
Christoph Maurer, BSc

Integration and Deployment of Machine
Learning Models

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf

Institute of Signal Processing and Speech Communication

Graz, February 2021

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Over the past few decades, there has been much progress in the field of
software development concerning the used technologies as well as the de-
velopment methodologies. Since the development of traditional algorithms
for some problem domains is difficult, the hope for further progress lies in
the use of machine learning models.

The integration of machine learning models into software systems intro-
duces new challenges. Though, the development and lifecycle of the models
has many similarities with conventional software, the methodologies and
technologies do not have reached the same maturity level. The challenges al-
ready start with the necessary collaboration of different teams and continue
with correct versioning, persisting and serving the models for the produc-
tion system. Due to debugging is different compared to traditional software,
the reproducibility of the original model is of special importance.

Motivated by the problem statements of an existing software system, in this
thesis solution approaches for the integration and deployment of machine
learning models were worked out. On the one hand best-practices from
different companies and projects were researched and on the other hand
existing third-party solutions for different parts of the lifecycle relevant for
model deployment were analyzed.

A further part of the thesis is about the current architecture of the software
system and necessary extensions for the simple integration of the models.

iii

Kurzfassung

In den letzten Jahrzehnten gab es viele Fortschritte in der Software Entwick-
lung, sowohl bei den eingesetzten Technologien als auch Entwicklungsmeth-
oden. Da sich die Entwicklung von traditionellen Algorithmen bei einigen
Problemstellungen als sehr schwierig gestaltet, erhofft man sich hier oft
Fortschritte durch den Einsatz von Machine Learning Modellen.

Die Integration von Machine Learning Modellen in Software Systemen stellt
eine neue Herausforderung dar. Zwar gibt es viele Gemeinsamkeiten in der
Entwicklung und im Lebenszyklus der Modelle mit herkömmlicher Soft-
ware, die Vorgehensweisen und Technologien sind aber noch nicht im selben
Maße ausgereift. Die Herausforderungen beginnen bereits bei der notwendi-
gen Zusammenarbeit unterschiedlicher Teams und gehen weiter mit der
korrekten Versionierung, Speicherung und Bereitstellung der Modelle im
Produktivsystem. Da sich die Fehlersuche anders als bei herkömmlicher
Software gestaltet ist die Rückverfolgbarkeit zum ursprünglichen Modell
von besonderer Bedeutung.

In dieser Arbeit wurden motiviert durch die Problemstellungen eines ex-
istierenden Software Systems, Lösungsansätze zur Integration und Bere-
itstellung von Machine Learning Modellen ausgearbeitet. Dabei wurden
einerseits empfohlene Vorgehensweisen von verschiedenen Unternehmen
und Projekten recherchiert und andererseits bestehende Lösungen von Drit-
tanbietern für bestimmte Teillösungen im Lebenszyklus analysiert, die für
die Bereitstellung der Modelle von Bedeutung sind.

Ein weiterer Teil der Arbeit beschäftigt sich mit der aktuellen Architektur
des Software Systems und den notwendigen Erweiterungen zur einfachen
Integration der Modelle.

iv

Acknowledgement

This master thesis was carried out with the innovative company smaXtec
animal care. Therefore, I want to thank all involved smaXtec employees for
giving me the chance to work on this interesting project. I especially want
to thank Tobias Rauter for the time working together in the backend team,
what gave me a reasonable understanding of the system architecture and
for helping me structuring this thesis.

I also want to thank my supervisor Franz Pernkopf for his openness for this
industry project. I am especially grateful for giving me final feedback right
before Christmas holidays and helping me with all other organizational
tasks.

Furthermore, I want to thank my study colleagues Benedikt Maderbacher
and Rudolf Wörndle for proofreading parts of this thesis and for endless
discussions about computer science related topics.

Finally, my gratitude goes to my family for their appreciation of higher
education and reminding me to finish my studies in foreseeable future.

v

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Scope . 2

1.3 Structure of this document . 6

2 Background 7
2.1 Traditional Programming vs Machine Learning 7

2.2 Challenges of Machine Learning in Software Systems 9

2.2.1 Team Organization . 10

2.2.2 Reproducible Model Training 10

2.2.3 Different Frameworks and Programming Languages . 12

2.2.4 Existing System Architecture 13

2.2.5 Frequent Deployments 16

2.2.6 Model Definition . 18

2.2.7 Model Debugging and Interpretability 19

2.2.8 Training-Serving Skew 20

2.2.9 Monitoring . 21

2.3 Maturity of Machine Learning Systems 23

3 Existing Technologies and Solutions 25
3.1 Model Persistence . 25

3.1.1 Python Pickle . 26

3.1.2 Predictive Model Markup Language 27

3.1.3 Open Neural Network Exchange 27

3.1.4 SavedModel . 28

3.1.5 Docker . 28

3.1.6 MLflow Models . 30

3.2 Version control . 31

3.2.1 Data Version Control (DVC) 31

vii

Contents

3.3 Model Serving . 32

3.3.1 Self-hosted Model Servers 32

3.4 End-to-End Machine Learning Platforms 34

3.4.1 MLflow . 34

4 Architecture and Concept 40
4.1 Requirements . 40

4.2 Existing System Architecture 44

4.2.1 High-level Perspective 44

4.2.2 Apache Kafka . 46

4.2.3 Faust . 48

4.3 Feature Extraction . 52

4.3.1 Implementation of the Feature Extraction Pipeline . . 55

4.4 Model Deployment . 58

4.4.1 Model Management . 60

4.5 Model Serving and Integration 62

4.5.1 Strategies . 62

4.5.2 Serving the model as a REST-Service 64

4.5.3 Serving the model as a Faust Agent 67

4.6 Monitoring . 68

5 Results 71
5.1 Overview of the solution . 71

5.2 Fulfillment of the requirements 73

5.3 Deployment Steps . 75

5.3.1 Steps for deploying and integrating a new model . . . 76

5.3.2 Updating an existing model 76

5.3.3 Deployment of traditional algorithms 76

6 Conclusion 77

Bibliography 79

viii

List of Figures

1.1 Intersection of the subject areas in this thesis 2

1.2 The Machine Learning Pipeline 4

2.1 Traditional Programming Approach 7

2.2 Machine Learning Approach 8

2.3 Steps of a Machine Learning Training Pipeline 11

2.4 Batch Processing vs Stream Processing 13

2.5 Microservice Architecture vs Monolithic Architecture 14

2.6 The model deployed as a service 16

2.7 Deployed Models . 17

2.8 The model as a ”black-box” . 18

2.9 How can the prediction be explained? 19

2.10 Prediction accuracy vs Explainability 20

2.11 Training-Serving Skew . 21

2.12 Monitoring ML Systems . 22

3.1 MLFlow Web Interface - Overview of the experiments 35

3.2 MLflow Model Registry . 38

4.1 Requirements Gathering . 41

4.2 High-level perspective of the existing system architecture . . 44

4.3 Overview of Apache Kafka . 46

4.4 Single-Threaded Asynchronous I/O 51

4.5 Feature Vector . 52

4.6 Data Sources for Feature Extraction 53

4.7 Pipes and Filters Pattern . 54

4.8 Feature Extraction Pipeline . 55

4.9 Timestamp Bucketing . 56

4.10 Simplified UML Diagram of Stream Algorithms 57

ix

List of Figures

4.11 Deployment steps for Software 58

4.12 Model Management . 61

4.13 How to integrate the model? 62

4.14 Dimensions of integration strategies 63

4.15 Example of a HTTP GET-Request and JSON-Response 65

4.16 Prediction Request/Response via REST-API, JSON serialized 65

4.17 Model deployed as a docker container exposing a REST-API . 66

4.18 Prediction Request/Response via REST-API, JSON serialized 67

4.19 Monitoring Component . 68

4.20 Time until the prediction result can be verified 69

5.1 Overview of the suggested solution 72

x

Listings

3.1 Serialization and deserialization of scikit-learn models as
python pickle files. 26

3.2 Serialization and deserialization with joblib. 26

3.3 Exporting a scikit-learn model to PMML. 27

3.4 Example of a Dockerfile for python scripts. 29

3.5 Example of a MLProject file. 36

3.6 Conda File. 36

3.7 MLflow Custom Model. 37

3.8 Loading a model from the registry. 39

3.9 Serving a Model via the MLflow command-line tool. 39

4.1 Kafka Producer Example. 46

4.2 Kafka Consumer Example. 47

4.3 Python Kafka Consumer Example. 48

4.4 Faust Agent. 49

4.5 Faust Table. 50

4.6 Command using Pipes and Filters. 54

4.7 Agent with Monitoring. 69

xi

1 Introduction

Machine Learning (ML) has become accessible to a wide range of actors
in recent years. From a technical- and financial perspective there are ML
frameworks such as Tensorflow1 or Scikit-learn2 available for free and
powerful hardware has become affordable. Additionally there are more and
more resources to learn the basics to apply ML.

The potential of intelligent systems to transform many businesses is con-
sidered huge and compared to the impact of electricity [1]. This motivates
organizations to run first experiments leveraging collected data for their
business needs.

However, building suitable ML models is not sufficient and only a small
part for most real-world use cases [2]. The models need to be integrated into
data pipelines and replaced when necessary. Therefore Data Science- and
Software Engineering teams need to work closely together and agree on an
appropriate development workflow. A well-designed system architecture
and infrastructure should simplify the workflow and help to achieve fast
product iterations and high quality.

1.1 Motivation

The company smaXtec animal care GmbH initiated this project to integrate
ML to their existing product. By conducting this master thesis the necessary
adaptions to their existing software architecture and development processes
should be analyzed.

1https://www.tensorflow.org
2https://scikit-learn.org/

1

1 Introduction

smaXtec provides solutions for monitoring dairy cattle. Mainly by collecting
temperature- and activity data from every sensor equipped cow the smaXtec
system is capable to alert the farmer with health-, temperature- and calving-
notifications.

These notifications are triggered by algorithms running at the backend of
the system. To get reasonable results some of these algorithms need to be
configured based on characteristics of the farm and animal. For example a
cow on a pasture can be expected to be more active than a cow in a barn. To
avoid manual farm specific configurations and the possibility to get better
results and new knowledge from the collected data was the motivation to
start experiments with ML.

Although this project handles the challenges of a company-specific software
architecture, the vast majority of challenges will be very similar for any
organization that wants to integrate ML models in their products.

1.2 Scope

This thesis is about the challenges and possible solutions of adding ML to a
data-intensive system. This thesis does not describe how to create the best
performing model.

Figure 1.1: Intersection of the subject areas in this thesis.

2

1.2 Scope

Figure 1.1 illustrates the intersections of the subject areas handled in this
thesis and are described in the following.

• Software Architecture:
Software architecture describes the basic building blocks and relations
between them, architectural styles and patterns of a Software System
[3]. In this project the existing architecture was analyzed and possible
extensions and adaptations were proposed.

• Machine Learning:
Arthur Samuel described machine learning as the ability of computers
to learn without being explicitly programmed [4]. This is a funda-
mental difference to traditional programming concepts like Structured
Programming [5] where source code describes every rule of the com-
puter program. The ability of ML to learn from data can solve problems
that were not feasible to solve by explicitly programming the rules. A
drawback of this approach is that it is hard to debug why decisions
were made when the rules are not available. This thesis describes how
a software system can benefit from ML and mitigate the drawbacks.

• Continuous Integration/Delivery:
Continuous Integration (CI) is a software development practice where
developers are encouraged to merge their work frequently with team
members [6]. Continuous Delivery (CD) can be understood as tech-
niques to improve the software delivery process in a way that new ver-
sions can be shipped frequently at least to a staging area. Continuous
Deployment is an extended form where the software is automatically
shipped to the production infrastructure. Those methods are essential
when agile software development methods with short iteration life-
cycles are practiced [7]. Due to the time-consuming nature of software
testing there need to be automated tests to maintain high quality with
every release [8].
CI/CD of ML models is similar to traditional software, but this is a
relatively young discipline with far less mature tooling available [9].

With this basic understanding of the subject areas described above it can
be said that a software architecture and development processes should be

3

1 Introduction

created that allow frequent deployments of ML models using best-practices
like CI/CD.

Figure 1.2 illustrates a machine learning pipeline inspired by [10]. The
pipeline can be separated into two parts, the first part is about creating
(training phase) the model, the second part (running phase) takes the created
model and integrates it into the production system to make predictions on
new incoming data. The focus of this thesis is the second part and describes
how to deploy ML models to a serving infrastructure and the requirements
to run them safely.

Data Preprocessing
Feature

Extraction
Preporcess
Features

Model Training

Deployment

Serving Infrastructure

New data
Data

Transforma�ons
Predic�on Monitoring

Training Phase

Running Phase

R
ep

ro
d

u
ci

b
ili

ty

Figure 1.2: The Machine Learning Pipeline.

The following gives a short explanation of the parts in Figure 1.2.

Data: Before training, there needs to be enough data, which often requires
data gathering from several sources. If the size of data is not too big it is
usually sufficient to dump the data to offline storage like hdf5 3 where the
data can easily be accessed for further processing. However many projects
need more advanced techniques to store and access data in the training
phase.

Preprocessing: The quality of data is a critical factor in successful data
mining projects. Hence, a preprocessing step where the raw data is cleaned
is necessary. Typical tasks are outlier detection, removal of redundant or
unnecessary data and the handling of missing or noisy data.

3https://www.hdfgroup.org/solutions/hdf5/

4

1.2 Scope

Feature extraction: After the preprocessing step, more work needs to be
done before predictions can be made. Features need to be extracted. Ex-
amples of features for time-series are ticks, self-similarities and moving-
averages. Features are sometimes called attributes or variables.

Preprocess Features: Features are the input for ML algorithms. To get
satisfying results, appropriate features for the task need to be created and
selected. This includes modification (value transformations) of features like
feature discretization, feature weighting and feature normalisation. This
feature preprocessing step is known as Feature Engineering.

Model training: In this step the actual code to create the models is written.
The execution of this training code can be a long running task and may
benefit from powerful hardware. If not otherwise stated, this thesis assumes
supervised learning. In supervised learning the algorithms get labeled
training data, which means feature values and the correct corresponding
solutions, as input. As output of the training step, the best fitting model
describing the data should be selected. It is common to split the data in
80 percent for training and 20 percent for testing a model [11] or doing
cross-validation.

Deployment: In [12] deployment is described as the activities to deliver
software or partially completed increments to the customer. This is similar
in the case of ML models. In the deployment step the trained models need to
be packaged in an appropriate format such that other parts of the software
system can query predictions. It must be ensured that all necessary software
components are correctly deployed and not only the models itself. For
example, code for feature extraction needs to be available in the prediction
system. Automating the deployment step is essential for doing frequent
deployments.

Serving Infrastructure: The serving infrastructure is the part of software
that runs the deployed ML models. In this thesis integration means the cou-
pling of the serving infrastructure with other parts of the system. There are
several options for the integration. This thesis tries to implement concepts
for loose coupling [13] of the components.

Monitoring: As stated in [10], monitoring of ML systems needs to com-
bine traditional software system monitoring like latency and throughput

5

1 Introduction

with model performance metrics similar to the model evaluation in the
training step. However, in the prediction phase it is not always possible to
immediately check the prediction result and calculating metrics like in the
training step, where labeled data with the real result is available, becomes
difficult. Monitoring is the last step in the described pipeline and should
be a decision helper when to start again at the beginning and create a new
model if the results of the prediction phase deviate from the results of the
training phase. Additionally, after this last step it should still be possible to
reproduce (Reproducibility) which transformations were done beginning
at the raw data. If something went wrong or for analytical purposes, the
question is which model created the output for a given input and how was
this model created.

1.3 Structure of this document

Beginning with this first introduction chapter, the stages of the ML lifecycle
and the relevant parts covered in this theses are explained. Chapter 2 mainly
describes the challenges of productionizing ML models and maturity levels
of ML systems.

Chapter 3 names and describes existing third-party solutions for different
subproblems more or less relevant for this project. Chapter 4 describes
parts of the existing system architecture and discusses different options
how ML models can be deployed and integrated. In Chapter 5 a concrete
implementation for smaXtec is discussed. And finally, Chapter 6 sums up
the key findings of this thesis.

6

2 Background

This chapter begins with explaining the differences and similarities of
traditional programming and ML. The second and main part of this chapter
describes the challenges of adding ML models to software systems. The
third and last Section talks about the production readiness of ML systems.
The main idea of this chapter is to derive requirements for ML systems from
related work and to avoid common pitfalls.

2.1 Traditional Programming vs Machine Learning

Software Engineering is a fast evolving discipline with many tools, lan-
guages, frameworks and processes that hardly can be overviewed. In the
case of traditional programming the basic workflow is well understood
and despite that there are many different processes and methodologies, the
approach can roughly be described as in Figure 2.1.

Understand
the Use Case

Write the
rules

Tes�ng Deployment

Figure 2.1: Traditional Programming Approach.

After understanding the use case, the programmer needs to write the
rules of the algorithms manually. There are tools available that support the
generation of source code from a modeling language like Unifed Modelling

7

2 Background

Language (UML) [14]. But this is rather useful for the structure of the
source code using the class diagram in the case of UML, than for the actual
algorithms. And even this modelling is a manual task and only a graphical
representation of the rules. After writing the rules, the program can be
tested and delivered to the users (deployment).

Understand
the Use Case

Train ML
model

Evalua�on Deployment

DataTraining code

Figure 2.2: Machine Learning Approach.

The traditional programming approach works well for use cases where a
human is able to understand the problem and then can write a suitable
algorithm with reasonable effort.

For some use cases like image recognition it is hard for a human to find and
formalize the rules. With supervised ML it is possible to let the computer
learn the rules from historical data which can then be applied for new data.
The data scientist needs to write training code so that the computer can
optimize the parameters of a learning algorithm. Figure 2.2 illustrates the
ML approach where the training and evaluation is done in a loop until a
good enough, deployable model is found. Despite from the training code,
this approach does not require to write rules by a human, but there is
still manual work to do like configuring (setting the hyperparameters) and
selecting a learning algorithm. To accelerate the ML approach and to make

8

2.2 Challenges of Machine Learning in Software Systems

it accessible to more developers there is research [15] and commercial tools
(AutoML) to automate these manual tasks.

2.2 Challenges of Machine Learning in Software
Systems

The task of running a production-ready ML System is often underestimated
[2] and has several challenges to solve. Large corporations like Uber, Face-
book and Google already made huge profit with ML in their products and
shared their experiences with their ML systems [16]–[18]. Microsoft did re-
search on the comparison between ML and traditional software engineering
[19]. Amazon described several model management challenges and divided
them into the groups conceptual challenges, data management challenges and
engineering challenges [20].

Even if the requirements concerning the amount of data and the difficulty
of the problem statement in this project is smaller it might be a good idea to
learn from the lessons of the large corporations to focus on the right tasks
and avoid typical mistakes beginners in the field often make. Although this
thesis should focus on the time after model training some challenges can
not be completely separated from the phases in the ML lifecycle and also
need to be addressed here.

The following subsection gives a brief description of common challenges
which might be somehow relevant in this project.

9

2 Background

2.2.1 Team Organization

On most commercial software projects, there are many different people
participating. Traditionally software developers are often categorized into
frontend developers who focus on user facing parts of the application and
backend developers, who create server-side application code. When adding
ML or for other analytical purposes, the new role of the data scientist comes
up.

In [21], they identified nine different categories of data scientists based on
their usual activities. Having a limited budget, it is not easy to hire the right
types of data scientists needed having the required skill-set. Therefore in
smaller projects the data scientist needs to act as a generalist which includes
data preparation as well as following the traditional software development
processes. However, there are many tasks which data scientists can delegate
to other team members. In some projects there is the specific role of a
machine learning engineer. That role focuses more on making the models
and data pipeline production ready than a more research oriented Data
Scientist.

2.2.2 Reproducible Model Training

Model training is the central part in the phases of the ML lifecycle. The most
suitable algorithm and parameters need to be found. For reasons of prac-
ticality it might also be necessary to choose another model for production
than the most accurate one found in the training phase. The training phase
is often a time-consuming and resource-intensive task and might require
specific hardware and frameworks for distributed programming.

From a post-training perspective, it is essential to have all the metadata for a
given model and especially the evaluation metrics. Having the metadata and
metrics allows to monitor the model in production and detect deviations
from the expected results and trace the production metrics back to the
original data and settings which were used to create the model.

Figure 2.3 shows a simplified version of an example training pipeline similar
to [22] . The pipeline is described with four steps starting from the raw data

10

2.2 Challenges of Machine Learning in Software Systems

get_data.py

raw data

data set

evaluater.py

training data

test data

spli�er.py

model.pkl
training.py

metrics

metadata

1 2 3 4Data Selec�on + Prepara�on Training Data Selec�on Training Model Persistence

Figure 2.3: Steps of a Machine Learning Training Pipeline. Based on: [22].

selection to the persisted model. In this process are several artefacts and
transformations involved which need to be versioned or tracked for reasons
of reproducibility.

The data selection + preparation step 1 is in reality a large and important
step and depicted very simplified here. The output of this step is the data
set which can be used for training and testing.

Before the actual training the data set is splitted into training- and test data
in step 2 .

Step 3 is the training step where different algorithms with different hyper-
parameters, parameters and other settings are evaluated and as a result the
model is selected.

The last step 4 deals with model persistence. In this example the model is
serialized into a model.pkl1 file. Additionally corresponding metadata and
the performance of the model (metrics) should be stored.

According to [20], examples of useful metadata are:

• Creator (developer)

1https://docs.python.org/3/library/pickle.html

11

2 Background

• Creation date
• Hyperparameters
• Applied Feature Transformations
• Training/Evaluation Dataset

To acquire information of every training run, it is recommended to track the
metadata and evaluation metrics automatically like in the system described
in [23].

Additionally it should be easy for other data scientists, as well as for
automation pipelines, to run the training code again and create the exactly
same results as in the original training run. This assumes all training files
and information about the required dependencies and software versions
need to be versioned.

2.2.3 Different Frameworks and Programming Languages

Every framework and programming language has strengths and weaknesses
and team members have their own preferences. Data scientists may prefer
other languages than backend developers do.

In a reliable and maintainable system, data needs to be correctly passed
between components and it should be easy to refactor each component. The
system architecture and technology choices should avoid the problem of too
many different languages known as ”Multiple Language Smell” [2].

Many popular libraries for scientific computing use python as a frontend
language with an underlying native implementation. In this project python
is used as a general purpose language for the data science- as well as the
backend tasks.

12

2.2 Challenges of Machine Learning in Software Systems

2.2.4 Existing System Architecture

Not every software project can start from scratch. Extending an existing
architecture may take several limitations concerning technology and envi-
ronmental complexity into account [24].

Before adding ML models to a system the existing architecture and especially
data flow needs to be understood. In the training phase, data scientists
can develop and run their experiments mostly independent from the target
system architecture. Having labeled data it is possible to evaluate the created
models without interacting with the production system. However in the
prediction phase this is obviously different. Calculating the feature vector,
the input of the ML model, is often time-critical and highly dependent on
the system architecture.

Basically one can distinguish between Batch Processing Systems and Stream
Processing Systems. In simple words in batch processing, all the data needs
to be stored and processed as a whole as it can be seen in Figure 2.4.

Figure 2.4: Batch Processing vs Stream Processing.

Whereas in stream processing only small pieces of new incoming data are
immediately processed. In the training phase batch processing is usually
the way to go, since this is a simple approach in a non-time-critical scenario.
In the prediction phase stream processing might be the better choice, since
it is not always possible to store and process all the data as a whole. Very

13

2 Background

often the predictions are needed as soon as some patterns in incoming data
occur and for example in time-series analysis a stream processing approach
seems like a natural fit.

This distinction between stream processing and batch processing archi-
tecture has a large impact how the integration of ML models has to be
done.

Figure 2.5: Microservice Architecture vs Monolithic Architecture.

Beside that, the structure of the existing application determines how difficult
the integration will be. For example the microservice architecture pattern
encourages exchangeable and extensibility of components, whereas a mono-
lithic architecture might be required to transition into smaller independent
components.

Figure 2.5 shows the difference between a Microservice Architecture A

and a Monolithic Application B .

14

2.2 Challenges of Machine Learning in Software Systems

In both architectural styles the client interacts with the system the same
way via an application programming interface (API) or user interface (UI).
From a deployment perspective, microservices have the advantage that they
can be shipped faster since they are smaller and less complex than the
whole application. However, an advantage of the monolithic application
is that the deployment of the whole application might be less error prone
since the communication between the components is done only within one
application.

15

2 Background

2.2.5 Frequent Deployments

A proven best practice in software development is to deploy frequently.
The ability to perform frequent deployments requires the tooling and test
environment to be automated as much as possible. The automation is
essential to deploy fast and fast deployments are the basis for frequent
deployments. A lack of automation here is dangerous because every manual
step is not only cost intensive but also error-prone and hence decreases
quality. In traditional software development new deployments are necessary
when new functionalities should be shipped or when bugs have been
fixed. New deployments of ML models are not only necessary for new
prediction tasks. Over some time the deployed models can become less
accurate because the assumptions made in the training phase do not reflect
the current data distribution (concept drift). The model needs to be retrained
with new data, although the actual training code might be the same as in
the previous model version.

deploy

train

test

UI API

API

ML

API

DB

API

DB

ML Model
Service

Service Service

Model Development

Figure 2.6: The model deployed as a service.

Like described in Section 2.2.4, the system architecture determines how

16

2.2 Challenges of Machine Learning in Software Systems

simple and fast a new deployment can be done. In the simplest deployment
scenario, the model service (microservice) is completely separtated from the
surrounding software system, where all the other code (feature calculation,
communication protocol) remains the same as in the previous deployment
of the model service. Figure 2.6 illustrates such a deployment scenario. If
the data gathering for a new training run is automated and the new trained
model performs better than the previous one, the system gets better or at
least keeps up to date without manual interaction and new development
work.

The deployment complexity is also influenced by the number of models. It
might be beneficial to have multiple models deployed for the same business
case. For example, before releasing a new model to production, the model
candidate can first be deployed as a ”shadow model”. A ”shadow model”
receives the same incoming data as the currently released model and if
the ”shadow model” performs well it can become the new live model
in production. Additionally it can make sense to have a very simple but
understandable and trustworthy model deployed in shadow mode. This
simple model can be a rule-based algorithm and does not require to be
created with machine learning techniques.

Live Model

Shadow
Model

Shadow
Model

Simple Model

Release Candidates

Predicted Output

True

Input Data

Predicted Output

True

Predicted Output

False

Predicted Output

True

Serving Infrastructure

Result

Logging

Figure 2.7: Deployed Models.

17

2 Background

Figure 2.7 illustrates the deployment of one live model, delivering the
prediction results to the user and additionally three shadow models where
two of them are release candidates and the third one acting as a simple
model which is not considered to be released for real predictions.

2.2.6 Model Definition

There are different viewpoints what a ML model is [20] and what belongs
to it. From a mathematical perspective a model is described by the param-
eters obtained after training. From a technical perspective a model can be
understood as a ”black-box” with defined inputs and outputs, providing a
predict-function like in Figure 2.8.

predict(data)

model.pkl

Feature Extractor/
Transformer

A 1

B 0.5

C 0

D 0.8

Predicted Output

True

ModelFeature Vector

Figure 2.8: The model as a ”black-box”.

It is a technical task to persist the model and make it accessible to the
software system. The inputs (features) for the models need to be calculated
which can include several transformation steps and in more complex cases
the output of a model can be the input of other models. For a successful inte-
gration and deployment, a model needs to be seen as persisted mathematical
representation including all the feature calculation steps.

18

2.2 Challenges of Machine Learning in Software Systems

2.2.7 Model Debugging and Interpretability

To see the model as a black box like in the previous Section 2.2.6 might be
sufficient when thinking about the integration of the packaged model into
the software system. When running the model in production or for analytical
purposes, the question can occur why and how the model calculates a
specific prediction result for a given input (Figure 2.9).

Why?

True

Model as a “black box“

Input Output

Figure 2.9: How can the prediction be explained?

Other than traditional rule-based algorithms, there are no instructions of the
source code which can be debugged. The situation is similar like only having
the binary of a compiled software program or library where the original
source code was lost and for insights the binary needs to be disassembled.

Reproducible model training (see Section 2.2.2) is only one part to under-
stand the model, but can be used to detect errors due to bad training data.
Explainability or interpretability goes beyond debugging errors. Sometimes
the accuracy of the model is sufficient and it would be interesting to know
how the model can give such good predictions. Checking the causality of
the features may give reasonable insights. Additionally in some domains
regulations require the ”Right for Explanation” [25].

The learning algorithm is a critical factor when developing for explainability.
Choosing the learning algorithm is a trade-off between good enough predic-
tion accuracy and explainability. In [26], they analyzed different algorithms
for explainability in the subject of software analytics (Figure 2.10). It can
be seen, that simple models (Decision trees, Linear Regression) should be
preferred when they are accurate enough and explainability is desired.

19

2 Background

Explainability

P
re
d
ic
�
o
n
ac
cu
ra
cy

Deep Learning (Neural Networks)

Ensemble Methods (e.g. Random Forests)

Support Vector Machines

Graphical Models (e.g. Bayesian Networks)

Decision Trees, Classifica�on Rules

Linear Regression

Figure 2.10: Prediction accuracy vs Explainability, Source: [26].

2.2.8 Training-Serving Skew

In the training phase and serving phase, the same transformations have to
be done to get the same results. It is a common problem to get reduced
prediction quality due to slightly different transformation steps in the
prediction pipeline [27]. It is a good advice to reuse the feature calculation
code. If there are multiple programming languages involved (see Section
2.2.3) reusable code is much harder to achieve.

Figure 2.11 illustrates an abstract example of training-serving skew. The
right side of the picture shows the data flow at serving time. The serving
infrastructure retrieves A B C as input. After transformations of A B C the
feature vector for the prediction function of the deployed model is 1 2 3 at
serving time which leads to the predicted output of 0.

On the left side (training phase) the raw data A B C is transformed to 0
1 2 and labeled with 1. Although the model itself from the training phase
was deployed correctly to the serving infrastructure, here is a training-
serving skew due to deviations in the transformation step. This off-by-
one transformation error seems obvious and easy to detect in this simple

20

2.2 Challenges of Machine Learning in Software Systems

Training Serving

Training
Data

RawData

Transforma�ons

Model Training

Transforma�ons

A B C

model.predict()

deployment

… … …

A B C

B C C

… … …

… … … …

0 1 2 1

1 2 2 0

… … … ..

1 2 3

Predicted Output

0

Figure 2.11: Training-Serving Skew. Based on [28].

example, however in a real example where multiple versions of the same
model type are deployed it might not be easy to detect at first. It can
also be hard to resolve when different models need different versions of
transformation code. In [27] it is suggested to log the features calculated
at serving time and use them later for further model training to avoid
training-serving skew. This requires a suitable monitoring infrastructure,
what is described in the next Section (2.2.9).

2.2.9 Monitoring

Monitoring in the context of software operations means observing a running
software system. With traditional software systems, monitoring should
answer the following technical questions:

• Is the system running or down?
• Which exceptions occurred?
• What is the latency, throughput and resource consumption of the

system?
• Are there any anomalous requests?

21

2 Background

• Are there bottlenecks in the system infrastructure or system architec-
ture?

Additionally to those technical questions monitoring ML systems adds
further requirements. In the prediction phase the main monitoring question
is: Does the model still perform the same as evaluated in the training phase?
This question can be hard to answer in a fast and reliable way. At training
time there are clear metrics like precision, recall and F1-score to evaluate
the model. To calculate those metrics, knowledge about the real prediction
result is needed. For example in the problem domain of this project, the
farmer wants to be alerted if a cow is in heat, what means a high chance
of pregnancy of the animal after an insemination. The problem is, that it
takes about forty days after the insemination to have certainty if the cow
is pregnant or not and only after this time the prediction result can be
confirmed. Even if there are many examples where the prediction result
can be verified faster it explains that monitoring in the prediction phase
requires additional or other metrics than for model evaluation in the training
phase.

Model
Training

Model Model
Serving

Model
Monitoring Log

Historical
Data

Model retraining required?

Predic�on Request

Result

Figure 2.12: Monitoring ML Systems.

Figure 2.12 illustrates the monitoring phase in the ML lifecycle. The mon-
itoring component collects the prediction requests and prediction results
from the models and stores them for further analysis. After some time the it
should be clear if a retraining or remodelling is required. For retraining and
remodelling the new logged data can be added to the historical data.

22

2.3 Maturity of Machine Learning Systems

2.3 Maturity of Machine Learning Systems

Compared to traditional software development, ML in production is a rather
new field and the processes are not that mature. Agile software projects
encourage short iteration cycles allowing the shipment of new features in
frequent intervals to the customers. To solve this technical and organizational
challenge the development operations (DevOps) [29] methodology was
introduced. On a similar basis but also considering the particularities of ML,
the Machine Learning Operations (MLOps) [30] methodology came up.

To identify gaps in an organization attempting to operate a successful ML
environment Microsoft defined 5 levels (0-4) known as the Machine Learning
Maturity Model [31]. These levels are:

• Level 0: No MLOps - Basically everything needs to be done manually
(manual builds and deployments, manual testing, manual training, no
centralized model performance tracking)

• Level 1: DevOps but no MLOps - at least DevOps best practices for the
non-ML parts are established (automated builds and tests for applica-
tion code)

• Level 2: Automated Training - reproducible and managed training envi-
ronment, automated model training and performance tracking

• Level 3: Automated Model Deployment - full traceability from the de-
ployed model back to original data, automated tests for all code, entire
managed environment for training, testing and production

• Level 4: Full MLOps Automated Operations - full system automated and
monitored. The production system can automatically detect improve-
ments and optionally can deploy new models with zero down-time.

Another paper from Google [32] described the production readiness of ML
systems by calculating the ”ML test score”. Additionally to the previous
mentioned ML maturity model, the ML test score concentrates on what to
test and monitor in more detail.

23

2 Background

The ML Test score describes four test categories:

• Tests for features and data Traditional software is tested with unit
tests and integration tests. When using ML this approach is not suffi-
cient, also tests concerning the data are necessary like the distribution
of the data. But also the calculation of the features belong to a model
and should be tested.

• Tests for model development This category describes a list of con-
siderations for model development. For example checking if a model
exceeds the performance of a simple baseline model.

• Tests for ML infrastructure The ML infrastructure is a complex pipeline
and not only a single running program. Therefore it makes sense to do
integration tests for the whole pipeline but also unit tests for model
specific code. Complementary it should also be tested how fast a
model can be reverted and rolled back to a previous version in pro-
duction.

• Monitoring tests for ML Monitoring is an important component when
running ML in production. The monitoring component should check
for data assumptions of the inputs and outputs of the model but also
technical performance metrics like latency and throughput.

24

3 Existing Technologies and
Solutions

In the field of software engineering the landscape of technologies, tools,
languages and methodologies has been evolving a lot. Most professional
projects use version control, automated testing, continuous integration and
recently also containerized deployments.

Adding software components, that are highly influenced by data and devel-
oped in a different way than traditional software, increases the complexity
and the tooling requires adaptations. This chapter is about existing (third-
party) solutions and products for managing the ML lifecyle with a focus on
the deployment and serving phase.

The first three sections describe basic technologies for different challenges
of the ML lifecycle. The last section describes solutions for managing the
whole (end-to-end) ML lifecycle.

3.1 Model Persistence

After the training phase, the model needs to be saved (persisted) for further
usage without retraining. The problem is, that there is no standardized
approach and the different ML frameworks use different data formats.
Not only the data formats vary, also the programming languages of the
training system and the prediction system can differ (see Section 2.2.3). The
problem already starts when different versions of languages and frameworks
are used. But the situation is similar in cross-platform software projects
consisting of several components and third-party libraries. The following
describes a few solutions to persist ML models.

25

3 Existing Technologies and Solutions

3.1.1 Python Pickle

The Python Pickle module1 provides a simple interface for serializing and
deserializing Python code. This is a very simple but effective approach
(Listing 3.1), especially like in this project because the primary language of
the system is Python.

Listing 3.1: Serialization and deserialization of scikit-learn models as python pickle files.

from sk learn import svm
import p i c k l e
c l f = svm . SVC ()
X , y= l o a d d a t a s e t ()
c l f . f i t (X , y)

s e r i a l i z i a t i o n
p i c k l e .dump(c l f , open (”model . pkl ” , ”wb”))

d e s e r i a l i z a t i o n
c l f 2 = p i c k l e . load (open (”model . pkl ” , ” rb ”))
r e s u l t = c l f 2 . p r e d i c t (X [0 : 1])

Scikit-Learn recommends to use joblib2 for persisting models3. Listing 3.2
shows the dump/load interface of joblib.

Listing 3.2: Serialization and deserialization with joblib.

from j o b l i b import dump, load
dump(c l f , ’ model . j o b l i b ’)
c l f = load (’ model . j o b l i b ’)

A problem of pickle and joblib is the incompatibility of different versions of
scikit-learn (and probably many other libraries) what can lead to unexpected
results.

1https://docs.python.org/3/library/pickle.html
2https://joblib.readthedocs.io/en/latest/persistence.html
3https://scikit-learn.org/stable/modules/model persistence.html

26

3.1 Model Persistence

3.1.2 Predictive Model Markup Language

Predictive Model Markup Language (PMML) is an XML-based data format
for predictive models. The first version was already released in 1997. The
importance of PMML as a de-facto standard for model archiving was
discussed in [33]. PMML is not only capable of saving the model, but
also specifying information about the feature types (categorical, continuous,
ordinal, ...) is possible. Even data transformation pipelines for preprocessing
(normalization, discretization, custom functions, ...) and post-processing can
be described. The big advantage of PMML compared to simple solutions like
the Python Pickle is the interchangeability between programming languages.
There exist many tools and libraries to export PMML files. Listing 3.3 shows
the code to export PMML files of a scikit-learn model.

Listing 3.3: Exporting a scikit-learn model to PMML.

from sklearn2pmml . p i p e l i n e import PMMLPipeline

p i p e l i n e = PMMLPipeline ([
(” c l a s s i f i e r ” , D e c i s i o n T r e e C l a s s i f i e r ())

])

p i p e l i n e . f i t (. . .)

from sklearn2pmml import sklearn2pmml
sklearn2pmml (pipe l ine , ” Decis ionTree .pmml” ,
with repr = True)

A disadvantage of PMML models is that it does not support some types
of models and advanced methods like Online learning (models can update
themselves at runtime) [34].

3.1.3 Open Neural Network Exchange

Open Neural Network Exchange (ONNX)4 is a rather new interchange
format for ML models with a focus on deep learning models. ONNX gained

4https://onnx.ai/

27

3 Existing Technologies and Solutions

popularity due to the support of Microsoft and Facebook announced in
2017 [35]. An advantage of ONNX are the existence of hardware accelerated
scoring engines. This acceleration can lead to faster inference times of the
deployed models. One drawback of ONNX is that due to its novelty not all
traditional model types are supported yet. A list of supported model types
for scikit-learn can be found here5.

3.1.4 SavedModel

In contrast to the rather library agnostic PMML and ONNX formats, the
SavedModel is a specific file format for storing TensorFlow models. The
SavedModel format works without third-party extensions for TensorFlow
models via the SavedModel API6.

SavedModel is a good option if it is clear that only Tensorflow/Keras is
used for model development and the TensorFlow-Serving7 or the Google
Cloud Platform8 can be used for serving.

3.1.5 Docker

Docker is per se not a technology for model persistence or data science at
all. Docker is compared to virtual machines a light-weight virtualization
solution for isolated applications. Docker container share the same operating
system whereas virtual machines need to start a whole operating system
for each running instance. Docker users need to distinguish between the
following concepts:

• Dockerfile: A Dockerfile is a text file describing step by step the com-
mands to build an executable docker image.

5http://onnx.ai/sklearn-onnx/supported.html
6https://www.tensorflow.org/api docs/python/tf/saved model
7https://www.tensorflow.org/tfx/guide/serving
8https://cloud.google.com/ai-platform/prediction/docs/deploying-models

28

3.1 Model Persistence

• Image: The image is the result after executing the building steps de-
scribed in the Dockerfile. It is possibly to load and share docker images
via a docker registry.

• Container: This is the term for a running instance of an image. There
can be multiple instances of the one image running at the same time.

Listing 3.4: Example of a Dockerfile for python scripts.

FROM ubuntu : 2 0 . 0 4

RUN apt−get update −y && \
apt−get i n s t a l l −y python−pip python−dev

COPY ./ requirements . t x t /app/requirements . t x t
WORKDIR /app
RUN pip i n s t a l l −r requirements . t x t
COPY . /app

CMD [”python ” , ”app . py”]

Listing 3.4 shows a Dockerfile describing the steps beginning from an
Ubuntu 20.04 image (FROM command) to executing a python script. RUN
executes commands inside the container, COPY copies files from the system
running docker to the container. WORKDIR defines the working directory
for further instructions in the container. The last command CMD [”python”,
”app.py”] is the default command executed when running the image as
a container. All the other commands in this example are commands for
building the image.

Docker is not only useful for distributing modern web applications. In
the context of ML there are three important use cases [36]. The first one
is reproducibility as already described in Section 2.2.2. Docker was also
discussed as a tool for reproducible research [37]. At second, it is portability.
This means it is very easy to run the same image on different machines. And
most important for productionizing ML models is the ease of deployment.
For example Python pickles packed can trouble-free deployed packaged
with docker. Without docker it is very error prone to have all the right
dependencies installed (”dependency hell”).

29

3 Existing Technologies and Solutions

3.1.6 MLflow Models

MLflow Model9, part of the MLflow project (see Section 3.4.1), is a packaging
format supporting persisted models of several ML libraries. In the context of
MLflow the support of different libraries are called flavours. MLflow defines
several “standard” flavors that all of its built-in deployment tools support.
At the time of writing this theses MLflow supports the following built-in
flavours10:

• Python Function
• R Function
• H20

• Keras
• MLeap
• PyTorch
• Scikit-Learn
• Spark
• TensorFlow
• ONNX
• MXNet
• XGBoost
• LigthGBM
• Spacy
• Fastai

The ”Python Function” flavour provides a default interface for loading per-
sisted models with MLflow. Models loaded as a ”Python Function” can be
scored with the same prediction function, receiving a Pandas DataFrame11:

predict(model input: pandas.DataFrame)→ [numpy.ndarray |
pandas.(Series | DataFrame)]

Furthermore, MLFlow models can easily deployed and served on various
platforms (Azure, Sagemaker, Spark) or as a docker container exposing an
API endpoint.

9https://www.mlflow.org/docs/latest/models.html
10https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
11https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

30

3.2 Version control

3.2 Version control

Version Control Systems (VCS) are probably used in almost all professional
software projects for tracking source code changes. Git12 is a de facto
standard encouraging an agile development workflow with fast product
iterations.

VCS like Git work great for rather small source files or other text files, but
have limitations for large and/or binary files. ML projects are built with
different kinds of files. The training code consists of normal source files,
but the data required for training is usually stored in rather large (binary)
files. Additionally, there is the model as the output of the training step
and other metadata and metrics. All of these files and data is required for
reproducibility (see Section 2.2.2).

3.2.1 Data Version Control (DVC)

DVC13 is a free Git-based version control system especially designed for
data science projects. Similar to Git, DVC is used via the command line and
many commands are basically the same (dvc pull/push/checkout). Behind
the scenes there are some differences. Large files (data and models) are not
directly stored in the repository, they are replaced with small meta files
pointing to the original large files. Those small files are easy to handle for
git, the large files can be stored somewhere else. The most important DVC
functionalities are:

• Git-compatible version control
• ML pipeline framework: Reproducible Steps for building ML models

can be defined
• Metric tracking: Tracking metrics in JSON files and comparing metrics

in different branches
• Storage agnostic: Large files can be stored at self-hosted systems or

thrid-party cloud storage (eg Amazon S3).

12https://git-scm.com/
13https://dvc.org/doc/user-guide/what-is-dvc

31

3 Existing Technologies and Solutions

3.3 Model Serving

Model serving is the main task after persisting the model. For many use
cases it is sufficient to load a pickled model and serve it via a HTTP
using lightweight frameworks like Flask[38]. This Section names more
sophisticated third-party solutions for model serving without claim for
completeness.

Basically it can be distinguished between managed hosted cloud services
and self-hosted model servers. The major platforms (SageMaker/Amazon,
Azure/Microsoft, Google Cloud AI Platform) support to upload the model
and expose an API Endpoint for scoring (predictions). The communication
protocol for scoring is HTTPS or gRPC (gRPC Remote Procedure Call).
Alternatively when large amounts of data instances should be scored and/or
when higher latency of of the prediction results is not a problem, batch
predictions can be used (GCP: 14, SageMaker:15, Azure: 16).

Those platforms are under heavy development and new features appear
very often, however before choosing one platform it should be checked if
the model persisting format is supported. As a fallback the model can be
served via a docker container, what all major platforms are capable of.

3.3.1 Self-hosted Model Servers

Openscoring17: This is an opensource implementation of REST Service for
PMML (see Section 3.1.2) models written in Java. JPMML-Evaluator18 is
the PMML Runtime. The simple REST API exposes multiple endpoints
(Table 3.1) for model management (deployment / undeployment, meta data
information) and prediction requests (single and batch).

14https://cloud.google.com/ai-platform/prediction/docs/online-vs-batch-prediction
15https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html
16https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-parallel-

run-step
17https://github.com/openscoring/openscoring
18https://github.com/jpmml/jpmml-evaluator

32

3.3 Model Serving

HTTP method Endpoint Description
GET /model Get the summaries of all models
PUT /model/${id} Deploy a model
GET /model/${id} Get the summary of a model
GET /model/${id}/pmml Download a model as a PMML document
POST /model/${id} Evaluate data in ”single prediction” mode
POST /model/${id}/batch Evaluate data in ”batch prediction” mode
POST /model/${id}/csv Evaluate data in ”CSV prediction” mode
DELETE /model/${id} Undeploy a model

Table 3.1: Openscoring API Endpoints.

ONNX Runtime:
Since Microsoft open sourced the ONNX Runtime [35] it is possible to use
the ONNX format for self hosted solutions. By the time of writing this
thesis, the ONNX Runtime Server19 is still marked as beta, what means
without wanting to spend too much effort it is recommended to deploy
ONNX models on Azure.

Tensorflow Serving:
This is the serving component of TensorFlow Extended (TFX)20. Tensor-
Flow Serving is a high-performance serving system for ML models. As the
name suggests, only TensorFlow models are supported without extensions.
According to the project’s documentation, TensorFlow Serving can easily
be extended with other model formats. However, adding other model for-
mats requires extending and recompiling the TensorFlow Server written in
C++.

MLflow Serving:
As already described in in Section 3.1.6, MLflow models support models
created with various ML frameworks. They can not only be deployed to
third-party solutions (Azure, SageMaker) but also be served via an inte-
grated Flask-based web server.

19https://github.com/microsoft/onnxruntime#deploying-onnx-runtime
20https://www.tensorflow.org/tfx/guide/serving

33

3 Existing Technologies and Solutions

3.4 End-to-End Machine Learning Platforms

The previous sections described technical solutions for parts of the ML
lifecycle. Of course, those solutions can be glued together to create an End-
To-End (from data gathering to deployment) solution covering the own
requirements. Many companies tried to manage the challenges (see Section
(see Section 2.2) of the ML lifecycle by building own ML platforms. One
of the first publicly announced examples was Uber’s platform ”Michael
Angelo” [16]. An overview of well-known End-to-End ML platforms can be
found here [39]. The following section describes the functionalities of the
open-source solution MLflow.

3.4.1 MLflow

MLflow, a software by the company Databricks, was introduced [40] to
tackle the challenges (see Section 2.2) of the whole ML lifecycle. MLflow is
not a ML library implementing algorithms for model training.

MLflow comes shipped as a python package 21 and therefore can be installed
with a single command on a developer machine.

MLflow users interact with the software in different ways. The first one is
the MLflow command-line tool (mlflow), the second option is the MLflow
web interface (mlflow ui, for viewing experiments see Figure 3.1) and the
third one is MLflow as a python library (import mlflow). Additionally
MLflow can be controlled via a REST API, so it can also be used with other
languages than Python.

The MLflow functionalities can be grouped into the following compo-
nents:

• Tracking: The tracking component provides a set of functions for
logging parameters, metrics and other artefacts like diagrams. It can
be specified (MLFLOW TRACKING URI environment variable) where
the logged data should be stored. The most simple case is running

21https://pypi.org/project/mlflow/

34

3.4 End-to-End Machine Learning Platforms

MLflow only on a developer machine without a tracking server. This
setup can be compared with using the Git version control system
without a remote repository. The tracked experiments can be viewed
with the MLflow web interface what is especially useful when multiple
developers work on the same model.

Figure 3.1: MLFlow Web Interface - Overview of the experiments.

• Projects: MLflow projects is a data format for creating reusable ML de-
velopment environments. It is also possible to use MLflow without us-
ing the projects format and instead using other tools like virtualenv22

and build scripts like make23, however the project component does
perfectly fit into the MLflow ecosystem.
MLflow projects are described via a YAML file named MLProject (see
Listing 3.5). The code dependencies of the project can be described
via Conda24 or Docker environments. Docker environments have the
advantage that they can be used with non-Python dependencies (eg
Java libraries) and other Linux specific dependencies. Alternatively it is
also possible to only use the dependencies of the system environment.

22https://packaging.python.org/key projects/#virtualenv
23https://www.gnu.org/software/make/
24https://docs.conda.io/projects/conda/en/latest/index.html

35

3 Existing Technologies and Solutions

Listing 3.5: Example of a MLProject file.

name P r o j e c t 1

conda env : conda . yaml
e n t r y p o i n t s :

main :
parameters :

alpha : f l o a t
l 1 r a t i o : { type : f l o a t , d e f a u l t : 0 . 1}

command : ”python t r a i n 1 . py {alpha} { l 1 r a t i o }”
v a l i d a t e :

parameters :
d a t a f i l e : v a l i d a t e . csv

command : ”python v a l i d a t e . py { d a t a f i l e }”

Listing 3.6: Conda File.

name : P r o j e c t 1

channels :
− d e f a u l t s

dependencies :
− numpy= 1 . 1 4 . 3

− pandas = 0 . 2 2 . 0

− s c i k i t−l e ar n = 0 . 1 9 . 1

− pip :
− mlflow

Listing 3.5 is an example MLProject file declaring the dependencies
with a conda file (Listing 3.6). The project file defines two entry points
(main and validate) and parameters for those commands. MLflow
projects can be run via the command-line with the ”mlflow run” com-
mand. Per default the main entry point will be used for execution.
The big advantage of using the MLflow project description is that the
projects can be executed with one single command covering the down-
load from Git to the actual execution in a reproducible environment.
Execution from version control (git):
mlflow run https://github.com/mlflow/mlflow-example.git -P al-
pha=0.5
Execution from the local file system (in the current directory needs to

36

3.4 End-to-End Machine Learning Platforms

be a MLProject file):
mlflow run . -P alpha=0.5
Due to this simple execution commands, MLflow can easily be inte-
grated in CI/CD pipelines.

• Models: The models component was already described in Section
3.1.6 as a general packaging format supporting several ML libraries.
Additionally, it is also possible to create custom models derived from
mlflow.pyfunc.PythonModel implementing the predict method. The
following Listing 3.7 shows the implementation of a custom model
without using any ML algorithms returning random values in the
predict method.

Listing 3.7: MLflow Custom Model.

import mlflow . pyfunc
from random import randrange

c l a s s CustomModel (mlflow . pyfunc . PythonModel) :
def i n i t (s e l f , maxvalue) :

s e l f . maxvalue = maxvalue

def p r e d i c t (s e l f , model input) :
return model input . apply (lambda column :

column + randrange (maxvalue))

Saving t h e model
model path = ”custom model”
custom model model = CustomModel (maxvalue =20)
mlflow . pyfunc . save model (path=model path ,

python model=custom model)

Using t h e model
loaded model = mlflow . pyfunc . load model (model path)
import pandas as pd
model input = pd . DataFrame ([range (1 0)])
model output = loaded model . p r e d i c t (model input)

The example above does not only demonstrate the implementation,

37

3 Existing Technologies and Solutions

saving and loading of custom models it should also make clear that
using MLflow can also make sense for traditional non-ML algorithms.
For testing purposes saved models can used for predictions via the
”mlflow models predict” command, but is also possible to serve the
model via HTTP using the ”mlflow models serve” command. For
production-ready deployments it is possible to create docker contain-
ers (command: ”mlflow models build-docker”) or deploy the model
to cloud services.

• Model Registry The Model Registry is the component for managing
the lifecycle of a model accessible via the MLflow web interface (Figure
3.2) and API. Using the Model Registry is optional and the newest
component of MLflow, however the registry is a suitable component
for keeping track of models in different stages. Per default, the registry
organizes the models in the stages None, Staging, Production, and
Archived. These are common deployment stages, also for other web
services. The MLflow API supports model registration in several

Figure 3.2: MLflow Model Registry.

ways.
One simple solution is to pass the registered model name parameter to
the log model() function what makes sense when the model should
be saved and registered after a training run. Another common way is
to use the register model() function to register a specific training run.

38

3.4 End-to-End Machine Learning Platforms

Listing 3.8: Loading a model from the registry.

import mlflow . pyfunc

model name = ”example−model”
s tage = ’ Staging ’

model = mlflow . pyfunc . load model (
model uri= f ”models :/{model name}/{ s tage }

)

model . p r e d i c t (data)

Once a model is registered it can easily be loaded using the load model()
function (Listing 3.8). Only the name of the model and the stage or
version needs to be specified. This is extremely useful when decou-
pling of a software system and the actual deployed models is required.
It is also possible to serve a model directly from the model registry
using the MLflow command-line tool (Listing 3.9).

Listing 3.9: Serving a Model via the MLflow command-line tool.

#!/ usr/bin/env sh

l i n k to the MLflow Model Regis t ry
export MLFLOW TRACKING URI=http :// l o c a l h o s t : 5000

Serve the example−model via MLflow command l i n e t o o l
mlflow models serve −m ”models :/ example−model/Staging ”

39

4 Architecture and Concept

This chapter can be understood as a case study of productionizing ML
models in the context of the system architecture of smaXtec. The existing
system architecture and possible adaptations are discussed.

4.1 Requirements

The proposed implementation in this chapter does not make a claim to
completeness of a finished solutions. Rather it should be demonstrated if the
existing software architecture can be extended with ML models and which
adaptations are necessary. Furthermore, integration and deployment of ML
models is more a repetitive process than a software solution. Despite that,
the proposed solution should support the automation of the deployment
tasks as much as possible. Understanding the requirements of a ML system
is one of the main goals of this project. Figure 4.1 illustrates the requirements
gathering approach.

The requirements are derived from company internal sources (the specific
business needs and existing solution) and external sources (best practices,
technologies and case studies from other projects). By analyzing these
inputs, adaptations to the existing architecture and development processes
can be done. The gathering of the requirements is an iterative process. This
master thesis can be seen as the initial iteration to get a first prototype to
the production phase. Having a prototype solution in production, or at least
in a separated staging area, should deliver experience over time and the
requirements can be refined.

From a technical point of view, the specific business needs of a company
define the requirements concerning latency and scalability. The question is

40

4.1 Requirements

B
es

t
P

ra
c�

ce
s

Te
ch

n
o

lo
gi

es

Architecture- and
Process adapta�ons

Exis�ng Solu�on

C
as

e
St

u
d

ie
s

Solu�on / Prototype

External Sources

Internal Sources

Implementa�on

Business Needs
Experience

Planning Phase Produc�on Phase

Figure 4.1: Requirements Gathering.

what is the latest time when a prediction result needs to be delivered to the
end user or for further processing? Is the system capable to guarantee the
processing times also for large amounts of data? From a legal perspective
and to increase the confidence of the customers, are there special require-
ments or regulations to explain and communicate the prediction results?
Business specific constraints also determine the number of different models
the whole system needs and the type of the prediction tasks.

Obviously it is important to know the own business needs, although without
hardly any further know-how of ML in production the requirements need
to be completed with the experience from best-practices of other projects
and documented case studies. Knowledge about the current state of the
art technologies should avoid the development of already existing and
affordable tools but also to know the limits of what is possible by now. For
example, there exist many technologies to package or containerize code,
what makes the sense of an own implementation questionable. On the other
hand there are (cloud-)solutions to serve ML models, but for that purpose
an own implementation can reduce the dependence on third-party solution
providers. For some requirements like explainability it may be that there
are no sufficient solutions available yet and the development would be an
own research topic, what means such requirements can not be completely

41

4 Architecture and Concept

fulfilled in reasonable time.

The following is a short description of the functional requirements, the
components and features of the implementation and the non-functional
requirements, the quality constraints which should be fulfilled.

• Functional requirements

– Feature extraction: The system must be capable of extracting the
input features as input for the model.

– Model deployment: The deployment step is about packaging the
trained model into a form that other components or applications
can request predictions.

– Model serving and integration: This requirement is about the
communication between the model and the rest of the system. A
suitable method to serve the model should be worked out. Before
requesting predictions from the model, all the necessary input
data needs to be calculated.

– Model monitoring: A basic monitoring approach to analyze the
predictions of each model should be found.

– Model Versioning: It should be possible to have multiple versions
of models. This includes the versioning of the training code with
the evaluation metrics and also to have multiple versions side by
side in the production phase.

• Non-functional requirements

– ”Real-time” predictions: The usefulness of a prediction is highly
depended on the time, because the user who is notified by the
system with a prediction result needs enough time to take action.
A prediction is worthless for the user when the notification comes
too late it is only interesting for historical reasons. To support
”real-time” predictions it is not only necessary that the model
has fast response times, additionally all input features need to be
calculated and provided as fast as possible.

42

4.1 Requirements

– Scalability: The system should be capable or extendable to sup-
port fast (”real-time”) predictions even for large data sets.

– Reproducibility: It should be reproducible which models were
the source of generated events including the input data.

– Frequent deployments: The system architecture and tooling should
encourage fast deployment cycles of new models and the frequent
updating of already deployed models. This can be summarized
with the properties maintainability and extensibility.

Section 2.2 described the challenges of ML systems by summarizing related
work. Finding solutions for those challenges or analyzing the situation in
that particular project led to the requirements named here.

43

4 Architecture and Concept

4.2 Existing System Architecture

This project did not start from scratch, it is the extension of an existing
commercial software solution already in production phase. Besides the
specific business needs, the existing system architecture determines how
much effort the integration of ML components will cause. Section 2.2.4 is a
brief introduction about the categorization of a software architecture relevant
for this project. The main distinguishing characteristics were about data
processing (batch- and stream processing) and the composition of services
and components (Microservices or a rather monolithic architecture).

4.2.1 High-level Perspective

Without going too far into depth Figure 4.2 shows the main building blocks
of the smaXtec system architecture.

sensor

Sensor
Data DB

SQL
DB

API Service
Processing

Service

Data
Acquisi�on

Service

sensor

sensor

sensor

sensor

.

.

.

.

Backend Frontend

3rd Party

Mobile

Web

Figure 4.2: High-level perspective of the existing System Architecture.

44

4.2 Existing System Architecture

The smaXtec system can be seen as an Internet of Things (IoT) application
where cows are equipped with sensors (boluses) monitoring activity-, ph-
and temperature data. Additionally, there are external climate sensors to
measure temperature and humidity. The technical details like the data
transmission of those devices are not important for this project. It only needs
to be considered that due to limitations (battery lifetime and computing
power) of the sensors, most of the processing has to happen on the server
side. Moreover, cows are often out of reach of a basestation or repeater,
where the transmission to the server is done and hence the server receives
the measured data delayed for further processing.

The backend (server side or cloud solution) consists of three basic services
from a logical perspective. First, a Data Acquisition Service which is responsi-
ble for receiving and storing the raw measured data. Second, a Processing
Service for the further processing of the raw data and running algorithms.
And third, an API Service providing an interface to the ”outside world”.
Consumers of the API are the web- and mobile application providing a
graphical user interface for humans, but there is also the possibility for
third-party organizations for easy data integration to other systems using
the smaXtec API.

From a more physical viewpoint on the architecture, the system has to
manage the state of two databases. A database for storing the sensor values
as time series data and a relational database (SQL DB) for all the application
specific data for animals, customers or similar. Real-world systems like
smaXtec have to evolve and need to be extended over time for several
reasons like increasing scalability requirements and new business needs.
Most of the components described here in this high-level perspective will
remain for a longer time, however the approach how data is processed
changed during this project was conducted. The architecture changed from
a batch processing to a stream processing approach as described in Section
2.2.4. This change is relevant for this project because the ML models need
to have every input feature prepared for predictions. Section 4.3 shows
how the feature calculation code can be integrated into the new stream
processing architecture, but before that the next two subsections will give
a short introduction to Apache Kafka and the programming model with
Faust.

45

4 Architecture and Concept

4.2.2 Apache Kafka

Apache Kafka1 is a software solution for stream-processing originally devel-
oped by the company LinkedIn. Without going too far into detail, Figure
4.3 gives an overview of the main terminology necessary for understanding
kafka-based applications.

Consumer ConsumerConsumer

Producer Producer Producer

Kafka Cluster

Topic
Partition

Partition

Partition

Topic
Partition

Partition

Partition

Topic
Partition

Partition

Partition

Figure 4.3: Overview of Apache Kafka, source: Wikipedia.

Basically there are producers that write to topics and consumers that read
messages from topics. Kafka stores those messages as key-value pairs sepa-
rated into partitions. Messages are strictly ordered within a partition. Kafka
is able to run on a cluster of multiple servers (brokers) where the parti-
tions of the topics are distributed. This cluster architecture makes kafka a
fault-tolerant system for processing massive data amounts.

Listing 4.1: Kafka Producer Example.

P r o p e r t i e s props = new P r o p e r t i e s () ;
props . put (” boots t rap . s e r v e r s ” , ” l o c a l h o s t : 9092 ”) ;

1https://kafka.apache.org/

46

4.2 Existing System Architecture

/ / . . . s e t more p r o p e r t i e s h e r e . . .
props . put (”key . s e r i a l i z e r ” ,
” s e r i a l i z a t i o n . S t r i n g S e r i a l i z e r ”) ;
props . put (” value . s e r i a l i z e r ” ,
” s e r i a l i z a t i o n . S t r i n g S e r i a l i z e r ”) ;

Producer<Str ing , Str ing> producer =
new KafkaProducer<>(props) ;
for (i n t i = 0 ; i < 1 0 0 ; i ++)

producer . send (
new ProducerRecord<Str ing , Str ing >(”my−t o p i c ” ,
I n t e g e r . t o S t r i n g (i) , I n t e g e r . t o S t r i n g (i))) ;

producer . c l o s e () ;

Listing 4.1 shows an example of a Kafka producer from the reference
implementation in java [41]. A Properties-Object is used to configure the
producer. First a ”bootstrap-server” needs to be specified to connect to the
Kafka cluster. It is also important to define how the key and value of the
message should be serialized for the transmission. In this examples hundred
numbers are produced and serialized as a string.

The API for a Kafka consumer [42] is similar and can be seen in Listing 4.2.
In this short example a consumer subscribes to the topic ”my-topic” and
prints incoming messages with a polling interval of 100 milliseconds.

Listing 4.2: Kafka Consumer Example.

P r o p e r t i e s props = new P r o p e r t i e s () ;
props . put (” boots t rap . s e r v e r s ” , ” l o c a l h o s t : 9092 ”) ;
/ / . . . s e t more p r o p e r t i e s h e r e . . .
props . put (”key . d e s e r i a l i z e r ” ,
” s e r i a l i z a t i o n . S t r i n g D e s e r i a l i z e r ”) ;
props . put (” value . d e s e r i a l i z e r ” ,
” s e r i a l i z a t i o n . S t r i n g D e s e r i a l i z e r ”) ;
KafkaConsumer<Str ing , Str ing> consumer =
new KafkaConsumer<>(props) ;
consumer . subscr ibe (Arrays . a s L i s t (”my−t o p i c ”)) ;
while (t rue) {

ConsumerRecords<Str ing , Str ing> records =

47

4 Architecture and Concept

consumer . p o l l (1 0 0) ;
for (ConsumerRecord<Str ing , Str ing> record : records)
{

System . out . p r i n t f (” o f f s e t = %d , key = %s , ” +
” value = %s%n” , record . o f f s e t () ,
record . key () , record . value ()) ;

}
}

The producer- and consumer API is flexible to use, although there are
solutions which support a higher level of abstraction. A good trade-off
between flexibility and ease of use gives the implementation of Kafka-
Streams2. An even higher abstraction based on Kafka-Streams can be reached
with the SQL-like query language KSQL [43].

4.2.3 Faust

The previous Subsection 4.2.2 describes the basic ideas of Apache Kafka and
simple listings for producing and consuming messages in Java. Since most
of the services of smaXtec are created with Python, there is a need to connect
to Kafka using an API or framework suitable for Python with an appropriate
level of abstraction. A simple implementation for Python is kafka-python3,
this library supports a similar API like the previous examples of the listings
4.2 and 4.1.

Listing 4.3: Python Kafka Consumer Example.

from kafka import KafkaConsumer
consumer = KafkaConsumer (’my−t o p i c ’ ,

group id= ’my−group ’ ,
b o o t s t r a p s e r v e r s =[’ l o c a l h o s t :9092 ’])

for message in consumer :
print (”%s :%d:%d : key=%s value=%s ” %

(message . topic , message . p a r t i t i o n ,
message . o f f s e t , message . key , message . value))

2https://kafka.apache.org/documentation/streams
3https://pypi.org/project/kafka-python/

48

4.2 Existing System Architecture

The example Python consumer of Listing 4.3 reads messages from the topic
”my-topic” and prints them to the terminal. It needs to be considered that
without further configuration the data of the messages is interpreted as raw
bytes.

In many cases a higher level of abstraction than supported by kafka-python
is desired. Faust4, an open source stream processing library by the financial
services company ”Robin Hood Markets, Inc” is porting the concepts of the
Java/Scala implementation Kafka-Streams to Python.

The main abstraction concept of a Faust application is called agent, derived
from the ”actor model” introduced in [44] and is widely used in functional
programming languages like Erlang or Scala. The actor can be understood
as a primitive for concurrent computation where the actor is only allowed
to directly modify its own private state to avoid lock-based synchroniza-
tion. The actor processes messages and communicates with other actors by
sending further messages.

Listing 4.4 shows a simple example of a faust agent. It can be seen that faust
agents are asynchronous Python functions annotated with the decorator
”@app.agent”. The agent processes an infinite stream of events, where an
event consists of a key-value pair. The result of a processing step is then send
to another topic where other agents can listen on. An instance of a running
faust application is called worker. This worker is a single-threaded Python
process. To achieve high throughput asynchronous I/O by annotating code
with the keywords async and await is used.

Listing 4.4: Faust Agent.

@app . agent (my topic)
async def agent (stream) :

async for e in stream . events () :
new value = process (e . value)
await s e n d v a l u e t o t o p i c (o t h e r t o p i c ,

e . key , new value)

Figure 4.4 is a sequence diagram of single-threaded asynchronous code.
In this diagram the Main Thread makes two asynchronous calls. The first

4https://faust.readthedocs.io/en/latest/

49

4 Architecture and Concept

asynchronous operation takes much longer than the second one. It can be
seen that while the first operation is executed, the Main Thread can idle
for a short time and then runs the second asynchronous operation. The
result of the second call is processed from the Main thread even before
the first operation completed. In reality this can be the case when the first
operation is a long running network operation and the second operation
is an operation with a fast file system or even simpler when the data
amount of the first operation is much higher than in the second. Without
this asynchronous paradigm, in a single-threaded environment the Main
Thread would be forced to complete the first operation before the second
operation could be started.

Another important concept of Faust are tables for keeping the state. Imple-
menting a strict stream processing architecture, there is only one event or
data point processed at a time, but in many cases it is of advantage if some
data points can be kept longer or other data can be accessed quickly via a
cache. Faust tables are a built-in solution suitable for keeping state. A faust
worker is a Python process having one or multiple agents. Of course, in
a Python process there can be global variables for keeping state, but such
an approach would violate the ”Actor Model” paradigm and furthermore
the data stored in global variables would be lost after the Python process is
terminated. Faust tables are horizontally distributed dictionaries persisted
in Kafka topics and cached with RocksDB5 for faster access. The easy usage
of faust table can be seen in Listing 4.5.

Listing 4.5: Faust Table.

D e f i n i t i o n o f a T a b l e f o r i n t v a l u e s
my table = app . Table (’ my table ’ , d e f a u l t = i n t)

a c c e s s t h e t a b l e l i k e a d i c t
my table [key] += 1

5https://rocksdb.org/

50

4.2 Existing System Architecture

Async	IO	1Main	Thread

async	call

asynyc	call

Async	IO	2

result

result

Figure 4.4: Single-Threaded Asynchronous I/O.

51

4 Architecture and Concept

4.3 Feature Extraction

This section is about creating the inputs for ML models within the concrete
architecture and application domain of smaXtec at prediction phase. In ML,
the model inputs are mostly called features, in other literature they are
referred as attributes or properties. All the required features (X1, ... , XN)
for a specific model are formed together to a feature vector of dimension
N for N features. Figure 4.5 shows a simplified version of a data pipeline
beginning from the raw data until the user got an information.

X1

X2

.

.

.

XN

Feature
Extrac�on

Feature Vector
Timeseries data +
further data sources

Temperature

Ac�vity

Input Result

Yes/No ?

ML Model

DB

Figure 4.5: Feature Vector.

The features need to be extracted from several data sources. In the case
of this project, raw data comes from sensors in intervals of ten minutes,
static data about general information of the cows and feedback about certain
events from the farmer is stored in a relational database. Figure 4.6 illustrates
several data sources needed in this project. Extracting the features from the
data sources is in most cases not enough, there might be transformation or
encoding steps required. For example the birthday of the cow can be stored
as a date in the database, but for further processing the birthday can be
transformed to an new feature age in days or years.

The calculation of the feature vector at the prediction phase has to follow the
same rules as at the training phase. If there are any deviations the problem

52

4.3 Feature Extraction

Temperature

Ac�vity

DB

birthday 03.04.2013

race jersey

country UK

… …

Sta�c Data

Heat True

Last
calving

14.10.19

Calving nr 3

… …

User Confirma�ons

Feature Extrac�on and Transforma�on

Raw Sensor Data

X1, X2, . . . , XN

Feature Vector

Figure 4.6: Data Sources for Feature Extraction.

53

4 Architecture and Concept

of training-serving skew (see Section 2.2.8) occurs, what leads to a not well
performing model in production.

From a programming perspective, the feature vector is easier to calculate
in the training phase than in the prediction phase, because there are no
strict timing requirements and the feature extraction code has not many
dependencies to the real software architecture. At the training phase, the
data scientist can dump and combine all required data to a suitable store and
then constructs and selects all features for model training. At the prediction
phase the resulting feature vector has to be the same, but the construction
steps need to be embedded into a more complex environment, in the case
of this project a stream processing system.

To build reproducible feature extraction and transformation steps, inspira-
tion can be taken from the Pipes and Filters Pattern [45] like illustrated in
Figure 4.7.

Pipe
1 Filter 1

Pipe
2 Filter 2Data

Source
Data
Sink

Figure 4.7: Pipes and Filters Pattern.

The Pipes and Filters Pattern describes elements of the data flow beginning
from a data source to a data sink. Between the source and sink there can
be several transformation steps (Filters) connected via Pipes. This pattern
is widely used in the Unix command line, where simple commands can be
connected together to a more powerful command. For example the following
command (Listing 4.6) concatenates two files (a.txt and b.txt), then filters
every line containing the text ”hello” (grep) and finally sorts the output in
reverse order and saves the result to result.txt. It can be noted that filter
steps not necessarily remove data (like grep in the example), rather they can
transform and enrich data.

Listing 4.6: Command using Pipes and Filters.

$ c a t a . t x t b . t x t | grep −v h e l l o | s o r t −r > r e s u l t . t x t

In the case of the programming model with Kafka/Faust, a feature extraction
pipeline can look like in Figure 4.8.

54

4.3 Feature Extraction

Agent

Agent

Agent

Topic Topic

Topic Topic

TopicRaw Data

X1

X2

Agent Agent

Topic Topic TopicRaw Data

X3

DB

Topic

Agent Agent

Topic Topic

X4

Figure 4.8: Feature Extraction Pipeline.

Using the terminology of the Pipes and Filters Pattern and applying it to
the concepts of Faust, agents can act as filters and pipes are connections
to topics. Several Faust agents can listen on the same topic and each agent
can technically write to multiple topics. To make the data flow simpler
to reproduce, every Faust agent should only write to one topic for a data
transformation step in the context of feature extraction.

4.3.1 Implementation of the Feature Extraction Pipeline

This subsection describes the main components of the actual implementa-
tion of a prototype of the feature extraction pipeline. The main goal is to
have a reasonable abstraction of the technical and architectural details like
described in the section above. One challenge is to construct the feature
vector for a given timestamp, but data comes at different times. This means
incoming data needs to be cached for some time and matched together and
when all the required data is available a prediction call can be triggered. For
this specific application domain the bucketing time for data can be defined
with ten minutes. Ten minutes is the minimum time new data can arrive for
one sensor. For example one value for feature A arrives at the time 14:01:30

and another value for feature B arrives at 14:02:30, those values can be put

55

4 Architecture and Concept

into the same feature vector. Other application domains may have different
timing constraints.

Timestamp TS Bucket A B

14:01:30 14:00:00 3

Required Features

Timestamp TS Bucket A B

14:01:30 14:00:00 3

14:02:30 14:00:00 3 5
Feature Vector
complete:
call Model

1

2

Feature Vector
incomplete:
cache data

Figure 4.9: Timestamp Bucketing.

Figure 4.9 shows the assumed situation where a model requires only two
Features (A and B). First 1 , at 14:01:30 the value 3 for feature A comes in,
but feature B is missing. The timestamp 14:01:30 is put in the bucket for
timestamp 14:00:00. After some time 2 , the data for feature B with value
5 is available with timestamp 14:02:30. This timestamp also belongs to the
bucket 14:00:00 and now the feature vector is complete and the model can
be called to get a prediction result. After that, the cached data can be deleted
or should better be stored somewhere else for monitoring purposes (see
Section 2.2.9).

Figure 4.10 shows the simplified UML class hierarchy of the stream algo-
rithms. The idea was to reuse and adapt the code of the existing metric
calculation classes. The abstract class StreamAlgo is responsible for manag-
ing the required data and the prototype for the calculation method. Every
StreamAlgo can define several input metrics which can be understood as

56

4.3 Feature Extraction

StreamAlgo

+ out_metric(self)
+ required_metrics(self)
+ object_working_set(self)
+ calculation(self, frame, key,
object_working_set)

OtherAlgo
MLAlgo

Extends
Extends

ClimateAlgo

Extends

Figure 4.10: Simplified UML Diagram of Stream Algorithms.

the features for a model and as a result one output metric. The ”Object
Working Set” is used to access static data like information about the animal
or organization. With that abstraction it is simple to implement concrete
streaming algorithms but it is also a suitable base for using ML Models. An
example of a simple streaming algorithm is the ClimateAlgo which derives
from StreamAlgo and implements the calculation method where a simple
calculation happens.

The class MLAlgo is responsible for calling the prediction function of a
specific ML model. How this has to happen depends on how and where the
models are deployed (see Section 4.4) and also depends on the communi-
cation protocol with the models (see Section 4.5). Additionally the MLAlgo
class can act as an entry point for logging and monitoring data (see Section
2.2.9).

57

4 Architecture and Concept

4.4 Model Deployment

This section explains which technical solutions can be considered to create
an appropriate deployment strategy for ML models in the case of smaXtec.

The goal of the deployment process in the software development lifecycle
is to transform the code from a development state to a form where the
software actually can be used. This includes several steps which should be
highly automated to encourage frequent deployments.

Code
Unit

Tes�ng
Packaging

Staging
Area

Produc�on
Area

Figure 4.11: Deployment steps for traditional software products.

Figure 4.11 shows the typical deployment steps of software. The bare mini-
mum would only be packaging (compiling) the code and shipping the result
to the customer or making it accessible via a web server. But incorporat-
ing software engineering best-practices, the deployment steps for software
products look similar or even more sophisticated than Figure 4.11. The code
is usually kept in a version control system where every developer can add
changes. After adding these changes the code should pass all unit tests
executed from a continuous integration system to make sure that all the
existing functionalities, but also the new added features work. It should also
be mentioned that a responsible developer runs all unit tests on the local
machine before adding the new code to the code repository. The advantage
of the tests of the CI system is that even when the developer forgets to check
all the tests the system prevents the further deployment steps of faulty
code.

After making sure all unit tests have successfully passed the software can be
packaged into a shippable form. This step can be different depending on the
used programming languages, type of software and destination architecture.
For example the packaging step is completely different when packaging a
Java web application compared to a firmware for an embedded system.

Before the packaged software is finally shipped to the production system,
where the customer can use the software, it is a good practice to have a

58

4.4 Model Deployment

separate staging area for testing purposes and getting a first impression of
the new features. The production area should be technically very similar
like the staging area but needs to be capable to handle the real number of
users.

From a high level perspective, deploying ML models has many similarities
compared to other software components. Like with traditional software, the
code (in this case beginning with the training code of the model) needs to
run through a pipeline where the result can finally be used in production.
The main difference from a building and deploying point of view is that
additional to the (training) code there is also data required. Furthermore,
it should not be forgotten that the input pipelines for every model need
to be ready before the model can be used in production what may require
deployment steps in other parts of the software systems.

The testing is completely different because the rules or logic of the model
can not be tested in closed units. Unit tests make only sense for the feature
extraction code and to a certain degree for the training code, but for the
model itself the build pipeline can only check if the model produces good
enough scores and the data distribution meets specified criteria.

The choice of the model packaging format requires some planning about
where the model should be stored, served and how the model should
be integrated with other systems. For reasons of reproducibility and as a
decision helper for further deployments all relevant metadata should be
saved.

The staging/production area of software can and should also exist in the
case of deploying ML models from an infrastructure point of view. However,
instead or additional to a technically separated staging system there can
be staged models already deployed to the production area so they can
be monitored but the real prediction only comes from the active model.
This approach has similarities with A/B Tests [46] mostly known from
optimizing the usability of applications.

59

4 Architecture and Concept

4.4.1 Model Management

Adding ML models to software systems increases the complexity of the
whole software development lifecycle. The following describes an approach
how to keep track of experiments, packaging the models and managing
deployable models using a Model Registry. Most of these steps are di-
rectly supported by MLflow, but can also be replaced with own or other
implementations.

A successful deployment starts with the knowledge of what to deploy begin-
ning with the model training. Adjusting the training code with appropriate
log-statements, the evaluation metrics can be tracked automatically. To not
only have to trust those experimentation metrics from the data scientists,
but also to be able to build the model in a reproducible and automatable
way using the packaging format of MLflow is a suitable choice. The MLflow
packaging format is a convention describing code dependencies, parameters
and the command to run the training code. From an operations perspective
it should be possible to run this training code automatically in a build
pipeline. The automatic run can then be triggered after pushing code to a
version control system.

Figure 4.12 shows the main parts of the reproducible model management
workflow. In that picture, the file package.yaml describes the code depen-
dencies and parameters of the training code (train.py). The metrics and
parameters can be logged with the functions log metric(name, value) and
log param(param, value). Those logged values are saved with a training run
and can be used for further decisions like what model should be deployed
next.

Not only parameters and evaluation metrics can be logged. It is also possible
to persist the model itself and store it to a Model Registry by calling the
save model() function. The Model Registry keeps track of all saved models
and additionally manages the state of each model version. A particular
version of a model can per default be in four different states.

First, the model is in ”Experimental” state what means the model is regis-
tered in the Model Registry but there were not further deployment steps.

60

4.4 Model Deployment

Like in traditional software deployments the model can first be deployed to
a staging environment, what is reflected by the state Staging.

The actual model which is used by the serving infrastructure is in state
Production.

And finally when a model is not in use anymore it can be transitioned to
the state Archive.

The next section describes how models can be served and integrated with
the rest of the software system.

name: model_a

conda_env: conda.yaml

entry_points:
main:
parameters:
alpha: float
l1_ratio: {type: float, default: 0.1}

command: "python train.py {alpha} {l1_ratio}"

with start_run():
algo = Algo(alpha, l1_ra�o)
model = algo.fit(train_x, train_y)

predicted_quali�es = model.predict(test_x)

(rmse, mae, r2) = eval_metrics(test_y, predicted_quali�es)

log_param("alpha", alpha)
log_param("l1_ra�o", l1_ra�o)
log_metric("rmse", rmse)
log_metric("r2", r2)
log_metric("mae", mae)

log_model(model, "model_a")

train.py package.yaml

Exprimental Staging Produc�on Archive

V1

V2

V3

configura�on

Model Registry

Serving
Infrastructure

X1
X2
.

XN

So�ware System

Predic�on Request

Predic�on Result

Figure 4.12: Model Management.

61

4 Architecture and Concept

4.5 Model Serving and Integration

The previous section described the model deployment pipeline beginning
from the training code until the experiments of training runs are saved in a
model registry. From an operations point of view, those are important steps
for managing the model lifecycle in a professional way to achieve frequent
deployments.

From a systems architecture view point and to finally profit from the
predictions, the models need to be served and integrated with the rest of
the software system. This section is about model serving and integrating
the models.

4.5.1 Strategies

There are several known ways [47] how to integrate the trained model
with the rest of the software system. The answer to the question of the
appropriate strategy to integrate the model with the rest of the software
systems (Figure 4.13) depends on the specific business requirements and
technical constraints.

Training Model
Exis�ng

So�ware
System

Integra�on ?

Figure 4.13: How to integrate the model?

The main high-level dimensions (Figure 4.14) to distinguish between integra-
tion strategies are in terms of time (When should the predictions be done?),
place (Where should the model be served and integrated?) and protocol
(What is the protocol to communicate with the model?). The following will
discuss different integration approaches considering the three factors time,
place and protocol.

62

4.5 Model Serving and Integration

Place
Where to deploy
the model?
E.g:
external service,
embedded as
pickle

Protocol
Howto communicate
with the model? E.g. :
REST-API, …

Time
When should predictions
beavailable?

E.g.: asap, periodically ,…

Figure 4.14: Dimensions of integration strategies.

The answer to the question, when the prediction should be latest done
depends on the business case. The deadline for getting prediction results
is the time where the consumer of the model can still profit from the
result. In the context of this project some alerts are time critical so it makes
sense to directly call the predict function of the model as soon as all input
data is available. Section 4.3.1 already described the creation of the feature
vector. As soon as the feature vector is complete prediction results can be
triggered.

An alternative would be to persist complete feature vectors and periodi-
cally call the predict function to batch process this data. Since the system
architecture is already build on the stream processing pattern it makes
sense to trigger prediction requests as soon as the feature vector is complete.
Although, it can be mentioned that the batch approach has advantages in
system operations. For example the batch approach only needs to serve
the model when predictions should be made and down-times of the model
server are not immediately a big issue.

The place where the model should be integrated is also an important
decision. Basically there are three options. First, the model can be directly

63

4 Architecture and Concept

integrated into a monolithic software system (see Section 2.2.4) similar like
any other library. Going this approach it is challenging to deploy often
without down-times because the whole monolith is affected. To be more
independent from the rest of the system it makes sense to deploy the model
as a separate service. Only for completeness it can be said that there is
a (theoretical) third option, which is deploying the model directly on the
device of the end-user using tools like TensorFlow.js6, but this is only a
viable option if all the required data is available on the client-side and all
other challenges like updates and monitoring can be guaranteed.

The way to communicate with the model depends on how and where
the model is deployed. For example in the simple case when the model
is deployed as local pickle file, only the parameters (feature vector) for
the predict function needs to be provided. On the other hand, when the
model is deployed as a separate service a communication protocol and data
serialization is required to communicate with the service.

A common solution is to deploy the model as a service exposing a REST-
API [48]. Usually REST-APIs are used to create, read, update and delete
(CRUD) data in the context of web applications. For example the frontend
application sends a GET-Request to retrieve data from the backend system.
This abstraction encourages the decoupling of different parts of a software
system. Many commercial solutions provide the serving of ML models as
a managed REST service. Another possibility to deploy the model as a
separate service, but more tightly coupled to the Kafka stream processing
system (4.2.2) would be the deployment as a Faust agent (4.2.3). Both, the
deployment as a REST-Service as well as a Faust agent can technically
coexist at the same time. The following tow subsections will describe both
methods in more detail.

4.5.2 Serving the model as a REST-Service

Serving the model as a REST-service separates the model clearly from the
rest of the system. REST-Services are mostly built on top of HTTP (Hypertext

6https://www.tensorflow.org/js

64

4.5 Model Serving and Integration

Transfer Protocol), although the binding to HTTP is not mandatory. REST-
Services implement their actions using HTTP-Methods (GET, POST, PUT,
DELETE) [49]. A simple GET-Request can look like GET /user/1 to read a
user with id 1 from the backend system. To prepare the response for simple
further processing, the data is often serialized in JSON (JavaScript Object
Notation) or XML (Extensible Markup Language). Figure 4.15 illustrates a
HTTP GET-Request, retrieving a JSON-Response.

HTTP/1.1 200 OK
Content-Type: application/ json

{
"id:" 1,
"name: "Christoph",
"email": "christoph@student.at",
"marks": [3, 1, 2, 1]

}

GET /user/1 HTTP/1.1

Host: www.example.com

Server Response (JSON):

GET-Request (Client)

Figure 4.15: Example of a HTTP GET-Request and JSON-Response.

With lightweight web servers and frameworks like Flask7 it is easy to load a
Python model as a serialized pickle, processing the prediction requests and
sending the result back to the client as a JSON-Response.

HTTP/1.1 200 OK
Content- Type: application/json

[1.0]
GET /predict HTTP/1.1

{
"columns":
["A", "B", "C"],
"data":
[[1, 2, 3]]

}

Server Response (JSON):
GET-Request (Client)

Feature
Vector

Result

Figure 4.16: Prediction Request/Response via REST-API, JSON serialized.

Figure 4.16 shows a HTTP GET-Request sending a feature vector with three

7https://flask.palletsprojects.com/

65

4 Architecture and Concept

columns (A, B and C) and the corresponding JSON-Response as a simple
list with only one element with the value 1.0.

Docker Container

model.pkl

@app.route('/predict', methods=['GET'])

X = request.json
result = model.predict(X)
send_response(jsonify(result))

model = pickle.load(

'model.pkl')

h�p://127.0.0.1:1234

So�ware System

Figure 4.17: Model deployed as a docker container exposing a REST-API.

Loading the model in a Flask web application and serving this application
like illustrated in Figure 4.17 as a docker container is a simple and clean ap-
proach. Serializing Python code as a pickle file can lead to version problems
with different Python versions. Using docker, version problems are not a big
deal. For every new model version we can delete old containers and start
the a new container with the right versions and dependencies as required.
A further advantage of this approach is that every docker container is a
stateless instance of the REST-API. This means that there can be as many
instances launched as required to handle all requests in time.

The models component of MLflow8 supports model serving as a REST-API
and the creation of docker containers.

8https://www.mlflow.org/docs/latest/models.html

66

4.5 Model Serving and Integration

4.5.3 Serving the model as a Faust Agent

Technically, there are several protocols possible to communicate with the
model. REST-APIs are quite common, but in event/stream processing sys-
tems like Kafka/Faust it can also make sense to see the model as a separate
stream processor. Deploying the model as a Faust agent has the advantage,
that there is no need to communicate with services outside the stream
processing system.

feature_vector_topic

prediction_result_topic

model.pkl

@app.agent(feature_vector_topic)
async def agent(stream):

async for e in stream.events():
X = transform(e.value)
result = model.predict(X)
await send_value_to_topic(
prediction_result_topic,
e.key, result)

model = pickle.load(

'model.pkl')

Figure 4.18: Model deployed as a Faust Agent.

Figure 4.18 is an example of a Python model deployed as a Faust Agent. The
agent listens for new incoming data on the topic (”feature vector topic”).
The model itself needs to be loaded as a pickle file. For performance reasons,
the loading can be done once outside the event loop of the agent. The data
in the topic (”feature vector topic”) can be encoded not different than the
data of other topics, but needs to be transformed as required for the model’s
predict method. In this project, the data serialization format for the topics is
Avro9.

9https://avro.apache.org/

67

4 Architecture and Concept

4.6 Monitoring

Technically it would be sufficient to just deploy the models and get predic-
tion results. However, for a real system in production it is important to know
if the system works like expected. This is especially true for ML models,
because they can not be tested like traditional software and their outcome
depends on the data distribution what can be different compared to the
training phase. Section 2.2.9 already described monitoring as a challenge in
the ML system lifecycle.

Monitoring technical parameters (response time, requests per second, ...)
is not different than monitoring other services. For example, when deploy-
ing the model as a REST Service (see Section 4.5.2) the same monitoring
solutions can be used like for any other service.

Non-technical values are difficult to monitor because by now there is no
standard solution and approach available. Also this project can not pro-
vide a generic solution. Although, this section describes how a monitoring
component can be implemented within this system architecture.

Agent

Agent

Agent

Topic Topic

Topic Topic

TopicRaw Data

X1

X2

Log

Model
ServiceMonitoring

Basic
Assump�ons

Checker

Metric
Calculator

Feature Extraction Part
Prediction Part

Basic Assumptions
violated?

How does the model
perform compared to
the training phase?

Log data for later
analysis and to gather
data for new models

Figure 4.19: Monitoring Component.

Figure 4.19 illustrates the monitoring component in the prediction part of
the data pipeline. The technical task to collect the data for monitoring is
rather simple because all the required data is available before the prediction
request. For every complete input feature vector (see Section 4.3.1) this data

68

4.6 Monitoring

needs to be logged together with the prediction result. In Listing 4.7 this
logging is implemented as a write to the ”input and result topic” topic.

Listing 4.7: Agent with Monitoring.

@app . agent (f e a t u r e v e c t o r t o p i c)
async def agent (stream) :

async for e in stream . events () :
r e s u l t = await p r e d i c t i o n r e q u e s t (e . value)

send d a t a f o r m o n i t o r i n g p u r p o s e s
data = InputAndResultModel (e . value , r e s u l t)
await s e n d v a l u e t o t o p i c (
i n p u t a n d r e s u l t t o p i c ,

e . key , data)
. . .

In the best case the monitoring component would allow us to directly
compare the model in production with the metrics calculated in the training
phase. The problem is, that this is not possible or only possible when it is
already too late. It is obvious that immediately after the model classified
data there is no automatable way to verify the result, because if such a
perfect classifier would exist, it would make sense to use this classifier
instead of the model.

time

Data

Model
Predic�on

Result

User
confirmed
/ declined

Result

Time until result can
be verified

Figure 4.20: Time until the prediction result can be verified.

One way to verify the model’s result is to ask the user for feedback for given
events. For some events, a human can check if a prediction result was wrong
or right very soon . But for some events it can take many days (Figure 4.20)
until qualified feedback can be given. Another drawback of waiting for user
feedback is, that not all users are willing to give feedback and get annoyed
or report wrong results.

69

4 Architecture and Concept

Since trusting on user feedback alone is not very practical for all use-
cases other or additional performance indicators are required for model
monitoring. The question to answer is, does performance of the model in
production deviate from the performance in the training phase. As said
before, calculating the same metrics is often too late, but it is possible to
monitor the incoming data and make statistics about the data distribution
of the incoming data and the prediction results. The phenomenon that
a model’s performance degrades over time is normal and known under
concept drift [50]. This is not necessarily a bad thing. On the one hand this
can be seen as a problem because the model is probably not good enough
anymore. On the other hand a better model can be trained with the new
data.

Similar to monitoring the data distribution for model inputs and outputs
is to check for basic assumptions. For example, when the problem domain
makes it clear that specific events can not happen in very short time frames,
the system can generate alerts.

In [51] the monitoring component is described with data processing &
storage, visualization and alerting.

1. Processing & Storage: This is the part where the data is logged for
further analysis. Listing 4.7 showed an agent which intercepted the
data before and after a prediction request and logged that data to a
kafka topic.

2. Visualization: A visualization component displays the logged data in
charts and dashboards. There are already a lot of existing solutions
and in many cases they can be used without coding an own solution.

3. Alerting: Monitoring can not only include watching and storing data,
but also automatically generating alerts. Listening to the topics used
for storing monitoring data it is easy to generate alerts when specific
events occur.

70

5 Results

This chapter describes the most reasonable solution of a ML pipeline for
the smaXtec system. Possible approaches were already described in the
previous Chapter 4, but this chapter describes the suggested solution in
a compact form including the concrete steps to deploy (see Section 5.3.1)
and update (see Section 5.3.2) models and discusses the fulfillment of the
requirements (see Section 5.2).

5.1 Overview of the solution

Figure 5.1 illustrates the suggested steps to implement the high-level ML
pipeline based on Figure 1.2. It can be seen that shipping a model from
the training phase to the running phase does not only include packaging
and deploying the model but also reusing data transformation code. Many
parts of the pipeline benefit from the functionalities of MLflow. Using
the components MLflow tracking and projects the entire training phase is
completely reproducible. The final model is stored in the model registry
together with the metadata (creation time, performance metrics, version, ...)
of the model.

Models from the model registry are deployed as docker containers exposing
an API endpoint. In the running phase the feature vectors can be constructed
with Faust agents by reusing code from the training phase and then HTTP
requests to the API endpoints of the models can be made. Following this
approach the serving infrastructure is pretty simple as it is technically a
normal stateless web service. Technical parameters like requests per second
can be monitored like any other web service. Specific metrics (precision,

71

5 Results

recall, ...) are more complicated to monitor and require use case specific
implementations.

This solution was chosen because:

• All requirements can be fulfilled (see Section 5.2).
• No expensive third-party solutions are necessary.
• It fits into the existing system architecture.
• Out-of-the-box support for most ML libraries.
• Low entry barriers (costs and complexity) with MLflow.
• Parts of the pipeline can be easily replaced with own or other imple-

mentations.
• Simple reuse of data transformation code.
• Most parts of the pipeline are also useful for non-ML algorithms.

Data Model Training

Model Deployment

Serving Infrastructure

New data Data
Transforma�ons

Predic�on
REST API

Monitoring
Running Phase

Data
Transformations

Python & MLflow

R
eu

se

Faust agents

Model Registry
Training Phase

Packaging & Versioning

HTTP

R
ep

ro
d

u
ci

b
ili

ty

Metadata
Tracking

Technical Monitoring and
Metric calcula�ons

Exprimental Staging Produc�on Archive

V1

V2

V3

Figure 5.1: Overview of the suggested solution.

72

5.2 Fulfillment of the requirements

5.2 Fulfillment of the requirements

This section describes how the requirements listed in Section 4.1 at page 42

were fulfilled.

• Functional requirements

– Feature extraction: Section 4.3.1 described the implementation of
the feature extraction pipeline. The task was to evaluate the useful-
ness of the existing data pipeline implemented with Faust agents.
By reusing data transformation code of the training phase and
joining the output of multiple agents with Faust tables, the feature
vector can be constructed. Assuming that data transformations
in the training phase are implemented with Python, there are no
changes in the existing system architecture necessary for this part.

– Model deployment: As described in Section 3.1 there are many
existing solutions for model persistence as a first step for model
deployment and serving. The MLflow models component seems
to be a suitable option for this project. At the beginning of this
project, it was not totally clear what frameworks for model train-
ing will be used. With MLflow it is possible to consistently persist
and load models of various frameworks and create docker images
or deploy them to third-party cloud services.

– Model serving and integration: The way the model is served
determines the way it needs to be integrated with the software
system. Section 4.5 described two possibilities for model serving
and integration. The first option directly integrates the model
into the Faust data data pipeline (see Section 4.5.3), the second
option serves the model as a REST web service (see Section 4.5.2).
Basically, both options are fine and can be used together, however,
serving the models as a REST web services has some advantages
and is suggested for this project. The isolated web service can
be deployed completely independent and many instances of the
same model can be run in parallel because of the stateless archi-
tecture of REST web services. Furthermore, it can make sense to

73

5 Results

move the models to third-party providers that offer specialised
prediction hardware and also offer the prediction interface via
REST per default.

– Model monitoring: When serving the models as web services,
the technical parameters like latency and requests per second can
easily be monitored like it is done with any other web service.
Performance metrics of ML models are not that easy to monitor at
runtime. We can not take an existing tool as a generic solution that
does this job. For example, in classification the true positives, true
negatives, false positives, false negatives are required to calculate
the same metrics (precision, recall, f1-score, ...) as in the training
phase. Counting these values is use case specific and often takes
several days in the domain of animals. When a user confirms
or declines a generated event, we can calculate the metrics, as-
suming the user answered correctly. From a system architecture
perspective we can extend the data pipeline with further Faust
agents with use case specific monitoring code. Additionally, as a
simple generic but less accurate monitoring solution we can just
count the prediction results and check for abnormal distributions.

– Model versioning: Using the MLflow tracking component we
get a history of every training run and the created model. With
registering the model in the model registry (see Section 4.4.1)
we can keep track of all models and their deployment state. By
making requests to all models for a certain use case we can have
multiple models in parallel and take the result of the model in
stage ”production” for event generation. If we want to switch
the active (production) model we can simply change the states in
the model registry to take a new model or rollback to an older
version.

• Non-functional requirements

– ”Real-time” predictions: As soon as all input features are joined
together the model web service can be requested. There are no
waiting times compared to a batch processing approach.

74

5.3 Deployment Steps

– Scalability: It can be argued that the proposed adaptations of
the system architecture do not have a bad impact on scalability.
The data pipeline for calculating input data is similar as used for
traditional algorithms. Using separate web services for algorithms
(the deployed models) is a little bit slower (latency) than directly
executing the code. However, due to the stateless nature of the
deployed model web services, there can be multiple instances of
the same model deployed for horizontal scaling and therefore
running the models is not a bottleneck.

– Reproducibility: Having trained models stored in the model reg-
istry, reproducibility is easy to achieve. A typical use case is to
find out why and how a certain event was created by the system.
When the system creates an event, we can attach the model-id
and the current version of the data pipeline (git-commit-id) in
the corresponding database entry. Having the model-id we can
look up the model in the model registry and see how the model
was created. The git-commit-id gives us the version of the data
pipeline what can be used for debugging or checking if the ver-
sion of the deployed model does fit to the deployed data pipeline.

– Frequent deployments: The proposed solution supports frequent
deployments as the model services are loosely coupled with the
rest of the system. Updates of a model do not influence the rest
of the system resulting in zero down-times. Building deployable
model services can be fully automated.

5.3 Deployment Steps

The following sections describe how to deploy and integrate completely
new developed models as well as the steps to update an existing model.
Furthermore, it is explained how the deployment process of traditional
algorithms profits from the things learned in this thesis.

75

5 Results

5.3.1 Steps for deploying and integrating a new model

The steps for deploying and integrating a model are:

1. Make sure the created model is stored in the model registry.
2. Set the deployment stage (staging, production, archive) in the model

registry.
3. Serve the model as a REST API endpoint.
4. Implement model specific monitoring code (recommended).
5. Extend the existing data pipeline if there are new input features

required.
6. Build the feature vector as described in Section 4.3.1.
7. Add code to request the model given the URL endpoint of the model

service every time the feature vector is complete.

5.3.2 Updating an existing model

Updating an existing model is rather simple. If the model is accessible via
the same URL as the previous version, there is no need to update other
parts of the software system.

5.3.3 Deployment of traditional algorithms

Despite this thesis examines the impact of ML models on smaXtec’s system
architecture and deployment processes there will still be traditional algo-
rithms in use. Using the things learned in this thesis the development and
deployment processes of non-ML algorithms can be improved. For example,
the MLflow tracking component is also useful (automatic performance track-
ing, versioning) for developing non-ML algorithms. Listing 3.7 shows how
to implement non-ML algorithms using the MLflow models component.
This way the non-ML algorithms can be deployed following the same steps
as ML models.

76

6 Conclusion

Integrating ML models into software systems is still quite a challenge.
Because deployed models need to be updated frequently, appropriate tools
and system architecture is required. However, compared to traditional
software development, what is also a difficult task, the methodologies,
processes and tools for managing the ML lifecycle are less mature, studied
and standardized.

This thesis described the challenges in different stages of the ML lifecycle
and derived requirements for one real-world software project. To get a
better overview and to avoid the development of unstable code, third-party
technologies for different subproblems were analyzed. There are already
several proven ways to persist ML models and associated metadata.

MLflow seems as a promising solution for most phases of the ML lifecycle
and got even more useful functionalities during the creation of this thesis. It
supports reproducible model training code, tracking of metadata, persisting
the model created with various ML libraries and directly serving the model
or deploying it to cloud platforms or as a docker container. Additionally,
there is a model registry to keep track of the models in different stages
encouraging separated deployments in staging and production environ-
ments.

Additionally to evaluating third-party solutions, the suitability of the ex-
isting software architecture with its data pipelines and data sources were
analyzed and several input sources combined in an example project.

There are multiple options on how to serve ML models. As a simple and
scalable option, the deployment as a stateless web service was identified.
Serving and deploying web services is well-studied and ensures loose-
coupling with the rest of the system, but also the statelessness supports

77

6 Conclusion

running arbitrary instances of the service depending on the load require-
ments.

Deployment of ML models is not only the technical task of persisting a
trained model and pushing it to the serving infrastructure, to a certain
extend every phase of the ML lifecycle needs to be considered. To repro-
duce the output of a deployed model, a monitoring component needs to
keep track of the produced outputs, but also the model itself and the data
including data transformations need to be correctly versioned. It is also
highly recommend to store the training code and the dependencies in a
way that the model created by a data scientist can always be automatically
recreated. Overall, this thesis showed possibilities to deploy and serve ML
models and integrating them with a software system. However, there are
useful existing technologies, it is very challenging to apply best-practices
compared to traditional software projects.

78

Bibliography

[1] A. Ng. (2017). Why ai is the new electricity, [Online]. Available: https:
//news.stanford.edu/thedish/2017/03/14/andrew-ng-why-ai-is-

the-new-electricity/ (cit. on p. 1).

[2] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in Proceedings of the
28th International Conference on Neural Information Processing Systems -
Volume 2, ser. NIPS’15, Montreal, Canada: MIT Press, 2015, pp. 2503–
2511. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2969442.2969519 (cit. on pp. 1, 9, 12).

[3] P. Dewayne and A. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, Sep.
2000. doi: 10.1145/141874.141884 (cit. on p. 3).

[4] A. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 3, no. 3,
pp. 210–229, Jul. 1959. doi: 10.1147/rd.33.0210 (cit. on p. 3).

[5] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Eds., Structured Program-
ming. London, UK, UK: Academic Press Ltd., 1972, isbn: 0-12-200550-3
(cit. on p. 3).

[6] M. Fowler. (2006). Continuous integration, [Online]. Available: https:
//martinfowler.com/articles/continuousIntegration.html (cit.
on p. 3).

[7] H. v. Vliet, Software Engineering: Principles and Practice, 3rd. Wiley
Publishing, 2008, isbn: 0470031468 (cit. on p. 3).

[8] J. Humble, C. Read, and D. North, “The deployment production line,”
in AGILE 2006 (AGILE’06), Jul. 2006, 6 pp.-118. doi: 10.1109/AGILE.
2006.53 (cit. on p. 3).

79

https://news.stanford.edu/thedish/2017/03/14/andrew-ng-why-ai-is-the-new-electricity/
https://news.stanford.edu/thedish/2017/03/14/andrew-ng-why-ai-is-the-new-electricity/
https://news.stanford.edu/thedish/2017/03/14/andrew-ng-why-ai-is-the-new-electricity/
http://dl.acm.org/citation.cfm?id=2969442.2969519
http://dl.acm.org/citation.cfm?id=2969442.2969519
https://doi.org/10.1145/141874.141884
https://doi.org/10.1147/rd.33.0210
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/AGILE.2006.53
https://doi.org/10.1109/AGILE.2006.53

Bibliography

[9] C. Renggli, B. Karlas, B. Ding, F. Liu, K. Schawinski, W. Wu, and
C. Zhang, “Continuous integration of machine learning models with
ease.ml/ci: Towards a rigorous yet practical treatment,” CoRR, 2019.
arXiv: 1903.00278. [Online]. Available: http://arxiv.org/abs/1903.
00278 (cit. on p. 3).

[10] N. Pentreath. (2018). Deploying machine learning models in practice,
[Online]. Available: https://qconsp.com/sp2018/system/files/
presentation-slides/qconsp18-deployingml-may18-npentreath.

pdf (cit. on pp. 4, 5).

[11] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow :
concepts, tools, and techniques to build intelligent systems. O’Reilly Media,
2017, isbn: 978-1491962299 (cit. on p. 5).

[12] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th ed.
New York, NY, USA: McGraw-Hill, Inc., 2010, isbn: 0073375977,
9780073375977 (cit. on p. 5).

[13] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture, 1st. O’Reilly
Media, Inc., 2016, isbn: 1491956259, 9781491956250 (cit. on p. 5).

[14] I. Niaz, “Automatic code generation from uml class and statechart
diagrams,” Jan. 2005 (cit. on p. 8).

[15] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Automated selection and hyper-parameter optimization of classifica-
tion algorithms,” CoRR, vol. abs/1208.3719, 2012. arXiv: 1208.3719.
[Online]. Available: http://arxiv.org/abs/1208.3719 (cit. on p. 9).

[16] L. E. Li, E. Chen, J. Hermann, P. Zhang, and L. Wang, “Scaling ma-
chine learning as a service,” in Proceedings of The 3rd International
Conference on Predictive Applications and APIs, C. Hardgrove, L. Dorard,
K. Thompson, and F. Douetteau, Eds., ser. Proceedings of Machine
Learning Research, vol. 67, Microsoft NERD, Boston, USA: PMLR,
Nov. 2017, pp. 14–29. [Online]. Available: http://proceedings.mlr.
press/v67/li17a.html (cit. on pp. 9, 34).

80

http://arxiv.org/abs/1903.00278
http://arxiv.org/abs/1903.00278
http://arxiv.org/abs/1903.00278
https://qconsp.com/sp2018/system/files/presentation-slides/qconsp18-deployingml-may18-npentreath.pdf
https://qconsp.com/sp2018/system/files/presentation-slides/qconsp18-deployingml-may18-npentreath.pdf
https://qconsp.com/sp2018/system/files/presentation-slides/qconsp18-deployingml-may18-npentreath.pdf
http://arxiv.org/abs/1208.3719
http://arxiv.org/abs/1208.3719
http://proceedings.mlr.press/v67/li17a.html
http://proceedings.mlr.press/v67/li17a.html

Bibliography

[17] J. Dunn. (2016). Introducing fblearner flow: Facebook’s ai backbone,
[Online]. Available: https://engineering.fb.com/ml-applications/
introducing-fblearner-flow-facebook-s-ai-backbone/ (cit. on
p. 9).

[18] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque, S.
Haykal, M. Ispir, V. Jain, L. Koc, C. Y. Koo, L. Lew, C. Mewald, A. N.
Modi, N. Polyzotis, S. Ramesh, S. Roy, S. E. Whang, M. Wicke, J.
Wilkiewicz, X. Zhang, and M. Zinkevich, “Tfx: A tensorflow-based
production-scale machine learning platform,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’17, Halifax, NS, Canada: ACM, 2017, pp. 1387–1395,
isbn: 978-1-4503-4887-4. doi: 10.1145/3097983.3098021. [Online].
Available: http://doi.acm.org/10.1145/3097983.3098021 (cit. on
p. 9).

[19] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N.
Nagappan, B. Nushi, and T. Zimmermann, “Software engineering
for machine learning: A case study,” in International Conference on
Software Engineering (ICSE 2019) - Software Engineering in Practice
track, IEEE Computer Society, May 2019. [Online]. Available: https:
//www.microsoft.com/en- us/research/publication/software-

engineering-for-machine-learning-a-case-study/ (cit. on p. 9).

[20] S. Schelter, F. Bießmann, T. Januschowski, D. Salinas, S. Seufert, and
G. Szarvas, “On challenges in machine learning model management,”
IEEE Data Eng. Bull., vol. 41, no. 4, pp. 5–15, 2018. [Online]. Available:
http://sites.computer.org/debull/A18dec/p5.pdf (cit. on pp. 9,
11, 18).

[21] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists
in software teams: State of the art and challenges,” IEEE Transactions
on Software Engineering, vol. 44, no. 11, pp. 1024–1038, Nov. 2018. doi:
10.1109/TSE.2017.2754374 (cit. on p. 10).

[22] C. W. Danilo Sato Arif Wider. (2019). Continuous delivery for machine
learning, [Online]. Available: https://martinfowler.com/articles/
cd4ml.html (cit. on pp. 10, 11).

81

https://engineering.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone/
https://doi.org/10.1145/3097983.3098021
http://doi.acm.org/10.1145/3097983.3098021
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
http://sites.computer.org/debull/A18dec/p5.pdf
https://doi.org/10.1109/TSE.2017.2754374
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html

Bibliography

[23] S. Schelter, J.-H. Böse, J. Kirschnick, T. Klein, and S. Seufert, “Au-
tomatically tracking metadata and provenance of machine learning
experiments,” 2017 (cit. on p. 12).

[24] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2010,
isbn: 978-0-13-703515-1 (cit. on p. 13).

[25] B. Goodman and S. Flaxman, “European union regulations on algo-
rithmic decision-making and a “right to explanation”,” AI Magazine,
vol. 38, no. 3, pp. 50–57, Oct. 2017. doi: 10 . 1609 / aimag . v38i3 .

2741. [Online]. Available: https://www.aaai.org/ojs/index.php/
aimagazine/article/view/2741 (cit. on p. 19).

[26] H. Dam, T. Tran, and A. Ghose, “Explainable software analytics,” May
2018. doi: 10.1145/3183399.3183424 (cit. on pp. 19, 20).

[27] Google. (2018). Rules of machine learning - best practices for ml
engineering, [Online]. Available: https://developers.google.com/
machine-learning/guides/rules-of-ml#training-serving_skew

(cit. on pp. 20, 21).

[28] D. S. Kester Tong and G. Katsiapis. (2017). Preprocessing for ma-
chine learning with tf.transform, [Online]. Available: https://ai.
googleblog.com/2017/02/preprocessing-for-machine-learning-

with.html (cit. on p. 21).

[29] M. Loukides. (2012). What is devops? [Online]. Available: http://
radar.oreilly.com/2012/06/what-is-devops.html (cit. on p. 23).

[30] A. Trends. (2018). Why mlops (and not just ml) is your business’ new
competitive frontier, [Online]. Available: https://www.aitrends.com/
machine-learning/mlops-not-just-ml-business-new-competitive-

frontier/ (cit. on p. 23).

[31] Microsoft. (2020). Machine learning operations maturity model, [On-
line]. Available: https : / / docs . microsoft . com / en - us / azure /

architecture/example- scenario/mlops/mlops- maturity- model

(cit. on p. 23).

[32] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “What’s your ml
test score? a rubric for ml production systems,” 2016 (cit. on p. 23).

82

https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1609/aimag.v38i3.2741
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2741
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2741
https://doi.org/10.1145/3183399.3183424
https://developers.google.com/machine-learning/guides/rules-of-ml#training-serving_skew
https://developers.google.com/machine-learning/guides/rules-of-ml#training-serving_skew
https://ai.googleblog.com/2017/02/preprocessing-for-machine-learning-with.html
https://ai.googleblog.com/2017/02/preprocessing-for-machine-learning-with.html
https://ai.googleblog.com/2017/02/preprocessing-for-machine-learning-with.html
http://radar.oreilly.com/2012/06/what-is-devops.html
http://radar.oreilly.com/2012/06/what-is-devops.html
https://www.aitrends.com/machine-learning/mlops-not-just-ml-business-new-competitive-frontier/
https://www.aitrends.com/machine-learning/mlops-not-just-ml-business-new-competitive-frontier/
https://www.aitrends.com/machine-learning/mlops-not-just-ml-business-new-competitive-frontier/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model

Bibliography

[33] M. Zeller, R. Grossman, C. Lingenfelder, M. Berthold, E. Marcadé, R.
Pechter, M. Hoskins, W. Thompson, and R. Holada, “Open standards
and cloud computing : Kdd-2009 panel report,” Publ. in: Proceedings of
the 15th ACMKDD International Conference on Knowledge Discovery and
Data Mining : June 28 - July 1, 2009, Paris, France / sponsored by ACM
SIGMOD and ACM SIGKDD. New York, NY, 2009, pp. 11-18, Jan. 2009.
doi: 10.1145/1557019.1557027 (cit. on p. 27).

[34] N. H. Airbnb Engineering and A. Keys. (2014). Architecting a machine
learning system for risk, [Online]. Available: https://medium.com/
airbnb-engineering/architecting-a-machine-learning-system-

for-risk-941abbba5a60 (cit. on p. 27).

[35] E. Boyd. (2017). Microsoft and facebook create open ecosystem for ai
model interoperability, [Online]. Available: https://azure.microsoft.
com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-

for-ai-model-interoperability/ (cit. on pp. 28, 33).

[36] L. Patruno. (2017). Docker for machine learning, [Online]. Available:
https://mlinproduction.com/docker- for- ml- part- 1/ (cit. on
p. 29).

[37] C. Boettiger, “An introduction to docker for reproducible research.,”
Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015 (cit. on p. 29).

[38] A. Jaleel. (2020). Startup - rest api with flask, [Online]. Available:
https://www.kaggle.com/ahammedjaleel/startup-rest-api-with-

flask (cit. on p. 32).

[39] I. Hellström. (2020). A tour of end-to-end machine learning platforms,
[Online]. Available: https://www.kdnuggets.com/2020/07/tour-
end-to-end-machine-learning-platforms.html (cit. on p. 34).

[40] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, and C. Zumar,
“Accelerating the machine learning lifecycle with mlflow,” IEEE Data
Eng. Bull., vol. 41, pp. 39–45, 2018 (cit. on p. 34).

[41] Apache Software Foundation. (2020). Kafkaproducer 2.0.0 api, [On-
line]. Available: https : / / kafka . apache . org / 20 / javadoc / org /

apache / kafka / clients / producer / KafkaProducer . html (cit. on
p. 47).

83

https://doi.org/10.1145/1557019.1557027
https://medium.com/airbnb-engineering/architecting-a-machine-learning-system-for-risk-941abbba5a60
https://medium.com/airbnb-engineering/architecting-a-machine-learning-system-for-risk-941abbba5a60
https://medium.com/airbnb-engineering/architecting-a-machine-learning-system-for-risk-941abbba5a60
https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/
https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/
https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/
https://mlinproduction.com/docker-for-ml-part-1/
https://www.kaggle.com/ahammedjaleel/startup-rest-api-with-flask
https://www.kaggle.com/ahammedjaleel/startup-rest-api-with-flask
https://www.kdnuggets.com/2020/07/tour-end-to-end-machine-learning-platforms.html
https://www.kdnuggets.com/2020/07/tour-end-to-end-machine-learning-platforms.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html

Bibliography

[42] Apache Software Foundation. (2020). Kafkaconsumer 2.0.0 api, [On-
line]. Available: https : / / kafka . apache . org / 20 / javadoc / org /

apache / kafka / clients / consumer / KafkaConsumer . html (cit. on
p. 47).

[43] Confluent. (2020). Ksql and kafka streams, [Online]. Available: https:
//docs.confluent.io/current/ksql/docs/concepts/ksql-and-

kafka-streams.html (cit. on p. 48).

[44] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” 1973 (cit. on p. 49).

[45] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture, Volume 2: Patterns for Concurrent and Networked
Objects. Chichester, UK: Wiley, 2000, isbn: 978-0-471-60695-6. [Online].
Available: https://www.safaribooksonline.com/library/view/
pattern- oriented- software- architecture/9781118725177/ (cit.
on p. 54).

[46] R. Kohavi and R. Longbotham, “Online controlled experiments and
a/b testing,” in. Jan. 2017, pp. 922–929. doi: 10.1007/978-1-4899-
7687-1_891 (cit. on p. 59).

[47] J. Kervizic. (2019). Overview of different approaches to deploying
machine learning models in production, [Online]. Available: https:
//www.kdnuggets.com/2019/06/approaches-deploying-machine-

learning-production.html (cit. on p. 62).

[48] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” AAI9980887, PhD thesis, 2000, isbn: 0-599-
87118-0 (cit. on p. 64).

[49] R. T. Fielding. (2016). Hypertext transfer protocol – http/1.1 - methods
definitions, [Online]. Available: https://www.w3.org/Protocols/
rfc2616/rfc2616-sec9.html (cit. on p. 65).

[50] A. Tsymbal, “The problem of concept drift: Definitions and related
work,” May 2004 (cit. on p. 70).

[51] C. Samiullah. (2020). Monitoring machine learning models in pro-
duction - a comprehensive guide, [Online]. Available: https : / /

christophergs.com/machine%20learning/2020/03/14/how- to-

monitor-machine-learning-models/ (cit. on p. 70).

84

https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://docs.confluent.io/current/ksql/docs/concepts/ksql-and-kafka-streams.html
https://docs.confluent.io/current/ksql/docs/concepts/ksql-and-kafka-streams.html
https://docs.confluent.io/current/ksql/docs/concepts/ksql-and-kafka-streams.html
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://doi.org/10.1007/978-1-4899-7687-1_891
https://doi.org/10.1007/978-1-4899-7687-1_891
https://www.kdnuggets.com/2019/06/approaches-deploying-machine-learning-production.html
https://www.kdnuggets.com/2019/06/approaches-deploying-machine-learning-production.html
https://www.kdnuggets.com/2019/06/approaches-deploying-machine-learning-production.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-models/
https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-models/
https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-models/

	Introduction
	Motivation
	Scope
	Structure of this document

	Background
	Traditional Programming vs Machine Learning
	Challenges of Machine Learning in Software Systems
	Team Organization
	Reproducible Model Training
	Different Frameworks and Programming Languages
	Existing System Architecture
	Frequent Deployments
	Model Definition
	Model Debugging and Interpretability
	Training-Serving Skew
	Monitoring

	Maturity of Machine Learning Systems

	Existing Technologies and Solutions
	Model Persistence
	Python Pickle
	Predictive Model Markup Language
	Open Neural Network Exchange
	SavedModel
	Docker
	MLflow Models

	Version control
	Data Version Control (DVC)

	Model Serving
	Self-hosted Model Servers

	End-to-End Machine Learning Platforms
	MLflow

	Architecture and Concept
	Requirements
	Existing System Architecture
	High-level Perspective
	Apache Kafka
	Faust

	Feature Extraction
	Implementation of the Feature Extraction Pipeline

	Model Deployment
	Model Management

	Model Serving and Integration
	Strategies
	Serving the model as a REST-Service
	Serving the model as a Faust Agent

	Monitoring

	Results
	Overview of the solution
	Fulfillment of the requirements
	Deployment Steps
	Steps for deploying and integrating a new model
	Updating an existing model
	Deployment of traditional algorithms

	Conclusion
	Bibliography

