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Abstract

Many industrial companies cause fluctuating loads in everyday operations, such
as launching production plants, heating furnaces, or starting pumping processes.
These load spikes, so-called peaks, are relevant for both grid stability and electricity
procurement costs and are therefore recorded by the power measurement mechanism.

At any given time, the power consumption in a network and the power plants’
production must be exactly the same. The higher the power demand is at any one
time, the greater the load on the distribution networks gets. For this reason, energy
suppliers penalize high power consumption with higher costs. In addition to the
energy consumed, a power-related charge is applied. Therefore, the grid operator
determines the demand charges based on the maximum average power consumption
over a given time interval (usually 15 minutes). In Austria, this mainly affects
companies and industry. Utilizing so-called peak shaving, the power drawn from the
grid can be reduced. An energy storage system buffers power peaks and does not
draw them from the grid. In this way, the power-related costs can be reduced.

In the present work, different approaches for peak shaving were tried, evaluated,
and analyzed based on an available power profiles over the period of a year. When
selecting the algorithms, it was also taken into account that they can be executed
on an ARM-based embedded system which limits the computing power and memory
capacity.

In the end, a working, universally applicable algorithm was developed, consisting
of both a rigid analytical part and a flexible, responsive part. With its help, the
power-related electricity costs could be reduced by over 35%.
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Zusammenfassung

Viele Industrieunternehmen verursachen schwankende Lasten im Alltagsbetrieb,
beispielsweise beim Anfahren von Produktionsanlagen, beim Aufheizen von Öfen
oder beim Starten von Pumpvorgängen. Diese Lastspitzen, die sogenannten Peaks,
sind sowohl für die Netzstabilität als auch für die Strombezugskosten relevant
und werden daher durch eine kontinuierliche Leistungsmessung erfasst. Daraus
ermittelt der Netzbetreiber anhand des maximalen mittleren Leistungsbezugs über
ein Mittelungsintervall von üblicherweise 15 Minuten die Netznutzungsentgelte.

“Peak Shaving” bezeichnet das Glätten von Lastspitzen (Peaks) bei industriellen und
gewerblichen Stromverbrauchern, um das Netz zu entlasten und die Stromkosten zu
senken. In der vorliegenden Arbeit wird ein elektrischer Energiespeicher verwendet,
um Lastspitzen zu puffern und nicht vom Netz zu beziehen. Damit ist es möglich,
die vom Netzbetreiber vorgeschriebenen leistungsbezogenen Kosten deutlich zu
senken.

Auf Basis von zur Verfügung gestellten Datensätzen über den Zeitraum eines
Jahres wurden verschiedene Ansätze des Peak Shavings evaluiert und optimiert.
Dabei wurde stets darauf geachtet, dass die notwendigen Rechenoperationen auf
einem ARM-basierten eingebetteten System ausgeführt werden können, dessen
Rechenleistung entsprechend eingeschränkt ist.

Es resultiert ein universell einsetzbarer Algorithmus, der die Vorteile eines starren
analytischen Teils und einer flexiblen reaktiven Komponente vereint. Durch dessen
Anwendung konnten in Simulationen die leistungsbezogenen Stromkosten um über
35% gesenkt werden.
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1 Introduction and Motivation

Renewable energy production plays an increasingly important role in today’s world.
Due to the growing population and the associated steadily increasing energy demand,
the electricity network operators’ infrastructure is also under more significant strain
and sooner or later reaches its limits.

The use of peak shaving smoothes the power demand and thus relieves the power
distribution networks. Peak shaving brings advantages for the network operator
and the end customer and not at least the environment. By changing the amount
of power drawn from the grid over time, electricity costs are lowered for the end
customer. Reducing the power peaks also protects the environment since the network
operator often covers short-term demand peaks by switching on gas turbines.

There are different ways to perform peak shaving. However, using an energy storage
system in the form of rechargeable batteries is most reasonable, as long as one
cannot or does not want to impact the electrical loads. Furthermore, the investment
costs for battery storage systems have been decreasing significantly for several years,
making their use attractive from an economic perspective as well. In many cases,
an existing photovoltaic system already provides a battery storage unit that can be
additionally used for peak shaving without any extra investment costs.

Power generation and power consumption are in a sensitive balance in the power grid.
At any given time, demand must exactly meet production. It is obvious that irregular
power profiles impede this balance. For this reason, larger electricity consumers such
as corporate or industrial customers (private households are excluded in Austria) are
charged a power-demand-dependent component on their electricity bill in addition
to the energy consumed, which penalizes irregular load profiles. The use of peak
shaving flattens the load profile from the grid operator’s perspective and thus eases
the load on the distribution grid. This results in financial advantages for the end
customer due to the reduction of demand-related electricity costs.

The aim of this thesis is to design an algorithm that implements peak shaving and
thus effectively reduces power-related electricity costs. It has to be considered that
all computational operations are performed on an embedded system, and therefore
the computing power is limited. For the development of the algorithm, the records
of a smart meter of one facility in Styria were provided. The data set contains the
consumed energy of one year resolved into quarter-hourly time intervals. Based on
this data, a generally applicable strategy should be developed that is independent
of this data.
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2 Related Work

2.1 Background

Due to the steadily increasing population, industry, and commerce, the demand for
energy is increasing steadily. [Rah+13] For the energy supply to work, production and
demand must be in exact balance at any given point in time. The electricity demand
varies throughout the day, which leads to load peaks from time to time. Especially
the industry and large electricity consumers often have strongly fluctuating load
profiles. For example, the heating of furnaces, the start-up of production machines,
or similar processes require high power within a relatively short time. These so-called
load peaks put a strain on the infrastructure distributing electricity from the power
plant to the end-user, which is why they are penalized by higher costs. Power
consumption is measured and averaged over a time interval of typically 15 minutes.
The maximum of these averages per billing period is used for the billing of the
demand price. These demand costs can account for up to 50% of the total electricity
bill.[OCB07] A detailed explanation of how the electricity bill is composed can be
found in chapter 2.1.3 on page 6.

Avoiding the load peaks, therefore offers great potential for cost savings. ‘Peak
Shaving’ or ‘Peak Load Shaving’ denotes the process of flattening the load curve by
reducing the peak amount of load and shifting it to times of lower load. [NKS08]
According to Uddin et al. [Udd+18], there are three basic methods to achieve this
goal:

� Demand Side Management (DSM): Load peaks are avoided by shutting
down consumer processes. The serious disadvantage of this method is that the
production process is affected and slowed down by switching off or throttling
systems.

� Integration of Energy Storage System (ESS): When electricity demand
is high (peak hours) the load peaks are not drawn from the grid but from
a company’s own battery storage (Battery Energy Storage System (BESS)).
During off-peak hours the BESS gets charged again.

� Integration of Electric Vehicle (EV): Instead of a battery storage owned
by the company, the ESS from an electric vehicle is used for load leveling.

2



2 Related Work

DSM is not considered in this thesis because peak shaving should not restrict
the customer’s daily processes and power demands. The integration of an Electric
Vehicle (EV) would be possible. However, the capacity of the battery is constrained,
which is why this work only deals with the integration of an external energy
storage.
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Figure 2.1: Basic principle of peak shaving with BESS.

Figure 2.1 shows a simplified load profile and illustrates the idea of BESS based
peak shaving. If the load demand is higher than a specific threshold, the so-called
‘peak limit’, the power is drawn from BESS instead of the grid. However, the BESS
is charged in off-peak hours if necessary. Mind the difference between load and grid
profile.

2.1.1 Benefits of Peak Shaving

Peak Shaving has many benefits, which can generally be grouped into three
categories: [Udd+18]

• Benefits for the grid operator

A main challenge for the grid operator is to keep a balance between electricity
generation and demand. [JP15] If and only if the production meets the electricity
demand, a high power quality concerning stability and voltage is given. [Udd+18] To
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measure the efficiency of power consumption, a Load Factor (LF) can be calculated.
It is defined as

LF =
PAV G

PPeak

· 100 % (2.1)

where PAV G denotes the average power and PPeak the maximum power demand in
a given time interval. The higher the Load Factor (LF) is, the better gets the power
plant’s economic feasibility. [MM05] The highest LF is achieved when the power
demand is constant, that means no peaks occur.

Besides, the power losses in the transmission line are lower if peaks are avoided
since Ploss = I2 ·R and a decrease of the current I means a larger decrease of the
power loss Ploss while resistant R stays constant. [Udd+18]

The infrastructure for power transmission must be designed to meet the maximum
projection demand (peaks). If the peaks are lower, the costs for transmission lines
decrease. Furthermore, the life span of the transmission and distribution system
increases.

• Benefits for the end user

In peak hours (mostly daytime), the end-user is usually billed a higher energy
price than in off-peak hours (e.g., night time). Thus shifting power demand from
daytime to nighttime results in a lower electricity bill. Furthermore, one can save
on connection costs and the charges for the distribution system. [Udd+18]

Industry and companies are billed demand charges added to the energy cost. These
demand charges are slightly high and can be reduced with peak shaving.

In summary, the end-user can profit from a reduction in electricity costs through
peak shaving. Furthermore, he or she reduces CO2 emissions and thus helps to
protect the environment. This is described in more detail in the following.

• Carbon Dioxide emission reduction

In practice, peak loads are often supplied by fuel-powered generators. This causes
higher CO2 emissions, mainly because the generators are often switched on and off.
Peak shaving ensures more efficient power production and thus reduces the emission
of harmful carbon dioxide. [KL15]

4
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2.1.2 Basic Concept of Grid connected Battery Storage

In most cases a photovoltaic (PV) system is available in addition to the battery
storage. Along with peak shaving, it brings further potential for cost reduction. The
PV modules generate direct current (DC), the battery storage also works with direct
current. The consumers, whether they are household customers or industry, need
alternating current (AC). Therefore the existing direct current must be converted
into alternating current. Basically, there are two ways to achieve this and interconnect
the individual components: DC-coupling and AC-coupling. The two methods are
briefly explained below.

AC Coupling

The direct current produced by the PV modules and provided by the battery is
converted into alternating current by an inverter each. Both components are coupled
on the AC side. The consumers can now use the converted alternating current. A
significant advantage of this method is that one or more battery storage units can
easily be added to existing systems if required. The sketched wiring is shown in
Figure 2.2.

PV

Battery

Load

Grid

Figure 2.2: AC Coupling of PV, battery and grid.

DC Coupling

PV and battery are coupled on the DC side. The solar power can be directly stored in
the battery (DC to DC). This avoids the losses of the DC-AC-DC conversion, which
occur during AC coupling. Therefore the efficiency is higher. The used inverters are
often combined in one device, the so-called hybrid inverter. Less space is required
because the separate battery inverter is no longer needed. The overall system is,
therefore, more cost-effective. The disadvantage is that the system is dependent on
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the hybrid inverter. One can only use batteries that are compatible with the hybrid
inverter. Besides, the charge and discharge power is limited by the hybrid inverter.
For existing systems, the storage system can only be retrofitted by replacing the
existing inverter. [iEne] (See also Figure 2.3)

Load

Grid

PV

Battery

Hybrid inverter

Figure 2.3: DC Coupling of PV, battery and grid.

2.1.3 Contents of Electricity Bill

The transmission and distribution of electrical energy takes place as efficiently
and economically as possible via power grids operated at different voltages. The
transmission grid supplies the large distributors’ electrical energy from the large
power plants via a high-voltage grid. It also serves the supraregional exchange of
electricity. The distribution network, in turn, is the network to which customers
are connected. Distribution refers to the transport of electrical energy with medium
or low voltage to supply electricity to customers. [E-C20a] Operators are allowed
to charge their customers for the services they offer. According to E-Control, the
system charges are a composition of the following components: [E-C20c]

� System Utilization Charge: Charges for maintaining the system operators
network. Usually calculated by demand (energy and power).

� Charges for System Losses: Costs for grid losses that occur when distributing
the electricity.

� Metering Charge: Costs for installing and operating metering equipment.

6
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� System Provision Charge: Charges to build and expand different network
levels.

� System Service Charge: Charges for controlling offset load variations
utilizing secondary control.

� System Admission Charge: Costs for connecting a facility to electricity
network for the first time.

� Supplementary Service Charges: Extra charges for payment reminders,
extra meter readings, etc.

The available measurement datasets were collected in Weiz in Styria. Connection to
the electricity grid is located in the distribution network on grid level 7. Austrian
electricity fees valid for 2020 are listed in table 2.1.

Table 2.1: Power Grid Fee and Power Loss Fee valid for Austria 2020 [E-C20b]. (LP...Demand
Cost, SHT...Summer High Tariff, SNT...Summer Low Tariff, WHT...Winter High Tariff,
WNT...Winter Low Tariff). All prices in ct/kWh except LP, which is in ct/kW.

Province Power Grid Fee Power Loss Fee
LP SHT SNT WHT WNT SHT SNT WHT WNT

Burgenland 4.536 3.03 3.03 3.03 3.03 0.291 0.291 0.291 0.291
Carinthia 7.500 3.30 1.81 4.14 1.91 0.393 0.393 0.393 0.393
Klagenfurt 5.640 2.71 2.28 3.20 2.28 0.286 0.286 0.286 0.286
Lower Austria 3.000 3.15 3.15 3.15 3.15 0.231 0.231 0.231 0.231
Upper Austria 4.116 3.41 3.25 3.63 3.33 0.331 0.331 0.331 0.331
Linz 4.200 2.35 1.30 2.35 1.30 0.247 0.247 0.247 0.247
Salzburg 4.104 2.24 2.24 2.24 2.24 0.228 0.228 0.228 0.228
Styria 4.368 3.84 3.09 3.84 3.09 0.315 0.315 0.315 0.315
Graz 3.348 3.47 2.59 3.47 2.59 0.384 0.384 0.384 0.384
Tyrol 3.948 2.25 1.60 2.25 1.60 0.322 0.322 0.322 0.322
Innsbruck 4.716 3.20 2.36 3.20 2.36 0.323 0.323 0.323 0.323
Vorarlberg 3.444 1.53 1.53 1.53 1.53 0.271 0.271 0.271 0.271
Vienna 4.548 1.95 1.95 1.95 1.95 0.414 0.414 0.414 0.414
Kleinwalsertal 8.616 5.38 5.38 5.38 5.38 0.301 0.301 0.301 0,301

7
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Depending on the season and time, different energy prices apply. Between 6
a.m. and 10 p.m., the high tariff applies; from 10 p.m. to 6 a.m., the low tariff
applies. Besides, a distinction is made between summer (April to September) and
winter (October to March). Thus the price groups shown in table 2.1 are: SHT
(‘Sommerhochtarif’, summer high tariff), SNT (‘Sommerniedertarif’, summer low
tariff), WHT (‘Winterhochtarif’, winter high tariff), WNT (‘Winterniedertarif’,
winter low tariff). The demand price is referred to as LP (‘Leistungspreis’).

To calculate the demand price, the withdrawn power is measured and averaged over a
time interval of 15 minutes. The monthly maximum of these values is multiplied by a
twelfth of the valid demand price and charged in the electricity bill. By reducing the
maximum load using peak shaving, electricity costs can be significantly reduced.

8
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2.2 State of the Art

According to Uddin et al., three aspects are essential in order to operate peak
shaving in a practical way: First, the optimal operation of ESS, second, the sizing of
the battery storage, and third, the economic feasibility. [Udd+18] There are several
approaches and algorithms in the literature dealing with peak shaving. This chapter
presents an overview of various selected concepts.

Lucas and Chondrogiannis proposed a simple method that defines two limits - one
upper and one lower. If the power demand exceeds the upper limit, the battery is
discharged; if it falls under the lower limit, the battery is charged. Moreover, the
State of Charge (SOC) of the battery is taken into account. The battery is only
charged if SOC is below 90%. Correspondingly, the battery is only discharged as
long as the SOC is above 10%. This ensures that the battery is not damaged by
deep discharge or overcharge. [LC16]

Leadbetter and Swan follow a similar strategy by setting a maximum grid electricity
demand (‘peak limit’). If the power demand exceeds the peak limit, the electricity
from the grid is only drawn up to the limit. The battery supplies the rest. If the
inverter is sized sufficiently, the maximum grid electricity demand remains at the
limit defined before. During the night, when the power demand is minimal, the
battery is fully charged. To ensure a longer lifetime and safe operation conditions,
the battery is only used between a SOC-range of 10% to 85%. [LS12]

Input:
Power Demand

Nighttime?

Charge Battery
to SOCmax

Peak?

Standby

SOC > SOCmin
Error 1:

Empty Battery

Inverter size ok?
Error 2:

Undersized
Inverter

calculate/set:
Inverter power
Battery energy

Yes

No Yes

No Yes

No

Yes

No

Figure 2.4: Simplified Process Flow Diagram from Leadbetter and Swan. [LS12]

Figure 2.4 shows how the proposed algorithm works. The system works in one of
three different states: charging, standby, or discharging. If the SOC falls below the
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minimum value or the inverter is undersized, an error occurs. [LS12]

According to Leadbetter and Swan, defining the grid demand limit is the deciding
factor. It is determined by statistical analysis of historical load data finding the top
one to two percent of load peaks as they are the most expensive.

Concerning the dimensioning of the battery and the inverter, the three parameters
peak limit, battery size, and inverter size, were varied in certain ranges. The number
of occurring error states was counted. In the end, the final parameters were chosen
in a way that no errors occur. It is observed that doubling the battery size increases
the peak shaving capability by only 25%. [LS12]

The data used was collected from households in Canada. In their simulation, the
authors achieved a peak demand reduction of 42% to 49% in all Canadian regions
except Quebec (peak demand reduction of 28%). However, different parameters
were required for all regions, suggesting that the load profile strongly influences the
result. [LS12]

Oudalov, Cherkaoui, and Beguin proposed a BESS sizing strategy for peak shaving
application maximizing the economic benefit by optimizing an objective function

Benefit|Te
= Savings(Size, operating schedule)|Te−Cost(Size, operating schedule)|Te

(2.2)
where Te denotes the evaluation time and functions Savings and Cost are both
dependent on battery size (capacity and power) and the ‘operating schedule’ which
is subject of the used peak shaving algorithm. The objective function 2.2 can be
simplified to a linear function of the battery power (PB), ∆T denoting the time
where the power demand exceeds the peak limit and some more parameters:

Benefit = PB · f(∆T, Te, . . .). (2.3)

The benefit 2.3 then gets maximized by varying all possible input values. This
assumes that the load profile is known in advance. [OCB07]

Oudalov, Cherkaoui, and Beguin also introduced an algorithm based on Dynamic
Programming (DP) to find the optimal operating strategy for peak shaving. It
depends on the customer load curve, electricity fees, battery sizing, and a threshold
defining the peak limit. The simulation showed that this method is profitable for
peaks with a length of less than about one hour. The annual electricity costs are
reduced by around four percent using the DP algorithm and the BESS sizing strategy
on simulation data from an industry customer. [OCB07]

In their work, Rahimi et al. presented a simple approach for peak load shaving,
which is independent of the system topology and its impedances. With a sliding
window of length τ , the algorithm calculates the load profile average. This is used
as a reference for the next utilization period up (up > τ). According to a utilization
factor (uf) with 0 ≤ uf ≤ 1, which defines the percentage of battery usage over
time, a peak limit is derived. This method reasonably compensates errors in load
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2 Related Work

forecasting due to the sliding window and the repeated calculation of the average
power demand. The aim is to adapt the load curve to its mean value as closely as
possible. Simulation with different battery sizes resulted in an average load reduction
of about two to six percent. [Rah+13]

A method to perform peak shaving in a grid-connected photovoltaic battery system
is documented in [BMH18]. This method aims to reduce daily peaks to a defined
target power. As the load changes from day to day, the peak threshold gets changed
based on historical load data, the average SOC during a given time interval, and
the current time. During the day, the battery is used to flatten the load profile while
charged in the night hours with constant power. An average load reduction of about
15% is achieved using this method at Helmholtz Institute Ulm (HIU). [BMH18]

While other methods are based on complex arithmetic operations, Ananda-Rao
et al. offers a strategy implemented on a microcontroller and therefore can operate
with few resources. Peak shaving is done with two limits defined in advance, one
upper and one lower bound. [Ana+16] Similar to the algorithm in [LC16], the
battery is charged if power demand is less than the lower bound and respectively
discharged when power demand exceeds the upper bound. Furthermore, a simple
SOC monitoring by the cyclic reading of the battery voltage is implemented to
prevent the BESS from under-discharge and overcharge. Unfortunately, no real-world
simulation data were provided to show potential savings through peak shaving using
this method. [Ana+16]
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3 Design

This thesis aims to develop an algorithm that allows effective peak shaving, resulting
in cost reduction on the electricity bill. This algorithm shall be executable on an
embedded system based on a BeagleCore. For this reason, complex, computationally,
and memory-intensive processes have to be avoided. For the development, the smart
meter load profiles were provided by Innovationszentrum Weiz 1 for a whole year.
With the help of these data sets, the algorithm is developed and tested.

In the following sections, the general use cases and requirements are explained.
The data sets are analyzed, and a simulation environment is prepared to test and
compare different approaches.

3.1 General Setup

The setup consists of three essential elements, which are shown in Figure 3.1. The
building blocks are a smart meter, which captures the current power demand and
provides it via different interfaces, the inverter, which monitors the battery via the
battery controller and regulates its input and output power, and the EEM, which is
the central control unit and executes the peak shaving algorithm. In addition, the
EEM provides a web interface that allows a user to monitor all processes.

The EOS Energy Manager runs a software called macchina.io [OO], which provides
special interfaces for different applications, so called ‘bundles’. All bundles have
to follow a specific structure to use the provided interfaces. Therefore, the peak
shaving algorithm must meet the specifications of a bundle. Detailed information
about macchina.io and bundles can be found in Section 4.3.1 on page 52.

1http://www.innovationszentrum-weiz.at/
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Energy Manager

Smart Meter Inverter

Battery
Battery

Controller

Figure 3.1: General setup of sensors and actuators.
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3.2 Use Cases

In the use case diagram (Figure 3.2) the three already mentioned basic components
(EEM, smart meter, inverter+battery) can be seen. A user has to activate the Peak
Shaving Bundle to execute the algorithm. At regular intervals, the EEM reads
the current power demand via the smart meter and processes the data received.
Additionally, the current battery status is read. Based on this data, a peak limit
is calculated, which is valid and applied for the next time interval. This results in
a power that is drawn from the battery via the inverter and supplied to the load
circuit.

activate

User

EEM

Inverter/
Battery

Smartmeter

get power
demand

monitor
data

get battery
state

set battery
power

inc
lud

es

in
cl
u
d
es

Peak Shaving Bundle

Figure 3.2: Use Case Diagram: Peak Shaving Application.
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3.3 Requirements

The goal is to create a so-called bundle for the SDK macchina.io, which executes
the developed peak shaving algorithm. Since the software must be executable on an
embedded system, and the computing power is limited, computationally intensive
operations must be omitted. Power demand profile data over the period of one year
was provided for the development. However, the algorithm should work independently
of the provided dataset.

3.4 Data Analysis

The energy consumption data for 2018, measured using a smart meter, have been
provided for research purposes. The energy consumption in kilowatt-hours (kWh)
was averaged over fifteen-minute time intervals and stored with a time stamp. The
energy values are now converted into power values by means of the correlation

W = P · t ⇒ P =
W

t
. (3.1)

W denotes the measured energy consumption in kWh, t the length of the time
interval in hours (h) and P represents the power demand in kilowatt (kW). Thus
the data is now available as shown in Table 3.1.

Table 3.1: Available dataset consisting of timestamp, energy- and power demand.

Timestamp Energy (kWh) Power (kW)

2018-01-01 00:15 7.59 30.36
2018-01-01 00:30 5.49 21.96
2018-01-01 00:45 8.67 34.68
2018-01-01 01:00 5.01 20.04
2018-01-01 01:15 8.79 35.16

...
...

...
2018-12-31 22:45 4.86 19.44
2018-12-31 23:00 4.14 16.56
2018-12-31 23:15 3.87 15.48
2018-12-31 23:30 3.87 15.48
2018-12-31 23:45 4.11 16.44

An initial overview shows what is living up to expectations: energy consumption
during the night hours is significantly lower than during the day. In principle, the
data sets can be assigned to two basic patterns. On weekdays, the energy demand
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increases rapidly in the morning, remains relatively constant throughout the day,
and decreases again towards evening. On weekends or holidays, the morning’s
increase is not clearly visible as energy consumption remains at about the same
level throughout the day. It is noticeable that there is a not negligible difference in
the seasons. While the electricity demand is relatively similar in spring, summer,
and autumn, significantly less energy is required during winter. Figure 3.3 shows the
averaged energy demand over the four seasons and the differences between working
day and weekend. It can be seen that the electricity demand starts to rise from 6
a.m. on and is back at night level from about 10 p.m. This also corresponds to the
electricity tariffs listed in Table 2.1 on page 7.

3.5 Electricity Bill

In order to evaluate the savings of different peak shaving algorithms, it is first
necessary to calculate the electricity cost of the existing data without using peak
shaving. Since peak shaving only changes the variable costs, ground fees and
other similar charges remain the same and are therefore not considered in the
calculations.
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(b) Summer (June to August)
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(c) Autumn (September to November)
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Figure 3.3: Mean electricity demand in different seasons showing differences between weekdays
and weekends.
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3.5.1 Electricity Cost Calculation

In Table 3.2 the charges used for the calculation are shown. The variable electricity
costs are calculated from the sum of the energy rate, demand cost and loss
compensation fee.

Table 3.2: Variable electricity charges valid for Styria. [Dig20]

Energy Cost Loss Fee Demand Cost
(ct/kWh) (ct/kWh) (ct/kW)

Summer Winter
High tariff Low tariff High tariff Low tariff

3,84 3,09 3,84 3,09 0,315 4368

Energy Rate

The energy consumed is measured and stored by smart meter. The consumed
kilowatt-hours are billed according to season (summer/winter) and time (high/low
tariff).

Demand Rate

The demand price in Table 3.2 is indicated as an annual price but is charged monthly
on a pro-rata basis. The load curve over time is recorded by the smart meter. In
time intervals of 15 minutes the energy consumed (W ) is determined as

W =

∫
P (t) · dt, (3.2)

by integrating the power values (P (t)) over time (t) as stated in Equation 3.2. Then
the statistical power

P =
W

t
(3.3)

for this period (t = 0.25 h) is calculated by dividing the calculated energy by the
period length as shown in Equation 3.3. These calculated quarter-hourly power
values are collected per month. The highest value is used for calculating the demand
charge by multiplying it with a twelfth of the annual demand price rate.
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3.5.2 Electricity Cost without Peak Shaving

Table 3.3 shows the variable electricity charges for the given dataset. It can be seen
that power demand costs account for about 20% of the total costs. Each month
the highest peak (stated in Table 3.3 in column ‘max. Power (kW)’) is considered
for the calculation of the demand charges. This is where peak shaving becomes
valuable in order to reduce costs. Due to physical constraints, demand price cannot
be reduced to zero. The overall savings achieved by using peak shaving are less than
20% of the total costs.

Table 3.3: Electricity cost without peak shaving.

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 161.10 61.04 659.65 57.21 222.19 939.05
2 19 875.09 71.04 721.89 62.61 258.59 1043.09
3 20 449.71 52.72 740.11 64.42 191.90 996.43
4 23 193.00 62.52 843.06 73.06 227.57 1143.69
5 24 159.12 59.60 876.98 76.10 216.94 1170.02
6 23 031.93 60.28 834.77 72.55 219.42 1126.74
7 23 594.40 59.32 857.05 74.32 215.92 1147.29
8 23 990.13 55.92 868.82 75.57 203.55 1147.94
9 23 351.70 56.88 846.68 73.56 207.04 1127.28
10 22 355.22 56.84 811.74 70.42 206.90 1089.06
11 19 542.66 56.72 709.25 61.56 206.46 977.27
12 18 351.66 50.92 663.75 57.81 185.35 906.91

Σ 260 055.72 - 9433.75 819.19 2561.83 12 814.77
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3.6 Simulation Environment

In order to develop and evaluate different algorithms, a simulation environment was
designed, which makes it possible to read the available data sets and prepare them
in such a way that easily exchangeable algorithms can use them. The individual
algorithms receive the data sets in a special format, perform simulated peak shaving
based on the data and store the results in a way allowing the simulation environment
to evaluate them. The expected electricity costs are calculated and printed in tabular
form. For a better overview, an interactive report is generated. Besides the cost
table, a chart shows the curves of all relevant data over the simulated time period.
This includes not only the power demand but also the battery power, the charge
level and the resulting power drawn from the grid. Depending on the requirements,
individual variables can be easily added or removed in the report. Figure 3.4 shows
the flow of the data in the simulation environment.

prepare
data

...algorithm
1

algorithm
2

algorithm
3

algorithm
n

evaluate
results

calculate
costs

generate
report

read
data

Figure 3.4: Process diagram of simulation environment.
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In this chapter, the implementation of the simulation environment and the individual
algorithms is explained in detail. Furthermore, it explains how an algorithm can
be integrated into the EOS Energy Manager and which limitations have to be
considered concerning the embedded system’s hardware and software. At the end
of this chapter, the finished peak shaving bundle, including its visualization, is
presented.

4.1 Simulation Environment

The simulation environment is programmed in Python (version 3.7.6) and uses the
packages and dependencies shown in Table 4.1.

Table 4.1: Used python packages for simulation environment.

Name Version Short description

numPy 1.18.1 Open source package for scientific
computing. [Har+20]

matplotlib 3.1.3 2D graphics package for application development,
interactive scripting and publication-quality image
generation. [Hun07]

pandas 1.0.1 Flexible open source data analysis and
manipulation tool. [tea20]

The data provided is available as an Excel spreadsheet (*.xlsx) and was exported
into CSV format (*.csv) for better programmatic processing. Pandas natively
support the reading of CSV files, whose content is then available to the programmer
as a so-called DataFrame, the primary data structure used in Pandas. That is a
tabular data structure allowing searching, indexing, grouping, and more efficiently.

The simulation environment essentially consists of three modules: the simulation
control unit, the peak shaving algorithm, and the utility module. These are briefly
described in the following subsections.
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4.1.1 Utility Module

The utility module provides functions that are necessary for the internal calculations.
Recurrently called functions are calculateSOC and eta. CalculateSOC calculates,
as the name suggests, the current charge level of the battery based on the available
energy and the maximum capacity. The function eta calculates an overall efficiency
for the battery and the inverter based on the inverter size and the current inverter
power. The efficiency curve shown in Figure 4.1 was used for this purpose. It was
taken from the data sheet of an inverter manufacturer and used as an approximate
guide value. [Fro20]
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Figure 4.1: Battery/Inverter efficiency graph. [Fro20]

4.1.2 Algorithm Module

The algorithm module contains the logic and the calculations for peak shaving. It
consists of the two large function blocks simulate and simulateFrame.

Simulate

The function simulate contains the essential logic, which determines the needed
inverter power from the given peak limit and the current power demand and
calculates as well as manages the remaining energy in the battery. Additionally,
error checks are performed. Two errors can occur. On the one hand, it is possible
that the battery has not stored enough energy anymore to cover the demand (Err01),
on the other hand, the necessary inverter power can be higher than the maximum
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output power supported by the inverter (Err02). After each call, a data set is
returned consisting of the energy still available in the battery, and the two error
indicators Err01 and Err02. This function has to be called in chronological order
for each existing data set.

Simulate Frame

The simulateFrame-function contains the outer logic and the calculations around
the peak limit. It iterates through the given dataset and calls the simulate-function
for each dataset, evaluating the return values. For the analysis, all values and
parameters necessary for the algorithm such as power demand, peak limit, available
battery energy, SOC, inverter power, grid power, and similar are stored in a separate
DataFrame in order to be able to track the calculations and decisions made as a
result. However, the recorded values are highly dependable on the used algorithm,
so the resulting DataFrame looks slightly different for various algorithms.

4.1.3 Simulation Control Module

This module controls the simulation process and manages the simulation data. Here
all physical conditions like battery capacity, inverter size, minimum and maximum
charge of the battery, and suchlike are defined, which are not changed during the
whole simulation process. In the following, the run of the simulation starts by calling
simulateFrame. The prepared data sets and all parameters are passed. At the end
of a complete run, which can take between a few minutes or even hours depending
on the complexity of the used algorithm, the DataFrame containing the statistics
is ready. With this statistical data, the function calculateCost is called, which
calculates the expected electricity costs based on the price composition described
in Section 3.5 on page 16 and returns them broken down as a tabular DataFrame
showing all components separately. From the two generated DataFrames, a report is
created, which contains an interactive graphic of all graphs showing the statistical
data as well as a list of the costs. This report can be opened and viewed with a
browser.
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4.2 Algorithms

In the course of this thesis, various algorithms, some of them based on or extending
approaches from literature research, will be tested and evaluated. The resulting
cost savings measure the performance of each method. The better a peak shaving
algorithm works, the lower the final electricity costs compared to the previously
calculated invoice amount without applying peak shaving.

In general, the algorithms presented here can be divided into two major categories:
Static and adaptive approaches. Static approaches are very often described in the
literature. They analyze an existing past load profile and determine a peak limit
that is valid and used for future profiles. The peak limit is not changed anymore
and is therefore ‘static’. Adaptive or dynamic approaches are less frequently treated
in the literature. They are characterized by the ability to change the peak limit over
time and adapt it to the current demand and load profile.

At the end of this chapter, a combined algorithm is presented that combines both
an analytical and a responsive part and thus allows the determination of the peak
limit for each month ‘live’, i.e. only depending on data collected at runtime and
without having to analyze large amounts of data in advance.

In order to obtain the most comparable results of the algorithms, they are all tested
based on the same specifications. ‘Sufficiently large’ values are chosen for battery
capacity and inverter size.

Battery Capacity EBatt = 233 kWh used within a range of SOCmin = 1% and
SOCmax = 99%

Inverter Power (nominal) Pinv,max = 88 kW

Both types of algorithms are described in detail in the following sections.

4.2.1 Static Algorithms

For static algorithms, the peak limit is determined mathematically in advance based
on past load data and then applied. Therefore it is not changed anymore. This has
the great advantage that the demand costs can be calculated beforehand, making it
easier to estimate the investment costs and the payback period. Research on the
internet shows that there are some providers in Europe who offer peak shaving
equipment based on static algorithms. Usually, a previous year’s load profile is
sent to the company, analyzed, and a peak limit, including the necessary hardware
specification (battery capacity, inverter size), is created. Subsequently, all evaluated
static algorithms are explained and evaluated based on their potential to reduce
electricity costs.
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First Simulation Approach

Based on the algorithm presented by Leadbetter and Swan in [LS12] an optimal
solution should be found for the provided load profile from Weiz. Figure 4.2 shows
the slightly adapted flowchart of the used algorithm.

The condition Nighttime? checks if the time of the current data sample is between
10 p.m. and 6 a.m. and charges the battery if that is the case. Thereby, the current
SOC is considered, and the battery is charged up to SOCmax. If the current time is
outside of the night range, the algorithm checks for peaks. Assuming that a peak
limit is defined in advance, a peak occurs if the current power demand Pdem exceeds
the peak limit Plim (Pdem > Plim). As long as no peak is present, the algorithm ends,
and the process stays in idle mode. However, otherwise after checking if the battery
is not empty and therefore no error is thrown (Error 01: Battery empty), the
necessary inverter power (Pinv) is calculated using equation 4.1.

Pinv = Pdem − Plim (4.1)

In any case, the calculated inverter power must be lower than the maximum inverter
power (Pinv,max). If not, the process enters a failure state (Error 02: Undersized

Inverter).

To find the optimal peak limit, simulation is done multiple times, varying the peak
limit in a range between 26 kW and 40 kW . Table 4.2 shows the results for the
different peak limits used including price components.

Table 4.2: Results for different peak limits.

Plim #Err01 #Err02 Energy Cost Loss Fee Demand Cost Total
(kW) (.) (.) (e) (e) (e) (e)

26 13454 0 9436.80 823.46 2598.51 12 858.77
28 10221 0 9435.85 825.05 2521.64 12 782.54
30 6358 0 9433.18 826.71 2428.18 12 688.07
32 3202 0 9429.23 827.68 2295.40 12 552.31
34 1263 0 9426.82 827.59 2179.21 12 433.62
36 283 0 9426.66 826.56 2007.97 12 261.19
38 0 0 9427.07 824.80 1766.44 12 018.31
40 0 0 9428.20 823.08 1811.13 12 062.41

Figure 4.3 shows the plot of peak limit over the total cost. It is clearly visible that
the peak limit resulting in the lowest cost is 38 kW . At this limit, neither Error
01 nor Error 02 occurs. A closer look at the evaluation of the electricity costs in
Table 4.3 with that peak limit shows a saving of e 796.46 compared to the electricity
bill without peak shaving. However, it is noticeable that despite the peak limit of
38 kW , the highest peaks in most months are to some extent significantly higher.
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Figure 4.2: Flowchart of Algorithm 1. [LS12]
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The evaluation of the data shows that the high peaks all occur at night. Occasionally,
peaks also occur at night, although the general power demand during the night is
relatively low. Since the algorithm used does not react to peaks between 10 p.m.
and 6 a.m. but only charges the battery, these peaks are used to calculate the power
price. Due to these circumstances, the algorithm must be adapted in such a way
that it also reacts to possible peaks during the night.
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Figure 4.3: Total energy cost over peaklimit (simulation 1).
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Table 4.3: Evaluation of electricity cost using first simulation approach with a peak limit of 38kW .

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 206.69 41.28 659.30 57.35 150.26 866.91
2 20 010.96 51.12 720.34 63.03 186.08 969.45
3 20 535.31 39.12 740.71 64.69 142.40 947.80
4 23 365.46 40.92 837.88 73.60 148.95 1060.43
5 24 452.45 40.56 877.03 77.03 147.64 1101.70
6 23 244.19 38.28 836.58 73.22 139.34 1049.14
7 23 748.42 38.00 855.24 74.81 138.32 1068.37
8 24 104.77 38.04 867.43 75.93 138.47 1081.83
9 23 659.02 38.00 848.73 74.53 138.32 1061.58
10 22 502.81 38.28 810.69 70.88 139.34 1020.91
11 19 628.92 38.00 709.46 61.83 138.32 909.61
12 18 381.99 43.68 663.68 57.90 159.00 880.58

Σ 261 840.99 - 9427.07 824.80 1766.44 12 018.31
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 1785.27 - −6.68 5.61 −795.39 −796.46

Adaption Night Peaks

To further reduce costs, the algorithm is adapted so that the peak detection also
works at night. If a peak occurs between 10 p.m. and 6 a.m., power above the peak
limit is supplied from the battery. When the power demand during night hours is
below the peak limit, the battery is charged to SOCmax. According to expectations,
this should reduce the maximum power relevant for billing for each month to the
specified peak limit.

The simulation shows that the best peak limit is 38kW again and that the adjustment
can save about e 100 more. The total savings in electricity costs now amount to
e 902.80. The exact breakdown of the costs can be seen in Table 4.4. Owing to the
algorithm’s adaptation, the previously defined peak limit is no longer exceeded and
used to calculate the demand costs for each individual month.
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Table 4.4: Evaluation of electricity cost using adapted first simulation approach with a peak limit
of 38 kW .

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 209.12 38.0 659.38 57.36 138.32 855.06
2 20 016.08 38.0 720.50 63.05 138.32 921.87
3 20 534.83 38.0 740.69 64.68 138.32 943.69
4 23 366.05 38.0 837.90 73.60 138.32 1049.82
5 24 452.14 38.0 877.02 77.02 138.32 1092.36
6 23 245.11 38.0 836.61 73.22 138.32 1048.15
7 23 747.83 38.0 855.22 74.81 138.32 1068.35
8 24 104.76 38.0 867.43 75.93 138.32 1081.68
9 23 659.02 38.0 848.73 74.53 138.32 1061.58
10 22 502.74 38.0 810.69 70.88 138.32 1019.89
11 19 628.92 38.0 709.46 61.83 138.32 909.61
12 18 382.21 38.0 663.69 57.90 138.32 859.91

Σ 261 848.81 - 9427.32 824.81 1659.84 11 911.97
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 1793.09 - −6.43 5.62 −901.99 −902.80

Further Thoughts To further reduce costs, the recurring patterns of the dataset
must be exploited. The data analysis clearly shows that the average energy demand
strongly depends on the following criteria (see Figure 3.3 on page 17 for example).

1. Time of Day: The energy demand is significantly higher during the day
(between around 6 a.m. and 10 p.m.) than at night.

2. Day of Week: Much more energy is required on weekdays than on weekends
or holidays.

3. Season: In Winter (December to February) the average energy demand is
lower than in the other months.
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The variable adjustment of the peak limit according to time of day does not bring
any advantages in terms of peak shaving. Since the maximum of a month is used for
the calculation of the relevant demand price, a change of the limit over individual
days does not affect the total costs. The consideration of weekdays can be interesting
for charging the battery and will be discussed in more detail in a later section.

Individual regulation of the peak limit according to the season of the year offers
further savings potential. Significantly during the winter months, the limit can be
lowered over an entire billing period, which is directly noticeable on the electricity
bill. Therefore, a variable configuration of the peak limit is a possible extension.
This can make it possible to lower the limit further in certain months.

Season Limit

According to the findings of the above extension, a second, lower limit is now
introduced. This so-called winter limit will be applied in the period from December
to February and is intended to further reduce power demand costs in the months in
which relatively less energy is required. In addition, it is tried to extend the winter
limit in terms of timespan as much as possible.

The basic peak limit for the simulation is again assumed to be 38 kW . Different
winter limits are evaluated. Figure 4.4 shows that the best winter limit is 34 kW .
Additionally, Table 4.5 shows the exact results for all simulation runs. It is noticeable
that with a winter limit of 34kW , four empty battery errors occur despite the lowest
total price. However, the winter limit of 36 kW differs only slightly in the total
price. This corresponds to an error time of one hour due to the 15-minute average
interval.

Table 4.5: Results for different winter limits from December to February. 38 kW is used as peak
limit for the other months.

Plim,winter #Err01 #Err02 Energy Cost Loss Fee Demand Cost Total
(kW) (.) (.) (e) (e) (e) (e)

26 1791 0 9431.46 826.12 1915.80 12 173.38
28 975 0 9429.81 826.29 1899.64 12 155.74
30 472 0 9428.05 826.24 1719.68 11 973.97
32 165 0 9426.91 826.01 1692.75 11 945.67
34 4 0 9426.82 825.64 1636.11 11 888.57
36 0 0 9427.00 825.15 1638.00 11 890.15
38 0 0 9427.32 824.81 1659.84 11 911.97

This result already looks promising. However, the winter limit can be extended to
the adjacent months. The simulation shows that the winter limit of 34 kW can be
successfully applied from October to March, which reduces the power costs for three
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Figure 4.4: Total energy cost over winter limit from December to February using 38 kW as limit
for the other months.

more months. Figure 4.5 shows clearly this time that 34 kW is the winter limit,
which leads to the lowest total price.

Table 4.6: Results for different winter limits from October to March. 38 kW is used as peak limit
for the other months.

Plim,winter #Err01 #Err02 Energy Cost Loss Fee Demand Cost Total
(kW) (.) (.) (e) (e) (e) (e)

26 4833 0 9437.57 826.55 2120.65 12 384.77
28 2611 0 9433.53 827.40 2080.91 12 341.84
30 1002 0 9429.17 827.89 1883.05 12 140.11
32 273 0 9426.22 827.44 1707.75 11 961.41
34 4 0 9425.97 826.59 1592.43 11 844.99
36 0 0 9426.52 825.58 1616.16 11 868.26
38 0 0 9427.32 824.81 1659.84 11 911.97

As Table 4.6 shows, the four occurring errors (Error 01 - Battery empty) remain.
Table 4.7 shows that with the help of the winter limit over six months, a total cost
saving of e 969.78 is possible. It can be seen that the battery appears to get empty
in February because the specified peak limit of 34 kW has been exceeded. A more
detailed analysis shows that the highest peak here was reached on February 22nd
at 17:00 (see Figure 4.6). At this time, the SOC of the battery was at one percent
(SOCmin). Therefore this peak could not be supplied from the battery and is visible
on the electricity bill. If the power demand had been higher at that time, the bill
would have been more expensive. The battery could not be fully charged overnight.
As one can see in Figure 4.7, which shows a whole week from Monday to Sunday,
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Figure 4.5: Total energy cost over winter limit from October to March using 38 kW as limit for
the other months.

the battery is discharged much more and thus could not be sufficiently charged
during the night hours. Only at the weekend, when there is no high power demand
for a more extended period of time, the charge level recovers.

What turns out during the simulation data analysis is that even during the day,
there are time intervals with a lower power demand than the peak limit. These
could be used in addition for charging the battery in order to prevent the battery
from becoming empty during operation.
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Figure 4.6: Detailed output of the peak shaving algorithm for 22nd of February.
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Figure 4.7: Detailed output of the peak shaving algorithm for 19th to 28th of February.
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Table 4.7: Evaluation of electricity cost using adapted first simulation approach with a peak limit
of 38 kW .

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 234.85 34.00 657.69 57.44 123.76 838.89
2 20 129.57 39.48 719.46 63.41 143.71 926.58
3 20 682.54 34.00 742.74 65.15 123.76 931.65
4 23 364.38 38.00 837.85 73.60 138.32 1049.77
5 24 452.34 38.00 877.03 77.02 138.32 1092.37
6 23 245.49 38.00 836.62 73.22 138.32 1048.16
7 23 748.42 38.00 855.24 74.81 138.32 1068.37
8 24 104.44 38.00 867.42 75.93 138.32 1081.67
9 23 659.02 38.00 848.73 74.53 138.32 1061.58
10 22 583.14 34.00 808.60 71.14 123.76 1003.50
11 19 768.61 34.00 710.82 62.27 123.76 896.85
12 18 435.74 34.00 663.77 58.07 123.76 845.60

Σ 262 408.54 - 9425.97 826.59 1592.43 11 844.99
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 2352.82 - −7.78 7.40 −969.40 −969.78

Day Charging

The algorithm is now adapted so that charging is also possible during the day.
The flow chart in Figure 4.9 shows the process workflow. If the power demand lies
below the peak limit, the difference between these two (see equation 4.2) is used for
charging the battery up to a maximum SOC defined by SOC day charge limit max,
provided that the SOC has fallen below a previously defined threshold value
(SOC day charge limit min).

Pcharge = Plim − Pdem (4.2)

During the night hours the charging to SOCmax is done as the energy price is lower
than during the day. This behavior is implemented as a state machine. The two
contained states IDLE and CHARGE and their relations are illustrated in Figure 4.8.
The state machine is executed only during the daytime and only under the condition
that no peak is present.

The simulation results show that the peak limits (base and winter limit) of 38 kW
and 34 kW respectively, which already resulted in the previous simulations, still
lead to the lowest overall price. However, the battery is used better now, which has
the consequence that even in February a peak limit of 34 kW works without any
overruns. A total saving of e 987.85 is reached, as Table 4.8 makes evident.
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Figure 4.8: State diagram for day charging.

Table 4.8: Evaluation of electricity cost using day charging with a peak limit of 38 kW and winter
limit of 34 kW .

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 234.85 34.0 657.69 57.44 123.76 838.89
2 20 130.60 34.0 719.86 63.41 123.76 907.03
3 20 683.41 34.0 742.77 65.15 123.76 931.68
4 23 365.72 38.0 838.15 73.60 138.32 1050.07
5 24 513.75 38.0 879.55 77.22 138.32 1095.09
6 23 182.67 38.0 834.68 73.03 138.32 1046.03
7 23 748.42 38.0 855.24 74.81 138.32 1068.37
8 24 104.41 38.0 867.42 75.93 138.32 1081.67
9 23 659.29 38.0 848.74 74.53 138.32 1061.59
10 22 585.27 34.0 809.18 71.14 123.76 1004.08
11 19 768.00 34.0 710.80 62.27 123.76 896.83
12 18 435.40 34.0 663.76 58.07 123.76 845.59

Σ 262 411.79 - 9427.84 826.60 1572.48 11 826.92
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 2356.07 - −5.91 7.41 −989.35 −987.85

4.2.2 Adaptive Algorithms

While static algorithms do not change the peak limit after it has been set, adaptive
algorithms dynamically adapt the peak limit to the current conditions. As a result,
the peak limit is changed several times per month and adapts to the current power
demand. Basically, two approaches can be distinguished: Analytical and responsive
methods. Both are explained in this section. Besides, a combined algorithm is
presented at the end, which unites the advantages of both approaches.
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Figure 4.9: Flowchart day charging.
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Analytic Approach (v1)

The analytical method’s goal is to calculate a peak limit from the current power
demand and from the data recorded in the past time, which is valid for the future.
Of course, this assumes that the general power demand does not change or only
very slightly compared to the data used for the calculation.

The energy price calculation states that the day from 6 to 22 o’clock with 16 hours is
twice as long as the night, which lasts eight hours, from 10 to 6 o’clock accordingly.
The calculation of the peak limit is based on the following two fundamental premises.
On the one hand, the battery should be charged as fully as possible during the night
hours; on the other hand, it should be used as efficiently as possible during the day.
The trade-off lies in the peak limit. The faster the battery should be charged, the
higher the peak limit has to be. Nevertheless, this also results in a higher power
price. A higher peak limit also means that less energy is drawn from the battery
during the day, which in turn does not fully utilize the battery.

The battery has a nominal storage capacity of Enom
B in kWh and is operated between

SOCmin and SOCmax. This allows the actual usable energy to be calculated with

Euse
B = Enom

B · (SOCmax − SOCmin). (4.3)

Fully charge the battery at night During the night, the following applies to each
time interval ∆t: The energy difference required to charge the battery to SOCmax

is
∆E = Euse

B − EB (4.4)

where EB is the energy currently stored in the battery. Per time unit ∆t = 1/4 h,
the energy

E∆t =
∆E

tnight,remaining/∆t
=

∆E ·∆t
tnight,remaining

(4.5)

must therefore be recharged (Equation 4.5). tnight,remaining denotes the remaining
time in night mode and is calculated based on the current time t as

tnight,remaining = (6− t) mod 24. (4.6)

E∆t can then be used to calculate

P∆t =
E∆t

∆t
=

∆E

tnight,remaining

, (4.7)

which is the power that is required to charge the battery.

This results in a theoretical peak limit

Plim,th = Pdemand,∆t + P∆t. (4.8)
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Since peaks also occur at night, calculating the theoretical peak limit according to
equation 4.8 would produce even larger peaks. This has to be avoided. Therefore
the theoretical peak limit is calculated as

Plim,th = P night,n + P∆t, (4.9)

based on an average of the power demand of the last n nights (P night,n).

Utilize Battery during day time The day mode is valid for 16 hours. Based on
the current time t, the remaining time until the beginning of the night can be
calculated with

tday,remaining = (22− t) mod 24. (4.10)

For the maximum possible energy draw EB,∆t from the battery per time unit ∆t,
the following applies:

EB,∆t =
Enom

B

tday,remaining/∆t
=

Enom
B ·∆t

tday,remaining

. (4.11)

This results in the possible power withdrawal

P∆t =
E∆t

∆t
=

∆E

tday,remaining

. (4.12)

The theoretic peak limit for the current time interval ∆t is

Plim,th = Pdemand,∆t − P∆t. (4.13)

The actual peak limit is the maximum of the theoretical limits calculated in the
current month. Of course, the theoretical limits of the night hours are also taken
into account. To avoid immediately increasing the peak limit for a short peak, even
if this would not be necessary at all, it is only adjusted if the remaining time until
the next mode change (day/night) in percent is smaller than the current battery
charge level SOC.

Table 4.9 clearly shows that the analytical method’s annual savings do not reach
those of the static algorithms. However, it is interesting to note that some months
also get by with a significantly lower peak limit than previously assumed with the
static methods. In general, it can be said that the algorithm is already working quite
well but reacts too slowly to increasing power demands. This means that the peak
limit is only increased when the battery charge level is already shallow. Therefore,
it cannot be avoided that the battery gets empty, which results in the high peaks.
This needs to be improved.
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Table 4.9: Evaluation of electricity cost using the analytic approach (v1).

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 355.80 30.36 663.22 57.82 110.51 831.55
2 20 250.85 34.30 729.56 63.79 124.84 918.19
3 20 773.56 41.28 747.15 65.44 150.26 962.85
4 23 442.58 53.04 844.94 73.84 193.07 1111.85
5 24 411.47 42.19 883.47 76.90 153.58 1113.95
6 23 241.79 60.84 838.56 73.21 221.46 1133.23
7 23 818.45 59.88 859.29 75.03 217.96 1152.28
8 24 073.25 56.40 866.64 75.83 205.30 1147.77
9 23 591.94 64.71 854.38 74.31 235.56 1164.25
10 22 668.42 48.96 815.04 71.41 178.21 1064.66
11 19 684.08 42.12 713.82 62.00 153.33 929.15
12 18 549.21 30.00 668.28 58.43 109.20 835.91

Σ 262 861.40 - 9484.35 828.01 2053.28 12 365.64
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 2805.68 - 50.60 8.82 −508.55 −449.13

Analytic Approach (v2)

To enable the algorithm to react faster to approaching peaks and increase the limit
earlier and therefore less high, the threshold value used is adapted. A linear function
is introduced that maps the current time at night to a threshold charge level of
SOCmin to 75%. As soon as the current charge level falls below this threshold value,
the peak limit is set to the theoretical peak limit calculated from version 1 if it is
higher than the previous monthly maximum. With this extension the battery is
charged to at least 75% every morning, so there should be no problems during the
day. An additional extension considers holidays which have to be provided as a list
before. Thus it is possible not to increase the limit on holidays, because here, as
on weekends, only very few peaks are to be expected and the battery can also be
charged during the day.

The cost-saving precipitates here, as Table 4.10 shows, already twice as high as
before. Compared with the results from Table 4.9 the highest peaks in all months
are in a moderate range, which lies only slightly over the statically fixed limits. In
some months, the static limit is even undercut.

Overall, it can be said that the algorithm approximates the optimal limits quite well
but still reacts too slowly to an increasing power graph. If the limit is then increased,
it is immediately raised by a relatively large amount. This could be improved in a
next version.
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Table 4.10: Evaluation of electricity cost using the analytic approach (v2).

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 319.84 31.83 663.48 57.71 115.86 837.05
2 20 217.45 36.89 730.22 63.68 134.30 928.20
3 20 710.88 37.23 745.46 65.24 135.50 946.20
4 23 440.46 38.19 845.08 73.84 139.00 1057.92
5 24 357.12 47.38 882.96 76.72 172.48 1132.16
6 23 219.71 38.13 838.31 73.14 138.80 1050.25
7 23 772.84 40.70 861.18 74.88 148.18 1084.24
8 24 124.55 40.10 871.65 75.99 145.99 1093.63
9 23 539.43 40.96 851.24 74.15 149.08 1074.47
10 22 560.60 41.22 816.18 71.07 150.06 1037.31
11 19 778.28 34.86 714.10 62.30 126.90 903.30
12 18 547.80 30.00 668.23 58.43 109.20 835.86

Σ 262 588.96 - 9488.09 827.15 1665.35 11 980.59
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 2533.24 - 54.34 7.96 −896.48 −834.18

The most prominent is the limit in May, which is significantly above the expected
limit. A close analysis shows that the sharp increase in the limit at the beginning of
May could possibly have been avoided if the limit had been set a little higher the
first time it fell below the threshold. In Figure 4.10 the two relevant points where
SOC undercuts the limiter function are marked.
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Figure 4.10: Simulation details for the beginning of May indicating the points where SOC undercuts
the limiter function and therefore the limit is raised.

41



4 Implementation

Analytic Approach (v3)

To avoid that the peak limit depends on the current demand so heavily but can
still react to the performance profile, a moving average is used in this approach.
Therefore several days or nights are considered, and the power demand is averaged.
Only values of working days are used. Weekends and holidays are excluded from
averaging in order not to falsify the results. These two average values, one for the
day and one for the night, are used for the peak limit calculations. The size of the
sliding window for averaging can be specified by the number of days or nights to be
considered and can be defined by two parameters number of nights for mean and
number of days for mean. Two threshold values are set for the limiting function,
which is a linear function and restricts the battery charge level (SOC).

SOCday start = 70% (4.14)

SOCday end = 20% (4.15)

These parameters are defined in equations 4.14 and 4.15 so that at the beginning
of each day the SOC must be at least 70% and at the end of each day the SOC
must be above 20% to keep the current peak limit active. Otherwise, the limit
is increased. The limiter function used for this is a linear function as defined in
Equation 4.16 and 4.17 with t as the current time and nightlen as the length of the
night in hours (8).

x =

(
t.hour +

t.minute

60
− 22

)
mod 24 (4.16)

limit(x) =
(SOCday start − SOCday end)

nightlen
· x+ SOCday end (4.17)

During night hours, similar to the last version of the algorithm, the energy difference
∆E that is needed to charge the battery to the defined minimum at the start of the
day is calculated using Equation 4.18.

∆E = Enom
B · SOCday start − EB (4.18)

This is then turned into a power value valid for each time step of ∆t = 1/4 h.

P∆t =
∆E

nightlen
(4.19)

Where nightlen denotes the length of a night in hours (8).

With the help of the moving average P night calculated for the last number of nights for mean

nights (excluding weekends and holidays), a theoretic peak limit is determined.

Plim,th = P night + S · P∆t (4.20)
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S is defined as a security factor ≥ 1. This limit is then applied if it is above the
current limit, the SOC lies under the limiter function, and the current date is
neither a holiday nor a Saturday. Otherwise, it is just ignored.

During the day, the battery usage factor β is calculated from an initially defined
restriction factor α, with which a grid usage factor γ is then defined in Equation 4.23.

α = 70% (4.21)

β =
EB · α

P day · daylen
(4.22)

With P day as the moving average for the day values and daylen as the length of a
day in hours (16).

γ = 1− β (4.23)

The theoretical peak limit Plim,th then depends on the calculated grid usage factor
γ and the average day power demand P day as stated in Equation 4.24.

Plim,th = P day · γ (4.24)

Between 6 a.m. and 10 p.m. the limiter function is kept at minimum to provide a
free usage of the battery.

limiter(x) = SOCday end (4.25)

Several simulations with different parameter constellations have shown that the
highest total savings are achieved with the following values:

number of nights for mean = 1
number of days for mean = 3
α = 0.7
S = 1.0
SOCday start = 70%
SOCday end = 20%

These values lead to a simulation result, which is broken down in Table 4.11.

By averaging the power values, a more stable course of the peak limit is achieved,
but there are scenarios in which the algorithm has problems to adjust the limit in
time. If the power demand increases steadily for several days in a row, the battery
will reach its limits. As an example, the simulation details for the beginning of July
are shown in Figure 4.11. Here, the average power demand increases significantly
over five consecutive days. The peak limit is not increased until July 5, which
causes the battery to become almost empty. The grey curve shows the calculated
theoretic peak limit (Plim,th) which only rises slowly due to the averaging. July 1st
is a Sunday, so the values are not taken into account in the average calculation and
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Table 4.11: Evaluation of electricity cost using the analytic approach (v3).

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 293.61 33.68 664.27 57.62 122.61 844.50
2 20 182.41 38.73 728.51 63.57 140.98 933.06
3 20 562.90 35.45 743.61 64.77 129.04 937.42
4 23 424.47 39.97 846.22 73.79 145.50 1065.51
5 24 386.49 41.84 882.50 76.82 152.28 1111.60
6 23 155.10 42.51 837.00 72.94 154.72 1064.66
7 23 714.74 43.31 860.05 74.70 157.63 1092.38
8 24 147.19 38.36 872.06 76.06 139.63 1087.75
9 23 619.29 37.89 850.74 74.40 137.90 1063.04
10 22 555.05 39.64 816.94 71.05 144.31 1032.30
11 19 681.10 35.24 713.44 62.00 128.28 903.72
12 18 505.47 31.92 667.87 58.29 116.20 842.36

Σ 262 227.81 - 9483.21 826.01 1669.08 11 978.3
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 2172.09 - 49.46 6.82 −892.75 −836.47

the theoretical limit does not change. Since the power demand is lower again on
July 6, the charge level can recover. If this hadn’t happened and the power demand
had increased again, the battery would have become empty and the whole power
would have been drawn from the grid.
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Figure 4.11: Simulation details for the beginning of July.
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Responsive Approach

A purely responsive approach, which only determines a peak limit based on the
current SOC values, is not appropriate and leads to immensely high peak limits
in the individual accounting periods. However, various simulations have shown
that responsive methods have the potential to support analytical approaches. One
method that is promising for this is SOC monitoring. Here the battery charge level
is monitored, and the future course is approximated. The predicted curve can be
used to determine the time at which the battery will be empty. This information
can then be used to adjust the peak limit if necessary. The approximation is made
as a linear function because the simulation results show that the battery’s discharge
curve is approximately a straight line.

For this purpose, the SOC values are recorded at regular 15-minute intervals and
stored and analysed over a longer period of, for example, one hour.

[SOCtn−m , . . . , SOCtn−1 , SOCtn ]︸ ︷︷ ︸
in ∆t time

For linearization, the first and last values of the time series are of particular interest.
The difference between those two values represents the absolute change of the charge
level of the battery.

∆SOC = SOCtn − SOCtn−m (4.26)

If ∆SOC is negative, a further calculation for the desired application makes sense
and it can be used to model the trend as a linear function

SOC(t) =
∆SOC

∆t
· (t− tn) + SOCtn . (4.27)

To calculate the time of emptying, Equation 4.27 is set to zero and transformed to
t:

0 =
∆SOC

∆t
· (t− tn) + SOCtn (4.28)

⇒ t = tn −
SOCtn ·∆t

∆SOC
(4.29)
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Combined Algorithm

The combined algorithm is based on analytical calculations with past profile data.
For better stability and an application on changing load profiles, a responsive
component is additionally integrated. The SOC monitoring adjusts the peak limit if
the analytical path would react too slowly, thus preventing the battery from running
empty, which would lead to high costs.

The algorithm’s analytical part runs in cycles from 10 p.m. (beginning of the night)
to 9:45 p.m. (end of the day). At the beginning of each cycle, an optimal peak limit
can be calculated for the past cycle based on the demand data. This limit allows the
same amount of energy to be charged into the battery during the night (or off-peak
hours) consumed during the day (or peak hours). For this purpose, all the power
values which occurred are summed up

Psum =

t∈[22:00;22:00)∑
t

Pt, (4.30)

the energy is calculated therefrom, and a power value

Plim =
Psum ·∆t

24 h
(4.31)

is determined from the total energy, at which a day-night-balance exists.

Since this limit is optimal for the past cycle, this does not necessarily mean that
it will also keep the balance for the coming cycle. Therefore additional parameters
have to be included. If at the end of a cycle the battery charge level is less than
50%, which means that significantly more energy has been drawn than has been
recharged, the peak limit is increased by a charge amount

Pload =
∆E

24 h
, (4.32)

where ∆E denotes the energy difference calculated as

∆E =
Enom

B · (SOCmax − SOC)

days to load
. (4.33)

For this purpose, a parameter called days to load is introduced, that determines
after how many days, on which the day-night-balance is assumed, the missing energy
should be recharged. The amount added to the limit is calculated with

Plim = Plim + Pload. (4.34)

This recalculated limit is applied if it is greater than the previous peak limit and
the SOC is less than 50% or the sum of the power values is more than 10% higher
than in the previous n days considered.
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To support the analytical part, two responsive components are involved. On the one
hand, the optimal peak limit for the current cycle, which can only be calculated
precisely at its end, is approximated in order to be able to react earlier to increasing
power demand, if required. This process is called “Attention Mode”. On the other
hand, the “SOC monitoring” ensures that the battery does not become empty by
estimating the future course of the charge level.

Attention Mode In each time interval of 15 minutes, the sum of all power values
that occurred in the current cycle is available. Based on this, an approximate limit
can be calculated using the current time

Plim, app =
Psum ·∆t
tcycle

, (4.35)

which comes as close as possible to the optimal limit at the end of the cycle using t
as the current time and

tcycle =

(
t.hour +

t.minute

60
− 22

)
mod 24 (4.36)

as the elapsed time in the current cycle.

If this calculated limit is greater than the current peak limit, it will be added to
a list. This list is filled as long as the predicted limits lie above the current one
and is reset when the calculated limit lies below it. Attention mode is activated
under the condition of a higher calculated limit if the SOC drops below 50% or the
estimated limit is significantly higher than the current limit. If the Attention Mode
is active, the approximated limits stored in the list are averaged. If the Attention
Mode has been running for more than one hour (that corresponds to 4 values), the
average is calculated. This mean value is then used as the current peak limit. In
extreme cases, if the SOC falls below 20%, the averaged limit is used earlier. The
Attention Mode is terminated if the calculated limit drops below the current limit or
the power demand decreases below the current limit, which means there is currently
no peak.

SOC Monitoring As described above, the SOC monitoring reacts to a falling trend
line of the battery charge level. It calculates a possible peak limit, which prevents
the battery from running empty before the night starts. During the night hours, the
battery can be recharged. The detailed calculations are explained under ‘Responsive
Approach’ on page 46.

The flow chart in Figure 4.12 shows the workflow of the algorithm. At the beginning
of each month, the peak limit is reset. The total sums of the last n working days are
considered, and the highest optimal limit of these days is used as the base value for
the coming month. During the course of a month, the peak limit can only rise and
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Start

new month?

t = 22:00?

reset Plim

according to
last days

calculate limit
apply if necessary

End

Psum += Pdemand

Attention Mode

approximate limit
check attention mode

apply limit if necessary

SOC Monitoring

check trend
calculate remaining time
apply limit if necessary

Yes

Yes

No

No

Figure 4.12: Flowchart for combined analytic and responsive algorithm.
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not fall, so it is essential to reset the limit to a minimum value at the beginning
of each month. At 10 p.m., when one cycle ends and the next begins, all necessary
calculations are accomplished. The optimum peak limit of the previous cycle can
now be determined and, if it is higher than the previous limit, will be applied. Also,
all required statistical evaluations are determined and stored for further use. For
all other times, the algorithm is in the middle of a cycle and applies the responsive
methods. First, the Attention Mode is evaluated, then the SOC Monitoring follows.
Both are described in detail above. After running the simulation, the following result
is obtained.

Table 4.12: Evaluation of electricity cost using combined approach.

Month Energy max. Power Energy Fee Loss Fee Demand Fee Total
(kWh) (kW) (e) (e) (e) (e)

1 18 373.14 30.00 663.82 57.88 109.20 830.90
2 20 272.54 36.65 729.73 63.86 133.41 927.00
3 20 630.30 32.20 743.33 64.99 117.21 925.53
4 23 487.72 41.09 846.55 73.99 149.57 1070.11
5 24 404.04 40.06 881.12 76.87 145.82 1103.81
6 23 071.98 40.93 835.04 72.68 148.99 1056.71
7 23 740.78 43.94 860.64 74.78 159.94 1095.36
8 24 218.48 37.91 872.51 76.29 137.99 1086.79
9 23 615.28 37.33 850.62 74.39 135.88 1060.89
10 22 639.78 37.06 817.40 71.32 134.90 1023.62
11 19 832.67 30.96 714.00 62.47 112.69 889.16
12 18 502.66 32.01 668.16 58.28 116.52 842.96

Σ 262 789.37 - 9482.92 827.79 1602.12 11 912.83
Σ (orig.) 260 055.72 - 9433.75 819.19 2561.83 12 814.77

∆ 2733.65 - 49.17 8.60 −959.71 −901.94

Table 4.12 shows that the highest peak limit in almost all months is below the
statically calculated optimum. In some cases, even significantly below. That leads
to a saving of e 901.94 in relation to the original data. Above all, the fact that
the limit is determined “live”, which means only based on the past demand curve,
shows that peak shaving is absolutely possible with this algorithm without having
analyzed large amounts of data beforehand.
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4.3 Integration in EOS Energy Manager

This section describes the hardware and software behind the EOS Energy Manager
(EEM). It also explains how the peak shaving algorithm can be integrated into
the existing system as a so-called bundle so that it runs in parallel with the other
applications on the system.

4.3.1 The Embedded System

The EOS Energy Manager (EEM) is an embedded system based on an ARM Cortex-
A8. The surrounding board offers, as Figure 4.13 shows, 16 GPIOs, 4 of them
supporting PWM, 6 Modbus interfaces, and an Ethernet connection. Additionally,
it provides an SD-Card interface, which is the system memory. Thus the board is
ideally equipped for applications in the energy sector. The power values required
for peak shaving are recorded by a smart meter and made available via a Modbus
interface. The system runs Debian Linux as the operating system and a software
called macchina.io on top.

16 GPIOs Vin

Modbus 1 Ethernet

SD-Card
Interface

ARM Cortex-A8

BeagleCore

Modbus 2 Modbus 3 Modbus 4 Modbus 5 Modbus 6

Figure 4.13: Sketch of EOS Energy Manager (EEM) circuit board with interfaces.
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macchina.io

Macchina.io is an IoT Software Development Kit (SDK) for creating applications for
embedded Linux systems in C++ and JavaScript. [OO] Due to its modular design, it
is highly customizable. The base of macchina.io consists of different frameworks like
the Open Service Platform (OSP) and libraries, optimized for use in embedded Linux
systems. [mac20] The OSP enables the highly modular design through a robust
plug-in and service model. According to the documentation, this framework offers
an environment based on so-called bundles and services. A bundle is a summary of
executable code, configuration, and resource data that can offer various services that
extend the primary system’s functional scope. Each of these services is registered in
a particular service registry and is therefore also available to other bundles globally.
A bundle can be dynamically installed, started, stopped, and removed without
requiring a system-wide restart. [mac20]

Peak Shaving Bundle

To meet the specification of a bundle, the directory structure shown in Figure 4.14
must be followed. The bundle consists of two main components: The algorithm and
the visualization. The algorithm is implemented in C++ and is located in the folder
src. Additionally, a bundle activator must be implemented, which is the interface to
the OSP. The folder bundle/webapp contains all files and subdirectories necessary
for the visualization. The visualization is based on web technologies like HTML,
CSS, and JavaScript.

PeakShaving

bundle

webapp

html, css, js files

bundle.properties

extensions.xml

src

BundleActivator.cpp

further C++ code

Makefile

PeakShaving.bnldspec

Figure 4.14: Directory structure for a valid bundle.
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The file PeakShaving.bndlspec contains important metadata in xml format for
the bundle to run. It must be built precisely to specification so that the bundle
works correctly. The exact specification can be found in the documentation of
macchina.io. [mac20] In contrast, extensions.xml contains the necessary information
about the web interface. Besides icons and UI-related things, the server directories
for this bundle can be defined here.

BundleActivator To make a bundle executable, it must implement two methods
in the file BundleActivator.cpp: start() and stop(). (See Figure 4.17.) In the
method start() the runtime environment and context are provided and must
be stored for further interactions with the OSP. This gives the bundle access
to the ServiceRegistry where all services from the system or other bundles are
registered and can be managed. In addition, the context provides essential interfaces
for development, such as a logger. If a bundle is terminated, the method stop()

is invoked automatically. Here it must be ensured that all stored references are
adequately released, and the bundle is brought into a safe state that allows a clean
restart.

Visualisation

The visualization of the algorithm is realized with web technologies. macchina.io
already offers some interfaces for this purpose. The power demand, grid consumption,
peak limit, and SOC are displayed graphically in a diagram for the current overview.
This allows the current status of the peak shaving and the necessary components to
be seen at a glance. In addition to the diagram, the last calculated status and some
statistical key figures are output textually. Figure 4.15 shows a screenshot of the
visualization.
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Figure 4.15: Screenshot of web based user interface.
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4.4 Software architecture

This subsection describes the implementation of the peak shaving algorithm based
on Kruchten’s “The 4+1 View Model of Architecture” [Kru95]. The software
architecture is described from four different perspectives: logical view, process view,
physical view, and development view. In addition, the interaction of all components
is illustrated in a so-called scenario.

4.4.1 Logical view and classes

OSP: BundleActivator

BundleActivator PeakShavingHandler

WebEventService Database

UI Controller

WebUI

Figure 4.16: Logical view of the software architecture according to [Kru95].

Figure 4.16 shows the logical structure of the software. Each node in the graph
represents a class in the software. All classes developed for this work are listed and
explained in more detail below.
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BundleActivator

The BundleActivator class inherits from OSP:BundleActivator and is responsible
for building and initializing all components of the peak shaving bundle. When
running the start-method, all user-defined parameters placed in a config-file get
loaded with the help of PreferencesService which is provided by OSP. Besides
the IDs of all sensors required for peak shaving, the configuration file also contains
other important parameters, such as the SOC limits. The class holds references for
all necessary sensors and builds an instance of the PeakShavingHandler. Any time a
sensor value updates, the PeakShavingHandler gets informed via the handleSOC()-
method or the handlePowerDemand()-method. Figure 4.17 shows the (simplified)
UML class diagram for the BundleActivator. Some utility functions are excluded
from the graphic for better clarity.

BundleActivator : OSP::BundleActivator

- pContext : BundleContext
- pPrefs : PreferencesService
- pListener : DeviceListener
- SOCSensorId : string
- demandSensorId : string
- batteryPowerSensorId : string
- batteryPowerRequestensorId : string
- pSOCSensor : ISensor*
- pDemandSensor : ISensor*
- pBatteryPowerSensor : ISensor*
- pBatteryPowerRequestSensor : ISensor*
- peakshavingHandler : PeakShavingHandler

+ start(pContext : BundleContext *) : void
+ stop(pContext : BundleContext *) : void
# handlePowerDemand(demand : double) : void
# handleSoc(soc : double) : void

Figure 4.17: UML class diagram for BundleActivator.

PeakShavingHandler

After a PeakShavingHandler has been built by the constructor, which, in addition
to the BundleContext, takes all configuration values relevant for the algorithm
summarized in a structure as parameters, the references to the BatteryPowerSensor
and the BatteryPowerRequestSensor must be set with the corresponding setter
methods in the PeakShavingHandler. In the context of macchina.io, instances of
sensors can be both sensors in the classical sense and actuators. BatteryPowerSensor
represents the Modbus interface to the inverter, which passes on the values sent to
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PeakShavingHandler

- pContext : BundleContext*
- pWebEventService : WebEventService*
- pMailService : MailService*
- databasePath : string
- pDatabase : Database*
- pBatteryPowerSensor : ISensor*
- pBatteryPowerRequestSensor : ISensor*
- timer : Timer
- storageCapacity : int
- socMin : int
- socMax : int
- batteryLowThreshold : int
- batteryCriticalThreshold : int
- batterySafetzLimit : int
- maxInverterPower : double
- invertBatterySensors : bool
- dayStartHour : int
- dayEndHour : int
- dayLen : double
- nightLen : double
- initialisationLimit : double
- deltaT : double
- numberOfDazsForMean : int
- numberOfDazsToLoad : int
- socMonitorTime : int
- powerDemand : double
- soc : double
- powerBattery : double
- powerGrid : double
- currentPeakLimit : double
- currentMonth : int
- lastDay : int
- currentDayIsHoliday : bool
- PSum : double
- workdaySums : vector<double>
- attentionMode : bool
- attentionValues : vector<double>
- attentionCounter : int
- attentionModeThreshold : double
- attentionModeApplyDelay : double
- socValues : vector<double>
- numberOfSocValues : int
- PValuesValues : vector<double>
- numberOfPValues : int
...

Figure 4.18: UML class diagram for PeakShavingHandler (part I).
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PeakShavingHandler
...

+ PeakShavingHanlder(pContext : BundleContext*, params : struct Params) : void
+ PeakShavingHanlder(params : struct Params) : void
+ handlePowerDemand(demand : double) : void
+ setSOC(soc : double) : void
+ setPowerDemand(powerDemand : double) : void
+ setBatteryPowerSensor(sensor : ISensor*) : void
+ setBatteryPowerRequestSensor(sensor : ISensor*) : void
+ setWebEventService(wes WebEventService*) : void
+ notifyWebEvent() : void
# checkHoliday(date : DateTime) : bool
# setInverterPower(pInverter : double) : void
# approximatelyEqual( : double, b : double, epsilon : double) : bool
- getDateKeyString(int d, int m, int y) : string
- getDateKeyString(Poco::DateTime d) : string
- getEaster(int year) : DateTime

Figure 4.19: UML class diagram for PeakShavingHandler (part II).

the battery controller. BatteryPowerRequestSensor provides the desired inverter
power as a value for verification.

Every 15 minutes the PeakShavingHandler receives the current power demand and
the method setPowerDemand(double demand) is invoked. This method handles
the new demand value and calculates the peak limit valid for the next time interval.
Because the holidays of the current year are also relevant for the calculation, they
are calculated dynamically at the program’s runtime. The checkHoliday() method
checks whether a passed date falls on a holiday. Based on the demand value and
all stored information, the next time interval’s battery power is calculated and
transmitted to the inverter. After the battery power has been sent to the inverter,
a timer is started which checks after one minute whether the desired power has
been applied correctly and sends a warning by e-mail in the event of an error.
Subsequently, all values calculated by the algorithm and some intermediate results
are stored in a database. After writing the data to the database, an update event is
sent (with a few seconds delay) via the available WebEventService, which informs
other services such as the user interface about the new records. The time delay is
used to ensure the completion of the data transaction.
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Database

Database

- mutex : FastMutex
- logger : Logger
- insertData : struct InsertData
- insertStatement : Statement
- getLatestPeaklimitStatement : Statement
- latestPeaklimit : struct TimestampValue
# scheduler : TimerTaskScheduler

+ Database(path : string)
+ insert(insertData : struct InsertData) : void
+ getLatestPeaklimit() : struct TimestampValue

Figure 4.20: UML class diagram for Database.

The Database class (see Figure 4.20) manages all database related features. When
a Database object is created, it automatically checks if a peak shaving database
already exists and, if not, generates a new SQLite database. The location can
be specified in the configuration file. If no preferences are provided regarding the
storage location, a database named peakshaving.sqlite will be created in the
data directory. The database itself consists of several tables which are explained in
the following.

Table ‘peakshaving’ stores all values relevant for the peak shaving algorithm,
which are updated at 15-minute calculation intervals. The structure of the database
table is shown in Table 4.13.

Table 4.13: Structure of the database table peakshaving.

Name Datatype

id INTEGER (primary key)
timestamp INTEGER
p demand REAL
p limit REAL
soc REAL
attention mode BOOL
error empty battery BOOL
error undersized inverter BOOL

For querying the latest peak limit from the database a statement is prepared:
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SELECT timestamp , p l i m i t FROM peakshaving ORDERBY
timestamp DESC LIMIT 1

For inserting a set of new values the following statement is prepared:

INSERT INTO peakshaving (timestamp , p demand , p l im i t ,
soc , attention mode , e r ror empty batte ry ,
e r r o r u n d e r s i z e d i n v e r t e r ) VALUES ( ? , ? , ? , ? , ? , ? , ?)

Table ‘workdaysums’ holds the total sums of the working days updated at the
end of each cycle at 22:00. To save memory space, only as many values are stored in
this table are necessary for calculating the peak limit. The required number is given
by parameter number of days for mean. See Table 4.14 for the table structure. To

Table 4.14: Structure of the database table workdaysum.

Name Datatype

id INTEGER (primary key)
timestamp INTEGER
sum REAL

limit the number of stored values to the most recent number of days for mean, the
following statement is executed after inserting a new row into the database.

DELETE FROM workdaysums WHERE id <= (SELECT id FROM
(SELECT id FROM workdaysums ORDERBY timestamp DESC
LIMIT 1 OFFSET ?) foo )

The value of number of days for mean set by the user is used as the parameter in
this SQL statement.

Table ‘powersum’ stores the sum of the power values of the current cycle. This
allows the algorithm to continue working with the previous data even if the system
is restarted. After a reboot, the sum value is read from the database and used, as
long as it is not older than 15 minutes. Otherwise, it is discarded and the algorithm
starts with a new (incomplete) cycle. Table 4.15 shows the structure of this database
table.

Table ‘powervalues’ holds the power data (see Table 4.16). Each time the current
power demand changes, the battery power is adjusted so that the grid draw remains
approximately constant. All three power values are permanently stored in the table.
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Table 4.15: Structure of the database table powersum.

Name Datatype

id INTEGER (primary key)
timestamp INTEGER
sum REAL

Table 4.16: Structure of the database table powervalues.

Name Datatype

id INTEGER (primary key)
timestamp INTEGER
p demand REAL
p grid REAL
p batt REAL
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4.4.2 Process view

Gateway

Peakshaving Controller

read & publish
sensor data
(high rate)

publish
averaged value

(low rate)

read data

PS controller
task

Battery Controller

batterypower
adjustment

battery controller
task

Figure 4.21: Process view of the software architecture according to [Kru95].

The process view according to [Kru95] is shown in Figure 4.21. As already described,
there are two independent devices: the gateway and the peak shaving controller. In
addition, there is a battery control device that regulates the battery power through
the inverter. The battery controller was not developed in the course of this thesis.

The gateway’s task is the continuous reading of the smart meter, which is connected
to the gateway via a Modbus interface.

For each time interval of 15 minutes, the measured power values are recorded and
numerically integrated over time (see process Read and publish Sensor Data in
Figure 4.21). At the end of each time interval, the value divided by the total time
is published on the MQTT broker and thus made available to the peak shaving
controller as a new power demand value (see process Publish Averaged Value in
Figure 4.21).
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In order to ensure a continuous adjustment of the battery power to the current power
demand, all measured sensor values are also published at the broker in addition to
the averaged value (see process Read and publish Sensor Data in Figure 4.21).

The Read Data process at the Peakshaving Controller is notified by the broker
when new data is available and triggers the PS Controller Task, which uses the
developed algorithm to calculate a peak limit that applies for the next quarter-hour.
This, in turn is passed on to the inverter, which regulates the battery power via the
Battery Controller process.

4.4.3 Development view

The development view defines the layers of development. Each layer depends on the
lower ones but not on the layers above.

Table 4.17: Development view of the software architecture according to Kruchten. [Kru95]

UI, Man-Machine-Interface

Inter Process Communication (WebEventService)

Peakshaving Control Algorithm

Database

Hardware I/O (Sensors, actuators)

As shown in Table 4.17, the lowest layer is the hardware communication. Through
the sensors and actuators, the system can interact with its environment. The current
power demand is transmitted to the system via the Modbus interface and is ready
for further processing. Communication with the inverter, which is the actuator in
this case, also takes place via a Modbus interface through which the setpoint of
the battery power is specified. It then regulates the actual power to the specified
value.

The database offers the possibility to store past sensor values and intermediate results
calculated from them permanently. This is essential for the correct determination of
the peak limit.

The peak shaving control algorithm determines a peak limit from the current sensor
data and the past values stored in the database, which is always valid for the next
time interval. This, as well as the intermediate results necessary for the calculation,
are stored in the database.

The WebEventService connects the two layers of the algorithm and the user
interface.
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The UI forms the highest layer and facilitates a user-friendly interaction between
the system and the user. It contains a graphical presentation of the data as well as
a status display of the entire system with all components.

4.4.4 Physical view

Gateway PS Controller

Broker

MQTT

Data
aquisition

Data
preperation

Data
publishing

Data
aquisition

PS
Handler

UI
Control

Figure 4.22: Physical view of the software architecture according to [Kru95].

Figure 4.22 shows the physical view of the overall system. Since a direct connection
of the Modbus meter to the peak shaving control system is not always possible
due to local conditions, a separation into the gateway and peak shaving controller
was chosen, as can already be seen in the process view. The gateway handles the
acquisition of the meter data and its processing. The peak shaving controller then
manages the actual regulation and communication with the inverter. An MQTT
broker serves as a bridge between the two devices.

Figure 4.23 shows all components and interfaces of the system for a better overview.
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Energy Manager
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Figure 4.23: Overview of the system composition and the interfaces.
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4.4.5 Scenario
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Figure 4.24: Scenario of the software architecture according to [Kru95].

Figure 4.24 shows a typical procedure of the system from the reading of the sensor
value to the visualization on the user interface. Since the gateway is the Modbus
master, it initiates the reading of the current power value from the meter (1), which
then returns the desired sensor value (2). This process is continuously repeated
until the defined time interval of 15 minutes has elapsed. All recorded values are
then averaged, and the resulting power is transmitted to the broker (3), which
immediately informs the peak shaving controller about the presence of a new value
(4).

The controller determines the necessary battery power for the next time interval
and sends it to the battery controller via the inverter (5). Subsequently, the newly
calculated values and the measured power demand are stored in the database (6).

After the data transaction is completed, the WebEventService is informed about the
new database entry (7), which automatically causes the user interface to execute
an update event (8). In this event, the data requested by the user is retrieved from
the database (9), and the returned data records (10) are graphically prepared.
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A similar scenario occurs when a new (unaveraged) power value is available. The
value read by the smart meter is published directly to the broker (3), which informs
the peak shaving controller (4). The controller then adjusts the battery power to
the current conditions (PBatt = Pdemand − Plimit) so that the power drawn from the
grid does not exceed the peak limit, which is calculated only using averaged values
over a 15-minute interval (5). The new data is written to the database (6), and
the WebUI is updated via the WebEventService (7 -10).
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To evaluate the profitability of peak shaving, a cost-benefit calculation is carried
out based on the simulation data. This involves varying demand prices and battery
storage sizes to achieve the best result and achieve the system components’ optimum
configuration where the yield is highest.

5.1 Cost Function

Battery life of 10 years is assumed for the evaluation. Due to the lack of available data
over such a long period, the electricity cost savings are considered to be approximately
the same over all years. The battery storage system costs are assumed to be 300 Euro
per kilowatt hour, which is currently the standard on the market. The investment
costs are offset against the annual savings in electricity costs over the battery life
and evaluated for different battery storage sizes. This allows the storage size to be
determined at which the yield is highest.

With the current demand price and the presently necessary investment costs for
battery storage systems, an economic operation of peak shaving based on the existing
performance profiles is not possible. (See solid black line in Figure 5.1.)

It can be assumed that demand prices will rise in the coming years. More and
more photovoltaic systems are being connected to the grid, thus stressing the grid
infrastructure. In Germany, the current demand prices are already twice as high
as in Austria. For this reason, the simulation was also carried out with different
demand prices. The results show that, as was to be expected, the yield increases with
rising power prices. Figure 5.1 illustrates the expected profits at different demand
prices depending on the size of the battery storage.

According to Holland, the average investment costs for battery storage will drop
to about e 100 per kilowatt hour by 2023. [Hol19] This creates new opportunities
for peak shaving to be more economical. For this reason, further evaluation with
different battery storage prices is done.

Figure 5.2 shows the results for a storage price of e 200 per kilowatt hour. At the
current low demand price in Austria, however, this is still not profitable. Only from
e 100 per kilowatt, an economical operation is possible. With the electricity tariffs
in Germany, though, a positive balance at the end of the battery life would already
be feasible under these conditions.
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Figure 5.1: Total earnings over battery capacity at battery storage cost of e 300 per kilowatt-hour.
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Suppose the battery costs continue to fall, and battery storage is available from
100¿ per kilowatt-hour. In that case, an economical operation is possible even at the
current demand prices, as shown in Figure 5.3. If the demand price still rises, the
operation of peak shaving becomes more and more profitable and leads, depending
on the demand price, to a return between 10 000 and over 40 000 Euro at the end
of the battery lifetime of 10 years.
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Figure 5.3: Total earnings over battery capacity at battery storage cost of e 100 per kilowatt-hour.
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5.2 Discussion

The result of this thesis is a working algorithm that, in contrast to most of those
found in the literature, computes a dynamic peak limit live, i.e. at runtime. This
does not require past data models and load profiles, as is the case with the current
state of the art. The optimal peak limit calculation for each billing period depends
on the storage size, the maximum inverter power, and the power demand. Demand
data is collected over the runtime to be used in further computations.

As the evaluation shows, cost recovery or profitable operation is not possible at
current power costs and storage prices. Therefore, investing in an energy storage
system only for peak shaving reasons is not target-oriented. However, the trend
shows a clear direction. Following this trend, both, the investment costs in energy
storage will decrease, and the performance costs will increase in the future. These
circumstances make peak shaving interesting in the coming years.

Nevertheless, in most cases, energy storage systems are installed in connection with
photovoltaic systems and are thus already available. In this case, a cost-saving can
be achieved by applying peak shaving since the investment does not have to be
amortized purely by peak shaving.

The developed overall system is ready as a prototype and will go into a test run.
However, the results of this test phase will not be available for about a year and are
therefore not included in this work.

71



6 Conclusion and Outlook

The aim of this thesis was to develop a peak shaving algorithm that finds an optimal
peak limit for each accounting period in terms of cost reduction. A further limitation
is that the calculations are performed on an embedded system, and the computing
power is therefore limited. Furthermore, no power demand profiles are available over
a more extended period of time, which is why the algorithm can only rely on data
collected at runtime.

Different approaches were tried, evaluated, and analyzed. Finally, the analyses led to
a combined algorithm that brings together the advantages of a rigid analytical part
with those of a flexible, responsive part. For the majority of the time, the power
demand follows approximately a recurring pattern. While it is almost consistently
low during the nighttime, it increases significantly during the morning hours and
peaks midday. In the evening hours, demand falls back to the nighttime level. On
holidays or weekends, there is no increase in the morning. The power curve remains
approximately at night level. The algorithm’s analytical part uses this repetitive
pattern to calculate a peak limit at the end of each cycle, starting from the beginning
of the night at 10 p.m. and lasts precisely 24 hours. The limit is determined so
that the energy available to charge the energy storage device is exactly equal to
the energy extracted from the battery. This allows the energy storage to start each
cycle with the same charge level theoretically.

However, since the limit is only determined at the end of a cycle and is only partially
optimal for the next cycle, the responsive part is used. It consists of two components,
the so-called Attention Mode, and SOC monitoring. The former tries to predict and
approximate the optimal peak limit based on the power demand’s current course. If
this approximated limit is higher than the currently valid one over a longer period
of time, it is adjusted. This is to ensure that the algorithm also works for cycles
that are not similar.

SOC monitoring keeps track of the battery’s charge level and prevents it from
running out of charge. When the charge level drops and is no longer sufficient until
the next recharge time, the peak limit is increased early to relieve the battery while
not increasing the peak limit disproportionately, negating the savings effect in power
costs.

In simulations, the developed algorithm’s application resulted in savings in power-
related costs of over 35%. Unfortunately, at current power prices, which are still
relatively low compared to international standards, the savings in total costs do not
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result in large gains. For this reason, the investment costs for an energy storage
system of sufficient size could not be amortized by the use of peak shaving alone.
Due to the extensive expansion of renewable energy and the subsidies in this regard,
the investment costs will decrease significantly in the future, and the power-related
charges for electricity will increase. This opens up more opportunities for peak
shaving to achieve savings as well.

In many cases, however, an energy storage system is already available in combination
with a photovoltaic plant and can also be used for peak shaving. This allows peak
shaving to be used and leads to higher yields since the investment does not have to
be covered by peak shaving alone.

6.1 Outlook

Since peak shaving currently achieves the best savings effect combined with a
Photovoltaic (PV) system, it makes sense to integrate it into the algorithm. This
means that the battery can be charged during good weather conditions without
having to draw power from the grid. Besides, the self-consumption of the energy
generated by the PV, which, according to research, is on average only about 30%,
can be increased and thus achieve further cost savings.

In the course of the expansion of renewable energy sources, more and more PV
systems will be brought into operation. However, this puts a strain on the utility
grids, as excess energy from the PV system has to be fed into the grid. The more
systems that feed into the grid, the more difficult it is for the infrastructure to
distribute the energy. Sunny summer days, when solar irradiation is high, result in
a large surplus of energy in these regions that is fed into the grid.

To counteract a large-scale and thus expensive expansion of the supply networks,
it is evident that in the future, the feeding in of high power will be penalized in
some form. A power-related charge, as is customary for the drawing of power, is
conceivable.

This opens up another application for peak shaving. By applying the peak shaving
algorithm, the power costs incurred by the feed-in can be reduced, and the self-
consumption increases. To do this, it is necessary to use the battery, possibly through
weather forecasts and based on past data, in such a way that there is enough energy
for high power demands (peaks) but also enough capacity for storing excess energy
from the PV system, which thus does not have to be fed into the grid.
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Nomenclature

BESS Battery Energy Storage System

DSM Demand Side Management

DP Dynamic Programming

EEM EOS Energy Manager

ESS Energy Storage System

EV Electric Vehicle

LF Load Factor

OSP Open Service Platform

PV Photovoltaic

SOC State of Charge
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