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Abstract

Nowadays classification problems occur in almost all research areas such as in natural
science, economics or engineering. Embedded in the concept of statistical modeling, a
wide range of methodology and theory is developed for this type of problem and the
selection of appropriate features is always crucial. Especially, a statistical challenge is
the situation of large p and small n (p >> n) where the number of available features
p is much larger than the sample size n. Here, most methods fail or are simply not
applicable. In this thesis, the general concept of feature selection for classification
problems considering flat features is introduced and the application for the large p
and small n case is discussed in detail. Furthermore, the multinomial logistic classifier
derived from the multinomial logistic model, which is a generalization of the logistic
regression model, is described and the theoretical foundation, i.e. classical linear
regression and generalized linear models, is provided. Afterwards, using the Styrian
wine grape data, these methods are illustrated and the possibility of classifying the
variety and geographical origin of wine grapes is investigated based on the results of
a high-performance liquid chromatography in combination with a time-of-flight mass
spectrometer.

Zusammenfassung

Heutzutage treten Klassifikationsprobleme in fast allen Bereichen wie Naturwissen-
schaften, Wirtschaftswissenschaften oder Ingenieurswissenschaften auf. Eingebettet
in das Konzept der statistischen Modellierung wurde eine Vielfalt an Methodik und
Theorie für diese Art von Problem entwickelt. Entscheidend ist dabei die Auswahl
passender Prädiktoren (Features). Statistisch besonders herausfordernd ist die Situa-
tion, wenn p groß und n klein (p >> n) ist, hierbei ist die Zahl an verfügbaren Features
p deutlich größer als der Stichprobenumfang n. In diesem Fall schlagen die meisten
Methoden fehl oder sind nicht anwendbar. In dieser Arbeit wird das generelle Konzept
der Auswahl von Features, unter Verwendung flacher Features, eingeführt und die An-
wendung auf den Fall p >> n im Detail diskutiert. Weiters wird der ’multinomial logis-
tic classifier‘ aus dem multinomialen logistischen Modell hergeleitet. Letzteres ist eine
Verallgemeinerung der logistischen Regression. Die theoretischen Grundlagen, d.h. die
klassische lineare Regression und die generalisierten linearen Modelle, werden hierzu
bereitgestellt. Danach werden diese Methoden verwendet, um mithilfe des steirischen
Weintrauben-Datensatzes zu untersuchen, ob es möglich ist die Traubensorte sowie
die geographische Herkunft mithilfe der Ergebnisse aus der High-Performance Chro-
matographie in Kombination mit einem Flugzeit-Massenspektrometer zu bestimmen.
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Introduction

These days, the awareness for local food increases and so do the possibilities given by
analytical devices. There is almost no food to which the geographical location is as
important as it is for the production of wine. According to concerned winemakers,
even less than a kilometer makes a difference regarding the taste.

Therefore, the Institute Dr. Wagner started a project to investigate whether or not
it would be possible not only to differentiate between the variety of a wine grape
but also between its geographical origin. For this task the analytical methodology of
choice was the high-performance liquid chromatography in combination with a Time-
of-Flight mass spectrometer. This combination generates data in very high resolution
and is normally used to identify specified substances in a chemical sample.

Dealing with this amount of data and classification is not common for colleagues at the
Institute Dr. Wagner, which is why the Institute of Statistics at the Graz University
of Technology, represented by Prof. Friedl and Prof. Hörmann, was invited to join the
project to provide their statistical expertise.

This work starts with a general chapter of linear regression models and their expansion
on generalized linear models. This introduces the general theory of this work which
is crucial to the following chapters. Chapter 2 then discusses the basic multinomial
model which will be used in different variations later on.

Referring the high dimensionality of the data faced in the application Chapter 3 pro-
vides a brief introduction and heuristic overview for the concept of feature selection,
especially focusing on classification problems. The restriction on classification prob-
lems allows to categorize the different methods used in later parts.

After summarizing the major part of the theory, the practical part of this thesis starts
with a short explorative analysis of the data used in Chapter 4. After the first overview
of the data, a shift of values over the measurements sequence was observable and there-
fore, Chapter 5 provides a basic method for the correction of the available features to
make them more comparable.

The application part of this work is arranged in the last three chapters, where each
chapter is based on one type of feature selection, which are derived from Chapter 3.
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8 INTRODUCTION

Chapter 6 is based on filter models, where by an appropriate measure the number of
features for the classifier is reduced by ’filtering’ all features which are available in the
first place. Since this method is used again in Chapter 7 more explorative results are
provided at this point.

The methods used in Chapter 7 and 8 are both using the same underlying classifi-
cation algorithm, the multinomial logistic classifier. Whereas the preselection method
(Chapter 7) is an iterative method which sequentially solves multiple optimization
problems, the approach with penalization is more a one step method and therefore
this step is more complex.



1 Linear Regression and Generalized
Linear Model

This chapter provides a brief introduction to the field of statistical modeling, nowadays
also often referred to as statistical learning. The later wording points out the usage
of statistical modeling in the upcoming field of machine learning. The main idea of
the subject and some consistent notation for this master thesis are also derived in the
following sections.

Starting with a short overview of the classical linear regression model, the exten-
sion required for modeling of binary, counting or categorical data, as in McCullagh
and Nelder (1989), is discussed in detail.

Due to the fact that multinomial logistic models with some variations, is the theoret-
ical foundation of this master thesis and used in many different situations as primary
model type, the explicit discussion on this topic, along with the implementation in the
free statistic software R (c.p. R Development Core Team, 2008), is done at Chapter 2.

At the beginning of every modeling process there is a quantity of interest also called
response, target variable or dependent variable. Most of the time this quantity is
measured under different circumstances, therefore additional information is available.
This additional information is called covariates, predictor variables or specially in clas-
sification problems referred to as features.

Assuming that the observed response is a realization of an underlying random variable
the claim of statistical modeling is the usage of the additional information to describe
the distribution of the response.

Remark 1.1. (Notation)
The notation in this master thesis should follow in general the well-known concepts
in statistical literature. The difference between a random variable or the realization
should be clear from the context but in almost all cases x describes a vector, X a
matrix, where x represents in general a scalar value.

9
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Assuming the realizations of a random variable y form the vector y = (y1, . . . , yn)t,
in the following also called response vector if y is describing our quantity of interest.
For each observation yi, i = 1, . . . , n, the values of the covariates are provided as
row vectors xi := (xi1, . . . , xip)

t and by stacking them row wise together the so called
design matrix X with the form X = (x1, . . . ,xn)t is defined. For the modeling process
let x = (x1, . . . , xp)

t be the general representative of the covariates.

Using an additive error ε the resulting general regression model equation is

y = f(x) + ε, (1.1)

where f : Rp → R is a function connecting the additional information (covariates)
to the response. Due to the generality of the function f there is no practical usage
possible without further assumptions on the structure. A special assumption will be
discussed in Section 1.1.

In regression analysis there are two major concepts when the assumption on the con-
necting function f is discussed.

The first and also the traditional one uses a quite strong structural assumption like
linearity and introduces only a few parameters for the shape of the function. This
concept makes resulting models easier to comprehend and they require less data than
other approaches. One disadvantage coming with the structural restrictions is related
to the lack of capturing very complex problems which cannot be reflected by this type
of model.

The other concept is known as non-parametric regression and tries to approximate
the function f in a more technical way, i.e. using B-splines or other polynomial ap-
proaches. The advantage is that for more complex problems only the number of
parameters increases. The drawback when using this non-parametric approach comes
from the fitting procedure. In general, there is more data required to estimate the
larger number of parameters in a more or less robust way.

Another point of view in statistical modeling is to use conditions directly connected
to the distribution of y. They can be stated by fixing a family of distribution func-
tions and an additional assumption on the dependence between the covariates and the
parameters of the distribution. For this type of modeling the according model can be
written as

y ∼ Fy(g(x)). (1.2)

Here again the function g : Rp → Rq is not specified further and therefore not of
practical use without additional structural assumptions.
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One assumption for all models discussed in the following is the independence of the
responses yi, i = 1, . . . , n.

1.1 Classical Linear Regression Model

The classical linear regression model occurs if Equation (1.1) is used with two addi-
tional assumptions:

� The deterministic function f : Rp → R is linear in the parameter vector.

� The random term is Gaussian distributed with mean zero, i.e. ε ∼ N (0, σ2).

With the first assumption Equation (1.1) can be written as

y = f(x) + ε = β1x1 + · · ·+ βpxp + ε = xtβ + ε, (1.3)

where β = (β1, . . . , βp)
t ∈ Rp is the p-dimensional parameter vector. The second as-

sumption adds an additional parameter σ2 to the model, which usually needs to be
estimated because it is unknown.

A quite common practice is the usage of an intercept as an additional parameter,
which is a special case of a covariate. It occurs when the covariate vector is extended
by 1 in the first entry and therefore the model equation results in

y = (1, x1, . . . , xp)(β0, β1, . . . , βp)
t + ε = β0 + β1x1 + · · ·+ βpxp + ε. (1.4)

The zero-indexing for the new parameter vector is used to clarify that there are p
different quantities used as additional, or linked information but there are p + 1 pa-
rameters to be estimated in this model and also the parameter σ2.

The usage of an intercept is important in many practical situations but also has the
advantage of allowing to model the response without additional information. In this
case the intercept β0 is equal to the mean ȳ of the response vector y.

This methodology allows to compare models with or without additional information
and therefore the usage of an intercept will be obligatory in the following if not ex-
plicitly stated otherwise.

By using model (1.2) the classical linear model can also be expressed as

y ∼ N (θ) with θ = (µ, σ2) = (g1(x), g2(x)), (1.5)

where in this case g1(x) := β0 + β1x1 + · · ·+ βpxp and g2(x) := σ2.
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Remark 1.2.
Notice that the two different definitions of the regression model are not contradicting
each other. This can be seen in quite a lot of theoretical concepts mentioning statistical
modeling or also machine learning.

For statistical inference a random sample of n observations for the response is assumed
in the following. Then under the assumption of the classical linear model above the
sample can be written as follows:

yi
ind.∼ N (β0 + β1xi1 + · · ·+ βpxip, σ

2) i = 1, . . . , n.

Two aspects of the linear regression analysis linked to the parameter vector β are of
further interest and therefore discussed in the following sections.

� Estimating the general values of the parameter vector β = (β0, β1, . . . , βp)
t.

� Testing the significance for a group of covariates can equivalently be formulated
by testing if the according parameter is zero or not.

1.1.1 Parameter Estimation

For the estimation of the parameter vector β there are two different optimization
problems commonly used, but both result in the same estimator.

� The least squares estimator is motivated by minimizing the distance of the ob-
served response to its mean. This idea can be formulated as minimizing a specified
loss function, i.e. the mean-squared-error loss functions.

� The maximum likelihood estimator (MLE) maximizes the likelihood function for
given observations with respect to the model assumptions.

Both methods start with a sample of the response y = (y1, . . . , yn)t and the according
covariates provided in form of the design matrix X.

Given an estimator β̂ = (β̂0, . . . , β̂p)
t for the parameter vector β = (β0, . . . , βp)

t ∈ Rp+1

the estimated mean µ̂ = (µ̂1, . . . , µ̂n)t of the response arise by µ̂ = Xβ̂.

The question answered in the following sections is how to estimate the parameter
vector β in a reasonable way.

The Least Squares Estimator

The least square estimator minimizes the Euclidean distance between y and µ, which
is described by using the mean-squared-error loss function V : Rn × Rn → R defined
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as

V (y,µ) := ||y − µ||2 =
n∑
i=1

(yi − µi)2.

Plugging µ = Xβ in the loss function results in

V (y,µ) = ||y −Xβ||2 = (y −Xβ)t(y −Xβ) = yty − 2βtXty + βtXtXβ,

where with some basic calculus the first derivative (gradient) has the form

∇V (y,µ) = −2Xty + 2XtXβ.

Equating it to zero and assuming that XtX is invertible the least squares estimator
for the parameter vector β is given by

β̂ = (XtX)−1Xy.

For completeness the Hessian matrix is given by 2XtX, which is by definition (as
quadratic form) positive semidefinite and since it is already assumed that XtX is
invertible, it is indeed positive definite and β̂ is minimizing the mean-squared-error
loss function.

The Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) is based on the likelihood function, or
equivalently the log-likelihood function, and maximizes it w.r.t. the parameter vector
(β, σ2). The independence assumption, as stated in the beginning of the chapter,
allows to set the variance-covariance matrix of the multivariate normal distribution
of y to σ2In where In is the n-dimensional identity matrix. Therefore, the likelihood
function of y can be written as

L(β, σ2|y) =
1√

(2πσ2)n
· exp

(
− 1

2σ2
(y − µ)t(y − µ)

)
=

1√
(2πσ2)n

· exp
(
− 1

2σ2
V (y,µ)

)
. (1.6)

By applying the logarithm to Equation (1.6) it can be observed that the log-likelihood
function can be optimized in the parameter β and σ2 independently, which is called
optimizing the profil-log-likelihood.

l(β, σ2|y) = log(L(β, σ2|y)) = −n
2

log(2πσ2)− 1

2σ2
V (y,µ). (1.7)

Therefore the least squares estimator and the maximum likelihood estimator coincide
for the classical linear regression model.
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For completeness the MLE for the variance σ2 is derived as

∂l(β̂, σ2|y)

∂σ2
= − n2π

4πσ2
+

1

2σ4
V (y, µ̂) =

1

2σ2

(
V (y, µ̂)

σ2
− n

)
!

= 0

⇒ σ̂2 =
1

n
V (y, µ̂) =

1

n

n∑
i=1

(yi − µ̂i)2 =
1

n

n∑
i=1

(yi − xtiβ̂)2.

1.1.2 The Analysis of Variance (ANOVA)

One major advantage of the normality assumption and the structure of a linear regres-
sion model is the possibility of explicitly receiving distributions for the test statistics,
testing the hypothesis that parameters are equal to zero.

The most general test which can be formulated in this context is known as the F-test
and is embedded in the methodology of the analysis of variance. Since this concept is
well known only a short summary of the theory required for the F-test is provided in
the following.

Assume a linear regression model with y = Xβ + ε = (X1,X2)(β1,β2)t + ε, where

β1 = (β0, . . . , βq)
t and β2 = (βq+1, . . . , βp)

t. Then X1 ∈ Rn×(q+1) and X
n×(p−q)
2 are the

corresponding design matrices. Notice that the intercept for this model is implicitly
given as a column in a design matrix which only contains ones.

The hypothesis to test has the form

H0 : β2 = 0 vs HA : β2 6= 0. (1.8)

The choice which covariates are contained in X1 and which in X2 depends on the
hypothesis to test but can be chosen in generally without restrictions since p and q
itself are not further restricted. Therefore a group of covariates or only a specific one
can be tested with this formulation.

Also notice that the formulation βj = 0 for a parameter j is equivalent to the statement
that the covariate j has no influence on the mean of the response.

Theorem 1.1. (F-Test)
With the notation from above the following holds:

F =
(||y −X1β1||2 − ||y −Xβ||2)/(p− q)

||y −Xβ||2/(n− p)
∼ Fp−q,n−p,

where F is the F-distribution. The null hypothesis (Equation (1.8)) is rejected on level
α if F > Fp−q,n−p;1−α.
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For a detailed discussion on the theory of the F-test or the analysis of variance in
general consult Casella and Berger (2002).

1.2 Generalized Linear Regression Model

As shown in Section 1.1 and according to McCullagh and Nelder (1989) the classical
linear regression model for a sample can be expressed by the following parts:

1. The random component: y = (y1, . . . , yn)t has an independent Normal distribu-
tion with constant variance σ2 and E[y] = µ.

2. The systematic component: p covariates x1,x2, . . . ,xn with xi = (1, xi1, xi2, . . . , xip),
i = 1, . . . , n, produce a linear predictor ηi given by ηi =

∑p
j=0 βjxij.

3. The link function between the random and the systematic component: g(µi) =
ηi, i = 1, . . . , n, where g : R→ R is the identity function.

Now generalized linear models allow two extensions:

� The distribution of the random component is allowed to be a member of the
linear exponential family.

� The link function can be chosen as any monotonic twice differentiable function.

For this extension and the definition of the generalized linear model the following two
sections discuss the different aspects separately. Afterwards the parameter estimation
is shortly mentioned, and a similar concept like the F-test is also provided.

1.2.1 Likelihood Function

At the first look the definition of the linear exponential family seems like a very specific
and rather technical description of a probability density function (pdf) or a probability
mass function (pmf). But some of the most important members of this class are the
Normal, Poisson, Binomial, Gamma and Inverse Gaussion distributions, which cover
a huge range of distributions widely used in the statistical context.

Definition 1.1. (Linear Exponential Family)
Assume a random variable y which pdf (or pmf) can be written as

f(y|θ, φ) = exp

(
yθ − b(θ)

aφ
+ c(y, φ)

)
,

where b and c are known functions and a is a known weight for the dispersion parameter
φ. Then y has a distribution being a member of the linear exponential family (LEF).
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According to McCullagh and Nelder (1989) the mean and variance of y can be derived
by using the well-known properties

E[
∂l

∂θ
] = 0 (1.9)

E[
∂2l

∂θ2
] + E[

∂l

∂θ
]2 = 0, (1.10)

where l = log f(y|θ, φ) is the log-likelihood function. Therefore, the mean and variance
of a random variable with distribution from the LEF is given as

E[y] = b′(θ) (1.11)

V ar[y] = aφb′′(θ). (1.12)

Equation (1.11) provides also a good candidate for the link function. Hence the spec-
ified link for which it is assumed that θ = xtβ is called canonical link.

1.2.2 Link Functions

The link function connects the systematic component with the random part. There-
fore, this function allows to connect the linear combination of the covariates with
the parameter for the response. This makes it possible to link real valued covariates
with the success probability of a binomial distribution. To illustrate this the following
example of the standardized binomial distribution is provided.

Example 1.1.
For the following calculation it is assumed that m is known and my ∼ Binom(m,π).
Thus the random variable y takes values in 0, 1

m
, 2
m
, . . . , 1 and we model a relative

frequency and not the absolute frequency (0, 1, 2, . . . ,m). Then the logarithm of the
pmf for the standardized binomial distribution has the representation

log(f(y|m,π)) = log

(
m

my

)
+my log(π) + (m−my) log(1− π)

=
y(log(π)− log(1− π))− log( 1

1−π )

m−1
+ c(y, φ)

=
y log

(
π

1−π

)
− log( 1

1−π )

m−1
+ c(y, φ).

By defining

θ = log

(
π

1− π

)
⇔ π =

eθ

1 + eθ
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and recognizing that the dispersion parameter φ is equal one, the final form of the
logarithm of the pmf is given by

log(f(y|m, θ)) =
yθ − log(1 + eθ)

m−1
+ log

(
m

my

)
. (1.13)

Therefore a := m−1, b(θ) := log(1 + eθ) and c(y) := log
(
m
my

)
, hence the standardized

binomial distribution indeed belongs to the linear exponential family.

For the canonical link the first derivative of b(θ) connects the mean of y and the
systematic component θ in the following way:

µ = E[y] = b′(θ) =
eθ

1 + eθ

g(µ) = b′−1(µ) = log

(
µ

1− µ

)
= θ = η

⇒ µ =
eη

1 + eη
.

This link function is also called logit link and has a nice interpretation in term of log
odds and log odds ratio.

Example 1.1 shows that the link function projects from the real axis to the interval
[0, 1] which yield the connection between the covariates and the response. Because the
technical assumptions on the link function are quite flexible, many possible functions
could serve for a given distribution.

But in practice only a few functions with nice statistical properties like the canon-
ical link or very intuitive explanation like the probit model for the binomial case are
used more frequently.

More details on this topic as well as the properties of the canonical link can be found
in McCullagh and Nelder (1989).

1.2.3 Parameter Estimation

After defining a model in terms of the distribution and the link function, the next step
in statistical modeling is usually the estimation of the parameters. For the class of
generalized linear models, the optimization according to the least squares loss func-
tion is not possible in general and hence no analytic solution can be provided for all
members of this family of models.

Due to the fact that the definition of generalized linear models relies on the assumption
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of the pdf (or pmf if the scale is discrete) the maximum likelihood estimation is always
a valid procedure. In this case the likelihood can be maximized at least numerically.

Because this work does not provide new insights for the well documented numer-
ical optimization on the likelihood it should be only mentioned that the iterative
weighted least squares algorithm, which is based on the Newton method for numerical
optimization, is used in most cases.

1.2.4 The Analysis of Deviance

For the classical linear regression model there is a way to test individual covariates
via the F-test statistic (c.p. Theorem 1.1). These results derive from the assumption
of a normally distributed error term and do not longer hold for the generalized linear
model framework.

Therefore, and due to a lack of exact theory only approximative results can be con-
sidered. In the following some results should provide an intuitive introduction to the
deviance, but for a detailed discussion on the theory Shao (1998) should be consulted.

Definition 1.2. (Likelihood Ratio Test, see Casella and Berger, 2002)
Assume a sample y with size n, then the likelihood ratio test statistic for the hypotheses

H0 : θ ∈ Θ0 vs HA : θ ∈ Θc
0

is defined as

λn(y) =

sup
θ∈Θ0

L(θ|y)

sup
θ∈Θ

L(θ|y)
.

A likelihood ratio test (LRT) is any test that has a rejection region of the form {y :
λn(y) ≤ c}, where c is any number satisfying 0 ≤ c ≤ 1.

Notice that the likelihood ratio test only requires that the likelihood function exists
and additionally the specification of c. For all members of the LEF the existence of a
likelihood function is ensured by definition.

To provide a reasonable choice of c the asymptotic distribution of −2 log(λn(y)) is
studied in the following theorem.
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Theorem 1.2. (Asymptotic distribution of the LRT statistic, see Shao, 1998)
Assume that Θ0 is determined by

H0 : µ = g−1(xtβ) vs HA : not H0,

where β is a p-vector of unknown parameters and g−1 is the continuously twice differ-
entiable inverse link function mapping from R1 to R1. Under the null hypothesis and

some regularity conditions −2 log(λn)
d→ X 2

n−p.

Remark 1.3.
The LRT with rejection region λn ≤ exp

(
− X

2
n−p;1−α

2

)
has asymptotic significance level

α, where X 2
n−p;1−α is the (1 − α)th quantile of the chi-square distribution with n − p

degrees of freedom.

One important aspect of using this approximation is that the Theorem 1.2 says nothing
about the convergence speed. For example, in some simulation studies it is shown that
for a binomial setting with success probability close to zero or one the convergence to
the chi-square distribution is indeed very pure.

The Deviance

For introducing the deviance, the following hypothesis is stated

H0 : µ = g−1(xtβ) vs HA : µ without restriction. (1.14)

Notice that this hypothesis is checking whether the specification or parameterization
of the mean under the defined model is right or not. Here the correctness of the link
as the set of covariates are tested simultaneously.

For the alternative hypothesis no structure is assumed and therefore the means are
estimated by the observed response values. This is called the saturated model and can
also occur when the number of parameters defined in the model equals the number of
observations.

The deviance is now the resulting likelihood ratio test statistic for the hypothesis
above and defined in the following way.
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Definition 1.3. (Deviance, see McCullagh and Nelder, 1989)
The likelihood ratio test statistic for hypothesis (1.14) can be written as

λn(y) =

sup
µ∈H0

L(µ|y)

sup
µ∈Rn

L(µ|y)
=
L(µ̂|y)

L(y|y)
=
L(g−1(xtβ̂)|y)

L(y|y)
.

Here β̂ is the maximum likelihood estimator for β under the defined model. The choice
µ̂i = yi, i = 1, . . . , n, is the saturated model and maximizes the likelihood under no
constraints.

Then the scaled deviance is defined as

−2 log(λn(y)) = −2 log

(
L(µ̂|y)

L(y|y)

)
= −2(l(µ̂|y)− l(y|y)) =:

1

φ
D(y, µ̂).

Since generalized linear models are defined by an explicit form of the pdf or pmf the
deviance can be expressed in a more precise way as the following corollary shows.

Corollary 1.3. (Deviance of the LEF)
The scaled deviance defined in Definition 1.3 can be written in the following way:

1

φ
D(y, µ̂) = −2

φ

n∑
i=1

yi(θ(µ̂i)− θ(yi))− (b(θ(µ̂i))− b(θ(yi)))
ai

=
1

φ

n∑
i=1

di.

Proof.
Since for all generalized linear models the log-likelihood can be written as

l(θi, φ|yi) =
yiθi − b(θi)

aiφ
+ c(yi, φ)

and the assumption of independence along with the calculation below the statement
of the corollary holds.

1

φ
D(y, µ̂) = −2(l(µ̂|y)− l(y|y))

= −2
n∑
i=1

(
yiθ(µ̂i))− b(θ(µ̂i))

aiφ
+ c(yi, φ)− yiθ(yi)− b(θ(yi))

aiφ
− c(yi, φ)

)
= −2

φ

n∑
i=1

yi(θ(µ̂i)− θ(yi))− (b(θ(µ̂i))− b(θ(yi)))
ai

.
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The Analysis of Deviance for the Generalized Linear Model

According to McCullagh and Nelder (1989) there are some problems in the generaliza-
tion of the analysis of variance. The major one results from the fact that the singular
sum of squares is no longer an appropriate measure of the contribution of a term to
the total discrepancy, but they offer the following solution for this problem:

Given a sequence of nested models we can use the deviance as our generalized measure
of discrepancy and form an analysis-of-deviance table by taking the first differences.

As McCullagh and Nelder (1989) stated the analysis-of-deviance table should be re-
garded as a screening device for picking out obviously important terms, and no attempt
should be made to assign significance levels to the raw deviances.

Residuals for the Generalized Linear Model

For the linear regression we define raw residuals by ri := (yi − µ̂i), i = 1, . . . , n.
Therefore we can express the dependent variable in the form

yi = µ̂i + (yi − µ̂i) = µ̂i + ri.

Residuals can be used to explore the adequacy of the fit of a model with respect to
the goodness of fit or model assumptions and they may also indicate the presence of
anomalous values, which would require further investigation.

For generalized linear models an extended definition of residuals is required, which
should be applicable to all members of the LEF. McCullagh and Nelder (1989) pro-
vide several definitions of residuals which can be used. At this point only one choice
which is based on the deviance will be defined now.

Definition 1.4. (Deviance residual, see McCullagh and Nelder, 1989)
By Corollary 1.3 we already showed that the deviance can be written as

D(y, µ̂) =
n∑
i=1

di = 2
n∑
i=1

(b(θ(µ̂i))− b(θ(yi)))− yi(θ(µ̂i)− θ(yi))
ai

.

Then the deviance residuals are defined by

ri := sign(yi − µ̂i)
√
di i = 1, . . . , n.

This definition ensures that the sum of squares adds up to the deviance.
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The data analyzed in this work has quiet a special shape. On one hand there are
response variables like the geographical origin or the variety of the grapes, which have
different and non-comparable categories. On the other hand, the data from the chem-
ical analysis can be considered to have positive values.

Therefore, a modeling approach is needed, which allows to connect continuous co-
variates with categorical responses and a natural choice is given by the multinomial
logistic model. In the next sections an overview of the multinomial distribution it-
self and its relationship to the generalized linear model framework will be presented.
Afterwards the implementation in R is shortly discussed.

2.1 Multinomial Distribution

Assume that the categorical response allows for K different categories, and the aim
is to model the probabilities p1, . . . , pK which belong to the individual categories or
classes.

Definition 2.1. (Multinomial Distribution)
Assume a population with K different classes. By sampling m elements (with replace-
ment) from the population the pmf of the random vector y = (y1, . . . , yK)t, where yk
counts the number of elements from class k, k = 1, . . . , K, is

f(y|p) =

(
m

y1, . . . , yK

) K∏
k=1

pykk =
m!

y1! · · · · · yK !
py11 · · · · · p

yK
K

for yk ∈ N0 and
∑K

k=1 yk = m, where p = (p1, . . . , pK)t is the parameter vector

consisting of the individual class probabilities with p ∈ [0, 1]K and
∑K

k=1 pk = 1.

One assumption which has to be made is to regard m known. This is required for
technical reasons and does not seem to be a very restrictive assumption since it only
says the number of observations is known.
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Remark 2.1.
Notice that the multinomial distribution with K = 2 is just the binomial distribution
and hence the multinomial distribution can also be motivated as generalization of the
binomial distribution for more than two possible classes.

In the following the log-likelihood of a sample, with independent observations from a
multinomial distribution with K different classes will be discussed. We begin with the
situation where each observation i, i = 1, . . . , n, is allowed to have its own probability
vector pi = (pi1, . . . , piK)t.

For clearness the following notation is used:

yik The number of elements in class k of the observation i.

n Total number of multinomial vectors.

ni Number of elements in observation i.

P The matrix combining all probability vectors, i.e. P = (p1, . . . ,pn)t.

Since the multinomial coefficients for each observation do not depend on the parame-
ters, the relevant part of the log-likelihood function is

l(P|Y)
ind.
=

n∑
i=1

l(pi|yi) =
n∑
i=1

K∑
k=1

yik log(pik) with
K∑
k=1

pik = 1. (2.1)

If the log-likelihood should be optimized w.r.t. the parameters, the Lagrange method
is used resulting in solving the following equation system:

∂

∂pik

(
l(P|Y)−

n∑
i=1

λi

( K∑
k=1

pik − 1

))
=
yik
pik
− λi

!
= 0, (2.2)

∂

∂λi

(
l(P|Y)−

n∑
i=1

λi

( K∑
k=1

pik − 1

))
=

K∑
k=1

pik − 1
!

= 0. (2.3)

The first system of equations provides p̂ik = yik/λ̂i and the quantity λ̂i can be calcu-
lated by using Equation (2.3):

1 =
K∑
k=1

p̂ik =
K∑
k=1

yik

λ̂i
⇒ λ̂i =

K∑
k=1

yik.

Summarizing everything the maximum likelihood estimator for the individual class
probability is given by

p̂ik =
yik∑K
k=1 yik

i = 1, . . . , n.

The remaining task for the modeling is the determination of the link function, this is
shown in the following section.
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2.2 Multinomial Response Models

Seeing the multinomial response model again as a generalization of the binomial model
a natural extension of the well-known logit link can be made and is discussed in the
following.

Therefore, the binomial setting (c.p. Example 1.1) is assumed and one of the available
classes is chosen as reference class with according class probability qi. This implicates
that the effect of several covariates on the class probability for the other class pi is of
interest since qi can, in the binomial case, be expressed as 1− pi.

Now the logit function is modeling the probability for the non-reference class pi in
relation to the probability of the reference class qi for each observation by

logit(pi) = log
pi

1− pi
=
pi
qi
.

Hence for the multinomial case, after specifying the reference class as the first one,
each class probability can be modeled as

log
pik
pi1

k = 2, . . . , K.

With this link function the multinomial response model can be determined by

log
pik
pi1

= xtiβk = ηik.

This choice allows also the comparison between two classes in one observation by the
equation

log
pik
pij

= log
pikpi1
pijpi1

= log
pik
pi1
− log

pij
pi1

= ηik − ηij = xtiβk − xtiβj = xti(βk − βj).

(2.4)

As Equation (2.4) shows the parameter vector βk, k = 2, . . . , K, is class dependent.
This means that for each class in the multinomial response model, except for the ref-
erence class, there needs to be a separate parameter vector βk describing the influence
of an explanatory variable on the odds pik/pi1.

For a more detailed discussion on this topic and also a detailed explanation of the
so called Poisson trick, where the parameter of a multinomial response model is esti-
mated by loglinear models, consult McCullagh and Nelder (1989).
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Another link which is mostly used in the context of neural networks uses the softmax
function for connecting the systematic and random part of the multinomial model.
In this case the probabilities are directly modeled via the exponential function and
standardized to ensure that

∑K
k=1 pik = 1 holds for i = 1, . . . , n.

This means that the softmax link can be written as

softmax(pi) =

(
exp(xtiβ1)∑K
k=1 exp(xtiβk)

, . . . ,
exp(xtiβK)∑K
k=1 exp(xtiβk)

)
. (2.5)

As it can be seen from (2.5) the softmax link requires one more parameter vector since
the first class also gets an own parameter vector. But by using the softmax function
the restriction of

K∑
k=1

pik = 1, i = 1, . . . , n,

is fulfilled by construction so it does not really allow more flexibility for the model at all.

Due to the fact that for the multinomial logistic model the logit model is implemented
and far more often used, the parametrization with the softmax link is only mentioned
to show that there are further options for specifying a multinomial model.

2.3 Multinomial Logistic Model in R

For the application of the multinomial logistic model there are several packages avail-
able in R. In this work the package nnet with the function multinom is used since,
the parameters for the model are directly estimated via numerical optimization of the
maximum likelihood function and not by the Poisson trick.

The package nnet was implemented by Venables and Ripley (2002) and is well in-
tegrated into the statistical modeling framework of R. For example, a fitted model can
predict the response class of a new covariate by using the common predict function
in R.

For completeness the main parts and features of the function are described in the
following.

The function call is

multinom(formula, data, weights, subset, na.action, contrasts = NULL,

Hess = FALSE, summ = 0, censored = FALSE, ...)
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The detailed documentation for the function along with some examples to show the
functionality can be found by typing help("multinom") into the R-console.

A short overview of the input parameter is provided in Table 1.

Variable Explanation

formula

A formula expression as for regression models, of the form
response ∼ predictors. The response should be a factor
or a matrix with K columns, which will be interpreted as
counts for each of K classes.

data
Optional data frame in which to find the variables occurring
in formula.

weights Optional observation weights in fitting.

subset
Expression saying which subset of the rows of the data should
be used in the fit. All observations are included by default.

na.action A function to filter missing data.

contrasts
A list of contrasts to be used for some or all of the factors
appearing as variables in the model formula.

Hess
Logical for whether the Hessian (the observed/expected infor-
mation matrix) should be returned.

summ

Integer; if non-zero summarize by deleting duplicated rows
and adjust weights. Methods 1 and 2 differ in speed (2 uses
C); method 3 also combines rows with the same X and different
Y, which changes the baseline for the deviance.

censored

If Y is a matrix with K columns, interpret the entries as one
for possible classes, zero for impossible classes, rather than as
counts.

. . . additional arguments for nnet

Table 1: Input arguments for the multinom function.



28 2 Multinomial Logistic Model

2.4 Multinomial Logistic Model for Classification

The main idea of this master thesis is to use the multinomial logistic model as clas-
sification algorithm. Therefore, the general concept of classification along with the
definition of a classifier is provided in the following.

Remark 2.2.
In common literature for classification problems the space of the covariates, i.e. Rp, is
often called feature space and single covariates itself named features. Therefore, some
mixture of the wording will be used in the following chapters. Also, the response is often
called label since it takes values in a discrete set K which could contain characters
like names or numerical values.

Definition 2.2. (Classifier, see Hastie, Tibshirani, and Friedman, 2009)
Let X ⊆ Rp be a feature space and K a set of possible classes. Then every well-defined
function c : X → K is called classifier. That is why each classifier has a corresponding
partition of the feature space according to the predicted classes.

After defining the general concept of a classifier and the general theory of the multino-
mial logistic model (c.p. Section 2.2), the multinomial logistic classifier can be formally
defined in the following way.

Definition 2.3. (ML-Classifier)
Assume a sample with pairs (yi,xi) ∈ K × Rp, i = 1, . . . , n, and furthermore let
p1(xi), . . . , pK(xi) be the individual class probabilities model by a multinomial logistic
model with covariates xi ∈ Rp. Then the multinomial logistic classifier c : Rp → K is
defined by

c(xi) := argmax
k=1,...,K

pk(xi).

If the class probabilities are estimated by p̂1(xi), . . . , p̂K(xi), then the estimated (trained)
classifier is given as

ĉ(xi) = argmax
k=1,...,K

p̂k(xi).

As Definition 2.2 shows, the focus lies on the partitioning of the feature space into
subregions (not necessary subspaces). Therefore, a characterization of the different
classifiers according to this partition seems reasonable.

2.4.1 Linear Methods for Classification

Since every partition can be described by the boundaries between the individual sub-
regions Hastie, Tibshirani, and Friedman (2009) mentioned the categorization of the
classification algorithms, and the resulting classifier, according to the shape of the
decision boundaries.
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Definition 2.4. (Linear Classifier, see Hastie, Tibshirani, and Friedman, 2009)
Suppose there are K classes in a classification problem and a classifier c : Rp → K.
Then the decision boundary between class i and j is defined by

Bij := {x ∈ Rp : i = c(x) = j} = Bji.

The set of decision boundaries is then defined as B :=
⋃
i 6=j Bij. A classifier is called

linear classifier or linear method for classification, if and only if the decision boundaries
are a finite set of hyperplanes or affine sets.

Some linear classifiers are provided by using linear discriminant analysis (LDA), per-
forming threshold regression for classification or as Theorem 2.1 will show the ML -
classifier containing the simple case K = 2, the logistic regression, as well.

2.4.2 Multinomial Logistic Model as Linear Classifier

Theorem 2.1.
The multinomial logistic classifier as defined in Definition 2.3 is a linear classifier in
terms of Definition 2.4.

Proof.
Assume a general x ∈ Rp which defines the bound between two classes k1, k2 ∈ K.
Since x is on the decision bound it holds that

k1 = argmax
k=1,...,K

p̂k(x) = c(x) = argmax
k=1,...,K

p̂k(x) = k2.

Therefore p̂k1(x) = p̂k2(x) must hold for the assumed x. By using Equation (2.4)
without loss of generality the following holds:

xt(β̂k1 − β̂k2) = log

(
p̂k1(x)

p̂k2(x)

)
= log(1) = 0.

Using the last equation, the set of decision boundaries can be characterized in the
following way:

{x ∈ Rp : xt(β̂i − β̂j) = 0, i 6= j}.

With this the decision region can be described through hyperplanes and therefore the
multinomial logistic classifier is a linear classifier in the sense of Definition 2.4.





3 Feature Selection for Classification
Problems

Due to the use of high dimensional data in this work (≈ 2.000 features) and also a
very small sample size (≈ 100 measurements) this chapter explains the problems which
accompany this setting. Afterwards some ideas of feature selection with a possible cat-
egorization according to the different approaches is provided.

The topics covered in this chapter are based on the paper by Tang, Alelyani, and
Liu (2014) which provides an overview of the different methods of feature selection
also mentioning the different types of data.

3.1 Feature Selection and Feature Evaluation

In statistical modeling there are usually two questions considered:

1. Which covariates or features have significant influence on the response variable?

2. In which way do the significant covariates influence the distribution of the re-
sponse variable?

The first question is often called the problem of feature selection, whereas the second
one refers to parameter estimation and model interpretation. Due to the fact that
parameter estimation is essential for all kind of modeling topics, for most of the new
developed models this problem is usually solved first. Therefore at least a numerical
solution can be provided for more or less all types of models.

The topic of feature selection is a more complex one because a lot of different factors
like the model itself or the type of data affect it. For example, in big data problems
the elimination of redundant information is quite important but it needs to be handled
with care to differentiate between similar and redundant information.

Since a lot of optimization problems can only be solved numerically, a lot of esti-
mators do not have a closed form. Thus the development of adequate theory is very
difficult and hence restricted to the usage of approximation and heuristic results.

Especially in the high dimensional case, which will be discussed in the following, the
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topic of feature selection also faces the limitation of computational power to answer
questions in reasonable time.

Apart from the two questions considered above there are also two different types
of available data if the number of observations n and the number of available features
is concerned:

� Classical problem: p is much smaller than n,

� High dimensional case: p >> n.

In the classical setting (n >> p) a lot of theory is available since the setting allows
good estimation and testing for multivariate samples.

In the high dimensional case (p >> n) several problems occur. One of them refers
to the fact that most multivariate techniques for estimation and testing require much
more observations than available, because the underlying models need to fit more pa-
rameters than the number of observations allows. This results in a lack of exact theory
and again more heuristic approaches, which often include restrictions and cause bias
in application.

Another problem faces the required computational resources which usually increase
with the number of possible parameters and do not allow to check all possible com-
binations of features. For example, if 5 covariates are available and all models with
two explanatory variables are considered, estimated and compared only 10 different
models need to be calculated. Now if 10 covariates are available 45 models need to be
estimated and compared which shows that the computational time does not increase
linearly in the number of features. Thus, only restricted searches deliver the semi-
optimal model, which is the optimal model under restrictions.

The last problem to mention is given by the concept of overfitting. This means that
a model is maybe very complex in terms of the used parameters but also very good
w.r.t. the explanation of the observed data. But the intention of statistical learning
is to extract valid information from the observed data, and afterwards use this knowl-
edge to predict scenarios that are not observed like different experimental settings.
By using a very complex model the data gets reflected more or less by itself which
makes the idea of statistical learning obsolete. This problem, often described by the
out-of-sample prediction accuracy, is very difficult to detect because cross-validation
or out-of-sample studies are usually used. But both techniques reduce the number of
available observations in the model fitting step and therefore the ratio gets even worse.

In the following sections some strategies for feature selection, especially in the high
dimensional case, are discussed in a more theoretical way and categorization is pro-
vided.
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3.2 Feature Selection Algorithms

Before starting with the different types of feature selection algorithms some basic
considerations of the data are provided. Afterwards the three major feature selection
methods for the data used in the practical part are explained in more detail.

3.2.1 Data Types for Feature Selection

Since this work is dealing with classification problems in the practical part, this chap-
ter is restricted to feature selection for these kind of problems. Therefore it is assumed
that the response variable is taking values in a set K = {k1, . . . , kK} if not stated
otherwise. According to Tang, Alelyani, and Liu (2014) features can be divided into
the following three different categories.

For features of the first category, also called flat features, it is assumed that the
features are independent or at least the dependency is negligible. This will also be the
case for the features which are considered in the practical part of this work.

The second category consists of features which have a certain structure, e.g., spa-
tial or temporal smoothness or disjoint/overlapping groups, sometimes the structure
can also be described by certain trees or graphs. They are called structured features
and incorporating knowledge about the structures of features may significantly im-
prove the classification performance and help to identify the important features for
the classification problem. An example of tree structured features is given by the
image pixels of the face image which can be represented as a tree, where each parent
node contains a series of child nodes that enjoy spatial locality.

For the last one we relax the implicit assumption that all features are known in advance.
Therefore, we obtain a scenario where candidate features are sequentially presented
to the classifier for potential inclusion in the model. In this scenario, the candidate
features are generated dynamically, and the size of features is unknown. We call this
kind of features streaming features, and a famous example is the microblogging web-
site Twitter which produce more than 250 million tweets per day and many new words
(features) are generated such as abbreviations. When performing feature selection for
tweets, it is not practical to wait until all features have been generated, thus it could
be more preferable to consider streaming feature selection.

The examples above show that the right categorization of the available features is
important for the usage of appropriate feature selection algorithms. As mentioned
before the data from the experimental setting we are dealing with in the practical part
are considered to be flat features, therefore only feature selection algorithms dealing
with flat features are discussed further.
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3.2.2 General Framework of Feature Selection

Before getting into detail on the different feature selection methods, the general con-
cept of feature selection for classification problems will be described in a more abstract
way. This allows to divide the problem of feature selection into different subgroups
and develops further understanding of the underlying mechanisms.

Starting with a training set containing a sample of size n with q ’raw’ features the
first step is to generate the final features. This means that the raw features are trans-
formed, i.e. via standardization or transformation (PCA), into a set of p different
features which are specifically used in the feature selection and classification problem
in general.

An example for this generation of new features is the so-called kernel trick for support
vector machines. Here the idea is, at least theoretically, to map non-linear separable
data into a higher dimensional space where it is possible to find a hyperplane that
separates the data points. Since this is not a good idea for the small sample size set-
ting, we focus more on feature standardization or just avoid this step and work with
the original data instead.

After preparing the features they are combined with the label information, i.e. the
response vector, and the feature selection is performed. Since we discuss the feature
selection later in more detail at this point it should be noted that for the feature
selection it is also possible to interact with the learning algorithm (or classification
algorithm).

At the end of the feature selection a final collection of features is the result and via
the learning algorithm (i.e. fitting the parameters) we obtain a final model or more
precise classifier from the described algorithm.

Notice also that the described framework of feature selections is applicable to every
classifier (here called learning algorithm) and to every type of feature discussed before.

Tang, Alelyani, and Liu (2014) provide a general framework of feature selection for
classification problem which is visualized in Figure 1.
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Figure 1: A general framework of feature selection from Tang, Alelyani, and Liu (2014).

If we only consider algorithms for flat features now, they then can be categorized as

� Filter Models,

� Wrapper Models and

� Embedded Models.

The methodology of each of them will be discussed in the following and the application
along with the required theory will be provided in an individual chapter.

3.3 Filter Models

A quite simple method for filter selection is provided by filter models. Here each fea-
ture is evaluated by their relationship to the response and then a certain number of the
best, according to the relation with the response, features are used in the final classifier.

Therefore a filter model requires the following three ingredients to be specified:

� A measure ρ : Kn × Rn → [0,∞) for the relationship between a feature and the
response.

� An additional hyperparameter m ∈ N, which determines the number of features
in the final classifier.

� A classifier c : Rm → K, which only uses the best m features for training, i.e.
fitting the corresponding parameters.
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If the relationship measure evaluates the feature only by using itself and no other
features, then the filter model is called univariate and otherwise multivariate. Since
the multivariate scheme evaluates a bunch of features at a time it is capable to handle
redundant features.

One big advantage of the (univariate) filter models is provided by the simplicity and
the corresponding run time. This results from the fact that each feature needs to be
evaluated only once.

The drawback of filter models in general is the additional tuning parameter m which
needs to be chosen or estimated in a proper way. For example, methods like cross
validation or other methods which estimate the out-of-sample accuracy could be used
to optimize the tuning parameter, but this would require additional computational
resources.

On the other hand, if the in-sample classification accuracy is used to evaluate dif-
ferent values for m this could lead to overfitting, since with an increasing number of
parameters the in-sample classification accuracy will increase as well.

Because the choice of the tuning parameter is not that simple, Chapter 6 will only
focus on the behavior of different filters and visualize the results by using the principal
component analysis. A combination of filter and wrapper model will be introduced in
Chapter 7 and deals with the choice of the hyperparameter m.

3.4 Wrapper Models

If we use the interaction of the feature selection and the learning algorithm it is pos-
sible to repeatedly choose a set of features, train or fit the learning algorithm and
evaluate the resulting classifier until some kind of termination condition is fulfilled.
This method is called wrapper models and because this concept is quite general a
formal definition would be not adequate at this point.

Nevertheless, each wrapper model consists of the following parts:

� A feature search mechanism, which allows to choose a set of features in a reason-
able way.

� A feature evaluation criterion, which uses a classifier and evaluates the perfor-
mance of the same when the chosen features are used.

� A classifier, since this concept is not restricted to the usage of the final classifier
algorithm in the evaluation step. But it is very unusual to use a different classifier
for the feature selection and the learning algorithm.
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To provide some kind of definition the following Pseudo-Code reflects the mechanism
of a wrapper model, where the training set is a data matrix (design matrix) X ∈ Rn×p

and a classifier c : Rj → K, j ∈ {1, . . . , p}.

Algorithm 1: Feature Selection - Wrapper Model

1 while termination criteria is not fulfilled do
2 select features (i1, . . . , ij) where j ∈ {0, 1, . . . , p}
3 fit classifier ĉ← c(xi1 , . . . , xij)
4 evaluate classifier ĉ

Before taking a closer look at a special type of feature search method, there are two
aspects of wrapper models which should be mentioned here.

The first one is given by the required computational power, because for every set the
feature search method chooses, the parameter for the corresponding classifier needs to
be fitted and afterwards the results need to be evaluated. Due to the fact that fitting
the parameter for the classifier is in most cases done by numerical optimization for
complex classifier and a higher number of features this type of feature selection has a
long run time.

The second aspect is the problem of overfitting, because when the same classifier
is used for feature selection and for the final model this could induce overfitting if
the performance measure is not taking care of the model complexity or overfitting in
general.

Figure 2: A general framework of wrapper models from Tang, Alelyani, and Liu (2014).
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Before methods for the searching of features are discussed we take a closer look at the
concepts of feature evaluation, because the feature search methods considered in this
work are based on feature evaluation methods.

3.4.1 Information Based Feature Evaluation

A reasonable feature evaluation has to compare the goodness of fit of a model and the
model complexity. While it is obvious that the goodness of fit should be as high as
possible, the model complexity should be as low as reasonable. This comes from the
fact that we assume for a very complex model, i.e. representing the data by itself, that
the generalization error is much larger than for a simpler model. The generalization
error is defined as the chance that a new sample x ∈ Rm is classified wrong.

An established way to handle this interplay between model complexity and goodness of
fit is provided by information criteria. Here there is a term measuring the goodness of
fit and a term penalizing the model complexity. This setup allows to compare different
models, i.e. with different complexity, when the classifier is in general of the same type,
i.e. a multinomial logistic classifier. If we now identify the models with the contained
features we can compare a set of features according to the performance of the classifier.

For the following information criteria the goodness of fit is always measured by the
value of the log likelihood function at the maximum likelihood estimator, i.e. l(β̂|y,X).
This allows comparing the multinomial logistic classifier based on the underlying multi-
nomial distribution. Therefore, we are not comparing the predicted classes of the
classifier but the underlying probability that a sample is in the corresponding class.
For samples close to the decision boundary this allows us to compare them with more
nuances, i.e. we have rather a ’continuous’ comparison than an ’discrete’ one.

In the following it is assumed that there is a likelihood function L(β|y,X), depending
on the parameter vector for the covariates β ∈ Rp.

Definition 3.1. (Akaike Information Criteria)
The information criteria introduced by Akaike is defined as

AIC(β̂) = −2 log L(β̂|y,X) + 2p,

where β̂ is the maximum likelihood estimator. Notice that p is the total number of
parameters which are estimated so if l − 1 covariates are available and a intercept is
used along with a parameter for the volatility (σ2 in the classical regression model) then
p is replaced by l + 1. This information criteria is based on estimating the difference
between the ’true’ probability and the probability estimated with the model using the
parameter β̂ using the Kullback-Leibler-divergence.
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Definition 3.2. (Akaike Information Criteria Corrected)
In practice it can be observed that for small sample size problems the AIC tend to
overfit, therefore a corrected version of it is introduced by

AICc(β̂) = −2 log L(β̂|y,X) + 2p + 2
(p+ 1)(p+ 2)

n− p
,

where again β̂ is the maximum likelihood estimator.

Remark 3.1.
Notice that by

AICc(β̂) = AIC(β̂) + 2
(p+ 1)(p+ 2)

n− p
,

for n → 0 the additional penalization term vanishes and both criteria asymptotically
coincide.

Another approach which takes care of the sample size is the Bayesian information
criteria.

Definition 3.3. (Bayesian Information Criteria)
The Bayesian information criteria is introduced as follows:

BIC(β̂) = −2 log L(β̂|y,X) + log(n)p,

where β̂ is the maximum likelihood estimator.

Remark 3.2.
Notice that for n = e2 ≈ 7.389 both criteria coincide and for sample sizes larger or
equal 8 the penalization term in the Bayesian information criteria is greater. There-
fore, in the case of n ≥ 8 the Bayesian information criteria favors sparser models
compared to the Akaike information criteria.

After defining some criteria for the feature evaluation, the next subsection deals with
the feature search.

3.4.2 Feature Search

Choosing and comparing all combinations of available features is not a practicable
method for most data situations because the number of model growths exponentially
with the number of features and the size of the model. Therefore, two approaches
for the feature search, the forward and the backward selection, are discussed in the
following. Both are restricted to a certain search path which is the reason why only
semi optimal models are possible.
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Forward selection starts by including one feature into the model, which can be done
by educated guess or by taking the feature which minimizes the information criteria
when all features are used individually.

Afterwards all remaining features are included in the model, again individually, and
therefore the feature which minimizes the information criteria over this set of models
is included in the model.

This procedure is repeated until an inclusion does not reduce the information cri-
teria, then the algorithm stops, and the current model is selected.

Backward elimination goes the other way round. Instead of starting with the smallest
model possible, the backward elimination uses as much information as possible.

Each feature is dropped out and the according information criteria is calculated. If
there are one or more features which decrease the information criteria by leaving them
out of the model, the feature which decrease the information criteria most by leaving
it out is finally dropped.

If the information criteria does not decrease at all, the algorithm stops and the re-
maining features build up the final model.

Comparison of Different Strategies

While the forward selection method may miss good models because at some point
during the search no improvement can be observed, the backward elimination favors
too complex models.

This fact should be kept in mind when considering these strategies. When the number
of features is in a practicable range both methods can be applied, and the resulting
models can be compared based on the information criteria used in the search steps.

Remark 3.3.
In the case of p > n a backward selection is not possible since the model with the maxi-
mal amount of information would include more parameter then available observations.
Therefore, it is not possible to estimate the parameter and evaluate the information
criteria so in the case of p > n and as a consequence in the high dimensional case
(p >> n) only a forward selection is practicable.
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3.5 Embedded Models

While the wrapper models have an iterative structure consisting of a searching step
(select features) and an optimization step (fit the classifier), the embedded models
combines both steps to optimize and select appropriate features simulations in one
step.

The main idea of these models is to modify the optimization problem to embed the
feature selection. Due to the fact that this is in general a one-step method, i.e. we only
need to solve one optimization problem. The embedded models have the advantage
that their required computational power is in general lower than for wrapper models.

For completeness the method described above is called regularization method and
is only one of several approaches which are named embedded models but since this
work focuses on the regularization methods we will not distinguish between the em-
bedded models and this special type of embedded models.

Before we can introduce a formal definition of regularization methods there is one
aspect of the multinomial logistic classifier worth to mention at this point. Up to now
we always assumed that p is the number of parameter and the number of features, we
implicitly assumed a 1-1 relation between these two quantities. But for the multino-
mial logistic classifier this relation does no longer hold.

For a design matrix X ∈ Rn×p the parameter vector for the multinomial logistic model
with K classes is given by β = (βt2, . . . ,β

t
K)t, where βk = (β0k, . . . , βpk)

t (c.p. Chap-
ter 2). Therefore the complexity for the multinomial logistic classifier fitted on data
X ∈ Rn×p is q := (K − 1) · p, and we will use this notation in the following section.

Definition 3.4. (Regularization Methods, see Tang, Alelyani, and Liu, 2014)
Consider a linear classifier only depending on the parameter β ∈ Rq, and a design ma-
trix X ∈ Rn×p containing all available features. Furthermore let V : Rn×Rq×Rn×p →
R be a loss function depending on the response vector y, the parameter vector β and
the design matrix X. Then the regularization method is provided by the optimization
problem

β̂ = argmin
β ∈ Rq

V (y,β,X) + α× penalty(β), (3.1)

where α ∈ [0,∞) is called the regularization parameter for the penalization function
denoted by penalty : Rq → [0,∞].

Remark 3.4.
Note that the usage of a loss function at Definition 3.4 coincides with the definition
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used for the description of the least squares estimator in Chapter 1. If we fix the design
matrix the loss function only depends on the response vector and the parameter vector.
At this point this definition should only point out the dependence on the input data.

By Equation (3.4) we can observe the interplay between the goodness of fit and the
penalization for model complexity, as we have already discussed for the information
criteria. Therefore the negative log-likelihood function, without a constant, will be
used as loss function in the following, i.e. V (y,β,X) := − logL(β|y,X). With this
choice for the loss function we get by α = 0 the maximum likelihood estimator β̂ for
the parameter vector β one could use well established theory with at least asymptotic
properties.

For α 6= 0 we introduce a bias for the corresponding estimator, which shows the major
drawback of regularization methods. By modifying the optimization problem, we take
into account that the resulting estimators are biased. Therefore the choice of the reg-
ularization parameter and the type of penalization function is very important because
these two elements allow us to ’control’ the amount of bias we are willing to pay for
the benefits which come along with these methods.

Up to this point we have no assumptions or restrictions on the penalization func-
tions which is why there could be a wide range of possible choices for them. But there
are some commonly used penalization functions, which have the advantage that cor-
responding optimization methods are already developed and implemented in R. Some
examples of these penalization functions are

� lasso penalty penalty(β) =
∑q

i=1 |βi| = ||β||1,

� ridge penalty penalty(β) = 1
2

∑q
i=1 β

2
i = 1

2
||β||22,

� elastic net penalty penalty(β) = λ
∑q

i=1 |βi|+
1−λ

2

(∑q
i=1 β

2
i

)
with λ ∈ [0, 1].

Notice that all examples of penalization functions above are based on a norm or are a
convex combination of norm-based functions. By the following lemma we will see that
this setting ensures that the penalization functions are convex, which is a requirement
for a lot of optimization methods to find a global minimum.

The statistical impact of these functions is discussed and visualized by an example
in the following subsection.

Lemma 3.1.
Assume fi : U → R for i = 1, . . . , n are convex functions mapping from a convex set
U ⊆ Rq to the real numbers. Then the function f : U → R defined by the convex
combination

f(x) :=
n∑
i=1

λifi(x), λi ≥ 0 and
n∑
i=1

λi = 1,
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is convex. Furthermore if there exists an λi > 0 and the fi are strictly convex then so
is f .

Proof.
Let x1,x2 ∈ U and t ∈ [0, 1] then by the convexity of fi, i.e.

fi(tx1 + (1− t)x2) ≤ tfi(x1) + (1− t)fi(x2),

it holds that for λi ≥ 0

n∑
i=1

λifi(tx1 + (1− t)x2) ≤ t

n∑
i=1

λifi(x1) + (1− t)
n∑
i=1

λifi(x2),

which implies

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

Under the additional assumptions the same argumentation leads to the additional
statement.

Lemma 3.2.
Every norm || · || : Rq → R is a convex function.

Proof.
By the triangle inequality and the homogeneity of the norm if follows for x1,x2 ∈ Rq

and t ∈ [0, 1]

||tx1 + (1− t)x2|| ≤ ||tx1||+ ||(1− t)x2|| = t||x1||+ (1− t)||x2|||.

Along with the well-known fact that the composition of convex functions is again a
convex function, which can be proven by just using two times the definition of convex-
ity, and the fact that the function f(x) = x2 is convex we have shown that all provided
penalty functions are convex.

According to Tang, Alelyani, and Liu (2014) embedded models and embedding feature
selection with classifier construction, have the advantages

(1) of wrapper models - they include the interaction with the classifier model and

(2) of filter models - they are far less computationally intensive than wrapper meth-
ods.
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3.5.1 Different Types of Penalization for Embedded Models

For embedded models the choice of the right penalization is crucial, therefore we will
take a closer look at the underlying norms and also regard an example to illustrate
the influence on the optimization problem. To visualize the differences between the
L2-norm (ridge penalization) and the L1-norm (lasso penalization) and to see how the
elastic net is related to both of them Figure 3 shows the unit circle, i.e. {x ∈ R2 :
||x|| = 1}, with respect to the different norms || · ||.

Figure 3: Unit circle w.r.t different metrics and EN with λ = 1
2
.

Assuming that we have a two dimensional parameter vector, i.e. β := (β1, β2) ∈ R2

and w.l.o.g. we can assume that ||β|| = 1 for each norm || · ||. If we identify the
horizontal axis with β1 and the vertical axis with β2 every point on the individual
circles represent a possible choice for the parameter vector we are considering.

As an example to see that the L1-norm favors sparse models consider the two pa-
rameter vectors β1 = (1, 0) and β2 = (2−

1
2 , 2−

1
2 ). Both are on the unit circle w.r.t

the L2-norm, but while β1 is also on the unit circle w.r.t. the L1-norm, it holds that
||β2||2 ≈ 1.41 is clearly not on the unit circle w.r.t. the L1-norm. This makes it clear
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that when we optimize with a lasso penalization the corresponding estimator is more
likely to be sparse then the estimator which corresponds to the L2-norm.

The elastic net penalization now is a hybrid, here the additional tuning parameter
λ allows us to control the amount of sparsity we want for the estimator.

After providing some first insights for the usage of different penalization functions,
the following example shows that the regularization parameter α is capable to control
the bias we are introducing with the penalization. Therefore, we consider simulated
data and only use an intercept as model parameter. To keep this example simple the
data were simulated from a normal distribution.

Example 3.1.
Before going into the details of penalization, first verify that the 1,000 simulated data
points from a normal distribution (i.e. N (5, 1)) truly have the right distribution and
structure. For completeness the seed to simulate this data is equal to 7. Figure 4 com-
pares the empirical density of the data points, visualized by the normalized histogram,
to the theoretical density of the normal distribution (the red curve) with mean 5 and
variance 1.

Figure 4: Histogram of the simulated data with theoretical density (µ = 5, σ2 = 1).

For simplicity it is assumed that we know the true variance (σ2 = 1) in the following,
so only the parameter µ needs to be estimated. To get the problem in the shape of
Definition 3.4 we define the design ’matrix’ X = (1, . . . , 1)t as column vector only
consisting of ones and get for the model parameter β = µ when using the linear model.
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Therefore, the loss function can be written as

V (y, β,X) = −l(β, σ2 = 1|y) + α× penalty(β)

= −n
2

log(2π)− 1

2

1000∑
i=1

(yi − β)2 + α× penalty(β).

For developing further understanding of the penalization terms, in the next step we
optimize not via an analytic solution but with the brute force method. That way we
calculate the loss function for a fine grid of values and take the value which minimizes
the loss function.

With this setting two different aspects are considered in the following figures.

� The first one (Figure 5) shows the comparison of the loss function against the
different values of β for different penalization terms. Here the regularization
parameter alpha was set to α = 100 to see some differences in the figure. The
argument which minimized the corresponding optimization problem is marked by
a point.

� The second one (Figure 6, 7 and 8) shows how each penalization function is
affected by a change of the regularization parameter.

Figure 5: Comparison of different penalization functions.

At Figure 5 we can observe that by using a penalty on the parameter vector a bias is
induced. At a closer look we can see that the lasso penalization has the smallest bias
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in this example, this is caused by the sample since true value for the parameter µ and
also the values drawn in the figure are greater than one.

For the elastic net penalization, the value of the mixture parameter was set to λ = 1
2

to see the in between character of this penalization function.

Figure 6: Regularization parameter α on the lasso penalization.

Figure 6 shows the impact of the regularization parameter on the estimation when the
lasso penalization is used. Note that up to a value of 100 the introduced bias is very low
compared to the other penalization functions. Here we cannot observe the property of
the lasso to favor a sparse parameter vector because we are in the one dimensional case.

Table 2 provided the arguments β̂ which minimizes the corresponding loss function,
and by the construction of this example the estimated parameter equals the estimated
value for the response β̂ = µ̂.

Regularization parameter α Estimated value β̂ Value loss function at β̂
1 5.00 1,405.94
10 4.99 1,450.92
100 4.90 1,896.24

1,000 4.00 5,903.99

Table 2: Estimated values of µ for the lasso penalization.
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For the lasso penalization the bias goes from numerically zero (α = 1) up to 20%
(α = 1, 000) which seems quite high but compared to the other penalization functions
it is indeed rather low. The value of the log-likelihood at β = 5 is given by 1,400.94
and can serve as a reference value when the values of the loss functions are considered
in the following.

Figure 7: Regularization parameter α on the elastic net penalization (λ = 0.5).

Referring to Figure 7 we can observe that the elastic net, in the one dimensional case,
causes a higher bias then the lasso penalization. Even by a value for the regularization
parameter α of 100 we see a proportional lager bias then we have observed before.

Regularization parameter α Estimated value β̂ Value loss function at β̂
1 5.00 1,414.69
10 4.95 1,537.23
100 4.53 2,652.12

1,000 2.38 8,268.33

Table 3: Estimated values of µ for the elastic net penalization.

If we consider the estimated values for β̂ under the elastic net we can see that the bias
for α = 1000 is over 50% which is very high given that this is just a small example.

At this point we can conclude that a regularization parameter which is this high is
only reasonable if we are very confident to assume that the parameter is close to zero,
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or in the multidimensional case most entries of the parameter vector are close or equal
to zero.

Figure 8: Regularization parameter α on the ridge penalization

Considering the results for the ridge regression it is crucial to keep in mind that here
the L2-norm is scaled by the factor 0.5 and since the results are quite similar to the
one from the elastic net penalization Table 4 provides the estimated values β̂ for com-
pleteness.

Regularization parameter α Estimated value β̂ Value loss function at β̂
1 5.00 1,413.44
10 4.95 1,524.85
100 4.55 2,538.69

1,000 2.50 7,658.56

Table 4: Estimated values of µ for the elastic net penalization.

This small example shows the drawbacks of the embedded models, which are given by
introducing bias and also an additional parameter, or for the elastic net penalization
even two additional parameters.

Nevertheless, this method is well-established for high dimensional data and the real
usability for the Styrian wine grape data will be analyzed in Chapter 8.
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Since the last chapters were more of theoretical nature the following one will present
an overview of the data used in the practical part of this master thesis. Two mea-
surement sequences were run by the Institute Dr. Wagner for capturing the two major
research questions in this project. The data from both sequences are combined and,
in the following, named Styrian wine grape data. A short explorative analysis of this
data is provided in the following by using the same method as described in the project
report by Fuchs and Friedl (2020).

Due to the fact that organic chemistry is time sensitive and the measurement procedure
takes its time, some quality control (QC) measurements were measured additionally
to the internal standards of the high-performance liquid chromatography instrument.
These QC measurements analyze the same substance, a specific mixture of different
grapes, several times during the measurement sequence and allow to extract reference
values for the measurements dedicated to the research.

The positioning of these QC measurements in the measurement sequence was cho-
sen in a way that allows to evaluate the variability of the extracted features. If there
proofs to be a trend over time, this setting will be able to capture and quantify it.
This aspect is of special interest because one measurement took approximately 30
minutes, so the time for the whole sequence (approximately 100 measurements) sums
up to 3.000 minutes or 50 hours. This could be enough time causing changes in the
experimental environment, like changes to the stationary phase in the hplc, or even
lead to some chemical reactions which change the composition of the later measured
samples. Both ways tend to bias the results and make them less comparable.

For completeness there was also a proof-of-concept measurement sequence run by the
Institute Dr. Wagner in the first place. This sequence was analyzed in order to make
sure that classification would be possible at all. Since the results were satisfactory, the
sequences presented in this work were rather chosen to present the methodology and
theory.

An additional problem is given by the fact that the QC measurements used in the
sequences are not comparable and therefore only the later measurement sequences are
discussed in this work.

51
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4.1 The Styrian Wine Grape Data

The Styrian wine grape data consist of the extracted data from two different mea-
surement sequences. Both sequences were measured successively, starting with the
measurement sequence regarding the analysis of the geographical origin. After the
real measurement procedure was done the data was extracted independently from
each other with the Profinder software from Agilent.

For a more detailed discussion on the background of the chemical analysis and the
data extraction procedure compare the explorative data analysis of the first proof of
concept measurement by Fuchs and Friedl (2020).

The second measurement sequence was designed to analyze different varieties. To elim-
inate the regional factor for this approach all samples are from a narrow geographical
region, called ”Vulkanland” which is located in the south-east of the Austrian district
Styria. The according dataset for this measurement sequence is called Variety-dataset.

The first measurement sequence was designed to determine the geographical origin
of the wine grape, when the sample is restricted to one variety. Because the sam-
pling process was restricted to voluntary participation there were not enough samples
from one variety to fulfill this task, therefore two varieties were chosen to form the
foundation of this measurement sequence. Analogously the dataset belonging to this
measurement sequence is called Geography-dataset.

Since the data extraction algorithm, the Profinder software provided by Agilent, ex-
tracts the area and the height of relevant peaks. Each of the datasets contains two
data frames. They are called Variety-Area-dataset for the data frame containing the
area of the peaks from the Variety measurement sequence and analogously the other
three data frames.

For a better understanding of the four available data frames some information on
the size and the number of features of each data is provided in the following.

Variety-Area Variety-Height Geography-Area Geography-Height
Sample 95 95 89 89

QC 22 22 22 22
Total 117 117 111 111

Features 2661 2661 2335 2335

Table 5: Meta-information for the available data.
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As Table 5 shows the number for the data frames containing the area or the height of
the peaks coincide; this is obvious because both describe the same underlying peak in
the raw data only using different aspects of the same.

As mentioned before the same methodology of visualization for the range of the high
dimensional data as described in the project report by Fuchs and Friedl (2020) was
applied. For completeness a short overview of the general idea of this method will be
described in the following.

In a first step each feature is handled individually; notice that for each feature there
are approximately 100 values through the samples available. A summarizing statistic
like the minimum, mean or maximum is applied to each feature projecting approxi-
mately 100 values to one single number per feature. These numbers (approximately
2,500) are then treated as a random sample which can be visualized and interpreted.

This allows us to get a first impression of the range and the shape of the available
data. Since we are using the data in a more systematic way in the application part of
this work only an impression and nothing else is intended at this point.

For example, when the minimum, as function from Rn to R, is chosen to project
the values of a feature then the distribution of these minimum values can be observed
as well as some characteristics like the minimum value of the minimum values, which
is the overall observed minimum.

Another interesting aspect would be the maximum value of the minimum values which
allows to identify features in the dataset which only contain large values.

4.2 Discrimination of the Variety Sequence

Before starting a detailed discussion concerning the values of the features in the
Variety-dataset, the following contingency table shows the distribution of the available
varieties through the first measurement sequence.

BW CH/MO GB GM SAM SB TR WB WR ZW
3 14 8 14 3 14 6 14 14 5

Table 6: Number of samples on varieties for the first measurement sequence (Variety-
dataset).

From Table 6 we observe a very unbalanced experimental design. This is caused by
the fact that only 366 samples from 8 different geographical regions and 25 different
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varieties were available for designing all measurement sequences.

A complete overview of all available varieties along with their abbreviations and Ger-
man expressions and the according Wikipedia article is attached in the appendix in
Table 34.

4.2.1 Value Range of the Variety-dataset

As mentioned before only a few aspects of the data are concerned in the following,
this includes the distribution of the minimum values their means and the maximum
values throughout the features.

Minimum Values of the Variety-dataset

The first quantity provided is the minimum as shown in Figure 9 which illustrates the
histogram of the minimum values concerning the area of the peaks.

Figure 9: Relevant part of the distribution of the minimum values for the Variety-Area-

dataset.

Since the range of the minimum values is quite high, Figure 9 only shows the inter-
esting part of the distribution. As we can observe most features have values quite
close to zero. This is not surprising since we know that not all features are necessarily
observable in all sample regarding the chemistry.
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Leaving the area of the peaks aside, its height in Figure 10 shows the histogram
of the corresponding minimum values.

Figure 10: Relevant part of the distribution of the minimum values for the Variety-Height-

dataset.

In Figure 10 we can observe that again most values are concentrated around zero. By
taking a closer look, we can also see that the right tale flattens out at around 10,000.
This value is clearly lower than its counterpart regarding the area data, here it is at
around 25,000. By a first inspection, we can verify that the values of the area are in
general higher than the values for the height.

Since we have features with a minimum value clearly non-zero, it seems that there
are roughly two groups of features.

� The first one captures specific characteristics and is therefore at least for one
sample zero, or close to zero.

� The second one is observed in every sample, and therefore varies only by its
concentration.

For a more numerical analysis Table 7 shows the minimum, maximum, 1st and 3rd
quantile and also the mean and median for the minimum values of the features.
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Dataset Minimum 0.25-Quantile Median Mean 0.75-Quantile Maximum

Area -127,887 0 3,961 80,084 37,598 21,388,759

Height 0 0 1,459 17,403 7,900 3,114,371

Table 7: Summary statistic for the minimum values of the features in the Variety-dataset.

Remarkable is the fact that the minimum of the minimum values, so the overall min-
imum, is negative for the area of the peaks. By definition the area is always non-
negative which indicates that some parts of the measurement or the data extraction
are not entirely accurate.

After consulting Agilent, the company that provides the Profinder software used for
the feature extraction, this is a known problem and object of current work. However,
due to meetings with the development team this should only occur related to features
with small values. Hence, in the following it is treated as artificial noise because we
cannot influence the data extraction.

Another interesting aspect provided by Table 7 is the total range of the minimum
values. They vary from zero, which is the minimum value of more than a quarter of
the features, up to over 21 million. This emphasizes that even if only the minimum
values of the features are considered, a lot of variability can be observed.

Mean Values of the Variety-dataset

Figure 11: Relevant part of the distribution of the mean values of the Variety-Area-dataset.
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If we take a look at the mean values of the features it is possible to get an idea about
the different average values of the features and the meaning behind a high or low fea-
ture value. Figure 11 provides the histogram for the mean values of the feature when
the area of the peaks is considered.

Here we can observe that the values range from close to zero up to over 1,500,000.
However, be aware that Figure 11 only shows a restricted part of the whole histogram
because the total range is up to over 53,000,000 (c.p. Table 8).

Figure 12 illustrates the histogram of the mean values of the features when the height
of the peaks is considered. As for the minimum values, the mean values from the
features representing the height of the peaks tend to be lower than the mean values
from the feature representing the area of the peaks.

Figure 12: Relevant part of the distribution of the mean values of the Variety-Height-

dataset.

The general structure of the distribution for the mean values is the same for both, the
area and the height data. In both situations, we observe a concentration around the
lower levels and a flatten right tale with a large maximum value. So more technically
speaking both distributions have a positive skewness.

This can also be verified by comparing the mean and median provided in Table 8.
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Dataset Minimum 0.25-Quantile Median Mean 0.75-Quantile Maximum

Area 525 27,253 72,655 350,524 211,429 53,179,992

Height 201 6,711 15,578 59,733 41,421 4,918,204

Table 8: Summary statistic for the mean values of the features in the Variety-dataset.

As by the minimum values, for the mean values it can be observed that the range of
values differ a lot within the features which could indicate that the classification might
work well, or that some data correction or standardization might be necessary in order
for the features to be comparable when dealing with numerical methods.

Maximum Values of the Variety-dataset

Providing the empirical distribution of the maximum values for the features and con-
sidering the area of the peaks from the underlying measurement Figure 13 shows a
similar picture as before.

We again observe a positive skewness and a value range from approximately 12,000
up to over 168,000,000. This means that the features not only quite differ in their
minimum values but by their maximum values as well.

Figure 13: Relevant part of the distribution of the maximum values of Variety-Area-dataset.
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The counterpart for the height data can be observed in Figure 14, and up to a general
shift of the values the underlying structure is very similar. Here the values range from
approximately 4,000 up to over 8,000,000 which is a lot less than for the area data but
seems to fit in the context.

Figure 14: Relevant part of the distribution of the maximum values of Variety-Height-

dataset.

Combining the results from Table 9 with the results from Table 7 it can be stated that
the range of values in the Area-dataset can be described by the minimum of minimum
values which is -127,887 up to the maximum of maximum values given by 168,998,591.

This range seems very large, and clearly is, but it is important to keep in mind that
there are 311,337 single values partitioned in 117 samples where each sample has 2,661
features. Hence, regarding the large amount of data, the range must be put in context.

For completeness the general statistics for the maximum values are provide in Ta-
ble 9.

Dataset Minimum 0.25-Quantile Median Mean 0.75-Quantile Maximum

Area 12,326 162,133 313,644 1,243,147 791,879 168,998,591

Height 4,348 38,164 67,075 193,517 158,885 8,414,869

Table 9: Summary statistic for the maximum values of the features in the Variety-dataset.
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4.3 Discrimination of Geographical Origin Sequence

The second measurement sequence intends to analyze the ability to classify the geo-
graphical origin and contains samples belonging to the variety Chardonnay or Morillon
(CH/MO) and Sauvignon Blanc (SB). The number of samples on varieties from the
geographical origin can be found in Table 10.

Variety Leithaberg Slovenia South Styria Vulcanic Land West Styria
CH/MO 4 5 14 14 3

SB 0 9 15 14 7

Table 10: Geographical origins in the Geography-dataset.

Notice that every geographical origin besides Slovenia is a so-called Districtus Austriae
Controllatus (DAC) region, which is a special category of location and directly linked
to the wine production (c.p. Figure 15). For later analysis, it is important to keep in
mind that Slovenia is separate from the other regions due to the different laws for the
production of wine and therefore wine grapes.

Figure 15: Districtus Austriae Controllatus (DAC) regions in Austria.1

1https://www.oesterreichwein.at/unser-wein/strategie-des-herkunftmarketings/dac-districtus-
austriae-controllatus/dac-gebiete
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4.3.1 Value Range of the Geography-dataset

As for the Variety-dataset, a short overview of the value range for the Geography-
dataset is provided in the following. We use the same methodology and therefore only
some short remarks and comparisons are made between those datasets.

Minimum Values of the Geography-dataset

Starting with the distribution of the minimum values through the features by consider-
ing the area of the underlying peaks in Figure 16 we can observe that the concentration
around zero is slightly lower than for the variety data.

Figure 16: Relevant part of the distribution of the minimum values for the Geography-Area-

dataset.

Looking at Figure 17, which shows the distribution of the minimum values for the
height data, we can again verify that the values for the height are in general lower
than those of the values for the area.

One major observation considering the presented results is that the overall minimum
for the Geography-dataset is much lower than for the Variety-dataset. By an exact
number of -899,583 it seems that there are again problems induced by the feature
extraction algorithm.

But notice that the software and the methodology of high-performance liquid chro-
matography is not usually used to deal with over 2,000 features compared to only 111
samples at all.
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Figure 17: Relevant part of the distribution of the minimum values for the Geography-

Height-dataset.

By comparing Table 7 and 11, we can observe that the minimum values in both the
Geography- and the Variety-dataset are in the same magnitude when comparing the
area data and the height data to each other.

Notice that the features extracted in the Variety-dataset, identified by their mass
and retention time, and the features extracted in the Geography-dataset do not nec-
essary overlap. In fact, under 0.5% (i.e. seven features) of the features occur in both
datasets.

Dataset Minimum 0.25-Quantile Median Mean 0.75-Quantile Maximum

Area -899,583 0 12,596 93,181 55,994 14,245,641

Height 0 0 3,384 20,797 12,303 3,269,746

Table 11: Summary statistic for the minimum values of the features in the Variety-dataset.

Mean Values of the Geography-dataset

For the consideration of the mean values for the area and the height of the peaks, the
same systematic used for the Variety-dataset can be observed. This means that there
is a positive skewness and lower height than area.

By comparing the results according to the Geography-dataset with the ones described
for the Variety-dataset before, it again seems that the values in the Geography-dataset
tend to be lower than in the Variety-dataset.
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Figure 18: Relevant part of the distribution of the mean values for the Geography-Area-

dataset.

For completeness, Figure 18 and 19 provide the relevant part of the distribution of the
mean values for the area and the height of the features.

Figure 19: Relevant part of the distribution of the mean values for the Geography-Height-

dataset.



64 4 Explorative Data Analysis

For a numerical based comparison, Table 12 provides some statistical characteristics
of the empirical distribution for the area and the height data.

Dataset Minimum 0.25-Quantile Median Mean 0.75-Quantile Maximum

Area 502 33,017 85,332 398,907 231,705 53,021,448

Height 180 8,823 18,532 66,365 45,793 4,940,879

Table 12: Summary statistic for the mean values of the features in the Variety-dataset.

Maximum Values of the Geography-dataset

As shown before the relevant part of the distribution of the maximum values through
the features when considering the area of the peaks is provided in Figure 20.

Figure 20: Relevant part of the distribution of the maximum values for the Geography-Area-

dataset.

For the Geography-dataset the total range of values of the area of the peaks starts
at -899,583 and goes up to 137,811,356. This range is therefore narrower than in the
Variety-dataset. This is also valid when negative values are considered as zeros because
they are caused by software problems and do not represent the chemical situation.

Considering the height of the peaks, the range of the Geography-dataset, starting
at zero and going up to 894,965 is slightly higher compared to the total range in the
Variety-dataset where the values go from zero to 8,414,869.
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Figure 21 provides the corresponding histogram for a detailed view on the maximum
values of the features when the height of the peaks is observed.

Figure 21: Relevant part of the distribution of the maximum values for the Geography-

Height-dataset.

For completeness as for the other aspects of the explorative analysis the characteristics
for the maximum values are provided in Table 13.

Dataset Minimum 0.25-Quantile Median Mean 0.75-Quantile Maximum

Area 37,501 164,237 312,576 1,185,887 753,119 137,811,356

Height 15,041 39,632 69,235 191,884 153,065 8,894,965

Table 13: Summary statistic for the maximum values of the features in the Variety-dataset.

Finally, it can be said that the ranges of the values differ a lot between the features
and in general, the values in the height data are lower than the ones for the area data.

We can also conclude that the values corresponding to the area have a wider range in
the Variety-dataset than their counterparts in the Geography-dataset. By considering
the height of the peaks this behavior is the opposite.

Another point is that features differ between each other by factors of over 1,000.
This could cause some problems in the modeling step so the option of standardizing
the features by their means and standard deviations will also be considered later.
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4.4 Quality Control Measurements

As mentioned before the long amount of time that the chemical analysis requires (over
50 hours) could cause some changes in the experimental setting. On one hand, the
instability of certain organic compounds in the samples could lead to differences in
the measurements and therefore make the data less comparable. On the other hand,
changes in the experimental environment, i.e. by erosion of the stationary phase, could
interfere with the analyzed substances and therefore change the results of the mea-
surements over time.

This fact could induce variability in the final data, which does not represent the
chemical situation. The internal standards which are usually used for stabilizing the
measurements are applied but they do not capture these changes sufficiently. That is
why some modified standards are required and used for the later modeling step.

In order to analyze this situation the same quality control sample, a mixture of different
grapes, was measured several times. The general scheme behind these measurements
is provided by the measurement sequence of the Geography-dataset (c.p Table 15).

To provide a better understanding of this problem some representative features were
chosen to illustrate the different types of features and the according problems of the
correction in Chapter 5.

For completeness the mixture of the quality control substance, i.e. a mixture of mix-
tures, which was used in the QC measurements, is drafted in Table 14. A complete
overview of the samples used for producing the individual mixtures can be found in
the appendix.

Quantity [µL] Substance Remark

300 QC-Ch/Mo ges
Mixture of different samples with variety Chardon-
nay or Morillon from all available origins.

300 QC-GM ges
Mixture of different samples with variety ’Gelber
Muskateller’ from all available origins.

300 QC-SB ges
Mixture of different samples with variety Sauvignon
Blanc from all available origins.

300 QC-WB ges
Mixture of different samples with variety ’Weißbur-
gunder’ from all available origins.

300 QC-WR ges
Mixture of different samples with variety
’Welschriesling’ from all available origins.

1,500 Total Volume

Table 14: Mixture for the substance used in the QC measurements.
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Abbr. Type Sample name Variety Region

QC - 1 QC QC-WHITE-GES 1

QC - 2 QC QC-WHITE-GES 2

S - 1 Sample 320 GEO CH VL CH/MO VL
...

...
...

...
...

S - 9 Sample 72 GEO CH SUED CH/MO SUED

QC - 3 QC QC-WHITE-GES 3

QC - 4 QC QC-WHITE-GES 4

S - 10 Sample 190 GEO CH LEITHABERG CH/MO LEITHABERG
...

...
...

...
...

S - 18 Sample 318 GEO SB SUED SB SUED

QC - 5 QC QC-WHITE-GES 5

QC - 6 QC QC-WHITE-GES 6
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

QC - 19 QC QC-WHITE-GES 19

QC - 20 QC QC-WHITE-GES 20

S - 81 Sample 196 GEO CH VL CH/MO VL
...

...
...

...
...

S - 89 Sample 297 GEO CHSUED CH/MO SUED

QC - 21 QC QC-WHITE-GES 21

QC - 22 QC QC-WHITE-GES 22

Table 15: Measurement sequence for the Geography-dataset.

Notice that the different numbers of the quality measurements in Table 15 indicate
that the sample substance was measured at different points in time, but it was always
the same substance. Therefore, the effect of time on this substance can be analyzed.

The measurement was chosen to get measured in batches which always measure the
substance two times in a row. This makes it possible to analyze the variability of the
measurement procedure itself and determine a trend over time.

For further analysis the non-QC measurements are removed from the datasets (Geog-
raphy and Variety). With this reduced data containing 22 sample elements and ap-
proximately 2,300 to 2,600 features the problem of high dimensionality occurs again.
Therefore, usual methods are not eligible to be applied but Chapter 5 will show how
this problem can be solved by using basic linear regression methods along with some
strong assumption on the data.
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As mentioned in Chapter 4, there were some special samples, which should allow us
to quantify the change of the individual features over time. The resulting data can
be used to extract the experimentally induced bias as a preprocessing step to increase
the reliability of the data in the later modeling process.

Due to the high dimensionality of the data, one fundamental assumption, which is
made in the following, is that each feature is independent of the others. This is quite
a strong assumption but is needed in order to apply well-known statistical concepts.

Under this independence assumption, each feature is treated individually as an univari-
ate statistical problem. Details to this treatment will be described later, but scalable
and specifically automatic methodology is required because this treatment must be
applied up to almost 5,000 (2,300 plus 2,600) times.

One natural approach in order to model a deterministic trend in time in our set-
ting is the usage of classical linear regression models where the time of measurement
is the additional information. The usage of this model class allows to describe the
connection of the response, in this case real values, to the time of measurement which
is described by natural numbers.

We first start with the theoretical background of the so-called polynomial regression
which is used later in this chapter. Since this concept is just a special case of the classi-
cal linear regression discussed in Chapter 1 no further theory is developed at this point.

After describing the theoretical concept of the feature correction three features from
the Variety-Area-dataset are presented to illustrate the feature correction problem.

The last part of the chapter formally describes the feature correction algorithm along
with a detailed discussion of the application on the three features mentioned before,
and finally the application on all available datasets.

69
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5.1 Polynomial Regression for Feature Correction

The main idea of polynomial regression is the usage of one underlying covariate in
order to generate some transformed versions (by monomials) for the usage in the final
regression model. In our case, this concept allows us to model the trend over time not
only by a constant or linear function, but also to model quadratic or cubic structures.

For a formal definition, assume that x is one covariate. Then the model equation
for the polynomial regression model of order p is given by

y = f(x,β) + ε, (5.1)

where f : R×Rp+1 is a polynomial with degree p and coefficient vector β ∈ Rp+1, i.e.

f(x,β) := β0 + β1x+ β2x
2 + · · ·+ βpx

p.

Notice that the difference between Equation (5.1) and Equation (1.4) is the dimen-
sionality of the covariates. But in both models the number of parameters is equal.
This derives from the fact that each polynomial regression model can be written as
classical linear regression model, as defined in Equation (1.4), by using a variable
transformation of the kind

zi = xi, i = 1, . . . , p.

With this transformation Equation (5.1) can be written as

y = f(x,β) + ε = β0 + β1z1 + · · ·+ βpzp + ε.

As mentioned before, polynomial regression is just a special case of the classical linear
regression defined in Chapter 1 and all results, especially the F-test, can be used for
this model approach.

Formally, the usage of polynomials does not cause problems in terms of the indepen-
dence for the design matrix because the new covariates xi are linearly independent.
However, in practice the usage of high order polynomials indeed cause problems be-
cause they some kind of collinear behaviour in the new transformed covariates vector
is observable. Therefore, the usage of high dimensional polynomials, beside the ex-
plainability of the model, should be handled carefully.

To convince ourself that some kind of feature correction is required at all the fol-
lowing section provides some representative examples which should illustrate different
aspects of the problem and the algorithm developed to overcome the same.
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5.2 Representative Examples

To visualize the methodology of the feature correction used in this work the following
features from the Variety-Area-dataset were chosen:

Mass Retention Time Structure

381.1526 13.09 linear trend

100.0648 27.54 quadratic trend

102.9479 27.65 cubic trend

Table 16: Examples of features for different trends over time.

Feature ’m=381.1526 rt=13.09’

The first feature, which is used to visualize a linear trend over time, is identified by a
mass of 381.1526 and a retention time of 13.09.

Figure 22 shows the area of the peaks over the measurement sequence. Here the QC
measurements and the sample measurements are colored differently to illustrate the
difference between the same substance measured several times (QC) and the samples
required for the modeling process later (Sample).

Figure 22: Example of a feature with linear trend over time.
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As Figure 22 shows, there exists a clear increasing trend during the measurement
sequence. If the QC measurements and the sample measurements are seen as inde-
pendent groups it can be argued that both groups follow a linear increasing trend in
time.

By further inspection, one can observe that the linear trend of the QC measurements
is slightly more flat than the linear trend in the sample measurements. Therefore,
this example shows that the usage of the QC measurements for estimating the deter-
ministic trend could sometimes fail because the QC data does not capture the trend
perfectly.

Feature ’m=100.0648 rt=27.54’

Figure 23 provides the area of the peaks over the measurement sequence for the fea-
ture with mass 100.0648 and retention time 27.54. Furthermore, a clearly decreasing
behavior over time is observable.

In this case, the QC measurements seem to reflect the general trend of all measure-
ments quite well. Therefore and compared to the previous example, it seems not totally
out of mind to use the observable behavior of the QC measurements as a reference for
the general trend.

Figure 23: Example of a feature with quadratic trend over time.
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These two examples already show totally different trends over time. Therefore, it can
be verified that handling each feature individually is a reasonable strategy.

A chemical explanation of these two different trends can be provided by the following
fact. The stationary phase interacts with the mobile phase, i.e. erosion, which changes
the adhesion between these two phases. This causes that the concentration of some
chemical substances at a given retention time could vary in both directions. Therefore,
we can observe increasing trends for features as well as decreasing ones.

One could argue that for this example again a linear trend would model the behavior
of the QC measurements well. Nevertheless, a closer look reveals that there are two
patterns, which are both linear but differ in the gradient. The change point of the
provided data could be fixed at around 60. Therefore, it seems reasonable to use a
quadratic approach to approximate this trend when only one function for the whole
time horizon is used.

Feature ’m=102.9479 rt=27.65’

For the last feature provided in the following, the choice for the feature with mass
102.9479 and retention time 27.65 was made because concerning the colleagues of the
Institute Dr. Wagner the observed behavior is quite strange.

Figure 24: Example of a feature with cubic trend trend over time.
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As Figure 24 shows, for approximately the first 60 measurements there is an increasing
trend. However, for the later half of the measurements a decreasing trend is clearly
detectable. A mathematical description by a polynomial approach with a cubic term
would fit this data in a proper way.

From the mathematical or statistical point of view, the data clearly induces structure
and the same can be accurately modeled by a cubic polynomial function. However,
from a chemical point of view this feature should not be valid at all because these
structural changes should not be observable and are likely induced by some problems
linked to the measurement procedure.

The practical part of this work is more a proof of concept for classification and the
main focus lies on different applications of the multinomial logistic model as classifier.
Hence only a intuitive algorithm for data correction is provided in the following.

5.3 Feature Correction Algorithm

The algorithm for the feature correction, applied in this work, follows two steps. Each
of them relies on different data and is applied on each feature individually.

1. Determine the deterministic structure of the trend by only using the QC measure-
ments. This is done by fitting a polynomial regression and reducing the degree
of the polynomial by the ANOVA up to a point where this step would cause a
significance loss of model accuracy.

2. Use the determined regression model to calculate the correction factor for each
observation; this includes the non-QC measurements, of the feature.

By defining the area or height of the feature as yi, i ∈ I, and I = {1, . . . , n} the set
of all indexes or times of measurements for all available samples, the index for the QC
measurements can be written as

Iqc := {i ∈ I : sample i is a QC measurement}.

The algorithm to determine the trend of the features over the time by using the QC
measurements (Iqc) can therefore be defined as follows.

Algorithm 2: Determination of the trend over time

1 for p← pmax to 0 by −1 do
2 fit model corresponding to equation: yi := β0 + β1i

1 + · · ·+ βpi
p i ∈ Iqc

3 if H0 : βp = 0 can be rejected then
4 break

5 return model = β0 + β1i+ · · ·+ βpi
p
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For applying Algorithm 2 two aspects need to be specified:

� The setting of the highest degree for the polynomial (pmax).

� The specification of a test statistic and significance level for the hypothesis de-
clared in the if condition.

The first problem was solved by consulting the cooperation partner. Therefore, only
linear or quadratic trends should be valid. Because the examples from before and a
visual inspection of the QC measurements in the Variety-Area-dataset convinced us
that some features clearly have a cubic trend (c.p. Figure 24), pmax was set to three
and features with significant cubic structure got removed from the dataset.

The second problem was solved by using a version of the F-Test (c.p. Theorem 1.1)
with the significance level α = 0.05 for the linear and quadratic model and the sig-
nificance level of α = 0.01 for the cubic term because these features will be removed
afterwards.

For calculating the correction factor it is assumed that there is an adequate model
f(x,β) with estimated parameter β̂ such that for each measurement i ∈ I the mean,
µi of the response can be estimated as

µ̂i = f(i, β̂) i ∈ I.

Furthermore if it is assumed that the model specifies the trend over time. Then
the correction factor is defined to project the value of each observation to the value
it would have, under the model, when it would be measured in the middle of the
sequence. Therefore, the correction factor Ki for observation i is defined as

Ki :=
µ̂ī
µ̂i

i ∈ I,

where µ̂ī is the estimated value for the feature in the middle of the measurement
sequence. This reference point was chosen since in the middle of a measurement se-
quence the results should be as reliable as possible.

The complete R-code used for the correction of the features can be found in the
appendix.

In the case of a model that only contains the intercept, the correction factor would
be a constant factor for all observations. Since this multiplication should not improve
the data quality, the original data are returned in this situation.
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5.4 Application to Specified Features

Algorithm 2 combined with the calculation of the correction factor (c.p. R-code) was
used to correct all available features. To visualize the effect of the method for the fea-
tures provided in Section 5.2 the original data along with the automatically estimated
deterministic trend and finally the corrected data are plotted.

Feature ’m=381.1526 rt=13.09’

Figure 25 shows the linear trend, but we can observe that the trend was determined
only by the QC measurements and not by all samples which are plotted in the fig-
ure. Therefore, after the correction a slight linear trend is still present. Nevertheless,
compared to the original data the gradient of this linear trend of the corrected data is
much closer to zero than before.

It is important to keep in mind that only the QC measurements are measurements
with the same underlying chemical substance, all other data points come from differ-
ent chemical samples. Therefore, variability or certain patterns observable in all data
points can be caused by the chemical situation itself.

Figure 25: Example of a feature with linear trend over time.

It seems that the method applied to this feature at least does not make things less
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comparable, which is also a good property for a preprocessing step. After all, this is
just a first approach to take the change of the experimental environment into account.

Feature ’m=100.0648 rt=27.54’

In Figure 26 we can observe the best case in some sense. First of all there is a clear
trend over the measurement sequence, and because it is observable for all QC mea-
surement it is a trend independent of the underlying chemical substances.

Therefore, we see that the correction algorithm applied on this feature indeed in-
creases the comparability of the results. Here the variability of the corrected data can
be assumed to come from the difference related to the chemical situation.

Figure 26: Example of a feature with quadratic trend over time.

Feature ’m=102.9479 rt=27.65’

Analog to the features discussed before Figure 27 shows the area of the feature with
mass 102.9479 and retention time 27.65. The green line visualize the clear detectable
cubic structure of the QC measurements.

Here, the last presented feature shows again that the method seems to work quite
well when it comes to identify the trend over time, but also shows that there are



78 5 Feature Correction

trends found in the data, which cannot be explained from the chemical point of view.

Due to this problem all features, which have a clear cubic structure, got removed
in the preprocessed and corrected dataset. Remember that for the cubic polynomial
regression the significance level α was set to 0.01 to ensure that only features with a
clear cubic trend got removed.

Figure 27: Example of a feature with cubic trend over time.

5.5 Application to All Available Datasets

After discussing the methodology, the necessity and the effect of the feature correction,
a short overview for the available data is provided. Notice that for each measurement
sequence there are two quantities, i.e. the area and the height of the peaks, available
which leads to the datasets provides in the following.

As Table 17 shows, the available samples are of the same sizes for each sequence
since each sequence describes the same underlying peaks. Nevertheless, the number
of available features varies according to the number of features with significance cubic
trend over time of the QC measurements.
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Name Sequence Quantity Samples Features
Variety-Area-Original Variety Area 95 2,661
Variety-Area-Corrected Variety Area 95 2,591
Variety-Height-Original Variety Height 95 2,661
Variety-Height-Corrected Variety Height 95 2,590
Geography-Area-Original Geography Area 89 2,335
Geography-Area-Corrected Geography Area 89 2,171
Geography-Height-Original Geography Height 89 2,335
Geography-Height-Corrected Geography Height 89 2,030

Table 17: All available datasets.

Also notice that features where the modeling process failed, because of computational
issues, are traded like they would have had a constant trend structure and therefore
are not changed at all. This method should ensure that the datasets are not artificially
biased and so the data quality at least does not decrease.

If we would use all eight datsets for the modeling process and provide the results
in this work a lot of redundant information would be presented and discussed. Since
this correction process is more a technical requirement to make the features compa-
rable and not the main focus of this work only the corrected data are further analyzed.

This means that in the following chapters the dataset Variety-Area is linked to the
data representing the area of the peaks in the variety measurement sequence, after the
correction process described in this chapter. Analogously are the datasets Variety-
Height, Geography-Area and Geography-Height representing the data after the cor-
rection.

After discussing different aspects of the data and the sampling procedure in detail
and preprocess the raw data to obtain datasets where the features can be considered
to be comparable over the measurement time, the following chapters are dealing with
the modeling process.

Here we start with the simplest one, i.e. the filter model, then we take a closer look
to the most resource intensive model, represented by the stepwise forward selection,
and finally discussing the application of penalization terms in the context of embedded
models.





6 Filter Models for Feature Selection

After discussing the data for the practical part, this chapter will explore the general
concept of filter models and especially some filter in detail. The first subsection will
provide three different filters which are used in this work. Every presented filter is
univariate, which means that each feature is ranked individually (c.p. Chapter 3).
Therefore, no groups of features got evaluated simultaneously. This restriction was
chosen in order to keep the required computational time at a reasonable pace.

The first filter is based on a measure of the correlation between the response (categor-
ical variable) and the feature (nominal variable). The following chapter will discuss
and explain possible difficulties emerging in this setting and provides an overview of
some strategies that may be used to overcome the aforementioned.

The second filter is based on effect measures, more precisely the effect measure used
in the context of regression analysis. By changing the question from ”How important
is this feature?” to the equivalent question of ”How strong do the classes stratify the
values of the feature?” some classical results and measures from the analysis of vari-
ance can be used.

The last one is not a filter in the sense of Section 3.3, but all these filters are used
for the wrapper models in Chapter 7 which is why it is also included in the following.
The main idea is given by using the classification accuracy as a measure, with the
restriction that each feature is used individually.

6.1 Different Filter for Features Extraction

In the following the point-biserial correlation coefficient, the coefficient of determi-
nation and the single predictor classification accuracy measure are explored in more
details.

Each filter is based on a different approach concerning the data and since this work
covers a lot of topics only a heuristic overview and no deeper theory can be provided
here.

81
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6.1.1 Point-Biserial Correlation Coefficient

The point-biserial correlation coefficient is a special case of the empirical correlation
coefficient, also known as Pearson’s correlation coefficient, and both are based on the
concept of correlation. Therefore, we will first introduce the correlation along with
some properties for the later use. Because these are well known results no proofs are
provided in the following.

Definition 6.1. (Correlation, see Casella and Berger, 2002)
The correlation of a random variable x and a random variable y is the number defined
by

ρxy =
Cov(x, y)

σxσy
=

E[(x− µx)(y − µy)]√
E[(x− µx)2]E[(y − µy)2]

.

The value ρxy is also called the correlation coefficient.

Some properties of the correlation coefficient are shown in the following theorems.

Theorem 6.1. (Correlation and Independence, see Casella and Berger, 2002)
If x and y are independent random variables, then Cov(x, y) = 0 and therefore ρxy = 0.

Theorem 6.2. (Range of the Correlation, see Casella and Berger, 2002)
For any random variables x and y,

� −1 ≤ ρxy ≤ 1.

� |ρxy| = 1 if and only if there exist numbers a 6= 0 and b such that P[y = ax+b] = 1.
If ρxy = 1, then a > 0, and if ρxy = −1, then a < 0.

For a measure we want to ensure that only positive values will occur, but we can
even restrict it to take values between zero and one. Therefore, Theorem 6.1 and 6.2
show that the absolute value of the correlation coefficient could be a good candidate
for a measure. Since the correlation coefficient is in general not known, the empirical
correlation coefficient can serve as an estimator for this quantity.

Definition 6.2. (Empirical Correlation Coefficient)
Let (x1, y1), . . . , (xn, yn) be a bivariate random sample. By plugging in the moment es-
timator for the expectation and variance used in the correlation coefficient (Definition
6.1) the empirical correlation coefficient is defined as

ρ̂xy :=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
.

This quantity is also called Pearson’s correlation coefficient.



6.1 Different Filter for Features Extraction 83

After formulating the theoretical foundation and the empirical version of the correla-
tion coefficient, the derivation of the point-biserial correlation coefficient can be done
by relabeling the data and calculation. This is provided in the following.

Lemma 6.3.
Let (x1, y1), . . . , (xn, yn) be a bivariate random sample, where xi ∈ R and yi ∈ {0, 1}
(dichotomous variable). Then the empirical correlation coefficient is given by

ρ̂xy =
(x̄1 − x̄0)√∑n
i=1(xi − x̄)2

√
n1n0

n
.

Here x̄1 is the mean of all xi, where yi = 1 and analog for x̄0. This quantity is also
called point-biserial correlation coefficient and can be extended to each y taking two
different values k0 and k1.

Proof.
For simplicity let I := {1, . . . , n} be the index set of the entire sample, while I0 :=
{i ∈ I : yi = 0} and I1 := {i ∈ I : yi = 1} are the indices of the sample elements
corresponding to class zero or one. Then the mean of x1, . . . , xn and y1, . . . , yn can be
written as

ȳ =
1

n

∑
i∈I

yi =
1

n

∑
i∈I1

yi +
1

n

∑
i∈I0

yi =
n1

n

nx̄ =
∑
i∈I

xi =
∑
i∈I1

xi +
∑
i∈I0

xi = n1x̄1 + n0x̄0 ⇒ x̄ =
n1

n
x̄1 +

n0

n
x̄0,

where ni := |Ii|, i = 0, 1, is the sample size of each group. With this calculation the
value of the numerator of the empirical correlation coefficient is given by

n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑
i=1

(xi − x̄)yi −
n∑
i=1

(xi − x̄)ȳ︸ ︷︷ ︸
=0

=
n∑
i=1

(xi − x̄)yi =
∑
i∈I1

(xi − x̄)

= n1x̄1 −
n1

n
(n0x̄0 + n1x̄1) = x̄1

(
n1 −

n2
1

n

)
− x̄0

(
n1n0

n

)
= x̄1

n1(n− n1)

n
− x̄0

n1n0

n
= (x̄1 − x̄0)

n1n0

n
.

For the denominator the following calculation will allow to get the final formulation
for the correlation coefficient

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

y2
i − nȳ2 = n1 −

nn2
1

n2
=
n1

n
(n− n1) =

n1n0

n
.
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Putting everything together ends up in

ρ̂ : =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
=

(x̄1 − x̄0)n1n0/n√
n1n0/n

∑n
i=1(xi − x̄)2

=
(x̄1 − x̄0)√∑n
i=1(xi − x̄)2

√
n1n0

n
.

The restriction of the point-biserial correlation coefficient can by observed by its defini-
tion. Here only two classes are allowed for the categorical variable yi. If we extend the
number of the classes and use the same idea of writing them as numbers, we implicitly
assume an order which is not possible for categorical variables. Therefore, another
strategy is required to achieve a meaningful measure for the filter model when more
than two classes are available.

For a given response y = (y1, . . . , yn)t with values in K = {k1, . . . , kK} the follow-
ing mapping will be useful:

f : Kn → {0, 1}n×K

y = (y1, . . . , yn)t → (1y=k1 , . . . ,1y=kK ),

where 1y=ki = (1y1=ki , . . . ,1yn=ki)
t and 1 is the indicator function.

With this setting the point-biserial correlation coefficient can be applied to each col-
umn of f(y) and afterwards a summarizing method g : {0, 1}n×K → R is needed to
get one final number as a measure for the filter model. With this method the extended
point-biserial correlation coefficient can be defined in the following way.

Definition 6.3. (Extended Point-Biserial Correlation Coefficient)
Let (x1, y1), . . . , (xn, yn) be a bivariate random sample, where x = (x1, . . . , xn)t ∈ Rn

and y = (y1, . . . , yn)t ∈ Kn with available classes K = {k1, . . . , kK}. Furthermore
let g : [−1, 1]K → [0, 1] be a predefined function, then the extended point-biserial
correlation coefficient measure (epbccm) is defined as

ρepbccm := g((ρpbcc(x,1y=k1), . . . , ρ
pbcc(x,1y=kK )).

Possible choices for g could be

� g(z1, . . . , zK) := min(|z1|, . . . , |zK |),
� g(z1, . . . , zK) :=

∑K
j=1 |zj|/K,

� g(z1, . . . , zK) := max(|z1|, . . . , |zK |).
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Remark 6.1.
Notice that each example uses the absolute value of the point-biserial correlation co-
efficient since only the ’strength’ of the correlation is of interest not the direction
(positively or negatively correlated).

After some evaluation of different summarizing functions g it seems that for this project
the choice g(z1, . . . , zK) :=

∑K
j=1 |zj|/K accomplishes the best results. This could be

explained by the fact that for good results the correlation to each available class must
be high where, for example the choice g(z1, . . . , zK) := max(|z1|, . . . , |zK |) favors fea-
tures which have a high correlation to only one class. With an increasing class number
K it is a very useful property.

Therefore, when (x1, y1), . . . , (xn, yn) is a bivariate random sample, x = (x1, . . . , xn)t ∈
Rn and y = (y1, . . . , yn)t ∈ Kn = {k1, . . . , kK}n, if not otherwise stated, the extended
point-biserial correlation coefficient measure or short epbccm is given by

ρepbccm := g(ρpbcc(x,1y=k1), . . . , ρ
pbcc(x,1y=kK )) =

1

K

K∑
j=1

|ρpbcc(x,1y=kj)|.

For completeness the following lemma shows that epbccm indeed takes values in [0, 1].

Lemma 6.4. (Value range of epbccm)
Let (x1, y1), . . . , (xn, yn) be a bivariate random sample, where x = (x1, . . . , xn)t ∈
Rn and y = (y1, . . . , yn)t ∈ Kn = {k1, . . . , kK}n. Then the extended point-biserial
correlation coefficient measure defined as

ρepbccm =
1

K

K∑
j=1

|ρpbcc(x,1y=kj)|,

takes only values between zero and one.

Proof.
By Theorem 6.2 each argument of the extended point-biserial correlation coefficient
measure takes values between zero and one. And due to the fact that the sum is a
monotone increasing function in each argument the following equation holds:

0 =
1

K

K∑
j=1

0 ≤ 1

K

K∑
j=1

|ρpbcc(x,1y=kj)| ≤
1

K

K∑
j=1

1 = 1.
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6.1.2 Coefficient of Determination R2

For the next measure or filter we do not focus so much on the correlation between
the classes and the feature itself. For this method to each value of the feature
xi, i = 1, . . . , n we assign the corresponding class yi ∈ K. Therefore we get K = |K|
different groups where each group consists of nj, j = 1, . . . , K values of the feature x.

If it is assumed that the feature classifies our problem very well, this is equivalent
to saying that their group means x̄j, j = 1, . . . , K, differ significantly from each other.
If they do not differ, it can be stated that this feature, only used as available informa-
tion, is not able to solve the classification problem in a proper way.

For using already established concepts this problem can be formulated as analysis
of variance, and therefore as a special case of the classical linear regression analysis
discussed in Chapter 1. The additional assumptions following along with this formu-
lation are

� the features are following a Gaussian distribution and

� the variance of all observations is σ2 (homoscedasticity).

With these assumptions the class memberships can be described by a factor which
results in a model equation of the form

xi = β0 + β2 · 1k2(yi) + · · ·+ βK · 1kK (yi) + εi,

where xi is the value of the feature for the ith sample element, and yi is the class for
the same.

Remark 6.2.
Notice that the role of the feature and the corresponding class have changed. For the
classification problem our response is the class represented by yi and we have the value
of the feature as additional information xi, with design matrix X ∈ Rn×p. By using the
strategy from above we consider the values of the feature as response and the class as
additional information. Therefore, the notation in the following seems unusual when
dealing with the classical regression problem since now the design matrix is given by
Y ∈ Rn×1.

With this model the group means are estimated by x̄j = β̂0 + β̂j, and the F-test
(c.p. Theorem 1.1) can be applied for testing the hypothesis

H0 : β2 = · · · = βK = 0 vs HA : ∃j ∈ {2, . . . , K} s.t. βj 6= 0.

Now an obvious choice for a measure could be the p-value according to this hypothesis
test with an appropriate test statistic. The application of the p-values on the Styrian
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wine grape data showed that it tends to be more a zero or one measure. Therefore, this
choice seems not appropriate for a measure which should rank, or better distinguish,
over 2,000 features.

As an alternative the coefficient of determination will be introduced in the follow-
ing and is used as a measure for a filter model in this chapter. However, it is a
well-known concept which is why the definition along with some associated properties
are provided in the following for reasons of completeness.

Theorem 6.5. (Sum of Squares, see Draper and Smith, 1998)
For a linear regression model with intercept β0 and a design matrix Y the variance
can be segmented into

n∑
i=1

(xi − x̄)2

︸ ︷︷ ︸
SST

=
n∑
i=1

(xi − µ̂xi)2

︸ ︷︷ ︸
SSR

+
n∑
i=1

(µ̂xi − x̄)2

︸ ︷︷ ︸
SSE

,

where

� SST is the Sum of Squares Total,

� SSR is the Sum of Squared Residuals and

� SSE is the Sum of Squared Errors.

Definition 6.4. (R2, see Draper and Smith, 1998)
For a linear regression model with intercept β0 and design matrix Y the coefficient of
(multiple) determination is defined as

R2 :=
SSR

SST
=

∑n
i=1(xi − µ̂xi)2∑n
i=1(xi − x̄)2

.

By using the identity SST = SSR + SSE the coefficient of determination can also
be written as

R2 =
SST − SSE

SST
= 1− SSE

SST
= 1−

∑n
i=1(µ̂xi − xi)2∑n
i=1(xi − x̄)2

.

Remark 6.3.
Notice that by the definition of R2, R2 = 1 reflects a perfect fit of the data and
0 ≤ R2 ≤ 1. So in this sense the coefficient of determination has the same behavior
as the epbccm, which makes the interpretation in the later application easier.

Since R2 increases with the number of parameters an adjusted version takes care of
this problem but the explainability in terms of variance ratios is lost.
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Definition 6.5. (Adjusted R2, see Draper and Smith, 1998)
For a linear regression model with intercept β0 and p the total number of parameters
in β = (β0, . . . , βp−1)t the adjusted coefficient of (multiple) determination is defined as

R2
adj = 1− SSE/(n− p)

SST/(n− 1)
= 1− (1−R2)

(
n− 1

n− p

)
,

where n denotes the sample size as usual.

In our case both the R2 and the R2
adj only differ by a linear transformation, and since

p and n are equal for all features there is no difference of them in the later application.
For simplicity only R2 is used in the application part of this work.

6.1.3 Single Predictor Classification Accuracy

When we relax the assumption that filter models evaluate features without utilizing
any classification algorithm, the most intuitive filter comes along by using the classi-
fier only with one feature. The use of each feature individually has two advantages,
the first one is that it is comparable to the other univariate filter and as a byproduct
we ensure that the duration, while still very long, increases linearly in the number of
features because each feature only got evaluated once.

In our case the classifier used for the individual classification is given by the multi-
nomial logistic classifier as defined in Definition 2.3, and the only aspect to clarify is
how to evaluate the features with this classifier.

In order to get a measure for the ability of the feature to classify the response every ap-
propriate candidate should take values between zero and one to fit into the framework
of the other measures presented in this chapter. For simplicity of the interpretation, it
would also be profitable that ρ = 1 indicates a perfect, or at least the highest possible
classification ability, whereas ρ = 0 represents a very poor classification ability of the
according feature.

Definition 6.6. (Single Predictor Classification Accuracy)
Let (x1, y1), . . . , (xn, yn) be a bivariate sample, where x = (x1, . . . , xn)t ∈ Rn are the
values of the feature and y = (y1, . . . , yn)t ∈ Kn = {k1, . . . , kK}n the according classes.
Furthermore let M be a family of classifiers with ĉM the fitted classifier and ĉM(x) the
estimated classes with argument x and values in K. The Single Prediction Classifica-
tion Accuracy (spca) ρspca is defined as

ρspca :=
|{yi = ĉM(xi)|i = 1, . . . , n}|

n
.

If the classifier M uses the sample (x1, y1), . . . , (xn, yn) also for calibration, then the
spca is called in-sample single prediction accuracy.
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Obviously the single prediction classification accuracy as defined in Definition 6.6 takes
values ρspca ∈ [0, 1].

Also the two properties

� ρspca = 1⇒ perfect classification

� ρspca = 0⇒ no classification ability

are fulfilled by this definition.

Since the Definition 6.6 indeed differs between the in-sample spca and the spca, in
the following the context should show whether or not the sample is also used to train
the classifier. If not otherwise stated, we are talking usually about the in-sample single
prediction classification accuracy.

6.2 Application of the Filter Model

After motivating and defining the different filters, this section provides the results
when these filters are applied to the Styrian wine grape data. Since there are several
different datasets available in this case (three different filters) there is a methodology
required to compare the results from these filters with the same underlying data.

Since the result of a filter model is provided by a list reflecting the rank of the in-
dividual feature a method to visualize the results requires some restrictions. More or
less standard methods can be used if we visualize or classify the data, i.e. if we only
use a few of the best features like the 15 or 40 best ones.

Maybe the most common technique to visualize high dimensional data (but with p < n)
is the principal component analysis. This technique allows to reflect as much variabil-
ity of the data as possible and projects the features onto a lower dimensional space,
i.e. R2. While this is not a guaranteed way of receiving further insights into the data,
it is at least a chance to see some structure in the data. Therefore, and since the filter
models are used again afterwards, this method seems reasonable in order to visualize
the individual results and allows some kind of comparability.

Another more numerical method comes up by applying all filters on the same dataset
and comparing the results. Here comparing means that the different ranks are used
to form an overall ranking. Several choices to form this overall ranking are possible,
indeed every function g : Nf → N, where f is the number of available filter. Since we
want explainable results only a few choices are considered in the following.

The first one is to sum up all ranks, which favor features with generally good scores
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(ranks). Secondly, multiply all available ranks, this method focuses more on a (great)
single performance. The advantage of the product is that the best features are more
likely to end up with a high overall score. Therefore, this approach was used in the
following.

To summarize, we use the overall ranking calculated by the product of all ranks to get
the best features for each available dataset (c.p. Table 17) where only the corrected
data are used.

Afterwards we use the principal component analysis to visualize the features which
occur at the top 25 features for the Area- and the Height-dataset. This allows to get
a heuristic picture of the classification ability when using the most important filters
which are also very robust since it is not important what aspect of the underlying peak
is used.

Since these filters are used in Chapter 7 there is a lot of information provided rather
for completeness then for further insight at this stage of the analysis.

6.2.1 Application to the Variety-Dataset

For this section it is important to know that there are ten different varieties measured
in the variety measurement sequence, which means that ten different classes can be
observed. Also important for the later analysis is to know that red and white wine
grapes are combined in the data. Therefore, the chemical deviation from each other
should at least for some sample element be very well observable.

The Variety-Area-dataset

For the Variety-Area-dataset the individual results of the different filters are presented
in Table 18. Here the choice for the features presented explicitly was made by the over-
all rank as described before. This leads to the occurrence of the best feature according
to the epbccm and the spca filter.

Table 18 shows that the ranks for the epbccm filter and for the spca filter seem to be
of the same magnitude but the ranks for the R2 filter are quite lower, which means
that the R2 filter captures other properties or at least values the properties of the
individual features in a different way than the epbccm or the spca filter does.

Nevertheless, there are some features which have high classification ability accord-
ing to one filter but a low one when concerning others.

For example, the feature with mass 440.1656 and retention time 8.67 scores at rank
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577 for the epbccm but end up at the fourth place when the spca is used. Another
example for the difference of the filters is given by the features with mass 532.1189
and retention time 7.49. Here the R2 filter ranks this feature on the seventh place but
for the spca it is only slightly better than half of the features (place 939).

Mass RT epbccm epbccm rank R2 R2 rank spca spca rank

488.0927 7.17 0.2905 2 0.8590 200 0.6947 3

450.1158 8.26 0.2597 42 0.9223 76 0.7053 1

472.0975 8.26 0.2938 1 0.9389 52 0.5684 72

372.214 8.26 0.2653 23 0.8827 150 0.7053 2

304.0581 7.61 0.2670 17 0.9325 60 0.6526 10

516.2564 8.11 0.2808 3 0.9179 82 0.5789 60

304.058 8.26 0.2606 38 0.9279 67 0.6421 13

304.0582 7.17 0.2635 29 0.8465 230 0.6632 7

169.0732 1.58 0.2395 129 0.9269 68 0.6632 8

538.2384 8.1 0.2763 6 0.8892 136 0.5474 92

373.1523 7.59 0.2578 52 0.8309 257 0.6632 6

544.1915 7.48 0.2619 33 0.9028 113 0.6211 25

472.0978 6.87 0.2414 120 0.9397 50 0.6316 17

467.2365 7.73 0.2653 22 0.8615 198 0.6211 26

576.1262 9.01 0.2782 4 0.8323 255 0.5053 156

162.0527 1.3 0.2618 35 0.9058 104 0.5895 47

440.1656 8.67 0.2036 577 0.9133 87 0.6632 4

548.1868 7.19 0.2149 429 0.9622 28 0.6316 18

479.236 9.47 0.2224 308 0.8856 141 0.6632 5

373.1525 6.9 0.2747 7 0.8482 227 0.5053 139

486.206 7.52 0.2260 258 0.9200 79 0.6421 11

532.1189 7.49 0.2601 39 0.9837 7 0.2947 939

472.192 7.55 0.2739 8 0.8132 289 0.5263 111

484.1913 9.6 0.2303 202 0.8782 154 0.6526 9

440.1655 6.42 0.2675 16 0.8536 214 0.5474 84

Table 18: Results for the Variety-Area-dataset, ordered by the overall rank.

Notice that the usage of the multiplication for finding the overall rank tends to favor
features which have a high rank for at least two filters. Therefore, we can observe that
the epbccm and the spca filter have some similarities.

When we take a closer look at the spca scoring of the features presented in Table
18 we can observe that they lie between 50% and 70%. This means that by using one
feature to classify ten classes we can distinguish 50% to 70% of the samples. Never-
theless, the spca measures the in-sample classification accuracy. Therefore a perfect
fit is the overall goal and we see that our later models should definitely contain more
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than one feature.

The Variety-Height-dataset

If the height of the peaks is analyzed with the predefined filter, then the outcome is
provided in Table 19. As before we can observe that the ranks of the R2 filter are
much lower than the ones caused by the epbccm or spca filter.

When the values of the epbccm filter are compared to the area and the height data a
slightly lower scoring for the height data can be observed.

Mass RT epbccm epbccm rank R2 R2 rank spca spca rank

472.0975 8.26 0.2984 1 0.9532 36 0.5474 109

372.214 8.26 0.2683 23 0.8747 193 0.7474 1

450.1158 8.26 0.2642 39 0.9282 79 0.6842 2

488.0927 7.17 0.2941 2 0.8870 169 0.6000 41

304.0581 7.61 0.2658 35 0.9366 64 0.6526 10

516.2564 8.11 0.2803 5 0.9209 92 0.5895 55

421.1946 7.1 0.2861 3 0.9087 118 0.5474 107

548.1865 7 0.2136 513 0.9791 12 0.6526 8

368.1444 6.99 0.2690 21 0.8798 182 0.6421 13

373.1525 6.9 0.2733 10 0.8723 201 0.6105 28

373.1521 7.31 0.2641 40 0.7945 373 0.6632 6

538.2384 8.1 0.2748 8 0.8730 200 0.5895 58

373.1518 7.1 0.2640 41 0.8126 332 0.6526 9

144.042 1.31 0.2721 12 0.9069 126 0.5579 87

372.1754 7.31 0.2509 103 0.7601 454 0.6737 3

486.2072 6.92 0.2713 15 0.8436 258 0.6000 42

354.1653 6.68 0.2307 270 0.8979 153 0.6737 4

208.0943 1.3 0.2706 16 0.9135 104 0.5474 100

354.1651 7.1 0.2749 7 0.8822 178 0.5158 141

373.1517 7.1 0.2649 37 0.8204 312 0.6316 17

304.0582 7.17 0.2614 53 0.8480 250 0.6421 15

440.1656 8.67 0.2057 609 0.9346 66 0.6632 5

548.1864 6.93 0.2112 543 0.9567 27 0.6421 14

373.1523 6.83 0.2662 31 0.8555 237 0.6105 29

373.1524 7.59 0.2624 47 0.8307 294 0.6316 16

Table 19: Results for the Variety-Height-dataset, ordered by the overall rank.

Another interesting point is given when looking at the overlap of the best, according
to the overall rank, features when the area or the height of the peaks is considered.
Here ten out of 25 features occur when concerning the area or the height of the peaks.
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The corresponding features are bold in Table 18 and in Table 19. Therefore, it seems
that there is at least some kind of consistence between the area and the height of the
peaks along with their ability for the classification.

Conclusion for the Variety-Dataset

After discussing the results for the individual datasets, we want to take a closer look
at the features which occur in both datasets. Therefore, Table 20 contains all features
which occur in both the Variety-Area- and the Variety-Height-dataset when the 25
best features, evaluated with the overall rank, are selected.

For simplicity only the scores of the spca filter are provided in the following, since
this filter can be interpreted in the clearest way.

As we can see, four of the ten features presented at Table 20 have a higher scor-
ing when the area of the peaks is used. Two features have identical values for the spca
filter, and four features lead to higher values of the filter when the height of the peaks
is considered. Therefore, the features which occur in both Table 18 and 19 have no
clear tendency of higher or lower scoring.

Mass RT spca Variety-Area spca Variety-Height

488.0927 7.17 0.6947 0.6000

450.1158 8.26 0.7053 0.6842

472.0975 8.26 0.5684 0.5474

372.214 8.26 0.7053 0.7474

304.0581 7.61 0.6526 0.6526

516.2564 8.11 0.5789 0.5895

304.0582 7.17 0.6632 0.6421

538.2384 8.1 0.5474 0.5895

440.1656 8.67 0.6632 0.6632

373.1525 6.9 0.5053 0.6105

Table 20: Results for the Variety-Area- and Variety-Height-datasets.

If we want a visual impression of the classification ability of the features in Table 20,
Figure 28 provides the first two principal components as vertical and horizontal axis
with the colors representing the different varieties. Here the area of the peaks was
used, but for the height of the peaks the picture is almost identical.
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Figure 28: First two PC’s by using the area of the features at Table 20.

The advantage of the principal component analysis is that we get rid of redundant
information. After all, these filters are univariate and therefore cannot handle corre-
lated data, which provide the same information. We can observe this by the fact that
the first two principal components reflect approximately 84% of the total volatility.

After all Figure 28 shows that the classification with the used features should work
properly because here clear clusters with only small overlaps were detected.

6.2.2 Application to the Geography-Dataset

After discussing the data generated by the variety measurement sequence, the same
type of data but from the measurement sequence designed to analyze the classification
ability when the geographical origin is considered remains to be discussed. There-
fore, the following subsection provides the same kind of results but according to the
geographical measurement sequence.

The Geography-Area-dataset

As mentioned before Table 21 illustrates the three different filters applied on the
Geography-Area-dataset containing the values of the rank for the best 25 features,
according to the overall ranking system described in the beginning of this chapter.
Here for each feature the results of the individual filter along with the rank for the
feature are explicitly provided.
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The major difference to the results from the variety measurement sequence is given by
the fact that here the spca filter seems to evaluate different aspects of the features.

Mass RT epbccm epbccm rank R2 R2 rank spca spca rank

283.199 7.15 0.2678 3 0.4001 9 0.5393 1

517.3612 19.54 0.2861 2 0.3977 10 0.5281 2

461.2254 5.73 0.2543 9 0.4415 6 0.4719 18

609.2989 5.66 0.2603 8 0.4620 4 0.4607 38

99.1045 1.64 0.2984 1 0.4159 7 0.4157 178

247.1303 8.16 0.2613 6 0.5790 1 0.3933 398

271.1721 10.52 0.2647 4 0.5728 2 0.4045 356

300.209 15.44 0.2352 33 0.3776 13 0.4944 8

346.0272 13.73 0.2361 31 0.3371 29 0.5056 5

231.141 7.66 0.2606 7 0.5529 3 0.4045 292

614.2545 5.66 0.2643 5 0.3776 14 0.4382 94

344.0292 13.73 0.2339 38 0.3312 32 0.4831 10

342.0321 13.73 0.2329 40 0.3281 34 0.4831 9

500.0563 7.97 0.2299 48 0.2884 54 0.5056 6

609.2989 5.24 0.2371 29 0.4095 8 0.4494 68

219.126 11.54 0.2468 15 0.3928 11 0.4382 102

355.3442 15.5 0.2467 16 0.3458 24 0.4494 44

355.3447 15.7 0.2452 17 0.3535 21 0.4494 49

329.3288 15.06 0.2419 21 0.3400 25 0.4494 41

215.1882 10.08 0.2383 25 0.3727 15 0.4494 59

614.2543 5.23 0.2322 43 0.3193 40 0.4831 13

279.1471 11.54 0.2389 23 0.3684 16 0.4382 70

301.1293 11.54 0.2437 19 0.3834 12 0.4270 147

251.0794 6.62 0.2245 57 0.3082 43 0.4831 14

357.3598 16.42 0.2418 22 0.3262 35 0.4494 45

Table 21: Results for the Geography-Area-dataset, ordered by the overall rank.

Taking a closer look at the ranks we can also observe that almost all ranks are high
in this case, which means that the filter evaluates in a more consistent way than for
the variety measurements.

Nevertheless, there are examples where we can clearly observe that the epbccm and
the R2 filter lead to more similar results than the spca.

For example, the feature with mass 247.1303 and retention time 8.16 is ranked in
the first place whereas the R2 filter is considered as sixth place by the epbccm. In
contrast the spca filter only ranks these features at place number 398. So, we can see



96 6 Filter Models for Feature Selection

that while the contrast between the ranks is not as high as in the Variety-dataset, here
a clear difference can be identified.

The Geography-Height-dataset

Table 22 shows the results for the height of the peaks in the Geography measurement
sequence and when the ranks of the feature for the different filter are compared, as
for the Geography-Area-dataset, the values seem more homogeneous as in the Variety
measurement sequence.

Mass RT epbccm epbccm rank R2 R2 rank spca spca rank

517.3612 19.54 0.2832 1 0.3954 7 0.5281 3

283.199 7.15 0.2660 2 0.4010 6 0.5281 2

239.1729 6.63 0.2623 3 0.3844 11 0.5281 1

247.1303 8.16 0.2583 6 0.5687 1 0.4494 47

231.141 7.66 0.2594 5 0.5478 3 0.4045 266

609.2989 5.66 0.2543 10 0.4318 4 0.4270 142

614.2545 5.66 0.2620 4 0.3774 14 0.4270 122

609.2989 5.24 0.2422 21 0.3932 9 0.4607 38

346.0272 13.73 0.2366 34 0.3308 36 0.4944 7

300.209 15.44 0.2280 53 0.3534 23 0.4944 8

342.0321 13.73 0.2345 39 0.3332 32 0.4831 11

219.126 11.54 0.2447 16 0.3863 10 0.4382 91

215.1882 10.08 0.2419 22 0.3844 12 0.4494 56

614.2543 5.23 0.2271 54 0.3333 31 0.4944 9

344.0292 13.73 0.2337 41 0.3324 35 0.4831 12

355.3442 15.5 0.2476 15 0.3401 29 0.4494 41

364.1283 15.62 0.2293 49 0.3557 21 0.4831 18

271.1721 10.52 0.2575 7 0.5479 2 0.3258 1721

323.1841 11.53 0.2402 24 0.3716 16 0.4494 64

252.1213 1.29 0.2571 8 0.3043 48 0.4494 65

279.1471 11.54 0.2402 26 0.3724 15 0.4382 70

357.3598 16.42 0.2428 18 0.3303 37 0.4494 42

355.3447 15.7 0.2398 28 0.3435 24 0.4494 44

329.3288 15.06 0.2401 27 0.3401 28 0.4494 40

461.2254 5.73 0.2342 40 0.3948 8 0.4270 106

Table 22: Results for the Geography-Height-dataset, ordered by the overall rank.

Therefore, looking at the individual feature we can observe that the ranks of the filters
are closer together. Nevertheless, there are also features where two filter rank them in
a similar range but one filter, which is most of the time the spca filter, ranks the same
features very low.
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For example, the feature with mass equals 231.1410 and retention time 7.66 min-
utes the epbccm filter ranks it on fifth and the R2 filter at third place, but the spca
ranks it on 266th place.

By taking a closer look on the values of the filters and not the according ranks, we
can also observe that for the Geography measurement sequence the results tend to be
lower than for the Variety measurement sequence. This is not surprising since from a
chemical point of view, it is much easier to analyze the variety than the geographical
origin of a wine grape.

As before the features which occur in both Table 21 and 22 are bold and discussed in
more detail in the following subsection.

At this point we can see that 21 out of 25 features occur in both tables. This overlap
is much larger than the eleven features in the Variety measurement sequence. Up to
now we cannot evaluate if this is a good or a bad sign for the later classification.

Conclusion for the Geography-Dataset

As we saw before there were 21 features out of the best 25 features in both the area
and the height data. Therefore, it would not lead to a deeper understanding when we
analyze the overlapping features in more detail.

Figure 29: First two PC’s by using the area of the features contained in Table 21 and 22.
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Nevertheless, Figure 29 provides the first two principal components when the overlap-
ping features are used. The color represents the geographical origin of the according
wine grape sample.

Here we can observe three different aspects. The first one can be observed when
comparing the clusters in Figure 29 to the ones in Figure 28. Therefore, it seems that
the classification problem for the geographical origin is much harder to tackle than the
one for the variety. This is also consistent with the chemical intuition of the colleges
of the cooperation partner.

By taking a closer look the overlap which can be detected in Figure 29 is quite inter-
esting. We can see that the location VL and SUED overlap the most, which seems
reasonable since both are part of the Austrian district Styria. Also, WEST is part
of this district and therefore it is not surprising that here an overlap is observable as
well. Therefore, it seems as if the overlap indeed corresponds with the geographical
distance of the samples.

6.3 Conclusion of Filter Models

As mentioned before only a very heuristic overview was given at this point but two
aspects are very interesting up to now.

� The classification ability for both, the Variety- and the Geography-datasets, is
at least observable. Since we did not fit models in terms of classical statistical
learning were prediction is possible, no further quantification can be provided at
this point.

� As mentioned before and also according to the experience of the cooperation
partner the classification in terms of the variety should be much easier than the
classification of the geographical origin. The results provided before seem to
confirm this conjecture.

The next two sections will provide more model based analysis and therefore the pos-
sibility of prediction, will allow us to quantify the classification ability along with the
specific models.



7 Multinomial Logistic Model and
Preselection

As the application of the filter models shows there are indeed features which have
a high ability to classify the variety or the geographical origin in our measurement
sequences. Due to the fact that there is no statistical model involved, an evaluation
of the prediction accuracy of both the in-sample and out-of-sample performance is
not possible with this approach. Therefore, only an explorative analysis, as presented
above, was possible.

However, this chapter uses the multinomial logistic regression model and the accord-
ing classifier, as described in Chapter 2, in different variations. The first usage of the
multinomial logistic classifier (mlc) is provided in the context of pure wrapper models,
as defined in Chapter 3. This represents our starting point and also provides a base
line for later variations and approaches.

The operational time of this procedure is quite long which is why the alternative
wrapper model with preselection will be introduced and defined in the following. Fur-
thermore, some special cases of filter which have already been discussed in Chapter 6
will be applied to the data at hand.

7.1 Wrapper Model with MLC

The definition of a wrapper model in Chapter 3 is not very detailed, therefore the
selected model with its three components (classifier, search method and evaluation
criteria) will be specified in the following.

Definition 7.1. (MLC-Wrapper Model)
The multinomial logistic classifier - wrapper model (mlc - wrapper model) is a wrapper
model with the following specifications:

� classifier: multinomial logistic classifier

� feature search: forward selection

� feature evaluation: Akaikes information criterion

For simplicity the mlc-wrapper model is called wrapper model in the following.

99
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With Definition 7.1 and the following notation we can specify Algorithm 1, described
in Chapter 3, which leads to the definition of Algorithm 3, provided below. It is as-
sumed that there are p different features available, which are combined in a design
matrix X ∈ Rn×p. Here n is the sample size as usual.

At this point it is crucial to note which features are used to estimate the parameters
for the mlc ĉ. For the mlc we denote ĉ[x1, . . . ,xk] when the features x1, . . . ,xk ∈ Rn

are used for estimating the required parameters. Furthermore, AIC(ĉ[x1, . . . ,xk])
represents the value of Akaikes information criterion (c.p. Definition 3.1) where the
underlying multinomial model of ĉ[x1, . . . ,xk] is used for the evaluation.

Algorithm 3: MLC - Wrapper Model

1 j1 := argmin
k∈{1,...,p}

AIC(ĉ[xk])

2 j2 := argmin
k∈{1,...,p}\{j1}

AIC(ĉ[xj1 ,xk])

3 i = 2
4 while AIC(ĉ[xj1 , . . . ,xji ]) < AIC(ĉ[xj1 , . . . ,xji−1

]) do
5 i = i+ 1
6 ji := argmin

k∈{1,...,p}\{j1,...,ji−1}
AIC(ĉ[xj1 , . . . ,xji−1

,xk])

7 return classifier = ĉ[xj1 , . . . ,xji−1
]

In case of the small sample size problem, n << p, the forward selection is the only
applicable method. This is caused by the fact that for the backward selection it is
not possible to fit the first model, since more parameters than observations need to be
fitted.

As mentioned before the forward selection seeks for a local minimum of the infor-
mation criterion. If we would like to ensure a global minimum of the information
criterion, we would have to evaluate all combinations of features, which is not reason-
able concerning the data. Therefore, it is important to keep in mind that the so found
set of features only reflects the optimal choice under some restriction.

If we want to evaluate the performance of the final classifier selected by the wrap-
per model above, there are several established methods available.

The first one is the in-sample classification accuracy, as defined in Chapter 6. The
drawback is that it does not estimate the prediction error when we want to classify
new samples. Therefore, it is only a first approach in order to see how the methodology
works, since a low in-sample accuracy indicates that the according model is inappro-
priate.
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The second one can be found in the cross-validation method. Here it is possible to
estimate the prediction error in a systematic way. In our situation only the leave-one-
out cross-validation procedure, also known as Jackknife analysis, is applicable. This
comes from the unbalanced design, which would lead, for the regular cross-validation
method, to a situation where we have none or only one sample of a specific class in the
training data. Therefore, the results would not represent the general data situation
and also the used software solution would fail in this scenario.

The last method to evaluate the models would be a bootstrap based approach. In
this case the same problem as described in case of the cross-validation method occurs.
Also, the required computational resources needed in order to achieve results in a
reasonable time would be much higher than for this project available.

7.1.1 Data Standardization

One point worth mentioning is the standardization of the design matrix. Since the
fitting step for the classifier is based on numerical optimization, a design matrix where
all features have a similar value range could lead to stable results or a shorter run
time. Therefore, there are always two versions of the data available and analyzed in
the following. The original data, i.e. Variety-Area-Origin-dataset, which represents
the corrected features (c.p. Chapter 5), and the standardized data, i.e. Variety-Area-
Stand-dataset. Both versions combined are simply called Variety-Area-datasets.

For the standardized datasets we replace the values of the features in the follow-
ing way. Let xj ∈ Rn be the j-th column of the design matrix X, then each value
xij, i = 1, . . . , n, is replaced by

x̃ij :=
xij − x̄j√

1
n−1

∑n
i=1(xij − x̄j)2

,

where x̄j is the mean of the j-th column,

x̄j :=
1

n

n∑
i=1

xij.

Therefore, the standardized data are the ones containing the centered and scaled val-
ues of the corrected features.

After defining the exact methodology and also the available data the following subsec-
tions provide the results of the application, where the measurement sequence according
to the variety and the geographical origin are discussed separately.
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7.1.2 Application to the Variety-Datasets

For the application of the wrapper model on the Variety-datasets two aspects are
analyzed. The first one is the in-sample classification accuracy (in-sample ac.), which
represents the accuracy when all available samples are used for fitting the model. For
these models, also the number of used features is recorded. The second one is the
prediction error estimated by the leave-one-out cross validation, here also the run
time (loo-cv run time) is provided.

Dataset # features
classification accuracy

run time cross-validation [h]
in-sample out-of-sample

Area-Origin 2 100.00% 84.21% 11.16

Area-Stand 2 100.00% 87.40% 9,81

Height-Origin 2 100.00% 82.11% 11,43

Height-Stand 2 100.00% 86.32% 8,44

Table 23: Results for the wrapper model applied on the Variety-datasets.

As Table 23 shows there are only two features necessary to classify all ten possible
classes (in-sample) correctly. The leave-one-out cross-validation method shows that
for all types of data in the variety measurement sequence an accuracy of over 82%
can be achieved. This shows that there is indeed clear evidence that with this type of
chemical analysis the variety can be classified quite well.

The standardization method as described above also seems to slightly increase the
out-of-sample classification accuracy. Another interesting fact is that the run time,
whenever the standardized data is used, is reduced by approximately 10% to 20%.
This can be explained by the fact that the required numerical optimization benefits
form a design matrix which contains standardized features.

Remark 7.1.
Notice that the run time here is only presented for comparison purpose and is not
optimized for our special case. Also, tasks were not parallelized, which is possible in
the case of the leave-one-out cross-validation procedure. Therefore, the provided table
entries should only be used to compare the different methods.

Since the final wrapper models generated by using the Variety-Area-Origin and the
Variety-Area-Stand-dataset select the same features and only differ by the coefficients.
The explicit coefficients for the wrapper model using the original area of the peaks are
provided in Table 24.
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Intercept m=304.0581 rt=7.61 m=428.1654 rt=7.39

CH/MO -4934.667 0.1979 -0.0061

GB -11,947.227 0.2602 0.0381

GM 1,458.622 -0.3020 0.0478

SAM -4,396.428 0.02736 0.0685

SB 1,203.782 -0.1703 0.0455

TR -6,433.976 0.2632 -0.1069

WB -6,559.410 0.1321 0.0678

WR -2,559.158 0.1569 -0.0558

ZW -1,215.878 -0.4010 0.0676

Table 24: Coefficients for the wrapper model using the area of the peaks.

In this special situation where two features are enough to classify the data perfectly,
when using all available information, we can visualize the data by a two dimensional
plot. Here each axis represents one relevant feature.

Figure 30: Relevant features for variety classification (Area).

In Figure 30 we can observe that a clear clustering in terms of the varieties exists.
Only a few varieties like the GM or the SB seem to have values which are far away
from their center points.
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If the height of the peaks is used for the modeling, the final wrapper models again
coincide in terms of selected features when the original or standardized data are used.
As before, the coefficients of the model, using the original data, are provided in Table
25.

Intercept m=304.0581 rt=7.61 m=423.21 rt=7.39

CH/MO -896.1302 0.1901 -0.0475

GB -4,888.6459 0.3630 0.0021

GM 957.7213 -0.5965 0.0107

SAM -1,302.1644 -0.0071 0.0333

SB 445.1296 -0.1397 -0.0018

TR -2,728.0577 0.4163 -0.2677

WB -1,713.1770 0.1997 0.0179

WR -381.1036 0.2451 -0.2549

ZW -362.1630 -0.7199 0.0541

Table 25: Coefficients for the wrapper model using the height of the peaks.

The results for the height data are very similar to the ones for the area data and do
not provide further insights. But after discussing the accuracy of the model and the
selected features the following subsection will mention the sensitivity of the method-
ology.

Sensitivity of the Results

To discuss the robustness of the methodology we again use the results generated by
the leave-one-out cross-validation procedure. Here, for each single sample element the
whole procedure of feature selection is performed on all data except for the selected
sample element. Therefore, the prediction error can be estimated by predicting the
class for the selected sample element and comparing it to the observed class.

Another information which can be used from this procedure are the selected features.
Here, we get an idea whether or not a feature is stable, which means that it occurs
almost in every model, or if the methodology is very sensitive to the according data.

Table 26 provides the features, which are contained in the final models of the leave-
one-out cross-validation method, along with the number of models where they were
contained. Since the results from the original and the standardized data are very
similar only the results for the original ones are provided in the following.
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Mass Retention Time Absolute Frequency Relative Frequency

304.0581 7.61 94 98.95%

426.1654 7.39 92 96.84%

440.1656 8.67 2 2.11%

450.1158 8.26 1 1.05%

525.209 7.24 1 1.05%

Table 26: Absolute and relative frequencies of the selected features in the final models
(Variety-Area-Origin-dataset).

As Table 26 shows there are two features which occur in almost every model, the first
feature was also selected when all samples are used in the estimation step. However,
we see that small changes in the data do not have much influence on the feature se-
lection. Therefore, we can say that the feature selection using the wrapper model is
quite robust.

Together with the results discussed before, it seems that the wrapper model is a
good choice for the classification of the variety. Here we observed that the data stan-
dardization indeed improves the classification accuracy in terms of the out-of-sample
prediction from around 82% up to over 86% and also the methodology itself seems to
be quite robust in terms of the selected features.

7.1.3 Application to the Geography-Datasets

Analogous to the variety measurement sequence the data for the geographical mea-
surement sequence is analyzed in this section. A summary containing the in-sample
and out-of-sample accuracy is given in Table 27.

Dataset # features
classification accuracy

run time cross-validation [h]
in-sample out-of-sample

Area-Origin 4 84.27% 66.29% 10,59

Area-Stand 4 84,27% 64,04% 9,27

Height-Origin 5 87,64% 64,04% 11,12

Height-Stand 5 87,64% 55,06% 10,30

Table 27: Results for the wrapper model applied on the Geography-datasets.

For this section the quantity of interest is the geographical origin also called region
and there were five different locations available. These five regions split up into two
countries (Austria and Slovenia) and four different DAC-regions for the Austrian sam-
ples.

Also keep in mind that, as mentioned before and verified by the first results of the
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filter model, the difference in terms of chemically measurable variation should be much
lower than for the variety setting.

As Table 27 shows, more complex models are required, and even those models do
not result in an tremendous in-sample classification accuracy. Also noticeable is the
fact that the leave-one-out cross-validation performs quite bad in comparison to the
results of the variety. However, this is not really surprising if again the complexity of
the chemical task is considered.

One interesting point worth to be mentioned is that for the Geography-datasets the
standardization of the data decreases the performance of the wrapper model, when the
prediction accuracy estimated by the leave-one-out cross-validation method is consid-
ered as performance measure.

This could have several reasons. One is that the different classes stratify the data
in a more sensitive way, which means that by the transformation of the features small
changes get lost, or at least are reduced. This will be discussed later when the sensi-
tivity and the leave-one-out cross-validation procedure is discussed in more detail.

First, we want to take a look at the wrong classified samples. Here all available
samples were used to fit the model. The confusion table provides the true and the
predicted classes and a perfect fit would be represented by non-zero values only in the
diagonal.

Predicted \True LEITHABERG SLO SUED VL WEST

LEITHABERG 4 0 0 0 0

SLO 0 17 0 0 0

SUED 0 0 25 10 0

VL 0 0 4 19 0

WEST 0 0 0 0 10

Table 28: Confusion table for the Geography-Area-Origin and Geography-Area-Stand-

dataset.

As Table 28 shows the regions which are not distinguished correctly are SUED and VL.
This coincides with the results of the filter models in Chapter 6. Therefore, we again
observe that these regions are very close in terms of their the chemical measurements.

For reasons of completeness the significant features for all models along with the
affiliation for the models are provided in Table 29.
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Mass Retention Time Area-Origin Area-Stand Height-Origin Height-Stand

517.3612 19.54 Yes Yes Yes Yes

283.199 7.15 Yes Yes No No

271.1721 10.52 Yes Yes No No

301.2979 14.31 Yes Yes No No

215.1886 8.65 No No Yes Yes

231.141 7.66 No No Yes Yes

687.5127 15.92 No No Yes Yes

252.1213 1.29 No No Yes Yes

Table 29: Features in the final wrapper models.

As Table 29 shows there is only a small overlap (i.e., only one feature) of features in
the final wrapper model when the different data belonging to the geography measure-
ment sequence are considered. This indicates that the classification problem of the
geographical origin is not that easy to handle with the methodology developed so far.

A visualization as in Figure 30 is not possible since every model used more than
two or three features.

Sensitivity of the Results

As for the Variety-datasets the leave-one-out cross-validation method for the Geography-
datasets was used to analyze the sensitivity of the results. Here we observed that much
more features at least appeared in one model during the cross-validation procedure.
Since the results for the different data were quite similar, only the ones when using
the Geography-Height-Stand-dataset are provided in the following.

Therefore, Figure 31 shows the relative frequency of the feature on the vertical axis
and on the horizontal axis the rank of the feature, when they are ordered by their
relative frequency, is provided. This means that for example the point with rank 10
on the horizontal axis represents the feature with the 10th highest relative frequency.
Only features, or respectively their rank, which appear at least once are shown in the
graphic.

In Figure 31 we can observe that there are a few features which occurs in almost all
final models, but a much wider number of features occurs only a few - or in extreme
cases - only one time. This means that the wrapper models used for the classification
of the geographical origin are much more sensitive to small changes in the data than
for the variety classification.

This could also be a reason why the results for the standardized data are not as
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good as the original data. Here we see that more research in terms of models or even
data preparation is required to capture the complexity of this issue.

After all we can say that for the classification of the geographical origin there is clear
evidence that the chemical analysis has the potential to be a reasonable methodol-
ogy, but as mentioned above further development in terms of modeling and or data
preparation is required to provide satisfying results.

Figure 31: Relative frequency of the features in the final model (Geography-Height-Stand-

dataset).

After getting some kind of base line for every classification problem and according
dataset the following section describes the concept of preselection for wrapper models.

The application of this methodology is also available in later parts of the section and
we will see that an improvement in terms of accuracy, estimated by the leave-one-out
cross-validation method is possible in some cases.

7.2 Wrapper Model with Preselection

The general idea presented in this section is based on the combination of a filter model
with the application of a wrapper model on a reduced number of features. For a gen-
eral framework of wrapper models with preselection it is assumed that the available
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input data consists of a design matrix X ∈ Rn×p and a response vector y ∈ Rn.

This input data is used to perform a filter model, afterwards the rank of the fea-
tures is described by the permutation τ : {1, . . . , p}n → {1, . . . , p}n. This means that
τ(1) is the rank for the first feature, which is the first column of the design matrix X.
The inverse of the function τ at a point i, i.e. τ−1(i), describes the location, or column,
of a feature with rank i, i ∈ {1, . . . , p}, in the design matrix. With this function we
can rearrange the design matrix X by defining

X̃ := (xτ−1(1), . . . ,xτ−1(p)).

For the wrapper model only the best, according to the filter model, m features are
used. By definition these are the first m columns in the rearranged design matrix X̃
and in the following summarized as X̃m ∈ Rn×m. For a better understanding of the
procedure, Figure 32 provides an overview of the general framework of wrapper models
with preselection.

Input Data: X ∈ Rn×p
Filtered Data: X̃ ∈ Rn×p

Application of Wrapper
Model on X̃m ∈ Rn×mFinal model (classifier): f̂

Figure 32: A general framework of wrapper models with preselection.

With this framework the wrapper model with preselection contains of three parts:

� the filter model for the preselection and therefore an underlying filter,

� the wrapper model for the final model search, along with a classifier and a search
method,

� the hyperparameter m which needs to be specified.

The main advantage of the preselection is given by the parameter m which is able
to control the run time. The restriction of using the best m features, according to
the filter model, should allow similar performances compared to the unrestricted case.
However, by using the preselection the run time increases linearly in the number of
available features, which makes this method useful in situations where the number of
available features is quite large.
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Remark 7.2.
Since only univariate filter are used, the filter step could be parallelized. Nowadays
when multi-core computing is indeed very common this could be an additional run
time boost for these types of models.

In the following the results for the wrapper model with preselection, applied on all
available datasets and all three filters defined in Chapter 6, are compared. The wrapper
model used in the following also uses the mlc as classifier but in contrast to before
here the backward selection will be utilized.

7.2.1 Application to the Variety-Dataset

Since the results of the pure wrapper model are quite good, especially when applied on
the Variety-dataset, there is no intention to achieve a remarkably better performance.
However, always keep in mind that for datasets with very large features this method
is faster, even if it is not optimized. Also notice that for the variety classification
problem the number of features in the pure wrapper model is quite low. Therefore,
this is indeed not the best-case scenario for the preselection application.

In-Sample Classification Accuracy

As for the pure wrapper models, the first quantity we want to discuss is the in-sample
classification accuracy. Therefore, Figure 33 provides the in-sample classification ac-
curacy depending on the underlying dataset (shape of the points), the filter used for
the preselection (color of the points) and the maximum number of available features
m (horizontal axis).

Here we can observe two major aspects. The first one is the general tendency that
a higher number for the maximum number of available features, m, corresponds to a
higher in-sample classification accuracy. This behavior is clear since with the param-
eter m we control the maximum number of features used. Therefore, with a higher
number m we ”allow” the model to be more complex, which is the reason why the
in-sample classification accuracy tends towards 100% in all situations.

The second point of view refers to the performance of the different filters. Here we see
that the R2 filter starts with very poor results and needs a larger maximum number of
available features to achieve an in-sample classification accuracy which is of the same
magnitude as the results when the epbccm or the spca is applied.
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Figure 33: In-sample classification accuracy for the Variety-Area and the Variety-Height-

datasets.

Another interesting aspect is the number of features in the final model. Here all avail-
able information is used to train the classifier. Therefore, Figure 34 uses the same
method (shape, color, etc.) to provide the number of finally used features for the
different settings.

To provided a reference value for the model complexity, measured by the number
of included features, the natural upper bound of the maximum number of available
feature is used. Therefore, in Figure 34 the first median, in the geometric sense, shows
this upper bound.

In Figure 34 a similar picture as for the in-sample classification accuracy is observ-
able. Here we can verify that the R2 filter only performs similar to the other filters, in
terms of the in-sample classification accuracy, when the maximum number of available
features is high. In this case much more features are selected for the model, which
obviously increases the in-sample classification accuracy.

So far we can conclude that the R2 filter does not perform as good as the other
filters, and in general the preselection method results in much more complex models,
considering the number of selected features. Furthermore, most of the settings result
in a lower in-sample classification accuracy compared to the pure wrapper models
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(100%).

Figure 34: Number of finally selected features for the Variety-Area- and the Variety-Height-

datasets.

Leave-One-Out Cross-Validation

For estimating the prediction error, or classification accuracy when new samples are
classified, we again use the leave-one-out cross-validation method. Beside the com-
parability of the results for the pure wrapper models the reasons for this choice as a
performance measure are identical to the ones mentioned before.

Figure 35 provides the classification accuracy of the leave-one-out cross-validation
procedure, where the different settings and circumstances are identified by the color
or by the shape of the points. Additionally, the results of the pure wrapper models
are visualized by horizontal lines with different line types.

In Figure 35 we observe that again the preselection with R2 performs really poor
compared to all other methods. Beside this we get a very homogeneous picture. The
major part of the results are between a classification accuracy from approximately
75% up to 85%. This means that the preselection method can achieve similar results
as for the pure wrapper model.
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Figure 35: Leave-one-out cross-validation for the Variety-Area- and the Variety-Height-

datasets.

One drawback can be observed when a specific setting (i.e. a dataset, a filter and a
maximum number of available features m) is chosen and the sensitivity of the fea-
ture selection is considered. Therefore, the spca filter was applied on the Variety-
Height-Origin-dataset and a maximum number of 20 features was fixed. Analog to the
discussion of the sensitivity for the feature selection using the pure wrapper models,
Figure 36 shows the frequency of the finally chosen features during the leave-one-out
procedure.

Here again the relative frequency for the individual features is provided on the vertical
axis and the horizontal axis shows the rank of the features, when they are ordered by
their relative frequency.

In Figure 36 we see that the selected features are not that clear for this method
compared to the pure wrapper models. Here the feature which occurs in most of the
final models only achieves a relative frequency of slightly less than 40%. Therefore,
we can conclude that this methodology is much more sensitive against changes to the
data. This could be caused by the sensitivity of the filter according to changes of the
data which result in different sets of features for the wrapper model and obviously
different features in the final model.
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Figure 36: Relative frequency of the features in the final model (Variety-Height-dataset,

spca filter, at most 20 features available).

This example shows that we can indeed achieve an out-of-sample classification accu-
racy, estimated with the leave-one-out cross-validation method, of 89.47% which is
slightly higher than for the best results concerning the pure wrapper model. However,
the drawback that the methodology has is that it seems to be very unstable and data
dependent.

Conclusion for the Variety-Dataset

After discussing the performance of the wrapper model with preselection and illus-
trate the abilities and also limits of this method, applied on the Variety-datasets, one
aspect has not been discussed in detail before. This is the aspect of run time for this
methodology. Therefore, Figure 37 provides the different run times for performing the
leave-one-out cross-validation procedure and as we can see in almost all cases a run
time of less than three hours was required.

Furthermore, we can also observe that the spca needs more time to do the calcu-
lations than the epbccm or the R2 filter. This is not surprising since the spca needs
to numerically solve an optimization problem, whereas the other two filters can be
calculated directly.
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Remark 7.3.
Formally the R2 filter also solves an optimization problem, but for classical linear
regression this problem can be solved analytically.

Figure 37: Run time comparison for the Variety-datasets.

After all we can conclude that for the Variety-datasets the method of preselection can
improve the results, or at least produce similar results in a much shorter run time.
However, the drawback of this method is that it is very sensitive to the data and in
general not really robust concerning the Variety-datasets.

7.2.2 Application to the Geography-Dataset

As we could see for the Variety-datasets, the wrapper model with preselection can
achieve quite reasonable results but in the previous setting the pure wrapper model
had already achieved quite good results either. In this section the wrapper model with
preselection is applied to the Geography-datasets for which we already know that the
general classification ability is not as good as for the variety classification problem.

In-Sample Classification Accuracy

Analogous to the Variety-datasets we start with a brief discussion of the in-sample
classification accuracy. Figure 38 provides the results where again the different filter
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and the data used are visualized by the color and the shape of the points. Additionally,
the in-sample classification accuracy of the pure wrapper models is also provided by
horizontal lines with different line types.

Figure 38: In-sample classification accuracy for the Geography-Area- and the Geography-

Height-datasets.

As mentioned before we can observe that the maximum number of available features
directly corresponds to the in-sample classification. This means that for this setting
we can indeed reach 100% for the in-sample classification accuracy.

Nevertheless, the required number of selected features, as shown in Figure 39, verifies
that we can only achieve this high in-sample classification accuracy with very com-
plex models, compared to the four or five features selected by the pure wrapper model.

Furthermore, an interesting point worth to be mentioned is that for the Geography-
datasets the number of features in the final model differs widely between the different
filters used for the preselection. Especially when the maximum number of available
features is equal or greater than 20.

Here we can see that the classification problem for the geographical origin of the
grape samples is indeed more difficult than for the variety. This also coincides with
the aforementioned results from before and the conclusion in Chapter 6. Also, the fact
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that the R2 filter again produces the most complex models indicates that this filter is
not really practicable.

Figure 39: Number of finally used features for the Geography-Area- and the Geography-

Height-datasets.

From this first analysis we receive a similar picture as before but in this case the
direct control of the maximum number of available features and the backward selection
method of the wrapper model allows us to have models which are able to perfectly
separate our five different geographical origins when all samples are used to fit the
model.

Leave-One-Out Cross-Validation

Since the in-sample classification accuracy is only a first and not a final performance
measure, the prediction error or out-of-sample classification accuracy, estimated by
leave-one-out cross-validation, is provided in Figure 40 as for the Variety-datasets.

In Figure 40 we can observe two different findings. The first one is that in most
cases the wrapper model with preselection does not perform as well as the pure wrap-
per model which is why we actually lose performance by using this preselection method.

The other one is that a larger maximum number of available features leads to a de-
crease of the classification accuracy, which indicates again that the method is quite
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sensitive and not robust against changes of the data. To see this, Figure 41 shows,
as for the Variety-datasets before, the relative frequency of the finally chosen features
during the leave-one-out cross-validation procedure.

Figure 40: Leave-one-out cross-validation for the Geography-Area- and the Geography-

Height-datasets.

The model chosen to be analyzed in more detail is specified by using the Geography-
Area-Origin-dataset with the epbccm as filter for preselection and a maximum number
of available features of 10. This model achieves with its 68.54% the highest out-of-
sample classification accuracy, which is even higher than the 66.29% achieved by the
pure wrapper model applied on the same data.

Figure 31 shows that when a maximum number of 10 features is allowed for every
step of the leave-one-out cross-validation, only one specific feature is selected in each
step and 15 different features are selected, at least once, during the procedure.

Compared to the results from the Variety-dataset this seems quite stable but cau-
tion is required since around five features are selected in the final model (c.p. Figure
39) which means that an overlap of the features is much more likely than in the case of
the Variety-datasets were less features where selected in every step of the leave-one-out
cross-validation procedure.
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Figure 41: Relative frequency of the features in the final model (Geography-Area-dataset,

epbccm filter, at most 10 features available).

Conclusion for the Geography-Dataset

The results of the Geography-datasets are very similar compared to the ones of the
Variety-dataset. This means that the general methodology works very well in spe-
cific settings. For the Geography-datasets we saw that a smaller maximum number of
available features for the wrapper model performs better in terms of the out-of-sample
classification accuracy but a higher maximum number of available features increases
the in-sample classification accuracy up to 100%.

As for the Variety-datasets we observed for the Geography-datasets that the method-
ology is very sensitive to small changes to the data which makes it difficult to receive
clear, stable and well-proven comparable results.

To conclude this section, we can say that the main idea of preselection works and
achieves results which are in some cases very close or even better than the ones of the
pure wrapper models. But we also saw that the R2 filter performs very badly and the
reduction of the run time comes at the cost of instability.

To compare the run time for the Geography-datasets, Figure 42 provides the same
for the leave-one-out cross-validation procedure under different settings.
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Figure 42: Run time comparison for the Geography-Area- and the Geography-Height-

datasets.

7.3 Conclusion of Wrapper Models

In this chapter we can confirm the findings of Chapter 6 where we saw that the clas-
sification according to the variety of the grapes is much easier than the classification
according to the geographical origin. With the usage of the wrapper models, we found
a methodology which is able to achieve an out-of-sample classification accuracy of ap-
proximately 85% for the variety and around 65% for the geographical origin.

However, the usage of standardized data does not lead to clearly better results and in
the case of the Geography-datasets it decreases the out-of-sample classification accu-
racy.

The preselection method shows the possibility of reducing the run time but is not
fully developed at this point. Therefore, we observed instability in the selection pro-
cedure and further research in terms of used filters and an appropriate choice for the
maximum number of available features m would be required to get a working alter-
native. Nevertheless, we saw that with this procedure the out-of-sample classification
accuracy indeed can be increased with certain settings.



7.3 Conclusion of Wrapper Models 121

To conclude this chapter, we can say that so far the results are very promising and that
the chemical analysis is capable of stratifying the samples according to their variety.
However, for the classification of the geographical origin, up to now, we can say that
further work would be required to achieve satisfactory and practicable results.





8 Multinomial Logistic Model with
Penalization

As we have already observed the wrapper models generate quite reasonable results,
at least for the classification of the variety, but it also requires a lot of computational
resources and therefore its run time is quite long. In order to reduce the amount of
time, the method of preselection has not worked out in a satisfactory way which is
why the application of embedded models is provided in this chapter. Here, we will use
the lasso regularization because of its properties and widely usage in the case of high
dimensional classification problems (p >> n).

Before discussing the results for the Variety- and the Geography-datasets separately,
we will formulate and describe the optimization problem in our case and also mention
the used software for training and testing of the according classifier. As a last point, a
short discussion of the evaluation methods is provided, which basically coincides with
the ones of the wrapper model.

For the formulation of the optimization problem in the framework of embedded models
we start with Equation (3.4) from Chapter 3, stated in Definition 3.4 as

β̂ = argmin
β ∈ Rq

V (y,β,X) + α× penalty(β),

where y is the response vector, X the design matrix and β the parameter vector.

Here, we see that the loss function V (y,β,X) and the penalization term penalty(β)
need to be specified and additionally to the parameter vector β, the regularization
parameter α needs to be estimated as well.

Due to the fact that we want to use the multinomial logistic classifier (mlc) as classifier
(c.p. Definition 2.2) for the embedded model a natural definition of the loss function
is the negative log-likelihood function according to the underlying multinomial distri-
bution. If we want to formulate this properly, we have to start with the logit link as
defined in Chapter 2 by

log
pik
pi1

= xtiβk ⇔ pik = pi1 exp(xtiβk) k = 2, . . . , K.

123
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With the restriction that
∑K

k=1 pik = 1 for i = 1, . . . , n, which is clear by the definition
of the multinomial distribution, we get an explicit expression for the probability of the
reference class in the ith sample (pi1) by

1 =
K∑
k=1

pik = pi1 +
K∑
k=2

pi1 exp(xtiβk) = pi1

(
1 +

K∑
k=2

exp(xtiβk)

)
⇒ pi1 =

1

1 +
∑K

k=2 exp(xtiβk)
i = 1, . . . , n.

With this expressions for pik where k ∈ {1, . . . , K} and i ∈ {1, . . . , n} the equation
for the relevant part of the log-likelihood of a multinomial distribution and therefore
the relevant part for the loss function can be written as

V (y,β,X) := −l(β|y,X) =
n∑
i=1

K∑
k=1

yik log(
1

pik
) =

n∑
i=1

(
yi1 log(

1

pi1
) +

K∑
k=2

yik log(
1

pik
)

)

=
n∑
i=1

yi1 log

(
1 +

K∑
k=2

exp(xtiβk)

)
+

n∑
i=1

K∑
k=2

yik log

(
1 +

∑K
k=2 exp(xtiβk)

exp(xtiβk)

)
.

Notice that by using the notation of Chapter 2 we describe the parameter vector β
by β = (βt2, . . . ,β

t
K)t, where βk = (β0k, . . . , βpk)

t is the parameter vector according
to the class k. This is also important for the specification of the penalization term as
described in the following.

Since the lasso penalization favors sparse models and is widely used for high dimen-
sional problems we also use this penalization as defined in Chapter 3 for this work.
Therefore, we can write the penalization term as

penalty(β) := ||β||1 =

q∑
m=1

|βm| =
K∑
k=2

p∑
j=0

|βjk| =
K∑
k=2

||βk||1,

which leads to the final formulation of the cost function for our optimization problem
as

n∑
i=1

yi1 log

(
1 +

K∑
k=2

exp(xtiβk)

)
+

n∑
i=1

K∑
k=2

yik log

(
1 +

∑K
k=2 exp(xtiβk)

exp(xtiβk)

)
+ α

K∑
k=2

||βk||1.

Since there is no analytic solution for this optimization problem available only a nu-
merical approximation is available.

One algorithm used to find such numerical solutions for the optimization problem
is based on a coordinate descent approach but since a further discussion of the same
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would be inappropriate, a detailed description can be found in Friedman, Hastie, and
Tibshirani (2010).

Furthermore, the function cv.glmnet from the R package glmnet, implemented by
Friedman, Hastie, and Tibshirani (2010), allows us to use this algorithm and therefore
provides results for this type of estimation. Additionally, there is already a way of
estimating the value of the penalization parameter α via the cross-validation method
implemented.

Before the results of the application are provided some remarks on the evaluation
of the classifier are made. The first one is that the methods for evaluation are in
general the same than for the wrapper models; this should make the results more
comparable and easier for understanding.

The second one deals with the unbalanced design and the impact for the training
of the classifier, especially during the leave-one-out cross-validation procedure. As
we already mentioned the estimation of the penalization parameter α is done with
a cross-validation method, more precisely a leave-one-out cross-validation procedure.
This choice was made since for the Variety-datasets there are varieties available which
are only represented by three samples which cause computational issues when a clas-
sical k-fold cross-validation procedure is used. With the method described above we
get a special situation when performing the leave-one-out cross-validation procedure
in order to estimate the out-of-sample performance.

Let us assume we apply the general leave-one-out cross-validation procedure for esti-
mating the out-of-sample classification accuracy. Then we have the case that one of
these three available samples for a specific variety is left out because of the evaluation
procedure. Another one is left out due to the estimation of the penalization parameter.
This means that only one sample representing the specific variety is left in the training
set. Moreover, with the implementation of the glmnet function this causes an error
because it is not reasonable to fit a model on a data set where one class is represented
only by one sample.

Therefore, a leave-one-out cross-validation procedure for estimating the out-of-sample
classification accuracy is not possible and therefore also not provided for the Variety-
dataset in the following. Due to a lack of other methods to estimate the out-of-sample
performance with this data setting and since the results using the wrapper models
worked very well for the classification of the variety of the grapes we will focus more
on the improvement of the classification accuracy for the geographical origin in the
following sections.
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8.1 Application to the Variety-Dataset

As mentioned before only the in-sample classification accuracy and the number of non-
zero features can be provided for the Variety-datasets. Therefore, Table 30 provides
these quantities and also shows a problem concerning the number of features which
are finally selected. For this type of model the term selecting a feature means that the
according parameter value is non-zero.

Dataset # features classification accuracy (in-sample)

Area-Origin 77 100.00%

Area-Stand 77 100.00%

Height-Origin 68 100.00%

Height-Stand 68 100.00%

Table 30: Results for the embedded model applied on the Variety-datasets.

Since 68 or 77 features are finally selected for the classifier, we can observe a scenario
where the lasso penalization fails in terms of selecting an appropriate number of fea-
tures. Due to the fact that this is not only a large number compared to the results for
the wrapper model, but also compared to the sample size itself the results are at least
questionable.

Also notice that each feature is linked to nine values in the parameter vector since
every class, except for the reference class, gets its own parameter vector under the
multinomial logistic model (c.p. Chapter 2). This shows that the model we are deal-
ing with is clearly a case of overparametrization.

Therefore, with this number of selected features a detailed discussion of the coeffi-
cients is not constructive and we can only say that the approach using the embedded
model does fail because of the experimental design in general and the shape of the
problem (p >> n) for this case in particular.

8.2 Application to the Geography-Dataset

As for the Variety-datasets an overview of the results, containing the number of non-
zero features, the in- and out-of-sample classification accuracy along with the run
time for the leave-one-out cross-validation procedure, for the Geography-datasets is
provided in Table 31. In this case it is possible to perform the leave-one-out cross-
validation procedure because all regions are represented by at least four samples.
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Dataset # features
classification accuracy

run time cross-validation [min]
in-sample out-of-sample

Area-Origin 91 100.00% 80.90% 41.86

Area-Stand 91 100.00% 80.90% 40.99

Height-Origin 74 98.88% 70.79% 42.23

Height-Stand 74 98.88% 70.79% 42.43

Table 31: Results for the embedded model applied on the Geography-datasets.

If the number of features in the final model is considered, we can observe that the
number of selected features is even larger than for the Variety-datasets. This again
shows that we are dealing with models that are very likely to be overparameterized.
But keep in mind that the final number of parameters is the product of the number
of selected features and the number of available classes. Therefore, we observe that
a model with less parameters is required to classify the geographical regions of the
grapes rather than the variety. However, this statement must really be handled with
care since both classification problems and the according data differ in many ways and
the observed results should not be used for clear statements since the models itself do
not seem to be as reliable as the pure wrapper models.

However, the out-of-sample classification accuracy of over 70% and up to 80% is quite
impressive and proves to be the best result we achieved for this problem throughout all
discussed methods. Also, the run time of under one hour is quite impressive compared
to the pure wrapper models. This shows the advantage of the one step procedure even
when the optimization step is more complex and the additional regularization param-
eter α needs to be estimated. We are of course much faster than when a sequence of
several optimization steps is required.

As a final point a short sensitivity analysis in form of the relative frequency of the se-
lected features in the final models during the leave-one-out cross-validation procedure
is presented in Figure 43.

There we can observe that the frequencies of features selected in the final models
are identical for the original and standardized versions of the data. Combined with
the results from Table 31 we can conclude that the data standardization does not
affect the results of the embedded models.

For putting the relative frequency of the selected features in the final model into
context we have a problem because so many features were selected. Therefore, a num-
ber of around 200 features which occur at least in one model during the leave-one-out
cross-validation procedure is very low compared to the number of features in the final
model when using all data between 74 and 91.
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Notice that in our case many features are selected which means that every feature
which is slightly significant occurs in the model. This means that the results seem to
be stable but are difficult to compare to the results of the wrapper model.

Figure 43: Relative frequency of the features in the final model (Geography-datasets).

As a last point we want to take a closer look at the wrong classifier samples during the
leave-one-out cross-validation procedure. Therefore, Table 32 provides the confusion
table when the embedded model is applied on the original Geography-Area-dataset
with the difference that here for each sample a individual model was fitted.

Predicted \True LEITHABERG SLO SUED VL WEST

LEITHABERG 1 0 0 0 0

SLO 0 17 0 0 0

SUED 0 0 24 3 2

VL 3 0 5 24 2

WEST 0 0 0 2 6

Table 32: Confusion table for the original Geography-Area-dataset.

As Table 32 shows most samples from LEITHABERG are classified wrong which could
be caused by the small sample size for this region. Therefore, the classifier underesti-
mated the according probability. As mentioned in previous chapters the regions SUED
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and VL seem to have grapes of similar chemical structures and are difficult to distin-
guish under our circumstances, this can also be observed when the embedded model
is applied. As already mentioned in Chapter 6, this coincides with the geographical
distance of these regions.

Another point worth to be mentioned in this context is that the region VL has different
geological properties which are not discussed in further detail, but these results could
also be a hint that a stratification according to the soil and not the political regions
would lead to a better determination of the geographical origin.

But all these conclusions and statements are based on the results of a class of models
where the results are questionable. Therefore, further investigation and research would
be required to verify or disprove these statements.

8.3 Conclusion of Embedded Models

The approach using the embedded models is clearly the one with the shortest run
time, when a model with the ability to predict the classes is used. Furthermore, we
also observed that this approach selects the most features, which is the problem with
this type of models in our application. This is because here clearly more features are
selected than reasonable, especially when the number of fitted parameters is compared
to the sample size.

The number of parameters indeed exceeds the number of available samples which
is always a problem in the context of statistical modeling because this indicates that
the results, which are based on numerical computation, do not approximate a valuable
or practicable solution.

Another problem we observe in this chapter is the drawback due to the unbalanced de-
sign. This restricts the methods for evaluation and testing of the according classifiers
and the general methodology in a way that we have not observed in other chapters
before. Maybe a setting where more observations are available could lead to stable
and more meaningful results, but with this setting the high number of out-of-sample
classification accuracy achieved by the embedded models is very questionable.

Furthermore, for the search of very significant features which should in a next step
allow to identify special chemical compounds, it seems that under the provided cir-
cumstances this method is not really constructive and practicable. This means that
either further research for the embedded models or other approaches, like the wrapper
models, are required.
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Abbreviation German Name Further Information

SLO Slowenien https://en.wikipedia.org/wiki/Slovenia

AUT Österreich https://en.wikipedia.org/wiki/Austria

STMK Steiermark https://en.wikipedia.org/wiki/Styria

BGLD Burgenland
https://en.wikipedia.org/wiki/Burgenla
nd

NÖ Niederösterreich
https://en.wikipedia.org/wiki/Lower Au
stria

SÜD Südsteiermark
https://en.wikipedia.org/wiki/Districtus
Austriae Controllatus#DAC regions

WEST Weststeiermark
https://en.wikipedia.org/wiki/Districtus
Austriae Controllatus#DAC regions

VL Vulkanland
https://en.wikipedia.org/wiki/Districtus
Austriae Controllatus#DAC regions

EISEN Eisenberg
https://en.wikipedia.org/wiki/Districtus
Austriae Controllatus#DAC regions

LEITHA Leithaberg
https://en.wikipedia.org/wiki/Districtus
Austriae Controllatus#DAC regions

NSEE Neusiedlersee
https://en.wikipedia.org/wiki/Districtus
Austriae Controllatus#DAC regions

WV Waldviertel
https://en.wikipedia.org/wiki/Districtus
Austriae Controllatus#DAC regions

Table 33: All geographical regions with their abbreviations.
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Abbreviation German Name Further Information

BF Blaufränkisch
https://en.wikipedia.org/wiki/Blaufr
%C3%A4nkisch

BW Blauer Wildbacher
https://en.wikipedia.org/wiki/Wildbach
er

CH/MO Chardonnay/Morillon
https://en.wikipedia.org/wiki/Chardonn
ay

CON Concorde -

CS Carbernet Sauvignon
https://en.wikipedia.org/wiki/Cabernet
Sauvignon

FU Furmint https://en.wikipedia.org/wiki/Furmint

GB Grauburgunder https://en.wikipedia.org/wiki/Pinot gris

GM Gelber Muskateller
https://en.wikipedia.org/wiki/%0D%
0AMuscat Blanc %C3%A0 Petits Grains

Gold-M Gold Muskateller
https://en.wikipedia.org/wiki/Moscato
Giallo

GV Grüner Veltliner
https://en.wikipedia.org/wiki/Gr%C3%
BCner Veltliner

MER Merlot https://en.wikipedia.org/wiki/Merlot

PN Blauburgunder https://en.wikipedia.org/wiki/Pinot noir

RADRAM Radgonska Ramina -

RIES Riesling https://en.wikipedia.org/wiki/Riesling

R-RIES Rheinriesling https://en.wikipedia.org/wiki/Riesling

SAM Sämling https://en.wikipedia.org/wiki/Scheurebe

SB Sauvignon Blanc
https://en.wikipedia.org/wiki/Sauvigno
n blanc

SIL Grüner Sylvaner https://en.wikipedia.org/wiki/Silvaner

ST-L Sankt Laurent
https://en.wikipedia.org/wiki/St. Lauren
t (grape)

SYR Syrah https://en.wikipedia.org/wiki/Syrah

TR Traminer https://en.wikipedia.org/wiki/Savagnin

WB Weißburgunder
https://en.wikipedia.org/wiki/Pinot blan
c

WR Welschriesling
https://en.wikipedia.org/wiki/Welschries
ling

ZW Zweigelt https://en.wikipedia.org/wiki/Zweigelt

Table 34: All grape varieties available in this project with their abbreviations.
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System Part Specification

Hardware

Processor
Intel(R) Core(TM) i5-8250U CPU @
1.60GHz 1.80GHz

Installed RAM 8.00 GB (7.88 GB usable)

System type
64-bit operating system, x64-based pro-
cessor

Graphics card (on-board) Intel(R) UHD Graphics 620

Graphics card (dedicated) NVIDEA GeForce MX150

Software

Operating system Windows 10 Home (Version 1909)

Statistic software R version 3.6.3 (2020-02-29)

Integrated development environment
(IDE)

RStudio Version 1.1.463

Table 35: Technical specification of the laptop used to perform the analysis.
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correct_features <- function(df)

{

# Rename the columns for input df to standardize the names

colnames(df) = c(’Samples’, ’Attribute’, ’Time’, ’Feature’)

# Only use the qc-measurements (no attributes available)

df_qc = df[!complete.cases(df), 3:4]

# Search for the appropriate model

threshold_p_value = c(0.05, 0.05, 0.01)

model_degree = 0

for(i in 3:1)

{

model = lm(

formula = Feature ~ poly(Time, degree = i, raw = TRUE),

data = df_qc

)

if(summary(model)$coefficients[i+1, 4] <= threshold_p_value[i])

{model_degree = i

break

}

}

# Adjust the output according to the model degree

if(model_degree == 3)

{return(rep(NA, times = length(df$Feature)))}

if(model_degree %in% 1:2)

{

predict_qc = predict.lm(

object = model, newdata = df, type = ’response’

)

center = floor(mean(df$Time)):ceiling(mean(df$Time))

center_point = round(mean(predict_qc[center]))

correction_factor = center_point / predict_qc

return(correction_factor * df$Feature)

}

if(model_degree == 0)

{return(df$Feature)}

}
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Figure 44: Mixture for the compounds used to generate the substance for the QC measure-

ments.
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