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Abstract

Prior to the project there was an existing Ultra Sonic Flowmeter Application
at the Institute of Electrical Measurements and Sensor Systems (EMS),
developed by Reinhard Klambauer as a part of his doctoral thesis, capable
of generating various sinusoidal signals on 16 individual output channels.
This shall be possible in the future and additionally the system shall be
extended to generating various arbitrary shapes.

The existing device for flow measurement [20][31] is very capable of being
used for Time of Flight (TOF) measurements described in the Austrian
Research Promotion Agency (FFG) project Valerie [27][26] and is essential
for MOGLI. Hence this thesis, as part of project Mogli, also describes in
its first part, the theoretical foundations necessary to plan and implement
the project. The project flow for hardware development and the individual
hardware modules used are described. The design process of new hardware
modules in Very High Speed Integrated Circuit Hardware Description
Language (VHDL), as well as the implementation and communication of
the control software are elaborated.

In the second part the implementation and hardware modules themselves
are described. The necessary steps to generate a working development
environment for potential other new features are elaborated. The imple-
mentation on the software side of the project in PetaLinux is defined and
the functions used to control the hardware and the communication to the
hardware are depicted.

At last the specific measurements with simple both and more complex sig-
nals are performed and the functionality verified. Their results are discussed
to finally draw a conclusion. Concluding potential improvements of the
system are outlined to bring in further research on implementation.
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Zusammenfassung

Vor Beginn des Projekts konnte das bestehende Ultra Sonic Flowmeter des
Instituts für elektrische Messtechnik und Sensorik, das im Zuge der Dis-
sertation von Reinhard Klambauer entwickelt wurde, auf 16 individuellen
Ausgängen sinusförmige Signale erzeugen. Dies soll weiterhin möglich sein
und zusätzlich sollen willkürliche Signalformen erzeugt werden können.

Wie bereits im FFG Projekt Valerie [27][26] gezeigt wurde ist das bestehende
Flowmeter [20][31] auch sehr gut geeignet um TOF Messungen durchzu-
führen. Die folgende Arbeit beschreibt als Teil des Projekt Mogli, das auf
Valerie aufbaut, im ersten Teil die notwendigen theoretischen Grundlagen
für die Planung und Umsetzung des Projekts. Es wird der verwendete
Implementierungsablauf bei Hardwareentwicklungen beschrieben und die
einzelnen Hardwarebausteine erklärt. Der Entwurfsprozess von eigenen
Hardwarebausteinen in VHDL wird dargelegt, sowie die Implementierung
der Steuersoftware und die Kommunikation zwischen ebenjener Steuersoft-
ware und der Implementierung erklärt.

Im folgenden Teil wird die konkrete Implementierung der Hardware be-
schrieben und die Konfiguration der einzelnen Bausteine erklärt. Die not-
wendigen Schritte zur Generierung einer Entwurfsumgebung für weitere
potentielle Erweiterungen sowie die Nutzung der Software wird beschrieben.
Weiters wird die softwareseitige Implementierung in PetaLinux definiert
und beschrieben. Die Funktionen zur Steuerung der Hardware und der
Kommunikation werden gezeigt und erklärt.

Zu guter Letzt werden Messungen sowohl mit einfachen als auch mit
komplexeren Signalen durchgeführt und die Funktionalität verifiziert. Die
Ergebnisse wurden diskutiert und eine Folgerung gezogen. Abschließend
wird noch auf potentielle Verbesserungen eingegangen, die durch weitere
Bearbeiter implementiert werden können.
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1 Introduction

This Master’s Thesis uses the Master’s Thesis "Embedded System Design
for a Time-of-Flight Ultrasonic Flowmeter" of Florijan Reichmann, BSc., MSc.
[31]. as a baseline and follows up on its achievements. The result of the above
thesis has been extended to another useful part: the generation of custom
waveforms. Beforehand the EMS had developed an ultrasonic measurement
alternative to determine various flows as described in Section 2.1.1 In
principle the system generates a sine wave with a predefined frequency,
amplitude and phase. This wave can be sent into a piezoelectric sensor, for
example, and then read in with the same module.

Additionally, this thesis is part of the Mogli project in cooperation with
the Austrian Institute of Technology (AIT) and the company partners TDK
Corporation (TDK) and Anstalt für Verbrennungskraftmaschinen List (AVL).
The aim of this project is to improve the laboratory proven method of ultra-
sound diagnostics for lithium-ion accumulators such that it becomes viable
in practical applications building on the FFG project Valerie (#865 148).

The main motivation for the Mogli project and hence also for this thesis is
to get the European Union (EU) emission goals for the year 2030 further
into reach by decreasing the emissions of the transporting sector. This goal
can only be reached by improving existing energy storage solutions, in this
case lithium-ion batteries. By developing this innovative and cost-effective
measurement application, the safety and lifespan of the lithium-ion batteries
shall be increased.

The main part of the System is a PicoZed System-on-Module (SoM) board
housing a Xilinx Zynq 7020 System-on-Chip, accompanied by a custom
Printed Circuit Board (PCB), the so-called carrier board. This board provides
Analog to Digital Converters (ADCs), as well as Digital to Analog Converters
(DACs) and their respective necessary components. The Zynq board is

1



1 Introduction

running on PetaLinux, an embedded-Linux operation system controlling the
Field Programmable Gate Array (FPGA) via a certain user space application,
as seen in [31]. Before the initiation of this project signal generation was
already working. That includes the generation of sinusoidal output signals
of frequencies up to 300 kHz, with an amplitude of up to 2.5 V on 16
independent channels.

In addition to keeping all working parts that previously existed as un-
touched as possible and in any case fully working, it was intended and
achieved to generate custom signals, based on previously generated values,
for example in Matlab. Those values should be imported into the software
and written to the memory of the embedded system. From there the indi-
vidual periods of the signal shall be played onto the outputs. One shall be
able to define a pause in between the single periods, to be able to measure
and observe the reaction of any device under test. There should also be as
many different channels as possible. First the theoretical foundations have
been characterized, next the implementation is being described in detail. At
last the results are portrayed and a conclusion drawn.

2



2 Theoretical Foundations

The underlying principles needed for the implementation of this Flowmeter
are covered in this part on the theoretical foundations. This part is divided
into five main categories: Physical Foundations, Hardware, Packaging, Em-
bedded Software Development in Linux and Server-Client Interfaces.

2.1 Physical Foundations

In this short chapter on physical foundations, in particular, on TOF mea-
surements, in general, the reader is educated on why such measurements
are a good method of non-destructive testing in various applications.

2.1.1 Time-of-flight measurements

In general, a TOF measurement is used to determine the distance of an
object with respect to the sensor. To achieve this one needs to emit a signal
(for example electrically or acoustically), wait for it to reflect off the surface
of an object and then measure the signal again. The time passing from
emission and arrival of the signal is proportional to the distance.

The device used, described in Section 3.1.2 has been intended to prove
the feasibility of a new measurement principle for Flowmeters in harsh
environments, for instance estimating mass emissions of combustion sources
[20]. As thoroughly explained by Florijan Reichmann [31], Flowmeters are
devices to measure the flow of volume or mass in an enclosed volume. The
device can also be used to implement a TOF Flowmeter.

3



2 Theoretical Foundations

It is from distance sensing capability that various applications for TOF
measurements can be derived. First of all, one can place the sensor on top
of a tank, facing downwards and hence monitor the fill or stock level in
the tank. Additionally, one can use the precise measurement capability to
non-destructively test welding points for cracks, applying the principle of
Time of flight diffraction ultrasonics (TOFD), where a sensor and an actuator
are placed on opposite sides of a weld. The sensor is then able to measure
the incoming wave, being the sum of the wave travelling on the surface and
the one being reflected off the wall. If there were a crack there would be a
third wave, because diffraction appears on the tip of the crack, the depth of
which can be calculated using trigonometry [19].

When choosing the signal for TOF-applications, one should especially con-
sider that there are as little high frequency overtones as possible to stimulate
only the first mode and receive a well-defined signal at the receiver. For low
frequencies there is a linear relationship between the stimulating frequency
and speed of the wave. As higher frequencies occur, their relationship is
described by the dispersion relation [1]. Without going too much into detail,
the relationship can be seen in Figure 2.1.

Figure 2.1: Dispersion diagram adapted from Peter Hadley [1]

To achieve this, one should not start a signal at once, but rather multiply the

4



2 Theoretical Foundations

required signal by a window and send the result. As described in [29] there
are many possible windows, each with different advantages. For simplicity
a cosine window has been used in this implementation, but can be replaced
with any other one. An example for a possible pulse, in this case five periods
of a sine wave windowed with one cosine window can be seen in Figure
2.2.

Figure 2.2: Example of a pulse: five periods of a sine wave windowed with one cosine
window

When measuring the State of Charge (SoC) of Lithium Ion (Li-ion) batteries
using their terminal voltage, one is presented with a very complex task, as
the open-circuit voltage of the battery is very flat, as can be seen by the
discharge curve in Figure 2.3. Hence more information, for example on
mechanical properties are of use.

Figure 2.3: Output Voltage vs SoC curve for a Li-ion battery by Habiballah Rahimi Eichi et
al. [30]

5



2 Theoretical Foundations

2.1.2 Mechanical Properties of Lithium Ion Batteries

There are various properties of a Li-ion battery of interest and you can
say that the more properties you know the better. Usually the cell voltage
and the output current are measured and the SoC is estimated. Adding
mechanical properties to the mix will improve characterizing the battery.

There are three key states in Li-ion batteries, State of Fitness (SoF) and State
of Health (SoH) and SoC of the cell. The latter describes on a scale from 0
to 100 % how much charge there is in the battery. The SoH compares the
condition of the battery to a brand-new one and the SoF describes if the
battery is currently performing as expected.

Hartmut Popp et al. [26] state

During battery operation, the lithiation level of the anode, repesentative of SoC,
has a significant impact on cell behaviour, ageing, and cyclability. Because of
the complex physico-chemical nature of the lithium-ion battery, identifying the
internal changes that lead to battery degradation and failure is challenging,
but as a feature of interest extracted from a non-destructive ultrasonic response
signal, TOF could be used for analysing battery performance, which leads to
changes in both mechanical impedance and ultrasonic velocity.

The underlying principle can also be applied to other measurement appli-
cations. Purim Ladpli and Fotis Kopsaftopoulos and Fu-Kuo Chang [21]
describe in their work the possibility of using a piezoelectric actuator and a
corresponding sensor on a Li-ion Battery to estimate the SoC and SoH of
the battery under test. It shows the feasibility of this measurement principle
for the battery measurements. One major advantage of this method is that
existing battery packs can be retrofitted with sensors.

As researched by Ladpli et. al [21] and improved on by Hartmut Popp et al.
[28] it is possible to measure the travelling time of the wave generated by a
piezoelectric actuator and estimate SoC and SoH by this measured time.

6



2 Theoretical Foundations

2.2 Hardware

This Section is intended to showcase the used hardware modules of the
Xilinx Zynq 7020 System-on-Chip board and the carrier board.

2.2.1 Embedded Systems

As seen in the embedded systems glossary [5] embedded systems take up
the majority of produced processors worldwide. In general, they are the
brains of every modern electronic device. The size of embedded systems may
vary from the smallest 4 bit micro-controllers up to the very powerful Digital
Signal Processor (DSP) In general, an embedded system is a combination
of computer hardware and software performing one or more dedicated
functions. One main advantage of an embedded system is that all necessary
parts, in general Central Processing Unit (CPU), Random Access Memory
(RAM), storage and basic peripherals are integrated together, either on one
board (single board unit) or on one single chip altogether. The latter would
be called Microcontroller (MCU). There are various instruction sets on the
basis of which embedded systems are built, the most common among which
is the Advanced Reduced Instruction Set Computer Machine (ARM® )
architecture.

2.2.2 ARM®Architecture

ARM® was launched in 1985 [5] as the first commercial Reduced Instruction
Set Machine (RISC) processor. As can be seen from the Acorn-ARM® Story
[4] ARM® are licensing out Intellectual Property (IP)-cores and not building
their own hardware. According to ARM® Limited [22], the main advantage
of ARM® compared to standard i86 processors, being a Complex Instruction
Set Machine (CISC), is their very low power consumption and their low
price which is due to the smaller number of general purpose instructions,
accounting for a cheaper and more efficient silicon chip.

ARM® micro-controllers have been developed as a battery saving supple-
ment to the power hungry i86 processors and have started to be considered

7



2 Theoretical Foundations

the standard, when an estimated 77 % of the embedded RISC market was
ARM® technology, as described in the Acorn-ARM® story [4]. Regarding
consumer electronics, they were mostly used in various devices up to mo-
bile phones, but recent developments have shown first implementations of
ARM® into laptops as well.

2.2.3 Programmable Logic circuits

Logic circuits, in general, are circuits consisting of various logic gates and
Input and/or Output (I/O) ports connected in the desired fashion. Of course
there are also custom logic circuits, produced for one specific application, for
example the Application Specific Integrated Circuit (ASIC). However, since
a very complicated and highly customized production process is required
for them, their use makes sense for a very large number of devices, in
the millions of pieces range. Hence programmable logic circuits are the
preferred alternative to fixed logic ones.

There are various types of programmable logic, the most commonly used
are, according to the embedded systems glossary [5], the Programmable
Logic Device (PLD), the Complex Programmable Logic Devices (CPLDs)
and the FPGA. As the relevant project has been implemented with the latter,
solely the FPGA will be thoroughly explained here.

2.2.3.1 Field Programmable Gate Array

An FPGA is a very popular hardware module the internal connections
of which can be easily reprogrammed. Any digital and Turing-complete
hardware can be implemented in an FPGA as a prototype and later produced
in bulk on a custom logic chip. As FPGAs contain a huge amount of possible
interconnects, the main area of the chip is occupied by them and hence
they are very expensive, compared to an ASIC for example. However, the
advantages, for instance the ease to reprogram them and the fact that
various debugging capabilities exist, overweigh at whilst prototyping. Other
major advantages of FPGAs are their ability of real-time operation and the
possibility to speed up calculations for parallel computing. Another reason

8



2 Theoretical Foundations

to choose FPGAs for implementation is brought in if only one or only a few
devices performing a certain task are required. This is demonstrated within
the scope of this project.

An FPGA consists of configurable I/O and logic blocks and an intercon-
nection programmable network, as depicted in Figure 2.4. Each of the logic
blocks can be a simple macrocell, consisting of combinatorial logic and a
flip-flop, as they are seen in PLDs, or also a lot more complex.

Configurable
Input/Output

Block

Configurable
Logic Block

Interconnection
Programmable

Network

Figure 2.4: Layout of a programmable hardware in general by Florijan Reichmann [31]

2.2.4 Zynq System-on-Chip

The Zynq platform devices are fully programmable System-on-Chip solu-
tions by Xilinx Inc. It is a one-chip implementation of a dual core ARM®
and a 7-series FPGA by Xilinx Inc. The former is referred to as the Process-
ing System (PS) and the latter is referred to as the Programmable Logic
(PL). Those two main components are connected to each other by Advanced
eXtensible Interface (AXI) connection. This system is usually programmed
with Vivado, an Integrated Development Environment (IDE) provided by
Xilinx Inc.

2.2.5 Direct Memory Access Engine

Usual memory access is only yielded by the processor. It performs its
calculations and fetches and stores data from and to memory, whenever
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necessary. This of course works for basic applications, but as more things
need to be done simultaneously, or multiple programs are run, transferring
huge amounts of data decreases overall performance. Additionally, the
processor can only yield memory access to one program at a time, so while
the processor is performing other non-memory related tasks, the memory
bus remains unused.

Direct Memory Access (DMA), on the other hand, only requires minimal
interaction of the processor. As seen in the embedded systems glossary [5],
the DMA Controller utilizes the cycles when the processor is not accessing
the memory lanes on the shared bus and transferring data on its own.
This leads to the main advantage that the processor can perform whatever
task while memory content is being transferred to the respective device
by the DMA engine. A graphical representation of how such a transfer is
performed can be seen in Figure 2.5.

Figure 2.5: Block diagram of memory access with a DMA Controller

2.2.5.1 Descriptors

To be able to describe the location of data in memory, one uses memory
descriptors. Each of them is 64 bit and describes on the one hand the location
of the next descriptor and on the other hand a memory location variable.
The memory location can have significantly more space, in this case 128 bit.
To generate a descriptor chain for continuous transfer, one can set the last
descriptor in a way that it point to the first one, as can be seen in Figure
2.6.

10



2 Theoretical Foundations

Figure 2.6: Block diagram of memory descriptors

2.3 Packaging with Linux

One of the major but often disregarded tasks within a project is packaging it
as such that the next person working on it can start off with as little training
time as possible. Also, minimizing any necessary recurring tasks is helpful.
This short paragraph is a tribute to some of the most important features of
packaging.

2.3.1 Linux Distributions

When comparing Linux Distributions to the windows operating systems,
the main difference is that most Linux operating systems are free and that
one can implement more easily recurring tasks by using shell scripts and
commands, as described in Section 2.3.2. There are many Linux Distribu-
tions, each one of which is an operating system based on the Linux kernel
and a package management system. Each of these distributions has many
unique features. The most common ones are Debian and Ubuntu. Each of
them come with various Desktop environments, if the graphical version is
installed and their main difference is that Debian is completely free and
utilizes as little proprietary software as possible, while Ubuntu focusses on
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usability, including many more drivers and software within their default
repository [23]. As Ubuntu is used within this project, the following parts
will focus on it and especially its shell.

Ubuntu Linux, or in short, just Ubuntu is an open-source, unix based
operating system published and maintained by Canonical Ltd. One of its
advantages compared to other Linux operating systems is its capability of
working out of the box and the vast amount of included free and non-free
drivers and software.

2.3.2 Linux Shells

Most Linux Distributions contain many different shells, the most common
one being bash [34]. It has used for automations in this project. Each shell
has many different built-in commands, some of which will be elaborated
here. Additionally, one can run programs from shell. The most commonly
used programs and commands for this project are listed and described in
this section.

One can pass arguments to the commands by adding them after the com-
mand, separated by a space. The result of a command can be piped onto
another one, for example by using the "|" operator. There is always many
ways to achieve the desired result and only one of them, certainly not always
the best one, is elaborated here. A sample on how to use command1 with
argument1 and send its output to command2 can be seen in Listing 2.1. One
can also use the wildcard "*" within many arguments for commands.

1 command1 argument1 | command2

Listing 2.1: Example of a Linux Shell command

2.3.2.1 Keyboard Shortcuts

The standard keyboard shortcuts can be extended by the user. There might
be more shortcuts within shell programs, but the most commonly used are
Tab to autocomplete the current command or folder, Ctrl+D to close the
current session and Ctrl+C to terminate the current command execution.

12



2 Theoretical Foundations

2.3.2.2 Relative versus absolute paths

In Linux every file, folder and even disk is always accessible within the
same root directory /, while in Windows every new drive is assigned a new
drive-letter different from the one of the already existing ones, for example
"D:/".

Every device, even hard disks are represented as files within the Linux path.
When pointing towards the location of a file or folder, there are two different
methods, either absolute or relative. The first of which always starts from
the root directory /, the other is starting from the current directory. When
being in /home/user1, for example, one can access the root directory / by its
absolute representation / or by the relative one ../../, as .. can be used to
jump one directory up.

2.3.2.3 Shell Variables

One can use shell variables to define values once and use them when needed.
To do this, one needs to place the variable’s name on the left side of an
equal sign and its value on the right side, as seen in Listing 2.2 Line 1. The
variable can then be used within any command by using the code in Line 3

until the current shell session ends.

1 ZED_TCP_IP =192.168.178.113
2

3 $ZED_TCP_IP

Listing 2.2: Example of a shell variable

2.3.2.4 Shell Scripts

Shell commands can be placed within a text file which then can be run,
meaning that the commands are executed subsequently. This can automate
certain recurring tasks easily. To run a file, one needs to give it the corre-
sponding permission as seen in Section 2.3.2.17 first and then can run it
using ./path/filename.
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2.3.2.5 Help argument

Most commands provide some explanation on their arguments and usage,
which, in many cases, can be displayed by adding the argument h or –help.

2.3.2.6 history

This essential command displays the whole command history of the user,
which is commonly used to reproduce executed programs and commands
and as rudimentary documentation.

2.3.2.7 grep

Grep may be used to search within files or within the output of other
commands. To search for the word Linux within the output of history, as
described in Section 2.3.2.6, one can use the example in Listing 2.3

1 history grep "Linux"

Listing 2.3: Example of the grep Shell command

2.3.2.8 cd

The cd or change directory command with the desired directory as an
argument can be used to switch to another directory.

2.3.2.9 ls

The ls command is used to display the content of the given directory. If
no directory is given as an argument, it uses the current. The other most
common arguments, given to this command after a ’-’ symbol, are a, h and l.
The order of these arguments is not relevant to the result. In the given order,
the first argument is used to show hidden files as well, the second one to
display the results in a human readable form and the last one to list other
information, such as the owner, the permissions and the size of the files and
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directories displayed. To show the content of the /home/ directory, one can
use the command in Listing 2.4.

1 ls -ahl /home/

Listing 2.4: Example of ls Shell command

2.3.2.10 rm

The rm command is used to remove a file, as seen in Listing 2.5 Line 1.
When deleting a folder, the argument -R is needed, as seen in Line 2.

1 rm ../ temp.csv
2 rm -R /temp/

Listing 2.5: Example of rm Shell command

2.3.2.11 mkdir

To create a new directory one can use the mkdir command with the path
and name of the directory as an argument, as seen in Listing 2.6.

1 mkdir /home/user1/Temp

Listing 2.6: Example of mkdir Shell command

2.3.2.12 source

To load a shell file, for example a file containing variable definitions as seen
in Section 2.3.2.3 one can use the source command, as seen in Listing 2.7.

1 source /home/user1/ variables

Listing 2.7: Example of source Shell command

2.3.2.13 echo

To print text on the command line one can use the echo command, as seen
in Listing 2.8.

1 echo " Working on important tasks"

Listing 2.8: Example of echo Shell command
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2.3.2.14 ssh-keygen

The ssh-keygen program can be used to generate an ssh key, which can then
be used to connect to other devices via the ssh protocol without a password,
using key based authentication. To generate a standard key for the current
user, one can use the command without any arguments.

2.3.2.15 if

The if statement can be used to test a condition and act accordingly. The
full list of conditions can be seen in the corresponding bash guide [32]. An
example to check if the file /home/user1/test exists has been given in Listing
2.9.

1 if [ -a "/ home/user1/test /" ]; then
2 echo "File exists ."
3 fi

Listing 2.9: Example of the if statement in Shell commands

2.3.2.16 ssh

One can connect to another machine and execute a shell by using the ssh
command. To connect to the machine with the IP-address 192.168.178.11 with
the user user1, one can use the command in Listing 2.10. If an ssh key had
been previously generated using Section 2.3.2.14, one can enable password-
less login on subsequent sessions by supplementing the ssh command with
the ssh-copy-id command once.

1 ssh user1@192 .168.178.11

Listing 2.10: Example of the if-statement in Shell commands

2.3.2.17 chmod

The chmod command can be used to change the permissions of a file or
folder. In general, there are three different layers of permissions as well
as three different permissions. The first layer would be the user layer, the
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second one corresponds to a group of users and the last one everyone. Each
layer can have individual permissions to read (r), write (w) and execute (x)
the corresponding object. To add the permission to execute an object for
every layer one can use the command in Listing 2.11. More information on
this command can be found in [35].

1 chmod +x object

Listing 2.11: Example of chmod Shell commands

2.3.2.18 sed

The sed command can be used to replace text with other text. The example
in Listing 2.12 can be used to display the command history, but replace the
word "folder1" with the word "folder2".

1 history | sed ’s/ folder1 / folder2 /g’

Listing 2.12: Example of sed Shell commands

2.4 Embedded Software Development in Linux

This section intends to describe all the parts necessary to develop embedded
software within a Linux environment for the Zynq Platform by Xilinx Inc.
These parts range from utilizing existent modules to developing new ones,
as far as the connection in between them and lead to the implementation of
drivers to make them available to an operating system and use them within
applications.

2.4.1 Digital Logic Design

In general, the design flow for digital logic is very straightforward and will
be elaborated in the following sections. Further the method to generate cus-
tom IP is elaborated. In this development, a hardware description language
(HDL) is used to describe the circuit. This serves, on the one hand, as a
high level documentation and, on the other hand, can be converted into
a lower level description of the circuit, which can then be fabricated. The
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Figure 2.7: Vivado Project Flow
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mainly used HDLs are VHDL, SystemC and Verilog, the former has been
used for this project. At last the device-tree of Linux operating systems is
described.

2.4.1.1 Vivado Design Flow

As in this special case a chip from Xilinx Inc. was used; their software Vivado
is the preferred choice for designing and implementing its functionality. A
graphical representation of the project flow can be seen in Figure 2.7. The
design flow starts with high level description, in this case assisted by many
IPs which may be added to the design with a mere drag and drop as that
simplifies design a lot.

Existing IPs can be connected to each other to wires on the board layout
and new ones can be added using the Vivado IP Packer, described in the
corresponding chapter.

After the design is implemented, one should simulate it as thoroughly as
possible. The integrated simulation environment is capable of setting inputs
to various levels and even simulating clocks. There are three stages at which
Vivado supports simulations. As seen in the corresponding documentations
[14][17][18] the first simulation is behavioral simulation, the highest level
one, containing no specifics on how the design is implemented. It is the
simulation which is the fastest to be completed, but is providing minimal
information. Structural simulation is performed after synthesis and hence
includes more information. Timing simulation considers the worst case
placement and routing details of the design and hence takes the longest to
be complete but identifies most of the problems.

As those potential problems are fixed in the board-layout or in VHDL
Code and the design works as intended in simulation, one can head on to
Synthesis. As seen [25], Synthesis is the automated process that translates
the algorithmic description of the behavior and creates digital hardware
that performs the described task.

Synthesis creates several modules performing different small tasks. Hence
they need to be placed on specific parts of the desired chip and then be
connected to one another. This step is called placement and routing or
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implementation. One can define some physical and timing constraints here
to make sure that, for example, the inputs of the digital design match the
inputs on the board and that timing requirements are met.

As this, also automated process, is completed, one should analyze the results
and can generate a bit-stream of the hardware, being a binary representation
of the configuration data for the PL, which then can be programmed onto
the chip.

Vivado has many other features, one of them being the capability of in-circuit
debugging with Integrated Logic Analyzer (ILA) IP-Cores. The latter enable
various debugging capabilities ranging from analyzing simple clocks up to
full debug of AXI streams. After these debug operations are performed on
the device, one can jump back to the board layout or even the VHDL-Code
to improve on the design.

Another commonly used feature would be the Software Development Kit
(SDK), used to generate custom Linux builds for targeted applications as
well as bare metal applications.

In the so-called PetaLinux, one can embed hardware description, such that
the device boots with the correct PL configuration. It also includes various
pre-built drivers for existing IP-cores and supports advanced memory map-
ping and reservation. The latter is very important when using DMA, as
described in 2.2.5.

2.4.2 Vivado IP Packager

Vivado IP Packager is used to package VHDL or Verilog code such that it can
be processed as custom IP, which then can be used in the Board Layout with
drag and drop. Custom IP supports various input/output ports ranging
from simple 1 bit lines, up to AXIs. As the custom IP-Cores are treated just
like separate projects, reconfiguration, simulation and debugging can be
done easily.

As seen in the corresponding user guide [15] one can use IP Packager to
combine VHDL source files, simulation model sets, example designs, test-
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benches, documentation as well as entire block designs into one IP and
hence modularize one’s design.

2.4.3 Hardware Description Languages - VHDL

As previously discussed, there are many hardware description languages
(HDLs). It shall be noted that functionality can be described with such a
language than might be possible to synthesize or implement. As VHDL is
used in this implementation, it will be explained more thoroughly.

One of the many guides on VHDL "Basic VHDL", by the RASSP Education
& Facilitation Program [3] describes a single VHDL to consist of one entity
and one or more architectures.

2.4.3.1 VHDL Entities

A VHDL entity, in the simplest form, contains a name and the description of
the Port. The latter defines which interfaces connect the entity to the outside
world. These can be either inputs, outputs or both. A short example of a
clocked half-adder, having the inputs a and b is provided in Listing 2.13.

1 ENTITY half_adder IS
2 PORT ( a : IN STD_LOGIC ;
3 b : IN STD_LOGIC ;
4 clock : IN STD_LOGIC ;
5 result : OUT BIT);
6 END half_adder

Listing 2.13: Half-Adder Entity

2.4.3.2 VHDL Architectures

A VHDL architecture provides one implementation of the VHDL entity.
There may be multiple architectures, for example those utilized on different
kinds of hardware, or simply one for simulation and one for implementation.
A possible behavioral architecture for the previously defined half-adder is
given in Listing 2.14.
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1 ARCHITECTURE behavioral of half_adder IS
2 BEGIN
3 PROCESS (a,b,clock) BEGIN
4 IF rising_edge (clock) THEN
5 result <= a AND b;
6 END IF;
7 END PROCESS ;
8 END behavioral ;

Listing 2.14: Half-Adder Timed Process
The most important parts start in Line 3, where the process begins. This
process is equipped with a sensitivity list. This list contains all signals that
shall trigger the process during simulation, when they are changed, which
means that the process is triggered if one of the signals in the sensitivity list
is changed. Furthermore the process first checks if there is a rising edge on
the clock, then it performs the calculation.

If one does not care about the clocking of output, one can also use a data
flow specification of the half-adder in Listing 2.15.

1 ARCHITECTURE behavioral of half_adder IS
2 BEGIN
3 result <= a AND b;
4 END behavioral ;

Listing 2.15: Half-Adder dataflow representation
The main advantage of this implementation is resource usage. On the other
hand it is, by itself, not a timed application, as the result will be completely
independent from any clock.

2.4.4 Advanced eXtensible Interface

AXI is an interface standard developed by ARM® , used by many micro-
controllers including the Zynq platform. As seen in the corresponding
data-sheet by Xilinx [12] its main advantages are the consolidation of many
interfaces into one and that the optimization on highest performance, maxi-
mum throughput as well as lowest latency can be done by interface special-
ists.
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This interface is intended to connect various IPs to one another, as well as to
manage the communication between PS, PL and memory. As this standard
is broadly accepted in industry, it is used by other manufacturers as well.

2.4.5 Device Tree

The device tree is used by almost every linux based operating system to
describe all devices part of a system. It contains the most basic components,
such as the processor and memory, more specific ones such as DMA con-
trollers. In the graphical example of a device tree in Figure 2.8, one can see
its hierarchical structure. Every layer can have some children and various
options, such as which clocks are connected and which memory address
space is assigned to this device.

Figure 2.8: Device Tree graphical representation

2.4.5.1 DMA implementation

In the case of embedded development, especially with the Zynq platform,
it is common to implement devices in the PL part of the chip and make
the PS part aware of them via the device tree, where space in memory
can be mapped for both to access, as seen in Section 2.5.2. This device
tree is also used by the operating system to decide which drivers shall be
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loaded. In Listing 2.16 the entry of a DMA core is given and will be further
explained.

The first line must contain some arbitrary name. Henceforth one can define
clock names in Line 3 and their respective implementations in line 4. The
compatible part from Line 5 defines which driver shall be used to interact
with this device. reg in line 6 denotes the base address and the memory
width of the device. Furthermore there are extras, such as device and driver
specifications in lines 7 and 8, options such as the option that scatter-gather
engine is included.

Finally, a child of the device is defined in Line 10. In this case it is a
DMA Channel performing the Memory to Stream (MM2S) operation, again
denoting name, driver and device specific options.

1 dma@80410000 {
2 #dma -cells = <0x01 >;
3 clock -names = " s_axi_lite_aclk \0 m_axi_sg_aclk \0

m_axi_mm2s_aclk ";
4 clocks = <0x09 0x09 0x09 >;
5 compatible = "xlnx ,axi -dma -7.1\0 xlnx ,axi -dma -1.00. a";
6 reg = <0 x80410000 0x10000 >;
7 xlnx ,include -sg;
8 xlnx ,sg -length -width = <0x0e >;
9

10 dma - channel@80410000 {
11 compatible = "xlnx ,axi -dma -mm2s - channel ";
12 dma - channels = <0x01 >;
13 xlnx , datawidth = <0x10 >;
14 xlnx ,device -id = <0x02 >;
15 };
16 };

Listing 2.16: Device tree DMA definition

2.4.5.2 Memory Reservation

The default setting for the operating system would be to use the whole
memory region available for itself. As in most cases DMA is utilized as well,
one needs to tell the operating system which part of the memory may be
used and which is off-limits. This also happens via device tree.
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One might suggest that it would be possible to acquire a big enough chunk
of memory using malloc. When using this method, one cannot choose where
the memory is located and it will almost certainly be partitioned and hence
not be contiguous. These factors make transferring data from the software
side to the hardware impossible.

In Listing 2.17 a memory region has been reserved for other devices and
declared off-limits for the operating system in line 6. The user can access
both regions, but the operating system will not put any of its own data
there and will not automatically assign the regions to programs requesting
memory. For each memory block there is an arbitrary name defined in the
same line, a driver definition in line 7 , device specific options in lines 9 and
10 and the base address with the total range in Line 11.

1 reserved - memory {
2 #address -cells = <0x01 >;
3 #size -cells = <0x01 >;
4 ranges ;
5

6 dma_desc@37E00000 {
7 compatible = "shared -dma -pool ";
8 device_type = " reserved_memory_descr ";
9 no -map;

10 linux ,cma - default ;
11 reg = <0 x37e00000 0x200000 >;
12 };
13 }

Listing 2.17: Device tree memory reservation

2.5 Server-Client Interfaces

Whenever it is necessary to split execution and control of a program onto
different machines, Server-Client interfaces come to play. The server denotes
the program or machine that is receiving instructions from the client and
executing them. In general, the client would be more lightweight and very
portable, meaning that it can be run on different machines. In the case of
embedded applications the server needs to be lightweight as well, as it is
deployed on a lower power system than the average PC, for example a
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ZedBoard. It also helps to keep the server portable, as it can be deployed on
other embedded systems.

2.5.1 QT Applications for ARM Architectures

According to Blanchette and Summerfield [2] QT is a software framework
and combined with QT Creator, an IDE for various programming languages,
one of the most commonly used being C++ and QT, it provides the designer
with the possibility of one codebase with portability to many different
operating systems. In the case of embedded development it offers a wide
set of libraries and QT-specific code snippets to develop applications. Like
many IDEs, Qt Creator allows many different automation tasks, such as
enabling automatic deployment of the embedded application onto the target
device. Hence the application can be developed on any system and then
cross-compiled for the target architecture and run and debugged remotely
from the development system.

2.5.2 Memory Mapping and Interfacing

For various reasons, for example to access special function registers directly,
it might be necessary to reserve a certain address space in memory for
special use and prevent the rest of the system from messing with the stored
data.

The obvious choice when mapping memory would be to use the library
sys/mmap with its function mmap. When the user requests a memory region,
using the provided function mmap, the operating system tries to allocate the
requested request. The address argument provided is a hint to the kernel
which area of memory it should chose. It will always pick a nearby page
boundary which is above or equal to the address value specified. This is not
practical when one wants to transfer data from one processing system onto
the PL or vice versa, as the PL does not care about page boundaries and
transfers the exact address.
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Instead one should take advantage of the fact that linux treats every device
as a file. If sufficient access rights are available, one can map and henceforth
access the linux file /dev/mem corresponding to the whole of the system
memory and writing to and reading from it. The QT Library QFile, which
allows very easy mapping of specific regions of a file and thus treats the
mapped file as the desired memory region that can be used here.

2.5.3 QT Applications for Desktop Architectures

As previously mentioned QT is very well capable of using cross-compilers
to develop applications for various architectures. Another big advantage of
using QT is its capability of designing user applications and their GUI using
various libraries, pre-built functions and buttons using drag and drop. One
can for example drag a new button onto the QT GUI using the designer
view and then edit its function using QTs libraries or falling back to C++
code.

2.5.4 Communication Standard

Data used within programs has a data type, int for example. This works
fine within the program, but as soon as the data needs to be transferred
over to another machine, the datatype needs an additional definition to
make sure that both machines interpret it the same way. Hence one needs to
define and maintain a communication standard. The existing standard for
this application is based on the ethernet interface, serializing or converting
the data to a JavaScript Object Notation (JSON) string, transferring this byte
string and then deserializing or restoring it again.

Using this method one can define commands in the server and the client
application, one of which would be sending a command, the other receiving
and acting on it.
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This chapter focuses on the specific implementation of the given project
assignment. First there will be a short overview on the used hardware and
its components, then there will be an elaboration on the automated tasks
regarding embedded development.

Additionally, the logic circuits used within this project will be explained
and finally it will be shown how the functionality is controlled on the part
of the server and client.

A graphical representation of the individual parts of the Project, including
existing ones in green is shown in Figure 3.1.

Figure 3.1: Block diagram of a measurement flow

3.1 Hardware

The hardware used consists of a PicoZed, sold by Avnet Inc. [11] board as
well as a custom board, developed by Reinhard Klambauer and Alexander
Bergmann [20].

28



3 Implementation

3.1.1 Xilinx Zynq®-7000 System-on-Chip

As seen in the product description [11], the PicoZed is a SoM, based on a
Xilinx Zynq All Programmable System-on-Chip. Over 100 I/O pins are ac-
cessible via the three I/O connectors at the bottom of the module, providing
maximum flexibility for implementation.

3.1.2 Carrier Board

I>U PWR

DAC I>U PWR

DAC I>U PWR

DAC I>U PWR

ADC AMPPRE

Ethernet

USB

RS 232

Zynq
CPU +FPGA

Power Supply

Figure 3.2: Schematic of the Zynq board with paths for ultrasonic signal generation and
sensing by R. Klambauer, A. Bergmann [20]

The carrier board used, developed by Reinhard Klambauer and Alexander
Bergmann, [20], which is depicted in Figure 3.2, provides access via required
interfaces. It includes for example a gigabit ethernet connector, a serial
interface connector as well as a Joint Test Action Group (JTAG) one. The
former is used for normal operation, when communicating with the control
application using the communication standard, described in Section 3.4.3.

The serial connector is mainly used in fault conditions, as the boot-up of
the PS or PetaLinux prints its debug log there. Command-Line commands
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can also be sent to the operating system via that same interface. This comes
in especially handy when dealing with custom PL modules and IP-cores,
as the drivers might not always work out of the box and some debugging
might be necessary.

The JTAG connection is used for development purposes, as Vivado allows
the use of a Platform Cable Usb II, the functionality of which is described
in the respective data-sheet [16]. In short, it allows the easy transfer of
new hardware definitions for the PL part of the chips onto itself. Apart
from programming, the use of debug options an utilizing integrated logic
analyzers simplify development.

In addition to the stated interface connections, the carrier board does also
provide multiple DACs, ADCs and their respective necessary components
for operation and voltage level conversion. As seen in the respective data-
sheet [10], each of the 16 DACs AD9707 supports up to 175 MSPS update
rate and a 14 bit resolution. They can be individually controlled, via four
separate outputs of the PL, each of which utilized time domain multiplex-
ing, meaning that there is a phase difference of 90 degrees in between the
individual 30 MHz clock signals, to control four different DACs. To achieve
this, the data-path needs to be clocked with 120 MHz.

3.2 Packaging

3.2.1 Shell Scripting and Automation

The most strenuous tasks performed within the setup and build process
have been documented and automated. The respective automations will be
discussed here.

3.2.1.1 Installation of QT for cross-compiling for ARM®

To obtain an executable capable of compiling QT-code into applications for
a target architecture that is not default, one needs to download, modify and
build QT oneself. This process has been widely discussed in community
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forums, as most people catch problems when trying to do as described in
the provided documentation [6] [24]. The process is automated with Listing
3.1 and described below.

1 WORKING_DIR ="$( cd "$( dirname "${ BASH_SOURCE [0]}" )" > /dev/
null 2>&1 && pwd )"

2 source $WORKING_DIR /../ config
3

4 mkdir $QT_INSTALL_DIR
5 cd $QT_INSTALL_DIR
6 rm -R install
7 mkdir install
8 rm -R build
9

10 ZYNQ_QT_BUILD =$PWD/build
11 ZYNQ_QT_INSTALL =$PWD/ install
12

13 rm *. tar.gz*
14 wget $QT_LINK
15 tar -xvf $QT_VERSION .tar.xz
16 mv $QT_VERSION build
17

18 PATH= $VIVADO_PATH / $VIVADO_VER /gnu/ aarch32 /lin/gcc -arm -linux -
gnueabi /bin /: $PATH >> /etc/bash. bashrc

19 PATH= $VIVADO_PATH / $VIVADO_VER /gnu/ aarch32 /lin/gcc -arm -linux -
gnueabi /bin /: $PATH

20

21 sed -i ’s/arm -linux -gnueabi -/arm -linux -gnueabihf -/g’build/
qtbase / mkspecs /linux -arm -gnueabi -g++/ qmake.conf

22

23 echo export PATH= $VIVADO_PATH / $VIVADO_VER /bin:$PATH >> /etc/
bash. bashrc

24 PATH= $VIVADO_PATH / $VIVADO_VER /bin:$PATH
25

26 echo export PATH= $ZYNQ_QT_INSTALL /bin:$PATH >> /etc/bash. bashrc
27 PATH= $ZYNQ_QT_INSTALL /bin:$PATH
28

29 cd build
30 source /etc/bash. bashrc
31

32 SK\gls{ip} _PACKAGES =‘( find -maxdepth 1 -type d grep qt
sed ’s/.\/ qt/-skip /g’ sed ’s/-skip base//g’ tr ’\n’ ’ ’)‘

33 #Skip additional base packages

31



3 Implementation

34 NO_PACKAGES ="-no -gif -no - libjpeg -no -mtdev -no -sql -db2 -no -sql -
ibase -no -sql -mysql -no -xcb -qt - freetype -no - fontconfig -no -
harfbuzz -no -xcb -xlib -no -cups -no -iconv -no -icu -no -eglfs -
no - openssl -no - opengl "

35

36 ./ configure -xplatform linux -arm -gnueabi -g++ $SKIP_PACKAGES
$NO_PACKAGES -opensource -confirm - license -prefix
$ZYNQ_QT_INSTALL

37 echo " Configure Complete "
38

39 make -j 2
40 echo "Make complete "
41

42 make install

Listing 3.1: Installation script for QT for PetaLinux
First, one needs to prepare an installation directory, defined in the separate
config file. After this has been done, any old remainder of QT sources are
removed and the current source is fetched from Line 13 onwards.

Lines 18 and 19 make sure that the GCC compiler suitable for the architecture
is reachable from shell, by adding it to the local and global PATH variable.

As there is no base config for the desired architecture, one needs to edit an
existing similar one, to match the correct GNU Compiler Collection (GCC)
version in Line 21.

From Line 23 the script makes sure that the Vivado and QT binary directories
are reachable from command line, by adding them to the PATH variable.

To make sure that the whole PATH is available within the script, the bash
config is sourced in Line 30.

When building QT, there are various additional modules included by default.
They assist in developing applications, but including them in the build
process significantly increases build time. As no additional packages are
necessary for this application from Line 32, it generates a list of packages to
skip from the packages available. Some packages which are not caught by
this process are hardcoded in Line 34.

Lastly the configuration process is started in Line 36 as well as is the build
process in Line 39. When the timely operation of building of such a huge
application is finished, it is installed in Line 42.
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3.2.1.2 Cable Drivers for Platform Cable

This short script in Listing 3.2 describes and performs the installation of
the drivers necessary to use the functionality described in Section 3.1.2.
After reading the global configuration file it runs the installation script from
Xilinx.

1 # Source configs
2 WORKING_DIR ="$( cd "$( dirname "${ BASH_SOURCE [0]}" )" > /dev/

null 2>&1 && pwd )"
3 source $WORKING_DIR /../ config
4

5 # Path to Xilinx SDK Cross - compiler
6 cd $VIVADO_PATH / $VIVADO_VER /data/xicom/ cable_drivers /lin64/

install_script / install_drivers /
7 ./ install_drivers

Listing 3.2: Installation script for Cable Drivers

3.2.2 Complementary Scripts

3.2.2.1 Matlab Script to generate an output window

The script presented in Listing 3.3 is used to generate one period of any
signal in the correct format to be played on the discussed Flowmeter.

In the first relevant Line number 4 the output frequency is defined. The clock
for the DAC providing the output is fixed at 30 MHz, hence the desired
frequency is proportional to the necessary amount of values provided to the
window generator. As the amount of values is calculated, an array ranging
from 1 to the amount of values is generated in line 11.

The ADC has 14 bit, hence the maximum value provided to it is in the range
−8192 to 8191. To keep the matlab script simple the range is considered
to be −8191 to 8191 by setting data_width to 2 × 1014-2, to avoid rounding
overflows. In lines 17 to 21 the basic implementations of sinusoidal, cosine
windows and sawtooth signals are shown. A combination of two simple
signals is depicted in Line 23.
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At last the generated signal is displayed using a figure and exported to a
CSV-file that can be imported into the FlowmeterControl Application.

1 close all
2

3 % config tested from 14600 to 300000
4 frequency = 14600;
5

6 % calculation of time scale values
7 period = 1 / frequency ;
8 f_clk = 30 * 10^6;
9 time_per_tick = 1/ f_clk;

10 number_of_values = period / time_per_tick ;
11 N = 0: 1 : number_of_values ;
12

13 % calculation of values
14 adc_depth = 2^14 -2;
15

16 %sine
17 F1 = adc_depth /2* sin(N/ number_of_values *2* pi);
18 % cosine window
19 F2 = adc_depth /2 * sin(pi * N / number_of_values );
20 % sawtooth
21 F3 = int16( adc_depth /2- adc_depth /2*2*N/ number_of_values );
22

23 F = int16(F1 .*( F2./ adc_depth )/32);
24

25 % plot and export values
26 figure
27 plot (N,F,’.’)
28 csvwrite (’ window_values .csv ’, F)

Listing 3.3: Script for generating new window data

3.2.2.2 Other Scripts

Some other smaller scripts have been implemented to fix machine related
network problems, screen resolution adjustments on virtual machines as
well as connection scripts for ssh and serial access to PetaLinux. As they are
well commented and consist only of simple code, they will not be evaluated
further.
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3.3 Embedded Software - Xilinx

In this Section the implementation of the desired hardware, mainly per-
formed in Vivado and the corresponding SDK tools is described. The pre-
existing configuration is described by Florijan Reichmann [31] and will not
be elaborated further.

3.3.1 Device Tree

The basics of device trees and also the necessary components for this
project have been described in Section 2.4.5. In addition to the definitions
of the components, which at best are done by petalinux-build and petalinux-
package, described in Section 3.3.5, one should always check the correct
implementation and in some cases edit it to match new requirements missed
by the automatic configuration.

The device tree generated by the previously mentioned build tools is given
in Device Tree Blob (DTB) format, which is perfectly machine-readable, but
not human-readable. To generate the Device Tree Source (DTS) file one can
use the executable dtc to convert in between the two formats as described
in the corresponding reference [33]. Line number 1 is used to generate a
source file from the blob, while Line number 2 does the opposite.

1 ./ dtc -O dts -o ../ dtc.files/ system .dts ../ dtc.files/ system .dtb

2 ./ dtc -O dtb -o ../ dtc.files/ system .dtb ../ dtc.files/ system .dts

Listing 3.4: Commands for Device Tree compilation and decompilation

3.3.2 Address Map Layout

The chip used is equipped with a total of 1 GB of System memory, but like
in most systems, the addressable range is greater than system memory, due
to other devices being addressable as well.

The most important address ranges in this application have been taken from
[9] and depicted in Table 3.1. As one can tell from the first line, there is one
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GB of memory, most of which is usable and there are two more GB, used
for memory mapped transfer of data via AXI Streams, as described in 2.4.4.
The two DMA IP-cores responsible for custom signal generation are using
the second AXI channel, while all other cores are using the first one.

Start Address Stop Address Purpose
0x0000 0000 0x3FFF FFFF System Memory
0x4000 0000 0x7FFF FFFF M_AXI_GP0

0x8000 0000 0xBFFF FFFF M_AXI_GP1

Table 3.1: Memory Layout

All the devices using these address spaces can be seen in Table 3.2. The
devices DMA0, Signal Generator and ADC Sampler have been implemented
by the preceding projects and are only added for completeness. For the
functionality of the individual devices, refer to Section 3.3.3.

3.3.3 Vivado IPs

Various existing IPs have been used in addition to the custom ones described
in Section 3.3.4. Their use and configuration are described in this chapter.

As seen in Figure 3.3 the PS is used to provide the AXI GPIO and AXI Direct
Memory Access IPs with data. They are connected using AXI Interconnects.
The AXI Direct Memory Access IP reads data from memory and pushes it
onto the AXI4-Stream Data FIFO which stores all of it at once and releases
2 bytes at a time to the Delay Generator. After processing the values from the
32 bit AXI GPIO is done, it passes the data onto the Output Switch, which is
controlled by the 1 bit AXI GPIO. The Output Switch passes the data onto
the DACs.

3.3.3.1 AXI Direct Memory Access

As seen in the Product Guide on AXI DMA [13], the zynq platform used,
an IP-core acting as a DMA engine is provided by Xilinx. Each added core
provides read and write access to memory on possibly multiple channels. As
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Start Address Stop Address Usage
0x33E0 0000 0x33E7 FFFF DMA 1 Descriptors
0x33E8 0000 0x33EF FFFF DMA 2 Descriptors
0x3400 0000 0x341F FFFF DMA 1 Data
0x3420 0000 0x343F FFFF DMA 2 Data
0x37E0 0000 0x37FF FFFF DMA 0 Descriptors
0x3800 0000 0x3FFF FFFF DMA 0 Data
0x4100 0000 0x4100 FFFF DMA 0

0x4120 0000 0x4120 0FFF GPIO Delay 0

0x4121 0000 0x4121 0FFF GPIO Delay 1

0x4122 0000 0x4122 0FFF GPIO Delay 2

0x4123 0000 0x4123 0FFF GPIO Delay 3

0x4124 0000 0x4124 0FFF GPIO Delay 0

0x4125 0000 0x4125 0FFF GPIO Delay 1

0x4126 0000 0x4126 0FFF GPIO Delay 2

0x4127 0000 0x4127 0FFF GPIO Delay 3

0x43C0 0000 0x43C0 0FFF Signal Generator
0x4400 0000 0x4400 FFFF ADC Sampler
0x8040 0000 0x8040 FFFF DMA 1

0x8041 0000 0x8041 FFFF DMA 2

Table 3.2: Device Address Layout

one core for multiple channels is not recommended by Xilinx, it is advised
to be using one IP-core for each channel.

One can define if the core should provide read or write functionality respec-
tively. The other settings used define the size of the transferred data. First,
there is the Memory Map Data Width, describing how big one data chunk
is in memory. This can also be seen as a memory partition or how much
data is described per descriptor. This has of course got to be consistent with
data width when transferring the data to memory from the software side.
Additionally, Stream Data Width is set, defining the size of the output data.
As it would be very inefficient to transfer only one memory data chunk
at a time, one can set a burst size, defining the amount of data chunks
transferred every time the memory is accessed. The core includes a data
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Figure 3.3: Block diagram hardware

buffer to store bytes to be transferred.

In general, there are two operating modes for this IP-core, the first one
is Direct Register Mode. This is the more basic functionality where the
user does not need to care about memory addressing of the individual
chunks of data. As the core is started by setting the run bit and a valid
source address is provided to the MM2S_SA address, it transfers the data.
The main disadvantage is that one single and continuous address space in
memory has to be provided for all transmitted data and the fact that when
the end of the address space is reached, the transfer stops. Hence one cannot
reliably provide an address space containing, for example, one period of a
signal and transferring that signal to a DAC continuously.

For more complex applications the second mode, Scatter Gather Mode comes
to hand. As touched on before, it provides the advantage of continuous
or cyclic transfers. In this mode the user has to provide the scatter gather
descriptors in memory. One such descriptor basically contains the address
of the data and the address of the descriptor. The DMA engine is provided
with an address of the first and the last descriptor. The first or starting
descriptor needs to be written to the Current Descriptor register. One can
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now enable interrupts and set the run bit in the control register. As the last
or Tail Descriptor address is set, the transfer begins from source to tail. It will
in any case pause as the last descriptor is reached. To achieve cyclic transfer
one can set the address of the next descriptor of the last descriptor from the
cyclic chain to the first descriptor. Additionally, one shall set the address of
the last descriptor for the DMA to some address that can never be reached.
Henceforth the DMA will continuously transfer the memory described by
the descriptor chain.

This DMA engine is capable of reading from memory and writing to mem-
ory. The other end of the data is always an AXI interface. Those two di-
rections are called Stream to Memory (S2MM) and MM2S, MM denoting
memory and S denoting the AXI Stream. The first noted is always the source,
the second is the destination of the data flow.

The enabled Scatter Gather Engine is controlling the MM2S channel with a
data width of 128 bit. By setting the output width to 16 bit, the 14 bit DAC
can be fed every clock cycle. Memory data width has been determined
empirically. In general, you need to balance all implemented configuration
options such that the buffer is large enough, that it provides new values
until the other DMAs finish their transfer. On top of that one needs to see
to it that the transfer does not take longer than the buffers of the rest of the
DMAs can hold.

At first four DMAs for four different signal windows were implemented,
but it became obvious that this would not work, because there is only one
memory channel and while one of the cores is transferring data, the others
cannot. Unfortunately, when using more than two DMA cores, the transfer
is not fast enough to provide consistent output signals.

3.3.3.2 AXI4-Stream Data FIFO

A First in First Out (FIFO) core is basically a buffer taking bursts of data at
once and outputting them one per clock cycle. This acts as a second buffer,
as the buffer included in the DMA core is for the memory mapped side of
the transfer.
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Regarding settings of this IP-core, one can set the FIFO-depth or the size of
the buffer as well as define a custom output data width, if needed.

3.3.3.3 AXI Interconnect

AXI Interconnects are IP-cores provided by Xilinx Inc., which manage
the connection of multiple slave interfaces to one master interface. As
the PL controller provides only two general purpose AXI Masters, these
interconnects were used to control the numerous other components.

3.3.3.4 AXI GPIO

The General Purpose Input/Output (GPIO) IP-cores provide very basic, but
also very easy to implement data transfers from the PS side of the system to
the PL part and vice versa.

They are on the one side connected to the AXI Interface, and on the other
side provide up to two individual inputs and outputs with up to 32 bit each,
as described in the respective product guide [7].

In this project four of them have been used on the one hand to define the
amount of ticks to play the signal and pause the signal on the four different
outputs. Each of them only has outputs with 32 bit enabled.

On the other hand, another four of them have been used to switch between
the old functionality of providing only sinusoidal output signals and the
new functionality of having custom windows defining the signal. In this
case only one 1 bit output per IP-core is enabled.

3.3.4 VHDL Implementation

This Section intends to describe developed IP-cores for this project. In
addition to the pre-existent cores two more have been implemented in
various design steps. The final version of the cores will be the only elaborated
one.
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3.3.4.1 Delay Generator

The first and main IP combines most of the new functionality on the PL side
of the system. The individual ports of this core are depicted in Table 3.3.

The first two elements, clk and reset are the input clock as well as the reset
signal, providing timed operation and setting all data back to the initial
values, respectively.

The next element play_ticks precisely defines how many clock cycles the
input signal signal_in should be played onto the output port signal_out. The
similarly named pause_ticks defines the minimum amount of clock cycles to
wait after one period has finished to start a new one. The real number of
clock cycles waited will, in most cases, be higher than the requested one, as
the memory mapped window is sent to the input of this core continuously
and it has to be made sure that the starting point of the output signal is also
the first value of the desired signal.

This has been achieved by making sure that the desired signal can never be
at value 1 , and sending the value 1 always as the first value, signalizing this
IP-core that a new signal period on the input has started and it can now
start generating an output, of course only when pause time has exceeded.

Port Name Direction Data Type Size (bit)
reset in STD_LOGIC 1

clk in STD_LOGIC 1

play_ticks in STD_LOGIC_VECTOR 32

pause_ticks in STD_LOGIC_VECTOR 32

signal_out out STD_LOGIC_VECTOR 16

signal_in in STD_LOGIC_VECTOR 16

Table 3.3: Ports in Delay Generator

Additionally, to the input signals, there are also internal signals for syn-
chronization and data storage, as described in Table 3.4. The first signal
read_pointer is intended to make sure that the four individual DACs con-
trolled by this core receive the correct values. It is increased every clock
cycle and determines which channel is executed in every iteration of the
program.
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Each of the channels has a signal storing how many clock cycles in the
current state, being either play or pause, have been executed. When the
program is currently providing an output signal, the play_ch counter of the
corresponding channel is increased, if it is not providing an output signal,
the pause_ch counter is increased.

Signal Name Data Type Size (bit)
read_pointer integer 0 to 3

play_ch1 STD_LOGIC_VECTOR 32

play_ch2 STD_LOGIC_VECTOR 32

play_ch3 STD_LOGIC_VECTOR 32

play_ch4 STD_LOGIC_VECTOR 32

pause_ch1 STD_LOGIC_VECTOR 32

pause_ch2 STD_LOGIC_VECTOR 32

pause_ch3 STD_LOGIC_VECTOR 32

pause_ch4 STD_LOGIC_VECTOR 32

Table 3.4: Signals in the Delay Generator

The VHDL code providing the said main functionality for channel 1 , is
provided in Listing 3.5. The other channels, as well as the reset functionality
and read_pointer increase have been removed for better readability.

At first it is determined whether the current state is tasked to generate a
signal or not with an if-else-clause in lines 1 and 5. Next the counter for the
respective channel and state is increased in lines 2 and 6.

While generating an output in Line 3 the pause counter is reset in Line 4.
Whilst not generating an output, 0 is written to signal_out in Line 7 and
another if-clause in Line 8 checks if the pause is theoretically completed
as well as if the input is currently providing the start of a period. If that
was the case, the play counter is reset in Line 9, to jump back to the playing
state.

1 if ( play_ch1 < play_ticks ) then
2 play_ch1 <= std_logic_vector ( to_unsigned ( to_integer (

unsigned ( play_ch1 )) + 1, 32));
3 signal_out <= signal_in ;
4 pause_ch1 <= X "00000000";
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5 else
6 pause_ch1 <= std_logic_vector ( to_unsigned ( to_integer (

unsigned ( pause_ch1 )) + 1, 32));
7 signal_out <= X "0000";
8 if ( pause_ch1 > pause_ticks and signal_in = X "0001") then
9 play_ch1 <= X "00000000";

10 end if;
11 end if;

Listing 3.5: VHDL Code for Delay Generator Channel 1

3.3.4.2 Output Switch

This very simple IP is tasked to switch between the previous and the current
functionality. The individual ports of this IP-core are described in Table
3.5.

As the previous functionality has not been touched, its output is connected
to one of the signal inputs, while the output of the new functionality is
connected to the other one. The other input send_signal_1 can be seen as a
boolean variable being either true or false. For backwards compatibility, the
old function is enabled per default and the output of this IP directly con-
nected to the DACs input. The VHDL process providing this functionality
can be seen in Listing 3.6

Port Name Direction Data Type Size (bit)
signal_1 in STD_LOGIC_VECTOR 16

signal_2 in STD_LOGIC_VECTOR 16

send_signal_1 in STD_LOGIC 1

signal_out out STD_LOGIC_VECTOR 16

Table 3.5: Ports on the output switch

1 process (signal_1 , signal_2 , send_signal_1 ) begin
2 if ( send_signal_1 = ’1’) then
3 signal_out <= signal_1 ;
4 else
5 signal_out <= signal_2 ;
6 end if;
7 end process ;

Listing 3.6: Process for Output Switch
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3.3.5 Updating PetaLinux

The custom operating system PetaLinux, was provided by Florijan Reich-
mann [31]. As there is no need to update the operating system in general, it
was left as is and it was only the embedded hardware definition that has
been updated.

Within Vivado it is possible to export a Hardware Description File (HDF) as
well as the bit-stream of the hardware. Both of them are needed to generate
the necessary PetaLinux components.

Xilinx Inc. published separate software incorporated in the PetaLinux in-
staller to easily perform the required tasks. As one has access to the board
support package, one can generate a project folder. After sourcing the PetaL-
inux tools using Line 1 from Listing 3.7, the project folder from [31] has been
provided with a new hardware configuration using line 2. Now the build
process can be started with Line 3 and when it completes the hardware it
can be packaged into the correct format for the desired chip using the code
from Line 4.

1 source /opt/ petalinux2018_3 / settings .sh
2 petalinux - config --get -hw - description $PATH_TO_HDF_FOLDER$
3 petalinux -build
4 petalinux - package --boot --u-boot images /linux/u-boot.elf --

fsbl images /linux/ zynq_fsbl .elf --force --fpga
$PATH_TO_HW_BIT_FILE$

Listing 3.7: Important PetaLinux commands
As thoroughly explained in the PetaLinux command reference [8] this
process generates 2 important files system.dtb and BOOT.BIN. The former
is the automatically generated device tree blob, described in Section 3.3.1,
the second file holds the boot image for PetaLinux, being the first and
second stage bootloader as well as the hardware definition loaded onto PL
on startup. This file needs to be written to flash memory of the Zynq chip,
using for example the flashcp command.
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3.4 Server-Client Interfaces

The project consists of the two applications FlowmeterServer and Flowme-
terControl. The first is a C++ based application running on the Zedboard’s
PetaLinux, the second one is also a C++ application running on an Ubuntu
Virtual Machine (VM). Both of them have been developed using QT Creator.
In a production environment the both of them would be connected using
an ethernet interface. This section describes the individual functions that
make up the FlowmeterServer, FlowmeterControl as well as their communi-
cation.

3.4.1 FlowmeterControl Application

In this application graphical representations of the desired settings have
been implemented. Those settings comprise the setting of the amount of
ticks to play and pause the signal for four different channels, as well as the
possibility to parse a CSV file to import a new window as can be seen in
Figure 3.4.

Figure 3.4: GUI representation in FlowmeterControl

Additionally, the Flowmeter is now feeding all outputs with the default
sinusoidal signal of 300 kHz, when it is started.
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3.4.2 FlowmeterServer Application

The FlowmeterServer application is receiving commands via the ethernet
interface and acting on them. Hence it processes the data and sets the FPGA
accordingly. The most important functions achieving DMA operation, as
described in [13] are discussed here. A graphical representation of the data
flow after a command is received by FlowmeterControl can be seen in Figure
3.5.

Figure 3.5: Block representation of the software functions after a command is received on
the server

3.4.2.1 DMAHandler::setNewWindow

This function is intended to be called whenever a new window is desired.
A window, in general, is the template for an output signal. It represents one
period of the output which is played over and over again.

As arguments the function accepts a channel number and an initial value,
which would be the first value of the new window. At first it resets the cor-
responding DMA (Section 3.4.2.5), to ensure any previous settings removed
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and that it is stopped. Secondly, the clearWindowMemory (Section 3.4.2.2) and
the setWindow (Section 3.4.2.3) functions are called. At last the corresponding
DMA is initialized (Section 3.4.2.6) and started (Section 3.4.2.7)

3.4.2.2 DMAHandler::clearWindowMemory

This function, taking the channel number as an argument, is erasing the
whole memory used by any potential previous window by writing 0 to
it and additionally setting the first value to 1 , to indicate to the Delay
Generator (Section 3.3.4.1) that a new window is starting.

3.4.2.3 DMAHandler::setWindow

This high-level abstraction of a write operation to memory takes the channel
number and a value as an argument and writes this data to the next memory
address of the window. Additionally, it checks if the window exceeds
the maximum allowed length of 2 MB. This window length allows for
262 144 values to be stored per channel. This can be calculated by dividing
2 MB by the 4 theoretical channels and the 2 bytes per value.

3.4.2.4 DMAHandler::setMemorySize

This function is intended to process the channel number and the amount
of ticks to be played, or simply speaking the length of the window and
adjusting the memory size for the DMA accordingly. This is done by first
resetting (Section 3.4.2.5) the DMA, then initializing it (Section 3.4.2.6) and
writing a new set of descriptors (Section 3.4.2.8) and finally starting the
DMA again (Section 3.4.2.7).
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3.4.2.5 DMA_WINDOW::reset

This functions performs a system reset on the DMA by setting the according
bit in the control register and then waiting for a successful reset, or a timeout
done.

3.4.2.6 DMA_WINDOW::init

This low-level function is performing the necessary tasks to initialize the
DMA, consisting of enabling basic interrupts (on complete and on error) in
the control register and then reading the status register to check if the reset
was successful.

3.4.2.7 DMA_WINDOW::start

This function performs the main task of setting the correct DMA bits to start
a memory transfer. At first it writes the current descriptor to the correspond-
ing control register to tell the DMA where to start the transfer. Additionally,
it enables the DMA by setting the Run/Stop bit and cyclic operation in gen-
eral. The latter operation is used to ensure a continuous stream of window
data. At last it writes the tail descriptor to the corresponding register. This
is intentionally set to a register that is never reached, such that the transfer
is never completed automatically, unless stopped intentionally.

3.4.2.8 DMA_WINDOW::writeAllDescriptors

This function is generating a descriptor chain, which is a series of single
descriptors. Each Descriptor occupies 64 bit and consists of the address of
the next descriptor, a memory location containing window data, the amount
of bytes transferred out of the MM2S Stream as well as other configuration
options, which are not used in this project.

After completing the chain it is made sure that the last descriptor has the
parameter next descriptor address set to the first descriptor of the chain for
continuous transfer.
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3.4.2.9 WINDOW::init

This function first opens the device /dev/mem corresponding to system
memory and then mapping the eight GPIO IP-cores memory areas to the
program. The first four GPIOs are used to set the playing and pausing
amount of ticks for the respective delay generators and the remaining are
enabling or disabling custom window generation.

3.4.2.10 WINDOW::setDelayChannel

This function utilizes the channel number, the ticks to play as well as the ticks
to pause and if the custom window generation is enabled as parameters and
further sets the corresponding values in memory at the previously mapped
GPIO cores to pass it the programmable logic.

3.4.3 Communication Standard

To enable communication between the Server and the Control application
the following commands have been implemented on both endpoints.

3.4.3.1 CCmdSetDelay

This class is considering the channel number, the amount of ticks to play
and pause as well as if the channel is enabled. The first three are of the
datatype int, the latter is a bool. They are serialized on the FlowmeterControl
application, then parsed and deserialized on the FlowmeterServer. It is then
calling the setDelayChannel (Section 3.4.2.10) and the setMemorySize (Section
3.4.2.4) functions.
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3.4.3.2 CCmdSetWindow

This class is receiving the window values for the respective channel on
the Control application, serializing them to parse them onto the Server.
After they are deserialized there and then calling either the setNewWindow
(Section 3.4.2.1) or the setWindow (Section 3.4.2.3) function, depending on if
the first values or subsequent ones are sent.
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4 Results

It can be said that it works to generate signals other than just the ones
by Xilinx Inc. who provided sinusoidal ones. One period of the resulting
signal with the settings visible in Figure 4.1 can be seen in Figure 4.3. One
might think that this represents a sinusoidal signal, but one is mistaken
as this is a sinusoidal signal multiplied by a cosine window represented
mathematically by Section 3.3.

Figure 4.1: Settings for test signal

To showcase how well two different signals work together, the signal on
channels 0 to 7 have been kept the same as in the last example and the
other channels have been fed with one period of a sawtooth signal, as F3
in Section 3.3. The settings can be seen in Figure 4.4, the outputs in Figure
4.5.
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4 Results

Figure 4.2: Resulting signal (multiple pulses)

Figure 4.3: One pulse of the resulting signal
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4 Results

Figure 4.4: Settings for two outputs with different signals

Figure 4.5: Two outputs with different signals
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4 Results

The advantages of windowing the sinusoidal pulse has been explained in
Section 2.1.1. To showcase these advantages of using windowed sinusoidal
pulses, the settings seen in Figure 4.6 have been used. First one can see
the output signal in Figure 4.7. The FFT up to a frequency of 50 MHz has
been computed for this signal in Figure 4.8, and up to 5 MHz in Figure
4.9 as well as up to 1 MHz in Figure 4.10. As a reference the FFT of the
same 5 sinusoidal periods without the window has been plotted as well.
Especially in the Figures showing lower frequencies, one can see that there
are significantly less higher frequency components in the signal, as described
in Section 2.1.1.

Figure 4.6: Settings for five periods of a sinusoidal signal multiplied by one cosine window

Figure 4.7: One pulse of five periods of a sinusoidal signal multiplied by one cosine window
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4 Results

Figure 4.8: FFT of one pulse of five periods of a sinusoidal signal multiplied by one cosine
window in blue and only the same 5 sinusoidal signals without windowing in
red up to 50 MHz

Figure 4.9: FFT of one pulse of five periods of a sinusoidal signal multiplied by one cosine
window in blue and only the same 5 sinusoidal signals without windowing in
red up to 5 MHz
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4 Results

Figure 4.10: FFT of one pulse of five periods of a sinusoidal signal multiplied by one cosine
window in blue and only the same 5 sinusoidal signals without windowing in
red up to 1 MHz
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5 Conclusion

This Master’s Thesis aims to enhance the existing Flowmeter system, gen-
erating custom sinusoidal signals on 16 channels, with the possibility to
generate as many different signal forms as possible for TOF measurement.
This was achieved to the point of two different windows with four different
channels regarding the delay in between the signal pulses.

It can further be said that the implementation of more custom signals using
this method and hardware is not feasible, because the memory cannot be
accessed fast enough, as thoroughly described in 3.3.3.1.

It is now possible to use this device for the further characterization of
and the measurement on the desired application, for example SoH and
SoC measurement of Li-ion batteries within the Mogli project, using the
generation of windowed sine pulses, as seen in Section 4.

The final implementation is capable of generating arbitrary signals theo-
retically up to its clocking signal of 30 MHz, although a signal faster than
300 kHz is not feasible, as there would be less than 100 points per period.
Additionally, a signal as slow as 114.4 Hz is possible due to the limits de-
scribed in Section 3.4.2.3. This theoretical limit has been fully tested down
to 14.6 kHz. The variable’s length defining the pause in between signals is
32 bit, which means that a pause of over 143 s is possible.

Further the project has been packaged and documented thoroughly, hence
the next person working on further improvements can start off with a
substantial baseline and, especially, a virtual machine with everything
installed and working as intended.
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6 Outlook

As in every project there is always the possibility to improve the current state.
In this case one practical addition would be to allow synchronization of the
output signals, such that the phase difference in between different Delay
Generators can be defined. This would significantly improve comparison of
the effects of different signals.

Another improvement could be the implementation of more different output
channels. Currently there are two different signals possible. The way this is
implemented, each of the two different signals are sent to 4 DACs. As time
multiplexing is already implemented in hardware, one can easily modify
the FlowmeterControl application to generate a total of 8 different signals.

To gain even more different outputs, one could cache more data on the
FPGA by for example transferring new data from memory only every second
iteration of the signal.

Currently the transfer of window values from the FlowmeterControl appli-
cation to the FlowmeterServer application is done by separating the values
into individual integers and sending them one by one. The transfer will
be significantly sped up, if all the values are sent together, as an array for
example. To achieve this, a method to serialize arrays would need to be
implemented.

At last one can try to find a way to start and stop the memory transfer
from the PL side, to decrease the minimum pause time, which is caused
because the Delay generator needs to wait for the start of the next pulse, as
described in Section 3.3.4.1.
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6 Outlook
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Acronyms

ADC Analog to Digital Converter. 1, 31, 34, 37

AIT Austrian Institute of Technology. 1

ARM® Advanced Reduced Instruction Set Computer Machine. 7–9, 23

ASIC Application Specific Integrated Circuit. 8

AVL Anstalt für Verbrennungskraftmaschinen List. 1

AXI Advanced eXtensible Interface. 9, 20, 21, 23, 37, 38, 40, 41

CISC Complex Instruction Set Machine. 7

CPLD Complex Programmable Logic Device. 8

CPU Central Processing Unit. 7

DAC Digital to Analog Converter. 1, 31, 34, 37, 39, 40, 42, 44, 59

DMA Direct Memory Access. 10, 20, 23–25, 37, 38, 40, 41, 47, 49

DSP Digital Signal Processor. 7

DTB Device Tree Blob. 36

DTS Device Tree Source. 36

EMS Institute of Electrical Measurements and Sensor Systems. iv, 1

EU European Union. 1

FFG Austrian Research Promotion Agency. iv, 1

FIFO First in First Out. 41

FPGA Field Programmable Gate Array. 2, 8, 9, 47, 59

GCC GNU Compiler Collection. 33

GPIO General Purpose Input/Output. 41, 50

GUI Graphical User Interface. 27, 47

HDF Hardware Description File. 45

I/O Input and/or Output. 8, 9, 30
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Acronyms

IDE Integrated Development Environment. 9, 26

ILA Integrated Logic Analyzer. 20

IP Intellectual Property. 7, 18, 20, 21, 23, 31, 37–39, 41, 42, 44, 50

JSON JavaScript Object Notation. 27

JTAG Joint Test Action Group. 30, 31

Li-ion Lithium Ion. 5, 6, 58

MCU Microcontroller. 7

MM2S Memory to Stream. 24, 39, 40, 50

PCB Printed Circuit Board. 1

PL Programmable Logic. 9, 20, 23, 24, 27, 31, 41, 42, 46, 59

PLD Programmable Logic Device. 8, 9

PS Processing System. 9, 23, 24, 30, 37, 41

RAM Random Access Memory. 7

RISC Reduced Instruction Set Machine. 7, 8

S2MM Stream to Memory. 40

SDK Software Development Kit. 20, 36

SoC State of Charge. 5, 6, 58

SoF State of Fitness. 6

SoH State of Health. 6, 58

SoM System-on-Module. 1, 30

TDK TDK Corporation. 1

TOF Time of Flight. iv, v, 3, 4, 58

TOFD Time of flight diffraction ultrasonics. 4

VHDL Very High Speed Integrated Circuit Hardware Description Language.
iv, v, 18, 20–22, 43, 44

VM Virtual Machine. 46
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