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Abstract

Nowadays, it is crucial to use cryptography to define secure digital processes that
protect our data from unauthorised access. So-called public-key encryption can
be used for data encryption, digital signatures, or key-encapsulation mechanisms.
Lattice-based cryptography is a subgroup of these systems, which also promises
post-quantum security as opposed to currently used public-key cryptosystems
like RSA and ECC. As lattice-based cryptography is rather new, it still needs
more thorough research. Besides security, the efficiency of cryptosystems plays
a major role, especially on embedded systems and smart cards with limited
resources.
In this thesis, we analyse performance bottlenecks using the example of the
lattice-based cryptosystem NTRU Prime and try to optimise the inefficient
operation of polynomial multiplication. Using the Kronecker substitution, we
can convert polynomials into large integers, thus running the expensive mul-
tiplication on fast large-integer multiply-accumulate (MAC) hardware units.
We implemented Kronecker substitution and three variations of it for the ring
Zq[x]/(xp − x− 1) of NTRU Prime, and counted the number of multiplications
and additions as a basis for comparison. This approach allows us to make
runtime estimates based on the total number of operations.
Compared to the current state-of-the-art implementation, we see some improve-
ments. For an assumed register bit-width of the MAC-unit of 256-bit, we only
need 19% – 34% of the operations. For 2048-bit, we only need 6% – 31%. Our
results prove that Kronecker substitution is competitive on embedded devices,
and our deliberately general approach can be easily transferred to various other
Lattice-based cryptosystems.
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Kurzfassung

Heutzutage ist es enorm wichtig mittels Kryptografie sichere digitale Abläufe
zu definieren, die unsere Daten vor fremden Augen schützen. Sogenannte
Public-Key-Verschlüsselungsverfahren können zur Datenverschlüsselung, für
Digitale Signaturen oder zum geschützten Schlüsselaustausch dienen. Die
Lattice(,,Gitter“)-basierte Kryptografie ist eine Untergruppe dieser Verfahren,
die im Gegensatz zu den derzeit verwendeten Public-Key-Kryptosystemen
wie RSA und ECC auch Post-Quanten Sicherheit verspricht. Da die Lattice-
basierte Kryptografie ein relativ neues Forschungsgebiet ist, muss sie noch
gründlicher erforscht werden. Neben der Sicherheit spielt aber auch die Effizienz
der Kryptosysteme eine tragende Rolle, vorallem auf eingebetteten Systemen
und Chipkarten mit begrenzten Ressourcen.
In dieser Arbeit analysieren wir Performance-Engpässe am Beispiel des Lattice-
basierten Kryptosystems NTRU Prime, und versuchen die rechenintensive
Operation der Polynommultiplikation zu optimieren. Mit der Kronecker Substi-
tution können wir Polynome in große Ganzzahlen umwandeln, und die teuren
Multiplikation dadurch auf schnellen Multiply-Accumulate (MAC) Hardwareein-
heiten für große Ganzzahlen laufen lassen. Wir haben die Kronecker Substitution
und drei Variationen davon für den Ring Zq[x]/(xp − x− 1) von NTRU Prime
implementiert, und als Vergleichsbasis die Anzahl an Multiplikationen und Ad-
ditionen gewählt. Diese Herangehensweise erlaubt es uns Laufzeitabschätzungen
basierend auf der Anzahl dieser Operationen durchzuführen.
Im Vergleich zu optimierten Implementierungen von NTRU Prime zeigen unsere
gewählten Algorithmen durchaus Verbesserungen. Bei einer angenommenen
Register-Bitbreite der MAC-Einheit von 256-bit benötigen wir lediglich 19% –
34% der Zugriffe. Bei 2048-bit sind es sogar nur 6% – 31%. Unsere Ergebnisse
beweisen, dass Kronecker Substitution auf eingebetteten Systemen konkur-
renzfähig ist, und unser bewusst generell gehaltener Ansatz lässt sich einfach
auf diverse andere Lattice-basierte Kryptosysteme übertragen.
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1 Introduction

In the digital age, computers surround us in nearly every situation in life. Not
only does this apply to smartphones, laptops, and our other electronic devices,
but also tiny computers that are embedded in places one might not expect.
These include, for example, smart gadgets, chip cards like our banking card or
ID, or even health-related devices like hearing aids. With the rising demand
for smart living and electronically assisted processes, consumers are more and
more dependent on the various manufacturers and developers for those so-called
embedded devices. However, this dependency does not only refer to usability and
other functional requirements but also data security. While most users would
probably not mind if someone hacked into their smart fridge and stole data about
their purchasing behaviour, they would undoubtedly do if their banking account
got compromised and their money was stolen. Cryptography does exactly what
we need: it defines secure procedures to handle our sensitive data. To name the
most important properties: if applied correctly, secure cryptographic systems
(cryptosystems) maintain data confidentiality by encryption and ensure integrity
(i.e. detection of manipulation) by computing checksums while also providing
availability of data at any time.

Security. Proving the security of a cipher is not only challenging but impossible
to do without doubts. Instead, most popular public-key cryptosystems that
are believed to be secure rely on one of three hard mathematical problems.
These problems are the integer factorization problem, the finite-field discrete
logarithm problem, and the elliptic-curve discrete logarithm problem. There
are already attacks, for example Shor’s algorithm, to break schemes built on
these hard problems, but with current hardware, those attacks are far from
being usable in practice. So, we say that these established cryptosystems are if
implemented correctly, secure because known attacks are not feasible on today’s
hardware.
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1 Introduction

Preparing the World for Quantum Computers. While with improving hard-
ware, the performance of many algorithms is increased significantly, this, un-
fortunately, applies to attacks too. Nowadays, some groups research on the
topic of so-called quantum computers, which take advantage of certain phys-
ical phenomena to achieve so far undreamed-of computational powers. Once
sufficiently efficient quantum computers are built, most, if not all, public-key
cryptosystems that are currently in use are basically broken. To be prepared
for quantum computers, researchers in the field of post-quantum cryptography
(PQC) work on developing new algorithms. These should be efficient and secure
on current hardware and be designed in a way that they are still secure once the
quantum computers are available. We need to design and thoroughly analyse
new cryptosystems to protect our privacy for the post-quantum case.

NIST Post-Quantum Cryptography Standardization. In February 2016, the
National Institute of Standards and Technology (NIST) requested cryptogra-
phers to develop and submit public-key PQC algorithms to their new stan-
dardization “competition” [Nat]. The goal is to find and specify one or more
complete and secure schemes for digital signatures (DS), public-key encryption
(PEK), and key-establishment algorithms (“key encapsulation mechanisms”,
KEM) that are publicly disclosed and available worldwide. The process spans
over several years and consists of at least three rounds in which cryptographers
are asked to participate by analysing the schemes and publishing comments.
After the initial round with 69 proper submissions, the competition evolved
to round two early in 2019, with 26 remaining candidates. The second round
focused on performance analysis across a wide variety of systems, while the first
round emphasised security and correctness analysis. On 22nd of July, 2020, the
15 third-round candidates were announced. Seven of them are called finalists
and will still be reviewed for the possibility of becoming standardised as a result
of this third round. The remaining eight are alternate candidates that still get
evaluated and are considered to have high potential to get standardised, but
most probably not during this last official round.

Lattice-Based Cryptosystems. Out of the 26 second-round candidates of the
aforementioned NIST PQC competition, 12 are lattice-based. Speaking of the
current (third) round, 5/7 finalists and 2/8 alternate candidates are lattice-
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1 Introduction

based. All these algorithms involve lattices, either in the construction itself or in
the security proof. Those nine candidates all rely on one of the computationally
hard lattice-based problems that are believed to be unsolvable using quantum
computers. Learning with Errors (LWE) [Reg09], Module-LWE [LS15], and
Ring-LWE [LPR12], as well as the “NTRU assumption”, which was introduced
with the NTRU cryptosystem [HPS98], are the ones the NIST candidates built
upon. There are also some other hard problems, for example, the Shortest
Vector Problem (SVP), the Closest Vector Problem (CVP), or the Bounded
Distance Decoding (BDD). Although there are many security assumptions
lattice-based schemes can be based on, many of them are quite similar to each
other. Ring-LWE and Module-LWE, for example, are extensions of LWE, and
the NTRU assumption is almost equivalent to the SVP in a particular class of
lattices. In general, lattice-based cryptography is a relatively new field and still
has to be thoroughly researched.

(Streamlined) NTRU Prime. The NTRU family is a group of several differ-
ent algorithms based on the NTRU cryptosystem. It consists of NTRU NTT
[LS19], NTRU Classic [HPS98] and NTRU Prime [Ber+18]. NTRU Prime is
an ideal-lattice-based alternate candidate of the third round of the NIST PQC
competition and falls in the category of KEMs. The developers claim that
NTRU Prime has many features that avoid potential security risks in the used
rings’ special structures that made other ideal-lattice-based schemes prone to
attacks. There are two public-key cryptosystems in the NTRU Prime family,
both designed for the standard goal of IND-CCA2 security. The one we will
focus on is Streamlined NTRU Prime [Ber+18].

Outline. This thesis aims to increase the performance of lattice-based cryp-
tosystems on embedded devices by identifying a significant performance bot-
tleneck and analysing methods to mitigate its impact. To give an overview of
the mathematical constructs used throughout this thesis, we start by stating
them and their used notations in Chapter 2. Afterwards, Chapter 3 introduces
the reader to the backgrounds of the NTRU cryptosystem, the family of cryp-
tosystems NTRU Prime, and our target system Streamlined NTRU Prime in
Section 3.1. Here, we also identify the polynomial multiplication as the primary
performance problem we want to analyse. To have an overview of different
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1 Introduction

multiplication methods and their input-dependent runtimes, we describe some
of the most famous ones in Section 3.2, and state which of them were already
analysed for NTRU Prime in practice so far in Section 3.3. Despite its very high
potential for efficient hardware implementations, the Kronecker substitution
(Subsection 3.2.6) was not researched in combination with Streamlined NTRU
Prime yet, which is why we decided to focus on it in this thesis. In Chapter 4,
we describe a set of adaptations for Kronecker substitution, which promise even
further performance improvements. In Chapter 5, we explain how we applied
Kronecker substitution and its variants to our target cryptosystem. Our theoret-
ical results are presented in Chapter 6, where we explain what methodology we
chose for meaningful comparisons. We then directly compare the state-of-the-art
implementation of polynomial multiplication in Streamlined NTRU Prime with
our chosen techniques. We show that Kronecker substitution and its variants
are indeed a powerful enhancement for polynomial multiplication on hardware
with the properties we specified. To conclude this thesis, Chapter 7 summarises
our findings and suggests further enhancements and future work.

4



2 Notation

In the following, we introduce some mathematical constructs and their respective
notations that are used in this thesis. For a more in-depth explanation of the
below-defined terminology, we refer to the books [HPS08; Kob94; Mao03].

Rings. A ring is an algebraic structure that consists of a set R for which
the arithmetic operations addition (+) and multiplication (·) are defined. A
well-known example of a ring is the ring of integers, commonly denoted as Z.
Additionally, the ring of integers modulo m is denoted as Zm. We let the ring
of integer polynomials be Z[x], and say that polynomials f(x) ∈ Z[x] have the
form

∑n
i=0 fix

i, where n ≥ 0 denotes the degree of the polynomial, and the fi
are its integer coefficients. We write Zm[x] to indicate that the coefficients fi
are integers modulo m. Further, if we have a (polynomial) ring R we write its
quotient ring by g as R/(g) to be the collection of all congruence classes, where
g ∈ R, and a congruence class ā of some a ∈ R is the set for all a′ ∈ R such
that a′ ≡ a (mod g). Thus, R/(g) = {ā : a ∈ R}. To combine the above, each
element of a polynomial quotient ring Zm/(g(x)) has a unique representative
with a lower degree than g(x), and whose coefficients are non-negative and
smaller than m. Finally, we also mention ideals. An ideal is a non-empty subset
I of a ring R, for which x− y ∈ I, ∀x, y ∈ I, and x · y ∈ I, ∀x ∈ I, ∀y ∈ R, hold.
The set of even numbers is an example of an ideal of Z.

Operations in a Ring. We will denote both integer multiplication and polyno-
mial multiplication in a ring with the operator ·, where the context follows from
the description of the respective setting and involved operands. The convolution
product, also written with ·, is a notation for a polynomial multiplication in a
polynomial quotient ring, meaning that for two operands a(x), b(x) ∈ Zm/(g(x)),
with modulus m ∈ Z and polynomial g(x) ∈ Zm[x], their product is defined as

5



2 Notation

c(x) = a(x) · b(x) (mod g(x)) (mod m). Additionally, if a polynomial f(x) in a
ring cannot be represented by any two polynomials d(x) · e(x), where d(x), e(x)
are not units in the ring, particularly d(x), e(x) 6= 1, we say that f(x) cannot
be factored and is thus irreducible over said ring. Then, we define that a lift
is a natural map from a polynomial quotient ring Rm = Zm[x]/(g(x)) to a
polynomial quotient ring R = Z[x]/(g(x)). Lifting an element of Rm returns its
unique equivalent polynomial in R with coefficients in {0, 1, · · · ,m− 1}. Center
lifting similarly returns this same elements’ unique equivalent polynomial in R,
but with coefficients in {−(m− 1)/2, . . . , (m− 1)/2}.

Congruency and Multiplicative Inverses. If we have two integers a, b, and a
modulus m, we write a ≡ b (mod m) to show that a and b are congruent modulo
m, and similarly for polynomials. The multiplicative inverse of f in some ring
is denoted as f−1, and satisfies f · f−1 = 1 in said ring. Similarly, this also
applies to polynomials f(x), g(x), where f(x) · f−1(x) ≡ 1 (mod g(x)) is the
multiplicative inverse of f(x) modulo g(x), if such a multiplicative inverse exists.
While all elements of a ring have an additive inverse, they are not required to
have a multiplicative one.

Fields. A ring in which every nonzero element has a multiplicative inverse
is called a field F. Additionally, if we have Zm[x]/(p(x)), then this is called a
field if and only if p(x) is irreducible in Zm[x]. A special kind of fields are finite
fields, also called Galois fields, denoted as Fp, where p is prime, and the field
has exactly p elements. Of course, as all fields are rings, the described notations
for rings can also be applied to fields.

Integer representation. Any integer A can be represented as A =
∑n−1

i=0 aiβ
i,

where the integer β > 0 is its internal base, the integer n > 0 is its length in
digits, and the ai ∈ {0, 1, . . . , β − 1} are the respective digits. If we evaluate
a polynomial f(x) ∈ Z[x] at a given point x = X, where X ∈ Z is a power
of 10, we may write the resulting integer F = f(X) with dividing symbols “|”
to emphasise the coefficients of the evaluated polynomial. For example, we let
f(x) = 35x2+14x+30 and evaluate at X = 103 to get F = f(103) = 35|014|030.
The | aim to show the coefficients of f(x) and serve as a visualisation tool for
better understanding, but are not a mathematical operator.

6



3 Background on NTRU Prime and
Multiplication Algorithms

In this chapter, we describe the cryptosystem that we focus on in this thesis:
NTRU Prime. Section 3.1 summarises the NTRU family tree, Subsection 3.1.1
gives an introduction to the original NTRU public-key cryptosystem, and Sub-
section 3.1.2 explains how (Streamlined) NTRU Prime, which tweaks NTRU,
works and what the developers’ parameter recommendations are. In Subsec-
tion 3.1.3, we will also hear about polynomial multiplication and why this
operation, in general, is a topic of interest for us.

Afterwards, we give an in-depth introduction to the problem of polynomial
multiplication. Therefore, in Section 3.2, we provide an overview of different
algorithms for fast integer (and polynomial) multiplication and show how to
convert polynomial arithmetic to large integer arithmetic using Kronecker
substitution.

3.1 The NTRU Family

The NTRU family consists of three cryptosystems that tweak the ring-based
public-key encryption cryptosystem NTRU [HPS98], published by Hoffstein,
Pipher, and Silverman in 1998. A description of the original NTRUEncrypt is
given in Subsection 3.1.1.

The three main branches of the NTRU tree are:

• “NTRU Classic”, which uses rings of the form Zq[x]/(xp − 1), where p is
prime and q is a power of 2, and follows the original NTRU system.

7



3 Background on NTRU Prime and Multiplication Algorithms

• “NTRU NTT”, which uses rings of the form Zq[x]/(xp + 1), where p is
a power of 2 and q ∈ 1 + 2pZ is prime. Those rings are used in typical
Ring-LWE-based cryptosystems.

• “NTRU Prime”, which uses rings of the form Zq[x]/(xp − x− 1), where
p and q are prime. The ring of NTRU Prime is actually a field, because,
given the parameter requirements for NTRU Prime (see Subsection 3.1.2),
xp−x− 1 is always irreducible in Zq[x]. NTRU Prime is the cryptosystem
we are analysing in this thesis, a detailed description of the algorithm and
the designer’s recommendations is given in Subsection 3.1.2.

For a more detailed picture on the NTRU family tree, we refer to Figure 1.1. in
[Ber+18].

To describe the cryptosystems we denote the two actors as A (Alice, the receiver)
and B (Bob, the sender).

3.1.1 The NTRU Public-Key Cryptosystem

To use the most natural approach, we will describe the NTRU public-key
cryptosystem (NTRUEncrypt) using quotient polynomial rings, but note that
the underlying hard mathematical problems can also be interpreted as the
shortest vector problem (SVP) [Ajt98] or closest vector problem (CVP) [Din+03]
in a lattice.

The following description is taken from [HPS08].

Setting. We fix an integer N ≥ 1 and two moduli p and q, and let

R = Z[x]/(xN − 1), Rp = Zp[x]/(xN − 1), Rq = Zq[x]/(xN − 1)

be polynomials rings. We require N and p to be prime and that gcd(N, q) =
gcd(p, q) = 1. Furthermore, for any positive integers d1, d2, we let

T (d1, d2) =

{
a(x) ∈ R :

a(x) has d1 coefficients equal to 1,
a(x) has d2 coefficients equal to − 1,
a(x) has all other coefficients equal to 0

}
,

where polynomials in T (d1, d2) are called ternary polynomials.

8



3 Background on NTRU Prime and Multiplication Algorithms

Public parameter creation. The public parameters are (N, p, q, d), where N, p
and q have to be chosen according to the guidelines above, and d is a positive
integer. To guarantee correct decryption, choose q > (6d+ 1)p. This is done by
either A or some trusted third party.

Key creation. A randomly chooses two polynomials

f(x) ∈ T (d+ 1, d) and g(x) ∈ T (d, d),

where f(x) needs to be invertible in both Rq and Rp (otherwise, A samples a
new polynomial f(x)). Then, A computes the inverses

Fq(x) = f(x)−1 in Rq and Fp(x) = f(x)−1 in Rp.

Aś public key is h(x) = Fq(x) · g(x) in Rq, and their private key to decrypt
messages is the pair (f(x), Fp(x)).

Encryption. B has a plaintext m(x) ∈ R whose coefficients are between −p
2

and p
2 . Then, B chooses a random ephemeral key r(x) ∈ T (d, d) and computes

the ciphertext e(x) ≡ pr(x) · h(x) +m(x) (mod q), which is in the ring Rq.

Decryption. On receiving e(x), A computes a(x) ≡ f(x) ·e(x) (mod q). Then,
A center lifts a(x) to an element of R and reduces modulo p to get b(x) ≡
Fp(x) · a(x) (mod p). For correctly chosen parameters, b(x) equals the plaintext
m(x) (the decryption was successful).

Security. NTRU relies on the “NTRU key recovery problem” (“NTRU as-
sumption”), which is defined as follows:

Given h(x), find ternary polynomials f(x) and g(x) satisfying
f(x) · h(x) ≡ g(x) (mod q).

Any pair of polynomials (f(x), g(x)) with sufficiently small coefficients and that
satisfies the hidden relation

f(x) · g(x) ≡ g(x) (mod q)

9



3 Background on NTRU Prime and Multiplication Algorithms

serves as a potential NTRU decryption key. As this problem cannot be solved
by a brute-force or collision attack, and as it is (almost certainly) equivalent to
solving the SVP in a certain class of lattices [HPS08], the “NTRU assumption”
is believed to be a post-quantum secure hard problem.

3.1.2 Streamlined NTRU Prime

Streamlined NTRU Prime is a KEM: the sender, B, takes a public key as input
and outputs a ciphertext and session key. It uses the same field as NTRU Prime:
Zq[x]/(xp − x− 1), where p and q are prime. The cryptosystem offers several
implementation benefits and security advantages beyond those of the chosen
ring of NTRU Prime. A nice example is the elimination of decryption failures
that are a common yet annoying property of most lattice-based cryptosystems,
such as the original NTRUEncrypt. The authors aim for the standard security
goal of IND-CCA2 security, i.e. security against adaptive chosen-ciphertext
attacks [Bel+98], at the standard 2128 post-quantum security level.

Parameters and setting. Due to the various possibilities the parametrisation
offers, Streamlined NTRU Prime is more like a family of cryptosystems. The
parameters are (p, q, t), where we require that p, q, t are positive integers, p
and q are prime, t ≥ 1, p ≥ 3t, q ≥ 32t + 1, and xp − x − 1 is irreducible in
the polynomial ring Zq[x]. For the setting of Streamlined NTRU Prime we
denote the ring Z[x]/(xp − x − 1), the ring Z3[x]/(xp − x − 1), and the field
Zq[x]/(xp − x− 1) by R, R3, and Rq, respectively. An element of R is small if
all of its coefficients are in {−1, 0, 1}, and a small element is t-small if exactly
2t of its coefficients are non-zero. Such t-small elements are also called short
polynomials, and their Hamming Weight is obviously 2t. The authors’ case study
in [Ber+18] sets the recommended parameters to p = 761, q = 4591, t = 143 –
they introduce and recommend the cryptosystem “Streamlined NTRU Prime
4591761” (sntrup761). In Table 3.1 we listed the three main parameter set
proposals for Streamlined NTRU Prime in the 3rd-round submission of NTRU
Prime, where they added a new smaller sized set and a new larger sized set to
the original recommendation.

We will continue the system’s description with the parameters of Streamlined
NTRU Prime 4591761.

10



3 Background on NTRU Prime and Multiplication Algorithms

Name Description p q t

sntrup761 Initial 2nd-round recommendation 761 4591 143

sntrup653 New smaller size 653 4621 144

sntrup857 New larger size 857 5167 161

Table 3.1: Recommended parameter sets for Streamlined NTRU Prime in the
3rd round submission of NTRU Prime [Ber+20].

Key generation. A generates a random small element g(x) ∈ R, repeating
until g(x) is invertible in R3, and a uniform random t-small element f(x) ∈ R.
They then compute h(x) = g(x) ·3f(x)−1 in Rq (f(x) is invertible in Rq because
f(x) 6= 0 and t ≥ 1), and encode h(x) as a string h, which acts as the public
key1. The secrets f(x) in R and g(x)−1 in R3 are stored for later.

Encapsulation. To generate a ciphertext, B decodes the public key h to obtain
h(x) ∈ Rq, generates a uniform random t-small element r(x) ∈ R, and computes
h(x)r(x) ∈ Rq. They then round each coefficient of this product, viewed as
an integer between − q−1

2 and q−1
2 , to the nearest multiple of 3, producing2

c(x) ∈ R. c(x) is then encoded as a string c, and B hashes3 r, obtaining a left
half C (“key confirmation”) and a right half K. The resulting ciphertext is the
concatenation Cc, the session key is K.

Decapsulation. To decapsulate a ciphertext, A decodes c to obtain c(x) ∈ R,
and multiplies by 3f(x) in Rq. They then view each coefficient of 3f(x)c(x) in
Rq as an integer between −( q−12 ) and ( q−12 ) and reduce modulo 3 to obtain a
polynomial e(x) in R3. Afterwards, A computes e(x)g(x)−1 in R3 and lifts this
product to a small polynomial r′(x) ∈ R. They compute c′(x), C ′, and K ′ from
r′(x) as for the encapsulation. If r′(x) is t-small, c′(x) = c(x), and C ′ = C, the

1Encoding of public keys as strings is a special parameter for Streamlined NTRU Prime,
it allows to compress public keys for systems where q is noticeably smaller than a power of 2.

2In our case, for q = 4591, each coefficient of c(x) is in {− q−1
2

, . . . ,−3, 0, 3, . . . , q−1
2
}.

3The encoding of ciphertexts as string and the hash function are additional parameters for
Streamlined NTRU Prime. For our case, see encoderoundedRq and encodeZx, respectively,
in Figure Z.1. in [Ber+18].
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3 Background on NTRU Prime and Multiplication Algorithms

output is K ′, the same session key as the one obtained during the encapsulation
(K ′ = K). Otherwise the output is False.

Security of parameter choice. Just like for NTRU, the security of Stream-
lined NTRU Prime relies on the NTRU key recovery problem. The suggested
parameters p = 761, q = 4591, t = 143 have an estimated pre-quantum security
of 2248, and an expected post-quantum security level below that, but with still
comfortably enough margin above the target of 2128 [Ber+18].

3.1.3 Performance Bottleneck: Polynomial Multiplication

This thesis’s main goal is to contribute to the efficiency of Streamlined NTRU
Prime on embedded devices. Therefore we researched the main performance
problem of the KEM. [Ber+18] provide a Haswell cycle count of their optimised
Streamlined NTRU Prime implementation, where they counted the cycles for
the encapsulation and decapsulation phase. They claim that almost 75% of the
needed 157052 Haswell cycles are spent on four multiplications of polynomials
modulo xp − x− 1. This huge performance impact makes the polynomial multi-
plication a very interesting point for speed enhancement analysis in this thesis,
especially for our chosen candidate cipher. After we introduce different multi-
plication techniques in Section 3.2, we talk about the current implementations
for Streamlined NTRU Prime in Section 3.3.

3.2 Large Integer Multiplication Algorithms

This section describes some well-known and commonly used methods for fast
integer and polynomials multiplications, as we want to analyse polynomial
multiplication techniques for our target cipher. The multiplication algorithms
we introduce are the schoolbook method (Subsection 3.2.1), Karatsuba’s al-
gorithm (Subsection 3.2.2), the Toom-Cook multiplication (Subsection 3.2.3),
the Number Theoretic Transform (Subsection 3.2.4), the Schönhage-Strassen
method (Subsection 3.2.5), and the Kronecker substitution (Subsection 3.2.6).
A great in-depth overview of these can be found in [BZ10], which is the primary
information source for this section.

12



3 Background on NTRU Prime and Multiplication Algorithms

The Setting. We want to multiply two integers A =
∑m−1

i=0 aiβ
i and B =∑n−1

j=0 bjβ
j to get the resulting integer C = A ·B =

∑m+n−1
k=0 ckβ

k. The above
representation of A,B,C uses their internal base β > 0 ∈ Z, the positive integers
m,n, k denote their respective amounts of digits, and ai, bi, ci ∈ Z denote the
values of the digits. Most of the following methods will require inputs of the
same length, in which cases n denotes the length of both A and B.

All algorithms described in this section can be used for the above integer
arithmetic and univariate polynomial arithmetic, as these two are analogous
with some limitations. Thus, we will show the multiplication algorithms mostly
with integer arithmetic notation, as this is more intuitive. When considering
the inputs as polynomials, it is important to note that most fast multiplication
techniques can be viewed as evaluation-interpolation algorithms. Here, the
evaluation part means to evaluate the involved polynomials at certain points.
Polynomial interpolation, on the other hand, is the process of finding the
polynomial with the lowest degree that passes through all points of a given set
of points. Evaluation-interpolation, the combination of these two procedures,
can be used to reconstruct the result c(x) of a polynomial multiplication.
According to the well-known Lagrange interpolation theorem, evaluating the
input polynomials a(x) and b(x) at d+ 1 points, where d is the expected degree
of the output polynomial, suffices to recover c(x).

Comparability. To give an overview, we show and describe the different al-
gorithms and compare their efficiency to the naive multiplication approach.
To have a notion of performance, we use the Big-O notation O(·) to state the
asymptotic upper runtime of the multiplication algorithms depending on the
lengths of the involved integers A,B. In certain cases, we use the notation
Θ(·) to state both an asymptotic lower and upper bound. We shall see that
the naive multiplication approach has a quadratic asymptotic runtime and is
thus the most inefficient of the presented methods. All other algorithms are
sub-quadratic.
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3 Background on NTRU Prime and Multiplication Algorithms

3.2.1 Schoolbook Multiplication

The Schoolbook method is the common name for the naive multiplication
approach as seen in Algorithm 1, which is similar to the “long multiplication”
taught at school. This algorithm multiplies two integers A,B of lengths m and
n, respectively, with m <= n. The overall runtime is Θ(mn), as A · bj needs m
operations, and we do that n times in the for-loop.

Input: A =
∑m−1

i=0 aiβ
i, B =

∑n−1
j=0 bjβ

j ∈ Z
1 C ← 0
2 for j = 0, 1, . . . , n− 1 do
3 C ← C + βj(A · bj)
4 return C := A ·B =

∑m+n−1
k=0 ckβ

k

Algorithm 1: Schoolbook(A,B) [BZ10].

3.2.2 Karatsuba’s Method

In 1960, Anatoly Karatsuba [KO63] discovered a fast, sub-quadratic algorithm
for large integer multiplication. Until then, it was assumed that there is no way to
perform an integer multiplication in sub-quadratic asymptotic time. Karatsuba’s
method makes use of the later defined “divide-and-conquer” principle. It reduces
one multiplication of length n to three multiplications of length n

2 plus some
overhead costs of O(n). Both input integers A and B need to be of the same
length n.

The basic idea is to represent the integers A,B as

A = A1β
k +A0, B = B1β

k +B0,

for some positive integer k < n, and requiring A0, B0 < βk. The resulting
product is then

C = A ·B = (A1β
k +A0) · (B1β

k +B0)

= (A1B1)︸ ︷︷ ︸
C2

β2k + (A1B0 +A0B1)︸ ︷︷ ︸
C1

βk + (A0B0)︸ ︷︷ ︸
C0

,

14



3 Background on NTRU Prime and Multiplication Algorithms

where the four needed multiplications can be reduced to three by observing
that C1 = (A1 + A0)(B1 + B0) − C2 − C0 = (A0 − A1)(B1 − B0) + C2 + C0.
To avoid overflows in the former rewrite of C1, and negative coefficients in the
latter rewrite, Algorithm 2 records the sign in line 6, and uses it later to sign
the absolute value of C2 in line 10 correctly.

The algorithm is outlined in Algorithm 2. It has a runtime of Θ(nlog2 3) ≈
O(n1.585) [BZ10].

Input: A =
∑n−1

i=0 aiβ
i, B =

∑n−1
j=0 bjβ

j ∈ Z
1 if n < n0 then
2 return Schoolbook(A,B) . n0 as threshold for n.
3 k ← dn2 e
4 (A0, B0)← (A mod βk, B mod βk)

5 (A1, B1)← (b A
βk
c, b B

βk
c)

6 (sA, sB)← (sign(A0 −A1), sign(B0 −B1))
7 C0 ← Karatsuba(A0, B0)
8 C1 ← Karatsuba(A1, B1)
9 C2 ← Karatsuba(|A0 −A1|, |B0 −B1|)

10 C ← C0 + (C0 + C1 − sAsBC2)β
k + C1β

2k

11 return C := A ·B =
∑2n−1

k=0 ckβ
k

Algorithm 2: Karatsuba(A,B) [BZ10].

For all needed multiplications Karatsuba(·, ·) is called recursively, except for
the exit condition n < n0 in line 2. Here, the threshold n0 ≥ 2 is used to define
on what level the actual multiplications should take place, meaning at what size
of the operands we swap to Schoolbook multiplication and exit the recursion.
One intuitive value for n0 would be the base of the system we operate in (i.e. β),
such that digits are multiplied directly. Another way to choose n0 is taking the
hardware the algorithm is running on into account. For example, if we assume
a processor that has a fast multiplier that can handle operands of size w, then
setting n0 = w makes use of the available hardware best.

15



3 Background on NTRU Prime and Multiplication Algorithms

3.2.3 Toom-Cook Multiplication

As Karatsuba’s algorithm splits the integers A and B into two parts, it is only
logical to also research the possibilities for even further breaking down the
inputs. In 1963, Andrei Toom [Too63] published an algorithm that involved
so-called “r-way” multiplication, and Stephen Cook cleaned its description in
1966 [Coo66]. The resulting technique is called Toom-Cook Multiplication. It is,
as already hinted, a generalisation of Karatsuba’s algorithm. If r = 2, the two
multiplication algorithms are the same.

Toom-Cook multiplies two integers of length n. It makes use of the evaluation-
interpolation procedure: we write the two integers as

∑r−1
i=0 aix

i and
∑r−1

j=0 bjx
j

with x = βk, and k = dnr e, to get their polynomial representations a(x) and
b(x). Their product c(x) is of degree 2r − 2, making it sufficient to evaluate at
2r − 1 distinct points to correctly recover c(x), or c(βk). It then takes 2r − 1
products of input lengths of ≈ n

r , instead of one product of input lengths n.

An example of Toom-Cook-3 is shown in Algorithm 3. It uses the evaluation
points 0, 1,−1, 2,∞.

Input: two integers A,B, with 0 ≤ A,B < βn

1 if n < 3 then
2 return Karatsuba(A,B)

3 write A = a0 + a1x+ a2x
2, B = b0 + b1x+ b2x

2, with x = βk = βd
n
3
e

4 v0 ← ToomCook3(a0, b0)
5 v1 ← ToomCook3(a0 + a2 + a1, b0 + b2 + b1)
6 v−1 ← ToomCook3(a0 + a2 − a1, b0 + b2 − b1)
7 v2 ← ToomCook3(a0 + 2a1 + 4a2, b0 + 2b1 + 4b2)
8 v∞ ← ToomCook3(a2, b2)

9 (t1, t2)← (3v0+2v−1+v2
6−2v∞ , v1+v−1

2 )

10 c0 ← v0, c1 ← v1 − t1, c2 ← t2 − v0 − v∞, c3 ← t1 − t2, c4 ← v∞
11 c(βk)← c0 + c1β

k + c2β
2k + c3β

3k + c4β
4k

12 return c(βk) := A ·B

Algorithm 3: ToomCook3(A,B) [BZ10].

Toom-Cook-3, also called Toom-3, reduces nine multiplications to five, and has
an asymptotic runtime of Θ(nlog3 5) ≈ Θ(n1.46) [BZ10]. The runtime general-
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3 Background on NTRU Prime and Multiplication Algorithms

isation for Toom-Cook-r is Θ(nlogr(2·r−1)c(r)), where c(r) is the overhead for
additions by small constants [Coo66]. The overhead c(r) depends strongly on
the evaluation-interpolation procedure and grows rapidly.

3.2.4 Number Theoretic Transform

The Toom-Cook r-way multiplication becomes quite complex for large r due
to the quadratic increase of scalar operations (O(r2)). To make the evaluation-
interpolation more efficient for very large r or special points, many multiplication
algorithms are based on the fast Fourier transform (FFT). The FFT applied
over any finite field is called number-theoretic transform (NTT), where the used
field defines the specific type. We can say that multiplications are efficiently
computable with an NTT (they are in the NTT range) if n is large, and if the
asymptotic runtime to multiply two 2n-digit integers is roughly the same as
the one to multiply two n-digit integers two times [BZ10]. This would be true
for the Schönhage-Strassen algorithm, which we show in the next subsection,
but not for Karatsuba or Schoolbook multiplication, for example.

Setting for the NTT: Let R be a ring, and K ≥ 2 an integer (most commonly,
K is a power of 2). We assume that there is some Ω, for which ΩK = 1 and∑K−1

i=0 Ωji = 0 for 1 ≤ j < K. Such an Ω is called a principal K-th root of unity
in R. Performing NTT on a vector a = [a0, a1, . . . , aK−1], with ai ∈ R, outputs
the vector â = [â0, â1, . . . , âK−1], such that its elements âj =

∑K−1
i=0 Ωjiai.

A recursive and in-place variant of the forward NTT can be seen in Algorithm 4.
The function bitrev(i, K) used in line 7 returns the bit-reversal of the inte-
ger i, considered as (log2K)-bit integer. For example, bitrev(i, 8) returns
0, 4, 2, 6, 1, 5, 3, 7 for i = 0, . . . , 7. In addition, the backward algorithm of the
NTT is given in Algorithm 5. For a proof and more detailed description of those
two algorithms, we refer to [BZ10].

Algorithm 4 and Algorithm 5 both have an asymptotic runtime of O(K logK)
[CCG00].

17
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Input: K = 2k, for some integer k
Input: vector a = [a0, a1, . . . , aK−1]
Input: Ω, principal K-th root of unity

1 if K = 2 then
2 [a0, a1]← [a0 + a1, a0 − a1]
3 else

4 [a0, a2, . . . , aK−2]← FordwardFFT([a0, a2, . . . , aK−2],Ω
2, K2 )

5 [a1, a3, . . . , aK−1]← FordwardFFT([a1, a3, . . . , aK−1],Ω
2, K2 )

6 for i = 0, 1, . . . , K2 − 1 do

7 [a2i, a2i+1]← [a2i + Ωbitrev(i,K
2
)a2i+1, a2i − Ωbitrev(i,K

2
)a2i+1]

8 return in-place transformed vector â, bit-reversed

Algorithm 4: FordwardFFT(a,Ω,K) [BZ10].

Input: K = 2k, for some integer k
Input: vector a of length K, a = [a0, aK/2, . . . , aK−1] (bit-reversed)
Input: Ω, principal K-th root of unity

1 if K = 2 then
2 [a0, a1]← [a0 + a1, a0 − a1]
3 else

4 [a0, . . . , aK
2
−1]← BackwardFFT([a0, . . . , aK

2
−1],Ω

2, K2 )

5 [aK
2
, . . . , aK−1]← BackwardFFT([aK

2
, . . . , aK−1],Ω

2, K2 )

6 for i = 0, 1, . . . , K2 − 1 do
7 [ai, aK

2
+i]← [ai + Ω−iaK

2
+i, ai − Ω−iaK

2
+i] . Ω−i = ΩK−i

8 return in-place transformed vector ã, normal order

Algorithm 5: BackwardFFT(a,Ω,K) [BZ10].

3.2.5 Schönhage-Strassen Algorithm

To show a very famous implementation of the NTT, we chose to give an overview
of the Schönhage-Strassen algorithm. It was discovered by Arnold Schönhage
and Volker Strassen in 1971 [SS71], and uses the NTT to multiply two large
n-bit integers. As already mentioned before, the used ring defines the variant of
the NTT. Schönhage-Strassen works in the ring Zq, where q = (2n+1), meaning
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we want to multiply two n-bit integers modulo 2n + 1.

The Schönhage-Strassen algorithm, which calls the NTT-specific procedures
FordwardFFT(Algorithm 4) and BackwardFFT(Algorithm 5), can be seen
in Algorithm 6.

Input: two n-bit integers A,B, with 0 ≤ A,B < 2n + 1
Input: K = 2k, s.t. K divides n and n = MK

1 decompose A =
∑K−1

i=0 ai2
iM with 0 ≤ ai < 2M for i < K − 1, and

0 ≤ aK−1 ≤ 2M ; similarly for B
2 choose n′ ≥ 2n

K + k, with n′ multiple of K

3 θ ← 2
n′
k ,Ω← θ2

4 for i = 0, 1, . . . ,K − 1 do

5 (ai, bi)← (θiai, θ
ibi) mod (2n

′
+ 1)

6 a← FordwardFFT(a,Ω,K), b← FordwardFFT(b,Ω,K)
7 for i = 0, 1, . . . ,K − 1 do

8 ci ← aibi mod (2n
′
+ 1) . large n: call NTTMulMod recursively

9 c← BackwardFFT(c,Ω,K)
10 for i = 0, 1, . . . ,K − 1 do

11 ci ← ci
(Kθi)

mod (2n
′
+ 1)

12 if ci ≥ (i+ 1)22M then

13 ci ← ci − (2n
′
+ 1)

14 C =
∑K−1

i=0 ci2
iM

15 return C = A ·B mod (2n + 1)

Algorithm 6: NTTMulMod(A,B,K) [BZ10].

It has a runtime complexity of O(n log n log logn) for a suitable n (meaning it
is in the NTT range, see Subsection 3.2.4) and a corresponding NTT length
K = 2k (K ≈

√
n) [SS71].

Schönhage-Strassen was the asymptotically fastest multiplication algorithm for
large integers until 2007 when Fürer [Für07] published his new method. Fürer’s
algorithm has a lower asymptotic upper bound, but it is not used in practice as
it only achieves advantage for astronomically large input values.

19



3 Background on NTRU Prime and Multiplication Algorithms

3.2.6 Kronecker Substitution

All multiplication techniques described so far can be used for polynomial
arithmetic as well, as it is identical to integer arithmetic (except for carry
propagation in the latter). This fundamental idea reduces polynomials to large
integers using the so-called Kronecker substitution method [Kro82; Har09].
While Kronecker [Kro82] already suggested this basic idea in 1882 to reduce
problems concerning multivariate polynomials to univariate polynomials, we will
focus on the variant of reducing multiplications in Z[x] to Z [Har09], or Zq[x]
to Z. In both cases, the necessary property is that the polynomials’ coefficients
are bounded by some integer q.

Our goal is to calculate
c(x) = a(x) · b(x),

for polynomials a(x), b(x), c(x) ∈ Z[x] having coefficients with internal base β,
by reducing this problem to

C = A ·B,

for A,B,C ∈ Z. With Kronecker substitution the coefficients of a(x) and b(x) are
packed into a large integer each by evaluating the polynomials at some carefully
chosen point x = X. The correct choice of X is fundamental as it ensures the
termination of any possible carry chain in the multiplication. Assuming both
polynomials have degree d we choose X = βk > dq2 to be a power of the base β,
because the product’s coefficients are bounded by dq2 [Har09; BZ10]. According

to this lower bound we compute X = βk = β1+blogβ(dq
2)c. To get the resulting

polynomial c(x) from C, its coefficients can be easily retrieved (unpacked) by
reading blocks of length k in C.

Example in base-10. If we let β = 10, a(x) = 871x3 + 999x2 + 140x + 560
and b(x) = 787x3 + 960x2 + 543x + 711, a(x), b(x) ∈ Z, we see that their
coefficients are bounded by q = 999 and that their degree is d = 3. To
correctly evaluate these polynomials we need X = 101+blog10(3·999

2)c = 107,
getting a(X) = A = 871|0000999|0000140|0000560 and b(X) = B =
787|0000960|0000543|0000711. Their integer product is C = A · B =
685477|1622373|1542173|1736858|1323909|0403620|0398160, and we unpack C
to retrieve the resulting polynomial c(x) = 685477x6 + 1622373x5 + 1542173x4 +
1736858x3 + 1323909x2 + 403620x+ 398160.
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Advantages. When using Kronecker substitution, we can use existing highly
optimised hardware and software solutions for large integer arithmetic instead
of doing heavy computations in Zq[x].

3.3 Polynomial Multiplication in NTRU Prime

As we now heard of many different algorithms to implement polynomial multi-
plication, we come back to our candidate cipher NTRU Prime.

Multiplications in NTRU Prime. There are a total of four polynomial multi-
plications in the encapsulation and decapsulation of NTRU Prime. Three of
them are in Rq: h(x)r(x) in encapsulation, and 3f(x)c(x) and h′(x)r′(x) in
decapsulation. The last one, e(x)g(x)−1 in decapsulation, is in R3.

Related work. In general, many lattice-based cryptosystems operate in the
NTT domain, which requires carefully chosen polynomials and primes to be
particularly efficient. Due to Streamlined NTRU Prime’s “non NTT-friendly”
polynomial and prime, Bernstein at al. [Ber+18] decided to scrap the NTT
completely to avoid the large drawbacks of NTTs in this setting. For the
second round of the NIST competition, they purely used Karatsuba’s method
(see Subsection 3.2.2) for polynomial multiplications4. Compared to efficient
NTT based systems like [Alk+16], this method even allows for slightly faster
implementations and smaller sizes in the setting of NTRU Prime.
[Che+20] provide an implementation of Streamlined NTRU Prime for an 8-bit
AVR microcontroller, which shows the feasibility of high-security lattice-based
cryptosystems for small embedded devices. Their implementation is optimised
on assembly level and is timing invariant of secret values. For polynomial
multiplication, they use Karatsuba’s method in combination with an efficient
modular reduction for the output coefficients.
Recently, [Alk+20] proposed two different methods to perform NTT-based
polynomial multiplications in non NTT-friendly rings and apply these techniques
to the ring of NTRU Prime. In one of their approaches they use Good’s trick

4Using solely Karatsuba’s method was a decision after analysing several different combina-
tions of Karatsuba, Toom-Cook, schoolbook multiplication, and even Schönhage-Strassen.
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[Goo51], and in the other one a mixed radix NTT where they focus on less
memory consumption. Their implementation is implemented on the ARM
Cortex-M4 microcontroller. [Alk+20] claim that their work is faster and more
memory efficient than the current state-of-the art implementation on Cortex-M4
by Yang et al.5 which is a highly optimised assembler implementation that
uses Toom-Cook polynomial multiplication. As the implementation of [Alk+20]
seems to be the fastest at the time, we will focus on this publication for a results
comparison in Chapter 6.

Kronecker substitution with Streamlined NTRU Prime. There are no pub-
lications for Kronecker substitution within the ring of (Streamlined) NTRU
Prime. We figured that applying this multiplication algorithm to Streamlined
NTRU Prime is an interesting experiment with a high potential for performance
enhancements on embedded devices. Packing the polynomials into big integers
sounds very promising when talking about co-processors equipped with a fast
hardware accelerator for large integer multiplications and additions. Large
integer arithmetic is particularly interesting if we assume the word size of the
multiplications’ operands to be w-bit, where w is in {256, 512, 1024, 2048}, i.e.
w is rather big. Important to note is that handling integers that are larger than
w is easy. If the integers we retrieve from the packing in the Kronecker substi-
tution are of size x, we simply implement one of the introduced multiplication
techniques on x

w -bit words to multiply the large integers.

Related work: Kronecker substitution in other lattice-based cryptosystems.
[Alb+18] analysed the possibility to implement RLWE-based schemes [LPR12]
on an existing cryptographic co-processor that was initially designed for the
asymmetric cryptosystem RSA [RSA78]. Their target system is the key encap-
sulation mechanism CRYSTALS-Kyber [Bos+18], which was a second-round
NIST candidate when this paper was published and advanced to a NIST finalist
since. [Alb+18] implemented optimised packing and unpacking strategies to
evaluate Kronecker substitution and some of its variants presented by Harvey
[Har09] (see Chapter 4). They analysed Kronecker substitution together with

5https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/

FHAMYa-m2hY
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Karatsuba-based polynomial multiplication and Kronecker with negated evalu-
ation points (see Section 4.2) with Schoolbook-based polynomial multiplication.
They applied all that to work in the ring of Kyber, which has the modulus
xp + 1, with p prime, although Kyber initially operates in the NTT domain.
[Alb+18] compared their methods with the original Kyber implementation and
existing RSA implementations, and other related works. The base for com-
parison was a commercially available smart card with the above mentioned
cryptographic co-processor. They proved that lattice-based PQ cryptography
could be competitive on contactless smart cards compared to existing efficient
implementations for ciphers like RSA. Their contribution shows that further
analysing the possibilities of Kronecker substitution is a very promising task
and that Harvey’s methods are very relevant for future work in this direction.
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As seen in Subsection 3.2.6 multiplication with Kronecker substitution has a
major drawback: the unwanted zero-padding. When evaluating polynomials at
some point x = X that ensures the correct handling of carries, one inevitably
introduces many zeros in the resulting integers, which in turn leads to many digit-
by-digit multiplications with zeros. In the example given in Subsection 3.2.6,
about 3

4 of the digit-by-digit products involve zeros. To skip these redundant
operations, Harvey [Har09] presented several new algorithms without sacrificing
the advantages stated in Subsection 3.2.6. His methods involve the evaluation at
multiple points, instead of only one, when performing Kronecker substitution.

For this chapter, we fix two polynomials a(x), b(x) ∈ Z[x] and are interested
in their product c(x). We assume that a(x) and b(x) have the same degree
n, and write a(x) =

∑n−1
i=0 aix

i, and similarly for b(x). Additionally, we put
e = dlog2 ne. The length of an integer M is defined to be the bit-length, i.e.
the number of bits in the binary representation, which is computed with bit-
length(M) = 1 + blog2 |M |c. We further assume that the coefficients of a and
b are non-negative, are bounded by some integer q > 0 and have lengths of at
most δ, for some integer δ ≥ 1. The product’s coefficients are restricted to have
lengths of at most 2δ + e [Har09].

In the following, we will describe Harvey’s carefully chosen evaluation points
and discuss their performance. We focus on the integer case, where we reduce
from Z[x] to Z.

Comparability. To have a notion of performance, we assume that integers may
be added and subtracted in O(n), where n is the length of the integer, and
that we may divide by a power of 2 in O(n) as well. Packing and unpacking of
binary strings is assumed to be possible in linear time. More precisely, these
operations need O(kc) each, assuming packing is the act of constructing sums
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4 Multipoint Kronecker Substitution

of the form
∑k−1

i=0 fi2
ic out of a sequence of integers f0, . . . , fk−1 for 0 ≤ fi < 2c,

and unpacking means to reconstruct the sequence fi from the sum. To directly
compare the following methods, we will state the bit-lengths of the involved
multiplications and additions, as well as the additional overhead that is needed
for packing and unpacking.

Used bases. All the above defined values follow the assumption that we use
the binary system to explain Harvey’s methods in the following, as this is the
relevant system on hardware. But to provide nicely readable examples, we do
them in base-10. This means that the examples use log10(·) instead of log2(·),
and 10`, 10i` instead of 2`, 2i`.

4.1 Standard Kronecker Substitution (KS1)

Let ` = 2δ + e, so that the coefficients of c(x) have lengths of at most `. We
evaluate at x = 2`, obtaining a(2`) and b(2`), and multiply to get c(2`) =
a(2`) · b(2`). By unpacking c(2`) we retrieve the sequence ci.

We skip the example at this point and refer to the one in Subsection 3.2.6.

Performance. The problem of computing c(x) = a(x) · b(x) is reduced to
multiplying two integers of length `(n− 1) + δ = (2δ + e)(n− 1) + δ, plus the
packing/unpacking overhead of O((2δ + e)n) [Har09].

4.2 Negated Evaluation Points (KS2)

This following method only works for rings in which the multiply-by-two map is
injective, i.e. it does not work over a field of characteristic two. We let ` = δ+d e2e
and evaluate at x = 2`,−2`, yielding
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4 Multipoint Kronecker Substitution

a(2`) =
n−1∑
i=0

ai2
i`,

a(−2`) =
n−1∑
i=0

(−1)iai2
i`,

and similarly for b. There are d e2e bits of zero-padding between adjacent coef-
ficients in a(2`). In a(−2`), the padding alternates between zero-padding and
one-padding.

We perform the multiplications to obtain

c(2`) = a(2`) · b(2`)

=

2n−2∑
i=0

ci2
i`,

c(−2`) = a(−2`) · b(−2`)

=

2n−2∑
i=0

(−1)2ici2
i` =

2n−2∑
i=0

ci2
i`.

Before we continue, we split c into even and odd parts c(0) and c(1),

c(0) =
n−1∑
i=0

c2ix
i, c(1) =

n−2∑
i=0

c2i+1x
i,

from which we find that c(±2`) = c(0)(22`)±2`c(1)(22`). By inverting the system,
this can be rewritten to

c(0)(22`) =
c(2`) + c(−2`)

2
, (4.1)

c(1)(22`) =
c(2`)− c(−2`)

2 · 2`
. (4.2)

To reconstruct the sequence ci we now simply read off the even and odd
coefficients of c from c(0)(22`) and c(1)(22`), respectively.
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4 Multipoint Kronecker Substitution

Example (base 10). We continue with the example polynomials a(x) = 871x3+
999x2 + 140x+ 560 and b(x) = 787x3 + 960x2 + 543x+ 711, whose length n = 3
and coefficients are bounded by q = 999. We compute δ = 1 + blog10(|999|)c = 3
and e = dlog10(3)e = 1, and it follows that the maximum coefficient length of

the product c(x) is 2δ + e = 7. This leads to ` = d (2δ+e)2 e = d72e = 4, meaning
we evaluate at x = 104 and x = −104. Thus, we have

a(104) = 871|0999|0140|0560,

a(−104) = −870|9001|0139|9440,

b(104) = 787|0960|0543|0711,

b(−104) = −786|9040|0542|9289.

The pointwise products then are

c(104) = a(104) · b(104) = 685639252723466990394936598160,

c(−104) = a(−104) · b(−104) = 685314778119993274386864198160,

which we further pipe into the computations

c(0)(108) =
c(104) + c(−104)

2
= 685477|01542173|01323909|00398160,

104c(1)(108) =
c(104)− c(−104)

2
= 1622373|01736858|0403620|0000,

from which we can read off the even- and odd-index coefficients of c(x).

Performance. The problem of computing c(x) = a(x) · b(x) is reduced to two
multiplications of integers of length `(n− 1) + δ = (δ + d e2e)(n− 1) + δ, plus
the packing/unpacking overhead of O((2δ + e)n) [Har09].
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4.3 Reciprocal Evaluation Points (KS3)

We let ` = d2δ+e2 e = δ + d e2e and evaluate both at x = 2` and x = 2−`. This
yields

a(2`) =

n−1∑
i=0

ai2
i`,

2`(n−1)a(2−`) =
n−1∑
i=0

ai2
(n−1−i)` =

n−1∑
i=0

an−1−i2
i`,

where 2`(n−1) acts as a normalising factor to push the result back to Z. We do
similarly for b. Note that in those sums there are only d e2e bits of zero-padding
between the adjacent coefficients.

Then, we compute the integer products

c(2`) = a(2`) · b(2`) =
2n−2∑
i=0

ci2
i`, (4.3)

22`(n−1)c(2−`) = 2`(n−1)a(2−`) · 2`(n−1)b(2−`) =
2n−2∑
i=0

c2n−2−i2
i`. (4.4)

The next step is to retrieve the sequence ci back from the sums above. This
introduces some special considerations regarding two important points:

1. the ci’s overlap in both sums, and
2. carry propagation needs to be handled correctly.

The ci’s are reconstructed in an iterative way with the help of a sequence of
various quantities, of which some take care of carries. The main idea is to
decompose the ci into two digits as

ci = αi + βi2
`, (4.5)

where 0 ≤ i ≤ 2n− 2, 0 ≤ αi < 2` and 0 ≤ βi < 2` − 1. In each reconstruction
iteration i, we update the various helper variables that are needed to calculate
αi and βi, and retrieve the value ci.
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First, we note that a(2`) and b(2`) have lengths of at most n · `, which means
that c(2`) has a length of at most 2n · `, and similarly for 22`(n−1)c(2−`). So, we
may construct the sequences (ui)

2n−1
i=0 , (wi)

2n−1
i=0 by writing the above sums in

base 2`:

c(2`) =

2n−1∑
i=0

ui2
i`, (4.6)

22`(n−1)c(2−`) =
2n−1∑
i=0

w2n−2−i2
i`, (4.7)

where 0 ≤ ui, wi < 2`.

It follows from (4.3) and (4.6) that α0 = u0 and that

ui+1 + δi+12
` = βi + αi+1 + δi, 0 ≤ i ≤ 2n− 2, (4.8)

where δi ∈ {0, 1} is the carry generated by the right-hand side of the equation,
and δ0 = 0. Similarly, it follows from (4.4) and (4.7) that α2n−2 = w2n−1 and
that

wi+1 + εi2
` = αi + βi+1 + εi+1, − 1 ≤ i ≤ 2n− 3, (4.9)

where εi ∈ {0, 1} is the carry generated by the right-hand side of the equation,
and ε2n−2 = α−1 = 0, and ε−1 = 0.

Given the ui and wi, this leads to the iterative reconstruction given in Algo-
rithm 7, which also includes the recombination phase where we recover the ci
by computing (4.5) for 0 ≤ i ≤ 2n− 2. Note that εi and δi were each combined
to a single value ε and δ, respectively, to get rid of the unnecessary storage of
the old values from finished iterations.

Example (base 10). We continue with the running example. For two evaluation
points ` is again 4, meaning we evaluate at x = 104 and x = 10−4. Thus, we
have

a(104) = 871|0999|0140|0560,

1012a(10−4) = 560|0140|0999|0871,

b(104) = 787|0960|0543|0711,

1012b(10−4) = 711|0543|0960|0787.
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Input: degree n′ ∈ Z, bit-length `′ ∈ Z

Input: sequences (ui)
2n′−1
i=0 , (wi)

2n′−1
i=0 , with 0 ≤ ui, wi < 2`

′

1 Initialize the sequences (αi)
2n′−2
i=−1 , (βi)

2n′−2
i=0 with all zeros

2 α0 ← u0, α2n′−2 ← w2n′−1
3 δ ← 0, ε← 0
4 // Reconstruct:
5 for i = 0, 1, . . . , 2n′ − 3 do

6 βi ← (wi − αi−1 − ε) (mod 2`
′
) . Follows from (4.9) (mod 2`

′
)

7 αi+1 ← (ui+1 − βi − δ) (mod 2`
′
) . Follows from (4.8) (mod 2`

′
)

8 δ ← (βi + αi+1 + δ − uj+1)/2
`′ . Follows directly from (4.8)

9 // Computation of ε follows from (4.9) and the bounds for αi, βi:
10 if αj+1 > wj+2 then
11 ε← 1
12 else
13 ε← 0

14 β2n′−2 ← (w2n′−2 − α2n′−3 − ε) (mod 2`
′
)

15 // Recombine:
16 for i = 0, 1, . . . , 2n′ − 2 do

17 ci ← αi + βi2
`′

18 return (ci)
2n′−2
i=0 , i.e. the coefficients of c(x) ∈ Z[x]

Algorithm 7: Iterative reconstruction algorithm with subsequent recombi-
nation phase for KS3.

The pointwise products are

c(104) = a(104) · b(104) = 68|5639|2527|2346|6990|3949|3659|8160,

1024c(10−4) = 1012a(10−4) · 1012b(10−4)

= 39|8200|3752|4082|7012|2335|2441|5477,

for which we quickly show the first iteration of the reconstruction algorithm:

We read from c(104) that u0 = 8160, u1 = 3659, . . . , u2n+1 = u5 = 68, and
from 1024c(10−4) that w0 = 39, w1 = 8200, . . . , w5 = 5477. We also know that
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α0 = u0 = 8160. Then,

β0 = (w0 − α−1 − ε) (mod 2`) = (39− 0− 0) (mod 104) = 39,

α1 = (u1 − β0 − δ) (mod 2`) = (3659− 39− 0) (mod 104) = 3620,

δ = (β0 + α1 + δ − u1)/104 = (39 + 3620 + 0− 3659)/104 = 0,

ε = 0,

from which follows that c0 = α0 + β0 · 104 = 8160 + 39 · 104 = 398160.

We omit the rest of the reconstruction at this point, as one simply has to
continue iteration i = 1 in Algorithm 7.

Performance. The problem of computing c(x) = a(x) · b(x) is reduced to two
multiplications of integers of length `(n− 1) + δ = (δ + d e2e)(n− 1) + δ, plus
the packing/unpacking overhead of O((2δ + e)n) [Har09].

4.4 Four Evaluation Points (KS4): Combining the Above

We let ` = d2δ+e4 e and evaluate at x = 2`,−2`, 2−`,−2−`. This gives us

a(2`) =

n−1∑
i=0

ai2
i`,

a(−2`) =
n−1∑
i=0

(−1)iai2
i`,

2`(n−1)a(2−`) =
n−1∑
i=0

an−1−i2
i`,

2`(n−1)a(−2−`) =

n−1∑
i=0

(−1)ian−1−i2
i`,

and similarly for b.
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Then, we perform the multiplications to obtain

c(±2`) = a(±2`) · b(±2`),

22`(n−1)c(±2−`) = 2`(n−1)a(±2`) · 2`(n−1)b(±2`).

Afterwards, we split c into even and odd parts again, like we did in Section 4.2,
leading to c(0) and c(1). We find that

c(0)(22`) =
c(2`) + c(−2`)

2
,

c(1)(22`) =
c(2`)− c(−2`)

2 · 2`
,

22`(n−1)c(0)(2−2`) =
c(2−`) + c(−2−`)

2
,

22`(n−2)c(1)(2−2`) =
c(2−`)− c(−2−`)

2 · 2`
,

where 22`(n−2) acts as a normalising factor.

To reconstruct the sequence ci from the results above, Algorithm 7 must be
called twice, with parameters n′ = (bn2 c + 1) and `′ = 2 · `. First on c(0)(22`)

and 22`(n−1)c(0)(2−2`) to recover the coefficients of c with an even index, and
again on c(1)(22`) and 22`(n−1)c(1)(2−2`) to recover the coefficients with an odd
index.

Example (base 10). We again continue with the example from above. Here,

` = d (2δ+e)4 e = 2, so we evaluate at x = 102, x = 10−2, x = −102 and x = −10−2.
Thus, we have

a(102) = 881004560, b(102) = 796655011,

a(−102) = −861023440, b(−102) = −777453589,

106a(10−2) = 561500771, 106b(10−2) = 716526787,

106a(−10−2) = 558699029, 106b(−10−2) = 705665213.
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The pointwise products are

c(102) = a(102) · b(102) = 701856697437850160,

c(−102) = a(−102) · b(−102) = 669405763641126160,

1012c(10−2) = 106a(10−2) · 106b(10−2) = 402330343342652777,

1012c(−10−2) = 106a(−10−2) · 106b(−10−2)

= 394254469302178177.

Now we compute

c(0)(104) =
c(102) + c(−102)

2
= 68|5631|2305|3948|8160,

1012c(0)(10−4) =
1012c(10−2) + 1012c(−10−2)

2
= 39|8292|4063|2241|5477,

to read off the even-index coefficients of c(x) using Algorithm 7. To get the
odd-index coefficients, we have to retrieve them similarly using

102c(1)(104) =
c(102)− c(−102)

2
= 162|2546|6898|3620|00,

1010c(1)(10−4) =
1012c(10−2)− 1012c(−10−2)

2
= 40|3793|7020|2373|00.

Performance. The problem of computing c(x) = a(x) · b(x) is reduced to four
multiplications of integers of length `(n− 1) + δ = (d2δ+e4 e)(n− 1) + δ, plus the
packing/unpacking overhead of O((2δ + e)n) [Har09].

This means, instead of one multiplication with big integers (see Section 4.1), we
here only need four completely independent multiplications with integers that
are only 1

4 the size of the ones used for standard Kronecker substitution, plus
some overhead.
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4.5 Adjustments for the Signed Case

The presented algorithms KS1, KS2, KS3, and KS4 all assume unsigned
coefficients of the input polynomials that are in the interval [0, . . . , q− 1]. In the
following, we will extend those algorithms to the signed case, where we assume
that the inputs are in the interval [− q−1

2 , q−12 ]. The bit-length of the coefficients
δ is computed accordingly.

Determining `. What changes for all algorithms is the needed evaluation point.
To determine the correct ` for the signed case we take the same formulas as
for the unsigned case (where we use the new bounds for the input coefficients,
of course), but add 1 to it. This additional bit serves as a sign-bit: it allows
us to differentiate between positive and negative coefficients. We can interpret
negative coefficients as positive by adding 2`−1 to them and subtracting 1 (the
carry) from the next limb. Here, we define a limb as any part of the resulting
big integer that corresponds to a coefficient in the polynomial representation.

KS1. For standard Kronecker substitution, the only thing that changes is the
unpacking of the resulting big integer c(2`). When we read off the coefficients
ci from it, we need to determine whether ci is positive or negative. We do that
by checking if ci > 2`−1. If yes, ci is a negative coefficient and needs to be
adjusted, and we need to keep track of the carry and add it to the next limb.
The full unpacking procedure for the signed case is illustrated in Algorithm 8.
Other then that we do not need to make adjustments to KS1, as the signed
coefficients do not impact the packing (i.e. evaluation at a certain point 2`) of
the polynomials or the actual multiplication.

KS2. For the negated evaluation points, we have to adjust the way we read off
the even and odd coefficients ci from c(0)(22`) (see Equation 4.1) and c(1)(22`)
(see Equation 4.2). As this is the same procedure as unpacking, we just need to
call Algorithm 8 on both (4.1) and (4.2), with parameter n′ = n, to get them.
The rest of the steps, including the big integer additions and multiplications,
can remain the same.
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Input: output degree n′ ∈ Z; bit-length ` ∈ Z
Input: big integer C to be unpacked

1 carry ← 0
2 for i = 0, 1, . . . , n′ − 1 do
3 ci ← C mod 2`

4 C ← (C − ci)/2`
5 ci ← ci+ carry

6 if ci > 2`−1 then
7 ci ← ci − 2`

8 carry ← 1

9 else
10 carry ← 0

11 return (ci)
n′−1
i=0

Algorithm 8: Unpack(`, n, C). Unpacking of a large integer for the signed
case.

KS3. The reciprocal evaluation points are a bit trickier, as we need to carefully
adjust Algorithm 7 to the signed case. This mainly involves re-adjusting the
bounds for all involved values and all operations that depend on them during the
reconstruction and recombination phases. We start by noting the new bounds
−2`−1 < αi, βi < 2`−1 in (4.5), and −2`−1 < ui, wi < 2`−1 in (4.6) and (4.7).
Reading off the ui and wi is the same procedure as unpacking, so we need to
call Algorithm 8 on both (4.6) and (4.7), with parameter n′ = 2n, to get the
sequences (ui)

2n−1
i=0 and (wi)

2n−1
i=0 . Equation 4.8 and Equation 4.9 both still hold,

but the computations of the αi, βi, δ and ε in Algorithm 7 need to be adjusted to
consider signed αi and βi. The new algorithm is given in Algorithm 9. Important
to note is the new computation for ε, which is now in {−1, 0, 1}, to handle both
the upper and lower bound for the βi in Equation 4.9. The formula for δ stays
the same, but we now have δ ∈ {0, 1, 2}.

KS4. As the four evaluation point method is the combination of negated and
reciprocal points, the adaptations made for KS2 and KS3 need to be considered
for KS4 as well.
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Input: degree n′ ∈ Z, bit-length `′ ∈ Z

Input: sequences (ui)
2n′−1
i=0 , (wi)

2n′−1
i=0 , with −2`

′−1 < ui, wi < 2`
′−1

1 Initialize the sequences (αi)
2n′−2
i=−1 , (βi)

2n′−2
i=0 with all zeros

2 α0 ← u0, α2n′−2 ← w2n′−1
3 δ ← 0, ε← 0

4 βmax ← 2`
′−1;αmax ← 2`

′−1

5 βmin ← −βmax
6 // Reconstruct:
7 for i = 0, 1, . . . , 2n′ − 3 do

8 βi ← (wi − αi−1 − ε) (mod 2`
′
) . Follows from (4.9) (mod 2`

′
)

9 if βi > βmax then

10 βi ← βi − 2`
′

. Negative βi
11 αi+1 ← (ui+1 − βi − δ) (mod 2`

′
) . Follows from (4.8) (mod 2`

′
)

12 if αi+1 > αmax then

13 αi+1 ← αi+1 − 2`
′

. Negative αi+1

14 δ ← (βi + αi+1 + δ − uj+1)/2
`′ . Follows directly from (4.8)

15 // Computation of ε follows from (4.9) and the bounds for αi, βi:
16 if wj+2 − αj+1 < βmin then
17 ε← 1
18 else if wj+2 − αj+1 > βmax then
19 ε← −1
20 else
21 ε← 0

22 β2n′−2 ← (w2n′−2 − α2n′−3 − ε) (mod 2`
′
)

23 if β2n′−2 > βmax then

24 β2n′−2 ← β2n′−2 − 2`
′

. Negative β2n′−2
25 // Recombine:
26 for i = 0, 1, . . . , 2n′ − 2 do

27 ci ← αi + βi2
`′

28 return (ci)
2n′−2
i=0 , i.e. the coefficients of c(x) ∈ Z[x]

Algorithm 9: Iterative reconstruction algorithm with subsequent recombi-
nation phase for the signed case of KS3.

36



5 Application Strategies and
Implementation Enhancements

In this chapter, we will discuss different aspects that need to be considered
when implementing Kronecker substitution and its variants to the ring of NTRU
Prime on hardware.
We start with a bound study of the result of a polynomial multiplication in
Section 5.1. There, depending on the input polynomials, we analyse the interval
the resulting coefficients lie in. At the end of this section, we also talk about the
modular reductions that we need to perform after the polynomial multiplication.
In Section 5.2, we discuss the hardware assumptions we make to compare
our results in the end. These assumptions are necessary for defining specific
implementation details. Finally, in Section 5.3, we describe different approaches
for the packing and unpacking steps of the Kronecker substitution and conclude
which variants are best for our specific case.

5.1 Coefficient Bounds for Polynomial Multiplication

In Subsection 3.2.6, we already talked about the importance of carefully chosen
evaluation points for Kronecker substitution so that the reconstruction of
coefficients is possible without errors. For our current setting, we multiply two
polynomials a(x), b(x) ∈ R, where R = Z[x]/(xp − x− 1) is an NTRU Prime
ring, to get the resulting c(x) ∈ R. We are interested in the lower and upper
bounds for the coefficients of c(x). This is essential information for calculating
the smallest possible evaluation point for Kronecker substitution that still
correctly breaks any carry chain. We also need it to know how much memory
we need during the multiplications.
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Important notes:

• When multiplying in R, we represent the inputs a(x) and b(x) as elements
of Z[x] with p coefficients. We then first calculate a(x) · b(x) ∈ Z[x]
and analyse the bounds of this intermediate step. Afterwards, we reduce
modulo xp − x− 1, which further influences the bounds (it enlarges the
interval of the coefficients). We will analyse the coefficient bounds after
this reduction in the ring as well.

• Reducing in R means that we replace every occurrence of xp by x+ 1, as
xp = x+ 1 (mod xp − x− 1).

• In Streamlined NTRU Prime, the polynomial multiplications are indeed
not in R but in R3 and Rq. However, we do not want to consider the
respective modulus (3 or q) in our current setting. This is because the
coefficients’ bounds are obvious after reducing them by 3 or q: the lower
bound is 0, and the upper bound is either 3 − 1, or q − 1. Actually,
we simply ignore the final reduction of the coefficients because we are
interested in the bounds of the ci’s before that final step. For now, q and 3
only play a role when talking about the bounds of the input polynomials’
coefficients.

• This bound study is not specific for the case of Kronecker substitution,
but for polynomial multiplication in the given rings in general. We analyse
the bounds to optimize the choice of evaluation points for KS1.

In the following subsections, we will analyse the bounds for the resulting
coefficients first after the multiplication in Z[x], and then again after the
reduction in R. We will do this for several different variants of the input
polynomials: for unsigned and signed coefficients, and for the multiplication by
a small or short polynomial.

5.1.1 Unsigned Multiplication

We start with analysing the bounds for the multiplication of two polynomials
with unsigned coefficients in both Z[x] and R.

Proposition 5.1.1. Let a(x), b(x) ∈ Z[x] be polynomials with degree strictly
less than p and unsigned integer coefficients ai, bi ∈ [0, q − 1], then the resulting
polynomial c(x) = a(x)·b(x) =

∑2p−2
i=0 cix

i ∈ Z[x] has coefficients in [0, p(q−1)2].
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Proof. As we are dealing with unsigned coefficients, the lower bound must be 0.
For the upper bound study we write the resulting polynomial as

c(x) =

(
p−1∑
i=0

aix
i

)
·

(
p−1∑
i=0

bix
i

)
=

2p−2∑
k=0

i+j=k∑
i,j=0,...,p−1

ajbk−jx
k =

2p−2∑
k=0

ckx
k,

where we immediately see that the coefficients ck are bounded by∑i+j=k
i,j=0,...,p−1 ajbk−j . Any value ajbk−j has an upper bound of (q − 1)2, and

as we are aggregating at most p of those values, the resulting upper bound
of the ck’s is p(q − 1)2. This gives us the interval [0, 1, . . . , p(q − 1)2] for the
coefficients of c(x) ∈ Z[x].

Proposition 5.1.2. Let a(x), b(x) ∈ R be polynomials with unsigned integer
coefficients ai, bi ∈ [0, q − 1], then the resulting polynomial c(x) = a(x) · b(x) =∑p−1

i=0 cix
i has coefficients in [0, 2p(q − 1)2].

Proof. First, we rewrite a(x) · b(x) as
∑p−1

i=0 ai · (xib(x)) and show that the
coefficients of xib(x) are in [0, 2(q − 1)] for each i, 0 ≤ i < p. We skip the
obvious case for i = 0, but check for i = 1, where we have

xb(x) =

p−1∑
j=0

bjx
j+1 ≡ bp−1+(b0+bp−1)x+b1x

2+· · ·+bp−2xp−1 (mod xp−x−1).

The terms bp−1 · 1 and bp−1 · x above are explained by the reduction modulo
xp − x − 1, as for j = p − 1 we have bp−1x

p ≡ bp−1(x + 1) (mod xp − x − 1).
We easily see that xb(x) has coefficients in [0, 2(q − 1)], with the upper bound
coming from the term |(b0 + bp−1)|. Then, we use the more general form for
2 ≤ i < p stated in the proof for Theorem 2.1 in [Ber+18], that is

xib(x) =

p−1∑
j=0

bjx
j+i

≡ bp−1 + (bp−i + bp−i−1)x+ · · ·+ (bp−1 + b0)x
i (5.1)

+ b1x
i+1 + · · ·+ bp−i−1x

p−1 (mod xp − x− 1),

where the coefficients again lie in [0, 2(q − 1)]. Now, we take a look at
∑p−1

i=0 ai ·
(xib(x)). As this sum adds up at most p terms of each degree, and as a(x) has
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coefficients of at most q − 1, we arrive at an upper bound of 2(q − 1)p(q − 1) =
2p(q− 1)2 for the resulting coefficients. The lower bound stays at 0 for unsigned
coefficients, meaning each coefficient of c(x) = a(x) ·b(x) is in [0, 2p(q−1)2].

5.1.2 Signed Multiplication

The authors of Streamlined NTRU Prime [Ber+18] chose to use signed coeffi-
cients to fit them into fewer bits. This means the coefficients ai, bi are in the
interval [− q−1

2 , q−12 ], where q is always odd, instead of [0, q − 1], i.e. the coeffi-
cients are center-lifted. We continue with the bound study for the multiplication
of two polynomials with signed coefficients in Z[x] and in R.

Proposition 5.1.3. Let a(x), b(x) ∈ Z[x] be polynomials with degree at most p
and signed integer coefficients ai, bi ∈ [− q−1

2 , q−12 ], then the resulting polynomial

c(x) = a(x) · b(x) =
∑2p−2

i=0 cix
i ∈ Z[x] has coefficients in [−p (q−1)

2

4 , p (q−1)
2

4 ].

Proof. The proof is analogous to Proposition 5.1.1, we only need to take our
new bounds for the ai’s and bi’s into account, meaning we replace all ±(q − 1)

with ± q−1
2 . This gives us the interval [−p (q−1)

2

4 , p (q−1)
2

4 ] for the coefficients of
c(x).

Proposition 5.1.4. Let a(x), b(x) ∈ R be polynomials with signed integer
coefficients ai, bi ∈ [− q−1

2 , q−12 ], then the resulting polynomial c(x) = a(x)·b(x) =∑p−1
i=0 cix

i ∈ R has coefficients in [−p (q−1)
2

2 , p (q−1)
2

2 ].

Proof. The proof is analogous to Proposition 5.1.2 when taking the new range for
the ai’s and bi’s (0 ≤ i < p) into account. In this setting, xib(x) has coefficients
in [−(q−1), q−1] for each i, 0 ≤ i < p, again coming from the sum of at most two
coefficients of b(x) in Equation 5.1, where those coefficients both take extreme
values. If we now consider the bounds for ai in

∑p−1
i=0 ai · (xib(x)), and that the

sum has p iterations, we get the extreme values ±(q − 1)p (q−1)2 = ±p (q−1)
2

2 .

This equals the interval [−p (q−1)
2

2 , p (q−1)
2

2 ] for the coefficients of c(x).

Signed multiplication leads to coefficients (ai, bi, ci) whose intervals are only
half as long as in the unsigned case.
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5.1.3 Multiplication with a Small Polynomial

In Streamlined NTRU Prime (or, more specific, in NTRU and all its variants),
the polynomial multiplications have exactly one operand that is small, i.e. which
coefficients are in {−1, 0, 1}. In the following, we will fix the second operand
b(x) to be small.

Proposition 5.1.5. Let a(x), b(x) ∈ Z[x] be polynomials with degree at most
p and signed integer coefficients ai ∈ [− q−1

2 , q−12 ] and bi ∈ {−1, 0, 1}, then the

resulting polynomial c(x) = a(x) · b(x) =
∑2p−2

i=0 cix
i ∈ Z[x] has coefficients in

[−p (q−1)2 , p (q−1)2 ].

Proof. The proof is analogous to Proposition 5.1.3, except that we have different
bounds for the bi’s. The multiplications ajbk−j in the sum now yield − (q−1)

2 · 1
at least, and (q−1)

2 · 1 at most. Again, as these values are summed up at most p

times, we arrive at the interval [−p (q−1)2 , p (q−1)2 ] for the coefficients of c(x).

Proposition 5.1.6. Let a(x), b(x) ∈ R be polynomials with signed integer
coefficients ai ∈ [− q−1

2 , q−12 ] and bi ∈ {−1, 0, 1} then the resulting polynomial

c(x) = a(x) · b(x) =
∑p−1

i=0 cix
i ∈ R has coefficients in [−p(q − 1), p(q − 1)].

Proof. The proof is analogous to Proposition 5.1.4, but with different bounds
for the bi’s. When b(x) is small, then the terms xib(x) have coefficients in [−2, 2]
for each i, 0 ≤ i < p. This is because the extreme values of the bi’s are −1 and
1, and as we add at most two of those values. The bounds for the ai’s are still
the same as in Theorem 5.1.4, and we also still sum up at most p terms, which
leads to the extreme values ±2p( q−12 ) = ±p(q − 1). We arrive at the interval
[−p(q − 1), p(q − 1)] for the coefficients of c(x).

5.1.4 Multiplication with a Short Polynomial

Even more efficient than the multiplication with a small polynomial is the
multiplication with a t-small, or short, polynomial. The operand b(x) now has
coefficients in {−1, 0, 1} and a hamming weight of 2t, meaning b(x) has exactly
2t coefficients that are not equal to 0.
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Proposition 5.1.7. Let a(x), b(x) ∈ Z[x] be polynomials with degree at most p
and signed integer coefficients ai ∈ [− q−1

2 , q−12 ] and bi ∈ {−1, 0, 1}, where b(x)

is t-small, then the resulting polynomial c(x) = a(x) · b(x) =
∑2p−2

i=0 cix
i ∈ Z[x]

has coefficients in [−t (q−1)2 , t (q−1)2 ].

Proof. The first two steps of the proof are analogous to Proposition 5.1.5, as the
bounds for the input coefficients did not change. But as only 2t of the bi’s are
not equal to 0, the inner sum

∑i+j=k
i,j=0,...,p−1 ajbk−jx

k adds up 2t terms at most.
The reason for that is that the other p− 2t terms disappear due to the involved
bk−j = 0. This leads us to the interval [−2t (q−1)2 , 2t (q−1)2 ] for the coefficients of
c(x).

Proposition 5.1.8. Let a(x), b(x) ∈ R be polynomials with signed integer
coefficients ai ∈ [− q−1

2 , q−12 ] and bi ∈ {−1, 0, 1}, where b(x) is t-small, then

the resulting polynomial c(x) = a(x) · b(x) =
∑p−1

i=0 cix
i ∈ R has coefficients in

[−p(q − 1), p(q − 1)].

Proof. The first steps of the proof are analogous to Proposition 5.1.6 due to
the same bounds of the input coefficients. But, when b(x) is t-small we sum up
at most 2t terms that are not equal to 0, instead of p terms. Thus, we arrive at
the interval [−2t(q − 1), 2t(q − 1)] for the coefficients of c(x).

5.1.5 Correct Choice of Bit-Length `

To summarize the above stated coefficient bounds, we collect them in Table 5.1.
Depending on the bounds for the coefficients of the input polynomials a(x) and
b(x), the table lists the bounds for the coefficients of the resulting polynomial
c(x), where c(x) is either in Z[x] or in R. The upper half of the table shows
all cases that were discussed in the previous subsections for input coefficients
bounded by some dependence of q. The lower half, however, shows those bounds
for q = 3 to represent the multiplications in R3. For this case, we omitted the
multiplication with a small polynomial as this would basically be the same
as the signed multiplication. We also omitted the multiplication with a short
polynomial, as short polynomials are not used in multiplications in R3.
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Setting Bounds of ai, bi
Bounds of ci Bounds of ci

for c(x) ∈ Z[x] for c(x) ∈ R

Unsignedq [0, q − 1] [0, p(q − 1)2] [0, 2p(q − 1)2]

Signedq [− q−1
2 , q−12 ] [−p (q−1)

2

4 , p (q−1)
2

4 ] [−p (q−1)
2

2 , p (q−1)
2

2 ]

Smallq
ai ∈ [− q−1

2 , q−12 ]
[−p (q−1)2 , p (q−1)2 ] [−p(q − 1), p(q − 1)]

b(x) small: bi ∈ {−1, 0, 1}

ai ∈ [− q−1
2 , q−12 ]

Shortq b(x) short: bi ∈ {−1, 0, 1}, [−t(q − 1), t(q − 1)] [−2t(q − 1), 2t(q − 1)]

2t of the bi are 6= 0

Unsigned3 {0, 1, 2} [0, 4p] [0, 8p]

Signed3 {−1, 0, 1} [−p, p] [−2p, 2p]

Table 5.1: Coefficient bounds of the polynomial multiplication result c(x) de-
pending on the input polynomials a(x) and b(x). Upper part: Bounds for
a(x), b(x) ∈ Zq[x]. Lower part: Bounds for a(x), b(x) ∈ Z3[x] (“q = 3”).

In Section 3.3, we already mentioned the four different polynomial multipli-
cations in the encapsulation and decapsulation in NTRU Prime. They are, in
more detail:

During encapsulation:

• h(x) · r(x), where h(x) ∈ Rq can be represented as its center-lift in R,
meaning its coefficients are viewed in the interval [− q−1

2 , q−12 ], and where
r(x) ∈ R is a short polynomial, meaning it has a hamming weight of 2t
and its coefficients are in {−1, 0, 1}. This follows the setting of Shortq
in Table 5.1.

43



5 Application Strategies and Implementation Enhancements

During decapsulation:

• c(x) · 3f(x), where c(x) ∈ Rq can be represented as its center-lift in
R, and the secret f(x) ∈ R is a short polynomial. We can rewrite this
multiplication to 3(c(x) · f(x)) such that we do not have to change the
bounds for the coefficients of f(x). We simply multiply the result’s bounds
by 3 to get the correct overall bounds. This follows the setting of Shortq
in Table 5.1, where we afterwards multiply each output coefficient by 3.

• e(x) · g(x)−1, where both e(x) ∈ R3 and the secret g(x)−1 ∈ R3 can be
represented as their center-lifts in R. This follows the setting of Signed3

in Table 5.1.
• h′(x) · r′(x), where the description of the parameters is exactly the same

as for the polynomial multiplication during encapsulation. This follows
the setting of Shortq in Table 5.1.

From this enumeration of the polynomial multiplications in Streamlined NTRU
Prime, we see that the most important cases in Table 5.1 are Shortq and
Signed3, as those are the ones that are used in practice.

Determining the bit-size ` for Kronecker substitution. By knowing the
bounds (mini(ci),maxi(ci)) of the coefficients of a polynomial multiplication
result, we can precisely determine the correct ` to use for the Kronecker substi-
tution KS1 and its variants KS2, KS3 and KS4. On the one hand, the correct
choice of ` is to be big enough to break any carry chain in the resulting integer
by eliminating possible overlaps and “reserving enough space” per coefficient.
On the other hand, ` should be as small as possible while still achieving said
goal, because evaluation at bigger bit-sizes than necessary is very costly and
needs significantly more memory.
To get the ` for KS1, we compute the bit-length of the extreme value maxi(ci)
and add 1 to it to consider the sign bit:

`KS1 = bit-size(ci,max) + 1 = blog2(ci,max)c+ 2.

To get the corresponding `’s for KS2 and KS3, we simply halve the value `KS1,
i.e.

`KS2 = `KS3 =

⌈
`KS1

2

⌉
.
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Choice for `
sntrup761 & sntrup653 sntrup857

Setting KS1 KS2/3 KS4 KS1 KS2/3 KS4

Unsignedq 35 (64) 18 (32) 9 (16) 36 (64) 18 (32) 9 (16)

Signedq 34 (64) 17 (32) 9 (16) 35 (64) 18 (32) 9 (16)

Smallq 23 (32) 12 (16) 6 (8) 24 (32) 12 (16) 6 (8)

Shortq 22 (32) 11 (16) 6 (8) 22 (32) 11 (16) 6 (8)

Unsigned3 13 (16) 7 (8) 4 (4) 13 (16) 7 (8) 4 (4)

Signed3 12 (16) 6 (8) 4 (4) 12 (16) 6 (8) 4 (4)

Table 5.2: Correctly chosen evaluation points 2` for the given settings and
Kronecker substitution algorithms. The table shows the different `’s needed
for every specific case. The left-hand side shows the correct choices for ` for
the Streamlined NTRU Prime parameter sets sntrup761 and sntrup653. They
share the same optimal evaluation points. The right-hand side lists the correct
choices for ` for the bigger parameter set sntrup857. The values marked in red
are the most important cases – the two settings that we use for polynomial
multiplication in Streamlined NTRU Prime, in combination with our main
parameter set sntrup761. The values in brackets are the respective `’s rounded
up to the next power of 2.

Similarly, to get the correct ` for KS4, we halve the value for KS2 or KS3,
meaning

`KS4 =

⌈
`KS2

2

⌉
=

⌈
`KS3

2

⌉
.

A summary of the needed `’s for all the described multiplication scenarios of
this section can be found in Table 5.2. The table lists the correct evaluation
points for all settings, where we assume that the output polynomial c(x) is in R,
i.e. we assume the slightly larger bounds for the output coefficients. To better
distinguish the many different scenarios, Table 5.2 refers to the introduced
setting names from Table 5.1. While we show all three of the recommended
parameter sets, we highlight the most important one, sntrup761, in combination
with the two settings that are included in Streamlined NTRU Prime in practice.
The values in brackets in Table 5.2 are the respective ` rounded up to the
next power of 2. These rounded `’s are specifically interesting, as aligning the
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Input: modulus m ∈ {3, q}
Input: sequence (ci)

2p−2
i=0 , i.e. the coefficients of a polynomial in Z[x]

1 // Reduce from Z[x] to R
2 for i = 2p− 2, 2p− 3, . . . , p do
3 ci−p = ci−p + ci
4 ci−p+1 = ci−p+1 + ci

5 // Reduce from R to Rq or R3, respectively

6 Initialize the sequence (c′i)
p−1
i=0

7 for i = 0, 1, . . . , p− 1 do
8 c′i = ci mod m

9 return (c′i)
p−1
i=0

Algorithm 10: Reduction of a polynomial in Z[x] to a polynomial in Rq
or R3, respectively. Reduces the polynomial in the ring xp− x− 1 of NTRU
Prime, and further reduces the polynomials’ coefficients by the given modulus
m, which must be either q or 3.

evaluation points with a power of 2 allows for much more efficient packing and
unpacking. In Section 5.3, we will describe different strategies for the packing
and unpacking procedures, and explain why we accept a bigger (i.e. power-of-2
aligned) ` to gain specific implementation advantages.

5.1.6 Modular Reductions in the Ring of NTRU Prime

Another crucial part when implementing polynomial multiplications is the
modular reduction at the end. The bounds of Table 5.2 do not represent the
final result, because we still need to reduce the output polynomial in the ring of
NTRU Prime (for which we already discussed the bounds), and further reduce
its coefficients by q or 3, respectively.

Algorithm 10 shows the procedure of reducing a polynomial in Z[x] to a polyno-
mial in Rq or R3, respectively. The first loop reduces the polynomial in Z[x] in
the ring xp − x− 1 to get a polynomial in R, and the second loop reduces each
coefficient by m ∈ {3, q} to get a polynomial in Rq or R3. While the purpose of
the second loop is clear, the reasoning behind the first loop might not be that
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straight-forward. We refer to the proof of Theorem 5.1.2 for an explanation of
the additive terms in the first loop.

This reduction to Rq or R3, depending on the context, is necessary after
unpacking the large resulting integer, because the multiplication always gives
us a polynomial in Z[x]. That is the reason why we analysed the bounds for
polynomial multiplications both in Z[x] and in R in the previous subsections.

Overhead for modular reductions in the ring. In total, one instance of Algo-
rithm 10 involves 2p−2 additions with an operand size of `-bit, and p reductions
of `-bit values by q or 3, respectively.

Depending on the context, Algorithm 10 may be followed by a center-lift of the
coefficients. A center-lift can be achieved by further processing the coefficients
c′i at the end of the reduction algorithm with the following loop:

1 // center-lift of the coefficients
2 for i = 0, 1, . . . , p− 1 do
3 c′i = c′i − m−1

2

This adds an additional overhead of p additions of at most `-bit operands.

5.2 Cryptographic Co-Processors for Public-Key
Cryptography

Modern embedded devices do not only consist of a single primary processor, the
CPU, but they ofte have additional co-processors that are used to supplement
the functions of the CPU. Co-processors are specialised hardware components
dedicated to a specific family of operations, like floating-point operations,
signal processing, I/O interfacing or cryptography. These dedicated functional
requirements allow hardware developers to design these building blocks to be
extremely efficient.

Cryptographic co-processors are of particular interest for us. They enhance
the security and performance of cryptographic operations like random number
generations and hash-functions. The same holds for symmetric and asymmetric
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cryptosystems. For public-key cryptography, dedicated hardware is mostly
optimized for large-bit integer multiplication and accumulation (addition), i.e.
for the operation

r = a · b+ c,

where a, b and c are large integers. Such co-processors are also referred to
as multiply-and-accumulate hardware units, or MAC-units. These building
blocks are essential for arbitrary length multiplications as needed in both the
asymmetric cryptosystems RSA [RSA78] and elliptic-curve cryptography (ECC)
[Mil85; Kob87], because large-bit multiplications are very time-consuming.

When dealing with Kronecker substitution, dedicated hardware for arbitrary
length multiplication and addition sounds very promising. In Section 3.3, when
we talked about recent related work, we already mentioned the work of [Alb+18].
They implemented variants of Kronecker substitution in combination with the
cryptosystem Kyber on a specific co-processor initially designed for RSA.

For our work, as already mentioned in Section 3.3, we will not assume specific
co-processors for implementing the polynomial multiplication. However, we
rather assume the word-size wcopro of one. Compared to the word-size wcpu
of the native hardware, which is usually 8, 16 or 32 bits, we will work with
much larger word-sizes of dedicated co-processors for asymmetric cryptography.
For an interesting comparison with existing implementations, we will assume
wcopro ∈ {256, 512, 1024, 2048}-bit. Although the highest of these values might
not be used in practice yet, our results will show what we could achieve with
Kronecker substitution and its variants if we were to use such large-bit building
blocks.

Further, we note that the actual large-integer additions and multiplications are,
of course, all performed on the dedicated cryptographic co-processor. However,
we assume the polynomials are stored on the native hardware. When we do a
packing step, we store the large integer in words of the co-processor. After the
large-integer operations are finished, we load the resulting integer into CPU
words again and then perform the unpacking.
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5.3 Minimizing the Kronecker Substitution’s Overhead

Crucial for the running time when using Kronecker substitution are the packing
and unpacking steps, which we already described in Subsection 3.2.6 and
Chapter 4. The efficiency of those, of course, highly depends on the combination
of the underlying hardware and the actual implementation.

Assumptions and prerequisites. We assume that the inputs for the polynomial
multiplications are stored by saving their coefficients as a list in memory. This
means we store a polynomial by organizing its coefficients in an array of
dedicated signed integer types with certain bit sizes. We determine this size by
rounding the signed bit-length of the upper coefficient bound to the next power
of 2, similarly as we did for choosing `. In the language C, we store coefficients
with the upper bound of q−1

2 in arrays of the data type int16, and small and
short polynomials in arrays of the data type int8. The output coefficients are
stored in int8, int16 or int32, depending on `, before we reduce the output
polynomial in the correct ring to make the coefficients smaller again. To give
an example, we would define the polynomial a(x) ∈ Zq[x] like

int16 a[p] = {a_0 , a_1 , ..., a_pmin1};,

where the coefficients a_0, . . . , a_pmin1 of type int16 were defined beforehand,
and p is the degree of the polynomial. We further assume that the native
hardware has a word-size of wcpu ∈ {8, 16, 32}, meaning the types int8 and
int16 are easily supported.

With these specifications in mind, we will discuss different implementation
considerations for packing of polynomials a(x) ∈ Z[x] in Subsection 5.3.1 and
unpacking of big integers C ∈ Z in Subsection 5.3.2. We will also define the
most efficient approaches that we use for our application to Streamlined NTRU
Prime.
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5.3.1 Packing

Packing a polynomial a(x) means to concatenate its coefficients into a large
integer, which we achieve by evaluating the polynomial at a chosen point 2`

(we thoroughly discussed the correct choices for ` in Subsection 5.1.5).
In the algorithms for Kronecker substitution and its variants given in Chapter 4,
we illustrated the evaluation of the polynomials as computing a sum over
all coefficients. However, these large integer additions are not necessary in
practice.

Unsigned Case

In the unsigned case, packing is very cheap. We simply allocate the correct
amount of memory for the large integer and copy the coefficients into the
right places in the co-processor’s memory by cheap logical OR operations. No
additions are needed.

Signed Case

The signed case needs more careful handling than the unsigned case. We
cannot just copy the coefficients to the right places in memory anymore, as the
evaluation of negative coefficients leads to carries. More specifically, a negative
coefficient ai leads to the following overhead:

1. Set the sign-bit to 1. As ai is negative, we need to set the sign-bit
by adding 2` to the coefficient: ai = ai + 2`. This amounts to an `-bit
addition.

2. Carry generation. A negative coefficient triggers a carry which needs
to be subtracted from the next limb: ai+1 = ai+1 − 1. This amounts to an
`-bit addition.

Overhead of intuitive packing. The worst case would be that every single
coefficient is negative, which produces an overhead of around 2p `-bit additions
per polynomial evaluation.

50



5 Application Strategies and Implementation Enhancements

Another very promising approach for polynomial packing in the signed case
is proposed by Bos, Renes and van Vredendaal [BRV20]. The authors suggest
to make use of the properties of the rings we operate in by getting rid of the
negative coefficients and viewing them all as unsigned. Their approach is to turn
signed coefficients in the interval [− q−1

2 , q−12 ] into unsigned ones in the interval

[q − q−1
2 , q + q−1

2 ] by adding q to them. Important to note is that some of the
polynomials that are multiplied are secret values in NTRU Prime and thus
need to be handled with care. The secrets f(x) ∈ R and g(x)−1 ∈ R3 are both
involved in multiplications during decapsulation. To not leak any information
on those secrets based on the timing of the computations, we would need to
add q to each coefficient, even the positive ones. This leads to the problem of
having to increase ` to the next power of 2 for each of the Kronecker variants.
[BRV20] noticed that there is a nice solution due to the fact that Kronecker
substitution is commutative with respect to subtraction of polynomials and
integers. To remedy the huge performance impact that comes when having
to increase `, they propose to subtract q again from the coefficients after the
Kronecker substitution, which amounts to

a(2`) =

p−1∑
i=0

ai2
`i =

p−1∑
i=0

(ai + q)2`i −
p−1∑
i=0

q2`i.

The above is a big integer subtraction with the fixed term Q =
∑p−1

i=0 q2
`i,

which can be computed and stored in advance. Adding q to all coefficients and
subtracting the large integer Q again at the end, combines the advantage of
not having to take care of carries while also keeping ` as low as possible.

Overhead of optimized packing. If we pack a single polynomial, we need to
add the value q to all coefficients ai, which amounts to p `-bit additions. The
big integer subtraction at the end involves operand bit-lengths of ` · p. For a
co-processor word size of exactly wcopro = `, the overhead would be around
the same as for the worst case of the intuitive packing approach, namely 2p
`-bit additions/subtractions. However, the bigger the co-processor’s word size,
the fewer calls to the hardware we need. As we assume that wcopro is much
larger than `, this approach will always be way more efficient than the intuitive
packing.
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We suggest to always stick to the optimized approach to avoid any leakage of the
secret data. A secret is involved in 2 of 3 multiplications during decapsulation,
after all.

Pre-computing packed secrets. We can even further increase the efficiency
of the packing step by not only pre-computing Q =

∑p−1
i=0 q2

`i but also pre-
computing the large integers that we retrieve when packing our secret values.
This means that, during key generation, we not only store the secrets f(x) ∈ R
and g(x)−1 ∈ R3, but also perform the Kronecker substitution on them to
retrieve F ∈ Z and G−1 ∈ Z. We store those secret large integers alongside
the secret polynomials to spare us the packing phase of those values during
decapsulation.

5.3.2 Unpacking

We have the following setting: We pack the two polynomials a(x), b(x) ∈ Z[x]
by evaluating both at 2` to get A,B ∈ Z, and multiply these large integers to
get C = A · B. Finally, we need to get the coefficients of the corresponding
polynomial c(x) by unpacking C, a procedure for which we will now discuss
different strategies. Note that C is loaded into CPU words again as soon as the
large-integer operations on the co-processor are finished.

While talking about the different Kronecker variants for the signed case in
Section 4.5, we already gave an intuitive algorithm for unpacking in Algorithm 8.
While this algorithm was given for the signed case, it can be used for the unsigned
case by simply ignoring both the handling of the carry and the computation
of the if-statement. Again, we can do several optimizations for this algorithm.
Most importantly is that we do not need to compute line 3 and line 4 in practice,
but we simply rearrange memory instead. We will now discuss this and several
other enhancements of Algorithm 8 for the unsigned and signed cases.

Unsigned Case

For the unsigned case, we read `-bit chunks from C to get the unsigned coeffi-
cients of c(x). By aligning ` with powers of 2 as recommended in Subsection 5.1.5,

52



5 Application Strategies and Implementation Enhancements

where we saw that we need a maximum of ` = 32, we make sure that an output
coefficient is either a multiple of the word size, or the other way around. This
leads to three possible cases:

1. ` < wcpu: In this case, multiple coefficients are stored in a wcpu-sized
chunk of memory. For example, for ` = 16 and wcpu = 32, two coefficients
are stored in a single wcpu-bit word, i.e.

C =
∑
i=0

c′i2
32i,

where 0 ≤ c′i < 232, and c′i = ci + ci+1 · 216. This shows that we can read
the two coefficients ci and ci+1 from c′i with simple bit shifts and masking.

2. ` = wcpu: When the required precision ` matches the hardware word
size, the recovering of the coefficients is especially efficient. We read the
coefficients from

C =
∑
i=0

c′i2
`i =

∑
i=0

ci2
`i,

where 0 ≤ c′i, ci < 2`, which means that the c′i are already exactly the
coefficients ci we need. We can simply reinterpret the array that stores
the large integer as the sequence of coefficients of c(x).

3. ` > wcpu: If ` is bigger than the hardware word size, it means that the
coefficients ci span over multiple CPU words. For example, if ` = 32 and
wcpu = 16, we have

C =
∑
i=0

c′i2
16i,

where 0 ≤ c′i < 216, and ci = c′i + c′i+1 · 216. We again only need simple bit
shifts and masking to recover the ci’s.

Aligning ` with powers of 2 has the additional significant advantage that an
output coefficient can always be represented by one of the data types int8,
int16 or int32. This means that instead of the above mentioned shifting and
masking when ` 6= wcpu, we simply cast (reinterpret) the memory in the code,
which costs nothing.
If we consider our enhancements, then unpacking for the unsigned case boils
down to computing nothing : just reinterpret the memory where the large integer
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C is stored as an array of `-bit chunks to recover the ci’s, i.e.

C =

2p−2∑
i=0

ci2
i`, (5.2)

where 0 ≤ ci < 2`. ` determines the unsigned integer data type (uint8, uint16,
uint32) we need to use for storing the ci’s.

Signed Case

Our starting point for the signed unpacking is again Algorithm 8. The recovering
of the unsigned ci’s can be handled exactly like illustrated in Equation 5.2 for
the unsigned case, meaning we do not need line 3 and line 4 of Algorithm 8.

Signed coefficients in Algorithm 8 are determined by checking if the unsigned
ci is greater than 2`−1 in line 6, i.e. if the sign-bit is set. If so, we subtract 2`

from ci to get its signed representation. We also set the carry to 1 and add it
to the next coefficient ci+1 in line 5. Bos, Renes and van Vredendaal [BRV20]
noted that the process of reinterpreting an unsigned coefficient to a signed one
can be simplified significantly. If we make the fair assumption that the two’s
complement is used to represent signed integers in memory, the subtraction in
line 7 can be omitted. The if-statement in line 6 checks if the most significant
bit in ci is set in the unsigned representation, and if so, makes the number
negative by setting the most significant bit in the signed representation. The
same can be achieved by simply reinterpreting the unsigned integer as a signed
one in memory [BRV20].
Further, the if-statement in line 6 is also used to correctly set the carry flag.
To omit this non-constant time (timing leaking) operation, [BRV20] suggests
to compute the carry flag with simple OR operations on two bits. We get the
relevant most significant bits in line 4 by shifting the values by ` − 1 to the
right.

The complete optimized unpacking procedure for the signed case is illustrated in
Algorithm 11. This algorithm is timing invariant and performance enhanced.
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Input: bit-length ` ∈ Z; output degree n ∈ Z
Input: sequence (ci)

n
i=0, i.e. the unsigned coefficients

1 carry ← 0
2 for i = 0, 1, . . . , n− 1 do
3 limb ← ci+ carry
4 carry ← (limb � (`− 1))|(ci � (`− 1))
5 ci ←limb

6 return (ci)
n−1
i=0 , i.e. the signed coefficients

Algorithm 11: OptimizedUnpack(`, n, (ci)
n
i=0). Optimized unpacking of

a large integer for the signed case. Returns the in-place adapted sequence
(ci)

n
i=0, where the coefficients are now signed. Taken with adaptations from

[BRV20].

Overhead of optimized unpacking. Taking Algorithm 11 as a reference, the
optimized unpacking involves only one major operation: the carry addition in
line 3. In the worst case, i.e. if all coefficients are negative, this amounts to
n = 2p− 2 additions with an operand bit-size of `.

Enhancements for KS3. All the enhancements for the unpacking strategies
we just discussed can also be applied to the reconstruction algorithm of the
signed case of KS3, which we discussed in Section 4.5.
Firstly, as already described, we get the sequences (ui)

2L′−1
i=0 and (wi)

2L′−1
i=0 by

performing two unpacking steps. For this, we can now apply the enhanced
unpacking strategies in Algorithm 11.
Secondly, in line 10, line 13, and line 24 of Algorithm 9, we check if βi > βmax,
and if so, subtract 2`

′
from it. Similarly for αi. These three if-statements and

the corresponding subtractions by 2`
′

can be omitted, because we can use the
trick with the reinterpretation of the memory again. We just cast the unsigned
integers βi and αi to signed integers, similarly like we described previously for
the unpacking algorithm. This enhances Algorithm 9 significantly.
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5.3.3 Summary of Findings

In this section, we discussed different important aspects when implementing
the packing and unpacking steps of the Kronecker substitution and its variants.
Our most interesting analyses are those of the signed case. We conclude that
the best choice of ` is not necessarily the smallest possible, but the next bigger
power of 2, confirming the statements in Table 5.2. With this careful selection
of `, we arrived at enhanced packing and unpacking methods, in which several
computations could be omitted. Additionally, we gave an overview of the needed
operations for the optimized packing and unpacking procedures, which help
estimate the Kronecker substitution’s overall performance in the next chapter.
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In this chapter, we will present our results and discuss them. We also compare
them to current state-of-the-art implementations of polynomial multiplications
in Streamlined NTRU Prime.

Setting. We assume an embedded system that consists of a CPU and one
or more co-processors to supplement the main computer. Most important is a
cryptographic co-processor, i.e. a fast large-bit multiply-accumulate hardware
(MAC) unit on which we can run our large-integer arithmetic. We have no
limitations on the word size wcpu of the CPU; it can be anywhere in the common
range of 8 to 64 bits. What matters is the word size of the MAC unit wcopro,
which is the main basis for our results and comparisons. We will assume word
sizes wcopro of 256, 512, 1024 and 2048 bits for our later explained methodology.
Word sizes of 128 to 512 bits are fairly common in co-processors for asymmetric
cryptography, but we also want to look at the performance of our implementation
on much larger units.

Counting multiplications and additions. We are interested in a high-level
count of x-bit integer additions and multiplications, where x-bit refers to the
operand bit-length of said operations. The bit-lengths of these operations highly
depend on the respective ` of the chosen Kronecker substitution variant.
When we talk about operation counts, we always mean the number of x-bit
additions and multiplications needed for a single polynomial multiplication in
NTRU Prime, not those of a full encapsulation or decapsulation phase.
To get the counts for Kronecker substitution and its variants, we counted the
operations in theory and verified these results in our implementation.
To have a fair basis for comparison, we always assume the worst-case scenarios
(i.e., inputs) for polynomial multiplications when evaluating our methods. When
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counting the operations needed for packing and unpacking as described in Sec-
tion 5.3, for example, we count the operations as if each coefficient was negative
– although this is never the case in practice. The same holds for other parts
where negative coefficients lead to more overhead or any other timing-variant
parts of the algorithms.
Our counts for KS1, KS2, KS3 and KS4 are given in Table 6.1. The bold,
red rows emphasise the most important operations, i.e. the actual big-integer
additions and multiplications needed for the individual setting. All red lines,
in general, show big-integer arithmetic that should be performed on the cryp-
tographic co-processor. All other operations are small enough to be efficiently
performed on the main computer.

Comparison methodology. How many additions and multiplications we need
to perform in practice depends on the combination of the two scenarios described
above: the word size of the co-processor and the bit-lengths of the operands. If the
bit-sizes x of the operands are larger than wcopro, we actually need more than one
operation to get our result. How many exactly depends on the method we choose,
i.e. which of the techniques in Section 3.2 we use for big-integer multiplication.
Again we assume a method with the worst runtime to give the fairest count:
the schoolbook method. This means that for an x-bit multiplication, where
x > wcopro, we assume that we actually need d

(
x

wcopro

)2e multiplications on the
co-processors. For additions, we similarly use the respective schoolbook variant.
Schoolbook addition has an asymptotic runtime complexity of O(n), where n
is the bit-length of the operands. So, for x-bit additions, where x > wcopro, we
assume we need d x

wcopro
e additions on the co-processor.

We calculate the actual addition and multiplication counts for every performed
big-integer operation in Table 6.1 for all wcopro ∈ {256, 512, 1024, 2048}, and
sum them up. The resulting counts are given in Table 6.2. Note that this table
does not include the small (≤ 64 bits) additions from Table 6.1, as we do not
perform them on the co-processor, but directly on CPU (or anywhere else).
Table 6.2 only includes the needed additions and multiplications that we run
on the cryptographic co-processor with its respective word size wcopro.
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Method
Operation Operand

Count
(Context) bit-size

KS1: ` = 32

MUL 24333 1
ADD (pack: add q to coefficients) 32 1522
ADD (pack: subtract big integer Q) 24334 2
ADD (unpack: add carry) 32 1521
ADD (reduction) 32 1520

KS2: ` = 16

MUL 12173 2
ADD 24333 2
ADD (pack: add q to coefficients) 16 3044
ADD (pack: subtract big integer Q) 12174 4
ADD (unpack: add carry) 32 1522
ADD (reduction) 32 1520

KS3: ` = 16

MUL 12173 2
ADD (pack: add q to coefficients) 16 3044
ADD (pack: subtract big integer Q) 12174 4
ADD (unpack: reconstruction alg.) 16 15206
ADD (reduction) 32 1520

KS4: ` = 8

MUL 6093 4
ADD 12173 4
ADD (pack: add q to coefficients) 32 6088
ADD (pack: subtract big integer Q) 6094 8
ADD (unpack: reconstruction alg.) 16 15204
ADD (reduction) 16 1520

Table 6.1: Addition and multiplication counts for the Kronecker substitution
and its variants. Counts for packing and unpacking overhead are according
to the discussed optimised algorithms. Each red row indicates an operation
that should be computed on a cryptographic co-processor for fast large-bit
integer arithmetic. The bold, red rows emphasise the main multiplications and
additions for the respective Kronecker substitution variant.
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Method Operation Count

KS1 MUL 9035
` = 32 ADD 192

KS2 MUL 4523
` = 16 ADD 383

KS3 MUL 4523
` = 16 ADD 192

KS4 MUL 2266
` = 8 ADD 383

Method Operation Count

KS1 MUL 2259
` = 32 ADD 96

KS2 MUL 1131
` = 16 ADD 192

KS3 MUL 1131
` = 16 ADD 96

KS4 MUL 567
` = 8 ADD 192

Left: wcopro = 256 bits. Right: wcopro = 512 bits.

Method Operation Count

KS1 MUL 565
` = 32 ADD 48

KS1 MUL 283
` = 16 ADD 96

KS1 MUL 283
` = 16 ADD 48

KS1 MUL 142
` = 8 ADD 96

Method Operation Count

KS1 MUL 142
` = 32 ADD 24

KS1 MUL 71
` = 16 ADD 48

KS1 MUL 71
` = 16 ADD 24

KS1 MUL 36
` = 8 ADD 48

Left: wcopro = 1024 bits. Right: wcopro = 2048 bits.

Table 6.2: Addition and multiplication counts for big-integer operations per-
formed on a fast large-bit cryptographic co-processor, i.e. the red rows in
Table 6.1. Different sub-tables show the counts for different assumed word sizes
wcopro of the co-processor. For both large-bit addition and multiplication, we
assume schoolbook methods to estimate the total counts.

.
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State-of-the-art comparison. We compare the counts of our methods with the
most recent optimised implementation of Streamlined NTRU Prime published
by [Alk+20]. The authors state that one instance of a polynomial multiplication
in their mixed-radix NTT involves around 56322 32-bit multiplications and
17820 32-bit additions1.

Results comparison and discussion. A summary of the main findings of this
thesis are given in Table 6.3. This table includes the direct comparison of all
needed additions and multiplications for our implementations and the one from
[Alk+20], and the comparison of all wcopro ∈ {256, 512, 1024, 1048}. For a better
overview, we combine the total counts of additions and multiplications (as given
in Table 6.2) and simply call them operations. We also give the direct difference
in % compared to the reference from [Alk+20], where a change of −x% indicates
that our variants need x% less total operations to perform the same polynomial
multiplication. To keep the interesting overview of operations performed by
the CPU and the ones performed by the MAC unit (the threshold for CPU
computation is ≤ 64 bits), we keep them separate. We assume a CPU word
size wcpu of 64 bits. Note that the implementation of [Alk+20] involves only
32-bit operations, so we assumed they do not make use of the cryptographic
co-processor at all.
We see that the operation counts for our results are much better than for the
current state-of-the-art implementation, even for the smallest assumed word
size of the co-processor of 256 bits. With increasing wcopro, the total number
of needed operations decreases. However, the amount of operations with small
bit-lengths is always the same, and those operations also contribute most to
the total numbers. For wcopro = 4096, the small operations represent around
96− 98% of the total operations for KS1 and KS2. For KS3 and KS4, they
even make up more than 99% of the total operations. Here, we keep our possible
overhead improvements from Section 5.3 in mind. If we already pack the secrets
and store those large integers in advance, we can save some packing overhead
during decapsulation.
What does change significantly with increasing wcopro is the number of opera-
tions that need to be performed on the cryptographic co-processor. As expected,

1The authors of [Alk+20] have communicated to us the multiplication and addition counts
for their mixed-radix case. This count reflects a single polynomial multiplication including the
overhead for the NTT and the inverse (backward) NTT.
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KS1 and KS2 give the most promising operation counts for all assumed wcopro’s.
That KS1 is that compatible to KS2 is a rather surprising result. This is due to
the huge overhead of the small operations, as already discussed. In comparison,
KS3 and KS4 perform poorly, because of the complex reconstruction algorithm
(Algorithm 9) that those Kronecker substitution variants involve. This recon-
struction procedure increases the overhead of small operations significantly, as
one can see in the resulting operation counts. Furthermore, the additional se-
quences that are processed in Algorithm 9 (u,w, α, β) add considerable memory
needs for KS3 and KS4. On embedded systems, we should keep the code size
and the consumed runtime memory as low as possible, which KS3 and KS4 do
not fulfill.
Due to the listed reasons, we do not recommend to use KS3 or KS4 in practice,
but to use KS2 or KS1. The best approach depends on the specific word size
for the small operations, i.e. the best Kronecker substitution variant is the one
where wcpu = `, or slightly larger.

Omitted operations. As thoroughly described in Section 5.3, we highly opti-
mised the procedures of packing and unpacking. Those enhanced algorithms
include some operations that we consider very cheap and that we therefore did
not count. This includes operations on the bit level, like bit-wise shifts and
OR operations. For example, every call to Algorithm 11 has a small overhead
of n OR operations and 2n right-shifts by `− 1. Furthermore, we have some
additional overhead if we call Algorithm 9 when using KS3 (or KS4). That is,
per call to Algorithm 9, 2L′ − 3 bit shifts to the right by `′ to compute δ in
line 14. On the other side, when using KS2 (or KS4), we have the additional
overhead of 1 bit shift to the right by 1 and 1 bit shift to the right by ` + 1
when computing Equation 4.1 and Equation 4.2, respectively.
Another thing we should keep in mind are the needed modular reductions that
we already analysed in Subsection 5.1.6.

Proof-of-concept. We provide proof-of-concept implementations in
SageMath2, a free open-source mathematics software system, and Python 3.7.
Our chosen hard-coded parameter set is sntrup761, but switching to the other
recommended sets is as simple as changing the value definitions for p, q and t

2https://www.sagemath.org/
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Method
# of operations Total # of Change
≤ 64-bit 256-bit operations comp. to (1)

KS1, ` = 32 4563 9227 13790 −81%

KS2, ` = 16 6086 4906 10992 −85%

KS3, ` = 16 19770 4715 24485 −67%

KS4, ` = 8 22812 2649 25461 −66%

Operation counts for wcopro = 256.

Method
# of operations Total # of Change
≤ 64-bit 512-bit operations comp. to (1)

KS1, ` = 32 4563 2355 6918 −91%

KS2, ` = 16 6086 1323 7409 −90%

KS3, ` = 16 19770 1227 20997 −72%

KS4, ` = 8 22812 759 23571 −68%

Operation counts for wcopro = 512.

Method
# of operations Total # of Change
≤ 64-bit 1024-bit operations comp. to (1)

KS1, ` = 32 4563 613 5176 −93%

KS2, ` = 16 6086 379 6465 −91%

KS3, ` = 16 19770 331 20101 −73%

KS4, ` = 8 22812 238 23050 −69%

Operation counts for wcopro = 1024.

Method
# of operations Total # of Change
≤ 64-bit 2048-bit operations comp. to (1)

KS1, ` = 32 4563 166 4729 −94%

KS2, ` = 16 6086 119 6205 −92%

KS3, ` = 16 19770 95 19865 −73%

KS4, ` = 8 22812 84 22896 −69%

Operation counts for wcopro = 2048.

(1): Total number of operations needed for the mixed-radix NTT reference
implementation by [Alk+20], i.e. 74142 32-bit operations.

Table 6.3: Total number of operations that need to be performed for each
Kronecker substitution variant. The different segments show different word sizes
of the cryptographic co-processor wcopro, and the changes illustrate the total
number of needed operations compared to those of (1).
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in the code.
Our implementation includes KS1, KS2, KS3 and KS4 for both the unsigned
and the signed case. The Sage reference implementation for the whole
cryptosystem sntrup761 was taken from the official NTRU Prime website3.
We provide two different variants of our implementation. The first is a
typical Python program that uses all built-in functionality provided by the
SageMath library (big-integer arithmetic, ring arithmetic, . . . ). The second
implementation is more “C-like”, in the sense that it stores big-integers in
array-like structures and performs every operation “manually”. This variant
aims to prove our concepts of packing, unpacking, reduction in the ring, and
big-integer arithmetic as it would need to be implemented within embedded
languages.
We tested our implementations not only with standard data as generated in
Streamlined NTRU Prime, but with extreme values, too. These are polynomials
where all coefficients are equal to their maximal or minimal value (to test our
calculated bounds from Section 5.1). To verify our calculated `’s as given in
Table 5.2 in practice, we wrote a test that tries out every reasonable ` per
setting and returns the smallest one for that the multiplication results were still
correct. We also ran all tests provided in the aforementioned Sage reference
implementation of sntrup761, where we replaced all polynomial multiplications
by our different Kronecker substitution variants.

Important considerations. To describe our results and compare them to state-
of-the-art implementations, we purposefully ignore certain aspects that the
reader should be aware of. Although our results are very well defined, we want
to note that we do not consider all possible implementation aspects, as this
would be beyond the scope of this thesis.
Exemplary overhead includes loads and stores: the time needed to store the
large integer in the co-processor’s memory, and the time needed to load the
result into CPU memory again. As these timings are very system specific, it
was not possible to estimate them in a fair manner.
Another important aspect is the memory overhead, i.e. the exact numbers of
additional memory the Kronecker substitution might need compared to other

3Official website: https://ntruprime.cr.yp.to/software.html. 2019 Reference imple-
mentation: https://ntruprime.cr.yp.to/ntruprime.sage
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polynomial multiplication techniques. While we talk about memory consump-
tion depending on different choices of ` and which variants of the Kronecker
substitution need the least/most amount of memory for intermediate computa-
tions, this all highly depends on the native underlying hardware. As we chose
to not depend on hardware too much, we leave the memory discussion on a
very high level. However, we note that future work on specific systems should
always include a thorough analysis of memory overhead.
As the last point, we mention cycle counts. On different systems, different
operations take a different number of cycles to complete. If our suggestions
are implemented on specific hardware, we recommend performing actual speed
measurements that involve cycle counts to get a confident result.

65



7 Conclusion

With Streamlined NTRU Prime, we chose a very recent and promising post-
quantum cryptosystem to analyse. During the work on this thesis, the family of
cryptosystem NTRU Prime even advanced to an alternate candidate in the third
and final round of the NIST PQC standardisation competition. NTRU Prime’s
success in the competition further underlines the significance of lattice-based
systems when talking about post-quantum secure cryptography.
The polynomial multiplication, the main bottleneck of lattice-based cryptosys-
tems, was an interesting point for further enhancements in this thesis. With
Kronecker substitution, a method that converts polynomial arithmetic into
large-integer arithmetic, we selected a promising enhancement strategy. We also
took several other flavours of the Kronecker substitution into account.
We were able to combine the ring Zq[x]/(xp − x− 1) of NTRU Prime with the
method of Kronecker substitution. This procedure involved a thorough bound
study for the polynomial multiplication in the ring of NTRU Prime to conclude
the correct evaluation points. Furthermore, we discussed some enhancements for
the packing and unpacking phases of Kronecker substitution that are possible
for our setting. For that, we compared different procedures to optimise the
overhead that Kronecker substitution introduces.

Our results for Kronecker substitution and its variants are excellent if we assume
co-processors for fast large-integer arithmetic. With an increasing assumed word
size of the co-processor, the number of operations that need to be performed on
such hardware decreases significantly. Most current state-of-the-art implementa-
tions for polynomial multiplications in NTRU Prime use Karatsuba’s method,
Toom-Cook multiplication, or even NTTs. That means they all perform many
small-bit multiplications and additions to calculate the final product. In terms
of operation counts, Kronecker substitution and its variants have unarguable
advantages to those current implementations. We showed what an exciting
alternative the Kronecker substitution is for embedded devices, also because

66



7 Conclusion

such co-processors for fast large-bit integer arithmetic already exist. Instead
of analysing enhancements for polynomial arithmetic on conventional comput-
ers, we could repurpose existing hardware built for asymmetric cryptosystems
like RSA and ECC and utilise their integer arithmetic, similar to the work of
[Alb+18].

The packing and unpacking steps constitute the main overhead of the Kronecker
substitution on embedded devices. The small-bit operations that are involved
in those are not influenced by the word size of the co-processor. A possible
improvement is to pack the polynomials once at the start of the encapsulation
or decapsulation phase and unpack them only at the very end of the respective
function. While this is possible, it would undoubtedly involve some more big-
integer operations on the packed values. Further enhancements of the packing
and unpacking overhead would have gone beyond the scope of this thesis but
should be further researched.

Another future task is applying our methods to other lattice-based cryptosys-
tems. Doing so would involve a bound study in the respective ring of the chosen
cryptosystem, but is otherwise straightforward. We expect that it is feasible to
adapt our proof-of-concept implementations to other settings and that one can
therefore very quickly test the compatibility with other systems. To get more
hardware-specific results, one would need to write a careful implementation
that is directly suited to the particular system, which goes beyond this thesis’s
scope.

Our results aim to set the theoretic basis for future practical work on embedded
devices. We showed that Kronecker substitution is a straightforward way of
shifting heavy computations to existing hardware and software solutions for
large-integer arithmetic. Further, we proofed its applicability on the example
NTRU Prime and provided very promising operation counts compared to
state-of-the-art implementations of our target cryptosystem.
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