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Abstract 

Since the homogenously spaced grid of the lattice Boltzmann method can be a major draw-

back in fluid simulations, the topic of this work was to implement and validate the functional-

ity of local grid refinement in an existing three-dimensional lattice Boltzmann code running on 

graphics processing units (GPUs). A multi-grid domain, where a fine grid is added in presence 

of a complete coarse grid was chosen. The additional grid is refined with a factor of two. A 

pre-collision grid coupling algorithm is used to the reconstruct the unknown particle distribu-

tion functions at the overlapping interfaces between the grids. For this, a second order accu-

rate compact interpolation of the velocity field is applied. A detailed and illustrated descrip-

tion of the grid coupling and interpolation procedure is given. Further, the implementation is 

described and a simple method for guaranteeing the correct sequencing of grid coupling and 

fluid propagation in case of multiple refinement steps is introduced. The new feature is ap-

plied to laminar flow in a cylindrical tube and the results are compared to the analytical solu-

tion of the Navier-Stokes equations. Further, the agitator of stirred tank bioreactors is refined 

to observe the algorithms behavior in turbulent flows. The obtained results satisfyingly repro-

duce the velocity in laminar as well as in turbulent regimes and an accurate pressure drop can 

be obtained for Hagen-Poiseuille flow. However, for stirred tanks an increase in total mass 

over time is observed which raises the need for further investigations.  
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Kurzfassung 

Da das gleichmäßig geteilte Gitter der Lattice-Boltzmann-Methode ein Nachteil bei Strö-

mungssimulationen sein kann, war das Thema dieser Arbeit, die Möglichkeit der lokalen Git-

terverfeinerung in einen bestehenden, dreidimensionalen, auf Grafikprozessoren rechnenden 

Lattice-Boltzmann-Code zu implementieren und zu validieren. Es wurde ein multi-grid Ansatz 

gewählt, in der ein doppelt so feines Gitter zusätzlich zu einem vollständigen, lückenlosen gro-

ben Gitter verwendet wird. Ein Algorithmus zur Kopplung der Gitter vor dem Collision-Step 

wird verwendet, um die unbekannten Partikel-Verteilungsfunktionen an den sich überlappen-

den Grenzflächen der Gitter zu rekonstruieren. Dazu wird eine lokale Methode zur Interpola-

tion des Geschwindigkeitsfeldes angewendet. Das Verfahren zur Gitterkopplung und Interpo-

lation wird dargelegt. Ebenso wird die praktische Umsetzung beschrieben und eine einfache 

Methode zur Gewährleistung der korrekten Abfolge von Gitterkopplung und Fluidberechnung 

bei Verwendung von mehreren Verfeinerungsstufen vorgestellt. Die neue Funktion wird bei 

der Berechnung einer laminaren Strömung in einem zylindrischen Rohr angewendet und die 

Ergebnisse werden mit der analytischen Lösung der Navier-Stokes-Gleichungen verglichen. 

Zudem wird der Rührer eines Bioreaktoren höher aufgelöst, um das Verhalten der Algorith-

men in turbulenten Strömungen zu beobachten. Die gewonnenen Ergebnisse zeigen, dass die 

Geschwindigkeit, sowohl im laminaren als auch im turbulenten Regime, zufriedenstellend re-

produziert wird und ebenso, ein ausreichend genauer Druckabfall für die Hagen-Poiseuille 

Strömung ermittelt werden kann. Im Fall von gerührten Kesseln wird jedoch eine Zunahme 

der Gesamtmasse über die Zeit beobachtet, was eine tiefgehende Untersuchung des Algorith-

mus notwendig macht. 
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1 Introduction 1 

1 Introduction 

The global market of biopharmaceutical medicines has evolved enormously over the past 

three decades. As a survey [1] among 222 biopharmaceutical decision makers across 22 coun-

tries illustrated, the annual revenue increased from $4.4 billion in 1990 to $275 billion in 2018. 

In comparison to the overall market of pharmaceuticals, biopharmaceuticals – also named 

biologics – held more than 25% of market share in 2018. This reveals the importance of bio-

pharmaceutical sector and its persistent growth. [2] 

Furthermore, biosimilars and biogenerics which are the biopharmaceutical version of gener-

ics, recently began to conquer the market leading to harsh competition among the biophar-

maceutical players. The presence of biosimilars opens the market to emerging companies and 

developing regions which suffer from know-how deficit. As a consequence, efficiency and 

productivity in manufacturing are issues with high degree of importance for many. [2] 

A powerful method to gain insight into the production process and, therefore, be able to in-

crease efficiency and productivity is to simulate underlying physical and biological mecha-

nisms. The Institute of Process and Particle Engineering of Graz University of Technology has 

developed a tool which is able to simulate the fluid dynamics inside a stirred tank reactor. 

Furthermore, temperature, oxygen, carbon dioxide and substrate distribution and transport 

as well as bubble and species movement can be computed. In addition, several biomodels are 

implemented. Using this approach, valuable information can be generated regarding scale-up, 

gas flow rates, shear rates, dead zones, oxygen mass transfer coefficient and many more.  

The challenging task of calculating the fluid dynamics is done with the lattice Boltzmann 

method which will be outlined in section 2.1. This method is attracting attention in the field 

of computational fluid dynamics since many years, due its rather simple implementation and 

its parallelizability. As a consequence, computation can be performed using general purpose 

graphics processing units (GPGPU) which are favorable due to their high performance-to-price 

ratio. 

This thesis gives an overview of the necessary fundamental theories in chapter 2. It contains 

a short introduction into the kinetic theory, a summary of the lattice Boltzmann method and 

the used boundary conditions and ends with an outline of the characteristics of GPU compu-

ting. Chapter 3 is focusing on the theory of local grid refinement. Different methods of mesh 
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arrangements are explained as well as the need for lattice conversion between grids with dif-

ferent lattice spacing. Further, the grid coupling algorithm is illustrated in detail. In chapter 4 

the LBM code is presented and the required functions to implement grid refinement are de-

scribed. The method is validated by the comparison of simulation results with reference sim-

ulations and the analytical solution of the Navier-Stokes equation for the Hagen-Poiseuille 

flow. The outcome is presented and discussed in chapter 5. In chapter 6 the thesis and its key 

findings are summarized. 

 

1.1 Motivation 

One major drawback of the original formulation of the lattice Boltzmann method compared 

to conventional computational fluid dynamic methods is the limitation to homogeneous quad-

ratic (in 2 dimensions) or cubic grids (in 3 dimensions). In order to obtain a solution with sat-

isfactory accuracy, it is necessary to choose a sufficiently fine grid. A finer grid in this context 

refers to a shorter distance between adjacent grid nodes than in a coarser grid. However, the 

finer the grid, the higher are the computational resources and time needed. Furthermore, in 

irregular problems only certain regions of the flow field are crucial and need a high resolution. 

Therefore, applying a fine grid to the whole system is unfavorable. 

In the case of bio reactors, the simulation must provide all required internals like stirrer, heat 

exchanger, sensors, gas spargers, baffles and further with all flow relevant details. For in-

stance, in large biogas digesters or fermentation tanks, to save head space, small side entering 

stirrers are mounted. As the tank-to-impeller ratio is quite high in these cases, a satisfying 

resolution of the agitator requires an immensely high number of computational cells to display 

the whole tank which makes the computational costs unnecessarily high.  

This generates the need for a local grid refinement in lattice Boltzmann simulations. As a re-

sult, it is then possible to refine the grid in a user defined region, for instance around the 

stirrer, and therefore, be able to execute the simulation using less memory and computational 

time compared to the case of refining the whole domain. 
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2 Theoretical Background 

In the calculation of fluid dynamics, distinctions can be made between different length and 

time scales. Each of these scales corresponds to an individual approach with its own funda-

mental equations for the calculation of fluid dynamics. On the microscopic scale, it is based 

on the fact, that a fluid is composed of a huge number of small particles which interact with 

each other. The prevailing measures are the size of an atom or molecule and the duration of 

the collision between two or more particles. In this case, Newton’s dynamics apply and parti-

cle-based simulations like molecular dynamics are done. On the opposite, there is the macro-

scopic approach where the scale of gradients of fluid properties is decisive and relevant time 

scales are given by diffusion or advection. Following this approach, the fluid continuum is de-

scribed by the Navier-Stokes equations (NSE) and conventional computational fluid dynamics 

(CFD) methods are applied, where macroscopic variables like velocity and pressure are calcu-

lated in various points in the domain. Between the microscopic and the macroscopic scale one 

can determine a so-called mesoscopic scale which is neither considering each particle on its 

own nor treating the fluid as a continuum. Rather, it describes the distribution of particles in 

a fluid. The mean free path of the particles defines the length scale and, consequently, the 

time between two successive collision events is a measure for time scale. Kinetic theory is 

utilized at mesoscopic scale and frames the fundament of lattice Boltzmann method (LBM). 

[3, pp. 11-13], [4, pp. 2-3] 

The prediction of fluid dynamics with molecular dynamics simulations is limited to systems 

with manageable number of particles and conventional CFD methods, although very powerful, 

are complex and sensitive to instabilities. On the contrary, LBM, as it is only tracking distribu-

tion functions instead of single particles, can cope with much bigger systems while being easy 

to implement. It reproduces mass conservative flows in complex boundaries as well as multi-

phase or multi component flow. Furthermore, a wide range of boundary conditions for all kind 

of problems have been developed. [3, pp. 53-56] 
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2.1 Lattice Boltzmann Method 

2.1.1 Kinetic Theory 

A fundamental term in kinetic theory is the particle distribution function 𝑓(𝑥, 𝜉, 𝑡), also named 

particle population in some references. It represents the density of mass, more precisely den-

sity of fluid particles, at position 𝑥 and time 𝑡 with microscopic velocity 𝜉.  

 𝑓 [𝑘𝑔 ∙
1

𝑚3
∙

1

(
𝑚

𝑠
)
3] ( 2-1 ) 

As a consequence of this, the macroscopic velocity 𝑢𝛼(𝑥, 𝑡) and density 𝜌(𝑥, 𝑡) are obtained 

by the zeroth and first moment of the particle distribution function. [3, pp. 16-17] 

 𝛱0 = ∫𝑓(𝑥, 𝜉, 𝑡)𝑑
3𝜉 = 𝜌(𝑥, 𝑡) ( 2-2 ) 

 𝛱α = ∫𝜉𝛼𝑓(𝑥, 𝜉, 𝑡)𝑑
3𝜉 = 𝜌(𝑥, 𝑡)𝑢𝛼(𝑥, 𝑡) ( 2-3 ) 

The index 𝛼 characterizes one element of a vector and therefore, one spatial direction. An-

other important relation is the behavior of the particle distribution function over time.  

 
𝑑𝑓

𝑑𝑡
= (

𝜕𝑓

𝜕𝑡
)
𝑑𝑡

𝑑𝑡
+ (

𝜕𝑓

𝜕𝑥𝛼
)
𝑑𝑥𝛼

𝑑𝑡
+ (

𝜕𝑓

𝜕𝜉𝛼
)
𝑑𝜉𝛼

𝑑𝑡
 ( 2-4 ) 

The derivative of 𝑥 over time can be expressed as velocity 
𝑑𝑥𝛼

𝑑𝑡
= 𝜉𝛼 and from Newton’s second 

law it is known that acceleration is equal to external forces divided by mass or body force 

density divided by density  
𝑑𝜉𝛼

𝑑𝑡
=
𝐹𝛼

𝜌
. 

In addition, the total differential 
𝑑𝑓

𝑑𝑡
 is expressed as 𝛺 which is known as the collision operator. 

Inserting them into equation 2-4, the Boltzmann equation is finally obtained. 

 

 𝛺(𝑓) =
𝜕𝑓

𝜕𝑡
+ 𝜉𝛼

𝜕𝑓

𝜕𝑥𝛼
+
𝐹𝛼

𝜌

𝜕𝑓

𝜕𝜉𝛼
 ( 2-5 ) 

It can be seen that equation 2-5 resembles an advection equation. The collision operator on 

the left is considered as source term, while the first two terms on the right are the advection 

terms. The third term represents the external forces acting on the fluid, which will be consid-

ered to be zero. [3, p. 21] 
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The question is how to obtain this source term. Since particle collision effects are very complex 

to reproduce, there is the need for an approximation which conserves in mass and momen-

tum, represents the influence of particle collisions sufficiently but still is not overly complex 

to implement. In literature, multiple approaches for approximating 𝛺(𝑓) exist but the most 

widely used is the one introduced by Bhatnagar, Gross and Krook (BGK), which satisfies all 

requirements listed. [4, pp. 17-18], [5] 

 𝛺(𝑓) = −
1

𝜏
(𝑓 − 𝑓𝑒𝑞⏟    

𝑓𝑛𝑒𝑞

) ( 2-6 ) 

In the BGK collision operator 𝜏 is meant to be the relaxation time or relaxation factor, 𝑓𝑒𝑞 is 

the equilibrium distribution function and 𝑓𝑛𝑒𝑞 is the non-equilibrium distribution function 

which will be explained in depth later on. If equation 2-6 is combined with equation 2-5, an 

approximation of the Boltzmann equation is found. 

 
𝜕𝑓

𝜕𝑡
+ 𝜉𝛼

𝜕𝑓

𝜕𝑥𝛼
= −

1

𝜏
(𝑓 − 𝑓𝑒𝑞) ( 2-7 ) 

If a force-free, homogeneous system in steady state is considered, the advection terms of 

equation 2-7 vanish and the particle distribution function becomes the equilibrium distribu-

tion function. Therefore, whenever a system is left alone for long enough, it will reach equi-

librium. [3, p. 64] 

This equilibrium state is described by the Maxwell-Boltzmann distribution and is dependent 

on the temperature 𝑇, the ideal gas constant 𝑅𝑔 and the relative velocity 𝜐 which is the differ-

ence of the microscopic 𝜉 and macroscopic 𝑢 velocity. [3, pp. 18-20] 

 𝜐(𝑥, 𝑡) = 𝜉(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) ( 2-8 ) 

 𝑓𝑒𝑞(𝑥, |𝜐|, 𝑡) = 𝜌 (
1

2𝜋𝑅𝑔𝑇
)

3

2

𝑒

−|𝜐|2

2𝑅𝑔𝑇  ( 2-9 ) 

Viggen [6, pp. 59-61] showed, that by taking the zeroth and the first moment of the Boltzmann 

equation 2-5, the continuity equation and the Cauchy momentum equation can be obtained. 

Some useful correlations which emerge from these derivations will be outlined in the follow-

ing paragraphs. 

The zeroth moment is received by integrating the Boltzmann equation over velocity space. 

 ∫𝛺(𝑓)𝑑3𝜉 =
𝜕

𝜕𝑡
∫𝑓𝑑3𝜉 +

𝜕

𝜕𝑥𝛼
∫ 𝑓 𝜉𝛼𝑑

3𝜉 +
𝐹𝛼

𝜌
∫
𝜕𝑓

𝜕𝜉𝛼
𝑑3𝜉 ( 2-10 ) 
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Since the collision is required to conserve mass and momentum, the zeroth and first moment 

of the collision operator needs to be zero. 

 ∫𝛺(𝑓)𝑑3𝜉 = 0 ( 2-11 ) 

 ∫ 𝜉𝛼𝛺(𝑓)𝑑
3𝜉 = 0 ( 2-12 ) 

From equations 2-2 and 2-3, the zeroth and first moment of the distribution function are 

known. The zeroth moment of the force term as derived by Viggen [6, p. 60] equals zero. As a 

consequence, equation 2-10 can be converted in the continuity equation 2-13. 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝛼)

𝜕𝑥𝛼
= 0 ( 2-13 ) 

The first moment of the Boltzmann equation is computed by multiplication with the micro-

scopic velocity 𝜉𝛼 and subsequent integration over velocity space. 

 ∫ 𝜉𝛼𝛺(𝑓)𝑑
3𝜉 =

𝜕

𝜕𝑡
∫ 𝜉𝛼𝑓 𝑑

3𝜉 +
𝜕

𝜕𝑥𝛽
∫ 𝜉𝛼𝜉𝛽𝑓 𝑑

3𝜉 +
𝐹𝛽

𝜌
∫ 𝜉𝛼

𝜕𝑓

𝜕𝜉𝛽
𝑑3𝜉 ( 2-14 ) 

The collision term can be set to zero using equation 2-12 and the first term on the right is 

known from equation 2-3. The last two expressions can be evaluated as demonstrated by Vig-

gen [6, p. 60] who determined the first moment of the force term by multidimensional inte-

gration by parts. 

 ∫ 𝜉𝛼
𝜕𝑓

𝜕𝜉𝛽
𝑑3𝜉 = −𝜌𝛿𝛼𝛽 ( 2-15 ) 

The second term on the right of equation 2-14, contains the second moment of the distribu-

tion function 𝛱𝛼𝛽, which can be rewritten using the definition of the relative velocity from 

equation 2-8. 

∫ 𝜉𝛼𝜉𝛽𝑓 𝑑
3𝜉 = ∫(𝑢𝛼 + 𝜐𝛼)(𝑢𝛽 + 𝜐𝛽)𝑓 𝑑

3𝜉 = ∫(𝑢𝛼𝑢𝛽 + 𝑢𝛼𝜐𝛽 + 𝑢𝛽𝜐𝛼 + 𝜐𝛼𝜐𝛽)𝑓 𝑑
3𝜉 ( 2-16 ) 

Since the integral of the relative velocity multiplied by the particle distribution function must 

be zero to hold equation 2-3, the second moment of the distribution is expressed as in equa-

tion 2-18. 

 ∫ 𝜐𝛼𝑓 𝑑
3𝜉 = 0 ( 2-17 ) 

 𝛱𝛼𝛽 = ∫𝜉𝛼𝜉𝛽𝑓 𝑑
3𝜉 = 𝜌𝑢𝛼𝑢𝛽 + ∫𝜐𝛼𝜐𝛽𝑓 𝑑

3𝜉 ( 2-18 ) 

𝛱𝛼𝛽 which is also known as the momentum flux tensor, is composed by the macroscopic flow 

of momentum 𝜌𝑢𝛼𝑢𝛽  and the diffusion of momentum or total stress tensor 𝜎𝛼𝛽. 
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 𝜎𝛼𝛽 = −∫𝜐𝛼𝜐𝛽𝑓 𝑑
3𝜉 ( 2-19 ) 

This total stress is summarizing the viscous stresses 𝜎𝛼𝛽
′  and the pressure 𝑝:  

 𝜎𝛼𝛽 = 𝜎𝛼𝛽
′ − 𝑝𝛿𝛼𝛽 ( 2-20 ) 

Considering the previous correlations, from the first moment of the Boltzmann equation, the 

Cauchy momentum equation can be obtained. [6, pp. 59-61] 

 
𝜕(𝜌𝑢𝛼)

𝜕𝑡
+
𝜕(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥𝛽
=
𝜕𝜎𝛼𝛽

𝜕𝑥𝛽
+ 𝐹𝛼 ( 2-21 ) 

 

2.1.2 Discretization in Space, Time and Velocity-Space 

In chapter 2.1.1 all formulae have been treated from a continuous point of view. In LBM the 

domain is divided into a uniform cubic grid and the equations need to be solved at each grid 

node. The focus now will be switched to a discretized approach.  

The LBM can be applied in one, two or three dimensions. Dependent on that, the lattice ar-

rangement and number of discrete particle distribution functions varies. Although, there ex-

ists a great diversity of lattice arrangements, some are more widely employed. For the one-

dimensional case, displayed in Fig. 2-1, the D1Q3 scheme is normally used. DdQq is a common 

naming convention for lattice arrangements in LBM, where d gives dimensions and q the num-

ber of distribution functions used. For the one-dimensional (1D) case, looking at the node in 

the middle, particles are able to stream to the right (1), to the left (2) or rest (0). Therefore, 

three distribution functions are needed to describe the behavior of the fluid. The movement 

of the particles, with a discrete microscopic velocity 𝑐𝑖, takes ∆𝑡 time for a distance ∆𝑥 be-

tween two neighboring nodes. [3, pp. 86-87] 

 

 

 Fig. 2-1: The lattice arrangement for the D1Q3 scheme 
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The D2Q9 scheme is presented in Fig. 2-2 which is most popular in two-dimension (2D). This 

work deals with the D3Q19 lattice, illustrated in Fig. 2-3. In this case, 18 values give the distri-

bution functions of particles which propagate from the initial node to their neighbors and one 

describes the resting state.  

  

  

Microscopic velocities 𝑐𝑖 are listed in Tab. 2-1 and are also called lattice vectors because they 

describe exactly the length and direction of the vectors shown in Fig. 2-3. Furthermore, in Tab. 

2-1 the weighting factors 𝑤𝑖 for each distribution function can be found. These weights origi-

nate from the discretization of the equilibrium distribution function, which will not be covered 

in this work and can be found in the book of Krüger et al. [3, pp. 74-83]. 

Tab. 2-1: The D3Q19 velocity set [3, p. 89] 

  𝑖 0 1 2 3 4 5 6    

  𝑐𝑖  (
0
0
0
) (

1
0
0
) (

−1
0
0
) (

0
1
0
) (

0
−1
0
) (

0
0
1
) (

0
1
−1
)    

  𝑤𝑖 
1

3
 

1

18
 

1

18
 

1

18
 

1

18
 

1

18
 

1

18
    

𝑖 7 8 9 10 11 12 13 14 15 16 17 18 

𝑐𝑖  (
1
1
0
) (

−1
−1
0
) (

1
−1
0
) (

−1
1
0
) (

1
0
1
) (

−1
0
−1
) (

1
0
−1
) (

−1
0
1
) (

0
1
1
) (

0
−1
−1
) (

0
1
−1
) (

0
−1
1
) 

𝑤𝑖 
1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

1

36
 

Fig. 2-3: Lattice arrangement for the D3Q19 

scheme 

Fig. 2-2: Lattice arrangement for the 

D2Q9 scheme 
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Together with the velocity set given in Tab. 2-1, all necessary parameters are present to cal-

culate the discrete equilibrium distribution function 𝑓𝑖
𝑒𝑞 which is given in its standard form in 

equation 2-22.  

 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) = 𝑤𝑖𝜌 ∙ (1 +

𝑢∙𝑐𝑖

𝑐𝑠
2 +

(𝑢∙𝑐𝑖)
2

2𝑐𝑠
4 −

𝑢∙𝑢

2𝑐𝑠
2) ( 2-22 ) 

𝑐𝑠 is the speed of sound which will be explained in section 2.1.3. The implemented equilibrium 

function in equation 2-26 and subsequently, all correlated formulas in this work differ from 

the standard form of the equation in two points. First, the incompressible form of the LBM 

introduced by He and Luo [7] is utilized, which is given in 2-23. 

 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) = 𝑤𝑖𝜌 + 𝑤𝑖𝜌0 ∙ (

𝑢∙𝑐𝑖

𝑐𝑠
2 +

(𝑢∙𝑐𝑖)
2

2𝑐𝑠
4 −

𝑢∙𝑢

2𝑐𝑠
2) ( 2-23 ) 

The constant macroscopic fluid density 𝜌0, is given by an input variable. The second deviation 

from the standard formulation is done to decrease round off errors. By subtracting the term 

𝑤𝑖𝜌0 from the distribution functions 𝑓𝑖  and the equilibrium distribution functions 𝑓𝑖
𝑒𝑞, their 

values get closer to the value of the non-equilibrium distribution function 𝑓𝑖
𝑛𝑒𝑞. To distinguish 

between the original distribution function and the distribution function from Valderhaug [8, 

p. 31], ℎ𝑖  is introduced as in equation 2-24.  

 ℎ𝑖 = 𝑓𝑖 − 𝑤𝑖𝜌0;      ℎ𝑖
𝑒𝑞 = 𝑓𝑖

𝑒𝑞 −𝑤𝑖𝜌0;      ℎ𝑖
𝑛𝑒𝑞 = 𝑓𝑖

𝑛𝑒𝑞; ( 2-24 ) 

From equation 2-24, the equilibrium distribution function can be derived as in equation 2-26. 

For that reason, the local deviation of the density ∆𝜌, given in equation 2-25, is introduced. 

 ∆𝜌 = 𝜌 − 𝜌0 ( 2-25 ) 

 ℎ𝑖
𝑒𝑞(𝑥, 𝑡) = 𝑤𝑖∆𝜌 + 𝑤𝑖𝜌0 ∙ (

𝑢∙𝑐𝑖

𝑐𝑠
2 +

(𝑢∙𝑐𝑖)
2

2𝑐𝑠
4 −

𝑢∙𝑢

2𝑐𝑠
2) ( 2-26 ) 

The last equation which needs to be discretized is the lattice Boltzmann equation. Since it is 

approximated with the BGK collision operator, it is known as lattice Bhatnagar, Gross and 

Krook (LBGK) equation. [3, p. 65] 

 𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥, 𝑡) −
∆𝑡

𝜏
(𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)) ( 2-27 ) 

By utilizing the distribution functions from Valderhaug [8, p. 31], the LBGK equation can be 

rewritten as in equation 2-28. 

 ℎ𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = ℎ𝑖(𝑥, 𝑡) −
∆𝑡

𝜏
(ℎ𝑖(𝑥, 𝑡) − ℎ𝑖

𝑒𝑞(𝑥, 𝑡)) ( 2-28 ) 
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2.1.3 Dimensionless Quantities and Lattice Units  

From a scientific perspective it is usually favorable to deal with dimensionless quantities to be 

able to compare and categorize different systems. The Reynolds number 𝑅𝑒 is one of the most 

important dimensionless quantities in fluid dynamics. It is giving the flow regime by laying out 

the proportion of inertial to viscous forces.  

 𝑅𝑒 =
𝑢∙𝑙𝑐

𝜈
 ( 2-29 ) 

Due to the fact that the LBM is only valid for incompressible fluids, the Mach number 𝑀𝑎 plays 

a crucial role. A fluid can be seen as incompressible with 𝑀𝑎 ≤ 0.1.  

 𝑀𝑎 =
𝑢

𝑐𝑠
 ( 2-30 ) 

Likewise, the Knudsen number 𝐾𝑛, which is the ratio between the mean free path 𝑙𝑚𝑓𝑝 of the 

molecules of the fluid and the characteristic length 𝑙𝑐, needs to be much smaller than unity to 

guarantee the validity of the Navier-Stokes equations. [3, pp. 13-14] 

 𝐾𝑛 =
𝑙𝑚𝑓𝑝

𝑙𝑐
 ( 2-31 ) 

A further common practice is to convert all physical quantities of a system to non-dimensional 

lattice units and afterwards, reconvert the results into physical units. The nondimensionaliza-

tion is done by dividing the physical units by factors of the same units. [3, p. 266] As an exam-

ple, a length in physical units 𝑥 is divided by the conversion factor of length ∆𝑥 to obtain the 

length in lattice units 𝑥̃. In the following sections quantities in lattice unis will always be given 

with a tilde like 𝑎̃, all quantities written without tilde are given in physical units. 

 𝑥̃ =
𝑥

∆𝑥
 ( 2-32 ) 

There are various possibilities to define these so-called correction factors of length ∆𝑥, time 

∆𝑡 and mass ∆𝑚. In this work, the conversion factor of length is obtained by the ratio of the 

length of the simulation domain in x-direction 𝑙𝑥 and the number of nodes in x direction 𝑁𝑥. 

 ∆𝑥 =
𝑙𝑥

𝑁𝑥
 ( 2-33 ) 

There exist two prevailing scaling methods for correlating time and space discretization. The 

convective, in some works also known as acoustic, scaling relates the time proportional to the 

space ∆𝑡~∆𝑥 and the diffusive scaling states the time proportional to the space squared 

∆𝑡~∆𝑥2 [9]. As it can be seen in equation 2-34, in this work the convective scaling is used. 
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As Krüger et al. [3, p. 278] determined a limit of the maximum velocity in lattice units 

𝑢̃𝑚𝑎𝑥 < 0.1 to obtain sufficient accuracy, the input velocity in lattice units 𝑢̃𝑖𝑛 is fixed to 0.05 

and used in the calculation of the temporal conversion factor. 

 ∆𝑡 =
𝑢𝑖𝑛

𝑢𝑖𝑛
∙ ∆𝑥 ( 2-34 ) 

Likewise, the density in lattice units 𝜌̃0 is set to a constant value. Since ∆𝑚 is not influencing 

the other conversion factors, the choice of 𝜌̃0 is not limited by any rules for accuracy, efficiency 

or stability. Krüger et al. [3, p. 280] recommend to choose unity. The mass conversion factor 

is computed as in equation 2-35. 

 ∆𝑚 =
𝜌0

𝜌̃0
∙ ∆𝑥3 ( 2-35 ) 

The speed of sound in lattice units is a constant value, depending on the used velocity set. For 

the D2Q9 and the D3Q19 it is given as in 2-36. 

 𝑐𝑠̃ = √
1

3
 ( 2-36 ) 

 

2.1.4 The Lattice Boltzmann Algorithm 

The lattice Boltzmann algorithm is supremely simple for force-free, single phase, single com-

ponent systems without thermal transport. The more the complexity of the system to com-

pute increases, the higher the complexity of the algorithm gets. For that reason, in this work 

only the basic LBM algorithm is applied. The very principle consists of sequenced collision and 

streaming events at every node of the domain as shown in Fig. 2-4 which follow the principles 

of kinetic theory and, therefore, are able to reproduce the required velocity field. Although 

the implementation is done using the D3Q19 scheme, the figures in this and the subsequent 

chapter are based on the two-dimensional D2Q9, as the underlying mechanisms are the same.  
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At first, the macroscopic density 𝜌 and the macroscopic velocity 𝑢𝛼 are calculated from the 

zeroth and first moment of the distribution functions ℎ𝑖. In the standard formulation of the 

LBM, the total density 𝜌 would appear in equation 2-37 and equation 2-38. However, due to 

the adaption of the LBM mentioned in section 2.1.2, the macroscopic values are obtained us-

ing the constant fluid density 𝜌0 and its local deviation ∆𝜌. 

 ∆𝜌(𝑥, 𝑡) = ∑ ℎ𝑖(𝑥, 𝑡)𝑖  ( 2-37 ) 

 𝜌0(𝑥, 𝑡)𝑢𝛼(𝑥, 𝑡) = ∑ 𝑐𝑖𝛼ℎ𝑖(𝑥, 𝑡)𝑖  ( 2-38 ) 

 𝜌 = ∆𝜌 + 𝜌0 ( 2-39 ) 

All equilibrium distribution functions ℎ𝑖
𝑒𝑞

 are calculated as in equation 2-26, then the collision 

step is executed. The post collision distribution functions ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙 are obtained by applying 

the LBGK as it is presented in equation 2-40.  

 ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙(𝑥, 𝑡) = ℎ𝑖

𝑝𝑟𝑒−𝑐𝑜𝑙𝑙(𝑥, 𝑡) −
∆𝑡

𝜏
(ℎ𝑖
𝑝𝑟𝑒−𝑐𝑜𝑙𝑙(𝑥, 𝑡) − ℎ𝑖

𝑒𝑞(𝑥, 𝑡)) ( 2-40 ) 

In the subsequent streaming step, the post-collision distribution functions ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙 are prop-

agated to their neighboring nodes according to their velocity vectors 𝑐𝑖. 

 ℎ𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙(𝑥, 𝑡) ( 2-41 ) 

The next step is to apply boundary conditions to the system, in order to constrain the domain 

and define certain properties at these constraints. Depending on the kind of boundary condi-

tion, this is either done in a separate procedure or concurrent with the streaming. Several 

possible boundary conditions are explained in section 2.1.5.  

Finally, the internal time 𝑡 is propagated by ∆𝑡 and the procedure is repeated. [3, p. 67] 

Fig. 2-4: Illustration of particle displacement following the “collide and stream” concept 
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2.1.5 Boundary Conditions 

For the lattice Boltzmann method, a variety of boundary conditions has been developed in 

order to tackle all kind of challenges. The following section will explain those which were used 

in the simulation for the validation of this project. 

The simulation domain is always of rectangular shape, no matter whether a cylindrical or cu-

boidal reactor is simulated. To define the geometry, during the initialization procedure bound-

ary conditions are assigned to certain nodes. For instance, all nodes which lie outside a certain 

radius are marked as solid to obtain a cylindric reactor wall and, therefore, do not need to be 

considered in the fluid calculation. 

 

2.1.5.1 Mid-Grid Bounce Back Boundary Condition 

For all solid and resting walls, the mid-grid bounce back scheme is used. As its name already 

reveals, the actual boundary is placed exactly between a node marked as liquid and a node 

marked as solid. During the streaming step, particles collide with the wall and bounce back 

with inversed velocity vectors as it can be seen in Fig. 2-5. This ensures a “no-slip boundary 

condition with zero velocity at the wall” [10, p. 31] which signifies that the tangential velocity 

at the boundary equals zero. In terms of distribution functions this means that the values of 

all post collision distribution functions ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙 of boundary nodes in the liquid 𝑥𝑏 which 

would end up at a solid node after streaming are assigned to their subtend distribution func-

tions ℎ𝑖̅(𝑥𝑏 , 𝑡 + ∆𝑡). 

 ℎ𝑖̅(𝑥𝑏 , 𝑡 + ∆𝑡) = ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙(𝑥𝑏 , 𝑡) ( 2-42 ) 

In equation 2-42 the index 𝑖 ̅stands for the subtend particle distribution of 𝑖. 𝑐𝑖̅ = −𝑐𝑖 [10, p. 

31] 

 

 

 

 
Fig. 2-5: Schematic representation of the mid-grid bounce back 
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2.1.5.2 Free Slip Boundary Condition 

For the boundary between liquid and gas at the head of the stirred tank a free slip boundary 

condition is applied. This implies that the velocity, orthogonal to the surface is zero and at the 

same time no restrictions on the tangential velocity are made. During advection, particles 

move from their node of origin to the surface where they are reflected specularly and end up 

at their next neighboring node as it can be seen in Fig. 2-6. The bounce is considered purely 

elastic and therefore, the magnitude of velocity is not changed.  

 ℎ𝑗(𝑥𝑏 + 𝑐𝑗,𝑡∆𝑡, 𝑡 + ∆𝑡) = ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙(𝑥𝑏 , 𝑡) ( 2-43 ) 

However, in the resulting velocity vector 𝑐𝑗 the orthogonal velocity component is reversed 

from 𝑐𝑖, as it is done in 2-44 and the tangential components are the same. [3, p. 207] 

 𝑐𝑗,𝑛 = −𝑐𝑖,𝑛 ( 2-44 ) 

 

 

 

 

 

2.1.5.3 Moving Wall Boundary Condition 

In the case of moving components such as stirrer blades, momentum is transferred to the 

fluid. Lallemand and Luo [11] proposed a quite complex interpolation scheme for a moving 

wall at an arbitrary position. They furthermore showed that treating the nodes associated to 

the stirrer blades such as those of the fluid leads to satisfying results either while being easy 

to implement. This means that streaming and collision events are performed at a constant 

velocity of predefined value 𝑢𝑤.  

In practice, the equilibrium distribution functions ℎ𝑖
𝑒𝑞 of the stirrer nodes are computed by 

using the wall velocity 𝑢𝑤 and the local pre-collision density 𝜌𝑏. Thereupon, the velocity dis-

tributions are relaxed to this equilibrium functions during collision. 

 ℎ𝑖
𝑒𝑞(𝑥𝑏, 𝑡) = ℎ𝑖

𝑒𝑞(𝜌𝑏 , 𝑢𝑤) ( 2-45 ) 

Fig. 2-6: Schematic representation of the free slip boundary condition 
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2.1.5.4 Modified Bounce Back Velocity Boundary 

To be able to simulate pipe flow, boundary flow conditions based on the concept of bounce 

back, as described in section 2.1.5.1, were chosen, since they are very simple but lead to suf-

ficient results. To establish a Dirichlet condition for a wall velocity 𝑢𝑤, the second term on the 

right of equation 2-46 is subtracted from the reflected velocity distribution. For the density at 

the wall 𝜌𝑤, the local fluid density 𝜌𝑏 at the boundary node 𝑥𝑏 is chosen. Again, the boundary 

is set to be 
∆𝑥

2
 away from the boundary node. [3, p. 200] 

 ℎ𝑖̅(𝑥𝑏 , 𝑡 + ∆𝑡) = ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙(𝑥, 𝑡) − 2𝑤𝑖𝜌𝑤

𝑐𝑖𝑢𝑤

𝑐𝑠
2  ( 2-46 ) 

 

2.1.5.5 Anti-Bounce Back Pressure Boundary 

The pressure outlet at the end of the pipe is performed by a so-called anti-bounce back. Just 

as in the other bounce back based boundary conditions, the surface is displaced by 
∆𝑥

2
 from 

the boundary node 𝑥𝑏. The “anti” origins from the reversed sign of the post collision distribu-

tion function ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙. The required pressure at the outlet is imposed by 𝜌𝑤 since 𝑝 = 𝜌 ∙ 𝑐𝑠

2, 

as it will be illustrated in section 2.1.6. However, no information about the velocity at the 

outlet is known. Therefore, the known velocities at the boundary and its subsequent inward 

node are extrapolated, as shown in equation 2-48. [3, p. 200] 

ℎ𝑖̅(𝑥𝑏 , 𝑡 + ∆𝑡) = −ℎ𝑖
𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙(𝑥𝑏, 𝑡) − 2𝑤𝑖𝜌0 + 2𝑤𝑖𝜌𝑤 + 2𝑤𝑖𝜌0 [1 +

(𝑐𝑖𝑢𝑤)
2

2𝑐𝑠
4 −

𝑢𝑤
2

2𝑐𝑠
2] ( 2-47 ) 

 𝑢𝑤 = 𝑢(𝑥𝑏) +
1

2
[𝑢(𝑥𝑏) − 𝑢(𝑥𝑏 + 1)] ( 2-48 ) 

 

2.1.5.6 Absorbing Layer 

In the simulation of pipe flow, pressure waves are induced into the system due to the reflect-

ing nature of the boundary flow conditions. This effect immensely increases the required time 

to reach a steady state. A simple counteraction is to insert an absorbing or “sponge” layer in 

front of the outlet which absorbs the pressure waves instead of reflecting them. The absorbing 

behavior is achieved by artificially increasing the viscosity to a very high value as proposed by 

Vergnault et al. [12]. In this approach, the relaxation factor 𝜏 is manipulated to change as a 

quadratic function of the normalized length of the absorbing layer 𝑑. This can be done as the 

relaxation factor 𝜏 is according to equation 2-76 directly influencing the viscosity of the sys-

tem. 
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 𝜏 =
3𝜈+0.5

1−0.999𝑑2
 𝑓𝑜𝑟 𝑑 ≤ 1 ( 2-49 ) 

 𝜏 =
3𝜈+0.5

0.001
 𝑓𝑜𝑟 𝑑 > 1 ( 2-50 ) 

Increasing the relaxation factor, as it is done in this simple approximation, leads to non-phys-

ical results in the absorbing layer. A method for initializing the system which can prevent the 

pressure waves and accelerate convergence has yet to be developed. 

2.1.6 Macroscopic Moments 

As outlined in section 2.1.4, the macroscopic variables of density 𝜌 and velocity 𝑢𝛼 can be 

calculated from the first two moments 𝛱0 and 𝛱𝛼 of the adapted discrete velocity distribution 

functions ℎ𝑖. Moments, which are written with a line on top are obtained from the adapted 

distribution functions ℎ𝑖  presented in the work of Valderhaug [8, p. 31], and therefore, differ 

from the moments obtained from the original distribution functions 𝑓𝑖.as it can be seen in 

equations 2-51 to 2-54. Furthermore, in this section the incompressible LBM introduced by He 

and Luo [7] is applied. 

 𝛱0 = ∑ 𝑓𝑖𝑖 = 𝜌(𝑥, 𝑡) ( 2-51 ) 

 𝛱𝛼 = ∑ 𝑐𝑖𝛼𝑓𝑖𝑖 = 𝜌0(𝑥, 𝑡)𝑢𝛼(𝑥, 𝑡) ( 2-52 ) 

 

 𝛱0 = ∑ ℎ𝑖𝑖 = ∆𝜌(𝑥, 𝑡) ( 2-53 ) 

 𝛱𝛼 = ∑ 𝑐𝑖𝛼ℎ𝑖𝑖 = 𝜌0(𝑥, 𝑡)𝑢𝛼(𝑥, 𝑡) ( 2-54 ) 

Furthermore, in chapter 2.1.1 it was shown that the first two moments of the collision opera-

tor 𝛱0
𝑛𝑒𝑞 and 𝛱𝛼

𝑛𝑒𝑞, the so-called non-equilibrium moments, need to be zero to conserve mass 

and momentum. 

 𝛱0
𝑛𝑒𝑞

= ∑ 𝛺𝑖𝑖 = ∑ (𝑓𝑖 − 𝑓𝑖
𝑒𝑞
)𝑖 = ∑ 𝑓𝑖

𝑛𝑒𝑞
𝑖 = 0 ( 2-55 ) 

 𝛱𝛼
𝑛𝑒𝑞 = ∑ 𝑐𝑖𝛼𝛺𝑖𝑖 = ∑ 𝑐𝑖𝛼(𝑓𝑖 − 𝑓𝑖

𝑒𝑞)𝑖 = ∑ 𝑐𝑖𝛼𝑓𝑖
𝑛𝑒𝑞

𝑖 = 0 ( 2-56 ) 

From equation 2-24, it is known that the non-equilibrium distribution functions 𝑓𝑖
𝑛𝑒𝑞 are equal 

to the adapted non-equilibrium distribution functions ℎ𝑖
𝑛𝑒𝑞. Therefore, equations 2-55 and 

2-56 can be rewritten to obtain equations 2-57 and 2-58. 
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 𝛱0
𝑛𝑒𝑞 = ∑ 𝛺𝑖𝑖 = ∑ (ℎ𝑖 − ℎ𝑖

𝑒𝑞)𝑖 = ∑ ℎ𝑖
𝑛𝑒𝑞

𝑖 = 0 = 𝛱0
𝑛𝑒𝑞 ( 2-57 ) 

 𝛱𝛼
𝑛𝑒𝑞 = ∑ 𝑐𝑖𝛼𝛺𝑖𝑖 = ∑ 𝑐𝑖𝛼(ℎ𝑖 − ℎ𝑖

𝑒𝑞)𝑖 = ∑ 𝑐𝑖𝛼ℎ𝑖
𝑛𝑒𝑞

𝑖 = 0 = 𝛱𝛼
𝑛𝑒𝑞 ( 2-58 ) 

This bears the consequence, that the macroscopic moments 𝛱0, 𝛱𝛼 𝛱0 and 𝛱𝛼 are equal to 

their equilibrium moments. 

 𝛱0 = 𝛱0
𝑒𝑞 = ∑ 𝑓𝑖𝑖 = ∑ 𝑓𝑖

𝑒𝑞
𝑖  ( 2-59 ) 

 𝛱𝛼 = 𝛱𝛼
𝑒𝑞 = ∑ 𝑐𝑖𝛼𝑓𝑖𝑖 = ∑ 𝑐𝑖𝛼𝑓𝑖

𝑒𝑞
𝑖  ( 2-60 ) 

 

 𝛱0 = 𝛱0
𝑒𝑞 = ∑ ℎ𝑖𝑖 = ∑ ℎ𝑖

𝑒𝑞
𝑖  ( 2-61 ) 

 𝛱𝛼 = 𝛱𝛼
𝑒𝑞 = ∑ 𝑐𝑖𝛼ℎ𝑖𝑖 = ∑ 𝑐𝑖𝛼ℎ𝑖

𝑒𝑞
𝑖  ( 2-62 ) 

However, obtaining the second order moment 𝛱𝛼𝛽, which appeared in equation 2-18 as the 

momentum flux tensor and the adapted second order moment 𝛱𝛼𝛽 is not as straight forward 

as it was for 𝛱0 and 𝛱𝛼.  

The equilibrium part of the second order moment 𝛱𝛼𝛽
𝑒𝑞 , can be obtained by solving equation 

2-63 with the use of the original equilibrium distribution function 𝑓𝑖
𝑒𝑞 from equation 2-22 and 

the isotropy conditions of the velocity sets illustrated in the appendix with equations 7-1 to 

7-6. [3, p. 93] 

 𝛱𝛼𝛽
𝑒𝑞 = ∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑓𝑖

𝑒𝑞
𝑖  ( 2-63 ) 

This leads to an explicit form of the second order equilibrium momentum of: 

 𝛱𝛼𝛽
𝑒𝑞 = 𝜌0𝑢𝛼𝑢𝛽 + 𝜌𝑐𝑠

2𝛿𝛼𝛽 ( 2-64 ) 

 

The second order moment of the adapted equilibrium distribution function  𝛱𝛼𝛽
𝑒𝑞  can be found 

in its explicit form, given in equation 2-66, by solving equation 2-65 with the adapted equilib-

rium distribution function ℎ𝑖
𝑒𝑞 from equation 2-26 and the isotropy conditions of the velocity 

sets.  

 𝛱𝛼𝛽
𝑒𝑞 = ∑ 𝑐𝑖𝛼𝑐𝑖𝛽ℎ𝑖

𝑒𝑞
𝑖  ( 2-65 ) 

 𝛱𝛼𝛽
𝑒𝑞 = 𝜌0𝑢𝛼𝑢𝛽 + ∆𝜌𝑐𝑠

2𝛿𝛼𝛽 ( 2-66 ) 
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To receive the non-equilibrium part of the second order moment 𝛱𝛼𝛽
𝑛𝑒𝑞, Krüger et al. [3, pp. 

106-112] did the Chapman-Enskog analysis. The Chapman-Enskog analysis is used to evidence 

that the lattice Boltzmann equation solves the Navier-Stokes equation. It is based on a pertur-

bation expansion of 𝑓𝑖  around 𝑓𝑖
𝑒𝑞 by an expansion parameter 𝜖 of order of the Knudsen num-

ber 𝐾𝑛. 

 𝑓𝑖 = 𝑓𝑖
𝑒𝑞 + 𝜖𝑓𝑖

(1)
+ 𝜖2𝑓𝑖

(2)
+.… ( 2-67 ) 

 𝜖𝑛 = 𝒪(𝐾𝑛𝑛) ( 2-68 ) 

In summary, during the analysis the lattice Boltzmann equation is first Taylor expanded, then 

the time derivatives are expanded and afterwards the expanded particle distributions from 

equation 2-67 are inserted. By subsequent separation of the terms of the expanded equation 

by orders of 𝐾𝑛 and generation of zeroth to second order moments of these separated for-

mulations, the mass and momentum equations can be assembled. After reversing the expan-

sion of the time derivatives, the viscous stress tensor 𝜎𝛼𝛽
′  is identified with equation 2-69. 

 𝜎𝛼𝛽
′ = −(1 −

∆𝑡

2𝜏
)𝛱𝛼𝛽

(1) = −(1 −
∆𝑡

2𝜏
)𝛱𝛼𝛽

𝑛𝑒𝑞 = −(1 −
∆𝑡

2𝜏
)𝛱𝛼𝛽

𝑛𝑒𝑞 ( 2-69 ) 

The explicit formulation of 𝛱𝛼𝛽
𝑛𝑒𝑞 was shown to be as in 2-70, where the second term repre-

sents an error term is neglected if 𝑢2 ≪ 𝑐𝑠
2. 

 𝛱𝛼𝛽
(1) = −𝜌0𝑐𝑠

2𝜏(𝜕𝛽
(1)𝑢𝛼 + 𝜕𝛼

(1)𝑢𝛽) + 𝜏𝜕𝛾
(1)(𝜌0𝑢𝛼𝑢𝛽𝑢𝛾) ( 2-70 ) 

As Krüger et al. [3] stated, only the two lowest orders of 𝐾𝑛 are needed to represent the 

Navier-Stokes equation, 𝑓(1) = 𝑓𝑛𝑒𝑞.  

 𝑓𝑖
𝑛𝑒𝑞 = 𝑓𝑖 − 𝑓𝑖

𝑒𝑞 = ℎ𝑖 − ℎ𝑖
𝑒𝑞 = ℎ𝑖

𝑛𝑒𝑞 ( 2-71 ) 

 𝛱𝛼𝛽
𝑛𝑒𝑞 = −𝜌0𝑐𝑠

2𝜏 (
𝜕𝑢𝛼

𝜕𝑥𝛽
+
𝜕𝑢𝛽

𝜕𝑥𝛼
) = ∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑓𝑖

𝑛𝑒𝑞
𝑖  ( 2-72 ) 

Utilizing the adapted distribution functions ℎ𝑖, the explicit form of their second order non-

equilibrium moments 𝛱𝛼𝛽
𝑛𝑒𝑞 can be written explicitly as in equation 2-73. 

 𝛱𝛼𝛽
𝑛𝑒𝑞 = −𝜌0𝑐𝑠

2𝜏 (
𝜕𝑢𝛼

𝜕𝑥𝛽
+
𝜕𝑢𝛽

𝜕𝑥𝛼
) = ∑ 𝑐𝑖𝛼𝑐𝑖𝛽ℎ𝑖

𝑛𝑒𝑞
𝑖 = 𝛱𝛼𝛽

𝑛𝑒𝑞 ( 2-73 ) 

From equation 2-72, also the strain rate tensor 𝑆𝛼𝛽 given in equation 2-74 can be correlated 

to the non-equilibrium moments of second order like it is shown in equation 2-75. [13] 

 𝑆𝛼𝛽 =
1

2
(
𝜕𝑢𝛼

𝜕𝑥𝛽
+
𝜕𝑢𝛽

𝜕𝑥𝛼
) ( 2-74 ) 
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 𝑆𝛼𝛽 = −
1

2𝜌0𝑐𝑠
2𝜏
𝛱𝛼𝛽
𝑛𝑒𝑞 ( 2-75 ) 

Furthermore, two very important correlations are obtained in the Chapman-Enskog analysis 

during the derivation of the Navier-Stokes equation from the lattice Boltzmann equation. 

Firstly, the kinematic viscosity 𝜈 is related to the relaxation parameter 𝜏 via equation 2-76. 

 𝜈 = 𝑐𝑠
2 (𝜏 −

∆𝑡

2
) ( 2-76 ) 

Secondly, it is shown that the equation of state for the lattice Boltzmann equation is given by 

the proportional relation of pressure 𝑝 and density 𝜌. [3, pp. 106-112] 

 𝑝 = 𝑐𝑠
2𝜌 ( 2-77 ) 

 

2.2 GPU Based Computing via CUDA 

The immense potential of GPUs, originally designed to unburden the CPU from the enormous 

workload which arise of the increasing demands on 2D and 3D graphics, can be exploit for 

applications with similar properties. In graphical applications the workload is large, and there-

fore, “GPUs must deliver an enormous amount of compute performance to satisfy the demand 

of complex real-time applications.” [14]. Further, GPUs are prioritizing concurrent throughput, 

are trimmed for parallelism and as they are using a common global memory for all cores, the 

need for synchronizing calculation results is removed. To summarize, GPUs were developed 

to deal with a great amount of data points and do simple, similar and independent operations 

on them in parallel. Fortunately, the GPU’s driver software was further developed to enable 

programmers to make use of this properties besides rendering tasks. [14] 

In 2006 the GPU producer NVIDIA released the Compute Unified Device Architecture (CUDA) 

to enable user programmable general- purpose GPU computing. Further, CUDA C/C++, a 

C/C++ like programming language with useful extensions exactly tailored for GPU program-

ming, and a suitable compiler were released. Since then, programmers are able to exploit the 

advantages of GPU hardware without being able to use graphics API. [14], [15, pp. 6-7] 

Since GPUs are not applicable for all kind of tasks, heterogeneous system of one or more CPUs 

and one or more GPUs are used in order to benefit from the advantages of both. Therefore, 

all parts of a CUDA C code which should process a great amount of data by performing simple 
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calculations in parallel are run on GPUs and functions which are intended to run subsequently 

are executed on the CPU. [15, pp. 13-19] 

What causes the main difference between CPU and GPU is the underlying philosophy and the 

proximate layout. A CPU is assembled of (few) cores with complex control units and elevated 

demands in data caching to facilitate a wide range of applications with concurrent fast re-

sponse times. This high rate of specialization together with limited spatial and power re-

sources leads to the small number of cores possible. In contrast, GPUs are assembled from 

several streaming multiprocessors, each possible to process over hundreds of simple tasks in 

parallel. As a consequence, spatial expenses on data caching and control are cut short. [16] 

[17] 

A sequence of operations is called a thread. Several of these threads on a GPU are aggregated 

to a block of threads. These blocks are independent of each other and can be executed from 

any available multiprocessor, in any order. As a consequence, the execution time is scaled by 

the number of cores available. Within these blocks, the threads are executed in parallel. Fur-

ther, the threads can be placed inside a block in one to three dimensions leading to one-, two 

or three-dimensional blocks like shown in Fig. 2-7. In addition, block itself can be arranged in 

one to three dimensions forming a grid of blocks. [17] 

 

 

 

The main extensions that come with CUDA C/C++ are on the one hand kernels, which are 

functions executed in parallel threads on the GPU and on the other hand extra specifiers, data 

types and variables. In CUDA the CPU is called host and the GPU is the device. To let the com-

piler know whether a function is intended to be executed on the host, on the device or on 

both the specifiers __host__, __device__ and __global__ are used in front of the function dec-

laration. Further, built-in vector types are available with one to four elements. For instance, a 

floating-point vector of three elements therefore, can be represented using the float3 variable 

type. This vector types can be defined using the function make_”type” like 

float3 vector=make_float3(x,y,z); 

Fig. 2-7: Possible arrangement of threads, illustrated as arrows, in a block of threads 
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In addition, some built-in variables regarding the thread structure are available. blockIdx and 

threadIdx for instance are both of type unit3 and give the index of the block inside the grid 

and the index of the thread inside the block accordingly. [17] 

However, the most drastically difference to common C/C++ applications are the aforemen-

tioned kernels. They are specified to be global as they are called from the host and executed 

on the device like in the following example. 

__global__ void kernel(float var1, float var2, float var3){ 

uint  x = threadIdx.x, 

  y = blockIdx.x, 

  z = blockIdx.y; 

 

 var3[x,y,z]=var1[x,y,z]+var2[x,y,z]; 

} 

Further, in the function call it need to be specified how many times the function needs to be 

executed in parallel. This is done with angle brackets as shown in the following example. 

kernel<<blocks,threads>>(var1, var2, var3); 

The variable blocks specifies how many blocks are needed in every spatial direction and the 

variable threads is defining how many threads per block are required in every spatial direction. 

For the example given in Fig. 2-8, blocks would be equal to (3
2
) and threads is (9

3
) which leads 

to 162 executions of the kernel in parallel. [15, pp. 23-61] 

 

 

 

 

 

 

From that, the advantage of this approach compared to traditional “CPU only” methods is 

evident. Especially, if large data sets need to be processed in simple arithmetic steps, like it is 

done in LBM, heterogeneous applications perform significant better in terms of performance 

per Euro as well as performance per watt. [15, pp. 1-8] 

Fig. 2-8: A 2D grid of 2D blocks 
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3 Local Grid Refinement 

Although the LBM in its original formulation was meant to be used only in uniform grids, there 

are certain methods with which a change of grid resolution over the domain is permitted. [18] 

Overall, there are two different approaches. The first is to have two decoupled grids, a uniform 

one for the LBM and an arbitrary one refined for the physical space. Here the missing distri-

bution functions on the unstructured grid nodes are obtained by interpolation. The second 

approach is the one chosen in this work and is based on patches of uniform but refined grid, 

embedded locally and coupled via certain boundary conditions with the main grid. [19] How 

the embedding and coupling is performed exactly, is demonstrated in this chapter.  

Before starting the chapter, two points need to be mentioned. Firstly, for convenience mainly 

the two-dimensional case will be used as a reference and for illustration purposes. Secondly, 

in this work a central node approach was chosen as shown in Fig. 3-1 on the left, which means 

that the domain is divided in several computational cells with a node positioned exactly in the 

middle of each. In contrast to that, the central cell approach is placing the nodes on every 

corner of a cell. 

 

 

 

3.1 Meshing 

For the composition of the refined mesh, it can be differentiated between a multi-domain grid 

shown in Fig. 3-2 and a multi-grid domain illustrated in Fig. 3-3. The multi-domain grid is an 

assembly of grid patches with different resolution. Like in a puzzle, the parts fit in each other. 

Regions, which are covered with a finer grid are removed from the coarser domain as it can 

be seen in Fig. 3-2. This approach is very economical from memory perspective and as Lagrava 

Sandoval [20, p. 51] stated, leads to better CPU performance. 

Fig. 3-1: Schematic illustration of the cell and node placement in the central node (l.) and cen-

tral cell (r.) approach 
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The multi grid domain in 2D can be seen as grid layers of different resolution piled upon each 

other and in 3D as nested boxes. This means, that regions represented by fine grids are as well 

represented on all coarser levels, as displayed in Fig. 3-3. This enables the opportunity to 

choose between one- or two-way coupling of the grids so that further algorithms like heat 

transport must not necessarily be integrated in grid refinement but still can work on the low-

est grid level. Furthermore, the generation of the domain and grid coupling is significantly 

easier compared to the multi-domain approach. However, the main reason why the multi-grid 

domain was chosen in this work, is its suitability for parallelization due to the regular, rectan-

gular shape of the grids. [20, pp. 51-52] 

 

Fig. 3-2: The multi-domain grid as composition of different shaped domains 

Fig. 3-3: The multi-grid domain as composition of several grid layers 
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It can be seen in Fig. 3-2 and Fig. 3-3, that the position of the fine cells with respect to the 

coarse cells is not the same. During research, the three common arrangements, illustrated in 

Fig. 3-4, were found. The coinciding cell arrangement is applied in the work of Chen, Filippova 

et al. [19] and Eitel-Amor et al. [21]. In this approach the edges of the fine grid coincide with 

the edges of the coarse cells. The shifted cell arrangement is used by Schönherr et al. [18] and 

Geier et al. [22]. As its name reveals the edges of the fine grid are shifted for half of a coarse 

cell from the cell edge. The coinciding node arrangement is utilized by Lagrava Sandoval [20] 

and Yu et al. [23] and places the nodes of the coarse grid to coincide with the nodes of the 

fine grid. 

The shifted cell arrangement was chosen to be implemented for two reasons, which will in-

crease in importance when it comes to grid coupling. Firstly, it ensures that the fine grid is 

always surrounded by at least one row of coarse cells and secondly, four coarse nodes always 

enclose four explicit relatable fine nodes and therefore, form a local interpolation cell ensuring 

that interpolation can be done everywhere in the same manner. However, it must be kept in 

mind that even if the whole domain would be refined, the fine grid is, in each direction, always 

1 coarse cell or 2 fine cells smaller than the coarse grid. 

 

3.2 Rescaling of Quantities 

In the following sections all quantities belonging to the coarse grid are referenced with index 

𝑐 and all those belonging to the fine grid will use the subscribed 𝑓. 

In section 2.1.3 the convective scaling was introduced. This correlation is also applied for the 

refinement of a coarse grid with a fine grid. 

Fig. 3-4: Different grid arrangements: the coinciding cell arrangement (l.), the shifted cell ar-

rangement (m.) and the coinciding node arrangement (r.) 
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∆𝑥𝑐

∆𝑡𝑐
=
∆𝑥𝑓

∆𝑡𝑓
= 𝑐𝑜𝑛𝑠𝑡. (  3-1 ) 

Introducing the refinement factor 𝑛 we get the following relations: 

 ∆𝑥𝑐 = 𝑛 ∙ ∆𝑥𝑓;         ∆𝑡𝑐 = 𝑛 ∙ ∆𝑡𝑓 ( 3-2 ) 

 
∆𝑡𝑐

∆𝑡𝑓
=

∆𝑥𝑐

∆𝑥𝑓
= 𝑛 ( 3-3 ) 

From equation 2-35 the scaling of the conversion factor for mass ∆𝑚 is obtained.  

 
∆𝑚

∆𝑥3
= 𝑐𝑜𝑛𝑠𝑡.→  

∆𝑚𝑐

∆𝑥𝑐
3 =

∆𝑚𝑓

∆𝑥𝑓
3  ( 3-4 ) 

 
∆𝑚𝑐

∆𝑚𝑓
= 𝑛3 ( 3-5 ) 

In the course of this work the refinement factor 𝑛 was chosen to be 2. As a consequence, the 

spatial and temporal division of the computational domain are refined by the factor of 2 in 

one refinement step. Therefore, in two dimensions one coarse cell gets divided in four fine 

cells. For three dimensions Fig. 3-5 illustrates the refinement of a coarse cell in eight fine cells. 

  

In Fig. 3-6 it is shown that also the time step is divided according to equation 3-2. As a conse-

quence, to be synchronous in time, for one stream and collide cycle on the coarse grid, two 

cycles have to be fulfilled on the fine grid.  

Due to the changes of spatial and temporal spacing among the grids, the quantities in lattice 

units 𝑥̃ need to be adapted in order to represent the physical quantities 𝑥 correctly. However, 

the magnitude of the physical quantities in physical units does not change, no matter what 

lattice spacing is used. [24] 

 𝑢 = 𝑢𝑐 = 𝑢𝑓 ( 3-6 ) 

  𝜌 = 𝜌𝑐 = 𝜌𝑓  ( 3-7 ) 

Fig. 3-6: Refinement in time Fig. 3-5: Refinement in space 
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 𝜈 = 𝜈𝑐 = 𝜈𝑓  ( 3-8 ) 

 𝑆𝛼𝛽 = 𝑆𝛼𝛽,𝑐 = 𝑆𝛼𝛽,𝑓  ( 3-9 ) 

It can be shown, that the macroscopic velocity in lattice units 𝑢̃ is constant over the grids for 

convective scaling. This applies also for the microscopic velocities 𝑐𝑖̃ and the speed of sound 

𝑐𝑠̃. As a consequence, the Mach number, given in equation 2-30 is preserved constant on all 

refinement stages. [18]  

 𝑢 = 𝑢̃𝑐
∆𝑥𝑐

∆𝑡𝑐
= 𝑢̃𝑓

∆𝑥𝑓

∆𝑡𝑓
 (3-10 ) 

 𝑢̃𝑐
2∙∆𝑥𝑓

2∙∆𝑡𝑓
= 𝑢̃𝑓

∆𝑥𝑓

∆𝑡𝑓
 ( 3-11 ) 

 𝑢̃𝑐 = 𝑢̃𝑓 ( 3-12 ) 

By obeying the equations 3-3 and 3-5, the density 𝜌̃ proves to be continuous over the grids. 

 𝜌 = 𝜌̃𝑓
∆𝑚𝑓

∆𝑥𝑓
3 = 𝜌̃𝑐

∆𝑚𝑐

∆𝑥𝑐
3 → 𝜌̃𝑓

∆𝑚𝑓

∆𝑥𝑓
3 = 𝜌̃𝑐

23∙∆𝑚𝑓

23∙∆𝑥𝑓
3  ( 3-13 ) 

 𝜌̃𝑐 = 𝜌̃𝑓  ( 3-14 ) 

In the same manner the scaling of the viscosity 𝜈 and the strain rate tensor 𝑆̃𝛼𝛽 can be derived 

like shown in equations 3-15 to 3-18. 

 𝜈 = 𝜈𝑐
∆𝑥𝑐

2

∆𝑡𝑐
= 𝜈𝑓

∆𝑥𝑓
2

∆𝑡𝑓
→ 𝜈𝑐

4∆𝑥𝑓
2

2∆𝑡𝑓
= 𝜈𝑓

∆𝑥𝑓
2

∆𝑡𝑓
 ( 3-15 ) 

 2𝜈𝑐 = 𝜈𝑓 ( 3-16 ) 

 𝑆̃𝛼𝛽 = 𝑆̃𝛼𝛽,𝑐
1

∆𝑡𝑐
= 𝑆̃𝛼𝛽,𝑓

1

∆𝑡𝑓
→ 𝑆̃𝛼𝛽,𝑐

1

2∆𝑡𝑓
= 𝑆̃𝛼𝛽,𝑓

1

∆𝑡𝑓
 ( 3-17 ) 

 𝑆̃𝛼𝛽,𝑐 = 2𝑆̃𝛼𝛽,𝑓 ( 3-18 ) 

The equilibrium distribution function ℎ𝑖
𝑒𝑞 given in equation 2-26 is not dependent on grid res-

olution either since it is purely dependent on the continuous density and velocities. Since, the 

density and velocities are continuous over the grids in lattice units as well, equation 3-19 can 

be derived. 

 ℎ̃𝑖,𝑐
𝑒𝑞 = ℎ̃𝑖,𝑓

𝑒𝑞 ( 3-19 ) 

However, there are two more quantities, the relaxation time 𝜏 and the non-equilibrium distri-

bution function ℎ𝑖
𝑛𝑒𝑞, which play a crucial role in the LBM as they represent the collision pro-

cess. First, the transformation of the relaxation factor 𝜏 can be derived from its relation to the 

viscosity 𝜈. 
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 𝜈 = 𝑐𝑠
2 (𝜏𝑐 −

∆𝑡𝑐

2
) = 𝑐𝑠

2 (𝜏𝑓 −
∆𝑡𝑓

2
) ( 3-20 ) 

 𝜏𝑐 −
2∆𝑡𝑓

2
= 𝜏𝑓 −

∆𝑡𝑓

2
 ( 3-21 ) 

 𝜏𝑓 = 𝜏𝑐 −
∆𝑡𝑐

4
;      𝜏𝑐 = 𝜏𝑓 +

∆𝑡𝑓

2
 ( 3-22 ) 

From section 2.1.3 it is known that after multiplying a quantity in lattice units with the corre-

sponding conversion factors, its value in physical units is obtained. Therefore, the relaxation 

time in physical units 𝜏 can be expressed with equation 3-23. Inserting this in 3-22, also corre-

lations for the relaxation times of different grids in lattice units can be made. 

 𝜏 = 𝜏̃ ∙ ∆𝑡 ( 3-23 ) 

 𝜏̃𝑓 ∙ ∆𝑡𝑓 = 𝜏̃𝑐 ∙ ∆𝑡𝑐 −
∆𝑡𝑐

4
 ( 3-24 ) 

 𝜏̃𝑓 = 2 𝜏̃𝑐 −
1

2
 ( 3-25 ) 

 𝜏̃𝑐 ∙ ∆𝑡𝑐 = 𝜏̃𝑓 ∙ ∆𝑡𝑓 +
∆𝑡𝑓

2
 ( 3-26 ) 

 𝜏̃𝑐 =
𝜏̃𝑓

2
+
1

4
 ( 3-27 ) 

Secondly, the non-equilibrium distribution function ℎ𝑖
𝑛𝑒𝑞 needs to be examined further to ob-

tain its behavior at different scales. Dupuis and Chopard [24] derived in their work, that the 

non-equilibrium function in its explicit form and in physical units ℎ𝑖
𝑛𝑒𝑞 needs to be rescaled 

with ∆𝑡 and 𝜏̃. An elaborated derivation of this can be found in appendix 7.2.  

 
1

𝜏̃𝑐∆𝑡𝑐
ℎ𝑖,𝑐
𝑛𝑒𝑞 =

1

𝜏̃𝑓∆𝑡𝑓
ℎ𝑖,𝑓
𝑛𝑒𝑞 ( 3-28 ) 

 ℎ𝑖,𝑐
𝑛𝑒𝑞 =

2𝜏̃𝑐

𝜏̃𝑓
ℎ𝑖,𝑓
𝑛𝑒𝑞;      ℎ𝑖,𝑓

𝑛𝑒𝑞 =
𝜏̃𝑓

2𝜏̃𝑐
ℎ𝑖,𝑐
𝑛𝑒𝑞 ( 3-29 ) 

Further, in appendix 7.2 it is found that the non-equilibrium distribution functions in lattice 

units need to be scaled in the same manner. 

 ℎ̃𝑖,𝑐
𝑛𝑒𝑞 =

2𝜏̃𝑐

𝜏̃𝑓
ℎ̃𝑖,𝑓
𝑛𝑒𝑞;      ℎ̃𝑖,𝑓

𝑛𝑒𝑞 =
𝜏̃𝑓

2𝜏̃𝑐
ℎ̃𝑖,𝑐
𝑛𝑒𝑞 ( 3-30 ) 
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3.3 Grid Coupling 

In the beginning of this chapter, it was described how grids of different resolution are assem-

bled. What now still is missing, is how the grids communicate with each other and how the 

overall algorithm can be envisioned.  

First, some terms which will be used in the following sections need to be defined and ex-

plained.  

As already mentioned in section 

3.1 and shown in Fig. 3-7 the grids 

in 3D can be seen as nested boxes. 

Therefore, the boundary between 

the grids can be seen as an assem-

bly of corners, edges and faces 

which are illustrated in Fig. 3-7 

with blue dots, orange lines and 

green surfaces respectively.  

Further, as it displayed in Fig. 3-8 and Fig. 3-9 in a 2D approach, each layer of nodes in the 

boundary region is referred to as a shell of nodes.  

  

  

 

Fig. 3-7: The boundary between the grids is assembled 

from corners, edges and faces 

Fig. 3-8: 2D view of first, second and third 

shell of nodes of the coarse grid 

Fig. 3-9: 2D view of first, second and third 

shell of nodes of the fine grid 
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Every grid itself is seen as an individual simulation 

domain, solving the LB equation for every node in 

a parallel manner. Like illustrated in Fig. 3-10 at the 

boundary of the fine grid, the in-streaming distribu-

tion functions ℎ𝑖,𝑓, colored in orange, are unknown 

and due to the two-way coupling also the distribu-

tion functions streaming from the fine into the 

coarse region ℎ𝑖,𝑐, illustrated in black, are missing. 

To obtain the missing distribution functions of the 

fine grid, the velocity field of the coarse grid is in-

terpolated as it is described in section 3.3.1.1 and 

the values for the density 𝜌 and the non-equilibrium distribution functions ℎ𝑖
𝑛𝑒𝑞 are interpo-

lated according to the method presented in section 3.3.1.2. The equilibrium distribution func-

tions ℎ𝑖
𝑒𝑞 can be calculated with the interpolated velocity and density values as shown in equa-

tion 2-26. The missing distribution functions of the fine grid ℎ𝑖,𝑓 are then reconstructed using 

the interpolated non-equilibrium distribution functions, the computed equilibrium functions 

and knowing equation 2-71. However, as derived in section 3.2, the non-equilibrium distribu-

tion functions need to be rescaled according to equation 3-30 previously. The same procedure 

is done for obtaining the missing distribution functions of the coarse grid ℎ𝑖,𝑐. The whole pro-

cedure is described in greater detail in section 3.3.2. 

Further, it needs to be mentioned that the equations given in sections 3.3.1 to 3.3.2 are valid 

for lattice units as well as physical units. Only the conversion of the relaxation time and the 

rescaling of the non-equilibrium distributions, as it was described in section 3.2 needs to be 

adapted according to the unit system.  

  

Fig. 3-10: Unknown distribution func-

tions at the boundary between the 

grids 
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3.3.1 Interpolation 

The velocity field needs at least a cubic interpolation scheme to preserve its second order 

accuracy. Otherwise, the second order derivatives of the NSE become zero and “thus the cor-

rect representation of viscosity is impossible” according to Chen et al. [22]. Yu et al. [23] there-

fore, used a cubic spline function for interpolation. Lagrava Sandoval [20] presented a third 

order polynomial to interpolate between three and four points. These methods both are un-

favorable for GPU implementation as they are non-local and, therefore, not only need direct 

neighbor information but also information of the neighbor to the neighbor. Furthermore, both 

methods use a string of nodes instead of nodes in cell formation for interpolation. 

As it can be seen on the example of a 2D boundary corner in Fig. 3-11, for the interpolation in 

cell formation on the left, always four coarse nodes are used to obtain values for four fine 

nodes. As a consequence of the string interpolation scheme, corners and edges need special 

treatment because there not the same number of neighboring nodes are available like for 

nodes located on the face of a boundary. In Fig. 3-11 on the right, the string of nodes interpo-

lation shows that for obtaining values for the fine node marked with number one, four nodes 

are used and for obtaining values for the nodes number two and three only three nodes are 

used. [18] 

 

The second order accurate compact interpolation scheme used in this work was presented by 

Geier et al. [22] for 2D domains and extended into 3D by Qi et al. [13]. It is symmetric which 

leads to an equal treatment of all nodes and, therefore, avoids decisions and exceptions which 

are expensive in terms of computational resources. The compact interpolation requires an 

Fig. 3-11: View of a 2D interpolation schemes using four nodes in cell formation (l.) and the 

three possible arrangements of using a string of nodes (r.) 
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overlap of the fine and the coarse grid by three coarse and four fine nodes in one spatial di-

rection, as it can be seen in Fig. 3-12. In contrast to this, the non-local interpolation schemes 

presented above, require just an overlap of two coarse and three fine nodes. However, the 

used approach also is seen advantageous as no further temporal interpolation is needed and 

from a memory perspective, saving the values of the additional nodes is cheaper than saving 

the results from time interpolation. [18] In the case of a multi-grid domain, where the fine grid 

is completely overlapping the coarse grid, the size of the overlap region is not decisive. This 

only would be a topic of further considerations if the multi-grid domain is used, and therefore, 

a larger overlap would result in higher memory usage.  

 

 

 

 

In Fig. 3-12 and Fig. 3-13 the interpolation cells are illustrated. An interpolation cell is assem-

bled of eight nodes with known values of the provider grid which are used to interpolate un-

known values at one or eight nodes of the receiver grid. The nodes of the receiver grid which 

obtain values from the provider grid are called ghost nodes since they are located in the over-

lapping region and are not necessarily needed to represent the flow field. The coarse-to-fine 

interpolation cells are illustrated in orange and use values at the red colored coarse nodes to 

compute values at the interior green ghost nodes of the fine grid. Vice versa are the fine-to-

coarse interpolation cells, here colored in blue, utilized to calculate the value at the enclosed 

ghost node of the coarse grid from the information known on the surrounding light blue nodes 

of the fine grid. As it is shown in Fig. 3-12, the coarse-to-fine interpolation cells are assembled 

from nodes which constitute the first shell of coarse nodes before the fine grid starts and from 

the next shell of coarse nodes which is already overlapping with the fine grid. The enclosed 

Fig. 3-12: 2D view of the overlapping grids with the fine-to-coarse interpolation cells in blue 

and the coarse-to-fine interpolation cells in orange 

Fig. 3-13: 3D view of a fine-to-coarse (l.) and a 

coarse-to-fine (r.) interpolation cell 
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fine ghost nodes form the first and second shell of the fine grid. The fine-to-coarse interpola-

tion cells are assembled from fine nodes belonging to the fourth and fifth shell of the fine grid 

and the coarse ghost nodes in the middle of every cell is generating the second overlapping 

shell of the coarse grid. 

The interpolation cells are seen as a cube with a side length of one and one node located in 

the origin. Therefore, for a fine-to-coarse interpolation cell the ghost node is located at 

(
1

2
|
1

2
|
1

2
). In case of a coarse-to-fine interpolation cell the ghost nodes have the coordinates 

(
1

4
|
1

4
|
1

4
), (

3

4
|
1

4
|
1

4
), (

1

4
|
3

4
|
1

4
), (

1

4
|
1

4
|
3

4
), (

3

4
|
3

4
|
1

4
), (

1

4
|
3

4
|
3

4
), (

3

4
|
1

4
|
3

4
) and (

3

4
|
3

4
|
3

4
).  

 

3.3.1.1 Second Order Interpolation of the Velocity Field 

The velocity field is interpolated using a second order polynomial for each spatial direction, 

equations 3-31, 3-32 and 3-33, as proposed by Qi et al. [13]. By applying this ansatz, thirty 

coefficients need to be obtained. One way to solve this is to take the velocity values of ten 

nodes, leading to a non-local and complex interpolation scheme. Therefore, the first and sec-

ond order spatial derivatives of the polynomial 𝑢𝛼 are included. They are presented in equa-

tions 3-34 and 3-35.  

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑎0 + 𝑎𝑥𝑥 + 𝑎𝑦𝑦 + 𝑎𝑧𝑧 + 𝑎𝑥𝑥𝑥
2 + 𝑎𝑦𝑦𝑦

2 + 𝑎𝑧𝑧𝑧
2 + 𝑎𝑥𝑦𝑥𝑦 + 𝑎𝑦𝑧𝑦𝑧 + 𝑎𝑥𝑧𝑥𝑧 ( 3-31 ) 

𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑏0 + 𝑏𝑥𝑥 + 𝑏𝑦𝑦 + 𝑏𝑧𝑧 + 𝑏𝑥𝑥𝑥
2 + 𝑏𝑦𝑦𝑦

2 + 𝑏𝑧𝑧𝑧
2 + 𝑏𝑥𝑦𝑥𝑦 + 𝑏𝑦𝑧𝑦𝑧 + 𝑏𝑥𝑧𝑥𝑧 ( 3-32 ) 

𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝑐0 + 𝑐𝑥𝑥 + 𝑐𝑦𝑦 + 𝑐𝑧𝑧 + 𝑐𝑥𝑥𝑥
2 + 𝑐𝑦𝑦𝑦

2 + 𝑐𝑧𝑧𝑧
2 + 𝑐𝑥𝑦𝑥𝑦 + 𝑐𝑦𝑧𝑦𝑧 + 𝑐𝑥𝑧𝑥𝑧 ( 3-33 ) 

 

 

 ( 3-34 ) 

 

 

 

 

 

𝜕𝑢𝑥
𝜕𝑥

= 𝑎𝑥 + 2𝑎𝑥𝑥𝑥 + 𝑎𝑥𝑦𝑦 + 𝑎𝑥𝑧𝑧 
𝜕𝑢𝑦

𝜕𝑥
= 𝑏𝑥 + 2𝑏𝑥𝑥𝑥 + 𝑏𝑥𝑦𝑦 + 𝑏𝑥𝑧𝑧 

𝜕𝑢𝑥
𝜕𝑦

= 𝑎𝑦 + 2𝑎𝑦𝑦𝑦 + 𝑎𝑥𝑦𝑥 + 𝑎𝑦𝑧𝑧 
𝜕𝑢𝑦

𝜕𝑦
= 𝑏𝑦 + 2𝑏𝑦𝑦𝑦 + 𝑏𝑥𝑦𝑥 + 𝑏𝑦𝑧𝑧 

𝜕𝑢𝑥
𝜕𝑧

= 𝑎𝑧 + 2𝑎𝑧𝑧𝑧 + 𝑎𝑦𝑧𝑦 + 𝑎𝑥𝑧𝑥 
𝜕𝑢𝑦

𝜕𝑧
= 𝑏𝑧 + 2𝑏𝑧𝑧𝑧 + 𝑏𝑦𝑧𝑦 + 𝑏𝑥𝑧𝑥 

𝜕𝑢𝑧
𝜕𝑥

= 𝑐𝑥 + 2𝑐𝑥𝑥𝑥 + 𝑐𝑥𝑦𝑦 + 𝑐𝑥𝑧𝑧 

𝜕𝑢𝑧
𝜕𝑦

= 𝑐𝑦 + 2𝑐𝑦𝑦𝑦 + 𝑐𝑥𝑦𝑥 + 𝑐𝑦𝑧𝑧 

𝜕𝑢𝑧
𝜕𝑧

= 𝑐𝑧 + 2𝑐𝑧𝑧𝑧 + 𝑐𝑦𝑧𝑦 + 𝑐𝑥𝑧𝑥 
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 ( 3-35 ) 

 

 

 

 

In the previous section it was described, that interpolation cells of eight nodes are used, lead-

ing to twenty-four equations considering the three known velocities 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 at each 

node. From section 2.1.6 it is known that the non-equilibrium moments of second order 𝛱𝛼𝛽
𝑛𝑒𝑞

 

are associated with the first derivatives of the velocity 𝜕𝛽𝑢𝛼 and 𝜕𝛼𝑢𝛽. 

 𝛱𝛼𝛽
𝑛𝑒𝑞 = ∑ 𝑐𝑖𝛼𝑐𝑖𝛽ℎ𝑖

𝑛𝑒𝑞
𝑖 = −𝜌0𝑐𝑠

2𝜏 (
𝜕𝑢𝛼

𝜕𝑥𝛽
+
𝜕𝑢𝛽

𝜕𝑥𝛼
) = 𝛱𝛼𝛽

𝑛𝑒𝑞 ( 3-36 ) 

Using the six known non-equilibrium moments 𝛱𝛼𝛽
𝑛𝑒𝑞at the eight nodes leads to forty-eight 

new equations which are considerably too many to solve the system of equations.  

However, the three spatial derivatives 𝜕𝑥, 𝜕𝑦 and 𝜕𝑧 of these six moments are correlating with 

the second order derivatives of the velocity field and, therefore, provide eighteen further 

equations.  

 
𝜕𝛱𝛼𝛽

𝑛𝑒𝑞

𝜕𝛾
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝛼

𝜕𝛽𝜕𝛾
+
𝜕2𝑢𝛽

𝜕𝛼𝜕𝛾
) ( 3-37 ) 

Using them together with the three known velocities 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 at four instead of all nodes 

of the interpolation cell, exactly thirty equations are provided to solve for the thirty coeffi-

cients. 

Considering a cube with a side length of one located with one node in the origin, two symmet-

rical interpolation stencils are possible to generate like it is shown in Fig. 3-14. Qi et al. [13] 

used the “Cube A” in their work. Geier [25] proposed to do the interpolation for both cubes 

and merge the results afterwards. This approach is adopted in this work. 

𝜕2𝑢𝑥
𝜕𝑥2

= 2𝑎𝑥𝑥 
𝜕2𝑢𝑥
𝜕𝑥𝜕𝑦

= 𝑎𝑥𝑦 
𝜕2𝑢𝑥
𝜕𝑥𝜕𝑧

= 𝑎𝑥𝑧 

𝜕2𝑢𝑥
𝜕𝑦2

= 2𝑎𝑦𝑦 
𝜕2𝑢𝑥
𝜕𝑦𝜕𝑧

= 𝑎𝑦𝑧 
𝜕2𝑢𝑥
𝜕𝑧2

= 2𝑎𝑧𝑧 

𝜕2𝑢𝑦

𝜕𝑥2
= 2𝑏𝑥𝑥 

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
= 𝑏𝑥𝑦 

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑧
= 𝑏𝑥𝑧 

𝜕2𝑢𝑦

𝜕𝑦2
= 2𝑏𝑦𝑦 

𝜕2𝑢𝑦

𝜕𝑦𝜕𝑧
= 𝑏𝑦𝑧 

𝜕2𝑢𝑦

𝜕𝑧2
= 2𝑏𝑧𝑧 

𝜕2𝑢𝑧
𝜕𝑥2

= 2𝑐𝑥𝑥 
𝜕2𝑢𝑧
𝜕𝑥𝜕𝑦

= 𝑐𝑥𝑦 
𝜕2𝑢𝑧
𝜕𝑥𝜕𝑧

= 𝑐𝑥𝑧 

𝜕2𝑢𝑧
𝜕𝑦2

= 2𝑐𝑦𝑦 
𝜕2𝑢𝑧
𝜕𝑦𝜕𝑧

= 𝑐𝑦𝑧 
𝜕2𝑢𝑧
𝜕𝑧2

= 2𝑐𝑧𝑧 
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The known velocities at the four nodes lead to twelve equations per stencil. 

Cube A:  

 𝐼.  𝑢𝑥(0,0,0) = 𝑎0 ( 3-38 ) 

 𝐼𝐼.  𝑢𝑦(0,0,0) = 𝑏0 ( 3-39 ) 

 𝐼𝐼𝐼.  𝑢𝑧(0,0,0) = 𝑐0 ( 3-40 ) 

 𝐼𝑉.  𝑢𝑥(1,1,0) = 𝑎0 + 𝑎𝑥 + 𝑎𝑦 + 𝑎𝑥𝑥 + 𝑎𝑦𝑦 + 𝑎𝑥𝑦 ( 3-41 ) 

 𝑉.  𝑢𝑦(1,1,0) = 𝑏0 + 𝑏𝑥 + 𝑏𝑦 + 𝑏𝑥𝑥 + 𝑏𝑦𝑦 + 𝑏𝑥𝑦 ( 3-42 ) 

 𝑉𝐼.  𝑢𝑧(1,1,0) = 𝑐0 + 𝑐𝑥 + 𝑐𝑦 + 𝑐𝑥𝑥 + 𝑐𝑦𝑦 + 𝑐𝑥𝑦 ( 3-43 ) 

 𝑉𝐼𝐼.  𝑢𝑥(1,0,1) = 𝑎0 + 𝑎𝑥 + 𝑎𝑧 + 𝑎𝑥𝑥 + 𝑎𝑧𝑧 + 𝑎𝑥𝑧 ( 3-44 ) 

 𝑉𝐼𝐼𝐼.  𝑢𝑦(1,0,1) = 𝑏0 + 𝑏𝑥 + 𝑏𝑦 + 𝑏𝑥𝑥 + 𝑏𝑧𝑧 + 𝑏𝑥𝑧 ( 3-45 ) 

 𝐼𝑋.  𝑢𝑧(1,0,1) = 𝑐0 + 𝑐𝑥 + 𝑐𝑦 + 𝑐𝑥𝑥 + 𝑐𝑧𝑧 + 𝑐𝑥𝑧 ( 3-46 ) 

 𝑋.  𝑢𝑥(0,1,1) = 𝑎0 + 𝑎𝑦 + 𝑎𝑧 + 𝑎𝑦𝑦 + 𝑎𝑧𝑧 + 𝑎𝑦𝑧 ( 3-47 ) 

Fig. 3-14: Decomposition of a cube into the two possible interpolation stencils for four nodes  
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 𝑋𝐼.  𝑢𝑦(0,1,1) = 𝑏0 + 𝑏𝑦 + 𝑏𝑧 + 𝑏𝑦𝑦 + 𝑏𝑧𝑧 + 𝑏𝑦𝑧 ( 3-48 ) 

 𝑋𝐼𝐼.  𝑢𝑧(0,1,1) = 𝑐0 + 𝑐𝑦 + 𝑐𝑧 + 𝑐𝑦𝑦 + 𝑐𝑧𝑧 + 𝑐𝑦𝑧 ( 3-49 ) 

 

Cube B:  

 𝐼.  𝑢𝑥(0,0,1) = 𝑎0 + 𝑎𝑧 + 𝑎𝑧𝑧 ( 3-50 ) 

 𝐼𝐼.  𝑢𝑦(0,0,1) = 𝑏0 + 𝑏𝑧 + 𝑏𝑧𝑧 ( 3-51 ) 

 𝐼𝐼𝐼.  𝑢𝑧(0,0,1) = 𝑐0 + 𝑐𝑧 + 𝑐𝑧𝑧 ( 3-52 ) 

 𝐼𝑉.  𝑢𝑥(0,1,0) = 𝑎0 + 𝑎𝑦 + 𝑎𝑦𝑦 ( 3-53 ) 

 𝑉.  𝑢𝑦(0,1,0) = 𝑏0 + 𝑏𝑦 + 𝑏𝑦𝑦 ( 3-54 ) 

 𝑉𝐼.  𝑢𝑧(0,1,0) = 𝑐0 + 𝑐𝑦 + 𝑐𝑦𝑦 ( 3-55 ) 

 𝑉𝐼𝐼.  𝑢𝑥(1,0,0) = 𝑎0 + 𝑎𝑥 + 𝑎𝑥𝑥 ( 3-56 ) 

 𝑉𝐼𝐼𝐼.  𝑢𝑦(1,0,0) = 𝑏0 + 𝑏𝑥 + 𝑏𝑥𝑥 ( 3-57 ) 

 𝐼𝑋.  𝑢𝑧(1,0,0) = 𝑐0 + 𝑐𝑥 + 𝑐𝑥𝑥 ( 3-58 ) 

 𝑋.  𝑢𝑥(1,1,1) = 𝑎0 + 𝑎𝑥 + 𝑎𝑦 + 𝑎𝑧 + 𝑎𝑥𝑥 + 𝑎𝑦𝑦 + 𝑎𝑧𝑧 + 𝑎𝑥𝑦 + 𝑎𝑦𝑧 + 𝑎𝑥𝑧 ( 3-59 ) 

 𝑋𝐼.  𝑢𝑦(1,1,1) = 𝑏0 + 𝑏𝑥 + 𝑏𝑦 + 𝑏𝑧 + 𝑏𝑥𝑥 + 𝑏𝑦𝑦 + 𝑏𝑧𝑧 + 𝑏𝑥𝑦 + 𝑏𝑦𝑧 + 𝑏𝑥𝑧 ( 3-60 ) 

 𝑋𝐼𝐼.  𝑢𝑧(1,1,1) = 𝑐0 + 𝑐𝑥 + 𝑐𝑦 + 𝑐𝑧 + 𝑐𝑥𝑥 + 𝑐𝑦𝑦 + 𝑐𝑧𝑧 + 𝑐𝑥𝑦 + 𝑐𝑦𝑧 + 𝑐𝑥𝑧 ( 3-61 ) 

 

The missing eighteen equations are obtained from the derivatives of the non-equilibrium mo-

ments of second order.  

 

 𝑋𝐼𝐼𝐼.  
𝜕𝛱𝑥𝑦

𝑛𝑒𝑞

𝜕𝑥
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑥𝜕𝑦
+
𝜕2𝑢𝑦

𝜕𝑥2
) = −𝑐𝑠

2𝜌0𝜏(𝑎𝑥𝑦 + 2𝑏𝑥𝑥) ( 3-62 ) 

 𝑋𝐼𝑉.  
𝜕𝛱𝑥𝑦

𝑛𝑒𝑞

𝜕𝑦
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑦2
+
𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
) = −𝑐𝑠

2𝜌0𝜏(2𝑎𝑦𝑦 + 𝑏𝑥𝑦) ( 3-63 ) 

 𝑋𝑉.  
𝜕𝛱𝑥𝑦

𝑛𝑒𝑞

𝜕𝑧
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑦𝜕𝑧
+
𝜕2𝑢𝑦

𝜕𝑥𝜕𝑧
) = −𝑐𝑠

2𝜌0𝜏(𝑎𝑦𝑧 + 𝑏𝑥𝑧) ( 3-64 ) 

 𝑋𝑉𝐼.  
𝜕𝛱𝑦𝑧

𝑛𝑒𝑞

𝜕𝑥
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑦

𝜕𝑥𝜕𝑧
+
𝜕2𝑢𝑧

𝜕𝑥𝜕𝑦
) = −𝑐𝑠

2𝜌0𝜏(𝑏𝑥𝑧 + 𝑐𝑥𝑦) ( 3-65 ) 

 𝑋𝑉𝐼𝐼.  
𝜕𝛱𝑦𝑧

𝑛𝑒𝑞

𝜕𝑦
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑦

𝜕𝑦𝜕𝑧
+
𝜕2𝑢𝑧

𝜕𝑦2
) = −𝑐𝑠

2𝜌0𝜏(𝑏𝑦𝑧 + 2𝑐𝑦𝑦) ( 3-66 ) 
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 𝑋𝑉𝐼𝐼𝐼.  
𝜕𝛱𝑦𝑧

𝑛𝑒𝑞

𝜕𝑧
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑦

𝜕𝑧2
+
𝜕2𝑢𝑧

𝜕𝑦𝜕𝑧
) = −𝑐𝑠

2𝜌0𝜏(2𝑏𝑧𝑧 + 𝑐𝑦𝑧) ( 3-67 ) 

 𝑋𝐼𝑋.  
𝜕𝛱𝑥𝑧

𝑛𝑒𝑞

𝜕𝑥
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑥𝜕𝑧
+
𝜕2𝑢𝑧

𝜕𝑥2
) = −𝑐𝑠

2𝜌0𝜏(𝑎𝑥𝑧 + 2𝑐𝑥𝑥) ( 3-68 ) 

 𝑋𝑋.  
𝜕𝛱𝑥𝑧

𝑛𝑒𝑞

𝜕𝑦
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑦𝜕𝑧
+
𝜕2𝑢𝑧

𝜕𝑥𝜕𝑦
) = −𝑐𝑠

2𝜌0𝜏(𝑎𝑦𝑧 + 𝑐𝑥𝑦) ( 3-69 ) 

 𝑋𝑋𝐼.  
𝜕𝛱𝑥𝑧

𝑛𝑒𝑞

𝜕𝑧
= −𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑧2
+
𝜕2𝑢𝑧

𝜕𝑥𝜕𝑧
) = −𝑐𝑠

2𝜌0𝜏(2𝑎𝑧𝑧 + 𝑐𝑥𝑧) ( 3-70 ) 

 𝑋𝑋𝐼𝐼.  
𝜕𝛱𝑥𝑥

𝑛𝑒𝑞

𝜕𝑥
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑥2
) = −2𝑐𝑠

2𝜌0𝜏(2𝑎𝑥𝑥) ( 3-71 ) 

 𝑋𝑋𝐼𝐼𝐼.  
𝜕𝛱𝑥𝑥

𝑛𝑒𝑞

𝜕𝑦
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑥𝜕𝑦
) = −2𝑐𝑠

2𝜌0𝜏(𝑎𝑥𝑦) ( 3-72 ) 

 𝑋𝑋𝐼𝑉.  
𝜕𝛱𝑥𝑥

𝑛𝑒𝑞

𝜕𝑧
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑥

𝜕𝑥𝜕𝑧
) = −2𝑐𝑠

2𝜌0𝜏(𝑎𝑥𝑧) ( 3-73 ) 

 𝑋𝑋𝑉.  
𝜕𝛱𝑦𝑦

𝑛𝑒𝑞

𝜕𝑥
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
) = −2𝑐𝑠

2𝜌0𝜏(𝑏𝑥𝑦) ( 3-74 ) 

 𝑋𝑋𝑉𝐼.  
𝜕𝛱𝑦𝑦

𝑛𝑒𝑞

𝜕𝑦
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑦

𝜕𝑦2
) = −2𝑐𝑠

2𝜌0𝜏(2𝑏𝑦𝑦) ( 3-75 ) 

 𝑋𝑋𝑉𝐼𝐼.  
𝜕𝛱𝑦𝑦

𝑛𝑒𝑞

𝜕𝑧
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑦

𝜕𝑦𝜕𝑧
) = −2𝑐𝑠

2𝜌0𝜏(𝑏𝑦𝑧) ( 3-76 ) 

 𝑋𝑋𝑉𝐼𝐼𝐼.  
𝜕𝛱𝑧𝑧

𝑛𝑒𝑞

𝜕𝑥
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑧

𝜕𝑥𝜕𝑧
) = −2𝑐𝑠

2𝜌0𝜏(𝑐𝑥𝑧) ( 3-77 ) 

 𝑋𝑋𝐼𝑋.
𝜕𝛱𝑧𝑧

𝑛𝑒𝑞

𝜕𝑦
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑧

𝜕𝑦𝜕𝑧
) = −2𝑐𝑠

2𝜌0𝜏(𝑐𝑦𝑧) ( 3-78 ) 

 𝑋𝑋𝑋.  
𝜕𝛱𝑧𝑧

𝑛𝑒𝑞

𝜕𝑧
= −2𝑐𝑠

2𝜌0𝜏 (
𝜕2𝑢𝑧

𝜕𝑧2
) = −2𝑐𝑠

2𝜌0𝜏(2𝑐𝑧𝑧) ( 3-79 ) 

The derivatives of the non-equilibrium moments of second order 𝜕𝛾𝛱𝛼𝛽
𝑛𝑒𝑞 are obtained by ap-

plying the method of finite differences on the non-equilibrium moments 𝛱𝛼𝛽
𝑛𝑒𝑞. Depending on 

which nodes are used in interpolation, the finite difference stencil is different as it is shown in 

equations 3-80 to 3-85. 

Cube A: 

 
𝜕𝛱𝛼𝛽

𝑛𝑒𝑞

𝜕𝑥
=
1

2
(𝛱𝛼𝛽

𝑛𝑒𝑞(1,1,0) + 𝛱𝛼𝛽
𝑛𝑒𝑞(1,0,1) − 𝛱𝛼𝛽

𝑛𝑒𝑞(0,1,1) − 𝛱𝛼𝛽
𝑛𝑒𝑞(0,0,0)) ( 3-80 ) 

 
𝜕𝛱𝛼𝛽

𝑛𝑒𝑞

𝜕𝑦
=
1

2
(𝛱𝛼𝛽

𝑛𝑒𝑞(1,1,0) − 𝛱𝛼𝛽
𝑛𝑒𝑞(1,0,1) + 𝛱𝛼𝛽

𝑛𝑒𝑞(0,1,1) − 𝛱𝛼𝛽
𝑛𝑒𝑞(0,0,0)) ( 3-81 ) 

 
𝜕𝛱𝛼𝛽

𝑛𝑒𝑞

𝜕𝑧
=
1

2
(−𝛱𝛼𝛽

𝑛𝑒𝑞(1,1,0) + 𝛱𝛼𝛽
𝑛𝑒𝑞(1,0,1) + 𝛱𝛼𝛽

𝑛𝑒𝑞(0,1,1) − 𝛱𝛼𝛽
𝑛𝑒𝑞(0,0,0)) ( 3-82 ) 

 

Cube B: 

 
𝜕𝛱𝛼𝛽

𝑛𝑒𝑞

𝜕𝑥
=
1

2
(𝛱𝛼𝛽

𝑛𝑒𝑞(1,1,1) + 𝛱𝛼𝛽
𝑛𝑒𝑞(1,0,0) − 𝛱𝛼𝛽

𝑛𝑒𝑞(0,1,0) − 𝛱𝛼𝛽
𝑛𝑒𝑞(0,0,1)) ( 3-83 ) 
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𝜕𝛱𝛼𝛽

𝑛𝑒𝑞

𝜕𝑦
=
1

2
(𝛱𝛼𝛽

𝑛𝑒𝑞(1,1,1) − 𝛱𝛼𝛽
𝑛𝑒𝑞(1,0,0) + 𝛱𝛼𝛽

𝑛𝑒𝑞(0,1,0) − 𝛱𝛼𝛽
𝑛𝑒𝑞(0,0,1)) ( 3-84 ) 

 
𝜕𝛱𝛼𝛽

𝑛𝑒𝑞

𝜕𝑧
=
1

2
(𝛱𝛼𝛽

𝑛𝑒𝑞(1,1,1) − 𝛱𝛼𝛽
𝑛𝑒𝑞(1,0,0) − 𝛱𝛼𝛽

𝑛𝑒𝑞(0,1,0) + 𝛱𝛼𝛽
𝑛𝑒𝑞(0,0,1)) ( 3-85 ) 

The coefficients of the polynomial can be obtained by solving the system of equations as it is 

done in the appendix in section 7.3. Inserting them in the velocity equations 3-31, 3-32 and 

3-33 the velocity at the locations of the ghost nodes can be computed. This is done for both 

interpolation stencils and afterwards the resulting velocity values, 𝑢𝛼,𝐴 from “Cube A” and 

𝑢𝛼,𝐵 form “Cube B” are averaged as equation 3-86 shows. 

 𝑢𝛼 =
1

2
(𝑢𝛼,𝐴 + 𝑢𝛼,𝐵) ( 3-86 ) 

 

3.3.1.2 Trilinear Interpolation of Density and Non-Equilibrium Dis-
tributions 

The density values and the non-equilibrium distribution functions at the locations of the ghost 

nodes are obtained by trilinear interpolation. In contrast to the velocity interpolation, this is 

done using all eight nodes of the interpolation cell. A trilinear interpolation can be seen as 

three subsequent linear interpolations. The values and naming convention applied in this con-

cept is illustrated in Fig. 3-15 and is expressed in equation 3-87. First, all nodal values 𝐶000, 

𝐶100 𝐶010, 𝐶110, 𝐶001, 𝐶101, 𝐶011 and 𝐶111 are interpolated along the x-axis, resulting 

in 𝐶00, 𝐶01, 𝐶10 and 𝐶11. These quantities are further interpolated along the y-axis leading 

to 𝐶0 and 𝐶1. The resulting values in the end are interpolated along the z-axis leading to the 

required value 𝐶.  
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𝐶 = 𝐶000(1 − 𝑥)(1 − 𝑦)(1 − 𝑧) + 𝐶100𝑥(1 − 𝑦)(1 − 𝑧) + 𝐶010(1 − 𝑥)𝑦(1 − 𝑧) +

𝐶110𝑥𝑦(1 − 𝑧) + 𝐶001(1 − 𝑥)(1 − 𝑦)𝑧 + 𝐶101𝑥(1 − 𝑦)𝑧 + 𝐶011(1 − 𝑥)𝑦𝑧 + 𝐶111𝑥𝑦𝑧

  ( 3-87 ) 

By knowing the nodal values of the interpolation cell, with equation 3-87, the density at the 

locations of the ghost nodes presented in paragraph 3.3.1, can be calculated. The non-equi-

librium distribution functions can be equally treated. 

 

3.3.2 Multi-Grid Algorithm 

In this section the algorithm of grid coupling is described in detail and it is shown how the 

previously described interpolation steps are used to construct the missing distribution func-

tions at the boundary of grids of different resolution. A pre-collision coupling is applied which 

means, that the distribution functions are constructed right before collision takes place. Filip-

pova and Hänel [26] presented a post-collision grid coupling method. 

The algorithm is based on five subsequent steps which are displayed in Fig. 3-16 and are de-

scribed below. 

 

Fig. 3-15: The concept of trilinear interpolation in a cube 



3 Local Grid Refinement 39 

 

 

 

1. Coarse-to-fine coupling 

 

This step is done once for each coarse-to-fine interpo-

lation cell which is described in detail in section 3.3.1. 

Each step of its workflow is illustrated on the left with 

a 2D sketch of a coarse-to-fine interpolation cell. 

Coarse nodes are colored in orange and fine ghost 

nodes are colored in green. The locations of interest for 

the particular steps are marked with blue stars. Fur-

thermore, the variables obtained are listed inside the 

graphic. Variables with a superscript star are assigned 

to the locations of the ghost nodes and not to the 

nodes of the regular coarse grid. 

  

Fig. 3-16: Schematic illustration of the multi-grid algorithm for one refinement step with every 

arrow describing one process step 

Fig. 3-17: Coarse -to-fine 

coupling 
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• Calculation of nodal variables 

 

For the eight coarse nodes of the interpolation cell all 

distribution functions ℎ𝑖,𝑐 are known. From them, the 

macroscopic velocities 𝑢𝛼,𝑐 and the local density var-

iations ∆𝜌𝑐 can be calculated with equations 2-53 and 

2-54. Afterwards, the equilibrium distributions ℎ𝑖,𝑐
𝑒𝑞 

are obtained by inserting the macroscopic quantities 

into equation 2-26. The coarse non-equilibrium distri-

bution ℎ𝑖,𝑐
𝑛𝑒𝑞 is calculated with equation 2-71. 

• Interpolation of the velocities  

 

Using the coarse non-equilibrium distribution func-

tions ℎ𝑖,𝑐
𝑛𝑒𝑞, the non-equilibrium moments of second or-

der 𝛱𝛼𝛽,𝑐
𝑛𝑒𝑞  are calculated like it is written in equation 

3-36. They are used to compute the first derivatives of 

the second order non-equilibrium moments 𝜕𝛾𝛱𝛼𝛽,𝑐
𝑛𝑒𝑞  as 

it is described in equations 3-80 to 3-85 in order to ob-

tain all coefficients like listed in the appendix 7.3. Next, 

the velocities at the position of the fine ghost nodes 

𝑢𝛼,𝑐
∗  are calculated with the velocity polynomials (3-31 

to 3-33). 

  

Fig. 3-19: Interpolation 

of the velocities  

Fig. 3-18: Calculation of nodal 

variables 
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• Interpolation of the density and the non-equilibrium distribution functions 

 

The density 𝜌𝑐  and the non-equilibrium distribution 

functions ℎ𝑖,𝑐
𝑛𝑒𝑞 are interpolated with trilinear interpo-

lation using equation 3-87 to obtain their values at the 

location of the ghost nodes 𝜌𝑐
∗ and ℎ𝑖,𝑐

𝑛𝑒𝑞∗ 

 

• Calculation of the equilibrium distribution functions at the ghost nodes 

 

Knowing the velocity and density at the locations of the 

ghost nodes 𝑢𝛼,𝑐
∗  and 𝜌𝑐

∗, it is possible to calculate the 

equilibrium distribution function at the position of the 

ghost nodes ℎ𝑖,𝑐
𝑒𝑞∗ with equation 2-26. In section 3.2 it 

is presented, that none of these quantities need to be 

scaled between the grids. Therefore, it can be said that 

ℎ𝑖,𝑐
𝑒𝑞∗ = ℎ𝑖,𝑓

𝑒𝑞∗, 𝑢𝛼,𝑐
∗ = 𝑢𝛼,𝑓

∗  and 𝜌𝑐
∗ = 𝜌𝑓

∗ . 

  

Fig. 3-21: Calculation of 

the equilibrium distribu-

tion functions at the ghost 

nodes 

Fig. 3-20: Interpolation of 

the density and the non-

equilibrium distribution 

functions 
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• Rescaling of non-equilibrium distribution function 

 

In section 3.2 it is explained, why and how the non-

equilibrium distribution functions ℎ𝑖,𝑐
𝑛𝑒𝑞∗ have to be 

scaled, to represent the one from the opposite grid. 

Using equation 3-29 the non-equilibrium distribution 

functions at the location of the ghost nodes in fine lat-

tice units ℎ𝑖,𝑓
𝑛𝑒𝑞∗ are obtained.  

• Calculate missing distribution functions 

 

The unknown fine distribution functions at the bound-

ary of the fine grid ℎ𝑖,𝑓
∗  are computed with the previous 

obtained equilibrium and non-equilibrium distribution 

functions ℎ𝑖,𝑓
𝑒𝑞∗ and ℎ𝑖,𝑓

𝑛𝑒𝑞∗. This is done by rearranging 

equation 2-71 to ℎ𝑖,𝑓
∗ = ℎ𝑖,𝑓

𝑒𝑞∗
+ ℎ𝑖,𝑓

𝑛𝑒𝑞∗
. In contrast to 

other boundary conditions, not only the unknown dis-

tribution functions at the ghost nodes are constructed 

but all nineteen at each of the eight ghost nodes. 

2. Fine-to-coarse coupling 

 This step is done once for each fine-to-coarse interpolation 

cell which is described in detail in section 3.3.1. Each step of 

its workflow is illustrated on the left with a 2D sketch of a fine-

to-coarse interpolation cell. Fine nodes are colored in light 

blue and coarse ghost nodes are colored in black. The loca-

tions of interest for the particular steps are marked with red 

stars. Furthermore, the variables obtained are listed inside the 

graphic. Variables with a superscript star are assigned to the 

Fig. 3-22: Rescaling of non-

equilibrium distribution 

function 

Fig. 3-24: Fine-to-

coarse coupling 

Fig. 3-23: Calculate miss-

ing distribution functions 
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location of the ghost node and not to the nodes of the regular 

fine grid. 

• Calculation of nodal variables 

 

For the eight fine nodes of the interpolation cell all distribu-

tion functions ℎ𝑖,𝑓 are known. From them, the macroscopic 

velocities 𝑢𝛼,𝑓 and the local density variations ∆𝜌𝑓 can be cal-

culated with equations 2-53 and 2-54. Afterwards, the equi-

librium distributions ℎ𝑖,𝑓
𝑒𝑞  are obtained by inserting the macro-

scopic quantities into equation 2-26. The fine non-equilibrium 

distribution ℎ𝑖,𝑓
𝑛𝑒𝑞 is calculated with equation 2-71. 

• Interpolation of the velocities 

 Using the fine non-equilibrium distribution functions ℎ𝑖,𝑓
𝑛𝑒𝑞, the 

non-equilibrium moments of second order 𝛱𝛼𝛽,𝑓
𝑛𝑒𝑞  are calcu-

lated like it is given in equation 3-36. They are used to com-

pute the first derivatives of the second order non-equilibrium 

moments 𝜕𝛾𝛱𝛼𝛽,𝑓
𝑛𝑒𝑞  as it is described in equations 3-80 to 3-85 

in order to obtain all coefficients like listed in appendix 7.3. 

Next, the velocities at the position of the coarse ghost node 

𝑢𝛼,𝑓
∗  are calculated with the velocity polynomials in equations 

3-31 to 3-33. 

• Interpolation of the density and the non-equilibrium distribution functions 

 The density 𝜌𝑓 and the non-equilibrium distribution functions 

ℎ𝑖,𝑓
𝑛𝑒𝑞

 are interpolated with trilinear interpolation using equa-

tion 3-87 to obtain their values at the location of the ghost 

nodes 𝜌𝑓
∗  and ℎ𝑖,𝑓

𝑛𝑒𝑞∗ 

 

Fig. 3-25: Calculation of 

nodal variables 

Fig. 3-26: Interpolation 

of 𝑢𝛼,𝑓
∗  

Fig. 3-27: Interpolation 

of 𝜌 and ℎ𝑖,𝑓
𝑛𝑒𝑞 
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• Calculation of the equilibrium distribution functions at the ghost node 

 Knowing the velocity and density at the location of the ghost 

node 𝑢𝛼,𝑓
∗  and 𝜌𝑓

∗ , it is possible to calculate the equilibrium dis-

tribution functions at the position of the ghost node ℎ𝑖,𝑓
𝑒𝑞∗ with 

equation 2-26. In section 3.2 it is presented, that none of these 

quantities need to be scaled between the grids. Therefore, it 

can be said that ℎ𝑖,𝑐
𝑒𝑞∗ = ℎ𝑖,𝑓

𝑒𝑞∗, 𝑢𝛼,𝑐
∗ = 𝑢𝛼,𝑓

∗  and 𝜌𝑐
∗ = 𝜌𝑓

∗ . 

• Rescaling of non-equilibrium distribution function 

 In section 3.2 it is explained, why and how the non-equilibrium 

distribution functions ℎ𝑖,𝑓
𝑛𝑒𝑞∗ have to be scaled, to represent 

the one from the opposite grid. Using equation 3-29 the non-

equilibrium distribution functions at the location of the ghost 

node in coarse lattice units ℎ𝑖,𝑐
𝑛𝑒𝑞∗ are obtained. 

• Calculate missing distribution functions 

 The unknown coarse distribution functions which represent 

the fluid streaming from the fine grid into the coarse region 

ℎ𝑖,𝑐
∗  are computed with the previous obtained equilibrium and 

non-equilibrium distribution functions ℎ𝑖,𝑐
𝑒𝑞∗ and ℎ𝑖,𝑐

𝑛𝑒𝑞∗. This is 

done by rearranging equation 2-71 to ℎ𝑖,𝑐
∗ = ℎ𝑖,𝑐

𝑒𝑞∗ + ℎ𝑖,𝑐
𝑛𝑒𝑞∗. In 

contrast to other boundary conditions, not only the unknown 

distribution functions at the ghost node are constructed but 

all nineteen distribution functions. 

  

Fig. 3-28: Calculation of 

ℎ𝑖,𝑓
𝑒𝑞∗ 

Fig. 3-29: Rescaling of 

ℎ𝑖,𝑓
𝑛𝑒𝑞∗ 

Fig. 3-30: Calculate 

ℎ𝑖,𝑐
∗  
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3. “Collide and stream” on coarse grid 

 After the two-way grid coupling which is done in 

step one and two, all nodes on the fine and coarse 

grid are valid, meaning that the distribution func-

tion on all nodes are known. In Fig. 3-31 valid 

nodes are displayed as filled dots. Next, one LBM 

step is done on all nodes of the coarse grid. The 

procedure described in section 2.1.4 is executed. 

Fig. 3-32 shows a simplified illustration of the 

streaming step in the coarse grid where just some 

arrows for propagation are displayed to maintain 

conspicuousness. In the end, the simulation is at 

time 𝑡 + ∆𝑡𝑐. At this point, the distribution func-

tions at the coarse ghost nodes are invalid for two-

way coupled simulations like it is shown in Fig. 

3-33 with unfilled dots. During the streaming step 

these nodes have not received information from 

the fine grid and, therefore some of their distribu-

tion functions are unknown.  

 

 

  

Fig. 3-31: 2D view of the over-

lapping grids after the grid 

coupling 

Fig. 3-32: Simplified illustration of 

the coarse streaming step 

Fig. 3-33: Invalid ghost nodes on 

coarse grid 
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4. Asynchronous “collide and stream” on fine grid 

  An LBM step according to section 2.1.4 is also per-

formed on all nodes of the fine grid, bringing it to 

𝑡 + ∆𝑡𝑓 which is equal to 𝑡 +
∆𝑡𝑐

2
. It is called asyn-

chronous step due to the fact, that no comparable 

results are generated on the coarse grid at this 

time as it can be seen in Fig. 3-16. During the 

streaming step, which is outlined in Fig. 3-34 dis-

tributions are propagated. However, in the end of 

the asynchronous time step, the distribution func-

tions in the first shell of fine nodes are partly un-

known since all valid distribution functions have 

streamed to their neighbors and no information 

from the coarse grid is obtained to update the 

boundary nodes. 

 

 

5. Synchronous “collide and stream” on fine grid 

 

A further LBM step according to chapter 2.1.4 is 

done on all nodes of the fine grid, bringing it to   

𝑡 + 2∆𝑡𝑓 which is equal to 𝑡 + ∆𝑡𝑐. The fine and 

the coarse grid have reached the same degree of 

progress and, therefore, are synchronous. In the 

end of the synchronous time step the distribution 

functions belonging to nodes of the first and sec-
Fig. 3-36: Simplified second fine 

streaming step  

Fig. 3-34: Simplified illustration 

of the fine streaming step 

Fig. 3-35: Invalid nodes in first 

shell of fine grid 
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ond shell of fine grid, apparent from Fig. 3-37 ex-

actly all fine ghost nodes, are invalid. This is be-

cause, invalid values from the first shell have 

streamed to their neighbors.  

 

6. Starting again at 1. and repeating the procedure 

 

This procedure is valid for convective grid scaling (see section 3.2) only. If diffusive scaling is 

applied, four fine time steps are needed to propagate the fluid to the same point as it is done 

in one coarse time step. [18] 

Further, as mentioned already in section 3.3.1, no time interpolation is needed within this 

procedure. This is due to the fact, that the distribution functions of two shells of fine nodes 

are constructed in the coarse-to-fine coupling. In case the distribution functions of only one 

shell of nodes are updated, like it is mostly done when the coinciding nodes arrangement for 

meshing is used (see section 3.1), a temporal interpolation is needed. The reasons are ex-

plained in depth by Lagrava-Sandoval [20]. 

Fig. 3-37: Invalid ghost nodes on 

the fine grid 
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4 Implementation 

The functionality of grid refinement was implemented in an already comprehensive simula-

tion program. Therefore, it was required to integrate it with a minimum of impact on the ex-

isting code. Most changes in code have been done with the mindset to be able to use several 

refinement steps in future. Although, this is not possible in the current version, preparations 

have been made. Some changes and innovations will be highlighted in the following chapter. 

4.1 Input 

The feature of grid refinement requires few input parameters. It is possible to define a cuboid 

in which the grid resolution is increased. To describe its size and location, six variables 𝑥1, 𝑥2, 

𝑦1, 𝑦2, 𝑧1 and 𝑧2 are used as illustrated in Fig. 4-1. They are describing the distances of the 

fine grid boundaries to the boundaries of the coarse grid in all spatial dimensions. Further, the 

number of required grids and, therefore refinement levels, is fixed to be two. As a conse-

quence, the whole domain is resolved by a coarse grid and in the defined region, a grid with 

its resolution increased by factor two is placed. 

Fig. 4-1: Position of the fine grid inside the coarse grid 
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4.2 Local and Global Coordinates 

Every grid has its own local coordinate system with the origin set to one corner of the grid. In 

this work, the origin is set to the bottom left front corner like it is shown in Fig. 3-14 and Fig. 

4-1. In Fig. 4-2 on the left, a fine node is marked in red. In local fine coordinates it is located in 

(
𝑥𝑓,𝑙𝑜𝑐
𝑧𝑓,𝑙𝑜𝑐

) = (
4
5
) and in local coarse coordinates it is placed in (

𝑥𝑐,𝑙𝑜𝑐
𝑧𝑐,𝑙𝑜𝑐

) = (
4,25
3,75

). However, for 

some operations, like the definition of the solid reactor wall, it is important to know the global 

location of a fine node. Therefore, the concept of global coordinates is introduced in which 

the domain is considered to be completely covered with an imaginary fine grid. In the global 

fine coordinate system, like it is shown in Fig. 4-2 on the right, the fine node’s location can be 

identified with (
𝑥𝑓,𝑔𝑙𝑜
𝑧𝑓,𝑔𝑙𝑜

) = (
8
7
). Since the coarse grid is already covering the whole domain its 

global coordinates are equal the local coordinates (
𝑥𝑐,𝑔𝑙𝑜
𝑧𝑐,𝑔𝑙𝑜

) = (
𝑥𝑐,𝑙𝑜𝑐
𝑧𝑐,𝑙𝑜𝑐

). 

 

To obtain global coordinates the input variables 𝑥1, 𝑦1 and 𝑧1, described in section 4.1, are 

used as they describe exactly the offset of the local coordinate system. The offset shown in 

Fig. 4-2 is given with (

𝑥1
𝑦1
𝑧1
) = (

2
𝑦1
1

) and has to be multiplied by two to account for the different 

lattice spacing. The coordinate translation can therefore be done according to equation 4-1. 

 (

𝑥𝑓,𝑔𝑙𝑜
𝑦𝑓,𝑔𝑙𝑜
𝑧𝑓,𝑔𝑙𝑜

) = (

𝑥𝑓,𝑙𝑜𝑐
𝑦𝑓,𝑙𝑜𝑐
𝑧𝑓,𝑙𝑜𝑐

) + 2(

𝑥1
𝑦1
𝑧1
) ( 4-1 ) 

Fig. 4-2: 2D illustration of the local grid coordinates (l.) and the global coordinates (r.) with a 

node in the same location marked in red in both grids and the corresponding values of 

the coordinate systems 
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Further, it is required to correlate the locations of the eight nodes of an interpolation cell with 

the locations of its one or eight ghost nodes in order to construct the missing distribution 

functions at the grid boundaries described in section 3.3. To accomplish this, the grid offsets 

𝑥1, 𝑦1 and 𝑧1 are used as well. It is considered that the position of every interpolation cell and 

every cell of eight ghost nodes is defined by the coordinates of the node in the bottom left 

front corner which correlates to the (0|0|0) node of Fig. 3-14 and will be called base node in 

the following sections. The other nodes can be obtained by adding the vector 𝑟𝑖𝑗𝑘 = (
𝑖

𝑗

𝑘

) given 

in Tab. 4-1, where 𝑖, 𝑗 and 𝑘 are either 0 or 1, to the base node coordinates accordingly. 

Tab. 4-1: The vectors 𝑟𝑖𝑗𝑘 which point to every cell node from the base node 

𝑟000 = (
0
0
0
) 𝑟100 = (

1
0
0
) 𝑟010 = (

0
1
0
) 𝑟001 = (

0
0
1
) 𝑟110 = (

1
1
0
) 𝑟011 = (

0
1
1
) 𝑟101 = (

1
0
1
) 𝑟111 = (

1
1
1
) 

To obtain the eight fine ghost nodes from a coarse-to-fine interpolation cell base node with 

the coordinates (

𝑥𝑐,𝑙𝑜𝑐
𝑦𝑐,𝑙𝑜𝑐
𝑧𝑐,𝑙𝑜𝑐

), the grid offsets 𝑥1, 𝑦1 and 𝑧1 which are given in coarse lattice units 

must be subtracted and the result needs to be multiplied by two to account for the different 

lattice spacing. According to that, the coordinates of the base node of the fine ghost cell 

(

𝑥𝑓,𝑙𝑜𝑐
𝑦𝑓,𝑙𝑜𝑐
𝑧𝑓,𝑙𝑜𝑐

) is obtained. The coordinates of the other ghost nodes located in that cell are calcu-

lated by adding the vector 𝑟𝑖𝑗𝑘 as it is given in equation 4-2. 

 (

𝑥𝑓,𝑙𝑜𝑐
𝑦𝑓,𝑙𝑜𝑐
𝑧𝑓,𝑙𝑜𝑐

) = 2((

𝑥𝑐,𝑙𝑜𝑐
𝑦𝑐,𝑙𝑜𝑐
𝑧𝑐,𝑙𝑜𝑐

) − (

𝑥1
𝑦1
𝑧1
)) + (

𝑖
𝑗
𝑘
) ( 4-2 ) 

 

The coordinates of a coarse ghost node (

𝑥𝑐,𝑙𝑜𝑐
𝑦𝑐,𝑙𝑜𝑐
𝑧𝑐,𝑙𝑜𝑐

) 

can be calculated from the coordinates of a fine-

to-coarse interpolation cell base node (

𝑥𝑓,𝑙𝑜𝑐
𝑦𝑓,𝑙𝑜𝑐
𝑧𝑓,𝑙𝑜𝑐

) 

with equation 4-3. Due to the fact, that the coor-

dinates of the base nodes of fine-to-coarse inter-

polation cells always have odd integer values like 

it is shown in Fig. 4-3, it is ensured that the result 

of the division in equation 4-3 is always an integer.  

Fig. 4-3: 2D scheme of fine-to-coarse in-

terpolation cells in blue and their 

base nodes in red 
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 (

𝑥𝑐,𝑙𝑜𝑐
𝑦𝑐,𝑙𝑜𝑐
𝑧𝑐,𝑙𝑜𝑐

) =

((

𝑥𝑓,𝑙𝑜𝑐
𝑦𝑓,𝑙𝑜𝑐
𝑧𝑓,𝑙𝑜𝑐

)+(
1
1
1
))

2
+ (

𝑥1
𝑦1
𝑧1
) ( 4-3 ) 

 

4.3 Design of Variables 

In section 3.2 it was shown, that a change of grid resolution entails a change in conversion 

factors and, therefore lattice units. If for instance, the reactor height in coarse lattice units is 

equal to 75, it would be 150 in fine lattice units according to equations 2-32 and 3-2. To cope 

with different lattice units, the simulation variables including all measures of length, various 

parameters and pointers to massive matrices with node related data are expanded by a fur-

ther dimension. Therefore, as shown in Tab. 4-2 single values are converted into vectors and 

vectors into matrices. The parameter max_lvl used in Tab. 4-2 gives the number of grids used 

in the simulation, like it was prescribed in the input in section 4.1 and is defining the number 

of elements in the further dimension. As a consequence, the variable reactorHeight is defined 

as a vector with two elements, one for every grid level.  

Tab. 4-2: Examples of variables used in simulation 

float reactorHeight[max_lvl] 

float3 shaftBottom[max_lvl] 

uint *isSolid[max_lvl] 

float3 *velocity[max_lvl] 
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4.4 Function Design 

In order to understand how the feature of grid refinement can be integrated into a lattice 

Boltzmann code Fig. 4-4 illustrates the sequence of functions implemented.  

The functions in Fig. 4-4 which are written in orange, have been realized to facilitate grid re-

finement. Omitting them leads to a simple LBM algorithm. As described in section 2.2, using 

the CUDA architecture it must be differentiated between device and host functions. In the 

sketch, they are framed green and blue respectively. All actions, which need to be done in 

sequence and are not applied on all nodes are implemented in host functions, like the conver-

sion of quantities from physical units to lattice units. All computations executed in parallel on 

the nodes, like the computation of velocity and density from the distribution functions, are 

done using device functions. Each of the functions listed in Fig. 4-4 will be explained further 

depending on their classification in section 4.4.1 or 4.4.2. From the main file several host func-

tions are called in a sequence to set up the fluid calculation, which is indicated with bold black 

arrows. The core of the simulation is formed by a looped call of the functions doGridRefine-

ment and output. This loop is proceeded for a user defined period of time.  

 

Fig. 4-4: Function diagram 
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4.4.1 Host Functions 

There are two different practices of realizing a host function together with grid refinement. In 

Fig. 4-4, this is indicated with functions in blue frames with white or light blue background. 

The one, with light blue background are implemented with a for-loop to execute the function 

body once for every level, like it is shown in the pseudo code example below. This is a simple 

way to adapt these functions to feature grid refinement.  

 for(uint lvl=0; lvl < max_lvl; lvl++){ 

  variable1[lvl]=variable2[lvl]/variable3[lvl] 

 } 

The parameter lvl is used in the whole application to distinguish between the different refine-

ment levels. If it is equal to zero, the coarsest grid is addressed. Since only one refinement 

step is used the fine grid is addressed with level equals to one. 

Functions with a white background do not have this loop as it is not necessary or possible to 

calculate them for every level. 

• deviceInitialize: The GPUs used for the calculation are reset and it is checked if they are 

communicating properly.  

• getGridData: The relevant data for grid refinement like number of nodes, position of 

grids and the conversion factors are imported and converted to lattice units. No loop 

over the levels is possible because the calculations differ for every level. 

• convertUnits: All further input data is imported and converted to lattice units; all re-

quired parameters are calculated. 

• fluidInitiaize: Various functions are called to initialize the domain and set up the simu-

lation boundaries. 

• doGridRefinement: The grid coupling and fluid calculation is triggered from this func-

tion. It is a recursive function and is described in depth in section 4.5. 

• doOneTimeStep: The functions collisionStep, streamingStep and obtainDen-

sityandVelocity are called from this function as they are needed to fulfill one time step 

as described in section 2.1.4. doOneTimeStep needs to be called for each grid sepa-

rately from the function doGridRefinement. 
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• output: The velocity and density data calculated in this time step is written to output 

files and saved. This function is called in user defined time intervals. It is looped over 

all levels and, therefore, the data for all levels is saved subsequently. 

4.4.2 Device Functions 

The device functions are all executed in parallel on every node. To be compatible with grid 

refinement, they use the variable for grid level lvl as input parameter to know which element 

of the arrays they need to address during calculations. Further, the variables blocks and 

threads are redefined for every grid to use the exact number of threads needed in every kernel 

call.  

• initFields: The value fields for density, velocity, distribution functions, fine ghost nodes 

and interpolation cells, coarse ghost nodes and interpolation cells and boundary are 

initialized with zero values.  

• setGhostCoarse: This function defines which nodes of the coarse grid belong to coarse-

to-fine interpolation cells and which are ghost nodes. The base nodes of the interpo-

lation cells are marked. 

• setGhostFine: This function defines which nodes of the fine grid belong to fine-to-

coarse interpolation cells and which are ghost nodes. The base nodes of the interpola-

tion and ghost cells are marked. 

• getStaticBoundary: The nodes belonging to the reactor wall and the stirrer shaft are 

set as solid. 

• moveMovingBoundary: The nodes belonging to the stirrer blades are set as solid ac-

cording to the current rotation angle of the agitator.  

• gridCoupling: The grids are coupled according to the procedure described in section 

3.3. The distinction between coarse-to-fine and fine-to-coarse is made by the function 

input.  

• collisionStep: The collision of particles is done as it is described in equation 2-40. 



4 Implementation 55 

• streamingStep: The distributions are streamed to their neighboring nodes according 

to equation 2-41 and the boundary conditions described in section 2.1.5 are applied if 

necessary. 

• obtainDensityandVelocity: The macroscopic quantities are calculated according to 

equations 2-37, 2-38 and 2-39. 

Further, to facilitate grid refinement three functions for coordinate transformation between 

the grids loc2glo, co2fi and fi2co are called from the device functions.  

• loc2glo: Global coordinates are obtained from local grid coordinates like it is shown in 

section 4.2 and equation 4-1.  

• co2fi: Local coordinates of the coarse grid are used to obtain matching local coordi-

nates of the fine grid according to equation 4-2. 

• fi2co: Local coordinates of the fine grid are used to obtain matching local coordinates 

of the coarse grid according to equation 4-3. 

 

4.5 Recursive Function 

In Fig. 4-4 the function doGridRefinement is surrounded by blue arrows. This should represent 

the fact, that it is a recursive function. This type of functions is calling themselves in the func-

tion body until a break condition is fulfilled. As a consequence, the correct sequence and 

therefore right time for the grid coupling procedure is guaranteed for more than one refine-

ment step. In Fig. 4-5 it is illustrated with the example of three refinement steps that the com-

plexity of sequencing increases with increasing degree of refinement. The grid coupling in step 

number 17 and 18 for instance can only be done if the fluid calculation on all levels has reached 

the time 𝑡 + ∆𝑡1 which is equal to 𝑡 + 2∆𝑡2 and 𝑡 + 4∆𝑡3. 
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In the paragraph below a pseudo code example of the recursive function doGridRefinement 

can be found. 

void doGridRefinement(lvl){ 

 

 dim3 blocks = make_uint3(localNodesY[lvl], localNodesZ[lvl], 1); 

 uint threads = localNodesX[lvl]; 

 

if(lvl < (max_lvl-1)){ //first if-condition 

 

  dim3 blocksfine = make_uint3(localNodesY[lvl+1], 

localNodesZ[lvl+1], 1); 

  uint threadsfine= localNodesX[lvl+1]; 

   

gridCoupling<<<blocks,threads,0>>>(h_i[lvl],h_i[lvl+1],lvl); 

gridCoupling<<<blocksfine,threadsfine,0>>> 

(h_i[lvl+1],h_i[lvl],lvl+1); 

} 

 

 doOneTimeStep(blocks, threads, lvl); 

 current_teta=current_teta+ angularVelocityLU[lvl]; 

 moveMovingBoundary(current_teta, blocks, threads, lvl); 

 

 if(lvl < (max_lvl-1)){//second if-condition -> break condition 

  doGridRefinement(lvl+1);//first recursive call 

  doGridRefinement(lvl+1); //second recursive call 

 } 

} 

The function is called from the main file by doGridRefinement(0) meaning the input parameter 

lvl equals zero and as a consequence all values for ‘grid 0’ are taken. A 2D grid of blocks is 

defined with the number of local nodes in y and z direction. Each block is a mono-dimensional 

array of threads with the same number of elements than number of local nodes in x direction.  

Fig. 4-5: Schematic illustration of the multi-grid algorithm for three refinement steps where 

every arrow is describing one process step 
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If the level under focus lvl is smaller than the maximum number of levels max_lvl minus one, 

grid coupling is executed. In the case of three refinement steps, as in the example in Fig. 4-5, 

four grids are used and, therefore, max_lvl equals four. As a result, the if-condition is true and 

grid coupling between ‘grid 0’ and ‘grid 1’ is done. For the fine-to-coarse coupling the blocks 

and threads are redefined with the number of local nodes of ‘grid 1’.  

Afterwards, the functions doOneTimeStep(0) and moveMovingBoundary(0) are called. 

The abortion condition of the recursive function is given by the second if-condition. As long as 

lvl is smaller than three, the function doGridRefinement(lvl+1) is called with its input parame-

ter increased by one. This is the first recursive call of doGridRefinement(1).  

In Fig. 4-6 a function tree is illustrated for the example case of four grids. The numbers next 

to the function calls signify the value of parameter lvl. The blue circled numbers are referenc-

ing to the process steps from Fig. 4-5. The pink bold arrows signify the function control flow 

and, therefore, the sequence of function calls. In the function tree it can be seen, that after 

the first recursive call of doGridRefinement(1), the whole procedure is redone with lvl equals 

one. Since the second if-condition evaluates as true, the function doGridRefinement is called 

with its input level increased by one. This is the first recursive call of doGridRefinement(2). 

The whole procedure is redone with lvl equals two. Since the second if-condition still evaluates 

as true, the function doGridRefinement is called with its input level increased by one. This is 

the first recursive call of doGridRefinement(3). 

In the case of lvl equals three, the first if-condition is false and no grid coupling is done as there 

does not exist a finer grid than ‘grid 3’. The function doOneTimeStep(3) and moveMov-

ingBoundary(3) are called. Afterwards, the second if-condition evaluates as false and the first 

recursive call of doGridRefinement(3) is exited. By doing so, the function control flow is jump-

ing to the second recursive call of doGridRefinement(3). Again, the first if-condition is false 

and no grid refinement is done. The function doOneTimeStep(3) and moveMovingBoundary(3) 

are called. Afterwards, the second if-condition evaluates as false and the second recursive call 

of doGridRefinement(3) is exited. 

The function control flow is jumping to the second recursive call of doGridRefinement(2). The 

procedure continues according to the function tree until doOneTimeStep(3) with the process 
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step number 29 is finished. After that the function control flow is jumping to the main file and 

the function output is called. 

Fig. 4-6: Function tree of the recursive function for three refinement levels 
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5 Testing and Validation 

In this chapter, the simulation results are compared with the analytical solution of the Navier-

Stokes equation in the case of Hagen-Poiseulle flow. For the case where no analytical solution 

is available, as for the stirred tank reactors, the simulation results are evaluated with experi-

mental results from literature. For the validation, two different cases are chosen. The first – 

Hagen-Poiseuille flow in a cylindrical tube – is examined in section 5.1. The second case is 

investigated in section 5.2 and is focusing on agitated tanks.  

5.1 Hagen-Poiseuille Flow in a Cylindrical Tube 

In this section, the simulation results for a pipe flow are presented. The geometry of the three-

dimensional simulation cases is uniform and given in Tab. 5-1. To investigate the influence of 

grid refinement on the results of the simulation, the size and position of the refined region is 

varied as well as the Reynolds number. A sketch of the simulated geometry can be found in 

Fig. 5-1. At the inlet, which is shown on the left for all cases, a constant velocity is applied by 

the velocity boundary condition described in section 2.1.5.4. Just before the outlet a small 

absorbing layer, as illustrated in section 2.1.5.6, is placed. The pressure boundary condition 

from section 2.1.5.5 is used at the outlet on the right side of the tube. 

Tab. 5-1: Geometric data of the first case 

Nodes in x direction 75 Radius of tube 𝑅 [m] 0.05 

Nodes in y direction 75 Length of tube 𝑙𝑡𝑢𝑏𝑒 [m] 2 

Nodes in z direction 1401 Length of absorbing layer 𝑙𝑎𝑏𝑠 [m] 0.03 
 

  

Fig. 5-1: Sketch of the simulated geometry of the first case with inlet shown in yellow and 

outlet in green 
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Fully developed, laminar and steady-state flow of an incompressible Newtonian fluid in a cy-

lindrical tube is called Hagen-Poiseuille flow and leads to a simplification of the Navier-Stokes 

equations. From them, equation 5-1 can be derived, which gives the parabolic velocity profile 

in z-direction as a function of the dynamic viscosity 𝜇, the pressure drop along the tube length 
∆𝑝

𝑙𝑑𝑒𝑣
 and the radius of the tube 𝑅. [27, pp. 115-117] 

 𝑢𝑧(𝑟) = −
1

4𝜇

∆𝑝

𝑙𝑑𝑒𝑣
𝑅2 (1 −

𝑟2

𝑅2
) ( 5-1 ) 

Since the velocity is set to a constant value across the inlet, the flow profile is not developed 

at the entry section, and therefore, the law of Hagen-Poiseuille is not valid along the whole 

length of the tube. The region, in which the flow is developing, is referred to as hydrodynamic 

inlet length 𝑙ℎ𝑦𝑑.There exist different correlations for estimating this hydrodynamic inlet 

length. An extensive list can be found in the work of Bochardt [28, p. 10]. The method of Jirka 

and Lang was chosen, as it is also referenced by Brenn [29] and is given in equation 5-2. 

 
𝑙ℎ𝑦𝑑

2𝑅
≈ 0.05 ∗ 𝑅𝑒 ( 5-2 ) 

Therefore, in the following sections the length of the tube without the hydrodynamic inlet 

length from equation 5-2 and further without the length of the absorbing layer is used for 

calculation.  

 𝑙𝑑𝑒𝑣 = 𝑙𝑡𝑢𝑏𝑒 − 𝑙ℎ𝑦𝑑 − 𝑙𝑎𝑏𝑠 ( 5-3 ) 

Likewise, the data from the absorbing layer was excluded in the plots of velocity and pressure 

over the length of the pipe. Additionally, for the total pressure drop from simulation ∆𝑝𝑠𝑖𝑚𝑢 

the data from the absorbing layer as well as the hydrodynamic inlet length from equation 5-2 

was excluded. 

Further, from the NSE it is found, that the maximum velocity 𝑢𝑚𝑎𝑥, located in the cross-sec-

tional mid-point of the tube, is equal twice the volume equivalent – mean – velocity 𝑢𝑚. In 

equation 5-4, the volume equivalent velocity 𝑢𝑚, is shown to be the volume flow 𝑄̇ divided 

by the cross-sectional area of the tube 𝐴. [27, pp. 117-118] 

 𝑢𝑚 =
𝑄̇

𝐴
 ( 5-4 ) 

 𝑢𝑚𝑎𝑥 = 2𝑢𝑚 ( 5-5 ) 

By inserting equation 5-5 into equation 5-1 at 𝑟 = 0, the total pressure drop occurring in the 

tube can be determined. [27, pp. 118-119] 
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 −∆𝑝 =
8𝑢𝑚𝑙𝑑𝑒𝑣𝜇

𝑅2
 ( 5-6 ) 

The relative error of the simulated pressure drop is computed as in equation 5-7.  

 𝜀 =
|∆𝑝𝑠𝑖𝑚𝑢−∆𝑝𝑐𝑎𝑙𝑐|

∆𝑝𝑐𝑎𝑙𝑐
∙ 100 ( 5-7 ) 

For the case of pipe flow, the code was adapted in order to be able to compare the simulation 

results with the results of the Hagen-Poiseuille flow. These changes refer to the definition of 

the solid boundary which is intended to represent the cylindrical pipe. Typically, one major 

advantage of grid refinement is the higher resolution of boundaries inside the refined region. 

As it can be seen in the example case of Fig. 5-2 and Fig. 5-3, the shape of the cross-sectional 

area is approaching a circular shape with increased refinement. However, a problem emerges 

from the deviation of area available for the fluid motion. It is slightly different in the region of 

refined grid, leading to jumps in the plots of pressure and velocity over tube length. Therefore, 

the implementation of the fine boundary was adapted to exactly represent the boundary of 

the coarse grid as it can be seen in Fig. 5-4.  

  Fig. 5-2: Cross-sectional view of the 

solid boundary of the coarse grid 

for 35x35 coarse nodes 

 

Fig. 5-3: Cross-sectional view of the 

solid boundary of the fine grid for 

68x68 fine nodes 
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In the following sections, the results are processed to be comparable. Therefore, for instance 

the velocity at the center line of the tube 𝑢 is normalized with the input velocity 𝑢𝑖𝑛 and is 

plotted over the normalized length obtained by dividing the position on the tube 𝑙𝑧 with the 

relevant region of the tube 𝑙𝑡𝑢𝑏𝑒 − 𝑙𝑎𝑏𝑠. This leads to readable plots which can be matched 

with the expected results from the Hagen-Poiseuille equation. The longitudinal velocity and 

pressure fields of each simulation can be found in the appendix in section 7.5. 

5.1.1 Set-up 1 

Two simulations have been done in a pipe using the geometry described in Tab. 5-1 and the 

fine grid placed, as shown in Fig. 5-5, in the second half of the tube, where the flow profile is 

already fully developed. The first simulation was done with an inlet velocity of 𝑢𝑖𝑛 = 𝑢𝑚 =

0.0001 [
𝑚

𝑠
], leading to a Reynolds number of 10 and for the second simulation an inlet velocity 

of 𝑢𝑖𝑛 = 𝑢𝑚 = 0.001 [
𝑚

𝑠
] was used to reach a Reynolds number of 100.  

Fig. 5-5: Dimensional sketch of set-up 1 with the coarse grid in blue, the fine grid in orange, 

the absorption layer in grey and positions 1 and 2 marked with red lines 

Fig. 5-4: Adapted solid boundary of the fine 

grid to guarantee the same cross-sec-

tional area as in the coarse grid for 

68x68 fine nodes 
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5.1.1.1 Simulation of a Reynolds Number of 10 

For a Reynolds number of 10, the relative error between calculated and simulated pressure 

drop is 0.306%, as shown in Tab. 5-2. In appendix 7.4 the results from a coarse grid reference 

simulation can be found. Comparing the magnitude of the relative error, the grid refinement 

reduced the error by 0.205%.  

Tab. 5-2: Comparison of pressure drop for a Reynolds number of 10 for set-up 1 

∆𝑝𝑐𝑎𝑙𝑐[𝑃𝑎] ∆𝑝𝑠𝑖𝑚𝑢[𝑃𝑎] 𝜀[%] 

6.053 ∙ 10−4 6.072 ∙ 10−4 0.306 
 

In Fig. 5-6 and Fig. 5-7 the impact of grid refinement on the resolution of the velocity field can 

be seen. As it is illustrated in Fig. 5-5, position 1, and therefore, Fig. 5-6 is located in the coarse 

region and position 2 and Fig. 5-7 is located in the fine region. Both displayed velocity fields 

are axially symmetrical and do not have any artifacts from grid coupling.  

 

 Fig. 5-6: Cross-sectional view of the velocity field at position 1 
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 Fig. 5-8: Velocity at center line plotted over the length of the tube for set-up 1 and 

𝑅𝑒 = 10 

Fig. 5-7: Cross-sectional view of the velocity field at position 2 
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In Fig. 5-8 and Fig. 5-9 the normalized velocity and the pressure drop is plotted over the nor-

malized length of the tube respectively. Further, the hydrodynamic inlet length calculated 

from equation 5-2 is marked with a brown line. The analytical solution is shown with a green 

line. In the velocity plot, the maximum velocity from the simulation is higher than twice the 

inlet velocity. In the appendix, in Fig. 7-1 the results of the non-refined simulations show, that 

this is an effect of the simulation itself and not due the grid refinement. This effect is increased 

with decreased grid resolution. A possible explanation of this effect is, that the Hagen-

Poiseuille equation in the form given in equation 5-1 is only valid for a circular cross-sectional 

area and the real cross-sectional area differs from the shape of a circle as it can be seen in Fig. 

5-2 and Fig. 5-3  

The velocity plot shows a peak of the maximum velocity after the fluid is entering the refined 

region and a valley after it is leaving it. In addition, the refined region seems to induce a small 

flow resistance, as the maximum velocity after the refined region is smaller than in front of it.  

Fig. 5-9: Difference to ambient pressure at centerline plotted over the length of the 

tube for set-up 1 and 𝑅𝑒 = 10 
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Taking a look at the hydrodynamic inlet length, it can be seen, that the simulated flow is fully 

developed at a pipe length of 0.09 which is larger than the calculated of 0.026. However, as 

the plotted pressure gradient matches the analytical pressure gradient – both plotted in Fig. 

5-9 – it is sufficient to use the calculated value for the calculation of the pipe length as in 

equation 5-3. 

5.1.1.2 Simulation for Reynolds Number of 100 

For a Reynolds number of 100, the relative error between calculated and simulated pressure 

drop is 0.53%, as shown in Tab. 5-3. In appendix 7.4 the results from a coarse grid reference 

simulation can be found. Comparing the magnitude of the relative error, the grid refinement 

reduced the error by 0.189%.  

Tab. 5-3: Comparison of pressure drop for a Reynolds number of 100 for set-up 1 

∆𝑝𝑐𝑎𝑙𝑐[𝑃𝑎] ∆𝑝𝑠𝑖𝑚𝑢[𝑃𝑎] 𝜀[%] 

4.613 ∙ 10−3 4.638 ∙ 10−3 0.53 

 

 

 

 

Fig. 5-10: Velocity at center line plotted over the length of the tube for set-up 1 and 

𝑅𝑒 = 100 
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In Fig. 5-10 and Fig. 5-11 the normalized velocity and the pressure drop is plotted over the 

normalized length of the tube respectively. Further, the hydrodynamic inlet length calculated 

from equation 5-2 is marked with a brown line. The analytical solution is shown with a green 

line. Due to the increase of the inlet velocity 𝑢𝑖𝑛, the hydrodynamic inlet length is increased. 

It is approximated with equation 5-2 to be 0.26 and from the velocity plot a value of 0.5 can 

be extracted. However, the pressure plot reveals that the gradient of the pressure from the 

simulation starts matching the gradient from the analytical solution at the calculated inlet 

length. 

Comparing the velocity plots of the simulations for a Reynolds number of 10 and of 100, i.e. 

Fig. 5-8 and Fig. 5-10, it can be seen that the effects of flow resistance, as well as, the peaks 

and valleys of velocity at the boundaries between the grids are decreased with increased ve-

locity. It can be observed, that the velocity is decreased in the very last section from the tube. 

This is due to the absorbing layer, which is placed right after this section and is influencing the 

fluid motion slightly.  

Fig. 5-11: Difference to ambient pressure at centerline plotted over the length of the 

tube for set-up 1 and 𝑅𝑒 = 100 
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5.1.2 Set-up 2 

For the second set up the fine grid is located at the inlet of the tube, as illustrated in Fig. 5-12. 

The geometry is the same as given in Tab. 5-1. Like in set-up 1, two simulations have been 

done. The first with an inlet velocity of 𝑢𝑖𝑛 = 𝑢𝑚 = 0.0001 [
𝑚

𝑠
], leading to a Reynolds number 

of 10 and the second with an inlet velocity of 𝑢𝑖𝑛 = 𝑢𝑚 = 0.001 [
𝑚

𝑠
], to reach a Reynolds 

number of 100. 

 

5.1.2.1 Simulation for Reynolds Number of 10 

For a Reynolds number of 10, the relative error between calculated and simulated pressure 

drop is 0.669%, as shown in Tab. 5-4. In appendix 7.4 the results from a coarse grid reference 

simulation can be found. Comparing the magnitude of the relative error, the grid refinement 

reduced the error by 0.158%. Comparing this with the results of the other cases, it can be 

seen, that solely with this configuration the relative error is increased by refining the grid. In 

all other cases the simulated pressure drop ∆𝑝𝑠𝑖𝑚𝑢 is higher than the calculated pressure drop 

∆𝑝𝑐𝑎𝑙𝑐.  

Tab. 5-4: Comparison of pressure drop for a Reynolds number of 10 for set-up 2 

∆𝑝𝑐𝑎𝑙𝑐[𝑃𝑎] ∆𝑝𝑠𝑖𝑚𝑢[𝑃𝑎] 𝜀[%] 

6.053 ∙ 10−4 6.013 ∙ 10−4 0.669 
 

Taking the focus on the velocity plot in Fig. 5-13 and the pressure plot in Fig. 5-14, where the 

normalized velocity and the difference to ambient pressure in the mid-point of the tube are 

plotted over the normalized length of the tube, a similar behavior is observed as with the total 

pressure difference. The results of the simulations done with set-up 1, as well as the results 

of set-up 2 with a Reynolds number of 100, which is shown in the next section, all show a 

maximum velocity higher than the – in green plotted – analytical solution of Hagen-Poiseuille 

flow. Further, from the inlet on the simulated pressure line is located below the line of the 

Fig. 5-12: Dimensional sketch of set-up 2 with the coarse grid in blue, the fine grid in orange 

and the absorption layer in grey 
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analytical solution which is not the case in any of the other simulations. Just as in the simula-

tion of set-up 1 with a Reynolds number of 10, the fluid velocity is decreased after leaving the 

refined region.  

 

 Fig. 5-13: Velocity at center line plotted over the length of the tube for set-up 2 and 

𝑅𝑒 = 10 
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5.1.2.2 Simulation for Reynolds Number of 100 

For a Reynolds number of 100, the relative error between calculated and simulated pressure 

drop is 0.467%, as shown in Tab. 5-5. In appendix 7.4 the results from a coarse grid reference 

simulation can be found. Comparing the magnitude of the relative error, the grid refinement 

reduced the error by 0.252%.  

Tab. 5-5: Comparison of pressure drop for a Reynolds number of 100 for set-up 2 

∆𝑝𝑐𝑎𝑙𝑐[𝑃𝑎] ∆𝑝𝑠𝑖𝑚𝑢[𝑃𝑎] 𝜀[%] 

4.613 ∙ 10−3 4.635 ∙ 10−3 0.467 
 

In Fig. 5-15 and Fig. 5-16 the normalized velocity and the pressure drop is plotted over the 

normalized length of the tube respectively. Further, the hydrodynamic inlet length calculated 

from equation 5-2 is marked with a brown line. The analytical solution is shown with a green 

line. As for the simulation of a Reynolds number of 100 in set-up 1 the plotted velocity curve 

matches the curve of the reference simulation in Fig. 7-1. Further, the effect of a velocity de-

crease after the fluid is leaving the refined region is not visible.  

Fig. 5-14: Difference to ambient pressure at centerline plotted over the length of the 

tube for set-up 2 and 𝑅𝑒 = 10 
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Fig. 5-15: Velocity at center line plotted over the length of the tube for set-up 2 and 

𝑅𝑒 = 100 

Fig. 5-16: Difference to ambient pressure at centerline plotted over the length of the 

tube for set-up 2 and 𝑅𝑒 = 100 
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5.1.3 Set-up 3 

The aim of the third set up is to distinguish if the parabolic flow profile can be reproduced in 

case of partial cross-sectional refinement. Therefore, as illustrated in Fig. 5-17, the refined 

region was placed in the second half of the pipe to guarantee a fully developed flow inside the 

refined region. The geometry is the same as given in Tab. 5-1. An inlet velocity of 𝑢𝑖𝑛 = 𝑢𝑚 =

0.0001 [
𝑚

𝑠
] was chosen to reach a Reynolds number of 10. 

 

 

 

Fig. 5-17: Dimensional sketch of set-up 3 with the coarse grid in blue, the fine grid in orange, 

the absorption layer in grey and position 1 marked with a red line 

 

Fig. 5-18: Cross-sectional velocity field at position 1. The white lines 

are positioning the corners of the fine grid 
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In Fig. 5-18 the cross-sectional velocity field at position 1 – in Fig. 5-17 marked with a red line 

– is shown. The plotted white lines end each in a corner of the fine grid. It can be seen, that 

the velocity field is axically symmertical and that no artefacts of the grid coupling are visible.  

This is further confirmed by Fig. 5-19, where the velocity profile is plotted over the diameter 

of the tube. The velocity values obtained from the coarse grid as well as the velocity values 

from the fine grid lie exactly on the curve of the analytical solution. The Hagen-Poiseuille pro-

file was obtained, by using the exact pipe diameter from the simulation at position 1 and the 

prevailing velocity.  

In addition, it can be seen in Fig. 5-20 that the pressure over the diameter is constant, as it is 

intrinsic for Hagen-Poiseuille flow. However, the magnitude of pressure obtained from the 

simulation at position 1 is slightly higher than it is obtained from the analytical solution at this 

point.  

 

 Fig. 5-19:Velocity profile over the diameter of the tube at position 1 
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An indeed interesting behavior can be seen, if the normalized velocity is plotted over the nor-

malized length of the tube, as it is done in Fig. 5-21. After reaching its maximum value the 

velocity is constant along the length and no peaks nor valleys are observed after the fluid is 

entering and leaving the refined region. By comparing the velocity plot in Fig. 5-21 with the 

velocity plot obtained from the reference simulation without grid refinement in it is discov-

ered that the curves match exactly.  

Further, the relative error between calculated and simulated pressure drop is 0.513%, as 

shown in Tab. 5-6. By comparing this with magnitude of the relative error of the reference 

simulation a deviation of 0.002% is found. This implies eighter, that by refining the solid 

boundary, as it is done in set-up 1 and set-up 2, still a slight mismatch of boundaries occurs. 

Since, in the analytical solution of the problem (equation 5-6) the total radius of the pipe oc-

curs with a power of two, the flow is very sensitive to variations of the cross-sectional area. 

Due to the law of conservation of mass after a decrease of the tube radius the mean as well 

as the maximum velocity is increased for incompressible fluids. [27, p. 56] Otherwise, the 

boundary handling of the grid coupling algorithm could be an error source. At the moment, 

the code does not check whether a ghost node which is receiving values from interpolation is 

Fig. 5-20:Pressure profile over the diameter of the tube at position 1 
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part of the solid boundary or not. Therefore, if the half of an interpolation cell is lying in the 

solid region it is possible for ghost nodes which lie in the solid region as well to receive non-

zero velocity values. However, these nodes do not participate in the steaming and collision 

cycles.  

Tab. 5-6: Comparison of pressure drop for a Reynolds number of 10 for set-up 3 

∆𝑝𝑐𝑎𝑙𝑐[𝑃𝑎] ∆𝑝𝑠𝑖𝑚𝑢[𝑃𝑎] 𝜀[%] 

6.053 ∙ 10−4 6.084 ∙ 10−4 0.513 

 

 

 Fig. 5-21: Velocity at center line plotted over the length of the tube for set-up 3 and 

𝑅𝑒 = 10 
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Fig. 5-22: Difference to ambient pressure at centerline plotted over the length of the 

tube for set-up 3 and 𝑅𝑒 = 10 
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5.2 Grid Refinement in Agitated Tanks 

In this section, the simulation results for stirred tanks are presented to evaluate the behavior 

of grid refinement in turbulent flows. For that reason, two different set-ups have been chosen. 

In the first, presented in 5.2.1, a single-Rushton impeller is examined and in the second, pre-

sented in 5.2.2, a dual-Rushton impeller is investigated. The resulting flow patterns of both 

simulations are compared to flow patterns obtained from Particle Image Velocimetry (PIV) 

provided in reference literature. In this measurement technique, particles with the size of a 

few micrometers are dispersed in the flow and a high-speed camera takes two subsequent 

pictures of a laser illuminated sheet inside the transparent tank. In post-processing, the parti-

cles from the first picture are correlated with the particles of the second picture to calculate 

a two-dimensional velocity field. [30]  

In addition, measurement results of a laser-Doppler anemometry are presented. There, two 

pairs of laser beams with different wave lengths are used to obtain the velocity components 

at a measurement point by detecting the scattered light which can be correlated to the veloc-

ity via its frequency shift. [31] 

The references use 𝑇 as variable for the tank diameter. This was changed in this work to 𝐷𝑇  

but is still present in the description of the axis in the diagrams taken from the references. 

At the stirrer and the shaft, the moving wall boundary, described in section 2.1.5.3, is applied. 

For both cases, water under standard conditions is used as fluid. 
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5.2.1 Set-up 4 

The geometry of the tank with the single-Rushton impeller is shown in Fig. 5-23 and all param-

eters are given in  

 

Tab. 5-7. With the chosen size of the parameter 𝐶1which is the distance between the tank 

bottom and the stirrer – in literature often referred to as off-bottom clearance – a single loop 

flow pattern is observed. This means, that instead of the typical radial flow off the stirrer which 

is then separated at the tank wall into two loops, the stream is moving towards the bottom 

and forms a single loop by moving upwards along the tank wall. This behavior is stated to 

occur at an off-bottom clearance of 𝐶1 = 0.15𝐷𝑇, where 𝐷𝑇  is the diameter of the tank. [32] 

The fine grid is positioned around the impeller to better resolve its geometry and increase the 

number of nodes in this crucial flow region.  

 

 

 

Fig. 5-23: Dimensional sketch of set-up 4 with the coarse grid in blue and the fine grid in or-

ange on the left and 3D model of the simulation boundary on the right 
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In Fig. 5-25 the phase-averaged plot of a PIV measurement 

done by Li, Bao and Gao [32] is presented. It is obtained by 

averaging the velocity fields of over several hundred recorded 

flow patterns. The recordings were done exactly between two 

baffles for phase angles 𝜃 of 0° and further in intervals of 5° 

starting directly at the blade as it is shown in Fig. 5-24. The un-

derlying contour plot in Fig. 5-25 shows the turbulent kinetic 

energy 𝑘, which is not calculated during the simulation. There-

fore, in Fig. 5-26 the in-plane velocity vectors are plotted over 

the averaged liquid velocity. The reference plot shows velocity 

vectors which are scaled by the magnitude of the vector. In Fig. 

5-26, the vectors are scaled by a constant value in order to make the secondary flows better 

visible. As well as in the reference a phase-averaged velocity field is shown, generated from 

two hundred snapshots at arbitrary phase-angles. The position of the fine grid is visible to the 

higher number of velocity vectors in that region. By comparing both results it can be seen, 

that the main flow correlates with the main flow from the measurements. At the outer blade 

diameter 𝐷1the flow tends to move radially and is deflected towards reactor bottom shortly 

after. There, it is streaming parallel to the bottom until the reactor wall is reached, were it 

rises again to form a distinct single loop. The reference shows two secondary twirls. One in 

the region under the outer blade diameter and one at a radius of 0.235 of the normalized 

length scale. In the simulation this secondary flow appears as two vortices located at the outer 

blade diameter. 

Besides that, in Fig. 5-27, the phase-averaged velocity of the whole vertical section of the re-

actor is plotted. It can be seen, that in the boundary region between the grids next to the 

stirrer shaft higher velocities occur in the fine grid than in the coarse grid. It seems that, as in 

the case of pipe flow, the velocity is artificially increased if the fine-coarse grid boundary 

crosses solid parts. 

In Fig. 5-28 the cross-sectional view of an instantaneous velocity field is given. It shows how 

grid refinement increases the visibility of smaller eddies.  

 

 

Fig. 5-24: Sketch of a tank 

from above showing 

the phase angle 𝜃 
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Tab. 5-7: Parameters for the configuration of set-up 4 

Number nodes in x-direction [−] 123 

Number nodes in y-direction [−] 123 

Number nodes in z-direction [−] 119 

Tank diameter 𝐷𝑇  [𝑚] 0.476 

Tank height 𝐻 [𝑚] 0.476 

Distance of impeller from bottom 

𝐶1 

[𝑚] 0.071 

Impeller speed [
1

𝑚𝑖𝑛
] 97 

Impeller blade outer diameter 𝐷1 [𝑚] 0.158 

Impeller blade inner diameter 𝐷2 [𝑚] 0.078 

Number of blades [−] 6 

Blade height [𝑚] 0.032 

Blade thickness [𝑚] 0.003 

Disk diameter [𝑚] 0.118 

Shaft diameter [𝑚] 0.035 

Number of equally spaced baffles [−] 4 

Baffle width [𝑚] 0.048 

Position of fine grid from top 𝐹𝑧1 [𝑚] 0.35 

Height of fine grid 𝐹𝑧2 [𝑚] 0.101 

Position of fine grid from domain 

boundary x=0 𝐹𝑥1 =  𝐹𝑦1 

[𝑚] 0.12 

Width of fine grid 𝐹𝑥2=𝐹𝑦2 [𝑚] 0.263 
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Fig. 5-25: Phase-averaged plot of the velocity from a PIV measurement done by Li et al. [32] 

Fig. 5-26: Phase-averaged plot of the blade section of the velocity field obtained from the 

simulation with values in blue marking positions in units of normalized scale as used in 

reference in Fig. 5-25 
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 Fig. 5-28: Instantaneous velocity plot of the cross-section at the height of the stirrer 

Fig. 5-27: Phase-averaged plot of the velocity field of the whole vertical section of the 

reactor obtained from the simulation for set-up 4 



5 Testing and Validation 83 

An effect which is observed in all stirred tank simulations is a nearly linear increase of mass 

inside the reactor. This is not a local phenomenon and could not be traced to a certain region 

of the vessel. It is not appearing in the unrefined reactor and not observed in pipe flow. How-

ever, the effect is decreased with an increase of blade thickness. Hence, it is assumed, that 

the problem correlates with the moving wall boundary condition. The grid boundary crossing 

stirrer shaft is not or not solely causing the problem, as this was tested.  

 

 

 

5.2.2 Set-up 5 

The geometry of the tank with the dual-Rushton impeller is shown in Fig. 5-30 and all param-

eters are given in Tab. 5-8. Different positions of the impellers lead to different flow patterns 

in the double impeller configuration as well. If the distance separation between the impellers 

is large enough, each stirrer produces an independent flow pattern, as it would in a single-

Rushton configuration. Rutherford et al. [31] found that to obtain a so called, parallel flow 

pattern, the distance of the lower stirrer from the bottom of the tank 𝐶1 must be greater than 

0.2𝐷𝑇  and the distance between the impellers 𝐶2 must be greater than 0.385𝐷𝑇. By decreas-

ing the off-bottom clearance 𝐶1 of the lower stirrer to a value of 0.15𝐷𝑇  or below, its flow 

pattern is transformed to the single loop flow described in section 5.2.1. A merging flow occurs 

Fig. 5-29: Increase of density observed for 50 seconds of simulation for set-up 4 and 

87x87x83 nodes 



5 Testing and Validation 84 

for a distance of the lower stirrer to the vessel bottom 𝐶1 of 0.17𝐷𝑇 or higher and a maximal 

distance between the impellers 𝐶2 of 0.385𝐷𝑇. As the impellers are close to each other, their 

streams are influencing each other. Therefore, they move toward each other, meet vertically 

midway and form there one radially streaming stream. Where the stream reaches the reactor 

wall, it is separated again into two streams. One is moving upwards and forms a loop towards 

the upper impeller and one is moving downwards and forms a loop towards the lower impel-

ler. [31] 

The fine grid is positioned to solely refine the upper impeller to be able to compare directly 

the performance of grid refinement with the non-refined lower impeller.  

  

 

The phase-averaged velocity field of the simulation is obtained as described in the previous 

section and a section of it is presented in Fig. 5-31. As reference, the phase-averaged velocity 

field from a PIV measurement obtained from Pan et al. [30] is taken and presented in Fig. 5-33. 

Further, the flow patterns obtained from Rutherford et al. [31] from a LDA measurement are 

Fig. 5-30: Dimensional sketch of set-up 5 with the coarse grid in blue and the fine grid in or-

ange on the left and 3D model of the simulation boundary on the right 
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presented in Fig. 5-32. In their work, they used slightly different values for 𝐶1 and 𝐶2. However, 

they lie in the range to generate merging flow. 

Comparing the simulation results in Fig. 5-31 with the reference results in Fig. 5-32 and Fig. 

5-33 it can be seen that they match very well. Unfortunately, the resolution of Fig. 5-33 is quite 

low. However, the major parts of the flow are visible. The streams in Fig. 5-31, meet at half 

the distance between the impellers and afterwards form two loops. Futher, a secondary flow 

is produced at each blade which generates a small vertex between the blades. This is also 

shown in Fig. 5-33. In Fig. 5-32 it can be seen, that the upper main loop fills the whole region 

above the upper stirrer. For the simulation, as it can be seen in the appendix in Fig. 7-13, this 

is not the case. However, Rutherford et al. [31] used a tank which had the same height as 

diameter and in the simulation a height of 𝐻 = 1.4𝐷𝑇  was used. It is evident, that for a vessel 

of the same height the loops would fill the whole space above the stirrer.  

The averaged velocity over the whole vertical cross-section of the reactor is plotted in Fig. 

5-34. In the fluid region, next to where the stirrer shaft crosses the fine-coarse grid boundary, 

the velocity is increased, as it is the case for the singe-Rushton impeller in Fig. 5-27. 

In Fig. 5-35 an instantaneous velocity plot of the cross-section at the height of the upper stirrer 

can be seen. Again, a considerable improvement of the resolution is observed. In the x and y-

direction no artefacts of the grid coupling are visible as in Fig. 5-34. This is explained by the 

fact, that the fine-coarse grid boundary in x and y direction is completely located in the fluid 

region and is not crossing any solids. 
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Tab. 5-8: Parameters for the configuration of set-up 5 

Number nodes in x-direction [−] 123 

Number nodes in y-direction [−] 123 

Number nodes in z-direction [−] 167 

Tank diameter 𝐷𝑇  [𝑚] 0.476 

Tank height 𝐻 [𝑚] 0.666 

Distance of lower impeller from 

bottom 𝐶1 

[𝑚] 0.19 

Distance between impellers 𝐶2 [𝑚] 0.15 

Impeller speed [
1

𝑚𝑖𝑛
] 66 

Impeller blade outer diameter 𝐷1 [𝑚] 0.19 

Impeller blade inner diameter 𝐷2 [𝑚] 0.094 

Number of blades [−] 6 

Blade height [𝑚] 0.038 

Blade thickness [𝑚] 0.003 

Disk diameter [𝑚] 0.142 

Shaft diameter [𝑚] 0.035 

Number of baffles equally spaced [−] 4 

Baffle width [𝑚] 0.048 

Position of fine grid from top 𝐹𝑧1 [𝑚] 0.25 

Height of fine grid 𝐹𝑧2 [𝑚] 0.146 

Position of fine grid from domain 

boundary x=0 𝐹𝑥1 =  𝐹𝑦1 

[𝑚] 0.1 

Width of fine grid 𝐹𝑥2=𝐹𝑦2 [𝑚] 0.276 
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Fig. 5-31: ↑ Phase-averaged plot of the blade sec-

tion of the velocity field obtained from the 

simulation with values in blue marking po-

sitions in units of normalized scale as used 

in references in Fig. 5-33 and Fig. 5-32 

 

Fig. 5-33: ↑ : Phase-averaged plot of the 

velocity from a PIV measurement 

done by Pan et al. [30] 

Fig. 5-32: → 360° phase-averaged plot of the 

velocity from a LDA measurement done 

by Rutherford et al. [31] at 𝜃 = 0° for 

𝐶1 = 0.33𝐷𝑇 and 𝐶2 = 0.33𝐷𝑇  
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Fig. 5-34: Phase-averaged plot of the velocity field of the whole vertical section of the 

reactor obtained from the simulation for set-up 5 

Fig. 5-35: Instantaneous velocity plot of the cross-section at the height of the upper 

stirrer 
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5.3 Conclusion 

For laminar flow in a tube the grid refinement algorithm works excellent, if the fine grid is 

placed completely inside the fluid region. In case of a completely refined cross-section and 

therefore, an intersection of the solid-liquid boundary with the fine-coarse grid boundary the 

plotted velocity shows a peak in the section of coarse to fine boundary and a valley in the 

section of fine to coarse boundary. To find the origin of this behavior further testing is neces-

sary. At the current state of development, it is assumed that the algorithm is not acting 

properly if solid nodes lie within the interface of the different grids. This is further observed in 

the case of stirred tank reactors where an increase of velocity can be seen in the region where 

the stirrer shaft crosses the grid boundaries. Besides that, the velocity values and vectors at 

the grid boundaries are coinciding.  

Additionally, a rising density can be observed in stirred tank simulations. It is increasing nearly 

linear over time. It would be possible that the variations in the equilibrium distribution func-

tion presented in section 2.1.2, cause deviations of the algorithm which have been over-

looked. As the problem is only observed in turbulent flows, the method for modeling the tur-

bulence could be the origin of the problem. During implementation, it was noticed that the 

simulation is very sensitive to the scaling of the relaxation time. 

If the two problems mentioned above are resolved, the grid refinement will be a helpful, ac-

curate and reliable tool to decrease the computational costs or increase fluid resolution.  
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6 Summary 

An existing lattice Boltzmann code was expanded by the functionality of local grid refinement. 

The user is able to define a region in which the resolution of the grid is increased by a factor 

of two. As a result, following the multi-grid approach an additional grid is generated. This has 

the advantage, that the coarse grid stays complete and can be used for other algorithms which 

are not integrated into the grid refinement function. Further, the approach is beneficial for 

the implementation on GPUs, as it is suitable for parallelization due to the regular, rectangular 

shape of the grids. A shifted cell arrangement is used to place the grids on top of each other. 

Every grid itself is seen as an individual simulation domain, solving the LB equation for every 

node in a parallel manner. At the interfaces between the grids, some particle distributions are 

unknown. These are obtained by a pre-collision grid coupling procedure. This means, that be-

fore the collision step is proceeded on every grid, the missing distribution functions are recon-

structed from data of the adjacent grid. As the nodes of the fine and the coarse grid do not 

coincide, the velocity and density fields need to be interpolated. For the density a trilinear 

interpolation is sufficient. The velocity is interpolated by a compact second order accurate 

interpolation method. From the interpolated velocity and density, the equilibrium distribution 

function can be obtained. After trilinear interpolation of the non-equilibrium part of the dis-

tribution function and a subsequent rescaling, the missing distribution functions at the grid 

interface can be obtained.  

The grid refinement was tested for a Hagen-Poiseuille flow with a Reynolds number of 10 and 

with a Reynolds number of 100. Three different placements of the fine grid were tested. To 

observe the behavior in turbulent flow, the grid refinement was tested in two different agi-

tated tanks. It is observed, that if the solid-liquid boundary is intersecting the fine-coarse grid 

boundaries, the velocities deviate slightly from the expected values. Otherwise, the pressure 

drop and the reached maximum velocity match the results of the unrefined reference simula-

tion. In the case of the agitated tanks, the mass of the simulated fluid increases. The reasons 

for that deviation still need to be identified. Besides that, the velocity field is reproduced in a 

satisfactory manner by using grid refinement.  
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6.1 Outlook 

In the course of validating the grid refinement, as already mentioned in section 5.2.1, it was 

found that the algorithm in current state is not mass conservative. As this issue was observed 

in the stirred tank reactor cases only, it needs to be investigated if the origin lies in the mod-

eling of turbulence, if it is provoked from the boundary condition of the stirrer blades or if it 

is due to the usage of an adapted, incompressible form of the lattice Boltzmann method.  

One of the next steps is to facilitate more than one refinement step and investigate the pos-

sibility of a user settable refinement factor as this would lead to lower memory consumption 

than using several grids. Further, refinement at more than one position in the reactor could 

be implemented. 

Also, further effort will be spent on providing grid refinement for the other functionalities of 

the code like the species transport or bubble movement.  
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7 Appendix 

7.1 Isotropy Conditions for the Velocity Sets [3, p. 85] 

 ∑ 𝑤𝑖𝑖 = 1 ( 7-1 ) 

 ∑ 𝑐𝑖𝛼𝑤𝑖𝑖 = 0 ( 7-2 ) 

 ∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑤𝑖𝑖 = 𝑐𝑠
2𝛿𝛼𝛽 ( 7-3 ) 

 ∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑤𝑖𝑖 = 0 ( 7-4 ) 

 ∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛿𝑤𝑖𝑖 = 𝑐𝑠
4(𝛿𝛼𝛽𝛿𝛾𝛿 + 𝛿𝛼𝛾𝛿𝛽𝛿 + 𝛿𝛼𝛿𝛿𝛽𝛾) ( 7-5 ) 

 ∑ 𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛿𝑐𝑖𝜀𝑤𝑖𝑖 = 0 ( 7-6 ) 

 

7.2 Rescaling of the Non-Equilibrium Distribution Function 

Krüger et al. [3, p. p. 118] derived the non-equilibrium distribution function from the Chap-

man-Enskog perturbation in its explicit form 

𝑓𝑖
𝑛𝑒𝑞 = −τ

𝑤𝑖𝜌

𝑐𝑠
2 [𝑄𝑖𝛼𝛽𝜕𝛽𝑢𝛼 − 𝑐𝑖𝛼𝜕𝛽(𝑢𝛼𝑢𝛽) +

𝑄𝑖𝛼𝛽

2𝑐𝑠
2 𝑐𝑖𝛾𝜕𝛾(𝑢𝛼𝑢𝛽) −

𝑄𝑖𝛼𝛽

2𝑐𝑠
2 𝜕𝛾(𝑢𝛼𝑢𝛽𝑢𝛾)]⏟                                            

𝐾

 ( 7-7 ) 

with  

 𝑄𝑖𝛼𝛽 = 𝑐𝑖𝛼𝑐𝑖𝛽 − 𝑐𝑠
2𝛿𝛼𝛽 ( 7-8 ) 

From section 3.2 it is known that the quantities 𝑢𝛼,  𝑐𝑖𝛼, 𝑐𝑠
2, 𝑆𝛼𝛽 and 𝜌 are continuous over 

different grid resolutions in physical units. Further, also the first derivatives of velocity 𝜕𝛽𝑢𝛼 

must be continuous in physical units. As a consequence, the term 𝐾 in equation 7-7 is contin-

uous over the grids as well. Therefore, the non-equilibrium distribution function can be re-

scaled in physical units like it is shown in equation 7-9. 

 
𝑓𝑖,𝑐
𝑛𝑒𝑞

𝜏𝑐
= 𝐾 =

𝑓𝑖,𝑓
𝑛𝑒𝑞

𝜏𝑓
 ( 7-9 ) 

From equation 3-23 the relation of the relaxation time in lattice units 𝜏̃ with the relaxation 

time in physical units 𝜏 is known. Inserting this into equation 7-9, the same formulation is 

obtained as given in the work from Dupuis and Chopard [24]. 

 
𝑓𝑖,𝑐
𝑛𝑒𝑞

𝜏̃𝑐∆𝑡𝑐
=

𝑓𝑖,𝑓
𝑛𝑒𝑞

𝜏̃𝑓∆𝑡𝑓
 ( 7-10 ) 
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 𝑓𝑖,𝑐
𝑛𝑒𝑞 =

2𝜏̃𝑐

𝜏̃𝑓
𝑓𝑖,𝑓
𝑛𝑒𝑞;      𝑓𝑖,𝑓

𝑛𝑒𝑞 =
𝜏̃𝑓

2𝜏̃𝑐
𝑓𝑖,𝑐
𝑛𝑒𝑞 ( 7-11 ) 

From Valderhaug [8] it is known that 𝑓𝑖
𝑛𝑒𝑞 = ℎ𝑖

𝑛𝑒𝑞,  and therefore, equation 7-12 can be de-

rived. 

 ℎ𝑖,𝑐
𝑛𝑒𝑞 =

2𝜏̃𝑐

𝜏̃𝑓
ℎ𝑖,𝑓
𝑛𝑒𝑞;      ℎ𝑖,𝑓

𝑛𝑒𝑞 =
𝜏̃𝑓

2𝜏̃𝑐
ℎ𝑖,𝑐
𝑛𝑒𝑞 ( 7-12 ) 

In lattice units, the equation can be derived like in the following lines. 

𝑓𝑖
𝑛𝑒𝑞 = −

𝜏̃𝑤𝑖𝜌̃

𝑐𝑠̃
2 [𝑄̃𝑖𝛼𝛽𝜕𝛽𝑢̃𝛼 − 𝑐̃𝑖𝛼𝜕𝛽(𝑢̃𝛼𝑢̃𝛽) +

𝑄̃𝑖𝛼𝛽

2𝑐𝑠̃
2 𝑐̃𝑖𝛾𝜕𝛾(𝑢̃𝛼𝑢̃𝛽) −

𝑄̃𝑖𝛼𝛽

2𝑐𝑠̃
2 𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾)] ( 7-13 ) 

With equation 3-1 for the scaling between ∆𝑡 and ∆𝑥, 3-14 for the rescaling of density and 

3-22 for the relaxation factor all influences of the grid spacing are determined. 

 𝑐𝑠
2 = 𝑐̃𝑠,𝑐

2 ∆𝑥𝑐
2

∆𝑡𝑐
2 = 𝑐̃𝑠,𝑓

2 ∆𝑥𝑓
2

∆𝑡𝑓
2 → 𝑐̃𝑠,𝑐

2 = 𝑐̃𝑠,𝑓
2 = 𝑐̃𝑠

2  ( 7-14 ) 

 𝑐𝑖𝛼 = 𝑐̃𝑖𝛼,𝑐
∆𝑥𝑐

∆𝑡𝑐
= 𝑐̃𝑖𝛼,𝑓

∆𝑥𝑓

∆𝑡𝑓
→ 𝑐̃𝑖𝛼,𝑐 = 𝑐̃𝑖𝛼,𝑓 = 𝑐̃𝑖𝛼 ( 7-15 ) 

Knowing from 7-14 and 7-15 that the microscopic velocities and the speed of sound are con-

tinuous, 7-16 can be derived. 

 𝑄̃𝑖𝛼𝛽 = 𝑐̃𝑖𝛼𝑐̃𝑖𝛽 − 𝑐̃𝑠
2𝛿𝛼𝛽 → 𝑄̃𝑖𝛼𝛽,𝑓 = 𝑄̃𝑖𝛼𝛽,𝑐 = 𝑄̃𝑖𝛼𝛽 ( 7-16 ) 

By obeying equation 3-1, the derivatives of the velocity turn out to be dependent on the tem-

poral resolution.  

 𝜕𝛽𝑢𝛼 = (𝜕𝛽𝑢̃𝛼)𝑓
∆𝑥𝑓

∆𝑡𝑓∆𝑥𝑓
= (𝜕𝛽𝑢̃𝛼)𝑐

∆𝑥𝑐

∆𝑡𝑐∆𝑥𝑐
→ (𝜕𝛽𝑢̃𝛼)𝑓

1

∆𝑡𝑓
= (𝜕𝛽𝑢̃𝛼)𝑐

1

∆𝑡𝑐
 ( 7-17 ) 

 (𝜕𝛽𝑢̃𝛼)𝑐
=

∆𝑡𝑐

∆𝑡𝑓
(𝜕𝛽𝑢̃𝛼)𝑓

→ (𝜕𝛽𝑢̃𝛼)𝑐
= 2 (𝜕𝛽𝑢̃𝛼)𝑓

 ( 7-18 ) 

 

 𝜕𝛽(𝑢𝛼𝑢𝛽) = (𝜕𝛽(𝑢̃𝛼𝑢̃𝛽))
𝑓

∆𝑥𝑓
2

∆𝑡𝑓
2∆𝑥𝑓

= (𝜕𝛽(𝑢̃𝛼𝑢̃𝛽))
𝑐

∆𝑥𝑐
2

∆𝑡𝑐
2∆𝑥𝑐

 ( 7-19 ) 

 (𝜕𝛽(𝑢̃𝛼𝑢̃𝛽))
𝑓

1

∆𝑡𝑓
= (𝜕𝛽(𝑢̃𝛼𝑢̃𝛽))

𝑐

1

∆𝑡𝑐
 ( 7-20 ) 

 (𝜕𝛽(𝑢̃𝛼𝑢̃𝛽))
𝑐
= 2 (𝜕𝛽(𝑢̃𝛼𝑢̃𝛽))

𝑓
 ( 7-21 ) 

 

 𝜕𝛾(𝑢𝛼𝑢𝛽𝑢𝛾) = (𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾))
𝑓

∆𝑥𝑓
3

∆𝑡𝑓
3∆𝑥𝑓

= (𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾))
𝑐

∆𝑥𝑐
3

∆𝑡𝑐
3∆𝑥𝑐

 ( 7-22 ) 

 (𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾))
𝑓

1

∆𝑡𝑓
= (𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾))

𝑐

1

∆𝑡𝑐
 ( 7-23 ) 
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 (𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾))
𝑐
= 2 (𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾))

𝑓
 ( 7-24 ) 

Inserting equations 7-14, 7-15, 7-16, 7-18, 7-21 and 7-24 into the non-equilibrium distributions 

function in equation 7-13, the equations below are obtained. 

𝑓𝑖,𝑐
𝑛𝑒𝑞 = −2𝜏𝑐̃

𝑤𝑖𝜌̃

𝑐𝑠̃
2 [𝑄̃𝑖𝛼𝛽𝜕𝛽𝑢̃𝛼,𝑓 − 𝑐̃𝑖𝛼𝜕𝛽(𝑢̃𝛼𝑢̃𝛽)𝑓

+
𝑄̃𝑖𝛼𝛽

2𝑐𝑠̃
2 𝑐̃𝑖𝛾𝜕𝛾(𝑢̃𝛼𝑢̃𝛽)𝑓

−
𝑄̃𝑖𝛼𝛽

2𝑐𝑠̃
2 𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾)𝑓

]
⏟                                                

𝐾̃

  ( 7-25 ) 

𝑓𝑖,𝑓
𝑛𝑒𝑞 = −𝜏𝑓̃

𝑤𝑖𝜌̃

𝑐𝑠̃
2 [𝑄̃𝑖𝛼𝛽𝜕𝛽𝑢̃𝛼,𝑓 − 𝑐̃𝑖𝛼𝜕𝛽(𝑢̃𝛼𝑢̃𝛽)𝑓

+
𝑄̃𝑖𝛼𝛽

2𝑐𝑠̃
2 𝑐̃𝑖𝛾𝜕𝛾(𝑢̃𝛼𝑢̃𝛽)𝑓

−
𝑄̃𝑖𝛼𝛽

2𝑐𝑠̃
2 𝜕𝛾(𝑢̃𝛼𝑢̃𝛽𝑢̃𝛾)𝑓

]
⏟                                                

𝐾̃

  ( 7-26 ) 

From that, the relationship between the non-equilibrium distribution functions in lattice units 

is obtained. 

 
𝑓̃𝑖,𝑐
𝑛𝑒𝑞

−2𝜏𝑐̃
= 𝐾̃ =

𝑓̃𝑖,𝑓
𝑛𝑒𝑞

−𝜏𝑓̃
 ( 7-27 ) 

 𝑓𝑖,𝑐
𝑛𝑒𝑞 =

2𝜏𝑐̃

𝜏𝑓̃
𝑓𝑖,𝑓
𝑛𝑒𝑞;       𝑓𝑖,𝑓

𝑛𝑒𝑞 =
𝜏𝑓̃

2𝜏𝑐̃
𝑓𝑖,𝑐
𝑛𝑒𝑞 ( 7-28 ) 

From Valderhaug [8] it is known that 𝑓𝑖
𝑛𝑒𝑞 = ℎ𝑖

𝑛𝑒𝑞,  and therefore, equation 7-29 can be de-

rived. 

 ℎ̃𝑖,𝑐
𝑛𝑒𝑞 =

2𝜏𝑐̃

𝜏𝑓̃
ℎ̃𝑖,𝑓
𝑛𝑒𝑞;       ℎ̃𝑖,𝑓

𝑛𝑒𝑞 =
𝜏𝑓̃

2𝜏𝑐̃
ℎ̃𝑖,𝑐
𝑛𝑒𝑞 ( 7-29 ) 

 

7.3 The Coefficients for the Velocity Interpolation 

Cube A: 

 𝑎0 = 𝑢𝑥(0,0,0) ( 7-30 ) 

 𝑏0 = 𝑢𝑦(0,0,0) ( 7-31 ) 

 𝑐0 = 𝑢𝑧(0,0,0) ( 7-32 ) 

 𝑎𝑥𝑥 = −
3

4

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑥
) ( 7-33 ) 

 𝑎𝑥𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑦
) ( 7-34 ) 

 𝑎𝑥𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑧
) ( 7-35 ) 
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 𝑏𝑥𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑥
) ( 7-36 ) 

 𝑏𝑦𝑦 = −
3

4

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑦
) ( 7-37 ) 

 𝑏𝑦𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-38 ) 

 𝑐𝑥𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑥
) ( 7-39 ) 

 𝑐𝑦𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑦
) ( 7-40 ) 

 𝑐𝑧𝑧 = −
3

4

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑧
) ( 7-41 ) 

 𝑏𝑥𝑥 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑥
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑦
) ( 7-42 ) 

 𝑏𝑧𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑧
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑦
) ( 7-43 ) 

 𝑎𝑦𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑦
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑥
) ( 7-44 ) 

 𝑎𝑧𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑧
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑥
) ( 7-45 ) 

 𝑐𝑥𝑥 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑥
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑧
) ( 7-46 ) 

 𝑐𝑦𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑦
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-47 ) 

 𝑎𝑦𝑧 = −
3

2

1

𝜏𝜌0
(−

𝜕Π𝑦𝑧
𝑛𝑒𝑞

𝜕𝑥
+
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑦
+
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-48 ) 

 𝑏𝑥𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑥
−
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑦
+
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-49 ) 

 𝑐𝑥𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑥
+
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑦
−
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-50 ) 

 𝑎𝑥 =
1

2
(𝑢𝑥(1,1,0) + 𝑢𝑥(1,0,1) − 𝑢𝑥(0,1,1) − 𝑢𝑥(0,0,0)) − 𝑎𝑥𝑥 +

1

2
(−𝑎𝑥𝑦 − 𝑎𝑥𝑧 + 𝑎𝑦𝑧)

  ( 7-51 ) 

 𝑎𝑦 =
1

2
(𝑢𝑥(1,1,0) − 𝑢𝑥(1,0,1) + 𝑢𝑥(0,1,1) + 𝑢𝑥(0,0,0)) − 𝑎𝑦𝑦 +

1

2
(−𝑎𝑥𝑦 + 𝑎𝑥𝑧 − 𝑎𝑦𝑧)

  ( 7-52 ) 

 𝑎𝑧 =
1

2
(−𝑢𝑥(1,1,0) + 𝑢𝑥(1,0,1) + 𝑢𝑥(0,1,1) − 𝑢𝑥(0,0,0)) − 𝑎𝑧𝑧 +

1

2
(𝑎𝑥𝑦 − 𝑎𝑥𝑧 − 𝑎𝑦𝑧)

  ( 7-53 ) 

 𝑏𝑥 =
1

2
(𝑢𝑦(1,1,0) + 𝑢𝑦(1,0,1) − 𝑢𝑦(0,1,1) − 𝑢𝑦(0,0,0)) − 𝑏𝑥𝑥 +

1

2
(−𝑏𝑥𝑦 − 𝑏𝑥𝑧 + 𝑏𝑦𝑧)

  ( 7-54 ) 
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 𝑏𝑦 =
1

2
(𝑢𝑦(1,1,0) − 𝑢𝑦(1,0,1) + 𝑢𝑦(0,1,1) − 𝑢𝑦(0,0,0)) − 𝑏𝑦𝑦 +

1

2
(−𝑏𝑥𝑦 + 𝑏𝑥𝑧 − 𝑏𝑦𝑧)

  ( 7-55 ) 

 𝑏𝑧 =
1

2
(−𝑢𝑦(1,1,0) + 𝑢𝑦(1,0,1) + 𝑢𝑦(0,1,1) − 𝑢𝑦(0,0,0)) − 𝑏𝑧𝑧 +

1

2
(𝑏𝑥𝑦 − 𝑏𝑥𝑧 − 𝑏𝑦𝑧)

  ( 7-56 ) 

 𝑐𝑥 =
1

2
(𝑢𝑧(1,1,0) + 𝑢𝑧(1,0,1) − 𝑢𝑧(0,1,1) − 𝑢𝑧(0,0,0)) − 𝑐𝑥𝑥 +

1

2
(−𝑐𝑥𝑦 − 𝑐𝑥𝑧 + 𝑐𝑦𝑧)

  ( 7-57 ) 

 𝑐𝑦 =
1

2
(𝑢𝑧(1,1,0) − 𝑢𝑧(1,0,1) + 𝑢𝑧(0,1,1) − 𝑢𝑧(0,0,0)) − 𝑐𝑦𝑦 +

1

2
(−𝑐𝑥𝑦 + 𝑐𝑥𝑧 − 𝑐𝑦𝑧)

  ( 7-58 ) 

 𝑐𝑧 =
1

2
(−𝑢𝑧(1,1,0) + 𝑢𝑧(1,0,1) + 𝑢𝑧(0,1,1) − 𝑢𝑧(0,0,0)) − 𝑐𝑧𝑧 +

1

2
(𝑐𝑥𝑦 − 𝑐𝑥𝑧 − 𝑐𝑦𝑧)

  ( 7-59 ) 

 

Cube B:  

 𝑎𝑥𝑥 = −
3

4

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑥
) ( 7-60 ) 

 𝑎𝑥𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑦
) ( 7-61 ) 

 𝑎𝑥𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑧
) ( 7-62 ) 

 𝑏𝑥𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑥
) ( 7-63 ) 

 𝑏𝑦𝑦 = −
3

4

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑦
) ( 7-64 ) 

 𝑏𝑦𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-65 ) 

 𝑐𝑥𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑥
) ( 7-66 ) 

 𝑐𝑦𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑦
) ( 7-67 ) 

 𝑐𝑧𝑧 = −
3

4

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑧
) ( 7-68 ) 

 𝑏𝑥𝑥 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑥
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑦
) ( 7-69 ) 

 𝑏𝑧𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑧
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑦
) ( 7-70 ) 

 𝑎𝑦𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑦
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑥
) ( 7-71 ) 



7 Appendix 97 

 𝑎𝑧𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑧
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑧𝑧

𝑛𝑒𝑞

𝜕𝑥
) ( 7-72 ) 

 𝑐𝑥𝑥 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑥
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑥𝑥

𝑛𝑒𝑞

𝜕𝑧
) ( 7-73 ) 

 𝑐𝑦𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑦
) +

3

4

1

𝜏𝜌0
(
𝜕Π𝑦𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-74 ) 

 𝑎𝑦𝑧 = −
3

2

1

𝜏𝜌0
(−

𝜕Π𝑦𝑧
𝑛𝑒𝑞

𝜕𝑥
+
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑦
+
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-75 ) 

 𝑏𝑥𝑧 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑥
−
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑦
+
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-76 ) 

 𝑐𝑥𝑦 = −
3

2

1

𝜏𝜌0
(
𝜕Π𝑦𝑧

𝑛𝑒𝑞

𝜕𝑥
+
𝜕Π𝑥𝑧

𝑛𝑒𝑞

𝜕𝑦
−
𝜕Π𝑥𝑦

𝑛𝑒𝑞

𝜕𝑧
) ( 7-77 ) 

 𝑎0 =
1

2
(−𝑢𝑥(1,1,1) + 𝑢𝑥(1,0,0) + 𝑢𝑥(0,1,0) + 𝑢𝑥(0,0,1)) +

1

2
(𝑎𝑥𝑦 + 𝑎𝑥𝑧 + 𝑎𝑦𝑧)

  ( 7-78 ) 

 𝑎𝑥 =
1

2
(𝑢𝑥(1,1,1) + 𝑢𝑥(1,0,0) − 𝑢𝑥(0,1,0) − 𝑢𝑥(0,0,1)) − 𝑎𝑥𝑥 −

1

2
(𝑎𝑥𝑦 + 𝑎𝑥𝑧 + 𝑎𝑦𝑧)

  ( 7-79 ) 

 𝑎𝑦 =
1

2
(𝑢𝑥(1,1,1) − 𝑢𝑥(1,0,0) + 𝑢𝑥(0,1,0) − 𝑢𝑥(0,0,1)) − 𝑎𝑦𝑦 −

1

2
(𝑎𝑥𝑦 + 𝑎𝑥𝑧 + 𝑎𝑦𝑧)

  ( 7-80 ) 

 𝑎𝑧 =
1

2
(𝑢𝑥(1,1,1) − 𝑢𝑥(1,0,0) − 𝑢𝑥(0,1,0) + 𝑢𝑥(0,0,1)) − 𝑎𝑧𝑧 −

1

2
(𝑎𝑥𝑦 + 𝑎𝑥𝑧 + 𝑎𝑦𝑧)

  ( 7-81 ) 

 𝑏0 =
1

2
(−𝑢𝑦(1,1,1) + 𝑢𝑦(1,0,0) + 𝑢𝑦(0,1,0) + 𝑢𝑦(0,0,1)) +

1

2
(𝑏𝑥𝑦 + 𝑏𝑥𝑧 + 𝑏𝑦𝑧)

  ( 7-82 ) 

 𝑏𝑥 =
1

2
(𝑢𝑦(1,1,1) + 𝑢𝑦(1,0,0) − 𝑢𝑦(0,1,0) − 𝑢𝑦(0,0,1)) − 𝑏𝑥𝑥 −

1

2
(𝑏𝑥𝑦 + 𝑏𝑥𝑧 + 𝑏𝑦𝑧)

  ( 7-83 ) 

 𝑏𝑦 =
1

2
(𝑢𝑦(1,1,1) − 𝑢𝑦(1,0,0) + 𝑢𝑦(0,1,0) − 𝑢𝑦(0,0,1)) − 𝑏𝑦𝑦 −

1

2
(𝑏𝑥𝑦 + 𝑏𝑥𝑧 + 𝑏𝑦𝑧)

  ( 7-84 ) 

 𝑏𝑧 =
1

2
(𝑢𝑦(1,1,1) − 𝑢𝑦(1,0,0) − 𝑢𝑦(0,1,0) + 𝑢𝑦(0,0,1)) − 𝑏𝑧𝑧 −

1

2
(𝑏𝑥𝑦 + 𝑏𝑥𝑧 + 𝑏𝑦𝑧)

  ( 7-85 ) 

 𝑐0 =
1

2
(−𝑢𝑧(1,1,1) + 𝑢𝑧(1,0,0) + 𝑢𝑧(0,1,0) + 𝑢𝑧(0,0,1)) +

1

2
(𝑐𝑥𝑦 + 𝑐𝑥𝑧 + 𝑐𝑦𝑧)

  ( 7-86 ) 

 𝑐𝑥 =
1

2
(𝑢𝑧(1,1,1) + 𝑢𝑧(1,0,0) − 𝑢𝑧(0,1,0) − 𝑢𝑧(0,0,1)) − 𝑐𝑥𝑥 −

1

2
(𝑐𝑥𝑦 + 𝑐𝑥𝑧 + 𝑐𝑦𝑧)

  ( 7-87 ) 
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 𝑐𝑦 =
1

2
(𝑢𝑧(1,1,1) − 𝑢𝑧(1,0,0) + 𝑢𝑧(0,1,0) − 𝑢𝑧(0,0,1)) − 𝑐𝑦𝑦 −

1

2
(𝑐𝑥𝑦 + 𝑐𝑥𝑧 + 𝑐𝑦𝑧)

  ( 7-88 ) 

 𝑐𝑧 =
1

2
(𝑢𝑧(1,1,1) − 𝑢𝑧(1,0,0) − 𝑢𝑧(0,1,0) + 𝑢𝑧(0,0,1)) − 𝑐𝑧𝑧 −

1

2
(𝑐𝑥𝑦 + 𝑐𝑥𝑧 + 𝑐𝑦𝑧)

  ( 7-89 ) 

7.4 Results of Reference Simulations without Grid Refinement 

Tab. 7-1: Comparison of pressure drop for a Reynolds number of 10 without grid refinement 

∆𝑝𝑐𝑎𝑙𝑐[𝑃𝑎] ∆𝑝𝑠𝑖𝑚𝑢[𝑃𝑎] 𝜀[%] 

6.053 ∙ 10−4 6.084 ∙ 10−4 0.511 

Tab. 7-2: Comparison of pressure drop for a Reynolds number of 100 without grid refinement 

∆𝑝𝑐𝑎𝑙𝑐[𝑃𝑎] ∆𝑝𝑠𝑖𝑚𝑢[𝑃𝑎] 𝜀[%] 

4.613 ∙ 10−3 4.647 ∙ 10−3 0.719 

   

 

 

 

Fig. 7-1: Velocity at center line plotted over the length of the tube from simulations 

without grid refinement 
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7.5 Further Simulation Results of Poiseuille Flow in a Cylindrical 
Tube 

7.5.1 Longitudinal Velocity and Pressure Fields of set-up 1 

 

 

Fig. 7-2: Longitudinal velocity 

field for set-up 1 and a 

Reynolds number of 10 

Fig. 7-3: Longitudinal pres-

sure field for set-up 1 

and a Reynolds num-

ber of 10 
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Fig. 7-4: Longitudinal ve-

locity field for set-up 

1 and a Reynolds 

number of 100 

Fig. 7-5: Longitudinal pres-

sure field for set-up 1 

and a Reynolds num-

ber of 100 
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7.5.2 Longitudinal Velocity and Pressure Fields of Set-up 2 

  

Fig. 7-6: Longitudinal veloc-

ity field for set-up 2 

and a Reynolds num-

ber of 10 

Fig. 7-7: Longitudinal pres-

sure field for set-up 2 

and a Reynolds num-

ber of 10 
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Fig. 7-8: Longitudinal velocity 

field for set-up 2 and a 

Reynolds number of 

100 

Fig. 7-9: Longitudinal pres-

sure field for set-up 2 

and a Reynolds num-

ber of 100 
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7.5.3 Longitudinal Velocity and Pressure Fields of Set-up 3 

  

 

Fig. 7-10: Longitudinal veloc-

ity field for set-up 3 

and a Reynolds num-

ber of 100 

Fig. 7-11: Longitudinal pres-

sure field for set-up 3 

and a Reynolds number 

of 100 
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7.6 Further Simulation Results of Agitated Tanks 

7.6.1 Set-up 4 

 

 

 

Fig. 7-12: Phase-averaged plot of the velocity field of the whole vertical section of the reactor 

obtained from the simulation with in-plane velocity vectors for set-up 4 
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7.6.2 Set-up 5 

 

 

 

Fig. 7-13: Phase-averaged plot of the velocity field of the whole vertical section of 

the reactor obtained from the simulation with in-plane velocity vectors for set-

up 5 
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9 List of Symbols 

9.1 Latin Letters 

𝐴 [𝑚2] Cross-sectional area 

𝑎0, 𝑎𝑥, … , 𝑎𝑥𝑧 , [−] Coefficients of 2nd order polynomial in x-direction 

𝑏0, 𝑏𝑥, … , 𝑏𝑥𝑧 [−] Coefficients of 2nd order polynomial in y-direction 

𝐶000,… , 𝐶111 [−] Nodal values in trilinear interpolation 

𝐶1 [𝑚] Distance between stirrer and tank bottom 

𝐶2 [𝑚] Distance between the two stirrers 

𝑐0, 𝑐𝑥, … , 𝑐𝑥𝑧 [−] Coefficients of 2nd order polynomial in z-direction 

𝑐𝑖 [
𝑚

𝑠
] Discrete microscopic velocity vector 

𝑐𝑖̅ [
𝑚

𝑠
] Subtend discrete microscopic velocity vector of 𝑐𝑖 

𝑐𝑠 [
𝑚

𝑠
] Speed of sound 

𝑐𝑖𝛼 [
𝑚

𝑠
] Component of the discrete microscopic velocity vector 

𝑑 [𝑚] Normalized length of absorbing layer 

𝐷1 [𝑚] Outer diameter of the stirrer blade 

𝐷2 [𝑚] Inner diameter of the stirrer blade 

𝐷𝑇  [𝑚] Tank diameter 

𝐹𝛼 [
𝑘𝑔

𝑚2𝑠2
] Component of body force density vector 

𝐹𝑥1 [𝑚] Position of fine grid from domain boundary x=0 

𝐹𝑥2 [𝑚] Width of the fine grid 

𝐹𝑧1 [𝑚] Position of fine grid from tank bottom 

𝐹𝑧2 [𝑚] Height of fine grid 

𝑓 [
𝑘𝑔 ∙ 𝑠3

𝑚6
]  Particle distribution function 

𝑓𝑖  [
𝑘𝑔

𝑚3
] Discrete particle distribution function  
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ℎ𝑖  [
𝑘𝑔

𝑚3
] Adapted particle distribution function from Valderhaug [8] 

ℎ𝑖̅ [
𝑘𝑔

𝑚3
] Subtend particle distribution function of ℎ𝑖  

ℎ𝑗  [
𝑘𝑔

𝑚3
] Specularly reflected particle distribution function of ℎ𝑖  

𝐻 [𝑚] Tank height 

𝐾𝑛 [−] Knudsen number 

𝑙𝑎𝑏𝑠 [𝑚] Length of absorbing layer 

𝑙𝑐 [𝑚] Characteristic length 

𝑙𝑑𝑒𝑣 [𝑚] Length of fully developed flow 

𝑙ℎ𝑦𝑑 [𝑚] Hydrodynamic inlet length 

𝑙𝑚𝑓𝑝 [𝑚] Mean free path 

𝑙𝑡𝑢𝑏𝑒 [𝑚] Length of tube 

𝑙𝑥 [𝑚] Length of simulation domain in x-direction 

𝑙𝑦 [𝑚] Length of simulation domain in y-direction 

𝑙𝑧 [𝑚] Length of simulation domain in z-direction 

𝑀𝑎 [−] Mach number 

∆𝑚 [𝑘𝑔] Conversion factor mass 

𝑁𝑥 [−] Number of nodes in x-direction 

𝑛 [−] Refinement factor 

𝑝 [𝑃𝑎] Pressure 

∆𝑝 [𝑃𝑎] Difference to ambient pressure 

𝑄̇ [
𝑚3

𝑠
] Volume flow 

𝑅 [𝑚] Radius of tube 

𝑅𝑔 [
𝐽

𝐾 ∙ 𝑚𝑜𝑙
] Ideal gas constant 

𝑅𝑒 [−] Reynolds number 
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𝑟 [𝑚] Coordinate of radius in polar coordinates 

𝑟𝑖𝑗𝑘 [−] Vectors pointing to all nodes of an interpolation cell from 

base node 

𝑆𝛼𝛽 [
1

𝑠
] Strain rate tensor 

𝑇 [𝐾] Temperature 

𝑡 [𝑠] Time 

∆𝑡 [𝑠] Length of one time step – conversion factor time 

𝑢 [
𝑚

𝑠
] Macroscopic velocity vector 

𝑢𝛼 [
𝑚

𝑠
] Component of the macroscopic velocity vector 

𝑢𝑖𝑛 [
𝑚

𝑠
] Input velocity vector 

𝑢𝑚 [
𝑚

𝑠
] Volume equivalent velocity 

𝑢𝑚𝑎𝑥  [
𝑚

𝑠
] Maximum velocity 

𝑢𝑤 [
𝑚

𝑠
] Macroscopic velocity vector of the wall 

𝑤𝑖 [−] Weighting factor 

𝑥 [𝑚] Spatial coordinate vector or x component of coordinate vec-

tor 

∆𝑥 [𝑚] Distance between adjacent nodes – conversion factor length 

𝑥𝛼 [𝑚] Component of the spatial coordinate vector 

𝑥𝑏 [𝑚] Spatial coordinate vector of boundary 

𝑥1, 𝑥2 [−] Distances of the fine grid boundaries to the boundaries of 

the coarse grid in x-direction 

𝑦 [𝑚] y component of coordinate vector 

𝑦1, 𝑦2 [−] Distances of the fine grid boundaries to the boundaries of 

the coarse grid in y-direction 

𝑧 [𝑚] z component of coordinate vector 
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𝑧1, 𝑧2 [−] Distances of the fine grid boundaries to the boundaries of 

the coarse grid in z-direction 
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9.2 Greek Letters 

𝛿𝛼𝛽 [−] Kronecker delta 

𝜀 [%] Relative error 

𝜃 [°] Phase angle between measurement point and blade 

𝜇 [𝑃𝑎 ∙ 𝑠]

= [
𝑘𝑔

𝑚𝑠
] 

Dynamic viscosity 

𝜈 [
𝑚2

𝑠
] Kinematic viscosity 

𝜉 [
𝑚

𝑠
] Microscopic velocity vector 

𝜉𝛼 [
𝑚

𝑠
] Component of the microscopic velocity vector 

𝛱0 [
𝑘𝑔

𝑚3
]   Zeroth order moment of particle distribution function 

𝛱𝛼  [
𝑘𝑔

𝑚2𝑠
] First order moment of particle distribution function 

𝛱𝛼𝛽 [
𝑘𝑔

𝑚𝑠2
] Second order moment of particle distribution function – Mo-

mentum flux tensor 

𝜌 [
𝑘𝑔

𝑚3
] Density 

∆𝜌 [
𝑘𝑔

𝑚3
] Local deviation of density 

𝜌0 [
𝑘𝑔

𝑚3
] Constant fluid density 

𝜌𝑏 [
𝑘𝑔

𝑚3
] Local fluid density at boundary node 

𝜌𝑤 [
𝑘𝑔

𝑚3
] Density at boundary 

𝜎𝛼𝛽  [
𝑘𝑔

𝑚𝑠2
] Total stress tensor 

𝜎𝛼𝛽
′  [

𝑘𝑔

𝑚𝑠2
] Viscous stress tensor 

𝜏 [𝑠] Relaxation time 

𝜐 [
𝑚

𝑠
] Relative velocity vector 
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9.3 Superscripts 

𝑋𝑒𝑞 Equilibrium quantity 

𝑋𝑛𝑒𝑞 Non-equilibrium quantity 

𝑋̃ Quantity in lattice units 

𝑋𝑝𝑜𝑠𝑡−𝑐𝑜𝑙𝑙 Post-collision quantity 

𝑋𝑝𝑟𝑒−𝑐𝑜𝑙𝑙 Pre-collision quantity 

𝑋̅ Moment of adapted distribution function ℎ𝑖  

𝑋(1), 𝑋(2) Quantity of 1st or 2nd order perturbation 

𝑋∗ Quantity at location of the ghost nodes 

 

9.4 Subscripts 

𝑋𝑐 Quantity of coarse grid 

𝑋𝑓 Quantity of fine grid 

𝑋𝑙𝑜𝑐 Quantity of local coordinate system 

𝑋𝑔𝑙𝑜 Quantity of global coordinate system 

𝑋𝑐𝑎𝑙𝑐 Quantity obtained from an equation 

𝑋𝑠𝑖𝑚 Quantity obtained from a simulation 

  

𝛺 [
𝑘𝑔 ∙ 𝑠2

𝑚6
] Collision operator 

𝛺𝑖  [
𝑘𝑔

𝑚3
] Discrete collision operator 

𝜖 [−] Expansion parameter of Chapman-Enskog 
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