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Abstract

For the autonomous navigation of robots, reliable and efficient state es-
timation is of utmost importance. In GPS-denied scenarios, cameras are
often used as the primary sensors for wide range of applications, such as
Visual Odometry, SLAM, 3D reconstruction, obstacle avoidance, to name
a few. While these topics are well studied and perform well in structured
environments like factory floors or automated driving, there is less work
done in off-road scenarios.

In this thesis, three modern feature-based Visual Odometry approaches to
estimate robot’s ego-motion from stereo cameras are evaluated. The ap-
proaches are ORB-SLAM2, RTAB-MAP F2M and F2F, and SOFT VO. The
evaluation is performed on three different off-road datasets: the Davon
Island navigation dataset, the Seetaler Alps dataset, and the Strass datastet.
The Seetaler Alps off-road dataset was collected in a challenging alpine
environment using a robot platform equipped with a stereo navigation
camera, two stereo hazard cameras and an inertial measurement unit. The
navigation camera was designed and built up using two monocular cam-
eras to meet the requirements of the data recording. The dataset will be
published for the benefit of off-road navigation research across the robotics
community.

The performance of Visual Odometry approaches are compared and as-
sessed based on various error metrics. In the Davon Island dataset, the
RTAB-Map F2M approach achieved the most accurate results, whereas,
ORB-SLAM2 outperformed other approaches in the Strass dataset. Due to
rain, snow, and adverse environmental conditions, all the approaches failed
to achieve reasonable localization accuracy in the Seetaler Alps dataset.
Quantitative results show that, in the Strass dataset, ORB-SLAM2 achieved
significant improvement in trajectory estimation after loop closure and
global optimization when compared to pure Visual Odometry.
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1 Introduction

Robots have made their way into human lives in the last couple of decades.
With the advancements in sensor technology, the development of new ap-
proaches and methods, autonomous mobile robots are used more and more
in various applications like automation, logistics, rescue, space, military,
and automotive, to name a few.

In the last few years, self-driving car technology has seen tremendous
progress; autonomous cars are becoming a possibility in the transportation
sector. Industrial robots are working efficiently side-by-side with humans
to meet the high demands in volume and variability in the production
sector. In field-robotics such as disaster response, mining, or agriculture,
unmanned aerial and ground vehicles are essential tools. Autonomous
robots impact society by assisting humans in dangerous environments
such as radiation and nuclear disaster sites. Mars exploration rovers are
continuously exploring and collecting the red planet’s scientific data. A
key aspect in most of these applications is that the robot will be moving
autonomously in a mostly unknown environment.

In order to navigate in an environment autonomously, a robot needs to
estimate its position in real-time. Accurate position estimation of the robot is
an essential requirement for other vital tasks such as mapping, planning, and
navigation. Robot pose estimation, more specifically called robot localization,
involves estimating the robot’s position and orientation with respect to a
coordinate frame of reference. Robot localization for autonomous navigation
is a difficult problem, and it is an active area of research. A wide range of
sensors is used to tackle this problem. However, the choice of sensor suite
mainly depends on the application and its parameters.
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1 Introduction

1.1 Motivation

This work’s motivation originates from the common requirements and
demands from various use cases in off-road scenarios. We focus on the two
use cases in this thesis: autonomous navigation in a Mars-like environment
and autonomous navigation for disaster relief in a military context such as
hilly terrain and unpaved roads. Some of the examples of off-road conditions
are shown in Figure 1.1.

Figure 1.1: These pictures show different off-road use cases focussed in this thesis. Top left
is a picture from the Davon Island Mars dataset, top right is taken at Seetaler
Alps, bottom left is from the Strass off-road dataset and the right one is from
Mars simulation world.

AMADEE-18 mars analog field simulation, which happened in 2018 in
Oman (mission location shown in Figure 1.2), was a field research ex-
periment for preparing for future human Mars missions in engineering,
planetary surface operations, astrobiology, geophysics/geology, life sciences,
and other (Groemer et al., 2020). The rover of Graz University of technology
that participated in the mission used a 3D lidar sensor to perform mapping,
autonomous navigation, and exploration (Stradner and G. Steinbauer, 2019).

2



1.1 Motivation

However, lidar sensors are large, heavy, and not suitable for space applica-
tions. It is worth mentioning that the rovers sent to the red planet to date
use cameras for navigation. This work, therefore, aims at the development
of approaches suitable for space applications. The goal is to develop new
approaches in space exploration and participate in AMADEE-20 (Gerald
Steinbauer et al., 2020).

Figure 1.2: AMADEE-18 mars analog simulation experiments conducted at Oman.
Picture credits: Austrian Space Forum (https://oewf.org/en/portfolio/
amadee-18/).

In a military context, an autonomous vehicle demands the usage of only
passive sensors as active sensors emit radiations and thus may interfere with
radio services. A vehicle should be able to navigate in an off-road environ-
ment to perform various transport activities. PALONA stands for Passive
infrastructural vehicle Localization for Navigation is a project funded by
FFG Austrian army. The aim of this project is to use passive sensors for

3
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1 Introduction

off-road autonomous navigation and transport tasks. Therefore, our goal
is to develop new approaches for autonomous navigation in the military
context.

1.2 Goals and Challenges

A common approach for planetary exploration and military use cases is
to use cameras and especially stereo cameras because of their ability to
perceive depth information. Moreover, cameras are helpful for mapping and
navigation and other tasks like object recognition and scene understanding.
The work presented in this thesis aims to develop a software framework that
can form the core component of a robot localization for off-road environ-
ments using stereo vision, which is called Visual Odometry. While keeping
track of its pose, the robot also needs to map the environment as Simultane-
ous localization and mapping(SLAM) are crucial for an autonomous robot.
Although Visual Odometry is part of the most recent vision-based SLAM ap-
proaches, a thorough investigation of Visual Odometry is necessary before
pairing up with a suitable SLAM approach.

Off-road environments comprise uneven terrain, unstructured tracks, gravel,
mud, rocks, and other natural terrains. These are very challenging scenarios
for autonomous navigation. Adverse weather conditions like rain and snow
pose additional challenges for vision-based navigation. Most existing Visual
Odometry approaches are benchmarked against standard KITTI self-driving
car data sets (Geiger, Lenz, and Urtasun, 2012) and well-known datasets
collected in a structured human-made environment. Although some of
these approaches achieve extremely accurate estimation results, there is
no guarantee that the results are the same in rather challenging off-road
scenarios.

Furthermore, a custom stereo camera system needs to be developed that
is configurable and appropriate to off-road use cases. The robot platform
should be configured with the stereo setup, and an off-road dataset needs
to be collected. Visual Odometry approaches are then evaluated on the
collected dataset. A stereo camera’s custom configuration poses many en-
gineering challenges to obtain pictures useful for vision-based algorithms.

4



1.3 Contribution

Some of these challenges are time-synchronization of left and right camera
images, camera calibration and rectification, and varying environmental
lighting conditions. These challenges need to be solved and well evalu-
ated.

1.3 Contribution

In order to achieve the goals set in this thesis, the contributions have been
done in the following areas.

1. Development of a Mars-like simulation environment and sensor plug-
ins to test vision-based navigation algorithms.

2. Implementation and verification of different Stereo Visual Odometry
approaches using the Mars-like simulation environment and the Davon
Island rover navigation dataset.

3. Integration of Visual Odometry into SLAM systems to create 3D maps
of the environment.

4. Development of the infrastructure for a stereo camera suite for the
envisioned environments.

5. Collection of off-road datasets for the evaluation of visual-navigation
approaches.

6. Evaluation of Visual Odometry approaches using multiple off-road
datasets.

1.4 Outline

In Chapter 3, the background of Visual Odometry and SLAM is given.
Chapter 4 covers the related research for Visual Odometry and SLAM meth-
ods. Chapter 5 introduces different Visual Odometry approaches used and
evaluated in this thesis. We explain the concepts of ORB-SLAM2, RTAB-Map
F2M, RTAB-Map F2F, and SOFT VO. In Chapter 6, the development of
Stereo Vision system is discussed. In Chapter 7, we explain the various
off-road datasets used in this thesis. In Chapter 8, the results of the various

5



1 Introduction

approaches described in Chapter 5 are presented. Finally, in Chapter 9

we discuss the outcome of this thesis and give details on future improve-
ments.
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2 Prerequisites

This chapter introduces all the necessary software frameworks that are used
for the implementations reported in this thesis. At first, an introduction to
the Robot Operating System (ROS) is given followed by Gazebo simulator
and OpenCV.

2.1 Robot Operating System

Robot Operating System(ROS) is an open-source software framework for
robotics applications (Quigley et al., n.d.). ROS framework comes with easy
to use packages and tools which supports interprocess communication.
The communication is based on TCP/IP sockets for transporting message
over networks. It supports C++, python and several other programming
languages and is thus suitable for a wide variety of uses. ROS is fully
open source and comes with a diversity of pack- ages which have been
released from a big community. Additional documentation can be found at
http://wiki.ros.org.

The processes are called nodes, and communication between nodes is han-
dled with predefined messages. The transaction of messages is done over
ROS topics within which only one message type is allowed to be exchanged.
Nodes can subscribe and publish on several topics at once and communicate
asynchronously. In some cases, communication needs to be synchronized.
This is achieved using ROS services. A core process called the ROS master
manages all the nodes. ROS master tracks all the registered nodes, topics,
and services. The ROS master is also responsible for setting up a peer-to-
peer connection between appropriate nodes. ROS topic communication is

7
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2 Prerequisites

Figure 2.1: The figure illustrates the topic communication concept in ROS. Node A first
registers the Topic A to ROS Master by advertising, and Node B subscribes to
the Topic A. Messages are then directly transmitted from Node A to B over
Topic A. (Adapted from http://wiki.ros.org).

illustrated in Figure 2.1. The ROS version used in this thesis is ROS Melodic
on Ubuntu 18.04 Linux OS.

2.2 Gazebo

Robot simulation is an essential tool for the Robotics applications. A well-
designed simulator helps test algorithms, design robots rapidly, and perform
testing in realistic scenarios. Gazebo offers a robust physics engine, high-
quality graphics, custom plugins, and a convenient programmatic and
graphical interface (Koenig and Howard, 2004). A wide range of sensor
data can be simulated with noise, from laser range finders, cameras, contact
sensors, force, torque, and more.

The Mars environment was built using Gazebo’s SDF model object. SDF
model is essentially a collection of links, joints, collision objects, visuals,
and plugins. The robot model is loaded to the Mars Gazebo environment,

8
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2.2 Gazebo

as shown in Figure 2.2. The Robot model is represented in the form of
a Unified Robot Description Format (URDF), which is an XML format
describing the robot model. The target robot platform used in this thesis is
called MERCARATOR which is shown in Figure 2.3. A CAD model of the
MERCARATOR robot platform (Halatschek et al., 2020) was constructed,
and the model was further separated into links and joints that could be
used in a URDF robot description file. URDF file format from ROS is
converted to SDF format required by Gazebo to load the model in the gazebo
environment. Gazebo plugins give the URDF models greater functionality
and can tie in ROS messages and service calls for sensor outputs and control
inputs. Existing gazebo Sensor plugins are adapted to the application needs
and loaded to the robot platform. Wheels and joints of the robot model
are controlled using gazebo ros control hardware interfaces. The hardware
interface module allows actuation of joints and links based on the input
control command.

Figure 2.2: Illustration of the Mars simulation environment and the CAD model of Mer-
carator loaded in Gazebo.

9



2 Prerequisites

Figure 2.3: The robot platform used in this thesis called MERCARATOR.

2.3 OpenCV

Open Source Computer Vision Library is an open-source computer vision
and machine learning software library written in C++. The library includes
a comprehensive set of both classic and state of the art computer vision and
machine learning algorithms. These algorithms could be used to detect faces,
identify objects, track camera movements, produce a 3D point cloud from
stereo cameras, to name a few. OpenCV has a modular structure. OpenCV is
broadly structured into five major components. The CV component contains
the image processing and computer vision algorithms. ML is the machine
learning library containing statistical classifiers, data analysis functions, and
clustering tools. HighGUI includes I/O routines and functions for storing
and loading images and videos, and the CXCore contains the basic data
structures and algorithms, XML support, matrix algebra, error handling,
and drawing functions. CVCAM component contains camera interfaces for
video access.

The CV component is further divided into modules. Some of the CV mod-
ules that are used in this thesis are core, imgproc, calib3d, and features2d.

10



2.3 OpenCV

For image filtering, geometrical image transformations, and histograms, the
imgproc, an image processing module, is utilized. For stereo calibration,
multiview geometry algorithms, 3D reconstruction, and camera pose esti-
mation calib3d module is used. For the feature detection and descriptor
matching module, calib3d is used. The basic data structures like multi-
dimension array Mat are used from the core functionality of OpenCV. The
OpenCV version used in this thesis is OpenCV 4.4.0 (Bradski, 2000)

11





3 Background

3.1 Coordinate Transformations

There are two main coordinate frames of reference: the World coordinate
frame (W) and the camera coordinate frame (C), where the Camera coor-
dinate frame is attached to the stereo camera left optical frame. A known
point P ∈ R3 in the world seen from the camera can be described in the
camera coordinate system by Euclidian transformation consisting of rotation
R and translation t given by:

cP = cRw
wP + ctw

where, cRw is rotation R from camera frame to the world coordinate frame,
ctw is translation t from the camera coordinate frame to the world coordinate
frame, and wP is the point P in the world coordinate frame.

In the homogeneous coordinate system, rotation and translation together
expressed as a transformation matrix T ∈ R4x4:

cTw =

(cRw
ctw

0 1

)
The transformation from the world coordinate to the camera coordinate is
the inverse of cTw:

wTc =

(cRT
w −cRT

w
ctw

0 1

)
The transformation matrix belongs to Special Euclidean Group SE(3), the
Lie group of rigid body transformations in three-dimensional space.

13



3 Background

Figure 3.1: The figure illustrates the coordinate transformation between the world frame W
and the camera coordinate frame C. In the camera coordinate frame, the point
P is seen along the optical axis.

The three-dimensnional rotations are represented using either 3 x 3 rota-
tion matrix, Euler-angles or quaternions. The transformation between two
coordinate frames of reference is illustrated in Figure 3.1

3.2 Pinhole Camera Model

The pinhole camera model or perspective projection model describes the
relationship between a point in 3D coordinates and its projection onto a 2D
image plane. This process is called perspective projection. In Figure 3.2, C is
the origin of the camera coordinate system called the center of projection.
The line Z from the center of projection perpendicular to the image plane is
called optical axis or principal axis, and its intersection with the image plane
is called the optical center or principal point denoted by c with c = (cx, cy).
The distance between the center of projection C and the optical center c is
called focal length f . A point P = (X, Y, Z) in camera coordinate system is

14



3.2 Pinhole Camera Model

Figure 3.2: Pinhole camera model or Perspective projection model is shown in this diagram.
The projection of a 3D point P in the camera coordinate to point p on the image
plane I is illustrated.

projected 2D image plane. Using similar triangles, the projection (x, y) of a
3D point P is given by,

x = f
X
Z

, y = f
Y
Z

(3.1)

The projection (x, y) are expressed in image coorinates in milimetres. How-
ever, the optical measurements are expressed in pixels given by,

u = fx
X
Z
+ cx, v = fy

Y
Z
+ cy (3.2)

where, fx and fy are focal lengths along x and y respectively expressed in
pixels. It could be expressed in matrix notation as,u

v
1

 =

 fx 0 cx
0 fy cy
0 0 1

X
Y
Z

 (3.3)

Using the equation (4.3), 3D points in the camera coordinate projected
into 2D image coordinates. If the points are in the world coordinates, an
additional transformation is needed to transform those points to camera
coordinates, as discussed in the previous section. Therefore, the projection of

15



3 Background

points in the world coordinate to the image plane is given in homogeneous
form by, u

v
1

 =

 fx 0 cx
0 fy cy
0 0 1

 [R t
0 1

]
X
Y
Z
1

 (3.4)

where R is a 3D rotation matrix R ∈ R3x3 and t is a 3D translation vector
t ∈ R3. fx, fy, cx, cy are so called intrinsics of the calibration matrix and R, t
are extrinsics.

3.3 Epipolar Geometry

Epipolar geometry describes the relationship between the cameras, points
in 3D, and the corresponding observations in each camera’s image plane. In
this thesis, we define relationship between left and right cameras of a stereo
setup. As illustrated in the Figure 3.3, the stereo setup involves left and right
cameras C and C′, observing the same 3D point X, whose projection in each
of the image planes is located at x and x′ respectively. The camera centers C
and C′ are separated by a rigid body transformation, referred to as baseline.
The plane formed by C, C′, and the point X is called the epipolar plane.
The image points, e and e′, where the baseline intersects the two image
planes, are known as epipoles or epipolar points. Finally, the lines at the
intersection of the epipolar plane and the image planes are called epipolar
lines. The epipolar planes intersect the baseline at the respective epipoles in
the image plane. It is worth noting that in a scenario where the projected
point x is known, and the epipolar line (e′, x′) is known, then the projection
of point X on the right image plane x′ must lie on the specific epipolar line.
Using this concept, stereo correspondence problem is simplified as point
in one view must lie on the epiplar line in the other view. Similarly, if two
projection points x and x′ are known and they correspond to the same 3D
point X, then projection lines intersect at X. This process of computing the
3D point X from two image points is called triangulation.

16



3.4 Visual Odometry

Figure 3.3: This figure is illustrates the concepts of epipolar geometry. Cameras C and C′,
and the world point X is forms the epipolar plane given in gray region, while
the red line is epipolar line in the right image plane which intersects the epipole
e′ and image coordinate x′.

3.4 Visual Odometry

Given a stream of input images, Visual Odometry aims to estimate the
relative camera poses. Formally, Visual Odometry is defined as “the process
of incrementally estimating the pose of the vehicle by examining the changes
that motion induces on the images of its onboard cameras“ (Scaramuzza
and Fraundorfer, 2011). Robot pose estimation could be achieved using a
single camera or a stereo camera. Visual Odometry can be described as a
special instance of Structure from Motion, which only focuses on estimating
the camera’s 3D motion sequentially.

On the other hand, Structure from Motion estimates the 3D motion but does
so using unordered image sets and tackles the problem of 3D reconstruction
of the environment structure. The final structure and camera poses are
typically refined with an offline pose-graph optimization (Kümmerle et al.,
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3 Background

Figure 3.4: Rigid body transformation between subsequent frames k− 1 and k encapsulates
translation and rotation of frame k with respect to frame k− 1. Ck is a concate-
nation of transformations Tk,k−1 and previous estimated transformation Ck−1.
A schematic representaion of relative transformations is shown. Adapted from
(Scaramuzza and Fraundorfer, 2011).

2011) (Madsen, Nielsen, and Tingleff, 2004).

A robot equipped with a monocular or a stereo camera moves in an environ-
ment captures images at discrete times k = 1..K The two subsequent images
at time k− 1 and k are related by the rigid body transformation given by,

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]
A schematic representation of rigid body transformation between images
is shown in Figure 3.4. Given the transformation between two subsequent
frames, the camera pose Ck at k is given by,

Ck = Ck−1Tk,k−1

The initial camera pose C0 is typically set as the identity matrix or set based
on the known pose of the mobile robot in the world coordinate frame. In
most cases, pose estimates using GPS measurements are used as the initial
position of the robot.
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3.4 Visual Odometry

Figure 3.5: Visual Odometry accumulates error by combining uncertainties in the previous
pose(solid ellipse) and the last transformation(dashed ellipse). Adapted from
(Fraundorfer and Scaramuzza, 2012).

As the pose updates over time, frame to frame motion estimated using
Visual Odometry introduces error which accumulates over time. The camera
pose uncertainty is always increasing when concatenating transformations.
The computed new pose has an uncertainty of the current pose estimate
and also depends on the uncertainty of the past transformations. The error
generates a drift of the estimated trajectory from the ground truth. This is
illustrated in Figure 3.5. Thus, it is crucial to keep the uncertainities of the
individual transformations low. The camera pose could be mathermatically
defined as the function f of previous pose Ck−1 and transformation Tk,k−1.
The error coovariance of pose Ck is ∑k and given by,

Σk = JCk−1Σk−1 JT
Ck−1

+ JTk,k−1Σk,k−1 JT
Tk,k−1

where JCk−1 and JTk,k−1 are the Jacobians of function f with respect to the
previous pose Ck−1 and transformation Tk−1.

While the main goal of Visual Odometry is to estimate the relative motion
of the camera, visual SLAM aims not only at tracking the camera motion,
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3 Background

Figure 3.6: Loop closure (highlighted in blue) is performed when the robot re-visits an
already visited environment, and the resulting edges are added as constraints
to pose-graph optimization.

but also at building a globally consistent map. An advantage of SLAM is the
ability to detect loop closures and build globally constistent map. To solve
the drift problem, Visual Odometry methods can be extended to SLAM
by adding loop closure detection and a global optimization scheme. Loop
closure detection is used to reduce the drift in the camera trajectory and
the 3D structure. Estimating the location of 3D points in the environment
jointly with the corresponding camera pose is a crucial local refinement step
to accurately predicting local camera trajectory. It is achieved by minimizing
the reprojection error:

argmin
Xi,Ck

∑
i,k
‖pi

k − g(Xi, Ck)‖2

where pi
k is the point in image k corresponding to the 3D point Xi and

g(Xi, Ck) is the reprojection of the 3D point on the image. Since all 3D
features of the environment are not observable from every camera pose,
reprojection error minimization is performed only on a window of camera
poses. This computation of minimizing the reprojection error and optimizing
the 3D points and positions is called Bundle Adjustment. When using the
pose-graph representation of the world, each camera pose represents a node,
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3.4 Visual Odometry

and edges interconnect nodes in a graph. These nodes and edges form
spatial constraints. When the robot reobserves places that were already
visited, a loop closure is performed as visualized in 3.6. Loop detection
allows the robot to correct the accumulated drift and perform a more
confident position estimation. Loop closure is generally performed based
on visual place recognition using bag of words approach (Gálvez-López
and Tardós, 2012).

Visual Odometry techniques are mainly categorized into feature-based and
direct methods.

Feature-based methods, also called indirect methods, use only interesting
feature points in an image to estimate the camera’s motion. Features are the
interesting keypoints in the form of corners or blobs. A good feature detector
is characterized by robustness, distinctiveness, invariance to geometric and
photometric changes, and computational efficiency. The detected feature
points are either tracked or matched over subsequent frames. Tracking
describes the local search for the same feature in the next images, while
matching detects features in both the images and then tries to find the best
matches using a similarity measure. The given correspondences are then
used to compute relative camera motion.

In contrast to feature-based methods that compute the camera motion
based on feature points, direct methods estimate the camera motion from
the intensities of the pixels in the image. Direct methods work on the
assumption that projections of a point in two frames have the same intensity
values in both images, called photo-consistency. However, in reality, photo-
consistency is often violated due to factors like sensor noise, different
lighting conditions, dynamic objects, etc. This means that the Intensity
difference will be non-zero. Therefore, the camera motion is estimated by
minimizing the Intensity difference, called photometric error. The error
function can then be solved using a numerical optimization technique such
as the Gauss-Newton algorithm.
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3.5 PnP RANSAC

The motion estimation step involves computing the transformation between
two subsequent image frames. Based on the feature representations, there
are different relative camera motion estimation approaches. However, in this
thesis, all the Visual Odometry approaches use 3D to 2D motion estimation
(Fraundorfer and Scaramuzza, 2012). In this technique, the transformation
between two frames is computed from 3D to 2D correspondences. The
features in the first frame k− 1 is represented as 3D feature points which
could be computed by triangulating the left and right image features. The
features in the frame k are 2D reprojections of the 3D points. The problem
of finding 3D to 2D motion is known as camera resection or perspective
from n points, in short PnP. The solution is found by determining the
transformation that minimizes the reprojection error, which is given by,

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]
= argmin

Tk,k−1

∑
i
‖Pi

k − P̂i
k−1‖

where Pi
k is a feature in image Ik and P̂i

k−1 is the reprojection of the 3D
point computed from frame k− 1 into the image Ik according to the trans-
formation Tk,k−1. If there are outliers in the point correspondences, PnP
motion estimation leads to errors in output. To estimate the camera motion
accurately, outliers need to be removed. Therefore PnP is used along with
Random Sample Consensus (RANSAC) to make the estimated camera pose
more robust to outliers (Lepetit, Moreno-Noguer, and Fua, 2009), (Bradski,
2000).
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4 Related research

Vision-based robot state estimation has been popular in the last decades.
There exists a wide variety of Visual Odometry techniques using monoc-
ular cameras, stereo cameras and multi-cameras. A complete tutorial and
history of Visual Odometry in the last few decades is described in the
Visual Odometry tutorials by Scaramuzza and Fraundorfer (Scaramuzza
and Fraundorfer, 2011), (Fraundorfer and Scaramuzza, 2012). The Visual
Odometry method was first introduced by (Moravec, 1980) in the 1980s. The
implementation was the first to contain fundamentals such as a keypoint de-
tector, a keypoint matcher, and a motion estimator, which forms the basis of
the modern Visual Odometry pipeline. However, Visual Odometry was first
coined by (Nister, Naroditsky, and Bergen, 2004) in their landmark paper.
The authors of (L. Matthies and Shafer, 1987) used a binocular system for
detecting and tracking corners. They used error covariance of triangulated
features and incorporated them into the motion estimation step. Due to
the limited availability of computational power, most of these early meth-
ods were executed offline. With the increase in processing power, Visual
Odometry is performed online nowadays.

Visual Odometry is being used in the Mars rovers since three decades.
Recently, authors of (Lambert et al., 2012) have used sun sensor and in-
clinometer along with Visual Odometry. The estimates of sensors together
are significantly better than Visual Odometry alone. A detailed information
of Visual Odometry in Mars is discussed in (Maimone, Cheng, and Larry
Matthies, 2007). A very popular dataset called the Davon Island navigation
dataset (Furgale et al., 2012) is published for the research on Mars explo-
ration. The Davon Island dataset offers unique planetary terrain suitable
for Mars exploration research. In (Grimes and LeCun, 2009), Visual Odom-
etry is used along with wheel odometry in off-road conditions to achieve
efficient off-road localization. Recently, (Gonzalez et al., 2012) have have
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applied Visual Odometry in off-road environment. In their work, estimates
of the location of mobile robots operating in the off-road conditions are
determined using Visual Odometry and visual compass.

Extensions to Visual Odometry are SLAM approaches that include global
optimization and place recognition in some variants. An overview of Visual
Odometry and SLAM for autonomous mobile robots is provided in (Yousif,
Bab-Hadiashar, and Hoseinnezhad, 2015). It is shown in the recent work
presented in (Strasdat, Montiel, and Davison, 2012) that keyframe-based
methods which used global optimization techniques like bundle adjustment
perform better than the probabilistic approaches like Extended Kalman
filter (Paz et al., 2008) and particle filter based SLAM (Wu et al., 2008). One
of the popular feature-based SLAM approaches is Parallel Tracking and
Mapping (PTAM) (Klein and Murray, 2007). PTAM is a widely used robust
monocular SLAM method which runs in real-time. PTAM was one of the
first SLAM systems to use threads for tracking and mapping to enable par-
allel processing. The tracking thread extracts FAST features (Rosten, Porter,
and Drummond, 2010) to estimate motion while the mapping thread opti-
mizes the camera poses and feature points by minimizing the reprojection
error and updating the map. The stereo variant of PTAM is Stereo-PTAM
(SPTAM), which solves the monocular bootstrapping problem and allows to
compute scale without any prior information (Pire et al., 2017).

More recently, ORB-SLAM2 (Mur-Artal and Tardós, 2017) has been pro-
posed as the stereo variant of ORB-SLAM (Mur-Artal, Montiel, and Tardos,
2015) monocular SLAM system. ORB-SLAM2 tracks sparse ORB features
and distributes work between multiple threads for tracking, mapping, and
loop closing similar to PTAM. Another feature-based Graph SLAM ap-
proach is RTAB-Map (Labbé and Michaud, 2019) which supports custom
configuration of feature detectors, matchers, and various processing mod-
ules in visual odometry pipeline. RTAB-Map creates a dense 3D map of the
environment, whereas SPTAM and ORB-SLAM2 create sparse 3D features
points. Recently, SOFT SLAM, a feature based pose-graph SLAM approach
was proposed by (Cvišić et al., 2018). The stereo odometry algorithm relies
on feature tracking(SOFT) for pose estimation. Similar to ORB-SLAM2 Soft
SLAM runs on odometry and mapping threads.

In contrast to sparse feature-based methods, direct methods exploit all the
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pixels in the image for pose estimation under the assumption of photometric
consistency. Direct methods tend to be more accurate, and recent research
has shown that direct methods achieve better results in texture-less envi-
ronments than feature-based methods (Engel, Stückler, and Cremers, 2015).
However, direct methods are computationally demanding and changes in
image brightness can affect results as the brightness constancy assumption
is violated and tracking may fail. Also, there are numerous implementations
of feature-based approaches for different environments and decades of
research in feature-based methods makes it an attractive method for this
thesis work.

In this decade, deep learning-based techniques have been applied for many
computer vision tasks. In the last couple of years, deep learning-based Visual
Odometry methods have gained popularity. Although deep learning meth-
ods do not achieve the state of the art accuracy, the results have improved
a lot in the recent years. One of the early works that use deep learning is
DeepVO (Wang et al., 2017). In DeepVO, a deep Recurrent Convolutional
Neural Networks (RCNN) framework is built that takes a monocular image
sequence, and returns pose. The network is mainly composed of a CNN-
based feature extractor and RNN-based sequential modeling. Another deep
learning-based approach called DPC-Net (Peretroukhin and Kelly, 2017) in-
troduced deep pose corrections (DPC) uses a deep neural network to predict
corrections through a supervised training method driven by ground truth
pose information. In self-supervised DPC-Net (Wagstaff, Peretroukhin, and
Kelly, 2020), the authors improve upon their previous work by replacing the
supervised pose loss with a self-supervised photometric reconstruction loss
that eliminates the necessity of ground truth pose labels, which is impracti-
cal to obtain. In this approach, they rely on the output of classical Visual
Odometry estimate to produce a large prior and use a deep neural network
to learn a smaller correction. This forms the correction step to the predicted
output of a classical VO pipeline. Recently, Deep learning has been applied
to SLAM in the off-road context (Yang et al., 2020). In off-road environments,
SLAM encounters problems such as direct sunlight, leaf occlusion, rough
roads, sensor failure, sparsity of stably trackable texture. Authors in (Yang
et al., 2020), have proposed a panoramic vision SLAM method based on
multi-camera collaboration, which utilizes panoramic vision and stereo
perception to improve the localization precision in off-road environments.
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In this thesis, only feature-based methods are evaluated. RTAB-Map is
utilized as it supports the configuration of different combinations of feature
detectors, matchers, and provides ROS integration. A possibility to create
rich and dense 3D maps by RTAB-Map is also an essential feature for
our work. On the other hand, ORB-SLAM2 is also evaluated as it is one
of the most used and well-known SLAM implementations for monocular,
RGBD, and stereo cameras. ORB-SLAM2 also achieves the best results
compared to SPTAM in many open-source datasets. When compared with
ORB-SLAM2, SOFT SLAM achieves better accuracy in the KITTI (Geiger,
Lenz, and Urtasun, 2012) dataset. Therefore, SOFT-based VO approach is
also evaluated along with ORB-SLAM2 and Rtabmap.
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5 Evaluated Approaches

In the previous chapters, the Visual Odometry concept was introduced and
related research was discussed. In this chapter, different Visual Odometry
approaches will be discussed in more details. The approaches are: ORB-
SLAM2, RTAB-Map Frame 2 Map (F2M), RTAB-Map Frame to Frame (F2F),
and SOFT VO and these approaches are evaluated in Chapter 8.

5.1 ORB-SLAM2

The general processing pipeline for ORB-SLAM2 consists of three main
components which run parallel: Tracking, Local Mapping, and Loop Clos-
ing (Mur-Artal and Tardós, 2017). The camera is localized every frame in
the tracking thread by finding feature matches to the local map and mini-
mizes the reprojection error by performing motion-only bundle adjustment.
In the local mapping thread, key frames are inserted and the local map
is optimized using local bundle adjustment. In loop closing thread, large
loops are detected, and accumulated drift is corrected by running Leven-
berg–Marquardt pose-graph optimization method. A full bundle adjustment
is also performed after loop detection, optimizing all key points and frames,
resulting in optimal structure and motion solution. However, only tracking
and local mapping are discussed in the further subsections. In Figure 5.1,
functional blocks of ORB-SLAM2 is illustrated.

5.1.1 Tracking

The key steps in tracking algorithm are the following ones:
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Figure 5.1: Left picture shows the functional blocks of ORB-SLAM2. The right picture
illustrates the step by step process involved in keypoint extraction from rectified
images. Adapted from (Mur-Artal and Tardós, 2017).

1. ORB descriptors are extracted from both rectified images. Stereo match-
ing is performed by searching every left ORB descriptors in the right
image on the same epipolar line.

2. It is important to mention that the stereo keypoints are defined by
three coordinates xx = (ul, vl, ur), where ul, vl are coordinates of left
image and ur is the right horizontal coordinate. A stereo keypoint
triangulation is performed when the keypoint is close. Far keypoints
are excluded because the scale and translation are not reliable even
though the rotation information is useful.

3. The camera pose is computed using 3D to 2D PnP motion estimation
algorithm and RANSAC is used to remove outliers.

4. Camera pose is optimized by performing motion-only bundle adjust-
ment. In this optimization scheme, camera orientation R and position
t are optimized by minimizing the reprojection error between matched
3D points Xi in the world coordinates and keypoints xi in the stereo
image, with i ∈ A, the set of all matches,

{R, t} = argmin
R,t

∑
i∈A

ρ

(∥∥∥xi − π
(

RXi + t
)∥∥∥2

Σ

)
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5.1 ORB-SLAM2

where ρ is the Huber cost function used to down-weight the strong
outlier, Σ is the covariance matrix associated to the scale of the key-
point, and π is the projection function. The projection function π is
defined as follows:

π

X
Y
Z

 =

 fx
X
Y + cx

fy
Y
Z + cy

fx
X−b

Y + cx


where ( fx, fy) is focal length, (cx, cy) is the principal point, and b is
the baseline of the stereo camera.

5.1.2 Local Mapping

A keyframe Ki is nothing but a camera pose, a rigid body transformation
that transforms points from the world to the camera coordinate system. A
covisibility graph is a weighted graph that contains keyframes and edges.
An edge connects keyframes if they share observations of the same map
points. When a new keyframe Ki is inserted, the covisibility graph is updated
by adding a new node for Ki. It is linked to the keyframe, which shares most
point observations, and when a keyframe is removed, the system updates
the links affected by that keyframe.

A new keyframe is inserted when the associated feature points of the current
frame falls less than 90% points than the latest keyframe. In addition, if the
number of tracked points drops below a certain throshold a new keyframe
is inserted. New map points are created by triangulating features from
connected keyframes in the covisibility graph. In addition to creating map
points, local bundle adjustment also performed in the local mapping thread.
Local bundle adjustment optimizes the currently processed keyframe, the
keyframes connected to it in the covisibility graph, and the map points seen
by those keyframes.

In localization mode, the camera is continuously localized by making use
of visual odometry matches and matches to map points. Visual odometry
matches are the matches between features in the current frame and the
3D points created in the previous frame. These matches make localization
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Figure 5.2: This figure illustrates the results of ORB-SLAM2 in the Mars simulation en-
vironment. The top left picture is the Gazebo Mars world where the robot is
exploring. The bottom left picture shows the keyframes, local map and trajectory.
The right image shows the computed ORB features based on the stereo images
captured by the camera on the simulated rover.

robust in a well-mapped region, but drift accumulates in an unmapped area.
The results of ORB-SLAM2 in the Mars simulation environment is shown
in 5.2.
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5.2 RTAB-Map

5.2 RTAB-Map

RTAB-Map is a graph-based SLAM approach integrated with the ROS
framework (Labbé and Michaud, 2019). RTAB-Map’s SLAM pipeline can
be used with any external Visual Odometry. It is even possible to use
RTAB-Map with other sensors like laser scanner or RGB-D camera. RTAB-
Map’s map is represented by graph of nodes and links. A link connects two
nodes, by a rigid transformation. Links are categorized into Neighbor, Loop
Closure, and Proximity link. The Short-Term Memory (STM) module creates
a node memorizing the odometry pose, sensor’s raw data, and additional
data like features to retain certain information useful for loop closure and
place recognition. These nodes and links are used as constraints for graph
optimization. RTAB-Map also publishes OctoMap, Point Cloud, and 2D
Occupancy Grid maps as ROS messages. The functional architecture of
RTAB-Map is shown in Figure 5.3. A memory management approach is

Figure 5.3: Architecture of RTAB-Map. Adapted from (Labbé and Michaud, 2019)

used to limit the size of the graph in order to achieve long-term online
SLAM. Memory management is crucial for loop closure and proximity
detection as the graph grows. If the graph is very large, graph optimization
processing time becomes a problem without such memory management.
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RTAB-Map’s memory management is divided into Working Memory (WM)
and Long Term Memory (LTM). After reaching a certain maximum number
of nodes, nodes are transferred from WM to LTM. When a loop closure
is detected with a node in the WM, neighbor nodes can be brought back
from LTM to WM for more loop closure and proximity detections. A robot
moving in a previously visited area can localize itself using the past locations
and extend the current assembled map. Global consistency is achieved by
realizing that a previously mapped area has been re-visited (loop closure),
and this information is used to reduce the drift in the trajectory estimates.

5.2.1 Stereo Visual Odometry

RTAB-Map has two standard stereo visual odometry approaches; Frame
to Map (F2M) and Frame to Frame (F2F). The algoithm is explained in the
following steps:

1. Feature keypoints are extracted from incoming stereo rectified im-
ages. A variety of feature detectors like FAST, SIFT, GFTT, SURF are
integrated in RTAB-Map.

2. Stereo correspondences are computed using optical flow (Lucas-Kanade
method).

3. In the case of Frame to Map implementation, feature matching is
performed by nearest neighbor search with nearest neighbor distance
ratio test. The feature map, which consists of 3D features with descrip-
tors, are matched against the extracted features. Whereas, in the Frame
to Frame approach, the current 3D feature points are matched against
the previous keyframe.

4. In Frame to Map, PnP RANSAC is used to compute the 3D-2D trans-
formation between features in the current frame and the feature map.
In Frame to Frame approach, transformation is computed between
features in the current frame to the Keyframe’s feature points.

5. In Frame to Map, the transformation is refined using local bundle
adjustment on all the keyframes in the feature map. In Frame to Frame,
the features in the last keyframe is optimized.
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Figure 5.4: The functional blocks of RTAB-Map’s stereo Visual Odometry approach

6. An error covariance is computed using mean absolute deviation be-
tween 3D feature correspondences. The Odometry message is pub-
lished on the ROS topic.

7. A new keyframe is inserted when the number of inliers during motion
estimation falls below a threshold value. The feature map is updated
by eliminating the old features that are not matched with the current
frame.

The standard RTAB-Map approach performs motion prediction before doing
3D-2D motion estimation. It uses a motion model to predict the Keyframe
or feature map features in the current frame based on the transformation
from the previous frame. However, this step predicts wrong estimates in
Mars environment datasets. Hence motion prediction was removed from the
Visual Odometry pipeline. The results of RTAB-Map in the Mars simulation
environment is shown in Figure 5.5.
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Figure 5.5: This figure illustrates the results of RTAB-Map in the Mars simulation environ-
ment. The right picture is the Gazebo mars world where the robot is exploring.
The left picture shows the robot trajectory, and the 3D dense point cloud map.
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5.3 SOFT VO

Soft Visual Odometry is a feature-based visual odometry approach imple-
mented based on Soft SLAM (Cvišić et al., 2018). Similar to other feature-
based methods, in SOFT VO, features are extracted and matched over
subsequent frames. However, the feature matching step is performed by
running feature search between consecutive stereo frames in a circular fash-
ion, using optical flow. The motion of the vehicle is estimated by 3D-2D
frame to frame estimation by minimizing reprojection error. The functional
block diagram of Visual Odometry pipeline is shown in Figure 5.6.

Figure 5.6: Functional block diagram of Soft Visual Odometry. Adapted from (Cvišić et al.,
2018)

The Visual Odometry implementation of SOFT VO is illustrated in the
following steps:

1. The incoming stream of subsequent stereo frames k − 1 and k are
processed first. In this step, the images are converted to gray scale and
stereo-rectified.
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Figure 5.7: This picture illustrates circular feature search. The computed features (Harris
corners) in the left image is searched over all the images in a circular fashion.

2. In feature detection step, Good Features To Track (GFTT) features, also
called Shi-Thomasi corners (Jianbo Shi and Tomasi, 1994) are extracted
from left image of frame k− 1. The corner features are detected using
the OpenCV implementation of Shi-Tomasi method. All corners below
pre-configured quality level are rejected. The remaining corners based
on quality threshold are sorted in descending order. The strongest
corners are retained and the nearby corners to the strongest corners
are thrown away.

3. Using Lukas-Kanade optical flow method, the features detected in the
left image of frame k− 1 is searched in the other three images in a
circular way as shown in the Figure 5.7. The circular search algorithm
takes a feature from one frame and finds its best match in an another
frame following a sequential order from left image of frame k− 1→
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right image of frame k− 1→ right image of frame k → left image of
frame k → left image of frame k− 1. The features that are successfully
tracked through the entire sequence are considered as stable and thus
saved as high-quality features for the next step and the rest of the
features are ommitted from the feature space.

4. Additionally, a feature elimination technique is employed to remove in-
valid features. A threshold distance between features is pre-configured.
Invalid features are identified based on the threshold distance, and
eliminated from the feature space.

5. With the valid features in the feature space, features in frame k− 1 are
triangulated to get the 3D feature points.

6. PnP RANSAC motion estimation algorithm is used to compute the 3D-
2D transformation between features in the frame k and the triangulated
3D feature points in frame k− 1. RANSAC ensures that the outliers
are rejected before computing the frame to frame transformation.

7. Pose update is performed by integrating the frame to frame transfor-
mation.
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6 Stereo Camera hardware setup

A stereo vision setup was built up using two monocular cameras and an
adjustable stereo rig. Two Basler acA1920-40uc monocular cameras are used
for this setup. The acA1920-40uc is a USB 3.0 camera, uses a Sony IMX249

CMOS sensor, and has a frame rate of 41 frames per second at a 2.3 MP
resolution. LM8HC 1” 8mm 5MP C-Mount lenses are used, which have a
focal length of 8mm. The setup is shown in Figure 6.1.

Figure 6.1: The stereo camera setup consists of two Basler acA1920-40uc cameras and an
adjustable stereo rig.

The software architecture of the stereo camera system is in Figure 6.2. The
monocular camera driver support is provided by the Pylon package in ROS.
The driver was adjusted and configured to the stereo setup. Cameras are
hardware synchronized by an external hardware timer to trigger images
at 20 frames per second. Images are also time-synchronized to publish
images at the same timestamp on ROS left and right image topics. Stereo
camera calibration is performed, and exposure is controlled automatically
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Figure 6.2: This overview diagram illustrates the software architecture of the stereo camera
system. Blue line represents ROS topic and green line represents ROS service

based on the brightness information extracted from a stream of images. The
stereo setup is mainly used as the navigation camera, and hence it is called
NavCam. The different blocks are discussed in the next sections.

6.1 Synchronization

Hardware synchronization is configured using the Mbed LPC1768 32-bit
ARM Cortex microcontroller. The communication between the controller and
Rover computer is established using a serial bus, universal asynchronous
receiver-transmitter. Synchronization to the cameras is done by pulse width
modulation(PWM) with isolated fast switching opto-couplers. Even though
hardware synchronization is performed, the images are not published at
the same time to the ROS topics. It is crucial to have same timestamp
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for left and right images to perform various stereo operations. A times-
tamp synchronizer is implemented in ROS, which uses “approximate time“
synchronization policy of “message filters“ package.

6.2 Camera Calibration

Camera calibration is the process of estimating the intrinsic and extrinsic
parameters of the camera system. The extrinsic parameters represent a
rigid body transformation from the world coordinate system to the camera
coordinate system. The intrinsic parameters represent a transformation
from camera coordinates to image coordinates. In other words, intrinsic
parameters describe the camera’s internal characteristics, such as focal
length, skew, distortion, and image center.

Camera matrix is given by,

K =

 fx 0 cx
0 fy cy
0 0 1


where focal length fx, fy, principal point cx, cy form intrinsic parameters of
the camera.

Camera lenses introduce radial and tangential distortions on images. These
distortions need to be corrected before applying geometric algorithms on
images.

Radial distortions are corrected using a polynomial funcion that relates with
the distance to image center. Mathematical model for radial distortion is
given by,

xcorrected = x(1 + k1r2 + k2r4 + k3r6)

ycorrected = y(1 + k1r2 + k2r4 + k3r6)

Mathematical model for tangential distortion is given by,

xcorrected = x + [2p1y + p2(r2 + 2x2)]
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ycorrected = y + [p1(r2 + 2y2) + 2p2x]

where x and y are distorted image coordinates, xcorrected and ycorrected are
undistored normalized image coordinates and k1, k2, p1, p2, k3 are distortion
coefficients.

In the case of NavCam, the camera matrix is determined for both left and
right cameras. Stereo calibration procedure will essentially find out extrinsic
parameters (rotation R and translation t) between left and right cameras.
Stereo rectification process is used to rectify the images from left and right
cameras onto a common image plane, so that the corresponding points lie
on horizontal scan lines. In other words, the rectified images satisfy the
following two properties:

• All epipolar lines are parallel to the horizontal axis (X-axis).
• The corresponding points have identical vertical coordinates.

A checkerboard of size 8x6 is used as a calibration target. Stereo calibration
and rectification is performed in ROS using camera calibration package from
ros-perception module. The camera calibration package is a ROS wrapper of
OpenCV stereo camera calibration implementation. Additionally, the results
are cross verified in Matlab stereo calibration tool. The correctness of the
calibration is verified by reprojecting the 3D points on image corner points
as shown in Figure 6.3. The images with high reprojection error are removed
and recalibrated to improve accuracy of the calibration. The overall mean
reprojection error is reduced to 0.24 after recalibration as seen in Figure 6.4.
After stereo rectification, corresponding points are found along horizontal
scan lines as shown in Figure 6.5

42



6.2 Camera Calibration

Figure 6.3: The top picture shows the detected corner points using FAST features and
the corresponding reprojected points. The bottom plot shows the captured
checkerboard images used for calibration.
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6 Stereo Camera hardware setup

Figure 6.4: Mean reprojection error per image is shown in plot. This representation is
helpful to remove the images that introduce large reprojection errors.

Figure 6.5: Left and right images are rectified after performing stereo rectification. It can be
seen that, corresponding feature points lie on the same epipolar line.
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6.3 Exposure Controller

6.3 Exposure Controller

The NavCam comprises of left and right cameras. Left and right cameras
are hardware synchronized to trigger images at the same time. Our cameras
do not offer auto-exposure feature when hardware trigger is used. In an
uncontrolled environment, Vision algorithms often fail as the scene radiance
is unpredictable due to large illumination changes over space and time
(Shim, Lee, and Kweon, 2014). In such cases, a better control mechanism
is necessary to monitor and control the exposure of the camera. Pylon
ROS driver allows adjustment of exposure time by driver’s ROS service
“set exposure time“.

Following the approach proposed in (Shim, Lee, and Kweon, 2014), the
image histograms are used to compute the optimal exposure time. An
image histogram is a graphical representation of the brightness of an im-
age. Histogram bars correspond to luminance value in the image ranging
from 0 to 255. Image histograms indicate the exposure of the image, the
nature of lighting conditions, and whether the image is underexposed or
overexposed.

In Figure 6.6 under and over exposed Images as well as the corresponding
brightness histograms are shown. The histogram represents the response of
the camera sensor. The left regions represent dark tone and right regions
represent bright tone. An underexposed image will be leaning towards left
while an overexposed image will be leaning to the right in the histogram.
Image details reduce when the image is underexposed or overexposed.
Hence, to get maximum details of an image, it needs to appear in the middle
region of the histogram. To interpret histograms, the mean sample value
(MSV) is computed, which determines the balance of the tonal distribution
in the image. MSV is given by,

µ =
∑4

i=0(i + 1) ∗ xi

∑4
i=0 xi

(6.1)

where i is the range of brightness values in the histogram (0 to 4), xi
is the sum of the values in region i. Using MSV, the image is correctly
exposed when µ is close to 2.5 (µoptimal) (Nourani-Vatani and Roberts,
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6 Stereo Camera hardware setup

Figure 6.6: When a camera is under-exposed, an image captured from the camera appears
dark, while it appears very bright if the camera is over-exposed. In either
situation, the resulting image loses a lot of information. An image, if it is under-
exposed or over-exposed, could be inferred from the brightness histogram

2007). To maintain optimal exposure, an optimal amount of light has to pass
through the lens. There are two main factors that affect the amount of light
entering the lens: aperture and exposure time or shutter speed. Aperture is
a diaphragm that is made up of a set of blades that open or close based on a
specific setting referred to as f-stop. Lower f-stops have a larger diaphragm
opening that allows more light through the lens, while higher f-stops have
a smaller diaphragm and allow less light through the lens. On the other
hand, exposure time defines the time that a camera’s shutter remains open.
The longer the camera shutter is open, the more light is entered into the
camera, whereas less light enters if the exposure time is shorter. Hence,
exposure time is a critical parameter to maintain a high frame rate without
compromising the quality of the image.

The exposure value specifies the relationship between aperture size and
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6.3 Exposure Controller

exposure time. It is given by,

EV = log2(
N2

t
) (6.2)

where N is the ratio of f-stop to aperture size and t is exposure time or
shutter speed. Solving it for Exposure time t leads to,

t =
N2

2EV

An optimal exposure value is computed which should give MSV close to
µoptimal, optimal exposure value is given by:

EVoptimal = EV + log2(µ)− log2(µoptimal) (6.3)

toptimal =
N2

2EVoptimal
(6.4)

Finally, an optimal value of the exposure time t is computed by subsituting
and solving EVoptimal. In essence, a relationship between brightness and
exposure time is estiblished as following:

toptimal =
N2

2EV+log2(µ)−log2(µoptimal)

toptimal =
N2

2
EV(

µ
µoptimal

)

toptimal = t(
µoptimal

µ
) (6.5)

A proportional integrator (PI) controller is implemented to set the opti-
mal exposure time on the ROS camera service. A PI controller is a control
mechanism that continuously calculates an error value e(t) as the difference
between desired value and the measured actual value. The error is mini-
mized using a control law with gain parameters. The overall control law is
given by:

u(t) = Kpe(t) + Ki

t∫
0

e(τ)dτ
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6 Stereo Camera hardware setup

Figure 6.7: The Figure shows the example of an image and its brightness histogram when
the controller has minimized the error.

where Kp and Ki are proportional and integral gains of the controller. e(t)
is the error in actual brightness and desired brightness. The MSV or µ
for each image is computed and the proportional and integrator gains are
tuned to minimize the error between µ and µoptimal. The exposure time
is preconfigured with an initial value suitable for daylight conditions. As
the camera requires less exposure time to capture an image in a daylight
condition, daylight configuration ensures no drop in frame rate when the
camera system is started. An example of image and its histogram controlled
by a PI controller is shown in Figure 6.7.
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In this chapter, the different off-road datasets used for the evaluation are
described. First, the details of the Davon Island navigation dataset is given,
followed by the description of the data collection procedure performed at
the military training ground in the Seetaler Alps, Austria, and the Strass
off-road dataset collected by Joanneum Research at the military ground in
Strass, Austria.

7.1 The Davon Island rover navigation dataset

The Devon Island Rover Navigation Datase1 is a collection of data gathered
at Mars analogue site on Davon Island, Canada. A pushcart outfitted with
rover engineering sensors is used as the data collection platform. This
dataset contains rover traverse data, including sensory information such
as Stereo Images from Bumblebee XB3, data from a Sinclair Interplanetary
SS-411 digital sun sensor, and readings from a HMR-3000 Inclinometer and
ground truth positions (Furgale et al., 2012). For ground truth positions
a pair of Magellan ProMark3 GPS units were used to get post-processed
differential GPS data. The rover and sensor setup used to collect data is
shown in Figure 7.1.

The rover traversal data of 10 kilometers is partitioned into 23 sequences. The
traverse passes through areas exhibiting unique, vegetation-free, planetary-
analogue terrain, boulder fields, and sandy flats. The resulting images,
coupled with data from the other sensors and precise ground truth informa-
tion, make a relevant dataset for planetary explortion research. The images
are captured at 1 frame per second at 1280x960 resolution. An estimate

1http://asrl.utias.utoronto.ca/datasets/devon-island-rover-navigation/
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7 Off-Road Datasets

of the platform’s orientation in the topocentric frame is provided for the
first image of each of the sequences, allowing easy comparison of motion
estimate results to the ground truth. The location of data collection in the
Davon Island is shown in Figure 7.2.

Figure 7.1: The platform and sensor setup used to collect the Davon Island navigation
dataset (picture credits: (Furgale et al., 2012)).

Figure 7.2: Pictures show the locations of the data collected at the Davon Island, Canada.
The left picture shows the locations of all the sequences and the right one shows
the sequences which are used in this thesis (credits: (Furgale et al., 2012), Google
Earth).

50



7.2 Seetaler Alps Off-road dataset

7.2 Seetaler Alps Off-road dataset

An off-road dataset was collected at the military training grounds of Seetaler
alps, Austria. Alpine terrain presents unique off-road conditions suitable for
research in off-road navigation. We used MERCARATOR robot platform for
the Seetaler alps off-road data collection. The MERCARATOR is a universal
off-road rescue platform developed at the Autonomous Intelligent Systems
lab from the Institute of Software Technology, TU Graz. The robot platform
supports advanced 4-wheel steering system by wire and moderate off-road
capabilities (e.g., slope, terrain). The platform is equipped with a sensor suite
and a powerful computer for data processing that suits off-road autonomous
navigation. Safety aspects are crucial for any autonomous robot. Therefore,
several emergency stop mechanisms like remote emergency switch, multiple
emergency switches on the platform, and battery brownout management
are implemented (Halatschek et al., 2020). The robot platform and the
sensor setup used to collect data is shown in Figure 7.3

Figure 7.3: The picture on left is Mercarator, the off-road robot platform used for data
collection. Different sensors are configured on Mercarator. The right picture
shows the sensor frames from ROS tf tree.

The following sensors are mounted on the robot platform:

• Stereo Cameras:
This comprises a navigation camera (NavCam) as the main stereo setup
and two Hazard cameras for hazard detection and obstacle avoidance.
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7 Off-Road Datasets

NavCam is the synchronized, calibrated, and exposure-controlled sys-
tem discussed in the previous chapter. Zed2 stereo cameras are used
as HazCams. The HazCams are calibrated as well as stereo rectified
and use synchronization and exposure settings provided by the man-
ufacturer. Color images from NavCam are captured at 20 frames per
second at the resolution of 1280x720, whereas gray scale images from
HazCams are captured at 10 frames per second at 640x480.

• Inertial Measurement Unit (IMU):
xsens mti-g IMU sensors are used for integrated GPS-IMU measure-
ments. Settings are adjusted to standard Automotive configuration.
IMU measurements were also collected from ZED2 cameras. Addi-
tional data like magnetometer and barometer data were also collected
from Zed2 cameras.

• Ground truth measurement system: Ground truth is obtained using a
high-precision GNSS/IMU measurement system. A Trimble Zephyr 3

Geodetic Antenna in Combination with a Trimble NetRS Receiver has
been used as a Base Station for the RTK processing. The coordinates
in the national coordinate system (MGI) of the Trimble Base station
have been computed with GNSS raw data provided by the Austrian
Government Service APOS. The position of the platform is recorded
in high precision of approximately 2cm accuracy.

Sensors are calibrated using hand-eye calibration and verified with the
URDF and CAD models. Data is collected and stored in ROS bag files. Data
is collected in multiple runs or sequences in different locations as shown
in Figure 7.4. Four different areas were selected for the data collection and
multiple sequences of data were collected. In this thesis, four sequences
sequence 06, 07, 09, 11 are used. In the first run, rover was brought back to
the starting point so that vision-based place recognition algorithms could be
tested for loop closure and trajectory correction. The traverse passes through
areas exhibiting unique off-road terrain that consists of grass, dirt road, and
snow. In the second and third runs, traverse passes through hilly terrain
consists of snow. The last run is a relatively easy traversal with a straight
and flat terrain.
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7.2 Seetaler Alps Off-road dataset

Figure 7.4: Pictures showing start location, end location and trajectories of four sequences
of off-road data collected at the military training area in Seetaler Alps (credits:
Google Earth).
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7.3 Strass Off-road dataset

The Strass off-road dataset is a collection of data gathered at the military
training ground in Strass, Austria. Strass off-road dataset is collected by
Joanneum Research as a part of project PALONA funded by the Austrian
Research Promotion Agency (FFG). A car equipped with sensors is used
as the data collection platform. This dataset contains the traverse data of
the car which includes sensory information such as images from 8 Sekonix
2MP cameras connected to an Nvidea Drive PX2 computer, measurements
from a Litef ISA 100C IMU system, and GNSS data using the Novatel OEM7

GNSS receiver. The ground truth positions are computed using iMAR iNAT-
FSLG02 ground truth system which uses measurements from the IMU and
the GNSS receiver. The color images are captured at 30 frames per second at
a resolution of 1920x1208. The front two cameras are used as a stereo setup
with a baseline of 1.2 metres. The platform and the sensor setup used to
collect the data is shown in Figure 7.5.

Figure 7.5: The picture on the left shows the platform used to collect the Strass dataset and
on the top is the sensor plate. A general sensor setup on top plate is shown in
the right picture (image credits: JOANNEUM RESEARCH).

The location and the trajectory of the data collected in Strass is shown in
Figure 7.6. The traversal data consists of multiple sequences. In this thesis,
a long sequence of 3400 meters consisting of 19387 stereo images is used.
However, to assess Visual Odometry algorithms, a part of the long sequence
of 1400 meters length is taken from start point to the loop closure point. The
full-length sequence is used for comparing the estimates of Visual Odometry
and SLAM. The traverse passes through flat terrain exhibiting unique dirt
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road surrounded by trees. The resulting images, coupled with data from
the IMU and precise ground truth information, make a relevant dataset for
vision-based off-road robotics research.

Figure 7.6: Pictures showing the start and end locations, loop closure point, and trajectory
of the full-length sequence of off-road data collected at the military training
area in Strass, Austria (credits: Google Earth).
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In this chapter, the different Visual Odometry approaches discussed in the
previous chapter are evaluated. The Visual Odometry approaches that are
evaluated are ORB-SLAM2, RTAB-Map F2M, RTAB-Map F2F, and SOFT VO.
Evaluation is performed using the different off-road datasets discussed in
the previous chapter. The off-road datasets are the Davon Island dataset, the
Seetaler Alps dataset, and the Strass dataset. All these datasets are different
and pose a different set of challenges.

The error metrics used for the evaluation of Visual Odometry algorithms is
proposed by (Sturm et al., 2012). The relative pose error (RPE) and absolute
trajectory error (ATE) are two frequently used evaluation methods. RPE
and ATE are used to compare estimated robot motion trajectory against the
true trajectory given by the ground truth system. RPE is generally used to
evaluate the drift of the Visual Odometry system or the accuracy at loop
closures of SLAM systems by measuring pose difference. In ATE, the two
trajectories are aligned first, and absolute pose difference is computed. RPE
considers both translational and rotational errors, whereas ATE takes only
translational errors into account. In this thesis, the ground truth measure-
ments are available only for translational components, and hence ATE is
used as an evaluation method. For an intuitively accessible visualization,
trajectories are always shown in bird’s eye persepecive.

Given the estimated trajectory P1..K, ground truth trajectory Q1..K from
K images, the estimated trajectory is aligned to the coordinate frame of
ground truth trajectory by manually aligning the orientations of the esti-
mated trajectory with the known orientation of ground truth using rigid
body transformation T as explained in Section 3.1 of Chapter 3. Given this
transformation, the absolute trajectory error for the image k is computed
as

Ek := Q−1
k TPk
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A root mean squared error (RMSE) is computed over all images as

RMSE(E1:K) :=

(
1
n

K

∑
k=1
‖trans (Ek)‖2

) 1
2

In addition, median errors are depictd using box plots for better under-
standing of general performance, as single outlier can significantly affect the
final result. For simplicity, ground truth and estimated trajectory sequences
are equally sampled. The missing data and incorrect samples are corrected
by an interpolation step.

All experiments were conducted on a PC with an Intel CPU Core i7 running
at 2.2GHz with 16 GB RAM on Ubuntu OS. In the following sections, the
results of the Visual Odometry algorithms using three different off-road
datasets are discussed.

8.1 Davon Island rover navigation dataset

The details of data sequences of the Davon Island dataset are discussed in
the previous chapter. To evaluate Visual Odometry approaches, sequence
00, 08, 21, and 22 are selected from the entire dataset of 23 sequences.
These sequences are selected based on parameters like traversal distance
and variablility in the terrain. Sequence 00 is a long run containing more
than 2000 images and a distance of around 500 meters. It is a rocky terrain
with lots of cliffs. Sequence 08 is a rather straight path, and the terrain has
fewer stones and appears sandy. Sequence 21 and 22 are relatively short
sequences.

For a motion estimation algorithm to run successfully for the entire set of
images, it needs to estimate the pose of the vehicle for every frame. In other
words, the algorithm should be able to compute the new position of the
robot based on the previous position. In a situation when the algoirthm fails
to compute the new robot position from its previous position, the algorithm
is said to have suffered from a tracking loss or tracking failure. In some
cases, the algorithm is restarted when tracking fails. However, when using
only Visual Odometry, the information of previous positions of the robot is
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8.1 Davon Island rover navigation dataset

completely lost if the tracking fails once. Restarting the algorithm would be
helpful only if the previous estimated positions are saved and tracking is
restarted from the known position.

Initially, all the Visual Odometry approaches were configured to their stan-
dard settings. In the standard configuration, ORB-SLAM2 suffered from
tracking loss often within a 50 meters distance. This behavior was noticed
in all the evaluated sequences. In some instances, tracking failed soon after
initialization. To counter this problem, the first mitigation strategy used was
to restart on failure. But, the results were not any better as it would fail very
often again after the restart. On the other hand, RTAB-Map F2M, RTAB-Map
F2F and SOFT VO suffered from tracking failures only on very few instances
because of low feature count in some areas of the robot traversal.

Figure 8.1: In this illustration, feature visualization is provided for two places where the
tracking fails in all the approaches. Green points are inlier points; red ones are
outliers. From the left images until the right, it can be seen that, as the robot
moves, the inlier count reduces, and eventually tracking fails when there are no
inliers. The top row images are from sequence 00, and the bottom row images
are from sequence 22.

When the number of features configured to be extracted was 1500, in ORB-
SLAM2, the number of features actually extracted was low (around 500),
and the percentage of features that were matched between the subsequent
frames (inliers) were always less than 10 percent (around 50). The inlier
count would drop eventually over the next frames and tracking fails as
the algorithm needs at least 5 inlier points to estimate motion. A similar
issue was noticed in the other Visual Odometry approaches as well but only
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Table 8.1: The Root Mean Squared Error (RMSE) for ORB-SLAM2, RTAB-Map F2M, RTAB-
Map F2F, and Soft VO is computed against the ground truth. This table shows
RMSE in [meters] for x, y, and z axis, and position xyz. xyz is the Euclidian
distance between the ground truth position and estimations for translational
components.

on one or two instances. Visualization is made in Figure 8.1 to illustrate
tracking failure.

Some of the reasons for the lower inlier count were the rocky terrain, large
stones, vehicle vibrations and a lower frame rate. A few mitigation strategies
were employed to counter tracking failures. As it was clear that the number
of features extracted was very low, “number of features“ parameter was
set to a high value (from 1500 to 5000), and the threshold values for FAST
corners were changed from default values (20) to lower values (5). The
threshold parameter is basically used to adapt the number of FAST corners
per cell in an image. This step reduced the failures to almost 50 percent.
However, a significant improvement in terms of number of failures was
observed when the “far/close points“ threshold was increased to a higher
value. In ORB-SLAM2, the far keypoints are excluded from the motion
estimation because the scale and the translation information are not reliable.
When increasing the far/close points threshold, a large number of keypoints
were included for motion estimation. In other Visual Odometry approaches,
increasing the number of features parameter resolved the tracking failure
problem. The results obtained after using the aforementioned mitigation
strategies are given in Table 8.1. The trajectories for the data sequences are
shown in Figure 8.2.

From the trajectory plots and the table it is seen that, the trajectory estimates
of RTAB-Map F2M and RTAB-Map F2F approaches are close to ground truth
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8.1 Davon Island rover navigation dataset

Figure 8.2: The results of ORB-SLAM2 (orange), RTAB-Map F2M (red), RTAB-Map F2F
(green), and Soft VO (magenta) for sequence 00, 08, 21, and 22 are shown as
2D plots. The 2D plots are the projection of 3D trajectories on x-y plane. The
ground truth is represented in blue.

in all the four sequences. The estimations of SOFT VO and ORB-SLAM2 have
suffered large drifts when compared with ground truth trajectory. In the
scenarios where robot movement involves large vibrations due to a bump,
a large stone, or a small cliff, the robot’s motion is highly un-predictable.
ORB-SLAM2 often produced wrong estimates and subsequently suffered
from more enormous drifts. By increasing the thresold of far/close points,
motion estimation of ORB-SLAM2 became unreliable. The reason is, the
triangulation of far keypoints resulted in unreliable depth information and
therefore motion estimation using these keypoints produced inaccurate
scale values. It is clearly visible that when there is a large inter-frame
transformation, ORB-SLAM2 estimates are not accurate. In the Davon Island
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dataset, the frame rate is very low (approx. 1 frame per 20-centimeter
movement). Thus, the large inter-frame transformation is also the result of
the low frame rate. Figure 8.3 shows the error accumulated by the estimates

Figure 8.3: Comparison of error accumulation over the total distance travelled for sequence
08, 00, 21, and 22. The plots illustrate the error accumulated (drift) as a function
of distance travelled by the rover. The position error is the Euclidean distance
between ground truth and estimated position.

of different Visual Odometry approaches. The position error is computed
as a function of ATE over distance traveled by the robot. It is shown from
the plots that the drift is highest in ORB-SLAM2 followed by SOFT VO. The
maximum distance traveled is around 500 meters in sequence 00. RTAB-Map
F2M has a final position error of around 40 meters, RTAB-Map F2F goes
up to 60 meters, ORB-SLAM2 and SOFT VO have a final position error of
around 200 meters. The error in the final pose of the RTAB-Map F2M and
F2F are significantly lower than ORB-SLAM2 and SOFT VO. The results in
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8.1 Davon Island rover navigation dataset

Table 8.1 show that RTAB-Map F2M and F2F approaches are more suitable
for the Mars-like Davon Island dataset. Therefore, a boxplot comparison
is made for RTAB-Map F2M and F2F approaches, and shown in Figure
8.4. The plots include the comparison of position error (XYZ), translational
error along X, Y, and Z, respectively. From the box plots, it can be seen that
the position error, translational error in Y, and translational error in Z are
smaller in F2M when compared with F2F appraoch. However, translational
error in X is slightly higher in F2M than in F2F approach. As the error is
accumulative, the final poses of the estimations exhibit large errors and
these erors are visible as outliers in the box plot. Overall, RTAB-MAP F2M
achieves the best results in terms of estimation accuracy.

Figure 8.4: Error comparison between RTAB-Map F2M and RTAB-Map F2F. Error in xyz,
x, y and z are depicted using the box plots. It is seen from these plots that the
estimates of F2M approach is slightly better than F2F. The large errors in the
estimations are shown in red.
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8.2 Seetaler alps off-road dataset

The data collection details of Seetaler alps off-road dataset is discussed in
the previous chapter. In this section we evaluate visual odometry algorithms
on Seetaler alps dataset.

Figure 8.5 shows the results of estimated trajectories by Visual Odometry
approaches. It can be noticed that the trajectories estimated for sequences 06

and 09 drift too much from the real path. With the standard configuration of
the Visual Odometry algorithms, it was observed that all of the approaches
ran successfully without any tracking failures. Whereas, Soft VO had issues
in tracking, initialization and estimates often failed to compute. The number
of features detected were always high but the frame to frame match ratio
was too low. In sequence 06, Soft VO failed multiple times and restarting
the estimation did not help either. It resulted in completely wrong estimates
and hence not included in trajectory plots. It is seen in figure that, the
estimates are better in sequences 08 and 11 whereas, there is too much of a
drift observed in sequences 06 and 09.

Some of the reasons for the bad estimations are snow, rain, and vehicle
vibrations. It could be seen that the estimates at turns are the most affected
because of the above reasons. The wrong estimates in turn lead to drift as
observed in sequence 06 and sequence 09. The vibrations in the vehicle also
affected the performance of Visual Odometry algorithms. Although, in se-
quence 09 and 11, trajectories are estimated approximate to the ground truth,

Table 8.2: The Root Mean Squared Error (RMSE) for ORB-SLAM2, RTAB-Map F2M, RTAB-
Map F2F, and Soft VO is computed against the ground truth. This table shows
RMSE in [meters] for x, y and position xy
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there is no approach that did significantly better than other. Nevertheless,
ORB-SLAM2, RTAB-Map F2M and RTAB-Map F2F performed better than
Soft VO. In most data sequences, optical flow based Soft VO was affected
too much because of vehicle vibrations and resulted in tracking failures and
wrong estimates. The RMSE for different approaches is computed as shown
in Table 8.2.

Figure 8.5: The results of ORB-SLAM2 (orange), RTAB-Map F2M (red), RTAB-Map F2F
(green) and Soft VO (magenta) for the Seetaler Alps dataset sequence 06, 08, 09,
and 11 are shown as 2D plots. The 2D plots are the projection of 3D trajectories
on x-y plane. The ground truth is represented in blue.

It can be seen in Figure 8.6, the overall performance of RTAB-Map F2M
and RTAB-Map F2F were slightly better than ORB-SLAM2 in sequences
08 and 11. In Sequence 06, it was observed that wrong estimates in the
corners and turns lead to large accumulation of errors and drifted too much
from the real trajectory. Even after including loop closure detection, places
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visited before were not recognized, and place detection strategy was heavily
affected by environment conditions. There were some instances where loop
closure detection was very inaccurate, and closing loops on wrong places.

Figure 8.6: Comparison of Error accumulation over the total distance travelled for sequence
06, 08, 09, and 11. The plots illustrate the error accumulated (drift) as a function
of distance travelled by the rover. The position error is the Euclidean distance
between ground truth and estimated position.
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8.3 Strass off-road dataset

The details of the Strass dataset were discussed in the previous chapter. In
this section, different visual odometry approaches are evaluated and com-
pared against ground truth positions. The data sequence contains an initial
sychronization pattern of circles followed by the full length trajectory. To
assess Visual Odometry better, the synchronization pattern is not included
in evaluation. The full trajectory and sychronization pattern are evaluated
using SLAM variant of the Visual Odometry approaches.

Using the default configuration settings, it was observed that ORB-SLAM2

ran successfully without any tracking failures. Tracking failed once in SOFT
VO while taking a large turn, but there were a few such failures in RTAB-
Map F2M and F2F approaches. Even with the increase in the number of
detected features, the percentage of inliers and matches did not increase
and resulted in loss of tracking in a couple of occassions. An increase in the
threshold value of feature matcher solved the problem of tracking failures.
Figure 8.7 shows the results of estimated trajectories provided by the Visual
Odometry approaches. It can be noticed that the trajectories of ORB-SLAM2

and SOFT VO are close to ground truth whereas, RTAB-Map F2M and F2F
approaches drift too much.

One of the significant issues observed was, estimations of RTAB-Map were
less accurate in sharp turns. Thus, estimates of visual odometry drifted and
large error accumulated as noted in the RMSE Table 8.3. On the other hand,
ORB-SLAM2 and Soft VO drifted less, although the latter was better than
the former in the final pose’s accuracy. ORB-SLAM2 and Soft VO give the
best results for this dataset. Comparative plots for ORB-SLAM2 and Soft VO
are depicted in 8.8. It is worth mentioning that ORB-SLAM2’s estimations
were accurate for most of the trajectory, but there was a large drift due to
rotation, and hence Soft VO had a better final pose accuracy. The box plot in
Figure 8.8 shows that ORB-SLAM2 exhibits a larger error in the Y direction
and results in a larger X-Y pose error.
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Figure 8.7: The results of ORB-SLAM2 (orange), RTAB-Map F2M (red), RTAB-Map F2F
(green) and Soft VO (magenta) for the Strass dataset are shown as 2D plots. The
2D plots are the projection of 3D trajectories on x-y plane. The ground truth is
represented in blue.

Table 8.3: The Root Mean Squared Error (RMSE) for ORB-SLAM2, RTAB-Map F2M, RTAB-
Map F2F, and Soft VO is computed against the ground truth. This table shows
RMSE in [meters] for x and y, and position xy.
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Figure 8.8: A comparison of ORB-SLAM2 (without loop closure and global optimization)
(orange) vs Soft VO (magenta) is depicted in these plots for the Strass dataset.
The top left plot is the estimated trajectories of SOFT VO, ORB-SLAM2, and
the ground truth. The top right picture is the position error function over the
distance travelled. The bottom picture is the box plot of RMSE comparison of
ORB-SLAM2 with SOFT VO for translational error in X, Y, and position error
X-Y.
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8 Evaluation

In this section so far, only Visual Odometry approaches are evaluated where
loop closure and global optimization techniques have been removed from the
standard SLAM implementation. One of the vital features of ORB-SLAM2

is its loop closing and full bundle adjustment threads. We use this ability
to evaluate the performance of loop closure and global optimization. A
significant improvement was noticed in ORB-SLAM2 compared to its results
without loop closure and full global bundle adjustment. A comparative
analysis and the estimated trajectory of ORB-SLAM2 VO and its SLAM
variant are shown in Figure 8.9.

Figure 8.9: A comparison of ORB-SLAM2 SLAM (Red) vs Visual Odometry (orange) is
depicted in the plots above. A significant performance is noticed as SLAM
corrects the drift error introduced by VO. The final position error of 72 meters
is reduced to 0.1 meters as seen in the top right plot. RMSE is compared in the
box plot for SLAM vs Visual Odometry.
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8.3 Strass off-road dataset

With loop closure and bundle adjustment, the average accumulated trajec-
tory error is optimized to 4 meters from an average error of 19 meters. The
final pose error in ORB-SLAM2 (only VO) was 72 meters, but after loop
closure and global optimization, the error reduced to less than 0.1 meters.
In addition to ATE as an error measure, we evaluate the performance im-
provement when loop closure and bundle adjustment were added to pure
Visual Odometry. An improvement of 58.7 percent was noticed when loop
closure and global bundle adjustment were added to Visual Odometry.

Figure 8.10: Trajectory estimation of ORB-SLAM2(red) and RTAB-Map(green) against
Ground truth(blue) with loop closure and global optimization. Left plot is the
sequence without synchronization pattern and the right plot is the trajectory
estimates for the entire sequence of images.

On the other hand, due to a large drift error, the loop closure and the global
optimization scheme employed by RTAB-Map were sub optimal. The plots
of RTAB-Map and Orbslam are shown in 8.10.
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8.4 3D maps

A Dense 3D map can be created using RTAB-Map 3D reconstruction module.
Figures 8.11 and 8.12 show the 3D maps for sequence 00 and 22 of the Davon
Island dataset. Figures 8.13 shows the 3D map for a part of the Strass dataset
and Figure 8.14 shows the 3D map for a part of sequence 11 of the Seetaler
Alps dataset. The map is represented by optimized robot trajectory (blue)
and the optimized dense point cloud. The dense point cloud map created in
the Davon Island dataset show the complete terrain as there is no vegetation
in the rover traversal area. On the other hand, only parts of the map are
shown in Figures 8.13 and 8.14.
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8.4 3D maps

Figure 8.11: The picures show the 3D pointcloud map (top picture) created using RTAB-
Map for the Davon Island navigation dataset sequence 00, and a sample image
(bottom picture) from the sequence 00.
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8 Evaluation

Figure 8.12: The picures show the 3D pointcloud map (top picture) created using RTAB-
Map for the Davon Island navigation dataset sequence 22, and a sample image
(bottom picture) from the sequence 22.
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8.4 3D maps

Figure 8.13: The picures show the 3D pointcloud map (top picture) created using RTAB-
Map for the Strass dataset, and a sample image (bottom picture) from the
Strass dataset.
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8 Evaluation

Figure 8.14: The picures show the 3D pointcloud map (top picture) created using RTAB-
Map for the Seetaler Alps dataset sequence 11, and a sample image (bottom
picture) from the sequence 11.
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9 Conclusion

This chapter summarizes this thesis and discuss potential future improve-
ments to this work.

9.1 Discussion

In this thesis, different feature-based Visual Odometry approaches are
evaluated using off-road datasets. The use of the Vision sensor as a primary
sensor for robot navigation in various off-road conditions is assessed. The
performance of these techniques on challenging datasets has been evaluated
quantitatively in terms of accuracy of position estimations. Moreover, a
Mars-like simulation environment is created to allow for a easy quick and
initial evaluation of Visual Odometry techniques in vision-based sensor
configuration in GPS-denied environments. Performance evaluation in a
simulated environment does not guarantee to behave similarly in a real
environment. On one hand an existing Mars-like rover navigation dataset
was selected. On the other hand, we collected our own challenging off-road
dataset at the military training ground that features a challenging alpine
environment in the Seetaler Alps, Austria. In order to be able to perform
data recording, an appropriate stereo camera system was designed, built
and configured. We also evaluated a challenging off-road dataset collected
at the military training ground at Strass, Austria.

The Visual Odometry algorithms that were evaluated are ORB-SLAM2,
RTAB-MAP F2M, RTAB-MAP F2F, SOFT VO. Evaluating different feature-
based Visual odometry methods shows that Visual Odometry techniques
largely depend on the type of the terrain. It was also shown that these tech-
niques require much fine-tuning for a specific environment. In the Davon
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9 Conclusion

Island Mars dataset, RTAB-Map F2M and RTAB-Map F2F outperformed
ORB-SLAM2 and Soft VO. The results showed that ORB-SLAM2 drifts too
much from the real robot path, and tracking often failed. A higher level of
accuracy is reached by using the RTAB-Map F2M approach. On the other
hand, in the Seetaler Alps off-road dataset, in the presence of snow, rain, and
adverse conditions, all the approaches failed to achieve good results as the
estimated trajectories tend to drift too much from the real one. Along with
challenging environmental conditions, it was noticed that vehicle vibrations
caused unreliable estimations and sometimes a failure in tracking. In the
Strass dataset, ORB-SLAM2 and Soft VO performed well, but wrong esti-
mates in large turns caused results of RTAB-Map F2M and RTAB-Map F2F
to drift too much from the ground truth trajectory. Additionally, pure Visual
Odometry performance was compared against full SLAM (loop closure and
global bundle adjustment). The accuracy of absolute trajectory estimation
improved by 58.7 percent by visual SLAM compared to Visual Odometry.

In direct comparison to the sparse-map of ORB-SLAM2, RTAB-Map’s dense
reconstruction contained far more details and is well suited for various
navigation applications like detecting obstacles.

Overall, the evaluation results showed that RTAB-Map F2M achieves the best
accuracy in the Davon Island Mars dataset. ORB-SLAM2 outperformed ORB-
SLAM2 in the Strass dataset, and none of these approaches provided useful
results in the Seetaler Alps dataset. A pure vision-based navigation in off-
road terrain is hence proved to be very difficult. Especially in challenging
scenarios, it is seen that tracking loss and trajectory drift are inevitable.
Potential improvements to achieve better localization accuracy are discussed
in the next section.

9.2 Future Work

The results of RTAB-Map for the Mars dataset showed that it achieves
high accuracy in challenging off-road terrain. However, unfortunately, the
estimations drifted too much from the ground truth in the Strass dataset.
RTAB-Map is a software library that allows users to configure and tune
the software based on the application. As seen in the Strass dataset results,
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9.2 Future Work

RTAB-Map’s estimations were wrong in corners and sharp turns. As a po-
tential solution to this problem, various parameters of RTAB-Map software
could be tuned and tested until satisfactory results are attained. One could
try out different feature extractor and matcher combinations. One could
also change the motion estimation approach from 3D-2D to 3D-3D. It is
also worth changing bundle adjustment parameters by varying the distance
threshold of visible feature points in 3D space.

Additional sensors like inertial measurement units (IMU) could be used
to correct the drift by fusing their with the data from the stereo camera
sensor. A new version of ORB-SLAM called ORB-SLAM3 uses IMU and
stereo camera together to estimate the robot trajectory (Campos et al., 2020).
As ORB-SLAM2 already achieves the best results in the Strass dataset, an
extensive evaluation of ORB-SLAM3 on the Mars dataset could solve the
drift problem. On the other hand, Soft VO performed well in the Strass
dataset and achieved relatively good results in the Mars dataset. A full
SLAM implementation of Soft VO could be evaluated and tested against
different datasets.

A more promising way to correct drifts is to use the deep learning-based
method “Self-supervised deep pose corrections for Robust Visual Odom-
etry“ (Wagstaff, Peretroukhin, and Kelly, 2020). It uses a classical visual
odometry estimated output as a prior and corrects the estimates using a
deep neural network. A possible way to integrate this is to use RTAB-Map’s
F2M approach as a visual odometry pipeline and correct the drifts using a
deep neural network. As RTAB-Map’s estimates drifted too much in sharp
turns in the Strass dataset, integrating deep learning-based pose correction
step could enhance the localization accuracy.
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