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Abstract

In this thesis, we are dealing with the paper „An asymptotic thin shell condition
and large deviations for random multidimensional projections“ by Kim, Liao, and
Ramanan, where a large deviation analogue to Klartag’s famous central limit theorem
is proven for various convex bodies under an asymptotic thin-shell condition, unifying
several of the results that have appeared in the past 3 years.

The introduction provides a brief historical overview of large deviation theory, fol-
lowed by a short discussion about related works. In the preliminary chapter we in-
troduce the formal background and some fundamental results together with a few
examples. In the main part we state the necessary thin-shell assumptions and present
most of the results from ["An asymptotic thin shell condition and large deviations for
random multidimensional projections". arXiv:1912.13447v2 (2020)]. In particular, we
show that certain classes of Orlicz balls and Gibbs measures satisfy those assump-
tions.
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Kurzfassung

In dieser Diplomarbeit beschäftigen wir uns mit der Arbeit „An asymptotic thin shell
condition and large deviations for random multidimensional projections“ von Kim,
Liao, und Ramanan. Ausgehend von Klartag’s berühmten zentralen Grenzwertsatz
werden hier Resultate aus der Theorie der großen Abweichungen für verschiedene
konvexe Körper, unter Annahme einer asymptotischen „thin-shell“ Bedingung, be-
wiesen.

In der Einleitung wird ein Überblick über die historische Entwicklung der Theo-
rie der großen Abweichungen gegeben, gefolgt von einer Disskusion der aktuellen
Forschung. Im präliminaren Kapitel wird die Theorie der großen Abweichungen
zusammen mit einigen grundlegenden Resultaten und diversen Anwendungen eige-
führt. Im Hauptteil der Arbeit formulieren wir die nötigen „thin-shell“ Annahmen
und präsentieren die meisten Resultate aus ["An asymptotic thin shell condition and
large deviations for random multidimensional projections". arXiv:1912.13447v2 (2020)].
Im Speziellen zeigen wir, dass bestimmte Orlicz Bälle und Gibbs Maße diese Annah-
men erfüllen.
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2 Introduction

The history of large deviation theory, as many other mathematical topics, has its ori-
gins in physics. In the second half of the 19th century one was interested in using
probabilistic methods to study the behaviour of systems including many particles,
such models are used for example in fluid mechanics or magnetism. Many authors
mention in this context the 1877 published work [6], where Boltzmann was interested
in entropy of thermodynamic systems (see also [12]). It took some time before a sys-
tematic mathematical approach followed. In 1938 an important work of Cramér was
published (see [8] for a commented and translated version). Cramér was interested
in improving the normal approximation, to this end he was looking for appropri-
ate correction terms. He introduced new techniques for his proofs, like the Esscher
transform, also known as exponential tilting, and also the Legendre transform of the
cumulant generating function appears for the first time in this context. After this
groundbreaking work, it took another 30 years, before Varadhan (see [26]) introduced
a general approach to large deviations. In the following years Varadhan and Donsker
published several papers and developed the theory (see [27] for references and further
information). Parallel to that Freidlin and Wentzell (see [13] for a translated version of
the original work) developed their approach. They had the idea to solve ordinary dif-
ferential equations by considering a similar family of stochastic differential equations
containing small random perturbations. Under suitable conditions the limit theorems
of probability theory appear if one considers the family of respective solutions. In
this context the study of large deviations came into focus. In [11] one finds a formal
introduction to statistical mechanics and the relation to large deviation theory.

In recent years large deviations appeared in various mathematical fields. In partic-
ular applications in the context of asymptotic geometric analysis became increasingly
popular. In [4] the authors defined a certain concentration hypothesis, referred to as
the „thin shell“ condition. The latter plays a major role in Klartag’s famous CLT (see
[20]) for log-concave, isotropic distributions. Roughly speaking, Klartag proved that
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for sufficiently large n and „most“ directions θ(n) ∈ Sn−1 we have

⟨θ(n), X(n)⟩ ≈ N (0, 1).

Based on this, the question of large deviation results concerning random projections
of high dimensional random vectors came into focus. In 2016 Gantert, Kim and Ra-
manan (see [14]) looked at Cramér’s theorem from a geometrical point of view and
investigated that in the case of vectors X(n) with iid components, ⟨θ(n), X(n)⟩ satisfies
an LDP for „most“ sequences of directions {θ(n)}n∈N. The corresponding rate function
is independent of θ(n) and does not coincide with the one from Cramér’s theorem.
In that sense Cramér’s theorem is atypical. In 2017 Gantert, Kim and Ramanan [15]
proved respective large deviation principles for X(n) uniformly distributed on n di-
mensional `p balls and independent random directions θ(n). Moreover they showed
„quenched“ large deviation principles for fixed directions θ(n). In a short time several
related works were published, where either one dimensional projections are analysed
or scaled Euclidean norms of multidimensional projections (see [1], [16]). In most pa-
pers one restricts to random vectors uniformly distributed on `p balls or spheres (see
[22]), where one uses well known probabilistic representations. An exception had been
proved by Kabluchko, Prochno and Thäle for empirical spectral measures of random
matrices in Schatten class unit balls [17]. In the recent work [2] the authors established
a relation of large deviations for isotropic log-concave random vectors to the famous
KLS conjecture. Eventually, in [18] the authors succeeded to treat quite general classes
of sequences of random variables X(n) (including the special case of uniform distri-
butions on `p balls). Moreover, large deviation principles for non-scalar projections
on k-dimensional subspaces are treated, where also the case k = kn with growing kn is
analysed. Especially the situation of kn → ∞ is not easy to handle, the crucial idea is
the transition to empirical measures, where one can use a more familiar setting.
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3 Preliminaries

3.1 Results and techniques from large deviation theory

3.1.1 Formal setting and basic properties

In this section we will establish several auxiliary results and present techniques, which
will be needed for the main part of the thesis. Let us start with the formal setting
required in order to define an abstract large deviation principle.

Definition 3.1.1. Let (X , τ) be a topological space, which we will call a Polish space iff all of
the following are fulfilled:

1. X contains a countable dense subset.

2. There is a metric d such that τ is induced by d.

3. The metric space (X , d) is complete.

The following definitions and results can be found in [9, Chapter 1].

Definition 3.1.2. Let I ∶ X → [0,∞] not identically ∞ be a lower semi-continuous function,
i.e. for all α ≥ 0

ψI(α) ∶= {x ∈ X ∣ I(x) ≤ α}

is a closed subset of X . Then I is called a rate function. Moreover, if ψI(α) is compact, then I

is called a good rate function (GRF).

Lemma 3.1.1. A rate function I attains its infimum over every compact non-empty set. If I

is a GRF, then this is even true for any closed set.

Proof. Let K ⊆ X be a non-empty compact set and consider the case infx∈K I(x) < ∞.
Then there exists a convergent and strictly decreasing sequence {an}n∈N ⊆ R with

lim
n→∞

an = inf
x∈K

I(x).
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We introduce the sets Kn = K ∩ ψI(an) and claim that they are non-empty. Assume
there exists n ∈ N with Kn = ∅, then for all x ∈ K ∶ I(x) > an and hence

inf
x∈K

I(x) ≥ an > inf
x∈K

I(x),

a contradiction. Moreover, Kn is closed as intersection of a compact set with a closed
set. The sets Kn are even compact since X is a metric space, where closed subsets of
compact sets are again compact. Cantor’s theorem 6.0.5 implies that their intersection
is non-empty, hence we find x0 ∈ ⋂n∈N Kn with x0 ∈ K and I(x0) = infx∈K I(x).

Now assume I is a GRF and take a closed set C ⊆ X . If infx∈C I(x) = ∞, then
the assertion is true. If infx∈C I(x) = M < ∞, then for the non-empty compact set
K = C ∩ψI(M + 1) we have

inf
x∈C

I(x) = inf
x∈K

I(x)

and the result follows from the one for compact sets.

Using the previous notation, we can now define a general LDP.

Definition 3.1.3. Let (X , d) be a Polish space with Borel σ-algebra B(X ). A family {µε}ε>0

of probability measures satisfies an LDP with rate function I iff for all Γ ∈ B

− inf
x∈Γ̊

I(x) ≤ lim inf
ε→0

ε log µε(Γ) ≤ lim sup
ε→0

ε log µε(Γ) ≤ − inf
x∈Γ

I(x),

where Γ̊ and Γ denote the interior and the closure of Γ respectively.

Alternatively one can define an LDP via the following inequalities.
a) (Upper bound) For every closed F ⊆ X

lim sup
ε→0

ε log µε(F) ≤ − inf
x∈F

I(x). (3.1.1)

b) (Lower bound) For every open G ⊆ X

− inf
x∈G

I(x) ≤ lim inf
ε→0

ε log µε(G). (3.1.2)

Remark. This definition is possible for any topological space, we do not need to restrict
on Polish spaces here. But we will usually deal with Polish spaces in this thesis.

Remark. One can easily show that a rate function for an LDP is unique (see e.g.
Lemma 4.1.4 in [9]).
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Most of the time we will work with random variables, where we want to find asso-
ciated LDPs, hence we extend our definition.

Definition 3.1.4. Consider a family of random variables {Xε}ε>0 defined on a common prob-
ability space (Ω,F , P) taking values in a Polish space X . We say that {Xε}ε>0 satisfies an
LDP on X if the respective family of distributions {µε}ε>0 with µε(⋅) ∶= P[Xε ∈ ⋅] satisfies an
LDP.

Since we want to establish some techniques, beginning with the so-called contraction
principle, we will now define the notion of weak LDP.

Definition 3.1.5. (weak LDP)
A family of probability measures {µε}ε>0 is said to satisfy the weak LDP with rate function I

if the upper bound 3.1.1 holds for all compact sets and the lower bound 3.1.2 holds for all open
sets.

Definition 3.1.6. (exponential tightness)
A family of probability measures {µε}ε>0 on X is exponentially tight if for every α <∞, there
exists a compact set Kα ⊆ X such that

lim sup
ε→0

ε log µε(Kα) < −α.

The next lemma gives a useful relation between weak and full LDPs as defined in
Definition 3.1.3.

Lemma 3.1.2. (Lemma 1.2.18 of [9] )
Let {µε}ε>0 be an exponentially tight family.
a) If the upper bound 3.1.1 holds for all compact subsets of X , then it also holds for all closed
sets.
b) If the lower bound 3.1.2 holds for all open sets, then I is a good rate function.

This means, if an exponentially tight family of measures satisfies the weak LDP with
rate function I, then I is a GRF and the full LDP holds.

3.1.2 Contraction principles and exponential equivalence

One may be interested in proving that a certain family of measures satisfies an LDP,
which seems quite delicate at this point. A very useful tool is the contraction principle,
which we will establish in this subsection. Suppose a Polish space (X , d) with induced
topology τ. Recall that a base A ⊆ τ of τ is a system of open sets such that for every
G ∈ τ and x ∈ G there exists an A ∈ A with x ∈ A ⊆ G.
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Theorem 3.1.3. (Theorem 4.1.11 in [9])
Let A be a base of the topology of X . For every A ∈ A define

LA ∶= − lim inf
ε→0

ε log µε(A)

and for x ∈ X
I(x) ∶= sup

{A∈A∶x∈A}
LA.

Suppose that for all x ∈ X

I(x) = sup
A∈A∶x∈A

− lim sup
ε→0

ε log µε(A).

Then {µε}ε>0 satisfies the weak LDP with rate function I.

The next theorem may be considered as the converse statement to Theorem 3.1.3.

Theorem 3.1.4. (Theorem 4.1.18 in [9])
Suppose that {µε}ε>0 satisfies an LDP with rate function I. Then for any baseA of the topology
of X , and for any x ∈ X ,

I(x) = sup
A∈A∶x∈A

− lim inf
ε→0

ε log µε(A)

= sup
A∈A∶x∈A

− lim sup
ε→0

ε log µε(A).

Theorem 3.1.5. (Contraction principle, Theorem 4.2.1 in [9])
Let X and Y be Polish spaces and f ∶ X → Y be a continuous function. Consider a good rate
function I ∶ X → [0,∞].
a) For each y ∈ Y define

I′(y) = inf{I(x) ∶ x ∈ X , y = f (x)}.

Then I′ is a GRF in Y , where the infimum over the empty set is taken as ∞.
b) If I controls the LDP associated with a family of probability measures {µε}ε>0 on X , then I′

controls the LDP associated with the family of probability measures {µε ○ f −1}ε>0 on Y .

Proof. a) Clearly, I′ is non-negative. Since f −1({y}) is a closed set for y ∈ f (X ), we
can use that a GRF attains its infimum over all non-empty closed sets by Lemma 3.1.1.
Hence, we see

ψI′(α) = {y ∶ I′(y) ≤ α} = { f (x) ∶ I(x) ≤ α} = f (ψI(α)).
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Since ψI(α) is compact in X , f (ψI(α)) is compact in Y an thus I′ is a GRF.
b)The definition of I′ implies that for any A ⊆ X ,

inf
y∈A

I′(y) = inf
x∈ f−1(A)

I(x).

Since f is continuous, the set f −1(A) is open (closed) in X for any open (closed) A ⊆ Y .
Thus the LDP for {µε ○ f −1}ε>0 follows as a consequence of the LDP for {µε}ε>0.

The contraction principle will appear frequently, since we often use continuous map-
pings to transfer random variables from one space to another. Hence, the following
corollary is very useful and can be deduced directly from Theorem 3.1.5.

Corollary. Let X and Y be two Polish spaces and f ∶ X → Y a continuous mapping.
Further we consider a family of random variables {Xε}ε>0 defined on a common prob-
ability space (Ω,F , P) taking values in X . We assume that {Xε}ε>0 satisfies an LDP
with GRF I. Then Yε ∶= f (Xε) satisfies an LDP in Y with GRF I′ ∶ Y → [0,∞],

I′(y) ∶= inf
x∈ f−1({y})

I(x). (3.1.3)

Proof. The claim follows immediately by applying Theorem 3.1.5 to the laws µε(⋅) ∶=
P[Xε ∈ ⋅].

Also the following lemma will appear several times in the main part of this thesis.
For the proof we make use of the previous theorems.

Lemma 3.1.6. (Exercise 4.2.7 in [9])
Consider a Polish space X and assume that for all ε > 0, (Xε, Yε) is distributed according to
the product measure µε ⊗ νε on BX ⊗BX (the product of the Borel sigma-algebra’s). Assume
that {µε}ε>0 satisfies the LDP with the GRF IX while {νε}ε>0 satisfies the LDP with the GRF
IY, and both {µε}ε>0 and {νε}ε>0 are exponentially tight. Then for any continuous function
F ∶ X ×X → Y , the family of laws induced on Y by Zε = F(Xε, Yε) satisfies the LDP with
GRF IZ ∶ X ×X → [0,∞],

IZ(z) ∶= inf
{(x,y)∈X×X ∶z=F(x,y)}

IX(x)+ IY(y).

Proof. We prove that under the assumptions, {(Xε, Yε)}ε>0 satisfies the LDP with GRF
IX + IY. Then the representation of IZ follows as an immediate consequence of the
contraction principle.
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First we want to show that the product measure satisfies the weak LDP. In the fol-
lowing calculation we will use Theorem 6.0.9 (see Appendix) stating BX×X = BX ×BX
as well as Theorem 3.1.3 and Theorem 3.1.4. Note that for any A ∈ A we have
A = A1 × A2, where Ai ∈ BX for a given base A of the product topology. As in Theorem
3.1.3 we consider

Ĩ(x, y) = sup
{A∈A∶(x,y)∈A}

− lim inf
ε→0

ε log µε ⊗ νε(A).

Using Theorem 3.1.4 for IX and IY

IX(x)+ IY(y) = sup
A1×A2∈A∶x∈A1

− lim sup
ε→0

ε log µε(A1)+ sup
A1×A2∈A∶y∈A2

− lim sup
ε→0

ε log νε(A2)

= sup
A1×A2=A∈A∶(x,y)∈A

− lim sup
ε→0

ε log µε(A1)− lim sup
ε→0

ε log νε(A2)

≤ sup
A1×A2=A∈A∶(x,y)∈A

− lim sup
ε→0

ε log µε ⊗ νε(A1 × A2)

≤ sup
A1×A2=A∈A∶(x,y)∈A

− lim inf
ε→0

ε log µε ⊗ νε(A1 × A2) = Ĩ(x, y).

On the other hand, again applying Theorem 3.1.4, we have that

Ĩ(x, y) = sup
A1×A2=A∈A∶(x,y)∈A

− lim inf
ε→0

ε log µε ⊗ νε(A1 × A2)

≤ sup
A1×A2=A∈A∶(x,y)∈A

− lim inf
ε→0

ε log µε(A1)− lim inf
ε→0

ε log νε(A2)

= sup
A1×A2∈A∶x∈A1

− lim inf
ε→0

ε log µε(A1)+ sup
A1×A2∈A∶y∈A2

− lim inf
ε→0

ε log νε(A2)

= IX(x)+ IY(y).

This shows Ĩ(x, y) = IX(x) + IY(y) and by using Theorem 3.1.3, we can see that
{(Xε, Yε)}ε>0 satisfies the weak LDP with rate function Ĩ. Now we can show that
{µε ⊗ νε}ε>0 is exponentially tight. Choose compact sets K1

α, K2
α such that

lim sup
ε→0

ε log µε(K1
α) < −α/2

lim sup
ε→0

ε log νε(K2
α) < −α/2.
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Then for Kα = K1
α ×K2

α it follows that

lim sup
ε→0

ε log µε ⊗ νε(Kα) < −α.

Applying Lemma 3.1.2 shows that Ĩ is a GRF and the LDP is satisfied. This concludes
the proof.

There is also an inverse statement to the contraction principle, where one has to
assume a more restrictive setting.

Theorem 3.1.7. (Inverse contraction principle, Theorem 4.2.4 in [9])
Let X and Y be two Polish spaces. Suppose that g ∶ Y → X is a continuous bijection, and that
{νε}ε>0 is an exponentially tight family of probability measures on Y . If {νε ⊗ g−1}ε>0 satisfies
the LDP with the GRF I ∶ X → [0,∞], then {νε}ε>0 satisfies the LDP with GRF I′ = I ○ g.

The proof is elementary but a little bit lengthy, and so we shall only present it in the
appendix (see 6). We want to deduce a corollary, which we will later use in the main
part of this thesis.

Corollary. Suppose two Polish spaces (X , τ1) and (X , τ2) with τ2 ⊆ τ1. Let {µε}ε>0 be
an exponentially tight family of probability measures on (X , τ1). If {µε}ε>0 satisfies an
LDP with respect to the topology τ2 that is coarser than τ1, then the same LDP holds
with respect to the topology τ1.

Proof. The proof follows directly from the inverse contraction principle using the iden-
tity mapping g ∶ (X , τ1)→ (X , τ2), x ↦ x, which is continuous because τ2 ⊆ τ1.

Remark. In [9] Theorem 3.1.7 and Corollary 3.1.2 are stated in a more general setting,
but we will only need those results in the case of Polish spaces.

In many situations it is possible to show that a family of laws {µε}ε>0 satisfies an
LDP by showing that {µε}ε>0 is „equivalent“ to {µ̃ε}ε>0, where the latter is known to
satisfy a certain LDP. This leads to the notion of exponential equivalence.

Definition 3.1.7. Let Y be a Polish space with metric d. The probability measures {µε}ε>0 and
{µ̃ε}ε>0 are called exponentially equivalent if there exist probability spaces {(Ω,Bε, Pε)}ε>0

and two families of Y-valued random variables {Zε}ε>0 and {Z̃ε}ε>0 with joint laws {Pε}ε>0

and marginals {µε}ε>0 and {µ̃ε}ε>0, respectively, such that the following condition is satisfied:
For each δ > 0, the set {ω ∈ Ω ∣ (Zε, Z̃ε) ∈ Γδ} is Bε measurable, and

lim sup
ε→0

ε log Pε(Γδ) = −∞,
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where
Γδ = {(y, ỹ) ∶ d(y, ỹ) > δ}.

Remark. In [9] this definition is stated in a more general setting, here one could omit
the measurability assumption.

Remark. If we work with random variables defined on a common probability space
(Ω,F , P) and taking values in a Polish space (X , d), then the previous definition can
be simplified to

lim sup
ε→0

ε log P[d(Zε, Z̃ε) > δ] = −∞

for all δ > 0.

Theorem 3.1.8. Consider two families of random variables {Zε}ε>0 and {Z̃ε}ε>0, defined on
a common probability space mapping into a Polish space (X , d). If {Zε}ε>0 and {Z̃ε}ε>0 are
exponentially equivalent, one of them obeys the LDP with a GRF I iff the other one does as
well.

Proof. We are providing a direct proof here, in [9] a more general theory is introduced,
Theorem 3.1.8 is then a special case.
Assume that {Zε}ε>0 satisfies an LDP with GRF I and take a closed set C. For δ > 0 we
consider the δ neighbourhood Cδ of C, i.e. Cδ = {x ∈ X ∶ ∃y ∈ C ∶ d(x, y) ≤ δ}. Then we
get the following upper bound,

lim sup
ε→0

ε log P[Z̃ε ∈ C] = lim sup
ε→0

ε log (P[Z̃ε ∈ C, d(Z̃ε, Zε) > δ]+P[Z̃ε ∈ C, d(Z̃ε, Zε) ≤ δ])

≤ lim sup
ε→0

ε log (P[d(Z̃ε, Zε) > δ]+P[Zε ∈ Cδ]),

where we used that if d(Z̃ε, Zε) ≤ δ, then [Z̃ε ∈ C] ⊆ [Zε ∈ Cδ]. For a, b > 0 we note the
elementary inequality

log(a + b) ≤ log(2(a ∨ b)) = log 2+ log a ∨ log b.

In the lim sup the log 2 term vanishes, hence

lim sup
ε→0

ε log (P[d(Z̃ε, Zε) > δ]+P[Zε ∈ Cδ])

≤ lim sup
ε→0

ε( log P[d(Z̃ε, Zε) > δ]∨ log P[Zε ∈ Cδ])

= lim sup
ε→0

ε( log P[d(Z̃ε, Zε) > δ]∨ log P[Zε ∈ Cδ])
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= lim sup
ε→0

ε log P[Zε ∈ Cδ]

≤− inf
x∈Cδ

I(x).

In the first equality we used the exponential equivalence of {Z̃ε}ε>0 and {Zε}ε>0. If
we infimize over all δ > 0, the expression in the last line becomes − infx∈C I(x), since I

is a GRF.
The lower bound can be shown by a local argument, thus take O ⊆ X open and

x ∈ O. Now we can find an open neighbourhood U around x and some δ > 0, such that
U ⊆ Uδ ⊆ O. Then

P[Zε ∈ U] = P[Zε ∈ U, d(Z̃ε, Zε) > δ]+P[Zε ∈ U, d(Z̃ε, Zε) ≤ δ]
≤ P[d(Z̃ε, Zε) > δ]+P[Z̃ε ∈ Uδ]
≤ P[d(Z̃ε, Zε) > δ]+P[Z̃ε ∈ O].

Similar to the upper bound, we have

−I(x) ≤ − inf
y∈U

I(y)

≤ lim inf
ε→0

ε log P[Zε ∈ U]

≤ lim inf
ε→0

ε( log P[d(Z̃ε, Zε) > δ]∨ log P[Z̃ε ∈ O])

= lim inf
ε→0

ε log P[Z̃ε ∈ O].

Now we can take the supremum over all x ∈ O on the left hand side to receive the
lower bound.

We now restrict on a discrete setting. Consider a sequence of probability measures
{µn}n∈N ⊆ P(X ), where (X , d) is a Polish space. In this case we are also interested in
the speed of the LDP, i.e. we want to find a monotone increasing sequence {sn}n∈N

with sn →∞ and a rate function I ∶ X → [0,∞] such that

− inf
x∈Γ̊

I(x) ≤ lim inf
n→∞

1
sn

log µn(Γ) ≤ lim sup
n→∞

1
sn

log µn(Γ) ≤ − inf
x∈Γ

I(x),

for a Borel set Γ ⊆ X .

Remark. If I is a GRF and has a unique minimizer m ∈ X and we are given a sequence
{s′n}n∈N with s′n ≪ sn and s′n →∞. Then the LDP holds also with speed s′n, in this case
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with GRF χm ∶ X → [0,∞], where

χm(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if x=m

∞ else.

Proof. First, we observe that I(m) = 0, since the LDP inequality yields (note that the
whole space X is closed and open and µn(X ) = 1, for all n ∈ N)

− inf
x∈X

I(x) ≤ lim inf
n→∞

1
sn

log µn(X ) = 0 = lim sup
n→∞

1
sn

log µn(X ) ≤ − inf
x∈X

I(x).

Hence, I(m) = 0. We first show the large deviation upper bound. Consider a closed
C ⊆ X and M > 0. Then, if m ∈ C (note that log µn(C) ≤ 0,∀n ∈ N)

lim sup
n→∞

1
s′n

log µn(C) ≤ lim sup
n→∞

1
sn

log µn(C) ≤ − inf
x∈C

I(x) = 0 = − inf
x∈C

χm(x).

In the case where m ∉ C, we use that sn/s′n exceeds every given M > 0 if n is sufficiently
large and that a GRF takes its infimum over any closed set, i.e.

lim sup
n→∞

1
s′n

log µn(C) ≤ lim sup
n→∞

sn

s′n

1
sn

log µn(C) ≤ −M inf
x∈C

I(x) M→∞Ð→ −∞ = − inf
x∈C

χm(x).

For the lower bound, we fix some open set O ⊆ X . If m ∉ O, then − infx∈O χm(x) = −∞
and trivially

lim inf
n→∞

1
s′n

log µn(O) ≥ −∞ = − inf
x∈O

χm(x).

If m ∈ O, then by the upper bound (note that Oc is closed)

lim sup
n→∞

1
s′n

log µn(Oc) ≤ − inf
x∈Oc

χm(x) = −∞.

Which is only possible if µn(Oc) n→∞Ð→ 0, hence µn(O) n→∞Ð→ 1. Then we get

lim inf
n→∞

1
s′n

log µn(O) = 0 = − inf
x∈O

χm(x).

A weakness of the general contraction principle might be that the representation
of the rate function via an infimum is not closed. We therefore provide a result in a
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discrete setting, first introduced in [5, Section 6.2], in [18] the authors called it „ap-
proximate contraction principle“.

We start by introducing the formal background. Let X be a Polish space and (X, ∣∣.∣∣)
be a separable Banach space (i.e, a complete normed vector space over R with a count-
able dense subset). Further, let X∗ be the topological dual, i.e. the space of continuous,
linear functionals mapping from X to R. We denote by

⟨., .⟩ ∶ X∗ ×X→ R

(x∗, x)↦ x∗(x)

the dual pairing. Let P(X ) be the set of probability measures over X and fix a con-
tinuous mapping c ∶ X → X. Further we consider a sequence {Ln}n∈N of P(X ) valued
random variables and define X valued random variables {Cn}n∈N with

Cn ∶= ∫X c(x)dLn(x) ∈ X,

assuming the latter exists as pointwise Bochner integral (see Definition 6.0.8 and the
following in the Appendix). Let the sequence of vectors {(Cn, Ln)}n∈N satisfy an LDP
with some speed sn and GRF I ∶ X× P(X )→ [0,∞].

We are interested in a representation of I, for this urge we provide a motivation
for bounded c. In this case the existence of Cn needs no further assumption and
also the mapping µ ↦ ∫X c(x)dµ(x) is well defined and continuous for µ ∈ P(X ). The
contraction principle provides an LDP for {Ln}n∈N with speed sn and GRF I0 ∶ P(X )→
[0,∞]

I0(µ) = inf
x∈X

I(x, µ).

Applying the contraction principle once more for the continuous map

F ∶ P(X )→ X× P(X )

µ ↦ (∫X c(x)dµ(x), µ)

yields a new representation for I. We note that the preimage of (C , µ) ∈ X × P(X )
under F is

F−1({C , µ}) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ, if C = ∫X c(x)dµ(x)
∅ else.
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Hence,

I(C , µ) = inf
ν∈F−1({C ,µ})

I0(ν) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I0(µ)+ χ0(C − ∫X c(x)dµ(x)) , if I0(µ) <∞

∞ else,
(3.1.4)

where χ0(0) = 0 and χ0(x) = ∞ for x ≠ 0. We want to receive a similar representation
for I under additional assumptions in case of unbounded c.
Let us start with some definitions and notation. Let r ∈ (0,∞] and W ∶ X → R be a
continuous function. Then we consider the Varadhan type limit

Λr(W) ∶= lim sup
n→∞

1
n

log E[en( ∫X W(x)dLn(x)∧r)] and Λ̄(W) ∶= sup
r>0

Λr(W),

where ∧ refers to the minimum of the two quantities. Further we will work with the
„domain“ of Λ̄ and its „interior“, as well as a certain functional. More precisely, for
fixed continuous c ∶ X → X, we define

D ∶= {α ∈ X∗ ∣ Λ̄(⟨α, c(⋅)⟩) <∞}
Do ∶= {α ∈ X∗ ∣ ∃p > 1 ∶ pα ∈ D}

F(x) ∶= sup
α∈Do

⟨α, x⟩, x ∈ X.

Now we can state the central result in this subsection, allowing to establish a similar
representation of I as in Equation 3.1.4, but for more general c.

Theorem 3.1.9. (Proposition 6.4 in [5])
Let (X , d) be a Polish space, (X, ∣∣ ⋅ ∣∣) be a separable Banach space, c ∶ X → X a continuous
function, {Ln}n∈N a sequence of P(X ) valued random variables and suppose the following
assumptions:

1. ∃η > 0 ∶ Λ∞(η∣∣c(⋅)∣∣) <∞.

2. {(Cn, Ln)}n∈N satisfies an LDP in X ×P(X ) with convex GRF I.

3. For every sequence {Wn}n∈N with Wn ∈ {V+ ⟨α, c(⋅)⟩ ∣ V ∶ X → R continuous and bounded, α ∈
Do} and Wn ↓W∞ to a limit W∞ ∶ X → R that is continuous and bounded from above,
we have

lim sup
n→∞

Λ̄(Wn) ≤ Λ̄(W∞). (3.1.5)
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Then I(C , µ) satisfies identity 3.1.4 with F instead of χ0 and I0 the GRF for the LDP of
{Ln}n∈N in P(X ). In particular, I(C , µ) = 0 iff C = ∫X c(x)dµ(x) and I0(µ) = 0.

Remark. The assumption Λ∞(η∣∣c(⋅)∣∣) < ∞ implies the existence of the Bochner inte-
grals Cn = ∫X c(x)dLn(x), n ∈ N. Hence, Assumption 1 from the theorem allows to
consider the sequence {(Cn, Ln)}n∈N.

Proof. If Λ∞(η∣∣c(⋅)∣∣) <∞, then

lim sup
n→∞

1
n

log E[en( ∫X η∣∣c(x)∣∣dLn(x))] <∞,

and hence for any n ∈ N,

E[en( ∫X η∣∣c(x)∣∣dLn(x))] <∞.

In particular E( ∫X η∣∣c(x)∣∣dLn(x)) < ∞, thus directly implying Bochner-integrability.

Remark. In [5, Section 6.2], there are several interesting observations together with
useful identities including the GRFs I0 and I, which we will need in the proof of The-
orem 3.1.9. Let Cb(X ) denote the set of continuous and bounded functions mapping
from X to R. Then under the assumptions of Theorem 3.1.9

I(C , µ) = sup
α∈Do

sup
V∈Cb(X )

[⟨α, C ⟩+∫X V(x)dµ(x)− Λ̄(V + ⟨α, c(⋅)⟩)], (3.1.6)

for C ∈ X, µ ∈ P(X ) and

I0(µ) = sup
V∈Cb(X )

[∫X V(x)dµ(x)− Λ̄(V)]. (3.1.7)

Proof. (Theorem 3.1.9)
By Assumption 2, {(Cn, Ln)}n∈N satisfies an LDP with GRF I. As in the motivation,
one can derive an LDP for {Ln}n∈N via the contraction principle with GRF I0 ∶ P(X )→
[0,∞]

I0(µ) = inf
x∈X

I(x, µ).

Thus I0(µ) ≤ I(C , µ) for all C ∈ X. Representation 3.1.4 hence holds in the case
I0(µ) =∞. We can now treat the case µ ∈ P(X ) with I0(µ) <∞.
Using the identity in 3.1.7 and V∗ ∶= η∣∣c(⋅)∣∣ ∧ M ∈ Cb(X ), for some M > 0 and η > 0
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from Assumption 1, yields

I0(µ) ≥ ∫X V∗(x)dµ(x)− Λ̄(V∗)

⇐⇒ ∫X η∣∣c(x)∣∣∧ Mdµ(x) ≤ I0(µ)+ Λ̄(η∣∣c(⋅)∣∣∧ M)

≤ I0(µ)+ Λ̄(η∣∣c(⋅)∣∣).

In the last inequality we used that Λ̄ is monotone increasing, i.e. for W1, W2 ∈ Cb(X )
with

W1(x) ≤ W2(x),∀x ∈ X

we have Λ̄(W1(⋅)) ≤ Λ̄(W2(⋅)). By monotone convergence for M →∞ we see that

η∫ ∣∣c(x)∣∣dµ(x) ≤ I0(µ)+ Λ̄(η∣∣c(⋅)∣∣).

Since Λ̄ ≤ Λ∞, we can use the case assumption I0(µ) <∞ and Assumption 1 to deduce

η∫ ∣∣c(x)∣∣dµ(x) <∞.

Hence, c is Bochner-integrabel and for α ∈ X∗ it follows that ⟨α, c(⋅)⟩ is in L1(X , µ) by
Theorem 6.0.18. Moreover, we get the following identity

∫X ⟨α, c(x)⟩dµ(x) = ⟨α,∫X c(x)dµ(x)⟩.

In particular, this equality holds for α ∈ Do. This can be used to rearrange representa-
tion 3.1.6 of I, hence we get

I(C , µ) = sup
α∈Do

sup
V∈Cb(X )

[⟨α, C ⟩+∫X V(x)dµ(x)− Λ̄(V + ⟨α, c(⋅)⟩)]

= sup
α∈Do

sup
V∈Cb(X )

[⟨α, C −∫X c(x)dµ(x)⟩+∫X V(x)+ ⟨α, c(x)⟩dµ(x)− Λ̄(V + ⟨α, c(⋅)⟩)]

= sup
α∈Do

[⟨α, C −∫X c(x)dµ(x)⟩+ sup
V∈Cb(X )

∫X V(x)+ ⟨α, c(x)⟩dµ(x)− Λ̄(V + ⟨α, c(⋅)⟩)]

= sup
α∈Do

[⟨α, C −∫X c(x)dµ(x)⟩+ I⟨α,c(⋅)⟩(µ)],
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where for a function g ∶ X → R of the form g = ⟨α, c(⋅)⟩, for some α ∈ Do, we use

Ig(µ) ∶= sup
V∈Cb(X )

∫X V(x)+ g(x)dµ(x)− Λ̄(V + g),

which is consistent with the definition of I0 in Equation 3.1.7. If one is able to show
that I0 = Ig, for all such g, then one has established identity 3.1.4. We shall prove this
identity now.
1. I0(µ) ≥ Ig(µ): Define the auxiliary function φn,m ∶ R→ R with

φn,m(x) ∶= x1(−m,n)(x)+ n1[n,∞)(x)−m1[−m,∞)(x), for n, m ∈ N

and denote φ∞,m(x) ∶= limn→∞ φn,m(x) and φn,∞(x) ∶= limm→∞ φn,m(x) for x ∈ R. Then
by construction φn,m ∈ Cb(R). For V ∈ Cb(X ) and g = ⟨α, c(⋅)⟩, for some α ∈ Do, we have
φn,m(V + g) ∈ Cb(X ). Using Equation 3.1.7 yields

I0(µ) ≥ ∫X φn,m(V(x)+ g(x))dµ(x)− Λ̄(φn,m(V + g)). (3.1.8)

We have the pointwise limit φn,m(V + g) ↓ φn,∞(V + g) as m → ∞ and hence by As-
sumption 3

lim sup
m→∞

Λ̄(φm,n(V + g)) ≤ Λ̄(φ∞,n(V + g)) ≤ Λ̄(V + g),

where the second inequality holds due to the monotonicity of Λ̄. We use this to get
the lower bound

I0(µ) ≥ lim sup
m→∞

∫X φn,m(V(x)+ g(x))dµ(x)− Λ̄(V + g)

≥ ∫X φn,∞(V(x)+ g(x))dµ(x)− Λ̄(V + g).

Moreover, φn,∞(x) ↑ x for x ∈ R by construction. Since g = ⟨α, c(⋅)⟩ is Bochner-integrabel
and V is bounded, we can apply dominated convergence to receive the inequality

I0(µ) ≥ ∫X V(x)+ g(x)dµ(x)− Λ̄(V + g).

Optimization over all V ∈ Cb(X ) yields the desired inequality.
2. I0(µ) ≤ Ig(µ): We work again with the functions {φn,m}n,m∈N. For V ∈ Cb(X ) and
g = ⟨α, c(⋅)⟩, for some α ∈ Do, we have that V +φn,m(g) ∈ Cb(X ). Hence, by the definition
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of Ig, we have that

Ig(µ) ≥ ∫X (V(x)− g(x)+ φn,m(g(x))dµ(x))− Λ̄(V − g + φn,m(g)). (3.1.9)

Now we apply essentially the same argument as in the first direction of the proof.
φm,n(g)→ g pointwise as n, m →∞, hence

lim
n→∞

lim
m→∞∫X [φn,m(g(x))− g(x)]dµ(x) = 0

by dominated convergence. Also we have V − g + φn,m(g) ↓ V − g + φn,∞(g), so we can
use Assumption 3 and the monotonicity of Λ̄ to get

lim sup
m→∞

Λ̄(V − g + φn,m(g)) ≤ Λ̄(V − g + φn,∞(g)) ≤ Λ̄(V).

After optimization over all V we showed Ig(µ) ≥ I0(µ).
For the second claim, we note that I(C , µ) = 0 if I0(µ) = 0 and C = ∫X c(x)dµ(x).
The other direction is not immediately clear, assume C ≠ ∫X c(x)dµ(x). Then we find
α ∈ X∗, such that ⟨α, C − ∫X c(x)dµ(x)⟩ > 0. Since

∣∣α∣∣∞ ∶= sup
x∈X,∣∣x∣∣≤1

∣α(x)∣ <∞,

we choose ε > 0 with ε∣∣α∣∣∞ < η. Then εα ∈ Do, and we get F(C − ∫X c(x)dµ(x)) > 0.

3.1.3 Classical results and some applications

In the following we study a few classical results from large deviation theory, beginning
with a version of Cramér’s theorem for real-valued random variables.
For a sequence of iid random variables X1, X2, .. we introduce the quantities

• Sn ∶= X1 + ...+Xn

• Λ(t) ∶= log E[exp(tX1)]

• DΛ ∶= {t ∈ R ∣ Λ(t) <∞}

• Λ∗(x) ∶= supt∈R(xt −Λ(t))

• µn(⋅) ∶= P[Sn/n ∈ ⋅].

Before we formulate Cramér’s theorem, we state some properties of Λ and Λ∗.
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Lemma 3.1.10. (Lemma 2.2.5 in [9])
Denote by x̄ = E[X1]. Then
(a) Λ is a convex function and Λ∗ is a convex rate function.
(b) If DΛ = {0}, then Λ∗ is identically zero. If Λ(λ) <∞ for some λ > 0, then x̄ <∞ ( possibly
x̄ = −∞), and for all x ≥ x̄,

Λ∗(x) = sup
λ≥0

(λx −Λ(λ))

is a non-decreasing function for x > x̄. Similarly, if Λ(λ) < ∞ for some λ < 0, then x̄ > −∞
(possibly x̄ =∞), and for all x ≤ x̄,

Λ∗(x) = sup
λ≤0

(λx −Λ(λ))

is a non-increasing function for x < x̄. When x̄ is finite, Λ∗(x̄) = 0, and always,

inf
x∈R

Λ∗(x) = 0.

(c) Λ is differentiable in D̊Λ with

Λ′(η) = 1
E[eηX1]E[X1eηX1]

and
Λ′(η) = y Ô⇒ Λ∗(y) = ηy −Λ(η).

Theorem 3.1.11. (Theorem 2.2.3 in [9])
Let X1, X2, ... be iid real-valued random variables. Then {µn}n∈N satisfies an LDP with the
convex rate function Λ∗, namely:
a) For any closed set F ⊆ R

lim sup
n→∞

1
n

log µn(F) ≤ − inf
x∈F

Λ∗(x).

b) For any open set G ⊆ R

− inf
x∈G

Λ∗(x) ≤ lim inf
n→∞

1
n

log µn(G).

Application 1. Consider a sequence ζ1, ζ2, ... of iid standard normal distributed ran-
dom variables, where we have Λ(t) = t2/2. The computation of the Legendre transform
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is straight forward and gives us

Λ∗(x) = x2

2
.

For each measurable set A we thus have

− inf
x∈A

x2

2
≤ lim inf

n→∞
1
n

log µn(A) ≤ lim sup
n→∞

1
n

log µn(A) ≤ − inf
x∈Å

x2

2
.

Application 2. Again we consider a sequence ζ1, ζ2, ... of iid standard normal dis-
tributed random variables. In this example we study the asymptotic behaviour of

1
n

n
∑
j=1

∣ζ j∣.

The computation of Λ takes a little bit more effort, but is still elementary, we get

Λ(t) = t2

2
+ log Φ(t)+ log 2,

where Φ(t) denotes the standard normal distribution function. There is no closed
representation of Λ∗, but we can still provide a few properties using Lemma 3.1.10.
Λ∗ is convex and infinity over the negative real numbers. For every t ∈ R we have
Λ(t) <∞, thus for x > x̄ =

√
2/π

Λ∗(x) = sup
t≥0

(xt − t2

2
− log Φ(t)− log 2).

Moreover, solving the equation Λ′(η) = y leads to the relation

y = η + Φ′(η)
Φ(η) .

We see that if y → ∞, then also η → ∞ and using properties of Φ implies η = Θ(y).
Using

Λ∗(y) = ηy −Λ(η)

shows
Λ∗(y) = 1

2
Θ(y)2 − log Θ(y).

Hence, Λ∗ tends superlinearly to infinity as y →∞.

Now we introduce the concept of empirical measures and the general theorem of
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Sanov. The following is based on [9, Chapter 6].
We consider a Polish vector space Σ and an iid sequence Y1, Y2, ... of Σ-valued random
variables. Assume that Y1 is distributed according to µ ∈ P(Σ), where we recall that
P(Σ) denotes the space of Borel probability measures on Σ. We are interested in the
asymptotic behaviour of the empirical law of Y1, Y2, ..., Yn,i.e.

LY
n = 1

n

n
∑
k=1

δYk , n ∈ N, (3.1.10)

where δy denotes the Dirac-measure at y ∈ Σ. LY
n is, as convex combination of proba-

bility measures, again a probability measure. The philosophy is to understand LY
n as

sum of iid M(Σ) (space of finite signed measures on Σ ) valued random variables. We
can then apply the general theorem of Cramér for certain topological vector spaces
(see Theorem 3.1.12). The technical difficulty consists in equipping M(Σ) with the re-
quired topology. We will now leave the safe environment of Polish spaces for a second
to state a version of Cramér’s theorem in the necessary generality.

Definition 3.1.8. (locally convex Hausdorff space)
Let (X , τ) be a topological vector space over the real numbers.
1. (X , τ) is called Hausdorff space iff

∀x, y ∈ X ∶ x ≠ y ∶ ∃A, B ∈ τ ∶ x ∈ A, y ∈ B and A ∩ B = ∅.

2. (X , τ) is called locally convex, iff for every neighbourhood U around 0, there
exists an open set T ⊆ U such that

a) T is convex,

b) For all x ∈ T ∶ ∃r > 0 ∶ ∀∣α∣ < r ∶ αx ∈ T,

c) For all x ∈ T ∶ ∀∣r∣ ≤ 1 ∶ rx ∈ T.

Assumption. a) X is a locally convex, Hausdorff, topological real vector space. E is a
closed, convex subset of X such that ν(E) = 1 and E can be made into a Polish space
with respect to the topology induced by X .
b) The closed convex hull of each K ⊆ E is compact.

Let ν be a Borel probability measure on such a vector space X . On the space X ∗ of
continuous linear functionals on X , define the logarithmic moment generating func-
tion Λ ∶ X ∗ → (−∞,∞]

λ ↦ log∫X e⟨λ,x⟩dν(x)
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and let Λ∗ ∶ X → [0,∞] denote the Legendre transform of Λ, which is, in this setting

x ↦ sup
λ∈X ∗

{⟨λ, x⟩−Λ(λ)}.

We now want to consider the empirical mean Sn of iid X1, ..., Xn X -valued random
variables, i.e.

Sn ∶=
1
n

n
∑
i=1

Xi, n ∈ N, (3.1.11)

where each Xi is distributed according to ν. There are some associated measurability
issues discussed on p. 252 of [9], we omit the technical details here. Denote by νn the
distribution of Sn.

Theorem 3.1.12. (Generalized Cramér, Theorem 6.1.3. in [9])
Let the previous Assumptions a) and b) hold. Then {νn}n∈N satisfies in X (and E) a weak LDP
with rate function Λ∗. Moreover, for every open, convex subset A ⊆ X ,

lim
n→∞

1
n

log νn(A) = − inf
x∈A

Λ∗(x).

Remark. (Corollary 6.1.6 in [9] )
Assume X = E = Rd and define νn as the distribution of empirical mean of n iid X -
valued random variables. Then the sequence {νn}n∈N satisfies a weak LDP with the
convex rate function Λ∗. Moreover, if 0 ∈ Do

Λ, then {νn}n∈N satisfies the full LDP with
the good, convex rate function Λ∗.

We now come back to our initial problem, where we want to apply Theorem 3.1.12

on the sequence of empirical measures {LY
n}n∈N from 3.1.10. After that, our program

is as follows:

1. We introduce the weak topology on M(Σ) and the induced relative topology
on P(Σ), which fulfil our assumptions.

2. By applying the generalized Cramér’s theorem we get the weak LDP.

3. Exponential tightness leads to the full LDP with GRF Λ∗.

4. Calculate Λ∗.

Definition 3.1.9. (weak topology)
The „weak“ topology τω on M(Σ) is the topology generated by the system of sets {Uφ,x,δ ∶ φ ∈
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Cb(Σ), x ∈ R, δ > 0}, where

Uφ,x,δ = {ν ∈ M(Σ) ∶ ∣⟨φ, ν⟩− x∣ < δ},

with ⟨φ, ν⟩ = ∫Σ φ(t)dν(t).

Lemma 3.1.13. (M(Σ), τω) is a locally convex, Hausdorff, topological real vector space. P(Σ)
together with the induced relative topology is a Polish space.

Proof. M(Σ) can be made into a real vector space if we endow it with pointwise sum-
mation. In view of Theorem 6.0.2, we identify a subspace Y ⊆ M(Σ)′ with

Y = {φ̂ ∶ M(Σ)→ R ∣ φ̂(ν) = ∫
Σ

φ(t)dν(t), φ ∈ Cb(Σ), ν ∈ M(Σ)}

and note that Y is separating. Hence, τω (which is precisely the Y-topology) makes
M(Σ) to a vector space with the desired properties, as well as Y = M(Σ)∗. If we
restrict on P(Σ) together with the induced topology, we receive the well known weak
topology. P(Σ) then becomes a Polish space (see Remark 3.3).

We denote by Bw the Borel σ-algebra generated by the weak topology.
Now the weak LDP for empirical measures follows as an immediate consequence of
Theorem 3.1.12. Here we have X = M(Σ) and X ∗ = M(Σ)∗ = Y , where Y is the set from
Lemma 3.1.13. The sequence {Xi}i∈N from Theorem 3.1.12 is the sequence of random
Dirac-measures δY1 , δY2 , ..., where the sequence {Yi}i∈N is iid and distributed according
to µ ∈ P(Σ). Moreover, the cumulant generating function is Λ ∶ M(Σ)∗ → (−∞,∞]

φ̂ ↦ log E[ exp(⟨φ̂, δY1⟩)] = log E[ exp(φ(Y1))] (3.1.12)

= log∫
Σ

exp(⟨φ, y⟩)dµ(y), (3.1.13)

where φ ∈ Cb(Σ) represents the functional φ̂ ∈ M(Σ)∗. Hence, we use the (sloppy)
notation Λ(φ) instead of Λ(φ̂). Now we can deduce the following corollary using
Theorem 3.1.12.

Corollary. The sequence empirical measures {LY
n}n∈N satisfies a weak LDP in P(Σ)

with the convex rate function

Λ∗(ν) = sup
φ∈Cb(Σ)

{⟨φ, ν⟩−Λ(φ)},

for ν ∈ P(Σ).
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Using the following lemma we can show that we have indeed a full LDP.

Lemma 3.1.14. The laws of LY
n are exponentially tight.

Proof. Using Theorem 6.0.10 implies: ∃Γ` ⊆ Σ, such that

µ(Γc
`) ≤ e−2`(e` − 1)

for ` ∈ N. The set of measures

K` = {ν ∶ ν(Γ`) ≥ 1− 1/`}

is closed by the Portmanteau Theorem 6.0.12. To see this assume {νn}n∈N ⊆ K` with
νn → ν weakly. Then

1− 1/` ≤ lim sup
n→∞

νn(Γ`) ≤ ν(Γ`)

since Γ` is compact, hence closed. Now define for L ∈ N

KL =
∞
⋂
`=L

K`.

KL is tight (see Definition 6.0.7), since for ν ∈ KL we have ν ∈ K`,∀` ≥ L, and hence
for any ` ∈ N there exists a compact Γ` such that ν(Γ`) ≥ 1 − 1/`. Using Prohorov’s
theorem 6.0.11, we see that the closed set KL is compact. Applying the exponential
Chebyscheff inequality we get the following upper bound

P[LYn ∉ K`] = P[LYn(Γ`) < 1− 1/`] = P[LYn(Γc
`) > 1/`]

≤ E[e2n`2(LYn(Γ`)−1/`)] ≤ e−2n`E[e2n`2LYn(Γ`)]
= e−2n`E[ exp(2`21Γc

`
(Y1))]

n

= e−2n`(µ(Γ`)+ e2`2
µ(Γc

`))
n ≤ e−n`.

For KL it follows

P[LYn ∉ KL] ≤
∞
∑
`=L

P[LYn ∉ K`] ≤
∞
∑
`=L

e−n` ≤ 2e−nL,

implying that

lim sup
n→∞

1
n

log P[LYn ∉ KL] ≤ −L.
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In the last step we take a closer look at the Legendre transform Λ∗ ∶ M(Σ)→ [0,∞].
In the following calculation we assume that the densities dµ/dν and dν/dµ = (dµ/dν)−1

exist, where ν ∈ P(Σ) and µ ∈ P(Σ) is the distribution of Y1.

Λ∗(ν) = sup
φ∈Cb(Σ)

{⟨φ, ν⟩−Λ(φ)}

= sup
φ∈Cb(Σ)

{⟨φ, ν⟩− log∫
Σ

exp(⟨φ, y⟩)dµ(y)}

= sup
φ∈Cb(Σ)

{⟨φ, ν⟩− log∫
Σ

exp(⟨φ, y⟩)dµ

dν
(y)dν(y)}

≥ sup
φ∈Cb(Σ)

{⟨φ, ν⟩−∫
Σ
⟨φ, y⟩+ log(dµ

dν
(y))dν(y)}

= sup
φ∈Cb(Σ)

{⟨φ, ν⟩− ⟨φ, ν⟩+∫
Σ

log( dν

dµ
(y))dν(y)}

= ∫
Σ

dν

dµ
(y) log( dν

dµ
(y))dµ(y).

This calculation motivates the following definition.

Definition 3.1.10. For a probability measure ν ∈ P(Σ) we define the relative entropy with
respect to µ ∈ P(Σ) as

H(ν∣µ) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫Σ f (x) log f (x)dµ(x) , if f (x) = dν
dµ(x) exists

∞ , otherwise.

dν
dµ denotes the Radon-Nikodym derivative of ν with respect to µ. The case when µ is the
Lebesgue measure is treated separately and leads to a very similar notion, which we will just
call the entropy. Assume a measure ν ∈ P(Σ) with density dν/dx. Then we define

h(ν) ∶= −∫
Σ

log(dν

dx
(x))dν(x).

We have seen that Λ∗(⋅) ≥ H(⋅∣µ). Indeed, we have equality here.

Lemma 3.1.15. (Lemma 6.2.13 in [9])
The identity H(⋅∣µ) = Λ∗ holds over P(Σ), where µ is the distribution of the Y′

i s in 3.1.10 and
Λ∗ is the Legendre transform of Λ defined in 3.1.12

The previous lemma delivers the last step of our program and we are now able to
deduce the following version of Sanov´s theorem.
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Theorem 3.1.16. (Sanov, Theorem 6.2.10 in [9])
The empirical measures {LY

n}n∈N satisfy the LDP in P(Σ) equipped with the weak topology τω

with the good, convex rate function H(⋅∣µ).

Remark. In [9] Theorem 3.1.16 is stated in a more general version, where the LDP
holds in the finer „τ-topology “. The latter is generated by sets Uφ,x,δ with measurable
φ instead of φ ∈ Cb(Σ).

We will now discuss some properties of the entropy, since H plays an important role
in the main part of this thesis.

Application 3. Assume µ is the standard normal distribution. Then we have the rela-
tion

H(ν∣µ) = −h(ν)+ 1
2

log(2π)+ m2(ν)
2

,

where m2(ν) denotes the second moment of ν ∈ P(Σ) with density dν
dx .

Proof. First note that, due to the Radon-Nikodym theorem 6.0.7, dν/dµ exists as well
as

dx
dµ

=
√

2π exp(x2

2
).

Then we get

H(ν∣µ) = ∫
Σ

log( dν

dµ
(x))dν(x)

= ∫
Σ

log(dν

dx
(x))dν(x)+∫

Σ
log( dx

dµ
(x))dν(x)

= −h(ν)+ 1
2

log(2π)+ 1
2 ∫Σ

x2dν(x)

= −h(ν)+ 1
2

log(2π)+ m2(ν)
2

.

Lemma 3.1.17. For µ, ν ∈ P(R) we have H(µ∣ν) ≥ 0.

Proof. We prove this statement if dµ/dν and dν/dµ = (dµ/dν)−1 both exist. In this case
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the non-negativity of H is an application of Jensen’s inequality. Indeed, we have

H(µ∣ν) = ∫
R

dµ

dν
(x) log(dµ

dν
(x))dν(x)

= ∫
R

log(dµ

dν
(x))dµ(x)

= −∫
R

log( dν

dµ
(x))dµ(x)

≥ − log(∫
R

dν

dµ
(x)dµ(x))

= 0.

Lemma 3.1.18. We consider two distributions µ1, µ2 ∈ P(R) and some constant c > 0. Then
we have

H(µ1(⋅ × c)∣µ2) = H(µ1∣µ2(⋅ × c−1)),

provided the respective Radon-Nikodym derivatives exist.

Proof. Denote by µc
1(⋅) ∶= µ1(⋅ × c) and µc−1

2 (⋅) ∶= µ2(⋅ × c−1) and consider

H(µc
1∣µ2) = ∫

R
log(

dµc
1

dµ2
(x))dµc

1(x)

= ∫
R

log(
dµc

1

dµ2
(c−1x))dµ1(x)

!= ∫
R

log( dµ1

dµc−1

2

(x))dµ1(x).

The last equality can be proven by taking a closer look at (dµc
1/dµ2)(c−1x). We use the

defining property of a density, for a Borel-set A ⊆ R we have

∫
A

dµc
1

dµ2
(c−1x)dµc−1

2 (x) = ∫
c−1 A

dµc
1

dµ2
(x)dµ2(x)

= µc
1(c−1A)

= µ1(A).

In the first equality we used the transformation rule for probability measures (see The-
orem 6.0.8 in the Appendix). Hence, (dµc

1/dµ2)(c−1x) = (dµ1/dµc−1

2 )(x), establishing the
claimed equality.
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When working with the entropy h, one might be interested in finding a maximal
"value" of h, given some constraints. The next result can be found in [7, Section 12].
Consider the following problem:
For some m ∈ N, we are given functions {ri}i∈{1,...,m} with ri ∶ R → R and real numbers
{µi}i∈{1,...,m}. Then we want to find one density function f , which satisfies

∫
R

f (x)ri(x)dx = µi, for 1 ≤ i ≤ m (3.1.14)

and maximizes h. Questions like this arise quite naturally when dealing with mathe-
matical models containing entropy, for example in certain fields of Physics, but we will
stay within pure mathematics. In order to shorten things a little bit, we are temporarily
inconsistent with notation: we denote h( f ) for some density f instead of writing h(ν),
where ν has the Lebesgue density f . Indeed the case where a given distribution ν has
no density is not interesting, so in any case we only need to consider the situation
when a density exists.

Theorem 3.1.19. (Theorem 12.1.1 in [7])
Assume there are constants λ0, ..., λm ∈ R such that fλ ∶ R→ R with

fλ(x) ∶= eλ0+∑m
j=1 λjrj(x) (3.1.15)

fulfils the constraints 3.1.14. Then fλ maximizes the entropy over all densities satisfying
3.1.14.

Proof. Let g be another density obeying 3.1.14. Then

h(g) = −∫
R

g(x) log g(x)dx

= −∫
R

g(x) log( g(x)
fλ(x) fλ(x))dx

= −H(g∣ fλ)−∫
R

g(x) log fλ(x)dx

≤ −∫
R

g(x) log fλ(x)dx

= −∫
R

g(x)(λ0 +
m
∑
j=1

λjrj(x))dx

3.1.14= −∫
R

fλ(x)(λ0 +
m
∑
j=1

λjrj(x))dx

= h( fλ).
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Application 4. Assume we are interested in distributions with mean 0 and variance
σ2 > 0. This can be embedded in our setting via the two constraint functions r1(x) = x
with µ1 = 0 and r2(x) = x2 with µ2 = σ2. Then

fλ(x) = 1√
2π

exp(− x2

2σ2 )

exists and corresponds to the N (0, σ2) distribution. We can also compute the entropy
evaluated at fλ, namely

h( fλ) = −∫
R

fλ(x) log fλ(x)dx

= 1
2

log(2πσ2e).

This concludes our short excursion about the entropy function. The next classical
result from large deviation theory is the useful theorem of Gärtner-Ellis, allowing to
establish LDPs for non iid sequences.

Definition 3.1.11. Consider a convex function Λ ∶ Rk → (−∞,∞] and define DΛ ∶= {λ ∈
Rk ∣ Λ(λ) <∞}. Λ is essentially smooth, if

(a) D̊Λ is non-empty.

(b) Λ is differentiable throughout D̊Λ.

(c) Λ is steep in that limn→∞ ∣∣∇Λ(λn)∣∣2 = ∞ whenever {λn}n∈N is a sequence in D̊Λ

converging to a boundary point of D̊Λ.

Theorem 3.1.20. (Version of Gärtner-Ellis theorem, Theorem 2.3.6 in [9])
Let {Zn}n∈N be a sequence of Rk-valued random variables and for λ ∈ Rk define Λn(λ) ∶=
log E[exp(⟨λ, Zn⟩)]. If for each λ ∈ Rk the limit

Λ(λ) = lim
n→∞

1
n

Λn(nλ) (3.1.16)

exists as an extended real number with 0 ∈ D̊Λ and if we further assume that Λ is essentially
smooth and lower semi-continuous, then

(a) For each closed set F,

lim sup
n→∞

1
n

log µn(F) ≤ − inf
x∈F

Λ∗(x).
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(b) For each open set G

lim inf
n→∞

1
n

log µn(G) ≥ − inf
x∈G

Λ∗(x).

In other words, an LDP holds with speed n and GRF Λ∗.

Remark. The theorem is still valid if we replace the speed n by any sequence {sn}n∈N

with sn →∞.

Application 5. Consider a k-dimensional standard normal distributed random vector
(ζ1, ..., ζk) and some sequence {sn}n∈N with sn → ∞. We want to establish an LDP for
the random variables

Zn ∶=
(ζ1, ..., ζk)√

sn
, n ∈ N

by using the previous theorem. We therefore check the limit condition for the cumu-
lant generating function,

lim
n→∞

1
sn

log (E[exp(sn⟨λ, Zn⟩)]) = lim
n→∞

1
sn

log (E[exp(√sn⟨(ζ1, ..., ζk), λ⟩)])

= lim
n→∞

1
sn

log ( exp( sn∣∣λ∣∣22
2

))

= ∣∣λ∣∣22
2

=∶ Λ(λ).

Where in the second equality, we used that the moment generating function γ ∶ Rk → R

of a k-dimensional standard normal distributed random variable is

γ(λ) = exp(∣∣λ∣∣22
2

).

Λ is obviously essentially smooth and invariant under the Legendre transform. The
sequence {Zn}n∈N thus satisfies the LDP with GRF λ ↦ ∣∣λ∣∣22/2 and speed sn.

Application 6. Consider an iid sequence of standard normal distributed random vari-
ables ζ1, ζ2, ... and define

Zn ∶=
∣∣(ζ1, ..., ζn)∣∣22

n
, n ∈ N.
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The limit condition for Gärtner-Ellis can be verified easily. For t ∈ (−∞, 1/2),

lim
n→∞

1
n

Λn(nt) = lim
n→∞

1
n

log (E[exp(tζ2
1)]n) = −1

2
log(1− 2t).

For the last step we used that ζ2
1 is χ2

1 distributed. For t ≥ 1/2 the limit exists as ex-
tended real number and is equal to infinity. The essential smoothness follows directly,
thus {Zn}n∈N satisfies the LDP with speed n and GRF

Λ∗(x) = sup
t∈(−∞,1/2)

(xt + 1
2

log(1− 2t)) = 1
2
(x − log x − 1)

for x > 0.

Application 7. Now consider the similar sequence

Zn ∶=
∣∣(ζ1, ..., ζkn)∣∣22

n
, n ∈ N,

where {kn}n∈N is a sequence with kn/n → 0, but kn →∞. Then, for t < 1/2,

lim
n→∞

1
n

Λn(nt) = lim
n→∞

1
n

log (E[exp(tζ2
1)]kn)

= 0.

If t ≥ 1/2, then the moment generation function of ζ2
1 is infinity. The resulting Λ is

essentially smooth and the Legendre transform can be calculated. Indeed, we get for
x > 0

Λ∗(x) = sup
t∈R

(xt −Λ(t)) = x
2

.

Thus {Zn}n∈N satisfies an LDP in R at speed n and GRF Λ∗.

3.2 Haar measure on the Stiefel manifold

Since we will consider projections of high dimensional random vectors on lower di-
mensional subspaces, we need to introduce something like a „uniform measure“ on
the set of k-dimensional subspaces of Rn. This task can be realised via a short excur-
sion to Haar measures on compact metric spaces (see Definition 6.0.4 in the Appendix),
the desired concept will then be a special case. The following is based on [23, Chapter
1].
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We consider a compact metric space (M, d) and let G be a group whose members act
as isometries on M, i.e. for g ∈ G and t, s ∈ M, d(gs, gt) = d(s, t).

Theorem 3.2.1. Let (M, d) be a compact metric space, G be a group acting on M by isometries.
Then there exists a regular Borel-measure µ, which is G invariant, i.e.

µ(gA) = µ(A) for all Borel sets A and g ∈ G.

Proof. For all ε > 0, let Nε be a minimal ε-net in M, i.e. ⋃x∈Nε B(x, ε) = M, where
nε = ∣Nε∣ is minimal with respect to this property and B(x, ε) = {y ∈ M ∣ d(x, y) ≤ ε}
denotes the closed ball. Note that we can find a finite covering due to the assumption
of M being compact.
Define C(M) as the space of continous functions on M (remember that C(M) can
be equipped with the supremum norm, since M is compact). Then we consider the
mapping µε ∶ C(M)Ð→ R with

µε( f ) = 1
nε

∑
x∈Nε

f (x).

In addition of being linear, µε(1) = 1, µε is positive, i.e. if f ≥ 0, then µε( f ) ≥ 0, and
also for the operator norm

∣∣µε∣∣ ∶= sup
f ∈C(M)∶∣∣ f ∣∣∞≤1

∣µε( f )∣ ≤ 1.

The family {µε}ε>0 is uniformly bounded in norm and thus by the theorem of Banach-
Alaoglu 6.0.3 compact in the weak* topology. Using the property that a compact metric
space is separable gives us a subsequence εi → 0 and a linear functional µ ∈ C(M)∗

with
µεi( f )→ µ( f ).

The limiting process inherits the properties f ≥ 0 Ô⇒ µ( f ) ≥ 0 and µ(1) = 1. By the
Riesz-Markov representation theorem 6.0.4 µ can be represented by a unique probabil-
ity measure which we (inconsistently) also denote by the letter µ. Hence, for f ∈ C(M)

µ( f ) = ∫
M

f (x)dµ(x).

Now we need to show that this construction is independent of the sequence of minimal
ε nets, since they need not be unique. Assume another family of minimal nets {N′

ε}ε>0

as well as a convergent subsequence µ′εi
→ µ′ε obtained by the previous procedure. We
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use the Hall marriage theorem 6.0.1 for the bipartition sets Nε and N′
ε with the relation

x ∼ y for (x, y) ∈ Nε × N′
ε iff B(x, ε) ∩ B(y, ε) ≠ ∅. Now assume ∣A∣ > ∣K(A)∣ for some

A ⊆ Nε and choose some z ∈ M. We know there exists some x ∈ Nε with z ∈ B(x, ε).
1. case: x ∈ Nε/A. Then trivially x ∈ Nε/A ∪K(A).
2. case: x ∈ A. Then there exists a y ∈ N′

ε with z ∈ B(y, ε) and thus B(x, ε)∩ B(y, ε) ≠ ∅
implying y ∈ K(A). In either case we find a point in x ∈ Nε/A ∪ K(A) contradicting
the minimality of Nε. Using Theorem 6.0.1 shows the existence of a bijective mapping
ψ ∶ Nε → N′

ε with x ∼ ψ(x), in other words d(x, ψ(x)) ≤ 2ε. Then

∣µε( f )− µ′ε( f )∣ ≤ 1
nε

∑
x∈Nε

∣ f (x)− f (ψ(x))∣ ≤ sup
d(a,b)≤2ε

∣ f (a)− f (b)∣ ε→0Ð→ 0.

The limit on the right-hand is 0 since a continuous function on a compact set is uni-
formly continuous.
It remains to show that µ is invariant under G. Take g ∈ G, then for a minimal ε net
Nε also gNε is a minimal ε cover. Using that the construction of µ is independent of
the used ε covering shows

µ( f ) = lim
εi→0

µεi( f ) = lim
ε′i→0

µ′ε′i
( f ○ g) = µ( f ○ g).

Remark. Under the additional assumption GM = M one can show that the measure µ

is unique up to a constant factor (e.g. Theorem 1.3 of [23]).

Application 8. Let n ∈ N and 1 ≤ k ≤ n. The set of matrices

Vn,k = {A ∈ Rn×k ∣ AT A = Ik}

is called Stiefel manifold. We can equip Vn,k with the metric

d(A, B) = (
k
∑
i=1

∣∣ai − bi∣∣22)
1
2 ,

where ai and bi denote the columns of A and B respectively. Vn,k is a closed and
bounded subset of Rn×k and hence compact. The orthogonal group Vn,n acts on Vk,n

by isometries, as an elementary calculation shows. We can therefore apply Theorem
3.2.1 to show the existence of a (unique) invariant distribution µ∗ on Vn,k. We can then
construct a probability space (Ω,F , P) and a random variable An,k ∶ Ω → Vn,k (see
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Theorem 6.0.16) such that for any Borel set B ⊆ Vn,k,

P[An,k ∈ B] = µ∗(B).

3.3 The Wasserstein spaces

In the main part of this thesis we will work with sets of probability measures on
R, thus we need to introduce a suitable topology on such spaces. For the general
definition of the so called q-Wasserstein spaces we consider a Polish space (X , d) and
will later restrict to the case X = R. The following is based on [28].

Definition 3.3.1. (q-Wasserstein space)
Let q ≥ 1 and denote by P(X ) the set of probability measures on the Polish space (X , d). Then
we define the q-Wasserstein space as

Pq(X ) ∶= {µ ∈ P(X ) ∣ ∫X d(x0, x)qdµ(x) <∞}

for some x0 ∈ X .

Remark. The point x0 ∈ X makes no difference here, since for any y0 ∈ X Minkowski’s
inequality implies

[∫X d(y0, x)qdµ(x)]
q
≤ [∫X d(y0, x0)qdµ(x)]

q
+ [∫X d(x0, x)qdµ(x)]

q

= d(y0, x0)+ [∫X d(x0, x)qdµ(x)]
q
.

If the integral with x0 is finite, then also the integral over d(y0, .)q.

Remark. The Wasserstein spaces are nested in an anti-lexicographical way, i.e. for
p ≤ q we have Pq(X ) ⊆ Pp(X ). This can be verified directly. Take µ ∈ Pq(X ), then

∫X d(x0, x)pdµ(x) = ∫
d(x0,.)≤1

d(x0, x)pdµ(x)+∫
d(x0,.)>1

d(x0, x)pdµ(x)

≤ 1+∫X d(x0, x)qdµ(x) <∞

and so µ ∈ Pp(X ).

It is possible to define a natural metric on Pq(X ), which then induces the q-Wasserstein
topology.
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Definition 3.3.2. For µ, ν ∈ Pq(X ) we define the distance

Wq(µ, ν) = ( inf
π∈Π(µ,ν)∫X×X d(x, y)qdπ(x, y))

1/q
,

where Π(µ, ν) is the set of all „couplings“ of (µ, ν), this means π ∈ Π(µ, ν) iff π ∈ P(X ×X )
and µ, ν are the marginals of π.

Remark. Using the inequality d(x, y)q ≤ 2q(d(x0, x)q + d(x0, y)q) implies

∫X×X d(x, y)qdπ(x, y) ≤ 2q ∫X d(x0, x)qdµ(x)+ 2q ∫X d(x0, y)qdν(y).

Hence, Wq is well defined on Pq(X ).

Within Pq(X ) we can strengthen the concept of weak convergence a little bit and
this will give us a nice property of Wq.

Definition 3.3.3. (Weak convergence in Pq)
Let (X , d) be a Polish space, and q ∈ [1,∞). Let {µk}k∈N be a sequence of measures in Pq(X )
and let µ be another element in Pq(X ). Then {µk}k∈N is said to converge weakly in Pq(X ) if
for some (and then any) x0 ∈ X , as k →∞,

µk converges weakly to µ and ∫ d(x0, x)qdµk(x)Ð→ ∫ d(x0, x)qdµ(x).

Remark. There are several equivalent formulations of weak convergence in Pq(X ).

At this point one might be interested in the relation between the Wasserstein topol-
ogy and the weak topology.

Definition 3.3.4. For µ, ν ∈ P(X ) we define the „bounded Lipschitz metric“.

dbL(µ, ν) = sup
φ∈CLip(X )

{∫X φ(x)dµ(x)−∫X φ(x)dν(x)},

where CLip(X ) ∶= {φ ∶ X → R ∣ φ Lipschitz continuous with ∣∣φ∣∣∞ + ∣∣φ∣∣Lip ≤ 1} and ∣∣φ∣∣Lip

denotes the Lipschitz constant. dbL is the metric induced by the characterisation of weak con-
vergence using the set from Remark 6 from the Appendix.

Theorem 5.9 in [28] gives an alternative representation of W1 via a supremum over
Lipschitz continuous functions, namely

W1(ν, µ) = sup
∣∣φ∣∣Lip≤1

{∫X φ(x)dµ(x)−∫X φ(x)dν(x)}.
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This immediately leads to the inequality dbL ≤ W1. Further, for p ≤ q we can use
Hölder’s inequality to show that Wp ≤ Wq. For p̃ = q/p and 1/q̃ = 1− 1/p̃, we have

Wp(µ, ν) = ( inf
π∈Π(µ,ν)∫X×X d(x, y)pdπ(x, y))

1/p

≤ inf
π∈Π(µ,ν)

(∫X×X d(x, y)pp̃dπ(x, y))
1/pp̃

(∫X×X 1q̃dπ(x, y))
1/pq̃

= Wq(µ, ν).

In total we get the (not surprising) inequality

dbL(⋅, ⋅) ≤ Wq(⋅, ⋅), ∀q ≥ 1.

The next theorem shows that Wq metrizes a certain convergence type, which quite
naturally arises within the q-Wasserstein space.

Theorem 3.3.1. (Theorem 6.8 in [28])
Let (X , d) be a Polish space, and q ∈ [1,∞). Then the Wasserstein distance Wq metrizes weak
convergence in Pq(X ). In other words, if {µk}k∈N is a sequence of measures in Pq(X ) and µ

is another measure in Pq(X ), then the statements

µk converges weakly in Pq(X ) to µ

and
Wq(µk, µ)Ð→ 0

are equivalent.

Finally it is possible to show that the q-Wasserstein topology is finer than the clas-
sical weak topology on Pq(X ). For a distance d on Pq(X ) we denote by Bd(ν, ε) the
ball of radius ε around ν ∈ Pq(X ) with respect to d. Then, since dbL ≤ Wq it follows
that BWq(ν, ε) ⊆ BdbL(ν, ε) for all ε > 0. Hence, we can apply Hausdorff’s criterion 6.0.6,
where we use the set of open Wq balls as base of the q-Wasserstein topology and the
system of open dbL balls as base of neighbourhoods for the weak topology.

The next theorem shows that Pq(X ) inherits nice properties of its underlying space
X .

Theorem 3.3.2. (Theorem 6.16 in [28])
Let X be a complete separable metric space and q ∈ [1,∞). Then the Wasserstein space Pq(X ),
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metrized by the Wasserstein distance Wq, is also a complete metric space. In short: The Wasser-
stein space over a Polish space is itself a Polish space. Moreover, any probability measure can
be approximated by a sequence of probability measures with finite support.

Remark. Suppose we are given a bounded metric d̃ (e.g. d̃ = d/(1+ d)). Then P̃q(X ) =
{µ ∈ P(X ) ∣ ∫X d̃(x0, x)qdµ(x) <∞} = P(X ) for all q ≥ 1 and hence P(X ) equipped with
the notion of weak convergence is a Polish space.

We now restrict to the situation X = R, where the q-Wasserstein space becomes

Pq(R) = {ν ∈ P(R) ∣ ∫
R
∣x∣qdν(x) <∞}.

We introduce the q-th moment map and a certain subset of P(R)

Definition 3.3.5. For ν ∈ Pq(R) the p-th moment map is given by

mq(ν) = ∫
R
∣x∣pdν(x).

Further, we consider the set

K2,j = {ν ∈ P(R) ∣ m2(ν) ≤ j}.

Lemma 3.3.3. The mapping mq ∶ P(R) → [0,∞] for q ≥ 1 is lower-semicontinuous with
respect to the weak topology on P(R).

Proof. Fix some α > 0 and consider the level set ψmq(α) = {ν ∈ P(R) ∣ mq(ν) ≤ α}. Take
a sequence {νn}n∈N ⊆ ψmq(α) with νn → ν weakly, for some ν ∈ P(R). Then we have to
show that ν ∈ ψmq(α). Let M ∈ N and consider the mapping eM ∶ R→ [0, 1] with

eM(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ∈ [−M − 1, M + 1]c

M + 1− ∣x∣, if x ∈ [−M − 1,−M]∪ [M, M + 1]
1, if x ∈ [−M, M].

For all M ∈ N we have that eM is continuous and has compact support. Hence x ↦
∣x∣qeM(x) is continuous and bounded. Weak convergence of the sequence {νn}n∈N

yields

∫
R
∣x∣qeM(x)dν(x) = lim

n→∞∫R
∣x∣qeM(x)dνn(x) ≤ α.
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Then by monotone convergence we get (note that eM ≤ eM+1 pointwise and eM ↑ 1)

∫
R
∣x∣qdν(x) = lim

M→∞∫R
∣x∣qeM(x)dν(x) ≤ α.

Thus ν ∈ ψmq(α).

Lemma 3.3.4. (Proposition 7.1.5 in [3])
Let q ≥ 1, a set K ⊆ Pq(R) is relatively compact (i.e the Wq-closure of K is compact) iff it is
q-uniformly integrable and tight. In particular, for a given sequence {µn}n∈N ⊆ Pq(R) and
some µ ∈ Pq(R) we have

lim
n→∞

Wq(µn, µ) = 0 ⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{µn}n∈N converges weakly to µ

{µn}n∈N has uniformly integrable q-moments .

Lemma 3.3.5. (Lemma 3.14 in [19])
Fix j ∈ N. The set K2,j ⊆ P2(R) is compact with respect to the weak topology on P(R).
Moreover, for any q < 2, the set K2,j is compact with respect to q-Wasserstein topology. In
addition K2,j is convex and non-empty.

Proof. K2,j is non-empty, since there are distributions with second moment less or
equal j. If we consider K2,j as subset of the real vector space of finite signed measures
(endowed with pointwise summation), then K2,j is convex. For ν ∈ K2,j and M ∈ N we
have

ν([−M, M]c) = ∫[−M,M]c
dν(x) ≤ ∫[−M,M]c

∣x∣p
Mp dν(x) ≤ j

Mp .

Thus, the set K2,j is tight (see Definition 6.0.7) and by Prohorov’s theorem 6.0.11, K2,j

is weakly precompact (i.e. the weak closure of K2,j is compact in the weak topology).
Since K2,j is a level set of the lower-semicontinuous mapping ν ↦ m2(ν) (see Lemma
3.3.3), we have that K2,j is weakly closed. This implies that K2,j is compact in the weak
topology.
Fix some q < 2 and note that

sup
ν∈K2,j

mq(ν) = sup
ν∈K2,j

∫
R
∣x∣qdν(x) ≤ sup

ν∈K2,j

{1+∫[−1,1]c
∣x∣2dν(x)} ≤ 1+ j.

Thus, K2,j has uniformly integrable q-th moments. Lemma 3.3.4 implies that K2,j is
relatively compact in the q-Wasserstein topology. To verify compactness, we consider
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a sequence {νn}n∈N ⊆ K2,j with νn
WqÐ→ ν ∈ Pq(R). We want to show that ν ∈ K2,j. Since

{νn}n∈N ⊆ K2,j, we have that

sup
n∈N

∫
R
∣x∣2dνn(x) ≤ j.

Moreover νn → ν weakly, since νn
WqÐ→ ν in the stronger q-Wasserstein sense. By Lemma

3.3.4 we have that νn
W2Ð→ ν and hence

∫
R
∣x∣2dν(x) = lim

n→∞∫R
∣x∣2dνn(x) ≤ j.

It follows that ν ∈ K2,j.

Remark. The previous lemma shows that the mapping m2 ∶ P(R) → [0,∞] is a GRF
with respect to the weak topology.
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4 Main results

In the main section we will elaborate the major results from [18], where we are in-
terested in large deviations for random projections of high dimensional random vec-
tors. Formally, this can be realized by a matrix vector multiplication AT

n,kX(n), where
An,k ∈ Vn,k is drawn with respect to the Haar measure on the Stiefel manifold Vn,k and
independent of X(n) ∈ Rn. The dimension k of the subspace will sometimes be constant
and sometimes tend to infinity as n grows. We assume that An,k and X(n) are defined
on a common probability space (Ω,F , P) independent of n, which is possible by the
theorem of Ionescu-Tulcea (see Theorem 6.0.15 in the Appendix).

Within the previous framework we state 4 assumptions, A, A*, B, C, which are then
used to establish several LDPs including {X(n)}n∈N, a sequence of random vectors,
where each X(n) takes values in Rn.

Assumption A The sequence of scaled norms {∣∣X(n)∣∣2/
√

n}n∈N satisfies an LDP in
R at speed sn with GRF JX ∶ R→ [0,∞].

Remark. Later we will see several examples of random vectors satisfying Assumption
A. In particular, the situation sn = n seems to occur naturally, this case will therefore
be referred to as Assumption A*.

Assumption A* The sequence of scaled norms {∣∣X(n)∣∣2/
√

n}n∈N satisfies an LDP in
R at speed n with GRF JX ∶ R→ [0,∞].

As a direct consequence of Assumption A one can derive a weak law of large num-
bers.

Lemma 4.0.1. Let Assumption A hold. Moreover, we additionally assume JX has a unique
minimizer m ∈ R+. Then there exists a c > 0 and a sequence of positive real numbers {δl}l∈N

with δl ↓ 0 such that
√

sl inf{JX(x) ∶ ∣x −m∣ ≥ δl} ≥ c, (4.0.1)

where {sl}l∈N is the speed of the LDP from Assumption A. Moreover, for ε l ∶= max{δl , 2 exp(−c
√

δl)},
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we have the asymptotic thin-shell bound

∀l ∈ N ∶ ∃Nl ∈ N ∶ ∀n ≥ Nl ∶ P[∣ ∣∣X
(n)∣∣2√

n
−m∣ ≥ ε l] ≤ ε l . (4.0.2)

In particular, we get the following weak limit

∣∣X(n)∣∣2√
n

PÐ→ m,

where
PÐ→ denotes convergence in probability.

Proof. Let {sl}l∈N be the speed of the LDP from Assumption A and choose δ1 ∈ R such
that 0 < δ1 < m. Since JX is a GRF, we can attain the following infimum

c ∶= inf{JX(x) ∶ ∣x −m∣ ≥ δ1}

at some y ∈ (m− δ1, m+ δ1)c as shown in Lemma 3.1.1. Since m is the unique minimizer
of JX (with JX(m) = 0), we know that c > 0. For l ∈ N with l ≥ 2, we define

δ′l ∶= inf{δ > 0 ∶ inf{JX(x) ∶ ∣x −m∣ ≥ δ}√sl ≥ c}.

Then, by construction we have that δ′l+1 ≤ δ′l for all l ∈ N (since {sl}l∈N is monotone
increasing). Moreover, δ′l ↓ 0 for l → ∞. If not, then there exists ε > 0 with liml→∞ δl ≥
ε > 0. Hence,

inf{JX(x) ∶ ∣x −m∣ > ε

2
}√sl < c, ∀l ∈ N.

Which is only possible if the infimum is equal to zero, contradicting the uniqueness
of m. Define δl ∶= δ′l +

1
l for l ≥ 2. It follows that {δl}l∈N is a sequence of positive real

numbers, monotone decreasing for l ≥ 2 and δl ↓ 0 as l → ∞. Moreover, we have that
4.0.1 holds. To see this, we assume there exists l0 ∈ N with

√
sl0 inf{JX(x) ∶ ∣x −m∣ ≥ δl0} < c.

Then, by construction δ′l0 ≥ δl0 = δ′l0 +
1
l0

, which is not possible. This gives us the first
claim of our lemma.
Fix l ∈ N and consider the large deviation upper bound for {∣∣X(n)∣∣2/

√
n}n∈N with the
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closed set (m − ε l , m + ε l)c, i.e.

lim sup
n→∞

1
sn

log P[ ∣∣X
(n)∣∣2√

n
∈ (m − ε l , m + ε l)c] ≤ − inf

x∈(m−ε l ,m+ε l)c
JX(x). (4.0.3)

We can use the definition of ε l = max{δl , 2 exp(−c
√

δl)} ≥ δl , to bound the infimum in
4.0.3,

− inf
x∈(m−ε l ,m+ε l)c

JX(x) ≤ − inf
x∈(m−δl ,m+δl)c

JX(x) ≤ − c
√

sl
.

The second inequality follows from the definition of δl . Now we distinguish two cases,
first assume there exists N′

l ∈ N such that

sup
n≥N′

l

1
sn

log P[ ∣∣X
(n)∣∣2√

n
∈ (m − ε l , m + ε l)c] ≤ − c

√
sl

.

Rearranging the terms yields

P[ ∣∣X
(n)∣∣2√

n
∈ (m − ε l , m + ε l)c] ≤ exp(− csn√

sl
),

for all n ≥ N′
l . In particular, we find Nl ∈ N with Nl ≥ N′

l such that

exp(− csn√
sl
) ≤ 2 exp(−c

√
sl) ≤ ε l ,

for all n ≥ Nl . Thus, in this case, we have that

P[∣ ∣∣X
(n)∣∣2√

n
−m∣ ≥ ε l] = P[ ∣∣X

(n)∣∣2√
n

∈ (m − ε l , m + ε l)c]

≤ exp(− csn√
sl
)

≤ ε l .

Now we assume that for all N′
l ∈ N we have

sup
n≥N′

l

1
sn

log P[ ∣∣X
(n)∣∣2√

n
∈ (m − ε l , m + ε l)c] > − c

√
sl

.

Together with the large deviation upper bound for {∣∣X(n)∣∣2/
√

n}n∈N this can only
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happen if

lim
n→∞

1
sn

log P[ ∣∣X
(n)∣∣2√

n
∈ (m − ε l , m + ε l)c] = − c√

δl
.

Since the right-hand side is negative and sn → ∞, the probability in the log tends to
zero, i.e.

P[ ∣∣X
(n)∣∣2√

n
∈ (m − ε l , m + ε l)c] n→∞Ð→ 0.

In particular, we find Nl ∈ N such that for all n ∈ N with n ≥ Nl

P[ ∣∣X
(n)∣∣2√

n
∈ (m − ε l , m + ε l)c] ≤ ε l .

Remark. The sequence {ε l}l∈N converges to zero as l →∞. Hence, 4.0.2 is an asymp-
totic version of the „concentration hypothesis“ from [4].

The following assumption is a slight modification of Assumption A*, allowing to
consider more types of sequences {X(n)}n∈N.

Assumption B There exists a positive sequence {sn}n∈N with limn→∞ sn = limn→∞ n/sn =
∞ such that the sequence of scaled norms {√sn∣∣X(n)∣∣2/n}n∈N satisfies an LDP in R at
speed sn with GRF JX ∶ R→ [0,∞].

Lemma 4.0.2. If we assume the modification of Assumption B with limn→∞ sn/n = r ∈ (0,∞)
and GRF J(r)

X , then this modified Assumption B is equivalent to A*, i.e. it holds with GRF J(r)
X

iff Assumption A* holds with GRF JX(x) = rJ(r)
X (

√
rx).

Proof. We assume A* and show the LDP for the modified Assumption B with GRF
1
r JX( 1√

r x).

A direct calculation shows that the sequence {
√

r∣∣X(n)∣∣2/
√

n}n∈N satisfies the LDP
with speed sn and GRF 1

r JX( 1√
r x). Now we need to show that {√sn∣∣X(n)∣∣2/n}n∈N is

asymptotically equivalent to {
√

r∣∣X(n)∣∣2/
√

n}n∈N with speed sn, i.e. for δ > 0

lim sup
n→∞

1
sn

log(P[∣
√

r
∣∣X(n)∣∣2√

n
−

√
sn∣∣X(n)∣∣2

n
∣ > δ]) = −∞. (4.0.4)

First we note that in the lim sup, ∣
√

r −
√ sn

n ∣ can be made arbitrarily small, in other
words

lim sup
n→∞

1
sn

log(P[ ∣∣X
(n)∣∣2√

n
∣
√

r −
√

sn

n
∣ > δ]) ≤ lim sup

n→∞

1
sn

log(P[ ∣∣X
(n)∣∣2√

n
≥ M])
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for every M > 0. Using the LDP of Assumption A* and the asymptotic equivalence of
sn and n, we can bound the right-hand side of the inequality,

lim sup
n→∞

1
sn

log(P[ ∣∣X
(n)∣∣2√

n
≥ M]) ≤ −1

r
inf
x≥M

JX(x).

This implies that the lim sup in (4.0.4) can be bounded from above by − infx≥M JX(x)/r
for any M > 0. Assume infx≥M JX(x) is uniformly bounded from above by a constant
c ≥ 0, i.e. for all M > 0

inf
x≥M

JX(x) ≤ c.

Then the level set ψJX(c) = {x ∈ R ∣ JX(x) ≤ c} is compact, since JX is a GRF. Hence, there
exists an a∗ ∈ ψJX(c) with a∗ = sup{x ∶ x ∈ ψJX(c)}. By assumption, infx≥a∗+1 JX(x) ≤ c,
but JX(x) > c for all x ≥ a∗ + 1. Otherwise x ∈ ψJX(c), which is not possible, since
x ≥ a∗ + 1 > a∗. Thus, on the one hand we have

inf
x≥a∗+1

JX(x) ≤ c,

on the other hand we got
JX(x) > c,

for all x ≥ a∗ + 1. This is only possible if limx→∞ JX(x) = c, a contradiction, since all
level sets are bounded. Which implies that

lim
M→∞

inf
x≥M

JX(x) =∞.

Finally we are introducing Assumption C, which allows to use a relation between
the speed sn of the LDP and the dimension kn of the subspace we are projecting on.

Assumption C There exist r ∈ [0,∞], a GRF J(r)
X ∶ R→ [0,∞], and a positive sequence

{sn}n∈N satisfying sn →∞, sn/n → 0 and sn/kn → r as n →∞, such that

1. If r ∈ [0,∞), then {
√

kn∣∣X(n)∣∣2/n}n∈N satisfies an LDP at speed sn with GRF
J(r)
X .

2. If r =∞, then {√sn∣∣X(n)∣∣2/n}n∈N satisfies an LDP at speed sn with GRF J(∞)
X .

Lemma 4.0.3. For r ∈ (0,∞), Assumption C holds with speed sn and GRF J(r)
X iff it also holds

with r′ = 1, s′n = kn and GRF J(1)
X (x) = rJ(r)

X (
√

rx).
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Remark. The proof of Lemma 4.0.3 is very similar to the one of Lemma 4.0.2.

We start with two lemmas, which we will need several times in the following sec-
tions. Denote by An,k a random projection matrix on the Stiefel manifold Vn,k drawn
uniformly with respect to the Haar probability measure on it.

Lemma 4.0.4. (Lemma 4.1 in [18])
Fix k, n ∈ N such that k ≤ n. Then

An,k(1, ⋅) (d)= (ζ1, ..., ζk)
∣∣(ζ1, ..., ζn)∣∣2

,

where {ζ j}j∈N is an iid sequence of standard normal distributed random variables and An,k(1, ⋅)
denotes the first row of An,k.

Proof. Let On be an orthogonal n × n matrix sampled from the normalized Haar mea-
sure. We define

A′
n,k ∶= OT

n In,k,

where In,k ∈ Rn×k is a matrix with ones on the diagonal and zeros else. Since On is
translation invariant we see that for any n × n deterministic orthogonal matrix En,

On
(d)= OnET

n Ô⇒ OT
n

(d)= EnOT
n

Ô⇒ OT
n In,k

(d)= EnOT
n In,k.

This shows A′
n,k

(d)= En A′
n,k and hence A′

n,k
(d)= An,k. Since each row of On is uniformly

distributed on the sphere, the result follows because the normalized n-multivariate
standard normal distribution is itself uniformly distributed on the sphere.

Lemma 4.0.5. (Lemma 4.2 in [18])
Fix n ∈ N and k ≤ n. Suppose X(n) is an n-dimensional random vector independent of An,k.
Then

(AT
n,k

X(n)

∣∣X(n)∣∣2
, ∣∣X(n)∣∣2) (d)= (AT

n,ke1, ∣∣X(n)∣∣2), (4.0.5)

where e1 ∶= (1, ..., 0)T ∈ Rn denotes the first unit vector.

Proof. We prove the claim by direct computation. Let B ⊆ Rk+1 be a Borel set and let
On be an n × n random „Householder transformation“ matrix (see Theorem 6.0.20 in
the Appendix) with

On
X(n)

∣∣X(n)∣∣2
= e1 = (1, 0, ..., 0)T ∈ Rn.
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We can achieve this by defining

On ∶= In − 2vnvT
n ∈ Rn×n,

where vn is an Rn-valued random vector with

vn ∶=
X(n)

∣∣X(n)∣∣2
− e1

∣∣ X(n)
∣∣X(n)∣∣2

− e1∣∣
2

.

By construction On is an orthogonal matrix and only depends on X(n). Then we get

P[(AT
n,k

X(n)

∣∣X(n)∣∣2
, ∣∣X(n)∣∣2) ∈ B] = P[(AT

n,kOT
n e1, ∣∣X(n)∣∣2) ∈ B]

= E[P[(AT
n,kOT

n e1, ∣∣X(n)∣∣2) ∈ B∣X(n)]]

= E[P[(AT
n,kOT

n e1, ∣∣x∣∣2) ∈ B]∣
x=X(n)

]

= E[P[(AT
n,ke1, ∣∣x∣∣2) ∈ B]∣

x=X(n)
]

= P[(AT
n,ke1, ∣∣X(n)∣∣2) ∈ B],

where we used in the second equality from below that On is constant given X(n) (see

Theorem 6.0.14 in the Appendix) and On An,k
(d)= An,k in this case.

Remark. As elaborated in [15], one can further show the result that AT
n,k

X(n)
∣∣X(n)∣∣2

is

independent of X(n).

Definition 4.0.1. We now consider the situation when k = kn grows in n and denote the
empirical measure of the top row of

√
nAn,kn by

µ̂n
A ∶= 1

kn

kn

∑
j=1

δ√nAn,kn(1,j).

As suggested by the previous lemma, we want to establish a relation to the empirical
measure of the random projection

Ln ∶= 1
kn

kn

∑
j=1

δ(AT
n,kn

X(n))j
.
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Lemma 4.0.6. (Lemma 4.3 in [18])
For n ∈ N, let X(n) be independent of An,kn . Then we have

Ln(⋅) (d)= µ̂n
A(⋅ ×

√
n/∣∣X(n)∣∣2).

Moreover, the map P(R)× (0,∞) ∋ (ν, c)↦ ν(⋅ × c−1) ∈ P(R) is continuous.

Proof. It follows from Lemma 4.0.5 that

Ln(⋅) =
1
kn

kn

∑
j=1

δ
∣∣X(n)∣∣2(AT

n,kn
X(n)
∣∣X(n)∣∣2

)
j

(⋅) (d)= 1
kn

kn

∑
j=1

δ ∣∣X(n)∣∣2√
n

√
n(AT

n,kn
e1)j

(⋅)

= 1
kn

kn

∑
j=1

δ√nAn,kn(1,j)(⋅ ×
√

n/∣∣X(n)∣∣2)

= µ̂n
A(⋅ ×

√
n/∣∣X(n)∣∣2).

For the continuity of the mapping we recall the fact that weak convergence of mea-
sures is the same as convergence in distribution for associated random variables. Let
{νn}n∈N ⊆ P(R) and {cn}n∈N ⊆ (0,∞) such that

νn
wÐ→ ν ∈ P(R)

cn Ð→ c ∈ (0,∞)

as well as Xn ∼ νn for all n ∈ N. Then Slutsky’s theorem 6.0.13 implies

lim
n→∞

cnXn
(d)= cX,

where X is distributed according ν. In terms of distributions this means

νn(⋅ × c−1
n ) wÐ→ ν(⋅ × c−1).

This argument shows the continuity of the defined mapping since P(R) is a Polish
space (see Remark 3.3).

Lemma 4.0.7. (Lemma 4.4 in [18])
Let q ≥ 1 and suppose {µ̂n

A}n∈N, the empirical measure from Definition 4.0.1, satisfies an
LDP in Pq(R) and GRF I1 ∶ Pq(R) → [0,∞]. Let {∣∣X(n)∣∣2/

√
n}n∈N satisfy an LDP at speed

sn with GRF I2 ∶ R+ → [0,∞]. Then, {Ln}n∈N statisfies an LDP in Pq(R) at speed sn with
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GRF I ∶ Pq(R)→ [0,∞] defined by

I(µ) = inf
ν∈Pq(R),c∈R+

{I1(ν)+ I2(c) ∶ µ = ν(⋅ × c−1)}.

Proof. An,kn and X(n) are independent, hence {(µ̂n
A, ∣∣X(n)∣∣2/

√
n)}n∈N satisfies an LDP

at speed sn with GRF
Pq(R)×R+ ∋ (ν, c)↦ I1(ν)+ I2(c).

We need to show that the mapping F ∶ Pq(R)×R+ → Pq(R) with

(ν, c)↦ ν(⋅ × c−1)

is continuous. Take a sequence {(νn, cn)}n∈N ⊆ Pq(R) × R+ with νn
WqÐ→ ν ∈ Pq(R)

and cn
n→∞Ð→ c > 0. Since νn Ð→ ν weakly, we can use Lemma 4.0.6 to show that

F(νn, cn)Ð→ F(ν, c) weakly. For the q-th moment we have

mq(F(νn, cn)) = ∫
R
∣x∣qdνn(x × c−1

n )

= cq
n ∫

R
∣x∣qdνn(x) n→∞Ð→ c∫

R
∣x∣qdν(x) = mq(F(ν, c)).

Thus, F(νn, cn)
WqÐ→ F(ν, c) and hence F is continuous. The claim then follows by

applying the contraction principle.

Lemma 4.0.8. (Lemma 4.5 in [18])
Let {ζ}j∈N be an iid sequence of standard normal distributed random variables, denote ζ(n) =
(ζ1, ..., ζn) and consider the sequence

νn =
1
kn

kn

∑
j=1

δζ j , n ∈ N.

Then {νn}n∈N satisfies an LDP in P(R) with repect to the weak topology, at speed kn and with
GRF H(⋅∣γ1). Moreover, for a sequence {sn}n∈N such that sn ≪ kn, {νn}n∈N satisfies an LDP
in P(R) with respect to the weak topology at speed sn with degenerate GRF

χγ1(ν) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if ν = γ1

∞, else.

Proof. The first assertion follows directly by applying Sanov’s theorem 3.1.16. The
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second claim is a consequence of Remark 3.1.2.

The goal is to establish LDPs for three different asymptotic regimes for k. We there-
fore distinguish the following cases.

Definition 4.0.2. Given a sequence {kn}n∈N, we say:

1. {kn}n∈N is constant at k, for some k ∈ N, denoted kn ≡ k, if kn = k for all n ∈ N.

2. {kn}n∈N growth sublinearly, denoted 1 ≪ kn ≪ n, if kn →∞, but kn/n → 0.

3. {kn}n∈N grows linearly with speed λ, for some λ ∈ (0, 1], denoted kn ∼ λn, if kn/n →
λ.

4.1 LDP in the constant regime

In the previous chapter, we identified the distribution of the first row An,k(1, .) of the
projection matrix. The next lemma establishes a corresponding LDP

Lemma 4.1.1. Let {ζ j}j∈N be an iid sequence of standard normal distributed random variables.
Then

Zn ∶=
(ζ1, ..., ζk)

∣∣(ζ1, ..., ζn)∣∣2

satisfies the LDP with speed n and GRF Jk ∶ Rk → [0,∞], Jk(y) = − 1
2 log(1− ∣∣y∣∣22).

Proof. We can represent our sequence as

Zn = F( 1√
n
(ζ1, ..., ζk),

1
n

n
∑

j=k+1
ζ2

j ),

where F ∶ Rk ×R+ → Rk with

(x1, x2)↦
x1√

∣∣x1∣∣22 + x2

is a continuous mapping. Then we can use Application 5 for (ζ1, ..., ζk)/
√

n and Ap-
plication 6 for ∑n

j=k+1 ζ2
j /n to establish an LDP for {Zn}n∈N in Rk at speed n via the

62



contraction principle. For ∣∣y∣∣2 ≤ 1 the corresponding GRF is given by

Jk(y) = inf{∣∣x1∣∣22
2

+ 1
2
(x2 − log x2 − 1) ∶ y = x1√

∣∣x1∣∣22 + x2

, x1 ∈ Rk, x2 > 0}

= 1
2

inf{∣∣x1∣∣22
∣∣y∣∣22

− log(∣∣x1∣∣22(1− ∣∣y∣∣22)
∣∣y∣∣22

)− 1 ∶ y = x1√
∣∣x1∣∣22 + x2

, x1 ∈ Rk, x2 > 0}

= −1
2

log(1− ∣∣y∣∣22)+
1
2

inf{∣∣x1∣∣22
∣∣y∣∣22

− log(∣∣x1∣∣22
∣∣y∣∣22

)− 1 ∶ y = x1√
∣∣x1∣∣22 + x2

, x1 ∈ Rk, x2 > 0}

= −1
2

log(1− ∣∣y∣∣22).

The infimum vanishes, since t− log t−1 has a global minimum at t = 1 and by choosing
x2 = 1− ∣∣x1∣∣2, x1 = y we can achieve this value.

The next lemma provides an adaptation of the contraction principle, showing an
LDP for certain dependent random variables.

Lemma 4.1.2. Suppose {Un}n∈N, {Vn}n∈N and {Wn}n∈N satisfy LDPs in R at speeds αn, βn

and γn with rate functions JU , JV and JW , respectively. Let αn = βn ≪ γn. Assume {Un}n∈N

is independent of {Vn}n∈N and JW has a unique minimizer m. Then {(Un, Vn, Wn)}n∈N is
asymptotically equivalent to {(Un, Vn, m)}n∈N and satisfies an LDP at speed αn with GRF

J(u, v, w) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JU(u)+ JV(v), w = m

∞, otherwise.
(4.1.1)

Moreover, if m ≠ 0, then {VnWn}n∈N satisfies an LDP at speed αn with GRF v ↦ JV(v/m).

Proof. For n ∈ N define Fn ∶= (Un, Vn, Wn) and F̃n ∶= (Un, Vn, m). Since Un and Vn

are independent and αn = βn, we can use Lemma 3.1.6 to show that {(Un, Vn)}n∈N

satisfies an LDP in R2 and GRF (u, v)↦ JU(u)+ JV(v). Another application of Lemma
3.1.6, where we contract the LDP of {(Un, Vn)}n∈N with the trivial LDP of the constant
sequence m yields an LDP for {F̃n}n∈N at speed αn with GRF J given in Equation
(4.1.1). In order to show asymptotic equivalence of {F̃n}n∈N and {Fn}n∈N, fix ε > 0 and
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consider

lim sup
n→∞

1
αn

log P[∣∣Fn − F̃n∣∣2 > ε] = lim sup
n→∞

1
αn

log P[∣Wn −m∣ > ε]

≤ lim sup
n→∞

γn

αn

1
γn

log P[Wn ∈ (m − ε/2, m + ε/2)c]

≤ −M inf
x∈(m−ε/2,m+ε/2)c

JW(x)

for any M > 0, since γn ≫ αn. Because m is the unique minimizer of JW and a GRF
takes its infimum over closed sets, the infimum in the lowest line is positive, implying
that the limsup in the first line has to be −∞. This proves the exponential equivalence
of {Fn}n∈N and {F̃n}n∈N, hence they satisfy the same LDP.
The second assertion follows by application of the contraction principle using the
continuous mapping F ∶ R3 → R with (u, v, w) ↦ vw. Then, {F(F̃n)}n∈N satisfies the
LDP with GRF J′ ∶ R→ [0,∞] given by

J′(y) = inf{J(u, v, w) ∣ (u, v, w) ∈ R3 ∶ y = vw}
= inf{JU(u)+ JV(v) ∣ (u, v, w) ∈ R3 ∶ v = y/m, m = w}
= JV(y/m).

In the last step we used that the global infimum of JU is zero and that v = y/m is
constant.

We are now able to state the first main result, establishing an LDP for projections of
high dimensional random vectors on subspaces with fixed dimension.

Theorem 4.1.3. (Theorem 2.6 in [18])
Suppose {kn}n∈N is constant at k ∈ N, and that either Assumption A* or Assumption B holds,
with sequence {sn}n∈N and GRF JX. Then {n−1/2AT

n,kX(n)}n∈N satisfies an LDP in Rk at
speed sn, with GRF IAX,k ∶ Rk → [0,∞] defined by

IAX,k(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf0<c<1 {JX( ∣∣x∣∣2
c )− 1

2 log(1− c2)}, if Assumption A* holds

infc>0 {JX( ∣∣x∣∣2
c )+ c2

2 }, if Assumption B holds.

Proof. Case 1. Suppose Assumption A* holds with GRF JX:
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By Lemma 4.0.5 we have

1√
n

AT
n,kX(n) (d)= An,k(1, .) ∣∣X

(n)∣∣2√
n

.

An,k(1, .) and ∣∣X(n)∣∣2 are independent by assumption, hence we can use the contraction
principle to combine the respective LDPs with GRF

IAX,k(x) = inf
y∈Rk ,z∈R

{− 1
2

log(1− ∣∣y∣∣22)+ JX(z) ∶ x = zy, ∣∣y∣∣2 ≤ 1, z ≥ 0}.

Since JX is infinity on the negative reals, we can restrict on positive values for z. With
y = x/z the condition ∣∣y∣∣2 ≤ 1 becomes ∣∣x∣∣2 ≤ z. Then

IAX,k(x) = inf
∣∣x∣∣2≥z

{− 1
2

log(1− ∣∣x∣∣22
z2 )+ JX(z)} = inf

∣∣x∣∣2>z
{− 1

2
log(1− ∣∣x∣∣22

z2 )+ JX(z)}.

Using the parametrisation c = ∣∣x∣∣2/z we obtain the desired form of the rate function.
Case 2. Suppose Assumption B holds with sequence {sn}n∈N and GRF JX. Using

again Lemma 4.0.5 and Lemma 4.0.4 yields

1√
n

AT
n,kX(n) (d)= An,k(1, .) ∣∣X

(n)∣∣2√
n

(d)= ζ(k)/√sn

∣∣ζ(n)∣∣2/
√

n

√
sn∣∣X(n)∣∣2

n
, (4.1.2)

where we have the product of the three entries of the vector

Rn ∶= ( ζ(k)
√

sn
,

√
n

∣∣ζ(n)∣∣2
,
√

sn∣∣X(n)∣∣2
n

).

As shown in Application (5), {ζ(k)/√sn}n∈N satisfies the LDP with speed sn. For the
second component one can use Application (6) and the contraction principle for the
continuous mapping F ∶ R+ → R+, x ↦ x−1/2 to receive an LDP for {

√
n/∣∣ζ(n)∣∣2}n∈N

with speed n ≫ sn. Since ζi ∼ N (0, 1) for i ∈ N, we have that

1
n

n
∑
i=1

ζ2
i Ð→ 1

almost surely by the strong law of large numbers. Thus,
√

n/∣∣ζ(n)∣∣2 → 1 almost surely.
The third component of Rn satisfies the LDP with GRF JX by Assumption B. Hence,
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we can apply Lemma 4.1.1 to see that {Rn}n∈N satisfies the LDP at speed sn and GRF

J(u, v, w) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 ∣∣u∣∣

2
2 + JX(w), v = 1

∞, otherwise.

Applying the contraction principle to the sequence {Rn}n∈N and the continuous func-
tion F ∶ Rk ×R ×R → R, (u, v, w) ↦ uvw gives the LDP for (4.1.2) with speed sn and
GRF

IAX,k(x) = inf{1
2
∣∣u∣∣22 + JX(w) ∶ u ∈ Rk, w ∈ R ∶ v = 1, x = uvw}

= inf{1
2
∣∣u∣∣22 + JX(w) ∶ u ∈ Rk, w > 0, x = uw}

= inf{1
2

c2 + JX(∣∣x∣∣2/c) ∶ c > 0}.

We used that JX is infinite on the negative real numbers, due to the positivity of the
norm and substituted c = ∣∣u∣∣2 in the last step.

As a direct consequence we get the LDP for scaled q-norms. Similar results are
much more work in the sublinear and linear regimes. We define

Yn
q,k ∶= n−1/q∣∣An,kX(n)∣∣q, (4.1.3)

for q > 0.

Corollary. Suppose {X(n)}n∈N , {sn}n∈N and IAX,k are as in Theorem 4.1.3. Then
{n1/q−1/2Yn

q,k}n∈N satisfies an LDP at speed sn with GRF

JYq,k(x) ∶= inf
z∈Rk

{IAX,k(z) ∶ x = ∣∣z∣∣q}.

Proof. The result follows immediately by applying the contraction principle to the LDP
from Theorem 4.1.3 and the continuous mapping x ↦ ∣∣x∣∣q.

4.2 LDP in the sublinear regime

The central idea is to consider the empirical measure of the projection, in the case of
non-constant dimension. We recall the definitions of µ̂n

A and Ln in 4.0.1. Before we
start with the theory in this subsection, we think a little bit about the quantity Ln.
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What can we expect to happen? So, first of all, Ln is an empirical measure consisting
of kn summands. Thus, it is plausible that Sanov’s theorem will play a major role
and that the relative entropy H will appear. Given the form of Ln one would expect
that the „Sanov type“ LDP has speed kn. On the other hand Ln contains our sequence
{X(n)}n∈N, where we assume that e.g. {∣∣X(n)∣∣/

√
n}n∈N satisfies an LDP at rate sn with

GRF JX. In total, we would expect that Ln somehow combines those two LDPs to an
LDP at rate sn ∧ kn and some rate function depending on the respective GRFs H and
JX. It is not surprising that, depending on the relation of sn and kn, sometimes the LDP
with GRF JX will dominate (and the LDP with GRF H will degenerate) and sometimes
the other way around. In the case of sn = kn both of those LDPs will equally influence
the behaviour of Ln.

In the following we denote by γσ the normal distribution with mean 0 and variance
σ2.

Lemma 4.2.1. (Proposition 4.6 in [18])
Fix q < 2. Suppose {kn}n∈N grows sublinearly. Then, {µ̂n

A}n∈N satisfies an LDP in Pq(R) at
speed kn with GRF H(⋅∣γ1) ∶ Pq(R)→ [0,∞].

Proof. Previous results have shown that An,kn(1, .) (d)= (ζ1, ..., ζkn)/∣∣ζ(n)∣∣2 for iid stan-
dard normal ζ j. This implies

µ̂n
A = 1

kn

kn

∑
j=1

δ√nAn,kn(1,j)
(d)= 1

kn

kn

∑
j=1

δ√nζ j/∣∣ζ(n)∣∣2 =∶ ν̃n.

If we are able to show the asymptotic exponential equivalence of {ν̃n}n∈N and

νn =
1
kn

kn

∑
j=1

δζ j , n ∈ N

at speed kn, we can then use Lemma 4.0.8 to consequently establish an LDP for
{µ̂n

A}n∈N.
Let dbL be the bounded Lipschitz metric, which induces weak convergence on P(R),
let BL(R) denote the space of Lipschitz continuous functions mapping from R to R
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with constant 1 and define zn ∶=
√

n/∣∣ζ(n)∣∣2. Then

dbL(νn, ν̃n) = sup
f ∈BL(R)

∣∫
R

f (x)dνn(x)−∫
R

f (x)dν̃n(x)∣

≤ sup
f ∈BL(R)

1
kn

kn

∑
j=1

∣ f (ζ j)− f (znζ j)∣ ≤
1
kn

∣1− zn∣
kn

∑
j=1

∣ζ j∣.

Hence, for ε, δ > 0 we get

P[dbL(νn, ν̃n) > δ] ≤ P[∣1− zn∣
1
kn

kn

∑
j=1

∣ζ j∣ > δ]

= P[∣1− zn∣
1
kn

kn

∑
j=1

∣ζ j∣ > δ, ∣1− zn∣ > ε]+P[∣1− zn∣
1
kn

kn

∑
j=1

∣ζ j∣ > δ, ∣1− zn∣ ≤ ε]

≤ P[∣1− zn∣ > ε]+P[ 1
kn

kn

∑
j=1

∣ζ j∣ >
δ

ε
] =∶ bn + an.

As shown in Application 2, we have

lim sup
n→∞

1
kn

log P[ 1
kn

kn

∑
j=1

∣ζ j∣ >
δ

ε
] ≤ −Λ∗(δ/ε)

for a convex and superlinear growing function Λ∗. Using Application 6 and the con-
traction principle (similar to the proof of Theorem 4.1.3) implies that {zn}n∈N satisfies
an LDP with speed n. Since n ≫ kn, we have that

lim
n→∞

bn

an
= 0.

Thus

lim sup
n→∞

1
kn

log P[dbL(νn, ν̃n) > δ] ≤ lim sup
n→∞

1
kn

log(an + bn)

≤ lim sup
n→∞

1
kn

log an + lim sup
n→∞

1
kn

log(1+ bn

an
)

≤ −Λ∗(δ/ε) ε→0Ð→ −∞.

Hence, {µ̂n
A}n∈N satisfies the LDP in P(R) at speed kn, equipped with the weak topol-

ogy. Now we can use Corollary 3.1.2, derived from the inverse contraction principle,
to establish the LDP for the q-Wasserstein topology. For this we need to show the
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exponential tightness of {µ̂n
A}n∈N. Recall the set K2,j from Lemma 3.3.5 and define

jn ∶= ⌊n/kn⌋+ 1. Then

P[µ̂n
A ∈ K2,jn] = P[∫

R
x2dµ̂n

A(x) ≤ jn] = P[ 1
kn

kn

∑
j=1
∫

R
x2dδ√nAn,kn(1,j)(x) ≤ jn]

= P[ n
kn

∣∣An,kn(1, .)∣∣22 ≤ jn] = 1.

In the last step we used that An,kn(1, ⋅) (d)= (ζ1, ...ζkn)/∣∣(ζ1, ..., ζn)∣∣2 for iid standard
normal ζ j and hence ∣∣An,kn ∣∣2 ≤ 1. K2,jn is compact with respect to the q-Wasserstein
topology for q < 2. Thus, {µ̂n

A}n∈N is exponentially tight, since for α > 0

lim sup
n→∞

1
kn

log P[µ̂n
A ∈ Kc

2,jn] = −∞ < −α.

Hence, we can apply the corollary to establish an LDP on Pq(R) for q < 2 with GRF
H(⋅∣γ1).

Now we are ready for the the next theorem, where the LDP is shown for the se-
quence of empirical measures {Ln}n∈N.

Theorem 4.2.2. (LDP in the sublinear case, Theorem 2.8 in [18] )
Suppose {kn}n∈N grows sublinearly and Asumption A holds with associated speed sn and

GRF JX. Also, suppose that JX has a unique minimum at m > 0. Let H be the relative entropy
functional. Then, for every q < 2,

1. If sn ≫ kn, {Ln}n∈N satisfies an LDP in Pq(R) at speed kn, with GRF IL,kn ∶ Pq(R)→
[0,∞], defined by

IL,kn(µ) ∶= H(µ∣γ1).

2. If sn = kn, {Ln}n∈N satisfies an LDP in Pq(R) at speed kn, with GRF IL,kn ∶ Pq(R)→
[0,∞], defined by

IL,kn(µ) ∶= inf
c>0

{H(µ∣γc)+ JX(c)}.

3. If sn ≪ kn, {Ln}n∈N satisfies an LDP in Pq(R) at speed sn, with GRF IL,kn ∶ Pq(R)→
[0,∞], defined by

IL,kn(µ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

JX(c), if µ = γc,

∞, otherwise.
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Proof. We will prove each claim separately using different previous results. We start
with 1. where sn ≫ kn:
By Proposition 4.2.1 we have that {µ̂n

A}n∈N satisfies an LDP with speed kn and GRF
H(⋅∣γ1) and by Assumption A we know that {∣∣X(n)∣∣2/

√
n}n∈N satisfies an LDP with

speed sn and some GRF JX. Using Remark 3.1.2 gives us an LDP for {∣∣X(n)∣∣2/
√

n}n∈N

with speed kn ≪ sn and GRF χm. By Lemma 4.0.7 we get that {Ln}n∈N satisfies an LDP
with GRF

IL,kn(µ) = inf
ν∈Pq(R),c>0

{H(ν∣γ1)+ χm(c) ∶ µ(⋅) = ν(⋅ × c−1)}

= H(µ(⋅ ×m)∣γ1)
= H(µ∣γ1(⋅ ×m−1))
= H(µ∣γm),

where the second last equality is shown in Lemma 3.1.18.
For 2., where kn = sn, we again use Lemma 4.2.1 and the LDP for {∣∣X(n)∣∣2/

√
n}n∈N

from Assumption A, while due to kn = sn, the rate function does not degenerate.
Using Lemma 4.0.7 gives us an LDP for {Ln}n∈N at speed sn and GRF

IL,kn(µ) = inf
ν∈Pq(R),c>0

{H(ν∣γ1)+ JX(c) ∶ µ(⋅) = ν(⋅ × c−1)}

= inf
c>0

{H(µ∣γc)+ JX(c)},

where the transformation in the infimum is similar to the previous case.
For 3., where sn ≪ kn, we basically make the same observations as in 1., but in this case
the LDP for {µ̂n

A}n∈N degenerates to an LDP with speed sn and GRF χγ1 . We deduce
an LDP for {Ln}n∈N with speed sn and GRF

IL,kn(µ) = inf
ν∈Pq(R),c>0

{χγ1(ν)+ JX(c) ∶ µ(⋅) = ν(⋅ × c−1)}

= inf
c>0

{χγ1(µ(⋅ × c))+ JX(c)}

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JX(y), if ∃y > 0 ∶ µ = γy

∞, otherwise.

The following results treat the asymptotic behaviour of scaled q-norms. We therefore
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recall the sequence
Yn

q,kn
= n−1/q∣∣AT

n,kn
X(n)∣∣q

and we will need the following lemma.

Lemma 4.2.3. (Lemma 4.2 in [1])
Let ζ1, ζ2, ... be an iid sequence of standard normal distributed random variables and consider

Vn ∶=
∣∣(ζ1, ..., ζkn)∣∣2
∣∣(ζ1, ..., ζn)∣∣2

.

Then the sequence of random variables {Vn}n∈N satisfies an LDP with speed n and rate function

IV(y) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1
2 log(1− y2), if y ∈ [0, 1)

∞, otherwise .

Proof. The proof is not done as in [1], we provide a more elementary approach.
We can use the representation

Vn = F( 1
n
∣∣(ζ1, ..., ζkn)∣∣22,

1
n
∣∣(ζkn+1, ..., ζn)∣∣22), (4.2.1)

where F ∶ R+ ×R+ → R+, (x1, x2) ↦
√

x1
x1+x2

. The sequences on the right-hand side
of Equation 4.2.1 are independent and satisfy respective LDPs in R at speed n and
GRFs given in Application 6 and Application 7 (To be fully precise the LDP for
{∣∣(ζkn+1, ..., ζn)∣∣22/n}n∈N can be shown analogously as in 7). For y ≤ 1 the GRF for
the sequence in Equation 4.2.1 is then given by

IV(y) = inf{x1

2
+ 1

2
(x2 − log x2 − 1) ∶ y =

√
x1

x1 + x2
}

= −1
2

log(1− y2).

The calculation in the infimum is essentially the same as in Lemma 4.1.1.

The next definition introduces the p-generalized Gaussian distribution, a natural
generalization of the normal distribution.

Definition 4.2.1. For p ∈ [1,∞), let fp be the density of the p-generalized normal distribution,
i.e.

fp(x) ∶= 1
2p1/pΓ(1+ 1/p)

e−∣x∣
p/p, x ∈ R,
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where Γ denotes the Gamma function.

We can provide an LDP including such random variables, which will occur in the
proof of the next theorem.

Lemma 4.2.4. (Lemma 3.2 in [18])
Let p ∈ [1, 2], let {kn}n∈N satisfy kn →∞ as n →∞. Then, given {sn}n∈N such that kn/sn → 0
as n → ∞, the sequence {(sn)−1∑kn

j=1(ξ
(p)
i )2}n∈N satisfies an LDP with speed sp/2

n and GRF
Jξ,p ∶ R→ [0,∞] defined by

Jξ,p(t) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tp/2
p , t ≥ 0

∞ , t < 0.

We can now state the next theorem treating the asymptotical behaviour of scaled
2-norms.

Theorem 4.2.5. (Theorem 2.10 in [18])
Suppose kn grows sublinearly.
1. If Assumption A* holds with GRF JX, then {Yn

2,kn
}n∈N satisfies an LDP in R at speed n

with GRF JY2,kn
∶ R→ [0,∞], defined by

JY2,kn
(x) ∶= inf

c∈[0,1)
{− 1

2
log(1− c2)+ JX(x

c
)}.

2. If Assumption C holds with r ∈ [0,∞], {sn}n∈N and GRF J(r)
X , then {Yn

2,kn
}n∈N satisfies

an LDP in R, at speed sn when r ∈ {0,∞} and at speed kn when r ∈ (0,∞), both with GRF
JY2,kn

∶ R→ [0,∞], where

JY2,kn
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

J(0)
X (x), if r = 0,

infc>0 { c2−1
2 − log c + rJ(r)

X (
√

rx
c )}, if r ∈ (0,∞),

infc>0 { c2

2 + J(∞)
X ( x

c )}, if r =∞.

Proof. We recall some of the previous results in order to establish a different repre-
sentation of Yn

2,kn
. By Lemma 4.0.4 and Lemma 4.0.5 we know

AT
n,kn

X(n)

∣∣X(n)∣∣2
(d)= An,kn(1, ⋅) (d)= ζ(kn)

∣∣ζ(n)∣∣2

for an iid standard normal distributed sequence ζ1, ζ2, ... and ζ(k) = (ζ1, ..., ζk). Com-

72



bining these identities and the fact that AT
n,kn

X(n)
∣∣X(n)∣∣2

is independent of X(n) leads to

Yn
2,kn

=
∣∣AT

n,kn
X(n)

∣∣X(n)∣∣2
∣∣2∣∣X

(n)∣∣2
√

n
(d)= ∣∣ζ(kn)∣∣2

∣∣ζ(n)∣∣2
∣∣X(n)∣∣2√

n
= ∣∣ζ(kn)∣∣2/

√
kn

∣∣ζ(n)∣∣2/
√

n

√
kn∣∣X(n)∣∣2

n
. (4.2.2)

Situation 1: We assume Assumption A*. Then the claim follows immediately by
Lemma 4.2.3 and the contraction principle with continuous function F ∶ R2 → R, (ζ, x)↦
ζx. We obtain the GRF JY2,kn

∶ R+ → [0,∞] given by

JY2,kn
(x) = inf

c∈[0,1),x=cy
{− 1

2
log(1− c2)+ JX(y)} = inf

c∈[0,1)
{− 1

2
log(1− c2)+ JX(x

c
)}.

Situation 2: We assume Assumption C. Then we use the representation in Lemma 4.2.3
and Lemma 4.1.2 to derive LDPs in three different cases for the parameter r from As-
sumption C. But first we consider the sequences {∣∣ζ(n)∣∣2/n}n∈N and {∣∣ζ(kn)∣∣2/kn}n∈N.
Using Application 5 and the contraction principle with the continuous function x ↦
√

x allows to derive LDPs with speed n and kn respectively. The corresponding GRF
I ∶ R+ → [0,∞] follows directly and has a closed representation

I(x) = inf
c=x2

[1
2
(c − log c − 1)] = x2 − 1

2
− log x.

Case 1: r = 0, implying sn ≪ kn ≪ n. We want to apply Lemma 4.1.2 on the sequence
from Equation 4.2.2, hence we define Un ∶=

√
kn∣∣X(n)∣∣2/n, Vn ∶=

√
kn/∣∣ζ(kn)∣∣2 and Wn ∶=

∣∣ζ(n)∣∣2/n. {Un}n∈N satisfies an LDP with speed sn and GRF J(0)
X by assumption. As

shown before, {Vn}n∈N and {Wn}n∈N satisfy LDPs with speed kn and n respectively.
Thus {Vn}n∈N satisfies an LDP with speed sn and degenerated GRF χ1, where {Wn}n∈N

satisfies an LDP with speed kn and the same GRF. We are therefore in the required
setting and deduce that {(Un, Vn, Wn)}n∈N satisfies an LDP with speed sn and GRF
J ∶ R3 → [0,∞] given by

J(u, v, w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

J(0)
X (u)+ χ1(v) , if w=m

∞ else.

We can use the contraction principle for the continuous mapping (u, v, w) ↦ uvw to
derive an LDP for the sequence in Equation 4.2.2 with speed sn and GRF JY2,kn

∶ R+ →
[0,∞] given by

JY2,kn
(x) = inf

x=uv
[J(0)

X (u)+ χ1(v)] = J(0)
X (x).
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Case 2: r ∈ (0,∞). As we mentioned in Remark 4.0.3, we get an LDP with speed kn

and GRF rJ(r)
X (

√
rx). We again work with the representation from Equation 4.2.2 and

use Lemma 4.1.2 to derive an LDP with GRF JY2,kn
∶ R+ → [0,∞]

JY2,kn
(x) = inf

x=u/v
[u2 − 1

2
− log u + rJ(r)

X (
√

rv)] = inf
u>0

[u2 − 1
2

− log u + rJ(r)
X (

√
ru
x

)].

Case 3: r = ∞. The same argument as done to receive Equation 4.2.2 leads to the
representation

Y2,kn

(d)= ∣∣ζ(kn)∣∣2/
√

sn

∣∣ζ(n)∣∣2/
√

n

√
sn∣∣X(n)∣∣2

n
.

We can use Lemma 4.2.4 and the contraction principle for the continuous mapping
t ↦

√
t to get an LDP for {∣∣ζ(kn)∣∣2/

√
sn}n∈N with speed sn and GRF I ∶ R+ → [0,∞]

given by

I(x) = inf
y=x2

[y
2
] = x2

2
.

Now we are in the situation of Lemma 4.1.2 with two sequences satisfying an LDP
at speed sn and one sequence with speed n, where sn ≪ n by assumption. Further,
∣∣ζ(n)∣∣2/

√
n → 1 almost surely and hence get the GRF JY2,kn

∶ R+ → [0,∞], where

JY2,kn
(x) = inf

x=uv/w,u>0
[u2

2
+ J(∞)

X (v)+ χ1(w)] = inf
u>0

[u2

2
+ J(∞)

X ( x
u
)],

which concludes the proof.

In the last section of this chapter we want to find an LDP for q-norms with a different
scaling. A simple rearrangement, which we will see in a moment, suggests that the
scaling k−1/q

n is meaningful. We therefore consider

Ỹn
q,kn

(x) ∶= k−1/q
n ∣∣AT

n,kn
X(n)∣∣q. (4.2.3)

Similar to Representation 4.2.2 in the previous theorem, we use Lemma 4.0.4 and
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Lemma 4.0.5 to derive a new quantity, namely

k−1/q
n ∣∣AT

n,kn
X(n)∣∣q = k−1/q

n ∣∣AT
n,kn

X(n)

∣∣X(n)∣∣2
∣∣

q
∣∣X(n)∣∣2

(d)= k−1/q
n ∣∣An,kn(1, .)∣∣q∣∣X(n)∣∣2

(d)= k−1/q
n

∣∣ζ(kn)∣∣q
∣∣ζ(n)∣∣2

∣∣X(n)∣∣2

=
k−1/q

n ∣∣ζ(kn)∣∣q
∣∣ζ(n)∣∣2n−1/2

n−1/2∣∣X(n)∣∣2.

As it turns out, k−1/q
n is just the right scaling to get an interesting LDP for {∣∣ζ(kn)∣∣q}n∈N.

For this we introduce two quantities, we start with the cumulant generating function
of ∣X∣q, where X ∼ N (0, 1), i.e.

Λq(t) ∶= log(∫
R

1√
2π

exp(t∣x∣q − 1
2

x2)dx)

for q ∈ [1, 2) and t ∈ R or for q = 2 and t < 1/2. We will also encounter the q-th moment
of ∣X∣, we hence define

Mq ∶= ∫
R

1√
2π

∣x∣q exp(− 1
2

x2)dx = 2q/2
√

π
Γ(q + 1

2
). (4.2.4)

Theorem 4.2.6. (Theorem 2.11 in [18])
Fix q ∈ [1, 2], suppose 1 ≪ kn ≪ n and Assumption A holds with speed sn and GRF JX,
which additionally has a unique minimum at m > 0. Then {Ỹn

q,kn
}n∈N satisfies an LDP at speed

sn ∧ kn with rate function JỸ2,kn
∶ R→ [0,∞] defined by, for x ≥ 0

JỸ2,kn
(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Λ∗(xq/mq), if sn ≫ kn,

infc>0 {Λ∗(cq)+ JX(x/c)}, if sn = kn,

JX(x/M1/q
q ), if sn ≪ kn.

Proof. We will work with Representation 4.2.3, thus we consider the sequence of vec-
tors

Rn ∶= (
∣∣ζ(kn)∣∣q

k1/q
n

,
∣∣ζ(n)∣∣2√

n
,
∣∣X(n)∣∣2√

n
), n ∈ N.
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By Cramér’s theorem we can easily establish an LDP for

∣ζ1∣q + ...+ ∣ζn∣q
n

with speed n and rate function Λ∗
q . Hence, {∣∣ζ(kn)∣∣qq/kn}n∈N satisfies an LDP with

speed kn and the same rate function. We can apply the contraction principle to get
an LDP for { f (∣∣ζ(kn)∣∣qq/kn)}n∈N with f ∶ R+ → R+, x ↦ x1/q. As rate function we get
Jq,ζ(x) ∶= Λ∗

q(xq), x ≥ 0. Now we distinguish three cases, depending on the speed sn

relative to kn:
Case 1: kn ≪ sn. We apply Lemma 4.1.2 and observe that {Rn}n∈N is exponentially
equivalent with speed kn to {(∣∣ζ(kn)∣∣q/k1/q

n , 1, m)}n∈N. {Ỹ2,kn}n∈N hence satisfies an
LDP at speed kn and rate function JỸ2,kn

∶ R+ → [0,∞] given by

JỸ2,kn
(x) = inf

x=uw/v
{Jζ,q(u)+ χ1(v)+ χm(w)} = Jζ,q(x/m) = Λ∗

q((x/m)q).

Case 2: kn = sn. Again Lemma 4.1.2 provides an LDP for {Rn}n∈N with speed kn. As
rate function we get JỸ2,kn

∶ R+ → [0,∞]

JỸ2,kn
(x) = inf

x=uv/w
{Jζ,q(u)+ χ1(v)+ JX(w)} = inf

u>0
{Jζ,q(u)+ JX(x/u)}.

Case 3: sn ≪ kn. By the strong law of large numbers, we have the almost sure conver-
gence

∣∣ζ(kn)∣∣qq
kn

Ð→ Mq,

and hence ∣∣ζ(kn)∣∣q
k1/q

n
→ M1/q

q almost surely. By Lemma 4.1.2, {Rn}n∈N is exponentially

equivalent to {(M1/q
q , 1, ∣∣X(n)∣∣2/

√
n)}n∈N at speed sn, the resulting rate function JỸ2,kn

∶
R+ → [0,∞] for Ỹ2,kn is therefore

JỸ2,kn
(x) = inf

x=uw/v
{χ

M1/q
q

(u)+ JX(v)+ χ1(v)} = JX(x/M1/q
q ).
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4.3 LDP in the linear regime

In this section we consider the situation when kn grows linearly with rate λ ∈ (0, 1].
As in the sublinear case, we establish an LDP for the sequence of empirical measures
{L(n)}n∈N, as well as an LDP for the sequence of properly scaled norms. We start
by analysing the behaviour of {µ̂n

A}n∈N. Therefore, we need a few auxiliary results
starting with an application of the approximate contraction principle.

Lemma 4.3.1. (Corollary A.2. in [18])
Let Σ be a Polish space and X be a separable Banach space. Suppose that {kn}n∈N grows
linearly with rate λ ∈ (0, 1], each Ln is the empirical measure of kn iid Σ-valued random
variables η1, ..., ηkn with common distribution µ (that does not depend on n), and for continuous
W ∶ Σ → R, define

Λ̂(W) ∶= log E[eλ−1W(η1)].

Also let c ∶ Σ → X be a continuous map such that 0 lies in the interior D o of the set

D ∶= {α ∈ X∗ ∶ Λ̂(⟨α, c(⋅))⟩ <∞},

and let Cn ∶= ∫Σ c(x)dLn(x). Then {(Ln, Cn)}n∈N satisfies an LDP at speed n and GRF
I ∶ P(R)×R→ [0,∞] given by

I(µ, s) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I0(µ)+ F(s − ∫Σ c(x)dµ(x)), if I0(µ) <∞
∞ else,

where I0(ν) = λH(ν∣µ) and F(x) = supα∈D o⟨α, x⟩.

Proof. We want to apply Theorem 3.1.9, therefore we need to check the assumptions.
At first we will only work with Λ̂, later we will establish a relation between Λ̄ from
Theorem 3.1.9 and Λ̂. Let us start with the sequence Ln = 1

kn
∑kn

j=1 δηj , n ∈ N which
satisfies an LDP at speed kn and GRF H(⋅∣µ) by Sanov’s theorem 3.1.16 on the space
P(Σ). Since kn/n → λ, one can directly deduce an LDP with speed n and GRF I(⋅) =
λH(⋅∣µ). In order to establish an LDP for

(Ln, Cn) =
1
kn

kn

∑
i=1

(δηj , c(ηj)), n ∈ N, (4.3.1)

we recall the general version of Cramér’s theorem 3.1.12 and Remark 3.1.3 and note
that the quantity from Equation 4.3.1 is the empirical mean of iid random variables.
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By assumption, 0 lies in the interior of D and hence Corollary 3.1.3 applies and we get
an LDP for the random objects in 4.3.1 on the space X× P(Σ) at speed kn with convex
GRF. Again, since kn/n → λ, {(Ln, Cn)}n∈N of 4.3.1 satisfies an LDP with speed n. The
fact that 0 ∈ D o implies the first assumption from Theorem 3.1.9. For Assumption 3 we
take a sequence {Wn}n∈N with Wn ∶= Vn + ⟨αn, c(⋅)⟩, where αn ∈ D o and Vn is continuous
and bounded. By construction we have that α1 ∈ D o as well as Wn ↓W∞. Since W1 ∈ D o,
we can apply dominated convergence to get

lim
n→∞

Λ̂(Wn) = Λ̂(W∞).

We thus have verified all conditions of Theorem 3.1.9, after showing that Λ̄ = λΛ̂. We
show both inequalities separately, consider

λ−1Λ̄(W) ≥ λ−1 lim
R→∞

Λ̄(W ∧ R)

= λ−1 lim
R→∞

sup
r>0

Λr(W ∧ R)

= λ−1 lim
R→∞

Λ∞(W ∧ R)

= λ−1 lim
R→∞

lim sup
n→∞

1
n

log E[en ∫Σ W(x)∧RdLn(x)]

= λ−1 lim
R→∞

lim sup
n→∞

1
n

log E[
kn

∏
j=1

en/kn(W(ηj)∧R)]

= λ−1 lim
R→∞

lim sup
n→∞

kn

n
log E[en/kn(W(η1)∧R)]

= Λ̂(W).

The other inequality follows directly from the trivial relation Λ∞ ≥ Λ̄. Then

Λ̂(W) = λ−1Λ∞(W)
≥ λ−1Λ̄(W).

It thus follows that the set D from the assumption and the corresponding set from
Theorem 3.1.9 coincide.

Lemma 4.3.2. (Lemma 4.8 in [18])
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Given the iid sequence {ζ j}j∈N with common law γ1. Then the sequence

( 1
kn

kn

∑
j=1

δζ j ,
1

n − kn

n
∑

j=kn+1
δζ j ,

1
n

n
∑
j=1

ζ2
j ), n ∈ N (4.3.2)

satisfies an LDP in [P(R)2 ×R+] at speed n with GRF I1 defined by

I1(µ, ν, s) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λH(µ∣γ1)+ (1− λ)H(ν∣γ1)+ 1
2[s − λm2(µ)− (1− λ)m2(ν)],

if λm2(µ)+ (1− λ)m2(ν) ≤ s,

∞ otherwise.

Proof. We want to apply Lemma 4.3.1 for the specific situation given. In the introduced
notation we have

• Σ = R

• X = R = X∗

• c ∶ R→ R, x ↦ x2

• For n ∈ N, let L
(1)

n = 1
kn
∑kn

j=1 δζ j and L
(2)

n = 1
n−kn

∑n
j=kn+1 δζ j

• Let C
(i)
n = ∫R c(x)dL

(i)
n (x) for i = 1, 2.

We start with the sequence {(L (1)
n , C (1)

n )}n∈N ⊆ P(R)×R, where we can calculate the
domain of Λ̂ explicitly, namely

D = {α ∈ R ∣ log E[eλ−1αζ2
1] <∞} = (−∞,

λ

2
).

We used that the domain of the moment generating function of ζ2
1 ∼ χ2

1 equals (−∞, 1
2).

We can derive that D = D o as well as 0 ∈ D o, hence all assumptions of Lemma 4.3.1 are
fulfilled. Further, we can provide a closed representation of the function F ∶ R→ [0,∞],
where we have

F(x) = sup
t<λ/2

[tx] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ
2 x , if x ≥ 0

∞ , else .

By Sanov’s theorem 3.1.16, we get an LDP for {L (1)
n }n∈N with GRF λH(⋅∣γ1). This is
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used in Lemma 4.3.1 to establish an LDP for {(L (1)
n , C (1)

n )}n∈N with GRF

J1(µ, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λH(µ∣γ1)+ λ
2 [t −m2(µ)] , if m2(µ) ≤ t

∞ , else.

For {(L (2)
n , C (2)

n )}n∈N we can apply the exact same argument, the only difference here
is the speed k̃n = n− kn, thus the constant λ is replaced by 1−λ. We hence establish an
LDP with speed n and GRF

J2(ν, s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1− λ)H(ν∣γ1)+ 1−λ
2 [s −m2(ν)] , if m2(ν) ≤ s

∞ , else.

Now we consider the continuous mapping

F ∶ [P(R)×R]2 → P(R)2 ×R

(µ, t, ν, s)↦ (µ, ν, λt + (1− λ)s)

and apply the contraction principle to the sequence {(L (1)
n , C (1)

n , L (2)
n , C (2)

n )}n∈N to
obtain an LDP for

(L (1)
n , L (2)

n , λC
(1)
n + (1− λ)C (2)

n ) (4.3.3)

with speed n and GRF I ∶ P(R)2 ×R+ → [0,∞] given by

I(µ, ν, u) = inf
λt+(1−λ)s=u

[J1(µ, t)+ J2(ν, s)]

= λH(µ∣γ1)+ (1− λ)H(ν∣γ1)

+ 1
2

inf
λt+(1−λ)s=u

[λt + (1− λ)s − λm2(µ)− (1− λ)m2(ν)]

= λH(µ∣γ1)+ (1− λ)H(ν∣γ1)+
1
2
[u − λm2(µ)− (1− λ)m2(ν)]

= I1(µ, ν, u).

Next we show the exponential equivalence of the sequences {an}n∈N, {bn}n∈N defined
by an ∶= 1

n ∑
n
j=1 ζ2

j and bn ∶= λ
kn
∑kn

j=1 ζ2
j +

1−λ
n−kn

∑n
j=kn+1 ζ2

j . In order to do so, fix ε > 0 and
denote by {Yk}k∈N a sequence of independent χ2

k distributed random variables. Then
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we consider

lim sup
n→∞

1
n

log P[∣an − bn∣ > ε]

= lim sup
n→∞

1
n

log P[∣Ykn

kn
− Yn−kn

n − kn
∣ > ε∣λ − kn

n
∣
−1

]

≤ lim sup
n→∞

1
n

log P[Ykn

kn
+ Yn−kn

n − kn
> ε∣λ − kn

n
∣
−1

]

≤ lim sup
n→∞

1
n

log P[Yn

n
> ε∣λ − kn

n
∣
−1

]

≤− inf
x>M

1
2
(x − log x − 1) M→∞Ð→ −∞,

where the last inequality comes from the LDP established in Application 6 and holds
for any big M > 0, since ε∣λ − kn

n ∣−1
exceeds any given bound for sufficiently large n.

Optimizing in M shows the desired equivalence with speed n. Thus, the LDP for the
random object 4.3.3 is equivalent to the LDP we are interested in.

Before we come to the next major result, we discuss an interesting property of the
relative entropy H.

Proposition 1. Denote by γs the normal distribution with mean 0 and variance s > 0,
let µ ∈ P(R). Then we have the following relation

H(µ∣γs) = H(µ∣γ1)+
1
2

log s + 1
2
(1

s
− 1)m2(µ).

Remark. Consider the case where the Radon-Nikodym derivative dµ
dγs

exists. Then we
have the representation

H(µ∣γs) = ∫
R

dµ

dγs
(x) log( dµ

dγs
(x))dγs(x) = ∫

R
log( dµ

dγs
(x))dµ(x).

Proof. (Proof of Proposition 1)
The case where dµ

dγs
does not exist is not interesting, since then the claim in Proposition

1 trivially holds. In the other case we can use the previous remark to get

H(µ∣γs) = ∫
R

log( dµ

dγs
(x))dµ(x) =∫

R
log( dµ

dγ1
(x))+ log(dγ1

dγs
(x))dµ(x)

=H(µ∣γ1)+∫
R

log(dγ1

dγs
(x))dµ(x).
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Now we can calculate the Radon-Nikodym derivative γ1
γs

using its definition. For any
Borel set A ⊆ R, we have

γ1(A) = ∫
A

dγ1

dγs
(x)dγs(x)

= ∫
A

dγ1

dγs
(x) 1√

2πs
exp(− x2

2s
)dx

!= 1√
2π
∫

A
exp(− x2

2
)dx.

The third equality allows us to find a representation of dγ1
dγs

, namely

dγ1

dγs
=
√

s exp(1
2

x2(1
s
− 1)).

Taking the logarithm and integration gives us the claimed expression.

Lemma 4.3.3. (Lemma 4.9 in [18])
The sequence of pairs of measures

( 1
kn

kn

∑
j=1

δ√nζ j/∣∣ζ(n)∣∣2 ,
1

n − kn

n
∑

j=kn+1
δ√nζ j/∣∣ζ(n)∣∣2), n ∈ N (4.3.4)

satisfies an LDP in P(R)2 at speed n and GRF I2 ∶ P(R)2 → [0,∞] defined by

I2(µ, ν) ∶=I1(µ, ν, 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λH(µ∣γ1)+ (1− λ)H(ν∣γ1)+ 1
2(1− λm2(µ)− (1− λ)m2(ν)),

if λm2(µ)+ (1− λ)m2(ν) ≤ 1,

∞, otherwise.

Proof. First we consider the mapping

F ∶ P(R)2 ×R+ Ð→ P(R)2

(µ, ν, s)↦ (µ(⋅ × s1/2), ν(⋅ × s1/2))

and note that it is continuous. In order to see this, we remember the similar function
defined in Lemma 4.0.6, where we showed continuity using Slutsky’s theorem. Here
one applies essentially the same argument. We can thus use F to contract the LDP

82



from Lemma 4.3.2 to receive an LDP for the quantity in 4.3.4 with speed n and GRF

(µ, ν)↦ inf
µ̄,ν̄∈P(R),s∈R+

{I1(µ̄, ν̄, s) ∶ µ = µ̄(⋅ × s1/2), ν = ν̄(⋅ × s1/2)}

= inf
s∈R+

{λH(µ(⋅ × s−1/2)∣γ1)+ (1− λ)H(ν(⋅ × s−1/2)∣γ1)

+1
2
[s − λm2(µ(⋅ × s−1/2))− (1− λ)m2(ν(⋅ × s−1/2))] ∶

s ≥ λm2(µ(⋅ × s−1/2))+ (1− λ)m2(ν(⋅ × s))}.

(4.3.5)

Now we use that for some constant c ∈ R+, H(µ1(⋅ × c)∣µ2) = H(µ1∣µ2(⋅ × c−1)) and note

m2(µ(⋅ × s−1/2)) = ∫
R

x2dµ(x × s−1/2) = ∫
R

sy2dµ(y) = sm2(µ).

Using these observations, we can continue to simplify our GRF and get that 4.3.5 is
equal to

inf
s∈R+

{λH(µ∣γ1(⋅ × s1/2))+ (1− λ)H(ν∣γ1(⋅ × s1/2))

+ s
2
[1− λm2(µ)− (1− λ)m2(ν)] ∶ 1 ≥ λm2(µ)+ (1− λ)m2(ν)}.

Now we can use Proposition 1, here γ1(⋅ × s1/2) = γs−1 , hence

H(µ∣γ1(⋅ × s1/2)) = H(µ∣γ1)−
1
2

log s − 1− s
2

m2(µ).

Thus the GRF from 4.3.5 equals to

λH(µ∣γ1)+ (1− λ)H(ν∣γ1)+ inf
s∈R+

{− λ(1
2

log s + s − 1
2

m2(µ))− (1− λ)(1
2

log s + 1− s
2

m2(ν))

+ s
2
[1− λm2(µ)− (1− λ)m2(ν)] ∶ 1 ≥ λm2(µ)+ (1− λ)m2(ν)}

=I2(µ, ν)− 1
2
+ 1

2
inf

s∈R+
{s − log s}

=I2(µ, ν).

Now we collected everything we need in order to analyse the behaviour of µ̂n
A, which

is done in the next lemma.

Lemma 4.3.4. (Proposition 4.7 in [18])
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Fix q < 2. Suppose kn grows linearly with rate λ ∈ (0, 1]. Then, the sequence {µ̂n
A}n∈N

satisfies an LDP in Pq(R) at speed n and GRF Hλ ∶ P(R)→ [0,∞], where for ν ∈ P(R)

Hλ(ν) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λh(ν)+ λ
2 log(2πe)+ 1−λ

2 log( 1−λ
1−λm2(ν)) , if m2(ν) < 1/λ

∞ , else.
(4.3.6)

In case of λ = 1, the third term containing the logarithm is set to 0.

Proof. Instead of proving the stronger LDP for the q-Wasserstein topology on Pq(R),
we can use the same argument as in Lemma 4.2.1 to simplify the problem and show
only the LDP w.r.t the weak topology on P(R). Further, we use the established repre-
sentation of µ̂n

A via iid normal distributed ζ j, namely

µ̂n
A = 1

kn

kn

∑
j=1

δ√nζ j/∣∣ζ(n)∣∣2 .

We remember that this representation of µ̂n
A equals to the first component of the

analysed vector in Lemma 4.3.3. Next we note that a different representation of the
GRF I2 from Lemma 4.3.3, using Application 3, is possible. We substitute H(⋅∣γ1) =
−h(⋅)+ 1/2 log(2π)+ 1/2m2(⋅). Then, for λm2(µ)+ (1− λ)m2(ν) ≤ 1,

I2(µ, ν) ∶=− λh(µ)+ λ

2
log(2π)+ λ

2
m2(µ)

− (1− λ)h(ν)+ 1− λ

2
log(2π)+ 1− λ

2
m2(ν)

+ 1
2
(1− λm2(µ)− (1− λ)m2(ν))

=− λh(µ)− (1− λ)h(ν)+ 1
2

log(2πe).

We can hence apply the contraction principle to the LDP from 4.3.3 and project via the
continuous mapping F ∶ P(R)× P(R) → P(R), (µ, ν) ↦ µ on the first component. This
establishes an LDP for {µ̂n

A}n∈N at speed n and GRF

µ ↦ inf
ν∈P(R)

I2(µ, ν) = −λh(µ)+ 1
2

log(2πe)

+ inf
ν∈P(R)

{−(1− λ)h(ν) ∶ (1− λ)m2(ν)+ λm2(µ) ≤ 1}

= −(1− λ) sup
ν∈P(R)

{h(ν) ∶ m2(ν) ≤ 1− λm2(µ)
1− λ

}− λh(µ)+ 1
2

log(2πe).
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If λ = 1, then our GRF equals Hλ. In case of λ < 1, we note that if 1 ≤ λm2(µ), then
m2(ν) ≤ 0 and hence ν is degenerated with h(ν) = −∞. In this case our rate function
equals ∞. If m2(µ) < 1/λ, then the restriction on the second moment of ν is of the
form m2(ν) ≤ z for z > 0. We can use Application 4 and deduce that our GRF can be
simplified to

µ ↦ −λh(µ)+ 1
2

log(2πe)− (1− λ)1
2

log(2πe
1− λm2(µ)

1− λ
)

= −λh(µ)+ λ

2
log(2πe)+ (1− λ)

2
log( 1− λ

1− λm2(µ))

=Hλ(µ).

Now we can finally state the central theorem in this section, showing the desired
LDP for the sequence of empirical measures {Ln}n∈N.

Theorem 4.3.5. (Theorem 2.13. in [18] )
Fix q < 2. Suppose {kn}n∈N grows linearly with rate λ ∈ (0, 1] and Assumption A holds with
sequence {sn}n∈N and GRF JX. Then {Ln}n∈N satisfies an LDP in Pq(R) at speed sn with
GRF IL,λ ∶ Pq(R)→ [0,∞], where

1. If sn = n, then for µ ∈ Pq(R)

IL,λ(µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

infc∈R+ {JX(c)− 1−λ
2 log(1− λm2(µ)

c2 )+ λ log c ∶ m2(µ) < c2/λ}

−λh(µ)+ λ
2 log(2πe)+ 1−λ

2 log(1− λ)
∞, otherwise.

2. If sn ≪ n, then for µ ∈ Pq(R)

IL,λ(µ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JX(c), µ = γc

∞, otherwise.

Proof. We distinguish the two growth regimes of the speed sn in Assumption A, start-
ing with the case sn = n:
The idea is to apply Lemma 4.0.7 and rearrange and simplify the corresponding GRF
as far as possible. The LDP for {µ̂n

A}n∈N established in Lemma 4.3.3 and Assumption
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A on the sequence {∣∣X(n)∣∣2/
√

n}n∈N leads to

ÎL,λ(µ) ∶= inf
ν∈P(R),c∈R+

{Hλ(ν)+ JX(c) ∶ µ = ν(⋅ × c−1)}.

We know that Hλ(ν) =∞ for m2(ν) ≥ 1/λ and since

m2(µ) = ∫
R

x2dµ(x) = ∫
R

x2dν(xc−1) = c2m2(ν),

it follows that ÎL,λ(µ) =∞, if m2(µ) ≥ c2/λ. Thus, in this case ÎL,λ(µ) = IL,λ(µ). Hence,
we assume m2(µ) < c2/λ. Then m2(ν) < 1/λ and we get

Hλ(ν)+ JX(c) =Hλ(µ(⋅ × c))+ JX(c)

= −λh(µ(⋅ × c))+ λ

2
log(2πe)+ 1− λ

2
log( 1− λ

1− λm2(µ(⋅ × c)))+ JX(c)

= −λh(µ)+ λ log c + λ

2
log(2πe)+ 1− λ

2
log( 1− λ

1− λ/c2m2(µ))+ JX(c)

= −λh(µ)− 1− λ

2
log(1− λm2(µ)

c2 )+ λ log c + λ

2
log(2πe)+ JX(c)

+ (1− λ)
2

log(1− λ).

Taking the infimum over all c > 0 establishes the identity ÎL,λ(µ) = IL,λ(µ) in the case
m2(µ) < c2/λ.
Now we consider the situation when sn ≪ n: We remember Remark 3.1.2 which can
be applied to {µ̂n

A}n∈N to establish an LDP with speed sn and GRF

χγ1(ν) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if ν = γ1

∞, else.

We get an LDP for Ln with speed sn and GRF

IL,λ(µ) ∶= inf
ν∈P(R),c∈R+

{χγ1(ν)+ JX(c)}

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JX(c), if µ = γc

∞, else.
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As in the previous sections we finally want to investigate the behaviour of properly
scaled q-norms. Therefore, we recall the quantity Yn

q,k from Equation 4.1.3, i.e.

Yn
q,kn

= n−1/q∣∣AT
n,kn

X(n)∣∣q. (4.3.7)

Our goal is to establish LDPs for {Yn
q,kn

}n∈N for all values q ∈ [1, 2]. We start with the
case q < 2, where we can simply use the contraction principle, in the case q = 2 this
does not work anymore, since the used mapping is not continuous in the 2-Wasserstein
topology. Here we need a different technique, which in principle would work for all q,
but as we will see, the representation of the corresponding GRF is very cumbersome
compared to the received representation using the contraction principle. We start with
a different representation of Yn

q,kn
, using some of our previous results. We have

Yn
q,kn

= n−1/q∣∣AT
n,kn

X(n)∣∣q = n−1/q∣∣AT
n,kn

X(n)

∣∣X(n)∣∣2
∣∣X(n)∣∣2∣∣

q

(d)= n−1/q∣∣AT
n,kn

e1∣∣X(n)∣∣2∣∣q
(d)= n−1/q ∣∣ζ(kn)∣∣q

∣∣ζ(n)∣∣2
∣∣X(n)∣∣2,

(4.3.8)

where ζ(k) = (ζ1, ..., ζk) for a sequence of iid standard normal distributed random
variables {ζn}n∈N. Our next goal is to find an LDP for the quotient of properly scaled
norms. This is possible, but takes some effort and will lead to a rather complicated
GRF. We start by introducing some notation. Fix q ∈ [1, 2] and define

ΛA,q(t1, t2) ∶= log∫
R

1√
2π

exp(t1∣x∣q + (t2 −
1
2
)x2)dx, (t1, t2) ∈ R2, (4.3.9)

where we note that for q ∈ [1, 2), we have ΛA,q(t1, t2) < ∞ when t1 ∈ R and t2 < 1
2 . In

case of q = 2, we have ΛA,q(t1, t2) <∞ when t1 + t2 < 1
2 . Further, ΛB will appear, with

ΛB(t3) ∶= log∫
R

1√
2π

exp((t3 −
1
2
)x2)dx, t3 ∈ R. (4.3.10)

Note that ΛB(t3) < ∞ for t3 < 1
2 . Let Λ∗

A,q and Λ∗
B denote the Legendre transforms of

ΛA,q and ΛB, respectively. For q ∈ [1, 2) and λ ∈ (0, 1] define

Jq,λ(z) ∶= inf
(x1,x2,x3)∈R3

{λΛ∗
A,q(

(x1, x2)
λ

)+ (1− λ)Λ∗
B(

x3

1− λ
) ∶ z =

x1/q
1

(x2 + x3)1/2
}. (4.3.11)
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Corollary. We consider the case q = 2. Then Jq,λ can be simplified to

J2,λ(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ
2 log( λ

z2 )+ 1−λ
2 log( 1−λ

1−z2 ), z ∈ (0, 1)

∞, otherwise.

Proof. It can be verified immediately that ΛA,2(t1, t2) = − 1
2 log(1− 2[t1 + t2]) for t1 + t2 <

1
2 as well as ΛB(t3) = − 1

2 log(1 − 2t3) for t3 < 1
2 . An elementary computation leads to

the respective Legendre transforms, namely

Λ∗
B(z) = 1

2
[z − log z − 1], z ∈ R+

Λ∗
A,2((z1, z2)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ , if z1 ≠ z2

Λ∗
B(z) , if z1 = z2 = z

zi ∈ R+.

Using these representations in the formula for J2,λ gives us

J2,λ(z) = inf
(x1,x2,x3)∈R

{λ

2
[ x

λ
− log( x

λ
)− 1]+

1− λ

2
[ x3

1− λ
− log( x3

1− λ
)− 1] ∶ z =

√
x

x + x3
, x1 = x2 = x > 0, x3 > 0}.

Now we can use the relation x3 = x(1/z2 − 1) and after some elementary rearrange-
ments we are left with

J2,λ(z) = inf
x>0

{− λ

2
log( x

λ
)+ x

2z2 −
1− λ

2
log( x

1− λ
)}− 1− λ

2
log( 1

z2 − 1)− 1
2

for z ∈ (0, 1). Minimization over x leads to the desired function.

The next lemma establishes an LDP for {∣∣ζ(kn)∣∣q/∣∣ζ(n)∣∣2}n∈N, which we can then use
to receive an LDP for {Yn

q,kn
}n∈N.

Lemma 4.3.6. (Lemma 6.2. in [18])
Suppose {kn}n∈N grows linearly with rate λ ∈ (0, 1]. For q ∈ [1, 2], the sequence

n1/2−1/q ∣∣ζ(kn)∣∣q
∣∣ζ(n)∣∣2

, n ∈ N (4.3.12)

satisfies an LDP at speed n with GRF Jq,λ.
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Proof. Fix q ∈ [1, 2]. For n ∈ N, let

Aq,n ∶=
1
kn

kn

∑
i=1

(∣ζi∣q, ζ2
i ) and Bn ∶=

1
n − kn

n
∑

i=kn+1
ζ2

i .

We note that ΛA,q is the cumulant generating function of (∣ζ1∣q, ζ2
1) and that ΛB is the

one of ζ2
1. Due to Remark 3.1.3, {Aq,n}n∈N satisfies an LDP in R2 with speed kn and

GRF Λ∗
A,q, since 0 ∈ Do

ΛA,q
. The same argument applies to {Bn}n∈N, where we obtain an

LDP in R with speed n − kn and GRF Λ∗
B. Since kn/n → λ, we can establish an LDP for

1
kn

kn

∑
i=1

(∣ζi∣q, ζ2
i ), n ∈ N

at speed n and GRF λΛ∗
A,q. Further, we can use the contraction principle for the

function F ∶ R×R2 → R2, (x, y)↦ xy to establish an LDP for

F(kn

n
, An,q) =

1
n

kn

∑
i=1

(∣ζi∣q, ζ2
i )

with speed n and GRF

z ↦ inf
z=xy

[λΛ∗
A,q(y)+ χλ(x)] = λΛ∗

A,q(
(z1, z2)

λ
),

where χλ is the GRF of the trivial LDP for kn/n. Analogously one can show that also

1
n

n
∑

i=kn+1
ζ2

i , n ∈ N

satisfies an LDP with speed n with the GRF

z ↦ (1− λ)Λ∗
B(

z
1− λ

).

Hence, the sequence
1
n
(

kn

∑
i=1

(∣ζi∣q, ζ2
i ),

n
∑

i=kn+1
ζ2

i ), n ∈ N

satisfies an LDP at speed n and with GRF

(z1, z2, z3)↦ λΛ∗
A,q(

(z1, z2)
λ

)+ (1− λ)Λ∗
B(

z3

1− λ
).
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Finally, another application of the contraction principle for the mapping

T ∶R3
+ → R+

(z1, z2, z3)↦
z1/q

1

(z2 + z3)1/2

yields an LDP for

T( 1
n

kn

∑
i=1

(∣ζi∣q, ζ2
i ),

1
n

n
∑

i=kn+1
ζ2

i ) = n1/2−1/q ∣∣ζ(kn)∣∣q
∣∣ζ(n)∣∣2

, n ∈ N

at speed n and GRF Jq,λ from Equation 4.3.11.

The LDP for {Yn
q,kn

}n∈N can now be derived directly using our representation via the
quotient of standard normal distributed random vectors. In the following theorem we
will first use a different approach, avoiding the GRF Jq,λ.

Theorem 4.3.7. (Theorem 2.14 in [18])
Suppose {X(n)}n∈N satisfies Assumption A, and kn ∼ λn for some λ ∈ (0, 1]. Also, for
q ∈ [1, 2] and n, kn ∈ N, with kn ≤ n, define {Yn

q,kn
}n∈N as in Equation 4.3.7. Then the

sequence {Yn
q,kn

}n∈N satisfies an LDP at speed sn with GRF JYq,kn ,λ , where for x ∈ R+,

JYq,kn ,λ(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

infν∈P(R),c∈R+{Hλ(ν)+ JX(c) ∶ λmq(ν) = (x/c)q}, if sn = n,

JX( x
(λMq)1/q ), if sn ≪ n,

(4.3.13)

with mq(ν) the q-th moment map and Mq the q-th absolute moment of a standard Gaussian
random variable defined in Equation 4.2.4.

Proof. First we consider the case q < 2 and start by taking a closer look at Yn
q,kn

. We
observe that

n−1/q∣∣AT
n,kn

X(n)∣∣q = (kn

n
1
kn

kn

∑
j=1

∣(AT
n,kn

X(n))j∣q)
1/q

= (kn

n
mq(Ln))

1/q
.

A very similar argument as in the previous lemma shows that { kn
n mq(Ln)}n∈N satisfies

the same LDP as {λmq(Ln)}n∈N. We can now use our LDP for the sequence {Ln}n∈N

for q < 2 and the fact that ν ↦ mq(ν) is continuous in the q-Wassertein topology. Hence,
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{Yn
q,kn

}n∈N satisfies an LDP in R at speed sn and with GRF

JYq,kn,λ(x) ∶= inf
µ∈P(R)

{IL,λ(µ) ∶ (λmq(µ))1/q = x},

where IL,λ is the GRF from Theorem 4.3.5.
For sn = n, the rate function equals

JYq,kn,λ(x) = inf
µ∈P(R)

{IL,λ(µ) ∶ [λmq(µ)]1/q = x}

= inf
µ∈P(R)

{ inf
ν∈P(R),c>0

{Hλ(ν)+ JX(c) ∶ µ = ν(⋅ × c−1)} ∶ [λmq(µ)]1/q = x}

= inf
µ∈P(R),c>0

{Hλ(µ(⋅ × c))+ JX(c) ∶ [λmq(µ)]1/q = x}

= inf
µ∈P(R),c>0

{Hλ(µ)+ JX(c) ∶ [λmq(µ)]1/q = x/c}, x ∈ R+,

where we used in the last step that mq(µ) = mq(µ[⋅ × cc−1]) = cqmq(µ[⋅ × c]).
If sn ≪ n, then

JYq,kn,λ(x) ∶ = inf
µ∈P(R)

{[JX(c) ∶ µ = γc] ∶ [λmq(µ)]1/q = x}

= inf
c>0

{JX(c) ∶ [λmq(γc)]1/q = x}

= inf
c>0

{JX(c) ∶ [λcq Mq]1/q = x}

= JX( x
(λMq)1/q ), x ∈ R+.

This establishes the desired LDP in both cases for sn if q < 2. An alternative way using
Lemma 4.3.6 allows to show an LDP for all q ∈ [1, 2]. Recall Representation 4.3.8,
where we showed that

Yn
q,kn

(d)= n1/2−1/q ∣∣ζ(kn)∣∣q
∣∣ζn∣∣2

∣∣X(n)∣∣2√
n

, n ∈ N.

If sn = n, then the contraction principle with the function F ∶ R2 → [0,∞], (u, v) ↦ uv
can be applied directly and gives us an LDP at speed n and with GRF

J̄Yq,kn,λ(x) ∶= inf
y,z∈R

{Jq,λ(y)+ JX(z) ∶ yz = x}.

Since the GRF is unique, we deduce that J̄Yq,kn,λ = JYq,kn,λ for q < 2 and sn = n.
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In the case of sn ≪ n we still have an LDP for

n1/2−1/q ∣∣ζ(kn)∣∣q
∣∣ζn∣∣2

, n ∈ N

at speed sn and with (degenerated) GRF χξ (see Remark 3.1.2) with

n1/2−1/q ∣∣ζ(kn)∣∣q
∣∣ζn∣∣2

=
∣∣ζ(kn)∣∣q

k1/q
n

k1/q
n

n1/q
n1/2

∣∣ζn∣∣2
a.s.Ð→ (Mqλ)1/q ∶= ξ.

The GRF for {Yn
q,kn

}n∈N is then given as

J̄Yq,kn,λ(x) = inf
y,z∈R

{χξ(z)+ JX(y) ∶ x = yz}

= JX( x
(λMq)1/q ).

Hence, we established the identity J̄Yq,kn,λ = JYq,kn,λ for all q < 2 and for q = 2 in the case
sn ≪ n.
It remains to show that this equality also holds for q = 2 and sn = n. If we are able to
prove that

J2,λ(z) = inf
µ∈P(R)

{Hλ(µ) ∶ z2 = λm2(µ)} (4.3.14)

we are finished, since then

J̄Yq,kn,λ(x) = inf
x=yz

{J2,λ(z)+ JX(y)}

= inf
y>0

{J2,λ(
x
y
)+ JX(y)}

= inf
y>0

inf
µ∈P(R)

{Hλ(µ)+ JX(y) ∶ (x/y)2 = λm2(µ)}

= JYq,kn,λ(x).

We get for z2 < 1 that

inf
ν∈P(R)∶z2=λm2(ν)

Hλ(ν) = inf
ν∈P(R)∶z2=λm2(ν)

{− λh(ν)+ λ

2
log(2πe)+ 1− λ

2
log( 1− λ

1− λm2(ν))}

= −λ sup
ν∈P(R)∶z2=λm2(ν)

h(ν)+ λ

2
log(2πe)+ 1− λ

2
log( 1− λ

1− z2 ).

In order to show the equality in 4.3.14, we recall Application 4 about maximizing the
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relative entropy under a bounded second moment. The supremum is attained with
value 1

2 log(2πez2/λ). Using this leads to

inf
ν∈P(R)∶z2=λm2(ν)

Hλ(ν) = −λ

2
log(2πez2

λ
)+ λ

2
log(2πe)+ 1− λ

2
log( 1− λ

1− z2 )

= J̄Yq,kn,λ(z), z ∈ (0, 1).

For z ∉ (0, 1) the equality holds with value infinity, since Hλ(ν) =∞ whenever m2(ν) ≥
1/λ.

Remark. In [18] the authors elaborated a comment on the interesting observation that
for q < 2 we were usually able to establish LDPs in all the asymptotic regimes, whereas
the case q = 2 is more delicate. From the technical point of view this appears in terms
of the set K2,j from Lemma 3.3.5, which is not compact in the q-Wasserstein topology
for q ≥ 2. The same obstacle becomes visible by looking at the representation

Jq,λ(z) = inf
ν∈P(R)∶z2=λm2(ν)

Hλ(ν)

appearing in the proof of Theorem 4.3.7. The expression looks like we applied the con-
traction principle to the sequence of empirical measures {µ̂n

A}n∈N, even if this seems
not possible for q = 2. To illustrate this phenomenon in a simpler setting, the authors
considered a sequence of iid exponential distributed random variables, where essen-
tially the same observation can be made: in this case the theory suggests that the LDP
for empirical measures does not hold for q = 1, but it is still possible to show the
LDP and a variational formula for the corresponding GRF. They suggested that these
observations can be seen as a more general problem in large deviation theory.
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5 Applications

In this section we want to verify some of our assumptions for different applications.
We start with a „warm-up“ example containing product measures. We then conclude
by studying certain Orlicz balls and Gibbs measures.

5.1 Product measures

Lemma 5.1.1. (Lemma 3.1 in [9])
Let {Xi}i∈N be a sequence of iid real-valued random variables and let X(n) ∶= (X1, ..., Xn).
Suppose that we have

Λ(t) ∶= log E[exp(tX2
1)] <∞,

for all t ≤ ε with ε > 0. Let Λ∗ ∶ R→ [0,∞] be the Legendre transform of Λ, i.e.

Λ∗(x) = sup
t∈R

(xt −Λ(t)).

Then, {X(n)}n∈N satisfies Assumption A* with GRF JX ∶ R→ [0,∞], where

JX(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Λ∗(x2), if x ≥ 0

∞ else.

Moreover, JX has a unique minimizer m ∶=
√

E[X2
1].

Proof. Using Cramer’s theorem 3.1.11, we can establish an LDP for

∣∣X(n)∣∣22
n

=
X2

1 + ...+X2
n

n
, n ∈ N

at speed n and with GRF Λ∗. We can then apply the contraction principle for the
continuous mapping F ∶ R+ → R+, x ↦

√
x, where we get an LDP for {∣∣X(n)∣∣2/

√
n}n∈N
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at speed n and with GRF

JX(x) = inf
y∈F−1({x})

Λ∗(y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Λ∗(x2), if x ≥ 0

∞ else.

For the minimizer m, we have by the strong law of large numbers

∣∣X(n)∣∣2√
n

=
¿
ÁÁÀ 1

n

n
∑
i=1

X2
i

n→∞Ð→
√

E[X2
1] = m almost surely.

This value m is indeed the unique minimizer of Λ∗. First, we recall that Λ∗ ≥ 0 and we
note that for every δ > 0

P[ ∣∣X
(n)∣∣2√

n
∈ [m − δ, m + δ]]Ð→ 1.

Then, using the large deviation upper bound, we have

0 = lim sup
n→∞

1
n

log P[ ∣∣X
(n)∣∣2√

n
∈ [m − δ, m + δ]] ≤ − inf

x∈[m−δ,m+δ]
Λ∗(x) ≤ 0.

And hence, we get
0 = lim

δ→0
inf

x∈[m−δ,m+δ]
Λ∗(x) ≥ Λ∗(m),

where we used the lower semi-continuity of Λ∗. Hence, m is a minimizer of Λ∗. The
uniqueness follows, since a Legendre transform of a cumulant generating function is
strictly convex on the set where it is finite.

5.2 Orlicz balls

Orlicz balls are a natural generalization of `n
p balls with nice properties like the "neg-

ative association" (as shown in Theorem 1.2 of [24]), a weaker property than inde-
pendence, or the KLS (Kannan-Lovász-Simonovits) conjecture (under mild conditions
concerning the growth of the involved Orlicz functions), see Theorem 1.1 and Theorem
2.4 of [21]. We start with some definitions and notation.

Definition 5.2.1. We say V is an Orlicz function if V ∶ R → R+ is convex and satisfies
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V(0) = 0 and V(x) = V(−x) for x ∈ R. Further, we say V ∶ R→ R+ grows superquadratic if

V(x)/x2 Ð→∞, as x →∞.

For such a V, i.e. a superquadratic Orlicz function, we define the symmetric Orlicz ball as

Bn
V ∶= {x ∈ Rn ∶

n
∑
i=1

V(xi) ≤ n}.

Now fix a sequence V1, V2, ... of such functions and denote the generalized Orlicz ball by

Bn
V1,..,Vn

∶= {x ∈ Rn ∶
n
∑
i=1

Vi(xi) ≤ n}.

Remark. There are different definitions of Orlicz balls possible, for example one could
replace the convexity assumption by assuming continuity and quasi-convexity (a func-
tion is called quasi-convex, if all level sets are convex).

Remark. For p > 2 it can be checked immediately that V(x) = ∣x∣p is a superquadratic
Orlicz function. We then have the relation

Bn
V = {x ∈ Rn ∶

n
∑
i=1

V(xi) ≤ n}

= n1/p{n−1/px ∈ Rn ∶
n
∑
i=1

V(xi/n1/p) ≤ 1}

= n1/pBn
p,

where Bn
p denotes the `p ball in Rn with radius 1.

5.2.1 Symmetric Orlicz balls

We want to consider random variables distributed uniformly on symmetric Orlicz
balls. We therefore introduce the distribution

µ(A) ∶=
λn(Bn

V ∩ A)
λn(Bn

V) , A ∈ B(Rn),

where λn is the n-dimensional Lebesgue measure. µ is a distribution on Rn, we hence
can construct a random variable X(n) ∼ µ, which we call the uniform distribution on
Bn

V , denoted by X(n) ∼ Uni f (Bn
V).
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Remark. For this definition it is important that λn(Bn
V) is finite. This can be guaran-

teed, since Bn
V is compact and in particular bounded.

Our goal in this subsection is to verify Assumption A* for the sequence {X(n)}n∈N

with X(n) ∼ Uni f (Bn
V). This needs some preparation, we therefore introduce a few

quantities.

Definition 5.2.2. For ν ∈ P(R), we define the "V-th moment" mapping

mV(ν) ∶= ∫
R

V(x)dν(x)

for a ν such that this integral is finite. Further for b > 0, define µV,b ∈ P(R) via

dµV,b(x) ∶= 1
ZV,b

e−bV(x)dx

where ZV,b = ∫R e−bV(x)dx is the normalizing constant. Note that ZV,b is finite since −b is
negative and V grows superquadratic. Hence, dµ,b is well-defined. For s < 0 and t ∈ R, we will
also work with the distribution νs,t given by

dνs,t(x) ∶= 1
Zs,t

esV(x)+tx2
dx,

where Zs,t ∶= ∫R esV(x)+tx2
dx. Then we can introduce the function J ∶ R2

+ → [0,∞] with

(u, v)↦ sup
s,t∈R

{su + tv − log∫
R

esV(x)+tx2
dx}

= sup
s<0,t∈R

{su + tv − log∫
R

esV(x)+tx2
dx}.

The equality holds, because the integral would be infinite for s ≥ 0.

The next lemma collects several properties of J .

Lemma 5.2.1. (Lemma 3.12 in [18])
Let J be as in the previous definition, then:

1. For v ∈ R+, there exists a unique (s, t) ∈ R−×R such that the supremum in the definition
of J (1, v) is attained and is the unique solution to mV(νs,t) = 1 and m2(νs,t) = v.

2. There exists a unique b∗ > 0 such that mV(µV,b∗) = 1 and v ↦ J (1, v) is a convex
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function on R+ with minimizer m = m2(µV,b∗). Moreover,

J (1, m) = sup
s<0

{s − log∫
R

esV(x)dx}. (5.2.1)

3. For v > m, the supremum in the definition of J (1, v) is attained at (s, t) ∈ R− ×R+,
while for 0 < v < m, the supremum is attained at (s, t) ∈ R− ×R−.

4. For v ∈ R+, J (1, v) = −maxν∈P(R){h(ν) ∶ mV(ν) = 1, m2(ν) = v} and J (1, m) =
−maxν∈P(R){h(ν) ∶ mV(ν) = 1}.

5. ∂uJ (u, v) < 0 for u, v ∈ R+.

Proof. See Theorem 6.0.19 and the subsequent comment.

Remark. Property 1 of Lemma 5.2.1 can be used to show that the supremum in the
definition of J (u, v) is uniquely attained for some (s, t) ∈ R− ×R, depending on (u, v).
This can be verified directly

J (u, v) = sup
s,t∈R

{su + tv − log∫
R

esV(x)+tx2
dx}

= sup
s,t∈R

{su + tv − log∫
R

esuV(x)/u+tx2
dx}

= J̃ (1, v),

where J̃ is defined in the same way as J , but instead of V, the superquadratic Orlicz
function V/u is used.

Theorem 5.2.2. (Proposition 3.11. in [9])
For n ∈ N suppose X(n) ∼ Uni f (Bn

V). Then, there exists a unique b∗ > 0 such that
mV(µV,b∗) = 1 and {X(n)}n∈N satisfies Assumption A* with JX = JX,V , where

JX,V(z) ∶= J (1, z2)− sup
s<0

{s − log∫
R

esV(x)dx}, z ∈ R+.

Moreover, JX,V has a unique minimizer m ∶=
√

m2(µV,b∗).

Proof. We recall Assumption A*, where we need to show an LDP for {∣∣X(n)∣∣2/
√

n}n∈N

at speed n and with GRF JX,V . We will start by analysing {∣∣X(n)∣∣22/n}n∈N. Then we
can apply the contraction principle to the resulting LDP. Let us introduce the set

Bn
2,V(A) ∶= Bn

V ∩ {x ∈ Rn ∶
n
∑
i=1

x2
i ∈ nA}.
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To abbreviate expressions in what follows, we denote ∣A∣ ∶= λn(A). Using the previous
set, we get

P[ ∣∣X
(n)∣∣22
n

∈ A] = P[
n
∑
i=1

(Xn
i )2 ∈ nA]

=
∣Bn

2,V(A)∣
∣Bn

V ∣ ,

where the second equality follows from the definition of the distribution of X(n). We
will now consider the numerator and the denominator of the right-hand expression
separately. We start with our set Bn

2,V(A).
1. Step: Upper bound of the LDP. Fix a closed set F ⊆ R+, then we want to show

lim sup
n→∞

1
n

log ∣Bn
2,V[F]∣ ≤ − inf

x∈F
J (1, x).

Part 2 of Lemma 5.2.1 gives us a unique constant b∗ > 0 and an induced distribution
µV,b∗ such that we can define m ∶= m2(µV,b∗). Further set

α+ ∶= min{x ∣ x ∈ [m,∞)∩ F}
α− ∶= max{x ∣ x ∈ [0, m]∩ F},

where ∞ or −∞ is possible. By definition we always have α− ≤ m ≤ α+, we hence
distinguish two cases.
1. Case: If α− < m < α+, then we get the bound

∣Bn
2,V[F]∣ = ∣Bn

V ∩ [x ∈ Rn ∶ ∣∣x∣∣22 ∈ nF]]∣
= ∣Bn

V ∩ [x ∈ Rn ∶ ∣∣x∣∣22 ∈ n[F ∩ [m,∞)]∣+ ∣Bn
V ∩ [x ∈ Rn ∶ ∣∣x∣∣22 ∈ n[F ∩ [0, m]]∣

≤ ∣Bn
V ∩ [x ∈ Rn ∶ ∣∣x∣∣22 ≥ nα+∣+ ∣Bn

V ∩ [x ∈ Rn ∶ ∣∣x∣∣22 ≤ nα−]∣
= ∣Bn

2,V[[α+,∞)]∣+ ∣Bn
2,V[[0, α−]]∣.

We analyse the first summand. Fix s < 0 and t > 0, then (since s < 0)

Bn
2,V[[α+,∞)] = {x ∈ Rn ∶

n
∑
i=1

V(xi) ≤ n, ∣∣x∣∣22 ≥ nα+}

= {x ∈ Rn ∶ exp(s
n
∑
i=1

V(xi)) ≥ exp(sn), exp(t∣∣x∣∣22) ≥ exp(ntα+)}.
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Applying the Lebesgue measure on both sides yields

∣Bn
2,V[[α+,∞)]∣ = ∫

Bn
2,V[[α+,∞)

1 dx

≤ ∫
Bn

2,V[[α+,∞)
exp(s

n
∑
i=1

V(xi)− sn + t∣∣x∣∣22 − ntα+)dx

≤ e−sn−ntα+ ∫
Rn

exp(s
n
∑
i=1

V(xi)+ t
n
∑
i=1

x2
i )dx

= e−sn−ntα+{∫
R

exp(sV(x)+ tx2)dx}
n
.

We can divide by n and apply the limsup, then we are left with

lim sup
n→∞

1
n
∣Bn

2,V[[α+,∞)]∣ ≤ −s − tα+ +∫
R

exp(sV(x)+ tx2)dx.

Now we can minimize over all s < 0 and t > 0, which leads to

lim sup
n→∞

1
n
∣Bn

2,V[[α+,∞)]∣ ≤ inf
s<0,t>0

{− s − tα+ +∫
R

exp(sV(x)+ tx2)dx}

= − sup
s<0,t>0

{s + tα+ −∫
R

exp(sV(x)+ tx2)dx}

= −J (1, α+).

The last equality used statement 3 of Lemma 5.2.1, since we are in the case α+ > m.
The argument for ∣Bn

2,V[[0, α−]]∣ works very similar, here we fix s < 0 and t < 0 and
again use statement 3 of Lemma 5.2.1. We end up with

lim sup
n→∞

1
n
∣Bn

2,V[[0, α−]]∣ ≤ −J (1, α−).

Combining both estimates gives us

lim sup
n→∞

1
n

log ∣Bn
2,V[F]∣ ≤ lim sup

n→∞

1
n

log ∣Bn
2,V[[α+,∞)]∣+ lim sup

n→∞

1
n

log ∣Bn
2,V[[0, α−]]∣

= −J (1, α−)−J (1, α+)
≤ − inf

x∈F
J (1, x).

For the last inequality we used that J (1, y) ≥ 0 for all y (by the second property of
Lemma 5.2.1) and that α+, α− ∈ F.
2. Case: α− = m or α+ = m, then by the definition of those quantities we have that m ∈ F.
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Now we analyse the asymptotic behaviour of ∣Bn
V ∣. Fix s < 0, then

1
n

log ∣Bn
V ∣ = 1

n
log∫{x∈Rn ∶∑n

i=1 V(xi)≤n}
dx

≤ 1
n

log∫{x∈Rn ∶∑n
i=1 V(xi)≤n}

exp(s
n
∑
i=1

V(xi)− sn)dx

≤ −s + log∫
x∈R

exp (sV(x))dx.

Now, since Bn
2,V[F] ⊆ Bn

V ,

lim sup
n→∞

1
n

log ∣Bn
2,V[F]∣ ≤ lim sup

n→∞

1
n

log ∣Bn
V ∣

≤ inf
s<0

{− s + log∫
x∈R

exp (sV(x))dx}

= − sup
s<0

{s − log∫
x∈R

exp (sV(x))dx}

= −J (1, m).

For the last equality we used property 2 of Lemma 5.2.1 and since m ∈ F we get
J (1, m) = infx∈F J (1, x).
2. Step: Lower bound of the LDP. Fix an open set U ⊆ R+, we claim

lim inf
n→∞

1
n

log ∣Bn
2,V[U]∣ ≥ − inf

x∈U
J (1, x).

Since J is convex, J is also continuous in R+ ×R+. Further, due to property 5 of
Lemma 5.2.1, J is monotone decreasing in the first component and hence for a given
ε > 0, we can find z ∈ U and y ∈ (0, 1), such that there exists δ > 0 with y ∈ (δ, 1− δ) and
(z − δ, z + δ) ∈ U and

inf
x∈U
J (1, x) > J (y, z)− ε.

Let (s, t) be the unique maximizer in the definition of J (y, z) (see the Remark after
Lemma 5.2.1) and define

An
δ ∶= {x ∈ Rn ∶ y − δ < 1

n

n
∑
i=1

V(xi) < y + δ, z − δ < 1
n

n
∑
i=1

x2
i < z + δ}.

By construction An
δ is a subset of Bn

2,V[U], since for x ∈ An
δ the first condition implies

x ∈ Bn
V and the second guarantees x ∈ U. Now we distinguish two cases for t, we start
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with the assumption t < 0. Then

∣Bn
2,V[U]∣ ≥ ∫

An
δ

dx

= ∫
An

δ

(Zs,t)ne−s∑n
i=1 V(xi)−tx2

i

n
∏
i=1

1
Zs,t

esV(xi)+tx2
i dx

= exp(n(log Zs,t − s(y − δ)− t(z − δ)))∫
An

δ

n
∏
i=1

1
Zs,t

esV(xi)+tx2
i dx.

If we assume t ≥ 0, then we can have essentially the same bound, but instead of (z− δ)
in the exponent, we get the factor (z + δ) in this case.

Now we analyse the integral. In order to do so, we consider an iid sequence {Ξi}i∈N

all distributed with respect to the density

1
Zs,t

esV(x)+tx2
.

Then by Lemma 5.2.1, E[V(Ξi)] = y and E[Ξ2
i ] = z. With this notation we get

∫
An

δ

n
∏
i=1

1
Zs,t

esV(xi)+tx2
i dx = P[(Ξ1, ..., Ξn) ∈ An

δ ]

= P[y − δ < 1
n

n
∑
i=1

V(Ξi) < y + δ, z − δ < 1
n

n
∑
i=1

Ξ2
i < z + δ]

converging to 1 as n →∞ by the weak law of large numbers. Using this result leads to

lim inf
n→∞

1
n

log ∣Bn
2,V[U]∣ ≥ log Zs,t − s(y − δ)− t(z ± δ)

= log∫
R

esV(x)+tx2
dx − sy − tz + δs ± tδ

= −J (y, z)+ δs ± tδ

≥ inf
x∈U
J (1, x)− ε + δs ± tδ.

Now we let ε, δ → 0, showing the lower bound.
3. Step: We study the asymptotics of ∣Bn

V ∣ using the bounds we found in the previous
steps. For this note that

∣Bn
V ∣ = ∣Bn

2,V[[0,∞)]∣ = ∣Bn
2,V[(0,∞)]∣
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an thus
− inf

x∈(0,∞)
J (1, x) ≤ lim

n→∞
1
n

log ∣Bn
V ∣ ≤ − inf

x∈[0,∞)
J (1, x).

A short calculation shows that the limit in the middle exists, since the bounds coincide.
This can be seen by taking a closer look at J (1, 0), where we get

J (1, 0) = sup
s,t∈R

{s − log∫
R

esV(x)+tx2
dx}

≥ lim
t→−∞

{− log∫
R

etx2
dx}

=∞.

Hence the point x = 0 can be omitted in the infimization. In total we get the limit

lim
n→∞

1
n

log ∣Bn
V ∣ = − inf

x∈[0,∞)
J (1, x) = − sup

s<0
{s − log∫

R
esV(x)dx},

where we once more used property 2 of Lemma 5.2.1.
Finally, this establishes an LDP for { 1

n ∑
n
i=1(Xn

i )2}n∈N at speed n and GRF

J (1, x)− sup
s<0

{s − log∫
R

esV(x)dx}.

The claimed LDP for {∣∣X(n)∣∣2/
√

n}n∈N at speed n and rate function JX,V follows by
applying the contraction principle for the mapping x ↦

√
x.

This finishes the situation of symmetric Orlicz balls, we continue with the general
case, which is, as we will see in a moment, not so general as it may appear.

5.2.2 Generalized Orlicz balls

Consider the generalized Orlicz ball Bn
V1,...,Vn

, where we choose suitable functions
V1, V2, .. such that another Orlicz function V̄ exists with

1
n

log(
∣Bn

V1,...,Vn
△Bn

V̄ ∣
∣Bn

V1,...,Vn
∪Bn

V̄ ∣ )Ð→ −∞, (5.2.2)

where A △ B ∶= A/B ∪ B/A denotes the symmetric difference of sets A and B. This
condition basically means that Bn

V1,...,Vn
is very similar to a symmetric Orlicz ball on an

exponential scale. Considering the important role of exponential equivalence in large
deviation theory one is not surprised that we are able to establish an LDP for random
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variables uniformly distributed on such Bn
V1,...,Vn

. We start with the construction of the
corresponding uniform distribution. For a measurable set A ⊆ Rn define

µ(A) ∶=
∣A ∩Bn

V1,...,Vn
∣

∣Bn
V1,...,Vn

∣ .

Analogously to the symmetric case the denominator is finite and not zero, hence µ is
a probability distribution on Rn and we can construct a random variable X(n) ∼ µ =
Uni f (Bn

V1,...,Vn
). We can now state the main result in this subsection.

Theorem 5.2.3. (Lemma 3.13 in [18])
Given Orlicz functions {Vi}i∈N and V̄ that satisfy Condition 5.2.2, suppose X(n) ∼ Uni f (Bn

V1,...,Vn
)

and there exists a constant cV ∈ (0,∞) such that for x > cV , Vi(x) > x2 for i ∈ N and
V̄(x) > x2. Then, {X(n)}n∈N satisfies Assumption A* with JX,V̄ , defined as in Theorem 5.2.2,
but with V replaced with V̄.

Proof. Consider sequences {X̄(n)}n∈N and {U(n)}n∈N with X̄(n) ∼ Uni f (Bn
V̄) and U(n) ∼

Uni f (Bn
V̄ ∪Bn

V1,...,Vn
) (such a distribution can be constructed in the same way as X(n)

and X̄(n) respectively). Assume that all involved sequences are independent and con-
structed on some common probability space with measure P. Then we define the two
quantities

W(n) ∶= U(n)1{U(n)∈Bn
V1,...,Vn

} +X(n)1{U(n)∉Bn
V1,...,Vn

},

W̄(n) ∶= U(n)1{U(n)∈Bn
V̄
} + X̄(n)1{U(n)∉Bn

V̄
}.

Fist note that the conditional distribution P[U(n) ∈ ⋅∣U(n) ∈ Bn
V1,...Vn

] is the uniform
distribution on Bn

V1,...Vn
. To see this, we take a measurable A ⊆ Bn

V1,...Vn
, then

P[U(n) ∈ A∣U(n) ∈ Bn
V1,...Vn

] =
P[U(n) ∈ A ∩Bn

V1,...Vn
]

P[U(n) ∈ Bn
V1,...Vn

]

=
∣A ∩Bn

V1,...Vn
∩ (Bn

V1,...Vn
∪Bn

V̄)∣
∣Bn

V1,...Vn
∩ (Bn

V1,...Vn
∪Bn

V̄)∣
∣Bn

V1,...Vn
∪Bn

V̄ ∣
∣Bn

V1,...Vn
∩ (Bn

V1,...Vn
∪Bn

V̄)∣

=
∣A ∩Bn

V1,...Vn
∣

∣Bn
V1,...Vn

∣
.

Next we look at the distribution of W(n). Again, let A ⊆ R be some measurable set.
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Then

P[W(n) ∈ A] = P[W(n) ∈ A∣U(n) ∈ Bn
V1,...Vn

]P[U(n) ∈ Bn
V1,...Vn

]
+P[W(n) ∈ A∣U(n) ∉ Bn

V1,...Vn
]P[U(n) ∉ Bn

V1,...Vn
]

= P[U(n) ∈ A∣U(n) ∈ Bn
V1,...Vn

]P[U(n) ∈ Bn
V1,...Vn

]
+P[X(n) ∈ A∣U(n) ∉ Bn

V1,...Vn
]P[U(n) ∉ Bn

V1,...Vn
]

= P[X(n) ∈ A]P[U(n) ∈ Bn
V1,...Vn

]+P[X(n) ∈ A]P[U(n) ∉ Bn
V1,...Vn

]
= P[X(n) ∈ A].

We see that W(n) (d)= X(n) and hence W(n) ∼ Uni f (Bn
V1,...,Vn

). Basically the same calcula-

tion can be applied to W̄(n), establishing W̄(n) (d)= X̄(n). The desired result now follows
by showing exponential equivalence of {∣∣W(n)∣∣2/

√
n}n∈N and {∣∣W̄(n)∣∣2/

√
n}n∈N. This

follows by direct computation. Before we do this, we define κ ∶=
√

1+ c2
V . Then

Bn
V1,...,Vn

⊆ κ
√

nBn
2 , since if x ∈ Bn

V1,...,Vn
, we have

n
∑
i=1

x2
i =

n
∑
i=1

x2
i 1xi≤cV +

n
∑
i=1

x2
i 1xi>cV

≤
n
∑
i=1

c2
V +

n
∑
i=1

V(xi)

≤ n(c2
V + 1)

= nκ2.

In the same way we are also able to show Bn
V̄ ⊆ κ

√
nBn

2 . This leads to the estimate

∣ ∣∣W̄
(n)∣∣2√
n

− ∣∣W(n)∣∣2√
n

∣ = 1√
n
∣(∣∣W̄(n)∣∣2 − ∣∣W(n)∣∣2)1{U(n)∈Bn

V1,...,Vn
∩Bn

V̄
}∣

+ 1√
n
∣(∣∣W̄(n)∣∣2 − ∣∣W(n)∣∣2)1{U(n)∈Bn

V1,...,Vn
△Bn

V̄
}∣

≤ 0+ 1√
n
∣∣W̄(n) −W(n)∣∣21{U(n)∈Bn

V1,...,Vn
△Bn

V̄
}

≤ 2κ1{U(n)∈Bn
V1,...,Vn

△Bn
V̄
}.

Here we used, that ∣∣W̄(n) −W(n)∣∣2 ≤ 2κ
√

n and on the set [U(n) ∈ Bn
V1,...,Vn

∩Bn
V̄] we
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have W(n) = W̄(n). Now we fix δ > 0 and consider

1
n

log P[∣∣∣W(n)∣∣2/
√

n − ∣∣W̄(n)∣∣2/
√

n∣ > δ] ≤ 1
n

log P[2κ1{U(n)∈Bn
V1,...,Vn

△Bn
V̄
} > δ]

= 1
n

log P[U(n) ∈ Bn
V1,...,Vn

△Bn
V̄]

= 1
n

log(
∣Bn

V1,...,Vn
△Bn

V̄ ∣
∣Bn

V1,...,Vn
∪Bn

V̄ ∣ ).

Thus, if we apply the limsup on both sides, we obtain the desired exponential equiva-
lence.

5.3 Gibbs measures

In this section we introduce the notion of Gibbs measures and deduce Assumption
A* for a certain sequence of random variables. We start with some notation and
definitions. The following is based on [10]. Consider a set of "particles" xn ∶= (x1, ..., xn)
in Rd, which are exposed to some external force V ∶ Rd → (−∞,∞] and some kind of
pairwise interaction (e.g. electrons repulsing each other ) W ∶ Rd ×Rd → (−∞,∞]. The
behaviour of this system can be modelled via the Hamilton operator

Hn ∶ Rd×n → (−∞,∞]

xn ↦ 1
n

n
∑
i=1

V(xi)+
1

2n2

n
∑

i,j=1,i≠j
W(xi, xj).

Further, for such an n-tuple of particles we consider the respective sequence of empir-
ical measures

Ln ∶ Rd×n → P(Rd)

xn ↦ 1
n

n
∑
i=1

δxi .

Later we make use of the notation Ln(xn, A) = 1
n ∑

n
i=1 δxi(A), for xn ∈ Rd×n and A ∈

B(Rd).

Lemma 5.3.1. The function Ln ∶ Rd×n → P(Rd) is a continuous mapping.

Proof. Since we consider a mapping between metric spaces, continuity can be decided
via sequences. Further we use the bounded Lipschitz-metric on P(R) and we assume
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d = 1, the general case works analogously. Let {xm}m∈N be a sequence of reals with
xm → x. We claim

Ln(xm, .) dbLÐ→ Ln(x, .).

Denote by BL(R) the set of bounded Lipschitz continuous functions with Lipschitz
constant equal to 1. Then we need to consider

sup
f ∈BL(R)

∣∫
R

f (t)dLn(xm, t)−∫
R

f (t)dLn(x, t)∣ = sup
f ∈BL(R)

∣ 1
n

n
∑
i=1

f (xm
k )− 1

n

n
∑
i=1

f (xk)∣

≤ sup
f ∈BL(R)

1
n

n
∑
i=1

∣ f (xm
k )− f (xk)∣

≤ 1
n

n
∑
i=1

∣xm
k − xk∣

m→∞Ð→ 0.

In the last step we used the uniform Lipschitz-continuity of the involved function
space.

Let {βn}n∈N be a sequence of positive real numbers with βn → ∞ and `, a σ-finite
measure on R (e.g. the Lebesgue measure). Then we use our Hamiltonian to define
"Gibbs-measures" Pn ∈ P(Rd×n) as

Pn(dx1, ..., dxn) ∶=
exp(−βnHn(x1, ..., xn))

Zn
`(dx1)...`(dxn),

provided V and W are chosen in a way such that

Zn ∶= ∫
Rd

...∫
Rd

exp(−βnHn(x1, ..., xn))`(dx1)...`(dxn)

is finite.

Definition 5.3.1. Given measurable spaces (S,F) and (S̃, F̃), a measurable mapping f ∶ S →
S̃ and a measure µ ∶ F → [0,∞], the pushforward of µ is the measure induced on (S̃, F̃) by µ

under f , that is, the measure f#µ ∶ F̃ → [0,∞] given by

( f#µ)(B) = µ( f −1(B)) for B ∈ F̃ .

In other words f#µ is the image measure of µ under f .

Finally, we introduce probability measures Qn by pushing Pn forward under the
mapping Ln, i.e.

Qn(A) ∶= Pn(Ln ∈ A)
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for a Borel set A ⊆ P(Rd), where we equip P(Rd) with the weak topology and note
that Ln ∶ Rd×n → P(Rd) is continuous (see Lemma 5.3.1) and hence measurable.

Theorem 5.3.2. (Theorem 2.7 and Lemma 2.6 from [18])
Suppose the following assumptions hold for the potentials V and W:

1. V and W are lower semicontinuous on the respective sets on which they are finite.

2. There exists 1 > a ≥ 0 and c ∈ R such that V satisfies

∫
Rd

e−(1−a)V(x)`(dx) <∞

inf
x∈Rd

V(x) > c, inf
(x,y)∈Rd×Rd

[W(x, y)+ a(V(x)+V(y))] > c.

3. There exists a set A ∈ B(Rd) with `(A) > 0 such that

∫
A×A

(V(x)+V(y)+W(x, y))`(dx)`(dy) <∞.

4. For all λ ∈ Rd, we have

∫
Rd×Rd

exp [λ(x2 + y2)−V(x)−V(y)−W(x, y)]`(dx)`(dy) <∞.

Then {Qn}n∈N satisfies an LDP in P2(Rd) equipped with the 2-Wasserstein topology, at speed
n, with GRF J∗ ∶ P2(Rd)→ [0,∞] defined by

J∗(µ) ∶= J (µ)− inf
ν∈P2(Rd)

J (ν),

J (µ) ∶= H(µ∣`)+ 1
2 ∫Rd×Rd

W(x, y)µ(dx)µ(dy)+∫
Rd

V(x)µ(dx),

where H denotes the relative entropy.

Remark. In [10] the authors proved Theorem 5.3.2 using Assumptions 1,2,3 and a
different one (they refer to it as "Assumption B", which is not so easy to handle).
Lemma 2.6 in [10] proves that 1-3 and 4 imply Assumption B.

Remark. In [10] a more abstract setting is treated, where one considers a generalization
of Wasserstein spaces, the result in Theorem 5.3.2 is a special case.

The previous theorem can be used to establish an LDP for norms of random vari-
ables distributed according to the Gibbs measure. To simplify formulas, we restrict to
the case d = 1.

109



Corollary. (Proposition 3.15 in [18])
For n ∈ N, suppose X(n) is drawn from Pn, and suppose that the assumptions of
Theorem 5.3.2 hold. Then, {X(n)}n∈N satisfies Assumption A* with GRF

JX(x) = inf{J∗(µ) ∶ µ ∈ P2(R), x =
√

m2(µ)}, x ≥ 0.

Proof. Let (Ω,F , P) be a probability space such that X(n) ∶ Ω → Rn has distribution Pn.
First, note the relation

∣∣X(n)∣∣22
n

= ∫
R

x2dLn(X(n), x)

= m2(Ln(X(n), .)),

and recall that m2 ∶ P2(R) → [0,∞) is continuous by the very definition of the 2-
Wasserstein topology. Then, since

P[Ln(X(n), .) ∈ A] = Pn(Ln ∈ A) = Qn(A)

for A ∈ B(P2(R)), we can apply the contraction principle to establish an LDP for
{∣∣X(n)∣∣22/n}n∈N at speed n. By taking the square root we finally get the desired LDP
with the claimed GRF.
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6 Appendix

Theorem 6.0.1. (Hall marriage theorem)
Let (G, E) be a bipartite graph with G = X ⊍Y and ∣X∣ = ∣Y∣ be the bipartition classes (i.e. E
consists only of edges between X and Y). For A ⊆ X we denote by K(A) all neighbours of A,
i.e.

K(A) = {y ∈ Y ∣ (x, y) ∈ E}.

Then there exists a bijective function f ∶ X → Y such that x ∼ f (x) iff ∣K(A)∣ ≥ ∣A∣.

Definition 6.0.1. Let X be a vector space over the real numbers. Then X ′ denotes the algebraic
dual, i.e. the space of linear functions mapping from X to R. Moreover, if one chooses a
topology on X , we consider the topological dual X ∗ ⊆ X ′, where we additionally assume
continuity.

Definition 6.0.2. Let X be a topological vector space over the real numbers. We call Y ⊆ X ′ a
separating subset, if for any x ∈ X there exists y′ ∈ Y with ⟨y′, x⟩ ≠ 0. The Y-topology is the
coarsest topology on X , such that all functionals in Y are continuous.

Theorem 6.0.2. Let X be a vector space over the real numbers, and Y ⊆ X ′ be a separating
subspace. Then the Y-topology makes X into a locally convex topological vector space with
X ∗ = Y .

The case when Y = X ∗ is of special interest, as we will see in the next theorem.

Definition 6.0.3. (weak*-topology)
Let (X , ∣∣ ⋅ ∣∣) be a normed vector space over R. The weak* topology is defined as the coarsest
topology, such that all mappings x̂ ∈ X ∗∗ with x̂( f ) = f (x) for some x ∈ X , are continuous.

Theorem 6.0.3. (Version of Banach-Alaoglu theorem)
Let (X , ∣∣ ⋅ ∣∣) be a normed vector space over R. Then the set

M = {φ ∈ X ∗ ∣ ∣∣φ∣∣ ≤ 1}

is compact with respect to the weak* topology. If X is separable, then every sequence {xn}n∈N ⊆
X ∗ has a weak* convergent subsequence.
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Definition 6.0.4. Let (M, d) be a metric space. We say that M is compact if for every family
{Oi}i∈I of open sets with M = ⋃i∈I Oi there exists a finite subfamily Oi1 , ..., Oin with M =
⋃n

j=1 Oij .

Definition 6.0.5. Let (M, τ) be a Hausdorff space (e.g. if (M, d) is a compact metric space
and τ is induced by d) and B the Borel σ algebra. A Radon measure µ on B is inner regular
and locally finite, i.e.

for all measurable sets A: µ(A) = sup{µ(K) ∣ K ⊆ A, K compact}, and

for every m ∈ M there exists a neighbourhood U of m with µ(U) <∞.

Theorem 6.0.4. (Version of Riesz-Markov representation theorem)
Let (M, d) be a compact metric space and let C(M) denote the continuous functions mapping
from M to R. Suppose we are given a linear functional I ∶ C(M)→ R with

f ≥ 0 Ô⇒ I( f ) ≥ 0.

Then there exists a unique Radon measure on M representing I, i.e. for all f ∈ C(M)

I( f ) = ∫
M

f (x)dµ(x).

Theorem 6.0.5. (Cantor’s theorem)
Let {Kn}n∈N be a sequence of non-empty compact sets in a metric space (X , d) with Kn+1 ⊆ Kn

for all n ∈ N. Then ⋂n∈N Kn is non-empty and compact.

Definition 6.0.6. Given a topological space X and a point x ∈ X , a basis of open neighbour-
hoods B(x) satisfies the following properties

(1) For any U ∈ B(x), x ∈ U.

(2) For any U1, U2 ∈ B(x) ∶ ∃U3 ∈ B(x) such that U3 ⊆ U1 ∩U2.

(3) If y ∈ U ∈ B(x), then ∃W ∈ B(y) such that W ⊆ U.

Theorem 6.0.6. (Hausdorff’s criterion)
Let τ and τ′ two topologies on the same set X . For each x ∈ X , let B(x) a basis of neigh-
bourhoods of x in (X , τ) an B′(x) a Basis of neighbourhoods of x in (X, τ′). Then τ ⊆ τ′ iff
∀x ∈ X,∀U ∈ B(x) ∶ ∃V ∈ B′(x) such that x ∈ V ⊆ U.
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Theorem 6.0.7. (Version of Radon-Nikodym Theorem)
Let (Σ,F) be a measurable space and let µ, ν be probability measures on F . Assume that ν is
absolutely continuous w.r.t. µ, denoted by ν ≪ µ, i.e.

∀F ∈ F ∶ µ(F) = 0 Ô⇒ ν(F) = 0.

Then there exists a µ almost surely unique measurable function f ∶ Σ → R+, such that for all
F ∈ F

ν(F) = ∫
F

f (x)dµ(x).

We often denote f by dν/dµ and call it the Radon-Nikodym derivative.

Remark. In the case of ν ≪ µ and µ ≪ ν, also dµ/dν exists and we have the nice
relation

dµ

dν
= ( dν

dµ
)
−1

.

Further, if η is another probability measure on (Σ,F) with ν ≪ µ ≪ η, then dη/dν

exists and
dη

dν
= dη

dµ

dµ

dν
.

Theorem 6.0.8. (transformation rule for probability measures)
Let µ be a Borel probability measure on R and g ∶ R → R a measurable function. For a
measurable function f ∶ R→ R and a measurable set A ⊆ R it holds that

∫
g−1(A)

f ○ g(x)dµ(x) = ∫
A

f (x)d(µ ○ g−1)(x),

provided at least one of those integrals exist.

Theorem 6.0.9. (Theorem D.4 in [9])
Let {Σi}N

i=1 be metric spaces and N be either finite or N =∞. Then

(a) ⊗N
i=1BΣi ⊆ B⨉N

i=1 Σi
.

(b) If Σi are separable, then ⊗N
i=1BΣi = B⨉N

i=1 Σi
.

Definition 6.0.7. (Tightness)
A probability measure µ on a metric space Σ is tight if for each ε > 0, there exists a compact set
Kε ⊆ Σ such that µ(Kc

ε) < ε. A family of probability measures {µi}i∈I on the metric space Σ is
called a tight family if the set Kε may be chosen independently of i.

113



Theorem 6.0.10. (Theorem D.7 in [9])
Each probability measure on a Polish space Σ is tight.

Theorem 6.0.11. (Prohorov’s theorem, D.9 in [9])
Let Σ be Polish, and let Γ ⊆ P(Σ). Then Γ̄ is compact iff Γ is tight.

Theorem 6.0.12. (Portmanteau Theorem, Theorem D.10 in [9])
Let Σ be Polish with Borel sigma algebra BΣ. The following statements are equivalent

(1) µn → µ weakly.

(2) ∀g ∶ Σ → R bounded and uniformly continuous, limn→∞ ∫Σ g(x)dµn(x) = ∫Σ g(x)dµ(x).

(3) ∀F ⊆ Σ closed, lim supn→∞ µn(F) ≤ µ(F).

(4) ∀G ⊆ Σ open, lim infn→∞ µn(G) ≥ µ(G).

(5) ∀A ⊆ BΣ which is a continuity set, i.e., such that µ(A/Å) = 0, limn→∞ µn(A) =
µ(A).

Remark. There are several other characterisations of weak convergence. In particular,
criteria using certain function spaces can be convenient. Beside the set of continuous
and bounded functions one may use

{ f ∶ Σ → R Lipschitz continuous ∶ ∣∣ f ∣∣∞ + ∣∣ f ∣∣Lip ≤ 1},

where ∣∣ f ∣∣Lip denotes the Lipschitz constant.

Theorem 6.0.13. (Slutsky’s theorem)
Let {Xn}n∈N,{Yn}n∈N,{Zn}n∈N be sequences of R-valued random variables with

Xn
(d)Ð→ X

(Yn, Zn)
PÐ→ (Y, Z)

for some random variables X, Y, Z. Then Zn +YnXn
(d)→ Z +YX.

Theorem 6.0.14. Suppose a probability space (Ω,F , P) and independent random variables
X, Y ∶ Ω → R. Further let h ∶ R×R→ R be a measurable function such that E[∣h(X, Y)∣] <∞.
Then

E[h(X, Y)∣Y] = H(Y),

where H(y) = E[h(X, y)], y ∈ R.
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Theorem 6.0.15. (Theorem of Ionescu-Tulcea)
For all n ∈ N, let (Ωn,Fn, Pn) be a probability space. Then there exists an unique probability
measure P on (Ω,F) where

Ω ∶= ⨉
n∈N

Ωn and F ∶= ⊗
n∈N

Fn

such that

P[A1 × ...× An ×
∞
⨉

k=n+1
Ωk] =

n
∏
k=1

Pk[Ak]

for Ak ∈ Fk, k = 1, ..., n.

Since we are often dealing with a certain distribution µ on the real numbers (or on
Rd, for some d), we usually want to work with random variables distributed according
µ.

Theorem 6.0.16. Given a distribution function F, there exists a probability space (Ω,F , P)
and a real random variable X ∶ Ω → R such that P[X ≤ x] = F(x) for all x ∈ R.

Proof. (Theorem 3.1.7)
We see that I′ = I ○ g is again a rate function, because I′ ≥ 0 and for α <∞ we have

{y ∈ Y ∶ I′(y) ≤ α} = {y ∈ Y ∶ I(g(y)) ≤ α}
= g−1({y ∈ Y ∶ I(y) ≤ α})
= g−1(ψI(α)).

The latter set is the preimage of a closed set under a continuous bijection and hence
closed. Due to exponential tightness it suffices to show a weak LDP for {νε}ε>0 with
rate function I′. For the upper bound, we fix a compact set K ⊆ Y and apply the large
deviation upper bound for {νε ○ g−1}ε>0 on the compact set g(K)

lim sup
ε→0

ε log νε(K) = lim sup
ε→0

ε log νε(g−1 ○ g(K))

≤ − inf
x∈g(K)

I(x)

= − inf
x∈K

I(g(x)).

For the lower bound we fix y ∈ Y with I′(y) = I(g(y)) =∶ α <∞, and a neighbourhood
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G of y. Since {νε}ε>0 is exponentially tight, there exists a a compact set Kα ⊆ Y with

lim sup
ε→0

ε log νε(Kc
α) < −α.

Since g is a bijection we have g(Kc
α) = g(Kα)c, also g(Kα) is compact. The lower large

deviation bound for {νε ○ g−1}ε>0 applied to the open set g(Kc
α) yields

− inf
x∈g(Kc

α)
I′(x) ≤ lim inf

ε→0
ε log νε ○ g−1(g(Kc

α)) < −α.

In particular, we get infx∈g(Kc
α) I(x) = infx∈Kc

α
I(g(x)) > α and hence y ∈ Kα. Since g is a

continuous bijection, the restriction

g∣Kα
∶ Kα → g(Kα)

becomes a homeomorphism, i.e. the inverse g−1
∣Kα

is also continuous. The set G ∩ Kα

is open in the induced topology on Kα and hence g(G ∩ Kα) is open in the induced
topology on g(Kα). We can use this observation to find a neighbourhood G′ of g(y) in
X with

G′ ⊆ g(G ∩Kα)∪ g(Kα)c = g(Kc
α ∪G).

Applying the measure νε ○ g−1 yields

νε ○ g−1(G′) ≤ νε(Kc
α ∪G)

≤ νε(Kc
α)+ νε(G).

We now make use of the trivial inequality log(a + b) ≤ log 2 + log a ∨ log b, where we
get

lim inf
ε→0

ε log νε ○ g−1(G′) ≤ lim inf
ε→0

ε log (νε(G)+ νε(Kc
α))

≤ lim inf
ε→0

ε log νε(G)∨ log νε(Kc
α),

where the log 2 term vanishes in the lim inf. The latter expression can further bounded
from above, namely

lim inf
ε→0

ε log νε(G)∨ log νε(Kc
α) ≤ lim inf

ε→0
ε log νε(G)∨ lim sup

ε→0
log νε(Kc

α).
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In total, using the large deviation lower bound for νε ○ g−1, we receive

−I′(y) ≤ − inf
x∈G′ I(x)

≤ lim inf
ε→0

ε log νε ○ g−1(G′)

≤ lim inf
ε→0

ε log νε(G)∨ lim sup
ε→0

log νε(Kc
α).

Since −I′(y) = −α by the definition of α and using the exponential tightness of {νε}ε>0,
we can neglect the right-hand term in the maximum. For an open set O ⊆ Y and any
y ∈ O we hence get

−I′(y) ≤ lim inf
ε→0

ε log νε(G).

Taking the infimum over all y ∈ O establishes the weak large deviation lower bound.

Definition 6.0.8. Let (X ,F , µ) be a probability space and (X, ∣∣ ⋅ ∣∣) a Banach space over R. A
function φ ∶ X → X of the form

φ(x) =
n
∑
i=1

xi1Ai(x),

for n ∈ N, x ∈ X , {xi}i∈{1,...,n} ⊆ X and pairwise disjoint {Ai}i∈{1,...,n} ⊆ F is called a simple
function. We define the Bochner-integral of φ w.r.t. µ

∫X φ(x)dµ(x) ∶=
n
∑
i=1

xiµ(Ai) ∈ X.

Definition 6.0.9. Let (X ,F , µ) be a probability space and (X, ∣∣ ⋅ ∣∣) a Banach space over R. A
function f ∶ X → X is called Bochner-integrable, if there exists a sequence {φn}n∈N of simple
functions with

f (x) = lim
n→∞

φn(x)

almost everywhere, and if

∀ε > 0 ∶ ∃n0 ∈ N ∶ ∀n, m ≥ n0 ∶ ∫X ∣∣φn(x)− φm(x)∣∣dµ(x) < ε.

The integral in the expression above is the usual Lebesgue integral.

Remark. There are equivalent characterisations of Bochner-integrability. In particular
a function f ∶ X → X is Bochner-integrabel iff ∣∣ f ∣∣ ∶ X → R is Lebesgue-integrabel.
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Theorem 6.0.17. Let (X ,F , µ) be a probability space and (X, ∣∣ ⋅ ∣∣) a Banach space over R. For
a Bochner-integrable function f ∶ X → X with an approximating sequence of simple functions
{φn}n∈N,

lim
n→∞∫X φn(x)dµ(x) ∈ X

exists and is independent of the choice of the sequence {φn}n∈N. Hence, we define

∫X f (x)dµ(x) ∶= lim
n→∞∫X φn(x)dµ(x).

Remark. It is possible to construct a more general version of the Bochner integral on
certain measure spaces, for our purpose Theorem 6.0.17 suffices.

Theorem 6.0.18. Let (X ,F , µ) be a probability space and (X, ∣∣ ⋅ ∣∣),(Z, ∣∣ ⋅ ∣∣Z) Banach spaces
over R. Moreover, let T ∶ X → Z be a continuous linear operator and f ∶ X → X a Bochner-
integrabel function. Then T( f ) ∶ X → Z is also Bochner-integrabel and we have

T(∫X f (x)dµ(x)) = ∫X T( f (x))dµ(x).

Definition 6.0.10. Let f ∶ X → R be a differentiable convex function. Then f is called co-finite
if for all {xi}i∈N with limi→∞ ∣∣xi∣∣2 =∞ we have

lim
i→∞

∣∣∇ f (xi)∣∣2 =∞.

Theorem 6.0.19. (Theorem 26.6. in [25])
Let f ∶ Rn → R be a differentiable convex function. In order that ∇ f ∶ Rn → Rn is bijective, it
is necessary and sufficient that f be strictly convex and co-finite. When these conditions hold,
f ∗ is likewise a differentiable convex function on Rn which is strictly convex and co-finite, and
f ∗ is the same as the Legendre conjugate of f ∗, i.e. for x∗ ∈ Rn

f ∗(x∗) = ⟨(∇ f )−1(x∗), x∗⟩− f ((∇ f )−1(x∗)),

where ⟨⋅, ⋅⟩ denotes the standard scalar product in Rn.

Remark. In [18] the authors make frequently use of Theorem 6.0.19 to prove Lemma
5.2.1. In general it is not true that f ∶ R− ×R→ R with

f (s, t) = log∫
R

esV(x)+tx2
dx

is co-finite. Consider the case V(x) = x4 and the sequence {(−i, 0)}i∈N ⊆ R− ×R with

118



∣∣(−i, 0)∣∣2 →∞ as i →∞. Then we have

d
ds

f (s, t)∣
(s,t)=(−i,0)

= Z−1
−i,0∫

R
x4e−ix4

dx

d
dt

f (s, t)∣
(s,t)=(−i,0)

= Z−1
−i,0∫

R
x2e−ix4

dx,
(6.0.1)

where Z−i,0 = ∫R e−ix4
dx. We can calculate the quantities in 6.0.1. For the normalisation

constant we have
Z−i,0 = ∫

R
e−ix4

dx = i−1/4 1
2

Γ(1
4
),

where Γ denotes the Gamma function. Similar one can calculate the partial derivatives
of f , where we get that

∫
R

x4esx4
dx = i−5/4 1

2
Γ(5

4
)

∫
R

x2esx4
dx = i−3/4 1

2
Γ(3

4
).

Thus, the gradient of f evaluated in (−i, 0) can be expressed in the following way

∇ f (−i, 0) = (1
i

Γ(5/4)
Γ(1/4) ,

1√
i

Γ(3/4)
Γ(1/4)).

In total we get that ∣∣∇ f (−i, 0)∣∣2 → 0 even though ∣∣(−i, 0)∣∣2 →∞ as i →∞.

Theorem 6.0.20. (Householder transformation)
Let a, e ∈ Rn be normed vectors, i.e. ∣∣a∣∣2 = ∣∣e∣∣2 = 1 with a ≠ e. Then there exists a normed
vector v ∈ Rn such that Hva = e, where

Hv ∶= In − 2vvT

is an orthogonal matrix.

Remark. One can verify directly that −1 is an eigenvalue of Hv with multiplicity 1 and
that 1 is the only other eigenvalue of Hv with multiplicity n− 1. The determinant is −1
and hence, Hv belongs to the set of „reflection“ matrices.

Proof. (Proof of Theorem 6.0.20)
We define

v ∶= a − e
∣∣a − e∣∣2
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and calculate Hva, where we get (recall that a and e are normed)

Hva = a − 2vvTa

= a − 2(a − e) ∣∣a∣∣22 − ⟨e, a⟩
∣∣a∣∣2 − 2⟨a, e⟩+ ∣∣e∣∣22

= a − 2(a − e) 1− ⟨e, a⟩
2− 2⟨a, e⟩

= e.

Remark. Householder transforms play an important role in numerical mathematics,
where one uses the previous construction to calculate the so-called QR decomposition.
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