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Abstract

Variational Methods have a very rich history of application for image restoration. This

can be attributed to their profound mathematical underpinnings, interpretability and the-

oretical guarantees as well as their versatility of application. However, the rich theory and

interpretability has in recent times been discarded in favor of better performance achieved

by deep feed-forward convolutional neural networks. The success of these deep architec-

tures can largely be attributed to an increase in model capacity and computational power,

whilst theoretical advances have largely been neglected. This trend has been reversed

somewhat very recently, with new work establishing connections between traditional vari-

ational methods and the feed-forward approaches, and transferring advances in one field

to the other.

In this work we want to further unravel the connections between feed-forward ar-

chitectures, variational methods, and the maximum-margin principle. We achieve this

by casting the image restoration problem into the framework of energy-based variational

models. Further, we consider a parametrized regularization term given by a multi-scale

residual convolutional neural network. Motivated by the maximum-margin principle that

is often employed in structured models, we propose a novel optimization scheme for learn-

ing the regularization term in a generative manner. We investigate the properties of the

optimization scheme as well as the learned regularizer and show its broad applicability to

a range of image restoration tasks.

Keywords. Image Restoration, Deep Learning, Variational Methods, Maximum Likeli-

hood
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1.1 Image Restoration

Generally speaking, Image Restoration (IR) refers to the process of estimating a “clean”

image from a “degraded” observation [49]. Historically, the considered degradations were

mainly atmospheric blurring and photon noise, which was largely motivated by imaging

systems used in astronomical applications [1]. Denoising and deconvolution are still ex-

tensively studied, along with demosaicking, Single-Image Super-Resolution (SISR), and

image inpainting, which are also considered parts of the field [25, 64] today. We show a

clean image along with some typical degraded instances in Fig. 1.1.

All of the above degradations are a direct consequence of the image acquisition process.

For instance, blurring can be induced by motion of the camera with respect to (parts of)

the scene during exposure. This can be remedied by decreasing the exposure time, however

this would lead to less photons reaching the camera sensor and inevitably to higher noise

levels. Demosaicking is an essential step in todays digital camera systems, where color

information from the scene is recorded on a single sensor by means of a Color Filter Array

(CFA). Typically, the Bayer CFA [3] is used. In this case, in a 2× 2 patch of pixels, two

1



2 Chapter 1. Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of typical degradations considered in image restoration: The original,
clean image y a, the same image corrupted by Gaussian b and Salt and Pepper noise c,
and blurred d, mosaicked e, and downsampled f instances.

diagonal pixels are green, one is red and one blue. The process of determining the missing

colors of the pixels is referred to as demosaicking.

Regardless of the origin of the degradations, IR is incredibly important since it often

serves as a preprocessing stage for higher-level computer vision tasks. Therefore, at this

stage it is important to employ algorithms with strong mathematical guarantees which

allow for interpretability by humans. As such, the purpose of this thesis is not to break

Peak Signal to Noise Ratio (PSNR) records for specific tasks, but to recast the IR problem

into some well-known learning frameworks and incorporate recent advances from the deep

learning community. Specifically, we revisit the framework of pure Energy Based Models

(EBMs) [38], where the energy is given by a variational formulation [10]. As a regulariza-

tion prior, we use a highly expressive deep Convolutional Neural Network (CNN), which

we train in a generative manner inspired by Structured Support Vector Machines (SSVMs)

such that it can be used as a generic prior for any IR task.

1.2 Mathematical Formulation

The purpose of IR is to recover the latent clean image y ∈ Rn of size n = n1 × n2 from

the degraded observation

x = Ay + ν ∈ Rm , (1.1)

where A ∈ Rm×n models the degradation and ν ∈ Rm is an additive noise component

drawn from some noise distribution. As an example, in the case of an Additive White
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Gaussian Noise (AWGN) denoising problem, we have n = m and A = In, where In is the

n × n identity matrix. For SISR, A would model the composite operator of convolution

and down-sampling.

In the most general sense, we seek a function

f : Rm → Rn (1.2)

such that

ŷ = f(x), (1.3)

where ŷ ∈ Rn is the estimation of the latent clean image y. The goal of this estimation

is to get as close as possible to y, according to some predefined loss function. In the next

sections, we will outline the history of proposed solutions.

1.3 Analytical Solutions and Inverse Filtering

In this section we focus on a deblurring problem as an illustrative example. Typically, the

blurring process is mathematically described by a convolution. In the continuous setting,

we have

x(̂ı, ̂) =

∫ ∞
−∞

∫ ∞
−∞

y(̂ı− γ, ̂− ξ)a(γ, ξ) dγ dξ + ν (̂ı, ̂) , (1.4)

where a is the blur function or Point Spread Function (PSF). In the discrete setting, the

integrals are replaced by the respective sums such that

x(i, j) =

H/2∑
h=−H/2

W/2∑
w=−W/2

y(i− h, j − w)a(h,w) + ν(i, j) , (1.5)

where a ∈ RH×W is the blur kernel. We see that Eq. (1.5) is of the form of Eq. (1.1),

where the images x, y (and the noise ν) are vectorized and the convolution is described

as a matrix-vector product i.e.

A vec(y) + vec(ν) ≡ a ∗ y + ν . (1.6)

where vec(·) is the vectorization operator.

Note that here we are constructing the degraded image x by convolving two images

defined on a finite domain. Assuming that we want x to be defined on the same domain as

y, Eq. (1.5) requires to evaluate the image y on points outside of its domain. There exist

many possibilities to extend y over its initial domain for the purpose of convolution. A

simple approach is to extend the domain of y by padding it with zeros. Another possibility,

often favored due to its theoretical properties, is the so-called circular boundary handling,
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where the corresponding convolution is defined by

x(i, j) =

H/2∑
h=−H/2

W/2∑
w=−W/2

y(i− hmodNx, j − wmodNy)a(h,w) + ν(i, j) (1.7)

for y ∈ RNx×Ny . We denote convolution with circular boundary conditions as ∗̊. For a

(very brief) review of convolution arithmetic and details such as border handling we refer

the reader to [18].

Now, let

F{y}(χ, ψ) =

Nx−1∑
i=0

Ny−1∑
j=0

y(i, j) exp

(
−2πi

(
iχ

Nx
+
jψ

Ny

))
(1.8)

be the Discrete Fourier Transform (DFT) of the image y ∈ RNx×Ny , where i =
√
−1 is the

imaginary constant, and let

F−1{F{y}}(i, j) =

Nx−1∑
χ=0

Ny−1∑
ψ=0

F{y}(χ, ψ) exp

(
2πi

(
iχ

Nx
+
jψ

Ny

))
(1.9)

be its inverse. A well known and widely used property of the DFT is the convolution

theorem

F{a ∗̊ y} = F{a}F{y} , (1.10)

with the circular convolution ∗̊ (Eq. (1.7)). Let us for the moment consider the case of a

known blur kernel a and no noise (ν = 0), i.e.

x = a ∗̊ y . (1.11)

Then, with Eq. (1.10) we see that F{x} = F{a}F{y}, such that we can reconstruct the

clean image y as

y = F−1

{F{x}
F{a}

}
. (1.12)

This is the inverse filtering approach [4], which is well studied in the field of discrete time

digital signal processing. However, this approach breaks down as soon as Eq. (1.11) is

not valid, i.e. if ν 6= 0. In this case, due to the division in Eq. (1.12), the solution will

look significantly worse even for ν �. This can be somewhat remedied by introducing

a constant that is added to the denominator, which leads to the Wiener deconvolution

formulation [30, 62]

ŷ = F−1

{
F{a}∗F{x}

|F{a}|2 + 1
SNR(x)

}
, (1.13)

with the complex conjugate (·)∗, and the Signal to Noise Ratio (SNR) of x.

In Fig. 1.2 we show an example of noisy deconvolution using the inverse filtering
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Filtering approaches for the deconvolution problem: The clean image a, the
blurred b and noisy c observations are shown in the top row. The bottom row shows the
reconstruction using inverse filtering d, the Wiener filter e and the Orieux approach [47] f.
Even though there is almost no visible difference between b and c, the inverse filtering
approach already introduces strong unwanted artifacts.

approach Eq. (1.12), the Wiener filter Eq. (1.13) and the approach of [47], which tries to

estimate the proper additive term in the denominator of Eq. (1.13). Whilst the inverse

filtering solution is perfect for ν = 0, it is practically useless in the general case due to the

amplification of the noise. On the other hand, the Wiener filter and the Orieux estimation

still yield acceptable results. The degraded observation was produced by convolving the

clean image with a Gaussian PSF of size 11 × 11 and standard deviation σpsf = 2, and

adding Gaussian noise with σ = 1× 10−7.

1.4 Coefficient Shrinkage in Transformed Domain

Another particularly well studied approach is that of coefficient shrinkage or sparsity in

a transformed domain. Starting with [16], which introduced the general framework of

adaptive coefficient shrinkage (in this case in the wavelet domain), there is a large body

of literature on the topic. Here, we want to highlight the principle by considering the

denoising problem, i.e. A = In, such that

x = y + ν . (1.14)

The following description is very informal and should provide a general overview of the

principle in the image restoration domain. For a more rigorous mathematical analysis we
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refer to [15, 17, 55].

Let D = (ψγ)γ∈Γ be a collection of waveforms, such that

x =
∑
γ∈Γ

αγψγ . (1.15)

Further, let T {x} be a transformation which maps x 7→ αγ , γ ∈ Γ. Examples may be

the Discrete Cosine Transform (DCT), the discrete wavelet [43] or shearlet transform [20].

Now, we assume that in the transformed space there exists some prior knowledge about

the distribution of the coefficients. For instance, in the scale-time domain of the wavelet

transform, in the world of natural images one might expect most of the “power” to exist at

low scales (piecewise constant assumption), and high correlation of the coefficients across

scales.

Therefore, a simple idea is to introduce a threshold and discard small coefficients. The

reconstructed image ŷ is then acquired by performing the inverse transformation on the

altered coefficients, i.e.

ŷ = T −1{P{T {x}}} (1.16)

where P{·} is an operator that changes the coefficients by incorporating prior knowledge.

One of the simplest approaches is soft-thresholding, where the operator acting on the

coefficients is the soft-thresholding operator

St(α) =

{
α
|α|(|α| − t) if |α| > t,

0 else.
(1.17)

This idea can be extended by learning the distributions and interconnections of the

coefficients. For instance, [15] uses this approach, where the statistical dependencies of

wavelet coefficients are captured using a Hidden Markov Model (HMM). Chambolle et

al. [8] cast the wavelet shrinkage algorithms in the theory of variational problems.

1.5 Variational Methods

A large set of image restoration problems (or more general linear inverse problems) can be

cast into the framework of variational problems. In this framework, images are interpreted

as a function defined on some finite domain Ω (e.g. Ω = [0, 1]2), i.e. y : Ω→ R, and in the

most general sense we seek a function ŷ : Ω→ R that minimizes some functional E(x, y).

In the following, we let (x, y) ∈ X ×Y where X , Y are the sets of admissible functions for

x and y respectively.

The energy functional E : X×Y → R is composed of a data fidelity term D : X×Y → R
which measures the dissimilarity between x and Ay and a regularization term R : Y → R,

which encodes some prior belief on y. A proper statistical argument for this structure is

given in Chapter 2, and we analyze variational methods as instances of EBMs in Chapter 3.
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The estimation is then

ŷ = arg min
y

{
E(x, y) = λD(x, y) +R(y)

}
, (1.18)

where λ ∈ R+ is a freely selectable parameter controlling the trade-off between the data

term D(x, y) and the regularization R(y).

Modeling the data fidelity term D(x, y) is often straight forward. For instance, in the

case of AWGN , it is well known that the squared `2 norm

D(x, y) =
1

2
‖x−Ay‖22 (1.19)

is optimal (again, see Chapter 2). On the other hand, finding a suitable regularizer R(y)

for natural images has been subject to decades of research. We note that this formulation

makes it exceptionally easy to apply a given regularizer R(y) to many image restoration

or other, more general, linear inverse problems. By simply substituting the appropriate

degradation operator A in Eq. (1.19), the prior knowledge modeled by R(y) can be used

in a broad context.

1.5.1 Non-Parametric Regularizers

There exists a large body of literature on finding a suitable regularization term R(y).

In the influential Rudin Osher Fatemi (ROF) model [51], the authors, who the model is

named after, designed a Total Variation (TV)-based regularizer, based on the assumption

that natural images can be approximated reasonably well by piecewise constant images.

The TV reads

TV(y) =
n∑
i=1

√
(∇1y)2

i + (∇2y)2
i , (1.20)

where ∇1,∇2 are the first order finite difference operators in the principle directions. The

ROF model combines the TV regularizer with a squared L2 data term to read

EROF(x, y) =
λ

2
‖x−Ay‖22 + TV(y). (1.21)

TV regularization leads to piecewise constant images with sharp edges, which can yield

surprisingly good results for natural images in the presence of AWGN or Salt and Pepper

noise.

A well known drawback of the ROF model is the “staircasing” effect, which is especially

apparent in regions with linearly changing intensity. This motivated many extensions of

the TV regularizer [6, 9, 12] which incorporate higher order image statistics, e.g. the first

order Total Generalized Variation (TGV) [6], which allows for linear image gradients and

steep edges.

Another well-studied class of regularization functionals is based on penalizing the cur-
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vature of level lines [11, 46, 54]. These regularizers are mathematically well understood

and can be nicely motivated by the human visual system [32].

All of the above mentioned regularizers have a profound mathematical underpinning,

are well understood and lead to convex problems when applied in the general framework

of Eq. (1.18). However, these hand-crafted regularizers lack expressiveness to be applied

to a wide variety of natural images, as they only model very specific and fundamental

properties. Thus, the idea of learning a regularizer from a bank of natural images emerged.

1.5.2 Parametric Regularizers

To overcome the limited expressiveness of hand-crafted regularization functionals, many

solutions have been proposed to learn a regularizer from data [29, 33, 35, 40, 50]. Specifi-

cally, we parametrize the regularization term in Eq. (1.18) by θ, such that

ŷ = arg min
y

{
E(x, y, θ) = λD(x, y) +R(y, θ)

}
, (1.22)

where θ ∈ Θ ⊆ Rp are the parameters that are learned from data.

An early and very successful approach is the Fields of Experts (FoE) model [50] defined

as

R(y, θ) = −
n∑
i=1

( K∑
k=1

log φk(Jky, αk)

)
i

, (1.23)

which consists of linear filters (convolution matrices) Jk ∈ Rn×n, k = 1, . . . ,K, and

potential functions

φk(Jky, αk) =

(
1 +

1

2
(Jky)2

)−αk
∈ Rn , (1.24)

parametrized by {αk}Kk=1, αk ∈ R such that θ = {Jk, αk}Kk=1. We note that the FoE

model can be interpreted as a generalization of the anisotropic TV regularizer. In the TV

regularizer, the potential function φ is fixed and we have K = 2, where J{1,2} ≡ ∇{1,2}.
The gradient operators ∇{1,2} can be seen as convolutions with specific kernels, and J{1,2}
are the corresponding convolution matrices.

Recently, this framework has been extended [33, 40, 41] by letting

R(y, θ) = N (y, θ) , (1.25)

where N (y, θ) is a generic neural network (of arbitrary complexity) parametrized by θ ∈ Θ.

These highly expressive regularizers have lead to impressive results when trained in a

discriminative fashion [33]. However, training and inference in such a framework usually

involves sampling the model using Markov Chain Monte Carlo (MCMC) techniques [45,

61], which are computationally expensive. This motivated “truncated” gradient descent

schemes, which are computationally much more efficient, and surprisingly yield better
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results than their converged counterparts in a discriminative learning framework.

1.6 Iteratively Unrolled Gradient Descent Schemes

The idea of early stopping problems of the form of Eq. (1.18) was introduced in [2]. Given

a training set S = {(xi, yi)}NSi=1, they cast the learning problem as
min
θ

NS∑
i=1

1

2

∥∥ŷi − yi∥∥2

2

s.t. ŷi = AI(xi, θ) ,

(1.26)

where AI is an algorithm that performs approximate inference on the underlying Markov

Random Field (MRF) model (e.g.FoE ), given the current parameters θ. The joint training

of a MRF given some inference algorithm AI was named Active Random Field (ARF) by

the authors [2].

AI(x, θ) sacrifices inference accuracy for speed, where for instance if AI(x, θ) models a

gradient descent optimization, they use 1 to 4 iterations, as opposed to tens of thousands

needed for convergence. Even though (or, precisely because [21, 33]) the inference algo-

rithm is truncated after very few steps and hence only approximates the energy minimiza-

tion, the results show better performance [2] when compared to convergent algorithms.

The scheme in Eq. (1.26), although approximate, can still be interpreted in the frame-

work of energy minimization. At the cost of abandoning the energy-based framework,

the power of the scheme can be increased by parametrizing each step in the gradient

descent scheme individually. The Cascade of Shrinkage Field (CSF) model [53] learns a

cascade of Gaussian Conditional Random Fields (CRFs) in such a way, which relies on

several assumptions on the considered problem. In [13] these assumptions are relaxed

and the Trainable Nonlinear Reaction Diffusion (TNRD) model is proposed, which is in-

terpreted as an unrolled nonlinear reaction-diffusion scheme. The convolution kernels J tk
and parameters of the potential functions φtk are free to vary at each step and are trained

simultaneously. The whole training process is formulated as

min
θ

NS∑
i=1

1

2

∥∥ŷiT − yi∥∥2

2

s.t.


ŷi0 = xi

ŷit = ŷit−1 −
(∑K

k=1(J tk)
>φtk(J

t
kŷ
i
t−1) + λtA>(Aŷit−1 − x)

)
t = 1, . . . , T

(1.27)

with the parameters θ = {λt, J tk, φtk}
T
t=1. The update equation corresponds exactly to a

gradient descent on the FoE model, assuming a quadratic data fidelity term of the form

D(x, y) = 1
2 ‖x−Ay‖

2
2. However, the parameters are free to change between steps, and
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the depth T is usually kept below 10.

The authors of [13] already note that their approach is tightly linked to recurrent

neural networks. The theory of Variational Networks (VNs) introduced in [34] makes

this connection more clear, and relates such approaches to the popular residual neural

networks [28].

Very recently, [19] showed that deep Neural Networks (NNs) can be interpreted as a

discretization of a suitable nonlinear dynamical system. In this formulation, the training

process is seen as finding the controls in the corresponding optimal control problem. Moti-

vated by this insight and the observation that early stopping a scheme following Eq. (1.22)

in general leads to better results, [21] proposed to learn the best stopping time in the opti-

mal control framework. They extended the FoE model to use B-spline potential functions

and 7× 7 filters to achieve notably good results, especially considering the small inference

time and low number of parameters. This work was extended in [33], where the regularizer

is given by multi-scale residual CNN and the results are comparable to other State-of-the-

Art (SotA) techniques, whilst the number of parameters is comparatively small.

1.7 Deep Feed-Forward Neural Networks

The NN community has received much attention in the recent years. In the IR domain,

CNNs have achieved remarkable results [28, 65, 66], challenging or beating other SotA

techniques. The success of these methods however can largely be attributed to the rapid

increase in computational power in the recent years and the associated increase in model

complexity, as well as the availability of large data sets. On the other hand, in gen-

eral feed-forward NNs lack theoretical foundations as well as guarantees, and especially

interpretability for IR problems.

The feed-forward NN approach to finding Eq. (1.2), is to suitably parametrize f , such

that

ŷ = f(x, θ) , (1.28)

where θ ∈ Θ are the parameters. Since for traditional IR tasks shift-equivariance is as-

sumed [22, 37], weight sharing [52] is employed in the form of convolutions. This drastically

reduces the number of parameters when compared to “dense” networks.

We can see that the formulation in Eq. (1.28) does not make use of any prior knowl-

edge: The learned mapping is completely independent of the (a-priori known) degradation

operator A, and it does not immediately incorporate any prior knowledge about the so-

lution ŷ (c.f. Eq. (1.18)). A direct consequence of this is that it is notoriously hard to

transfer knowledge between tasks, e.g. to use a model trained for denoising in a SISR task.

Further, such direct feed-forward architectures have no guarantee of consistency with re-

spect to the measurement data, which is a concern especially for more general inverse

problems such as Computed Tomography (CT) or similar medical imaging modalities.



2
Probabilistic Modeling and Bayesian Inference

In this chapter we want to show how the variational structure Eq. (1.18) naturally arises

from a probabilistic interpretation of Image Restoration (IR). On our way, we will en-

counter other estimators, and show why these are in general not useful for IR. Let us

consider Eq. (1.1), where we assume that the additive noise ν is drawn from zero-mean

Gaussian distribution with variance σ2, i.e.

ν ∼ N (0, σ2Im), pν(ν) :=
1√

(2π)mσ2m
exp

(
− 1

2σ2
‖ν‖22

)
. (2.1)

From this, it immediately follows that x is a random variable distributed according to

x ∼ N (Ay, σ2Im), px|y(x | y) :=
1√

(2π)mσ2m
exp

(
− 1

2σ2
‖x−Ay‖22

)
, (2.2)

with the conditional Probability Density Function (PDF) px|y of the degraded observation

x given a clean observation y. We can now consider the Maximum Likelihood (ML)

estimate ŷML for y as

ŷML = arg max
y

px|y(x | y) = arg max
y

{
1√

(2π)mσ2m
exp

(
− 1

2σ2
‖x−Ay‖22

)}
. (2.3)

We can transform this problem to be more easily read by considering the negative loga-

rithm and discarding constant terms, turning it into

ŷML = arg min
y
‖x−Ay‖22 . (2.4)

The solution is easily computed as

ŷML =
(
A>A

)−1
A>x. (2.5)

11
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y
x

ŷ

Nearest-Neighbor

x
ŷ

Box-Averaging

Figure 2.1: Least-Squares Solution of a SISR problem using the nearest-neighbor and
box-averaging sub-sampling operators.

This is the famous least-squares solution of Ay = x, which has the probabilistic inter-

pretation of being the ML estimate ŷML = arg maxy px|y(x | y) under the assumption of

Additive White Gaussian Noise (AWGN).

However, the ML solution is rarely useful. For instance, in the case of a denoising

problem, the degradation operator A is the identity matrix Im, such that ŷML = x, i.e. the

ML solution is the degraded image. For Single-Image Super-Resolution (SISR), the least-

squares estimation yields the trivial zero-filing solution in case of nearest-neighbor sub-

sampling, and the nearest-neighbor interpolation scheme for box-averaged sub-sampling.

We show a toy example of SISR in Fig. 2.1.

To guide the solution towards a more “physically plausible” one, we desire a way to

incorporate prior knowledge about the clean observation y into the solution. Assuming

we have some prior knowledge about the distribution of the clean image patches y, we can

use Bayes Theorem to describe the posterior distribution as

py|x(y | x) =
px|y(x | y)py(y)

px(x)
. (2.6)

where py(y) models our prior belief on y. The PDF py|x(y | x) describes the complete

posterior distribution of y given x, and we can decide which point ŷ is most compatible

with a given degraded observation x.

However, the question which point ŷ in py|x(y | x) should be selected as the estimate

is still unclear. The most general form of a Bayesian estimator is given as

ŷ = arg min
y

∫
ν
`(y, ν)py|x(ν | x) dν (2.7)

where ` : Y ×Y → R assigns a scalar loss to a given configuration (y, ν). A possible choice

of ` is the euclidean distance, i.e. `(y, ν) = ‖y − ν‖22, which leads to

ŷE = arg min
y

∫
ν
py|x(ν | x) ‖y − ν‖22 dν, (2.8)
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for which the solution is given by

ŷE =

∫
ν py|x(ν | x)ν dν∫
ν py|x(ν | x) dν

=

∫
ν
py|x(ν | x)ν dν, (2.9)

which is the expectation of py|x with respect to y.

In general, the expectation can not be evaluated because of the associated computa-

tional cost. Another very popular choice for ` is the zero-one loss `(y, ν) = 1 − δ(y, ν),

where

δ(y, ν) =

{
1 if y = ν,

0 else.
(2.10)

The corresponding estimate is

ŷMAP = arg min
y

∫
ν
py|x(ν | x)(1− δ(y, ν)) dν, (2.11)

which selects ŷMAP for which py|x(y | x) is maximized, i.e.

ŷMAP = arg max
y

py|x(y | x) = arg max
y

px|y(x | y)py(y) (2.12)

and hence it is called the Maximum A-Posteriori (MAP) estimate. The normalization by

px(x) is constant w.r.t. y and hence can be disregarded for optimization. In the negative-

log domain this amounts to

ŷMAP = arg min
y

{
− log

(
px|y(x | y)

)
− log (py(y))

}
, (2.13)

which, assuming AWGN (Eq. (2.2)) leads to

ŷMAP = arg min
y

{
1

2σ2
‖x−Ay‖22︸ ︷︷ ︸

D(x,y)

− log (py(y))︸ ︷︷ ︸
R(y)

}
. (2.14)

We see that this is of the form of Eq. (1.18), where λD(x, y) models the negative log-

likelihood − log
(
px|y(x | y)

)
and R(y) models the negative log-prior − log (py(y)).
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In the previous section, we already hinted at variational methods as an instance of

Energy Based Models (EBMs). Here, we take a more general look at their principles

and motivations, especially regarding the domain of Image Restoration (IR). EBMs are

characterized by an energy function E : X × Y → R that measures the compatibility

between x ∈ X and y ∈ Y. For IR problems, x might represent the degraded observation,

and y would be the corresponding estimate of the clean scene.

3.1 Probabilistic Interpretation

The energy defines a Gibbs-Boltzmann distribution [23]

p(y | x) =
exp(−βE(x, y))

Z
(3.1)

where the partition function Z =
∫
Y exp(−βE(x, y)) dy normalizes the Probability Den-

sity Function (PDF). β ∈ R+ is a freely-chosen constant, the physical interpretation of

which would be an inverse temperature. Computing the partition function Z is in general

intractable for any interesting application. Much of this thesis will be concerned with dif-

ferent estimation strategies for Z, and how current learning strategies can be interpreted

as estimators for Z.

15
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3.2 Inference

Generally, energy-based models will be used in the setting where an input x is given, and

the model should predict the most compatible output ŷ. In other words, the inference

problem consists of fixing the value of the observed variables, and minimizing the energy

with respect to the remaining variables. That is, the inference problem reads

ŷ = arg min
y∈Y

E(x, y) , (3.2)

where we use the convention that low values of E(x, y) correspond to favorable configura-

tions of x and y.

Note that depending on the cardinality of Y, finding ŷ can be very challenging. If we

consider an image labeling task in 2 labels (i.e. binary classification), we have Y = {L1,L2},
where L{1,2} are the two labels, and hence |Y| = 2. Therefore, the most straight-forward

approach to solving Eq. (3.2) is to evaluate it for both labels and simply choose ŷ =

arg miny∈{L1,L2}E(x, y). However, in the case of IR, |Y| is infinite, since we view images as

continuous functions. Even in the quantized case, e.g. y ∈ J0, 255Kn, brute-force evaluation

of Eq. (3.2) is infeasible due to the size of Y. For instance, |Y| = 2564 = 4 294 967 296 for

an image of size n = 2× 2 = 4.

Thus, typically a problem-specific inference procedure is needed. Often this procedure

will lead to an approximate result, possibly even an approximation of some local minimum

of the energy function. In our case, for IR we will use gradient-based techniques, to land

in a local minimum of our highly non-convex energy function.

3.3 Training

In the following, we parametrize our energy function by the parameters θ, such that

E : X ×Y ×Θ→ R, (x, y, θ) 7→ E(x, y, θ). The, the goal of training is to find the optimal

parameters θ̂ by considering the family of functions

E = {E(x, y, θ) : θ ∈ Θ}, (3.3)

and choosing θ̂ such that E(x, y, θ̂) produces a good estimate ŷ given any input x. In

general, we assume access to a data set S = {(xi, yi)}NSi=1, where xi is the query for the

i-th training point and yi is the corresponding answer.

Based on the training set S, we want to find

θ̂ = arg min
θ∈Θ

1

NS

NS∑
i=1

L(yi, θ) , (3.4)

where L is a loss functional. Intuitively, we require the loss functional L to assign a small
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loss to the energy function E, if E acts as desired: It should assign the lowest energy to

the correct answer and higher energy to all others. On the other hand, energy functions

which assign high energy to the correct answer and lower energy to others should have a

high loss.

In other words, training the EBM corresponds to shaping the energy landscape such

that for any input x, the inference procedure will select the desired value y. The inference

algorithm Eq. (3.2) selects y with the lowest energy, hence the learning algorithm should

shape the landscape in a way that y has lower energy than all other answers. With this

in mind, it is clear that a “good” loss function L should fulfill two requirements: The

effect of an update on θ should 1. lower E(xi, yi, θ), and 2. increase the energy of incorrect

answers E(xi, ŷ, θ).

In what follows, we use the typical variational structure

E(x, y, θ) = λD(x, y) +R(y, θ) (3.5)

which is interpreted as defining the posterior distribution py|x, as derived in Chapter 2,

through its Gibbs-Boltzmann distribution. As the data term is defined through our noise

model and hence not parametrized in any way, we can ignore it during training. Therefor,

in the following we are not dependent on any degraded examples xi, but want to learn

the prior R(y, θ) given a data set S = {yi}NSi=1. This means that we are in the realm of

generative models.

3.3.1 Energy Loss

The simplest meaningful loss function is the energy of the desired answer yi, i.e.

LE(yi, θ) = R(yi, θ) . (3.6)

Training with this loss function certainly has the effect of decreasing the energy of the

desired answer, however there exists no mechanism for increasing the energy of any other

answer. As such, this loss can lead to the trivial solution R(y, θ) = const ∀ y, unless the

architecture of R(·, θ) itself is such that decreasing R(yi, θ) necessarily leads to an increase

of other energies.

3.3.2 Maximum Likelihood Estimation

As stated before, we assume access to a data set S = {yi}NSi=1 of NS independent and

identically distributed (iid) data points Rd 3 yi ∼ pD, where pD is the underlying data

distribution. As discussed above, the regularizer defines a Gibbs-Boltzmann distribution

pθ(y) =
exp (−R(y, θ))∫

Rd exp (−R(ν, θ)) dν
. (3.7)
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The goal of Maximum Likelihood (ML) is to find the parameters θ̂ML ∈ Θ which

maximize the likelihood of the observed data S under the model distribution pθ. To this

end, we introduce the likelihood function

L(θ) = pθ(S) (3.8)

which measures the probability of observing S given a parameter estimate θ. Using the

iid assumption, this decomposes into

L(θ) = pθ(S) =

NS∏
i=1

pθ(yi). (3.9)

The ML estimate θ̂ML is then

θ̂ML = arg max
θ∈Θ

L(θ). (3.10)

In practice, it is often easier to minimize the negative logarithm of Eq. (3.8). We therefor

define the negative log-likelihood NLL(θ) as

NLL(θ) = − log L(θ) =

NS∑
i=1

− log pθ(yi) (3.11)

and choose

θ̂ML = arg min
θ∈Θ

NLL(θ). (3.12)

Taking the negative logarithm of Eq. (3.7) yields

− log pθ(y) = R(y, θ) + log

∫
Rd

exp (−R(ν, θ)) dν. (3.13)

With the exception of some trivial cases, no closed form solution exists for Eq. (3.10)

or Eq. (3.12). As such, the estimates are usually found using an iterative technique.

Thus, we require the gradient of the negative log-likelihood:

∇θNLL(θ) =

NS∑
i=1

∇θR(yi, θ)−
NS

Z(θ)

∫
Rd

exp (−R(ν, θ))∇θR(ν, θ) dν, (3.14)

where Z(θ) =
∫
Rd exp (−R(ν, θ)) dν is the normalizing constant or partition function. The

second term in Eq. (3.14) is exactly the expected gradient of R(y, θ) with respect to y ∼ pθ.
Thus, rewriting in terms of expected values yields

∇θNLL(θ) =
〈
∇θR(y, θ)

〉
y∼pD

−
〈
∇θR(y, θ)

〉
y∼pθ

(3.15)

where 〈 · 〉x∼p denotes the expected value with respect to x ∼ p. Consequently, ML esti-
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mation of θ is equivalent to training the EBM with the Maximum-Likelihood loss

LML(yi, θ) = R(yi, θ)−
〈
R(y, θ)

〉
y∼pθ

. (3.16)

Clearly, Eq. (3.16) differs from Eq. (3.6) only by the inclusion of the contrastive term

−〈R(y, θ)〉y∼pθ . However, it is this term that keeps θ from collapsing to a trivial solution,

and as such it is vital. While the first term is easily calculated given a data set S,

the difficulty for ML in this case lies in calculating the expected gradient of R(y, θ) under

y ∼ pθ. This requires evaluating the partition function Z(θ), which in general is intractable

for any d�.

Note that the ML objective also naturally arises when considering the Kullback-Leibler

Divergence (KLD) between the data distribution pD and the model distribution pθ:

KL(pD ‖ pθ) =

∫
Rd
pD(ν) log

pD(ν)

pθ(ν)
dν

=

∫
Rd
pD(ν) log pD(ν)− pD(ν) log pθ(ν) dν

= −H(pD)−
〈
log pθ(y)

〉
y∼pD

(3.17)

where KL(p ‖ q) is the KLD between p and q and H(p) denotes the entropy of p. Since

the entropy of the data distribution does not depend on θ, we have

arg min
θ∈Θ

KL(pD ‖ pθ) = arg min
θ∈Θ

NLL(θ). (3.18)

Since we can not compute the second term in Eq. (3.15), it is usually approximated

through sampling. This is done by Markov Chain Monte Carlo (MCMC) methods such

as Gibbs or Metropolis sampling or simulated annealing. These methods do not make use

of the local landscape of pθ and hence require many iterations to converge to the steady-

state distribution. Other methods such as Hamiltonian (Hybrid) Monte Carlo (HMC) or

Stochastic Gradient Langevin Dynamics (SGLD) utilize the gradient ∇yR(y, θ) to explore

the space more efficiently.

Regardless of the strategy, sampling from the current distribution pθ is a computation-

ally intensive task. It has to be performed after every update to the parameters θ, and

many burn-in steps may be required before the samples approximate the steady-state dis-

tribution. Therefore, it is interesting to look at the properties of non-convergent ML-like

algorithms.

3.3.2.1 Contrastive Divergence

Contrastive Divergence (CD) was introduced in [29] to train a Producs of Experts (PoE)

model. In the previous section, we showed how the ML estimate of pθ is equivalent to

minimizing KL(pD ‖ pθ) between the data distribution pD and the model distribution pθ.
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CD aims to almost completely eliminate the computational cost associated with the ML

method by considering a slightly different objective function.

In order to convey the idea, we slightly change the notation: Let p0 = pD and let

p∞θ = pθ to emphasize that the equilibrium distribution (i.e. after infinitely many steps) of

the MCMC process is the model distribution. p0 = pD is a reasonable choice to emphasize

that the Markov chain is initialized with the data distribution pD.

The idea of CD is to compute

min
θ

CD(θ) = min
θ

KL(p0 ‖ p∞θ )−KL(p1
θ ‖ p∞θ ) (3.19)

where p1
θ is the distribution after one step of the MCMC process. Note that the first term

is the ML objective.

Intuitively, the goal is that p∞θ ≈ p0. In this case, the MCMC process, initialized at the

data distribution, should leave the distribution unaltered. Instead of letting the chain run

to equilibrium, the idea is to let the chain run for one step and to compare the resulting

distribution with the data distribution. Updating θ according to Eq. (3.19) makes the

MCMC process less likely to wander away from the data distribution.

The objective Eq. (3.19) can also be motivated as follows: It is clear that p1
θ is closer to

the equilibrium distribution p∞θ than p0, and hence KL(p0 ‖ p∞θ ) ≥ KL(p1
θ ‖ p∞θ ), i.e. the

CD is always non-negative. Equality would imply p0 = p1
θ, which in turn implies p0 = p∞θ ,

since the distribution necessarily has to already be in equilibrium if it does not change on

the first step. In other words, CD is always non-negative and only zero if the model is

perfect.

Mathematically, we find

−∇θ CD(θ) =
〈
∇θR(y, θ)

〉
y∼p0

−
〈
∇θR(y, θ)

〉
y∼p1θ

+∇θH(p1
θ), (3.20)

where the third term has been empirically shown to be comparatively small to and in

accordance with the first two terms, such that it can be ignored. Therefore, the usual

update rule for the CD objective is given by

∆θ ∝
〈
∇θR(y, θ)

〉
y∼p0

−
〈
∇θR(y, θ)

〉
y∼p1θ

. (3.21)

The CD algorithm can be generalized to CDn [7] where

CDn(θ) = KL(p0 ‖ p∞θ )−KL(pnθ ‖ p∞θ ), (3.22)

such that

∆θ ∝
〈
∇θRθ(x)

〉
x∼p0

−
〈
∇θRθ(x)

〉
x∼pnθ

. (3.23)
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Since KL(pnθ ‖ p∞θ )
n→∞−−−→ 0, it is clear that

arg min
θ∈Θ

CDn(θ)
n→∞−−−→ arg min

θ∈Θ
NLL(θ). (3.24)

3.3.2.2 Persistent Contrastive Divergence

The idea of CDn, in essence, is to use distribution after the n-step reconstruction as an ap-

proximation for the equilibrium distribution p∞θ defined by the model. This becomes espe-

cially clear when we consider the parameter update equations Eq. (3.15) versus Eq. (3.23),

where in the second term the expectation is computed with respect to pnθ instead of p∞θ .

If we assume that the parameter updates are small, i.e. ∆θ �, the model distribution p∞θ
is not expected to significantly change between iterations. Motivated by this insight, one

might choose not to reset the Markov chains after the parameter updates. This is the idea

of Persistent Contrastive Divergence (PCD) [58]: The Markov chain is initialized at the

state in which it ended for the previous model.

3.4 Model Sampling

In the discussion of the derivation of the ML objective, we noted that except for trivial cases

we can not compute the contrastive term −〈∇θR(y, θ)〉y∼pθ analytically, as it requires to

evaluate the partition function
∫
Rd exp (−R(ν, θ)) dν. As such, it is often approximated by

sampling the model distribution pθ using MCMC . We also reasoned why we may consider

non-convergent Markov chains, by showing intuitively how a non-convergent objective

leads to a solution that is close to the true ML solution. Here, we want to discuss the

specific sampling strategy that we will use throughout this work.

3.4.1 Stochastic Gradient Langevin Dynamics

SGLD [61] makes use of the gradient of the PDF to draw samples from it. This improves

mixing time when compared to traditional MCMC methods such as Gibbs sampling, HMC

or Metropolis-Hastings (MH) sampling. Let pθ(y) be the Gibbs-Boltzmann distribution

of the regularizer R(y, θ). We use the gradient ∇yR(y, θ) to perform

yk = yk−1 − εk

2
∇yR(yk−1, θ) + νk, (3.25)

where νk ∼ N (0, εk) and εk are step sizes satisfying

∞∑
k=1

εk =∞, and

∞∑
k=1

(εk)
2
<∞ . (3.26)

The above walk defines the distribution qθ(y), such that yk ∼ qθ(y). SGLD relies on the

fact that qθ(y)→ pθ(y) as k →∞, i.e. the procedure generates samples from pθ(y).
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3.5 Is the ML Solution the Best in General?

ML is a nice mathematical framework for parameter estimation. The objective is derived

by fitting the model to the data such that the likelihood of the data under the model

is maximized. As such, one would intuitively find no reason to deviate from the ML

objective. However, here we want to illustrate that the ML objective is not necessarily

always optimal for fitting a model to data. We do this with a simple example taken

from [27]:

Let Z ∼ U [0, 1], and let pD be the distribution of (0, Z) ∈ [0, 1]2. Now, let pθ(θ, z) be

the distribution of gθ(θ, z) = (θ, z), z ∼ U [0, 1]. Recall that the ML objective also arises

when minimizing the KLD and recall that the KLD between the data distribution pD and

the distribution pθ is

KL(pD ‖ pθ) =

∫
[0,1]2

pD(ν) log
pD(ν)

pθ(ν)
dν =

{
undefined if θ 6= 0,

0 else.
(3.27)

Clearly, the KLD is undefined if there exist points γ where pθ(γ) = 0 while pD(γ) > 0 or

vice versa, and as such does not provide a gradient for training. Hence, the KLD and the

ML objective are not necessarily optimal for all circumstances and we may explore other

objectives.

We have seen how ML introduced the contrastive term −〈∇θR(y, θ)〉y∼pθ into the

energy loss function Eq. (3.6) to keep the model from collapsing to a trivial solution

R(y, θ) = const ∀y. This is the expected gradient of the regularizer R(·, θ) with respect to

samples drawn from its corresponding Gibbs-Boltzmann distribution pθ. In this work, we

want to explore other contrastive terms, where we do not compute the expected gradient of

R(·, θ) under its own distribution, but under a loss-augmented distribution p̄θ. Specifically,

we motivate the construction of p̄θ with the concept of loss augmented inference used in

Structured Support Vector Machine (SSVM) training.
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4.1 Support Vector Machines

In this section, we will give a very brief overview of the principles of the classical Support

Vector Machine (SVM) [5], to outline the idea behind maximum margin classifiers. The

extension of the SVM to structured output spaces is discussed in more detail in Section 4.2.

The SVM is an instance of a linear two-class classifier of the form

ŷ(x) = θ>Ψ(x) (4.1)

where θ ∈ Θ are the parameters of the linear model and Ψ: Rm → Θ is a fixed feature

transform. For training the model, we assume access to a data set S = {(xi, ti)}NSi=1 where

xi ∈ Rm are the input vectors and ti ∈ {−1, 1} code the corresponding target classes. New

data points x are then classified according to the sign of ŷ, i.e.

t̂ = sign(ŷ(x)) = sign(θ>Ψ(x)) . (4.2)

If we assume that the probability density functions of the two classes do not overlap,

there are (infinitely) many choices for the parameter vector θ such that all training points

{xi}NSi=1 are correctly classified. In this family of possible choices, we should seek the

solution which yields the smallest generalization error. A particularly fruitful idea which

identifies a unique optimal solution is that of the maximum margin [56, 57]. The margin

is defined as the distance between the decision boundary and the closest data point. For

23
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Figure 4.1: Illustration of the SVM solution of a classification task of two classes with
non-overlapping distributions. Of the infinite possible θ such that all points are correctly
classified, we show two examples on the left. The right plot shows the maximum margin
solution of the SVM . The solution is defined by a small subset of the initial training set
{xi}NSi=1, the support vectors, shown in red. The shaded areas indicate the margins of the
corresponding solutions.

any data point xi the distance to the separation hyperplane is given by

di =
ti(θ

>Ψ(xi))

‖θ‖2
. (4.3)

Using this, we can write the optimization problem as

arg max
θ

{
1

‖θ‖2
min

(ti,xi)∈S

{
ti(θ

>Ψ(xi))
}}

(4.4)

which maximizes the minimum distance, i.e. the margin between the separation hyperplane

and the closest data point. The SVM objective is usually written in a different form asarg min
θ

1

2
‖θ‖22

s.t. ti(θ
>Ψ(xi)) ≥ 1 ∀ i = 1, . . . , NS

(4.5)

where we use one degree of freedom to rescale the margin to unity and note the equivalence

arg maxθ
1
‖θ‖2

= arg minθ ‖θ‖22. An example of a 2-class classification problem is shown

in Fig. 4.1 where the concept of margin maximization is nicely seen.

The formulation above does not allow for overlapping class distributions. This ap-

proach can be modified such that points are allowed to be inside the margin, where the

distance to the margin is penalized linearly [14]. This is often referred to as a soft-margin
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SVM . To this end, we introduce slack variables

ξi =

{
0 if xi not inside the margin,

|ti − ŷ(xi)| else.
(4.6)

The corresponding optimization problem reads
arg min
θ,ξi

1

2
‖θ‖22 + C

NS∑
i=1

ξi

s.t.

{
ti(θ

>Ψ(xi)) ≥ 1− ξi
ξi ≥ 0

}
∀ i = 1, . . . , NS ,

(4.7)

where C ≥ 0 controls the trade-off between the margin violation penalty and the margin

maximization objective. Note that the SVM can be extended to a multi-class classifier by

employing a one-vs-one or one-vs-all scheme [42, 48, 60].

4.2 Structured Support Vector Machines

Structured Support Vector Machines (SSVMs) [59] are an extension of the popular SVMs

to structured output spaces. The goal is to learn a map from inputs x ∈ X to discrete

outputs y ∈ Y based on a training data set S = {(xi, yi)}NSi=1 drawn from a fixed but

unknown probability distribution. Y is a structured output space, with interdependent

variables, such as trees, graphs, or sequences.

Note that the naive extension of multi-class SVMs to structured output spaces would

be to treat each possible element in Y as a class. This is in general intractable, as Y grows

exponentially with the length of its members, and as such the number of classes can easily

become too large or infinite.

4.2.1 Loss and Discriminant Function

In SSVM training one is interested in learning a discriminant function F : X ×Y×Θ→ R,

(x, y, θ) 7→ F (x, y, θ) from input/target pairs. Inference is then performed by choosing the

ŷ ∈ Y which maximizes F , i.e.

ŷ = f(x, θ) = arg max
y∈Y

F (x, y, θ) , (4.8)

where θ is a parameter vector. Here, F is a θ-parametrized family of cost functions, where

θ is the weight vector of the combined feature space Ψ(x, y), such that

F (x, y, θ) = θ>Ψ(x, y). (4.9)
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Clearly, an SSVM is an instance of an Energy Based Model (EBM), where F (x, y, θ) is

akin to a negative energy.

Since elements in the structured space Y are interdependent, we require the loss

function to mirror this interdependence. To this end, we introduce the loss function

∆: Y × Y → R, such that ∆(y, ŷ) measures the dissimilarity between the prediction ŷ

and the target y. We require the loss function to be non-negative and zero only if the

prediction is the target, i.e. ∆(y, y′) > 0 ∀ y′ ∈ Y, y 6= y′ and ∆(y, y) = 0. If our data is

distributed according to the data distribution pdata(x, y), the goal is to minimize the risk

R∆
pdata

(f) =

∫
X×Y

∆(y, f(x, θ))pdata(x, y) dx dy. (4.10)

Assuming pdata is unknown, and a data set S = {(xi, yi) ∼ pdata}NSi=1 is given, the perfor-

mance of f(x, θ) is given by

R∆
S (f) =

1

NS

NS∑
i=1

∆(yi, f(xi, θ)). (4.11)

4.2.2 Margins and Margin Maximization

Assuming that there exists a function f(x, θ) such that there is zero risk over the training

set S, we can enumerate the constraints as

max
y∈Y−i

{
θ>Ψ(xi, y)

}
< θ>Ψ(xi, yi) ∀ i = 1, . . . , NS , (4.12)

where Y−i := Y \ {yi}. We observe that this can be rewritten as linear constraints by

introducing separate constraints for each yi as

θ>δΨi(y) > 0 ∀ i = 1, . . . , NS , ∀ y ∈ Y−i , (4.13)

where δΨi(y) = Ψ(xi, yi)−Ψ(xi, y). In general, there are multiple θ such that Eq. (4.13)

is satisfied. To define a unique solution, analogous to classification in an SVM setting, we

require ‖θ‖2 ≤ 1 and choose θ such that the score difference from the correct label yi to

the most offending label ỹ = arg maxy∈Y−i F (xi, y, θ) is maximized. Therefore, we arrive

at the following optimization problem:arg min
θ

1

2
‖θ‖22

s.t. θ>δΨi(y) ≥ 1 ∀ i = 1, . . . , NS , ∀ y ∈ Y−i .
(4.14)

To allow for margin violation, similar to the soft-margin SVM , a slack variable ξi is
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introduced for every non-linear constraint. The corresponding optimization problem reads
arg min
θ,ξi

1

2
‖θ‖22 +

C

NS

NS∑
i=1

ξi

s.t.

{
θ>δΨi(y) ≥ 1− ξi ∀ y ∈ Y−i

ξi ≥ 0

}
∀ i = 1, . . . , NS ,

(4.15)

which implicitly uses the zero-one classification loss

∆01(y, ŷ) =

{
0 if y = ŷ,

1 else.
(4.16)

This is undesirable, since margin constraints should be weighted according to their severity

as defined by the loss ∆. In the literature [59], there are two approaches to incorporate the

user-defined loss function ∆ in the optimization problem, which we define in the following

sections.

4.2.2.1 Slack Rescaling

In Slack Rescaling, the margin is fixed at unity, and the slack variables are scaled with

the inverse of their losses. This leads to the slack rescaling formulation
arg min
θ,ξi

1

2
‖θ‖22 +

C

NS

NS∑
i=1

ξi ,

s.t.

θ>δΨi(y) ≥ 1− ξi
∆(yi, y)

, ∀ y ∈ Y−i

ξi ≥ 0

∀ i = 1, . . . , NS .

(4.17)

4.2.2.2 Margin Rescaling

Here, the margin is no longer fixed at unity but we require the score difference between

yi and the most offending runner-up ỹ = arg maxy∈Y−1 F (x, y, θ) to be at least ∆(yi, ỹ).

This modifies Eq. (4.15) to
arg min

θ,ξ

1

2
‖θ‖22 +

C

NS

NS∑
i=1

ξi ,

s.t.

{
θ>δΨi(y) ≥ ∆(yi, y)− ξi , ∀ y ∈ Y−i

ξi ≥ 0

}
∀ i = 1, . . . , NS .

(4.18)

4.2.3 Training

In general, solving Eq. (4.17) or Eq. (4.18) is infeasible, since there exists a constraint for

every y ∈ Y−i, for every i = 1, . . . , NS . However, by iteratively considering only the most
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Algorithm 1: Cutting Plane Algorithm for SSVM training.

Input : S, C, ε
choose: SR: Hi(y) = ∆(yi, y)(1− θ>δΨi(y))

MR: Hi(y) = ∆(yi, y)− θ>δΨi(y)
1 Si ← ∅ ∀i = 1, . . . , N
2 while Si changing do
3 for i = 1, . . . , N do
4 ȳ = arg maxy∈Y−i Hi(y)

5 ξi = max{0,maxy∈Si Hi(y)}
6 if Hi(ȳ) > ξi + ε then
7 Si ← Si ∪ {ȳ}
8 θ ← optimize Eq. (4.17) (SR) or Eq. (4.18) (MR) over

⋃
i Si

9 end

10 end

11 end

violating constraints, the problem can be solved in polynomial time. The Cutting Plane

algorithm [31] to find solutions for Eq. (4.17) and Eq. (4.18) is shown in Algorithm 1. The

algorithms only differ in the cost function H(y).

We note that when using the margin rescaling formulation, Line 4 can be expanded to

ȳ = arg max
y∈Y−i

Hi(y) = arg max
y∈Y−i

{∆(yi, y) + F (xi, y, θ)} , (4.19)

which adds the loss term ∆(yi, y) to the inference equation (Eq. (4.8)). As such, this step is

referred to as loss-augmented inference. In the next section we will combine the concept of

loss-augmented inference with Maximum Likelihood (ML) to derive a generative training

algorithm.
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We now introduce the concept of loss augmented inference into the Maximum Likeli-

hood (ML) framework. Recall that the ML loss given a point yi ∼ S is

LML(yi, θ) = R(yi, θ)−
〈
R(y, θ)

〉
y∼pθ

(5.1)

where pθ is the Gibbs-Boltzmann distribution of the regularizer R(·, θ). Inspired by Struc-

tured Support Vector Machine (SSVM) training, we define the loss-augmented loss as

LLA(yi, θ) = R(yi, θ)− arg min
y

R̄(y, yi, θ) (5.2)

with the loss-augmented regularizer R̄(y, yi, θ). In what follows, we consider the euclidean

distance loss-augmentation

∆(yi, y) =
1

2
‖yi − y‖22 , (5.3)

such that the loss augmented energy regularizer is given as

R̄(y, yi, θ) = R(y, θ)− µ

2
‖yi − y‖22 (5.4)

where µ ∈ R+ is a freely selectable parameter controlling the influence of ∆(yi, y). The

29
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Figure 5.1: Schematic of the multi-scale TDV [33] regularizer R(y, θ) with 3 macro blocks
Mai which each operate on three scales.

gradient of the loss augmented regularizer is then

∇yR̄(y, yi, θ) = ∇yR(y, θ) + µ(y − yi). (5.5)

Note that in practice, we also sample our loss-augmented regularizer, i.e. we modify the

loss to be

LLA(yi, θ) = R(yi, θ)−
〈
R(y, θ)

〉
y∼p̄θ

(5.6)

where p̄θ is the Gibbs-Boltzmann distribution of the loss-augmented regularizer.

We consider the regularizer R(y, θ) ≡ TDVNSc
NMa

[33], where NMa is the number of

macro blocks Mai and NSc is the number of scales the regularizer operates on. Fig. 5.1

shows a sketch of the TDV 3
3 network, where we schematically show the macro blocks and

scales.
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5.1 Training and Inference

Let S = {yi}NSi=1, yi ∼ pD be a set of NS ground truth images yi ∈ Rn. We empirically

estimate 〈R(y, θ)〉y∼pD as

〈
R(yi, θ)

〉
yi∼pD

≈ 1

|I|
∑
i∈I

R(yi, θ) (5.7)

and similarly 〈
‖yi − y‖22

〉
yi∼pD

≈ 1

|I|
∑
i∈I
‖yi − y‖22 (5.8)

where I is a set of indices drawn from {1, . . . , NS} of cardinality |I| = b. Given the batch

indices I, we estimate 〈R(y, θ)〉y∼p̄θ as

〈
R(y, θ)

〉
y∼p̄θ

≈ 1

NLA|I|

NLA∑
j=1

∑
i∈I

R(ȳji , θ) , (5.9)

where each ȳji is drawn from p̄θ using Stochastic Gradient Langevin Dynamics (SGLD),

i.e. we update

ȳj,k+1
i = ȳj,ki −

εt
2
∇ȳR̄(ȳj,ki , yi, θ) + νk , (5.10)

with ȳj,0i = yi, ν
k ∼ N (0, εkIn), and εk is the step size at step k. Conceptually, for each

yi , i ∈ I we draw NLA random samples {ȳji }
NLA

j=1 from p̄θ using Eq. (5.10), each initialized

with yi. The training algorithm is summarized in Algorithm 2.

For all the following experiments, we chose a learning rate of 4× 10−4 for the Adam

optimizer and set the momentum terms to β0 = 0.9 and β1 = 0.999. If not stated otherwise,

NLA = 1. To ensure boundedness from below of the regularizer, the potential function

Ψ: Rn → Rn, (x1, . . . , xn) 7→ (ψ(x1), . . . , ψ(xn)) of the TDV network is the softplus

ψ(x) =
1

β
log(1 + exp(βx)), (5.11)

where we chose β = 1. The micro blocks are activated by Φ: RnNf →
RnNf , (x1, . . . , xnNf ) 7→ (φ(x1), . . . , φ(xnNf )), where the component-wise activation is the

log-student-t function

φ(x) =
1

2
log(1 + x2), (5.12)

with Nf = 32 features per kernel. The SGLD procedure is performed for K = 120 steps

and we set M = 20, i.e. we calculate the mean over the last 20 samples to get the final

sample.

Once the parameters θ of the regularizer are learned by the procedure described above,
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Algorithm 2: Generative training of a data driven regularizer using the proposed
learning framework, motivated by ML and SSVM training.

Input : Data set S = {yi}Nsi=1, batch size b, initial parameters θ, number of loss
augmented samples NLA, sampling steps K and number of averaging
steps M

1 while θ not converged do
2 I = {I1, I2, . . . , Ib} ∼ {1, . . . , NS}
3 for i ∈ I do
4 for j = 1, . . . , NLA do

5 ȳj,0i = yi
6 for k = 0, . . . ,K − 1 do

7 ȳj,k+1
i = ȳj,ki − εt

2∇ȳR̄(ȳj,ki , yi, θ) + νk

8 end

9 end

10 ȳji = mean({ȳj,K−Mi , . . . , ȳj,Ki })
11 Li(θ) = R(yi, θ)− 1

NLA

∑NLA
j=1 R(ȳji , θ)

12 end

13 θ ← Adam
(

1
|I|∇θ

∑
i∈I Li(θ)

)
14 end

inference can be performed by solving the variational problem

ŷ = arg min
y

{
E(x, y, θ) = λD(x, y) +R(y, θ)

}
. (5.13)

We solve the above variational problem using a backtracked proximal gradient descent

scheme. The inference procedure is summarized in Algorithm 3.

In the following inference tasks, we manually pick λ for all the considered problems

individually. We note however that the optimal λ for any given task can be learned in a

discriminative manner by considering the bilevel optimization problem
arg min

λ

Ns∑
i

‖ŷi − yi‖22 ,

s.t. ŷi = arg min
y

λD(x, y) +R(y, θ).

(5.14)
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Algorithm 3: Lipschitz-backtracked proximal gradient inference algorithm given
learned parameters θ, with the inner product 〈·, ·〉.

Input : Learned parameters θ, degraded observation x, data weight λ, proximal
map proxλD(x,·), initial guess ŷ0, suitable initial L

1 ŷ ← ŷ0

2 while ŷ not converged do
3 g = ∇ŷR(ŷ, θ)
4 while True do
5 ȳ = proxλD(x,·)(ŷ − g/L)

6 d = ȳ − ŷ
7 if R(ȳ, θ) ≤ R(ŷ, θ) + 〈d, g〉+ L

2 ‖d‖
2
2 then

8 ŷ ← ȳ

9 L← L
2

10 break

11 end
12 else
13 L← 2L
14 end

15 end

16 end

5.2 MNIST

To assess the applicability of our learning scheme, we trained a TDV 3
3 regularizer using

3 macro blocks operating on 3 scales, which amounts to 332 096 trainable parameters, on

the MNIST [39] data set. The relative simplicity of the MNIST data set allows to quickly

see whether the regularizer can be learned at all with the proposed learning scheme.

5.2.1 Samples of Loss Augmented Inference

To understand the influence of the choice of µ during training, we consider the samples ȳji of

p̄θ as a function of training epoch. We show the samples from p̄θ for µ ∈ {0, 0.01, 0.1, 1, 10}
in Fig. 5.2. The ML learning scheme seems to converge faster, however this observation has

to be taken with care. Since the samples ȳji are initialized with the ground truth samples

yi, one can interpret Fig. 5.2 to show that after relatively few parameter updates, there

is no longer any incentive for the model to change, since ȳji are almost indistinguishable

from yi. On the other hand, when the samples are drawn using loss augmented inference,

there is much more variety in the samples for a longer period of time.

In any case, the samples indicate successful learning of certain characteristics of the

data set. During the initial training phases, the regularizer does not represent any mean-

ingful energy landscape and hence there is little to no structure in the samples. As training

progresses, we can see the emergence of connected lines, and finally the handwritten digits



34 Chapter 5. Loss Augmented Inference for Image Restoration

0 5 10 15 20 25

0

30

60

90

120

150

180

210

240

270

+

µ = 0.00 µ = 0.01 µ = 0.10 µ = 1.00 µ = 10.00

Figure 5.2: Samples from p̄θ using SGLD (Eq. (5.10)) for different µ ∈ {0, 0.01, 0.1, 1, 10}.
The axis tick labels indicate the number of parameter updates, and are shared across
the different µ. For µ = 10, the training was not stable and the model collapsed after
approximately 200 parameter updates.

can be clearly seen. Even for µ = 1, it seems as thought the model capacity of regular-

izer was large enough to counter the influence of µ(y − yi) in Eq. (5.5), such that after

sufficient parameter updates, the samples strongly resemble the ground truth images. On

the other hand, for µ = 10, we see a vertical oscillatory pattern in all the samples of the

loss augmented regularizer, indicating that the model is not strong enough to counter the

pull-away term µ(y− yi). This results in unstable training, such that after approximately

200 parameter updates the training stopped.

5.2.2 Modes of the Learned Regularizer

The proposed training scheme, being generative in nature, leads to a regularizer R(y, θ)

which can be interpreted as a Probability Density Function (PDF). Specifically the asso-

ciated Gibbs-Boltzmann distribution is given by

pθ(y) =
exp (−βR(y, θ))∫

y exp (−βR(ν, θ)) dν
, (5.15)

where β ∈ R+ determines the “variance” of pθ. Explicitly calculating pθ(x) for any given x

is problematic because we can not calculate the integral in the denominator. However, we

can sample pθ(y), since the partition
∫
y exp (−βR(ν, θ)) dν is constant w.r.t. y. Therefor,

the modes of R(·, θ) coincide with those of pθ.

We analyze the modes of the trained regularizers by applying Algorithm 3 with λ = 0

and y0 ∼ U [0, 1]64×64 and show some results in Fig. 5.3. The figure shows that the nearest

modes to y0 are given by connected structures, which resembles the handwritten digits of

the MNIST data set. Although this characteristic of the modes is shared across all the

regularizers trained for µ ∈ {0, 0.01, 0.1, 1}, there are differences between them. The ML
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Figure 5.3: Modes of the trained regularizers for different µ ∈ {0, 0.01, 0.1, 1} for the
MNIST data set. All of the regularizers prefer connected, curvy white structures, which
is characteristic of the MNIST data set of handwritten digits.

(µ = 0) solution shows a tendency for horizontally connected lines, whereas this is not

necessarily the case for the other regularizers. Furthermore, the structures are significantly

coarser for µ = 0.

In Fig. 5.4 we show the evolution of the modes starting from y0. We can see that Algo-

rithm 3 has converged at k = 50, such that the resulting images can really be interpreted

as modes of pθ.

5.2.3 Eigenimage Analysis

To gain more insights into the trained regularizers, we perform a nonlinear eigenimage

analysis [26]. We compute the nonlinear eigenimages by considering

yeig = arg min
y∈[0,1]n

1

2
‖∇yR(y, θ)− Λ(y)y‖22 , (5.16)

where Λ(y) is the generalized Rayleigh quotient

Λ(y) =
〈∇yR(y, θ), y〉
‖y‖22

, (5.17)

with the inner product 〈·, ·〉.
We show results for µ ∈ {0, 1} in Fig. 5.5. The eigenimages indicate that the trained

regularizers prefer piecewise constant regions, delineated with stark contrast. Especially in

the top row it can be seen that the regularizer trained using ML retains smaller structures,

like the hook or the letting on the body plane. On the other hand, when using µ = 1

features that are retained seem to remain very detailed, like the lettering on the wings of

the plane. Further, when using µ = 1 edges seem to be accentuated, to the point where

for instance the creases in the ground are clearly surrounded by a white border.
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Figure 5.4: Visualization of the gradient descent on R(·, θ) starting from uniform noise. k
is the number of steps in Algorithm 3.

5.2.4 Regularization Strength

In the above, we have shown that the proposed learning scheme leads to reasonable solu-

tions for a range of µ ∈ [0, 1]. Here, we want to explore in more detail the influence of µ

on the regularizer by considering the neighborhood of a training example. Specifically, let

yε,x = y + ε(x− y), (5.18)

where y ∼ test set, ε ∈ [0, 1] and x ∈ Rn is drawn from either N (0.5, In) or U [0, 1]n.

In Fig. 5.6a and Fig. 5.6b we show R(yε,x, θ) trained with µ ∈ {0, 1} respectively. In Fig. 5.7

we show some examples of yε,x for a range of ε to ease interpreting Fig. 5.6.

We observe that when ε �, i.e. near y, the gradient norm ‖∇yR(yε,x, θ)‖22 is signif-

icantly larger. The model trained with loss augmented inference seems to have steeper

slopes around the samples from the data distribution, which is in accordance with the
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Figure 5.5: Nonlinear eigenfunction analysis of the TDV 3
3 regularizer trained on the

MNIST data set using the proposed training algorithm for µ ∈ {0, 1}. Highlighted are
regions where there are strong differences between the regularizers: At 1 µ = 0 retains
details that get lost in µ = 1. On the other hand, there is more detail at 2 for µ = 1 and
finally we highlight the stark accentuation of edges in 3.

expectations, as it has to counter the influence of the loss Eq. (5.5). As such, we believe

that loss augmented inference is a valuable tool in controlling the shape and slopes of

the trained regularizer and may be combined with Lipschitz-penalization [27] to tune the

expressiveness of a model.

5.2.5 Shape Completion

In the previous sections we have demonstrated that learning with loss augmented infer-

ence yields meaningful regularizers. Here, we want to put these regularizers to the test

on concrete restoration examples. Due to the simplicity of the MNIST data set, tra-

ditional restoration tasks such as Gaussian denoising or deconvolution are not of much

interest. Therefor, we consider an inpainting task with the forward degradation operator

{0, 1}n×n 3 A = diag({a1, . . . , an}), ai ∼ B(0.7),∀i = 1, . . . , n with the Bernoulli distri-

bution B(p) of probability p. To perform the shape completion, we perform a gradient

descent on the regularizer, where after each step we clamp the known variables. In Fig. 5.8

we can see some examples of shape completion on MNIST digits. It can be seen that the

trained regularizers are clearly capable of restoring the digits.
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Figure 5.6: Regularization energy R(·, θ) and gradient norm ‖∇yR(yε,x, θ)‖22 around an

image in the test set for µ ∈ {0, 1}. Especially around ε = 0, i.e. near y, ‖∇yR(yε,x, θ)‖22
is significantly larger for µ = 1.
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Figure 5.7: Examples of the trajectory of the images used for analyzing the regularizer
in Fig. 5.6.
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target

Figure 5.8: Shape completion of MNIST digits: The starting images are constructed by
x = Ay, A = diag({a1, . . . , an}), ai ∼ B(0.7). The trained regularizers are clearly capable
of restoring the digits, however the ML regularizer does better visually.

5.3 FashionMNIST

In the previous section we showed that applying the proposed learning scheme to the TDV

regularizer leads to meaningful solutions. The simplicity of the MNIST data set allowed

us to nicely show the properties of the trained regularizers and how they relate to the

training set. However, clearly the model is oversized for the task, and the data set is not

interesting for traditional Image Restoration (IR) tasks.

In this section, we will scale the model capacity down and consider a more complicated

data set. Specifically, we consider is the TDV 2
2 regularizer, which has 147 776 trainable

parameters, which we train on the FashionMNIST [63] data set. The FashionMNIST data

set is more complex than the MNIST data set, as it exhibits more structure than simple

connected streaks.
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Figure 5.9: Samples from p̄θ for different µ ∈ {0, 0.01, 0.1, 1} during training. The ticks
indicate the number of optimizer steps. Clearly the results show that for any µ > 0, the
samples are far from the initial data set. We interpret this as the model not being able
to overfit to the training data, such that the pull-away term µ(y− yi) leads to non-trivial
loss augmented inference solutions.

5.3.1 Samples of Loss Augmented Inference

As in the previous section, to understand which samples the regularizer learns to dis-

criminate, we look at the loss augmented samples ȳji . In Fig. 5.9 we see the evolution of

the samples of p̄θ during training. Clearly, for µ > 0, samples from p̄θ are far from any

yi during training. This seems to be because the smaller model is not able to overfit the

more complex training data, such that loss augmented inference always leads to non-trivial

solutions. Again we see that there is much more variety in the loss augmented samples

when compared to the ML case.

5.3.2 Modes of the Learned Regularizers

Again we want to investigate the properties of the trained regularizers by considering

the nearest modes of pθ to uniform noise. We show arg miny R(y, θ), which is solved

using Algorithm 3 where we set λ = 0 and let ŷ0 ∼ U [0, 1]64×64 for µ ∈ {0, 0.01, 0.1, 1}
in Fig. 5.10.

We note that the ML regularizer leads to constant images, while all other regularizers

clearly show characteristic features of the FashionMNIST data set, which are piecewise

constant regions of certain shapes. We can also observe some differences between the

regularizers trained with µ ∈ {0.01, 0.1, 1}: Clearly, the contrast between the piecewise

constant regions decreases with µ, to the point where the images are constant for µ = 0.

Similarly, the structures themselves seem to be more pronounced and resemble the features
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Figure 5.10: Modes of trained regularizers for different µ ∈ {0, 0.01, 0.1, 1} for the Fash-
ionMNIST data set. Clearly, the regularizer trained with µ = 0 does not preserve any
structure and we arrive at a constant image. The modes of the other regularizers trained
with loss augmented inference show characteristics of the FashionMNIST data set, which
are piecewise constant regions of a certain structure.

in the data set better. Fig. 5.11 shows how the models finally arrive at the modes. We

see that we have converged to a mode, indicating that for all the models trained for µ > 0

have indeed reached convergence.

5.3.3 Eigenimage Analysis

As in the previous section, we compute the eigenimages of the regularizers with Eq. (5.16),

which we show in Fig. 5.12. We see that µ = 0 preserves smaller details and regions of

similar intensity are delineated more cleanly. On the other hand, with µ = 1 the regularizer

prefers coarser structures and increases contrast in the image.

5.3.4 Shape Completion

Similar to the previous section, we want to investigate the capabilities of the trained reg-

ularizers on the shape completion task. Here, we set {0, 1}n×n 3 A = diag({a1, . . . , an}),
ai ∼ B(0.8), i.e. the degraded observation x is the clean observation y, where each pixel is

turned off with a probability of 0.8. Clearly, both regularizers can reconstruct the images

reasonably well, although the ML regularizer leads to results that are visually slightly

better.



42 Chapter 5. Loss Augmented Inference for Image Restoration
µ

=
0
.0

0
µ

=
0
.0

1
µ

=
0
.1

0

k = 0 10 20 30 40 50 60 70 80 90

µ
=

1
.0

0

Figure 5.11: Evolution of the images starting from ŷ0 ∼ U [0, 1]64×64 during gradient
descent on R(·, θ). Clearly, we see that the gradient descent has converged at k = 90.
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init µ = 0 µ = 1

Figure 5.12: Nonlinear eigenfunction analysis of the TDV 2
2 regularizer trained on the

FashionMNIST data set using the proposed training algorithm for µ ∈ {0, 1}. We see that
both regularizers tend to piecewise constant images, although we note that for µ = 1, the
regularizer introduces structures in regions where there is no stark intensity change.
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Figure 5.13: Shape completion of FashionMNIST samples: The degraded observation
is x = Ay, A = diag({a1, . . . , an}), ai ∼ B(0.8). Both regularizers lead to reasonable
solutions, although the ML regularizers reconstruction is sometimes visually more pleasing.
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5.4 Image Restoration on the BSDS500 Data Set

Although the experiments on the MNIST and FashionMNIST data set showed that the

proposed learning scheme is suitable for the TDV regularizer, we have yet to investigate

the potential in image restoration. To this end, we will learn a TDV 3
3 regularizer with the

proposed learning scheme on the BSDS500 data set and show how the trained regularizers

can be applied to Gaussian and Salt and Pepper denoising, as well as image inpainting,

and non-blind deconvolution. We use a patch size of 100, a batch size of ñ = 93×93, such

that n = ñC, C ∈ {1, 3} for gray-scale and color images respectively. We augment the

training data using random horizontal and vertical flipping, and by rotating the images by

ρ ∈ {0, π2 , π, 3π
3 }rad. Since the input layers of the model differ slightly between C = 1 and

C = 3, we summarize that the number of trainable parameters in the TDV 3
3 regularizer

is 332 096 and 332 672 for C ∈ {1, 3} respectively.

5.4.1 Samples of Loss Augmented Inference

In this section we want to put the trained regularizers to the test in practical IR tasks.

Despite the previous results, it is still interesting to consider the samples of p̄θ during

training. We show samples of the loss augmented inference procedure for C ∈ {1, 3} and

µ ∈ {0, 1} in Fig. 5.14. In accordance with the analysis in the previous sections, we see

that for µ > 1 it takes many more parameter updates until ȳji resemble yi, which clearly is

caused by the pull-away term µ(y − yi). This forces the regularizer to have steeper flanks

around the training data points yi.

In the next sections, we will test the trained regularizers on typical IR tasks and

compare them to their discriminatively trained counterparts as well as the prolific Total

Variation (TV) regularizer. We expect the generatively trained regularizer to perform

reasonably well on all tasks, as it should have learned the distribution of the data set, and

as such can be used as a generic prior. Therefor, it should outperform the simple TV

model and discriminative models on tasks different from their training task. However, we

expect the discriminatively trained regularizers to outperform our models on the tasks

they were trained on.

5.4.2 Additive Gaussian Denoising

Here, we consider an additive Gaussian denoising task with variance σ2. Specifically, the

degraded observation is

x = y + ν ∈ Rn (5.19)

with the latent clean image y ∈ Rn, the additive noise ν ∼ N (0, σ2In), for n = ñC, where

C = 1 for gray-scale and C = 3 for color images.

For the additive Gaussian denoising task, we consider the

1. TV regularizer, the
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Figure 5.14: Samples from p̄θ for µ ∈ {0, 1} for regularizers trained on the BSDS500 data
set. The inserts show the number of parameter updates. We see that, similarly to the
analysis in the previous sections, when µ > 0, it takes considerably more updates until
ȳi is close to yi. Clearly, this is caused by the pull-away term µ(y − yi), which forces the
regularizer to have steeper flanks around y.

2. TDV 3
3 regularizer trained with the early-stopping framework of [33] on a Gaussian

denoising task with σ = 25, and the

3. TDV 3
3 trained with Algorithm 2 for µ ∈ {0, 1}.

For any of the above, we use a data term λD(x, y) = λ
2 ‖x− y‖

2
2. Note that combining the

TV regulrizer with a Gaussian data term correspond to the Rudin Osher Fatemi (ROF)

model. The proximal map for the squared L2 norm is computed as

proxλ
2
‖x−·‖22

(y) =
y + λx

1 + λ
. (5.20)

In what follows, we will denote the TDV regularizer trained in the framework of [33]

as TDVNSc,d
NMa

. For C = 3, we apply the ROF model channel-wise and we hand-tune the

trade-off between the data term and the regularization. We expect the trained models

to largely outperform the ROF model, and between the trained models we expect the

dicriminatively trained model to perform better than the generative model.

We show the Peak Signal to Noise Ratio (PSNR) on the 76 landscape images of the

BSDS500 validation data set for σ ∈ {15, 25, 50} in Table 5.1. In line with our expectation,

we see that TDV 3,d
3 performs best on the given task. Note that to apply TDV 3,d

3 , which
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Table 5.1: Comparison of expected PSNR values for additive Gaussian denoising for σ ∈
{15, 25, 50} on the BSDS500 validation data set.

σ ROF
TDV 3

3 TDV 3,d
3µ = 0 µ = 1

C = 1
15 29.19 30.62 30.14 31.33
25 27.21 27.57 27.38 28.74
50 24.09 24.20 23.04 25.11

C = 3
15 29.56 32.81 32.53 33.66
25 27.09 29.54 29.27 30.67
50 23.91 23.87 23.51 26.25

was trained on a additive Gaussian denoising task with σ = 25, we had to scale the input

and output of the algorithm by 25
σ and σ

25 respectively. As such, to apply this model to an

image corrupted by Gaussian noise of unknown variance, one would first have to estimate

the noise variance, as without this rescaling the results are considerably worse. On the

other hand, we do not need to rescale the images for the generative model, as we only

have to adjust λ to the new task.

The model trained with our proposed training algorithm performs significantly better

than the ROF model for σ ∈ {15, 25}, however interestingly the performance deteriorates

for larger σ such that for σ = 50 the ROF model performs better. To investigate this,

we show some qualitative results in Fig. 5.15. We see that although the PSNR values

are worse for our model, there is more detail in the final solution and it lacks the typical

artifacts found in the ROF model. However, as expected the TDV 3,d
3 model delivers the

best results over the whole range of σ ∈ {15, 25, 50}. We show more qualitative examples

of our regularizer applied to the additive Gaussian denoising task for σ ∈ {15, 25, 50}
in Figs. 5.16 to 5.18 respectively.
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Figure 5.15: Qualitative comparison between the ROF model, the TDV 3
3 model trained

with the proposed learning scheme for µ ∈ {0, 1} and the TDV 3,d
3 regularizer trained on

an additive Gaussian denoising task with σ = 25. On the bottom we show the initial
noisy images for σ ∈ {15, 25, 50}. Although for σ = 50 the proposed learning scheme
is outperformed by the ROF model on the PSNR metric, we find that the solutions are
able to preserve more detail and are visually superior, as they do not exhibit the typical
staricasing artifacts found in the ROF model.
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ŷ0 µ = 0 µ = 1

Figure 5.16: Results of additive Gaussian denoising with σ = 15.
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ŷ0 µ = 0 µ = 1

Figure 5.17: Results of additive Gaussian denoising with σ = 25.
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ŷ0 µ = 0 µ = 1

Figure 5.18: Results of additive Gaussian denoising with σ = 50.
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5.4.3 Salt and Pepper Denoising

In this section, we focus on the task of Salt and Pepper denoising on color images (C = 3).

Being a traditional denoising task, the degradation model is similar to that of additive

Gaussian denoising, but with ν ∼ B(p)×{−1, 1}n where B(p) is the Bernoulli distribution.

Notice that, due to the images being constrained to [0, 1]n, any given pixel has a chance

p to be set to either 0 or 1. Clearly, this results in a much heavier tailed distribution as

compared to the Gaussian case. As the data term should mirror the statistics the noise

model, we chose the robust L1 norm for all the experiments, such that our energy is given

by

E(x, y, θ) = λ ‖x− y‖1 +R(y, θ), (5.21)

where we again consider R(y, θ) ∈ {TV (y),TDV 3
3(y, θ),TDV 3,d

3 (y, θ)}. For the L1 norm

data term λD(x, y) = λ ‖x− y‖1 the proximal operator is the soft-shrinkage

proxλ‖x−·‖1(y) = x+ sign(x− y) max(|x− y| − λ, 0), (5.22)

where all operations are understood element-wise.

Note that TDV 3,d
3 is trained on additive Gaussian denoising. As such, for the Salt and

Pepper denoising task, we expect the proposed model to perform best. However, since the

there are strong similarities between these tasks, the TDV 3,d
3 model should still perform

reasonably well, especially for small p. For all models, we hand-tune the data fidelity

parameter λ on the inference task using the images in the BSDS500 training set.

We evaluate the models trained on color images (C = 3) on a subset of 8 images of the

76 landscape scenes in the BSDS500 validation data set. These images were picked prior to

evaluation based on diversity. We show the PSNR on the considered test set in Table 5.2.

In line with our expectations, we see that the proposed learning scheme leads to the best

results. We note that the performance is significantly better for µ = 1 as compared to the

ML. Further, in contrast to the Gaussian task, the results are consistently better for our

models when compared to the TV -L1 or the TDV 3,d
3 .

We compare the models qualitatively for p ∈ {0.1, 0.2, 0.5} in Fig. 5.19, where again

we see that our TDV 3
3 performs best visually across the full range of p ∈ {0.1, 0.2, 0.5}.

We observe that TDV 3,d
3 leaves high-contrast speckles in the solution, even for p = 0.1.

Table 5.2: Comparison of the PSNR values for Salt and Pepper denoising for p ∈
{0.1, 0.2, 0.5} on our test set.

p TV -L1
TDV 3

3 TDV 3,d
3µ = 0 µ = 1

0.1 28.71 33.61 35.80 30.93
0.2 27.07 30.82 32.58 22.52
0.5 23.90 25.50 26.16 17.88
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To ensure that this is not due to an improperly chosen data weight λ, we show inference

of TDV 3
3 for a range of λ in Fig. 5.20. Clearly, even for λ� where the regularizer already

greatly simplified the underlying structure in the image, it does not remove the high-

contrast speckles. We also note the regularizer for µ = 1 has some interesting properties.

In particular, it is best at preserving the details in the image, where for instance for p = 0.2

and even p = 0.5 some features in the image are still clearly visible that vanish in all other

cases. It was also noticeably harder to optimize, which leads us to believe that these

resulting images do not fully represent what the regularizer is capable of. We show more

qualitative examples in Figs. 5.21 to 5.23.
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Figure 5.19: Qualitative comparison between the TV -L1 model, the proposed TDV 3
3

scheme for µ ∈ {0, 1} and the TDV 3,d
3 trained on an additive Gaussian denoising task

with σ = 25. We see that, especially for p ∈ {0.1, 0.2}, the proposed learning scheme leads
to the best solution, where it can reconstruct the scene up to small details. Note that
even for p = 0.1, TDV 3,d

3 leaves high-contrast speckles in the image, and for p = 0.5 it
hallucinates structure into the image, similar to that seen in its eigenimage analysis [33].
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λ = 0.5 λ = 1 λ = 4

Figure 5.20: Inference of the TDV 3,d
3 regularizer trained on additive Gaussian denoising

of σ = 25 on a Salt and Pepper denoising task (p = 0.1): Clearly, high contrast speckles
are not removed even for λ�, where the image has already been greatly simplified by the
regularizer.

ŷ0 µ = 0 µ = 1

Figure 5.21: Results of Salt and Pepper denoising with p = 0.1.
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ŷ0 µ = 0 µ = 1

Figure 5.22: Results of Salt and Pepper denoising with p = 0.2.

ŷ0 µ = 0 µ = 1

Figure 5.23: Results of Salt and Pepper denoising with p = 0.5.
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5.4.4 Image Inpainting

In Image Inpainting, we assume that a subset I of the image domain Ω is known, whereas

there is no information in Ĩ = Ω \ I. Specifically, the degradation operator is A =

diag({1I(i), i = 1, . . . , n}), where 1I : Ω→ {0, 1} is the indicator function over the set I.

This motivates us to formulate the energy as

E(x, y, θ) = δI(x,Ay) +R(y, θ) (5.23)

with the Dirac data term

D(x, y) = δI(x,Ay) =

{
∞ if y 6= x anywhere in I,
0 else,

(5.24)

where the corresponding proximal map is easily computed as

proxδI(x,·)(Ay) =

{
x in I,
y else.

(5.25)

We construct the inpainting domain in two different ways:

1. Line Inpainting: For each horizontal line, there is a chance p that all of its pixels are

in Ĩ.

2. Pixel Inpainting: Each pixel has a chance p to be in Ĩ.

For both of these tasks, we set

ŷ0
i =

{
γi ∼ U [0, 1] i ∈ Ĩ
xi i /∈ Ĩ

, ∀i ∈ {1, . . . , n}. (5.26)

Clearly, there is a strong difference in “difficulty” between these two problems. Line

inpainting can result in the loss of information in a large, convex area, such that a large

receptive field is needed to faithfully reconstruct the image. There is also much more

ambiguity in terms of possible solutions, as they can only be guided by information that is

potentially far away from some parts of the inpainting domain. This ambiguity also makes

evaluation delicate, as the inpainted regions may gain or lose certain features compared

to the target.

It is obvious that TV is not a particularly strong prior for such tasks, since it can only

consider ∂I for inpainting Ĩ. On the other hand, if Ĩ does not have large coherent subsets,

as in the case of pixel inpainting, it can lead to reasonable solutions. All in all, we expect

the proposed regularizer to perform best on the inpainting tasks when compared to TV

regularization and the discriminatively trained TDV 3,d
3 .
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Table 5.3: Comparison of PSNR values for pixel- and line-wise image inpainting for p ∈
{0.1, 0.3, 0.7} on our test set.

p TV
TDV 3

3 TDV 3,d
3µ = 0 µ = 1

pixel
0.1 38.08 45.28 45.10 45.75
0.3 32.37 41.82 41.87 35.83
0.7 26.25 30.87 29.87 24.20

line
0.1 36.28 34.31 34.47 18.25
0.3 29.26 28.44 26.93 12.92
0.7 23.22 20.85 19.62 8.52

We show the PSNR values of the different models in Table 5.3 and show qualitative

results for pixel inpainting in Fig. 5.24, where we chose p ∈ {0.1, 0.3, 0.7}. The quantitative

results show that the proposed regularizer is the most robust, i.e. it performs reasonably

well across both tasks and across a range of p. We see that our proposed model performs

best visually, as it achieves satisfactory results even for p = 0.7. Observe that the TDV 3,d
3

model seems to be a strong inpainting prior for this specific task, were it not for the

high-contrast speckles that we already observed in the Salt and Pepper denoising task.

More results of the proposed regularizers for pixel-wise inpainting for

p ∈ {0.1, 0.3, 0.7, 0.9} are shown in Figs. 5.25 to 5.28. We see that even for p = 0.9,

the reconstructed image looks pleasing, although we observe the tendency to introduce

vertical structure into the image. Here, we see that the ML regularizer outperforms the

model trained with loss augmented inference of µ = 1, although again this model was

harder to optimize, such that our inference algorithm may not be converged.

We qualitatively compare the different models on the line inpainting task in Fig. 5.29.

We see that our TDV 3
3 leads to the most natural looking results, as it is able to reconstruct

the pattern and texture of the fur best. A more detailed view is seen in Fig. 5.30, where

this can be nicely seen. This is in contrast to the quantitative analysis, which suggests

that the TV model is better at line inpainting. We think that the PSNR values are highly

ambiguous when considering line inpainting, as the reconstructed regions may look much

more natural, while being far from the original solution. More results for line inpainting

are show in Figs. 5.31 to 5.33 for p ∈ {0.1, 0.3, 0.7} respectively.
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Figure 5.24: Qualitative comparison between the TV regularizer, the proposed TDV 3
3

scheme for µ ∈ {0, 1} and the TDV 3,d
3 regularizer on a pixel-wise inpainting task for

p ∈ {0.1, 0.3, 0.7}. In line with our expectation, we see that the proposed learning scheme

leads to the best results. Note the tendency of the TDV 3,d
3 model to prefer high-contrast

speckles in the image.
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ŷ0 µ = 0 µ = 1

Figure 5.25: Results of pixel-wise inpainting with p = 0.1.

ŷ0 µ = 0 µ = 1

Figure 5.26: Results of pixel-wise inpainting with p = 0.3.
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ŷ0 µ = 0 µ = 1

Figure 5.27: Results of pixel-wise inpainting with p = 0.7.

ŷ0 µ = 0 µ = 1

Figure 5.28: Results of pixel-wise inpainting with p = 0.9.
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Figure 5.29: Qualitative comparison between the TV regularizer, the proposed TDV 3
3

scheme for µ ∈ {0, 1} and the TDV 3,d
3 regularizer on a line-wise inpainting task for p ∈

{0.1, 0.3, 0.7}. The proposed regularizer performs best, as it reconstructs the texture of
the fur nicely, even for larger inpainting regions. Note how the preference of high contrast,
piecewise constant regions of the TDV 3,d

3 leads to vary unnatural looking images in this
task.
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TDV 3
3 TV

TDV 3
3 TVTDV 3

3 TV

TDV 3
3 TVTDV 3

3 TV

Figure 5.30: Detailed view of the reconstruction in a line-inpainting task of the trained
TDV 3

3 model versus TV reconstruction. Clearly, we see that TDV 3
3 is able to connect

contours better, although in large inpainting regions we observe very little detail also for
the TDV 3

3 model.

ŷ0 µ = 0 µ = 1

Figure 5.31: Results for line-wise inpainting with p = 0.1.
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ŷ0 µ = 0 µ = 1

Figure 5.32: Results for line-wise inpainting with p = 0.3.

ŷ0 µ = 0 µ = 1

Figure 5.33: Results for line-wise inpainting with p = 0.7.
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5.4.5 Image Deconvolution

Image deconvolution is a traditional image restoration task, with its roots in applications

in astronomy. The degradation model reads

x = Ay + ν, (5.27)

where the A models the convolution, i.e. it is a Toeplitz matrix containing the kernel ele-

ments, and the noise ν may be drawn from some arbitrary distribution. In our experiments,

we let ν ∼ N (0, σ2In,), hence we chose a quadratic L2 data term λD(x, y) = λ
2 ‖x−Ay‖

2
2.

Note that the proximal map proxλ
2
‖x−A·‖22

(y) can be computed in the Fourier domain as

proxλ
2
‖x−A·‖22

(y) = F−1

{
λF{x}F{a}∗ + F{y}

λF{a}2 + 1

}
(5.28)

where Ay ≡ a ∗ y and the operations are understood element-wise.

We differentiate between two different classes of problems in image deconvolution:

1. Non-blind deconvolution: Knowledge about the blur process is assumed, i.e. the

Point Spread Function (PSF) is known or estimated, and subsequently given the

degraded observation x the sharp image y should be estimated.

2. Blind deconvolution: For the blind deconvolution problem, we are only given the

degraded observation x and the operator A corresponding to the PSF as well as the

clean image y should be estimated.

In what follows, we only consider non-blind deconvolution problems where we use the

data set of [36], which contains both images and blur kernels. The models are evaluated

on a subset of 8 images and 2 blur kernels of the provided data set, which were chosen

a-priori, and we hand-tuned λ on a different set of 8 images with the same 2 kernels. For

all experiments, we choose σ = 0.025 and compare our model to TV regularization using

the method of [24] and the channel-wise Wiener filter

ŷWF = F−1

{
F{a}∗F{x}

|F{a}|2 + 1
SNR(x)

}
, (5.29)

with the denominator estimate of [47].

We compare the different methods in Fig. 5.34, where we see that the trained regular-

izers are capable of restoring the image truthfully. The Wiener filter solution of [47] has

the drawback of strongly amplifying the noise in the input image and, although sharp,

exhibits clear ringing artefacts. The TV regularization of [24] can nicely suppress the

noise, however we see that small details are lost. On the other hand, our TDV 3
3 regular-

izer restores the detail in the image whilst there is no perceptible noise in the estimate.

We show further results in Fig. 5.35 and Fig. 5.36. We show the quantitative evaluation
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Figure 5.34: Qualitative comparison between the TV model of [24], the unsupervised
Wiener filter [47] and the proposed models on a deconvolution task. The inlay shows the
two different blur kernels from the data set of [36]. Note that the scale between the kernels
is accurate, but the scale of the kernels w.r.t. the images is not.
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Figure 5.35: Examples of deconvolution with the trained models for µ ∈ {0, 1}. While
both models restore the images satisfactorily, we do not observe a significant difference
in the models. Note the kernels are rotated by π

2 rad, as the images was processed in
landscape.
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Figure 5.36: Examples of deconvolution with the trained models for µ ∈ {0, 1}.

in Table 5.4, where the PSNR values confirm that our models are able to restore the image

best.
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Table 5.4: Comparison of PSNR values for non-blind deconvolution for different kernels
a1, a2 on our test set.

Kernel TV [24]
TDV 3

3 Wiener [47]
µ = 0 µ = 1

a1 ∈ R31×31 23.00 27.60 28.18 19.15

a2 ∈ R51×51 21.00 26.22 26.31 17.75

5.4.6 Regularization Strength

Similar to the analysis in Section 5.2.4, we examine the local landscape of the regularizer

around samples from the test set to study the influence of µ. Specifically, we let

yε,x = y + ε(x− y), (5.30)

where y ∼ test set, ε ∈ [0, 1] and x ∈ Rn is drawn from either N (0.5, In) or U [0, 1]n. We

show R(yε,x, θ) and ‖∇yR(yε,x, θ)‖22 for µ ∈ {0, 1} in Fig. 5.37a and Fig. 5.37b respectively.

Similarly to Section 5.2.4, we see that ‖∇yR(yε,x, θ)‖22 is larger for µ = 1, especially for

ε�.
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Figure 5.37: Regularization energy R(·, θ) and gradient norm ‖∇yR(yε,x, θ)‖22 around test

samples y for µ ∈ {0, 1}. Especially around ε = 0, i.e. near y, ‖∇yR(yε,x, θ)‖22 is signifi-
cantly larger for µ = 1.
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Conclusion and Outlook

6.1 Conclusion

In this work, we first introduced a general mathematical formulation for Image Restoration

(IR) and showed some concrete examples of typical problems in the field. We outlined

historical solutions for IR problems, going from inverse filtering over variational methods to

deep feed-forward neural networks. We put particular focus on the profound mathematical

framework of variational methods, draw its relation to energy based models and show

its probabilistic interpretation. Within this probabilistic interpretation, we show how

the regularizer should encode prior knowledge of natural images. We then derive the

Maximum Likelihood (ML) solution of fitting a parametrized regularizer to a data set

of natural images, and outline the idea behind some non-convergent ML-like algorithms.

Using a simple example, we show that ML is not generally a desirable objective and

introduce a learning algorithm which takes the idea of loss augmented inference from

Structured Support Vector Machine (SSVM) training to sample from the Gibbs-Boltzmann

distribution of a regularizer.

We then use our proposed algorithm to train the multi-scale TDVNSc
NMa

regularizer

of [33] on the MNIST ((NMa, NSc) = (3, 3)) and FashionMNIST ((NMa, NSc) = (2, 2))

data sets, and analyze the learned regularizer by considering its modes, eigenimages and

local landscape around samples from the data distribution. The experiments show that we

can meaningfully train the TDVNSc
NMa

regularizer with the proposed algorithm and indicate

that using loss augmented inference forces the models to have larger gradients near samples

in the data set.

Having established the applicability of the algorithm, we train a TDV 3
3 regularizer on

the BSDS500 data set and show results for traditional IR tasks, namely Gaussian and

Salt and Pepper denoising, image inpainting, and image deconvolution. We compared

our approach to classical models in the literature as well as the discriminatively learned

TDV 3,d
3 model [33]. Our model performs well across all tasks, beating archetypical non-

parametric models in terms of Peak Signal to Noise Ratio (PSNR), often by a large margin.

71
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Comparing it to the TDV 3,d
3 , we observed that our model is a stronger prior for a range

of tasks, as it outperforms TDV 3,d
3 on all tasks except the very task the TDV 3,d

3 model

was trained on. This is in line with our expectations, as we did not expect a generative

model of the same size to be on-par with a discriminative model on a given task.

Although we did not observe any major quantitative benefit from loss augmented

inference in the PSNR values, the models were at least on-par with the ML models.

Further, models trained with loss augmented inference exhibited again a steeper landscape

around samples from the data distribution. Hence we believe that loss augmented inference

is a valuable tool for controlling model capacity and expressiveness.

6.2 Outlook

Our training was inspired by SSVM training, where we used loss augmented inference for

sampling of the model. However, we did not consider another integral part of SSVM train-

ing, which is the concept of the margin for parameter optimization. In SSVM training,

one only optimizes the parameters over the set of samples which violate the margin, after

the samples have been drawn with loss augmented inference. While we used the notion

of loss augmented inference for sampling, we did not discard any of the samples based on

margin violation, but used all samples in our loss. It may be interesting to introduce the

concept of the margin into training, where we use loss augmented inference for sampling,

but discard samples that have high probability under our model for optimization. Doing

this, there is less of a disconnect between sampling and optimization, as we do not consider

samples which already were improbably under our model to further tune the parameters.

It is also interesting to consider different loss functions for loss augmented inference. We

used the conceptually simplest loss during loss augmented inference, which is the euclidean

distance. The idea is to find samples which are far away from the data distribution, but

have high probability under our model, where “far away” is measured by the euclidean

distance. However, although simple it is hard to interpret for natural images. One may

consider other, more easily interpretable losses to guide the loss augmented inference.

For instance, one could augment sampling with the Total Variation (TV) loss, such that

the loss augmented inference finds samples with high TV and high probability under the

model. Combining this with the idea of the margin, we believe that it would be possible

to learn a highly expressive and largely unbiased regularizer.

In Chapter 5, we showed how we can tune the local landscape of our regularizer

with loss augmented inference, where stronger pull-away terms forced the regularizer to

have steeper flanks around the training data. In the context of highly expressive energy

based models, it is still largely unexplored how to control the “variance” of a model.

Although concepts such as spectral normalization [44] and Lipschitz-penalties [27] exist in

the Generative Adversarial Network (GAN) community and may be used in probabilistic

energy based models as well, we believe that loss augmented inference is another tool that

can be used.
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ARF Active Random Field. 9

AWGN Additive White Gaussian Noise. 2, 7, 12, 13

CD Contrastive Divergence. 19, 20

CFA Color Filter Array. 1

CNN Convolutional Neural Network. 2, 10

CRF Conditional Random Field. 9
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KLD Kullback-Leibler Divergence. 19, 22
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MCMC Markov Chain Monte Carlo. 8, 19–21
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MRF Markov Random Field. 9
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SSVM Structured Support Vector Machine. 2, 22, 25, 26, 28, 29, 32, 71, 72

SVM Support Vector Machine. 23–26
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TGV Total Generalized Variation. 7
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