; GPR04]

In this thesis, we analyze how in Linux the syscall interface can violate isolation
boundaries of in-process isolation schemes. We extend Donky [Sch+20], an in-process
isolation framework using memory protection keys, with sophisticated user-space syscall
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Chapter 1 Introduction

filtering. Donky uses a trusted monitor comparable to an operating system’s kernel
to manage transitions from one security domain to another. As the domains cannot
directly access the monitor, it is possible to execute filter code there. Thus, in contrast
to other user-space syscall filtering frameworks, we can securely filter syscalls in the
same process as they are emitted. Additionally, in Donky, it is possible to construct
hierarchical security relationships. By allowing each domain to register syscall filters for
its child domains, we reflect these relationships in syscall filters.

We compare all syscall filtering mechanisms listed above plus three new mechanisms
inspired by user-mode syscall handling for RISC-V [RIS] described in the original Donky
paper [Sch+20]. These three mechanisms support our novel form of syscall delegation,
which allows running syscall filters not only in the same process but also in the same thread.
We call the new mechanisms Indirect-Jump-Delegation, Kernel-Module-Delegation, and
Ptrace-Delegation.

Next to the self-protection filters needed for the Donky monitor, we also use syscall
filtering for sandboxing domains. For example, each domain can be confined to its own
local storage-like folder.

We evaluate the performance of the different syscall interception mechanisms with micro-
and macro-benchmarks. The macro-benchmarks consist of a wide range of unmodified
compute- and IO-heavy applications.

For our novel interception mechanisms, the overhead for a fast syscall like getpid

is 200%, whereas Ptrace measures 18642% overhead. For the local-storage filters, we
measure 57%–84% overhead for the open syscall. For self-protection of our evaluated
applications, our novel interception mechanisms have 0–20% overhead, whereas existing
mechanisms have 5–71% overhead (depending on the syscall frequency). We measure
0–156% overhead for our fast interception mechanisms when using our local storage
sandbox with the evaluated applications.

This thesis is part of a paper currently in submission. The nested filtering was designed
and implemented in collaboration with the co-authors and also advisors David Schrammel
and Samuel Weiser. The design and implementation of the Kernel-Module-Delegation
was primarily done by Michael Schwarz and co-author Samuel Weiser.

Outline. In Chapter 2, we provide background on memory isolation and syscall filtering.
We discuss in-process isolation and especially the Donky framework in more detail. In
Chapter 3, we look into related work in the field of in-process isolation and user-space
syscall filtering. In Chapter 4, we present our same-process syscall filtering based on
the Donky in-process isolation framework. We discuss possible filter rules in Section 4.6
and propose filter modes for self-protection and a local storage sandbox. In Chapter 5,
we evaluate the performance of the implemented syscall interception mechanisms and
filter modes. We discuss various implementation details and elaborate on future work in
Chapter 6.

2



Chapter 2

Background

With today’s applications getting bigger and more complex, it becomes harder to keep
them secure. Two approaches are commonly used to prevent vulnerabilities in a generic
way: mitigation of certain types of exploits (e.g., preventing certain types of memory
corruption bugs [Sze+13]) or isolation of components (i.e., sandboxing [AR00; Bit+08;
Cas+09; Che+16; Sch+20; Gar03; GPR04; JS00; Mad+13; Wah+93]). For the former,
detailed knowledge of a wide variety of exploits must be known. As one cannot implement
countermeasures for all types of vulnerabilities, a finished application might potentially
still contain some. For the latter, it is sufficient to know about the components and
libraries of the developed application, how they should be able to interact, and in which
aspects they should be isolated.

The term sandboxing was introduced by Wahbe et. al for describing the isolation
between their software-fault domains [Wah+93]. Today, any mechanism that can isolate
one part of code for having effect on the rest can be considered a sandbox. E.g., hardware-
backed system virtualization [Uhl+05] provides a sandbox for a whole operating system
on top of another one, Operating System-backed (OS-backed) containerization [Mer14;
RFB16; Ker20f] can provide a sandboxed view of the system state for certain applications.
Software-based methods, like the original paper by Wahbe et al. [Wah+93], can sandbox
parts of applications.

This chapter gives some background on isolation techniques that are already present in
modern operating systems and others that have been proposed. It discusses the isolation
between kernel and user-space, isolation between processes, and in-process isolation.
Furthermore, it discusses syscall filtering as a form of sandboxing in more detail.

2.1 Kernel and User-space Isolation

The privileged part of a modern operating system is called the kernel. Code and data
of the kernel are contained in kernel-space. User programs on the other hand run in
user-space. There is an isolation between kernel- and user-space that is enforced by the
processor [AD14]. This isolation is visualized in Figure 2.1 by the blue and green box.

3



Chapter 2 Background

U
ser-Space

Kernel-SpaceInterrupt

Sycall Interface

Kernel

Address space 1 Address space 2

App 1 App 2

Figure 2.1: Isolation boundaries and interfaces between kernel- and user-space. Dotted
lines indicate the boundaries of address spaces. The syscall interface is the
main interface to the kernel.

Modern processors can typically operate at multiple levels of privilege. An operating
system would use at least two: Supervisor privileges for running the operating system’s
own code (i.e., kernel-mode) and restricted privileges for user programs (i.e., user-mode).
On Intel processors, these privilege levels are called rings. The operating system runs
in ring 0 and has access to all registers and instructions the hardware provides. In
contrast, a user program runs in ring 3 and can only use a restricted set of instructions
and registers. Rings 1 and 2 are usually unused.

The hardware provides secure ways to transition from unprivileged to privileged mode.
The reason for transitions to privileged mode is called an exception. Exceptions caused
by external events (e.g., input/output) are called interrupts. An internal exception (e.g.,
accessing invalid address, division by zero) is called fault. Traps are exceptions caused
by software interrupts. Syscalls are exceptions that are triggered by user programs to
invoke privileged functions in the kernel (see Figure 2.1).

The interface between the kernel- and user-space is called the syscall interface. Each
operating system provides a table of syscalls. Syscalls are referred to by their number
and can usually be called by a dedicated syscall instruction [AD14].

2.2 Process Isolation

The hardware of a computer is a resource shared between the user programs running on
it. An operating system provides the illusion that each user program has full access to
the computer. At the same time, it provides isolation between the user programs. I.e., a
process is the smallest unit of abstraction, isolation, and executing state [AD14].

To provide the illusion of full access to system memory, each process has its own view
on memory. This view is called the process’s virtual address space. By default, address
spaces of individual processes do not overlap and therefore provide isolation between
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Chapter 2 Background

them. In Figure 2.1, they are visualized by dotted lines. Physical and virtual memory is
chunked into pieces called pages. Their size is usually 4KiB. The page table of a process
maps virtual addresses to physical ones. In modern processors, page tables have multiple
levels. Addresses are resolved in hardware and cached in the Translation Lookaside Buffer
(TLB). The memory mappings can only be changed in the kernel. Consequently, a costly
context switch is needed to change them. Additionally, unless the TLB is tagged with a
process identifier, it must be invalidated for every context switch [AD14].

As a process does not provide any further isolation for memory inside it, a vulnerability
in one software component or library can potentially compromise the whole process.
Therefore, many application developers split up their applications into small processes to
provide appropriate isolation [RG09; Moz]. Interaction between components is usually
done via inter-process communication. However, the overhead for a context switch is
quite substantial. Hence, it only makes sense to isolate big components that do not
interact with each other a lot. A prominent example is the isolation of websites in the
Google Chrome web browser. Each website runs in an individual process [RG09].

2.3 In-process Isolation

In-process isolation reduces the overhead of switching between isolated components
called domains while still providing strong isolation between them. I.e., for an in-process
isolation scheme to be viable, a domain switch must be faster than a process switch. If
this is the case, one can create much more fine-grained isolation boundaries between
domains, e.g., isolating a whole library from the rest of an application.

State-of-the-art in-process isolation schemes are primarily concerned with memory
isolation. Multiple mechanisms with more or less intrusive changes to the software stack,
operating system, and hardware have been proposed in recent years [Bit+08; Yee+09;
Bel+12; Zho+14; Vil+14; Wat+16; Lit+16; Hed+19; Vah+19; Sch+20].

2.3.1 Software-based

Pure software-based methods do not rely on hardware features for in-process isolation.
Instead, program code is instrumented, so it cannot violate any isolation boundary.

Memory-safe languages, like Rust [The20b] or Java [AGH00], employ a very intuitive
form of software-based memory isolation. As pointers by design can only be used as
references to valid objects or a NULL object, memory-safety cannot be violated. However,
errors in the language’s compiler, in unsafe code [KN], or in the runtime can still lead to
memory safety violations [CVE18; CVE19].

Software-Fault Isolation (SFI) [Wah+93; Yee+09; Cas+09; Seh+10] introduces isolated
security domains for unsafe programming languages, like C or C++. Before execution,
the application’s machine code is checked statically. All direct loads, stores and jumps

must not cross an isolation boundary. However, indirect instructions cannot be checked
statically. They are replaced by safe instruction sequences. Checks are placed before
indirect loads and stores. These checks validate if source and target address are in the
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correct domain. Additionally, the target address for indirect jumps and returns needs to
validated before they are performed [Wah+93].

For an application with SFI to be secure, it is also crucial that an application cannot
modify its own code. Usually, this is enforced by an exclusive write and execute policy
(W ⊕ X) on the code pages. Thus, writable memory pages are not executable at the
same time [Wah+93].

Native Client. For an SFI scheme be both secure and fast, the checks for indirect
instructions need to be highly optimized. For example, Native client [Yee+09], a prominent
SFI sandbox formerly used in Google Chrome, uses segmented memory of x86-32 to
limit loads and stores. Segments also limit indirect jumps. However, x86 is a CISC
architecture and therefore uses variable instruction sizes. Native Client must guarantee
that instructions are aligned properly. It does so by grouping instruction in 32-byte
bundles and allowing only 32-byte-aligned indirect jumps.

Native Client also removes all syscalls instructions inside the target application. Com-
munication with the outside world is done over a trusted runtime library that can be
accessed via a trampoline from any segment. The authors measure a maximum perfor-
mance overhead for CPU-heavy workloads of 12%. The overhead for realistic load is
quite small (< 2%).

There is an adapted version of Native Client for the x86-64 and ARM architectures.
Its realistic performance overhead is about 7% on x86-64 and 5% on ARM [Seh+10].

2.3.2 Operating System-based

As stated previously, a process is the smallest unit of isolation in modern operating
systems. Each process has an associated memory mapping that is loaded when the process
is scheduled. However, one could also use memory mappings for in-process isolation. By
creating new memory mappings for each individual domain, memory isolation can be
decoupled from processes. For a domain switch, only memory mappings are changed but
not the process context. Thus, a domain switch is faster than a full context switch.

Note that intrusive changes to the operating system need to be made to support this
kind of memory isolation.

Wedge. Wedge [Bit+08] introduces so-called sthreads. Similarly to pthreads, they have
a create and join function. However, the semantics for creating a sthread are similar to
the fork syscall. Every sthread has its own signal handlers, file descriptors, and memory
mappings. By default, no memory is shared with the parent sthread. An application
can define so-called call gates to support secure function invocation for sthreads. Long-
running sthreads wait on calls coming in. They execute them, and provide the return
value to the caller similarly to pthread join. Memory for arguments must be marked
for it to be accessible to the callee.
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Light-weight Contexts. Light-weight contexts (LwC ) [Lit+16] implement an isolation
scheme with memory mappings in the FreeBSD kernel [The]. Memory isolation is
completely decoupled from any scheduling context, i.e., the memory mapping is neither
owned by any process or thread. This has positive performance implications. A switch
between LwCs (i.e., domains) takes approximately half the time as a switch between
processes.

Each light-weight context can have its own set of file descriptors and BSD capabili-
ties [Wat+10] inherited from the parent context. If a light-weight context does not have
the capability to execute a specific syscall, the parent can emulate it.

2.3.3 Virtualization-based

Modern x86-64 processors come with dedicated hardware for virtualization. This feature
is called Intel VT-x on Intel processors and SVM on AMD processors. For this thesis we
will just focus on Intel VT-x [Uhl+05].

Hardware virtualization is primarily used for full machine virtualization, i.e., virtual
machines. Virtual machines are provided with what looks like full access to all privileged
hardware features. They have access to exception handling, can set up page tables,
change privilege mode, and have access to the segment registers. However, the effects
of privileged instructions stay in the realm of the virtual machine and do not have any
effect on the host system running the virtual machine [Uhl+05].

For memory isolation to the host operating system, another set of page tables is used.
The Extended Page Table (EPT) feature of Intel CPUs provides another layer of address
translation. The EPT translates virtual addresses in the guest to physical addresses of
the guest operating system, which are, in turn, virtual addresses in the host operating
system. The host finally translates the addresses to actual physical addresses.

Hardware virtualization cannot only be used to virtualize whole machines but also
to provide a virtualization abstraction for processes. This makes it possible to use
virtualization as a method for in-process isolation. The most trivial form of in-processes
isolation uses the privilege rings of the processor. One could set up the page tables so
that some memory regions can only be accessed with supervisor privileges (ring 0), others
with normal privileges (ring 3). A mechanism like this is used in Dune [Bel+12]. For
more advanced isolation, other works suggest the use of VMFUNC to change the EPT of
the virtualized process. This makes it possible for every domain to have its own page
table [Liu+15; Kon+17].

Virtualization also allows efficient syscall filtering. The guest can install a native syscall
handler in ring 0 that handles syscalls coming from ring 3 of the guest. The VMCALL

instruction can be used for actual syscalls into the host operating system [Bel+12].

2.3.4 Capability-based

Capabilities are unforgeable tokens of authority that grant access to objects in a sys-
tem [Fab74]. These objects can be any resource in an operating system. E.g., a file
descriptor is a capability. Capabilities have been used in the past as an alternative
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approach to virtual memory for memory isolation [Fab74]. In a system with capability-
based addressing, every pointer serves as a capability granting access to a memory range.
The hardware must be able to handle capabilities for indirect loads, stores, and jumps.

Modern capability systems combine virtual memory and capability paradigm to provide
in-process isolation. In a 2016 paper [Wat+16], Watson et al. propose fast domain crossing
for the “traditional” capability architecture CHERI [Wat+12]. In CHERI, capabilities
are stored in memory as “fat pointers”. There is a tag indicating that a capability
is present in memory. The hardware guarantees that a capability’s rights cannot be
increased. There are also capability registers for instruction pointers, stack pointers,
and heap data. The memory accessible is described by the transitive closure over all
capability registers and capabilities accessible by these registers. For domain transitions,
the authors propose Object capabilities, which are pairs of capabilities. Calling one would
allow the caller domain to share private memory (arguments) to the callee domain and
the callee domain to return private memory. For pointer-heavy applications, the authors
measured a maximum overhead of 46%. On average, less than 10% overhead is to be
expected. Under the name ARM Morello, the CHERI architecture is being adapted in
ARM hardware [ARMb].

CODOMS (COde-centric memory DOMains) [Vil+14] can be considered as more
coarse-grained capability system. Permissions are granted on page granularity by tags
in the page table. These tags represent domain IDs. The instruction pointer acts as
capability, granting memory access to pages in the same domain as the current code page.
There are access protection lists (APLs) that govern cross-domain accesses (e.g., a rule
granting domain A to read memory from domain B). To pass arguments by reference
to domains that are not necessarily immediate children, the authors use a Capability
register. This register can temporarily grant access to a memory range for the course of
a function call.

2.3.5 Memory Protection Keys-based

Memory protection keys were first introduced in System/360 processors [IBM64]. These
processors used memory protection as the sole form of memory isolation instead of virtual
memory, which is in use today. Each page of physical memory had a protection key
associated with it. Each process could own one or more protection keys. If the process
accessed memory associated with a protection key that it did not own, an exception was
triggered.

Modern forms of memory protection can be used in addition to virtual memory. Page
Table Entries (PTEs) are tagged with protection keys. The permissions for each key
are stored decoupled in a special protection key register [Int19]. Inside the register, a
protection key might be loaded in read-only or write-only mode. The protection key
register can be privileged (ARM [ARMa]) or unprivileged (Intel [Int19] and AMD [Adv20]).
If the register is privileged, applications cannot change permissions in the register on
their own but need to interact with the kernel. This means the overhead for changing
the register is also quite high. If it is an unprivileged register, there is no guarantee that
the application does not change it on its own. However, changing permissions in the
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register has minimal overhead. Protection keys for which the protection key register
is unprivileged are called Protection Keys for User-space (PKU). On Intel CPUs, the
unprivileged protection key register is referred to by the acronym PKRU, which stands
for Protection Key Register for User-space.

Intel MPK. Intel MPK (Intel Memory Protection Keys) [Int19] is the most prominent
implementation of PKU. For Intel MPK, four of the reserved bits in each PTE are used
to store the protection key of each page. Hence, in an Intel MPK system, it is possible to
have 24 = 16 different protection keys. The current permissions for pages associated with
a specific protection key are stored in a 32 bits wide PKRU. Thus, there are two bits per
protection key. One bit to disable just writing (WD), the other to disable all access (AD)
to pages tagged with the specific protection key (see Figure 2.2 for more details).
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permissions

WD... disable write
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AD ... disable access

Figure 2.2: PKRU register for Intel MPK. Each key has two control bits: write-disable
(WD) and access-disable (AD).

The final permissions of a page are both traditional page permission bits1, and the
write-disable (WD) and access-disable (AD) bits of the PKRU register combined. As shown
in Figure 2.3, first the PTE for a specific address is resolved. Then the permissions for
the protection key are loaded from the PKRU register. PTE permissions and PKRU
permissions are combined to determine the effective permissions of the page.

With PKRU set to 0, permissions to all protection keys is granted. 0 is also the default
key in each PTE that is not tagged with a protection key. As the protection key register
is unprivileged, Intel MPK allows fast permission switches. However, it cannot be used
as a security feature on its own.

1Traditional page permission bits are: execution-disable (XD), writable (W), and present (P).
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PTE Permissions

62 59

Page table entry

PWXD PKEY

PKRU register

AD0WD0AD1...

Permissions

PKEY
PKRU
Perm.

Effective

Figure 2.3: Resolving page permissions with Intel MPK. First, permissions in the page
table are checked, then the permissions for the protection key (PKEY) in the
PTE are compared with the loaded keys in the PKRU register.

Other Architectures with Memory Protection Keys. Other architectures than
Intel x86-64 and System/360 also provide memory protection keys. E.g., ARM [ARMa],
IBM Power [IBM17], Itanium (IA-64) [Int00], and HP PA-RISC [Hew94]. We discuss the
protection key support for ARM and HP PA-RISC in more detail.

ARM has Memory domains [ARMa] in the 32 bit version of the ARMv8 architecture.
However, domain IDs (protection keys) are only in the first level of the page table. Hence,
memory can only be protected at a granularity of 1MB pages. The protection key register
is privleged and can deny access, allow access, or allow access and even bypass the regular
permissions in the page table.

The HP PA-RISC [Hew94] architecture has 15 to 18 bit protection keys. It uses four
key slots (registers) to load a specific key and enable or disable write access to the pages
associated with it. The key registers are privileged.

Memory Protection Key Schemes. For in-process isolation schemes based on mem-
ory protection keys, a domain usually corresponds to one specific configuration of the
protection key register [Zho+14; Hed+19; Sch+20]. Shared memory between domains
can be implemented by having one protection key for each domain’s private memory and
one for each region of shared memory between a pair of domains. In Figure 2.4, each
letter corresponds to a protection key. The configuration of the protection key register for
a specific domain contains all the keys for domain-private and domain-shared memory.
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Domain 1
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Domain 4
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B
C D

E
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G

H
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Domain PKRU Configuration

1 {A, B, C, D, E}

2 {B, F}

3 {C, D, G, H}

4 {D, E, H, I}

Figure 2.4: Sharing memory between domains in a memory protection key system. Each
letter corresponds to a protection key.

A memory protection key scheme needs to have a secure way for switching domains,
i.e., a secure call gate. A domain must not change the protection key register on its own,
giving it more privileges than it was intended to have.

For architectures with a privileged protection key register, usually a syscall is used
for modifying permissions. To make this syscall a secure call gate, it could, e.g., control
the instruction pointer and always continue execution at a secure entry point of the
target domain [Zho+14]. PKU schemes can provide a secure call gate in software by
statically analyzing the binary and only allowing domain switches in trusted sections
of code [Che+16; Vah+19]. Donky [Sch+20] proposes a secure hardware call gate
mechanism.

2.4 Donky

Donky [Sch+20] is an in-process isolation framework based on PKU. It is proposed as
a hard- and software co-design. Donky provides isolation for security domains with
complex trust relationships. A domain is defined by a set of protection keys and the
permissions associated with them. Additionally, domains can define functions that
are secure entry points into them (so-called dcalls). An overview of the system and a
exemplary domain structure is shown in Figure 2.5. Donky domains are a pure user-
mode concept. Consequently, the kernel does not need to be modified to use the Donky
framework.

Donky is designed for an unprivileged protection key register (PKRU). Thus, transitions
are very fast, but the register needs to be protected against unsolicited changes. Donky
provides a trusted reference monitor as the only place where the PKRU can be modified.
This monitor is visualized by an orange box in Figure 2.5. The monitor can only be
entered via a secure hardware call gate that enables access to the PKRU. The monitor is
in user-space and protects its memory with its own memory protection key. When in the
monitor, protection keys are not enforced, i.e., all memory accesses are allowed.
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Figure 2.5: Donky system overview with exemplary domain structure. The trusted
monitor manages domains and protects their memory. It handles exceptions
in user-space. Any memory violation or syscall is delegated to the monitor.
The main-function lies in the root domain. It cannot access Library A’s
memory but only use predefined functions (so-called dcalls) to interact with it.
Additionally, Library A cannot access any memory of the root domain. The
vault can only access memory of Library A but not the other way around.

Multi-threading. Donky also works with multi-threaded applications. There is a
protected user stack for each thread and domain combination allocated automatically
when a thread enters a domain the first time. An additional exception stack (only
accessible to the monitor) is allocated for each thread. It is used, when the thread is
inside of the monitor. This prevents a domain from passing a fabricated stack pointer
that would make the monitor write to a memory region the domain does not have access
to. It also protects the monitor’s stack from being corrupted by any other thread.

Thread-Local Storage (TLS) is generally unprotected, as it needs to be accessible by
all domains in a thread. However, there is a part of the TLS used for bookkeeping and
therefore is only accessible by the monitor. It is called the Trusted Thread-local Storage
(TTLS).

Hardware Call Gate. The hardware call gate mechanism extends the PKRU by one
bit, the monitor bit. After entering the monitor via the call gate, the bit is set in hardware.
Only in this state, the current thread can write the PKRU. Additionally, the thread also
has full access to any page tagged with a protection key. When exiting the monitor, the
bit is cleared by the hardware. For untrusted domains, protection keys are enforced and
trigger an exception. Protection key exceptions are configured to trigger the call gate
and to be delegated directly to the monitor instead of the kernel.

Depending on the address the exception is triggered on, it is an actual protection key
exception by a domain, a deliberate API call, or a deliberate dcall. For a deliberate call,
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the exception needs to occur on a specific address (e.g., the address of the monitor’s
entry point). Any other address would be considered as an ordinary protection key
exception. The call gate is exited by the exception handler returning, i.e., after the
return-from-interrupt instruction.

A secure version of this scheme is implemented in the original paper for the RISC-V
architecture [RIS]. The “Standard Extension for User-Level Interrupts” (N-extension)
[RIS20] is used for delegation of exceptions to user-space. A protection key mechanism
with the hardware call gate is provided as a custom extension to the instruction set.
There is also a version of Donky for x86-64 with Intel MPK. As there is no hardware call
gate, its behavior is only emulated in software. Thus, it is not secure.

Domain 1

BEGIN Monitor 
Switch to Monitor Stackapicall(arg1, ...) Exception 

TYPE=API_CALL

Switch to 
Domain 1, to Stack 1, 
PC=Domain 1 reentry

Domain 1 Reentry

END Monitor 
Return

apicall(arg1, ...)

(a) API call.

Domain 1

BEGIN Monitor 
Switch to Monitor Stackdcall(arg1, ...) Exception 

TYPE=D_CALL

Domain 2

 Switch to  
Domain 2, to Stack 2, 

PC=function

function(arg1, ...) Exception 
TYPE=D_RET

BEGIN Monitor 
Switch to Monitor Stack

Switch to 
Domain 1, to Stack 1, 
PC=Domain 1 reentry

Domain 1 Reentry Find target function 
and target Domain

END Monitor 
Return

END Monitor 
Return

(b) Dcall.

Figure 2.6: Donky API calls (for executing an API function inside the monitor) and Dcalls
(for executing a function inside of a different domain) using the hardware call
gate for entering and exiting the Donky monitor.

API Calls. The monitor can be entered in the form of API calls. The monitor provides
API calls for creating and deleting domains, as well as for creating, assigning, and freeing
protection keys. The monitor also has API functions for allocating, protecting, and
freeing the memory associated with protection keys. Furthermore, there is an API for
defining entry points into domains.

As shown in Figure 2.6a, a domain can execute an API call by triggering an exception
of type API CALL. By entering the exception handler, the domain enters monitor mode.
The monitor switches to its exception stack and calls the specified API call with the given
arguments in monitor mode. Next, the monitor switches back to the caller’s domain
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and stack. It gives back control to the calling domain by returning from the exception
handler. The monitor provides the return value according to the C calling convention.

Dcalls. dcalls are secure entry points for one domain to enter another one. A domain
registers functions in the monitor and defines from which domain they may be called.
Another domain can call such function by performing a dcall.

As shown in Figure 2.6b, a domain does so by generating an exception of type D CALL.
The monitor finds the associated target domain (in Figure 2.6b this is “Domain 2”)
and target function of the dcall. It switches to the target domain and sets the return
address of the exception handler to point to the target function. Thus, after returning,
the target domain executes the target function. The target domain returns from the
dcall by triggering an exception of type D RET. The monitor then switches back to the
original domain and stack. After the dcall, execution continues in the original domain.
The return value is accessible according to the C calling convention.

Kernel Interaction. As the kernel has the role of a supervisor, it can circumvent
memory protection. The kernel manages PTEs, which contain the protection keys. A
user-space program has access to syscalls that can change PTEs. Donky and most other
PKU-based in-process isolation systems must guard syscalls that can do so. In the x86-64
version of Donky, a kernel module was needed. In this thesis, we show how syscalls can
also be filtered in user-space.

2.5 Syscalls

In a modern operating system, an application on its own does not have the privileges to
make permanent changes to the system. For this purpose, the kernel provides low-level
API functions called syscalls [AD14].

Most architectures offer a specific instruction to trigger a syscall. If there is none,
software interrupts can be used. The kernel has a dedicated entry point for syscalls,
called the syscall handler. As shown in Figure 2.7, the syscall handler internally calls the
requested syscall function in the kernel.

The user application can reference a syscall by its number. Syscall number and
arguments are commonly passed from the application to the kernel via registers [AD14].
On Intel x86-64, a syscall can be triggered by the syscall instruction. The syscall
number is passed in the %rax register, the arguments in %rdi, %rsi, %rdx, %r10, %r8

and %r9. Only six arguments are supported. The return value is placed in the register
%rax. The entry point for the syscall handler can be set up by writing to the LSTAR

Model-Specific Register (MSR) [Int19].
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4. Return
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Figure 2.7: Sequence diagram of a Syscall.

The syscall API is not platform independent. In theory, an operating system can
define different syscalls for every platform [AD14]. An architecture might also have
platform-specific syscalls.

Furthermore, the syscall API is not stable over time. Although in Linux, existing
syscalls are usually kept for backward compatibility reasons, some were actually removed.
Bagherzadeh et al. studied the changes in the syscall API in Linux from 2005 to
2015 [Bag+18]. Examples of removed syscalls found were set zone reclaim, perfctr
and nfsservctl. The authors document multiple added syscalls. The main addition
over the last years were “sibling syscalls”. These syscalls can be broadly categorized
into syscalls with more arguments (e.g., dup and dup2), syscalls with bigger arguments
(e.g., truncate and truncate64), file descriptor relative syscalls (e.g., open and openat),
backward compatibility syscalls (e.g., vm86 and vm86old), real-time syscalls (e.g., rt -

sigreturn and sigreturn), and batch execution syscalls (e.g., sendmsg and sendmmsg).
Also some syscalls with completely new functionality were added. Most of them are

in the categories “controlling” and “synchronization” (e.g., inotify, getcpu, eventfd,
signalfd) [Bag+18].

2.6 Syscall Interposition

Syscall interposition is a method to restrict the effects an user application can have on
a system [Jon93; Gol+96; AKS98; AR00; JS00; Gar03; GPR04; KZ13; SN19]. E.g., by
denying all syscalls but read, write, and exit, an application can only interact with
the standard input and output but not with any other system resources.

Generally speaking, a syscall filter is a hook either executed before (enter-filter),
after (exit-filter), or instead of a syscall (syscall emulation). Depending on the syscall
interception mechanism, only some of these hooks might be possible.

As syscall hook and target code usually do not run in the same thread or even in the
same application, a hook cannot (directly) reference resources passed to the hooked syscall.
E.g., if the hook runs in a different application, it does not have access to the same address
space as the target application. Thus, it cannot directly dereference pointers inside of
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syscall arguments. Depending on the interception mechanism, it might be possible to
do it indirectly via syscalls like process vm readv and process vm writev [Ker20m].
Additionally, syscalls inside hooks cannot reference the resources of the target application.
E.g., a file descriptor used inside a syscall by the target application cannot be used for
syscalls in hooking code.

Syscall Filtering. For syscall filtering, the original syscall is executed in the same
context (i.e., thread) as it was issued. However, there is a hook before and after the
syscall. The enter-filter before the syscall can access and modify the syscall number and
arguments. The exit-filter after the syscall can inspect and modify the return value. A
syscall is denied, by setting the syscall number to an invalid value, e.g., -1. It is allowed,
by leaving both enter- and exit-filter empty.

Notable syscall filtering systems are Janus [Gar03], Seccomp [Linb], and Ptrace [Ker20o].
Whereas with Ptrace one can register both enter- and exit-filter, Janus only supports
enter-filters. Seccomp additionally restricts its filter code by not allowing it to modify
syscall number or arguments. Moreover, Seccomp does not support deep argument
inspection.

Syscall Emulation. Replacing a syscall completely by its hook is called syscall emula-
tion. If the emulation code is executed in a different application, it only has indirect access
to the resources of the target application. This makes it hard to emulate only a subset of
syscalls. Examples for syscall emulation systems are Ostia [GPR04], gVisor [You+19],
and Seccomp User Trap [Cor18].

Mechanisms. Syscall interposition can be implemented in many different ways. In
Table 2.1, we give an overview of the main characteristics of different mechanisms.

The first column divides the mechanisms into a group that filters and one that emulates
syscalls. The next column indicates whether a mechanism executes the filter hook in
kernel- or user-space. The third column shows if a syscall hook can be stateful. The
fourth column indicates wether a mechanism can inspect integer arguments, the fifth
column if they can also change them. The sixth column states whether a mechanism has
access to the contents of buffers passed to syscalls. The last column shows whether the
syscall hooks are executed in a separate process.

In the following sections the mentioned syscall interposition mechanisms are described
in more detail.

16



Chapter 2 Background

fi
lte

r/
e
m

u
la

te

k
e
rn

e
l/

u
se

r

sta
te

fu
l

in
sp

e
c
t

a
rg

s

m
o
d

ify
a
rg

s

re
a
d

/
w

rite
b

u
ff

e
rs

se
p

a
ra

te
p

ro
c
e
ss

Seccomp filt. kernel 7 7 7 7 7

Seccomp BPF filt. kernel 7 3 7 7 7

Kernel Module emu./filt. 1 3 3 3 3 1

Ptrace filt. user 3 3 3 3 32

Ptrace+Seccomp filt. user 3 3 3 3 32

Seccomp User Traps emu. user 3 3 3 3 32

1 Can make a decision on its own or delegate it to a user process.
2 We show that a separate thread is sufficient (see Section 4.5).

Table 2.1: Categorization of syscall interposition mechanisms.

2.6.1 Seccomp

Seccomp (SECure COMPuting) is designed as a utility to reduce the exposed kernel
surface inside of a user application in Linux. The filtering is implemented directly in the
kernel. With Seccomp, an application can restrict itself to only use a small subset of
syscalls. Once a filtering policy is set, it cannot be removed. The policy is also preserved
over clone and exec syscalls. In its strict mode (SECCOMP MODE STRICT), a predefined
policy dictates that only the most essential syscalls are allowed: read, write, exit and
sigreturn. In filtering mode (SECCOMP MODE FILTER), more fine-grained filters can be
employed. Filters are implemented in the form of Berkeley Packet Filters (BPFs) [Ker20q].

Berkeley Packet Filters. BPFs were originally used as a safe way for pre-filtering net-
work traffic directly in the BSD operating system’s kernel. They provided a performance
advantage to mechanisms where every packet had to go through a user program. BPFs
are written in the machine language for the BPF virtual machine. This virtual machine
is quite simple and consists only of an accumulator, an index register, a scratch memory
store, and an implicit program counter. Instructions can load fields of an incoming data
structure into registers and perform arithmetic and bitwise operations on them. With
the store instruction, the contents of a register can be stored in scratch memory. Simple
branch instructions can be used for control flow. A return instruction returns the result
of the filter. BPFs are stateless, i.e., there is no global memory that is shared between
the filters [MJ93].

BPFs were also integrated into the Linux kernel. Today, they are used for packet
filtering, but also other filtering tasks, like syscall filtering.
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Seccomp BPF. The kernel executes a registered Seccomp BPF program in the syscall
handler before any syscall. A Seccomp BPF program gets a seccomp data struct, which
contains a field to identify the architecture on which a program is running, the instruction
pointer, the syscall number, and an array with the six syscall arguments. As Seccomp
does not have access to main memory, it cannot dereference pointer arguments2. Thus,
syscall filtering with Seccomp is quite limited.

As shown in Figure 2.8, a Seccomp filter can have multiple different outcomes. The most
common ones are SECCOMP RET ALLOW and SECCOMP RET ERRNO. SECCOMP RET ALLOW lets
the syscall execute normally. For SECCOMP RET ERRNO the syscall is blocked and an error
number is returned. SECCOMP RET KILL PROCESS and SECCOMP RET KILL THREAD would
kill the application or the current thread immediately [Ker20q].

If a process installs multiple Seccomp filters, they are executed after each other until
the syscall is denied or the last filter allows the syscall.

eBPF. There is an extended version of BPF in Linux called eBPF [Lina]. It supports
ten registers instead of two. Filters can be written in a restricted version of C. The kernel
compiles them just-in-time. There is also a way to persist data inside the filter. The
data can be shared between user-space and kernel inside of so-called maps. However, this
version of BPF is not available for Seccomp and would also not be able to inspect buffer
arguments2.

User-Space Kernel-Space

App Handler Syscall Function

1. SYSCALL

6. Return

2. Execute Filter

3. RET_ERRNO

Seccomp

4. Call Function

5. Return

4. Return

2. Execute Filter

3. RET_ALLOW

1. SYSCALL

Figure 2.8: Sequence diagram for Seccomp. There are two alternative code paths: SEC-
COMP RET ERRNO: an error is returned to the application inside of errno,
SECCOMP RET ALLOW: the syscall is executed.

2User-space buffers are not yet copied to the kernel. Thus, they are not safe to deference at this
stage in syscall handling [Linb]. Note, there has been some discussion about including the ability
to inspect buffer arguments into Seccomp BPF for the new clone3 [Ker20a] and openat2 [Ker20i]
syscalls [Edg20].
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2.6.2 Ptrace

ptrace is a syscall that allows one process to observe and control (i.e., trace) another
one. In this thesis, we call the controlling process tracer and the controlled process tracee.
Ptrace is designed for implementing debugging in Linux. Nevertheless, it can be used for
syscall filtering. Usually, the tracer would initialize itself and then spawn a child process
to which the tracer would then attach [Ker20o].

Syscall Tracing. We discuss the details of syscall filtering with Ptrace on the basis of
the simplified sequence diagram in Figure 2.9. Ptrace is signal driven. In Unix, signals
are a simple form of inter-process communication. A process can signal itself or another
process. The operating system can also send signals to a process. This happens, e.g.,
when a hardware exception occurs (e.g., SIGSEGV for invalid memory accesses) [Ker20s].

After attaching to the tracee, the tracer informs the OS with a call to PTRACE SYSCALL

that it should signal the tracee before the next syscall. Once a tracee gets a signal, it is
put in a stopped state. The tracer uses the wait syscall [Ker20v] to wait for an event
like this to happen. The tracer executes an enter-filter before the syscall (2.). It can
call any Ptrace command on the tracee and has full access to registers and memory of
the tracee. It can change syscall number and arguments by modifying the registers they
are stored in. Additionally, the tracer can inspect and modify buffers behind pointer
arguments. A syscall is blocked by setting the syscall number to -1. In addition to
the Ptrace commands, the tracer can also use the more efficient process vm readv and
process vm writev syscalls to read and write memory of the tracee.

After the enter-filter, the tracer continues the execution of the tracee by calling
PTRACE SYSCALL (3.). This communicates the kernel to stop the tracee once again after
the syscall is finished [Ker20o]. If the tracer has not blocked the syscall, it is executed in
the original thread context (4. and 5.). The tracer can call an exit-filter after the syscall
(6.) and continue execution (7.) again with PTRACE SYSCALL to be informed about the
next syscall in the tracee. Meanwhile, the tracee continues execution at the reentry point
of the syscall (8.).

Limitations. Although Ptrace is very versatile, its interface for syscall filtering is quite
cumbersome.

E.g., multiple Ptrace syscalls are needed to trace a single syscall in the tracee. In
addition to syscalls for waiting on and resuming the tracee, syscalls for retrieving register
state and memory contents are necessary. As this needs to be done for every syscall, the
overhead is relatively high.

A multi-threaded tracee makes tracing even more complicated: Thread creation needs
to be detected and new threads attached to the tracer.
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User-Space Kernel-Space

App Handler Syscall Function

1. SYSCALL

2. ENTER

4. Call Function

5. Return

Tracer

3. Continue

6. EXIT

7. Continue

8. Return

SIGNAL App

SIGNAL App

ENTER filter

EXIT filter

Figure 2.9: Simplified sequence diagram for Ptrace. Communication between kernel and
tracer is primarily done via calls to the ptrace syscall. The callbacks to the
tracer are implemented by the tracer waiting on the tracee to be signaled
(symbolized by yellow lightning symbols).

2.6.3 Ptrace+Seccomp

Ptrace (see Section 2.6.2) can be combined with Seccomp (see Section 2.6.1) to use the
advantages of both of mechanisms. As shown in Figure 2.10, Seccomp can be used for fast
pre-filtering in the kernel (1.-2.). It can deny syscalls that need to be blocked regardless
of the arguments and allow those safe to execute (not visualized in the figure). For
more complicated filter decisions, Seccomp can delegate the filtering decision to a tracer
application. With the Seccomp command SECCOMP RET TRACER (3.), a special Seccomp
signal is sent to the tracee before the syscall is executed in the kernel. A Ptrace tracer
process would observe the signal and handle it in the same way as for traditional tracing
with Ptrace.

Compared to Ptrace, the overhead can be reduced dramatically by only tracing syscalls
where a simple Seccomp filter cannot make the filtering decision.
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User-Space Kernel-Space

App Handler Syscall Function

1. SYSCALL

4. ENTER

6. Call Function

7. Return
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5. Continue

8. EXIT

9. Continue

10. Return
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2. Execute Filter

3. RET_TRACE

ENTER filter

EXIT filter

SIGNAL App

SIGNAL App

Figure 2.10: Sequence diagram for Ptrace+Seccomp. Seccomp is used to pre-filter syscalls
in the kernel. Same simplifications as in Figure 2.9.

2.6.4 Seccomp User Trap

Similar to Ptrace+Seccomp, there is a platform-independent mechanism that pre-filters
syscalls in the kernel but can also execute syscall hooks in user-space. In this thesis
we call this mechanism Seccomp User Trap, which is short for “seccomp trap to user-
space” [Cor18]. As Seccomp User Trap is designed for syscall interposition, the interface
for intercepting syscalls and tracing child threads is much cleaner than that of Ptrace.
E.g., by the design of Seccomp, all new threads inherit the same Seccomp filter and thus
are attached to the same tracer automatically.

In contrast to Ptrace and the other previously mentioned syscall interposition mecha-
nisms, Seccomp User Trap does not filter syscalls but it emulates them. Rather than
executing filters in the tracer and the syscall in the tracee, with Seccomp User Trap, all
code needs to be executed in the tracer.

Syscall interposition with Seccomp User Trap works as follows: A seccomp syscall
with the flag SECCOMP FILTER FLAG NEW LISTENER returns a file descriptor. As shown
in Figure 2.11, for each call to SECCOMP RET USER NOTIF inside the Seccomp filter (3.),
a tracer-like process receives an event on the file descriptor (4.). The data transferred
to the tracer consists of an ID, the tracee’s Process ID (PID), and the seccomp data

struct. This struct is the same as for Seccomp BPF filters. Similar to ptrace, the tracer
process can read and write arbitrary memory in the tracee via process vm readv and
process vm writev syscalls. Thus, a filter can also dereference buffer arguments.

Once Seccomp redirects a syscall into the tracer, it can only deny or emulate the syscall
in its own process (see Figure 2.11). For many self-directed syscalls like getpid or futex
there is not a simple way to do so. In Linux 5.5, the flag SECCOMP USER NOTIF FLAG -
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CONTINUE was introduced [Cor19], allowing the tracer to additionally continue a syscall
after it is handed over to the tracer.

User-Space Kernel-Space

App Handler

1. SYSCALL

4. Emulate

Tracer

5. Return

6. Return

Seccomp

2. Execute Filter

3. RET_USER_NOTIF

Emulated 
Syscall

Figure 2.11: Sequence diagram for Seccomp User Trap. Inside syscall filters, the tracer
can only deny or emulate syscalls for the tracee (or use SECCOMP FILTER -

FLAG NEW LISTENER).

2.6.5 Kernel Module

By writing a custom kernel module, one can create a customized syscall interposition
mechanism. A kernel module runs with the same privileges as the rest of the kernel.
Therefore, it can hook the syscall table or syscall handler internally.

Syscalls can be filtered directly in the kernel, in user-space, or both. The classic
Janus sandbox [Gar03] pre-filters syscalls in the kernel by hooking only a subset of
them. As shown in Figure 2.12, the kernel module redirects each hooked syscall to a
user-space tracer process (2.). The tracer can make complex decisions based on the
syscall’s arguments and either allows or denies the syscall. It returns the result back to
the kernel module (3.). If the syscall is allowed, the kernel executes the original syscall
function (4.) and the module passes the return value back to the application (5.-6.). For a
denied syscall, the kernel module can directly return an error (not shown in Figure 2.12).

Note that the architecture in Figure 2.12 serves only as an example. One can easily
implement Ptrace-style syscall filtering (see Section 2.6.2) by additionally jumping into
the tracer after each syscall.
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User-Space Kernel-Space

App Kernel Module

1. SYSCALL

2. Redirect

Tracer

3. Decison

6. Return

Syscall Function

4. Call Function

5. Return

Filter Syscall

Figure 2.12: Sequence diagram for syscall filtering with a kernel module. This sequence
diagram describes the architecture of Janus [Gar03]. Syscalls are redirected
to a tracer after the kernel module intercepts them.
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Related Work

The user-space syscall filtering presented in Chapter 4 is based on the memory protection
key in-process isolation framework Donky [Sch+20]. In this chapter, we present other
in-process isolation mechanisms based on memory protection keys. We also show related
work in the field of syscall filtering.

3.1 In-process Isolation with Memory Protection Keys

In this section, we take a detailed look at memory protection key-based in-process
isolation systems ARMLock [Zho+14] (using ARM memory domains), Hodor [Hed+19],
and ERIM [Vah+19] (both using Intel MPK).

3.1.1 ARMLock

ARMLock [Zho+14] is based on ARM memory domains. As the protection key register
for ARM is privileged, ARMLock uses a kernel module for domain switches. The authors
only make small modifications to the rest of the kernel. ARMLock is designed to isolate
modules in the form of shared libraries from the host and from each other. The exported
functions of the libraries act as call gates between domains. The standard PLT/GOT
mechanism of shared libraries is used to provide stubs for each library function. When
calling an exported function, instead of the actual function, an ARMLock CALL to the
kernel module is made. The buffers for pointer arguments must either be copied by the
kernel module or reside in shared memory that is accessible by both domains. The kernel
module performs the domain switch and returns control to the entry gate of the target
domain. The target domain checks if the transition is allowed. If so, it executes the
original function. For returning, ARMLock RETURN is called. As a result, the kernel module
switches back to the caller domain’s return entry gate, which then returns control to the
caller. The domain switch is visualized in Figure 3.1. The overhead for an inter-domain
call is about 2 null-op syscalls (like getpid).

ARMLock uses Seccomp BPF for syscall filtering inside isolated modules. The syscalls
fork and exec are only allowed for the host. Memory related syscalls, like mprotect,
mmap, and brk, are closely monitored. There can be individual filters for each domain.
The kernel module also changes Seccomp filters when transitioning domains.
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Figure 3.1: Overview of ARMLock in-process isolation. Domain switching is done in
the ARMLock kernel module. After a domain switch, the target domain is
entered at a predefined entry point.

3.1.2 Hodor

Hodor-PKU [Hed+19] proposes in-process isolation for Intel MPK. Hodor’s main use-case
is to isolate libraries that provide kernel-bypass access to hardware, e.g., for network or
disk IO. The memory for these libraries should be isolated from the host application and
from each other. As the protection key register on Intel x86-64 is unprivileged, it can
be changed from user-space. Therefore, Hodor needs to protect itself from unsolicited
changes to the register. Intrusive changes to the kernel are necessary for Hodor to function
properly.

Hodor uses binary scanning to unmap all code pages with WRPKRU instructions. However,
in x86-64, instructions do not have a fixed length. Thus, it is not decidable if a specific
opcode is reached. Figure 3.2 shows two assembly snippets. One, where WRPKRU is
explicitly called, the other, were the opcode appears as part of another instruction. Hodor
unmaps all pages that have an explicit or implicit occurrence of WRPKRU. When the
instruction pointer encounters such page, the application traps into the kernel. The
kernel would place one of the four hardware watchpoints at each occurrence of WRPKRU.
If an WRPKRU opcode is actually reached, it would not be executed, but the hardware
watchpoints would be triggered and trap into the kernel. The kernel can then decide if it
allows the instruction to proceed.

Hodor does not use syscall filtering to safeguard memory mapping syscalls but modifies
the mmap and mprotect syscalls directly in the kernel. Hodor keeps track of the memory
mappings in the kernel and checks if the current domain is allowed to change a specific
mapping. Just-in-time compiled code is not supported in the original paper. However,
support could be easily added by monitoring mprotect syscalls and re-scanning a page
once it is changed from writable to executable.

Additionally, there is an implementation of Hodor that uses dedicated page tables
for each domain and one using extended page tables to isolate memory. The authors
compare the overhead of a domain switch for each mechanism. They measured 105 cycles
for a domain switch with Intel MPK, 268 cycles for switching extended pages table with
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VMFUNC, and 577 cycles to switch page tables with a syscall. In contrast, for a normal
switch of stacks without domain transition, they measured 9 cycles.

...

09 f0 or %esi, %eax

0f 01 ef wrpkru

31 c0 xor %eax, %eax

...

...

8d 04 0f lea (%rdi, %rcx, 1), %eax

01 ef add %ebp, %edi

...

Figure 3.2: Left: explicit occurrence of WRPKRU. Right: implicit occurrence of WRP-

KRU. This example is from the official presentation slides of the Hodor pa-
per [Hed+19]

3.1.3 ERIM

ERIM [Vah+19] uses Intel MPK and binary rewriting to provide isolation between a
trusted and untrusted component (=domain). ERIM provides trampoline code to switch
from one domain to another. This code acts as a secure call gate because the WRPKRU

instruction is not allowed outside of the trampoline. The binary analysis tool checks that
the control flow is transferred to the trusted component after a WRPKRU instruction. All
implicit occurrences (see Figure 3.2) are replaced by equivalent instructions. As a result,
a malicious party cannot jump to a WRPKRU opcode without redirecting code flow to the
trusted component.

The kernel does not need to be modified for ERIM to be secure. Instead, ERIM uses
syscall filters with Ptrace+Seccomp (see Section 2.6.3). It delegates mmap, mprotect, and
pkey mprotect syscalls to a tracer in user-space. The tracer ensures that these syscalls
are only allowed to create executable memory mappings if executed from the trusted
component. In the untrusted component, they are denied. For just-in-time compiled
code, binary scanning can be employed at runtime. Every time an executable memory
mapping is created, one could scan for WRPKRU instructions and replace them.

ERIM does not switch stacks for domain transitions and has a slightly lower overhead
than Hodor (see Section 3.1.2). A domain switch combined with a direct call needs about
9x as many CPU cycles as the direct call alone.

3.2 Syscall Filtering

In this section, we look at different syscall filtering systems that are similar to ours.
Janus [Gol+96], Ostia [GPR04], and Mbox [KZ13] are all user-space syscall filtering
systems that can filter syscalls of a whole process. gVisor [You+19] is a Unikernel
sandbox [Mad+13] and therefore emulates most syscalls it intercepts. Light-weight
contexts [Lit+16] provide syscall filtering for their in-process isolation. Their in-process
isolation and syscall interception is implemented completely in the kernel.
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3.2.1 Janus

Janus [Gol+96], specifically Janus version 2 [Gar03], provides a syscall sandbox for Linux.
It uses a kernel module for intercepting syscalls and the Janus policy engine in user-space
for allowing or denying them. The kernel module also has very primitive syscall filters
on its own. E.g., a read or write syscall is always allowed, as it can only operate on
previously opened file descriptors. There is negligible overhead for syscalls that are
filtered this way. The Janus system is visualized in Figure 3.3.

Janus is highly configurable. Filter modules for managing access to categories of
syscalls can be loaded and configured by policy files. For example, there are modules
for restricting filesystem and network resources. Policies in the configuration files are
ordered from most general to least general. When a filtered syscall is executed, policies
are evaluated in the same order as in the file. In contrast to Seccomp (see Section 2.6.1),
a deny in a more general filter can still be overridden by a later allow. Internally, a policy
registers filtering functions for each syscall affected by it. These functions are saved in
a per-syscall linked list that is traversed on each invocation of a syscall. A filter has
access to the syscall number and arguments. It can use the kernel module to inspect
and modify buffers passed to it. This feature is necessary to implement, e.g., filtering of
filesystem paths.

Janus also supports sandboxing of multi-threaded processes. The authors identify
common types of pitfalls encountered when trying to implement syscall filtering for a
(multi-threaded) application. Pitfalls they identified are “incorrectly mirroring state
and code of the operating system” in the policy module (e.g., state of file descriptors,
code for path canonicalization), “overlooking indirect paths to resources” (e.g., a core
dump can write files), Time-Of-Check-Time-Of-Use (TOCTOU) race conditions between
the policy decision and the syscall to be actually executed (e.g., syscall argument races,
filesystem path races), and “side effects of denying syscalls” (e.g., denying privilege
dropping syscalls).

U
ser-Space

Kernel-Space

Syscall Interface

Kernel

App Janus Policy Engine

Interception Module

allow

deny

syscall?

result

resultsyscall syscall? allow/deny

Figure 3.3: Overview of syscall filtering with Janus. Syscalls are intercepted inside a
specialize kernel module. Syscall filters are executed in the Janus Policy
Engine.
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3.2.2 Ostia

In contrast to Janus, which uses a filtering architecture, Ostia [GPR04] features a
delegating architecture.

Ostia uses a kernel module to allow all uncritical syscalls (e.g., read or write). All
other syscalls are delegated to the emulation library in the target application. The
emulation library makes an inter-process call to a so-called agent to access sensitive
resources. The agent can then acquire sensitive resources (e.g., file descriptors) and
perform syscalls on them. It decides if a specific syscall is allowed by consulting a policy
similar to the one in Janus. The authors use race condition-free call sequences in the
agent to overcome TOCTOU race conditions in filesystem paths as suggested in [Gar03].

Not all syscalls are implemented in the agent (trusted code) but are provided by
the emulation library (untrusted code) as a combination of trusted syscalls. Thus, the
Trusted Computing Base (TCB) is reduced significantly compared to the Janus sandbox.

3.2.3 Mbox

Mbox is a sandbox based only on syscall filtering in user-space. It uses Ptrace combined
with Seccomp (see Section 2.6.3) for intercepting syscalls. Seccomp is used to pre-filter
syscalls that are allowed or denied by default. For more complicated filter decisions,
the syscall is delegated to Ptrace. As shown in Figure 3.4, Mbox overlays the host’s
filesystem by intercepting filesystem relevant syscalls. By default, any read access to a
file is granted without the path being rewritten (path points to host “filesystem”). If a
file is opened with write access, its contents are copied to the sandbox’s root directory
(path points to sandbox “filesystem”). All subsequent reads and writes are done on the
copied file. Their design is heavily inspired by a filesystem named UnionFS. Also, the
idea is similar to Linux namespaces [Ker20f]. In contrast to namespaces, Mbox does not
need root privileges to operate.

Mbox also provides a feature to “hide” paths from the sandbox. As the name indicates,
it is not a security feature, and files can still be accessed by symbolic links. The overhead
of Mbox depends a lot on how filesystem intensive the workload is. For very compute-
intensive workloads, the authors measured negligible overhead, for IO-intensive tasks, it
is a lot bigger. They measured 45% overhead for compiling the Linux kernel.
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Figure 3.4: Mbox provides an overlay over the existing host filesystem by filtering syscalls.

3.2.4 gVisor

gVisor [The20a] is a sandbox for safe execution of unmodified Linux binaries. It provides
an interface similarly to runc [Doc15] for running micro-services in more secure “con-
tainers”. Instead of just filtering syscalls, gVisor introduces another layer of isolation
between application and operating system. Their Sentry is a so-called Unikernel inside
of the application. It completely emulates the behavior of 211 syscalls by using only 55
syscalls [You+19], thus reducing the attack surface of the host kernel. The Sentry does
not have access to any filesystem resources. File access is managed by a separate process
named Gofer, similarly to Ostia’s [GPR04] agent.

Under the hood, gVisor supports two mechanisms for syscall interception: Ptrace (see
Section 2.6.2) and Intel / AMD hardware virtualization (see Section 2.3.3). When using
Ptrace, the tracer and Sentry are in a separate process. With hardware virtualization,
the Sentry can reside in the same process as the user code. The Sentry runs in guest
mode with privilege ring 0 and the user code in ring 3. Syscalls from user code are
executed in the Sentry. Syscalls issued by the Sentry are delegated to the host, as they
are configured to exit the guest layer.

The overhead for applications can be quite significant. Syscalls are typically 2.2x,
memory allocations 2.5x, and file opens 216x slower than direct execution on the host.

3.2.5 Light-weight Contexts

Light-weight contexts (LwC ) [Lit+16] provide OS-based in-process isolation for FreeBSD
(see section Section 2.3.2 for more information on the in-process isolation employed by
LwC). They offer syscalls to create isolation domains with similar semantics as the fork

syscall. By default, when a new domain is created, all memory, file descriptors, and
BSD-capabilities of the parent domain are inherited by the child domain. The parent
domain can restrict these resources at the time of creation or at a later stage.

If a domain does not have the capability to execute a specific syscall, the operating
system delegates the syscall to the parent domain. The parent domain can register
functions for emulating syscalls of child domains. The syscall hook can emulate the
syscall purely in user code, execute syscalls on its own, or execute syscalls on behalf of
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the child (or any other) domain. This form of syscall “impersonation” is possible for any
domain that has the capability to execute a specific syscall and has access to the target
domain. Syscalls executed in this way run in the same context as the original syscall, i.e.,
they have the target domain’s file descriptor table, run in the same thread, and use the
target domain’s memory mappings. However, it is also possible to change parts of the
context to the context of the parent domain, e.g., using a file descriptor of the parent.
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Our Syscall Filtering for PKU Systems

In this thesis, we present same-process syscall filtering for frameworks using Protection
Keys for User-space (PKU) for in-process isolation. While PKU systems isolate memory
of mutually distrusting domains, all other process resources, including kernel resources,
are still shared. An attacker can use syscalls to access the same resources as any other
domain. The Linux kernel enforces protection keys for buffers passed in syscall arguments.
However, the threat model of protection keys in the Linux kernel is different from that of
in-process isolation [Han; Ker20j]. Thus, some syscalls break the isolation provided by
PKU, e.g., mprotect, ptrace, or process vm readv, to name a few.

We employ syscall filtering to ensure that isolated domains cannot interfere with each
other. We implement our syscall filtering purely in user-space. We use the Donky [Sch+20]
PKU framework as basis and demonstrate how to build our same-process syscall filtering
on top of it (see Section 4.3). In contrast to traditional user-space syscall filtering
systems [Gol+96; JS00; Pro03; Gar03; GPR04; KZ13] that need a second process, we
can isolate the application and filter code in the same process with the help of PKU.
Furthermore, we can not only register syscall filters for the whole process but also for
each domain in the process.

We repurpose existing mechanisms like, Ptrace, Ptrace+Seccomp, and Seccomp User
Trap (see Section 2.6) to support same-process filtering for multiple isolated domains
(see Section 4.5). Moreover, we propose a novel form of syscall delegation that can filter
syscalls by redirecting them into a trusted reference monitor in the same application (see
Section 4.3.5).

We discuss, how we can use the hierarchical nature of Donky domains to securely support
nested syscall filtering (see Section 4.4). We analyze the syscall interface to find potentially
harmful syscalls (see Section 4.6). With this information, we propose comprehensive filter
rules for two use-cases. For the first use-case, we provide self-protection for the Donky
monitor (see Section 4.6.3). This use-case includes comprehensive rules to guarantee the
claimed security of the isolation system.

Often, it is not sufficient to only isolate memory. E.g., if a isolated domain uses the
file system to save sensitive information, other untrusted domains still have access to
this information. Thus, in the second use-case, we further isolate non-memory kernel
resources for each domain (see Section 4.6.2). We confine each domain to a local storage-
like directory and allow a domain only to use file descriptors it opened before.
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4.1 Requirements for PKU system

We build our same-process syscall filtering framework on top of an existing PKU system.
We use the PKU system to isolate application from the syscall filter code. We have
following requirements for the PKU system.

The system must provide (R1) two or more isolation domains, (R2) memory isolation
that disallows direct or indirect loads and stores to memory of other domains. We use
one domain for the application, the other for the syscall filtering. Additionally, the PKU
system needs to have (R3) a secure way to transition from one domain to the other.
There must be a separate stack for each domain (R4). For each syscall, we transition from
the application domain to the filter domain. We need separate stacks, so the application
domain cannot access local variables or change the control flow in the filtering domain.

Donky. The in-process isolation framework Donky [Sch+20] fulfills these requirements.
A domain is described by a set of memory protection keys that allow access to all
pages tagged with one of them (fulfilling (R1) and (R2)). Changing the PKRU is only
permitted from inside the trusted monitor. The proposed hardware changes provide
a secure call gate to transition from an untrusted domain to the trusted monitor. As
Donky supports multiple domains, the monitor also provides a way to transition from
one domain to another securely (R3). Donky has an stack for the trusted monitor and
each untrusted domain (R4). We build our syscall filtering on top of Donky. However,
we also discuss using other PKU systems, like ERIM [Vah+19] or Hodor [Hed+19] in
Section 6.2.

4.2 Threat Model

Assuming an attacker inside an isolated domain, they should not be able to access or
modify memory or change the control flow of any other domain. The attacker may
perform arbitrary memory accesses or modifications and is allowed to jump to arbitrary
code. They may execute arbitrary syscalls but must not compromise any other domains
by doing so.

As Donky does not prevent a malicious domain to mount a denial-of-service attack
(i.e., a domain executing a endless loop blocks the whole thread), we also do not consider
denial-of-service attacks via syscalls to be part of our thread model (i.e., a domain
sleeping indefinitely). Similarly to other user-space syscall filtering frameworks, we do
not support syscall filtering for binaries with elevated privileges.

Our Trusted Computing Base (TCB) consists of the hardware, the operating system’s
kernel and the trusted Donky monitor. We assume that the trusted components are free
of bugs.
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4.3 Overall Design

Memory protection keys provide isolation in memory. However, as the unmodified Linux
kernel does not have a notion of security domains, it cannot provide any isolation for
non-memory resources. These include process-specific resources, like, page tables, file
descriptors, scheduling context, or signal handlers. Global operating system resources,
like, the filesystem, are shared too.

By filtering syscalls, we restrict access to specific resources. Traditional user-space
syscall filtering systems would filter syscalls in another process (= tracer process), so their
memory is isolated completely from the target application. However, a tracer process
would still not have any knowledge about our in-process domains.

With the help of Donky’s in-process isolation, we isolate application and filter code.
Therefore, we can filter syscalls in the same process as they are generated. The Donky
monitor manages transitions between domains and thus has full knowledge about the
domain structure. We use this information to implement domain-aware syscall filtering.
Another advantage of our design is that syscall filters can directly access all memory of
the target application. This includes buffer arguments for syscalls. We do not need a
syscall or shared memory to read or write these buffers.

Donky has a hierarchical domain structure where parent domains can constrain the
accessible memory of any child domain. Similarly, we allow an untrusted domain to
restrict a child domain’s non-memory resources with domain filters. We propose the use
of monitor filters for the Donky monitor to protect itself.

An application starts in monitor mode, allowing it to securely register syscall filters
before running any actual application code. Filter functions for monitor filters are stored
as function pointers in a global syscall table. This table is protected and can only be
written in monitor mode. Thus, untrusted application code cannot remove any syscall
filters. Additionally, domains can register domain filters at any time. Analogous to the
syscall filter table for the monitor, there exists a per-domain table for domain filters.
Any child domain cannot read or write to the syscall table of their parent.

We provide multiple mechanisms for intercepting syscalls emitted by an untrusted
domain of a target application. Broadly speaking, there are interception mechanisms that
work purely in user-space (see Figure 4.1a) and mechanisms that intercept the syscall
in the kernel (see Figure 4.1b). After the interception, both types of mechanism would
redirect a syscall to the trusted monitor inside the target application.
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Figure 4.1: Our syscall interception. The interception mechanism redirects any syscall
issued by an untrusted domain to the trusted monitor in user-space.

4.3.1 Filter Functions

We use a traditional Ptrace-style filtering architecture (see Section 2.6.2) with an enter-
filter before and an exit-filter after any filtered syscall. Similar filter functions can be
found in the strace [Str] utility. The advantage of doing so is that we can reuse the same
filter functions for all of our syscall interception mechanisms. For non-Ptrace mechanisms,
we emulate the behavior of Ptrace-style filtering by simply calling the enter-filter, then
the syscall, and finally the exit-filter with the return value of the syscall (see Listing 4.1).
Filters at their core are C functions expecting a single pointer to a struct containing
the following information: the syscall number, arguments, the return value, information
about the domain it originated in, and information about whether we are executing an
enter- or exit-filter. The struct also has a pointer to a memory area that the filter can
safely use.

1 SET_SYSCALL_ENTER(&trace_info);

2 filter_function(&trace_info); // executes enter-filter

3 trace_info.ret_value = syscall(trace_info.nr, trace_info.args[0], ...);

4 SET_SYSCALL_EXIT(&trace_info);

5 filter_function(&trace_info); // executes exit-filter

Listing 4.1: Emulating Ptrace-style filtering. Executing a filter-function before and after
a syscall, providing it with syscall number, arguments, and the return value.

4.3.2 Overview Syscall Filtering

In this section, we give an overview of the general process of our syscall filtering based
on Figure 4.2.

When a domain invokes a syscall (1), the interception mechanism delegates it to the
trusted monitor (2). The monitor provides a generic syscall handler, similarly to an
exception handler but in user-space. First, the monitor saves the stack frame of the
current domain and switches to a secure exception stack (3). For some interception
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mechanisms, like Ptrace, this step is done implicitly. Based on the monitor filter installed
for a specific syscall number (4), a syscall can be allowed, denied, or a filtering function
is executed for it.

In case of a denied syscall, the syscall handler in the monitor aborts early and returns
an error (6, 7). For an allowed syscall, it is executed as if it was not intercepted at all
(5a). If a syscall filter function is registered for the syscall (5b), the enter-filter is called
before the syscall. This filter can inspect arguments of the syscall. It can also dereference
pointers in arguments and can access or modify the underlying buffers. Additionally, it
can decide to block the syscall. After the syscall, a exit-filter is called. The exit-filter
has access to the same information as the enter-filter but can also analyze and change
the return value of the syscall.

After the syscall is handled, the monitor switches back to the original domain and
the original stack and restores the stack frame (6) to continue execution where it was
interrupted (7).

BEGIN Monitor
syscall_intercept

DENY

(Save Frame, 
Switch Stacks)

Child 
SYSCALL

(Switch Stacks, 
Restore Frame)

END Monitor 
Return

BEGIN Child

SYSCALL

...

ALLOW

FILTER

Monitor 
Filter?

ENTER Filter

Child 
SYSCALL

EXIT Filter

1 2

3

5a

6

5b

7

4

Monitor Sysfilter Table

Nr Name Filter

0 SYS_read SYSCALL_DENIED

1 SYS_write SYSCALL_ALLOWED

2 SYS_open &filter_open

... ... ...

Figure 4.2: Our syscall filtering. A syscall is intercepted in the monitor. We execute
any registered monitor filter and then return to the instruction after the
syscall instruction in the original domain. The red dashed arrows indicate the
monitor intercepting a syscall and then returning to the domain that issued
it.

4.3.3 Buffer Arguments

We need to handle syscalls with arguments pointing to buffers in user-space with special
care. If not handled correctly, decisions based on the contents of the buffers are subject
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to race conditions. Whereas the six scalar arguments to syscalls are passed in registers,
buffer arguments are still passed by memory reference. Thus, other threads can modify
these buffers during the execution of the syscall filter. Potential consequences are Time-
Of-Check-Time-Of-Use (TOCTOU) race conditions. A check in the syscall filter might
pass, but before the executes the syscall, a colluding thread changes the argument to
have malicious content. The race condition potentially allows a domain to escape syscall
filters imposed on it (see [Gar03]). For example, an attacker passes a valid path to a
syscall. A colluding thread changes the path to a malicious one after the filter’s execution
but before the syscall in the kernel.

Disabling multi-threading trivially solves the problem of the race condition. Alterna-
tively, related work [Gar03; Pro03; KZ13] suggests copying buffers to read-only memory
so they are not accessible by other threads.

We also implement argument copying (see Figure 4.3). For our syscall filtering, the
monitor copies buffer arguments to a per-thread argument memory area protected by a
distinct memory protection key. We call this protection key the syscall-args-key. As we
forbid any other thread to load this key, no concurrent thread can modify a buffer. After
the buffer is copied, a syscall filter can safely check and even modify it. The monitor
rewrites the syscall arguments to point to the copied buffers. While executing the syscall
in the kernel (4), the syscall-args-key must be loaded (3). Additionally, we load the keys
of the domain that issued the syscall. It is unloaded directly after the syscall (5). As the
kernel enforces memory protection keys, not loading the syscall-args-key would result in
the syscall failing because the kernel cannot access the buffer arguments.

As protection keys are not enforced in the monitor, we can copy the arguments in
monitor mode. The monitor first checks if the memory passed in the arguments is actually
accessible by the domain that initiated the syscall (1), thus preventing a confused deputy
attack [Har88]. Filter functions define which arguments the monitor needs to copy and
what sizes they are. After checking the access permissions of the arguments, the monitor
then copies them to the argument memory. The page mappings (page table structures)
and protection keys inside Page Table Entries (PTEs) must not change during this
permission check. Otherwise, we would introduce another race condition. We use locking
to prevent Donky API functions from changing any memory mappings. After copying,
the enter- and exit-filter can safely access or modify these buffers and make allow/deny
decisions based on their content.

Some syscalls also have buffer arguments that the kernel writes to (e.g., the dup syscall).
The exit-filter might want to modify the output from the syscall before passing it back to
the domain. To prevent TOCTOU race conditions for checks in the exit-filter function
(6), the monitor allocates argument memory for them and rewrites arguments to point to
it (1). After the exit-filter function, the content is copied back to the original location
(7). Again, we check if the pointers passed to the syscall are accessible by the current
domain.
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Figure 4.3: Our argument copying for filtering syscalls with buffer arguments. This is a
more detailed view of (5b) in Figure 4.2.

4.3.4 Syscall Impersonation

The effect of a syscall highly depends on the context it is executed in. Some syscalls
interact with the application, others with the thread that issued it. As our syscall filtering
is intended for PKU systems, we also discuss the context implied by the currently loaded
memory protection key. We call the procedure of executing a syscall in a different context
than the current context syscall impersonation. A similar mechanism can be found in
Light-weight Contexts [Lit+16] (see Section 3.2.5)

Thread/Application Context. The thread context decides for which thread or appli-
cation a syscall is executed in the kernel. E.g., an open syscall would add a file descriptor
for the newly opened file to the file descriptor table of the application that executed
it. The application can then use the file descriptor for later syscalls. When a syscall
interception mechanism cannot run syscalls in the original context, it can only emulate it
inside the filter application.

Whereas emulating file descriptors is not very complicated, many threading syscalls
cannot be emulated at all. For example, when emulating the exit syscall, we cannot
exit the application gracefully but only kill it by sending a SIG KILL to it1.

Memory Protection Key Context. Depending on the memory protection keys
loaded, some buffers passed to a syscall might be inaccessible. If we want to execute
a syscall inside a syscall filter with the same context as it appears in the target code,
we need to ensure that the correct memory protection keys are loaded. When entering
monitor mode, the monitor gives itself access to all protection keys. For monitor filters,
all syscalls part of the filter code are executed with access to all memory. For the original
syscall between enter- and exit-filter, we drop privileges by just loading the protection
keys of the domain that initiated the syscall. Thus, we impersonate the syscall for said
domain.

1Note that there is a semantic difference between an application gracefully exiting and an application
being killed. E.g., any registered exit handlers would not run for a killed application.
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However, we cannot clear the monitor bit when impersonating a syscall. If we left
monitor mode at this point, we would not be able to enter it again. It is only possible to
change the PKRU or the monitor bit while the monitor bit is set. Thus, we execute all
syscalls in monitor mode. As the PKRU is writable in monitor mode, it is important,
that the kernel does not change the register as part of any syscall. For this thesis, we
assume this is the case.

We can also impersonate syscalls for other domains than the current one. We do so by
loading the protection key configuration of the target domain we want to impersonate
before executing the syscall and restore it afterward. We use syscall impersonation for
the syscall between enter- and exit-filter of a domain filter.

4.3.5 Syscall Delegation

In this section, we show that our novel method of syscall delegation2 not only enables us
to securely filter syscalls in the same process but even the same thread. We use Figure 4.4
to illustrate the process.

Our syscall delegation works as follows: After intercepting a syscall (1.), we redirect
execution to a specific syscall handler function inside the same application as the syscall
was emitted (2.). How exactly the syscall is intercepted and delegated differs for each
interception mechanism. For the syscall filtering to be secure, we enter monitor mode
before executing any filter code. We disable syscall delegation for all syscalls inside the
monitor so that we can execute syscalls at all. We forbid disabling delegation outside of
the monitor.

Syscall delegation in combination with Donky allows us to “emulate” the behavior of
traditional syscall filtering, like that of Ptrace (see Section 2.6.2). For an allowed syscall,
we simply execute said syscall inside of the syscall handler. As the syscall handler is in
the same application and thread, the syscall executes in its original thread context. For
a denied syscall, we return an error or terminate the application. We emulate Ptrace-like
enter- and exit-filters by calling them before and after the syscall. Our procedure for
syscall filtering with delegation is the same as described in Section 4.3.3. After all syscall
handling code, we return from the monitor (3.). We directly return to the reentry point
of the intercepted syscall in the target domain.

With our syscall delegation, one can filter syscalls in monitor mode. However, we also
allow domains to register syscall filters. We execute these filters inside of the domain
that registered it. Any syscall inside a domain filter is delegated to the syscall handler in
the same way as a syscall in the application code. This allows us to do nested filtering.

2Note, our syscall delegation has little to do with the one used in the Ostia sandbox [GPR04].
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Figure 4.4: Our syscall filtering with syscall delegation. We execute filter functions inside
the trusted monitor of the same application as filtered syscalls are issued.

4.4 Nested Filtering

Donky can create domain structures in hierarchical relationships. I.e., a parent domain
can have access to the child domain’s memory but not the other way around. Having
this parent-child relationship, it seems natural to also support nested syscall filtering so
that a parent can also manage non-memory resources of their child domains.

For our nested filtering, any domain can register syscall filters for its children. Pointers
to filter functions are stored in the per-domain syscall filter table of the child. Domain
filters themselves are also subject to interception. I.e., if a filter itself uses the syscall
instruction, it will be filtered by its parent. Figure 4.5 shows the process of our nested
filtering.

Overview. When a syscall is issued in an untrusted domain, it is intercepted by the
monitor (1). We traverse the domain hierarchy (2) and distinguish between three cases:

(A) The parent of the current domain has a filter function registered.
(B) The parent denies the syscall and we return to the caller immediately (9).
(C) No parent domain exists. The monitor filters the syscall to ensure self-protection.
For (C), we proceed as described in Section 4.3.2. For (A), the monitor prepares for

syscall filtering in the parent domain. It first checks and copy buffer arguments to the
calling thread’s arguments memory (3). We cannot do this outside the monitor, as we can
only prevent modification of the page table by acquiring the appropriate lock inside the
monitor. Additionally, the monitor loads the thread’s syscall-args-key inside the parent
domain, giving domain filters access to buffer arguments. Then the monitor switches to
the parent domain and exits monitor mode (4).

The parent domain (5) executes the domain filter. It first executes the enter-filter
function, then the syscall, and finally the exit-filter function. Any syscall executed in
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the parent is again subject to syscall filtering. Thus, it would again be intercepted by
the monitor and filtered in the same way as described above. When the parent domain
finishes its filtering, it returns back into the monitor.

The monitor (6) first restores any buffer arguments, as described in Section 4.3.3 (7).
It then switches back to the domain where the syscall was generated initially and exits
monitor mode (8, 9). The execution continues at the reentry point of the original syscall.

BEGIN Monitor 
syscall_intercept

DENY

FILTER

ALLOW
curr_domain 

Filter?

Save Frame, 
Switch Stacks

Y

N

Parent 
Exists?

curr_domain =
Parent

Child 
SYSCALL

Restore Frame,
Switch Stacks

END Monitor 
Return

Switch to Parent
 
    - DID=parent_did 
    - PKRU=parent_pkru +
          syscall-args-key 
    - PC=handler_domain

END MONITOR 
Return

BEGIN Parent 
handler_domain(child)

any syscall 
in parent

END Parent 
Exception 

TYPE=SYSCALL_RET

BEGIN Monitor 
syscall_ret

Switch to Child
 
    - DID=child_did
    - PKRU=child_pkru
    - PC=syscall reentry

BEGIN Child

SYSCALL

...

ALLOW

DENYFILTER
Monitor 
Filter?

- Check/Copy Arguments 
- ENTER Filter Function
- Load syscall-args-key

Child 
SYSCALL

- Unload syscall-args-key 
- EXIT Filter Function
- Check/Restore Arguments

ENTER Filter Function

Child 
SYSCALL

EXIT Filter Function

1

2

same as for  
generic filtering

3

4

6

8

Check/Copy Arguments

Check/Restore Arguments

5

7

9

A

B

C

Figure 4.5: Our nested syscall filtering. For any intercepted syscall, we recursively execute
any filters of parent domains first, then the monitor filter. The red dashed
arrows indicate the monitor intercepting a syscall and then returning back
into the domain that issued it.

Syscall Impersonation. When executing a domain filter inside of a parent domain
(see Figure 4.5, (5)), a syscall filter might need to execute syscalls on its own. Hence,
by default, any syscall is executed with the filter’s own protection keys. However, for
some syscalls, the filter might want to execute the syscall for the child domain, thus with
child’s protection keys loaded. I.e., it wants to impersonate a syscall for the child domain.

A syscall filter can control impersonation with a thread-local variable (see Figure 4.6).
This variable is protected by the per-thread syscall-args-key. A domain filter sets the
variable to the ID of the child domain it intends to filter the syscall for3. By default, we

3Note, a domain filter could set the variable to any domain ID. However, a potential attacker cannot do
any harm, as the monitor checks if the domain ID for impersonation is a child of the current domain
before the syscall is executed.
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impersonate the syscall between the enter- and exit-filter, so it does not have access to
any data structures of the filter domain.
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Figure 4.6: Our syscall impersonation for nested filtering. When the monitor executes a
syscall for a domain (here child domain), it loads its protection keys. This
is a more detailed view of (5) from Figure 4.5.

4.5 Interception Mechanisms

In this section, we look at how different syscall interception mechanisms (see Section 2.6)
can provide syscall filtering for Donky. We discuss traditional interception mechanisms
with a tracer process (i.e., Ptrace, Ptrace+Seccomp, and Seccomp User Trap). We explore
how to make them work in the same process. Moreover, we present novel interception
mechanisms that support our syscall delegation (see Section 4.3.5).

Interception with Tracer. Traditional syscall interception mechanisms, like Ptrace,
Ptrace+Seccomp, and Seccomp User Trap use a so-called tracer process to provide
isolation between syscall filter code and the target application (the tracee). Without this
process isolation, it would be easy for a malicious tracee to interfere with the syscall
filters inside of the tracer. A tracee could even manipulate the tracer’s control flow by
overwriting function pointers or return addresses on the stack.

The memory isolation provided by Donky allows us to securely execute the tracer in
the same process as the tracee. We isolate tracer and tracee by protecting relevant data
structures and the stack of the tracer using memory protection keys. While Seccomp
User Trap works with Pthreads4 [Ker20n], Ptrace and Ptrace+Seccomp do not. In Linux,
threads are very similar to processes. By setting the CLONE THREAD flag in the clone

syscall [Ker20a] a new thread is placed in the same thread group as the thread executing
the syscall. Threads in one thread group are part of the same application and have access
to the same address space. However, one cannot use a thread as a tracee for Ptrace or
Ptrace+Seccomp, as one cannot use the wait syscall on them [Ker20a]. As waiting on a
child to receive a stop signal is an integral part of the Ptrace interception mechanisms,
they cannot work.

4Pthreads are the default abstraction for threading in the Glibc.
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We overcome this limitation by using a Glibc implementation that does not use the
CLONE THREAD flag for their Pthread implementation. There are older versions of Glibc
with LinuxThreads [Hon05] as backend for Pthreads that did not use the flag. However,
for our evaluations, we opted for modifying a recent version of Glibc (version 2.31). We
simply removed the CLONE THREAD flag for the relevant clone syscall inside of pthread -

create (see Listing 4.2). We additionally added SIGCHLD as so-called termination signal.
We could not wait on any child without setting a termination signal. We removed the
CLONE SIGHAND flag, so the tracee does not inherit the same signal handlers of the tracer5.

1 clone(..., CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SYSVSEM|

2 CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID|

3 - CLONE_SIGHAND|CLONE_THREAD,

4 + SIGCHLD,

5 ...);

Listing 4.2: Modified clone flags in pthread create. Added lines are marked with (+),
removed lines with (-).

For domain-aware syscall filtering, a tracer needs to be able to access Donky meta-
information of the tracee. E.g., the tracer needs to know the domain the tracee thread
currently is in. The monitor stores most meta-information in a monitor-protected area of
the thread-local storage of each thread we call the Trusted Thread-local Storage (TTLS).
Interception mechanisms like Ptrace can locate the TTLS of the tracee at a constant
offset relative to the thread register (FS register on x86-64). For other mechanisms, we
look-up the PID of the tracee in the global monitor data structures. The TTLS contains
a field indicating if a thread is in the monitor or not. It includes the thread’s current
domain ID, caches the current PKRU configuration, and contains the syscall-args-key
and more. The tracer adapts its behavior based on the data found in the TTLS. E.g., if
the thread is in the monitor, it does not filter any syscalls. It passes the current domain
ID to syscall filters so that they can make decisions based on it. Before the syscall is
executed in the kernel, the tracer needs to load the syscall-args-key in combination with
the current PKRU configuration. It cannot use any instruction usually used to set the
PKRU register, as they are always directed to the currently running thread. Ptrace
and Ptrace+Seccomp can load the PKRU register, as they have access to the extended
register state of the processor where the PKRU register is located.

Interception without Tracer. If isolation between the target application and tracer
can be provided without process isolation, no tracer process is needed. Traditionally, this
is the case for syscall filtering in the kernel, like with Seccomp (see Section 2.6.1) or with
custom kernel modules (see Section 2.6.5) that filter syscalls directly in the kernel.

In this thesis, we propose three novel tracer-less interception mechanisms for Donky:
RISC-V-User-Mode-Syscalls, Kernel-Module-Delegation, and Indirect-Jump-Delegation
(an emulation of RISC-V-User-Mode-Syscalls for x86-64). They all support efficient

5Note, these modifications can still cause trouble if an application relies on the fact that a thread does
not signal the parent process.
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delegation to the trusted monitor. Without a tracer, we do not need to perform the (at
least) two context switches required for mechanisms with tracers. We trade them for
much faster domain switches. As we filter the syscall in the same thread as it was issued,
there is no need to retrieve the Donky meta-information of a tracee indirectly. We can
access it directly via the TLS variables that are part of the trusted TLS of Donky. The
monitor can set the PKRU register for any traced syscall by merely using the provided
instructions. Our Ptrace-Delegation mechanism is a hybrid. It intercepts syscalls with a
tracer but uses syscall delegation to filter syscalls in the monitor.

4.5.1 Ptrace and Ptrace+Seccomp

Ptrace+Seccomp (see Section 2.6.3) uses Seccomp (see Section 2.6.1) in the kernel to
pre-filter syscalls. For each syscall, it executes a previously registered Seccomp BPF
program in the kernel. The result of the BPF program decides if a syscall is either
allowed, denied or forwarded to a user-space tracer. Combining Seccomp with Ptrace
allows fast filtering of syscalls in the kernel with BPF code, while only forwarding more
complex decisions to a tracer process. Apart from the pre-filtering, the procedure for
filtering in user-space is very similar to the one of Ptrace. For the rest of this section,
when we refer to “Ptrace”, it is also implied the same holds for Ptrace+Seccomp.

Traditional syscall filtering with Ptrace (e.g., [KZ13]) uses a tracer process to execute
filter code. As described above, we can use a tracer thread instead of a process. Thus,
our tracer runs in the same address space as the target application.

We discuss our syscall filtering using Ptrace as interception mechanism based on
Figure 4.7. The tracer thread runs a blocking loop, the tracer loop and waits [Ker20v] for
any tracee to receive a SIGSTOP signal. The kernel triggers a SIGSTOP signal in the tracee
before (2.) and after any syscall (4.). In this stopped state, the tracer has full control
over the tracee and can execute further Ptrace commands. Note, for each command, the
tracer issues a syscall. As we perform multiple syscalls in the tracer to trace a single
syscall in the tracee, the overhead adds up fast.

Before any filtering logic, we retrieve values of all general-purpose registers in the
tracee by executing the PTRACE GETREGSET command. If the syscall is filtered, we copy
buffer arguments of the syscall to argument memory (see Section 4.3.3). Next, the tracer
executes the enter-filter function. The syscall number and arguments are passed to the
filter. The filter can then modify them. Changes are propagated to the tracee’s registers
by a call to PTRACE SETREGSET. The tracer thread runs in monitor mode, so syscall filters
also have access to monitor data structures. It has access to the thread-local storage
(and also the TTLS) by querying the thread pointer (FS register on x86-64). It retrieves
information, like the tracee’s domain ID or syscall-args-key.

As argument memory is protected by the syscall-args-key, we load the key in the tracee
before it executes the syscall and unload it afterward. We do so by also requesting the
XSTATE (extended state) [Int19] of the processor by executing another PTRACE GETREGSET

command. This state is highly platform-specific and can change from processor to
processor. However, we can locate the PKRU register for supported x86-64 processors
at a constant offset. Unfortunately, with Ptrace we cannot not read or write just parts
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of the XSTATE. Therefore, we resort to loading the whole XSTATE before the syscall and
write it back with the modified PKRU register. After the syscall, we restore it to the
original configuration. In between, the kernel executes the syscall like it was not traced
(after 3.). To improve performance, we only request the extended state when a filter
requires the argument memory, and thus, also the syscall-args-key.

After unloading the syscall-args-key, the tracer first retrieves the return value of the
syscall. It provides this return value to the exit-filter. Again, the filter can inspect
and modify the arguments. In the end, we restore buffer arguments as described in
Section 4.3.3. We also restore all syscall argument registers to their original value because
of the syscall calling convention. An exception to this rule is the register with the return
value. When the tracer signals the tracee to continue after the syscall (5.), it returns
back to the reentry point in the original domain (6.).

As the tracer runs in monitor mode, Ptrace is perfectly suitable for monitor filters.
However, Ptrace does not work well with nested filtering. For nested filtering, also nested
tracers are required. As each tracer would intercept syscalls from all child tracers and
again would need extra syscalls to filter them, this approach is not practical. In the next
section, we discuss how to combine Ptrace with our syscall delegation to support nested
filtering more efficiently.
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1. SYSCALL

2. ENTER

Tracer

3. Continue

4. EXIT

5. Continue

6. Return
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Figure 4.7: Simplified sequence diagram of our syscall filtering using Ptrace as interception
mechanism.

4.5.2 Ptrace-Delegation

We use the Ptrace syscall interception to create a novel mechanism for syscall delegation
that executes filter code inside the tracee instead of the tracer. We call it Ptrace-Delegation.
The mechanism is illustrated in Figure 4.8.

Similarly to syscall filtering with Ptrace (see Section 4.5.1), we register a tracer for
the target application. The tracer can be a traditional Ptrace tracer, but it can also be
combined with pre-filtering using Seccomp. We configure the tracer so that the target
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application gets a signal before the kernel executes any syscall. The tracer waits on any
thread of the target application to receive this signal (2.). In contrast to the traditional
Ptrace approach, we do not execute any filter code in the tracer. Instead, we redirect
execution in the tracee to continue inside of a syscall handler in the trusted monitor (3.).
We do so by changing the instruction pointer to the beginning of the syscall handler.
Complying with the syscall calling convention on Intel x86-64, we set the RCX register to
point to the syscall’s reentry point in the target domain. When all registers are set, we
order Ptrace to continue execution in the tracee. When the tracee enters the monitor, it
saves the RCX register to later continue execution at this address. In the monitor, we do
nested syscall filtering in the same way as described in Section 4.4. For returning, we
switch domain to the target domain, exit the monitor, and jump to the reentry point
that we previously saved from the RCX register (4.).

User-Space Kernel-Space

Domain Handler

1. SYSCALL

2. ENTER

Tracer

SIGNAL Tracee

Monitor

3. Delegate

4. Return

Nested Filtering

Figure 4.8: Our syscall filtering using Ptrace to delegate syscalls into the Donky monitor.

4.5.3 Seccomp User Trap

Seccomp User Trap (see Section 2.6.4) is not a mechanism for syscall filtering but syscall
emulation. For this interception mechanism to work, the tracee registers a Seccomp filter
that can selectively allow or deny syscalls or alternatively trap to a user-space tracer.
The tracer is usually a separate application, but in our case can also be a thread.

In user-space, the tracer reads on the file descriptor returned by the successfully
registered Seccomp filter of the tracee. For each syscall (1.), the Seccomp BPF filter
is executed (2.) (see Figure 4.9). For any syscall that traps to user-space, the tracer
gets a seccomp notif struct (3.). Most importantly, this struct contains the PID (same
as thread id in Linux) of the tracee, syscall number, and arguments of the intercepted
syscall. We use the PID to look up the tracee in our internal data structures. The
tracer determines if the tracee is in monitor mode and thus should allow the syscall. The
data structures also store information about the domain the tracee currently is in. This
information is is vital for domain-aware syscall filtering.
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As Seccomp User Trap does not support Ptrace-style syscall filtering and only syscall
emulation, generally, this means one cannot use the same syscall filter functions as for the
other mechanisms. However, as our tracer resides in the same application as the tracee,
all kernel resources needed in our filtering functions are shared with the tracee (e.g., file
descriptors). Thus, we emulate Ptrace-style syscall filtering (4.) in the tracer similar as
described in Section 4.3.36. We handle some safe syscalls directly in the Seccomp BPF
code, so we do not need to emulate them.

User-Space Kernel-Space

Domain Handler

1. SYSCALL

4. Emulate

Tracer

5. Return

6. Return

Seccomp

2. Execute Filter

3. RET_USER_NOTIF

- Check/Copy Args 
- ENTER Filter Function 
- SYSCALL 
- EXIT Filter Function 
- Check/Restore Args

Figure 4.9: Our syscall filtering using Seccomp User Trap as interception mechanism.

4.5.4 RISC-V-User-Mode-Syscalls

Ideally, our delegation mechanism is combined with hardware that natively supports
registering syscall handlers directly in user-space (see Figure 4.10). The “Standard
Extension for User-Level Interrupts” (N-extension) [RIS20] provides us with such support
on the RISC-V architecture [RIS]. One can enable certain exceptions to be delegated to
user-space by setting appropriate bits in the sedeleg control register. Each application
can configure exception handlers and communicate the addresses of them to the kernel.
E.g., for Donky, we configure the control register to delegate protection key exceptions
to our monitor. For our syscall filtering in Donky, we also activate the bit for syscall
delegation. For convenience, we delegate syscalls to a separate exception handler.

With the original Donky hardware extension [Sch+20] the user-space exception handlers
act as hardware call gate to the trusted monitor. Before the hardware delegates an
exception to user-space, the monitor bit is set, after the handler returns from the exception,
it is cleared. The hardware disables any delegation of exceptions in monitor mode. Thus,
the monitor can make arbitrary memory accesses and syscalls.

Inside the user-mode syscall exception handler we can do nested syscall filtering exactly
as described in Section 4.4.

6As we emulate the syscall in the tracer running in monitor mode, we do not need to load the
syscall-args-key.
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Figure 4.10: Our syscall filtering using RISC-V user-mode exception handling to delegate
syscalls into the Donky monitor. For each syscall, the hardware directly
jumps to the exception handler in the trusted monitor.

4.5.5 Indirect-Jump-Delegation

Similarly to user-mode syscall delegation in RISC-V (Section 4.5.4), we want to have
a fast delegation mechanism on x86-64 processors. We emulate syscall delegation by
rewriting the code in Glibc to call our syscall handler instead of issuing a syscall in the
kernel (see Figure 4.11). As most syscalls in target applications are issued from Glibc,
this is a good approximation to RISC-V delegation. Note, this form of syscall interception
is not secure by itself, since an application can still invoke syscalls without going through
the Glibc. However, it is very efficient and can be used in combination with a secure
interception mechanism to achieve both speed and safety.

For Indirect-Jump-Delegation, we register a syscall handler at a constant offset relative
to the thread pointer. We replace every occurrence of a syscall instruction in Glibc with
a jump to the address of the syscall handler (see detailed code in Listing 4.3). If no
handler is registered (address is 0), we resort to calling the syscall instruction as before.

When entering the syscall handler (or the monitor in general), we first disable syscall
delegation by writing 0 to the handler address. When leaving the syscall handler (or the
monitor), we restore the handler address. Inside of the syscall handler, we can perform
nested syscall filtering as described in Section 4.4.
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User-Space

Domain Glibc Monitor

1. Glibc Function Call
2. Delegate Syscall

3. Return
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Figure 4.11: Our syscall filtering with modified Glibc. Any Glibc function call that
contains a syscalls, makes an indirect jump to the user-space monitor instead.

1 movq %fs:0x280, %r11 // handler at constant offset to FS register

2 test %r11, %r11

3 jz fallback // fallback, if there is no handler

4 jmp *%r11 // indirect jump to handler

5 fallback:

6 syscall

Listing 4.3: Call to exception handler inside of Glibc. Note, the FS register is used as
thread pointer in Linux on x86-64.

4.5.6 Kernel-Module-Delegation

We propose using a compact kernel module to support secure syscall delegation for
x86-64. Our system is illustrated in Figure 4.12. Similarly to Ptrace-Delegation (see
Section 4.5.2), the kernel module only intercepts the syscall (1.) but does not have any
filtering logic per se. However, it checks if the syscall is issued from the trusted monitor
or an untrusted domain. It allows any syscall issued by the monitor. It delegates any
syscall from an untrusted domain to a syscall handler in user-space (2.).

It does so by writing the reentry point (instruction following syscall instruction) to the
RCX register and the address of a previously registered syscall handler to the instruction
pointer (RIP). Back in user-space, the monitor knows this convention and saves the
reentry point. The monitor can now perform nested syscall filtering as described in
Section 4.4. After the execution of all filters, the monitor returns directly to the saved
reentry point (3.) without invoking the kernel again. Thus, we reduce the number of
context switches compared to traditional mechanisms even further.

The delegation can be configured at program start. The target application registers
the address of its syscall handler in the kernel module. Next, it specifies which syscalls
the kernel module should delegate. In our proof-of-concept, the kernel module overrides
the handler functions for these syscalls in the syscall table inside of the Linux kernel. All
other syscalls are allowed by default. Communication between application and kernel
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module is done via calls to the ioctl syscall [Ker20d]. The application does not need
to have any special privileges to execute those. We prevent untrusted domains from
unregistering delegation by restricting the access to the ioctl syscall.

User-Space Kernel-Space

Domain Kernel Module 
(Syscall Handler)

1. SYSCALL

Monitor

2. Delegate

3. Return

Nested Filtering

Figure 4.12: Our syscall filtering using a kernel module. For each filtered syscall, the
kernel jumps to the user-space syscall handler in the monitor directly.

4.6 Filter Rules

The Linux kernel enforces memory protection keys as part of the ordinary access check
for most syscalls7. E.g., when passing a pointer to inaccessible memory to a read syscall,
it does not execute the syscall but returns an error. The check also fails for memory
regions protected with a protection key that is not loaded in the PKRU. However, the
Linux kernel developers do not treat memory protection keys as security asset [Han;
Ker20j], so some syscalls allow a process to circumvent them.

Previous work already suggests that syscall filtering is needed to secure PKU-based
in-process isolation. ERIM [Vah+19] (see Section 3.1.3) proposes filtering of memory
management syscalls (i.e., mmap, mprotect, and pkey mprotect) so that untrusted code
cannot create or change (executable) memory mappings it does not own. Donky [Sch+20]
(see Section 2.4) additionally suggests filtering the syscalls munmap, pkey alloc, pkey -

free, clone, and exit. Connor et al. [Con+20] systematically analyze the whole
syscall interface for the x86-64 architecture. They identify more problematic syscalls for
PKU-based sandboxes. Their list also includes open, creat, openat, mremap, remap -

file pages, prctl, ptrace, process vm readv, process vm writev, sigaltstack, and
rt sigreturn.

To evaluate our syscall filtering, we need a set of representative filter rules. Thus,
similarly to Connor et al. [Con+20], we examined and categorized each syscall for x86-64

7For more information about the syscalls mentioned in this section, we refer to the Linux manual pages
section 2 [Ker20e].
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in Linux 5.4. As a starting point for our analysis, we used information found in the
source code of the strace utility [Str19]. For a more in-depth analysis, we inspected the
documentation in Linux manual pages [Ker20e]. If manuals did not include the needed
information, we tested the syscall’s behavior on a reference machine running Linux 5.4.

Based on our analysis, we provide two filter modes with comprehensive sets of syscall
filter rules. One mode filters syscalls to provide self-protection for the whole in-process
isolation scheme. The other mode contains filters for a local storage sandbox. The filters
isolate domains by limiting file system access only to a per-domain directory. Additionally,
they permit domains only to use file descriptors they have opened before.

4.6.1 Analysis of the Syscall Interface

As syscall filtering for privileged binaries is out of scope for this thesis, we only analyze
syscalls that do not need any elevated privileges to run. We categorize all unprivileged
syscalls into the categories process- and thread-creation syscalls, process- and thread-
directed syscalls, debugging syscalls, memory management-related syscalls, path syscalls,
and file descriptor syscalls.

Process/Thread-creation Syscalls. A process (parent) can create a copy of itself
(child) by executing the fork, vfork, or clone syscalls. This copy includes the whole
page table and most other kernel resources. Like in other multi-threaded applications,
the fork syscall can lead to synchronization issues in a PKU system. E.g., before the
fork, another thread in the parent process might be editing data while holding a lock.
In the child process, the thread does not exist any longer, and thus the data is in an
inconsistent state [Pie09]. Furthermore, if the thread in the child process wants to acquire
a lock another thread holds in the parent process, this results in a deadlock [Bal14].
exec replaces the currently loaded executable and the process’s whole address space.

Since we do not have any control over the new executable, we cannot automatically
initialize our in-process isolation mechanisms for the child process. Note that syscall
interception mechanisms based on Seccomp could survive an execve. However, any tracer
thread located in the same process would not, allowing a domain to execute syscalls it
would not have been able to.

Thread creation with clone is compatible with our in-process isolation. However,
we still filter the clone syscall for untrusted domains, as we need to initialize Donky
metadata inside thread-local storage.

To summarize, we block process creation syscalls fork, vfork, clone, clone3, execve,
and execveat.

Process/Thread Syscalls. Donky uses thread-local storage to store metadata about
each thread. This information should only be accessible to the monitor. Thus, it is
protected by a memory protection key. However, an attacker can still change the thread
pointer (FS register on x86-64). As the register is privileged, it can only be changed via
the syscalls arch prctl and set thread area.
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The prctl syscall allows an application to control various aspects of its execution.
E.g., it allows registering Seccomp filters (PR SET SECCOMP) or configures if a process can
be debugged or not (PR SET DUMPABLE). As noted by Connor et al., allowing a domain
to register custom Seccomp filters is dangerous. A Seccomp filter could let the trusted
monitor believe a syscall executed successfully, while it did not. Analyzing all other
operations of prctl is not in the scope of this thesis. Additionally to prctl, we also
block the dedicated seccomp syscall.

As identified by Connor et al. [Con+20], handling of asynchronous signals cannot
be implemented securely in a PKU-based sandbox. There are multiple problems with
asynchronous signal handling.

1. The kernel can send a signal to an application at any time. If allowing a domain
to register signal handlers, the handler’s code might run in a different domain (the one
that is active when the signal is delivered). Thus, the signal handler could run arbitrary
code in the context of another domain. We block the registration of signal handlers by
denying the rt sigaction syscall.

2. Protecting the signal stack with memory protection keys is not feasible, as the
kernel would kill an application if it cannot write the signal stack based on the currently
set PKRU permissions. As the signal stack contains the original register state (including
the PKRU register), we cannot ensure that not another thread changes its contents.

3. Connor et al. deem the rt sigreturn syscall especially problematic, as it allows to
restore an arbitrary register state at any time. Thus, we block the rt sigreturn syscall.

4. Another problem arises from syscalls that trigger signals in the future (e.g., alarm,
setitimer, timer create) or for other threads (i.e., kill, tgkill, rt sigqueueinfo,
rt tgsigqueueinfo). As we deny registration of signal handlers, these syscalls would
allow an attacker to kill a thread while it is in another domain. We block the above
mentioned syscalls. Other problematic syscalls affecting signal handling are sigaltstack

and rt sigprocmask.
Additionally, some threading syscalls can potentially be used for a denial-of-service

attack. E.g., sched yield yields execution of the current thread, nanosleep pauses
execution for a specified amount of time, pause, rt sigtimedwait, and rt sigsuspend

stop execution until the thread receives a signal, wait stops execution until a child thread
receives a signal, exit terminates the thread, and exit group terminates the whole
application. As a domain can also cause a denial-of-service by executing an endless loop,
we do not block any of these syscalls by default.

Debugging Syscalls. As correctly identified in [Con+20], debugging syscalls are very
dangerous for in-process isolation. For example, ptrace can be used to debug another
process. When attached, a debugger has full access to the process and can read and
write arbitrary memory. As we have shown (see Section 4.5), ptrace can also trace the
same process, thus having access to the same address space. When doing so, ptrace
does not check protection keys for any memory access in the tracee.

The process vm readv and process vm writev syscalls can be used for reading and
writing memory of a child process. However, one can also read or write memory of the
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same process issuing the syscall. The Linux kernel also does not respect protection keys
for these syscalls.

We deny all untrusted domains to use above mentioned debugging syscalls.

Memory Management Syscalls. Protection keys are associated with Page Table
Entries (PTEs). Any syscall that modifies PTEs can potentially break PKU-based
in-process isolation. Some syscalls, like mprotect or pkey mprotect manipulate the
protection key in the PTE directly, others indirectly. E.g., a call to munmap deletes a
page mapping. When executing this syscall, the kernel knows that it can reuse pages
part of the mapping for later calls to mmap. As the kernel does not wipe unmapped pages,
an attacker could use munmap to leak information of an arbitrary domain.

File Descriptor Syscalls. File descriptors are handles to IO resources. They com-
monly refer to files in the file system or to network sockets. An application can get a
file descriptor to a file by opening it (syscalls open, creat, openat, and openat2), to
a network stream by calling socket. Other syscalls returning a file descriptor as an
identifier for various resources are, e.g., inotify add watch, signalfd, timerfd create,
eventfd, memfd create, and userfaultfd.

Some syscalls can execute operations on resources referred to by file descriptors. E.g.,
the syscalls write, read, ioctl, fstat, and fchmod. By filtering syscalls for the creation
of file descriptors, one can also restrict access to these operations.

Opened file descriptors can be used in the whole process. However, assuming the Donky
monitor does not use file descriptors on its own, file descriptor syscalls are inherently not
dangerous. We can easily identify all file descriptor syscalls by looking for the TD flag
inside the syscall table in the source of Strace [Str19].

Path Syscalls. Paths refer to file system resources. Some syscalls operate on paths
directly8 (e.g., mkdir, access, or unlink). The *at syscalls9 are siblings of normal path
syscalls (e.g., mkdirat, faccessat, unlinkat) and can be used to resolve paths relative
to a directory (given as file descriptor). When supplying an absolute path, they fall back
to the behavior of their sibling syscall.

Open-like syscalls (e.g., open, creat, openat, and openat2) expect a path and return a
file descriptor referring to the given path. name to handle at is an additional path syscall
that returns a different kind of handle which later can be used in open by handle at to
open a file.

There are some inherently dangerous paths for a PKU system. These include the
files found in the procfs [Ker20l] and paths to core dumps [Ker20b]. The procfs is a
pseudo-filesystem that provides an interface to kernel data structures of a process. It is
mounted at the path /proc. Each process has a directory inside the procfs. A process
can access its own resources at the symbolic link /proc/self. By default, this path and
all exposed resources are accessible for the whole process. The most problematic resource

8Strace [Str19] marks them with the TF flag.
9Strace [Str19] marks them by setting both TD and TF flags.
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for in-process isolation is the pseudo-file /proc/self/mem. By reading or writing to this
file, one can read or write arbitrary memory inside the current process. Similarly to the
debugging syscalls process vm readv and process vm writev, protection keys are not
enforced.

Furthermore, reading core dumps is also problematic, as they contain the content of
the whole address space of the process after a crash. If a PKU system can fork10 and
then crash the child application, it could access restricted information.

As filtering paths in syscall is prone to TOCTOU race conditions, we explore the
implications of syscall filters for path sanitization in more detail in the next section.

4.6.2 Self-protection Filters

This section presents our so-called self-protection filters. These filters prevent untrusted
domains from reading or writing memory that they are not allowed to access. As a basis,
we deny all syscalls we identified as dangerous in Section 4.6.1. Furthermore, we deny all
syscalls that do not fit any category in Section 4.6.1.

However, we need more convoluted filters to resolve paths to restrict access to resources
in the file system. We propose three filter modes for self-protection: self-realpath, self-
procfd, and self-prctl. We register syscall filters for self-protection as monitor filters (see
Figure 4.13a).

Self-realpath. For self-realpath, we filter all syscalls that could give us a file descriptor
inside of procfs. Sensitive syscalls include all variants of the open syscall (i.e., open,
openat, openat2, name to handle at).

For these syscalls, we canonicalize the path argument with help of the Glibc function
realpath [Ker20p]. Internally, this function recursively checks if the path is a symbolic
link by calling the stat syscall. When encountering a symbolic link, it resolves the link
with a call to the readlink syscall. For a resolved symbolic link, the function again
starts to canonicalize the path starting from the first component. The function returns
if it reaches the last component. If the path points into the procfs, we compare the
canonicalized path with a whitelist. If the path is not included in the list, the filter
returns an error.

Note, this approach is prone to a TOCTOU race condition. There is a race window after
the kernel resolving the last component of the path and before executing the syscall in
the kernel. In this timeframe, an attacker can change any component of the canonicalized
path to a symbolic link pointing to a potentially restricted file. To defend against an
attacker inside of the target application, we lock path canonicalization inside of Donky.
We also filter syscalls that can change the path resolution (i.e., symlink, chdir). Inside
of the filters, we acquire the same lock as for the canonicalization.

Note, defending against a colluding attacker outside the target application is not part
of our threat model for the self-realpath filters. In the following paragraphs, we present
two filter modes that overcome this limitation.

10Note that we do not allow an application to fork.
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Self-procfd. Similarly to self-realpath, for self-procfd we also filter the syscalls open,
openat, openat2, and name to handle at. In contrast to self-realpath, filters for self-

procfd sanitize the path not before but after the syscall. We use the procfs interface in
/proc/fd/ [Ker20l] to resolve the path of the opened file descriptor. All returned paths
are already canonicalized. Thus, we can compare the path directly to our whitelist. For
a denied path, we immediately close the file descriptor and return an error to the caller.

Note, an attacker in a different thread (and domain) can easily predict the number of
the opened file descriptor. The attacker could use the file descriptor after it is opened
and before it is closed. Therefore, for all open-like syscalls (i.e., all syscalls that return a
file-descriptor), we register the file descriptor in the monitor. We filter file descriptor-
based syscalls and only accept file descriptors already registered before. In contrast to
self-realpath, a colluding attacker outside the target application cannot interfere with our
syscall filtering.

Self-prctl. For self-prctl, we do not register any additional syscall filters at all. We
use a kernel feature that disables core dumps, debugging, and therefore also access
to sensitive files inside of procfs. An application can enable this feature by calling
prctl(PR SET DUMPABLE, SUID DUMP DISABLE) [Ker20k]. The files inside of procfs are
inaccessible for any parent process that acts as a debugger and for the application itself.

4.6.3 Extended Filters

We provide extended filters that can be used on top of our self-protection. Extended
filters further isolate individual domains by restricting file system access to a per-domain
local storage-like folder. By default, a domain can also use any file descriptor another
domain has opened. Therefore, we additionally restrict each domain only to use file
descriptors it has previously opened itself.

Internally, we register a filter for each syscall expecting a path as argument (e.g., stat,
lstat, access, open, mkdir). Inside these filters, we rewrite all path arguments. For
absolute paths, we prepend the root directory of the domain’s local storage. For relative
paths, we prepend a domain-specific working directory to them. We ensure that a relative
path cannot escape the local storage.
*at-syscalls (e.g., openat, mkdirat) are problematic for our extended filters. These

syscalls expect a file descriptor to a directory as the first argument (dirfd). For absolute
paths in the second argument (path), the dirfd is ignored, for relative paths, the path
is resolved relative to this directory. Similarly to our self-procfd filters, we resolve the
path pointed by dirfd using the interface provided by /proc/fd/ [Ker20l]. Resolved
paths are already canonicalized and are guaranteed to point inside the local storage.
However, by moving the directory corresponding to the dirfd, the path for the file
descriptor can change. E.g., a path previously pointing to the path "/a/b" inside of the
local storage might change to the path "/b". An attacker can escape the sandbox by
specifying "../../outside.txt" for the path argument and winning the race condition.
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We protect our filters from an attacker in a colluding thread by internally locking the
resolution of relative paths. We also acquire the same lock for syscalls that can change
paths (i.e., rename, renameat) or the working directory (i.e., chdir, and fchdir).

As symbolic links inside of any local storage could break our isolation, we disallow the
creation of them. Note that our extended filters do not protect from a colluding attacker
outside of the target application placing a symbolic link in any domain’s local storage.
We suggest using regular file system permissions to protect against this threat.

Extended filters can be registered as monitor filters (see Figure 4.13b), overriding
existing self-protection filters regarding path resolution and file descriptors. As the procfs
cannot be accessed when being restricted to a local storage directory, the original filters
are not needed.

When using extended filters as domain filters (extended-domain, see Figure 4.13c), a
parent domain can decide to constrain its child-domain(s) to a local storage sandbox. The
parent domain can still access all files on the host files system unless the self-protection
filters deny it. For our evaluations, we use the extended-domain filters in combination
with self-prctl.

Kernel

syscall

App syscall

Domain

Monitor: Self-Protection Filters

(a) self-protection.

Kernel

syscall

App syscall

Domain

Monitor: Self-Protection Filters 
+ Extended Filters
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SpaceKernel

syscall
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Figure 4.13: Our filter modes for syscall filtering. (a) self-protection filters filter syscalls
for all domains inside the monitor. (b) extended filters replace self-protection
filters for path syscalls to implement a local storage sandbox in the monitor.
(c) Domain 2 is a child domain of Domain 1. It is constrained to a local
storage sandbox, while the monitor filters the syscalls of both Domain 1 and
2.
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Evaluation

We evaluate the performance of our syscall filtering by measuring the overhead for
individual syscalls (micro-benchmarks) and for whole applications (macro-benchmarks).
The micro-benchmarks give us an idea about the base overhead for each interception
mechanism. The macro-benchmarks explore how this overhead affects the performance
in real-world applications.

We compare our implemented syscall interception mechanisms (see Section 4.5) Ptrace,
Ptrace+Seccomp, Ptrace-Delegation, Seccomp User Trap, our Kernel-Module-, and
Indirect-Jump-Delegation.

We benchmark our different filter modes (see Section 4.6) for each mechanism. For self
protection, our filter modes are self-prctl, self-realpath, and self-procfd. For the extended
filters, we evaluate the performance for when they are registered as monitor filters
(extended-monitor) or as domain filters (extended-domain). For evaluating extended
filters, we additionally apply the filters from self-prctl for self-protection.

Evaluation Environment. Our evaluation system features an Intel Xeon Silver 4208
CPU, which supports Intel MPK. The used operating system is Ubuntu 20.04. This
version uses the 5.4.0 long-term support Linux kernel. To reduce noise, we set the CPU
frequency to a constant value of 1.8GHz for all cores. For interception mechanisms with
tracer thread, we pin the tracer and tracee to distinct CPU cores. Doing so reduces
noise from scheduling. For our file benchmarks, we further reduce noise by using a file
system that is located in RAM (a so-called tmpfs) for the folder /tmp. We remove outliers
outside the interval [q1 − k(q3 − q1); q3 + k(q3 − q1)] with k = 3 [Tuk77]. qi is the ith
quartile of our data set. q3 − q1 is called the inter-quartile range. It contains 50% of the
measurements around the median.

For all diagrams in this chapter, error bars indicate the standard deviation of our
measurements.

5.1 Micro-benchmarks

For our micro-benchmarks, we measure the execution time of individual syscalls when
filtered with our syscall filtering framework. We measure the time for 100 executions
in a row to reduce the error in each measurement. We repeat this 10 000 times. Thus,

56



Chapter 5 Evaluation

Ptrace Ptrace+
Seccomp

Ptrace-
Deleg.

Seccomp
User Trap

Kernel-
Module-
Deleg.

Indirect-
Jump-
Deleg.

10−2

10−1

100

101

102

103

104

15
0.

81

1.
35

1.
36

1.
36

1.
00 2.

33

18
7.

42

18
6.

84

17
7.

55

64
.7

5

5.
33

3.
02

26
9.

92

9.
00

4.
62

27
4.

25

9.
60

5.
29

none
monitor filter

domain filter
domain + monitor filter

Figure 5.1: Relative execution time of a getpid syscall for different interception mech-
anisms and nesting layers. Numbers are relative to the unfiltered getpid

syscall.

in total, we execute each syscall 1 000 000. We plot the execution time relative to the
execution time of the respective unfiltered syscall.

We evaluate the syscalls getpid and open, as they show important aspects of our
interception mechanisms (see Section 4.5), our nested filtering (see Section 4.4), and our
proposed filter modes (see Section 4.6).

Base Overhead. The getpid syscall [Ker20c] returns the process ID of the process
executing it. Thus, it executes very little code in the kernel. Timing it gives us an idea
of the base overhead of executing a syscall. Generally, this is the overhead of issuing a
syscall instruction in user-space, switching into the kernel, executing the respective
syscall function in the kernel, and then returning back to user-space. For getpid, we can
assume the execution time of the syscall function in the kernel is negligible.

Thus, by benchmarking the getpid syscall with all our mechanisms, we can calculate
the base overhead for each mechanism. Additionally, for mechanisms that support nested
filtering, we show the overhead for individual nesting layers. We measure the relative
execution time with no filters attached, with just a monitor filter, only a domain filter,
and both a monitor and a domain filter. For mechanisms that do not support nesting,
we measure the relative execution time with no filters and monitor filters attached. As
we do not want to benchmark any specific filtering code, the filter functions at various
nesting layers are empty, thus allowing the syscall. Our results are shown in Figure 5.1.
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The relative execution time of unfiltered syscalls is indicated by the white bars labeled
with “none” in Figure 5.1. For Seccomp-based mechanisms, we measure a base overhead
of 35–36%. This overhead accounts for the filtering performed in the kernel. As Seccomp
reaches a filter decision by running a small BPF program, we can expect this overhead
for all syscalls, not just filtered ones.

Similarly, our Indirect-Jump-Delegation also has a constant overhead for each syscall.
This overhead is 133%. As the pure interception overhead for Indirect-Jump-Delegation
is negligible (overhead of an indirect jump), this number reflects the time needed for
domain switching. In the syscall handler, we switch from the untrusted domain to the
monitor and then back to the original domain. As this is similar to an ordinary Donky
call (Dcall), the overhead is also comparable. The relative execution time of a Dcall is
1.1x the getpid syscall.

Ptrace runs in a separate thread and needs multiple syscalls to filter a single syscall.
Compared to other mechanisms, its overhead of 14981% is the highest.

Filter Overhead. When using monitor filters (yellow bars), Ptrace+Seccomp and
Ptrace-Delegation perform similarly to Ptrace, as the syscall is not only filtered with the
Seccomp but also in user-space. The mechanisms Ptrace and Ptrace+Seccomp use almost
identical code for syscalls filtered in user-space. Thus, both have a relative execution time
of approximately 187x. These mechanisms have an enter- and exit-filter in the tracer
thread. They need to switch between tracer and tracee thread twice to execute these
filters. As the Ptrace-Delegation mechanism only intercepts the syscall with Ptrace but
filters it in the original thread, we can improve the execution time (177.6x). However,
the overhead is still comparable to Ptrace, as Ptrace-Delegation intercepts a syscall in
the tracee twice: once from the untrusted domain, the second time from the monitor
that executes the allowed syscall for the domain.

For Indirect-Jump-Delegation, our relative execution time for a syscall filtered in a
monitor filter is only 3.0x. Our Kernel-Module-Delegation has a relative execution time
of 5.3x. Note, in contrast to the Ptrace-Delegation mechanism, for Kernel-Module- and
Indirect-Jump-Delegation, we can disable delegation of syscalls while we are in monitor
mode. Thus, syscalls allowed in monitor filters are only intercepted once, not twice.

Seccomp User Trap intercepts the syscall also only once. However, as it needs two
thread switches, the relative execution time is much higher at 64.8x.

Nested Filter Overhead. We benchmark nested filtering for mechanisms that support
delegation (Ptrace-, Kernel-Module-, and Indirect-Jump-Delegation).

For standalone domain filters (red bars in Figure 5.1), the overhead accounts for the
domain switches needed for switching to the filtering domain and back to the monitor.
For Kernel-Module-Delegation and Indirect-Delegation, we intercept the syscall twice:
once in the original domain and once in the filtering domain. For Ptrace-Delegation, it is
also intercepted a third time: for the monitor.

Again, we look at the Indirect-Jump-Delegation mechanism in more detail. In total,
there are three switches from a domain to the monitor: for the original syscall, for the
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syscall inside the domain filter, and for returning from the domain filter. Thus, the
overhead can be expected to be three times the execution time of a Donky call, i.e.,
3 · 1.1 = 3.3x the getpid syscall. Our measured overhead is 3.62x. The difference of
these values can be accounted for by the extra syscall handling code we need to execute
when filtering syscalls.

For nested filters (“domain + monitor” filter in figure Figure 5.1), we also invoke
filtering logic in the monitor in addition to filtering in a parent domain. As there is no
further domain switch needed, the overhead for domain+monitor filtering is similar to
just filtering with a domain filter.

Path Syscalls. We benchmark the open [Ker20g] syscall to evaluate the performance
of our self-protection and extended filters. The open syscall is used for opening files
in the file system. Thus, it is representative of other syscalls that expect a path as an
argument. For our extended filters, all path-related syscalls have a similar overhead to
the open syscall when supplied with the same path. For self-realpath and self-procfd, we
only filter path syscalls that are open-like. Our results are shown in Figure 5.2.
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Figure 5.2: Relative execution time of the open syscall for different interception mecha-
nisms and filter modes. Numbers are relative to the unfiltered syscall. The
exact command is: open("/tmp", O RDONLY).

The self-prctl filters are fastest for self-protection, as they do not need to filter any
additional path syscall. The BPF code for pre-filtering syscalls in Seccomp-based
mechanisms adds overhead for every syscall. For open, this overhead is 21–22%.

self-realpath and self-procfd are both consistently slower, as they need to perform
additional syscalls to sanitize the path in open-like syscalls. For the short paths used in
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the evaluation, self-realpath is faster. However, as self-realpath needs a syscall for each
path component (e.g., the /a/b has two components: “a” and “b”), it gets slower when
encountering longer paths. Additionally, it would resolve any encountered symbolic link
and start traversing the path from the beginning.

We tested the code used inside of our syscall filters for self-realpath and self-procfd in
isolation outside of our framework. The results are shown in Figure 5.3. For each path
component, the realpath library function gets slower much faster than when resolving
a path via the /proc/fd interface. Thus, for paths with more than four components,
self-procfd would also be slower than self-realpath in Figure 5.3.
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Figure 5.3: Effect of path length on performance. Comparing absolute execution times
of syscalls used for sanitizing paths inside our syscall filters.

Extended filters do not need additional syscalls for the open syscall because they only
prepend the directory of the local storage of the current domain to the specified path1.
Thus, when combining extended filters with fast interception mechanisms, we achieve
low overheads. For our Kernel-Module-Delegation, extended-monitor filters have 84%,
extended-domain filters 133% overhead. For our Indirect-Jump-Delegation, the respective
overheads for these filter modes are 57% and 79%.

5.2 Macro-benchmarks

Our macro-benchmarks consist of a wide range of compute- and IO-heavy applications.
Compute-heavy benchmarks include signing the contents of a file with openssl (see
Figure 5.4f) and using zip to compress the contents of a folder (see Figure 5.4d). IO-
heavy benchmarks are ls (see Figure 5.4a), grep doing a full-text search in a folder (see

1Note, for relative paths in *at-syscalls, we still need an additional readlink syscall to resolve the path
of the file descriptor of the directory the path should be relative to. If the special file descriptor
AT FDCWD is specified, we do not need any extra syscalls, as it represents the current working directory.
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Figure 5.4b), dd filling a file with zeros (see Figure 5.4c), git status (see Figure 5.4e),
and sqlite3 inserting 100 entries into a database (see Figure 5.4g). Note that there are no
benchmark results for git status with Seccomp User Trap because our implementation
for this mechanism does not support multi-threading.

For benchmarks targeting the file system, we use a predefined commit version of the
Git repository found at https://github.com/git/git.git. We clone this repository
with a commit depth of 10 0002.

All evaluated applications are unmodified. We initialize our syscall filtering by preload-
ing the target application with our framework as library. I.e., we start the application with
the LD PRELOAD environment variable set to a shared library containing our framework.
We initialize Donky and the specified syscall filtering mechanism inside our framework’s
library constructor. Depending on the filtering mode, the target application starts in the
root domain or, in the case of nested filtering, another untrusted domain. The syscall
filtering mechanism is configured to intercept the syscalls of the target application and
delegate them to the Donky monitor.

For benchmarking, we start measuring the execution time of the target application
after our framework is completely initialized. We stop our timer in the destructor after
the application finished executing. Thus, the variable initialization overhead of each
interception mechanism is not included in figures 5.4a to 5.4g. We discuss the initialization
overhead separately in Section 5.3. We repeat all our benchmarks 1000 times.

Base Overhead. As already discussed in the micro-benchmarks (see Section 5.1),
each interception mechanism (except Kernel-Module-Delegation) also has overhead for
unfiltered syscalls. We can measure this base overhead also in our macro-benchmarks. It
is illustrated in figures 5.4a to 5.4g by white bars.

As Ptrace (without pre-filtering) always needs to intercept all syscalls, its base overhead
is consistently the biggest for all evaluated applications. Indirect-Jump-Delegation
also intercepts all syscalls. However, as the interception is much faster than Ptrace,
the base overhead for our macro-benchmarks is similar to the one of Seccomp-based
mechanisms that pre-filter syscalls directly in the kernel. I.e., the base overhead for
Indirect-Jump-Delegation is 0–42%, for Seccomp-based mechanisms 4–56% (depending
on syscall frequency in the target application). There is no base overhead for Kernel-
Module-Delegation, as no syscall is intercepted.

Self-protection. For self-protection (see Section 4.6.2), only a small subset of syscalls
needs to be filtered. As Ptrace without pre-filtering always needs to intercept all syscalls,
its overhead is substantially higher than for all other mechanisms.

The self-prctl filter mode is consistently the fastest form of self-protection for our
framework. As most self-protection filters are simple allow/deny decisions and self-prctl
does not filter any path syscalls, the overhead is comparable to the base overhead. For

2The full command to fetch the exact directory structure is: git clone --branch v2.30.0-rc0

--depth 10000 https://github.com/git/git.git /tmp/git
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most evaluated applications (except git and sqlite3) and interception mechanisms
(except Ptrace), the overhead is 0%–30%.

Self-protection with the self-realpath filter mode additionally needs to filter open-like
syscalls. However, for applications that do not open many files (e.g., ls, dd, zip, openssl),
this form of self-protection is still very efficient. This is also true for Seccomp-based
interception mechanisms (3–51% overhead).

self-procfd also filters all syscalls that use file descriptors. Thus, the overhead for
this filter mode is higher for all mechanisms. For Seccomp-based mechanisms, it is
dramatically higher. I.e., for Ptrace+Seccomp the relative execution time for ls is 2.4x,
for grep 12.7x, and for dd 26.3x. For Kernel-Module- and Indirect-Jump-Delegation,
the performance is similar to the one with self-realpath, as the syscall filters for the file
descriptor syscalls are very simple.

Extended Filters. Similarly to the self-procfd filter mode, the extended filters (see
Section 4.6.3) intercept all syscalls that expect a file descriptor. Additionally, they also
filter all syscalls that have a path as an argument. As this filter mode intercepts a big
percentage of commonly used syscalls, extended filters are slow for both Ptrace and
Seccomp-based mechanisms. However, as extended filters do not need an additional syscall
to rewrite path arguments, they are quite efficient for fast interception mechanisms. For
Indirect-Jump-Delegation with extended-monitor filters, the overhead is 1% for openssl
and zip, 49% for grep, and 136% for git status. Note that for our openssl benchmark,
the relative execution time for both extended-monitor filters and extended-domain filters
is smaller than 1. This is because the local storage sandbox blocks all access outside the
local storage directory. Thus, any syscall trying to access any global system configuration
files e.g., for localization inside of /etc, would fail. As a result, subsequent syscalls might
not be executed. However, denying access to these paths did not change the fundamental
behavior of the benchmarked applications.

For IO-heavy benchmarks with Ptrace-Delegation, the execution time is about 1.5x
higher if the extended filters are registered as domain filters instead of monitor filters.
For the faster interception mechanisms, using the extended filters as domain filters is
comparable to using them as monitor filters.
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(a) Retrieving a directory listing:
ls -lah /tmp/git.

Ptrace Ptrace+
Seccomp

Ptrace-
Deleg.

Seccomp
User Trap

Kernel-
Module-
Deleg.

Indirect-
Jump-
Deleg.

0

5

10

15

20

25

10
.1

5

1.
07

1.
07

1.
06

1.
00

1.
10

10
.1

0

1.
14

1.
14

1.
14

1.
01

1.
10

11
.3

4

4.
11

4.
10

2.
77

1.
69

1.
72

12
.9

9

12
.7

3

12
.4

1

5.
38

1.
91

1.
76

12
.6

5

12
.4

9

13
.0

3

5.
73

1.
65

1.
49

19
.7

5

1.
93

1.
62

none
self-prctl
self-realpath

self-procfd
extended-monitor
extended-domain

(b) Performing full-text search in a directory:
grep sshd -r

/tmp/git/Documentation.
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(c) Writing a file:
dd if=/dev/zero of=/tmp/file.bin

bs=1024 count=1024.
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(d) Compressing a folder:
zip -r /tmp/gitweb.zip

/tmp/git/gitweb.
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(e) Retrieving the status of a Git repository:
git -C /tmp/git status.
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(f) Signing a file with OpenSSL:
openssl dgst -sha256 -sign

/tmp/key.pem -out

/tmp/signature.bin /tmp/file.bin.
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(g) Inserting 100 rows into a database:
sqlite3 /tmp/db.sqlite ’.read

/tmp/insert100.sql’.

Figure 5.4: Results of our application benchmarks. We plot the execution time of the
protected application relative to that of the respective unfiltered application.

5.3 Initialization Overhead

The initialization overhead of our framework highly depends on the interception mecha-
nism and the number of registered filters. Figure 5.5 shows various initialization overheads
compared to the the native execution of /bin/true (0.29ms). We measure 0.64ms over-

64



Chapter 5 Evaluation

head for preloading the Donky framework. For Ptrace, there is an additional 0.37ms
overhead for attaching the tracer. For Ptrace and Indirect-Jump-Delegation, the initial-
ization overhead does not scale with the number of registered filters, as these mechanisms
do not need to register filters explicitly. The initialization time for Seccomp-based filters
also includes the initialization of a tracer thread. There is a small overhead depending
on the number of syscall filters registered because of the verification of the Seccomp
code in the kernel [Lina]. We use a single BPF program to specify allowed and denied
syscalls. Similarly, our kernel module has overhead for registering the filters in the kernel
for each filtered syscall. For Indirect-Jump-Delegation, we only measure the overhead
for registering the syscall filters in the Donky monitor. This overhead exists for all
mechanisms but is negligible. The filter modes extended-monitor and extended-domain
filter the same number of syscalls. Yet, there is an additional overhead of 0.03–0.04ms
for extended-domain filters, as our framework also creates an additional domain for the
target application. Similarly to the extended filters, self-procfd also filters file descriptor
syscalls. Thus the overhead is higher than self-realpath.
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Figure 5.5: Initialization overhead of different interception mechanisms and filter modes.
We measure the execution times for /bin/true without (“Native”) and with
(“Donky”) our framework preloaded and for each interception mechanism
and filter mode combination.
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Discussion

In this chapter, we look at software development aspects for creating syscall filters for
our same-process syscall filtering framework (see Section 6.1). Furthermore, we explain
how other PKU systems are compatible with our syscall filtering (see Section 6.2). In
Section 6.3, we discuss future work to improve the effectiveness and efficiency of PKU
sandboxes.

6.1 Software Development Aspects

Syscall filters might change the way syscalls operate in a non-intuitive manner. The
semantics of a syscall might differ from those defined in the documentation. For applica-
tions relying on the semantics, this can have unforeseen consequences. In this section, we
highlight some aspects of the development of syscall filters for our same-process syscall
filtering framework.

Side-effects of Syscall Filters. As already discussed by Garfinkel in [Gar03], problems
may arise when incorrectly mirroring operating system code or state inside of syscall
filters. The state inside the filter might get out of sync with the state in the operating
system. Thus, the effects of a syscall might be inconsistent with the ones described in
its documentation. There are over 300 syscalls for x86-64 in Linux 5.4 [Str19]. For a
developer of syscall filters to know each syscall that modifies or queries a specific piece
of state in the kernel is unlikely. Garfinkel recommends avoiding replicating OS state.
However, this might not be possible, as not all OS state is exposed to user-space.

When developing both the syscall filter and the program code in parallel, inconsistent
syscalls can cause trouble. Every syscall can have a hidden state that the application
developer might not consider. When encountering a bug in application code, it can be
attributed both to application code and the syscall filter (or the kernel). When using
a big library like the Glibc, one cannot be sure about which syscalls are called for a
given library function. If a filtered syscall inside the Glibc does not behave as the Glibc
expects it to do, this results in errors that are hard to track down.

To summarize, user-space filtering allows the developer to write complex filter code.
However, writing good filter code is not as straightforward as it seems.
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Same-process Filtering and Glibc. Similar to Donky, in our framework, all global
state inside the Glibc is shared between application and syscall filtering code. As global
variables inside the Glibc need to be accessible by all domains, they cannot be protected
by any specific protection key. For Donky, this is problematic, as an attacker can leak
information by, e.g., reading global buffers for file IO.

For our syscall filtering, it is also problematic for another aspect: The Glibc executes
syscalls as part of their library functions. As the state in the Glibc might not be consistent
at the point the syscall is executed, the syscall handler must only use reentrant Glibc
functions (i.e., functions that can safely be called again at any point of their code).
Similar restrictions are for code that runs in signal handlers. There is a list of so-called
async-signal-safe library functions in the Linux manuals [Ker20r]. Note that this list
includes not only reentrant functions but also ones that can suppress signal handling.
However, if a function is not on this list, one can be sure it is not reentrant and not
suitable for executing in a syscall filter.

Additionally to the reentrant Glibc functions, a syscall filter can also safely execute
any syscall. However, for nested filtering, one needs to ensure that syscall filters of a
parent domain do not use the same state as filters of child domains. A filter function
can execute a syscall at any point in the filter code. When the syscall is intercepted and
filtered in the parent domain, the shared state might be inconsistent.

Thus, we recommend that code for Donky domains, for the Donky monitor, and code
for syscall filters should not use any Glibc code that relies on any global state.

6.2 Support for Other PKU System

In this section, we discuss the compatibility of our syscall filtering with the PKU systems
ERIM [Vah+19] and Hodor [Hed+19]. We analyze which of our requirements (see
Section 4.1) they fulfill.

ERIM. ERIM [Vah+19] (see Section 3.1.3) fulfills most requirements. There is an
untrusted and trusted domain (R1). Memory of these domains is protected by memory
protection keys (R2). One can only switch domain via trusted trampoline code (R3).
Binary scanning is used to disallow changing the PKRU without changing control flow to
the trusted monitor. While not implemented, the authors propose using a secure stack
when switching to the trusted monitor (R4).

Additionally to our Donky self-protection filters (see Section 4.6.2), ERIM needs to
ensure that it cannot create executable memory mappings containing a WRPKRU instruction.
Connor et al. give a comprehensive overview of these additional filters [Con+20].

Hodor. Hodor [Hed+19] (see Section 3.1.2) fulfills our requirements. Hodor supports
multiple domains (R1). Memory for domains is protected by memory protection keys
(R2). In contrast to Donky, Hodor does not have a trusted monitor. Nevertheless, we
can set up an “ordinary” domain to have access to all memory (PKRU = 0). We can
configure our interception mechanisms to switch to this domain to filter syscalls. Hodor
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uses trampoline code for switching between domains (R3). The WRPKRU instruction
cannot be used outside the trampoline (see Section 3.1.2). Each domain and thread
combination has a dedicated stack, thus fulfilling R4.

The authors modified the kernel to allow memory management syscalls like mmap and
mprotect to only modify memory mappings of the current domain. With our framework,
this policy could be implemented in syscall filters.

6.3 Future Work

In this section, we look at future work to improve syscall filtering for PKU sandboxes.

Kernel Support. PKU-based in-process isolation could benefit from more support in
the kernel. For example, providing the PKRU register to Seccomp filters would make it
much easier to distinguish if syscalls originate from the trusted monitor or an untrusted
domain. For a PKRU system with only two domains, a simple policy could allow the
trusted domain to make all syscalls and deny all syscalls for the untrusted domain.

A further improvement would be to support the more advanced eBPF filters in Seccomp
(see [Lina]). These filters can have key/value stores in the kernel to introduce state into
a filter. The bpf syscall allows to refer to a key/value store by a file descriptor and access
it from user-space. With eBPF, one could implement syscall filters for Seccomp that are
both complex (e.g., deep argument inspection) and stateful.

Furthermore, as more syscalls are added to the kernel, our syscall filters for self-
protection might not be sufficient anymore. Syscall filters for PKU sandboxes would
benefit from an officially maintained list of syscalls that could circumvent the isolation
provided by memory protection keys. For the time being, we recommend using a
whitelisting approach that denies new syscalls by default.

Openat2 for Extended-filters. openat2 is a new syscall introduced in Linux 5.6
[Ker20i]. Similarly to openat [Ker20h], this syscall expects a file descriptor pointing to
a directory (dirfd) and a path (path). Additionally, it allows controlling the process
of opening files with advanced options. New flags allow changing the behavior of path
resolution inside the path argument. For the RESOLVE IN ROOT flag, paths are resolved
as if the directory pointed by the dirfd was the root directory. I.e., paths are confined
to this directory and cannot escape it.

We can use this syscall to implement our extended filters. For each syscall expecting a
path, we would first open the path with openat2, passing the local storage directory as
dirfd. Then, we execute a sibling syscall of the original path syscall that expects a file
descriptor instead of a path. For most path syscalls, such sibling syscall exists. E.g., the
stat syscall has the fstat syscall, truncate has ftruncate. In the end of the filter, we
close the opened file descriptor.

In contrast to our extended filters with path rewriting (see Section 4.6.3), extended
filters with openat2 do not have any assumption about an attacker outside the target
application. However, as every path syscall (except open-like syscalls) needs two additional
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syscalls for filtering, implementing a local storage with openat2 is not practical. As our
path rewriting does not require any additional syscalls for filtering path syscalls, it is
much more efficient.

We cannot provide exact performance numbers, as the kernel used on our evaluation
system did not yet implement the openat2 syscall.

6.3.1 Interception Mechanisms using Signals

In this section, we discuss issues and potential solutions for signal handling for PKU
sandboxes. Furthermore, we discuss two additional interception mechanisms that could
benefit from secure signal handling.

Signal Handling. PKU sandboxes cannot support secure signal handling (see Sec-
tion 4.6.1). The main problem is that we cannot protect the signal stack as the kernel
might refuse to write to it when delivering a signal. A potential solution is to remove the
check in the kernel. By only allowing the trusted monitor to register signal handlers, one
could support per-domain signal handlers similarly to the ones described in the original
Donky paper [Sch+20]. However, this change might not be compatible with the kernel’s
threat model of memory protection keys.

A solution without modification of the kernel might be to use Ptrace [Ker20o]. By
design, the tracer is informed about every signal before the tracee receives it. We can load
the appropriate memory protection keys for the protected signal stack (see Section 4.5.1)
and delegate execution to a protected signal handler in the monitor (see Section 4.5.2).
This signal handler further dispatches the signal to the handler in the correct domain.

Another approach for handling signals are potentially the syscalls sigwaitinfo [Ker20u]
or signalfd [Ker20t]. Instead of handling signals asynchronously, these syscalls allow to
wait on pending signals synchronously. A thread using these syscalls receives both signals
directed to itself and process-directed signals. It cannot receive any signals directed to
another thread.

Seccomp Trap. Similar to Seccomp User Trap (see Section 2.6.4), Seccomp Trap [Linb]
filters syscalls in the kernel with a Seccomp filter. For syscalls that return the result
SECCOMP RET TRAP the kernel generates a SIGSYS signal in the process that issued the
syscall. If there is a signal handler registered for this signal, the handler can do syscall
filtering. The signal handler can access and modify the whole register state. On x86-64,
this state also includes the extended state, containing the PKRU register. The kernel
restores the register state when returning from the signal handler.

Assuming that signal handling was secure, there is another problem with Seccomp Trap:
As we cannot disable the delegation in the Seccomp filter, we cannot actually execute
any delegated syscall. As Seccomp has access to the instruction pointer, it would be
possible to allow syscalls originating from a specific code location (i.e., a syscall function
in monitor code). However, as Intel MPK cannot protect memory from code execution,
an untrusted domain can execute any syscall by jumping to the syscall instruction.
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Syscall User Dispatch. Syscall User Dispatch [Linc] is a new syscall interception
mechanism that dispatches syscalls into user-space. It is not intended as a security
feature. It provides compatibility layers like Wine [Win] with an efficient way to intercept
syscalls originating in certain memory areas. Furthermore, it quickly allows disabling
syscall filtering by writing to a previously negotiated memory address. With secure signal
handling, this mechanism can potentially be used for PKU sandboxing.
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Conclusion

In this thesis, we analyzed how to secure existing PKU systems with syscall filtering. As
PKU systems are generally implemented purely in user-space, the kernel does not have
any notion about the isolation structure inside a protected application. Consequently,
there is no isolation for non-memory resources inside of an application. E.g., a file
descriptor is accessible for all domains. As the kernel does not treat memory protection
keys as a tool for in-process isolation, some syscalls can violate the isolation. E.g., a
process can read any memory, irrespective of the protection key it is protected with, via
the process vm readv syscall.

Similar to PKU being a user-space concept, we used user-space syscall filtering to
further isolate memory- and non-memory resources of a process. Existing user-space
syscall filtering systems need a second process to filter syscalls of the target application.
We proposed same-process syscall filtering to limit the number of context switches required
to filter syscalls. We isolate the memory for application and syscall filtering code with
the help of memory protection keys. The application runs in an untrusted domain, the
filter code in the trusted monitor. Inspired by the RISC-V user-mode syscall handling
presented in the original Donky paper, we proposed a new form of syscall delegation. It
allows us to run filter code not only in the same process but even in the same thread.
Moreover, filter code can reference data and execute syscalls in the same way as the
application code.

Based on syscall delegation, we proposed nested syscall filtering as a way for untrusted
domains to filter the syscalls of their child domains. We allow a parent domain to
impersonate syscalls for their child domains. Syscalls inside of syscall filters are again
subject to filtering in the respective parent domain.

We repurposed the Ptrace, Ptrace+Seccomp, and Seccomp User Trap syscall intercep-
tion mechanisms to provide syscall filtering in the same process. Besides these mechanisms,
we proposed three new interception mechanisms that support syscall delegation and
nested filtering. We call them Ptrace-, Indirect-Jump-, and Kernel-Module-Delegation.
To emulate the RISC-V user-mode syscall handling, Indirect-Jump-Delegation replaces
all syscall instructions inside the Glibc with indirect jumps to a syscall handler in the
trusted monitor. Note, this mechanism on its own is not secure. However, combined
with a secure interception mechanism that filters syscalls made outside the Glibc, this
mechanism could be both fast and secure.

Our Ptrace-Delegation uses Ptrace to intercept syscalls. However, it does not filter
the syscalls inside the tracer but delegates them into the trusted monitor of the target
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application. Additionally, we implemented a kernel module. For intercepted syscalls,
the module does not execute any filter code in the kernel but delegates them back to
user-space to a previously registered handler.

Based on our categorization of syscalls, we proposed two filter modes with distinct
sets of syscall filter rules. One set contains syscall filters for self-protection of the PKU
framework. The other one also isolates non-memory resources by confining each domain
to its own local storage-like folder.

We evaluated the interception mechanisms and filter modes with micro- and application-
benchmarks. Even for the fastest syscalls, like getpid, there is only a 2x overhead when
using our novel mechanisms. The syscall filter for the open syscall is one of the slowest
for our local storage sandbox. However, its overhead for our Indirect-Jump-Delegation is
only 57%, for Kernel-Module-Delegation 84%.

In our application benchmarks, we just have 0–20% overhead for self-protection with
most interception mechanisms and benchmarked applications. As the local storage
sandbox needs to filter many syscalls, traditional interception mechanisms do not perform
well (21–2555% overhead). Indirect-Jump-Delegation only has 0–156% overhead for our
local storage sandbox.

To summarize, we showed that sandboxing with PKU can be both fast and secure by
employing our novel efficient syscall filtering.
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