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Abstract

Popular low-cost air quality sensors embedded into IoT devices are based on metal
oxides (MOX) that change their electrical resistance in response to ambient pollutants
emitted as gases. Continuous MOX sensor operation requires heating up the sensor’s
hotplate to several hundred degrees and thus induces high energy cost. A common way
to save energy is duty cycling the sensor. However, chemical reactions on the sensor’s
surface take time and fail to run to completion as the duty cycle shortens. As a result,
sensor sensitivity to various gases deviates from a continuously operated sensor. In this
thesis, we show that it is possible to recover an accurate continuous sensor measurement
from transient responses obtained from a duty cycled sensor operated with small on-times
by Machine Learning Models. We achieve a mean absolute error (MAE) of 143ppb for
tVOC and 80% of indoor air quality levels correctly predicted. Our models are invariant
to minor baseline shifts and work for both tVOC and CO2-eq signals provided by the
sensor. By applying duty cycling and ML Models, we can save 98% of the sensor’s energy
consumption and still provide accurate measurements. An additional difficulty arises if
the sensor is operated on-demand due to intermittent energy availability. We propose a
compensation algorithm for this issue by mapping on-demand measurements to virtually
duty cycled readings in the value domain and discuss how to further reduce the error of
on-demand sampling by a sensing-friendly scheduling in case the sensor is to be operated
on intermittent power.
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Kurzfassung

Preiswerte Sensoren zur Luftqualitätsmessung, welche vor allem in Internet of Things-
Anwendungen eingesetzt werden, basieren auf Metalloxiden (MOX), deren elektrischer
Widerstand sich in Abhängigkeit von Luftverunreinigungen ändert. Der kontinuierliche
Betrieb eines solchen Sensors erfordert die Erhitzung einer Mikrokochplatte auf einige hun-
dert Grad, was mit einem hohen Energiebedarf verbunden ist. Eine verbreitete Methode,
den Energiebedarf zu senken, ist Duty Cycling, in welcher der Sensor für eine bestimmte
Zeit eingeschalten und wieder ausgeschalten wird. Chemische Reaktionen innerhalb des
Sensors benötigen jedoch Zeit und können deshalb je nach Länge der Einschaltzeit nicht
mehr vollständig ablaufen. Die Empfindlichkeit eines Sensors, welcher auf diese Art betrie-
ben wird, weicht daher von der eines Sensors, welcher kontinuierlich betrieben wird, ab.
In dieser Arbeit zeigen wir, dass man basierend auf den Messungen in den ersten Sekun-
den des Einschaltvorganges eines in Duty Cycle mit kleinen Einschaltzeiten betriebenen
Sensors mit der Hilfe von Modellen basierend auf maschinellem Lernen (ML), Messungen,
wie sie ein kontinuierlich betriebener Sensor liefert, erhalten kann. Wir erreichen hier-
bei einen Mittleren Absoluten Fehler (MAE) von 143ppb für tVOC und schaffen es, 80%
der Innenraumluftqualitätsstufen richtig zu berechnen. Unsere Modelle sind robust gegen
kleine Änderungen der Grundlinie der Sensoren und funktionieren für die Sensor Signale
tVOC and CO2-eq. Durch die Anwendung von Duty Cycling und ML Modellen, können
98% des Energiebedarfs des Sensors eingespart und trotzdem zufriedenstellende Messun-
gen bereitgestellt werden. Wird der Sensor jedoch nicht in regelmäßigen Abständen ein-
und ausgeschalten, sondern aufgrund unterbrochener Energieverfügbarkeit unregelmäßig
betrieben, wie zum Beispiel mit Solarenergie, so treten weitere Schwierigkeiten auf. Hierfür
stellen wir einen Korrektur Algorithmus vor, mit welchem unregelmäßige Messungen in
virtuelle regelmäßige Messungen umgewandelt werden können und diskutieren, wie die
durch unregelmäßigen Betrieb auftretenden Fehler durch eine optimale Vorbereitung der
Messzeitpunkte verringert werden können.
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Chapter 1

Introduction

Wirelessly connected low-cost sensors are the key enabling technology for intelligent Inter-
net of Things (IoT) applications. However, numerous important classes of environmental
sensors, such as chemical sensors, are too power hungry to serve battery-powered IoT
applications.

Regularly duty cycling a sensor provides a considerable reduction of energy consump-
tion, yet significantly changes sensor sensitivity and thus affects the accuracy of the mea-
surement. The same happens for on-demand (irregular) operation due to intermittent
power availability, where also additional difficulties arise. Therefore, most gas sensors are
designed for continuous operation, coming with the cost of high energy consumptions.

The sensor used to conduct experiments in this thesis is the SGP30 [Sen20c] gas sensor
from Sensirion used for measuring tVOC and CO2-eq, e.g., in air purifiers or IoT appli-
cations. This sensor is recommended to be constantly powered, resulting in high energy
consumption. To lower the energy consumption, we duty cycle this sensor and operate it
on-demand with on-times of up to 5 seconds and analyze the occurring effects.

The research question we investigate in this work is: Can we compensate for sensitivity
differences due to a changed operation mode in order to reduce energy consumption?
Challenges Predicting accurate measurements from a transient response, representing
the values obtained from the sensor during its short on-time, sampled either regularly or
irregularly, corresponds to predicting the outcome of a chemical reaction with minimum
observation time. The prediction model should provide a reasonable compensation for
the following three issues: (1) Sensor’s sensitivity changes due to duty cycling. (2) The
asymptotic settling value of the observed transient is very different from the measured val-
ues in the continuous mode, since chemical reactions do not run to completion and build
byproducts on the sensitive surface. (3) MOX sensitivity changes over time depending on
the purity of the operating environment and operation mode.
Contributions and road-map In this work, we give positive answer to the above re-
search question and tackle all above mentioned challenges. We build predictive Machine
Learning Models to recover the measurements of a continuously operated sensor from
transient responses measured while duty cycling with on-times below 5 seconds, obtaining
a MAE of 143ppb between ground truth measurements and model predictions for tVOC
and predicting 80% of indoor air quality levels correctly, and thus showing feasibility for
the usage of ML Models for duty cycled gas sensors. We further investigate the properties
of transients obtained from a sensor operated on-demand with on-times below 5 seconds,
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20 CHAPTER 1. INTRODUCTION

propose a correction algorithm for unwanted effects induced by on-demand operation and
how to further reduce errors with a sensing-friendly scheduling on intermittent power.

In this thesis, Chapter 2 summarizes related work, while we describe the specifics of air
quality measurement with MOX sensors, the sensor hardware and test platform in Chapter
3. The gathered datasets for our experiments are covered in Chapter 4. In Chapter 5,
we present the architecture of used Machine Learning Models and data processing tools
to address the above challenges. We evaluate our findings on field data in Chapter 6 and
present detailed results. Finally, Chapter 7 concludes our work and gives an outlook into
future research directions.



Chapter 2

Related Work

Below, we provide an overview of state-of-the-art miniaturized environmental sensors for
mobile and Internet of Things (IoT) applications and discuss challenges preventing their
direct usage in Energy Harvesting (EH) - IoT devices. We then present recent work which
approaches some of these challenges by using Machine Learning (ML) Models.

2.1 Environmental sensors

Beside human-centric applications such as activity recognition [KLH+17, LXM+19], step
counting [RBL+17, KS16], etc. there is a huge interest in deploying large-scale sensor net-
works to detect states of the environment that may harm human health or cause economic
damage. Examples include early warning detection of, e.g., tsunamis [WBF+12], nuclear
plant catastrophes [BFB+16] and air pollution [HSW+15]. These applications require the
use of environmental sensors, such as those measuring gases and particles. Low-cost sensors
measuring gaseous pollutants (e.g., volatile organic compounds (tVOC), carbon monoxide
(CO), ozone (O3), oxides of nitrogen (NOx)) appeared on the market less than a decade
ago and have a smaller packaging with less power consumption compared to high-end mea-
surement systems. The most popular sensing principles are based on electrochemical (EC)
or metal oxide (MOX) layer reactions. MOX sensors respond to gases with changes in their
electrical resistance and are capable of measuring all main gaseous pollutants [FCAB10].
MOX is the most commercially successful type of gas sensor with applications ranging
from environmental monitoring [KHK+08, RN09], energy [ALG+15], food [LCM+15], au-
tomotive [SBM+09], and safety and security [KPR+06] to biomedicine [RAP15, WB11].
The main limitations of MOX technology are a lack of selectivity, high power consumption,
and temporal drift [BM18, PPM+10]. EC sensors contain two electrodes. Gases are either
oxidized or reduced at one of the electrodes, causing a potential difference between the two
electrodes and thus a current flow [MPS+13, WYZ+10]. The drawback of EC sensors is
their long response times in the range of several minutes. Despite the availability of a wide
range of portable, low-power and low-cost environmental sensors, a number of challenges
prevent their direct usage in EH-IoT devices:

(1) Long response times. Chemical reactions take time. Therefore, environmental
sensors exhibit long response times, often in the range of minutes. High temperatures
speed up chemical reactions and allow measuring gases with a higher boiling point, yet at
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the price of a considerably higher power consumption.
(2) Long cold start times. Environmental sensors age even when they are not used: Gas

and humidity molecules accumulate on the sensitive surface, dust particles contaminate the
filter of an optical particle sensor, and others. Internal cleaning and baseline adaptation
are necessary to compensate for these effects and ensure correct measurements.

(3) Duty Cycle and on-demand sensor operation cause large measurement errors, sig-
nificant sensor baseline and sensitivity drifts [BM18]. Most environmental sensors are
therefore designed for continuous operation.

2.2 Low-power measurements improved with ML Models

Although sensor manufacturers increasingly add signal conditioning and compensation on
chip, these signal manipulations are based on the physical model of the sensor response.
Further, these methods can usually not account for uncompleted chemical reactions or
sensitivity changes of sensors, which arise with sensors being either duty cycled or operated
on-demand. Machine Learning on the other hand promises further optimizations and could
allow for low-power applications with accurate measurements.

In [JLZ+18], the authors develop a low-power ammonia monitoring system based
on metal oxide sensors and propose to use a LSTM neural network to predict the final
chemical equilibrium from a short transient recorded during a 0.2s time frame, containing
8 samples. Using LSTM neural networks, an average prediction error rate of 0.12% and
a mean absolute error of 9.38ppm could be achieved. By shortening the heating time
of the sensors, the energy consumption could be brought down by 99.6%. They further
show that the model works on data from new sensors, with the average error rate just
slightly increasing to 0.20%. Although the authors show feasibility of the approach, they
do not mention changes of sensor sensitivity due to different operation modes, necessary
to generalize the approach to other gases and MOX sensors.

Recent research in [MK20], duty cycles low cost gas sensors with a 15% duty cycle and
analyzes the measurements (transient) during the heating process, instead of waiting for
the sensor to fully heat up and reach equilibrium. The sensors are turned on for 20s and
then sleep for 120s. Again, a LSTM neural network is used to interpret the transients and
then to predict a gas level. The authors state that their approach provides high accuracy
for predicting gas levels, while saving up to 85% of energy compared to a sensor which
is operated continuously. The approach was further evaluated on two different sensors,
with slightly higher errors. The impacts on energy consumption for different on-times
are also presented, showing that the gas sensor’s impact on energy consumption is the
most significant one for high on-times compared to energy needed for a microcontroller
controlling the sensor and data transmission, but reducing for smaller on-times.

Considering related work, it is therefore motivating to further investigate into low-
power operation of gas sensors especially.



Chapter 3

Hardware

3.1 SGP30 Gas Sensor

The sensor used in our experiments is the SGP30 gas sensor from Sensirion [Sen20c]. It
is a digital multi-pixel metal-oxide gas sensor featuring a digital I2C interface, analog
and digital electronics, a temperature controlled micro hotplate and four MOX sensing
elements in one single chip. Each of the four MOX sensing elements, also named pixels,
are tuned to be sensitive to specific gases, but also remain cross-sensitive to other gases,
and can be read out individually. The public interface provides access to the read out of
two sensing elements, pixel 1 (P1) tuned for Ethanol and pixel 2 (P2) tuned for Hydrogen
(H2), specified in the datasheet. Further details can be found in [Sen20c] and [RHB18].
The Metal-Oxide Gas Sensing principle used by the SGP30 is described in Section 3.2.

The SGP30 sensor offers two preprocessed indoor air quality signals and two sensor
raw signals. The two preprocessed indoor air quality signals are tVOC in ppb (parts
per billion) and CO2-eq in ppm (parts per million), which are based on the two sensor
raw signal measurements, named Ethanol and H2, in ticks. While the sensor technically
does not directly measure Ethanol (EtOH) and Hydrogen (H2), the raw signals of pixel
1 and pixel 2 still were named after them, because they were tuned towards these gases.
We therefore respect the manufacturer’s naming and use Ethanol and H2 to refer to
the raw signals. During production, as described in [RHB18], the sensors are calibrated
to Ethanol and H2 with individual calibration parameters, so that a conversion from the
sensor raw signals to calibrated output signals tVOC and CO2-eq is possible. Additionally,
an on-board baseline compensation and humidity compensation (external humidity sensor
needed) allow for more accurate measurements. For the raw signals, higher tick values
correspond to purer air and smaller tick values describe worse air quality. For tVOC
and CO2-eq, it is the other way around. Small measurement values represent good air
conditions, while high measurement values indicate bad air quality levels. It is also worth
mentioning that the sensor does not have a zero / maximum reading in practice. The
highest raw values representing the cleanest air would only be reached in vacuum.

In practice, the SGP30 sensor has to be operated up to a few hours before it can pro-
vide reliable measurements, because the sensor has to reach an equilibrium. This is why
the manufacturer [Sen20c] recommends to operate the sensor in Continuous Mode, which
is explained in 3.4, and why the sensor should not be powered off.

23
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3.1.1 Target Gases

tVOC stands for Total Volatile Organic Compounds and describes the total concentration
of Volatile Organic Compounds in the air. One pixel (P1) of the SGP30 is calibrated
on EtOH, on which the sensor has a similar sensitivity as to the typical gas mixture of
tVOC, by computing calibration parameters obtained from the correlation of EtOH and
the Ethanol raw signal, which are saved on chip [RHB18]. This allows the sensor to
compute an approximation of tVOC in the field based on the calibration parameters and
the Ethanol raw signal. Additionally, the sensor applies baseline compensation algorithms
for more accurate measurements. This topic is further elaborated in Section 3.7.
The German Federal Environmental Agency related different tVOC concentrations to
five indoor air quality levels (IAQ) on a logarithmic scale [20220], which can be seen in
Figure 3.1. These values do also correspond to the values provided in Sensirion’s Software
ControlCenter [Sen20b].

Figure 3.1: Different tVOC concentrations related to Indoor Air Quality levels and the
recommended measures to be taken, presented in [20220].

CO2-eq stands for CO2 equivalent. While CO2 can not be directly measured with
the SGP30 sensor, it is expected that indoors there is a correlation between H2 and CO2
concentrations, because both are significantly present in human breath and humans are
the main source for CO2 and H2 indoors [RHB18]. Therefore, one pixel (P2) in the SGP30
sensor is designed to have an increased sensitivity to H2, providing the H2 raw signal. As
before, this signal can be converted to an equivalent CO2 signal (CO2-eq), by using the
sensor’s calibration parameters for this pixel saved on chip, which were obtained during
factory calibration from the correlation of the H2 raw signal and CO2 values measured
with a CO2 sensor, described in [RHB18]. While the pixel providing the H2 raw signal
is also influenced by tVOC and variations in H2 and CO2 concentrations in breath, this
method still provides a low-cost and good alternative for measuring CO2 levels [RHB18].
In Figure 3.2, one can see the meaning of different CO2 concentrations.
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Figure 3.2: CO2 concentrations and details [co2] related to levels from Sensirion’s Software
ControlCenter [Sen20b].

3.2 Metal-Oxide Gas Sensing Principle (MOX)

The SGP30 gas sensor is based on the Metal-Oxide Gas Sensing principle (MOX), ex-
plained in [Sen20a]. Such sensors are also known as Metal Oxide Semiconductor (MOS)
gas sensors. A MOX-layer, consisting of metal-oxide particles, is placed between two elec-
trodes on a hotplate as seen in Figure 3.3. In order to obtain accurate measurements, the
hotplate has to be heated to high temperatures and the sensor has to reach an equilibrium
point, which usually takes some time. The heating of the hotplate to high temperatures
results in negatively charged oxygen species at the MOX-layer surface, reacting with the
target gas in the ambient air. As a result of the reaction, electrons are released into the
MOX-layer, changing its electrical resistance, which is measured between the two elec-
trodes. The change in resistance is directly correlated with the target gas and internally
mapped to gas concentrations.

Figure 3.3: Visualization of the Metal-Oxide Gas Sensing Principle (MOX). Image source:
[Sen20f]
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By changing the composition of the MOX-layer, one can tune the sensor sensitivity to
specific target gases, so that the change in resistance reflects the target gas concentration.
This technology allows reaching high sensitivity on various gases and is suited for low-cost
small package mass production [Sen20a].
Further details and explanations are well described in [PJDP17] and can be read for a
more in-depth understanding of this sensing principle.

3.3 Sensor Platform

3.3.1 Build

For easy communication with the sensor and fast prototyping, we have used the SVM30
board from Sensirion [Sen19]. This board includes the SGP30 gas sensor and additionally,
a SHTC1 humidity and temperature sensor and power converters, allowing the sensors
to be powered from a 5V power supply, which is usually available with Microcontrollers
or Microprocessors. By using this board, we have on the one hand the advantage that
we do not have to design suitable power conversions for the SGP30 sensor, which should
be operated at 1.8V , as they are directly incorporated into the board and on the other
hand, we get an additional sensor for measuring humidity and temperature, which can
give additional insight into the air quality.

In order to work with the sensors, we have designed a custom build. On a wood plate,
we mount three SVM30 boards, where each board can be used for different operation
modes, which are described in detail in Section 3.4. The main application is that one sensor
board is running in Continuous Mode and providing ground truth values, one sensor board
is running in Duty Cycle Mode and the other sensor board is running in On Demand Mode.
These three sensors are placed inside a plastic frame, which can be closed. This allows to
introduce various events changing the air quality and to keep the air concentration more
or less stable inside the plastic box, when necessary. Additionally, we mount a small fan
in the vicinity of the sensors, which can be turned on when needed.

For each of the three sensor boards, we mount one Raspberry Pi 3 Model B [FOU20]
to the wood plate. We use one Raspberry Pi for each sensor board separately, because
we want to have independent setups and avoid using I2C multiplexers in order to keep
the build complexity as low as possible. This procedure did not impose any complications
until the end and every experiment could be performed as expected. Between the three
sensor boards and the three Raspberry Pis, we mount a breadboard so that we can wire
up everything. For the functionality to turn the sensors on and off using GPIO pins of the
Raspberry Pis, which is needed for different operation modes, we integrate three BC547B
NPN transistors from ON Semiconductor [ON 12] on the low side. In Figure 3.4 one can
see the completed build of the platform used for our experiments.
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Figure 3.4: The Sensor Platform used for performing the experiments.

The SVM30 sensor board has a connector with four outlets: SCL, GND, VDD, SDA.
SCL and SDA are directly connected to the corresponding pins on the Raspberry Pi, which
are pin 5, also named GPIO 3 (SCL) and pin 3, also named GPIO 2 (SDA), respectively.
The VDD outlet of the SVM30 sensor board is connected to the 5V power line of the
Raspberry Pi. The GND outlet of the sensor board is connected to the collector of the
transistor. The emitter of the transistor is connected to GND of the Raspberry Pi. In
order to control the transistor, we connect its base in series with a 2.2k to pin 15, named
GPIO 22, of the Raspberry Pi. A schematic of the connections can be seen in Figure 3.7.

In order to have reproducible results and to have the same ground truth for all mea-
surements, we assign each sensor a specific role. We choose one sensor board, named
Device 1, to be the sensor board which is always operated in Continuous Mode. As this is
the recommended operation by the manufacturer and we can expect the best possible mea-
surements from this sensor, we treat its measurements as the ground truth measurements
against which we compare other measurements and outcomes of our predictive models.
One sensor board, named Device 2, is operated in On Demand Mode. The last sensor
board, named Device 3, is operated in Duty Cycle Mode. The different operation modes
are explained in Section 3.4 in detail.

3.3.2 Taking Measurements

In this section we describe the procedure necessary to perform a measurement with
the SVM30 sensor board and the Raspberry Pi. First of all, we have to put the pin,
which is controlling the transistor, to HIGH, so that enough current can flow through
the transistor allowing the sensor board to operate properly. We now have to wait
for the SGP30 sensor to power up, which takes up to 0.6ms. Then, we initialize the
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I2C communication, with the sensors I2C address being 0x58, using the Python library
Adafruit CircuitPython BusDevice from adafruit [ada20a]. After turning on the sensor
and setting up the communication, we can start with the measurements using the avail-
able commands described in the sensor’s datasheet [Sen20c]. There is a library available
from adafruit [ada20b], which implements the driver for the SGP30, but we have written
a custom software in order to perform measurements and to communicate with the sen-
sor, because the commands to read the raw values were not available in the previously
mentioned library. Nevertheless, we could use the code from the library as a basis for our
code and in the end, we also contributed to the SGP30 driver library from adafruit and
implemented the reading of raw values, so that other developers can use this functionality.

The first command which we send is the sgp30 iaq init command (max. duration
= 10ms), which starts the air quality measurement. After this command, we can send
the sgp30 measure iaq command (max. duration = 12ms) in order to get the air quality
signals tVOC and CO2-eq or the sgp30 measure raw command (max. duration = 25ms)
in order to get the sensor raw signals Ethanol and H2. The commands to retrieve mea-
surements can be repeated as long as one wants to measure and can be sent in arbitrary
time steps. Nevertheless, to ensure proper operation, it is recommended by the manufac-
turer to send the sgp30 measure iaq command in regular intervals of 1 second. This is
done for the sensor running in Continuous Mode, where we first send the sgp30 iaq init

command and then, in regular intervals send the sgp30 measure iaq command, directly
followed by the sgp30 measure raw command. This allows us to read Ethanol and H2, as
well as tVOC and CO2-eq, regularly.

When operating the sensors in Duty Cycle Mode or On Demand Mode, we are interested
in the behaviour of the measurements in the first few seconds when the sensor is on, the
transient response, and not in the long term behaviour. Further, tVOC and CO2-eq
are not provided during the first 15 seconds of measurement and as we are interested in
measurement times smaller than that, we solely focus on the sensor raw signals in these
operation modes. In Duty Cycle Mode and On Demand Mode, we want to get as many
measurements as possible, and thus the most information, during the time the sensor is
turned on, which is why we do not send the measurement command in regular intervals
of 1 second, but we send the command as often as possible. With the maximum duration
of 25ms for one sgp30 measure raw command, we can theoretically read the sensor raw
signals with a maximum rate of 40Hz. Due to delays coming from the sensor turn on,
the communication and the initialization of the sensor, we manage to reach a raw signal
reading rate of 36Hz in practice, which is sufficient for our experiments. In the future,
the code and build can be optimized if necessary. Once we are done with the experiment
and we want to turn the sensor off, we just have to put a LOW signal with the Raspberry
Pi to the transistor’s base. The details and functionality of the sensor are present in the
SVM30 [Sen19] and SGP30 [Sen20c] datasheets.

3.4 Operation Modes

Each sensor board is operated in a specific operation mode, that we manually configure.
The operation modes are Continuous Mode, Duty Cycle Mode and On Demand Mode
which we will describe in detail in the following.
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3.4.1 Continuous Mode

When a sensor board is operated in Continuous Mode, it means that the sensor is contin-
uously powered with enough energy and the sensor is constantly in measurement mode,
with the hotplate at high temperatures. This allows the sensor to reach an equilibrium
state. Measurements are read in regular intervals, as recommended in the datasheet, which
ensures that the measurements are as accurate as possible. Therefore, the values obtained
in this operation mode are seen as ground truth values, against which we compare other
measurements and outcomes of our predictive models, as already described. In this oper-
ation mode, we read Ethanol, H2, tVOC, CO2-eq from the SGP30 and Temperature and
relative Humidity from the SHTC1. Generally, this operation mode consumes the most
energy, as the sensor is constantly on and the hotplate is kept constantly hot.

3.4.2 Duty Cycle Mode

Due to the fact that gas sensors need respectively high power to work, they are not suitable
for mobile devices or battery-less implementations in the IoT-domain, as that amount of
energy is either not available or too precious to be used for gas sensors. It is therefore
very important to find methods to reduce the energy consumption of gas sensors in order
to use them in low power applications.

A common way to reduce power consumption is duty cycling. In this operation mode,
named Duty Cycle Mode, one defines a time frame Ton, for which the sensor is turned
on and another time frame Toff , for which the sensor is turned off. The time it takes
a system to run an on and off phase is called period, giving Tperiod = Ton + Toff . Duty
cycling usually is expressed in % as a ratio between the on-time and the period [dut] with

D =
Ton

Tperiod
× 100% (3.1)

Because of the fact that the sensor now is not continuously powered as the manufacturer
advises, we will observe unexpected measurement results. The question arises, whether
it is possible to create models based on the measurements obtained in Duty Cycle Mode
to compute reliable and accurate measurements as one would get from a sensor operated
in Continuous Mode. Other research has shown in [MK20] and [JLZ+18], that there is
valuable information in the first measurements of a gas sensor, also known as transient
response, which can be used by models to predict an accurate measurement. In this
operation mode, we are therefore interested in the transient response. The on-time of the
sensor and thus the length of the transient response impacts the energy savings achieved
with duty cycling. Early values of the transient are highly affected by relative humidity
change rather than tVOC, which is why the length of the transient is important for model
creation. Further, the challenge we are dealing with in this operation mode is the changing
sensitivity of the sensor due to it not being constantly on and particles in the air and
incomplete chemical reactions changing the properties of the sensor’s surface.

In our work, we investigate the effects of very small duty cycling, below 2%, with
an on-time of up to 5 seconds. Sensirion also investigated duty cycling with the SGPC3
[Sen20e], a sensor which is always duty cycled, with an on-time of 40ms and periods of
2s or 30s. Note that the tVOC measurements from SGPC3, which is always duty cycled,
and SGP30 in Continuous Mode deviate when operated in parallel in the field due to a
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changed sensor sensitivity. Due to our small duty cycle for the SGP30, the sensor will
be mostly off, by which we can save a lot of energy compared to it being operated in
Continuous Mode. During the on-time of the sensor, we take as many measurements for
Ethanol and H2 as possible. In this mode, the measurement of tVOC and CO2-eq does
not work, because these values are only available after 15 seconds from the sensor. Further
Temperature and relative Humidity are only measured at the end of the on-time, so that
we can get the maximum amount of measurements within the on-time, in order to have
maximum information available.
When the sensor is powered on, the hotplate inside starts heating up and various chemical
reactions on the sensor’s surface begin. One of the first reactions is water evaporation
on the sensor’s surface. During this process, we already collect measurements from the
sensor for the specified on-time, giving the transient response. These measurements are
influenced by many effects, coming for example from the sensor’s surface current state, the
heating of the hotplate and the different chemical reactions. As already mentioned, we can
sample measurements with approximately 36Hz and thus manage to retrieve 180 values
during an on-time of 5 seconds. The length of the transient response is denoted as W ,
where for example W40 denotes the first 40 values of the transient response, representing
around 1 second of the on-time. The transient responses of a sensor operated in Duty
Cycle Mode from consequent measurement phases during a period, where the air quality
did not change, can be seen in Figure 3.5.
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Figure 3.5: Duty Cycle Mode Transient Responses from consequent measurement phases
during constant air quality.

We can see, that within a transient response, the measurement values increase over
time. In addition, the transient response in Duty Cycle Mode exhibits a high degree
of repeatability, as it is nearly the same for every duty cycle measurement, given the
background air composition does not change.

As already stated, we investigate, whether it is possible to predict an accurate mea-
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surement, as would have been obtained by a sensor in Continuous Mode, by using parts
of or the whole transient response of a sensor operated in Duty Cycle Mode. We will also
investigate, how many measurements from the transient response are necessary for a good
performance.

3.4.3 On Demand Mode

On Demand Mode is in principle exactly the same as Duty Cycle Mode explained before,
except that the sensor is turned on aperiodically. Usually, this type of operation is applied
when energy is not constantly available and one performs a measurement as soon as
energy is available, so the sensor is operated on demand. This behaviour allows for equal
on-times Ton, but the sensor off-times Toff are non-equal, unpredictable and dependent
on the energy availability.

The transient responses from consequent measurement phases in On Demand Mode
during the same time span as seen in Figure 3.5, where the air quality did not change, can
be seen in Figure 3.6.
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Figure 3.6: On Demand Mode Transient Responses from consequent measurement phases
during constant air quality.

We can see again, that the measurement values of a transient response increase over
time. But in contrast to a sensor operated in Duty Cycle Mode, the transient responses
from a sensor operated in On Demand Mode are not the same for consequent periods, given
unchanged air quality. The transient responses are highly dependent on and influenced
by the past off-times of the sensor, which could be due to the fact, that during different
off-times, the sensor’s surface is influenced differently by components in the ambient air.
This imposes additional challenges, which need to be considered in model creation. We
will investigate, whether it is possible to correct for the influence of varying off-times on
the transient responses and whether it is possible to understand how to still get accurate
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measurements, even though the sensor is operated on demand.

3.5 Energy Consumption

One important characteristic of sensors is their energy consumption. As already men-
tioned, sensors based on the Metal-Oxide Gas Sensing principle have a high energy con-
sumption compared to other sensors, like for example temperature sensors or accelerom-
eters. We propose an approach to reduce the energy consumption by operation in Duty
Cycle Mode and applying ML models.

With the data provided in the SGP30 and SVM30 datasheets [Sen20c, Sen19], we cal-
culate the energy consumption for different on-times of the devices, which can be seen
in Table 3.1. Nevertheless, we also measured the energy consumption for the SVM30
sensor board in practice by using the RocketLogger [SGL+16]. The RocketLogger can be
connected to our sensor, as seen in Figure 3.7 and performs voltage and current measure-
ments, which allows to also calculate the energy consumption. This device is easy to use
and offers a browser based graphical interface, where different measurement settings can
be applied.

Raspberry Pi SVM30

RocketLogger
2.2 kΩ

SCL SCL

SDA SDA
5V

V3
I2B
I2R

5V GND

optional Switch
for using

RocketLogger

BC547B

GND GPIO15

Figure 3.7: Schematic showing the connections of one unit on the sensor platform, in-
cluding one Raspberry Pi, one SVM30 sensor board, one transistor and one resistor. For
performing measurements, a RocketLogger can be connected optionally.

We performed measurements of the SVM30 sensor board, where we periodically turned
it on for 2 seconds and then turned it off for 10 seconds, so that we could investigate the
sensor’s on and off behaviour. One sample of these measurements can be seen in Figure
3.8.

When the sensor board is turned on, the current is noticeably higher for a short period
of time. This is an expected behaviour, as the datasheet states that the current draw is
20% higher in the first 5ms in the measurement mode. The mean energy consumption
based on these measurements for the SVM30 is 0.469J , the mean voltage 4.92V and the
mean current draw 0.047A. These values are slightly lower than stated in the datasheet,
but are in the typical range and influenced by various factors, like power supply voltage
and sensor variation. Using these measurements, we could validate our calculations based
on the values from the datasheets. We then also calculated energy consumptions for other
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Figure 3.8: Voltage, Current and Power measurement of SVM30, with 2 seconds on-time,
using RocketLogger.

on-times. The calculated energy consumptions for SGP30 and SVM30 with different on-
times can be seen in Table 3.1. Note that we also included the SGP40 sensor [Sen20d], the
successor of the SGP30, which was released towards the end of our work and promises to
be an interesting sensor in the context of battery-less sensing based on the same principle
as the SGP30, but with a lower energy consumption.

Device Voltage [V] Current [A] 1s ON 2s ON 5s ON 10s ON

SVM30 5.0 0.049 0.245 J 0.490 J 1.225 J 2.450 J
SGP30 1.8 0.048 0.086 J 0.173 J 0.432 J 0.864 J
SGP40 1.8 0.0035 0.006 J 0.013 J 0.032 J 0.063 J

Table 3.1: Calculated energy consumptions for different devices and different on-times.

It is noticeable that the SGP30 has a smaller energy consumption than the SVM30.
This can be explained with the fact, that the SVM30 sensor board includes additional
hardware for voltage regulation beside the SGP30 sensor. We have included the values for
SGP30, because for a practical application, one would prefer the SGP30 and design the
power supply with regard to the application and not use the SVM30 sensor board, as it is
intended for prototypes.
While the energy consumptions obtained with the SGP30 are already low, the SGP40
sensor promises far lower energy consumptions. In the future, it would be therefore very
interesting to further analyze the differences in the sensor characteristics between SGP30
and SGP40 and to evaluate the possibilities of the SGP40 for low power applications.
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3.6 Sensor Differences

When working with sensors of the same type, like we do in this thesis with three SGP30
sensors, in theory one would expect that when running simultaneously in the same oper-
ation mode, all sensors would provide the same measurements. In practice, when working
with sensors already operated in different environments or operation modes, this is not
the case, as there will always be differences across the sensors. The surface in gas sensors,
which is reacting with the surrounding air, changes its properties depending on how and
how often or long it was operated, where it was stored and many more. These influences
have an impact on the sensor measurements and are the reason why it is not possible to
have several equal sensors which all provide exactly the same measurement value. Because
we are working with three equal sensors, this behaviour is interesting for us, which is why
we wanted to look into it further. We wanted to know, how two of the sensors, Device 2
and Device 3, behave with respect to the other one, Device 1, which is always operated
in Continuous Mode and whose measurements are seen as the ground truth. For this, we
created an experiment, where we operated all three sensor boards in Continuous Mode
for 60 hours. In Figure 3.9 one can see the sensor raw signals over time for Device 1 and
Device 2 and in Figure 3.10 for Device 1 and Device 3 respectively.
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Figure 3.9: Device 1 and Device 2 operated in Continuous Mode for 60 hours to visualize
their offset to each other.
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Figure 3.10: Device 1 and Device 3 operated in Continuous Mode for 60 hours to visualize
their offset to each other.

We can observe that while measuring under the same air quality conditions, the three
sensors do not provide the same measurement values. The measurement values are offset
to each other with a non constant factor, which also is influenced by the height of the
measurement value. We have repeated this experiment after five days and observed the
same results, where the measurement values again reflect an non-constant offset. From
this experiment, we learn that Machine Learning Models do not only need to predict an
accurate measurement from a transient response, but also need to account for these offsets.

3.7 Measurement Units: From ticks To ppb/ppm

Beside the fact that it is important to have accurate measurements, it is also important
that the obtained measurements can be interpreted. In case that the sensors are operated
in Duty Cycle Mode or On Demand Mode, we do not have measurements for tVOC or
CO2-eq, but only raw signal measurements with a good sensitivity to EtOH and Hydro-
gen. While tVOC is measured in parts per billion (ppb) and CO2-eq in parts per million
(ppm) and therefore can be interpreted and mapped to specific air quality levels, the raw
signals on the other hand are provided in ticks, a unit which is not directly interpretable.
We therefore need to apply a conversion from ticks to ppb or ppm, so that we can draw
conclusions with respect to air quality levels.
The datasheet of the SGP30 sensor [Sen20c] offers a formula to calculate some gas con-
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centration c relative to a reference concentration cref with

c = cref · exp(
sref − sout

512
), (3.2)

where sout describes the sensor raw signal in ticks at concentration c and sref describes the
sensor raw signal in ticks at the reference concentration cref . cref and sref are calibration
parameters, which are evaluated in factory during production respectively for both pixels,
P1 and P2, by exposing the sensor to a known reference concentration cref and then reading
the sensor raw signal giving sref [RHB18]. These parameters, which are unique for each
individual sensor, are then once saved on chip, and used for direct on-chip calibration to
map measurements in ticks to ppb for tVOC and to ppm for CO2-eq respectively [Sen20c].
Additionally, the SGP30 applies internal baseline compensation algorithms to these values
to further improve the tVOC and CO2-eq measurements.
As cref and sref can not be read out by the user, we can not directly use the given
formula. Additionally, the baseline compensation algorithms are not described, which is
why we do not know how the concentration values are further influenced. Nevertheless,
we still want to be able to convert our sensor raw signal measurement in ticks to some
tVOC value in ppb. We therefore recorded data for each of our three devices running in
Continuous Mode. We then took, for each device respectively, the tVOC measurements
and computed the cref and sref values, with which we could then use the formula from
above, and calculate concentrations c, so that the difference between tVOC and c is as
small as possible. As already stated, we can not account for the influence coming from the
baseline compensation algorithm, but this method still allows us to compute concentrations
c based on measurements in ticks very well. In Figure 3.11, one can see the alignment of
tVOC and c for Device 1, by using the best possible cref and sref . We can see, that both
signals align pretty well, which is why this method is accurate enough for our experiments
in order to be able to give statements regarding values in ppb and air quality levels. The
same process can be applied analogously for the raw signal H2 in ticks and CO2-eq in
ppm with pixel 2 (P2).
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Figure 3.11: Alignment of tVOC and concentration c computed using best computed cref
and sref , for Device 1. High values were capped to 5000ppb for better visualization.
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Data Collection

During our work, we have performed several real world experiments with the sensors,
collected and recorded measurements and constructed different datasets. These datasets
are used to train and evaluate different models on their performance, to gain additional
insights into the sensor measurements and how they can be used.

We have focused our work on a few chosen datasets, which contain enough information
for our analysis and model creation. These datasets, on which we will also reference in
other sections, are named:

• Dtrain+test and D+4d
test

• D+18d
test

• D+22d
test

• D+53d
test

The subscript indicates the usage of the dataset and the superscript indicates the days
(d) passed after the end of the first dataset Dtrain+test, for each dataset respectively. For
all these datasets, the setup of the build was similar and the devices were running simul-
taneously in their respective operation mode:
Device 1 was running in Continuous Mode and we have read measurements from it regu-
larly.
Device 2 was running in On Demand Mode, with a fixed on-time Ton of 5 seconds and a
random period Tperiod, which was chosen randomly from [30, 45, 60, 90, 120, 300, 600, 1200]
seconds. For D+53d

test , we have removed the period of 1200 seconds.
Device 3 was running in Duty Cycle Mode, with a fixed on-time Ton of 5 seconds and a
fixed period Tperiod of 300 seconds (5 minutes).

The number of samples in each dataset and for each sensor can be seen in Table 4.1.
For the sensor operated in Continuous Mode, one sample means one measurement for each
regular interval. For the sensors operated in Duty Cycle Mode and On Demand Mode, one
sample represents one transient response, meaning all the sensor raw signals read within
one specific on-time Ton.

37
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Operation Mode #Samples Duration Peculiarity

Dtrain+test Continuous 51485
Dtrain+test On Demand 1700 144 hours for training, with events
Dtrain+test Duty Cycle 1728

D+4d
test Continuous 34325

D+4d
test On Demand 1099 96 hours for evaluation, with events

D+4d
test Duty Cycle 1152

D+18d
test Continuous 22768

D+18d
test On Demand 780 63 hours for evaluation, no events

D+18d
test Duty Cycle 764

D+22d
test Continuous 27133

D+22d
test On Demand 949 72 hours for evaluation, no events

D+22d
test Duty Cycle 911

D+53d
test Continuous 326164

D+53d
test On Demand 1944 96 hours for evaluation, no events

D+53d
test Duty Cycle 1152

Table 4.1: Detailed information about the recorded datasets.

In the following, we would like to further present some important details and plots of
the mentioned datasets. In the plots, we show the raw signals Ethanol, on top, and H2,
on bottom, over time for all three sensors. For the sensors running in Duty Cycle Mode
and On Demand Mode, we plot for each sample the last value of the transient response,
because this measurement represents the best value available, as the sensor was turned on
the longest for it. In addition, we plot the temperature and humidity, which was measured
by Device 1 operated in Continuous Mode, but was not used in our experiments. In Figure
4.1 we provide a timeline of when the datasets were recorded, their time spans and the
breaks between them.

Dtrain+test

6 days

Dtest

4 days

Dtest

2.6 days

Dtest

3 days

Dtest

4 days

4 days 10 days 1 day 28 days
+4d +18d +22d +53d

Figure 4.1: Timeline for the datasets, showing their lengths and breaks between them.

4.1 Dtrain+test & D+4d
test

Dtrain+test contains the data, which we split into a train and test set in order to train
and evaluate the model, and was taken over a time span of 6 days. D+4d

test was recorded
after a 4 days break over a time span of 4 days, where all sensors were turned off, in order
to have data to further evaluate the trained model. In Figure 4.2 and 4.3 one can see
plots of Dtrain+test and D+4d

test . During the recording of these two datasets, we occasionally
introduced artificial events by placing a source evaporating alcohols in vicinity of the
sensors for a certain period of time to ensure the models also learn to deal with increased
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pollutant concentrations. These events are reflected through a large change of values in
the measurements, also visible in the plots. We have to note that such extreme events do
not really happen in reality, which is why we also recorded datasets without them.
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Figure 4.2: Plot showing the sensor raw signals Ethanol and H2 from Dtrain+test for Device
1, Device 2 and Device 3.
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Figure 4.3: Plot showing the sensor raw signals Ethanol and H2 from D+4d
test for Device 1,

Device 2 and Device 3.

4.2 D+18d
test

D+18d
test was recorded over a span of 63 hours to obtain another dataset, on which to evaluate

the trained models and which is taken farther in time than the previous datasets. It was
captured 18 days after the end of Dtrain+test, which was used to train the models, and
can be seen in Figure 4.4. We did not introduce any events during the recording of this
dataset.
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Figure 4.4: Plot showing the sensor raw signals Ethanol and H2 from D+18d
test for Device 1,

Device 2 and Device 3.

4.3 D+22d
test

D+22d
test was captured over a time span of 3 days, 22 days after the end of Dtrain+test and

will also be used to evaluate the trained models. We did not introduce any events during
the recording of this dataset. D+22d

test can be seen in Figure 4.5.
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Figure 4.5: Plot showing the sensor raw signals Ethanol and H2 from D+22d
test for Device 1,

Device 2 and Device 3.

4.4 D+53d
test

D+53d
test was captured over a time span of 4 days, 53 days after the end of Dtrain+test, without

introducing any events. For Device 2, operated in On Demand Mode, we did remove the
value 1200 seconds from the list representing the possible periods, as already mentioned
before. D+53d

test can be seen in Figure 4.6.
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Figure 4.6: Plot showing the sensor raw signals Ethanol and H2 from D+53d
test for Device 1,

Device 2 and Device 3.





Chapter 5

Machine Learning Models & Data
Preprocessing

5.1 Machine Learning Models

In this section, we would like to present the Machine Learning (ML) models we have
used in this thesis. We will shortly describe their theoretical background, their special
properties and how they work. The information provided in this section is inspired by the
articles written in [Den15], [Chr15] and [Mic18].

5.1.1 RNN

The transient response of a sensor operated in Duty Cycle Mode or On Demand Mode
can be seen as a time series of measurements, which are related to each other and can
not be seen as independent from each other. The measurements follow a certain pattern,
depending on air quality, on-time, sensor surface state and others. It is therefore crucial
for a Machine Learning Model to also learn the relationship between the measurement
values of a transient response in order to make a good prediction. Traditional Machine
Learning Models, like for example Multilayer Perceptrons (MLP), a feedforward artificial
neural network, are not specially designed to detect relationships between different values
in time series. For this kind of problem, RNNs, Recurrent Neural Networks, are suitable.
An RNN has a looping mechanism that allows information to persist and information to
flow from one step to the next, which allows the network to memorize important details.
An RNN takes a time series as an input and one can read one or more hidden states as
the output. The structure of an RNN can be seen in Figure 5.1.
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Figure 5.1: RNN structure visualization showing the looping mechanism and its unrolled
form. Drawing inspired by [Chr15].

The information flowing from one RNN cell to the other is called hidden state and is
a representation of all previous inputs. This kind of network consists of multiple equal
simple networks, where each gives some information to the next one. As RNNs can
work with multiple inputs, it is best suitable for time series data or sequences. When
recent information contains most of the relevant information, which is needed for a good
prediction, RNNs work pretty well. But for cases, where crucial information in time
series or sequences is encoded in more earlier input values, the RNN struggles to learn
these relationships, so called long term dependencies. This problem is called Short Term
Memory and is a result of the ”Vanishing Gradient Problem”, which is also prominent in
other neural network architectures.

A neural network usually learns because the weights are adjusted using gradients
through a method called backpropagation. The bigger these gradients are, the bigger
the adjustment of the weights. The problem is, that these gradients shrink with each layer
and for RNNs, the gradients shrink exponentially. This means that early layers, which
represent early information, will not learn enough or nothing at all, because of really small
gradients. This is the reason why this problem is called the ”Vanishing Gradient Prob-
lem”. In practice, it is often necessary to also learn long term dependencies of sequences.
One solution to mitigate this problem is called ”Gating”. It is a mechanism to decide
when to forget or remember a current input. By using gates, the network can learn which
information it adds to or removes from the hidden state, resulting in the capability to
learn long term dependencies. Well working and widely used Machine Learning Models,
which make use of the ”Gating” mechanism, are LSTM and GRU, which are the models
we have used in our work and will present in the following.

5.1.2 LSTM

LSTM (Long Short Term Memory) networks are a special type of RNN, which mitigate the
”Vanishing Gradient Problem” by using gates in order to learn long-term dependencies.
LSTM networks were proposed by Hochreiter and Schmidhuber in 1997 and are very
suitable for time series data and sequences [HS97]. They were successfully used in previous
work [MK20], [JLZ+18] to recover a single gas concentration from the transient response.

In LSTM networks multiple cells are chained, like for RNNs. But the LSTM cells are
more complex. They incorporates a cell state, an input gate, an output gate and a forget
gate, which all have a different impact on the outputs of the cell. In Figure 5.2 one can
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see the basic structure of an LSTM cell, which we will describe in detail in the following.

x +

σ σ tanh σ

xft it
Ct

Ct-1

ht-1

xt

~ xot

ht

Ct

tanh

ht

Figure 5.2: LSTM cell structure visualization. Drawing inspired by [Chr15].

The cell state Ct is a very important part of the LSTM cell. It contains information
from previous LSTM cells and gives information to future LSTM cells. The three gates,
which we already mentioned, control this information, the cell state, and decide, which
parts of the cell state should be given to the next LSTM cell. A gate can be seen as a
sigmoid layer, denoted with σ(x) = 1

1+exp(−x) representing the sigmoid function, which
outputs values between zero and one, followed by a pointwise multiplication. It therefore
can control how much of the parts and which parts of a vector can pass the gate or not.
The inputs to the LSTM cell are the previous cell state Ct−1, the previous hidden state
ht−1 and an input vector xt. The forget gate layer takes xt and ht−1 and decides, which
parts of Ct−1 it will keep, with

ft = σ(Wfxt + Ufht−1 + bf ) (5.1)

Then, the input gate layer computes which parts of the cell state it will update, with

it = σ(Wixt + Uiht−1 + bi) (5.2)

New candidate values C̃t, which are added to the cell state depending on it are computed
by

C̃t = tanh(WCxt + UCht−1 + bC) (5.3)

Having this, we can now create the current cell state Ct by taking into account the influ-
ences of the forget gate layer and input gate layer with

Ct = ft � Ct−1 + it � C̃t (5.4)

The output ht of the cell, which is also the new hidden state, is controlled by the output
gate layer. The output gate controls which parts of a changed version of Ct will be output,
giving ht, with

ot = σ(Woxt + Uoht−1 + bo)

ht = ot � tanh(Ct)
(5.5)
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In the equations, W ∈ Rh×d and U ∈ Rh×h denote matrices containing the weights
which will be learned during training. b ∈ Rh denotes the bias vector which will be learned
during training. d is the number of input features and h is the number of hidden units. The
other variables represent vectors, like for example x ∈ Rd, containing d values, depending
on the number of input features. Further details can be found in [lst].

These days, LSTM networks are widely used, for example in speech recognition and
time series prediction, and brought great success in many fields of artificial intelligence.
There are also many variants of LSTM networks, which introduce changes to the LSTM
cell structure with the goal to improve the overall performance. One very well known and
successful variant is called GRU, which we will explain in the following.

5.1.3 GRU

GRU (Gated Recurrent Unit) is a variant of the LSTM, introduced by Cho et al. in 2014
[CvMG+14]. In comparison to LSTM, GRU has only two gates, an update gate and a
reset gate and fewer parameters [Den15]. Additionally, the cell state is replaced by the
hidden state only, which is also the output of each GRU cell. The inputs to the GRU
cell are the previous cell state ht−1 and an input vector xt. The reset gate layer takes xt
and ht−1 and decides how to merge the new input xt and the previous output ht−1, which
contains the memory until now, with

rt = σ(Wrxt + Urht−1 + br) (5.6)

Then, new candidate values h̃t to add to the hidden state can be computed by

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (5.7)

The update gate decides, by using xt and ht−1, which parts of the candidate values h̃t
to add to form the new hidden state and output ht and simultaneously changes the hidden
state ht−1 with the opposite values from the update gate, reflected with

zt = σ(Wzxt + Uzht−1 + bz)

ht = (1− zt)� ht−1 + zt � h̃t
(5.8)

In Figure 5.3 one can see the structure of a GRU cell.
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Figure 5.3: GRU cell structure visualization. Drawing inspired by [Chr15].

5.1.4 XGBoost

XGBoost, eXtreme Gradient Boosting, is an open-source software library, which allows
to train Machine Learning Models using tree boosting and the gradient boosting frame-
work. It was created as part of a research project at the University of Washington [xgb15],
with a paper [CG16] presented at the SIGKDD Conference in 2016 [Vis19]. This method,
which is based on decision trees, is widely used in the Machine Learning community and
performing very well at Machine Learning competitions [xgb20].
The main idea behind XGBoost is, that various small models are created, added and com-
bined, in order to minimize errors introduced by other models or model combinations.
The ensemble of all models calculates the final predictions. [SN19]
The XGBoost implementation and documentation can be found in [xgb15] and [xd]. XG-
Boost offers the possibility to easily and quickly build models, which produce good results.

5.1.5 AutoML

Automated Machine Learning (AutoML) [aut] allows to automatically create working Ma-
chine Learning Models, by only providing raw data. Internally, this method automatically
solves different tasks, like for example data preprocessing techniques, feature engineering,
hyperparameter optimization and model selection, which usually have to be done by ex-
perts for usual machine learning models. AutoML allows non-experts to quickly and easily
create models, which often provide better performance than Machine Learning Models de-
signed by hand from scratch.
Although AutoML brings a lot of advantages, it is not suited for very complex problems,
where experts are still needed. There are multiple companies offering AutoML solutions,
like for example Microsoft Azure AutoML or Google Cloud AutoML, and also open source
AutoML implementations, like for example from auto-sklearn, which we use in this work
[SN20].
Auto-sklearn is an open source python library to create AutoML models, which was cre-
ated by Matthias Feurer et al. and described in their paper in 2015 [FKE+15]. By using
auto-sklearn, one not only finds the best working model among different possible models
and configurations, but an ensemble from the best working models, which were found
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during the process, is created, so that the overall performance increases [Jas20]. With
this method, the general existing AutoML performance could be improved, as described
in [FKE+15].

5.2 Data Preprocessing

In order to create Machine Learning Models with good performance, it is almost always
necessary to apply preprocessing to the raw data, on which the models are trained. Dif-
ferent models have different requirements on their input data, in order to maximize their
performance. Additionally, one can add robustness to the models or extract relevant in-
formation from the raw data with preprocessing, which otherwise would not have been
visible. In our work, we have implemented three different data preprocessing techniques,
which were used when needed while searching for the best performing models. The three
techniques are:

(1) Log Transformation. Log transformation can be used to linearize data, whose
underlying structure is exponential. The gas concentration in the environment and the
corresponding sensor’s raw signal change show this relationship. In the creation process
of our models, we therefore consider log transformation as a data preprocessing technique
which could improve performance.

(2) Normalization. Normalization is a well known data preprocessing technique and
widely used in Machine Learning. The main idea of normalization is, that the input data
is scaled and shifted to another range and the relationships between the values remain
the same. Mostly, the input data is normalized to be in the range [0, 1] or [−1, 1]. With
normalization, one mitigates the problem that big values in samples have a higher in-
fluence on the model creation, because bigger values are seen as more important by the
models. Further, many Machine Learning Models like for example LSTM networks or
GRU networks benefit from the input values being in the previously mentioned ranges.

There are different forms of normalization. One can normalize each sample on its own
using its respective maximum and minimum values or normalize the whole dataset using a
”global” minimum and maximum value. Additionally, the minimum and maximum values
can either be computed from the data, as described before, or can be fixed, because they
are known due to knowledge of the data. In our work, we know practical minimum and
maximum values for our sensor readings and therefore can use them to normalize the
whole data with fixed minimum and maximum values. One can normalize a sensor raw
value to a specified range, like for example [−1, 1], by using

xnorm =
x− dmin

dmax − dmin
(rmax − rmin) + rmin (5.9)

where:

x is the value to be normalized

xnorm is the normalized value

dmax is the maximum value for the data
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dmin is the minimum value for the data

rmax is the maximum value for the range, e.g., rmax = 1

rmin is the minimum value for the data, e.g., rmin = −1

(3) Data Augmentation. Machine Learning Models usually need to be trained on a
large amount of data, which is not always available. Data augmentation is a technique
to artificially increase the amount of data available, in order to have enough data to
train the model, to increase its robustness and to reduce overfitting. In our work, we use
data augmentation to create additional slightly altered transient responses based on the
real transient responses. We randomly shift them up and down by a small value, which
should model the sensor’s measurement uncertainties and noise. The models should be
able to correctly interpret transient responses with small deviations, because in reality the
sensors will never perfectly produce the same transient responses due to various unpre-
dictable influences. By introducing data augmentation, we have managed to increase the
performance of our models significantly.

5.3 Evaluation Metrics

An evaluation metric describes the performance of a model, by analyzing the differences
between the ground truth values yi, also known as targets, and the outputs of the model
xi, also known as predictions. In our work, we use Mean Absolute Error (MAE) for most
of our analysis as an evaluation metric, but also provide Root Mean Square Error (RMSE)
inside the plots.

Mean Absolute Error (MAE) computes the mean difference across targets and predic-
tions and is easily interpretable. For some targets yi and predictions xi of length N , MAE
is mathematically defined as

MAE =
1

N

N∑
1

|yi − xi| (5.10)

Root Mean Square Error (RMSE), also used in similar research [MK20], computes the
square root of the mean of squared differences across targets yi and predictions xi. Larger
differences have an higher impact on the error, which is why RMSE is sensitive to outliers.
For some targets yi and predictions xi of length N , RMSE is mathematically defined as

RMSE =

√√√√ 1

N

N∑
1

(yi − xi)2 (5.11)

Both, MAE and RMSE, are scale-dependent evaluation metrics. We therefore scale
the ground truth values and predictions, which can be different for various models, to
the same ranges before applying the error measures, so that we can compare the results
obtained for different models.





Chapter 6

Experimental Work

Our experimental work is divided in two parts. In the first part, we analyze the behaviour
of a sensor operated in Duty Cycle Mode and how to obtain reliable and accurate mea-
surements through ML Models, which are comparable to measurements obtained from a
sensor operated in Continuous Mode. In the second part, we investigate the behaviour of
a sensor operated in On Demand Mode and its challenges compared to sensors operated
in Duty Cycle Mode. We present our implemented approaches and their achieved perfor-
mances. Because of the complexity of these problems, we focus our experiments solely on
pixel 1 (P1) and its measurement values, raw signal Ethanol and tVOC. Nevertheless, a
short analysis for pixel 2 (P2) is also presented, providing interesting insights into H2 and
CO2-eq for future work.

During our experiments, we observed that the values obtained from all sensors are
consistently higher than one would expect in an indoor environment for both tVOC and
CO2-eq. Without further reference measurements we can neither confirm nor reject this
claim, but similar values were consistently measured with five different SGP30 sensors.
We also failed to identify a pollution source which may cause elevated pollution levels. We
therefore trust the values provided by the SGP30 sensors and assume these are correct,
while keeping in mind that the measurements may have an elevated baseline. This does
not affect our findings and claims, yet the magnitude of the reported errors may be even
lower than reported.

6.1 Predicting Continuous Mode Signal from Duty Cycle
Mode Signal

Sensors operated in Duty Cycle Mode have a smaller sensitivity and suffer from surface
contamination and other influences. We want to match the sensitivity of a sensor operated
in Duty Cycle Mode to one operated in Continuous Mode and solve this problem by
applying ML Models. As already described in Section 3.4, we assume that there is valuable
information in the transient response, which can be used to estimate measurements close
to ground truth measurements, which are provided by a sensor operated in Continuous
Mode. We use Dtrain+test, where we have a sensor operated in Duty Cycle Mode with a
period of 5 minutes and where on-times up to 5 seconds can be simulated. In order to
find good working ML Models, we have to search for the best suitable data preprocessing

53
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methods, described in Section 5.2, to apply to the raw data, the transient responses,
and the best suitable hyperparameters for the models, described in 5.1, yielding the best
possible performance. Therefore, we create various settings across our parameter space
with which we search for the best performing model. The maximum length of one transient
response for an on-time of 5 seconds is 180 measurement values, as we can measure with
36Hz. We search for models working with different lengths of the transient responses,
because it may be sufficient for models to look at shorter transient responses, which in
practice would reduce the energy consumption even more. The length of the transient
response used is denoted as W , as already described in Section 3.4. In general, the
assumption is, that the longer the used transient response is, the better the performance
of the model will be, as there is simply more information available. We have chosen LSTM,
GRU, XGBoost and AutoML models, which are described in detail in Section 5.1.

The data is first split into a train (80%) and test (20%) set, on which the models are
trained and evaluated respectively. A small part of the train set is used for validation,
in order to reduce overfitting. To create an ML Model, we perform data preprocessing
on the available data and use it to train various models based on the previously defined
settings and hyper parameter combinations. After training, the model’s performance is
evaluated on the test set, which naturally was not used for training. We present the best
results obtained on the test set for different model types and transient lengths W in Table
6.1, showing the performances expressed as Mean Absolute Error (MAE) in ticks and ppb
between the ground truth and the predictions.

Model W MAE [ticks] MAE [ppb]

LSTM 40 178 223
LSTM 80 168 192
LSTM 160 133 154

GRU 40 184 234
GRU 80 166 181
GRU 160 136 143

Model W MAE [ticks] MAE [ppb]

XGBoost 40 235 356
XGBoost 80 178 182
XGBoost 160 158 160

AutoML 40 243 415
AutoML 80 194 243
AutoML 160 141 140

Table 6.1: P1. Performances of the best performing ML Models on the Dtrain+test test
set.

As one can observe for all ML models, the errors become lower the longer the transient
response being used is, thus higher W positively impacts the models performances. This
is expected, as longer transients contain more information which can be used by the
models. One therefore has to make a trade-off between lower energy consumption and
higher prediction errors because of shorter transient responses, and thus smaller W , used
and higher energy consumptions for higher W , but with the advantage of getting better
predictions. Further, one can observe that LSTM and GRU perform slightly better than
XGBoost and AutoML. The reason for this could be, that LSTM and GRU work very
well for time series and XGBoost and AutoML do not manage to learn the relationships
between the values of a transient so well. LSTM and GRU have very similar performances.
In the following, we will focus on the analysis of the GRU Models, especially for W160,
as it was providing a very good performance. The analysis could be done analogously for
the other models.
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In Figure 6.1 we show the test set from Dtrain+test and the predictions obtained by
the best performing GRU model with W160. We can see in the plot, that the signal
from the sensor operated in Duty Cycle Mode does not have prominent changes and stays
mostly stable. Using the transient responses of this signal as an input for the model, we
can calculate predictions which are near the ground truth values obtained by the sensor
operated in Continuous Mode. We can conclude that there is enough information available
in the transient responses to recover a signal which approximates the ground truth with
satisfying accuracy.
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Figure 6.1: P1. Ground truth, Duty Cycle Mode signal and predictions generated with
GRU, for W160 in ticks on Dtrain+test test set. We can see predictions following the
ground truth, while the Duty Cycle Mode signal used as input for the model is remaining
mostly stable.

The question arises, whether the obtained performance is good enough for a real world
application. For this, we have converted our signals to ppb, as described in Section 3.7, a
unit which can be related to indoor air quality levels, described in Section 3.1.1. Addi-
tionally, we have shifted and scaled the Duty Cycle Mode signal for the plots using Linear
Regression so that it fits the ground truth as good as possible in order to better see the
advantages of the model. This is done, because in the field one would calibrate a sensor
in Duty Cycle Mode in such a way, so that its output values are in reasonable ranges
compared to a reference device. In Figure 6.2 we show the signals seen before in Figure
6.1, but converted to ppb in relation to indoor air quality levels.
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Figure 6.2: P1. Ground truth, Duty Cycle Mode signal and predictions generated with
GRU, for W160 in ppb on Dtrain+test test set. We can see predictions following the ground
truth, while the Duty Cycle Mode signal used as input for the model is remaining mostly
stable.

In Figure 6.2, we show the test set from Dtrain+test in ppb ranging over different indoor
air quality levels visualized with colors, from Excellent (green) to Unhealthy (red), which
are described in Section 3.1.1. The Duty Cycle Mode signal remains nearly stable at around
660ppb, with some spikes induced by events. The ground truth signal, coming from the
sensor operated in Continuous Mode, on the other hand, shows more prominent changes
in air quality and also variation in ppb over the whole timespan. It is very satisfying
to see that the predictions obtained by using a trained GRU Model based solely on the
transient responses from the Duty Cycle Mode signal as an input, can compute a predicted
signal, which follows the ground truth signal very well along the indoor air quality levels,
although somehow noisy. In the first part of the signal, we can observe the ground truth
and prediction going down, while the Duty Cycle Mode signal increases slightly or remains
stable. In the middle part, we have a long part where the Duty Cycle Mode signal remains
stable with a small increase and decrease, while the prediction manages to follow the
ground truth. In the end, we have an improvement of the air quality, which is really well
modelled by the prediction, although the Duty Cycle Mode signal remains on its original
level. These are all clear indications that there is information in the transient responses,
which can be used to predict indoor air quality level changes not only in terms of specific
levels, but also in terms of ppb values.

Similar results are obtained by using other model types for training and prediction.
The performances are listed in Table 6.1. Nevertheless, we also want to show an AutoML
Model applied on the Dtrain+test test set with W160 in ppb in Figure 6.3. We can see
again that the predictions are very satisfying and the same conclusions as before can be
drawn.
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Figure 6.3: P1. Ground truth, Duty Cycle Mode signal and predictions generated with
AutoML, for W160 in ppb on Dtrain+test Test Set. We can see predictions following the
ground truth, while the Duty Cycle Mode signal used as input for the model is remaining
mostly stable.

Further, it is interesting to evaluate if the already trained models still work for data
captured in the future. When do the models break and when do they have to be retrained?
We use D+4d

test , D+18d
test , D+22d

test and D+53d
test , which are described in Section 4, for this analysis.

The most important thing to notice about these datasets is that they were taken multiple
days after the end of Dtrain+test used for training. As already said, we focus the upcoming
analysis on the best performing GRU Model, for W160, but also provide performances for
the other models. We expect the other models to show the same behaviour, as future data
is impacted by sensor drift which is independent from the models. The performances of
the models applied on the datasets taken after training, for W160, can be seen in Table
6.2.
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Model Dataset W MAE [ticks] MAE [ppb]

LSTM D+4d
test 160 241 320

LSTM D+18d
test 160 611 969

LSTM D+22d
test 160 787 771

LSTM D+53d
test 160 664 1348

GRU D+4d
test 160 227 256

GRU D+18d
test 160 499 880

GRU D+22d
test 160 592 676

GRU D+53d
test 160 652 1337

XGBoost D+4d
test 160 248 323

XGBoost D+18d
test 160 435 843

XGBoost D+22d
test 160 617 681

XGBoost D+53d
test 160 877 1533

AutoML D+4d
test 160 232 305

AutoML D+18d
test 160 473 845

AutoML D+22d
test 160 627 707

AutoML D+53d
test 160 751 1428

Table 6.2: P1. Pre-trained ML Models, W160, applied on data recorded after training.

By looking closer to Table 6.2, we can observe an increase of errors on data recorded
farther away in time from the data which was used for model training. The model pre-
dictions get worse and worse for future data. This can happen because of the change
in sensitivity of the sensor over time, where different sensor applications alter the sensi-
tivity in different ways. It is also to be expected, that the sensor experiences different
surface changes and a drift of measurement values over time. This leads to the conclusion,
that either the models should be retrained after some time or the sensor drift should be
modelled in some way, so that either the inputs to or the outputs from the models can
be altered accordingly. While the pre-trained model has bad performance from D+18d

test

onwards, it still has a very good performance on D+4d
test , a dataset not so far away in time

from Dtrain+test. The performance of the GRU model, with W160, on this dataset can be
seen in Figure 6.4. We can observe that although the data was recorded a few days after
model creation, the predictions are consistent and still manage to follow the ground truth
measurements and in most cases correctly predicting the indoor air quality levels. In the
first part, we can observe higher misalignments, which come from the fact that the sensors
need some time to settle in their mode.
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Figure 6.4: P1. Ground truth, Duty Cycle Mode signal and prediction from pre-trained
GRU, W160, in ppb on D+4d

test . Predictions are still following the ground truth very well.

While also examining the predictions for the other datasets, we have observed that the
high errors do not come from completely random or unrealistic predictions. In fact, the
predictions have a shape which is very similar to the ground truth, but are shifted away
from it. We show this observation in Figure 6.5 for D+22d

test and in Figure 6.6 for D+53d
test .
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Figure 6.5: P1. Ground truth, Duty Cycle Mode signal and predictions from pre-trained
GRU, W160, in ppb on D+22d

test . We can observe well shaped predictions, but shifted from
the ground truth.
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Figure 6.6: P1. Ground truth, Duty Cycle Mode signal and predictions from pre-trained
GRU, W160, in ppb on D+53d

test . We can observe well shaped predictions, but shifted from
the ground truth.

We can conclude from these observations, that although a pre-trained model is used on
future data, it still manages to provide reasonable predictions, but shifted. Nevertheless,
one has to account for the shift of prediction in a post-processing step, in order to use
pre-trained models for longer periods of time or maybe even account for a shift of the
sensor operated in Continuous Mode and providing the ground truth measurements.

Another approach to minimize the impact of the previously mentioned effects, so that
already trained models still work in an acceptable manner on future data, would be to
add an offset to the input values for the models, which resulted in significantly improved
performances. We have observed that for each dataset, there is a certain offset value, a so
to say ”sweet spot”, where the performance of the pre-trained model is the best. As seen
in Table 6.3, we can observe improved performances of the pre-trained model compared
to Table 6.2 by applying the best possible offset on the input data before inference.

Model Dataset W Offset [ticks] MAE [ticks] MAE [ppb]

GRU 62 160 20 221 262
GRU 7 160 -540 191 380
GRU 8 160 -280 191 328
GRU 9 160 -600 227 449

Table 6.3: P1. Pre-trained GRU Model, W160, applied on future data with applied offset
before inference.

In Figure 6.7, one can see histograms of errors over different offsets, for the GRU
Model with W160 applied on D+4d

test , D+18d
test , D+22d

test and D+53d
test . These histograms for
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different offsets applied to the input data show very nicely, that even a simple method can
already lead to improved performances with already trained models.
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Figure 6.7: P1. Error histogram over different offsets applied on the input data for a
pre-trained GRU model with W160, also showing the sweet spot indicating the offset for
best performance.

By analysis of Table 6.3, we can conclude that the changes in sensitivity over time
can be to some extent minimized by for example applying an offset to the input data so
that good model performances are still obtained. Because of the fact that the errors can
be described by a smooth and flat curve, especially around the sweet spot indicating the
best performing offset, it is not necessary to exactly find the best offset value to get the
best performance, but it is sufficient to find an offset value near the best possible one and
still get a satisfying performance. In Figure 6.8 we show the performance of the model on
D+22d

test , where the best performing offset was applied before inference. The predictions are
not shifted, but in the same range with respect to the ground truth. The predictions also
manage to follow the ground truth well, considering the fact that the data was taken 22
days after model training.
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Figure 6.8: P1. Ground truth, Duty Cycle Mode signal and prediction generated with pre-
trained GRU, for W160 in ppb on D+22d

test . Offset applied to model input before inference.

Nevertheless, there still may be more sophisticated approaches to mitigate the men-
tioned sensor effects, which would need further research into the long term behaviour of
the sensors. In conclusion we can see that over time, future data has to be in some way
calibrated before inference or the predictions obtained based on future raw data have to
be shifted and altered in some specific ways, so that the best possible performance for pre-
trained model can be obtained. In addition, it may also be interesting to retrain models as
new data is available, which on the other hand highly depends on the energy availability,
the design and requirements of the application.

In conclusion, we could show that by using ML Models, one can get accurate and
reliable measurements based on transient responses from a sensor operated in Duty Cycle
Mode. We have shown that, from the transients alone, we could compensate for the change
in sensitivity due to a different operation mode and for various possible effects influencing
the measurements, demonstrating the presence of valuable properties in the transients.
Moreover, influences by temperature and humidity and the cross-sensor offsets described
in Section 3.6 could also be modelled by the ML models using only the transients. Further,
we evaluated challenges which arise by using models over longer periods of time, which
are expected and need to be taken into account for long-term reliability, but feasibility
still could be shown.

We focused our experiments on pixel 1 and its tVOC measurements indicating indoor
air quality, but we also wanted to provide a short analysis for pixel 2 and show that
there is a big potential to repeat the previous experiments also for H2 and CO2-eq in the
future. For this analysis, we have trained a GRU model, with W160, on H2 transient
responses in ticks from Dtrain+test. We performed the same steps as described before,
with data preprocessing, model training, model evaluation and conversion from ticks to
ppm. In Figure 6.9 we show the performance of the best performing GRU model on the
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Dtrain+test test set, generating predictions from H2 transient responses obtained from the
sensor operated in Duty Cycle Mode. The predictions manage to follow the ground truth
well and CO2-eq levels are mostly correctly predicted.
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Figure 6.9: P2. Ground truth, Duty Cycle Mode signal and predictions from GRU, W160,
in ppm on Dtrain+test test set. Predictions show satisfying results for pixel 2.

We further applied this model on D+4d
test to see whether the model also works on future

data, which can be seen in Figure 6.10.
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Figure 6.10: P2. Ground truth, Duty Cycle Mode signal and predictions from pre-trained
GRU, W160, in ppm on D+4d

test . Predictions are mostly reasonable, but improvable.
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We can observe that the predictions of the model are quiet reasonable, but are not
as good as the predictions obtained for pixel 1. Generally, we expect the challenges for
pixel 2 to be more difficult than for pixel 1, as pixel 2 is not as sensitive to H2 as pixel
1 is to Ethanol. Further, the sensitivity of P2 to H2 even drops more when duty cycling,
compared to P1, which is why it is more difficult to recover valuable information from a
Duty Cycle Mode signal from P2. Considering these things, the models still manage to
compute satisfying predictions also for pixel 2, which shows that it is worth investigating
on how to create ML Models also for pixel 2 in order to obtain good measurements with
low energy consumption.

6.2 On Demand Mode Analysis and Correction

As one can see in Chapter 4, the signals obtained by a sensor operated in On Demand
Mode are spiky. Additionally, as seen in Section 3.4, the transient responses are very
different to transient responses obtained from a sensor operated in Duty Cycle Mode. The
reason for this is, that in On Demand Mode, we do not have constant off-times between
the measurements, as we have in Duty Cycle Mode. These non constant off-times have an
impact on the sensor. Longer off-times allow for example for more water to deposit on
the sensor’s surface which influences the measurements, as seen in the transient responses
in Section 3.4. Further, chemical reactions could perform differently, when the previous
measurement did not happen long ago and the hotplate target temperature is reached
faster than usual. There may be also other complex effects which influence the transient
responses of a sensor operated in On Demand Mode. Independent on the exact causes,
we have observed that in On Demand Mode, the transient responses are influenced by
the past off-times, leading to different transient responses even for the same air quality.
Because of the fact, that Duty Cycle Mode and On Demand Mode are very similar, despite
of the off-times changing for On Demand Mode, we would like to be able to use our trained
models also for On Demand Mode data. But taking a good performing model from Section
6.1 to perform predictions based on On Demand Mode data, does not give good results,
as the predictions are very spiky and do not allow for conclusions about the indoor air
quality level.

We therefore investigate On Demand Mode measurements and how to minimize the
occurring spikes, which are the result of measurement values being higher or lower due
to different past off-times, in order to approach the signal obtained in Duty Cycle Mode,
so that in future one could use the pre-trained models on Duty Cycle Mode data for
On Demand Mode data. Towards this end, we analyze properties of On Demand Mode
measurements based on data from Dtrain+test. We create small bands over the whole
Continuous Mode signal (which is interpolated at the time steps of the On Demand Mode
measurements), containing only values with approximately the same ticks value and thus
values representing the same air quality. Each of these measurements has a corresponding
On Demand Mode transient at the same time step. For each of these bands, we then
plot different values from the On Demand Mode transients against the last off-time of
the respective measurement. With this, we want to see how the last off-time impacts the
measurement value under same air quality conditions. The plots for different W for one
band can be seen in Figure 6.11.
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Figure 6.11: Visualization of values against their last off-time and their relationship in a
specific band.

We have observed that for values underlying the same air quality, which is assured by
the bands, we could fit a line based on their last off-times. This behaviour did hold for
every W we have tested, namely W10, W20, W40, W80 and W160, with different slopes
for the lines respectively, as seen in Figure 6.11. Although a 2-degree fit seems to fit the
data points better, it did produce higher errors and more spiky results, which is why we
are using the 1-degree fit for our correction. Using these findings, we can now create an
algorithm to correct values for specific W . At first, we take the value and move it along
the line with the respective slope to get d, the intersection of the line with the y-axis.
After that we can now go from there back along the line to a pre-defined virtual off-time.
For all values to be corrected, we choose the same virtual off-time, by which we simulate
measurements in Duty Cycle Mode, which have the same off-time for every measurement.
Using this approach, we could reduce the error between the Duty Cycle Mode and On
Demand Mode signals as seen in Figure 6.12, especially for small W , where the effect is
the strongest. This means, that high spikes of On Demand Mode measurements with small
W can be minimized significantly.
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Figure 6.12: MAE (ticks) and MAE (ppb) histograms for different W , showing errors
before and after correction of On Demand Mode values compared to Duty Cycle Mode
values.

We further improved these results by averaging values over a time span of 20 minutes,
which gave the best performance and also represents the highest possible off-time for On
Demand Mode. The histogram of errors for different W can be seen in Figure 6.13.
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Figure 6.13: MAE (ticks) and MAE (ppb) histograms for different W , showing errors
before and after correction, including averaging over time, of On Demand Mode values
compared to Duty Cycle Mode values.

The impacts on the spikes after applying our proposed correction method and averaging
over time is shown in Figure 6.14. We see that the On Demand Mode raw data with W20
is very spiky. The corrected signal on the other hand has significantly lower spikes and
shows that an approximation to the Duty Cycle Mode signal should be feasible.
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Figure 6.14: Correction of On Demand Mode signal from Dtrain+test, with W20. Spikes
are significantly reduced.

We have shown that by analyzing the relationships between On Demand Mode tran-
sients and the last off-time, we were able to create a correction algorithm to minimize the
difference between On Demand Mode and Duty Cycle Mode measurements. The effects
were best visible for the earlier parts of the transient responses. For future work, we could
imagine to evaluate the slopes of the lines for more W and to interpolate the missing
ones, so that all points of the transients could be corrected based on a suitable line, with
the goal that similar transients are obtained for measurements taken under the same air
quality, like seen in Duty Cycle Mode. It is then to be examined, if the corrected transient
responses mimic the behaviour seen for Duty Cycle Mode transient responses and in a fur-
ther step, if the pre-trained models on Duty Cycle Mode data provide good predictions for
the corrected On Demand Mode transients. Additionally, the impact of multiple previous
off-times is also to be evaluated. As one can see, this topic imposes further analysis and
measures to be taken, which is an interesting research field for our future work. Neverthe-
less, our findings serve as a good basis to solve the problems preventing models to predict
accurate measurements from On Demand Mode. Due to our findings, we can suggest for a
sensing-friendly scheduling when running on intermittent power. When operating the sen-
sor on-demand, one should aim for constant off-times between the measurements, as this
prevents challenges coming with irregular off-times. It is therefore beneficial to mimic a
duty cycled sensor with scheduling and to measure in regular intervals, instead of directly
measuring as soon as enough energy is available.





Chapter 7

Conclusion & Future Work

In this thesis, we show feasibility that by using Machine Learning Models, it is possible
to predict accurate measurements from the transient responses obtained from a SGP30
gas sensor, which is duty-cycled with an on-time of under 5 seconds and an off-time
of 295 seconds. This allows for energy savings of 98% compared to a sensor operating
continuously, by introducing only a Mean Absolute Error of 143ppb for tVOC and by
correctly predicting 80% of indoor air quality levels. Further, we have shown that such
models also work for CO2-eq. We have presented details about the SGP30 sensor and its
functionality, about challenges to be solved, about the design of Machine Learning Models
and their application on data taken days or even weeks after model training. Based on
our work we can say, that there is valuable information available in a transient response
to recover an accurate measurement and to compensate for effects causing changes in
sensitivity by using ML Models.

Moreover, we have shown that irregular operation of the SGP30 sensor with small on-
times due to intermittent energy availability imposes additional difficulties which result in
spiky signals. We have discovered a dependency of single measurement values with respect
to their preceding off-time and proposed a correction algorithm to mitigate occurring
spikes, where the best results were obtained for earlier parts of the transient responses.
We also tried to predict accurate measurements directly from On Demand Mode signals,
but did not manage to achieve good performances with various models due to the spikiness
of the On Demand Mode data, which is why we conclude that it is important to first correct
the On Demand Mode signal to a suitable virtual Duty Cycle Mode signal before inference.

Due to our analysis, we can suggest for applications running on intermittent power
that one implements a scheduling, which does not schedule the measuring step as soon
as energy is available, but schedules it with the perspective that model performance is
increased when measurements are performed in regular intervals, as observed in Duty
Cycle Mode.

As this topic is very interesting and promises to gain the attention of many, who want
to operate gas sensors in low energy applications, we would like to present some possible
additional improvements and motivation for future work. For a better understanding of
the sensor’s properties while duty cycling, it would be interesting to repeat our experiments
with different periods. Also it may be useful to incorporate temperature and humidity
as features for the ML Models, given that sensors providing these values are available.
Further efforts can be invested in the evaluation and creation of models for pixel 2 in

69
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order to predict accurate measurements for CO2-eq, as we have shown that it indeed is
possible. While significantly lowering energy consumption by duty cycling the sensor, it is
also important to evaluate the additional energy consumption for model inference and, if
models are running on a continuously powered ground station, for data transmission and
other relevant overhead. Moreover, we think that it would bring huge benefits to further
analyze gas sensor’s on-demand behaviour and to further improve the correction algorithm
and create models, as this would really allow for operation on intermittent energy. This
is also affected by implementing a sensing-friendly scheduling design, which can help to
mitigate unwanted effects of irregular on-demand operation.
While the analysis of gas sensors from other companies might bring additional insights,
there is one specific sensor which is very closely related to our work. Sensirion recently
released the SGP40 gas sensor [Sen20d], the successor of the SGP30 used in this thesis,
which promises far lower energy consumptions for tVOC measurements. An analysis of
the sensors’ differences, characteristics and duty cycling behaviour of the SGP40 in com-
bination with the creation of new ML Models to even further reduce energy consumption,
could really present a big milestone for gas sensors to be used in mobile or IoT devices, with
very low and acceptable energy consumptions, allowing to introduce air quality monitoring
nearly everywhere and to improve the lives of everyone.
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